
Distributed Computing Environment for Windows
NT, Version 2.2

DCE Enhancements

IBM

Distributed Computing Environment for Windows
NT, Version 2.2

DCE Enhancements

IBM

ii Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Contents

Chapter 1. DCE for Windows NT Enhancements 1

Chapter 2. DCE Administration 3
DCE Administration Tools on Windows NT 3

Summary of Control Programs, Editors, and Tools 3
Running an Administration Tool 5
Getting Help on Administration Tools 6

DCE Commands Available from the Additional Utilities Folder 6
GUI-Based Administration Tools 7

DCEsetup . 7
DCE Director . 8
Visual DCE ACL Editor . 9

NT Event Logging of DCE Messages 9
DCE Credentials on Windows NT. 10
Inheriting Machine Credentials from the Administrator Account 10
Registering a Cell in X500 . 10
Managing the Cell from a Windows NT System 11
Unsupported OSF DCE Function 12

Chapter 3. Installation and Configuration Enhancements 13
Tunable Timeout Values for Configuration. 13

Example of usrstime.tcl . 16
Tunable Timeout Values for RPC 18

RPC_SEC_COM_TIMEOUT 18
RPC_CN_CONNECTION_TIMEOUT 19
RPC_CDS_COM_TIMEOUT 19

Unattended Configuration . 19
Remote DCE Client Configuration 20
Slim Client . 20

Functionality . 20
Migration. 21
Interoperability. 21
Functions Not Supported . 21

Uninstall Procedure . 22
DCE Control Program (dcecp) Extensions 22

config.dce . 23
start.dce . 36
stop.dce . 38
show.cfg . 40
clean_up.dce . 42
mkreg.dce . 43
rmreg.dce . 45
unconfig.dce . 46

Silent Install . 52
Starting Silent Install . 52
The SETUP.ISS Response File 52
The SETUP.LOG File . 55

Chapter 4. Application Development Notes and Considerations 57
Building Applications . 57

Including Files . 57
Including the DCE RPC Header File. 58
Including POSIX Threads Header File 58

iii

Using Compiler and Linker Flags with Visual C++ 58
Linking DCE Applications . 59
Structure Alignment with C Compilers Restriction 59
MFC Classes in IDL Files Restriction 59
TZ Environment Variables with DTS Routines Restrictions 59
Structure of passwd. 60

Differences Between OSF DCE and Windows NT Examples 60
DCE Directory Names . 60
DCE Function Prototypes for C++ Applications 61
Memory Allocation in DCE Applications 61
Using IBM VisualAge C++ . 62

New Flags for Makefile . 62
IDL Compiler Flags . 62
Compiler Flags . 63
Linker Flags . 63
Compiler Warnings from Function Assignments. 63
Code Considerations . 64

Converting Applications from Microsoft RPC to DCE RPC. 65
dced Server Object Identities Restrictions. 65
dced Daemon Behavior Restrictions. 66
dced Partial Service Mode Restriction 66
Enable and Disable Endpoints Restriction. 66
Commercial Data Masking Facility (CDMF) 66

Application Development Using CDMF 67
RPC APIs Supported by CDMF 67
GSS APIs Supported by CDMF 67

Use of Threads . 68
Pthreads Return Error Value Restriction 68
Unsupported DECthreads Interface Routines 68
Return Values for pthreads_setcancel() and pthread setasynccancel() . . . 69
Data Returned by pthread_getspecific 69
Maximum Time Interval for cma_delay and pthread_delay_np 70

Chapter 5. Public Key Certificate Login 71
Overview of Public Key Login 71
Entrust Prerequisites for Using Public Key Certificate Login 72
Enabling Public Key Certificate Login 73
Managing DCE User Authentication 74
Authenticating Using Public Key Certificate Login 75
Falling Back to Traditional Authentication 76
The Identity Mapping Server 76
Public Key Interoperability Between DCE Versions 76
Restrictions of Public Key Certificate Login 77
Summary of the Steps Required to Use Public Key Certificate Login 78

Chapter 6. Multiple Network Interface Cards 79
Multiple Network Interface Restriction 79
Specifying the Network Interface 79
Specifying the IP Address . 80

Chapter 7. Auto-Start and Integrated Login 83
Auto-Start . 83
Integrated Login . 83

Chapter 8. CDS Enhancements 85
Inline CDS Clerk . 85

iv Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

CDS Cache Restructuring . 85
CDS Preferred Clearinghouse 85

Chapter 9. Credential Cache Cleanup 87

Chapter 10. MVS DCE Load Balancing Client Support 89
How Load Balancing Works . 89
The rpc_enable_ep_resolve_v4 Environment Variable 90

Chapter 11. Simple Network Management Protocol (SNMP) 91
DCE SNMP Service. 92
DCE SNMP Agent . 93
DCE SNMP Extended Agent 93
DCE SNMP Subagent . 93

Monitoring Configured DCE Server Status Changes 94
Monitoring DCE EMS Events 94
Monitoring DCE Serviceability Messages 94
Using the SNMPTRAP.TBL File 95

Techniques for Managing DCE. 95
Working With the DCE SNMP Service 96

Starting and Stopping DCE 96
Starting and Stopping the DCE SNMP Service 96

Using the Commands . 97
dceagtd . 99
wsnmp . 100
wtrapd. 102
snmpd. 103
extagent . 104

DCE SNMP Management Information Base 105
DCE MIB Definitions . 107

Chapter 12. Event Management Service (EMS) 139
DCE Event Management Service 140

Functional Highlights . 140
Functional Definition . 141
User Interface Considerations 145
Using the Sample Supplier and Consumer 146
Event Consumer Template 149

Starting the EMS Server . 149
Logging EMS Events . 149
Managing EMS Consumers . 150
Managing EMS Event Filters 151
Managing EMS Event Queues 152
Managing the EMS Daemon 153
Setting Permission for the EMS Server. 153

Event Type Security Management 154
Event Filter Security Management 155
Consumer Security Management 155
EMS Security Initialization 156

Event Management Service Commands 157
ems commands . 158
ems catalog . 159
ems help. 160
ems operations . 161
ems show . 162
emsconsumer commands 163

Contents v

emsconsumer catalog . 164
emsconsumer delete . 165
emsconsumer help . 166
emsconsumer modify . 167
emsconsumer operations . 169
emsconsumer show. 170
emsevent commands . 171
emsevent catalog . 172
emsevent delete . 173
emsevent help. 174
emsevent operations . 175
emsevent show . 176
emsfilter commands. 178
emsfilter catalog . 179
emsfilter delete . 180
emsfilter help . 181
emsfilter operations . 182
emsfilter show . 183
emslog commands . 184
emslog help . 185
emslog operations . 186
emslog show . 187
emsd . 188

DCE Event Management Service API 189
EMS Data Structures . 189
EMS Registration Routines 197
EMS Event Type Routines 198
EMS Supplier Routine . 198
EMS Event Filter Routines 198
EMS Consumer Routines. 199
EMS Management Routines. 199

Event Management Using the Direct Supplier/Consumer Model. 243

Chapter 13. IDL Compiler Enhancements 247
The -standard Build Option . 247
The -filename Build Option . 247
Stub Auxiliary Files . 248
Garbage Collection Support for Distributed Objects 248

Chapter 14. Modifications to Internationalization 249
Naming Considerations . 249
Messaging and Serviceability Considerations 250

Serviceability Component Names 250
Installing Application Message Catalogs 251

Windows NT Code Page Considerations 251
OEM Versus ANSI Code Pages 251
Code Page Conversion or Command Line Parameters 251

XPG4 Internationalization. 251
Setting the Locale Using LANG 252
Locale and Message Catalogs, NLSPATH Environment Variable 252
Supported Locale Names. 253
Synchronization with the Country Environment 254

NT DCE Default Locale . 255
dce_setlocale . 256
RPC Code Set Conversion . 257

Additional Implementation Details and Restrictions 258

vi Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Related Information . 273
Unsupported Functions . 273

Chapter 15. Application Debugging with the RPC Event Logger 275
Overview of the RPC Event Logging Facility 275
Generating RPC Event Logs 278

Enabling Event Logging . 278
Using the -trace Option . 279
Combining Event Logs. 280
Disabling Event Logging . 281

Controlling Log Information,Using Environment Variables and the Log Manager . 282
Controlling Logged Events with Environment Variables 282
Controlling Logged Events with the RPC Log Manager 283

Using the -trace Option, Environment Variables, and the Log Manager Together 285
Debugging Your Application, Using Event Logs 289
Event Names and Descriptions 290
Summary: RPC Event Logger 292

Chapter 16. Using DTS Time Providers 293
Building DTS Time Providers 293
Null Time Provider . 293
Starting the Null Time Provider as a Foreground Process 293
Starting the Null Time Provider as a Native NT Service. 294
NTP Time Provider . 294

Chapter 17. Using the Name Service Interface Daemon 295
How nsid Works . 295
Configuring and Starting the nsid 295
Security Considerations . 296
The Microsoft Locator and the nsid 296
The Microsoft Registry and the nsid 296
Modifying the Windows NT Registry Using the Windows NT Control Panel . . 296
Modifying the Windows NT Registry Using the Registry Editor 297
APIs Supported by the nsid . 298

Chapter 18. Using the Example Programs 299

Chapter 19. Enhanced Online Information 301
Online Documents . 301
Online Help Files. 301

Chapter 20. Additional Considerations 303
Readme File . 303
Compatibility and Interoperability with Other DCE Systems 303
Interoperability with Microsoft RPC on Windows NT Systems 304
Supported Transport Protocols 304

Contents vii

viii Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 1. DCE for Windows NT Enhancements

The DCE for Windows NT product provides the following value-added features to
help you run DCE and develop and deploy DCE applications:

Slim Client (new in this release)

Public Key Certificate Login Support (new in this release)

CDS Preferencing (new to this release)

Tunable Timeout Values for Configuration (new to this release)

Tunable Timeout Values for RPC (new to this release)

Multiple Network Interface Cards (new to this release)

Modifications to Internationalization (enhanced for this release)

DCEsetup

DCE Director

Visual ACL Editor

Unattended Configuration

Auto-Start

Silent Install

Integrated Login

Remote DCE Client Configuration

Inline CDS Clerk

CDS Cache Restructuring

Credential Cache Cleanup

IBM VisualAge C++ Support

DCE Control Program (dcecp) Extensions

Application Debugging with the RPC Event Logger

IDL Compiler Enhancements

Additional Example Programs

Enhanced Online Information

Simple Network Management Protocol (SMNP)

Commercial Data Masking Facility (CDMF)

Event Management Services (EMS)

MVS DCE Load Balancing Client Support

DTS Time Providers

Name Service Interface Daemon

Uninstall Procedure

Interoperability and Compatibility

DCE for Windows NT is year 2000 compliant. This means that the user and
command line interfaces are enabled to accept the year 2000 as input. Calculations
are handled in CCYY format, where CC represents the century, and YY represents
the year.

1

2 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 2. DCE Administration

The DCE Runtime Services for Windows NT option enables DCE cell administrators
to perform many cell administration tasks from a Windows NT system. With a few
exceptions that are required by the Intel operating environment, the DCE cell
administration tools work exactly the same on Windows NT as they are documented
for OSF DCE.

This topic describes those exceptions; it also describes the product’s administration
enhancements that have been added to the standard OSF DCE functionality.
Finally, this topic includes general information to consider when performing cell
administration tasks.

DCE Administration Tools on Windows NT

Select from the following topics to obtain information on the various DCE control
programs, editors, and administration tools that are provided with the DCE for
Windows NT product.

Summary of Control Programs, Editors, and Tools

Running an Administration Tool

Getting Help on Administration Tools

Summary of Control Programs, Editors, and Tools

DCE for Windows NT offers the following control programs, editors, and tools to
help you modify your DCE environment.

Icon Tool

DCEsetup – Used to perform administration tasks related to configuring and
managing DCE clients and servers.

DCE Director – Used to manage a DCE environment.

Visual ACL Editor – Used to set the permissions for all security-relevant
objects within DCE, including Registry objects and CDS objects

3

DCE Control Program (dcecp) – Used to manage DCE services.

CDS Control Program (cdscp) – Used to create and maintain Cell
Directory Service objects.

RPC Control Program (rpccp) – Used to create and manage RPC entities.

DTS Control Program (dtscp) – Used to manage the DTS server.

ACL Editor (acl_edit) – Used to edit access control lists (ACLs) in a
distributed environment.

Registry Editor (rgy_edit) – Used to display and modify elements in the
cell’s security registry.

Security Adminstration Program (sec_admin) – Used to manage security
registry replica.

The DCE control program, dcecp , provides a single command line interface for
executing all commands available through cdscp , rpccp , dtscp, acl_edit, rgy_edit,

4 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

and sec_admin . While the DCE for Windows NT product continues to support
these control programs for the short term, it is recommended that you use dcecp .

Note: These older control programs support only English. If you are using
non-English data, you must use dcecp .

Running an Administration Tool

You can run the following standard DCE administration tools from either a Windows
NT MS-DOS command window or the DCE for Windows NT v2.2 Program folder.

The DCE control program, dcecp is located in the DCE for Windows NT Program
folder. You can run all the other listed tools from the Additional Utilities folder. To
display the Additional Utilities folder, click the Start menu, select Programs , and
then click the DCE for Windows NT folder.

To run the DCE Control Program , do one of the following:

v From MS-DOS, type: dcecp

v From the DCE for Windows NT Program folder, click on

To run the CDS Control Program , do one of the following:

v From MS-DOS, type: cdscp

v From the Additional Utilities folder, click on

To run the RPC Control Program , do one of the following:

v From MS-DOS, type: rpccp

v From the Additional Utilities folder, click on

To run the Registry Editor , do one of the following:

v From MS-DOS, type: rgy_edit

v From Additional Utilities folder, click on

To run the ACL Editor , do one of the following:

Chapter 2. DCE Administration 5

v From MS-DOS, type: acl_edit

v From the Additional Utilities folder, click on

To run the Security Adminstration Program , do one of the following:

v From MS-DOS, type: sec_admin

v From the Additional Utilities folder, click on

Once the appropriate prompt or command window appears, you can enter any of
the commands supported by OSF DCE for that tool. However, certain commands
require that the server be resident on the system from which those commands are
issued. For a list of these commands, see “Managing the Cell from a Windows NT
System” on page 11.

For DCE administration command syntax information, refer to the OSF DCE
Command Reference online documentation.

For general information on how to administer DCE cells, refer to the OSF DCE
Administration Guide online documentation.

Getting Help on Administration Tools

Online help is available for all control program commands. To display DCE
command reference information, double-click the OSF DCE Command Reference
help icon in the DCE for Windows NT Documentation folder.

DCE command reference information is also available in the printed manual OSF
DCE Command Reference. Help is also available for the windows-based tools
(DCEsetup, CDS Director, and the Visual ACL Editor).

DCE Commands Available from the Additional Utilities Folder

The following commands are available from the Additional Utilities folder. To display
the Additional Utilities folder, click the Start menu, select Programs , select the DCE
for Windows NT v2.2,and then click on Additional Utilities.

Icon Command

6 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

DCE login
Validates a principal’s identity and obtains the principal’s network
credentials.

kinit refreshes the principal ticket-granting ticket.

klist Lists cached tickets.

kdestroy
Destroys a principal’s login context and associated credentials.

GUI-Based Administration Tools

DCE for Windows contains the following GUI-based tools to assist you with the
administration of you DCE cell.

DCEsetup

DCE Director

Visual ACL Editor

DCEsetup

DCEsetup is a graphical tool for configuring and managing DCE services on a
Windows NT system. With DCEsetup, you can configure all of the components on a
Windows NT system. The choices you make determine whether your Windows NT
system functions as a client or server system, CDS read-only replica server, or
Security read-only replica server.

DCEsetup provides a status window that lists all DCE services that have been
installed on your system, their configuration status, and the status of the
corresponding daemon. It also provides a configuration log window that displays
process information as DCEsetup configuration options are performed.

DCEsetup offers these additional capabilities:

Auto-start

Chapter 2. DCE Administration 7

Integrated login

Remote client configuration

Using DCEsetup

To run DCEsetup:

Double-click

To get information on using DCEsetup:

Double-click Configuring with DCEsetup in the Documentation folder

Or

Pull down the Help menu in the main window of DCEsetup, select Help Topics and
choose Contents. Context-sensitive help is also available for the commands,
wizards, and dialog boxes within the tool.

DCE Director

The DCE for Windows NT Runtime Services provides a graphical user interface
called DCE Director for managing your DCE environment. DCE Director provides an
object-oriented view to the DCE environment. Cell objects consist of users, groups,
hosts, CDS directories, and servers, each of which can be created, copied,
modified, or deleted.

DCE Director runs on Windows NT. However, it can manage all kinds of DCE hosts
because it uses standard DCE protocols.

Using the DCE Director

To run the DCE Director:

Double-click

.

To get information on using the DCE Director:

From the Documentation folder, double-click Using DCE Director .

Or

8 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

From the DCE Directory window, click the Help menu and then click Contents .
Context-sensitive help is also available for the commands and dialog boxes within
the tool.

Note: DCE Director is based on the function contained in the OSF DCE 1.1
release.

Visual DCE ACL Editor

The Visual DCE ACL Editor makes it easy for you to set the permissions for all
security-relevant objects within DCE, including Registry objects and CDS objects.

This tool provides an easy means of managing DCE access control lists (ACLs). It
is integrated with DCE Director but can function as a standalone tool.

Using the Visual ACL Editor

To run the Visual ACL Editor:

Double-click

.

To get information on using the Visual ACL Editor:

From the Documentation folder, double-click Using Visual ACL Editor .

Or

From the Visual ACL Editor window, click the Help menu, and then click Contents .
Context-sensitive help is also available for the commands and dialog boxes within
the tool.

Note: Visual ACL Editor is based on the function contained in the OSF DCE 1.1
release.

NT Event Logging of DCE Messages

DCE for Windows NT automatically writes fatal and error messages to the Windows
NT event log.

A Windows NT enhancement gives administrators the option to edit the
%DCELOC%\dcelocal\var\svc\routing file and cause select DCE serviceability
messages to go to the NT event log as well.

To facilitate this, a new output form, NTLOG, has been added. The text string
"NTLOG:-" can be inserted in any routing entry in the same way as the STDERR
output form. For example:
WARNING:STDERR:-;FILE.32.256:e:/opt/dcelocal/var/svc/warning.log

Chapter 2. DCE Administration 9

becomes...
WARNING:NTLOG:-;STDERR:-;FILE.32.256:e:/opt/dcelocal/var/svc/warning.log

DCE Credentials on Windows NT

Each time you log into DCE, a fresh set of DCE credentials is obtained. These
credentials are available to all of the user’s processes in the system. However, the
credentials are affected by normal cell and account policies and remain subject to
credential expiration. If you remain logged in to Windows NT longer than the
credential lifetime, you will need to do one of the following:

v Use kinit to refresh existing credentials

v Use dce_login to obtain new credentials

Inheriting Machine Credentials from the Administrator Account

When logged into the Windows NT Administrator account, kdestroy will operate
differently than when logged into other user accounts (even if the account has the
administrator privileges). The Administrator account is somewhat analogous to root
on UNIX. As is the case on UNIX, if you have valid DCE credentials and execute
kdestroy , you will be assigned the local machine credentials (dcecred_ffffff).

On most UNIX DCE implementations, if you are currently assigned the local
machine credentials with root access and perform another kdestroy , DCE will
deassign the machine credentials and will delete the dcecred_ffffff credential files.
This has undesirable side effects for the DCE services running on the system. On
DCE for Windows NT, Version 2.2, kdestroy will never delete the local machine
credentials. A warning message is printed and the request is ignored. If you have
Administrator privileges, you will continue to be assigned the local machine
credentials.

Be aware that this behavior has the side effect on Windows NT of never allowing
unauthenticated RPC access whenever you are logged into the Administrator
account. If you have valid DCE credentials, RPC requests will be authenticated. If
you kdestroy those credentials, you will be assigned the local machine credentials
and subsequent RPC requests will continue to be authenticated, both within the cell
and across cell boundaries.

If you are logged in as Administrator in an intercell environment, as long as you
have valid DCE credentials, the concept of an ″unauthenticated user″ does not
exist.

Registering a Cell in X500

DCE for Windows NT allows NT cells to be registered with X500 servers. To do this,
follow these steps:

1. On the system where the X500 server is running, create a dxd_dua.dat file. Do
this with the dua_configure utility. The presentation address in the
dxd_dua.dat file must be in RFC1006 format. To do this, perform these steps:

a. Also on this system, determine the RFC1006 presentation address string by
obtaining the host network address (for example, 11.22.33.44). Use this
address as part of the presentation address, as shown in the following
address:

10 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

"DSA"/"DSA"/"DSA"/RFC1006+11.22.33.44,RFC1006

b. At your local host, add this address to the dsa’s presentation addresses in
ncl:

ncl> set dsa presentation address paddr_w_rfc_addr

where paddr_w_rfc_addr is the presentation address with the RFC address
appended to the end. An example of this follows:

"DSA/"DSA"/"DSA"/NS+490011AA000021,CLNSRFC1006+11.22.33.44,RFC1006

If you now use the ncl show presentation address command, the address
will appear in a different format.

c. Modify the dxd_dua.dat file to include the RFC presentation address. The
following is a sample dxd_dua.dat file with the RFC presentation address
followed by the CLNS address:

DUA.KnownDSAs.paddr
="DSA"/"DSA"/"DSA"/NS+006630141054,RFC1006|NS+490004AA000300C71021,CLNS
DUA.KnownDSAs.ae_title = /O=dec/CN=dsa1

#DUA.PreferChaining =true
#DUA.ChainingProhibited = false
#DUA.DontUseCopy =false
#DUA.DontDereferenceAliases = false
#DUA.ScopeOfReferral =DMD
#DUA.TimeLimit =.60
#DUA.SizeLimit = 30
#DUA.Priority = Medium
#DUA.DomainRoot = /
#DUA.InitialEntry = /

2. Copy the dxd_dua.dat file to your NT system directory.

3. At your local host, run X500_addcell.exe from the command line. The syntax
for the call is:

X500_addcell -o7 -C cellname -p n

where:

-O X500 object class; should always be 7

-C Local NT cell name that is to be registered

-p Either n or y, depending on whether the user wants to overwrite an existing
entry with the same name

Managing the Cell from a Windows NT System

You can use the control programs and tools, provided with the DCE for Windows
NT product, to perform many cell administration tasks. However, you must run
some commands from the host system for the server that they control.

The following commands must be run on the system where the CDS server is
installed:

v create clearinghouse

v delete clearinghouse

v disable server

Chapter 2. DCE Administration 11

v show server

v remove clearinghouse

If these commands are run on a system that does not have the CDS server
installed, the CDS Control Program returns the following error message:
Endpoint not registered

Unsupported OSF DCE Function

The differences are grouped into sections by type. Each section is further
subdivided into functional categories, which correspond with specific DCE services
(such as Configuration, Security, and Cell Directory Services).

Unsupported Services :

v Security:

– Transitive Trust in a cell hierarchy is not supported in this release.

– The Public Key Certificate Management API is not supported in this release.

– The Private Key Storage server is not supported in this release.

– User-to-User Authentication is not supported in this release.

– Global Groups are not supported in this release.

v Directory:

– Hierarchical Cells are not supported in this release.

– Global Directory Services (GDS) are not provided in this release. However,
GDS can exist in the same cell and be used for intercell communications, if it
is provided by another product.

v RPC

– Single-threaded RPC is not supported in this release.

Unsupported Commands :

v Security:

The sec_salvage_db , rlogin , rlogind , rsh , and rshd commands supplied by
OSF are not supported in this release.

v Distributed Time Service:

The dtss-graph command, which converts synch trace to PostScript, is not
supported.

For additional command and API restrictions, see the Internationalization
“Unsupported Functions” on page 273, “Enable and Disable Endpoints Restriction”
on page 66, and “Unsupported DECthreads Interface Routines” on page 68.

12 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 3. Installation and Configuration Enhancements

DCE for Windows NT provides improvements in the areas of installation and
configuration. These improvements include the following:

v “Tunable Timeout Values for Configuration”

v “Tunable Timeout Values for RPC” on page 18

v “Unattended Configuration” on page 19

v “Remote DCE Client Configuration” on page 20

v “Uninstall Procedure” on page 22

v “DCE Control Program (dcecp) Extensions” on page 22

v “Silent Install” on page 52

Tunable Timeout Values for Configuration

The DCE configuration, start, stop, and unconfiguration programs perform certain
tasks that might take some time to complete. These programs wait a specified
amount of time for the completion of tasks. Some tasks can take longer on certain
machines, causing the program to fail. If these timeouts need to be changed to
accommodate a specific machine, you can modify the usrstime.tcl file in the
%DCELOC%\dcelocal\etc directory. This file contains the timeout values for all
actions that have timeouts in the configuration, start, stop, and unconfiguration
programs.

Note: The usrstime.tcl file contains tcl syntax. You must not use variables that
have not already been defined. You must also ensure that you do not
remove the comment characters (#) from the comment lines or the ″set″
from the beginning of the variable lines. It is strongly recommended that you
make a backup copy of the usrstime.tcl file before modifying it.

All timeouts and intervals are given in seconds. A timeout is the maximum time that
the code will wait for the specified action to be completed. If the action is completed
before the timeout value is reached, the program will continue without waiting the
remaining amount of time. An interval is the time waited between checks. For
example, if the program is waiting for the CDS namespace, the code loops on a
″directory list /.: ″. If the timeout is 300 and the interval is 15, the code will run a
″directory list /.: ″ every 15 seconds for up to 300 seconds until it is completed
successfully.

The usrstime.tcl file is divided into three sections. The first section contains the
default start, stop, and listen timeouts and intervals. These defaults can be used in
the specific timeout and interval values by placing a $ before the default text. For
example:
set default_start_timeout 120
...
set rpc_start_timeout $default_start_timeout

The second section contains the specific start and stop timeouts and intervals for
each component. The intervals on the start and stop are how often the code checks
the status of the daemon.

13

(comp)_start_timeout = component start timeout
(comp)_start_init = component start interval
(comp)_stop_timeout = component stop timeout
(comp)_stop_init = component stop interval

The components are as follows:

rpc RPC

sec_cl
Security client

sec_svr
Security Master server

sec_rep
Security Replica server

cds_cl
CDS client

cds_svr
Initial Directory server

cds_2nd
Secondary Directory server

dcecm
Integrated Login

dts_local
DTS Local

dts_global
DTS Global

dts_cl DTS client

gda Global Directory Agent

nsid Name Space Interface Daemon

pw_strength
Password Strength server

audit Audit

ems Event Management Service

snmp Simple Network Management Protocol

The third section contains timeouts and intervals for actions other than start and
stop. See Table 1 for a listing of the variables, their discriptions, and the error
messages that will be displayed if the timeout is reached:

Table 1. Miscellaneous Timeout Variables

Timeout Variable Description Error Message

wait_for_cds_root_timeout
wait_for_cds_root_int

After starting the CDS client, wait
for the CDS advertiser to find the
CDS server.

Could not contact
the directory
server.

wait_for_cds_boot_timeout This timeout replaces
wait_for_cds_root_timeout during
autostart.

Could not contact
the directory
server.

14 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Table 1. Miscellaneous Timeout Variables (continued)

Timeout Variable Description Error Message

wait_for_cds_namespace_timeout
wait_for_cds_namespace_int

After starting the CDS client, wait
for access to the CDS namespace.

Could not access
the namespace.

wait_for_acls_timeout
wait_for_acls_int

During the CDS initial
configuration, wait for setting the
clearinghouse ACLs to be
successful.

Could not modify
the ACLs for: /.:/

wait_for_dced_reg_timeout
wait_for_dced_reg_int

After starting the CDS client, wait
for a ″test″ server catalog
command to work to signify that
dced is ready for requests.

Unable to create
DCED server
objects.

wait_for_dced_reg_boot_timeout This timeout replaces
wait_for_dced_reg_timeout during
autostart.

Unable to create
DCED server
objects.

wait_for_current_dhcp_bindings Sets the amount of time to wait
before attempting to contact dced
for the first time in the
wait_for_dced_reg_timeout timer
loop. This is needed to allow dced
time to discard its stale bindings on
a DHCP configuration. If you are
not running DHCP, this value can
be set to zero.

None

wait_for_binding_file_timeout
wait_for_binding_file_int

Before starting the security client
(secval activate), wait for dced to
write out its binding file so that the
correct binding information can be
gotten from it.

Unable to obtain
a binding for the
Security client.

wait_for_sec_srv_ready_timeout
wait_for_sec_srv_ready_int

After starting the master security
server, wait until it is ready to
receive commands.

Could not contact
the Security
Master server.

get_sec_srv_timeout get
sec_srv_int

Timeout for autodetecting the
master security server.

Unable to
determine the
Security Master
server for the
cell: <cellname>

dced_i_stop_timeout
dced_i_stop_int

After initializing the dced
databases, time to wait for dced to
coompletely stop before starting it
again with new parpmeters.

Unable to
complete creation
of DCED
databases.
DCED -i did not
exit.

dir_detete_timeout dir_delete_int Time to wait for a delete of a CDS
directory to be successful.

Deletion of
directory
<directory_name>
failed.

Chapter 3. Installation and Configuration Enhancements 15

Table 1. Miscellaneous Timeout Variables (continued)

Timeout Variable Description Error Message

wait_for_port_135_timeout
wait_for_port_135_int

Time to wait for tcp/ip port 135 to
be free.

Waited %s
minutes for port
135 to clear.
DCED could not
be started
because port 135
is still in use. Try
configuration
again later.

Example of usrstime.tcl

The following is an example of what a typical usrstime.tcl file might look like:
##
Default Times to sleep
##

DEFAULT - daemon wait times
set default_start_timeout 120
set default_start_int 5

set default_stop_timeout 120
set default_stop_int 5

set default_listen_timeout 120
set default_listen_int 5

%Z%%M% %I% %W% %G% %U%

##
Times to sleep
##
Specific Daemon wait times
RPC
set rpc_start_timeout $default_start_timeout
set rpc_start_int $default_start_int
set rpc_stop_timeout $default_stop_timeout
set rpc_stop_int $default_stop_int

SEC_CL
set sec_cl_start_timeout $default_start_timeout
set sec_cl_start_int $default_start_int
set sec_cl_stop_timeout $default_stop_timeout
set sec_cl_stop_int $default_stop_int

SEC_SVR
set sec_svr_start_timeout $default_start_timeout
set sec_svr_start_int $default_start_int
set sec_svr_stop_timeout $default_stop_timeout
set sec_svr_stop_int $default_stop_int

SEC_REP
set sec_rep_start_timeout $default_start_timeout
set sec_rep_start_int $default_start_int
set sec_rep_stop_timeout $default_stop_timeout
set sec_rep_stop_int $default_stop_int

CDS_CL
set cds_cl_start_timeout $default_start_timeout
set cds_cl_start_int $default_start_int
set cds_cl_stop_timeout $default_stop_timeout
set cds_cl_stop_int $default_stop_int

16 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

CDS_CVR
set cds_svr_start_timeout $default_start_timeout
set cds_svr_start_int $default_start_int
set cds_svr_stop_timeout $default_stop_timeout
set cds_svr_stop_int $default_stop_int

CDS_2ND
set cds_2nd_start_timeout $default_start_timeout
set cds_2nd_start_int $default_start_int
set cds_2nd_stop_timeout $default_stop_timeout
set cds_2nd_stop_int $default_stop_int

DTS_LOCAL
set dts_local_start_timeout 240
set dts_local_start_int $default_start_int
set dts_local_stop_timeout $default_stop_timeout
set dts_local_stop_int $default_stop_int

DTS_GLOBAL
set dts_global_start_timeout 240
set dts_global_start_int $default_start_int
set dts_global_stop_timeout $default_stop_timeout
set dts_global_stop_int $default_stop_int

DTS_CL
set dts_cl_start_timeout 180
set dts_cl_start_int 5
set dts_cl_stop_timeout 120
set dts_cl_stop_int 5

AUDIT
set audit_start_timeout $default_start_timeout
set audit_start_int $default_start_int
set audit_stop_timeout $default_stop_timeout
set audit_stop_int $default_stop_int

GDA
set gda_start_timeout $default_start_timeout
set gda_start_int $default_start_int
set gda_stop_timeout $default_stop_timeout
set gda_stop_int $default_stop_int

EMS
set ems_start_timeout $default_start_timeout
set ems_start_int $default_start_int
set ems_stop_timeout $default_stop_timeout
set ems_stop_int $default_stop_int

SNMP
set snmp_start_timeout $default_start_timeout
set snmp_start_int $default_start_int
set snmp_stop_timeout $default_stop_timeout
set snmp_stop_int $default_stop_int

PW_STRENGTH_SVR
set pw_strength_start_timeout $default_start_timeout
set pw_strength_start_int $default_start_int
set pw_strength_stop_timeout $default_stop_timeout
set pw_strength_stop_int $default_stop_int

NSID
set nsid_start_timeout $default_start_timeout
set nsid_start_int $default_start_int
set nsid_stop_timeout $default_stop_timeout

Chapter 3. Installation and Configuration Enhancements 17

set nsid_stop_int $default_stop_int

Misc Timeouts
set wait_for_cds_root_timeout 3600
set wait_for_cds_root_boot_timeout 180
set wait_for_cds_root_int 15

set wait_for_cds_namespace_timeout 300
set wait_for_cds_namespace_int 15

set wait_for_acls_timeout 180
set wait_for_acls_int 15

set wait_for_dced_reg_timeout 3600
set wait_for_dced_reg_boot_timeout 180
set wait_for_dced_reg_int 15

set wait_for_current_dhcp_bindings 30

set wait_for_binding_file_timeout $default_start_timeout
set wait_for_binding_file_int 1

set wait_for_sec_srv_ready_timeout $default_listen_timeout
set wait_for_sec_srv_ready_int $default_listen_int

set get_sec_srv_timeout 300
set get_sec_srv_int 10

set dced_i_stop_timeout 30
set dced_i_stop_int 5

set dir_delete_timeout 120
set dir_delete_int 5

set wait_for_port_135_timeout 300
set wait_for_port_135_int 5

Tunable Timeout Values for RPC

DCE for Windows NT, Version 2.2 supports the following APIs that allow you to
specify through environment variables the amount of time RPC waits to complete a
Security server initialization, TCP connection, and a CDS call:

v “RPC_SEC_COM_TIMEOUT”

v “RPC_CN_CONNECTION_TIMEOUT” on page 19

v “RPC_CDS_COM_TIMEOUT” on page 19

RPC_SEC_COM_TIMEOUT
Purpose:

This environment variable resets the communication timeout value for a
Security server to initialize.

Synopsis:
set RPC_SEC_COM_TIMEOUT=value

Description:
The predefined values that can be used are :

0 = 2 sec 6 = 60 sec
1 = 3 sec 7 = 120 sec
2 = 4 sec 8 = 240 sec

18 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

3 = 8 sec 9 = 480 sec
4 = 15 sec 10 = infinite
5 = 30 sec (default)

Example:
In the following example
set RPC_SEC_C)M_TIMEOUT=4

resets the timeout value to 15 seconds.

RPC_CN_CONNECTION_TIMEOUT
Purpose:

This environment variable sets the value for the amount of time that RPC
will wait for TCP connect handshake.

Synopsis:
set RPC_CN_CONNECT_TIMEOUT=value

Description:
The timeout value range should be between 1 second and 100 seconds. If
the specified value is not within the renge, the timeout value will not be set.

RPC_CDS_COM_TIMEOUT
Purpose:

This environment variable resets the RPC communication timeout value for
a call to CDS.

Synopsis:
set RPC_CDS_COM_TIMEOUT=value

Description:
The predefined values that can be used are :

0 = 2 sec 6 = 60 sec
1 = 3 sec 7 = 120 sec
2 = 4 sec 8 = 240 sec
3 = 8 sec 9 = 480 sec
4 = 15 sec 10 = infinite
5 = 30 sec (default)

Unattended Configuration

DCE for NT supports unattended configuration of DCE servers and full DCE clients.
Unattended configuration enables you to create a response file containing all the
required input for configuration. Invoking this file from a command line configures a
server or a full client without requiring your attention.

A response file is generated every time you do a configuration whether you
configure through DCEsetup or the command line using dcecp . It is written to the
following location.

%DCELOC%\dcelocal\etc\rspfiles\dce.rsp

Chapter 3. Installation and Configuration Enhancements 19

Once you have generated the response file, you will need to edit it to modify the
machine-specific parameters so you can use it through the command line to run
unattended configurations on other machines.

Remote DCE Client Configuration

With the DCEsetup Remote Client option, configuration of a full client system into a
DCE cell is quick and easy. An added benefit to using this configuration method is
enhanced security; you can configure full client systems without being given access
to the cell administrator account.

During remote full client configuration, information for DCE full client systems is
created and stored centrally, in the DCE CDS namespace, by the cell administrator.
You can then access this configuration information to configure their full client
systems.

The online help file, Configuring with DCEsetup, contains a full description of
DCEsetup and its features.

Slim Client

The Slim Client provides the same programming environment to RPC-based
applications as the full DCE client product, but requires fewer resources than the
full client.

Functionality

The following full client APIs and Commands are supported by the Slim Client
without change:

Supported APIs:

pthread_*

rpc_*

dns_*

sec_*

Supported Commands:

acl_edit

cadump

catraverse

cdscp

dcecp

dce_login

getcellname

getipaddr

klist

kinit

kdestroy

rgy_edit

rpccp

20 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The same restrictions that apply to a full DCE client use of these commands also
apply to the Slim Client.

Migration

The Slim Client does not provide any utilities for migration. The full DCE does not
provide any utilities for migration to the DCE for Windows NT Slim Client. If you
want to migrate from a previous release you must

1. Completely unconfigure the current configuration of DCE.

2. Uninstall the base.

3. Install the base you want to migrate to.

4. Configure your system using the newly installed base.

Interoperability

The Slim Client is fully OSF DCE-compliant and maintains interoperability with the
following existing IBM DCE products.

v DCE for Windows NT, Version 2.0

v DCE for Windows NT, Version 2.2

v DCE for AIX, Version 2.1

v DCE for AIX, Version 2.2

Functions Not Supported

The following functions and commands are not supported by the Slim Client in this
release:

Functions Commands

Define a cached server cdscp define cached server servername

dcecp -c cdscache create servername

Show a cached server cdscp show cached server servername

dcecp -c cdscache show servername -server

Show a server cdscp show server

dcecp -c server show servername

Create a clearinghouse cdscp create clearinghouse clearinghouse_name

dcecp -c clearinghouse create clearinghouse_name_list

Show a cached
clearinghouse

cdscp show cached clearinghouse clearinghouse_name

dcecp -c cdscache show server_name -clearinghouse

Show a clerk cdscp show clerk

Clear a clearinghouse cdscp clear clearinghouse clearinghouse_name

Delete a clearinghouse cdscp delete clearinghouse clearinghouse_name

dcecp -c clearinghouse delete clearinghouse_name_list

Clear a cached server cdscp delete clearinghouse servername

dcecp -c cdscache delete servername

Disable a server cdscp disable server

dcecp -c clearinghouse disable servername

Chapter 3. Installation and Configuration Enhancements 21

Functions Commands

Disable a clerk cdscp disable clerk

Uninstall Procedure

DCE for Windows NT provides an uninstall procedure that removes all Windows NT
Registry entries related to the DCE kit, stops all running processes, and then
deletes the executable files and directory tree where DCE is installed.

To uninstall DCE for Windows NT , do the following:

1. Double-click the My Computer icon.

2. Double-click the Control Panel icon.

3. Double-click the Add/Remove Programs icon.

4. Click on DCE for Windows NT V2.2 , and then click Add/Remove .

DCE Control Program (dcecp) Extensions

DCE for Windows NT provides command line extensions to the DCE control
program (dcecp).

The dcecp control program offers a common command line interface for managing
DCE services. The DCE for Windows NT product provides extensions to dcecp,
offering additional functionality.

The extensions consist of the following commands:

v “config.dce” on page 23

v “start.dce” on page 36

v “stop.dce” on page 38

v “show.cfg” on page 40

v “clean_up.dce” on page 42

v “mkreg.dce” on page 43

v “rmreg.dce” on page 45

v “unconfig.dce” on page 46

22 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

config.dce

Configures the DCE components.

Format

config.dce
[–admin_pwd password]
[–autostart {yes | no}]
[–cds_replica_list ″list_of_cds_servers″]
[–cds_server cds_server]
[–cell_admin cell_admin_id]
[–cell_name cell_name]
[–certificate_based_login {yes | no}]
[–clean_autostart {yes | no}]
[–clr_house server_id]
[–config_type {full | local| admin}]
[–courier_role {courier | noncourier | backup}]
[–dce_hostname dce_hostname]
[–group_rsp_path filename]
[–host_id machine_identifier]
[–kdc_profile kdc_profile]
[–kdc_ini_file kdc_ini_file]
[–kdc_passphrase kdc_passphrase]
[–lan_profile profile]
[–max_unix_id max_UNIX_id]
[–min_group_id min_group_id]
[–min_org_id min_org_id]
[–min_principal_id min_principal_id]
[–no_pesite_update]
[–nsid_pwd nsid_password]
[–pesite_update_time update_time]
[–protocol {tcp udp}]
[–proxy]
[–pwdstr_arg command_line_args]
[–pwdstr_cmd server_name]
[–pwdstr_principal password_strength_principal_id]
[–pwdstr_protect_level {pktinteg | cdmf |
pktprivacy]
[–rsp_file filename]
[–sec_master security_server]
[–sec_server_name security_server_name]
[–sync_clocks {yes|no}]
[–time_server server_id]
[usage]
[–?]
[help]
[operations]
components

Note: The command can recognize unique abbreviated option strings. For
example, –adm is recognized as –admin_pwd . Ensure that the abbreviated
strings are unique, –min would not be recognized because there are three
options (–min_group_id , –min_org_id , and –min_principal_id) that begin
with that string. –min_g , –min_o , and –min_p , however, would be
recognized because they are unique.

Chapter 3. Installation and Configuration Enhancements 23

Configuring Clients

Note: –sec_master and –cds_ server do not need to be specified. The
configuration code will detect the information if the machine is on the same
LAN as a Directory server. However, when the machine being configured is
on a different subnet, –sec_master and –cds_server must be supplied
because DCE cannot detect this information outside its immediate network.

To Admin Configure a Full Client:
config.dce –config_type admin –host_id machine_identifier
[–dce_hostname dce_hostname] [–cell_admin cell_admin_id] [–admin_pwd
password] [–lan_profile profile] [–protocol {tcp udp}] [–group_rsp_path
filename] [–rsp_file filename] cds_cl sec_cl dts_cl

To Local Configure a Full Client:
config.dce –config_type local [–cell_name cell_name] [–dce_hostname
dce_hostname] [–sec_master security_server] [–cds_server cds_server]
[–no_pesite_update] [–pesite_update_time update_time] [–autostart {yes |
no}] [–clean_autostart {yes | no}] [–protocol {tcp udp}] [–proxy]
[–sync_clocks {yes |no}] [–time_server server_id] [–group_rsp_path
filename] [–rsp_file filename] client_components

To Fully Configure a Full Client:
config.dce –config_type full [–cell_name cell_name] [–dce_hostname
dce_hostname] [–cell_admin cell_admin_id] [–cell_admin cell_admin_id]
[–sec_master security_server] [–cds_server cds_server] [–lan_profile profile]
[–no_pesite_update] [–pesite_update_time update_time] [–autostart {yes |
no}] [–clean_autostart {yes | no}] [–protocol {tcp udp}] [–proxy]
[–sync_clocks {yes | no}] [–time_server server_id] [–group_rsp_path
filename] [–rsp_file filename] client_components

Note: The default configuration type is full. For further information on the different
configuration types, see the DCE Administration Commands Reference.

Configuring Servers
To Configure a Master Security Server:

config.dce –cell_name cell_name [–sec_server_name
security_server][–cell_admin cell_admin_id] [–admin_pwd admin_password]
[–min_principal_id min_principal_id] [–min_group_id min_group_id]
[–min_org_id min_org_id] [–max_unix_id max_UNIX_id]
[–no_pesite_update] [–pesite_update_time update_time] [–autostart {yes |
no}] [–clean_autostart {yes | no}] [–protocol {tcp udp}]
[–certificate_based_login {yes | no}] [–kdc_profile kdc_profile] [–kdc_ini_file
kdc_ini_file] [–kdc_passphrase kdc_passphrase] [–group_rsp_path filename]
[–rsp_file filename] sec_srv

To Configure a Security Replica:
config.dce [–sec_server_name security server] [–cell_name cell_name]
[–cell_admin cell_admin_id] [–admin_pwd password] [–sec_master
security_server] [–cds_server cds_server] [–autostart {yes | no}]
[–clean_autostart {yes | no}] [–protocol {tcp udp}] [–sync_clocks {yes | no}]
[–time_server server_id] [–certificate_based_login {yes | no}] [–kdc_profile
kdc_profile] [–kdc_ini_file kdc_ini_file] [–kdc_passphrase kdc_passphrase]
[–group_rsp_path filename] [–rsp_file filename] sec_rep

Note: The config.dce command deliberately replicates the
/.:/subsys/dce/sec directory when it configures a secondary CDS
server. During the configuration of a Security Replica, entries are

24 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

created in this directory but they might not be immediately
propagated to the CDS secondary servers. Since these entries are
referenced during subsequent pieces of the Security Replica
configuration, failures can occur. To prevent this type of failure, stop
all cdsd daemons that are running on secondary CDS servers
before configuring a Security Replica into the cell. After the
successful configuration of the security replica, restart the cdsd
daemons.

To Configure an Initial CDS Server:
config.dce [–cell_namecell_name] [–cell_admin cell_admin_id]
[–admin_pwd password] [–sec_master security_server] [–autostart {yes |
no} [–clean_autostart {yes | no}] [–protocol {tcp udp}] [–group_rsp_path
filename] [–rsp_file filename] cds_srv

To Configure an Additional CDS Server:
config.dce [–cell_name cell_name] [–cell_admin cell_admin id]
[–admin_pwd password] [–sec_master security_server] [–cds_server
cds_server] [–lan_profile profile] [–clr_house server_id] [–autostart {yes |
no}] [–clean_autostart {yes | no}] [–protocol {tcp udp}] [–sync_clocks {yes |
no}] [–time_server server_id] [–group_rsp_path filename] [–rsp_file filename]
cds_second

To Configure a DTS Server:
config.dce [–courier_role {courier | noncourier | backup}] [–cell_name
cell_name] [–cell_admin cell_admin_id] [–admin_pwd password]
[–sec_master security_server] [–cds_server cds_server] [–lan_profile profile]
[–autostart {yes | no}] [–clean_autostart {yes | no}] [–protocol {tcp udp}]
[–sync_clocks {yes | no}] [–time_server server_id] [–group_rsp_path
filename] [–rsp_file filename] dts_local | dts_global

To Configure a Global Directory Agent:
config.dce [–cell_name cell_name] [–cell_admin cell_admin id]
[–admin_pwd password] [–sec_master security_server] [–cds_server
cds_server] [–lan_profile profile] [–autostart {yes | no}] [–clean_autostart
{yes | no}] [–protocol {tcp udp}] [–sync_clocks {yes | no}] [–time_server
server_id] [–group_rsp_path filename] [–rsp_file filename] gda_srv

To Configure an Event Management Server:
config.dce [–cell_name cell_name] [–cell_admin cell_admin_id]
[–admin_pwd password] [–sec_master security_server] [–cds_server
cds_server] [–lan_profile profile] [–autostart {yes | no}] [–clean_autostart
{yes | no}] [–protocol {tcp udp}] [–sync_clocks {yes | no}] [–time_server
server_id] [–group_rsp_path filename] [–rsp_file filename] ems_srv

To Configure a Simple Network Management Protocol Agent Server:
config.dce [–cell_admin cell_admin id] [–admin_pwd password] [–autostart
{yes | no}] [–clean_autostart {yes | no}] [snmp_srv

To Configure an Audit Server:
config.dce [–cell_name cell_name] [–sec_master security_server]
[–cds_server cds_server] [–lan_profile profile] [–autostart {yes | no}]
[–clean_autostart {yes | no}] [–protocol {tcp udp}] [–sync_clocks {yes | no}]
[–time_server server_id] [–group_rsp_path filename] [–rsp_file filename]
audit

To Configure a Password Strength Server:
config.dce [–cell_name cell_name] [–cell_admin cell_admin_id]
[–admin_pwd password] [–sec_master security_server] [–cds_server
cds_server] [–lan_profile profile] [–pwdstr_arg command_line_args]

Chapter 3. Installation and Configuration Enhancements 25

[–pwdstr_cmd server_name] [–pwdstr_principal password strength principal
id] [–pwdstr_protect_level {pktinteg | cdmf | pktprivact}] [–autostart {yes |
no}][–clean_autostart {yes | no}] [–protocol {tcp udp}] [–sync_clocks {yes |
no}] [–time_server server_id] [–group_rsp_path filename] [–rsp_file filename]
pw_strength_srv

To Configure a Name Space Interface Daemon:
config.dce [–cell_name cell_name] [–cell_admin cell_admin_id]
[–admin_pwd password] [–sec_master security_server] [–cds_server
cds_server] [–lan_profile profile] [–autostart {yes | no}]] [–clean_autostart
{yes | no}] [–protocol {tcp udp}] [–sync_clocks {yes | no}] [–time_server
server_id] [–group_rsp_path filename] [–rsp_file filename] nsid

To Configure an Identity Mapping Server:
The Identity Mapping server must be configured on the same machine as
either a Security Master server or a Security Replica server. Use the
command to configure the appropriate security server, and add the
idms_srv component.

Options
–admin_pwd password

Specifies the cell administrator password. Caution should be used with this
option because of the security risk it poses by making this password
accessible to others.

–autostart {yes | no}
Specifies that the configured components should be started at machine
boot.

–cds_replica_list ″list_of_cds_servers″
A quoted list of CDS server IP host names or addresses.

–cds_server cds_server
Specifies the TCP/IP host name or the TCP/IP address of a CDS server. If
the local machine is separated from all CDS servers by a router or a
gateway that does not pass broadcast packets, a CDS server must be
specified using the –cds_server option or CDS cannot be configured. This
option should be used for all components except rpc, the initial sec_srv,
snmp_srv, and the initial cds_srv.

–cell_admin cell_admin_id
Specifies the name of the cell administrator account. When configuring the
master Security server (the sec_srv component), the config.dce command
gives this account privileges throughout the cell. Otherwise, the account
named must have sufficient privilege to perform configuration tasks within
the cell. If the –cell_admin option is not specified, the account cell_admin
will be assumed. The value for cell_admin is used by all components except
rpc, snmp_srv, audit, and dce_unixd.

–cell_name cell_name
Specifies the name of the DCE cell into which the machine should be
configured. If no –cell_name option is specified, the config.dce command
uses the cell name in the file %DCELOC%\dcelocal\etc\dce\dce_cf.db . A
value for cell_name is required by all components except snmp. The value
can either be in the form of /.../cellname or cellname.

–certificate_based_login {yes | no}
Enables or disables certificate based login.

26 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

–clean_autostart {yes | no}
Specifies whether to run the clean up script before auto-starting DCE.

–clr_house server_id
Specifies an additional CDS server clearinghouse name.

–config_type {full | local | admin}
Allows the cell administrator to split configuration by specifying admin, local,
or full configuration of full clients within the DCE cell. The –config_type
option has three available config_types:

admin Indicates the admin portion of full client configuration. This updates
the namespace and security registry with information about the new
client.

The admin piece of configuring a full client requires the cell
administrator to run the config.dce command from a machine
within the existing cell. It should not be run from the new client
machine. The cell administrator does not need root user authority to
run the admin portion of configuration.

Note: When config.dce is called with –config_type admin, the
–host_id option is also required. The –host_id option can
be in the form of a TCP/IP address or host name (with or
without the domain). The –dce_hostname flag is optional. If
both flags are used and the machine identifier (–host_id) is
in the form of a TCP/IP host name, host is called to get the
IP address.

local Indicates the local portion of full client configuration. This creates
necessary files on the local machine and starts the daemons for the
new client.

If the admin piece of config.dce has not yet been run, the local
piece will fail when trying to contact the cell. In addition the user
must have root authority on the machine, and does not need to
have any authority in the DCE cell.

Note: When config.dce is called with the –config_type local, the
–dce_hostname dce_hostname option should be used with
the same name that the cell administrator specified during
the admin configuration. If the option is not used, the
dce_hostname will be presumed to be the same as the
name of the machine (including the domain, as returned
from a call to the host command). If the name is not the
same as the dce_hostname the cell administrator used when
setting up the client, the configuration will fail.

full Indicates full configuration. This is the default. Full configuration
includes both admin and local configuration steps. The DCE cell
administrator must have root authority on the local machine being
configured into the cell. If the –config_type option is not used, a
full configuration will be assumed.

–courier_role {courier | noncourier | backup}
Specifies the interaction the server should have with the global servers in
the cell when configuring a DTS server (dts_local or dts_global component).
The –courier_role option must have on of the following values:

Chapter 3. Installation and Configuration Enhancements 27

courier
Always synchronize with one of the global servers.

backup
Synchronize with one of the global servers if no couriers are
available on the local area network (LAN).

noncourier
Synchronize with the local server first, and, if not enough, try one of
the global servers.

–dce_hostname dce_hostname
Specifies the identifying name within the cell of the machine being
configured. This can be the same as the TCP/IP host name, but does not
have to be. If the –dce_hostname is not used, the dce_hostname will
default to the long TCP/IP host name (hostname.domain) of the local
machine. When config.dce is called with –config_type local, the
–dce_hostname dce_hostname option should also be used with the same
dce_hostname used by the cell administrator when config.dce was called
with –config_type admin to configure the client machine. Otherwise, the
configuration will fail. If the cell administrator does not use the
–dce_hostname flag for the admin portion of configuration, the client is not
required to use it either.

–group_rsp_path filename
Specifies a directory path to use when searching for included response
files.

–host_id machine_identifier
Specifies the TCP/IP host name or the TCP/IP address of the client
machine being admin configured. When config.dce is called with
–config_type admin, the –host_id option must also be used. Admin
configuration can be used for a machine whose TCP/IP address is not yet
registered with a nameserver. In that situation, use the –dce_hostname
dce_hostname option with the –host_id IP_address option.

Note: The –host_id option can only be used with the –config_type admin
option.

–kdc_profile profile
Specifies the full pathname of the Entrust user’s profile.

–kdc_ini_file kdc_ini_file
Specifies the full pathname of the Entrust initialization file.

–kdc_passphrase kdc_passphrase
The password associated with the Entrust profile for the Security Server.

–lan_profile profile
Specifies the name of the LAN profile this machine should use. If the profile
does not yet exist, it is created. The default is /.:/lan–profile .

–max_unix_id max_UNIX_id
Specifies the highest UNIX ID that can be assigned to principals, groups. or
organizations by the Security service. The default is 2,147,483,647.

–min_group_id min_group_id
Specifies the starting point (minimum UNIX ID) for UNIX IDs automatically
generated by the Security service when groups are added with the rgy_edit
command. The default is 100.

28 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

–min_org_id min_org_id
Specifies the starting point for UNIX IDs automatically generated by the
Security service when organizations are added with the rgy_edit command.
The default is 100.

–min_princ_id min_principal_id
Specifies the starting point (minimum UNIX ID) for UNIX IDs automatically
generated by the Security service when principals are added with the
rgy_edit command. The default is 100.

–no_pesite_update
Specifies not to update the pesite file.

–nsid_pwd
The password used to create the keytable entry for nsid. (This is usually the
same as the cell_admin password.)

–pesite_update_time update_time
Specifies the pesite file update interval.

–protocol {tcp udp}
Specifies which communication protocols to support. Valid values are: tcp
and udp .

–proxy
Specifies that the CDS full client is to act as a CDS proxy.

–pwdstr_arg command_line_args
Specifies one or more command line arguments to be passed to the
password strength server. If more than one argument is passed,
double-quotes should be used.

–pwdstr_cmd server_name
Specifies the name of the password strength server daemon. The default
name is pwd_strengthd . When creating password strength servers, it is
important to remember that the server daemon should have sufficient owner
and group permissions to perform its tasks. For example, if the password
strength server requires read access to
%DCELOC%\dcelocal\etc\security , then the userid it runs under may
need to belong to the security group.

–pwdstr_principal password strength principal id
Specifies a principal id for the password strength server to run under. For a
DCE principal ID, the password strength server will use the credentials of
the principal.

–pwdstr_protect_level protection level
Specifies the protection level for the password strength server. Valid values
are:

pktprivacy
(highest level of encryption, contains cdmf)

cdmf
(lowest level of encryption, contains pktinteg)

pktinteg
no encryption

Encryption protection levels are selected as installation options. It is not
valid to select pktprivacy if only the cdmf package is installed.

Chapter 3. Installation and Configuration Enhancements 29

–rsp_file filename
Specifies the full path name of a response file to use for configuration.

–sec_master security_server
Specifies the host id of the master Security server. You can use the TCP/IP
host name or the TCP/IP address of the master Security server for this
option. If the server is not specified, an attempt will be made to locate the
master Security server using the Cell Directory Services(CDS). If the master
Security server cannot be located, it must be specified using the
–sec_master option or security cannot be configured. The –sec_master
option is also needed when the –sec_rep option is used to configure a
Security replica.

–sec_server_name security_server_name
Specifies the name to be given to the Security replica. The default name
dce_hostname will be used if a Security replica is configured without
specifying a name with the –sec_master option. Each Security replica must
have a unique name within the cell. Using the default name helps ensure
this uniqueness.

–sync_clocks {yes | no}
Specifies that this machine clock should be synchronized with the clock on
a time server already in the cell.

–time_server server_id
Specifies the TCP/IP host name or the TCP/IP address of a time server to
synchronize clocks with. If not specified, an attempt will be made to locate
the DTS server using the Cell Directory Services (CDS). If a DTS server
cannot be located, a DTS server must be specified using the –time_server
option or the clocks can not be synchronized.

usage Displays a help message.

–? Displays a help message.

help Displays a brief description for the passed arguments.

operations
Lists all the options and the components.

components
Specifies the components to be stopped.

The Client Components are:

all_cl All clients (cds_cl, dts_cl, rpc, and sec_cl).

client Same as all_cl.

cds_cl
CDS client.

core Single-machine cell components including cds_srv ,
sec_srv ,cds_cl ,sec_cl , and rpc .

dcecm
Integrated Login

dts_cl DTS client. This component and dts_local and dts_global are
mutually exclusive.

rpc RPC daemon.

sec_cl
Security client. This component includes rpc.

30 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The Server Components are:

audit Audit daemon

cds_second
Secondary CDS server. This component and cds_srv are mutually
exclusive.

cds_srv
Initial CDS server for the cell. This component and cds_second are
mutually exclusive.

core_srv
Single-machine cell components This is equivalent to including
cds_srv , sec_srv ,cds_cl ,sec_cl , and rpc .

dts_global
DTS global server. This component and dts_local and dts_cl are
mutually exclusive.

dts_local
DTS local server. This component and dts_global and dts_cl are
mutually exclusive.

ems_srv
Event Management server

gda_srv
Global Directory Agent

idms_srv
Identity Mapping server

nsid Name Space Interface Daemon

pw_strength_srv
Password Strength server

sec_srv
Security server

sec_rep
Security replica

snmp_srv
SNMP server

Description

The config.dce command configures and starts the specified DCE components.
This command also configures and starts any prerequisite client components. The
config.dce command only configures the core DCE components. Use the
config.dfs command to configure DFS components.

Note: If you configure the DCE cell using an X.500 style name and you are running
DFS, you will not be able to access the local cell DFS file space unless GDS
is also configured.

You can configure a machine into a cell in two ways:

full configuration
used by the cell administrator (as root user) to complete all the
configuration steps within the cell (updating the CDS namespace and the
security registry) and on the local machine (creating files and starting

Chapter 3. Installation and Configuration Enhancements 31

daemons). Full configuration is specified with the –config_type full option.
Full configuration is the default. If –config_type is not specified, a full
configuration is performed.

split configuration
breaks the configuration tasks into two distinct segments, admin and local.
Admin configuration is used by the cell administrator from a machine
currently configured in the cell to update the CDS namespace and the
security registry with necessary information about the client. Local
configuration allows the root user of the new client to create files local to
the system and to start the DCE client daemons. Split configuration is
specified with the –config_type admin and –config_type local options.

Full configuration must be used for all servers and can be used for clients. Usually
the cell administrator does not have administrator access for all the machines that
are going to be configured into the cell as client machines. In this situation split
configuration is the option to use.

The admin portion must be run before the local portion can be run successfully.
When config.dce is called with –config_type admin , the –host_id option is also
needed to identify the machine to be configured as a client. The –host_id option
can be in the form of a TCP/IP address or a TCP/IP host name with or without the
domain. The –dce_hostname flag is optional if the cell administrator wishes to
specify the dce_hostname of the client machine. If the –host_id IP_address option
is used without the –dce_hostname option, the dce_hostname will be presumed to
be the same as the TCP/IP host name of the machine (including domain as
returned from a call to the host command).

A cell administrator might want to configure new clients into a cell before actually
having the client machines available or before the host name and IP address are
registered in the name server. The config.dce –config_type admin command,
using the –host_id IP_address –dce_hostname hostname options will allow the
namespace and security registry information to be updated without any calls to the
nameserver for a machine not yet registered.

When config.dce is called with –config_type local , it is important that the client
use the same dce_hostname used during the admin configuration. If the
dce_hostname is not the same, the configuration will fail.(If the cell administrator did
not use the –dce_hostname option, it is not necessary to use it for the local
configuration.) If the cell name is not provided, a call to getcellname will determine
if the local machine is already part of a cell. If it is, the assumption is made that
additional client components are to be configured on this machine (for example, to
add a CDS client to a machine with only a security client). If a cell name is not
provided and the host is not already part of a cell, the configuration will fail. When
configuring the master Security server (the sec_srv component), config.dce will
prompt you for the password to be assigned to the initial accounts it creates in the
registry database, including that of the cell administrator. When configuring most
other components, this command will prompt you for the password of the cell
administrator account so it can perform configuration tasks that require DCE
authentication. If the environment variable cell_admin_pw is set, config.dce uses
its value for the cell administrator password without prompting you. This feature can
be useful when automating configuration tasks, but should be used sparingly
because of the security risk it poses by making this password accessible to others.
The cell administrator password should be changed after the tasks are completed
and the cell_admin_pw value is unset in order to limit the security risk. If a
requested component is already configured, the config.dce command reports this

32 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

and continues configuring other components. After the command has completed
running, the configured components are listed on the screen. If a requested
component is already partially configured, use the unconfig.dce command to clean
it up before using the config.dce command to configure that component. To
reconfigure a component with different parameters, use the unconfig.dce
command to remove the existing configuration before running the config.dce
command to set up the new configuration.

If a machine has a component configured, and additional components are to be
configured, you do not have to respecify values for the –cell_name , –sec_master ,
–cds_server , and –lan_profile options. For example, if you have already
configured the Security client on a machine, by specifying the name of the cell
(–cell_name) and the Master Security server (–sec_master), you do not need to
specify values for –cell_name and –sec_master again when you configure other
DCE components on that machine.

Before configuring a machine into a cell, ensure that the machine clock is within five
minutes of the cell master Security server clock. If the machine clock is skewed
more than five minutes, the config.dce command may report authentication errors,
and the configuration may fail. The –sync_clocks and the –time_server server_id
options can be used to synchronize the machine clock to the specified time server.

The –dce_hostname option is used to specify the dce_hostname for a machine
configured into a cell. The dce_hostname is completely independent of the TCP/IP
host name of the machine. If the –dce_hostname option is not specified, the
dce_hostname will default to the TCP/IP host name (including the domain; for
example, jas.austin.ibm.com). The default clearinghouse for any cds_second
servers will be {dce_hostname}_ch. A Security Replica name will also default to the
dce_hostname if the –sec_server_name option is not used. The recommended
usage is to accept the default name.

Only one security server (either a Master Security Server or a Security Replica) can
run on a machine. The sec_srv component is used for the Master Security Server
and sec_rep is used for the Security Replica. The config.dce command will ensure
that the security client (dced) and, when configuring a Security Replica, the CDS
client (cds_cl) are running on the machine before starting the security daemon
(secd). When configuring a Security Replica the –sec_master option can be used
to locate the Master Security Server.

The config.dce command deliberately replicates the /.:/subsys/dce/sec directory
when it configures a secondary CDS server. During the configuration of a security
replica, entries are created in this directory but they might not be propagated
immediately to the CDS secondary servers. Since these entries are referenced
during subsequent pieces of the Security replica configuration, failures can occur.
To prevent this type of failure, stop all cdsd daemons that are running on
secondary CDS servers before configuring a security replica into the cell. After the
successful configuration of the Security replica, restart the cdsd daemons.

Examples

When configuring a DCE cell, first configure and start the master Security server:
dcecp config.dce -cell_name /.../comp.sci.cell.uw.edu
sec_srv

Chapter 3. Installation and Configuration Enhancements 33

This command establishes the cell name as /.../comp.sci.cell.uw.edu , the name
specified with the –cell_name option.

It creates the master Security server using the default name (cell_admin) for the cell
administrator account. It also configures and starts the RPC daemon and a Security
client on the same machine as the master Security server.

If you have UNIX systems in a cell with the Master Security server on a Windows
NT or a Windows 95 sever, to avoid UNIX ID conflicts in the DCE registry, use the
–min_princ_id , –min_group_id , –min_org_id , and –max_unix_id options to
specify the starting point and maximum values for UNIX IDs assigned to principals.
groups. and organizations when configuring the master Security server. The
–dce_hostname option is used to designate the dce_hostname of the machine.
dcecp config.dce -cell_name /.../comp.sci.cell.uw.edu -min_princ_id\
2000 -min_group_id 2000 -min_org_id 2000 -max_unix_id\
45000 dce_hostname csadmin sec_srv

After configuring and starting the master Security server on a machine with the
TCP/IP short hostname of deptchair , configure and start the initial CDS
dcecp config.dce –cell_name /.../comp.sce.cell.uw.edu -sec_master\
deptchair cds_srv

Because no –cell_admin option was specified, this command assumes that the
name of the cell administrator account is “cell_admin”. This command also
configures and starts the RPC daemon, a Security client, and a CDS client on the
same machine as the initial CDS server.

To run the initial Security and CDS servers on the same machine, the previous
examples can be combined into one command:
dcecp config.dce -cell_name /.../comp.sci.cell.uw.edu -dce_hostname\
csadmin sec_srv cds_srv

To configure another machine as a DTS global courier server (in a different LAN
than the initial CDS server, which is a client to all other DCE services, type the
following:
dcecp config.dce -cell_name /.../comp.sci.cell.uw.edu -dce_hostname\
timemachine -courier_role courier -sec_master deptchair -cds_server deptchair\

-lan_profile /.:/lan-prof-2 dts_global cds_cl

The –lan_profile option was used to specify a user-defined LAN profile rather than
the default profile.

To specify the admin portion of configuration for a new client in the
comp.sci.cell.uw.edu cell (requires cell administrator’s password only) type:
dcecp config.dce -config_type admin -host_id 129.35.6.1 all_cl

If the TCP/IP hostname of the machine identified with the –host_id flag is
jas.austin.ibm.com , the dce_hostname will default to jas.austin.ibm.com . If the
lookup at the nameserver fails, the dce_hostname will be 129.35.6.1.
dcecp config.dce -config_type admin -host_id chc cds_cl

The dce_hostname will default to chc.austin.ibm.com .
dcecp config.dce -config_type adm -host_id\
pal401.pals.austin.ibm.com -dce_hostname mikep all_cl

34 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The dce_hostname is mikep . Note that it has no relationship to the TCP/IP host
name. Admin configuration updates the CDS namespace and security registry with
information about the new client being configured. The local piece of configuration
must subsequently be completed on the client machine.

To specify the local portion of configuration for a new client (requires root authority
only) type:
dcecp config.dce -config_type local\
-cell_name /.../comp.sci.cell.uw.edu -sec_master deptchair\
[-cds_server deptchair] all_cl

The dce_hostname of this client is jas.austin.ibm.com , the same as its TCP/IP
host name.
dcecp config.dce -config_type local -cell_name /.../comp.sci.cell.uw.edu\
cds_cl

If done on an existing security client, it is not necessary to use the –sec_master or
–cds_server options.
dcecp config.dce -config_type local -cell_name /.../comp.sci.cell.uw.edu\
-sec_master deptchair -dce_hostname mikep all_cl

The dce_hostname entered is the same one the cell administrator used during
admin configuration.

Local configuration must be run after the admin configuration has been completed.
To specify full configuration of a client into an existing cell (requires root authority
and cell administrator password).
dcecp config.dce [-config_type full]\
-cell_name /.../comp.sci.cell.uw.edu [-dce_hostname mjs]\
-sec_master deptchair [-cds_server deptchair] _cl

If the dce_hostname option is not used, the dce_hostname and the client TCP/IP
address are determined by config.dce through a call to hostname .

Related Information

Commands: unconfig.dce .

Chapter 3. Installation and Configuration Enhancements 35

start.dce

Starts the DCE daemons configured on the local machine.

Format

start.dce
[all]
[usage]
[–?]
[help]
[operations]
components

Options
all Starts the configured DCE components on the local machine.

usage Displays a help message.

–? Displays a help message.

help Displays a brief description for the passed arguments.

operations
Lists all the options and the components.

components
Specifies the components to be stopped.

The Client Components are:

all All configured components (client and server)

core All configured DCE components (client and server)

all_cl All clients (cds_cl, dts_cl, rpc, and sec_cl)

client Same as all_cl

cds_cl
CDS clerk

dcecm
Integrated login

dts_cl DTS client

rpc RPC daemon (rpcd)

sec_cl
Security client

The Server Components are:

all_srv
All servers (cds_second, cds_srv, dts_global, dts_local, gda,
sec_srv, ems_srv, pw_strength_srv, sec_rep, snmp_srv)

core_srv
All core servers (rpc, dced, sec_srv,cds_cl, cds_srv)

audit Audit daemon

cds_second
Additional CDS servers

36 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

cds_srv
Initial CDS server for the cell

dts_global
DTS global server

dts_local
DTS local server

ems_srv
Event Management server

gda Global Directory Agent

idms_srv
Identiry Mapping server

nsid Name Space Interface Daemon

pw_strength_srv
Password Strength server

sec_srv
Security server

sec_rep
Security replica

snmp_srv
SNMP server

Description

The start.dce command starts the currently fully configured component daemons
on the local machine.

Related Information

Commands: config.dce , stop.dce

Chapter 3. Installation and Configuration Enhancements 37

stop.dce

Stops the DCE daemons configured on the local machine.

Format

stop.dce
[all]
[usage]
[–?]
[help]
[operations]
components

Options
all Stops the DCE components configured on the local machine.

usage Displays a help message.

–? Displays a help message.

help Displays a brief description for the passed arguments.

operations
Lists all the options and the components.

components
Specifies the components to be stopped.

The Client Components are:

all All configured components (client and server)

core All configured DCE components (client and server)

all_cl All clients (cds_cl, dts_cl, rpc, and sec_cl)

client Same as all_cl

cds_cl
CDS clerk

dcecm
Integrated login

dts_cl DTS client

rpc RPC daemon

sec_cl
Security client

The Server Components are:

all_srv
All servers (cds_second, cds_srv, dts_global, dts_local, gda,
sec_srv, ems_srv, pw_strength_srv, sec_rep, snmp_srv)

core_srv
All core servers (rpc, dced, sec_srv,cds_cl, cds_srv)

audit Audit daemon

cds_second
Additional CDS servers

38 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

cds_srv
Initial CDS server for the cell

dts_global
DTS global server

dts_local
DTS local server

ems_srv
Event Management server

gda Global Directory Agent

idms_srv
Identiry Mapping server

nsid Name Space Interface Daemon

pw_strength_srv
Password Strength server

sec_srv
Security server

sec_rep
Security replica

snmp_srv
SNMP server

Description

The stop.dce command stops the currently fully or partially configured component
daemons on the local machine.

Related Information

Commands: config.dce , start.dce

Chapter 3. Installation and Configuration Enhancements 39

show.cfg

Displays the DCE components configured on the local machine.

Format

show.cfg
[all]
[dce]
[usage]
[-?]
[help]
[-no_daemon_check]
[operations]

Options
all Lists all the DCE components configured on the local machine.

dce Displays the configured DCE components. This option is the default.

usage Displays a help message.

–? Displays a help message.

help Displays a brief description for the passed arguments.

–no_daemon_check
Specifies that the daemon running states should not be determined or
displayed.

operations
Lists all the options and the components.

Description

The show.cfg command displays the currently configured components on the local
machine.

The valid configuration states are:

Configured
The component was successfully configured.

Partial
The component failed to configure successfully.

The valid running states are:

Running
The daemon is running and listening.

Not Running
The daemon is not currently running.

Available
The component functions are available (there is no daemon).

Not Available
The daemon is running, but is not currently listening.

Unknown
The running state of the component could not be determined.

40 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Examples

The following is an example of a component summary:
Component Summary for Host: xxxxxxxx.xxxxx.xxx.xxx
Component Configuration State Running State
Security Master server Configured Running
Security client Configured Running
RPC Configured Running
Identity Mapping server Partial Not Running
Initial Directory server Configured Running
Directory client Configured Running
Password strength server Configured Running

pwd_strengthd
Audit server Configured Running
Integrated Login (dcecm) Configured Available

The component summary is complete.

Related Information

Commands: config.dce , unconfig.dce .

Chapter 3. Installation and Configuration Enhancements 41

clean_up.dce

Cleans the DCE databases, sockets, and cache files, creates backup log files, and
removes DCE-generated core files.

Format

clean_up.dce
[–core]
[–truncate_log]
[usage]
[–?]
[help]
[operations]

Options
–core Specifies that DCE-generated core files are to be removed.

–truncate_log
Specifies that backup DCE-generated log files should be created.

usage Displays a help message.

–? Displays a help message.

help Displays a brief description for the passed arguments.

operations
Lists all the options and the components.

Description

The clean_up.dce command cleans DCE databases, sockets, and cache files,
creates backup log files, and removes DCE-generated core files. If DCE problems
are encountered, the clean_up.dce command can be used to remove possibly
corrupted files. All of the files that are removed will be recreated.

Without any options, the clean_up.dce command removes DCE databases, cache
files, and socket files.

With the –core option, clean.dce removes core files.

When the –truncate_log option is used, backup files for the DCE serviceability log
files are created in %DCELOC%\dcelocal\var\svc .

Related Information

None.

42 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

mkreg.dce

Adds information about a DCE cell into the domain namespace.

Format

mkreg.dce
[–input_file input_file]
[–named_data_file named_data_file]
[usage]
[–?]
[help]
[operations]

Options
–input_file input_file

Specifies the name of a file containing information about the cell you want
to register. The default is %DCELOC%\dcelocal\etc\input.file .

–named_data_file named_data_file
Specifies the name of the file that contains data for the Microsoft DNS
server, when registering a DNS-style cell name. The default is
%DCELOC%\dcelocal\etc\named.data .

usage Displays a help message.

–? Displays a help message.

help Displays a brief description for the passed arguments.

operations
Lists all the options and the components.

Description

The mkreg.dce command enters information about your DCE cell into the database
maintained by your domain Microsoft DNS server.

This command cannot be used to register X.500–style cell names.

If the Microsoft DNS server machine is a member of the DCE cell you want to
register, mkreg.dec will update the named data file you specify with the
–named_data_file option and if the Microsoft DNS server is running, refresh it.

If the name server machine is not part of the DCE cell you want to register or is not
configured with DCE at all, do one of the following:

v Generate the mkreg.dce input for the name server. On a machine that is part of
the DCE cell you want to register, run the following two commands:
cdscp show cell /.: as dns>input.file
cdscp show clearinghouse/.:/*>>input.file

Take the resulting file to your DOMAIN name server and run mkreg.dce , using
the –input_file option to specify the name of the input file.

v Generate the mkreg.dce output to add to the named data file on the name
server.

Chapter 3. Installation and Configuration Enhancements 43

It is necessary to create a temporary data file on a machine within the cell, with
the information to append to the permanent data file on the nameserver. To do
this, run the following two commands to create the file and add the relevant cell
data to it:

dcecp mkreg.dce –named_data_file output.file

Take the resulting output.file to your DOMAIN name server, add the contents of
this file to the Microsoft DNS server data file, and have the server read the new
data.

Note: When configuring with a DCE host name, be sure to add the DCE host
name and the proper IP address of the machine associated with the DCE
host name to the list of host names. Remember that the DCE host name
is case sensitive.

For example, if you configure a cell with the cell name
/.:/hulacell.austin.ibm.com on the machine named mustang1 and set
the DCE host name to be hula.austin.ibm.com , the following entry needs
to be added to the Microsoft DNS server data file on the DNS name
server so that the machine name, or in this case the DCE host name, can
be resolved to a TCP/IP address.

cdsaix1.austin.ibm.com IN A 129.35.66.4
mustang1.austin.ibm.com IN A 129.35.69.52
hula.austin.ibm.com IN A 129.35.69.52

Examples

To register a cell when the name server is configured as a CDS client of the cell,
type:
dcecp mkreg.dce

To register a cell when the information about the cell and its CDS clearinghouse is
contained in the file /tmp/cell.info , type:
dcecp mkreg.dce -input_file /tmp/cell.info

Related Information

Commands: rmreg.dce .

44 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

rmreg.dce

Removes information about a DCE cell into the domain namespace.

Format

rmreg.dce
[–dns_cell_name dns_cell_name]
[–named_data_file named_data_file]
[usage]
[–?]
[help]
[operations]

Options
–dns_cell_name dns_cell_name

Specifies the cell name to be unregistered. If no –dns_cell_name option is
specified, the rmreg.dce command uses the cell name in the
%DCELOC%\dcelocal\etc\dce\dce_cf.db file.

–named_data_file named_data_file
Specifies the name of the file on the domain name server that contains the
data for the Microsoft DNS server. The default is
%DCELOC%\dcelocal\etc\named.data .

usage Displays a help message.

? Displays a help message.

help Displays a brief description for the passed arguments.

operations
Lists all the options and the components.

Description

The rmreg.dce command removes entries from the database maintained by your
domain Microsoft DNS server that were added by the mkreg.dce command.

This command cannot be used to register X.500–style cell names.

This command must be run on the name server with which the cell is registered.
Use the –named_data_file option to specify the name of the data file used by the
Microsoft DNS server. The cell information is removed from the specified file.

If the primary name server machine is not part of the DCE cell, the
–dns_cell_name option must be used.

Examples

To unregister a cell named /.../comp.sci.cell , type:
dcecp rmreg.dce –dns_cell_name /.../comp.sci.cell

Related Information

Commands: mkreg.dce .

Chapter 3. Installation and Configuration Enhancements 45

unconfig.dce

Removes configuration of the DCE components.

Format

unconfig.dce
[–admin_pwd password]
[–cell_admin cell_admin_id]
[–config_type {full | local | admin}]
[–dce_hostname dce_hostname]
[–dependents]
[–force]
[–group_rsp_path filename]
[–host_id machine_identifier]
[–pwdstr_principal password_strength_principal_id]
[–rsp_file filename]
[all]
[usage]
[–?]
[help]
[operations] components

Note: The unconfig.dce command can be used to unconfigure a full DCE Client. A
Slim Client uses a separate tool for unconfiguration.

To Remove Admin Configuration:
unconfig.dce –config_type admin –dce_hostname dce_hostname
[–cell_admin cell_admin id] [–host_id machine_identifier] [–dependents]
[–force] [–pwdstr_principal password_strength_principal_id]components

To Remove Local Configuration:
unconfig.dce –config_type local [–dependents] [–force] [–pwdstr_principal
password_strength_principal_id] components

To Remove Full Configuration:
unconfig.dce –config_type full [–cell_admin cell_admin_id] [–dependents]
[–force] [–pwdstr_principal password_strength_principal_id] components

Options
–admin_pwd password

Specifies the cell administrator password. Caution should be used with this
option because of the security risk it poses by making this password
accessible to others.

–cell_admin cell_admin_id
Specifies the name of the cell administrator account. If the –cell_admin
option is not specified, the account cell_admin will be assumed.

–config_type {full | local | admin}
Used to specify what type of unconfiguration is to be done. The
–config_type option has three available unconfig_types:

admin

Specifies that the admin portion of unconfiguration will be
completed for the dce_host indicated by the –dce_hostname flag.
This cleans up the CDS namespace and security registry. The user
must have cell administrator authority within the cell.

46 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

local Specifies that the local portion of unconfiguration will be completed
for the local machine. This stops the daemons and removes the
appropriate files. The user must have root authority on the local
machine.

Local unconfiguration must be selected when unconfiguring a CDS
server whose clearinghouse contains a master replica of a directory.

full Specifies full unconfiguration on the local machine. This is the
default unconfig_type. When doing a full unconfiguration on the
local host, the user must be the DCE cell administrator and have
administrator authority on the local machine. Full unconfiguration is
the equivalent of admin unconfiguration and local unconfiguration
combined. If the –unconfig_type option is not used, a full
unconfiguration will be assumed.

–dce_hostname dce_hostname
Used with the –config_type option to identify the dce_host to unconfigure.
Use –dce_hostname only when doing the admin portion of unconfiguration.

–dependents
Unconfigures dependent components. Specifies that any components that
depend on those listed on the command line should also be unconfigured.
For example, on a machine with sec_cl, cds_cl, and rpc, unconfig.dce
–dependents sec_cl will also unconfigure the cds_cl.

–force Forces unconfiguration of components named on the command line, even if
other components depend on their presence. Use this option in clean-up
situations. Use this option with extreme caution because the cell can be put
into an unstable state.

–group_rsp_path
Specifies the directory path for searching included response files.

–host_id machine_identifier
Specifies the TCP/IP host name or the TCP/IP address of the client
machine being admin unconfigured. When unconfig.dce is called with
–config_type admin, the –host_id option must also be used. Admin
unconfiguration can be used for a machine whose TCP/IP address is not
yet registered with a nameserver. In that situation, use the –dce_hostname
dce_hostname option with the –host_id IP_address option.

Note: The –host_id option can only be used with the –config_type admin
option.

–pwdstr_principal password strength principal id
Specifies a principal id for the password strength server. Since more than
one password strength server can be configured, the principal id is used to
identify a specific server.

all Unconfigures all configured components on the local machine.

–rsp_file filename
Specifies the full path name of a response file.

usage Displays a help message.

–? Displays a help message.

help Displays a brief description for the passed arguments.

operations
Lists all the options and the components.

Chapter 3. Installation and Configuration Enhancements 47

components
Specifies the components to be unconfigured.

The Client Components are:

all All configured components (client and server).

all_cl All clients (cds_cl, dts_cl, rpc, and sec_cl)

client Same as all_cl

cds_cl
CDS client

dcecm
Integrated login

dts_cl DTS client. This component and dts_local and dts_global are
mutually exclusive.

rpc RPC daemon

sec_cl
Security client. This client includes rpc.

The Server Components are:

all_srv
All servers (cds_second,cds_srv, dts_global, dts_local, gda,
sec_srv, ems_srv, pw_strength_srv, sec_rep, snmp_srv)

audit Audit daemon

cds_second
Secondary CDS server. This component and cds_srv are mutually
exclusive.

cds_srv
Initial CDS server for the cell. This component and cds_second are
mutually exclusive.

core_srv
Single-machine cell components This is equivalent to including
cds_srv , sec_srv , cds_cl , sec_cl , and rpc .

dts_global
DTS global server. This component and dts_local and dts_cl are
mutually exclusive.

dts_local
DTS local server. This component and dts_global and dts_cl are
mutually exclusive.

ems_srv
Event Management server

gda Global Directory Agent

idms_srv
Identity Mapping server

nsid Name Space Interface Daemon

pw_strength_srv
Password Strength server

48 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

sec_srv
Security server

sec_rep
Security replica

snmp_srv
SNMP server

Description

The unconfig.dce command stops the specified components and removes their
configuration and database files. The unconfig.dce command unconfigures only
the core DCE components. Use the unconfig.dfs command to configure DFS
components. If you are removing all DCE and DFS components, use the
unconfig.dfs command before you use the unconfig.dce command.

You can unconfigure a machine from a cell in two ways:

full configuration
used by the cell administrator (as root user) to complete all the necessary
steps within the cell (updating the CDS namespace and the security
registry) and on the local machine (stopping daemons and deleting files).
Full unconfiguration is specified with the –config_type full option. The
unconfig.dce command also defaults to full unconfiguration if the
–config_type option is not used.

If the cell administrator does not have root user access to the machine that
is going to be unconfigured split configuration is the option to use.

Note: If you unconfigure the initial CDS server (with the master copy of
the/.:/directory) or master Security server in a cell, you will have to
unconfigure and reconfigure the entire cell.

split configuration
breaks the unconfiguration tasks into two distinct segments, admin and
local. Admin unconfiguration is used by the cell administrator on any
machine within the cell to update the CDS namespace and the security
registry about changes in the cell. Local configuration is used by the root
user on the machine being unconfigured to stop the daemons and delete
the appropriate files. Split unconfiguration is specified with the
–config_type admin and –config_type local options.

If the cell for which a machine is configured is inaccessible and you need to
unconfigure the machine for any reason, use the –config_type local
option. This option limits the unconfig.dce command to remove only the
local pieces of a DCE configuration; it does not remove entries from the
namespace or registry database. To remove the entries from the
namespace and registry database, the cell administrator should use the
–config_type admin –dce_hostname option from a machine within the
cell.

If the environment variable cell_admin_pw is set, unconfig.dce uses its value for
the cell administrator password without prompting you. This feature can be useful
when automating unconfiguration tasks. Be aware, however, that this use of this
feature should be limited because of the security risk it poses by making this
password accessible to others. The cell administrator password should be changed
after the tasks are completed and the cell_admin_pw value is unset in order to limit
the security risk.

Chapter 3. Installation and Configuration Enhancements 49

While the config.dce command automatically configures any client components
required by the specified components, the unconfig.dce command will fail if
configured components depend on the presence of those requested to be
unconfigured. To unconfigure exactly those components specified on the command
line, use the –force option. This option should be used with caution. In some cases,
unconfiguring one component will disable other components that are dependent
upon it.

To unconfigure those components specified on the command line and all
components that depend on them, use the –dependents option. When a cds server
(either cds_srv or cds_second) is requested to be unconfigured, unconfig.dce
checks for several conditions. If a full configuration is specified, unconfig.dce
checks to ensure that none of the clearinghouses on the server machine contain a
master replica of any directory. If they do not, the unconfiguration continues. If they
do, configuration exits with a message explaining what must be done before the
server can be unconfigured. If it is necessary to unconfigure a CDS server with a
clearinghouse that contains a master replica of a directory, unconfig.dce can be
run using the –config_type local option. After that, unconfig.dce –config_type
admin should be run from a machine within the cell.

Once a cds server has been unconfigured, it might not be possible to reconfigure it
using the same dce_hostname until all updates have taken place in the cell. Either
use a different dce_hostname or wait overnight before reconfiguring.

If you unconfigure the Master Security server in a cell, you will have to unconfigure
and reconfigure the entire cell.

Security Replication adds more opportunities for the pe_site file to change;
therefore, the pe_site file will be updated whenever unconfig.dce is run (if the
cdsadv daemon is running).

Examples

To remove the DTS clerk configuration from a machine when the cell administrator
account name is ca, type:
dcecp unconfig.dce –cell_admin ca dts_cl

To remove all DCE configuration files and databases from a machine, the
administrator types:
dcecp unconfig.dce –config_type local all

The unconfig.dce –config_type local option limits the unconfig.dce command to
removing only the local pieces of a DCE configuration; it does not remove entries
from the namespace or registry database. Use this command when unconfiguring
the last machine in a DCE cell or when removing a CDS server whose
clearinghouse contains a master replica of any directory.

To specify the admin portion of unconfiguration for a client in an existing cell, the
cell administrator types:

dcecp unconfig.dce –config_type admin –dce_hostname chc all_cl
dcecp unconfig.dce –config_type admin –dce_hostname jas.austin.ibm.com\
cds_second cds_cl sec_cl dts_cl

To specify the local portion of unconfiguration for the local machine, the
administrator (with no DCE authority required) types:

50 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

dcecp unconfig.dce –config_type local all_cl
dcecp unconfig.dce –config_type local –dependents sec_srv

To perform full unconfiguration on a client in an existing cell, the cell administrator
with administrator authority types:
dcecp unconfig.dce
all_cl
dcecp unconfig.dce –config_type full all_cl

Related Information

Commands: config.dce .

Chapter 3. Installation and Configuration Enhancements 51

Silent Install

Silent Install enables automated electronic software distribution. Silent Install
eliminates the need for the users to monitor their installation process and the need
to provide input.

For more information, see:

Starting Silent Install

The SETUP.ISS Response File

The Server CD Response File

The Client CD Response File

The SETUP.LOG File

Starting Silent Install

Note: Silent Install can be used with a full DCE Server or a full DCE Client. It does
not support the DCE Slim Client.

To start silent install , run SETUP.EXE with the -s option. For example, from a DOS
command prompt type:

setup -s

You can also use the -f1 and -f2 options to change the name and location of the
response file.

For example, from the DOS command prompt type:
setup -s -f1c:\mydir\mydir.iss -f2c:\mydir\mydir.log

The previous example starts Silent Install, uses the MYDIR.ISS file from the
C:\MYDIR directory, and then generates the MYDIR.LOG log file in the same
directory.

If you do not use the -f1 option when running Silent Install, setup looks for the
response file SETUP.ISS in the same directory as SETUP.EXE.

When Silent Install runs, a log file is created in the same directory as the response
file. The log file has the the default name of SETUP.LOG if the -f2 switch is not
provided along with the-f1 switch.

The SETUP.ISS Response File

DCE Runtime Services provide a default SETUP.ISS response file.

You can also create your own. You can use the -r option in order to select
installation options and to automatically record the Silent Install response file.

When you are recording the InstallShield response file, make sure that all
prerequisites (for example, Microsoft Windows NT Service Packs, TCP/IP protocol,
and NETBIOS Service) have been met.

DCE for Windows NT provides a default SETUP.ISS response file.

52 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The Server CD Response File

The server response file assumes that:

v The system has Microsoft Windows 4.0 ServicePack 3 installed.

v The system has NetBIOS service and TCP/IP Protocol installed.

v If there is an existing DCE, Silent Install defaults to Preserve the DCE
Configuration . It will not prompt you to choose the Preserve DCE
Configuration , or Delete DCE Configuration .

v The components you can install include:

– DCE Runtime Services

– DCE Application Development Kit (ADK)

– DCE Cell Directory Services (CDS)

– DCE Security Services (SS)

– Event Management Services (EMS)

– Simple Network Management Protocol (SNMP)

v The default install directory is C:\Program Files\DCE.

v The default preferred cultural convention is ENUS437 English in US OEM CP.

v The response is ″No″ to display the readme file.

v The response is ″No″ to restart the system.

The following is an example server response file:
[InstallShield Silent]
Version=v3.00.000
File=Response File
[D1gOrder]
Dig0=SdWelcome-0
Count=6
D1g1=SdComponentDialog-0
D1g2=SdAskOptionsList-0
D1g3=SdStartCopy-0
D1g4=AskYesNo-0
D1g5=SdFinishReboot-0
[SdWelcome-0]
Result=1
[SdComponentDialog-0]
szDir=C:\Program Files\DCE
Component-type=string
Component-count=6
Component-0=DCE Runtime Services
Component-1=DCE Application Development Kit (ADK)
Component-2=DCE Cell Directory Services (CDS)
Component-3=DCE Security Services (SS)
Component-4=Event Management Services (EMS)
Component-5=Simple Network Management Protocol (SNMP)
Result=1
[SdAskOptionsList-0]
Component-type=string
Component-count=1
Component-0=ENUS437 English in US OEM CP
Result=1
[SdStartCopy-0]
Result=1
[Application]
Name=Dce for Windows NT
Version=2.2
Company=IBM
[AskYesNo-0]

Chapter 3. Installation and Configuration Enhancements 53

Result=0
[SdFinishReboot-0]
Result=1
BootOption=0

The Client CD Response File

The client response file assumes that:

v The system has Microsoft Windows 4.0 ServicePack 3 installed.

v The system has NetBIOS service and TCP/IP Protocol installed.

v If there is an existing DCE, Silent Install defaults to Preserve DCE
Configuration . It will not prompt you to choose the Preserve DCE
Configuration , or Delete DCE Configuration .

v The components you can install include:

– DCE Runtime Services

– DCE Application Development Kit (ADK)

– Event Management Services (EMS)

v The default install directory is C:\Program Files\DCE

v The default preferred cultural convention is ENUS437 English in US OEM CP

v The response is ″No″ to read the release note.

v The response is ″No″ to reboot the system.

The following is an example client response file:
[InstallShield Silent]
Version=v3.00.000
File=Response File
[D1gOrder]
Dig0=SdWelcome-0
Count=6
D1g1=SdComponentDialog-0
D1g2=SdAskOptionsList-0
D1g3=SdStartCopy-0
D1g4=AskYesNo-0
D1g5=SdFinishReboot-0
[SdWelcome-0]
Result=1
[SdComponentDialog-0]
szDir=C:\Program Files\DCE
Component-type=string
Component-count=3
Component-0=DCE Runtime Services
Component-1=DCE Application Development Kit (ADK)
Component-2=Event Management Services (EMS)
Result=1
[SdAskOptionsList-0]
Component-type=string
Component-count=1
Component-0=ENUS437 English in US OEM CP
Result=1
[SdStartCopy-0]
Result=1
[Application]
Name-DCE for Windows NT
Version=2.2
Company=IBM
[AskYesNo-0]
Result=0
[SdFinishReboot-0]
Result=1
Bootoption=0

54 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The SETUP.LOG File

When you run an installation in silent mode, none of the messages are displayed
on the screen. Instead, the SETUP.LOG file captures the installation information.
You must view the SETUP.LOG file to determine if the installation was successful.

The SETUP.LOG file contains the following three sections:

v [InstallShield Silent] identifies the version of Silent Install that was used in the
silent installation. It also identifies the file as a log file.

v [Application] identifies the name of the installed application, the version, and
the name of the company.

v [ResponseResult] contains the return code indicating if the silent installation
was successful. One of the following integer value is assigned to the ResultCode
keyname:

0 Success

—1 General error

—3 Required data not found in the SETUP.ISS file

—4 Not enough memory available

—5 File does not exist

—6 Cannot write to the response file

—9 Not a valid list type (string or number)

—10 Data type is invalid

—11 Unknown error during setup

—12 Dialogs are out of order

SETUP.LOG is the default name for the silent install log file and it is located in the
same directory where the .INS file resides. To specify a different name and location
for the SETUP.LOG file, run SETUP.EXE using the -f1and -f2 options.

For example, from the DOS command prompt type:
setup -s -f1c:\mydir\mydir.iss -f2c:\mydir\mydir.log

The above example, starts Silent Install, uses the MYDIR.ISS file from the
C:\MYDIR directory, and then generates the MYDIR.LOG log file in the same
directory.

When an installation is successful, the SETUP.LOG file contains the following:
[InstallShield Silent]
Version=v3.00.000
File=Log File
[Application]
Name=DCE for Windows NT
Version=2.2
Company=IBM
[ResponseResult]
ResultCode=0

Chapter 3. Installation and Configuration Enhancements 55

56 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 4. Application Development Notes and
Considerations

The DCE for Windows NT Application Development Kit option provides universal
command interfaces, as well as directory structures, filenames, and application
development environments resembling those available from DCE implementations
on many UNIX systems. In general, this allows users to read any standard OSF
DCE documentation, such as that provided with this release, and to create DCE
applications on Windows NT systems.

The DCE for Windows NT product provides extensions and enhancements to the
standard OSF DCE services. The following topics describe these extensions and
enhancements and provide general information to consider during application
development. Differences in writing, compiling, and linking applications between
UNIX-based implementations and Windows NT are also described.

The following topics also describe application development formats and rules on
Windows NT systems that may differ from those described in the OSF DCE
Application Development Guide.

Building Applications

Although the DCE for Windows NT product is designed to minimize differences from
DCE as it is installed on UNIX systems, there are reasons to conform to Windows
NT standards and conventions first.

Primarily, users encounter the differences between the Windows NT and UNIX
platforms when they compile and link programs. However, running compiled
programs can require setup procedures specific to Windows NT or this DCE kit.

This topic describes command formats and considerations for compiling and linking
applications on DCE for Windows NT. For general information about compiling and
linking DCE applications, refer also to the OSF DCE Application Development
Guide.

For more information, see:

Including Files

Including the DCE RPC Header File

Including POSIX Threads Header File

Using Compiler and Linker Flags with Visual C++

Linking DCE Applications

Structure Alignment with C Compilers Restriction

MFC Classes in IDL Files Restriction

TZ Environment Variables with DTS Routines Restriction

Structure of passwd

Including Files

If the DCE for Windows NT ADK has been installed, the DCE installation process
sets up your include environment variable so that your compiler can find the
required DCE include files in a path such as this:

57

%DCELOC%\dcelocal\include

Where %DCELOC% is the environment variable pointing to the root where DCE is
installed.

Many DCE include files are located in the following folder:
%DCELOC%\dcelocal\include\dce

Note: Users must be sure to reboot their system after installing the ADK in order to
have the environment variable set properly.

Including the DCE RPC Header File

Applications should include files from this directory by specifying the path dce/ in
the file specification of the # include statement in the application source code.
When you include the RPC header file, rpc.h , in a DCE application, do not specify
simply <rpc.h>. Instead, include the file as shown in the following example:

#include <dce/rpc.h>

This prevents the accidental inclusion of the Microsoft RPC header file, rpc.h , when
the DCE RPC header file is needed.

Including POSIX Threads Header File

Every module of a DCE application program should include the file pthread.h , as
shown in the following example:

#include <dce/pthread.h>

Include this file before any other file included by the module that could possibly
contain system or library calls for which there might be thread jacket routines (such
as stdio.h). In general, it is best to put pthread.h first in the include list for each
module. If this file does not precede other files in the include list that contains call
declarations for which there are jacket routines, the compiler might generate
warning or error messages about the prototypes for these routines.

Using Compiler and Linker Flags with Visual C++

The following example shows the compiler flags that should be used when using
Visual C++ to create an application.

Programs that call serviceability functions must also use the /MD option.

The cvarsdll , /debug , and other symbols assume you are compiling or linking the
programs from inside a makefile. The makefile must include the MS makefile called
win32.mak . The following example assumes that all application header files are in
the same directory as the source. If this is not the case, the -I option will need to
include the other directories as well.

cl -I . $(cvarsdll) -DM_I86 -WINNT -Od -Gz

where:

-Od disables optimization

-Gz indicates _stdcall convention

58 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The following example shows the compiler flags for a debuggable application:
cl -I . $(cvarsdll) -DM_I86 -WINNT -Zi -Od -Gz

where:

-Zi indicates debugging information should be generated

The following example shows a link line for a GUI application. (A console
application would use $(conlflags) .)

link $(ldebug) $(guilflags) -machine:$(CPU)

For information on using the VisualAge C++ compiler, see “Using IBM VisualAge
C++” on page 62.

Linking DCE Applications

When linking a DCE application, you must link with the following libraries:

v libdce.lib

v pthreads.lib

The following command format is an example of how to link with shared libraries:
C:\> link /out:myprg.exe -subsystem:console msvcrt.lib libdce.lib pthreads.lib-entry:mainCRTStar

For general information on compiling and linking DCE applications, see the OSF
DCE Application Development Guide and the documentation for your Windows NT
application development environment.

Structure Alignment with C Compilers Restriction

On Windows NT systems, DCE stub and library code assumes the native,
nonaligned form for structures. Do not use the C preprocessor pragma to enable
structure member alignment (the -Zp switch when using the Microsoft C compiler) in
your DCE applications for Windows NT as this kit does not support user
applications built with the Zp option.

MFC Classes in IDL Files Restriction

Due to changes in Visual C++ 4.x and 5.0 include files, DCE for Windows NT does
not support use of MFC classes in IDL files. Therefore, compilation of IDL files that
include MFC classes will fail.

TZ Environment Variables with DTS Routines Restrictions

Some of the Distributed Time Service (DTS) routines documented in the OSF DCE
Application Development Reference allow control over time zones by reading the
TZ environment variable. The DCE for Windows NT product has been designed so
as to not require a TZ definition. Do not use this variable to set time zones for DCE
applications, because the results will be unpredictable. Set your system time zone
according to standard Windows NT procedures (using the Date/Time applet in the
Control Panel).

Chapter 4. Application Development Notes and Considerations 59

Structure of passwd

The particular structure of passwd depends on the underlying system. DCE for
Windows NT uses a structure like that supported by 4.4BSD. The structure is:

struct passwd {
char *pw_name; /* user name */
char *pw_passwd; /* encrypted password */
int pw_uid; /* user uid */
int pw_gid; /* user gid */
time_t pw_change; /* password change time */
char *pw_class; /* user access class */
cchar *pw_dir; /* home directory */
char *pw_shell; /* default shell */
time_t pw_expire; /* account expiration */

};

Differences Between OSF DCE and Windows NT Examples

The OSF DCE Application Development Guide refers to files that do not exist on
Windows NT systems, and illustrates commands and command syntax that do not
work in a Windows NT environment. The example command line in Building
Applications illustrates some of the differences from OSF DCE documentation
compile examples when you compile DCE code on Windows NT. Note the following
differences for writing applications on Windows NT systems:

v Object format files created by the IDL and C compilers have the file extension
.OBJ instead of .o.

v The UNIX feature fork is available on Windows NT, but the recommended
mechanism is to use the Win32 CreateProcess instead.

v DCE filenames and locations are similar but different on Windows NT. See DCE
Directory Names for more information.

v Various UNIX commands used in the OSF DCE documentation do not work
directly on Windows NT systems. Use the Windows NT equivalents; for example:

Command UNIX Name Windows NT Name/Procedure

List files (directory) ls dir

List processes ps Use the Task Manager, accessible through
Ctrl-Alt-Del key sequence or use win32 _
have the Microsoft Windows 32 SDK, you
PView in the Win32 SDK Tools program g

Makefile make nmake

Set environment variable % setenv name ″value ″ C:\> set name = value

Stop Process kill Use the Task Manager, accessible through
Ctrl-Alt-Del key sequence or use win32 _

Output file to screen cat type

DCE Directory Names

During Windows NT installations, the typical DCE directories and subdirectories are
created. Occasionally, a Windows NT subdirectory name or its path name may be
slightly different from those on UNIX systems.

60 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

In addition, the naming conventions for Windows NT differ from the UNIX
conventions in the following ways:

%DCELOC% replaces /opt. DCELOC is the environment variable containing the
drive letter and directory you chose as the destination of your DCE software when
you installed the kit.

Backslashes (\) replace slashes (/).

Examples:

UNIX Name
Windows NT Name

/opt/dcelocal/share/include/dce
%DCELOC%\dcelocal\include\dce

/opt/dcelocal/var/adm/time
%DCELOC%\dcelocal\var\adm\time

DCE Function Prototypes for C++ Applications

If your application encounters errors at link time, the errors could be caused by
DCE prototype declarations that need to be enclosed in an extern ″C″ {}
construction. For example, if the linker cannot resolve dce_error_inq_text , check
the file that includes the prototype for that function. In this case, it is dce_error.h .
Change the code as follows:

Change:

extern void IDL_STD_STDCALL_dce_error_inq_text (
unsigned long /* status_to_convert */,
unsigned char* /* buffer */t,
int* /*status */

) ;

To:

#ifdef __cplusplus
extern ″C″ {

#endif
extern void IDL_STD_STDCALL_dce_error_inq_text (

unsigned long /* status_to_convert */,
unsigned char* /* buffer */,
int* /*status */

) ;
#ifdef __cplusplus
}
#endif

Memory Allocation in DCE Applications

DCE applications on Windows NT can be built with C-runtime libraries other than
the C-runtime that DCE is built against. DCE applications can also be built with
different versions of the Microsoft Visual C++ used by DCE. When this happens,
use of standard C-runtime routine free() is not guaranteed to return memory

Chapter 4. Application Development Notes and Considerations 61

properly. If memory is not deallocated properly, the application may encounter
access violations or events logged to the Application Event Log as well as memory
growth.

A new function, dce_free() , has been provided that ensures memory allocated from
DCE is properly deallocated. Use this routine whenever the DCE API
documentation says to deallocate memory by calling free() . The following prototype
describes dce_free and is defined by the header file dce_free.h contained in the
DCE for Windows NT Application Developer’s Kit option:

void dce_free (void *ptr);

Using IBM VisualAge C++

DCE for Windows NT provides continuing support for the Microsoft Visual C++
compiler and adds support for the IBM VisualAge C++ compiler. The DCE for
Windows NT Application Developer’s Kit (ADK) option works with both the Microsoft
and IBM compilers. IBM VisualAge C++ provides a consistent set of tools, compiler
technology, and class libraries that enable the portability of C and C++ source code
across multiple, heterogeneous environments.

For more information see:

New Flags for Makefile

IDL Compiler Flags

Compiler Flags

Linker Flags

New Flags for Makefile

To use the IBM VisualAge C++ compiler, you must generate a makefile. This
makefile requires new idl compiler flags, compiler flags, and linker flags. The
Application Developers Kit (ADK) contains example makefiles (named
<example .mak> where example is the name of the DCE application) for each DCE
application.

The example makefiles are dependent on the MSDEVDIR environment variable. If a
machine has both Visual C++ and VisualAge C++ compilers installed, verify that the
MSDEVDIR environment variable is not set in the session invoking the VACPP
compiler.

For more information see:

IDL Compiler Flags

Compiler Flags

Linker Flags

IDL Compiler Flags

The VisualAge C++ makefile provided with the DCE for Windows NT examples
uses the following idl compiler flags to specify the compiler and preprocessor:
IDL = idl <options> -cc_cmd icc -cc_opt \

"-q -Ms -Gd+ -Gm+ -D_X86_=1 -DWIN32" \
-cpp_cmd icc -cpp_opt "-q -Pd+"

For more information see:

62 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Compiler Flags

Linker Flags

Compiler Flags

The compiler flags used in the DCE for Windows NT examples, including a possible
set of includes, are:
INCLUDES = -I. -I$(CPPMAIN)\bindings \

-I$(CPPMAIN)\include \
-I$(CPPMAIN)\sdk\winh \
-I$(CPPMAIN)\sdk\winh\winnt \
-I$(CPPMAIN)\sdk\winh\win95 \

CFLAGS = -DWIN32 -Q -Ms -Gd+ -Gm+ -Ti+ -Ss -Su4 -C \
-D_X86=1 -DM_I86 $(INCLUDES)

CC = icc

For more information see:

Linker Flags

Linker Flags

The linker flags used in the VisualAge C++ makefile provided with the DCE for
Windows NT examples are the following:
LD = ilink
LDFLAGS = -nologo -noe -map -debug
LIBS = libdce.lib pthreads.lib wsock32.lib

Compiler Warnings from Function Assignments

The idl runtime has been modified to support both _Optlink and __stdcall
(_System) and __cdecl calling conventions for memory management functions. For
example, if you call rpc_ss_swap_client_alloc_free(mallor,free) , and malloc()
and free() are _Optlink VisualAge C++ C-runtime functions, the idl runtime will call
them both, putting arguments in registers for _Optlink and pushing arguments on
the stack for __stdcall (_System) and __cdecl .

Although both linkage conventions are supported, the compiler will generate
warnings from the stubs, which call rpc_ss_set_client_alloc_free() . The warnings
will be similar to the following:

warning EDC0280: Function argument assignment between types "void*
(*__dcecl) (unsigned long)" and "void"*(*_Optlink) (unsigned long)"
is not allowed.

You can disregard the warning. The stub code does not have a problem. The idl
compiler has generated code to allocate objects from the customer’s C-runtime, in
this example the VisualAge C++ C-runtime.

While you can safely ignore the stub compile warnings, you should check any
similar warnings in the customer’s main code. For example, the comparison function
passed to the C-runtime function qsort() will cause an access violation because of
the linkage convention mismatch.

Chapter 4. Application Development Notes and Considerations 63

Code Considerations

Certain coding considerations apply when you are using VisualAge C++.

For more informatin see:

File Streams

Memory Allocation and Deallocation

Structured Exception Handling (SEH)

File Streams

File streams are incompatible between the two runtime environments. The following
code fragment would work properly in a Microsoft Visual C++ environment, but not
in a mixed VisualAge C++ and Microsoft Visual C++ environment:

dce_error_inq_text (*stp, err_string, &st) ;
dce_fprintf (stderr, ibm_msg_620, err_string) ;

In the mixed environment, the stream stderr , which can be any stream opened by
fopen() , resides in the IBM C-runtime. This stream uses the VisualAge C++ data
structure FILE from VisualAge C++ stdio.h. When the API dce_fprintf() is called
into DCE, it dereferences stderr with the Microsoft Visual C++ FILE structure from
Microsoft Visual C++ stdio.h, and finds the two streams incompatible. To solve this
problem, use dce_sprintf() and fwrite() , remembering to free the memory returned
from dce_sprintf() with dce_free() .

If you have porting code with many dce_fprintf() calls, you can override the
dce_fprintf() behavior and implement a function like the following:
#if !defined (_MSC_VER) // If *not* a Microsoft compiler
#include <stdarg.h>
int IDL_STD_STDCALL dce_fprintf (FILE *fpStream, const unsigned32 msg_index, ...)
{

char *cpBuffer;
va_list args;
int 1;

va_start (args, msg_index) ;
cpBuffer = dce_sprintf (msg_index, args) ;
va_end (arg) ;
i = fprintf (fpStream, cpBuffer) ;
dce_free (cpBuffer) ;

return(i) ;
#endif //Not a Microsoft compiler

For more informatin see:

Memory Allocation and Deallocation

Structured Exception Handling (SEH)

Memory Allocation and Deallocation

Use dce_free() to free any memory that was allocated by DCE (from Microsoft’s
C-runtime). dce_free() calls into the Microsoft C-runtime. The following APIs require
the use of dce_free() :

dce_msg_get ()
dce_msg_get_msg()
dce_sprintf()

64 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

dce_pgm_sprintf()
dce_aud_print()
dce_cf_find_name_by_key()
dce_cf_get_cell_name()
dce_cf_get_host_name()
dce_cf_dced_entry_from_host()
dce_cf_get_csrgy_filename()
dce_db_header_fetch()

For more informatin see:

Structured Exception Handling (SEH)

Structured Exception Handling (SEH)

When you want to use VisualAge C++ to build a C++ program, do not use the DCE
TRY/CATCH/ENDTRY macros to catch DCE exceptions; otherwise, compilation
errors will occur. The TRY/CATCH/ENDTRY macros use the Windows SEH
keywords __try and __except , which are not valid keywords for the VisualAge C++
compiler in C++ mode compiling C++ modules.

Instead, use client programs to catch DCE exceptions to obtain status code for the
DCE communications and server fault status.

Converting Applications from Microsoft RPC to DCE RPC

You can write your application, from the IDL files to the client and server source
code, using the standard DCE API. To use the DCE RPC for Windows NT, make
the following changes to your Microsoft RPC applications:

v Do not include dceport.h .

v Do not use the Microsoft Interface Definition Language (MIDL) stub compiler.
Instead, use the DCE for Windows NT IDL stub compiler. This stub compiler
provides all of the standard DCE data types.

v Do not use the Microsoft RPC API. Use the standard DCE API. For example, use
the DCE RPC routine rpc_binding_to_string_binding() instead of the Microsoft
RPC routine RpcBindingToStringBinding() .

v Build your DCE application using the guidelines documented in this book, instead
of following the examples provided in Distributing Applications Across DCE and
Windows NT .

dced Server Object Identities Restrictions

When you create a server object in dced on the UNIX platform, you normally
specify the user ID (UID) under which the server will run. On the NT platform, this
feature is not supported, for two reasons:

v The NT platform has no notion of a UID.

v The WIN32 process API requires a password if you want to start a process under
another identity.

Therefore, on NT, when dced creates an instance of a server object, that server
always runs under the system administrator identity. The UID attribute is ignored. In
the case of certain server applications, this behavior may introduce a security
vulnerability to the system.

Chapter 4. Application Development Notes and Considerations 65

dced Daemon Behavior Restrictions

The dced daemon for DCE NT always behaves as if it were started with the -c
switch. It never requires privacy encryption for remote key table management.
Clients who invoke remote keytab operations may have their operations encrypted
with CDMF encryption if the client host does not support DES encryption.

dced Partial Service Mode Restriction

OSF DCE 1.2.2 provides a security feature for dced called partial service mode .
This feature is not supported in the DCE NT V2.2 product.

Some of the OSF reference pages for dced objects, such as those for hostdata
and acl, refer to the feature. Additionally, the OSF documentation mentions the
-local argument that is used to update these objects when the local dced service is
in partial service mode. Do not use the -local argument in dcecp commands.

Enable and Disable Endpoints Restriction

DCE for Windows NT does not use the dced endpoint mapper service, but instead
uses Microsoft rpcss . (This is the only NT service that the product uses directly)

The following routines are not supported on DCE NT, because they modify
endpoints registered specifically in the dced endpoint map:

v dce_server_disable_service

v dce_server_enable_service

To enable and disable endpoints, use the rpc_ep *API.

Note: This restriction does not impact the dce_server_register() service.

The rpcss service does not clean up stale endpoints. If a daemon does not clean
up endpoints upon exit, use rpccp or the ep-flush-binding utility provided with this
kit.

The ep-flush-binding utility accepts a single interface ID to delete a single
endpoint or * to delete all endpoints from the endpoint map. The wildcard option
should be used with extreme caution, as it will affect any RPC application on the
system.

With Windows NT Version 4.0, rpcss cannot be stopped because it is essential to
the operating system.

Commercial Data Masking Facility (CDMF)

The Commercial Data Masking Facility (CDMF) provides data privacy support for
customers outside the U.S. and Canada. Like the Data Encryption Standard (DES)
provided in OSF DCE, CDMF supports RPC application encryption and GSSAPI
message encryption.

CDMF was developed as an alternative to DES. Because use of the DES
encryption algorithm for data privacy is limited outside the U.S., CDMF has export
approval from the U.S. government and is compatible with DES.

66 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

To support data privacy with CDMF, a new privacy level for communication between
clients and servers is introduced. For GSSAPI message encryption, a new
parameter for gss_seal and gss_unseal is added.

For more information see:

Application Development using CDMF

RPC APIs Supported by CDMF

GSS APIs Supported by CDMF

Application Development Using CDMF

DCE currently provides six levels of communication. To support data privacy with
CDMF, a new privacy level for communication between clients and servers is
introduced. Applications that do not have access to DES based data privacy need
to use this new level. The seventh level is: rpc_c_protect_level_cdmf_privacy .

CDMF uses the DES encryption algorithm, but exposes a weaker 40-bit key to an
application instead of the full 56-bit key in DES. The 40-bit key provides consistent
application level data encryption for customer applications that might otherwise lack
the functionality.

For GSSAPI message encryption, a new qop parameter for gss_seal and
gss_unseal is introduced. The parameter is: GSSDCE_C_QOP_CONF_CDMF.

For more information see:

GSS APIs Supported by CDMF

RPC APIs Supported by CDMF

The APIs that include protection level parameters and the new seventh level for
CDMF, rpc_c_protect_level_cdmf_privacy , are:

v rpc_binding_inq_auth_caller

v rpc_binding_inq_auth_client

v rpc_binding_inq_auth_info

v rpc_binding_set_auth_info

v rpc_mgmt_inq_dflt_protect_level

The rpc_c_protect_level_cdmf_privacy level performs protection as specified by
all of the previous levels and also encrypts each remote procedure call parameter
value. This protection level provides a lower level of packet privacy than
rpc_c_protect_level_pkt_privacy .

GSS APIs Supported by CDMF

The two APIs that support message encryption are:

v gss_seal

CDMF includes a constant for the confidentiality algorithm as part of the qop_req
input parameter. The constant is:

GSSDCE_C_QOP_CONF_CDMF

v gss_unseal

CDMF includes a value for the confidentiality algorithm as part of the qop_state
output parameter. The value is:

Chapter 4. Application Development Notes and Considerations 67

0x00010000 (GSSDCE_C_QOP_CONF_CDMF)

Use of Threads

The DCE for Windows NT product supports the POSIX 1003.4 Draft 4 interface
through native NT threads, ensuring a standards-based thread capability as well as
interoperability between Microsofts native Windows NT threads and DCE Threads.

Microsoft applications that use native Windows NT threads can continue to do so
while calling DCE services, and new application modules can be written using DCE
pthreads.

Pthreads Return Error Value Restriction

Most public Pthreads API return error values in the variable errno. This variable is
specific to a particular C-Runtime DLL. For example, the two C-Runtime DLLs
MSVCRT20.DLL (installed with Visual C++ Version 2.0) and MSVCRT40.DLL
(installed with Visual C++ Version 4.X) have their own, independent errno storage
locations.

The Pthreads API available in DCE for Windows NT has been built with Visual C++
Version 5.0. If an application is built with Visual C++ Version 4.X, then, it can
correctly access errno set as a result of call to the Pthreads library. However, if the
application is built with any other compiler other than Visual C++ Version 4.X, and it
accesses the value errno, then the value of errno will be retrieved from a location
within the C-Runtime Dll used by the application. This will result in retrieving an
incorrect value for errno .

The DCE for Windows NT product solves this problem by providing this additional
Pthreads function:
int pthread_get_errno_np (void)

This function retrieves a specific errno value in the event of a pthread function call
error. Applications using any C-Runtime DLL other than MSVCRT40.DLL should use
this function to access errno .

Unsupported DECthreads Interface Routines

The following DECthreads interface routines are not implemented and are not
supported on Windows NT:

v cma_attr_set_sched/cma_attr_get_sched

v cma_attr_set_priority/cma_attr_get_priority

v cma_thread_set_sched/cma_thread_get_sched

v cma_thread_set_priority/cma_thread_get_priority

v pthread_attr_setsched/pthread_attr_getsched

v pthread_setscheduler/pthread_getscheduler

v pthread_attr_setprio/pthread_attr_getprio

v pthread_setprio/pthread_getprio

v pthread_attr_getguardsize_np/pthread_attr_setguardsize_np

If these routines are called by your application (for example, you are using the
same code base on multiple operating systems), you can conditionally compile the

68 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

unsupported routine calls. If you do not want to do this, then ensure that your code
checks these functions’ return values for unimplemented/unsupported exceptions or
catches the unimplemented exception and takes appropriate action.

Calling one of the listed pthread_* routines returns a -1 and set errno to ENOSYS
. Calling one of the above cma_* routines raises the cma_e_unimp exception.

The following DECthreads interface routines are not implemented, but do not return
errors or generate exceptions. Do not use these routines .

v cma_attr_get_guardsize/cma_attr_set_guardsize

v cma_attr_set_inherit_sched/cma_attr_get_inherit_sched

v pthread_attr_setinheritsched/pthread_attr_getinheritsched

v cma_stack_check_limit_np

The cma_attr_set_stacksize and pthread_attr_setstacksize interface routines do
not change the stacksize of newly created threads. DECthreads threads on NT are
created with their stack size set to the same size as the primary thread of the
process they are created in. The stack size grows as needed. See the WIN32
documentation for CreateThread() . No errors or exceptions are generated as a
result of using the cma_attr_set_stacksize and pthread_attr_setstacksize
routines. Their corresponding routines cma_attr_get_stacksize and
pthread_attr_getstacksize return the values set using cma_attr_set_stacksize
and pthread_attr_setstacksize ; but this is not useful since DECthreads threads
are not created using the stack size attribute.

Return Values for pthreads_setcancel() and pthread setasynccancel()

The DECthreads documentation incorrectly specifies the return values for
pthread_setcancel and pthread_setasynccancel . On successful completion,
these routines return the previous state of cancelability.

If an error condition occurs, these routines return -1 and set errno to the
corresponding error value.

Possible return values are as follows:

Return Error Description

CANCEL_ON Successful Completion

CANCEL_OFF Successful Completion

-1 [EINVAL] The specified state is not CANCEL_ON or
CANCEL_OFF.

Data Returned by pthread_getspecific

The DECthreads documentation does not fully specify the data returned in the value
parameter for pthread_getspecific . The routine’s description should say:

The pthread_getspecific routine obtains the per-thread context associated with the
specified key for the current thread. If a context has not been defined for the key in
this thread (ie. pthread_setspecific has not been successfully executed), NULL is
returned in value.

Chapter 4. Application Development Notes and Considerations 69

Maximum Time Interval for cma_delay and pthread_delay_np

These routines accept a maximum time_interval/interval value of 4294967.295
seconds. Values greater than this will raise the cma_e_badparam exception for
cma_delay and return -1 and set errno to EINVAL for pthread_delay_np .

If the interval argument passed to pthread_delay_np() is more than an unsigned
word value (roughly two weeks’ time), the call returns without any delay. To work
around this problem, use a counter and repeatedly reissue pthread_delay_np()
with smaller values.

70 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 5. Public Key Certificate Login

OSF DCE Version 1.2.2 includes enhancements that support the public key
protocol. This public key preauthentication protocol is used by DCE security clients
to obtain Ticket Granting Tickets (TGTs) for users. OSF-RFC 68.4 extends the DCE
1.2.2 public key protocol to allow DCE users to use an X.509v3 digital certificate
and its associated public key pair to prove their identity to the DCE authentication
service. The following information describes the DCE for Windows NT, Version 2.2
implementation of Public Key Certificate Login which is based on OSF-RFC 68.4.
This implementation requires the Entrust Public Key Infrastructure (PKI).

Overview of Public Key Login

DCE for Windows NT, Version 2.2 allows DCE users to prove their identity to the
DCE authentication service using an X.509v3 digital certificate and its associated
public key pair rather than a shared-secret key password. One benefit of this
authentication mechanism is that, in the event of a compromise of the DCE Security
Server, public key users do not have any identifying information exposed to the
intruder. With shared-secret key authentication, all user secret keys could be
revealed to an intruder. Another immediate benefit is that the basic authentication
flows are made more secure by virtue of public key cryptographic methods.

This enhancement is intended for customers who are currently using the Entrust
PKI and have a need to map Entrust users to DCE users for authentication and
access to resources provided by DCE. The changes only apply to the acquisition of
the initial TGT. Acquisition of additional service tickets occurs in the traditional
manner once the TGT has been received.

In addition to changes to the information exchanged by the DCE client and the DCE
Security Server, a new server, the Identity Mapping Server (IDMS) is provided with
this enhancement. This server is called by the DCE Security Server to map users’
digital certificates to DCE principal names. The following figure illustrates the
authentication flow established by this enhancement.

71

Entrust Prerequisites for Using Public Key Certificate Login

This enhancement requires an Entrust PKI. Additionally, DCE client and security
server systems must have the Entrust client installed.

For each user of this enhancement, the Entrust administrator must create an
Entrust user and issue to each user a public key pair for both signing and
encrypting. The public keys are stored in public key certificates that are digitally
signed by the Entrust Certificate Authority (CA) and stored in the user’s X.500
directory entry. The private keys are stored in the Entrust user’s profile and are
protected by a passphrase (referred to as a password in the Entrust
documentation). The Entrust profile associated with a user must reside on the
user’s client system.

Additionally, the DCE principal associated with each Entrust user must be added as
an attribute of the user’s X.500 directory entry. Entrust requires an X.500 directory
and tracks its users by their X.500 Distinguished Name (DN). Tools for creating and
managing Entrust users are provided by Entrust and are not integrated with existing
DCE tools. Refer to the documentation provided with the Entrust PKI for detailed
information on creating Entrust users.

The Entrust administrator must also create an Entrust user for the DCE Security
Server to use. The certificates and corresponding public key pairs for this Entrust
user can be used by all security servers in the cell, or individual Entrust users can
be created for each DCE Security Server. An Entrust user profile must reside on
each DCE Security Server. The IDMS will use the same Entrust user profile as the
one being used by the security server on that system.

Entrust PKI

Rgy

DCE
Client

secd IDMS

1. AS_REQ 2. Certificate

3. mapped
userid

4. TGT

Figure 1. Public Key Certificate Authentication Flow

72 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Enabling Public Key Certificate Login

There are two DCE Security Server changes required to enable Public Key
Certificate Login. First, the DCE configuration tools have been updated to support
the addition of the IDMS and to allow specification of the location of the Entrust
user profile used by the DCE Security Server. Second, a new version of the DCE
registry, 1.2.2a, has been created.

Public Key Certificate Login is enabled for a DCE cell only if the Master Security
Server for the cell is running at version 1.2.2a. Version 1.2.2 is the default for cells
configured using DCE for Windows NT, Version 2.2. A cell that has been migrated
from a previous DCE version will continue to run the same security server version it
was running before the migration.

The dcecp registry modify command should be used to enable Public Key
Certificate Login by modifying the registry version number.

dcecp> registry modify -version secd.dce.1.2.2a
dcecp>

Warning: If this command is issued while any Security Replicas in the cell are
running a version of DCE that does not support the 1.2.2a Security
Server Version, the replicas will be automatically shut down.

See the Migration section of the IBM DCE for Windows NT, Version 2.2: Quick
Beginnings for more detail on migrating an existing DCE cell to DCE for Windows
NT, Version 2.2.

At least one IDMS is required in a DCE cell which uses Public Key Certificate
Login. Ideally, an IDMS should be configured on every security server in the cell.
The following list details the command line configuration options. These options are
also supported by DCEsetup and are included as options when configuring a DCE
Security Server.

v To enable Public Key Certificate Login when configuring a Security Server
(Master or Replica), with an IDMS on this machine, specify the sec_srv or
sec_rep component (as appropriate), the idms_srv component, and include the
following options:

-certificate_based_login yes

-kdc_ini_file kdc_ini_file

-kdc_profile kdc_profile

-kdc_passphrase kdc_passphrase

v To configure a Security Server with Public Key Certificate Login enabled, but
without an IDMS, omit the idms_srv component option in the previous example.

v To enable Public Key Certificate Login on an already configured Security Server,
specify the following options:

-certificate_based_login yes

-kdc_ini_file kdc_ini_file

-kdc_profile kdc_profile

-kdc_passphrase kdc_passphrase

As long as the security server version is 1.2.2a, the next time that secd is
started, Public Key Certificate Login support will be enabled.

Chapter 5. Public Key Certificate Login 73

v To add an IDMS to an already configured Security Server that does not have
Public Key Certificate Login enabled, specify the idms_srv component option
with the options:

-certificate_based_login yes

-kdc_ini_file kdc_ini_file

-kdc_profile kdc_profile

-kdc_passphrase kdc_passphrase

v To add an IDMS to an already configured Security Server that does have Public
Key Certificate Login enabled, just specify the idms_srv component option.

For more information on these configuration options, see “config.dce” on page 23.

Managing DCE User Authentication

You manage preauthentication for a given principal by attaching an instance of the
pre_auth_req ERA to the principal and specifying a value to indicate the lowest
level protocol the DCE Security Service should accept for the principal, as follows:

0 (NONE) Specifies that the DCE Security Service should accept, from this
principal, login requests that use any of the five protocols (including the
pre-DCE Version 1.1 protocol.) This is the least secure level and is provided
only to enable DCE Version 1.1 servers to accept login requests from
pre-DCE Version 1.1 clients.

Warning: Failing to attach an instance of the pre_auth_req ERA to a
principal is equivalent to specifying 0 (NONE).

1 (PADATA-ENC-TIMESTAMPS) Specifies that the DCE Security Service
should accept, from this principal, login requests using the timestamp,
third-party, public key, or public key certificate protocol. The timestamp
protocol protects against attackers masquerading as security clients and
attacking replies from the DCE Authentication Service. The protocol is still
vulnerable to attacks by processes capable of monitoring the network.

2 (PADATA-ENC-THIRD-PARTY) Specifies that the only login requests the
DCE Security Service will accept from this principal are those using the
third-party, public key, or public key certificate protocol. This protocol offers
a high level of DCE preauthentication and provides protection against
attacks. With third-party preauthentication, all authentication data sent over
the network is encrypted with a strong random key known only to the local
machine principal and the DCE Security Service.

3 (PADATA-ENC-PUBLIC-KEY) Specifies that the only login requests the
DCE Security Service will accept from this principal are those using the
OSF 1.2.2 public key or public key certificate protocol.

4 (PADATA-ENC-PUBLIC-KEY-CERTIFICATE) Specifies that the only login
requests the DCE Security Service will accept from this principal are those
using the public key certificate login protocol.

When the authentication service receives a login request for a principal, it always
attempts to respond using the same protocol as the request, unless the
pre_auth_req ERA value for that principal forbids it to do so. Table 2 on page 76
provides a matrix describing the actions taken by the authentication service under
the various combinations of login (authentication) request type and pre_auth_req
ERA value.

74 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

For complete information on the details of DCE authentication (including the
operation of the preauthentication protocols), see the OSF DCE Application
Development Guide — Core Components.

The following is an example of a dcecp command to modify a principal and attach
a pre_auth_req ERA specifying that Public Key Certificate Login is required.:

dcecp> principal modify smitty -attribute {pre_auth_req 2}
dcecp>

Setting the pre_auth_req ERA is not necessary if users are allowed, but not
required to use Public Key Certificate Login. For further information on how to use
dcecp to attach ERAs to principals, see ″Creating and Using Extended Registry
Attributes″ in the OSF Administration Guide — Core Components.

Authenticating Using Public Key Certificate Login

The DCE login interfaces were not changed for this enhancement, however the
meanings of some of the input values have changed. Using Public Key Certificate
Login, you can log in and establish your identity by providing the name of your
Entrust user profile instead of your DCE principal name. Instead of a DCE
password, you need to specify the passphrase that is used to unlock the private key
stored in your Entrust user profile.

The DCE APIs affected by this enhancement are sec_login_validate_identity()
and sec_login_valid_and_cert_ident() . Neither of these APIs have any additional
flags or arguments but instead interpret the meanings of existing arguments
differently. This allows existing login utilities and platform specific integrated login
mechanisms to authenticate to DCE with an Entrust public key certificate, without
requiring rewriting or recompilation.

As an example, if your Entrust profile is henry.epf and your passphrase is
Rottweiler9 , you can log in to DCE using the following command:

dce_login henry Rottweiler9

Your Entrust profile and passphrase, along with the Entrust client’s entrust.ini file,
allow DCE routines to call the Entrust ETLogin() API. This is the basis for all further
public key signing, verifying, encrypting and decrypting operations through Entrust.
These operations are for constructing and processing the preauthentication data
used to validate the user during login to DCE.

Your Entrust profile and passphrase are passed as arguments on the security login
APIs described previously. The entrust.ini file is stored in a well-known location on
the Entrust client. On Windows NT, the entrust.ini file is stored in the directory
where Windows NT is installed (typically C:\WINNT). The full path to your Entrust
profile can be obtained from the entrust.ini file as follows:

1. The most recently used profiles listed in the entrust.ini file are searched.

2. The DefaultProfileLocation specified in the entrust.ini file is searched.

Chapter 5. Public Key Certificate Login 75

Falling Back to Traditional Authentication

The structure of the login interfaces allow for a ″fallback″ to a shared-secret-key
login (that is, using the traditional DCE password) if login using the Public Key
Certificate Login fails. This is because the DCE Security client runtime will build and
send preauthentication data for the public key certificate login protocol, and either
the DCE third-party protocol or the DCE timestamps protocol when it makes an
authentication request to the DCE Security Server. If you choose to name your
Entrust user profile with your DCE principal name, and your Entrust passphrase
matches your traditional DCE password, this fallback will be transparent to you. The
pre_auth_req ERA is used to determine whether fallback is allowed.

The Identity Mapping Server

The Identity Mapping Server (IDMS) is a new RPC server responsible for mapping
a user’s public key certificate to a DCE principal name. At least one IDMS is
required in a DCE cell that uses Public Key Certificate Login. Ideally, an IDMS
should be configured on every Security Server in a DCE cell which uses Public Key
Certificate Login. The IDMS is called by the DCE Security Server when a user logs
in to DCE using a public key certificate to authenticate. The IDMS supports the
need to map many Entrust users to one DCE user as well as the more traditional
one-to-one user mapping.

The Identity Mapping Server requires the DCE principal associated with an Entrust
user to be added as an additional attribute of the user’s X.500 directory entry.
Entrust requires an X.500 directory and tracks its users by their X.500 DN.
Specifically, an attribute named dcePrincipal must be added to the directory
schema for objects representing Entrust users. Entrust users are typically of type
organizationalPerson or entrustUser or both. The mapping from an Entrust user
to a DCE principal is then done using the X.500 DN in the user’s certificate, and
performing a directory lookup to find the user’s dcePrincipal attribute. See the
documentation provided with the X.500 Directory Service for additional information
on adding attributes.

Identity mapping is performed in this manner, because it is more flexible to have the
DCE Security Server call a separate server to obtain the mapping. This makes it
possible to customize the mapping algorithm. Because identity mapping policies will
vary based on individual customer requirements, source code for the default IDMS
is provided as a DCE example program.

Public Key Interoperability Between DCE Versions

Table 2 describes how login requests are handled between different versions of
DCE that are in a single cell. Only Server Versions 1.1 or higher are included in this
table because Pre-1.1 Servers always ignore preauthentication data in the login
request and return a Pre-DCE Version 1.1 (unpreauthenticated) response.

Table 2. DCE Authentication Interoperation

Login Request Type Versions 1.1 and 1.2 Server Response Version 1.2.2a Server Response

DCE Version 1.0

76 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Table 2. DCE Authentication Interoperation (continued)

Login Request Type Versions 1.1 and 1.2 Server Response Version 1.2.2a Server Response

From any client. Preauthentication. Checks for pre_auth_req
ERA instance: If no ERA exists, or existing
ERA has value=0 (NONE), returns DCE
Version 1.0 (unpreauthenticated) response.
Otherwise, rejects login request.

Preauthentication. Checks for pre_auth_req
ERA instance: If no ERA exists, or existing
ERA has value=0 (NONE), returns DCE
Version 1.0 (unpreauthenticated) response.
Otherwise, rejects login request.

TIMESTAMPS

From DCE Version 1.1
and greater clients.

Preauthentication. Checks for pre_auth_req
ERA instance: If no ERA exists, or existing
ERA has value=0 (NONE) or value=1
(PADATA-ENC-TIMESTAMPS), returns DCE
Version 1.1 TIMESTAMPS response. If
existing ERA has value=2
(PADATA-ENC-THIRD -PARTY), rejects login
request. 1.2 Server Response: Also
rejects login request if ERA has value=3
(PADATA-ENC-PUBLIC-KEY)

Preauthentication. Checks for ERA instance:
If no ERA exists, or existing ERA has
value=0 (NONE) or value=1
(PADATA-ENC-TIMESTAMPS) returns DCE
Version 1.1 TIMESTAMPS response. If
existing ERA has value=2
(PADATA-ENC-THIRD-PARTY) , value=3
(PADATA-ENC-PUBLIC-KEY) , or value=4 (
PADATA-ENC-PUBLIC-KEY
-CERTIFICATE), rejects login request.

THIRD -PARTY

From DCE Version 1.1
and greater clients.

1.1 Server Response: Preauthentication.
Returns DCE Version 1.1 THIRD-PARTY
response. 1.2 Server Response:
Preauthentication. Checks for pre_auth_req
ERA instance: If ERA exists and has value=3
(PADATA-ENC-PUBLIC-KEY) , rejects login
request. Otherwise, returns THIRD-PARTY
response.

Preauthentication. Checks for pre_auth_req
ERA instance: If ERA exists and has value=3
(PADATA-ENC-PUBLIC KEY) or value=4
(PADATA-ENC-PUBLIC KEY
-CERTIFICATE), rejects login request.
Otherwise, returns THIRD-PARTY response.

PUBLIC- KEY

From DCE Version 1.2
.2 clients(excluding
IBM DCE for Windows
NT Version 2.2
clients).

1.1 Server Response: Preauthentication.
Returns DCE Version 1.1 THIRD-PARTY
response. 1.2 Server Response:
Preauthentication. Returns DCE Version 1.2.2
PUBLIC-KEY response.

Preauthentication. Checks for pre_auth_req
ERA instance: If ERA exists and has value=4
(PADATA-ENC-PUBLIC-KEY
-CERTIFICATE), rejects login request.
Otherwise, returns DCE Version 1.2.2
PUBLIC-KEY response.

PUBLIC-KEY-
CERTIFICATE

From IBM DCE for
Windows NT Version
2.2 clients.

1.1 Server Response: Preauthentication.
Returns DCE Version 1.1 THIRD-PARTY
response. 1.2 Server Response:
Preauthentication. Checks for ERA instance:
If ERA exists and has value=3
(PADATA-ENC-PUBLIC-KEY) , rejects login
request. Otherwise, returns THIRD-PARTY
response.

Preauthentication. Returns
PUBLIC-KEY-CERTIFICATE response.

Restrictions of Public Key Certificate Login

There are several limitations for accounts that use Public Key Certificate Login.
These include:

v The kinit command cannot be used to refresh expired DCE credentials unless
the DCE password is provided. Using the Entrust user profile and passphrase for

Chapter 5. Public Key Certificate Login 77

this refresh operation is not supported. If the Entrust user profile name and
passphrase are synchronized with the DCE principal name and password, this
limitation is transparent to the user.

v When multiple Entrust users are mapped to a single DCE principal, the level of
detail of DCE functionality such as auditing and access control is reduced. Only
the DCE principal information is available and used in audit records and access
control checks.

v If the pwd_val_type ERA that requires password strength checking is attached to
a DCE principal, these checks are only enforced on the DCE password for that
principal. The Entrust PKI establishes a separate set of rules which are enforced
on the Entrust passphrase.

v The key management API is used only by applications that use the shared-secret
key authentication protocol. Application servers cannot use the public key
certificate login protocol.

v When using GSSAPI, the DCE administrator must set up an account in the DCE
registry database for the initiator and the acceptor. The acceptor cannot use
Public Key Certificate Login. No restrictions apply to the account for the initiator.

Summary of the Steps Required to Use Public Key Certificate Login

The following list summarizes the steps required to use the Public Key Certificate
Login enhancement.

1. Configure an Entrust Public Key Infrastructure and create Entrust users.

2. Install the Entrust client on systems that are, or will be, DCE clients or Security
Servers.

3. Place Entrust user profiles on the DCE client and Security Server systems.

4. Configure or migrate a DCE cell to registry version 1.2.2a.

5. Configure the IDMS and the Public Key Certificate options on each Security
Server in the cell.

6. Add the dcePrincipal attribute to users’ X.500 directory entries.

7. Users can log in, specifying the name of their Entrust profile and the
passphrase protecting their profile.

78 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 6. Multiple Network Interface Cards

DCE for Windows NT, Version 2.2 can operate on systems with multiple network
cards or multiple IP addresses by providing the capability to restrict the operation of
DCE to a single network interface and IP address.

Multiple Network Interface Restriction

Most systems have a single Network Interface Card (NIC) and a single IP address.
Such systems require no special intervention before DCE for Windows NT, Version
2.2 can be configured. More complex system configurations may have multiple
NICs and multiple IP addresses for each NIC. DCE for Windows NT, Version 2.2
can operate on systems with multiple NICs or multiple IP addresses, given the
restrictions described in the subsections. Failure to obey these restrictions will result
in a DCE configuration that starts successfully only sporadically or fails to start at
all. In brief, this is a mis-configured system

In order to determine the IP configuration of a particular system, use the ipaddr
progarm supplied with the DCE for Windows NT, Version 2.2 kit. (The kit must be
installed to use this program, however, DCE need not be configured.) From a
DOS-window, run the ipaddr program as follows:
>ipaddr

The program displays the IP configuration of the system on which it was run.

** Environment Variables **

RPC_UNSUPPORTED_NETIF (undefined)
RPC_SUPPORTED_NETADDRS (undefined)

** Detected IP addresses **

Net Interface IP address Subnet mask Broadcast address Hostname
------------- ----------- ------------ ------------------ --------

DC21X41 1.2.3.79 (S) 255.255.0.0 255.255.255.255 dcedds
1.2.3.235 (S) 255.255.0.0 255.255.255.255 dcedce
1.2.3.80 (S) 255.255.0.0 255.255.255.255 dcerpc

DC21X42 1.2.3.30 (S) 255.255.0.0 255.255.255.255 dcedyn
1.2.3.31 (S) 255.255.0.0 255.255.255.255 dceecd

DC21X43 1.2.3.50 (D) 255.255.0.0 255.255.255.255 dcesta
(S=Static, D=Dynamic)

From the previous data, exactly one network interface, and exactly one
corresponding IP address must be chosen. (Manually-assigned addresses are
tagged ″S″ for static, while DHCP-assigned addresses are tagged ″D″ for dynamic.
Either type of address may be chosen, although the use of DHCP addresses should
be restricted to client-systems only.)

Specifying the Network Interface

DCE for Windows NT, Version 2.2 can successfully operate on systems with
multiple NICs, but one and only one of the available NICs must be selected, using
the environment variable RPC_UNSUPPORTED_NETIFS. For example, assume a
system is equipped with three NICs designated DC21X41, DC21X42, and

79

DC21X43. Only one of these three may be used, and if DC21X42 is selected, then
the other two NICs are specified to the RPC runtime as unsupported by setting the
environment variable.

To set the environment variable, use the Windows NT Control Panel
System>Environment tab. Establish the focus by clicking in the System wide
variables box, then type:
RPC_UNSUPPORTED_NETIFS

in the Variable text box and
DC21X41:DC21X43

in the Value text box.

Specifying the IP Address

Windows NT allows a single computer to be configured with many IP addresses.
The environment variable RPC_SUPPORTED_NETADDRS specifies which
addresses are intended for use by RPC. Currently, only one should be specified.

For example, assume a system has the following IP address configured:

1.2.3.31

If only the second address is intended for use by RPC, then specify that address to
RPC by setting the environment variable.

To set the environment variable, use the Windows NT Control Panel
System>Environment tab. Establish the focus by clicking in the System wide
variables box, then type:

RPC_SUPPORTED_NETADDRS

in the Variable text box and

1.2.3.31

in the Value text box.

Note: The IP address chosen must be consistent with (that is configured on) the
NIC that is chosen. Assuming that the actions described in this section and
the section “Specifying the Network Interface” on page 79 were taken,
rerunning the ipaddr utility will show the appropriate changes, as shown in
the following:

** Environment variables **

RPC_UNSUPPORTED_NETIFS parsed as: DC21X41 :DC21X43
RPC_SUPPORTED_NETADDRS parsed as: 1.2.3.31

** Detected IP addresses **

Net Interface IP address Subnet mask Broadcast address Hostname
------------- ----------- ------------ ------------------ --------

DC21X42 1.2.3.31 (S) 255.255.0.0 255.255.255.255 dceecd
(S=Static, D=Dynamic)

80 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Notice that the ipaddr utility now displays only a single NIC and a single,
associated IP address. If the display does not reflect the desired result, then
re-specify the environment variables until the desired configuration is achieved.
(Please remember to create a new DOS window each time the environment
variables are modified. Otherwise, the changes you make will not be reflected in the
output of the ipaddr utility.) Once the IP configuration is correct, the system should
be rebooted before DCE is configured and started.

Chapter 6. Multiple Network Interface Cards 81

82 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 7. Auto-Start and Integrated Login

DCE for Windows NT provides improvements in the following areas:

v “Auto-Start”

v “Integrated Login”

Auto-Start

DCE for Windows NT provides an auto-start option that automatically starts DCE
services during Windows NT startup. When enabled, this feature adds the DCE
Auto-Start Service to the list of services that are started automatically as part of the
Windows NT startup procedure.

The auto-start feature is available through DCEsetup. The online help file,
Configuring with DCEsetup, contains a full description of DCEsetup and its features.

Integrated Login

DCE for Windows NT provides the ability to configure your Windows NT system so
that when a user logs in to Windows NT, that user is automatically logged in to DCE
as well, through dce_login . The integrated login feature is available during
configuration with DCEsetup.

Integrated login requires that the user name and password being used to log in to
Windows NT at system startup time is the same as the principal name and
password for the DCE cell.

Note: The user name and password are case sensitive.
The following procedures describe how to create user names and passwords.

To create a new DCE account and password that matches an existing Windows NT
username and password, login as cell_admin :

1. From the Programs menu, click DCE for Windows NT , and then click DCE
Director .

2. Click Users and then click either Clone or Create from the Actions menu.

3. On the Create menu, create a new account using your existing Windows
username.

Or, to create a new Windows NT username and password that matches an existing
DCE account and password:

1. Double-click the Passwords icon in the Control Panel.

2. Click the Change Windows Password button to modify your password to be
consistent with the corresponding DCE account’s password.

The integrated login feature automatically updates your DCE password whenever
the you change it with the Change Password command button on the Login box or
the Secure Attention sequence (Ctrl-Alt-Delete) . The passwords will not remain
synchronized if you change them with the User Manager utility.

83

After you start Windows NT integrated login is disabled until you start DCE. If you
attempt to log in during this time, login pauses for up to 2 minutes, waiting for DCE
integrated login to be enabled.

Note: Each time you log into DCE, a fresh set of DCE credentials is obtained.
These credentials are available to all of your processes in the system.
However, the credentials are affected by normal cell and account policies
and remain subject to credential expiration. If you remain logged on to
Windows NT longer than your credential lifetime, you will need to do one of
the following:

v Use kinit to refresh existing credentials

v Use dce_login to obtain new credentials

The online help file, Configuring with DCEsetup, contains a full description of
DCEsetup and its features.

Note: If you are using the integrated login feature, and you are not using English,
the XPG4 and DCE environment variables must be set in the system
environment before the operating system is rebooted, in order for DCE
character data and messages to be handled and displayed correctly during
login.

84 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 8. CDS Enhancements

DCE for Windows NT provides improvements in the following areas:

v “Inline CDS Clerk”

v “CDS Cache Restructuring”

v “CDS Preferred Clearinghouse”

Inline CDS Clerk

The Inline CDS Clerk runs as a shared library running within the client’s address
space. This shared library clerk code, known as the inline clerk, eliminates the
necessity and overhead of a separate process for every unique user name
attempting to use CDS.

CDS Cache Restructuring

The cache is now divided into a shared cache and private caches. These private
caches are also known as per user caches.

The shared cache contains data that is global in nature, such as CDS
clearinghouses, and that is accessible to all users. The CDS Advertiser controls the
shared cache—creating it, updating it, and periodically flushing it. User applications
can read data in the shared cache, but cannot write data to it.

Per user caches contain private data such as CDS objects that can be viewed only
by the cache’s owner. If a per user cache is populated with all the data that an
application needs, that application can run without starting the Advertiser.

When a user application requires CDS information, the per user cache is searched.
If the information is not found, the search is extended to the shared cache. If the
information is not located there, the CDS server is contacted.

CDS Preferred Clearinghouse

This enhancement improves performance at CDS clients by ranking clearinghouses
in the order in which they should be contacted by the client for CDS information.
This can be accomplished automatically through the use of defaults associated with
the location of cds clients with respect to cds servers or by manual overrides made
by cell administrators.

This enhancement is useful in situations where, for example, there are multiple
high-performance LANs connected by a low-performance WAN, and there are CDS
replica clearinghouses in each of the LANs. With this feature, the clearinghouse
with the best ranking is the one on the machine with the server, followed by one on
the same lan with the client. The more local clearinghouses are preferred over
distant clearinghouses; clients will use the distant clearinghouses only when the
local clearinghouses are unable to satisfy a request. The administrators can
override the defaults in order to more specifically order communications with
clearinghouses.

85

The preferencing is achieved by assigning a rank to each clearinghouse. A rank is a
16-bit unsigned integer (range 0-65535). Lower numbers are preferred over higher
numbers (and a rank of 65535 means ″don’t ever use this clearinghouse″).

These ranks are specified in a text preference file called
%DCELOC%\dcelocal\etc\cds_serv_pref . The format of the file is one
clearinghouse name and one rank on each line of the file. Blank lines and
comments (″#″ to the end of the line) are ignored. Ranks can be 0-65535
(0x0000-0xffff) and may be specified in decimal, octal (with leading ″0″) or hex (with
leading ″0x″). Clearinghouse names can be in any of the following formats:
/.../cellname/foo_ch
/foo_ch
foo_ch
/.:/foo_ch

If the clearinghouse’s cellname is not specified, the local cell is assumed.

Example file:
/.:/foo_ch 50 # most preferred clearinghouse
/.:/bar_ch 100
/.../mycellname/baz_ch 100

If a clearinghouse is not mentioned in the prefs file, a rank will be calculated for it
(thus, you only need to specify ranks for clearinghouses whose default ranks are to
be overridden). The default ranks are calculated based on IP address:

v Clearinghouses with addresses that match the local host address get a default
rank of 5000.

v Clearinghouses on the same IP subnet as the local host get a default rank of
20000.

v Clearinghouses on the same IP network as the local host get a default rank of
30000.

v All other clearinghouses get a default rank of 40000.

The clearinghouse preferences file is read upon cdsadv startup and the values are
cached. If you change rank values, you must stop the CDS client, remove the
cache, then restart the CDS client.

The following commands will now include a rank attribute:
dcecp -c cdscache show -clearinghouse /.:/foo_ch

cdscp show cached clearinghouse /.:/foo_ch

86 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 9. Credential Cache Cleanup

DCE for Windows NT provides enhancements for optimizing disk space not
available in OSF DCE. One enhancement, the credentials cache cleanup feature,
consists of a thread that executes at regular, settable intervals to clean up the
credentials directory. It searches the directory for files belonging to credentials that
have expired and deletes those files, freeing up disk space.

The default interval (sometimes referred to as the grace period) is 7 days from the
time the credential expires. You need to set the credcleangrace registry key value
there. By default, this value does not exist and must be created. A value of 0
instructs dced to forgo credential file cleanup completely.

You can modify the grace period interval from the Windows 95 registry using the
following procedure:

1. Run Regedit .

2. Open HKEY_LOCAL_MACHINE.

3. Open the registry key SOFTWARE\DCE Provider , and retrieve the value.

4. Open the registry key SOFTWARE\<dceprovidervalue> .

5. Create a value pair in this key: click Edit , click New, then click String Value.

6. Set the value name to credcleangrace .

7. Double-click the credcleangrace value entry to open the Edit dialog box.

8. Enter the number of days for the grace period in the Value Data window and
click OK.

87

88 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 10. MVS DCE Load Balancing Client Support

DCE for Windows NT includes support for load balancing in an MVS parallel
sysplex environment. This support allows the automatic rerouting of remote
procedure calls (rpc) from one host to another for load balancing. Server support is
not available at this time.

With this support, DCE client requests are routed to servers based on the capacity
and loads on the MVS parallel sysplex. DCE load balancing enables customers to
better use system resources in a parallel sysplex environment on MVS, when that
support becomes available in MVS DCE.

For more information, see:

“How Load Balancing Works”

“The rpc_enable_ep_resolve_v4 Environment Variable” on page 90

How Load Balancing Works

With load balancing, a server host endpoint map directs the first request of a series
of rpc calls, for example a client transaction, to the best host to handle it.

In general, when a DCE application client wants to contact a server, it obtains a
partial binding from the Directory Service. This partial binding contains a host
address for the application server, but no endpoint for the specific server on that
host.

Currently, when this partial binding is used, RPC contacts the endpoint mapper at
the host address contained in the binding. The endpoint mapper determines the
endpoint for a matching application server on the same host.When this support is
available in MVS DCE, the endpoint mapper can select a matching application
server on another MVS host within the parallel sysplex.

Only a call on a partial DCE binding is routed this way. All subsequent calls using
this binding are directed to the same server. This new support requires a change to
the RPC interface supporting the rpc_ep_resolve_binding call. The previous
Version, called Version 3, adds an endpoint to the host address which is already in
the binding. The new Version, Version 4, returns both a host address and an
endpoint, and the host address can be different from the original host address.
When a client with Version 4 support contacts a Version 3 server, the client
determines that the server does not support Version 4 and uses Version 3. A
Version 4 server does not support both Version 3 and Version 4 requests.

For more information, see:

“The rpc_enable_ep_resolve_v4 Environment Variable” on page 90

89

The rpc_enable_ep_resolve_v4 Environment Variable

Although the DCE NT client contains support for the new Version 4 interface, the
default is to use Version 3, because the DCE NT server does not support the
Version 4 interface. When MVS support is available, the Version 4 client support
can be invoked by setting the environment variable rpc_enable_ep_resolve_v4 in
all machine processes. Setting the environment variable to ″yes″ makes the intent
clear; however, any value can be used.

90 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 11. Simple Network Management Protocol (SNMP)

The Simple Network Management Protocol (SNMP) provides network management
support in the TCP/IP environment for monitoring DCE resources and services.
System administrators and system management application programmers can use
SNMP to easily monitor the DCE environment so that they can focus on making
their resources and services more manageable. An SNMP network management
system consists of the following:

v One or more network elements (nodes), each containing an SNMP agent

v One or more Network Management Stations (NMS) containing an SNMP
manager

v A network management protocol

SNMP uses a request and response message exchange model to monitor
resources. The information about the monitored resources is defined in a standard
format and is stored in the SNMP Management Information Base (MIB). The SNMP
manager uses management operations to access the information about the
monitored resources located in the MIB. The management operations are get ,
getnext , and set .

The DCE SNMP support consists of the following components:

v DCE SNMP Service

– DCE SNMP Agent

– DCE SNMP Extended Agent

– DCE SNMP Subagent

v DCE SNMP MIB

91

The following figure shows the relationship among the SNMP Network Management
System Components.

DCE SNMP Service

The DCE SNMP Service consists of the following three processes (or daemons):

v DCE SNMP Agent (snmpd.exe)

v DCE SNMP Extended Agent (extagent.exe).

v DCE SNMP Subagent (dceagtd.exe)

The three processes enable all of the SNMP support available on the local host.
The subagent provides the DCE MIB data while the extended agent enables the
system MIB data that is available to the NT SNMP service. The DCE SNMP agent
provides the communications link for these processes and the network SNMP
manager applications that can be use to manage a MIB database.

The DCE SNMP service is not compatible with the NT SNMP service. The DCE
SNMP service will not start if the NT SNMP service is running. Undesirable results
can occur if you start the NT SNMP service after starting the DCE SNMP service.

92 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

DCE SNMP Agent

The SNMP agent is responsible for performing the network management functions
that are requested by the SNMP manager. The SNMP manager runs on a Network
Management Station (NMS) and communicates with the SNMP agent on each node
individually. The SNMP manager monitors and controls the network elements that
have an SNMP agent.

The SNMP agent handles the requests from the SNMP manager and the responses
to the management application. The communication between the agent and
subagents are handled by the Distributed Protocol Interface (DPI) Version 2.0. The
DPI is an extension of the SNMP agent that enables the system administrator to
dynamically add, change, and remove variables from the local MIB without
recompiling the SNMP agent. Any request received by the SNMP agent for a
registered DCE variable is passed through the DPI to the SNMP subagent. The
SNMP subagent performs the request and returns a response to the SNMP agent.

The SNMP agent supports the standard SNMP Protocol Data Unit (PDU) of get ,
getnext , and set operations as well as event notifications known as traps. The
SNMP agent also encodes and decodes the PDU. Traps are unsolicited messages
that the agent sends. Managed objects are passed in ASN.1 notation.

You can find the ASN.1 notation for the DCE MIB variables in the
%dceloc%\declocal\etc\mib2.tbl file. %dceloc% represents the location where DCE
was installed.

The agent is part of the IBM SystemView Agent Toolkit for Windows NT. For your
convenience, it is packaged with DCE.

DCE SNMP Extended Agent

The DCE SNMP extended agent enables the system MIBs that are available
through the NT SNMP Service. Thereby, enabling you to see all the MIB data that is
available through the NT SNMP Service for the local host.

The extended agent is part of the IBM System View Agent Toolkit for Windows NT.
For your convenience it is packaged with DCE for Windows NT.

DCE SNMP Subagent

The SNMP manager communicates with the SNMP agent on each managed DCE
host. The SNMP agent uses an agent-to-subagent protocol (DPI 2.0) to
communicate with the DCE SNMP subagent. The DCE SNMP subagent invokes the
DCE Application Program Interfaces (APIs) to access information about DCE
resources or services and returns the results to the SNMP agent. The subagent
also provides the following capabilities:

v “Monitoring DCE EMS Events” on page 94

v “Monitoring DCE Serviceability Messages” on page 94

v “Monitoring Configured DCE Server Status Changes” on page 94

Chapter 11. Simple Network Management Protocol (SNMP) 93

Monitoring Configured DCE Server Status Changes

The subagent heartbeat monitor periodically checks the status of the configured
DCE servers and reports any status change by generating an SNMP trap for that
condition. The status can change to one of the following:

Available
The server is configured and is running.

Not running
The server is configured but has been stopped.

Not configured
The server was unconfigured since the last check interval.

To change the polling interval type:
wsnmp -c dcesnmp set 1.3.22.1.7.1.3.0 integer x

where x is a numeric value measured in minutes. Entering a 0 (zero) stops the
subagent heartbeat monitor. For more information see, WSNMP.

Monitoring DCE EMS Events

If EMS is configured and running, the DCE SNMP subagent registers with the DCE
EMS as an event consumer to receive DCE event notifications. You can use the
SNMPTRAP.TBL file (located in the %dceloc%\DCELOCAL\ETC directory) to filter
the events you want the subagent to receive. After the SNMP subagent receives
these events, it converts them into DPI traps and sends them to the SNMP agent
where they are converted to SNMP traps. The SNMP agent routes the traps to the
manager application.

You must also set up the appropriate SVC routing file information. You can use the
following routing file entry to route irrecoverable error messages to EMS:

fatal:ems:-;

Note: The above example does not enable DCE core server messages.

Because the subagent creates EMS filters for the items specified in the
SNMPTRAP.TBL file, EMS must be active. The subagent waits for EMS to start
before attempting to create any filters. If you need to change the SNMPTRAP.TBL
file while EMS is running, you must stop the subagent, make your changes, and
restart the subagent. If EMS is not running, you can make your changes and start
the subagent, or you can configure EMS.

Monitoring DCE Serviceability Messages

The DCE SNMP subagent monitors changes to the BIN.LOG file (located in the
%dceloc%\DCELOCAL\VAR\SVC directory). To enable the SNMP subagent to
monitor for changes to the BIN.LOG file, add a BINFILE entry to the serviceability
routing file for each severity you want logged. Use the SNMPTRAP.TBL file (located
in the %dceloc%\DCELOCAL\ETC directory) to filter the events you want the
subagent to receive.

Use the following routing file entry to route irrecoverable error messages to the SVC
binary log file:
fatal:binfile:%dceloc%\dcelocal\var\svc\bin.log;

94 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Note: This method enables any DCE application that is also DCE
Serviceability–enabled (for example, issues messages using dce_svc_printf).
If you use both mechanisms, you will receive duplicate application server
messages.

Because the log file grows, you must maintain the BIN.LOG file. You must stop
DCE and the subagent BIN.LOG processing before you can make changes to the
BIN.LOG file.

If you want to change the SNMPTRAP.TBl file, you can change it at any time. The
changes will be picked-up on the next pass at checking the BIN.LOG file for
changes.

Using the SNMPTRAP.TBL File

The SNMPTRAP.TBL file contains information on the DCE messages that you want
to monitor. The file contains the following elements:

v One of the following strings: ALL_FATAL, ALL_ERROR, ALL_WARNING,
ALL_NOTICE, and ALL_NOTICE_VERBOSE. You can use one or more of these
to indicate that you want to monitor all messages of that severity. Any information
following one of these strings on the same line is ignored. Leading white space is
also ignored.

v A message index specified as 0xhhhhhhhh. The entry should contain 10
characters. The first two characters should be 0x and the remaining 8 characters
can be a combination of 0–9 and a–f. The value is not checked for characters
that are not valid. Verify that you have entered the correct message ID.

Any line that does not begin with one of the previous items (excluding the
preceeding white space) is ignored.

If the SNMPTRAP.TBL file does not exist, a default of ALL_FATAL and ALL_ERROR
is used. Otherwise, all message filtering is described in the file. If the file does not
contain any filtering, no messages are enabled and no traps are generated. This
does not affect the traps generated by the heartbeat monitor.

Techniques for Managing DCE

SNMP does not guarantee delivery of messages; therefore, some messages might
get lost. For example, message can get lost during network congestion. To avoid
this problem, SNMP allows the SNMP manager to do the following:

Polling
The management applications query the status of managed resources
periodically. SNMP implicitly monitors the state of the network by polling for
appropriate information on the part of the SNMP manager. Traps guide the
timing and focus of the polling.

Management by Exception
SNMP detects events by receiving traps and performing trap-directed
polling.

Management by Delegation
SNMP delegates a proxy, agent, or subagent to perform status polling
locally.

Chapter 11. Simple Network Management Protocol (SNMP) 95

Working With the DCE SNMP Service

After you install the DCE SNMP support you can configure, start, and stop the DCE
SNMP Service. In this section we discuss the following:

v Starting and stopping DCE

v Starting and stopping the DCE SNMP service

v Using the commands

Starting and Stopping DCE

The start.dce command starts all DCE that are configured and not already started.

To start the DCE, on the command line type:
dcecp> start.dce

If the subagent is configured, it is started before any of the other configured
deamons.

To stop all of DCE, on the command line type:
dcecp> stop.dce

If the DCE SNMP Service is configured, it is stopped after the rest of DCE is
stopped.

Starting and Stopping the DCE SNMP Service

To start the DCE SNMP Service, do one of the following:

v The start.dce snmp_srv command starts the DCE SNMP Service through DCE
if it is configured. On the command line type:

dcecp> start.dce snmp_srv

v The start.dce command starts all of DCE that is configured and is not already
started. On the command line type:

dcecp> start.dce

v Use the Control Panel Services window to start the DCE SNMP Service. To
display the Control Panel Services window, click the Start button, point to
Setting , and then click Control Panel . In Control Panel, double-click the
Services icon.

To stop the DCE SNMP Service, do one of the following:

v The stop.dce snmp_srv command stops the DCE SNMP Service only if it was
configured through DCE. On the command line type:

dcecp> stop.dce snmp_srv

v The stop.dce command stops all of the configured servers that are running with
a stopped DCE SNMP Service, only if they were configured through DCE. On the
command line type:

dcecp> stop.dce

v Use the Control Panel Services window to stop the DCE SNMP Service. To
display the Control Panel Services window, click the Start button, point to
Setting , and then click Control Panel . In Control Panel, double-click the
Services icon.

96 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Using the Commands

dceagtd is the DCE SNMP subagent and is a deamon or server in the same sense
as any of the other DCE deamon executables, except that the subagent does not
require DCE to be active or configured.

Use this command if you need additional debug information. However, starting the
subagent from the command line does not enable all the aspects of the DCE SNMP
Service. For example, if you log out, the subagent stops soon after you log out.

DCEAGTD
This is the DCE SNMP subagent and is a deamon or server in the same
sense as any of the other DCE daemon executables, except that the
subagent does not require DCE to be active or configured.

The following commands were derived from the IBM SystemView Agent Toolkit for
Windows NT. You can find this package at:

http://www.networking.ibm.com/sha/shawin.html

SNMPCFG
This tool provides the Win32 platform a graphical user interface through
which you can configure community names, trap destinations, and some
system information. You can get additional information by selecting Help on
the window that is displayed.

DCE SNMP provides public (read-only) and dcesnmp (read-write)
community names for SNMPv1; these are the only ones that are needed,
but you can add more. You can also specify SNMPv1 trap destinations for
the community names. If during configuration the public community was
added, a loopback trap destination was also created. If the public
community name was already set, the loopback trap destination is not set.
If the dcesnmp community name is not specified at configuration, it is
added. You can also specify the system information. This information is
stored in the NT registry.

WSNMP
This tool can be used to query SNMP data from any SNMP agent in the
network. Besides providing a means of querying SNMP data, it also
provides a way to set the DCE SNMP polling intervals while the DCE
SNMP subagent is running. It is not meant to replace your SNMP manager,
but is provided as a convenient way to do this without having to physically
return to the machine where the SNMP manager is running.

WTRAPD
This tool captures SNMP trap data sent to the DCE host. From the
Windows NT machine, you can use the SNMPCFG command to specify
trap destinations of loopback (127.0.0.1) IP address, the local IP address,
or a remote IP address.

Note: You can use WTRAPD with the DCE SNMP Service, but make sure
you do not intermix it with any of the NT SNMP Service.

SNMPD
This is the SNMP agent. The DCE SNMP Service starts SNMPD during its
initialization (if it is not already running). When you stop DCE SNMP
Service, it will stop SNMPD. When you stop SNMPD it causes EXTAGENT
and the subagent to be stopped.

Chapter 11. Simple Network Management Protocol (SNMP) 97

EXTAGENT
This is the extended agent. It provides the NT SNMP MIB support available
through the NT SNMP Service. The DCE SNMP Service starts EXTAGENT
during its initialization (if it is not already running). When you stop the DCE
SNMP Service, it stops SNMPD. If you stop EXTAGENT then you will no
longer have access to the MIB II support provided by the extended agent.

98 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

dceagtd

Purpose

This is the DCE SNMP subagent and is a deamon or server in the same sense as
any of the other DCE deamon executables, except that the subagent does not
require DCE to be active or configured.

Format

DCEAGTD [-h hostname] [-c community] [-d debuglevel] [-p
heartbeat_poll_interval] [-l bin_log_poll_interval] [?]

Options
-h hostname

This is the name of the host that sends requests. The default name is the
name of the local host.

-c community
This option is used to specify the community name. The default community
name is DCESNMP.

-d debuglevel
This option specifies the debug level. The valid values are 0–9. If you enter
a value of 1–9, additional SNMPD debug information is displayed. If you
enter a value of 0, the debug information is not displayed. However, the
zero value does cause the time intervals to be shortened in order of
magnitude. For example, -d 0 -p 60 , changes the heartbeat poll interval
from 60 minutes to 60 seconds.

-p heartbeat_poll_interval
This option specifies the subagent heartbeat poll interval in minutes. The
default time is 60 minutes. If you enter a value of 0 value, then all subagent
heartbeat polling is disabled. However, you can change it by using the
SNMP set function on the MIB variable, aSubagtHeartbeatInterval. For
example, the following changes the DCE configured server status heartbeat
poll interval to 2 hours:

wsnmp -c dcesnmp set 1.3.22.1.7.1.3.3.0 integer 120

This pollarization is used to determine how often to check the configured
servers status for changes since the last check. Any changes in status
results in an SNMP trap being sent back to the SNMP manager and to the
Wtrapd window, if applicable.

-l bin_log_poll_interval
This option specifies the subagent BIN.LOG interval in minutes. The default
is 60 minutes. A 0 value disables all subagent BIN.LOG polling. However,
this can be changed by using the SNMP set function on the MIB
variable,aSubagtLogPollInterval . For example, the following changes the
DCE subagent BIN.LOG poll interval to 24 hours.

wsnmp -c dcesnmp set 1.3.22.1.7.1.3.4.0 integer 1440

? Shows the command syntax.

If you do not specify the parameters on the command line, the DCE SNMP
subagent uses the default values.

Chapter 11. Simple Network Management Protocol (SNMP) 99

wsnmp

Purpose

Use this tool to query SNMP data from local or remote machines or to set the DCE
SNMP polling intervals while the DCE SNMP subagent is running. It is included as
part of DCE for Windows NT for your convenience.

Format

wsnmp [-d [level]] [-h dest] [-p port] [-c community][-t timeout][-r retries][-n
non_rep][-m max_rep] function variable [[type] [value]][...]

Options
-d level

This option specifies the debug level. The default level is 1. The valid
values are 0 – 9. If you specify 0, it is the same as not specifying this
option. If you specify debug level 2, you receive more details than debug
level 1. Increasing the debug level increase the details displayed.

-h dest
This option specifies the destination argument. It enables you to send a
request to the specified hostname or IP address. If you do not specify this
option, the default is the local node. The actual command usage refers to
an entry in the SNMPV2.CONF file, but does not apply to the DCE support
provided. You can use this option if you want to view the DCE SNMP MIB
variables on another machine.

-p port This option specifies the port you want to use for sending and receiving
messages. If you do not specify a port, it defaults to port 161.

-c community
This option specifies the name of the community. Normally, you do not need
to specify the community name if you define the public (read-only)
community. The dcesnmp community is read-write and you must specify it
on set operations for the heartbeat poll interval and the BIN.LOG poll
interval. The heartbeat poll interval object identifier (OID) is
1.3.22.1.7.1.3.3.0 and the type is INTEGER. The BIN.LOG poll interval OID
is 1.3.22.1.7.3.4.0 and the type is INTEGER.

Community names are case-sensitive.

-t timeout
This option specifies the timeout value in seconds. The minimum value is 1.
The suggested maximum is 60. The default is 3 seconds. When you set the
debug level to greater than 0, the timeout value doubles.

-r retries
This option specifies the number of retries. The minimum value is 0. The
suggested maximum is 10. The default is value is 0.

-n non_rep
This option specifies the number of non_repeaters for the GETBULK
function.

Note: Do not use this option.

-m max_rep
This option specifies the maximum number of repetitions for the GETBULK
function.

100 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Note: Do not use this option.

function
This option specifies the SNMP functions you want to perform. The
functions are get , getnext ,getbulk , set , walk , and bulkwalk .

To use getbulk or bulkwalk , you must configure the target hostname(-d
dest) in the SNMPV2.CONF file as a SNMPv2c target.

Note: For DCE, do not use getbulk or bulkwalk .

variable
This option specifies the object identifier (OID). The MIB variable names
and their corresponding OIDs are shown in the MIB2.TBL file (located in the
\opt\dcelocal\etc directory). However, the wsnmp command does not check
the MIB2.TBL file. You can find a more extensive definition of the MIB
variable in the DCE.MIB file in the same sub-directory. To make the
functions run correctly, do the following:

GET To make the GET function run correctly append .0 to the variable
OID shown in the MIB2.TBL file. If the variable is part of a table,
append .row (where row=1 for the first row or table array) to the
table OID.

GETNEXT
This function provides an easier way to obtain variable length table
data. Typing the prefix of any valid OID returns the value for the
next variable after that sequence.

WALK This function works like the GETNEXT function, except that it
retrieves all of the MIB variable with the specified OID prefix. If you
have a doubt as to the OID to use on a GET request, use this
function first to display the OID information.

SET The OID for this function is specified the same way as the GET
OID.

type This option specifies the type of data you are sending. Type is only valid for
the SET function. DCE SNMP only supports a type of INTEGER.

value This option specifies the new value for the variable. Value is only valid for
the SET function. DCE SNMP supports only the following two variables:

1.3.22.1.7.1.3.3.0 (the heartbeat polling interval)
1.3.22.1.7.1.3.4.0 (the BIN.LOG polling interval)

You must also specify the dcesnmp community name. The commands are:
wsnmp -c dcesnmp set 1.3.22.1.7.1.3.3.0 integer 120
wsnmp -c dcesnmp set 1.3.22.1.7.1.3.4.0 integer 120

Chapter 11. Simple Network Management Protocol (SNMP) 101

wtrapd

Purpose

Use this tool to capture SNMP trap data sent to the DCE host. Wtrapd uses the
WinSNMP API to capture the traps; therefore, if you run on a system where DLLs
are used, then you must have access to the WSNMPDLL.DLL library.

Notes:

1. You must first do the necessary setup at the IP address to have the traps sent
to the correct IP address. Specifying the -hd option alone does not cause traps
to display. Each platform has its own procedure for setting trap destinations. For
DCE SNMP, you can use SNMPCFG to set the trap destinations.

2. If you do not specify -hd and -hs , you see all the traps generated from those
nodes where this node has been set up as a trap destination.

3. For DCE SNMP on Win32 platforms, you can use snmpcfg to set up the trap
destination.

Format

wtrapd [-d[level]] [-hd addr] [-hs addr] [-p port] [-c community] [-n oid]

Options
-d level

This option specifies the debug level. The default level is 1. The usable
values are 1 – 9. If you specify 0, it is the same as not specifying this
option. If you specify debug level 2, you receive more details than debug
level 1. Increasing the debug level increase the details displayed.

-hd addr
This option specifies the IP address of the location where you want to
receive traps from. After you specify an IP address, traps sent from other IP
addresses are ignored. If you do not specify this option, you will receive all
traps sent to the local host.

-hs addr
This option specifies the receiving IP address that you want to use. On a
multi-homed system, traps are listened for from all IP addresses at port
162. If you specify an IP address using this option, only traps on port 162
for that address are displayed. If you do not specify this option, the default
is any local address.

-p port This option specifies the port you want to use for listening to notifications. If
you do not specify a port, the default is 162.

-c community
This option specifies the name of the community. Only traps with the
community name that you specify are displayed. If you do not specify a
community name, the default is to allow all traps to display.

-n oid This option specifies the OID prefix that you want to use to listen for
notifications. If you do not specify this option, all prefixes are used.

102 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

snmpd

Purpose

This is the SNMP agent. It supports the following three versions of SNMP:

v SNMPv1 (as defined in RFC1157)

v SNMPv2c (as defined in RFC1901–1908)

v SNMPv2u (as defined in RFC1902–1910)

In addition to the above versions, it supports the DPI 2.0 protocol (RFC1592) in
support of subagents that implement MIBs in a separate process. For example, it
supports the DCE SNMP subagent.

Note: The DCE SNMP Service starts the SNMP agent (if it is not already running)
with the correct transport and dpi options. You should let the DCE SNMP
Service start the agent so that it will continue to run if you log off. Stopping
the agent causes the extended agent and subagent to stop if either is
running.

Format

snmpd [-d [level]] -transport udp[=port][-dpi tcp][-dpi shm]

Options
-d level

This option specifies the debug level. If you only specify -d, level 31 is used
as the default . The range for this option is 0 – 255. If you specify 0, it is
the same as not specifying this option. The following are the debug levels:

1= Incoming SNMP requests
2= Outging SNMP responses
4= Outgoing SNMP traps
8= DPIdebug at level 1

16= DPIdebug at level 2
32= Internal trace lvl-1
64= Internal trace lvl-2

128= Internal trace lvl-3

You can combine debug levels by adding them together.

-transport udp [=port]
This option specifies the SNMP transport. For DCE, you must specify
-transport udp or -transport udp=161.

-dpi tcp
This option specifies the DPI transport. For DCE, you must specify tcp as
the dpi transport.

Note: DCE SNMP does not support -dpi tcp.

-dpi shm
This option specifies that the connection you want to use is shared memory,
instead of TCP.

Note: DCE SNMP does not support -dpi shm.

Chapter 11. Simple Network Management Protocol (SNMP) 103

extagent

Purpose

This is the IBM extended agent that provides the runtime support for the Microsoft
extensible agent API. It provides the support by mapping the API onto DPI version
2.0 (RCF1592), so both DPI based subagents (like the DCE subagent) and existing
Win32–based subagents can be active at the same time.

Extagent also enables the Microsoft SNMP instrumentation (like MIB II support) to
be activated and accessible through the IBM provided system ViewAgent.

The DCE SNMP subagent starts EXTAGENT during the subagent startup
initialization (if it is not already running). If the SNMP agent is not running, both the
extended agent and DCE subagent have stopped.

Format

extagent [-d[level]] [-h hostname][-c community][-shm]

Options
-d level

This option specifies the debug level. If you specify only -d, the default level
is 1. The minimum value is zero. A reasonable maximum is 255. If you
specify 0, it is the same as not specifying this option. If you specify debug
level 2, you receive more details than debug level 1. Increasing the debug
level increases the details displayed.

-h hostname
This option specifies the hostname that is used to DPI-connect. If you do
specify this option, the default is loopback (127.0.0.1). If loopback is not
defined as the hostname for the loopback address, you must specify your
hostname.

If your system does not have a definition for loopback then it will not
connect. To make it work correctly, use -h yourhostname. Some systems do
not have a loopback address (127.0.0.1).

-c community
This option specifies the name of the community. If you do not specify this
option, the default community is public. If you did not configure or you
removed the community name public from your configuration, you must
specify a community name that does provide read-access to the MIB data.

-shm This option specifies the connection that you want to use as shared
memory, instead of TCP. To make this option work, you must first start
SNMPD with the -dpi shm option.

104 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

DCE SNMP Management Information Base

Simple Network Management Protocol (SNMP) is a TCP/IP network management
protocol and is based on a manager-agent interaction. The SNMP manager (such
as NetView for OS/2) communicates with its agents. Agents gather management
data (such as physical and logical characteristics of network objects) and store it,
while managers solicit this data and process it. This collection of management
information is called a management information base (MIB). The DCE SNMP
subagent implements the DCE MIB for the agent and accesses the DCE data upon
request. The individual pieces of information that comprise a MIB are called MIB
objects and they reside on the agent system. The subagent can generate traps
from DCE Serviceability (SVC) messages and communicates the traps to the agent
asynchronously. With the exception of traps, MIB objects can be accessed by the
agent at the manager’s request.

Note: Even though DCE provides location transparency, which means the views
can be cell-wide as opposed to node-wide, the DCE SNMP MIB is defined
on a per-node basis due to the nature of the SNMP model.

The DCE SNMP MIB consists of the following groups:

Component ID Group
This group provides base-level identificaton of the component, which in this
case is DCE. For example, it indicates when the product that was installed,
the version, and the serial number.

Software Component Information Group
This group extends the Component ID group with attributes that further
define DCE. This relates the operating system that the DCE is installed on
and the language that is used in its interface.

DCE Subagent Group
This group contains information about the DCE SNMP subagent. For
example, when it was started, its name and, polling intervals.

DCE Host Information Group
This group contains the basic information about the DCE host. For
example, its name and which DCE cell it is in.

DCE Server Table Group
This group is a table of DCE server entries. Each entry contains the server
by its name and its current state: Available or Not running.

DCE Host Server Group
This group contains information about the host daemon on this DCE host.
For example, the process ID, group ID, user ID, server state, and a set of
RPC statistics. The remote procedure call (RPC) statistics contain the
number of RPC calls sent and received by this server and the number of
network RPC packets sent and received by this server.

DCE Event Management Service Server Group
This group contains information about the Event Management Service
(EMS) server on the host. It contains the same type of information (IDs,
server state, and RPC statistics) provided by the DCE Host Server Group.

DCE Security Server Group
This group contains information about the Security server on the DCE host.
This group contains the same type of information (IDs, server name, and
RPC statistics) provided by the DCE Host Server Group, and indicates the

Chapter 11. Simple Network Management Protocol (SNMP) 105

server role (master or replica), mode (service or maintenance), and some
replica data (last updated and last sequence number).

DCE Cell Directory Service Server Group
This group contains the same type of information (IDs, server name, and
RPC statistics) provided by the DCE Host Server Group as well as the up
time for this server, error statistics, and the number of read and write
operations.

DCE Cell Directory Service Advertiser Group
This group contains the same type of information (IDs, server name, and
RPC statistics) provided by the DCE Host Server Group as well as the up
time for the CDS Advertiser on the DCE host.

DCE Cell Directory Service Clerks Group
This group contains information about operations performed by the CDS
clerks on the DCE host. This includes some error data and operation counts
(read, writes, and miscellaneous).

DCE Cell Directory Service Clerk Table Group
This group contains the information about the CDS clerks on the DCE host.
Each entry contains the clerk name and up time.

DCE Cell Directory Service Clearinghouse Table Group
This group contains the information about the CDS clearinghouses on the
host. Each entry contains full clearinghouse name, some error data, and the
number of reads and writes.

DCE Cell Directory Service Cached Clearinghouse Table Group
This group contains a table of entries about the cached clearinghouses on
the host. Each entry contains the cached clearinghose name, up time, the
number of operations, (read, writes, and miscellaneous).

DCE Global Directory Agent Server Group
This group contains information about the GDA server on the host. It
contains the same type of information provided by the DCE Host Server
Group (IDs, server state, and the RPC statistics).

DCE Distributed Time Service Entity Group
This group contains information about the DTS entity on the host. It
contains the same type of information provided by the DCE Host Server
Group (IDs, server state, and the RPC statistics). It also contains the
current time on the DTS node, some error data, some time values (for
example, time to wait for a response before taking an action).

DCE Distributed Time Service Server Group
This group contains information about the local or global DCE DTS server
on this host. It has the following attributes: role (local, global, or clerk),
courier role, and some error statistics.

DCE Distributed Time Service Known Server Table Group
This group contains the information of a list of local or global DTS servers
known by this DTS entity. Each entry contains the name of the known DTS
server by this host, the time that it was last polled, the last observed time
difference, the time that it was last synchronized, the time that it was last
observed, and its transport protocol (for example, RPC).

DCE Traps Group
This group contains the network events sent from the DCE SNMP subagent

106 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

to an SNMP agent. The information generated and sent out from the DCE
Traps group cannot be queried. The information generated by all of the
other groups can be queried.

DCE Security Audit Server Group
This group contains informtion about the Security Audit server on the DCE
host. It contains the same type of information provided by the DCE Host
Server Group (IDs, server state, and the RPC statistics).

DCE Password Strength Server Table Group
This group contains a table entry for each Password Strength server that is
configured. Each entry contains the name of the server. It also contains the
same type of information provided by the DCE Host Server Group (IDs,
server state, and the RPC statistics).

Note: The comments in the DCE.MIB file (located in the %dceloc%\declocal\etc
subdirectory) contain additional information. All MIB comments are
preceeded by the double dash (- -) character string.

DCE MIB Definitions

The DCE.MIB file is located in the %dceloc%\dcelocal\etc directory. You can use it
to describe the MIB to the SNMP manager applications such as NetView/6000 or
NetView for OS/2. Refer to the manager application documentation to learn how to
load this MIB for use by the application. The MIB2.TBL file, located in the same
directory, corelates the ASN.1 notation to the name for the variable in the DCE MIB.
There is enough information in the DCE.MIB file to help you determine the ASN.1
notation, but the MIB2.TBL file documents it concisely. For example, the first object
in the DCE.MIB file is “aManufacturer;” in the MIB2.TBL file it is identified as
1.3.22.1.7.1.1.1.
IMPORTS

Counter, enterprises
FROM RFC1155-SMI

OBJECT-TYPE
FROM RFC-1212

DisplayString
FROM RFC1213-MIB

TRAP-TYPE
FROM RFC-1215;

osf OBJECT IDENTIFIER ::= { iso org(3) 22 }
dce OBJECT IDENTIFIER ::= { osf 1 }
dcesnmp OBJECT IDENTIFIER ::= { dce 7 }
dcemib OBJECT IDENTIFIER ::= { dcesnmp 1 }

Notes:

1. The subagent is implemented as an NT Service. You must configure it. You can
start and stop it using DCE commands. You can start it from the command line
(but it will not have all the attributes of a true NT Service). The DCE SNMP
Service is mutually exclusive with the NT SNMP Service.

The DCE SNMP Service starts the SNMP agent and the Extended Agent (if they
are not already started). The SNMP Extended Agent (extagent.exe) supports
other NT MIBs defined for the NT SNMP Service and enables them. The SNMP
agent (snmpd.exe) must be running for the subagent and extended agent to
continue running.

2. The MIB data is cached in the subagent for performance reasons. This is
primarily because access to a single MIB group value will in most cases cause

Chapter 11. Simple Network Management Protocol (SNMP) 107

the entire group to be updated. Therefore, any access by group (walk or dump)
can be made faster by using the cached data.

The cached data is also used when the server is stopped and the subagent is
still running. This allows information such as the security server role to be
accessible. Therefore, once a server is stopped, its cached data will continue to
be seen until a new set can be obtained (after the server is restarted). If the
server is not started, the cache numerics will be zero and the cache strings will
be ″Unavailable″ until the server is restarted.

Component ID Group
componentIDGroup OBJECT IDENTIFIER ::= {dcemib 1}

aManufacturer OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The company that produced this component."
-- The string is: "IBM Corporation".

::= {componentIDGroup 1}

aProduct OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of this component or product."
-- The string is: DCE for Windows NT.

::= {componentIDGroup 2}

aVersion OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The version string for this component."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.

::= {componentIDGroup 3}

aSerialNumber OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The serial number for this component."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.

::= {componentIDGroup 4}

aInstallation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..28))
ACCESS read-only
STATUS mandatory
DESCRIPTION "A date and time indication of the last install."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.

::= {componentIDGroup 5}

aVerify OBJECT-TYPE
SYNTAX INTEGER

-- {
-- vAnErrorOccurred;CheckStatusCode (0),
-- vThisComponentDoesNotExist (1),
-- vTheVerifyIsNotSupported (2),
-- vReserved (3),
-- vComponent'sFunctionalityUntested (4),
-- vComponent'sFunctionalityUnknown (5),
-- vComponentIsNotFunctioningCorrectly (6),

108 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

-- vComponentFunctionsCorrectly (7)
-- }

ACCESS read-only
STATUS mandatory
DESCRIPTION "A code that provides a level of verification

that the component is still installed and
working. This value is 2 for this release."

::= {componentIDGroup 6}

aVerifyString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "A string that corresponds to the aVerify

value. The string for this release will
be: Verify is not supported."

::= {componentIDGroup 7}

Software Component Information Group
softwareCompInfoGroup OBJECT IDENTIFIER ::= {dcemib 2}

aMajorVersion OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..12))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Major version of this software component."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.
::= {softwareCompInfoGroup 1}

aMinorVersion OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..12))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Minor version of this software component."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.

::= {softwareCompInfoGroup 2}

aRevision OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..12))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Revision of this software component."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.

::= {softwareCompInfoGroup 3}

aBuild OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..12))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Manufacturer's internal identifier for this

compilation."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.

::= {softwareCompInfoGroup 4}

aTargetOperatingSystem OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The operating system which this software

component is intended for.
-- The value is 6 for this release (6=Win32)."

::= {softwareCompInfoGroup 5}

Chapter 11. Simple Network Management Protocol (SNMP) 109

aLanguageEdition OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The language edition of this software component.

This string will be: English."
::= {softwareCompInfoGroup 6}

aIdentificationCode OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Stock Keeping Unit (SKU) for this software component."
-- If the string cannot be determined, then "Unavailable"
-- is displayed.
::= {softwareCompInfoGroup 7}

aTargetOSString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The operating system which this software

component is intended for. This is Windows NT
-- for this release."

::= {softwareCompInfoGroup 8}

DCE Subagent Group

dceSubagentGroup OBJECT IDENTIFIER ::= {dcemib 3}

aSubagtName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of this subagent is: DCE SNMP Subagent."
::= {dceSubagentGroup 1}

aSubagtUpTime OBJECT-TYPE
SYNTAX Date
ACCESS read-only
STATUS mandatory
DESCRIPTION "The date and time the DCE subagent was last started."
::= {dceSubagentGroup 2}

aSubagtHeartbeatInterval OBJECT-TYPE
SYNTAX Counter
ACCESS read-write
STATUS mandatory
DESCRIPTION "This is the delay in minutes between checks for

changes in status for configured DCE servers. The
default is 10 minutes. A value of zero disables
the checking."

--
-- The heartbeat checking that is done will cause an SNMP trap to
-- be generated for any changes in the status of a DCE server.
--
-- If a large value is used, you can lose any
-- functional value provided by this function.
-- If a small value is used, it could cause a
-- performance degradation.
--
-- Using the dceagtd -d option when starting the subagent
-- causes the time interval to change to seconds rather
-- than minutes (-d 0 causes the default to be 10 seconds).
--
-- The wsnmp command can be used to adjust this value
-- as follows:

110 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

--
-- wsmp -c dcesnmp set 1.3.22.1.7.1.3.3.0 integer 60
--
-- Issuing the previous command from the command line
-- will change the interval to 60 minutes after the
-- current time interval expires.

::= {dceSubagentGroup 3}

aSubagtBinLogInterval OBJECT-TYPE
SYNTAX Counter
ACCESS read-write
STATUS mandatory
DESCRIPTION "This is the delay in minutes between bin.log error

checks. The default is 10 minutes. A value of zero
disables binary log checking."

--
-- If a large value is used, you can lose any
-- functional value provided by this function.
-- If a small value is used, it could cause a
-- performance degradation.
--
-- Using the dceagtd -d option when starting the subagent
-- causes the time interval to change to seconds rather
-- than minutes (-d 0 cause default to be 10 seconds).
--
-- System tools can be used to adjust this value
-- as follows:
--
-- wsnmp -c dcesnmp set 1.3.22.1.7.1.3.4.0 integer 60
--
-- Issuing the previous command from the command line
-- will change the interval to 60 minutes

-- after the current time interval expires.
::= {dceSubagentGroup 4}

DCE Host Information Group

dceHostInfoGroup OBJECT IDENTIFIER ::= {dcemib 4}

aDCEHostName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the DCE host."
::= {dceHostInfoGroup 1}

aDCEHostCellName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The cell name that this DCE host belongs to."
::= {dceHostInfoGroup 2}

DCE Server Table Group
dceSvrTable OBJECT-TYPE

SYNTAX SEQUENCE OF DCEHostSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of server entries configured on this

DCE host."
::= {dcemib 5}

dceHostSvrEntry OBJECT-TYPE
SYNTAX DCEHostSvrEntry
ACCESS not-accessible
STATUS mandatory

Chapter 11. Simple Network Management Protocol (SNMP) 111

DESCRIPTION ""
-- INDEX {aDCESvrName}

::= {dceSvrTable 1}

DCEHostSvrEntry ::= SEQUENCE
{
aDCESvrName DisplayString,
aDCESvrState DisplayString,
aDCESvrStateValue INTEGER

}

aDCESvrName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..128))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the DCE server."
-- The string can be one of the following:
--
-- "Not applicable" (eg, when DCE is not configured)
-- DCED "DCE Host Server"
-- SECD "Master Security Server"
-- "Replica Security Server"
-- "Security Server" (if unable to determine)
-- CDSD "CDS Server"
-- CDSADV "CDS Advertiser"
-- DTSD "DTS Global Server"
-- "DTS Local Server"
-- "DTS Clerk"
-- "DTS Server" (if unable to determine)
-- GDAD "GDA Server"
-- EMSD "EMS Server"
-- AUDITD "Audit Server"
-- DFSD "DFS Client"
-- NSID "NSI Gateway"
-- (name) "Password Strength Server (name)"
-- The "name" for password strength server is the
-- one associated with it through configuration.
-- There can be multiples in this category.

::= {dceHostSvrEntry 1}

aDCESvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this DCE server."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" See note.
-- "Not running" The server is configured, but not running.
-- "Available" The server is configured and is running.
-- "Not configured" DCE server is not configured. A server that is partia
-- configured, displays as "Not running." To
-- determine the state of the configuration, run
-- dcecp show.cfg.
--
-- NOTE: The "Unknown" state may be seen if an error is encountered
-- while trying to obtain the state; however, it is unlikely
-- that this will happen for any of the servers. It is a
-- primarily a zero place holder.

::= {dceHostSvrEntry 2}

aDCESvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),

112 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

vNotConfigured (3)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE Server."
::= {dceHostSvrEntry 3}

DCE Host Server Group
dceHostSvrGroup OBJECT IDENTIFIER ::= {dcemib 6}

aHostSvrPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of the DCE host server."
::= {dceHostSvrGroup 1}

aHostSvrUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of the DCE host server."
::= {dceHostSvrGroup 2}

aHostSvrGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of the DCE host server."
::= {dceHostSvrGroup 3}

aHostSvrInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the server."
::= {dceHostSvrGroup 4}

aHostSvrOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the server."
::= {dceHostSvrGroup 5}

aHostSvrInRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the server."
::= {dceHostSvrGroup 6}

aHostSvrOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the server."
::= {dceHostSvrGroup 7}

aHostSvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this server."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" A problem was encountered while trying to resolve

Chapter 11. Simple Network Management Protocol (SNMP) 113

-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE server is not configured.

::= {dceHostSvrGroup 8}

aHostSvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this server."
::= {dceHostSvrGroup 9}

DCE Event Management Service Server Group
dceEmsSvrGroup OBJECT IDENTIFIER ::= {dcemib 7}

aEmsSvrPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of the server."
::= {dceEmsSvrGroup 1}

aEmsSvrUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of the server."
::= {dceEmsSvrGroup 2}

aEmsSvrGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of the server."
::= {dceEmsSvrGroup 3}

aEmsSvrInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the server."
::= {dceEmsSvrGroup 4}

aEmsSvrOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the server."
::= {dceEmsSvrGroup 5}

aEmsSvrInRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the DCE EMS server."
::= {dceEmsSvrGroup 6}

aEmsSvrOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only

114 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the DCE EMS server."
::= {dceEmsSvrGroup 7}

aEmsSvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this server."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE server is not configured.

::= {dceEmsSvrGroup 8}

aEmsSvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this server."
::= {dceEmsSvrGroup 9}

DCE Security Server Group
dceSecSvrGroup OBJECT IDENTIFIER ::= {dcemib 8}

aSecSvrRole OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vMaster (1),
vReplica (2)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The role of the server."
::= {dceSecSvrGroup 1}

aSecSvrMode OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vService (1),
vMaintenance (2)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The mode of the Master Security server."
::= {dceSecSvrGroup 2}

aSecRgyUpdTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The localized date and time that the replica

was last updated."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the

Chapter 11. Simple Network Management Protocol (SNMP) 115

-- object does not apply.
::= {dceSecSvrGroup 3}

aSecRgyUpdSeq OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The sequence number of the last update that

the replica received."
::= {dceSecSvrGroup 4}

aSecSvrPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of the DCE Security server."
::= {dceSecSvrGroup 5}

aSecSvrUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of the server."
::= {dceSecSvrGroup 6}

aSecSvrGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of the server."
::= {dceSecSvrGroup 7}

aSecSvrInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the DCE Security server."
::= {dceSecSvrGroup 8}

aSecSvrOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the server."
::= {dceSecSvrGroup 9}

aSecSvrInRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the server."
::= {dceSecSvrGroup 10}

aSecSvrOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the server."
::= {dceSecSvrGroup 11}

aSecSvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this server."
-- One of the following strings will be set
-- based on the state value:

116 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE server is not configured.

::= {dceSecSvrGroup 12}

aSecSvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE Security server."
::= {dceSecSvrGroup 13}

aSecSvrRoleString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The role of this DCE Security server."
-- One of the following strings will be set
-- based on the aSecSvrRole value:
-- "Master"
-- "Replica"
-- The string will be "Unavailable" when an error is
-- encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceSecSvrGroup 14}

aSecSvrModeString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The mode of this DCE Security server."
-- One of the following strings will be set
-- based on the aSecSvrMode value:
-- "Service"
-- "Maintenance"
-- The string will be "Unavailable" when an error is
-- encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceSecSvrGroup 15}

DCE Cell Directory Service Server Group
dceCdsSvrGroup OBJECT IDENTIFIER ::= {dcemib 9}

aCdsSvrUpTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The time this server was created."
-- The string will be "Unavailable" when an error is
-- encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceCdsSvrGroup 1}

aCdsSvrChildUpdFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only

Chapter 11. Simple Network Management Protocol (SNMP) 117

STATUS mandatory
DESCRIPTION "The number of times the server was unable to

contact all the clearinghouses that store a
replica of a particular child directory's
parent directory and apply the child updates
that have occurred since the last skulk."

::= {dceCdsSvrGroup 2}

aCdsSvrCrucialReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times a user attempted to remove

a crucial replica from this server."
::= {dceCdsSvrGroup 3}

aCdsSvrMaxSkewTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The maximum amount of time that a timestamp on

a new or modified entry can vary from local
system time."

::= {dceCdsSvrGroup 4}

aCdsSvrLookupPathBrokens OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of broken connections between

clearinghouses on this server and
clearinghouses closer to the root."

::= {dceCdsSvrGroup 5}

aCdsSvrSecFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times a server principal for

this server was found to have inadequate
permissions to perform a request operation."

::= {dceCdsSvrGroup 6}

aCdsSvrSkulkInitd OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of skulks initiated."
::= {dceCdsSvrGroup 7}

aCdsSvrSkulkCmpltd OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of skulks successfully completed."
::= {dceCdsSvrGroup 8}

aCdsSvrReadOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of read operations directed to this server."
::= {dceCdsSvrGroup 9}

aCdsSvrWriteOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only

118 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

STATUS mandatory
DESCRIPTION "The number of write operations directed to this

server."
::= {dceCdsSvrGroup 10}

aCdsSvrPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of this DCE CDS server."
::= {dceCdsSvrGroup 11}

aCdsSvrUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID this DCE CDS server."
::= {dceCdsSvrGroup 12}

aCdsSvrGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of this server."
::= {dceCdsSvrGroup 13}

aCdsSvrInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the server."
::= {dceCdsSvrGroup 14}

aCdsSvrOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the server."
::= {dceCdsSvrGroup 15}

aCdsSvrInRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the server."
::= {dceCdsSvrGroup 16}

aCdsSvrOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the server."
::= {dceCdsSvrGroup 17}

aCdsSvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this DCE CDS server."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE server is not configured.

::= {dceCdsSvrGroup 18}

Chapter 11. Simple Network Management Protocol (SNMP) 119

aCdsSvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE CDS server."
::= {dceCdsSvrGroup 19}

DCE Cell Directory Service Advertiser Group
dceCdsAdvGroup OBJECT IDENTIFIER ::= {dcemib 10}

aCdsAdvUpTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The start time of the DCE CDS advertiser."
-- The string will be "Unavailable" when an error is
-- encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceCdsAdvGroup 1}

aCdsAdvPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of the DCE CDS advertiser."
::= {dceCdsAdvGroup 2}

aCdsAdvUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of this DCE CDS advertiser."
::= {dceCdsAdvGroup 3}

aCdsAdvGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of this DCE CDS advertiser."
::= {dceCdsAdvGroup 4}

aCdsAdvInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received."
::= {dceCdsAdvGroup 5}

aCdsAdvOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated."
::= {dceCdsAdvGroup 6}

aCdsAdvInRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory

120 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

DESCRIPTION "The number of RPC packets received."
::= {dceCdsAdvGroup 7}

aCdsAdvOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated."
::= {dceCdsAdvGroup 8}

aCdsAdvState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this DCE CDS advertiser."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE server is not configured.

::= {dceCdsAdvGroup 9}

aCdsAdvStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE CDS advertiser."
::= {dceCdsAdvGroup 10}

DCE Cell Directory Service Clerks Group

Note: On Windows NT this group is not available and will return zeros for counters.
dceCdsClerksGroup OBJECT IDENTIFIER ::= {dcemib 11}

aCdsClerksAuthFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times requesting principals

failed authentication procedures."
::= {dceCdsClerksGroup 1}

aCdsClerksCacheBypasses OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of requests to read attributes

for which the clerk was specifically
directed by the requesting application to
bypass its own cache."

::= {dceCdsClerksGroup 2}

aCdsClerksCacheHits OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The total number of read requests directed

to this clerk that were satisfied entirely

Chapter 11. Simple Network Management Protocol (SNMP) 121

by its cache. This attribute accounts only
for requests to read attribute values and does
not include requests to look up names or
enumerate the contents of directories."

::= {dceCdsClerksGroup 3}

aCdsClerksMiscOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of operations other than read and

write performed by this clerk."
::= {dceCdsClerksGroup 4}

aCdsClerksReadOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of lookup operations performed by

this clerk."
::= {dceCdsClerksGroup 5}

aCdsClerksWriteOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of requests to modify data

processed by this clerk."
::= {dceCdsClerksGroup 6}

DCE Cell Directory Service Clerk Table Group

Note: On Windows NT this group is not available, but will contain one clerk entry
showing zeroes for numerics and ″Not applicable″ for strings.

cdsClerkTable OBJECT-TYPE
SYNTAX SEQUENCE OF CdsClerkEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of DCE CDS clerks on the host."
::= {dcemib 12}

cdsClerkEntry OBJECT-TYPE
SYNTAX CdsClerkEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {aClerkPid}
::= {cdsClerkTable 1}

CdsClerkEntry ::= SEQUENCE
{
aClerkUser DisplayString,
aClerkUid INTEGER,
aClerkPid INTEGER,
aClerkUpTime OCTET STRING (SIZE (50))

}

aClerkUser OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user name of a clerk on the host."
-- UNIX: This contains the string, "Root". There will
-- be only be one table entry possible because
-- any other clerks are transient and known only
-- to CDS.

122 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

-- Non-UNIX: This contains the string, "Not applicable".
::= {cdsClerkEntry 1}

aClerkUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of a clerk on the host. This

field is returned as zero."
::= {cdsClerkEntry 2}

aClerkPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of a clerk on the host."
::= {cdsClerkEntry 3}

aClerkUpTime OBJECT-TYPE
SYNTAX Date
ACCESS read-only
STATUS mandatory
DESCRIPTION "The start time of a clerk on the host."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {cdsClerkEntry 4}

DCE Cell Directory Service Clearinghouse Table Group
cdsCHTable OBJECT-TYPE

SYNTAX SEQUENCE OF CdsCHEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of clearinghouses on the host."
::= {dcemib 13}

cdsCHEntry OBJECT-TYPE
SYNTAX CdsCHEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {aChName}
::= {cdsCHTable 1}

CdsCHEntry ::= SEQUENCE
{
aChName DisplayString,
aChDataCorrupts Counter,
aChEnableCounts Counter,
aChDisableCounts Counter,
aChRefReturns Counter,
aChSkulkFails Counter,
aChEntryMisses Counter,
aChRootLosts Counter,
aChUpgFails Counter,
aChReadOps Counter,
aChWriteOps Counter

}

aChName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The full name of the clearinghouse."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.

Chapter 11. Simple Network Management Protocol (SNMP) 123

-- The string will be "Not applicable" when the
-- object does not apply.

::= {cdsCHEntry 1}

aChDataCorrupts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times that the data corruption

event was generated."
::= {cdsCHEntry 2}

aChEnableCounts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times that the clearinghouse

was enabled since it was last started."
::= {cdsCHEntry 3}

aChDisableCounts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times that the clearinghouse

was disabled since it was last started."
::= {cdsCHEntry 4}

aChRefReturns OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of requests directed to this

clearinghouse that resulted in the return of
a partial answer instead of satisfying the
client's request."

::= {cdsCHEntry 5}

aChSkulkFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times that a skulk of a

directory, initiated from this clearinghouse,
failed to complete."

::= {cdsCHEntry 6}

aChEntryMisses OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the clearinghouse entry

missing event was generated."
::= {cdsCHEntry 7}

aChRootLosts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the root lost event was

generated."
::= {cdsCHEntry 8}

aChUpgFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory

124 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

DESCRIPTION "The number of times that upgrades failed."
::= {cdsCHEntry 9}

aChReadOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of read operations directed to

this clearinghouse."
::= {cdsCHEntry 10}

aChWriteOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of write operations directed to

this clearinghouse."
::= {cdsCHEntry 11}

DCE Cell Directory Service Cached Clearinghouse Table Group
cdsCachedCHTable OBJECT-TYPE

SYNTAX SEQUENCE OF CdsCachedCHEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of cached clearinghouses on the host."
::= {dcemib 14}

cdsCachedCHEntry OBJECT-TYPE
SYNTAX CdsCachedCHEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {aCachedCHName}
::= {cdsCachedCHTable 1}

CdsCachedCHEntry ::= SEQUENCE
{
aCachedCHName DisplayString,
aCachedCHUpTime OCTET STRING (SIZE (50)),
aCachedCHMiscOps Counter,
aCachedCHReadOps Counter,
aCachedCHWriteOps Counter

}

aCachedCHName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the cached clearinghouse."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {cdsCachedCHEntry 1}

aCachedCHUpTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The date and time at which the clearinghouse

was added to the cache."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {cdsCachedCHEntry 2}

Chapter 11. Simple Network Management Protocol (SNMP) 125

aCachedCHMiscOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of operations other than read

and write the clerk has performed on the
clearinghouse represented by the cache
entry."

::= {cdsCachedCHEntry 3}

aCachedCHReadOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of lookup operations the clerk has

performed on the clearinghouse represented by
the cache entry."

::= {cdsCachedCHEntry 4}

aCachedCHWriteOps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of write operations the clerk has

sent to the clearinghouse represented by the
cache entry."

::= {cdsCachedCHEntry 5}

DCE Global Directory Agent Server Group
dceGdaSvrGroup OBJECT IDENTIFIER ::= {dcemib 15}

aGdaSvrPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of this DCE GDA server."
::= {dceGdaSvrGroup 1}

aGdaSvrUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of this DCE GDA server."
::= {dceGdaSvrGroup 2}

aGdaSvrGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of this DCE GDA server."
::= {dceGdaSvrGroup 3}

aGdaSvrInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the GDA server."
::= {dceGdaSvrGroup 4}

aGdaSvrOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the GDA server."
::= {dceGdaSvrGroup 5}

aGdaSvrInRpcPkts OBJECT-TYPE

126 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the GDA server."
::= {dceGdaSvrGroup 6}

aGdaSvrOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the GDA server."
::= {dceGdaSvrGroup 7}

aGdaSvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this DCE GDA server."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE is not configured.

::= {dceGdaSvrGroup 8}

aGdaSvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE GDA server."
::= {dceGdaSvrGroup 9}

DCE Distributed Time Service Entity Group
dceDtsEntityGroup OBJECT IDENTIFIER ::= {dcemib 16}

aDtsdCurrTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Current time on the node."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceDtsEntityGroup 1}

aDtsdBadProtocols OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the local node failed

to process a received message containing an
incompatible protocol version."

::= {dceDtsEntityGroup 2}

aDtsdBadTimeReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory

Chapter 11. Simple Network Management Protocol (SNMP) 127

DESCRIPTION "The number of times the local node failed to
process a received message containing an
incompatible timestamp format."

::= {dceDtsEntityGroup 3}

aDtsdInsufRes OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the node has been unable

to allocate virtual memory."
::= {dceDtsEntityGroup 4}

aDtsdLocalNotIntersects OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the node's time interval

failed to intersect with the computed interval
of the servers."

::= {dceDtsEntityGroup 5}

aDtsdSyncCmpltd OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the node successfully

synchronized time."
::= {dceDtsEntityGroup 6}

aDtsdSysErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the DTS entity detected

a system error."
::= {dceDtsEntityGroup 7}

aDtsdTooFewSvrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times a node failed to

synchronize because it could not contact the
required minimum number of servers."

::= {dceDtsEntityGroup 8}

aDtsdGlobalTo OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The amount of time the node waits for a

response to a WAN synchronization request
before sending another request or declaring
a global server to be unavailable."

-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceDtsEntityGroup 9}

aDtsdLocalTo OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The amount of time the node waits for a

response to a synchronization request before

128 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

sending another request or declaring a server
to be unavailable."

-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when
-- object does not apply.

::= {dceDtsEntityGroup 10}

aDtsdPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of the DCE DTS entity."
::= {dceDtsEntityGroup 11}

aDtsdUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of the DCE DTS entity."

aDtsdGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of the DCE DTS entity."
::= {dceDtsEntityGroup 13}

aDtsdInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the DCE

DTS entity."
::= {dceDtsEntityGroup 14}

aDtsdOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the DCE

DTS entity."
::= {dceDtsEntityGroup 15}

aDtsdInRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the DCE

DTS entity."
::= {dceDtsEntityGroup 16}

aDtsdOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the

DCE DTS entity."
::= {dceDtsEntityGroup 17}

aDtsdState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this DCE DTS entity."
-- One of the following strings will be set
-- based on the state value:

Chapter 11. Simple Network Management Protocol (SNMP) 129

-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE is not configured.

::= {dceDtsEntityGroup 18}

aDtsdStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE DTS entity."
::= {dceDtsEntityGroup 19}

DCE Distributed Time Service Server Group
dceDtsSvrGroup OBJECT IDENTIFIER ::= {dcemib 17}

aDtsSvrRole OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vLocal (1),
vGlobal (2)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The role of the DTS server."
::= {dceDtsSvrGroup 1}

aDtsSvrCourierRole OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vCourier (1),
vBackup (2),
vNoncourier (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "A server's interaction with the set of global

servers."
::= {dceDtsSvrGroup 2}

aDtsSvrDiffEpochs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the node received time

response messages that had a different epoch
number."

::= {dceDtsSvrGroup 3}

aDtsSvrNoGlobals OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the clock could not

contact any global clocks."
::= {dceDtsSvrGroup 4}

130 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

aDtsSvrNotResponds OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the clock could not

contact a specific global clock."
::= {dceDtsSvrGroup 5}

aDtsSvrProviderErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of times the external time

provider signaled a failure or the node was
unable to access the time provider."

::= {dceDtsSvrGroup 6}

aDtsSvrRoleString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The role of the DTS server."
-- One of the following strings will be set
-- based on the aDtsSvrRole value:
-- "Unknown"
-- "Local"
-- "Global"
-- If there are no errors encountered and the
-- role is not local or global, then "Clerk" is
-- used instead of "Unknown."
--
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceDtsSvrGroup 7}

aDtsSvrCourierRoleString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "A server's interaction with the set of global

servers."
-- One of the following strings will be set
-- based on the aDtsSvrCourierRole value:
-- "Unknown"
-- "Courier"
-- "Backup"
-- "Noncourier"
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dceDtsSvrGroup 8}

DCE Distributed Time Service Known Server Table Group
dtsKnownSvrTable OBJECT-TYPE

SYNTAX SEQUENCE OF DtsKnownSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of DCE DTS local or global servers

known by this DCE DTS entity that do not reside on this DCE host."
::= {dcemib 18}

dtsKnownSvrEntry OBJECT-TYPE
SYNTAX DtsKnownSvrEntry
ACCESS not-accessible

Chapter 11. Simple Network Management Protocol (SNMP) 131

STATUS mandatory
DESCRIPTION ""
INDEX {aDtsKnownSvrName}
::= {dtsKnownSvrTable 1}

DtsKnownSvrEntry ::= SEQUENCE
{
aDtsKnownSvrName DisplayString,
aLastPolled OCTET STRING (SIZE (50)),
aLastObsSkew DisplayString,
aUsedInLastSync DisplayString,
aLastObsTime OCTET STRING (SIZE (50)),
aDtsSvrProto INTEGER,
aDtsSvrProtoString DisplayString

}

aDtsKnownSvrName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the known DCE DTS server known

by this host."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dtsKnownSvrEntry 1}

aLastPolled OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The time that the known DCE DTS server was

last polled."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dtsKnownSvrEntry 2}

aLastObsSkew OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The last observed time difference of the

known DCE DTS server."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dtsKnownSvrEntry 3}

aUsedInLastSync OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The time that the known DTS server was last

synchronized."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dtsKnownSvrEntry 4}

aLastObsTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS read-only

132 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

STATUS mandatory
DESCRIPTION "The time that the known DTS server was last

observed."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dtsKnownSvrEntry 5}

aDtsSvrProto OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vIEEE8023 (1),
vDCEnet (2),
vUDPIP (3),
vTCPIP (4),
vRPC (5)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The transport protocol of the known DTS

server."
::= {dtsKnownSvrEntry 6}

aDtsSvrProtoString OBJECT-TYPE
SYNTAX DisplayString(SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The transport protocol of the known DTS

server."
-- One of the following strings will be set
-- based on the aDtsSvrProto value:
-- "Unknown"
-- "IEEE 802.3"
-- "UDP/IP"
-- "TCP/IP"
-- "RPC"
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {dtsKnownSvrEntry 7}

DCE Traps Group
trapsGroup OBJECT IDENTIFIER ::= {dcemib 19}

aEventType OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..12))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The type of the event."
-- The event type will be one of the following
-- strings:
-- "DCE Generic"
-- "DCE Service" --- "DCE SNMP"

::= {trapsGroup 1}

aEventText OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..256))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The description of the event."
--
-- If you start the subagent from the command line,
-- you can issue the following before starting it.
--

Chapter 11. Simple Network Management Protocol (SNMP) 133

-- "set svc_ssa_dbg=ssa:*.1"
--
-- You can also change the routing file in the ..\var\svc directory.
-- This causes some information to prefix the event text.
-- The prefix has the following appearance:
--
-- (msgid: total_trap_count; trap_count_by_severity)
--
-- The msgid displays as: 0xhhhhhhhh. The total trap
-- count is the total number of traps issued since the
-- subagent was started. The trap count by severity
-- appears as: Xcount, where:
--
-- X = F (fatal), E (error), W (warning),
-- N (notice), V (notice verbose),
-- H (Statuschange), or U (unknown).
--
-- 0x00000000 is seen for the subagent start and
-- stop traps.

::= {trapsGroup 2}

aEventSeverity OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The severity level of the event."
-- The event severity will be one of the
-- following strings:
-- "UNKNOWN"
-- "FATAL"
-- "ERROR"
-- "WARNING"
-- "NOTICE"
-- "NOTICE_VERBOSE"
-- "NOT RUNNING" (for status change check only)
-- "AVAILABLE" (for status change check only)

::= {trapsGroup 3}

aCellName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The name of the cell where the event occurred."
::= {trapsGroup 4}

aHostName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..128))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The name of the host where the event occurred."
::= {trapsGroup 5}

aTime OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (50))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The time when the event occurred."
::= {trapsGroup 6}

aProgram OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The name of the program that generated the

event."
-- For server status change checking, this contains the
-- name of the server that has undergone the status

134 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

-- change.
::= {trapsGroup 7}

aComponent OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The name of the component that generated the

event."
::= {trapsGroup 8}

aSubComponent OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The name of the subcomponent that generated

the event."
::= {trapsGroup 9}

aThreadId OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The ID of the thread where the event occurred."
-- This is zero for server status change traps.
::= {trapsGroup 10}

aFile OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..128))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The name of the source file that generated

the event."
::= {trapsGroup 11}

aLine OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The number of the source line that generated

the event."
::= {trapsGroup 12}

DCE Security Audit Server Group
dceAuditSvrGroup OBJECT IDENTIFIER ::= {dcemib 20}

aAuditSvrPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of this DCE Security Audit server."
::= {dceAuditSvrGroup 1}

aAuditSvrUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of this DCE Security Audit server."
::= {dceAuditSvrGroup 2}

aAuditSvrGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of this DCE Security Audit server."
::= {dceAuditSvrGroup 3}

Chapter 11. Simple Network Management Protocol (SNMP) 135

aAuditSvrInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the server."
::= {dceAuditSvrGroup 4}

aAuditSvrOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the server."
::= {dceAuditSvrGroup 5}

aAuditSvrInRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the server."
::= {dceAuditSvrGroup 6}

aAuditSvrOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the server."
::= {dceAuditSvrGroup 7}

aAuditSvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this DCE Security Audit server."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE is not configured.

::= {dceAuditSvrGroup 8}

aAuditSvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE Security Audit server."
::= {dceAuditSvrGroup 9}

DCE Password Strength Server Table Group
pwdStrengthSvrTable OBJECT-TYPE

SYNTAX SEQUENCE OF PwdStrengthSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of DCE Password Strength servers configured

on this host."
::= {dcemib 21}

pwdStrengthSvrEntry OBJECT-TYPE
SYNTAX PwdStrengthSvrEntry
ACCESS not-accessible

136 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

STATUS mandatory
DESCRIPTION ""
INDEX {aPWstrengthName}
::= {pwdStrengthSvrTable 1}

PwdStrengthSvrEntry ::= SEQUENCE
{
aPWstrengthName DisplayString,
aPWstrengthPid INTEGER,
aPWstrengthUid INTEGER,
aPWstrengthGid INTEGER,
aPWstrengthInRpcCalls Counter,
aPWstrengthOutRpcCalls Counter,
aPWstrengthInRpcPkts Counter,
aPWstrengthOutRpcPkts Counter,
aPWstrengthState DisplayString,
aPWstrengthStateValue INTEGER

}

aPWstrengthName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..64))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the DCE Password Strength server

on this host."
-- The string will be "Unavailable" when an error
-- is encountered trying to retrieve the string.
-- The string will be "Not applicable" when the
-- object does not apply.

::= {pwdStrengthSvrEntry 1}

aPWstrengthPid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The process ID of this DCE Password Strength server."
::= {pwdStrengthSvrEntry 2}

aPWstrengthUid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user ID of this DCE Password Strength server."
::= {pwdStrengthSvrEntry 3}

aPWstrengthGid OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The group ID of this DCE Password Strength server."
::= {pwdStrengthSvrEntry 4}

aPWstrengthInRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls received by the server."
::= {pwdStrengthSvrEntry 5}

aPWstrengthOutRpcCalls OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC calls initiated by the server."
::= {pwdStrengthSvrEntry 6}

aPWstrengthInRpcPkts OBJECT-TYPE

Chapter 11. Simple Network Management Protocol (SNMP) 137

SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets received by the server."
::= {pwdStrengthSvrEntry 7}

aPWstrengthOutRpcPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION "The number of RPC packets initiated by the server."
::= {pwdStrengthSvrEntry 8}

aPWstrengthState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state of this DCE Password Strength server."
-- One of the following strings will be set
-- based on the state value:
-- "Unknown" A problem was encountered while trying to resolve
-- the state of the server.
-- "Not running" The server is configured, and is not running.
-- "Available" The server is configured and running.
-- "Not configured" DCE is not configured.

::= {pwdStrengthSvrEntry 9}

aPWstrengthStateValue OBJECT-TYPE
SYNTAX INTEGER
{

vUnknown (0),
vNotRunning (1),
vAvailable (2),
vNotConfigured (3)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The state value of this DCE Password Strength server."
::= {pwdStrengthSvrEntry 10}

138 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 12. Event Management Service (EMS)

EMS manages event services in a DCE cell. In EMS, an event is data being
transmitted from an event supplier to EMS and from EMS to one or more event
consumers. An event consists of an event header and a list of event attributes that
contain the event type-specific data.

EMS consists of three major components:

v The EMS daemon (emsd) is a server that:

– Authenticates and authorizes event suppliers and consumers

– Maintains databases of event types, event filters, and consumers

– Associates an event filter group with each event consumer

– Ensures reliable delivery of events to interested consumers.

v The event supplier is any DCE-based user application that emits event data.

v The event consumer is a requestor that:

– Queries EMS for supported event types

– Obtains a list of existing filter names

– Constructs event filters for each event type

– Adds event filters to its event filter group.

EMS data structures are grouped into the following functions:

v Event Attributes

v Event Structure

v Event Types

v Event Filters

v Consumer Data Structures

v Server Data Structures

The ability to route events to EMS is integrated with the SVC subsystem through
the ems serviceability routing specification. You can also use EMS to communicate
events through the SVC to the DCE SNMP subagent. For more information on
routing messages, see OSF® DCE Application Development Guide—Core
Components.

DCE administrative functions include management of EMS servers, event queues,
and event logs. For more information, see:

v “Logging EMS Events” on page 149

v “Managing EMS Consumers” on page 150

v “Managing EMS Event Filters” on page 151

v “Managing EMS Event Queues” on page 152

v “Managing the EMS Daemon” on page 153

v “Setting Permission for the EMS Server” on page 153

v “Starting the EMS Server” on page 149

139

DCE Event Management Service

This section describes the DCE Event Management Service (EMS), which provides
asynchronous event support for DCE based applications. EMS APIs provide an
interface to the suppliers, consumers, and event service administration for use by
EMS clients.

In both traditional (SNMP and CMIP) and object system management architectures,
communications between the managing and managed systems is bidirectional. One
or more managing systems can send requests to query and control various aspects
of resources being managed. In addition, the managed resource must be capable of
sending asynchronous notifications or events to the managing systems. An event
marks a change in state of the managed resource that causes a notification to be
sent to interested parties. The routing of these events is usually done through an
agent on the managed system.

EMS uses the concepts of event suppliers and event consumers and establishes an
event channel between them to support asynchronous communication. In the
context of DCE, event suppliers are any DCE-based user application (client or
server), and event consumers can be any application with an interest in receiving
asynchronous events from one or more DCE processes. An event channel
(operating as both a supplier and consumer of events) is a service that decouples
the communications between event suppliers and event consumers. EMS also
provides a filtering mechanism to allow administrators and consumers control over
the events that EMS sends.

EMS provides transparent support for DCE clients and servers using the DCE
Serviceability (SVC) and Audit. DCE applications can use the APIs offered in SVC
and Audit to become event suppliers.

Functional Highlights

The functional highlights of the DCE EMS are as follows:

v The effort involved in writing a DCE event consumer application is minimized.

v The EMS service improves performance and should minimize network and
system load.

v Event consumer applications can locate and register with one or more EMS
servers on multiple DCE hosts.

Note: An EMS server is an EMS daemon (EMSD).

v Events are sent by DCE applications only once through the SVC or Audit
interface to EMS.

v Event consumer applications can control the DCE host that is sending events as
well as the event types that are sent.

v EMS can transmit events from multiple DCE event supplier applications to one or
more DCE event consumer applications, based on a defined set of event filters
within a DCE cell in a secure way.

v DCE event supplier applications are not aware of the DCE consumer applications
that have registered to receive events.

v EMS provides a remote management API.

v EMS provides reliable delivery of events to consumers and is tolerant of network
and machine failures.

140 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

v EMS ensures the ability to define and extend events and event contents.

Functional Definition

DCE EMS manages event services in a DCE cell. EMS consists of two parts — the
EMSD (EMS daemon) server and the API to access event services.

EMSD is a DCE server that resides on every DCE host in the cell that consumers
request events from. The EMS API provides an interface to support event suppliers,
event consumers, and EMS server administration.

Event Flow Description

EMS sets up an event, channel to decouple the communications between the
supplier and consumer.

To send events you must enable SVC or audit events to get to EMS.

In order to start receiving events, an event consumer must first register with EMS,
and then set up an event filter group to tell EMS the events to forward to that
consumer.

After the event is sent to EMS, it is written to the EMS event log as a backup in
case the event cannot be delivered immediately.

After the event reaches EMS, it must pass through a consumer event filter before
being forwarded to interested consumers. EMS scans the list of registered
consumers and uses the event type schema from the event type Database and the
consumers event filter group from the consumer Database, and the event filters
from the event filter Database to determine if this event passes through to be
forwarded for each event consumer. After all appropriate consumers receive the
event, the event is removed from the event log.

Chapter 12. Event Management Service (EMS) 141

Relationship of EMS and DCE Subsystems

Event Type Definition

The format of EMS event types are defined by event type schemas and are kept in
the EMS event Type Database. The event type schemas consist of a list of attribute
names along with the attribute type, which specifies the data format of the data
associated with that attribute. Events consist of a fixed header part and a

142 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

variable-length data part. The variable-length data part consists of N self-defining
data items that consist of an attribute type and then the data itself.

The event type schemas are used in several different ways.

A consumer can request a list of supported event types, select the events types it
wants to receive by using the event type schemas to construct event filters, and
map event data according to attribute names. For example, an event consumer can
reconstruct an SVC message by using the attribute names to find the correct data
items.

EMS uses the event type schemas to apply event filters to events.

Generic Event Types: EMS supports events with type Generic . Generic events
do not have an event type schema. The only way to define filters for generic events
is to use filter expressions with event header attributes.

Default Event Types: The following defines the SVC event attribute lists that are
contained in their event type schemas.

#define CNT_SVC_ATTRS (sizeof(svc)/sizeof(ems_attribute_t))

static ems_attribute_t svc}} = {
{(unsigned char *)″version″, {ems_c_attr_ulong_int,0} },
{(unsigned char *)″t″, {ems_c_attr_utc,0} },
{(unsigned char *)″argtypes″, {ems_c_attr_char_string,0} },
{(unsigned char *)″table_index″, {ems_c_attr_ulong_int,0} },
{(unsigned char *)″attributes″, {ems_c_attr_ulong_int,0} },
{(unsigned char *)″message_index″, {ems_c_attr_ulong_int,0} },
{(unsigned char *)″format″, {ems_c_attr_char_string,0} },
{(unsigned char *)″file″, {ems_c_attr_char_string,0} },
{(unsigned char *)″progname″, {ems_c_attr_char_string,0} },
{(unsigned char *)″line″, {ems_c_attr_ulong_int,0} },
{(unsigned char *)″threadid″, {ems_c_attr_ulong_int,0} },
{(unsigned char *)″component_name″, {ems_c_attr_char_string,0} },
{(unsigned char *)″sc_name″, {ems_c_attr_char_string,0} },
{(unsigned char *)″attribute.debug″, {ems_c_attr_ushort_int,0} },
{(unsigned char *)″attribute.severity″, {ems_c_attr_ushort_int,0} },
{(unsigned char *)″attribute.actroute″, {ems_c_attr_ulong_int,0} }
};

#define CNT_AUDIT_ATTRS (sizeof(audit)/sizeof(ems_attribute_t))

static ems_attribute_t audit** = {
{(unsigned char*) ″format″, {ems_c_attr_ushort_int, 0} },
{(unsigned char*) ″server″, {ems_c_attr_uuid, 0} },
{(unsigned char*) ″event″, {ems_c_attr_ulong_int, 0} },
{(unsigned char*) ″outcome″, {ems_c_attr_ushort_int, 0} },
{(unsigned char*) ″authz_st″, {ems_c_attr_ushort_int, 0} },
{(unsigned char*) ″time″, {ems_c_attr_utc, 0} },
{(unsigned char*) ″addr″, {ems_c_attr_char_string, 0} }
};

Several constants have also been defined for matching against the
attribute_severity attribute. They are:

SVC_C_SEV_FATAL

Chapter 12. Event Management Service (EMS) 143

SVC_C_SEV_ERROR

SVC_C_SEV_WARNING

SVC_C_SEV_NOTICE

SVC_C_SEV_NOTICE_VERBOSE

User-defined Event Types: EMS also allows event suppliers to define new event
types. After a new event type is defined, the events of that event type can be sent
by the event suppliers. The event type can then be consumed by consumers.

An event supplier defines a new event type by specifying a unique name, a UUID
for the event type, and a list of event attributes. For more information on the
routines to add, delete, and to get event types, see “EMS Event Type Routines” on
page 198.

Filtering

EMS supports event filtering for type and generic event types. Only messages that
are routed to EMS are sent through the EMS event channel.

An event consumer must add filters to its filter group before it can receive events.
This associates an event filter group with each event consumer and that consumer
receives only events that pass through one of the entries in the consumer event
filter group.

Defining Event Filters: The following is a typical scenario of how an event
consumer would start interfacing with EMS. The consumer first queries EMS about
the event types that are supported. From that list of event types, the consumer then
queries the event type schema in order to construct any event filters for that event
type. The event type schemas contain the list of attribute names and attribute types
the consumer uses to construct an event filter. Next, the consumer tells EMS to
apply the constructed event filter to incoming events by adding it to the consumers
event filter group. EMS filters are constructed at several different levels. The lowest
level is the filter expression (consisting of an attribute name, attribute operator, and
an attribute value that defines a compare operation). All compare operations
evaluate to a boolean value. Only certain attribute operators are allowed on certain
attribute types.

The Different Levels of an EMS Filter

The following example illustrates a filter expression that evaluates to TRUE if the
attribute name file of an SVC event type is equal to the string file.c .

ems_filter_exp_t xmp_SVC;

xmp_SVC.attr_name = ″file″;
xmp_SVC.attr_operator = ems_c_attr_op_eq;

144 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

xmp_SVC.attr_value.format = ems_c_attr_char_string;
xmp_SVC.attr_value.tagged_union.char_string = ″file.c″;

An event filter is made up of a list of filter expressions that are joined together with
and . An event filter has both a name and an event type. The event filter name is
used to refer to the event filter in event filter create, delete and update operations.
The event filter name is also used by consumers and EMS administrators to add
and delete event filters to an event filter group.

A consumer event filter group is a collection of one or more event filter names.
Before an event can pass through a consumer filter group, the event filter
associated with each event filter name specified in the event filter group must be
applied to the event. If all the event filter expressions in the named event filter
evaluate to TRUE, the event is forwarded by EMS to that consumer. If any of the
event filter expressions evaluate to FALSE, the event filter specified by the next
event filter name in the event filter group is applied to the event. If none of the
event filters in the event filter group evaluate to TRUE, the event is not forwarded to
that consumer.

Using the filter API, a consumer can define a new event filter and then add that
filter name to its event filter group. A consumer can also get a list of existing event
filter names and add one of those event filter names to its event filter group. The
following list includes routines for retrieving existing filters:

ems_filter_get
Gets the contents of an event filter

ems_filter_get_namelist
Gets a list of the names of all filters in the Event Filter Database

ems_filter_get_list
Gets a list of all the filters in the Event Filter Database

The consumer can add or delete event filter names from event filter groups, as well
as by the administrative interface.

Filtering on Header Information or Event Type: A predefined set of event
header attribute name-type pairs have been defined to allow filtering on the
information in the event header. Filter expressions with event header attributes can
be part of filters with event type specific attributes. Filters with type Generic , can
only have filter expressions with header attributes (that is, using a generic filter,
consumers can filter only on the information contained in an event header).

User Interface Considerations

To simplify filter construction, you can use the ems_event_types_get_getlist call to
list event type schemas. You can extract those attributes and use them to construct
filters for that event type. The design of EMS facilitates developing an event
management user interface to consumer applications. This application can use the
ems_event_types_get_getlist call to get a list of the event type schemas for all
the event types that suppliers send to EMS. The event types can then be presented
for use in constructing filters.

Writing Consumers

Consumers are not simple clients. They have to be implemented as servers.
Therefore, EMS consumers have certain requirements. Consumers must:

Chapter 12. Event Management Service (EMS) 145

1. Call consumer_start

2. Register an event handler

3. Register with the various EMSD servers it wants to receive events from

4. Set up event filters

5. Call rpc_server_listen .

Using the Sample Supplier and Consumer

The sample consumer is set up to receive events from EMS. The sample supplier is
set up to serve as an event supplier. The sample supplier provided by DCE issues
messages of all severity types. It uses the sup.sams file to define the messages
that are issued and sends events to EMS using calls to the dce_svc_printf DCE
Application Programming Interface (API).

Events reach the sample consumer because it has set up the appropriate
registration information, event filtering information, and has successfully started
listening for events. Each event consumer is responsible for setting up this
information. An event consumer is not a simple client and it has to be implemented
as a server by following these steps:

1. Call the ems_consumer_start API.

This API names the instances of the EMS consumer being set up. Event
consumer names do not have to be unique. The EMS ems_consumer_start
API creates an UUID that makes the consumer name identification unique and,
therefore, easier to deal with. This sample consumer appends the process ID
(converted to ASCII) to the consumer name string. Its name is
sampleConsumer xxx, where xxx is the process ID.

This API is called once during consumer initialization. See the sample consumer
code in the path to the EMS examples given previously.

2. Call the ems_consumer_handler_register API.

This API registers the consumer event handler with EMS. The events that
survive the event filtering defined by the consumer code are passed to the
event handler.

You define the event handler. The sample consumer does nothing but display
the event format attribute text. The resulting message displays as SEVERITY:
message %d from %s!, where SEVERITY is the severity (for example, FATAL),
%d is a number, and %s is the name of the host that sent the message. The
sample consumer has code that resolves the replacement text from the SVC
event data. This API is called once during consumer initialization and resembles
the following in the sample consumer code:

ems_consumer_handler_register
(log_event, /* name of function that processes event */

&status); /* address of status - returned from API */

3. Call the ems_consumer_register API.

This API registers the consumer with a host EMS daemon (emsd). This API is
called once during consumer initialization for each emsd being registered. It
resembles the following in the sample consumer code:

netname.service=ems_ns_dce; /* DCE CDS name service... indicates the */
/* name service that recognizes the network */
/* name being defined here...*/

/* allocate memory for the network address... /*
netname.netaddr=(ems_netaddr_t *)malloc

146 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

(sizeof(ems_netaddr_t)+strlen(HOST1)+1);

/* complete the definition of the network name structure...len, name...*/
netname.netaddr->len=strlen(HOST1)+1;

strcpy((char *)&netname.netaddr->name[0],HOST1);

Note: This API must be called for each emsd to be monitored by the
consumer. The sample consumer has been set up to allow up to two
hard-coded host names.

In addition to registering with the emsd , the following additional steps are
needed for each emsd registration:

a. Call the ems_filter_add API.

This API identifies a “named” set of one or more filter expressions. The filter
name is used to represent the list of filter expressions. An example of one
filter expression may display logically as severity = fatal . All associated filter
expressions must be TRUE for the filter to be TRUE.

The sample consumer defines two filters for each emsd registered with:

Filter Name
Filter Definition

CompSupAndSevLeError
component_name = sup AND severity less than or equal to ERROR.
(CompSup And Sevle Error)

CompSup
component_name = sup

However, the first filter is used to filter events from the first host, and the
second filter is used with the second host. The sup component is an SVC
component defined in the sup.sams file.

The sample code checks to see if the filter already exists. If it does exist,
the ems_filter_add is not performed. The API resembles the following in the
sample consumer:

ems_filter_add
(emsHandle1, /* handle returned by reg

compSup, /* name of filter group
ems_c_svc_type, /* filter event type
expList1, /* list of filter expressi
&status); /* address of status - returned from

Refer to the sample code for more details on how the list of filter
expressions are set up.

b. Call the ems_add_filter_to_group API.

This API is used to group a set of one or more filters defined through the
ems_filter_add API. All of the filters in a filter group must be true before the
event can survive the filtering process. Only one filter has to be TRUE when
multiple groups have been defined.

The API resembles the following in the sample consumer:

ems_add_filter_to_group
(emsHandle1, /* handle returned by registration */

Chapter 12. Event Management Service (EMS) 147

fnList, /* list of filter names
&status); /* address of status - returned from API */

Refer to the sample code for more details on how the list of filter names are
set up.

4. Call the rpc_server_listen API.

Finally, this API places the consumer into listen mode. It is called, specifying the
maximum number of calls it can execute concurrently.

rpc_server_listen(8, &status);

Because RPCs can run concurrently, the consumer writer is responsible for
ensuring that the event handler routine is thread-safe. If a consumer allows
concurrent calls, its remote procedures are responsible for concurrency control.
If running a set of remote procedures concurrently requires concurrency control,
and a consumer lacks this control, the consumer must allow only one call at a
time. This number is set through this API.

Listen mode continues until the consumer is stopped. Note that this sample
consumer has been supplied with code to reauthenticate itself so that its
permissions should not expire for as long as it is running. This, however,
requires additional setup.

Enabling EMS

At some point, you must enable EMS to receive events. You can control the
message severities are sent to EMS for forwarding on to interested event
consumers. You do this by setting the local environment either from a command file
or by typing, at the command line, the following:

set SVC_FATAL=EMS:-;STDERR:-;
set SVC_ERROR=EMS:-;STDERR:-;
set SVC_WARNING=EMS:-;STDERR:-;
set SVC_NOTICE=EMS:-;STDERR:-;
set SVC_NOTICE_VERBOSE=EMS:-;STDERR:-;

Instead of issuing the commands from the command line, you can add similar
information to a routing file located in %DCELOC%\dcelocal\var\svc\routing .

Note: Setting this information in the routing file causes every SVC message (all
types of severities) generated by any application on the system to be routed
to EMS. This is not recommended, however, because it lowers system
performance.

The preceding reference to EMS indicates that all SVC message types are sent to
EMS and STDERR. You can modify this. Minimally, you must enable EMS for the
SVC type that you expect to monitor for.

You can also use the dcecp log command.

Compiling

See the example in %DCELOC%\dcelocal\examples\ems for compiling
information. Also, see the README file.

148 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Event Consumer Template

The example stored in %DCELOC%\dcelocal\examples\ems illustrates the
structure of a typical event consumer.

You must write an event handler to log events before you can register it. The
sample consumer is written to print out logged events; however, you can modify it
to perform in accordance with your needs. For example, you can customize the
event handler to call a particular pager number whenever a severity of FATAL
displays.

Starting the EMS Server

The emsd command starts the EMS daemon. The EMS daemon must be running
on the host system in the DCE cell before a consumer can receive events or a
supplier can supply events.

The EMS daemon runs under the local host machine principal identity
(host/ hostname/self). The DCE Host daemon (dced) must be running on the local
host when emsd is started. The emsd command also requires a CDS Advertiser
(cdsadv).

The emsd command has the following optional parameters:

–llog_directory
Specifies where the log file resides.

–qqueue_size
Specifies the maximum number of events that are counted by EMS.

–w svc_route
Specifies DCE serviceability routing instructions.

To start the EMS daemon and to specify the queue size and location of the log,
type:

emsd -q 2048 -1 /opt/dcelocal/var/ems

To start the EMS daemon and to specify the serviceability routing instructions, and
define the maximum queue size, type:

emsd -w NOTICE:STDOUT:- -w NOTICE_VERBOSE:STDOUT-:-

Logging EMS Events

The EMS event log is used to store events in case of EMS failures. EMS writes all
events to the event log and deletes the event record after the event has been
transmitted to all consumers that are supposed to receive the event. The event log
is kept in a file on the machine where emsd is running. Events are stored in a
directory specified by the environment variable EMS_EVENTLOG_DIR. An API is
provided to examine local event logs.

The emslog object represents the EMS event log. The emslog command is issued
in the dcecp environment and is followed by one of the following subcommands:

help Returns help information on the object.

Chapter 12. Event Management Service (EMS) 149

operations
Returns a list of operations supported by the object.

show Returns a list of events in the event log file.

To display the general EMS log help information, type:
dcecp> emslog help

EMS displays:
help Print a summary of command-line options.
operations Returns the valid operations for command.
show Returns a list of events in the event log file.

To obtain a list of operations supported by the object, type:
dcecp> emslog operations

EMS displays:
show help operations

To display a list of events in the event log file, type:
dcecp> emslog show

EMS Displays:
--- Start of an EMS event record ---
Type: SVC:Event Id: 8d1b0b00-e9e7-11ce-8af3-10005a890435
Name Service: DCE /.../eagle_dce/hosts/hidalgod.austin.ibm.com
Description Name: EMS_Test_Producer
PID: 565 UID: 0 GID: 0
Severity: NOTICE
Arrival Time: 1995-09-08-14:06:32.970+00:00I-----
Printing 16 items
Item 1: [version] = ulong init 1
Item 2: [t] = 1995-09-08-14:06:32.970+00:00I-----
Item 3: [argtypes] = char string
Item 4: [table_index] = ulong int 0
Item 5: [attributes] = ulong int 64
Item 6: [message_index] = unlon int 389738500
Item 7: [format] = char string Test Supplier starting
Item 8: [file] = char string supplier.c
Item 9: [progname] char string EMS_Test_Producer
Item 10: [line] = ulong int 63
Item 11: [threadid] = ulong int 2
Item 12: [component_name] = char string sup
Item 13: [sc_name] = char string general
Item 14: [attribute.debug] = ushort int 0
Item 15: [attribute.severity] = ushort int 4
Item 16: [attribute.actroute] = ulong int 0
--- End of an EMS event record ---

Managing EMS Consumers

EMS consumers register with the event server to receive events. Each consumer
has a name, a UUID, a host where it is running, and a list of filter names that make
up the filter group.

If a consumer process terminates abnormally, the system administrator may have to
delete the consumer using the emsconsumer command.

If new filters have been defined in the filter database, the administrator can use the
emsconsumer command to add those filters to the consumer filter groups to further

150 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

refine the events that a consumer receives. Also, if a consumer is not receiving all
the events that it should, the administrator can delete filters with the emsconsumer
command.

DCE provides the emsconsumer command and associated subcommands to
manage the consumer. This command is issued in the dcecp environment and can
execute the following subcommands:

catalog
Returns the list of consumers registered with EMS on a host.

delete Deletes a registered consumer from EMS on a host.

help Displays help information on the object.

modify
Modifies the event filter group associated with the given consumer.

operations
Returns a list of operations supported by the object.

show Returns the list of filter names in a consumer filter group.

The following are the required permissions:

v For emsconsumer catalog and emsconsumer show , you must have r
permission on /.:/hostname/ems-server/consumers .

v For emsconsumer delete , you must have d permission on /.:/hostname/ems-
server/consumers .

v For emsconsumer modify , you must have w permission on
/.:/hostname/ems-server/consumers .

To obtain the list of consumers registered with EMS, type:
dcecp> emsconsumer catalog

EMS displays:
{consumer1 7e383761-f41f-11ce-9051-08005acd43c6 /.:/hosts/eagle.austin.ibm.com}
{consumer1 a4c7ff26-f449-11ce-a863-10005a4f3556 /.:/hosts/eagle.austin.ibm.com}
{consumer2 283cc40c-f447-11ce-9dd3-10005a4f3556 /.:/hosts/umesh.austin.ibm.com}

To add the filter foo to the consumer2 event filter group, type:
dcecp> emsconsumer modify

consumer2 -add {filter foo}

To display the list of filter names in the consumer2 filter group, type:
dcecp> emsconsumer show consumer2

EMS displays:
{foo2 foo3 foo4 foo5}

Managing EMS Event Filters

EMS event filters are applied by EMS to events received from suppliers to
determine if the events are to be forwarded to the consumers.

An EMS event filter is a collection of one or more filter expressions. Each filter
expression consists of an attribute name, an attribute operator, and an attribute
value.

Chapter 12. Event Management Service (EMS) 151

You can issue the emsfilter command with an associated subcommand in the
dcecp environment to manage event filters on the local host. You can also specify
the –host option to issue the command to a different host. The format of the DCE
host name accepted is either an entire DCE name (for example,
/.:/hosts/jurassic.austin.ibm.com) or a DCE host name with a domain name (for
example, jurassic.austin.ibm.com).

The emsfilter executes the following subcommands:

catalog
Returns a list of all filter names in EMS.

delete Deletes a filter and its associated filter expressions from EMS.

help Displays help information on the object.

operations
Returns a list of operations supported by the object.

show Returns a list of filter expressions in a specified filter.

The following are the required permissions:

v For emsfilter catalog and emsfilter show , you must have r permission on
/.:/hostname/ems-server/filters .

v For emsfilter delete , you must have d permission on /.:/hostname/ems-
server/filters/ filtername.

To display the filters kept by the EMS daemon, type:
dcecp> emsfilter catalog

EMS displays:
Filter1
Filter2

To delete the filter named Filter1 and its associated filter expressions, type:
dcecp> emsfilter delete Filter1

To display a list of operations supported by the object, type:
dcecp> emsfilter operations

EMS displays:
catalog delete show help operations

To display a list of filter expressions in the Filter2 filter, type:
dcecp> emsfilter show Filter2

EMS displays:
{event_type == SVC}
{file == file.c}

Managing EMS Event Queues

The EMS event queue size can be set at emsd startup using the –q option or the
EMS_QUEUE_SIZE environment variable. If EMS starts receiving queue full
errors, the daemon should be restarted using a larger queue size. See “Starting the
EMS Server” on page 149 for more information on emsd startup.

152 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Using the configuration GUI, only the environment variable can be used to increase
the queue size.

Managing the EMS Daemon

The EMS daemon (emsd) is responsible for:

v Managing event ACLs in regards to event suppliers and consumers

v Maintaining databases of event types, event filters, and consumers

v Associating an event filter group with each event consumer

v Ensuring reliable delivery of events to interested consumers

The ems command and its associated subcommands manage the EMS daemon on
a DCE host. This command is issued in the dcecp environment and can execute
the following subcommands:

catalog
Returns a list of all hosts the EMS daemon is running on in the current cell.

help Returns help information on the object.

operations
Returns a list of operations supported by the object.

show Returns the attribute list for the EMS daemon.

The ems show command requires that you have the r permission on
/.:/hostname/ems-server .

To list all hosts running in the current cell, type:
dcecp> ems catalog

EMS displays:
/.:/hosts/eagle.austin.ibm.com
/.:/hosts/umesh.austin.ibm.com

To return a list of operations supported by the object, type:
dcecp> ems operations

EMS displays:
catalog show help operations

To display the list of attributes for the EMS daemon, type:
dcecp> ems show

EMS displays:
{eventlog_dir /opt/dcelocal/dce/var/ems}
{queue_size 5000}

Setting Permission for the EMS Server

EMS provides for secure manipulation of data in the EMS databases. This includes
the Event Filter database, the Event Type database, and the list of consumers in
the Consumer database. EMS also provides for supplier and consumer
authentication and authorization as well as secure transmission of event data.

Chapter 12. Event Management Service (EMS) 153

All ACLs are associated with names in the DCE namespace and the EMSD server
manages the namespace past the junction:

/.:/hosts/hostname/ems-server/

The ACL associated with this object controls access to the EMSD server registered
in this namespace. The permissions associated with ems-server are:

Table 3. EMSD Server Permission Bits

Permission bit Name Description

c control Modify the ACLs on the
server

r read Read the attributes for this
server

s stop Stop the EMS server

w write Modify the attributes on this
server

Three security objects are maintained under the EMS-server junction. The
directories and the databases they represent are:

event-types
Event type database

filters Filter database

consumers
Consumer database

Each of these databases has an ACL associated with it.

Event Type Security Management

The Event Type database is represented by the following name in the DCE name
space:

/.:/hosts/hostname/ems-server/event-types

The ACL associated with this object controls access to this database. The
permissions associated with event-types are:

Table 4. Event Type Database Permission Bits

Permission bit Name Description

c control Modify the ACLs on the event type

d delete Delete an event type schema

i insert Add an event type schema

r read Read the contents of event type schemas

EMS event data access can be granted per event type. Authority on event data of a
given event type can be granted by modifying the ACL on:

/.:/hosts/hostname/ems-server/event-types/event_type_name

where event_type_name is the event type name that appears in the event type
schema. The name recognized for SVC events is:

/.:/hosts/hostname/ems-server/events/SVC

154 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The permissions associated with event_type_name are:

Table 5. Event Type Permission bits

Permission bit Name Description

c control Modify the ACLs on the event type

d delete Delete an event type

r read Read (consume) an event of this type

w write Write (supply) an event of this type

Supplier rights are verified on the first event sent to EMS, and the consumer rights
are verified before forwarding events to that consumer. Authenticated RPC is used
to access the EMS supplier and consumer remote API.

Event Filter Security Management

The Filter database is represented by the following name in the DCE name space:
/.:/hosts/hostname/ems-server/filters

The ACL associated with this object controls access to this database. The
permissions associated with filters are:

Table 6. Filter Database Permission Bits

Permission bit Name Description

c control Modify the ACLs on filters

d delete Delete an event filter

i insert Add an event filter

r read Get a list of or the contents of event filters

Event filter access control is granted on a per-event-filter basis. Authority on filter
access for a given event filter is granted by modifying the ACL on:

/.:/hosts/hostname /ems-server/filters/filter_name

where filter_name is the event filter name given the event filter on the call to
ems_filter_add .

The permissions associated with event filters are:

Table 7. Event Filter Permission Bits

Permission bit Name Description

c control Modify the ACL on the event filter.

d delete Delete the event type filter

w write Modify the contents of an event filter

When a consumer creates an event filter, that consumer principal automatically
receives dwc permissions on the created event filter.

Consumer Security Management

The Consumer database is represented by the following name in the DCE name
space:

/.:/hosts/hostname/ems-server/consumers

Chapter 12. Event Management Service (EMS) 155

The ACL associated with this object controls access to this database. The
permissions associated with consumers are:

Table 8. Consumer Database Permission Bits

Permission bit Name Description

c control Modify the ACLs on consumers

d delete Delete a consumer

i insert Add (register) a consumer

r read List consumer information

w write Modify a consumer including his filter group

EMS Security Initialization

When EMS is configured, several security groups are created by default. The
groups are ems-admin , ems-consumer , and ems-supplier . The default
permissions are:

/.:/hosts/hostname /ems-server
object acl

ems-admin crws
hosts/hostname/self rws
any_other r

/.:/hosts/hostname/ems-server/event-types
object acl

ems-admin cri
ems-consumer r
ems-supplier ri
any_other r

initial object acl (/.:/hosts/hostname/ems-server/event-types/event_type_name)
ems-admin cdw
ems-consumer r
ems-supplier w

/.:/hosts/hostname/ems-server/filters
object acl

ems-admin crdi
ems-consumer ir
any_other r

initial object acl (/.:/hosts/hostname/ems-server/filters/filter_name)
ems-admin cdw

/.:/hosts/hostname/ems-server/consumers
object acl

ems-admin cdrw
ems-consumer irwd
any_other r

Because these permissions are set for the ems_admin group, each new event filter
and event type created automatically inherits the same permissions.

Administrators can add principals to each of these groups to give them access to all
EMDs running in a cell. If tighter security is desired, the group can be removed from
the respective ACL and principals can be added.

156 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Event Management Service Commands

These commands are issued in the dcecp environment.

ems catalog

ems help

ems operations

ems show

emsconsumer commands

emsconsumer catalog

emsconsumer delete

emsconsumer help

emsconsumer modify

emsconsumer operations

emsconsumer show

emsevent commands

emsevent catalog

emsevent delete

emsevent help

emsevent operations

emsevent show

emsfilter commands

emsfilter catalog

emsfilter delete

emsfilter help

emsfilter operations

emsfilter show

emslog commands

emslog help

emslog operations

emslog show

emsd

Chapter 12. Event Management Service (EMS) 157

ems commands

Purpose

Manage the EMS daemon on a DCE host.

Format
ems catalog

ems help [operation | -verbose]

ems operations

ems show [-host dce_hostname]

Argument
operation

The name of one specific ems operation (subcommand) you want to see
help information about.

Attributes
eventlog_dir

Specifies the directory name used where the EMS daemon puts the event
log.

queue_size
Specifies the queue size for the event queues.

Usage

The ems object represents the EMS daemon (called emsd) on a host.

This command operates on the EMS daemon on the local host, unless the -host
option is specified. The format of the host name accepted is either an entire DCE
name (/.:/hosts/jurassic.austin.ibm.com) or a host name with domain name
(jurassic.austin.ibm.com).

Related Information

Commands:

ems catalog

ems help

ems operations

ems show

emsconsumer commands

emsevent commands

158 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems catalog

Purpose

Returns the list of all hosts that the EMS daemon is running on in the current cell.

Format

ems catalog

Usage

The ems catalog command returns the list of all hosts that the EMS daemon is
running on in the current cell.

Privilege Required

No special privileges are needed to use the ems catalog command.

Examples
dcecp> ems catalog
/.:/hosts/eagle.austin.ibm.com
/.:/hosts/umesh.austin.ibm.com

Related Information

Commands:

ems help

ems operations

ems show

emsconsumer commands

emsevent commands

Chapter 12. Event Management Service (EMS) 159

ems help

Purpose

Returns help information on the object.

Format

ems help [operation | -verbose]

Argument
operation

The name of one specific ems operation (subcommand) you want to see
help information about.

Options
-verbose

Displays detailed information about the DCE Event Management Services
object.

Usage

The ems help command returns help information on the object. The help operation
takes an argument, which may be an operation supported by the object or the
-verbose switch to return more information.

Privilege Required

No special privileges are needed to use the ems help command.

Examples
dcecp> ems help
catalog Returns a list of all hosts that the EMS daemon is running on
help Prints a summary of command-line options
operations Returns the valid operations for command
show Returns the attributes for the EMS daemon

Related Information

Commands:

ems catalog

ems operations

ems show

emsconsumer commands

emsevent commands

160 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems operations

Purpose

Returns a list of operations supported by the object.

Format

ems operations

Usage

The ems operations command returns a list of operations supported by the object.
It takes no arguments, and always returns a TCL list suitable for use in a foreach
statement. The order of the elements is alphabetical with the exception that help
and operations are listed last.

Privilege Required

No special privileges are needed to use the ems operations command.

Examples
dcecp> ems operations
catalog show help operations

Related Information

Commands:

ems catalog

ems help

ems show

emsconsumer commands

emsevent commands

Chapter 12. Event Management Service (EMS) 161

ems show

Purpose

Returns the attribute list for the EMS daemon.

Format

ems show [-host dce_hostname]

Options
-host dce_hostname

Specifies the host where the EMS daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Attributes
eventlog_dir

Specifies the directory name used where the EMS daemon puts the event
log

queue_size
Specifies the queue size for the event queues

Usage

The ems show command returns the attribute list for the EMS daemon.

Privilege Required

You must have read (r) permission on /.:/hosts/<dce_hostname>/ems-server

Examples
dcecp> ems show
{eventlog_dir /opt/dcelocal/dce/var/ems}
{queue_size 5000}

Related Information

Commands:

ems catalog

ems help

ems operations

emsconsumer commands

emsevent commands

162 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsconsumer commands

Purpose

Manage EMS consumers and their event filter groups.

Format
emsconsumer catalog [-host dce_hostname]

emsconsumer delete consumer {-uuid uuid} [-host dce_hostname]

emsconsumer help [operation | -verbose]

emsconsumer modify consumer {-uuid uuid} {-add|-delete} {filter filtername}
[-host dce_hostname]

emsconsumer operations

emsconsumer show consumer {-uuid uuid} [-host dce_hostname]

Argument
consumer

A consumer name.

operation
The name of one specific emsconsumer operation (subcommand) that you
want to see help information about.

Usage

The emsconsumer object represents an EMS consumer. An EMS consumer
registers with EMS to receive event data. It defines event filters to identify the
events that should be forwarded to it.

This command operates on the EMS daemon on the local host, unless the -host
option is specified. The format of the host name accepted is either an entire DCE
name (/.:/hosts/jurassic.austin.ibm.com) or a host name with domain name
(jurassic.austin.ibm.com).

Related Information

Commands:

emsconsumer catalog

emsconsumer delete

emsconsumer help

emsconsumer modify

emsconsumer operations

emsconsumer show

emsfilter commands

Chapter 12. Event Management Service (EMS) 163

emsconsumer catalog

Purpose

Returns the list of registered consumers with EMS on a host.

Format

emsconsumer catalog [-host dce_hostname]

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Usage

The emsconsumer catalog command returns the list of registered consumers with
EMS on a host. The consumer names returned are in an arbitrary order.

Privilege Required

You must have read (r) permission on /.:/hosts/<dce_hostname>/ems-
server/consumers

Examples
dcecp> emsconsumer catalog
{consumer1 7e383761-f41f-11ce-9051-08005acd43c6 /.:/hosts/eagle.austin.ibm.com}
{consumer1 a4c7ff26-f449-11ce-a863-10005a4f3556 /.:/hosts/eagle.austin.ibm.com}
{consumer2 283cc40c-f447-11ce-9dd3-10005a4f3556 /.:/hosts/umesh.austin.ibm.com}

Related Information

Commands:

emsconsumer commands

emsconsumer delete

emsconsumer help

emsconsumer modify

emsconsumer operations

emsconsumer show

emsfilter commands

164 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsconsumer delete

Purpose

Deletes a registered consumer from EMS on a host.

Format

emsconsumer delete consumer {-uuid uuid} [-host dce_hostname]

Argument
consumer

A consumer name.

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

-uuid uuid
Specifies the unique universal identifier (UUID) that is assigned to the
consumer.

Usage

The emsconsumer delete command deletes a registered consumer from EMS on
a host. The argument is the name of the consumer to be deleted or its assigned
UUID or, in case of duplicate consumers, a consumer name with its assigned UUID.
The command returns an empty string on success.

Privilege Required

You must have delete (d) permission on /.:/hosts/<dce_hostname>/ems-
server/consumers

Examples
dcecp> emsconsumer delete consumer2
dcecp> emsconsumer delete consumer1 -uuid 7e383761-f41f-11ce-9051-08005acd43c6

Related Information

Commands:

emsconsumer commands

emsconsumer catalog

emsconsumer help

emsconsumer modify

emsconsumer operations

emsconsumer show

emsfilter commands

Chapter 12. Event Management Service (EMS) 165

emsconsumer help

Purpose

Returns help information on the object.

Format

emsconsumer help [operation | -verbose]

Argument
operation

The name of one specific emsconsumer operation (subcommand) you
want to see help information about.

Options
-verbose

Returns detailed information about the emsconsumer commands object.

Usage

The emsconsumer help command returns help information on the object. The help
operation takes an argument, which may be an operation supported by the object or
the -verbose switch to return more information.

Privilege Required

No special privileges are needed to use the emsconsumer help command.

Examples
dcecp> emsconsumer help
catalog Returns the list of registered consumers with EMS on a host.
delete Deletes a registered consumer from EMS on a host.
modify Modifies the event filter group associated with a consumer.
show Shows information about a consumer including the consumers

filter group.
help Prints a summary of command-line options.
operations Returns the valid operations for command.

Related Information

Commands:

emsconsumer commands

emsconsumer catalog

emsconsumer delete

emsconsumer modify

emsconsumer operations

emsconsumer show

emsfilter commands

166 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsconsumer modify

Purpose

Modifies the event filter group associated with the given consumer.

Format

emsconsumer modify consumer {-uuid uuid} {-add|-delete} {filter filtername} [-host
dce_hostname]

Argument
consumer

A consumer name.

Options
-add|-delete

Adds or deletes filternames from the consumer filter group.

filter filtername
Specifies the name of the consumer filter group.

-host dce_hostname
Specifies the host where the EMS daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

-uuid uuid
Specifies the unique universal identifier (UUID) that is assigned to the
consumer.

Usage

The emsconsumer modify command modifies the event filter group associated
with the given consumer. Filters can be added or deleted from a consumer event
filter group. Added filters are always placed at the end of the consumer event filter
group. The command returns an empty string on success.

Privilege Required

You must have write (w) permission on

/.:/hosts/<dce_hostname>/ems-server/consumers

Examples
dcecp> emsconsumer modify consumer2 -add {filter foo}

Argument

Commands:

emsconsumer commands

emsconsumer catalog

emsconsumer delete

emsconsumer help

emsconsumer operations

Chapter 12. Event Management Service (EMS) 167

emsconsumer show

emsfilter commands

168 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsconsumer operations

Returns a list of operations supported by the object.

Format

emsconsumer operations

Usage

The emsconsumer operations command returns a list of operations supported by
the object. It takes no arguments and always returns a TCL list suitable for use in a
‘foreach’ statement. The order of the elements is alphabetical with the exception
that help and operations are listed last.

Privilege Required

No special privileges are needed to use the emsconsumer operations command.

Examples
dcecp> emsconsumer operations
catalog delete modify show help operations

Related Information

Commands:

emsconsumer commands

emsconsumer catalog

emsconsumer delete

emsconsumer help

emsconsumer modify

emsconsumer show

emsfilter commands

Chapter 12. Event Management Service (EMS) 169

emsconsumer show

Purpose

Returns the list of filter names in a consumer filter group.

Format

emsconsumer show consumer {-uuid uuid} [-host dce_hostname]

Argument
consumer

A consumer name.

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

-uuid uuid
Specifies the unique universal identifier (UUID) that is assigned to the
consumer.

Usage

The emsconsumer show command returns the list of filter names in a consumers
filter group. This command takes the consumer name as an argument.

Privilege Required

You must have read (r) permission on

/.:/hosts/<dce_hostname>/ems-server/consumers

Examples
dcecp> emsconsumer show consumer2
{foo2 foo3 foo4 foo5}

Related Information

Commands:

emsconsumer commands

emsconsumer catalog

emsconsumer delete

emsconsumer help

emsconsumer modify

emsconsumer operations

emsfilter commands

170 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsevent commands

Purpose

Display EMS event types and event type schemas.

Format
emsevent catalog [-host dce_hostname]

emsevent delete event_type_name [-host dce_hostname]

emsevent help [operation | -verbose]

emsevent operations

emsevent show event_type [-host dce_hostname]

Argument
event_type

Name of the event type.

operation
The name of one specific emsevent operation (subcommand) that you
want to see help information about.

Usage

The emsevent object represents the EMS event type, which is a class of events
with the same format. This format of the event types are defined by event type
schemas. An event type schema consists of a list of attribute name-type pairs that
specify the data format of an event.

This command allows for the list of available event types to be displayed, and the
event type schema for a particular event type. It operates on the EMS daemon on
the local host, unless the -host option is specified. The format of the host name
accepted is either an entire DCE name (/.:/hosts/jurassic.austin.ibm.com) or a host
name with domain name (jurassic.austin.ibm.com).

Related Information

Commands:

emsevent catalog

emsevent delete

emsevent help

emsevent operations

emsevent show

Chapter 12. Event Management Service (EMS) 171

emsevent catalog

Purpose

Returns the list of available event types.

Format

emsevent catalog [-host dce_hostname]

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Usage

The emsevent catalog command displays a list of the available event types.

Privilege Required

You must have read (r) permission on /.:/hosts/<dce_hostname>/ems-server/event-
types.

Examples
dcecp> emsevent catalog
SVC

Related Information

Commands:

emsevent commands

emsevent delete

emsevent help

emsevent operations

emsevent show

172 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsevent delete

Purpose

Deletes an event type.

Format

emsevent delete event_type_name [-host dce_hostname]

Argument
event_type_name

An event type name.

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Usage

The emsevent delete command deletes an event type. The argument is the name
of the event type to be deleted. The command returns an empty string if successful.

Privilege Required

You must have delete permission on:
/.:/hosts/<dce_hostname>/ems-server/event-types

or
/.:/hosts/<dce_hostname>/ems-server/event-types/<event_type_name>

Examples
dcecp> emsevent delete EventType
dcecp>

Related Information

Commands:

emsevent commands

emsevent catalog

emsevent help

emsevent operations

emsevent show

Chapter 12. Event Management Service (EMS) 173

emsevent help

Purpose

Returns help information on the object.

Format

emsevent help [operation | -verbose]

Argument
operation

The name of one specific emsevent operation (subcommand) you want to
see help information about.

Options
-verbose

Returns detailed information about the emsevent help object.

Usage

The emsevent help command returns help information on the object. The help
operation takes an argument, which may be an operation supported by the object or
the -verbose switch to return more information.

Privilege Required

No special privileges are needed to use the emsevent help command.

Examples
dcecp> emsevent help
catalog Returns the list of available event types.
delete Deletes an event type.
help Prints a summary of command-line options.
operations Returns the valid operations for command.
show Returns the event type schema for a event type.

Related Information

Commands:

emsevent commands

emsevent catalog

emsevent delete

emsevent operations

emsevent show

174 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsevent operations

Purpose

Returns a list of operations supported by the object.

Format

emsevent operations

Usage

The emsevent operations command returns a list of operations supported by the
object. It takes no arguments and always returns a TCL list suitable for use in a
‘foreach’ statement. The order of the elements is alphabetical with the exception
that help and operations are listed last.

Privilege Required

No special privileges are needed to use the emsevent operations command.

Examples
dcecp> emsevent operations
catalog delete show help operations

Related Information

Commands:

emsevent commands

emsevent catalog

emsevent delete

emsevent help

emsevent show

Chapter 12. Event Management Service (EMS) 175

emsevent show

Purpose

Returns the event type schema for a event type.

Format

emsevent show event_type [-host dce_hostname]

Argument
event_type

Name of the event type.

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Usage

The emsevent show command returns the event type schema for a event type. A
list of attribute name-type pairs is displayed.

Privilege Required

You must have read (r) permission on /.:/hosts/<dce_hostname>/ems-server/event-
types/<event_type>

Examples
dcecp> emsevent show SVC

{version ems_c_attr_ulong_int}
{t ems_c_attr_utc}
{argtypes ems_c_attr_char_string}
{table index ems_c_attr_ulong_int}
{attributes ems_c_attr_ulong_int}
{message index ems_c_attr_ulong_int}
{format ems_c_attr_char_string}
{file ems_c_attr_char_string}
{progname ems_c_attr_char_string}
{line ems_c_attr_ulong_int}
{threadid ems_c_attr_ulong_int}
{component name ems_c_attr_char_string}
{sc_name ems_c_attr_char_string}
{attribute.debug ems_c_attr_ushort_int}
{attribute.severity ems_c_attr_ushort_int}
{attribute.actroute ems_c_attr_ulong_int}

Related Information

Commands:

emsevent commands

emsevent catalog

emsevent delete

emsevent help

176 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsevent operations

Chapter 12. Event Management Service (EMS) 177

emsfilter commands

Purpose

Manages EMS event filters on a DCE host.

Format
emsfilter catalog [-host dce_hostname]

emsfilter delete filtername [-host dce_hostname]

emsfilter help [operation | -verbose]

emsfilter operations

emsfilter show filtername [-host dce_hostname]

Argument
filtername

A filter name.

operation
The name of one specific emsfilter operation (subcommand) you want to
see help information about.

Usage

The emsfilter object represents EMS event filters that are kept by the EMS daemon.
The EMS event filters are applied by EMS to events received from suppliers to
determine if the events are to be forwarded on to the consumers.

An EMS event filter is a collection of one or more filter expressions. Each filter
expression consists of an attribute name, an attribute operator, and an attribute
value.

This command operates on the EMS daemon on the local host, unless the -host
option is specified. The format of the host name accepted is either an entire DCE
name (/.:/hosts/jurassic.austin.ibm.com) or a host name with domain name
(jurassic.austin.ibm.com).

Related Information

Commands:

emsconsumer commands

emsfilter catalog

emsfilter delete

emsfilter help

emsfilter operations

emsfilter show

178 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsfilter catalog

Purpose

Returns a list of names of all filters from EMS on a host.

Format

emsfilter catalog [-host dce_hostname]

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Usage

The emsfilter catalog command returns a list of names of all filters from EMS on a
host. The filter names returned are in alphabetical order and not in the order
received by EMS.

Privilege Required

You must have read (r) permission on /.:/hosts/<dce_hostname>/ems-server/filters.

Examples

In the following example, there are two filters kept by the EMS daemon:
dcecp> emsfilter catalog
Filter1
Filter2

Related Information

Commands:

emsconsumer commands

emsfilter commands

emsfilter delete

emsfilter help

emsfilter operations

emsfilter show

Chapter 12. Event Management Service (EMS) 179

emsfilter delete

Purpose

Deletes a filter and its associated filter expressions.

Format

emsfilter delete filtername [-host dce_hostname]

Argument
filtername

A filter name.

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Usage

The emsfilter delete command deletes a filter and its associated filter expressions.
The argument is an event filtername to be deleted. If the filter to be deleted is
currently being used by at least one consumer, it cannot be deleted and an error
message is displayed. The command returns an empty string on success.

Privilege Required

You must have delete (d) permission on /.:/hosts/<dce_hostname>/ems-
server/filters/<filtername>.

Examples
dcecp> emsfilter delete Filter1
dcecp>

Related Information

Commands:

emsconsumer commands

emsfilter commands

emsfilter catalog

emsfilter help

emsfilter operations

emsfilter show

180 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsfilter help

Purpose

Returns help information on the object.

Format

emsfilter help [operation | -verbose]

Argument
operation

The name of one specific emsfilter operation (subcommand) you want to
see help information about.

Options
-verbose

Returns detailed information about the emsfilter commandsobject.

Usage

The emsfilter help command returns help information on the object. The help
operation takes an argument, which may be an operation supported by the object or
the -verbose switch to return more information.

Privilege Required

No special privileges are needed to use the emsfilter help command.

Examples
dcecp> emsfilter help
catalog Returns a list of names of all filters from EMS on a host.
delete Deletes a filter and its associated filter expressions.
help Prints a summary of command-line options.
operations Returns the valid operations for command.
show Returns a list of filter expressions in a specified filter.

Related Information

Commands:

emsconsumer commands

emsfilter commands

emsfilter catalog

emsfilter delete

emsfilter operations

emsfilter show

Chapter 12. Event Management Service (EMS) 181

emsfilter operations

Purpose

Returns a list of operations supported by the object.

Format

emsfilter operations

Usage

The emsfilter operations command returns a list of operations supported by the
object. It takes no arguments, and always returns a TCL list suitable for use in a
‘foreach’ statement. The order of the elements is alphabetical with the exception
that help and operations are listed last.

Privilege Required

No special privileges are needed to use the emsfilter operations command.

Examples
dcecp> emsfilter operations
catalog delete show help operations

Related Information

Commands:

emsconsumer commands

emsfilter commands

emsfilter catalog

emsfilter delete

emsfilter help

emsfilter show

182 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emsfilter show

Purpose

Returns a list of filter expressions in a specified filter.

Format

emsfilter show filtername [-host dce_hostname]

Argument
filtername

A filter name.

Options
-host dce_hostname

Specifies the host where the EMS Daemon is running. The format of the
host name is either an entire DCE name or a host name with a domain
name.

Note: The DCE host name is case-sensitive.

Usage

The emsfilter show command returns a list of filter expressions in a specified filter.
The argument is a filter name to be shown.

Privilege Required

You must have read (r) permission on /.:/hosts/<dce_hostname>/ems-server/filters.

Examples
dcecp> emsfilter show Filter2
{event_type == SVC}
{file == file.c}

Related Information

Commands:

emsconsumer commands

emsfilter commands

emsfilter catalog

emsfilter delete

emsfilter help

emsfilter show

Chapter 12. Event Management Service (EMS) 183

emslog commands

Purpose

Manage EMS log files on the current host.

Format
emslog help [operation | -verbose]

emslog operations

emslog show [-dir directory] [-to file]

Argument
operation

The name of one specific emslog operation (subcommand) you want to
see help information about.

Usage

The emslog object represents the EMS event log, which is used to store events in
case of failures of the EMS daemon. The EMS daemon writes all events to the
event log and deletes the event record after the event has been transmitted to all
the consumers designated to get the event.

The event log is kept in a file on the machine where EMS daemon is running. This
command operates on the EMS daemon on the local host.

Related Information

Commands:

emsevent commands

emslog help

emslog operations

emslog show

184 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emslog help

Purpose

Returns help information on the object.

Format

emslog help [operation | -verbose]

Argument
operation

The name of one specific emslog operation (subcommand) you want to
see help information about.

Options
-verbose

Displays information about the emslog commands object.

Usage

The emslog help command returns help information on the object. The help
operation takes an argument, which may be an operation supported by the object or
the -verbose switch to return more information.

Privilege Required

No special privileges are needed to use the emslog help command.

Examples
dcecp> emslog help
help Prints a summary of command-line options.
operations Returns the valid operations for command.
show Returns a list of events in the event log file.

Related Information

Commands:

emsevent commands

emslog commands

emslog operations

emslog show

Chapter 12. Event Management Service (EMS) 185

emslog operations

Purpose

Returns a list of operations supported by the object.

Format

emslog operations

Usage

The emslog operations command returns a list of operations supported by the
object. It takes no arguments, and always returns a TCL list suitable for use in a
‘foreach’ statement. The order of the elements is alphabetical with the exception
that help and operations are listed last.

Privilege Required

No special privileges are needed to use the emslog operations command.

Examples
dcecp> emslog operations
show help operations

Related Information

Commands:

emsevent commands

emslog commands

emslog help

emslog show

186 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

emslog show

Purpose

Returns a list of events in the event log file.

Format

emslog show [-dir directory] [-to file]

Options
-dir directory

Specifies the directory where the log file is stored.

-to file Specifies the name of the file that the output is captured into.

Usage

The emslog show command returns a list of events in the event log file.

Privilege Required

No special privileges are needed to use the emslog show command.

Examples
dcecp> emslog show
--- Start of an EMS event record ---
Type: SVC:Event Id: 8d1b0b00-e9e7-11ce-8af3-10005a890435
Name Service: DCE /.../eagle_dce/hosts.hidalgod.austin.ibm.com
Description Name: EMS_Test_Producer
PID: 565 UID: 0 GID: 0
Severity: NOTICE
Arrival Time: 1995-09-08-14:06:32.970+00:00I-----
Printing 16 items
Item 1: [version] = ulong init 1
Item 2: [t] = 1995-09-08-14:06:32.970+00:00I-----
Item 3: [argtypes] = char string
Item 4: [table_index] = ulong int 0
Item 5: [attributes] = ulong int 64
Item 6: [message_index] = unlon int 389738500
Item 7: [format] = char string Test Supplier starting
Item 8: [file] = char string supplier.c
Item 9: [progname] char string EMS_Test_Producer
Item 10: [line] = ulong int 63
Item 11: [threadid] = ulong int 2
Item 12: [component_name] = char string sup
Item 13: [sc_name] = char string general
Item 14: [attribute.debug] = ushort int 0
Item 15: [attribute.severity] = ushort int 4
Item 16: [attribute.actroute] = ulong int 0
--- End of an EMS event record ---

Related Information

Commands:

emsevent commands

emslog commands

emslog help

emslog show

Chapter 12. Event Management Service (EMS) 187

emsd

Purpose

Starts the DCE Event Management Services Daemon.

Format
emsd [-l log_directory] [-q queue_size]
[-w svc_route...-w
svc_route]

Options
-l log_directory

Specifies where the log file resides.

-q queue_size
Specifies the maximum number of events that are queued by EMS. The
default size is 512. This value can also be set by setting the
EMS_QUEUE_SIZE environment variable. Specifying the -q option
overrides the environment variable setting.

-w svc_route
Specifies DCE serviceability routing instructions.

Usage

The emsd command starts the Event Management Service (EMS) daemon. An
EMS daemon must be running in the DCE cell before a consumer can receive
events or a supplier can supply events. The EMS daemon runs under the local host
machine principal identity (host/ dce_hostname/self). A DCE Host daemon (dced)
must be running on the local host when emsd is started. The emsd command also
requires a cdsadvertiser .

Privilege Required

No special privileges are needed to use the emsd command.

Examples
emsd -q 2048 -l /opt/dcelocal/var/ems emsd -w NOTICE:STDOUT:-
-w NOTICE_VERBOSE:STDOUT-:-

188 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

DCE Event Management Service API

The DCE Event Management Service (EMS) manages event services in a DCE
cell. EMS consists of three parts:

v The event supplier interface

Provides support for suppliers. A supplier can be any DCE-based user application
that emits event data.

v The EMS daemon (emsd)

Performs the following tasks:

– Authenticating and authorizing event suppliers and consumers

– Keeping databases of event types, event filters, and consumers

– Associating an event filter group with each event consumer

– Ensuring reliable delivery of events to interested consumers

v The event consumer interface

Provides support for the steps required to implement an event consumer. An
event consumer performs the following tasks:

– Query EMS for supported event types

– Get a list of existing filter names

– Construct event filters for each event type

– Add event filters to its event filter group

Note: The event consumer must be registered with EMS and must set up event
filter groups before it can receive events.

The EMS API provides the following structures and interfaces:

EMS Data Structures

EMS Registration Routines

EMS Event Type Routines

EMS Supplier Routine

EMS Event Filter Routines

EMS Consumer Routines

EMS Management Routines

EMS Data Structures

The data structures for EMS are grouped by function. The groups include the
following:

v “EMS Event Attributes” on page 190

v “EMS Event Structure” on page 191

v “Event Types” on page 194

v “EMS Event Filters” on page 194

v “EMS Consumer Data Structures” on page 197

v “EMS Server Data Structure” on page 197

Chapter 12. Event Management Service (EMS) 189

EMS Event Attributes
ems_attr_type_t

An unsigned16 integer that is used to specify the data type of an event
attribute. The attribute type specifies the format of the data in the event
attribute value union (ems_attr_value_t). An event attribute type can be
one of those in the following table:

Table 9. Consumer Database Permission Bits

Attribute Type Data Type Tagged Union Field Name

ems_c_attr_small_int idl_small_int small_int

ems_c_attr_short_int idl_short_int short_int

ems_c_attr_long_int idl_long_int long_int

ems_c_attr_hyper_int idl_hyper_int hyper_int

ems_c_attr_usmail_int idl_usmall_int usmall_int

ems_c_attr_ushort_int idl_ushort_int ushort_int

ems_c_attr_ulong_int idl_ulong_int ulong_int

ems_c_attr_uhyper_int idl_uhyper_int uhyper_int

ems_c_attr_short_float idl_short_float short_float

ems_c_attr_long_float idl_long_float long_float

ems_c_attr_boolean idl_boolean bool

ems_c_attr_uuid uuid_t uuid

ems_c_attr_utc utc_t * utc

ems_c_attr_severity ems_severity_t severity

ems_c_attr_acl sec_acl_t* acl

ems_c_attr_byte_string idl_byte* byte_string

ems_c_attr_char_string idl_char* char_string

ems_c_attr_bytes ems_bytes_t bytes

Byte strings and character strings are terminated with a 0 (zero) byte. The
pickling service of the IDL compiler can be used to encode complex data
types into byte strings that are to be included in an EMS event.

ems_bytes_t
A data type to define data stored as bytes. This type contains two fields:

size An integer of type unsigned32 that indicates the size of the byte
data.

data The byte data.

ems_attr_value_t
A self-defining data structure that has an attribute type specifier (format)
that tells what type of data is in the union, and then appropriate union
members to hold the value of the data specified. The format field is of type
ems_attr_type_t , and can contain only one of the tagged union fields
described in Table 8 on page 156.

ems_attribute_t
A structure that contains an event attribute name-type pair that defines an
event attribute. The ems_event_t data type contains an array of
ems_attribute_t structures. Event attributes can be used in defining the

190 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

event types in event type schemas, and in defining event filters in event
filter expressions. The ems_attribute_t data type contains two fields:

attr_name
A name of type ems_string that specifies the attribute name.

attr_type
A value of type ems_attr_value_t that specifies the format of the
attribute value.

EMS Event Structure

The following data types define an event:

ems_event_type_t.
A variable that defines the type of event. Events can have one of two
default types:

ems_c_generic_type
Generic

Events of type generic do not have event type schemas associated
with them, and can only be filtered by expressions with header
attributes in them. This is a uuid_t data type. To examine the value
in this variable, use the uuid_compare routine.

ems_c_svc_type
SVC

ems_eventid_t
A structure that contains the unique identifier for an event. The event
identifier contains the following fields:

type An event type of ems_event_type_t

id An identifier of type uuid_t that is unique to a specific event.

ems_netname_t
A structure containing the network name of a given host machine.

ems_nameservice_t
An enumerated data type that specifies the name service that recognizes
the given network name. The possible values are:

ems_ns_other
The name service is other than listed.

ems_ns_dns
DNS name service.

ems_ns_dce
DCE CDS name Service, the only value supported in this release.

ems_ns_x500
X500.

ems_ns_nis
NIS.

ems_ns_sna
SNA network.

ems_netaddr_t
A structure that contains the network name. The name is interpreted

Chapter 12. Event Management Service (EMS) 191

according to the name service specified in ems_nameservice_t . The
ems_netaddr_t structure contains the following fields:

len An unsigned short integer containing the length of the address.

name The name, in an appropriate format. The name is of type
ems_octet_t , and is of length len. The ems_octet_t data type is
char .

For a DCE hostname, the following example sets the ems_netname_t
structure called netname:
static char * dce_hostname = "/.:/hosts/eagle.austin.ibm.com";
ems_netname_t netname;

netname.service = ems_ns_dce;
netname.netaddr->len = strlen(dce_hostname)+1;
netname.netaddr->name = (char *)malloc(netname.netaddr->len);
strcpy(netname.netaddr->name, dce_hostname);

ems_origin_t
A structure that indicates where the event originated; that is, the name of
the host where the supplier is running, the name of the supplier, and the
supplier process identification. These values may not be valid for all hosts.
This structure contains the following fields:

netname
The network name of the originator host, of type ems_netname_t .

descname
The descriptive name of the supplier, of type char * .

pid The process ID of the originator, of type unsigned32 . This ID is
operating system-dependent.

uid The user ID of the originator, of type unsigned32 . This ID is
operating system-dependent.

gid The group ID of the originator, of type unsigned32 . This ID is
operating system-dependent.

ems_severity_t
An enumerated variable that specifies the severity of the event. The names
have a one-to-one correspondence to DCE SVC severity attribute values.
The event severity can have one of the following values:

ems_sev_info
Information event.

ems_sev_fatal
Fatal event.

ems_sev_error
Alert event.

ems_sev_warning
Warning event.

ems_sev_notice
Notice event.

ems_sev_notice_verbose
Notice Verbose event.

ems_sev_debug
Debug event.

192 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_hdr_t
A structure containing the header of the ems_event_t data structure. The
header contains the following fields:

eventid
The event identifier, of type ems_eventid_t .

origin The event origin, of type ems_origin_t .

severity
The event severity, of type ems_severity_t .

received
A timestamp indicating the time the event was received. This
timestamp is of type utc_t and is set by the EMS daemon.

delivered
A timestamp indicating the time the event was delivered to the
consumer. This timestamp is of type utc_t and is set by the
consumer.

A set of filter attributes is provided for event header filtering. The following
names can be used for the filter attribute in an event filter expression.

Attribute Name
Attribute Type

eventid.id
ems_c_attr_uuid

eventid.type
ems_c_attr_uuid

origin.netname.service
ems_c_attr_ulong

origin.netname.netaddr
ems_c_attr_bytes

origin.descname
ems_c_attr_char_string

origin.pid
ems_c_attr_ulong

origin.uid
ems_c_attr_ulong

origin.gid
ems_c_attr_ulong

severity
ems_c_attr_ulong

received
ems_c_attr_utc

ems_event_t
A structure containing a fixed header and a variable array. The fields are as
follows:

header
The event header, a structure of type ems_hdr_t .

Chapter 12. Event Management Service (EMS) 193

count An integer of type unsigned32 , which contains the number of data
items in the item array.

item An array of size count, containing ems_attribute_t attributes. Each
data item is a self-defining value that contains an attribute type and
attribute data.

Event Types

The EMS event type structures are used to define the EMS event types.

ems_event_type_schema_t
A structure that is used to define an event type. The event type schema
specifies only the fixed part of an event. Although the fixed part of an event
must match the event type schema, the event can have additional attributes
that are unnamed in the schema. The ems_event_type_schema_t
structure contains the following list of attributes:

type A structure of type ems_event_type_t containing an event type ID.

name A pointer to a character string that specifies the name of the event
type.

size A long integer that contains the number of attributes in the attribute
array.

attribute
An array of event type attributes of type ems_attribute_t describing
the format of this event type. This array has size elements.

ems_event_type_list_t
A structure that contains a list of event type schemas. The structure
contains the following fields:

size A long integer containing the number of event type schemas.

schema
An array of size size of type ems_schema_ptr_t , which is defined
as:
typedef [ptr] ems_event_schema_t *ems_schema_ptr_t;

EMS Event Filters

The event filter data structures allow the definition of both event filters, and event
filter lists.

ems_attr_op_t
The attribute operator part of an event filter expression. Attribute operators
define the boolean operation to perform on the attribute name and attribute
value in an event filter expression. The possible attribute operators are:

Attribute Operator
Description

ems_c_attr_op_eq
The attr_name is equal (==) to attr_value.

ems_c_attr_op_gt
The attr_name is greater than (>) attr_value.

ems_c_attr_op_lt
The attr_name is less than (<) attr_value.

194 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_c_attr_op_ge
The attr_name is greater than or equal (>=) to attr_value.

ems_c_attr_op_le
The attr_name is less than or equal (<=) to attr_value.

ems_c_attr_op_ne
The attr_name is not equal (<>) to attr_value.

ems_c_attr_op_substr
The attr_name contains the string value specified by attr_value.

ems_c_attr_op_bitand
The attr_name that is bitwise ANDed with attr_value is greater than
0.

ems_filter_exp_t
A structure containing an event filter expression. This structure contains the
elements that are used to build an event filter. Event filter expressions
contain an attribute name, an operator, and a value that define a boolean
filter expression. The fields are:

attr_name
A pointer to a character string that contains the attribute name.

attr_operator
An attribute operator of type ems_attr_op_t .

attr_value
An attribute value of type ems_attr_value_t .

The following table describes the filter operators that are valid with each
attribute type.

Table 10. Filter Expression Operator Table

data type eq gt lt ge le ne bitand substr

small int YES YES YES YES YES YES

short int YES YES YES YES YES YES

long int YES YES YES YES YES YES

hyper int YES YES YES YES YES YES

usmall int YES YES YES YES YES YES

ushort int YES YES YES YES YES YES

ulong int YES YES YES YES YES YES

uhyper int YES YES YES YES YES YES

short float YES YES YES YES YES YES

long float YES YES YES YES YES YES

boolean YES YES

uuid YES YES YES YES YES YES

utc YES YES YES YES YES YES

severity YES YES

acl YES YES

byte string YES YES YES

char string YES YES YES YES YES YES YES

bytes YES YES YES

Chapter 12. Event Management Service (EMS) 195

ems_filter_exp_list_t
A structure containing a list of event filter expressions. This structure groups
filter expressions together in a list to form an ANDed filter expression used
to define an event filter. The structure contains the following fields:

size A long integer indicating the number of filter expressions in the
filter_exps array.

filter_exps
An array of filter expressions of type ems_filter_exp_t .

ems_filter_t
An event filter specifies a series of event filter expressions thatare ANDed
together to perform a filter operation. The event filter structure contains the
following fields:

filter_name
The event filter name, which is entered in the CDS name space.
This name is of type ems_string_t .

type A structure of type ems_event_type_t that contains the type of
event filter.

filter_exp_list
A list of filter expressions of type ems_filter_exp_list_t .

Filters with an event type of generic can only have filter expressions with
header attribute names in them. (See the event header attributes listed in
ems_hdr_t .)

The following example illustrates how to create a filter:
/*--*
* Create a filter that specifies all the events *
* received between 1 and 2 AM GMT. *
--/
ems_filter_exp_list_t * el = (ems_filter_exp_list_t *)

malloc(sizeof(ems_filter_exp_list_t)+(1*sizeof(ems_filter_exp_t));
el->size = 0;
el->filllter_exps[el->size].attr_name = (unsigned char *)"received.tod";
el->filter_exps[el->size].attr_operator = ems_c_attr_op_le;
el->filter_exps[el->size].attr_value.format = ems_c_attr_char_string;
el->filter_exps[el->size].attr_value.tagged_union.char_string = "0200";
el->size++;
el->filter_exps[el->size].attr_name = (unsigned char *)"received.tod";
el->filter_exps[el->size].attr_operator = ems_c_attr_op_gt;
el->filter_exps[el->size].attr_value.format = ems_c_attr_char_string;
el->filter_exps[el->size].attr_value.tagged_union.char_string = "0100";
el->size++;

ems_string_t
A pointer to a character string used to describe filter names.

ems_filtername_list_t
A structure containing a list of event filter names. This event filter list
contains the following fields:

size A long integer that contains the number of names in the
filter_names array.

filter_names
An array containing event filter names of type ems_string_t .

196 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_filter_list_t
A structure that contains an event filter list. The structure contains the
following fields:

size A long integer that contains the number of event filters in the filters
array.

filters An array of pointers to ems_filter_t structures that describe filters.

EMS Consumer Data Structures

These data structures make up the Consumer database in EMS.

ems_consumer_t
A structure that defines an EMS consumer. Each consumer has the
following fields:

name A character string containing the DCE name of the consumer, which
is entered in CDS.

hostname
The DCE host name where the consumer is running, of type
ems_netname_t .

uuid A uuid_t identifier unique to that consumer.

ems_consumer_list_t
A structure that contains a list of consumer entries. The structure has the
following fields:

size A long integer containing the number of entries in the consumer
array.

consumer
An array of ems_consumer_t structures that contain consumer
information.

EMS Server Data Structure
ems_attrlist_t

The attribute list data structure defines a list of server attributes. Each
attribute is a value maintained by an emsd server. The attribute list can be
used to query those values. The attribute list contains the following fields:

size A long integer describing the number of attributes in the attr array.

attr An array of event type attributes of type ems_attribute_t .

EMS Registration Routines

The EMS API allows event suppliers and consumers to register with the EMS
daemon. The EMS registration step provides a handle that is used for all future
EMS operations. The registration step is required for all event suppliers and
management applications. The following routines allow suppliers and management
applications to register with the EMS daemon:

ems_register
Obtains an EMS handle for future calls to EMS routines.

ems_unregister
Frees the resources obtained by a call to ems_register .

Chapter 12. Event Management Service (EMS) 197

EMS Event Type Routines

The EMS API allows event suppliers and consumers to get a list of event types
from the EMS daemon. All events processed by the event service have an event
type. Event types can be either generic or defined by an event type schema. The
formats of EMS event types are defined by event type schemas and are kept in the
EMS Event Type database.

A consumer can request a list of supported event types and select the event types
it wants to receive by using the event type schemas to construct event filters and to
map event data according to attribute names. For example, an event consumer can
reconstruct an SVC message by using the attribute names to find the correct data
items.

Suppliers use event type schemas to define new event types that they intend to
produce. EMS uses the event type schemas to apply event filters to events.

The event service keeps a database of event types that consists of event type
schemas. The following routines allow you to manipulate the event types in the
event type database:

ems_event_type_free_list
Frees the list of event type schemas.

ems_event_type_get_list
Gets a list of event type schemas from the Event Type Database.

EMS Supplier Routine

The following routine allows event suppliers to send events to the EMS daemon:

ems_supplier_send
Sends an event to EMS.

EMS Event Filter Routines

Filters are the mechanism used by suppliers and consumers to control which events
are sent through the event channel. Filtering is applied by the EMS daemon before
forwarding events to consumers. The EMS API supports filtering by allowing event
suppliers, consumers, and system administrators to manipulate the EMS Event
Filter database. The event filter routines are as follows:

ems_filter_add
Adds a filter to the Event Filter Database.

ems_filter_append
Appends filter expressions to the Event Filter Database.

ems_filter_get
Gets the contents of an event filter.

ems_filter_delete
Deletes a filter from the Event Filter Database.

ems_filter_get_namelist
Gets a list of the names of all filters in the Event Filter Database.

ems_filter_free
Frees an event filter.

198 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_filter_free_namelist
Frees a list of event filter names.

ems_filter_get_list
Gets a list of all the filters in the Event Filter Database.

ems_filter_free_list
Frees the list of filters.

EMS Consumer Routines

All event consumers must call the EMS event consumer setup routines before
receiving EMS events. In DCE terms, EMS event consumers are both clients and
servers. The following steps are required to implement an event consumer:

1. Set up as a DCE server.

2. Register an event handler with the EMS daemon to receive events.

3. Register with the EMS daemon.

4. Create filters to control the events forwarded from the daemon.

5. Start listening for events.

The EMS daemon maintains a consumer database to keep track of all registered
consumers. Registering and unregistering with the EMS daemon adds and deletes
consumers to and from the database.

The following routines set up the consumers using DCE RPC, and set up the event
handler routines.

ems_add_filter_to_group
Adds a filter name to a consumers event filter group.

ems_consumer_handler_register
Registers a consumers event handler.

ems_consumer_register
Registers a consumer with EMS.

ems_consumer_start
Starts an event consumer.

ems_consumer_stop
Stops an event consumer.

ems_consumer_unregister
Unregisters a consumer with EMS.

ems_delete_filter_from_group
Deletes a filter name from a consumers event filter group.

ems_get_filter_group
Gets the list of filter names that comprise a consumers event filter group.

EMS Management Routines

The EMS Management interface provides a means to manage various aspects of
EMS. Using this interface, applications can manage event consumers, event filters,
and the EMS event log. System administrators can also use dcecp to manage the
same set of resources.

Chapter 12. Event Management Service (EMS) 199

EMS also offers an interface to the EMS event log. This interface allows
management applications to manipulate event logs. The log interface is a local
interface only, and can only be run on the machine that runs the emsd server.

The EMS event log is used to store events in case of EMS failures. EMS writes all
events to the event log, and deletes the event record after the event has been
transmitted to all consumers designated to receive the event. The event log is kept
in a file on the machine where emsd is running. Routines are provided to examine
local event logs.

ems_mgmt_free_attributes
Frees a list of emsd server attributes.

ems_mgmt_free_consumers
Frees a list of consumers obtained from ems_mgmt_list_consumers .

ems_mgmt_free_ems
Frees a list of EMS host names obtained from ems_mgmt_list_ems .

ems_mgmt_list_ems
Lists all hosts running emsd s.

ems_mgmt_list_attributes
Lists attributes for a specific emsd .

ems_mgmt_list_consumers
Lists consumers registered with EMS.

ems_mgmt_delete_consumer
Deletes a consumer from the Consumer Database.

ems_mgmt_delete_filter_from_group
Deletes a filter name from a consumers filter group.

ems_mgmt_add_filter_to_group
Adds a filter name to a consumer’s filter group.

ems_mgmt_get_filter_group
Gets the list of names in a consumer’s filter group.

ems_log_open
Opens an EMS event log.

ems_log_read
Reads events from an EMS event log.

ems_log_close
Closes an EMS event log.

ems_log_rewind
Rewinds an EMS event log.

200 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_add_filter_to_group

Purpose: Adds an event filter to a group.

Format:
#include <dce/ems.h>

void ems_add_filter_to_group
(ems_handle_t handle,
ems_filtername_list_t *event_filters,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from
ems_consumer_register .

event_filters
A pointer to a list of one or more event filter names to add to this consumer
event filter group. Consumers can use the names of new event filters after
building them with the ems_filter_add routine or existing filters that can be
obtained by using the ems_filter_get_namelist routine.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, the routine returns one of the following
error codes:

ems_s_insufficient_permission
The routine does not have permission to perform the operation.

ems_s_filter_list_empty
event_filters contains no event filter names.

ems_s_filtername_exists
An event filter in event_filters already exists in the consumer event
filter group.

ems_s_no_memory
Error allocating memory.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_add_filter_to_group routine is used by EMS event consumers
to add event filter names to a consumer event filter group. This routine can be
called multiple times for each consumer.

Permission Required: (w) on /.:/hosts/dce_hostname/ ems-server/consumers

Chapter 12. Event Management Service (EMS) 201

ems_consumer_handler_register

Purpose: Registers a consumer event handler.

Format:
#include <dce/ems.h>

void ems_consumer_handler_register(
ems_handler_t hfunc,
error_status_t *status);

Parameters:

Input

hfunc Specifies the name of the event handler function. The handler signature
should be:
typedef void (*ems_handler_t) (ems_event_t *event,

error_status_t *status);

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, the routine returns one of the following
error codes:

ems_s_no_memory
Error allocating memory.

ems_s_mutex_init
Error initializing event queue.

ems_s_cond_variable_init
Error initializing event queue.

ems_s_pthread_create
Error initializing event queue.

ems_s_consumer_not_started
Event consumer has not been started.

Usage: The ems_consumer_handler_register routine declares the event
consumer event handler. The event consumer developer is responsible for providing
the handler to process events.

This routine does not make any RPC calls to EMS.

202 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_consumer_register

Purpose: Registers a consumer.

Format:
#include <dce/ems.h>

void ems_consumer_register(
ems_netname_t *dce_hostname,
ems_filtername_list_t *filter_group,
ems_handle_t *handle,
error_status_t *status); /* register status */

Parameters:

Input

dce_hostname
A pointer to the name of the DCE host machine where emsd is running. If
the DCE host name is NULL, then the local host is assumed.

Note: dce_hostname is case sensitive.

filter_group
A pointer to a list of event filter names that define this consumer initial event
filter group. If filter_group is empty, no filter group is specified, and EMS
doesl not forward any events to this consumer until the consumer makes a
call to ems_add_event_to_group .

Output

handle Returns an EMS handle that can be used on subsequent calls to EMS
routines.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns one of the following status
codes:

ems_s_no_memory
Error allocating memory.

ems_no_consumer_handler
Error calling ems_consumer_register before an event handler was
registered with ems_consumer_handler_register .

ems_s_already_registered
Consumer with this name already registered.

ems_s_mutex_init
Error initializing event queue.

ems_s_cond_variable_init
Error initializing event queue.

ems_s_pthread_create
Error initializing event queue.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_consumer_not_started
Event consumer has not been started.

ems_s_unsupported_nameservice
Nameservice is not supported.

Chapter 12. Event Management Service (EMS) 203

Usage: The ems_consumer_register routine is used by EMS event consumers
to register with EMS. This routine should be called once for each DCE host that this
consumer wants to receive events from. This routine must be called after a call to
ems_consumer_start .

Permission Required: (i) on /.:/hosts/dce_hostname/ ems-server/consumers

204 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_consumer_start

Purpose: Starts a consumer.

Format:
#include <dce/ems.h>

void ems_consumer_start(
char *consumer,
unsigned32 flags,
error_status_t *status);

Parameters:

Input

consumer
A pointer to the consumer name. This name must be unique and is
registered in the CDS namespace under
/.:/hosts/ dce_hostname/ems/consumers . The name is used by the
administrative interface to refer to this consumer.

flags Reserved for future use.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_no_memory
Error allocating memory.

ems_s_consumer_already_started
consumer already started.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_consumer_start routine should be called at the beginning of
each event consumer before making any register calls. It creates an object UUID to
uniquely identify this event consumer and register its endpoint so that EMS can
send this consumer event data.

This routine does not make any RPCs to EMS.

Chapter 12. Event Management Service (EMS) 205

ems_consumer_stop

Purpose: Stops a consumer.

Format:
#include <dce/ems.h>

void ems_consumer_stop(
error_status_t *status);

Parameters:

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns
ems_s_consumer_not_started , which indicates that the specified event
consumer has not been started.

Usage: The ems_consumer_stop routine should be called at the end of each
event consumer after a call to ems_s_consumer_start . It unregisters the endpoint
of this event consumer and breaks the thread that was created by the consumer
event handler interface to receive all events from EMS.

This routine does not make any RPCs to EMS.

206 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_consumer_unregister

Purpose: Unregisters a consumer.

Format:
#include <dce/ems.h>

void ems_consumer_unregister(
ems_handle_t *handle,
error_status_t *status);

Parameters:

Input

handle A handle returned from a call to ems_consumer_register . This routine
frees memory used by handle and sets handle to NULL.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_unknown_consumer
Tried to unregister a consumer that was not registered.

ems_s_consumer_not_started
Consumer has not been started.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

Usage: The ems_consumer_unregister routine is used by EMS event
consumers to unregister with EMS. This routine should be called once for each call
to ems_consumer_register . The event consumer should call this routine before
calling the ems_consumer_stop routine.

Permission Required: (d) on /.:/hosts/dce_hostname/ ems-server/consumers

Chapter 12. Event Management Service (EMS) 207

ems_delete_filter_from_group

Purpose: Deletes an event filter from a group.

Format:
#include <dce/ems.h>

void ems_delete_filter_from_group(
ems_handle_thandle,
ems_filtername_list_t *filter_name,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from
ems_consumer_register .

filter_name
A pointer to the event filter names to delete from the consumer’s event filter
group.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_filter_list_empty
No filter names were specified for deletion.

ems_s_filtername_not_there
Specified filter name to delete not in group.

ems_s_no_memory
Error allocating memory.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_delete_filter_from_group routine is used by EMS event
consumers to delete event filter names from consumer event filter groups.

Permission Required: (w) on /.:/hosts/dce_hostname/ ems-server/consumers

208 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_event_type_add

Purpose: Adds an event type.

Format:
#include <dce/ems.h>

void ems_event_type_add(
ems_handle_t handle, /* EMS handle */
ems_event_schema_t * schema, /* event type schema to add */
error_status_t * status); /* request status */

Parameters:

Input

handle A handle returned from a call to ems_register call.

schema
An EMS event type schema that describes the format of an event type.

Output

status Returns the status code from this routine, which indicates whether the
routine completed successfully or not. Possible status codes include:

error_status_ok
Indicates success.

ems_s_invalid_handle
Handle parameter is not valid.

ems_s_eventtype_exists
The event type already exists.

ems_s_insufficient_permission
The caller does not have permission to perform this operation.

ems_s_invalid_event_type
The event schema is not valid.

Usage: This routine is used by an event supplier to add new event types to the
EMS event type Database. A supplier can add a new event type and then start
producing that event type by transmitting events to EMS.

Permission Required: (i) on /.:/hosts/hostname/ems-server/event-types

Chapter 12. Event Management Service (EMS) 209

ems_event_type_delete

Purpose: Deletes an event type.

Format:
#include <dce/ems.h>

void ems_event_type_delete(
ems_handle_t handle, /* EMS handle */
char * type_name, /* event type name */
error_status_t * status) ; /* request status */

Parameters:

Input

handle A handle returned from a call to ems_register().

type_name
The name of an EMS event type.

Output

status Returns the status code from this routine, which indicates whether the
routine completed successfully or not. Possible status codes include:

error_status_ok
Indicates success.

ems_s_invalid_handle
Handle parameter is not valid.

ems_s_insufficient_permission
The caller does not have permission to perform this operation.

ems_s_event_type_not_found
The specified event type was not found.

ems_s_invalid_name
The event type name specified a name that is not valid.

Usage: This routine is used by an event supplier to delete an event type in the
EMS event type Database.

Permission Required: (d) on /.:/hosts/hostname/ems-server/event-types,

or

(d) on /.:/hosts/hostname/ems-server/event-types/type_name

210 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_event_type_free_list

Purpose: Frees an event type list.

Format:
#include <dce/ems.h>

void ems_event_type_free_list(
ems_event_type_list_t **type_list,
error_status_t *status);

Parameters:

Input

type_list
A pointer to an event type list as returned by ems_event_type_get_list .
This routine sets type_list to NULL.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok .

Usage: The ems_event_type_free_list routine is used by callers of
ems_event_type_get_list to free the storage used by an event type list.

Chapter 12. Event Management Service (EMS) 211

ems_event_type_get

Purpose: Gets an event type

Format:
#include <dce/ems.h>

void ems_event_type_get(
ems_handle_t handle, /* EMS handle */
char * type_name, /* event type name */
ems_event_schema_t** schema, /* event type schema */
error_status_t * status); /* request status */

Parameters:

Input

handle Should be the handle returned from a call to ems_consumer_register call ().

type_name
The event type name to retrieve from the event type database.

Output

schema
Returns the requested event type schema.

status Returns the status code from this routine, which indicates whether the
routine completed successfully or not. Possible status codes include:

error_status_ok
Indicates success.

ems_s_invalid_handle
Handle parameter is not valid.

ems_s_insufficient_permission
The caller does not have permission to perform this operation.

ems_s_invalid_name
The event type name specified a name that is not valid.

ems_s_event_type_not_found
The requested event type was not found.

Usage: This routine is used to retrieve event type schemas from the event type
Database.

212 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_event_type_get_list

Purpose: Gets an event types list.

Format:
#include <dce/ems.h>

void ems_event_type_get_list(
ems_handle_thandle,
ems_event_type_list_t **type_list,
error_status_t *status);

Parameters:

Input

handle The handle returned from a call to ems_consumer_register .

Output

type_list
Returns the list of available event types.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_no_type_list
There is no event type list available.

ems_s_no_memory
Error allocating memory.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

Usage: The ems_event_type_get_list routine is used by EMS event consumers
to find out which event types are available to register for. The consumer can then
set up filters for attributes in one of the available event types.

Permission Required: (r) on /.:/hosts/dce_hostname/ ems-server/event-types

Chapter 12. Event Management Service (EMS) 213

ems_filter_add

Purpose: Adds an event filter.

Format:
#include <dce/ems.h>

void ems_filter_add(
ems_handle_thandle,
ems_string_t filter_name,
ems_event_type_t type,
ems_filter_exp_list_t *exp_list
error_status_t *status);

Parameters:

Input

handle A handle returned from a call to ems_consumer_register .

filter_name
Specifies the event filter name for this event filter. This name can be used
to add the event filter to a consumer’s event filter group.

type Specifies the event type that this filter is applied against.

exp_list
Pointer to a list of filter expressions that are part of the event filter
filter_name.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise it returns one of the following error
codes:

ems_s_filter_exists
The given filter name already exists.

ems_s_invalid_filter
The input parameter specifies an invalid filter.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_filter_add routine is used to add a new event filter to the EMS
Event Filter Database.

Permission Required: (i) on /.:/hosts/dce_hostname/ ems-server/filters

214 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_filter_append

Purpose: Appends to an event filter.

Format:
#include <dce/ems.h>

void ems_filter_append(
ems_handle_t handle,
ems_string_t filter_name,
ems_filter_exp_list_t *exp_list,
error_status_t *status);

Parameters:

Input

handle The handle returned from a call to ems_consumer_register .

filter_name
Specifies the name of the event filter to add the filter expressions to.

exp_list
A list of filter expressions that are added to the end of event filter
filter_name.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_filter
The input parameter specifies an invalid filter.

ems_s_filter_not_found
The specified filter was not found.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_filter_append routine is used to add filter expressions to an
event filter. The filter expressions are added to the end of the current list of filter
expressions in the event filter.

Processing: (w) on /.:/hosts/dce_hostname/ ems-server/filters/filter_name

Chapter 12. Event Management Service (EMS) 215

ems_filter_delete

Purpose: Deletes an event filter.

Format:
#include <dce/ems.h>

void ems_filter_delete(
ems_handle_t handle,
ems_string_t filter_name,
error_status_t *status);

Parameters:

Input

handle The handle returned from a call to ems_consumer_register .

filter_name
Specifies the name of the event filter to delete.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_filter_not_found
The specified filter name was not found in the filter database.

ems_s_filter_in_use
The specified filter name appears in a consumer’s event filter
group.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_filter_delete routine is used to delete an event filter from the
Event Filter Database. The name filter_name cannot be contained in any consumer
event filter group when this routine is called.

Processing: (d) on /.:/hosts/dce_hostname/ ems-server/filters/filter_name, or (d)
on /.:/hosts/dce_hostname/ ems-server/filters

216 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_filter_free

Purpose: Frees an event filter.

Format:
#include <dce/ems.h>

void ems_filter_free(
ems_filter_exp_list_t **exp_list,
error_status_t *status);

Parameters:

Input

exp_list
A pointer to a list of filter expressions to free.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns an error.

Usage: The ems_filter_free routine is used to free a list of event filter
expressions obtained by a call to the ems_filter_get routine.

Chapter 12. Event Management Service (EMS) 217

ems_filter_free_list

Purpose: Frees an event filter list.

Format:
#include <dce/ems.h>

void ems_filter_free_list(
ems_filter_list_t **filter_list,
error_status_t *status);

Parameters:

Input/Output

filter_list
A pointer to a list of event filters that make up the Event Filter Database as
returned by the routine ems_filter_get_list . On output, filter_list is set to
NULL.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok .

Usage: The ems_filter_free_list routine is used by callers of
ems_get_event_filter_database to free the storage used by an Event Filter
Database (ems_filter_db_t) structure.

218 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_filter_free_namelist

Purpose: Frees a list of event filter names.

Format:
#include <dce/ems.h>

void ems_filter_free_namelist(
ems_filtername_list_t **name_list,
error_status_t *status);

Parameters:

Input

name_list
A pointer to a list of filter names to free.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns an error.

Usage: The ems_filter_free_namelist routine is used to free a list of filter names
returned by various routines. The routines that return a list of filter names are:

ems_filter_get_namelist

ems_get_filter_group

ems_mgmt_get_filter_group

Chapter 12. Event Management Service (EMS) 219

ems_filter_get

Purpose: Gets an event filter.

Format:
#include <dce/ems.h>

void ems_filter_get(
ems_handle_t handle,
ems_string_t filter_name,
ems_event_type_t *filter_type,
ems_filter_exp_list_t **exp_list,
error_status_t *status);

Parameters:

Input

handle The handle returned from a call to ems_consumer_register .

filter_name
Specifies the name of the event filter to get.

Output

filter_type
Specifies the event type of the filter.

exp_list
A pointer to the list of filter expressions that are part of event filter
filter_name.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_filter_not_found
The specified filter name was not found in the filter database.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_filter_get routine is used to get the filter expressions in an
event filter.

Processing: (r) on /.:/hosts/dce_hostname/ ems-server/filters

220 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_filter_get_list

Purpose: Gets event filter list.

Format:
#include <dce/ems.h>

void ems_filter_get_list(
ems_handle_thandle,
ems_filter_list_t **filter_list,
error_status_t *status);

Parameters:

Input

handle A handle returned from a call to ems_consumer_register .

Output

filter_list
A pointer to a list of all the event filters in the Event Filter Database.

status A pointer to the completion code. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_empty_filter_db
No filters in database.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_filter_get_list routine is used to get a list of the event filters in
the Event Filter Database. This list should be freed using ems_filter_free_list .

Processing: (r) on /.:/hosts/dce_hostname/ ems-server/filters/filter_name

Chapter 12. Event Management Service (EMS) 221

ems_filter_get_namelist

Purpose: Lists event filter names.

Format:
#include <dce/ems.h>

void ems_filter_get_namelist(
ems_handle_t handle,
ems_filtername_list_t **name_list,
error_status_t *status);

Parameters:

Input

handle The handle returned from a call to ems_consumer_register .

Output

name_list
A pointer to a list of all the event filter names in the Event Filter Database.
The routine ems_event_filter_get can be used to show the contents of
each event filter.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_empty_filter_db
No filters in database.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

Usage: The ems_filter_get_namelist routine is used to get a list of the names of
the event filters in the Event Filter Database.

Processing: (r) on /.:/hosts/dce_hostname/ ems-server/filters

222 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_get_filter_group

Purpose: Gets a filter group.

Format:
#include <dce/ems.h>

void ems_get_filter_group(
ems_handle_t handle,
ems_filtername_list_t **filter_group,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from
ems_consumer_register .

Output

filter_group
A pointer to the list of event filter names that are in the consumer event
filter group.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
Handle that is not valid.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_consumer_not_found
The specified consumer is not registered.

Usage: The ems_get_filter_group routine returns a list of event filter names that
comprise the consumer event filter group. The requesting consumer must free the
storage allocated for filter_group.

Processing: (r) on /.:/hosts/dce_hostname/ ems-server/consumers

Chapter 12. Event Management Service (EMS) 223

ems_log_close

Purpose: Closes the event log.

Format:
#include <dce/ems.h>

void ems_log_close(
ems_log_file_t *handle,
error_status_t *status);

Parameters:

Input/Output

handle Specifies the event log file to close. On output handle is set to NULL.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns ems_s_invalid_log_handle ,
which indicates that an invalid log file handle was passed in.

Usage: The ems_log_close routine closes an event log file.

224 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_log_open

Purpose: Opens the event log.

Format:
#include <dce/ems.h>

void ems_log_open(
ems_log_file_t *log_file,
char *log_dir,
error_status_t *status);

Parameters:

Input

log_dir Directory where log directory is located. If NULL, the environment variable
EMS_EVENTLOG_DIR is checked. If EMS_EVENTLOG_DIR is not set, the
default directory is used.

Output

log_file
Log handle to use in other ems_log_* routines.

status A pointer to the completion code. If the routine completes successfully it
returns error_status_ok . Otherwise it returns one the following error codes:

ems_s_no_event_log
Event log not found.

ems_s_no_log_entries
No event log entries.

ems_s_no_memory
Error allocating memory.

Usage: The ems_log_open routine opens an EMS event log and locks the event
log database until the ems_log_close routine is called.

Chapter 12. Event Management Service (EMS) 225

ems_log_read

Purpose: Reads the event log.

Format:
#include <dce/ems.h>

void ems_log_read(
ems_log_file_t handle,
ems_event_t **event,
error_status_t *status);

Parameters:

Input

handle Specifies the open event log to read from.

Output

event A pointer to the next event in the event log.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_log_handle
Invalid log file handle passed in.

ems_s_no_more_events
No more events to read in log file.

Usage: The ems_log_read routine reads an event from the EMS event log.

226 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_log_rewind

Purpose: Rewinds the event log.

Format:
#include <dce/ems.h>

void ems_log_rewind(
ems_log_file_t handle,
error_status_t *status);

Parameters:

Input

handle Specifies the event log file to rewind.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_log_handle
An log file handle that is not valid was passed in.

ems_s_no_log_entries
No event log entries.

Usage: The ems_log_rewind routine rewinds an event log. This allows the event
log to be rewound to the beginning. This function is equivalent to calling
ems_log_close and then calling ems_log_open again.

Chapter 12. Event Management Service (EMS) 227

ems_mgmt_add_filter_to_group

Purpose: Adds a list of event filter names to an event filter group.

Format:
#include <dce/ems.h>

void ems_mgmt_add_filter_to_group(
ems_handle_t handle,
char *consumer,
uuid_t *uuid,
ems_filtername_list_t *filter_name,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from the ems_register
routine.

consumer
Specifies the consumer whose event filter group is being updated.

uuid Specifies the consumer UUID that uniquely identifies the consumer to clear.
If this parameter is NULL, then only one consumer can exist with the name
consumer.

filter_name
Specifies the list of event filter names to add.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
An invalid handle was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_mgmt_add_filter_to_group routine adds event filter names to a
consumer event filter group.

Processing: (i) on /.:/hosts/dce_hostname/ ems-server/consumers

228 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_mgmt_delete_consumer

Purpose: Clears the consumers.

Format:
#include <dce/ems.h>

void ems_mgmt_delete_consumer(
ems_handle_thandle,
char *consumer,
uuid_t *uuid,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from the ems_register
routine.

consumer
A pointer to the consumer name to clear. This name is the name returned in
the ems_consumer_list_t data structure after calling
ems_mgmt_list_consumers or the name used on the
ems_consumer_start routine.

uuid Specifies the consumer UUID that uniquely identifies the consumer to clear.
If this parameter is NULL, only one consumer can exist with the name
consumer.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
A handle that is not used was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_mgmt_delete_consumer routine clears all information stored in
EMS about the specified consumer. This means clearing the consumer filter and
then unregistering the consumer. The consumer receives notification that it is being
deleted.

Processing: (d) on /.:/hosts/dce_hostname/ ems-server/consumers

Chapter 12. Event Management Service (EMS) 229

ems_mgmt_delete_filter_from_group

Purpose: Deletes the event filter name from the event filter group.

Format:
#include <dce/ems.h>

void ems_mgmt_delete_filter_from_group(
ems_handle_t handle,
char *consumer,
uuid_t *uuid,
ems_filtername_list_t *filter_name,
error_status_t *status);

Parameters:

Output

handle Must contain a valid consumer handle obtained from the ems_register
routine.

consumer
A pointer to the consumer whose event filter group is being updated.

uuid A pointer to the consumer UUID that uniquely identifies the consumer to
clear. If this parameter is NULL, only one consumer can exist with the name
consumer .

filter_name
A pointer to the names of the filters to delete from the consumer filter
group.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
An invalid handle was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_mgmt_delete_filter_from_group routine deletes the specified
event filter names from a consumer event filter group.

Processing: (w) on /.:/hosts/dce_hostname/ ems-server/consumers

230 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_mgmt_free_attributes

Purpose: Frees a list of emsd server attributes.

Format:
#include <dce/ems.h>**

void ems_mgmt_free_attributes(
ems_attrlist_t list,
error_status_t *status);

Parameters:

Input

list A pointer to the list of attributes to free.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns an error.

Usage: The ems_mgmt_free_attributes routine frees a list of emsd server
attributes obtained by the ems_mgmt_list_attributes routine.

Chapter 12. Event Management Service (EMS) 231

ems_mgmt_free_consumers

Purpose: Frees a list of consumers obtained from ems_mgmt_list_consumers .

Format:
#include <dce/ems.h>

void ems_mgmt_free_consumers(
ems_consumer_list_t **list,
error_status_t *status);

Parameters:

Input

list A pointer to a list of consumers to free.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns an error.

Usage: The ems_mgmt_free_consumers routine frees a list of consumers
obtained from ems_mgmt_list_consumers .

232 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_mgmt_free_ems

Purpose: Frees a list of hosts obtained from ems_mgmt_list_ems .

Format:
#include <dce/ems.h>

void ems_mgmt_free_ems(
char ***host_list,
error_status_t *status);

Parameters:

Input

host_list
A pointer to a list of hosts to free.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns an error.

Usage: The ems_mgmt_free_ems routine frees a list of consumers obtained from
ems_mgmt_list_ems .

Chapter 12. Event Management Service (EMS) 233

ems_mgmt_get_filter_group

Purpose: Gets a list of event filter names in an event filter group.

Format:
#include <dce/ems.h>

void ems_mgmt_get_filter_group(
ems_handle_thandle,
char *consumer,
uuid_t *uuid,
ems_filtername_list_t **filter_group,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from the ems_register
routine.

consumer
A pointer to the consumer event filter group to return. The consumer name
is the name given to the ems_start_consumer routine or the name
returned in the ems_consumer_list_t data structure from the routine
ems_mgmt_list_consumers .

uuid A pointer to the consumer UUID that uniquely identifies the consumer to
clear. If this parameter is NULL, only one consumer can exist with the name
consumer.

Output

filter_group
A pointer to the list of event filter names in the specified consumer’s event
filter group.

status A pointer to the completion code. On successful completion this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
An invalid handle was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Usage: The ems_mgmt_get_filter_group routine returns a list of event filter
names in a cnsumer event filter group.

Processing: (i) on /.:/hosts/dce_hostname/ ems-server/consumers

234 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_mgmt_list_attributes

Purpose: Lists emsd attributes.

Format:
#include <dce/ems.h>

void ems_mgmt_list_attributes(
ems_handle_t handle,
ems_attrlist_t **list,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from the ems_register
routine.

Output

list A pointer to the list of emsd attributes.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
An invalid handle was passed.

ems_s_no_memory
Error allocating memory.

Usage: The ems_mgmt_list_attributes routine lists emsd server attributes. Free
this list using the ems_mgmt_free_attributes routine.

Processing: (r) on /.:/hosts/dce&ushostname/ems-server

Chapter 12. Event Management Service (EMS) 235

ems_mgmt_list_consumers

Purpose: Lists consumers.

Format:
#include <dce/ems.h>

void ems_mgmt_list_consumers(
ems_handle_t handle,
ems_consumer_list_t **list,
error_status_t *status);

Parameters:

Input

handle Must contain a valid consumer handle obtained from the ems_register
routine.

Output

list A pointer to the list of consumers.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_no_memory
Error allocating memory.

ems_s_no_consumers
No consumers registered.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
An invalid handle was passed.

Usage: The ems_mgmt_list_consumers routine lists consumers registered with
EMS.

Processing: (r) on /.:/hosts/dce_hostname/ ems-server/consumers

236 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_mgmt_list_ems

Purpose: Lists EMS hosts.

Format:
#include <dce/ems.h>

void ems_mgmt_list_ems(
char ***host_list,
error_status_t *status);

Parameters:

Output

host_list
A pointer to the list of hosts running emsd .

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns ems_no_memory , which
indicates that there was an error allocating memory.

Usage: The ems_mgmt_list_ems routine lists hosts running emsd . Use free to
free memory used by host_list.

Chapter 12. Event Management Service (EMS) 237

ems_register

Purpose: Registers with EMS.

Format:
#include <dce/ems.h>

void ems_register(
ems_netname_t *dce_hostname,
ems_handle_t *handle,
error_status_t *status);

Parameters:

Input

dce_hostname
A pointer to the name of the DCE host machine where emsd is running. If
the DCE host name is NULL, then the local host is assumed.

Note: dce_hostname is case sensitive.

Output

handle Returns an EMS handle to use for future calls to EMS routines.

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_no_memory
An EMS handle cannot be allocated.

ems_s_unsupported_nameservice
The dce_hostname contains an unsupported name service.

Usage: The ems_register routine registers with EMS and obtains an EMS binding
handle. This routine can be used by a management application that uses the EMS
Management API or by event suppliers that want to add new event types.

238 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

ems_supplier_send

Purpose: Sends supplier events to EMS.

Format:
#include <dce/ems.h>

void ems_supplier_send(
ems_handle_t handle,
ems_event_t *event,
error_status_t *status);

Parameters:

Input

handle Should be the handle returned from a call to ems_register .

event A pointer to the event data. For the content of the event messages, see
“EMS Data Structures” on page 189.

Output

status Pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
A handle that has not been initialized or that is invalid was used.

ems_s_no_memory
The EMS server received an error allocating memory.

ems_s_insufficient_permission
This supplier does not have permission to supply events.

Usage: The ems_supplier_send routine is called by event suppliers to send
events to EMS.

Processing: (w) on /.:/hosts/dce_hostname/ ems-server/event-types/type_name

Chapter 12. Event Management Service (EMS) 239

ems_svc_connect_push_supplier

Purpose: Connects a push supplier to an event consumer so it can receive
serviceability events.

Format:
void
ems_svc_connect_push_supplier(

char* bin_log,
char* filter_file,
char* time_file
int time_interval,
error_status_t* status)

Parameters:

Input

bin_log
Specifies the name of the Serviceability binary log file to monitor.

filter_file
Specifies an event filter file. This file can contain zero or more severity
filters and zero or more message identifiers. See “Event Management Using
the Direct Supplier/Consumer Model” on page 243 for the correct syntax.

time_file
Specifies a unique timestamp file name.

time_interval
After reaching the end of the bin_log file, this API waits for time_interval
seconds before it checks for any new entries in the log file. If the
time_interval is set to 0, the API returns immediately.

Output

status A pointer to the completion status. This API never returns unless one of the
following error conditions occurs:

ems_s_no_memory
An error occurred while allocating memory.

svc_s_cantopen
Permission is denied or the file does not exist.

svc_s_at_end
No more entries in the bin_log file (only when the time_interval is
0).

Usage: The ems_svc_connect_push_supplier routine is called by event
consumers to receive Serviceability (SVC) events previously routed to the bin_log
file.

This routine operates independently of the EMS daemon, and uses the direct
supplier/consumer model. In this model, the consumer sets up the consumer
environment. The consumer then calls this API to directly connect to an event
supplier that delivers all events from the bin_log file.

The event consumer provides the filter_file to specify the messages that are of
interest. Each event in the binary log file is examined and the filters in the event
filter file are applied; if the event passes the filters, it is forwarded to the event
consumer.

240 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

After each event is processed from the SVC bin_log file, the timestamp of that
event is recorded in the time_file file. If the consumer reinvokes this API, this
timestamp is checked to prevent resending of events that were already sent. If
multiple consumers are to be used, it is important to specify a unique file name. If a
non-unique timestamp file is used, only those events that come in time after the
most recent timestamp are sent to all consumers. This results in the loss of some
events. If a NULL timestamp file is specified, no record is kept of the events that
were already sent, and all events are then sent again.

After all events from the bin_log file have been read, this API waits for time_interval
seconds before it checks the log file for any new entries. After the time_interval has
passed, the API processes the new entries until it reaches the end of the file again.
Therefore, the API never returns. If the user prefers that the API return after the end
of the bin_log file has been reached, the time_interval should be set to 0.

The ems_consumer_handler_register routine must be called prior to calling this
routine to register an event handler and to enable the processing of events.

Chapter 12. Event Management Service (EMS) 241

ems_unregister

Purpose: Unregisters with EMS.

Format:
#include <dce/ems.h>

void ems_unregister(
ems_handle_t *handle,
error_status_t *status);

Parameters:

Input/Output

handle An EMS handle obtained from the ems_register routine. On output the
value of handle is set to NULL.

Output

status A pointer to the completion status. On successful completion, this routine
returns error_status_ok . Otherwise, it returns ems_s_invalid_handle ,
which indicates that a handle that is not valid was passed.

Usage: The ems_unregister routine unregisters and frees the resources used by
an EMS handle. This routine should be called with a handle obtained by the
ems_register routine.

242 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Event Management Using the Direct Supplier/Consumer Model

The DCE Event Management Service (EMS) supports push suppliers using both an
event channel model and the direct push supplier to push consumer model. In the
event channel model, all events are sent to the EMS daemon (emsd), which acts as
the event channel; it routes events to any registered consumers that are interested
in those events. Event transmission between the supplier and the consumer is
decoupled by using an event channel. In the direct supplier-consumer model, a
connection is made between one supplier and one consumer to send events.

Some system management applications may not want to depend on DCE RPC to
deliver Serviceability (SVC) events from supplier to consumer. For those
applications, the direct supplier-consumer model is more suitable. A specific API is
provided to support the direct supplier-consumer model. In this model, the
consumer sets up the consumer environment and then calls the
ems_svc_connect_push_supplier API to directly connect to an event supplier that
delivers all events from a standard DCE SVC binary log file. This event supplier
does not use DCE RPC to deliver the events and the EMS daemon (or event
channel) is not used in the event delivery process.

The following setup is required to take full advantage of this model:

1. Routing DCE Serviceability messages to a binary log file

DCE Serviceability allows messages to be routed to a binary log file by
changing the DCE Serviceability routing file. This routing file resides in
/opt/dcelocal/var/svc/routing. The following are examples of two routing file
entries:

FATAL:BINFILE:/opt/dcelocal/var/svc/bin.log
ERROR:BINFILE:/opt/dcelocal/var/svc/bin.log

Including these lines in the routing file causes all fatal and error messages to be
routed to the specified binary log file. To monitor warning, notice, or notice
verbose messages, corresponding entries are required.

In order to enable an event consumer to receive SVC events, all interesting
messages must be routed to the same binary file as shown above. The event
consumer calls the ems_svc_connect_push_supplier API, which monitors the
binary file for new messages. When a new message is received, it goes through
a filtering mechanism using the Event Filter file (see the next section). If the
event passes, the supplier passes the event to the consumer and the
appropriate event handler is invoked.

Note: The preceding setup actually enables all DCE applications using
Serviceability to route their FATAL and ERROR messages to the bin.log
file, which in turn, allows all DCE applications to be monitored.

2. Using the Event Filter file

The Event Filter file is used as input by the ems_svc_connect_push_supplier
API to identify the type of messages the event consumer wants to receive. The
required syntax of this file consists of zero or more severity filters and zero or
more message identifiers. The following syntax applies:

v One of the following strings: ″ALL_FATAL″, ″ALL_ERROR″,
″ALL_WARNING″, ″ALL_NOTICE″, and ″ALL_NOTICE_VERBOSE″. You can

Chapter 12. Event Management Service (EMS) 243

use one or more of these to indicate that you want to monitor all messages of
that severity. Any information following one of these strings on the same line
are ignored.

v A message identifier specified as 0xhhhhhhhh. This is a message ID
generated by SAMS. A message ID identifies a SVC message that a DCE
application issues. Use this to monitor specific messages.

v If a line does not begin with a severity filter or a message identifier, the line is
treated as a comment line and is ignored. Leading white spaces (blanks) are
ignored.

Note: This message identifier must be the OSF message ID, and not the NT
DCE message ID.

v The characters are NOT case-sensitive. For example, the file may contain the
following:
This is an example of an event filter file
Different severities can be specified
ALL_FATAL
all_error

Also, specific message identifiers can be specified
0x12121212

Summary

″Interesting″ messages are enabled using both the routing file specifications and
the filtering capabilities of the Event Filter file.

Each message is verified to check if it meets either the severity requirement or if its
message IDs is one of the message ids in the Event Filter file. If the message
passes, it is forwarded. Otherwise, the message is discarded.

It is important to carefully complete the routing file specification, because if the
″interesting″ messages are not routed to the binary log file, regardless of the
contents of the Event Filter file, no messages are sent to the consumer.

Other Notes:

v No Event Filter file

If the Event Filter file does not exist, the ems_svc_connect_push_supplier API
assumes that the event consumer is at the least interested in ALL_FATAL and
ALL_ERROR messages.

v Event Filter file without severities or message identifiers

If the Event Filter file exists and there are no severities or message identifiers
specified, there is no monitoring of messages.

v Changing the Event Filter file

If the Event Filter file is modified while the event consumer is active, the event
consumer must be stopped and restarted for the changes to take effect.

v Maintaining the Binary Log file

If the binary file is expected to grow over time, it needs to be cleaned
periodically. The current cleanup method is to remove the file. This file can be
removed only when DCE is stopped.

v Time Stamp file

To keep track of the events that have already been read from the binary file and
forwarded, a file recording the timestamp is stored with a unique user-defined
timestamp file. If the event consumer is stopped, messages that have previously

244 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

been forwarded are skipped. Deleting this file causes all messages from the
beginning of the binary file to be reread and reforwarded.

v Application Server versus. Core Server management

Event Management Service (EMS), and DCE SNMP Subagent are still used to
monitor DCE application servers. EMS provides dynamic filter support and ACL
support using persistent databases.

The direct supplier-consumer model has been provided to allow DCE core
servers to be monitored without depending on DCE RPC. This support does not
have the dynamic EMS filter and ACL support.

If a user sets up both EMS and the previously mentioned binary log file
monitoring, duplicate messages can be received. When an application server
issues a DCE Serviceability message, it is sent to EMS and is logged in the
binary log file. EMS forwards the message and the subagent (or another event
consumer) that monitors the binary log file reads and forwards the message from
the log file.

Chapter 12. Event Management Service (EMS) 245

246 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 13. IDL Compiler Enhancements

DCE for Windows NT includes an enhanced IDL compiler that provides value-added
functions that are not documented in the OSF DCE Application Development Guide
shipped with this product.

For more information see:

The -standard Build Option

The -filename Build Option

Stub Auxiliary Files

Garbage Collection Support for Distributed Objects

The -standard Build Option

The -standard IDL compiler command option allows you to specify portable or
extended features of the OSF DCE. This NT-specific option is useful when you
perform builds.

The standard_type argument specifies the IDL features you want to enable. If you
do not specify this argument, the compiler generates warning messages for all
features that are not available in the previous version of OSF DCE.

You can specify one of the following values for the standard_type argument:

portable
Allows only the features available in OSF DCE Release 1.0.2.

dce_v10
Synonymous with the portable argument.

dec_v10
Allows all language features supported by the -standard dce_v10 argument,
plus a set of extensions to its products based on OSF DCE Release 1.0.

extended
Allows all language features supported in the current version of the
compiler. This is the default.

dce_v11
Allows only the language features available in OSF DCE Release 1.1.
Currently, synonymous with the extended argument.

The following example command line compiles the IDL interface test.idl and
enables extended features of the OSF DCE:

C:\> idl test.idl -standard extended

The -filename Build Option

The -filename IDL compiler command option provides backward compatibility
support for stubs named with the short filename format.

The filename_format argument specifies the type of filename format you want to
use. If you do not specify this argument, the compiler generates long filenames.

You can specify one of the following values for the filename_format argument:

247

short Generates stub files with the following format: file _c.c and file _s.c.

long Generates stub files with the following format: file _cstub.c and file _sstub.c.

The following example command line compiles the IDL interface test.idl and
generates stub files using the short filename format:

C:\> idl test.idl -filename short

Stub Auxiliary Files

By default, IDL compilers in OSF DCE IDL Release 1.1 and later do not generate
the -caux and -saux files that would have been generated when an IDL file was
compiled with earlier releases. However, if you want to use build procedures that
were designed to work with earlier compilers, you can cause the Release 1.1 (and
later) IDL compiler to generate empty auxiliary files. To do this, define the
environment variable IDL_GEN_AUX_FILES with the following command:

C:\> SET IDL_GEN_AUX_FILES =1

You should only need to do this if you are using -DMIA.

Garbage Collection Support for Distributed Objects

If you use the Interface Definition Language (IDL) in C++ mode (-lang cxx), garbage
collection is supported for distributed objects. For client applications that use a large
number of servers or objects, there are two environment variables that can be set
to increase the performance of garbage collection by reducing the number of RPC
pings to its servers.

If a client application uses more than 20 different servers, you can set the
RPC_RECLAIM_MAX_SERVER environment variable to a higher value (20 is the
default) before starting the application.

For a client application that uses more than 100 distributed objects per server, you
can set the RPC_RECLAIM_MAX_OBJECT environment variable to a higher value
(100 is the default) before starting the application.

For a typical application, the default values provided should be adequate. Increase
these values only if necessary since they will increase the use of system resources
(that is, memory).

By default, distributed objects are pinged every 5 minutes by a client, and are
reclaimed by the server if not pinged for over 1 day. These periods can be tuned by
applying the cxx_reclaim attribute to the interface. For example:

[cxx_reclaim(2,20)] interface interface_name
{
...
}

This sets the ping period to 20 minutes, and only reclaims an object after 2 days of
activity. It is anticipated that the default, implicit attribute of cxx_reclaim(1,5) is
reasonable in most cases.

Garbage collection can also be suppressed by applying an attribute of
[cxx_reclaim(0,0)] to the interface.

248 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 14. Modifications to Internationalization

The Internationalization function in DCE for Windows NT differs from the OSF DCE
function in that DCE for Windows NT extends the character set that is allowed in
PGO names.

The RPC code set conversion feature supports a revised version of the
architecture. See “RPC Code Set Conversion” on page 257 for additional
information.

OSF DCE uses the XPG4 programming model to implement the messaging and
serviceability API’s. The Windows NT operating system does not support this model,
but DCE for Windows NT provides the underlying XPG4 support for the messaging
and serviceability API’s.

For more information see:

Naming Considerations

Serviceability Component Names

Installing Application Message Catalogs

Synchronization of XPG4 Internationalization with the Country Environment

dce_setlocale

Naming Considerations

According to standard (OSF) DCE, entries in the Security namespace, such as
principal names, can consist of only characters in the DCE portable character set.
DCE for Windows NT provides an override capability which enables the use of
non-portable characters. This override capability is provided primarily for migration
to DCE Security and should be used only in environments that are homogeneous
with respect to both platforms and code set.

Security namespace entries that use non-portable characters are guaranteed to
work correctly only with DCE for Windows NT and only when the code set of the
entire enterprise is the same as that of the process under which the names are
created. To enable non-portable Security names, set this environment variable:

DCE_USE_NONPORTABLE_NAMES=1

Using standard (OSF) DCE, certain entries in the cell directory services (CDS)
namespace, such as directory names, can be composed of characters from outside
of the DCE portable character set. Because DCE for Windows NT does not perform
code set conversions on CDS names, you should use non-portable characters only
in environments that are, and will remain homogeneous with respect to the code
set.

Subject to the restrictions above and to the additional naming rules documented
elsewhere, the following names can contain characters outside of the Portable
Character Set:

CDS Object
CDS Directory
CDS Attribute
CDS Link

RPC idl_byte data

249

RPC full name

Principal
Group
Organization
ERA

Note: Windows NT is extremely heterogeneous with respect to code sets. Unless,
you have a very clear understanding of the variety of code sets conventions
that exist simultaneously in a Windows NT environment, you should restrict
system data such as principal group organization (PGO) names to the DCE
portable character set.

Messaging and Serviceability Considerations

Select from the following topics for information on component names and message
catalogs, and instructions on how to install the message catalogs.

Serviceability Component Names

Installing Application Message Catalogs

Serviceability Component Names

The OSF Application Development Guide discusses how to create sams files and
use the sams command to generate XPG4-style message catalogs for your DCE
application. The example program uses the component name hel . This component
name is used in the names of the various files that are generated by the sams
command, and is also used to generate globally-unique message IDs for the
component.

When your program calls a DCE Messaging or Serviceability function using a
message ID number, DCE derives the component name from the number and looks
for the message in a message catalog named dcexxx.cat , where xxx is the
component name. For the example program, DCE will look for a message catalog
named dcehel.cat . If DCE does not find the message in a catalog, it will attempt to
find it in a default message table, using the message ID as the index.

The association of message numbers with message catalog names allows DCE to
locate the appropriate message catalog using only the message ID. Likewise,
globally-unique message numbers enable DCE to efficiently search internal
message tables. This scheme reduces the complexity of messaging for DCE and
for the DCE application programmer, but in order for it to work, the serviceability
component names must be unique.

When you choose serviceability component names for your applications, you must
first make sure that you don’t use a name that is already being used by DCE itself.
You can see the complete list of DCE components by looking at the names of the
message catalogs in the directory %DCELOC%\dcelocal\nls\msg\enus1252.

In addition, if you want to ensure that the names you use will not subsequently be
used by DCE or by another registered DCE application you can register your
serviceability component names by sending e-mail to dce-registry@osf.org.

250 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Installing Application Message Catalogs

After using sams files to create a new message catalog you must copy the catalog
to a location in the NLSPATH. You can put your application message catalogs with
the DCE system catalogs. If you put them somewhere else, you must add the path
to the NLSPATH environment variable.

Windows NT Code Page Considerations

There are two types of code pages, OEM and ANSI. Whether data is entered from
a command line or DCE prompt determines which code page it is encoded.

OEM Versus ANSI Code Pages

Code Page Conversion or Command Line Parameters

OEM Versus ANSI Code Pages

Windows NT defines two types of code pages. The OEM code pages are the
traditional MS-DOS/IBM-PC code pages, such as code page 437 and 850. The
ANSI code pages, such as code page 1252, are more similar to the ISO standard
code sets. For Asian code pages, such as code page 932, there is no difference
between the OEM and ANSI code pages.

Windows NT generally uses the OEM code pages in console sessions and the
ANSI code pages in Windows.

Code Page Conversion or Command Line Parameters

When you start a program from the command line in a console session, Windows
NT automatically converts any command line parameters from the OEM code page
encoding to an ANSI code page encoding.

If you are using non-English characters with DCE commands such as dce_login
and dcecp , you must be aware that data which is passed to DCE will be encoded
in ANSI code pages if it is entered on the command line. It will be encoded in OEM
code pages if it is entered on DCE prompts.

For example, if you are using the extended character set for PGO names, and you
create a registry which contains ANSI-encoded principal names, you should use
dce_login with the principal name on the command line. If you create a registry
with OEM-encoded names, you should allow dce_login to prompt you for the
principal name.

These considerations do not apply if you are using Asian data. The OEM and ANSI
code pages are equivalent.

XPG4 Internationalization

DCE uses the XPG4 internationalization model, which is based on locales. A
particular locale specifies a human language, a set of cultural conventions
associated with various types of numeric and character data, and the code page in
which character data is encoded.

You can write locale names in any of the following ways:

Chapter 14. Modifications to Internationalization 251

xx_yy.ZZZZ
xxyyZZZZ
xx_yy
xxyy

where xx is a language abbreviation, yy is a country abbreviation, and ZZZZ is an
optional 3- or 4-digit code page number. Case is ignored. The code page number is
optional. If it is left off the number of the currently active code page will be
appended to the locale name.

For more information, see:

Setting the Locale Using LANG

Locale and Message Catalogs, NLSPATH Environment Variable

Supported Locale Names

Synchronization with the Country Environment

Setting the Locale Using LANG

You can use the environment variable LANG to set the locale for a process (or
globally via the Registry). Each DCE locale is implemented as a DLL, and the DLL
names are the valid locale names. The DCE locales are installed in directory
%DCELOC%\dcelocal\locale\. For the meaning of each name, see Supported
Locale Names.

For example, since DCE has a locale DLL named enus437.dll, you can set the
locale for English (language), US (cultural conventions), and 437 (code page), by
typing:

set LANG=enus437

Because a code page is optional, you could also type:
set LANG=en_us

and ″.437 would be appended to the locale name on a typical US installation of
Windows NT.

Locale and Message Catalogs, NLSPATH Environment Variable

The locale names are used to locate the message catalogs. DCE’s message
catalogs are installed in directories of the form
%DCELOC%\dcelocal\nls\msg\xxyyZZZZ\, where xxyyZZZZ is a locale name. For
example, the message catalogs for Japanese are located in the directory
%DCELOC%\dcelocal\nls\msg\jajp932\.

The environment variable NLSPATH specifies the path (or a series of paths,
separated by ″;″) which is searched when DCE looks for a message catalog. You
can add additional paths to the NLSPATH, but you should preserve the path that is
set by DCE at install time:

NLSPATH=%DCELOC%\dcelocal\nls\msg\%L\%N.

This path uses two standard substitution variables, %L and %N. Both must be
uppercase. The locale name is substituted for %L and a message catalog name is
substituted for %N.

252 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

For example, if your application provides German message catalogs, you can put
them in the directory %DCELOC%\dcelocal\nls\msg\dede850. The DCE Messaging
and Serviceability APIs will search this path if LANG is set to dede850 or if
dede850 is passed to dce_setlocale() .

Note: There is a slight potential for conflict with non-DCE applications and other
XPG4 implementations, if they manipulate or interpret the contents of the
NLSPATH variable in a different way. For example, DCE for Windows NT
uses the semicolon instead of the colon for the NLSPATH separator.

Supported Locale Names

The following are the locale names that DCE supports.

″ARAA1256″, /* Arabic in Arabic area ANSI CP */
″ARAA864″, /* Arabic in Arabic area OEM CP */
″BGBG1251″, /* Bulgarian in Bulgaria ANSI CP */
″CAES1252″, /* Catalan in Catalia ANSI CP */
″CSCZ1250″, /* Czech in Czech Republic ANSI CP */
″CSCZ852″, /* Czech in Czech Republic OEM CP */
″DADK1252″, /* Danish in Denmark ANSI CP */
″DADK1252″, /* Danish in Denmark OEM CP */
″DECH1252″, /* German in Switzerland ANSI CP */
″DECH850″ /* German in Switzerland OEM CP */
″DEDE1252″, /* German in Germany ANSI CP */
″DEDE850″, /* German in Germany OEM CP */
″ELGR1253″, /* Greek in Greece ANSI CP */
″ELGR869″, /* Greek in Greece OEM CP */
″ENGB1252″, /* English in U.K. ANSI CP */
″ENGB850″, /* English in U.K. OEM CP */
″ENUS1252″, /* English in US ANSI CP */
″ENUS437″, /* English in US OEM CP */
″ENUS850″, /* English in US OEM CP */
″ESES1252″, /* Spanish in Spain ANSI CP */
″ESES850″, /* Spanish in Spain OEM CP */
″FIFI1252″, /* Finnish in Finland ANSI CP */
″FIFI850″, /* Finnish in Finland OEM CP */
″FRBE1252″, /* French in Belgium ANSI CP */
″FRBE850″, /* French in Belgium OEM CP */
″FRCA1252″, /* French in Canada ANSI CP */
″FRCA850″, /* French in Canada OEM CP */
″FRCH1252″, /* French in Switzerland ANSI CP */
″FRCH850″, /* French in Switzerland OEM CP */
″FRFR1252″, /* French in France ANSI CP */
″FRFR850″, /* French in France OEM CP */
″HRHR1250″, /* Croatian in Croatia ANSI CP */
″HRHR852″, /* Croatian in Croatia OEM CP */
″HUHU1250″, /* Hungarian in Hungary ANSI CP */
″HUHU852″, /* Hungarian in Hungary OEM CP */
″ISIS1252″, /* Icelandic in Iceland ANSI CP */
″ISIS850″, /* Icelandic in Iceland OEM CP */
″ITIT1252″, /* Italian in Italy ANSI CP */
″ITIT850″, /* Italian in Italy OEM CP */
″IWIL1255″, /* Hebrew in Israel ANSI CP */
″IWIL862″, /* Hebrew in Israel OEM CP */
″JAJP932″, /* Japanese in Japan */

Chapter 14. Modifications to Internationalization 253

″KOKR949″, /* Korean in Korea */
″MKMK1251″, /* Macedonian in Macedonia */
″NLBE1252″, /* Flemish in Belgium ANSI CP */
″NLBE850″, /* Flemish in Belgium OEM CP */
″NLNL1252″, /* Dutch in Netherlands ANSI CP */
″NLNL850″, /* Dutch in Netherlands OEM CP */
″NONO1252″, /* Norwegian in Norway ANSI CP */
″NONO850″, /* Norwegian in Norway OEM CP */
″PLPL1250″, /* Polish in Poland ANSI CP */
″PLPL852″, /* Polish in Poland OEM CP */
″PTBR1252″, /* Portuguese in Brazil ANSI CP */
″PTBR850″, /* Portuguese in Brazil OEM CP */
″PTPT1252″, /* Portuguese in Portugal ANSI CP */
″PTPT850″, /* Portuguese in Portugal OEM CP */
″RORO1250″, /* Romanian in Romania ANSI CP */
″RORO852″, /* Romanian in Romania OEM CP */
″RURU1251″, /* Russian in Russia ANSI CP */
″RURU866″, /* Russian in Russia OEM CP */
″SKSK1250″, /* Slovak in Slovakia ANSI CP */
″SKSK852″, /* Slovak in Slovakia OEM CP */
″SLSI1250″, /* Slovenian in Slovenia ANSI CP */
″SLSI852″, /* Slovenian in Slovenia OEM CP */
″SQAL1252″, /* Albanian in Albania */
″SHSP1250″, /* Latin Serbian in Serbia ANSI CP */
″SRSP1251″, /* Cyrillic Serbian in Serbia ANSI CP */
″SVSE1252″, /* Swedish in Sweden ANSI CP */
″SVSE850″, /* Swedish in Sweden OEM CP */
″THTH874″, /* Thai in Thailand */
″TRTR1254″, /* Turkish in Turkey ANSI CP */
″TRTR857″, /* Turkish in Turkey OEM CP */
″ZHCN936″, /* Simplified Chinese in China */
″ZHTW950″, /* Traditional Chinese in Taiwan */

Synchronization with the Country Environment

DCE uses the X/Open XPG4 locale programming model for internationalization.
Internationalized Windows NT applications may use this model, or they may use the
traditional Windows NT country environment model. Although DCE is designed to
use the locale model, it accommodates the Windows NT internationalization
programming and operating environments. You do not have to change existing
internationalized Windows NT applications when they are running on DCE.

DCE internationalization works properly even when the DCE application program
does not establish a usable XPG4 internationalization environment, either because
the program is not using XPG4 or because it is using an incompatible version of
XPG4 internationalization routines. Although the XPG4 programming model requires
the application to set up the XPG4 environment, DCE internationalization works
correctly without the XPG4 programming requirement.

DCE NT applications can use either the XPG4 locale programming model or the NT
proprietary internationalization programming models.DCE applications can be
divided into four classes with respect to internationalization:

v Windows NT country environment programming model; single-locale

254 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Implements internationalization using the Windows NT operating system
interfaces, such as GetLocaleInfo , or other proprietary Windows NT techniques.
This model does not support multiple languages or code sets during a single
invocation of the application.

v Windows NT internationalization programming model; multiple-locale

Implements internationalization using the Windows NT operating system
interfaces, such as SetLocale, SetThreadLocale, GetLocaleInfo, and other
proprietary Windows NT techniques. It supports multiple languages and code
sets during a single invocation of the application.

v XPG4 internationalization programming model; single-locale

Implements internationalization on some variant of XPG4, from a third party
software package or from a compiler such as IBM VisualAge C++ NT version,
which offers XPG4 support. It does not support multiple locales during a single
invocation of the application.

v XPG4 internationalization programming model; multiple-locale

Implements internationalization on some variant of XPG4, from a third party
software package or from a compiler such as IBM VisualAge C++ NT version,
which offers XPG4 support. It supports multiple locales during a single invocation
of the application.

The DCE Messaging and Serviceability functions and the RPC code set conversion
functions are designed to use the XPG4 programming model. However, it is not
necessary for the NT DCE application to use this model, because NT DCE
automatically synchronizes DCE’s XPG4 locale with the NT country environment or
locale of the application program.

This synchronization takes place when the application program starts to run. If the
program changes its code page, or if it explicitly sets the XPG locale, the
dce_setlocale() function must be called to force the re-synchronization of DCE’s
internationalization environment with that of the application. Calling the
dce_setlocale() function has the effect of switching the DCE locale to the one
requested by the program.

NT DCE Default Locale

If the DCE application does not explicitly set the locale by calling dce_setlocale(),
DCE uses XPG4 environment variables or NT country information to establish the
locale. If the LANG environment variable is set, the DCE locale is based on its
value and on the code page of the process. If LANG is not set, the DCE locale is
based on the Windows NT country code and the code page of the process. If the
derived locale is not one of those supported by DCE, DCE uses the closest locale
which preserves the code page setting.

Note the following:

v Changing to a locale for which DCE does not ship message catalogs changes
DCE messages to English.

v For existing multiple-locale applications and new ones that do not use
dce_setlocale(), the XPG4 synchronization occurs only when the program is
started. Any changes to NT country environment or to XPG4 locale will not be
seen by DCE unless the dce_setlocale() function is called when the locale is
changed in the application program.

Chapter 14. Modifications to Internationalization 255

v Because the underlying implementation of an XPG4 application’s locale may be
different from that of DCE, the XPG4 application must both call setlocale() and
dce_setlocale() when explicitly setting the locale.

Special Notes Regarding Internationalization

v The control programs which have been superseded by dcecp in this DCE
release (rgy_edit , acl_edit , cdscp , rpccp , sec_admin , and dtscp) have not
been enabled to support multibyte characters. If you are working in a multibyte
environment, you should use dcecp.

v The DCE-supported locales are located in %DCELOC%\dcelocal\locale\ . These
DLL names, such as enus437 , can be used as the second parameter of the
dce_setlocale() function, or as the value of the LANG environment variable.

dce_setlocale

This DCE serviceability routine explicitly sets the DCE locale.

Format

#include <dce\dce_msg. h>

char *dce_setlocale(DCE_LC_ALL, const char *locale);

Parameters

Input

DCE_LC_ALL Set all locale categories.

locale Locale name expressed as a quoted string.

Usage

The dce_setlocale routine:

Is a wrapper function. The dce_setlocale routine calls the runtime version of the
setlocale routine which is used by the DCE code.

v Supports a subset of the standard setlocale routine.

v Supports the setting of all locale categories to a single locale (but does not
support the setting of individual locale categories).

v Returns a pointer to a string that lists the values of the locale categories. These
values match the locale parameter of the call.

Return Values

On error dce_setlocale returns NULL, and the locale is not changed.

Note: DCE programs that do not use the locale model do not need to call
dce_setlocale because DCE will initialize a locale that matches the country
and code page environment. DCE programs that call setlocale, however,
should also call dce_setlocale to ensure that DCE’s locale matches the
locale of the program.

256 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Because dce_setlocale is not supported on all implementations of DCE, make sure
that any calls to dce_setlocale are within the bounds of an #ifdef for portability.

The following code fragment shows how to use the dce_setlocale routine .
#include <dce_msg.h>
char *string;
void main(void)
{

/*Set the DCE locale to jajp932. Note that unless the
** DCE Japanese message files are present, DCE messages
** will be displayed or logged in English.
*/

#ifdef WIN32
string = dce_setlocale(DCE_LC_ALL, "jajp932") ;
if (string != NULL)
{
if (string != NULL)
}

#endif
}

The output is:

JAJP932 JAJP932 JAJP932 JAJP932 JAJP932 JAJP932

RPC Code Set Conversion

The support in DCE for NT 2.2 varies in some key ways from the original OSF
implementation. The codesets.idl interface has been modified to provide improved
cross-platform support. The version number has been increased to 2.0, which is the
version supported in the other IBM implementations of DCE. The following
differences are discussed, along with important programming information and a
revised version of the sample RPC program discussed in the Application
Development Guide.

In this release, the code sets attribute should be accessed only through the RPC
NSI interface to the Directory Services. Although the code sets attribute has an ISO
Object Identifier (OID), it should not be referenced in the current release.

The primary interface change to the code set data structure is discussed in the
rpc_intro section of the Application Development Reference ″RPC Data Types and
Structures″.

The revised code set data structure contains the following fields:

c_set A 32-bit hexadecimal value assigned by OSF that uniquely identifies the
code set.

c_max_bytes
A 16-bit decimal value that indicates the maximum number of bytes this
code set uses to encode one character.

ch_sets_num
A 16-bit decimal value that indicates the number of character sets
supported by the code set.

ch_sets
A 32-bit pointer to a dynamically allocated array of OSF-assigned character
set identifiers.

Chapter 14. Modifications to Internationalization 257

The following routines require a code set value:

cs_byte_from_netcs

cs_byte_local_size

cs_byte_net_size

cs_byte_to_netcs

dce_cs_loc_to_rgy

dce_cs_rgy_to_loc

rpc_cs_get_tags

rpc_cs_binding_set_tags

rpc_rgy_get_max_bytes

In these routines, the code set value has a data type of unsigned32.

Note: The wchar_t* routines are not supported in this release of DCE.

The RPC stub buffer sizing routines xxx_net_size and xxx_local_size use the
value of c_max_bytes to calculate the size of a buffer for code set conversion.

The RPC character set compatibility evaluation routine
rpc_cs_char_set_compat_check uses the value of ch_sets_num and values
pointed to by ch_sets to evaluate character set compatibility between a client and a
server.

The revised C language representation of the code set data structure is as follows:
typedef struct {

long c_set;
short c_max_bytes;
short ch_sets_num;
short *ch_sets;

} rpc_cs_c_set_t;

The code set data structure is a member of the code sets array, which is discussed
in ″Data Types and Structures″.

Additional Implementation Details and Restrictions

The following provide implementation details and restrictions for the Code Sets
array, the cs_char attribute and a sample program.

Code Sets Array

DCE for NT 2.2 does not support use of the csrc command to modify the code sets
array that is shipped with DCE. The use of an intermediate code set other than ISO
10646 (UCS-2, Level 1) is not supported.

The DCE-supplied stub buffer sizing routines do not support the
idl_cs_in_place_convert conversion type. The conversion method is determined at
runtime and there is no guarantee that the conversion can be performed in a single
storage area.

You can find the DCE for NT 2.2 code sets array database (text and binary) at
%DCELOC%\dcelocal\nls\csr . The text file was used to generate the binary
version, which is used by RPC at runtime. The text file contains OSF-assigned
values and values unique to the DCE for NT which may be required by the
application programmer.

258 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

There are individual entries for each registered code set. Each entry has this
format:

description text
loc_name text
rgy_value unsigned32
char_values unsigned16:...
max_bytes unsigned16

loc_name
The local code set name. It must be enclosed in quotes when used as a
parameter in an RPC API.

rgy_value
The OSF-registered unique code set identifier.

char_values
The value of the OSF-registered character set IDs for the code page.

max_byte
The maximum number of bytes for a character in the code page.

cs_char Attribute

Arrays of cs_char can be fixed, varying, conformant, or conformant varying. The
treatment of a scalar cs_char is similar to that of a fixed array of one element.

In this release, only conformant or conformant varying arrays can be used without
restrictions, because they are designed to allow the data expansion and contraction
which can occur during code set conversion.

For fixed or varying arrays, the array size is fixed and can not be modified during
the RPC marshalling or unmarshalling. For fixed arrays, the number of bytes of data
on the client, the server, and the network must be exactly equal to the number
defined in the IDL file.

The following are the additional restrictions for fixed or varying arrays.

Fixed Arrays:
v The number of array elements in the local (client and server) and network

representations of the data must be the same as the array size defined in the
IDL.

v Because the array size is the input length used by the code set conversion, the
complete array must be populated with valid data.

v You must write your own stub buffer sizing routines and code set conversion
routines. The routines provided by DCE RPC do not support the
idl_cs_in_place_convert conversion type.

v You may write your own stub tag-setting routines or use the DCE RPC
tag-setting routine rpc_cs_get_tags() to set the sending tag value and the
receiving tag value. You must ensure that the code set conversion between
server and client will not result in data expansion or contraction.

v You may write your own character and code sets compatibility evaluation
routines. You must not use the DCE RPC rpc_cs_eval_with_universal()
because universal conversion may cause data expansion. You may use the
rpc_cs_eval_without_universal() but keep in mind that the conversion model
selection used by this routine is: use RMIR if possible, else use SMIR if possible,
then CMIR. You must make sure that the conversion can be performed without
data expansion or contraction.

Chapter 14. Modifications to Internationalization 259

Varying Arrays:
v Neither the number of array elements in the local representation nor the number

of array elements in the network representation may exceed the array size in the
IDL.

v The value of length_is is the input length used by the code set conversion
routine.

v Expansion and contraction of data is allowed within the array size defined in the
IDL file.

Revised Sample Program
/*
This is the sample server code
*/

#include <stdio.h>
#include <stdlib.h>
#include <dce/rpc.h>
#include <dce/dce.h>
#include <dce/nsattrid.h>
#include <dce/dce_error.h>
#include <locale.h>
#include <pthread.h>
#include <dce/codesets.h>
#include <dce/dce_msg.h>
#include "sample.h" // IDL generated header

/*
* Macro for result checking
*/

#define msg1 "FAILED %s()\nresult: expected: %s\n\n"
#define msg3 "Listening for remote procedure calls...\n"
#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \

if (returned_st == expected_st) { \
} else { \

dce_error_inq_text(returned_st,\
(unsigned char *)unexpected, &dce_status); \

dce_error_inq_text(expected_st, \
(unsigned char *)expected, &dce_status); \
printf("FAILED %s()\nresult: %s\nexpected: %s \n\n", \

func, unexpected, expected); \
} \

} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

int
main(int argc, char *argv[])
{

error_status_t status;
int i;
rpc_ns_handle_t inq_contxt;
rpc_binding_vector_t *binding_vector;
rpc_codeset_mgmt_p_t arr;
pthread_t this_thread = pthread_self();
char *nsi_entry_name;
char *server_locale_name;
error_status_t expected = rpc_s_ok;
int server_pid;

/* The environment variable I18N_SERVER_ENTRY needs

260 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

* to be set before running this program. This is
* not a DCE environment variable, so you can set up
* your own environment variable if you like.
*/

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

/* If the XPG/POSIX programming model is being used, set
* the locale. In this way, the current locale
* information is extracted from XPG/POSIX defined
* environment variable LANG or LC_ALL.
* Call dce_setlocale() to synchronize the program locale
* with DCE's locale.
*/

setlocale(LC_ALL, "");
dce_setlocale(DCE_LC_ALL, "");

/*
* Get supported code sets.
*/

rpc_rgy_get_codesets (
&arr,
&status);

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, expected);

rpc_server_register_if (
cs_test_v1_0_s_ifspec,
NULL,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_server_register_if", status, expected);

rpc_server_use_all_protseqs (
rpc_c_protseq_max_reqs_default,
&status);

CHECK_STATUS(TRUE, "rpc_server_use_all_protseqs", status, expected);

rpc_server_inq_bindings (
&binding_vector,
&status);

CHECK_STATUS(TRUE, "rpc_server_inq_bindings", status, expected);

rpc_ns_binding_export (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_s_ifspec,
binding_vector,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_export", status, expected);

rpc_ep_register (
cs_test_v1_0_s_ifspec,
binding_vector,
NULL,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ep_register", status, expected);

Chapter 14. Modifications to Internationalization 261

/*
* Register the server's supported code sets into the name space.
*/

rpc_ns_mgmt_set_attribute (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
rpc_c_attr_codesets,
(void *)arr,
&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_set_attribute", status, expected);

/*
* Free memory allocated by getting code sets.
*/

rpc_ns_mgmt_free_codesets (&arr, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codeset", status, expected);

TRY
{

printf(msg3);

rpc_server_listen (
rpc_c_listen_max_calls_default,
&status);

CHECK_STATUS(TRUE, "rpc_server_listen", status, expected);

/*
* Remove code set attributes from namespace on return.
*/

rpc_ns_mgmt_remove_attribute (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
rpc_c_attr_codesets,
&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, expected);

rpc_ns_binding_unexport (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_s_ifspec,
(uuid_vector_p_t)NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

rpc_ep_unregister (
cs_test_v1_0_s_ifspec,
binding_vector,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

rpc_binding_vector_free (
&binding_vector,
&status);

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

262 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

rpc_server_unregister_if (
cs_test_v1_0_s_ifspec,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

}
CATCH_ALL
{

/*
* Remove code set attribute from namespace on a signal.
*/

rpc_ns_mgmt_remove_attribute (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
rpc_c_attr_codesets,
&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, expected);

rpc_ns_binding_unexport (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_s_ifspec,
(uuid_vector_p_t)NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

rpc_ep_unregister (
cs_test_v1_0_s_ifspec,
binding_vector,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

rpc_binding_vector_free (
&binding_vector,
&status);

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

rpc_server_unregister_if (
cs_test_v1_0_s_ifspec,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

}
ENDTRY;

}

error_status_t cs_conf_trans (
handle_t h,
idl_long_int in_size,
net_byte *in_string,
net_byte *out_string

)
{

int i, length, k, s_size;
wchar_t *wcs;

Chapter 14. Modifications to Internationalization 263

wchar_t *wcs_rev;
int w_size;

s_size = (int)in_size;

w_size = sizeof(wchar_t);
wcs = (wchar_t *)malloc((s_size + 1) * MB_CUR_MAX * w_size);
wcs_rev = (wchar_t *)malloc((s_size + 1) * MB_CUR_MAX * w_size);

length = (int)mbstowcs(wcs, (char *)in_string, s_size);
if (length == -1) {

fprintf(stderr, "Error occurred in mbstowcs!!\n");
}

k = length - 1;
for (i = 0; i<length; i++)

wcs_rev[i] = wcs[k--];
wcs_rev[i] = L'\0';

k = (int)wcstombs((char *)out_string, wcs_rev, s_size);
if (k == -1) {

fprintf(stderr, "Error occurred in wcstombs!!\n");
return(0);

}

free(wcs);
free(wcs_rev);

return(rpc_s_ok);
}

/*
This is the sample client code
*/

#include <stdio.h>
#include <string.h>
#include <locale.h>
#include <dce/rpc.h>
#include <dce/rpcsts.h>
#include <dce/dce_error.h>
#include <dce/dce_msg.h>

#include "sample.h" // IDL generated header

/*
* Result check MACRO
*/

#define msg1 "FAILED %s()\nresult: %s\nexpected: %s \n\n"
#define msg2 "is_server_listening error -> %s\n"
#define msg3 "i18n_input_data open failed\n"
#define msg4 "i18n_result_file open failed\n"
#define msg5 "FAILED %ld MSG: %s\n"
#define msg6 "PASSED rpc #%d\n"

#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \

if (returned_st == expected_st) { \
} else { \

dce_error_inq_text(returned_st,\
(unsigned char *)unexpected, &dce_status); \

dce_error_inq_text(expected_st, \
(unsigned char *)expected, &dce_status); \
printf("FAILED %s()\nresult: %s\nexpected: %s \n\n", \

func, unexpected, expected); \

264 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

} \
} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

void
main(void)
{

rpc_binding_handle_t bind_handle;
rpc_ns_handle_t import_context;
error_status_t status;
error_status_t temp_status;
cs_byte net_string[SIZE];
cs_byte loc_string[SIZE];
unsigned char err_buf[256];
char *nsi_entry_name;
char *client_locale_name;
int i, rpc_num;
FILE *fp_in, *fp_out;
long in_str_len; /* in_str_len is the actual size in bytes of the input strin

/* The environment variable I18N_SERVER_ENTRY needs
* to be set before running this program. This is
* not a DCE environment variable, so you can set up
* your own environment variable if you like.
*/

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

/* If the XPG/POSIX programming model is being used, set
* the locale. In this way, the current locale
* information is extracted from XPG/POSIX defined
* environment variable LANG or LC_ALL.
* Call dce_setlocale() to synchronize the program locale
* with DCE's locale.
*/

setlocale(LC_ALL, "");
dce_setlocale(DCE_LC_ALL, "");

rpc_ns_binding_import_begin (
rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_c_ifspec,

NULL,
&import_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_begin", status, rpc_s_ok);

/*
* Add code set compatibility checking logic to the context.
*/

rpc_ns_import_ctx_add_eval (
&import_context,

rpc_c_eval_type_codesets,
(void *)nsi_entry_name,

rpc_cs_eval_with_universal,
NULL,

&status);

CHECK_STATUS(TRUE, "rpc_ns_import_ctx_add_eval", status, rpc_s_ok);

Chapter 14. Modifications to Internationalization 265

while (1) {
rpc_ns_binding_import_next (

import_context,
&bind_handle,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_next", status, rpc_s_ok);

if (status == rpc_s_ok)
break;
else
{

return;
}

}

rpc_ns_binding_import_done (
&import_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_done", status, rpc_s_ok);

rpc_ep_resolve_binding (bind_handle,
cs_test_v1_0_c_ifspec,
&temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);

if(rpc_mgmt_is_server_listening(bind_handle, &status)
&& temp_status == rpc_s_ok)

{
; /* Do nothing. */

}
else
{

dce_error_inq_text ((unsigned long)status,
err_buf, (int *)&temp_status);

printf("is_server_listening error -> %s \n", err_buf);
}

/*
* This program reads the data from a file.
*/

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)
{

printf(msg3);
return;

}

fp_out = fopen("./i18n_method_conf_result_file", "w");

if (fp_out == NULL)
{

printf(msg4);
fclose(fp_in);
return;

}

(void)fgets((char *)net_string, SIZE, fp_in);
while (!feof(fp_in))
{

in_str_len = (long)strlen(net_string) + 1;

266 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

temp_status = cs_conf_trans(bind_handle, in_str_len, net_string, loc_string);

if (temp_status != rpc_s_ok)
{

dce_error_inq_text(temp_status, err_buf,
(int *)&status);

printf(msg5);
((unsigned long)temp_status, err_buf);

}
else
{

printf(msg6, rpc_num++);
(void)fputs((char *)loc_string, fp_out);
(void)fputs("\n", fp_out);

}
(void)fgets((char *)net_string, SIZE, fp_in);

}

fclose(fp_in);
fclose(fp_out);

return;
}

/*
This is the IDL file for sample code
*/

[
uuid(b076a320-4d8f-11cd-b453-08000925d3fe),
version(1.0)
]

interface cs_test
{

const unsigned short SIZE = 100;
typedef byte net_byte;

error_status_t cs_conf_trans (
[in] handle_t IDL_handle,

[in] unsigned long stag,
[in] unsigned long drtag,
[out] unsigned long *p_rtag,
[in] long arr_size,
[in, size_is(arr_size)] net_byte a[*],
[out, size_is(arr_size)] net_byte b[*]

);
}

/*
This is the ACF file for sample program
*/

[
explicit_handle
]
interface cs_test
{

include "dce/codesets_stub";

typedef [cs_char(cs_byte)] net_byte;

[comm_status, cs_tag_rtn(rpc_cs_get_tags)] cs_conf_trans (
[cs_stag] stag,

Chapter 14. Modifications to Internationalization 267

[cs_drtag] drtag,
[cs_rtag] p_rtag);

}

Here is an example client program of the cs_test interface that
provides its own character set compatibility evaluation and
conversion model selection. This example client uses the
rpc_cs_binding_set_tags() routine to set the code set tags within the
client code rather than using a tag-setting routine to set them within
the stub code.

#include <stdio.h>
#include <locale.h>
#include <dce/rpc.h>
#include <dce/rpcsts.h>
#include <dce/dce_error.h>

#include "cs_test.h" /* IDL generated include file */

/*
* Result check MACRO
*/

#define CHECK_STATUS(t, func, returned_st, expected_st) \
{

if (returned_st == expected_st) { \
; /* No operation */

} else { \
dce_error_inq_text(returned_st,\

(unsigned char *)unexpected, &dce_status); \
dce_error_inq_text(expected_st,\

(unsigned char *)expected, &dce_status); \
printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \

func, unexpected, expected); \
} \

} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

void
main(void)
{

rpc_binding_handle_t bind_handle;
rpc_ns_handle_t lookup_context;
rpc_binding_vector_p_t bind_vec_p;
unsigned_char_t *entry_name;
unsigned32 binding_count;
cs_byte net_string[SIZE];
cs_byte loc_string[SIZE];
int i, k, rpc_num;
int model_found, smir_true, cmir_true;
rpc_codeset_mgmt_p_t client, server;
unsigned32 stag;
unsigned32 drtag;
unsigned16 stag_max_bytes;
error_status_t status;
error_status_t temp_status;
unsigned char err_buf[256];
char *nsi_entry_name;
char *client_locale_name;
FILE *fp_in, *fp_out;
long in_str_len; /* size in bytes of net_string */

268 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

/* If the XPG/POSIX programming model is being used, set
* the locale. In this way, the current locale
* information is extracted from XPG/POSIX defined
* environment variable LANG or LC_ALL.
* Call dce_setlocale() to synchronize the program locale
* with DCE's locale.
*/

setlocale(LC_ALL, "");
dce_setlocale(DCE_LC_ALL, "");

rpc_ns_binding_lookup_begin (
rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_c_ifspec,

NULL,
rpc_c_binding_max_count_default,

&lookup_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_begin", status, rpc_s_ok);

rpc_ns_binding_lookup_next (
lookup_context,
&bind_vec_p,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_next", status, rpc_s_ok);

rpc_ns_binding_lookup_done (
&lookup_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_done", status, rpc_s_ok);

/*
* Get the client's supported code sets
*/

rpc_rgy_get_codesets (
&client,
&status);

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, rpc_s_ok);

binding_count = (bind_vec_p)->count;
for (i=0; i < binding_count; i++)
{

if ((bind_vec_p)->binding_h[i] == NULL)
continue;

rpc_ns_binding_select (
bind_vec_p,
&bind_handle,
&status);

CHECK_STATUS(FALSE, "rpc_ns_binding_select", status, rpc_s_ok);

if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}

Chapter 14. Modifications to Internationalization 269

rpc_ns_binding_inq_entry_name (
bind_handle,
rpc_c_ns_syntax_default,
&entry_name,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_inq_entry_name", status, rpc_s_ok);
if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}

/*
* Get the server's supported code sets from NSI
*/

rpc_ns_mgmt_read_codesets (
rpc_c_ns_syntax_default,
entry_name,
&server,
&status);

CHECK_STATUS(FALSE, "rpc_ns_mgmt_read_codesets", status, rpc_s_ok);

if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}

/*
* Start evaluation
*/

if (client->codesets[0].c_set == server->codesets[0].c_set)
{

/*
* client and server are using the same code set
*/

stag = client->codesets[0].c_set;
drtag = server->codesets[0].c_set;
break;

}

/*
* check character set compatibility first
*/

rpc_cs_char_set_compat_check (
client
server
&status);

CHECK_STATUS(FALSE, "rpc_cs_char_set_compat_check",
status, rpc_s_ok);

if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}

smir_true = cmir_true = model_found = 0;

for (k = 1; k < server->count; k++)
{

270 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

if (smir_true)
break;

if (client->codesets[0].c_set
== server->codesets[k].c_set)

{
smir_true = 1;
model_found = 1;

}
}

for (k = 1; k < client->count; k++)
{

if (cmir_true)
break;

if (server->codesets[0].c_set
== client->codesets[k].c_set)

{
cmir_true = 1;
model_found = 1;

}
}

if (model_found)
{

if (smir_true && cmir_true)
{

/* RMIR model works */
stag = client->codesets[0].c_set;
drtag = server->codesets[0].c_set;
stag_max_bytes

= client->codesets[0].c_max_bytes;
}
else if (smir_true)
{

/* SMIR model */
stag = client->codesets[0].c_set;
drtag = client->codesets[0].c_set;
stag_max_bytes

= client->codesets[0].c_max_bytes;
}
else
{

/* CMIR model */
stag = server->codesets[0].c_set;
drtag = server->codesets[0].c_set;
stag_max_bytes

= server->codesets[0].c_max_bytes;
}

}
else

{

/*
* We use UNIVERSAL code set
*/

stag = UCS2_L1;
drtag = UCS2_L1;
rpc_rgy_get_max_bytes (

UCS2_L1,
&stag_max_bytes,
&status

);
if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&server, &status);

Chapter 14. Modifications to Internationalization 271

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);
}

}

/*
* set tags value to the binding
*/

rpc_cs_binding_set_tags (
&bind_handle,
stag,
drtag,
stag_max_bytes,
&status);

CHECK_STATUS(FALSE, "rpc_cs_binding_set_tags",
status, rpc_s_ok);

if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);
rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}
else

break;
}

rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

rpc_ep_resolve_binding (bind_handle,
cs_test_v1_0_c_ifspec,
&temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);

if(rpc_mgmt_is_server_listening(bind_handle, &status)
&& temp_status == rpc_s_ok)

{
printf("PASSED rpc_mgmt_is_server_listening()");

}
else
{

dce_error_inq_text ((unsigned long)status, err_buf,
(int *)&temp_status);

printf("is_server_listening error -> %s\n", err_buf);
}

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)
{

printf("i18n_input_data open failed\n");
}

fp_out = fopen("./i18n_tags_fixed_result_file", "w");

if (fp_out == NULL)
{

printf("i18n_result_file open failed\n");
}

272 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

(void)fgets((char *)net_string, SIZE, fp_in);
while (!feof(fp_in))
{

temp_status = cs_conf_trans(bind_handle, in_str_len, net_string, loc_string);
if (temp_status != rpc_s_ok)
{

dce_error_inq_text(temp_status, err_buf, (int *)&status);
printf("FAILED %ld MSG: %s\n", (unsigned long)temp_status, err_buf);

}
else
{

printf("PASSED rpc #%d\n", rpc_num++);
(void)fputs((char *)loc_string, fp_out);
(void)fputs("", fp_out);

}
(void)fgets((char *)net_string, SIZE, fp_in);
}

fclose(fp_in);
fclose(fp_out);

return;
}

Related Information

For more information, see:

v OSF DCE Application Development Guide — Core Components

v OSF DCE Application Development Reference

Unsupported Functions

RPC code set conversion is described in:

v OSF Application Development Guide— ″Writing Internationalized RPC
Applications″

v OSF Introduction to DCE— ″Ensuring Character and Code Sets Interoperability″

DCE for Windows NT supports a more advanced version of code set conversion,
that is compatible with other IBM DCE implementations.

The following are the DCE RPC API’s that are not supported.

v wchar_t_from_netcs

v wchar_t_local_size

v wchar_t_net_size

v wchar_t_to_netcs

Chapter 14. Modifications to Internationalization 273

274 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 15. Application Debugging with the RPC Event
Logger

The DCE for Windows NT IDL compiler includes enhanced application debugging
support beyond the support provided with OSF DCE. The IDL compiler includes the
RPC Event Logger, a software utility that records information about operations
relating to the processing of an application. Operational information about the
program state at a specific point during processing, called an event , is recorded, as
an event log, in a file or to a terminal screen.

The terms event log and, log refer to the stream of logging output captured in the
event log file or displayed on the screen.

Event logging provides a detailed, low-level view of the processing of your RPC
application. If development of your RPC application is proceeding well, this level of
detail may not be necessary. However, when you are in the debugging phase of
application development, the continuous processing information provided by the
Event Logger and the ability to change the type and timing of logging can be
valuable.

For more information, see:

Overview of the RPC Event Logging Facility

Generating RPC Event Logs

Controlling Log Information: Using Environment Variables and the Log Manager

Using the -trace Option, Environment Variables, and the Log Manager Together

Debugging Your Application: Using Event Logs

Event Names and Descriptions

Overview of the RPC Event Logging Facility

When you enable event logging, the Event Logger creates one log for each client
and server process. To enable the RPC Event Logger, specify an IDL compiler
option that traces events (as described in Enabling Event Logging).

Enabling event logging when compiling allows you the option of generating logs at
runtime without rebuilding the application. Once logging is enabled, you can use
environment variables and the RPC Log Manager (rpclm) to control logging
operations. The Log Manager provides a command line interface for changing
logging operations while the application is running.

The RPC Event Logger records events about application calls, context handles,
errors, miscellaneous events, and logging operations. These are called event types.
Typical RPC events include the following:

call_start
A client application made a call to a server.

call_failure
A client stub ended abnormally either through an exception or failing status.

exception
An exception was detected in the server stub, and the exception caused the
call to stop.

275

context_rundown
A context handle on a server was freed by the context rundown procedure.

The Event Logger generated events are as follow:

application calls
To signal call activation, the call start and end, attempts to rebind to a
server, and stopping of a server thread.

context handles
To signal context handle creation and deletion by the client and server, and
context handle modification, removal, and rundown.

errors To signal call and receive failure from the client, exceptions, server failure,
and call transmission failure from the server.

miscellaneous events
To provide information about the application manager routine, and input and
output argument processing events.

The logging operation itself generates events that display the logging output device,
and that signal modification of logging parameters, and event log start and stop.

As a result of using the -trace option in the IDL compile command, idl , RPC events
are generated by code in the client and server stub modules created by the
compiler. Some events are generated at selected points in the RPC runtime library.
For this reason, certain events, such as those relating to the logging operation, are
always generated into the application code in addition to the event types you
specify.

The events generated in each of these areas are shown in the following table. The
first column lists events that can be generated, and the second column indicates
whether the client or server, or both, can generate the event. For a complete
description of each event see “Event Names and Descriptions” on page 290.

Event Types

Event Name Origin

Call Events

activate server

call_end client

call_start client

rebind client

terminate server

Context Handle Events

client_ctx_created client

client_ctx_deleted client

client_ctx_destroyed client

context_created server

context_deleted server

context_modified server

context_rundown server

276 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Error Events

call_failure client

exception server

receive_fault client

status_fail server

transmit_fault server

Miscellaneous Events

await_reply client

manager_call server

manager_return server

receive client

Logging Events

internal_error client, server

listening client, server

log_events client, server

log_file client, server

log_start client, server

log_stop client, server

In the event log, each event is described on a single line divided into five fields. The
five fields are defined in the following table.

Event Log Fields

Field Field Description

Event Time The system clock at the time of the event. Events are
listed chronologically in the log.

Thread Identity The hostname, process ID, and thread ID.

Operation Name The interface and operation name (if available).

Event Name The name of the event.

Event Data Data related to the event. This field contains either
specific information about logging operations or a string
binding that uniquely identifies the client process, server
process, or Log Manager process.

The following is an example of an event log generated for an RPC client. The log
contains five columns. To improve readability, columns four and five are shown
below the first three columns. In addition, the field names have been added to
identify the events; the names do not appear in an actual event log. (In subsequent
event log examples, the field names are occasionally used instead of actual data to
improve readability where necessary.)

EVENT TIME THREAD IDENTITY OPE
1993-02-07:11:48:18.31.160-5:00I0.121 ifdef:8710/1 binopwk.binopwk_
1993-02-07:11:48:18.32.170-5:00I0.121 ifdef:8710/1 binopwk.binopwk_
1993-02-07:11:48:18.65.180-5:00I0.121 ifdef:8710/1 binopwk.binopwk_
EVENT NAME EVENT DATA

Chapter 15. Application Debugging with the RPC Event Logger 277

log_start all
call_start ncacn_ip_tcp:16.31.48.109[1821]
call_end

This small event log indicates that the following events occurred:

1. The log_start event indicates that logging started on February 7, 1993, at 11:48
a.m. on the host named ifdef , in process number 8710, and in thread number 1.
Event logging was enabled when the binopwk interface was compiled with the
IDL -trace option. The RPC call to the binopwk_add operation in the binopwk
interface caused logging to begin and is the first event logged. The Event Data
field indicates that all events are being logged.

2. The call_start event indicates an attempt to make a call to a server. The string
binding in the Event Data field shows that the call was made over the TCP/IP
transport to host 16.31.48.109 with endpoint 1821. This string binding identifies
the server being contacted.

3. The call_end event indicates that the RPC call is completed, and control has
returned to the caller of binopwk_add .

This log indicates that the RPC call to the binopwk_add interface was successful
because no error events occurred.

Generating RPC Event Logs

To create an event log you must follow these four basic steps:

1. Specify the -trace option in your idl command line to enable event logging.

2. Compile and link the application.

3. Assign the event log to a filename or to the screen.

4. Run the application.

For information on how to use the -trace option see:

Enabling Event Logging

Using the -trace Option

Combining Event Logs

Disabling Event Logging

Enabling Event Logging

To enable event logging, specify the -trace option when you use the idl command
to compile an interface. The syntax of the idl command with the -trace option is as
follows:

C:\>idl filename -trace value

Event types are specified as a value of -trace . Valid values and the event types
they denote are listed in the following table.

Event Values and Types

Value Event Type

all Log all events.

none Disable all previously specified trace options.

278 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Value Event Type

calls Log events relating to start and end of all RPC calls.

context Log events relating to context handle creation,
deletion, and rundown.

errors Log errors.

misc Log all miscellaneous events.

log_manager Enable command interface support which allows
modification at runtime of event logging options.

Using the -trace Option

The Event Logger generates a large volume of information for your analysis.
Because the Event Logger continues to record information into the log files, the log
files continue to grow until the disk is full; therefore, make sure you discard any
unneeded log files.

To help reduce the generation of unwanted information, you can use the -trace
options to enable event logging on only a subset of events. For example, instead of
specifying the all option, specify only calls or only context_handles . The subset
you specify depends on the part of your application you are debugging. Although
the -trace option provides logging control on a per-compilation basis, the interface
must be rebuilt to enable or disable logging of different event types. The -trace
options offer the ability to select different event types for the various IDL interfaces
that might make up a single application.

You can use the -trace option to request logging of a single type of event, such as
errors , with a command similar to the following:

C:\> idl binopwk.idl -trace errors

You can also use the -trace option to request logging of multiple event types, such
as errors and calls as shown below:

C:\> idl binopwk.idl -trace errors -trace calls

The above command enables the Event Logger, specifying error and call event
logging.

To enable event logging to trace the RPC calls within a process, do the following:

1. Enable event logging by specifying the -trace option in the idl command you
use to compile each interface definition. The following example specifies the
-trace all option:

C:\> idl binopwk.idltrace all

2. Build and link the client and server portions of the application.

3. Use the environment variable RPC_LOG_FILE to direct the log output for both
the server and client processes. To store Event Logger output in a file, assign
the environment variables to a filename.

In the window where the server portion of the application will be running, direct
logging for the server to a file with the following syntax:

C:\> set rpc_log_file =server.log

Or, to direct logging for the server to the screen (standard output), use the
following syntax:

C:\> set rpc_log_file=

Chapter 15. Application Debugging with the RPC Event Logger 279

where a specific space character is included immediately after the equal sign
(=).

4. In the window where the client portion of the application will be running, direct
logging for the client to a file using the following syntax:

C:\> set rpc_log_file =client.log

Or, to direct logging for the client to the screen, use the following syntax:
C:\> set rpc_log_file=

where a specific space character is included immediately after the equal sign
(=).

Now you can invoke the client and server processes. The event log is recorded in
the specified file or displayed on your screen when you run the application.

Combining Event Logs

Although event logs are generated locally for each process, you can combine event
log files to give you a broader view of how the applications are running. This topic
does not provide examples of each step in the application development process.

The syntax of the sort command is as follows:
C:\ > sort-m server-filename.log client-filename.log>client_and_server-filename.log

The -m option is specified, indicating that the files are already sorted and prevents
reordering of events that occurred at the same time.

If two events have the same timestamp, a warning message displays after the sort
is completed.

The following example illustrates how to combine logs from two different systems.

1. The server process command sequence is as follows:
C:\> idl fpeserv.idl-trace calls-trace errors
C:\> set rpc_log_file =server.log
C:\> server

2. The client process command sequence is as follows:
C:\> idl fpeserv.idl -trace calls -trace errors
C:\> set rpc_log_file=client.log
C:\> server

These command sequences result in two log files: server.log and client.log ,
shown below. In the following example log files, the Event Data field is replaced
by the word <data> to improve readability of the log.

The example SERVER.LOG file is:

1993-03-03:20:37:03.170-5:00I0.121 murp:17924/15 fpe.setup log_start <data>
1993-03-03:20:37:03.170-5:00I0.121 murp:17924/15 RPC Log Mgr listening <data>

1993-03-03:20:37:03.180-5:00I0.121 murp:17924/15 fpe.setup activate <data>
1993-03-03:20:37:03.180-5:00I0.121 murp:17924/15 fpe.setup terminate <data>
1993-03-03:20:37:03.200-5:00I0.121 murp:17924/15 fpe.float <data>
1993-03-03:20:37:03.200-5:00I0.121 murp:17924/15 transmit_fault <data>
1993-03-03:20:37:03.200-5:00I0.121 murp:17924/15 fpe.float terminate <data>

The example CLIENT.LOG file is:

280 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

1993-03-03:20:37:02.850-5:00I0.121 ifdef:28168/1 fpe.stup log_start <data>
1993-03-03:20:37:02.880-5:00I0.121 ifdef:28168/1 fpe.stup call_start <data>
1993-03-03:20:37:03.190-5:00I0.121 ifdef:28168/1 fpe.stup call_end <data>
1993-03-03:20:37:03.190-5:00I0.121 ifdef:28168/1 fpe.flt call_start <data>
1993-03-03:20:37:03.210-5:00I0.121 ifdef:28168/1 receive_fault <data>
1993-03-03:20:37:03.210-5:00I0.121 ifdef:28168/1 call_failure <data>

3. Next, the two log files are combined and sorted with the sort command.
C:\> sort -m client.log server.log> cli_serv.log

The resulting CLI_SERV.LOG file is:

1993-03-03:20:37:02.850-5:00I0.121 ifdef:28168/1 fpe.setup log_start <data>
1993-03-03:20:37:02.880-5:00I0.121 ifdef:28168/1 fpe.setup call_start <data>
1993-03-03:20:37:03.170-5:00I0.121 murp:17924/15 fpe.setup log_start <data>
1993-03-03:20:37:03.170-5:00I0.121 murp:17924/15 RPC Log Mgr listening <data>
1993-03-03:20:37:03.180-5:00I0.121 murp:17924/15 fpe.setup terminate <data>
1993-03-03:20:37:03.190-5:00I0.121 ifdef:28168/1 fpe.setup call_end <data>
1993-03-03:20:37:03.190-5:00I0.121 ifdef:28168/1 fpe.float call_start <data>
1993-03-03:20:37:03.200-5:00I0.121 murp:17924/15 fpe.float activate <data>
1993-03-03:20:37:03.200-5:00I0.121 murp:17924/15 fpe.float exception <data>
1993-03-03:20:37:03.200-5:00I0.121 murp:17924/15 transmit_fault <data>
1993-03-03:20:37:03.200-5:00I0.121 murp:17924/15 fpe.float terminate <data>
1993-03-03:20:37:03.210-5:00I0.121 ifdef:28168/1 receive_fault <data>
1993-03-03:20:37:03.210-5:00I0.121 ifdef:28168/1 call_failure <data>

For the combined output to be accurate, the system clocks on all hosts on which
event logs are generated must be closely synchronized. The Distributed Time
Service (DTS) component of DCE for Windows NT provides such a service. Once
the clocks are synchronized, the ordering of events in a combined log file is valid
only if the difference between timestamps made on different machines is greater
than the inaccuracy field in those timestamps. For more information about
timestamps, see the DTS documentation in OSF DCE Administration Guide.

In the preceding CLI_SERV.LOG file example, consider the event with the
timestamp 1993-03-03:20:37:03.180-5:00I0.121 and the event that follows it (these
two event lines are separated from the rest of the log by a blank line on either
side). The timestamps indicate that the terminate event precedes the call_end
event.

However, you cannot determine this sequence of events by comparing timestamps
because the inaccuracy value at the end of the timestamp is greater than the
difference between the timestamps. That is, the difference in time between these
events is only 10 milliseconds (the difference between 180 and 190 milliseconds).
However, the inaccuracy in the timestamps is 121 milliseconds (I0.121). Therefore,
the log is not a definitive indicator of which event occurred first. Because of the
simplicity of the example and the single thread of control, you can assume that the
terminate event preceded the call_end event.

Disabling Event Logging

To disable event logging, compile your interface without specifying the -trace option.
For example:

C:\> idl binopwk.idl

Chapter 15. Application Debugging with the RPC Event Logger 281

Controlling Log Information,Using Environment Variables and the Log
Manager

In addition to the -trace options, the Event Logger offers two other methods for
controlling information in the event log. Each facility is advantageous in different
circumstances, depending on the type of processes with which you are working and
the type of events you need to log. The two methods are as follows:

v Controlling Logged Events with Environment Variables

Select a subset of event types specified previously with the-trace option by
creating the environment variable RPC_EVENTS . You assign the environment
variable to the required event types before running the process. This method
allows you to use event logging without rebuilding the interface; however, you
must first stop the process or assign the environment variable before starting it.
This method is also useful in cases where you specified all-inclusive event
logging (such as with the -trace all option) but you determine while the
application is running that you need only a subset of events.

v Controlling Logged Events with the RPC Log Manager

Select a subset of event types specified previously with the -trace option by
using the RPC Log Manager command interface. This method allows you to
modify event logging parameters for a running image - there is no need to rebuild
the interface or to stop and restart the process. In addition, you can use the Log
Manager to modify event types specified with the environment variable
RPC_EVENTS.

Controlling Logged Events with Environment Variables

One way to control the type of events logged is by assigning the environment
variable RPC_EVENTS. This method is ideal for an application that contains a
single RPC interface because environment variables provide control at the process
level, rather than at the interface-by-interface level. However, to enable the
environment variable you must first stop the client or server process.

To use environment variables to control event logging, first use the IDL -trace
option in your idl compile command and then assign the log file with
RPC_LOG_FILE. You can then use the environment variable RPC_EVENTS to
reduce the number of events currently being logged. For example, if you used the
-trace errors option to request error event logging, you can subsequently use only
the environment variable to request logging of errors or none . You cannot use the
environment variable to increase the number of event types to be logged. To do
this, you must recompile the interface with the required -trace options.

The value of RPC_EVENTS is a list of event types separated by commas. The list
identifies the event types to be monitored. Valid values are the same as those for
-trace (except log_manager). These values are all , none , calls , context , errors ,
and misc .

An example command line follows:
C:\> set rpc_events =calls,errors

If the environment variable RPC_EVENTS was not assigned, then by default all of
the events specified with the -trace option are written into the event log.

282 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Controlling Logged Events with the RPC Log Manager

During application development, certain problems occur only after a server has
processed some number of calls. Other problems may require more information
than anticipated to debug. These problems can be addressed by enabling the RPC
Log Manager in your application image. The Log Manager offers a command line
interface (rpclm) for manipulating logging operations when the application is
running. When you use the rpclm command line interface, you do not need to
rebuild your interface or stop and restart your server or client process to manipulate
logging operations.

The rpclm commands are shown in the following table:

Command Interface to rpclm

Commands Description

inquire Inquire about the currently logged events and
determine the name of the active log file.

log Specify additional events to log. Valid values are all ,
none , calls , context , errors , and misc .

unlog Disable logging of the specified event types. Valid
values are all , none , calls , context , errors , and
misc .

file Change the output device or file to which events are
logged.

quit Terminate the rpclm session.

help Display a description of rpclm commands.

Follow these steps to enable the RPC Log Manager to control event logging:

1. Use the -trace log_manager option in your idl compile command.

2. Create the RPC_LOG_FILE environment variable and assign it to a filename or
to screen output.

3. Run the client or server process, or both.

4. When the first call is made to an interface compiled with the -trace option, a
listening event is generated into the event log. Invoke the rpclm command
interface (as specified in step 4 below) by specifying the string binding from the
listening event.

Note: Only string bindings from a listening event can be used to invoke rpclm .

The rpclm command interface allows you to control event logging parameters from
your keyboard. You can use the command interface to reduce the events currently
being logged as well as to manipulate logging operations. You can enable or
disable logging of different event types (within the set selected with the -trace
option), store event logging in a file or display it on the screen, inquire about the
current event types being logged, and display the name of the current log file.

The following procedure illustrates how to use the Log Manager:

1. When you compile your interface with the idl compile option, include the -trace
log_manager option. For example:

C:\> idl binopwk.idl-trace all-trace log_manager

2. Assign the RPC_LOG_FILE environment variable to a filename. For example:
C:\>set rpc_log_file =client.log

Chapter 15. Application Debugging with the RPC Event Logger 283

3. Run the client or server process, or both.

4. Upon the first remote procedure call to an interface compiled with the -trace
log_manager option, a listening event is generated into the log. Examine the
Event Data field of the listening event in the log to determine the Log Manager
string binding. (The RPC Event Logger is itself a client/server application: the
Log Manager is a server process, and rpclm is its client. The rpclm client uses
the string binding of the listening event to communicate with the Log Manager
server.) Start rpclm and specify the Log Manager string binding. For example,
consider the following event:

<time> murp:17868/15 RPC Log Mgr listening ncacn_ip_tcp:16.31.48.144[3820]

The listening event indicates that the RPC Log Manager is waiting for
commands from rpclm . (In the example, the Time field is replaced by the word
<time> to improve readability of the log.) To invoke rpclm , type the listening
event string binding for this server process from the Event Data field as follows:

C:\> rpclm "ncacn_ip_tcp:16.31.48.144[3820]"

Note: You must enclose the string binding in double quotation marks (″ ″)

5. As you process rpclm commands, the Log Manager displays current logging
parameters that indicate the changes made to event logging for this process.
For example:

rpclm> unlog all

Event types:
Events logged to terminal rpclm

rpclm> log calls

Event types: calls
Events logged to terminal

The log for this server process will have corresponding events logged as
follows:

<time> murp:17868/15 RPC Log Mgr log_events none
<time> murp:17868/15 RPC Log Mgr log_events calls

The following example illustrates a command dialog between the user and
rpclm . The dialog begins when the user specifies a string binding from a
listening event to rpclm .
C:\> rpclm "ncacn_ip_tcp:cltdce[1821]"
rpclm> help

rpclm Commands:
inquire- Display logged events and log filename
log- Specify additional events to log
unlog- Specify events that should no longer be logged
file- Change file into which events are logged
quit- Exit log manager

rpclm> inquire

Event Types: calls
Events logged to terminal

rpclm> log errors

284 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Event Types: calls errors
Events logged to terminal

rpclm> file server.log

Event Types: calls errors
Events logged to file ’server.log’

rpclm> quit

In this dialog, typing the help command displays the rpclm commands and
command descriptions.

Typing the inquire command displays the types of events being logged and the log
filename. In this example, errors are being logged to the screen.

Typing the log calls command specifies that the Log Manager should start logging
all events relating to calls, in addition to error events.

The user then types the file command and specifies a filename. This command
requests that rpclm change its output device from the terminal screen to a file
named server.log .

Typing quit ends the rpclm session.

Using the -trace Option, Environment Variables, and the Log Manager
Together

This topic describes a few different ways to use the -trace options, environment
variables, and the Log Manager together. When you are learning to use the Event
Logger, one possible approach is to specify all-inclusive event logging with the
-trace all IDL compilation option, and then examine the event log to get an
understanding of typical output. You can then use the environment variable
RPC_EVENTS to log only those events needed, such as calls or errors .

In the case of a running process that you do not want to stop, use a different
method.

1. Enable the Event Logger, specifying logging of all events, and enable the Log
Manager. Type:

C:\> idl filename -trace all-trace log_manager

2. Set the event log to display on the screen. Type:
C:\> set rpc_log_file where a specific space character is

included immediately after the

3. Assign the RPC_EVENTS environment variable so it will not log any event
types. Type:

C:\>set rpc_events =none

With these parameters set, the only event that is displayed is the listening event
once the first call is made to a server interface compiled with the -trace
log_manager option. You can then obtain the string binding for the process and
use it later, if needed. Once you start the process, if an error occurs, use the string
binding to invoke the rpclm command interface and log the needed events. Any
rpclm commands issued at this point will modify the RPC_EVENTS environment
variable assignment. For example, if you assign the environment variable
RPC_EVENTS to calls and then issue a command to rpclm to log errors , errors
as well as calls are logged.

Chapter 15. Application Debugging with the RPC Event Logger 285

Once you are familiar with Event Logger output, consider using the command
interface regularly to enable or disable subsets of event types as needed.

This topic provides an example of common tasks you may need to perform during
event logging. In this particular example, a distributed server process provides a
mathematical calculation service. The client process passes data to be calculated to
the server process. This type of processing often generates exception events such
as those in the example event log. That is, some operations are interrupted by
floating point overflow and integer division by zero exceptions, as well as others.
This example uses rpclm to control logging of a server process; however, you can
also use rpclm to control event logging for a client process.

The following processes are shown in three windows: a server process window, a
client process window, and an rpclm window.

1. Server Window:

The user enables the RPC Event Logger by specifying the -trace all and-trace
log_manager options in the idl command line:

C:\>idl server.calc -trace all -trace log_manager

2. Server Window:

The user starts the server process. The server receives a client call and
initializes the RPC Log Manager. The environment variables were assigned to
enable event logging with no event types selected, so only Log Manager
events are output, as shown. (The endpoint displayed for the listening event
is the endpoint of the Log Manager.)

C:\> set rpc_log_file=

where a specific space character is included immediately after the equal sign
(=).

C:\> set rpc_events =none
C:\> server ncacn_ip_tcp

<time> murp:17868/15 fpe.setup log_start none
<time> murp:17868/15 RPC Log Mgr listening ncacn_ip_tcp:16.31.48.144[3820]

3. Client Window:

The user invokes the client process. The specified string binding is used to find
the server. The client process displays the output PASS 1 upon completion.

C:\> client ncacn_ip_tcp 16.31.48.86 [3123]
PASS 1

4. rpclm Window:

The user invokes rpclm and specifies the string binding displayed in the
listening event output by the server process, shown in step 2. The string
binding must be enclosed in double quotation marks (″ ″). The user issues the
inquire command, and the event logging parameters for the server process
are displayed. The Log Manager reply indicates that no event types are
enabled and that the event log is being displayed on the screen from which the
server process was started. The user issues the log errors command to
enable logging of error events for the server process.

C:\> rpclm "ncacn_ip_tcp:16.31.48.144[3820]"
rpclm> inquire

Event types:
Events logged to terminal

rpclm> log errors

286 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Event types: errors
Events logged to terminal

5. Client Window

The user invokes the client process a second time. The error events that occur
when the server is running, are logged to the server window. The client
process displays the output PASS 2 upon completion.

C:\> client ncacn_ip_tcp 16.31.48.86 [3123]
CPASS 2

6. Server Window

The server process receives the command from rpclm to start logging errors.
Any errors that occur in the server process are logged.

<time> murp:17868/15 RPC Log Mgr log_events errors
<time> murp:17868/15 fpe.flt_overflw exception Floating point

<time> murp:17868/15 transmit_fault rpc_s_fau
<time> murp:17868/15 fpe.flt_underflw exception Floating point unde
<time> murp:17868/15 transmit_fault rpc_s_fa
<time> murp:17868/15 fpe.flt_divbyzer exception Floating point/

<time> murp:17868/15 transmit_fault rpc_s_fau
<time> murp:17868/15 fpe.dble_overflw exception Floating point

<time> murp:17868/15 transmit_fault rpc_s_fau
<time> murp:17868/15 fpe.dble_underflw exception Floating point

<time> murp:17868/15 transmit_fault rpc_s_fau
<time> murp:17868/15 fpe.dble_divbyzer exception Floating point/decim

<time> murp:17868/15 transmit_fault rpc_s_fa

7. rpclm Window

The user issues the unlog all command to disable logging of all previously
specified event types

rpclm> unlog all

Event types:
Events logged to terminal

8. Server Window

The event log now contains an entry that indicates the Event Logger will stop
logging previously specified events.

<time> murp:17868/15 RPC Log Mgr log_events none

9. rpclm Window

The user issues a log calls command to enable logging of call events.
rpclm> log calls

Event types: calls
Events logged to terminal

10. Server Window:

The newest event log entry indicates that the Event Logger will start logging
call events.

Chapter 15. Application Debugging with the RPC Event Logger 287

<time> murp:17868/15 RPC Log Mgr log_events calls

11. rpclm Window:

Because logging output will increase now that call events are being logged, the
user issues an rpclm command to redirect logging output to a file named
servcalc.log . When the application stops and logging is complete, the user
can use a text editor to view and search for entries in the log. This log file
contains only those call events from the server process.

rpclm> file servcalc.log

Event types: calls
Events logged to file ’servcalc.log’

12. Server Window:

The newest event log entry indicates that the logger starts redirecting logging
information to file servcalc.log .

<time> murp:17868/15 RPC Log Mgr log_file servcalc.log

13. Client Window:

The user invokes the client process a third time. The call events that occur
when the server is running are logged to servcalc.log file. The client process
displays the output PASS 3 upon completion.

C:\> client ncacn_ip_tcp 16.31.48.86 [3123]
PASS 3

14. Server Log:

This is log file servcalc.log

<time> murp:17868/15 RPC Log Mgr log_start server_calc.log
<time> murp:17868/15 fpe.setup activate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.setup terminate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.flt_overflw activate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.flt_overflw terminate
<time> murp:17868/15 fpe.flt_underflw activate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.flt_underflw terminate
<time> murp:17868/15 fpe.flt_divbyzer activate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.flt_divbyzer terminate
<time> murp:17868/15 fpe.dble_overflw activate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.dble_overflw terminate
<time> murp:17868/15 fpe.dble_underflw activate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.dble_underflw terminate
<time> murp:17868/15 fpe.dble_divbyzer activate ncacn_ip_tcp:16.31.48.109[2905]
<time> murp:17868/15 fpe.dble_divbyzer terminate

15. rpclm Window

The user issues a file command to redirect event logging output from
server_calc.log to the terminal screen. To do this, press the Return key
without specifying a filename when the Log Manager prompts for one.

rpclm> file

New File Name: <Return>
Event types: calls
Events logged to terminal

rpclm>

16. Server Window

288 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

The final event in the servcalc.log file is a log_file event, which indicates that
event logging output is being redirected, in this case to the terminal screen.
Therefore, no filename is displayed to the right of the event name.

<time> murp:17868/15 RPC Log Mgr log_file

Debugging Your Application, Using Event Logs

The RPC Event Logger is designed to help you debug your distributed application
and is an enhancement over the basic diagnostics in the RPC product. The
diagnostics alone provide minimal information. For example, the sample program
called test2 , which is provided with the DCE software kit, generates the
rpc_x_no_more_bindings exception when the client fails to contact the server.
Without the aid of RPC event logging, this is the only diagnostic information
available.

The following example shows the basic RPC diagnostic information that an
application displays when an error occurs.

C:\> test2
*** Unable to obtain server binding information
Make sure environment variable RPC_DEFAULT_ENTRY = .:/test2_server
Exception: no more bindings (dce / rpc)
IOT trap (core dumped)

If you enable RPC event logging by defining the environment variable
RPC_LOG_FILE , the details of client execution are captured in a file. From the
event log, you can determine which servers the client tried to contact and the
reason each attempt failed.

In the following event log example, the Event Data field on the rebind events
indicates that the interface is not registered in the endpoint map and that a
communications failure occurred. This information indicates that the server either is
not running or it failed to register properly with the endpoint mapper.

The final event, call_failure , indicates that the call ended with the no more bindings
status. This event indicates that the client tried all available servers but failed to
communicate with any of them. (In the example, the word <time> represents the
actual value for time.)
C:\>test2

<time> ko:11436/1 test2.test2_add log_start all
<time> ko:11436/1 test2.test2_add call_start ncacn_ip_tcp:16.20.16.27[]
<time> ko:11436/1 test2.test2_add rebind not registered in endpoint map(d
<time> ko:11436/1 test2.test2_add call_start ncacn_dnet_nsp:4.262[]
<time> ko:11436/1 test2.test2_add rebind not registered in endpoint

<time> ko:11436/1 test2.test2_add call_start ncadg_ip_udp:16.20.16.27[]
<time> ko:11436/1 test2.test2_add rebind communications failure (dce/rpc)
<time> ko:11436/1 call_failure no more bindings (dce/rp
*** Unable to obtain server binding information
Make sure environment variable RPC_DEFAULT_ENTRY = .:/test2_server
Exception: no more bindings (dce / rpc)
IOT trap (core dumped)

Chapter 15. Application Debugging with the RPC Event Logger 289

Event Names and Descriptions

This topic lists and describes RPC events. See the Overview of the RPC Event
Logging Facility table for a list of events by type (calls, context handles, errors,
miscellaneous, and logging) and their origin (client or server).

RPC Events Description

activate A thread was assigned to process an RPC call on a server, and the server
stub has started processing input arguments. The Event Data field of the
event log contains the string binding of the client application making the call.

await_reply The transmission of input arguments in a call from a client application to a
server is completed. The event is generated by the client stub. The client
application is waiting for output arguments from the server.

call_end A call from a client application is complete and the client stub is returning to
the caller.

call_failure A client stub terminated abnormally because either an exception occurred or
a failing status was returned. The Event Data field of the event log contains
the error text associated with the exception or RPC status code.

call_start A client application attempted to make a call to a server. The event is
generated by the stub within the client application. The Event Data field of
the event log displays the string binding of the server being contacted.

client_ctx_created A client application has allocated a context handle on a particular server.
The Event Data field of the event log contains the following information
about this event: the address representing the context handle in the client
address space (an opaque pointer), the UUID which can be used to identify
the corresponding context handle on the server, and the string binding of the
server on which the actual context resided.

client_ctx_deleted The client application representation of a context handle is being deleted to
reflect the deletion of the context handle on the server. The Event Data field
of the event log contains the following information about this event: the
address representing the context handle in the client address space (an
opaque pointer), the UUID which can be used to identify the corresponding
context handle on the server, and the string binding of the server on which
the actual context resided

client_ctx_destroyed A client application has destroyed the client representation of a context
handle through the rpc_ss_destroy_client_context() routine. The Event
Data field of the event log contains the following information about this
event: the address representing the context handle in the client address
space (an opaque pointer), the UUID, which can be used to identify the
corresponding context handle on the server, and the string binding of the
server on which the actual context resided

context_created A new context handle was created on a server and returned from the
application manager routine. The Event Data field of the event log contains
both the application value of the context handle and the UUID assigned to
represent this context handle.

context_deleted A context handle on a server has been deleted by the application manager
routine. The Event Data field of the event log contains both the application
value of the context handle and the UUID assigned to represent this context
handle.

context_modified A context handle on a server was returned from the application manager
routine with a value that is different from its previous value. The Event Data
field of the event log contains both the application value of the context
handle and the UUID assigned to represent this context handle.

290 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

context_rundown A context handle on a server was freed by the context rundown procedure.
The Event Data field of the event log contains both the application value of
the context handle and the UUID assigned to represent this context handle.

exception An exception was detected in the server stub, and the exception caused the
call to terminate. The Event Data field of the event log contains a text
description of the exception.

internal_error A failure occurred in the support routines that manage the Event Logger.
Check the Event Data field of the event log for a description of the cause of
the event. If the error does not seem to indicate a transient network problem
or an environmental failure, report the failure in a Software Performance
Report (SPR).

listening The RPC Log Manager has started to listen for rpclm commands. The
listening event is generated by the portion of the RPC Log Manager built into
your application by the RPC runtime when you specify the -trace
log_manager option on your IDL compilation. The RPC Log Manager
services the requests generated by the rpclm command. You use one of the
string bindings from a listening event to invoke the rpclm command
interface.

log_events Event logging was modified through the Log Manager command interface
rpclm . The Event Data field of the event log contains the new set of events
being logged.

log_file Event logging was modified through the Log Manager command interface
rpclm . The Event Data field of the event log contains the new filename for
the event log. If no filename is displayed, events are being logged to the
screen.

log_start A new event log was created or event logging was resumed after being
suspended by a user command to the Log Manager command interface
rpclm . The Event Data field in the event log contains a list of event types
being logged.

log_stop Event logging was stopped through the Log Manager command interface
rpclm .

manager_call The server stub is about to call the application manager routine.

manager_return Control has just returned from the application manager routine to the server
stub.

rebind A call from a client application to a server failed. The Event Data field in the
event log shows the reason for the failure to contact the server. The event is
generated by the stub within the client application. The call failed on an
auto_handle operation and the client is attempting to rebind to the next
server.

receive Following the transmission of input arguments from a client application call
to a server, the client received a reply and has started processing output
arguments.

receive_fault The client received a fault indicating a failure on the server. The Event Data
field of the event log contains the RPC status that identifies the failure. All
failures have fault codes which you can find in the file NCASTAT.IDL. If the
fault code in the NCASTAT.IDL file is too general (such as unspecified fault),
examine the server event log for precise failure information.

status_fail A failure status was encountered in the server stub. The Event Data field of
the event log describes the failure.

terminate The server thread has completed processing the call and has ended.

Chapter 15. Application Debugging with the RPC Event Logger 291

transmit_fault The server runtime is sending fault information to the client application. The
Event Data field of the event log indicates the name of the fault being sent.
The fault information in this field is listed in the NCASTAT.IDL file. The fault
information in this field may be less descriptive than the information logged
about the actual error. To obtain precise failure information see the exception
or status_fail events in the event log.

Summary: RPC Event Logger

The RPC Event Logger is a developer’s aid for debugging DCE RPC applications.
The RPC Event Logger allows you to modify IDL-generated stub routines in order to
generate event logs of runtime execution of RPC calls on the screen or in a file. In
addition, the RPC Log Manager command interface (rpclm) provides command line
access to event logging parameters, allowing you to enable and disable debugging
support of clients and servers as they execute.

The DCE RPC application development environment is designed to create
applications that are portable to other DCE platforms and that can interoperate with
other DCE applications. Use of the DCE RPC Event Logger does not affect code
portability or interoperability. Because the Event Logger does not modify the
application, you can take advantage of event logging without affecting application
portability to other hardware or software platforms.

In addition, use of the DCE RPC Event Logger does not limit interoperability with
other DCE implementations. Because event logs are generated only in the local
application, communication protocols are not modified. You can, for example, use
the event logging facility with any server process running under DCE or with any
client process communicating with an RPC server on any hardware or software
platform.

292 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 16. Using DTS Time Providers

DCE for Windows NT includes DTS time provider applications that work in
conjunction with a distributed time service to provide an accurate time source.
When a time provider is started, it becomes the DTS service’s sole time provider.

DTS time providers are provided as source code on the DCE kit in the
%DCELOC%\dcelocal\examples\dtss directory.

For more information, see:

“Building DTS Time Providers”

“Null Time Provider”

“Starting the Null Time Provider as a Foreground Process”

“Starting the Null Time Provider as a Native NT Service” on page 294

“NTP Time Provider” on page 294

Building DTS Time Providers

To build the DTS time providers, type:
x:\> cd %DCELOC%\dcelocal\examples\dtss
x:\> nmake -f providers.mak

Null Time Provider

The ″null″ time provider (dts_null_provider.exe) implements a time source that
assumes the host’s time is already synchronized in some manner (for example,
through the use of NTP or specialized hardware).

Starting the Null Time Provider as a Foreground Process

To run the program interactively, type:
%DCELOC%\dcelocal\examples\dtss> dts_null_provider.exe

The provider asks for values for the following parameters:

Poll period
The number of seconds between time service queries. For example, a
value of 300 causes the provider to supply the inaccuracy to the time
service every 5 minutes.

Base inaccuracy
The number of milliseconds of systematic inaccuracy in the timestamps
delivered by the host. The default value is 100 milliseconds.

Output trace flag
Enables or disables the logging of TP tracing information to standard
output. Setting the output trace flag to TRUE causes information to be
logged.

To view the valid command line arguments, start the provider interactively, and then
exit.

293

Starting the Null Time Provider as a Native NT Service

To run the DTS Null Time Provider Service as a native NT service, type:
C:\> net start dts_null_provider

To stop the service, type:
C:\> net stop dts_null_provider

NTP Time Provider

The Network Time Protocol (NTP) is an Internet recommended standard for
distributing time. The NTP time provider (dts_ntp_provider.exe) assumes that the
user is familiar with the NTP protocol and has an NTP server available as a time
source.

To run the program interactively, type:
%DCELOC\dcelocal\examples\dtss> dts_ntp_provider.exe

The provider asks for values for the following parameters:

Internet host name of the NTP server to query
This can be specified as a name or an address (decwet.dec.com or
16.1.0.4).

Poll period
This is the number of seconds between NTP queries. For example, a value
of 300 causes the provider to query the NTP server every 5 minutes.

Base inaccuracy
This is the number of milliseconds of systematic inaccuracy in the
timestamps delivered by NTP. The default value is 30 milliseconds. If the
times returned by the provider are systematically incorrect, the base
inaccuracy may need to be increased.

Number of timestamps read at each synchronization
The range is 1 to 6 readings and the default is 4.

Disallow clock set flag
This causes the service to enable or disable clock adjustments that DTS
would otherwise cause. This is useful during TP development. Setting the
disallow clock set flag to TRUE disables clock adjustments.

Output trace flag
This enables or disables the logging of TP tracing information to standard
output. Setting the output trace flag to TRUE causes information to be
logged.

To view the valid command line arguments, start the provider interactively, and then
exit.

294 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 17. Using the Name Service Interface Daemon

The Name Service Gateway, also known as the nsid , provides access to DCE
name services from native Microsoft RPC applications. The nsid runs on one or
more DCE systems in the cell and performs the operations of the DCE RPC name
service interface (NSI). It does this on behalf of a PC client (MS-DOS, Windows,
and Windows NT) or a PC server (Windows NT) that has RPC services only and no
other DCE services. Through a hidden level of indirection, the nsid allows the PC
to appear as if it is directly involved in the broader cell namespace.

For more information, see:

“How nsid Works”

“Configuring and Starting the nsid”

“Security Considerations” on page 296

“The Microsoft Locator and the nsid” on page 296

“The Microsoft Registry and the nsid” on page 296

“Modifying the Windows NT Registry Using the Registry Editor” on page 297

“APIs Supported by the nsid” on page 298

How nsid Works

An application on a PC running Microsoft Windows makes a call to familiar
name-service procedures, such as rpc_ns_binding_export (or, in the Microsoft
native format, RpcNsBindingExport). Within these procedures, the parameters are
passed using RPC to the nsid. The nsid receives the parameters from the PC,
converts them to native DCE format, and makes a call to the native
rpc_ns_binding_export procedure that corresponds to the procedure called on the
PC.

The CDS server receives the parameters, performs the requested operation, and
returns the results to the nsid. The nsid converts the results back into a format the
PC caller can understand and returns them to the PC using RPC. The PC client
now has the results of the call and can take appropriate action.

The system where the nsid is running can be a different system from where the
CDS server is running, because any operation defined by the NSI can be called
from any member of the cell.

Configuring and Starting the nsid

Use the DCEsetup utility to configure and start the nsid . After it is configured, the
nsid is added to your DCE configuration and is started along with all other DCE
components.

Note: In a split server configuration, the CDS master has to be configured before
nsid can be configured.

295

Security Considerations

RPC communication between the client system (using the services of the nsid) and
the system running the nsid uses unauthenticated Microsoft RPC. The nsid runs
under the fixed principal, pc-user . Communication between the system running the
nsid and the DCE Cell Directory Service is authenticated under this principal. In
order for the nsid to access entries in the DCE namespace on behalf of the client
system, you must modify the access control lists (ACLs) on the namespace entries
to authorize access by the nsid principal. However, if the namespace entry
.:/subsys/DCE/pc is used by the client system, you do not need to modify the
ACLs. The ACLs are preset with authorized access for the nsid principle pc-user.
For example, a MSRPC server can export an interface named ″foo″ with the cds
entry name .:/subsys/DCE/pc/foo without modifying the ACLs. A MSRPC client can
then import a binding to that interface using the same cds entry name.

The Microsoft Locator and the nsid

The Locator is Microsoft’s simple, flat-namespace directory service. The Locator
exports the Microsoft version of the RPC name service interface (NSI) and makes
an association between entry-name strings and string bindings.

The Locator exports the identical interface as the nsid. The caller of the Microsoft
NSI makes a remote procedure call to either the Locator or the nsid based entirely
on the string-binding components defined at the time in the Registry.

The Microsoft Registry and the nsid

The Registry defines the name server that is queried when any of the rpc_ns_*
procedures are called. The name server can be either the Microsoft Locator or the
nsid; after installation of Windows NT, the default setting is the Locator.

Modifying the Windows NT Registry Using the Windows NT Control
Panel

The RPC Name Service Provider is usually changed through the Network applet in
the Control Panel. To perform this task, do the following:

1. Highlight RPC Name Service Provider under Installed Network Software , and
click on Configure .

2. Select DCE Cell Directory Service under Name Service Provider , and supply
the IP address (or the DECnet address) in the Network Address box.

3. Click on OK to complete the operation, unless you want to supply a default
name-service entry (see “Modifying the Windows NT Registry Using the
Registry Editor” on page 297).

296 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Modifying the Windows NT Registry Using the Registry Editor

If users enable nsid using DCE Setup, the Windows NT Registry is updated
automatically for nsid operation. Otherwise you can modify the Registry using the
registry editor (regedit.exe) . You must use this method to add the default
name-service entry. On DCE platforms, the default name-service entry is specified
as an environment variable.

To set up the Registry on Windows NT to use the nsid, do the following:

1. From a command window, type regedt32 to display the Registry Editor window.

2. Click on the HKEY_LOCAL_MACHINE window.

3. Double-click SOFTWARE, Microsoft , Rpc , and NameService . The right half of
the HKEY_LOCAL_MACHINE window now lists the parameters for the RPC
Name Service Provider.

4. Change the settings as follows:

Setting
New Value

DefaultSyntax
Either 0 or 3

Endpoint
No value

Protocol
One of the protocol sequences that the NT system uses to
communicate with the nsid

NetworkAddress
Network address of the system where the nsid is running

ServerNetworkAddress
Network address of the system where the nsid is running

You can change all of the values by double-clicking on them; a window is
displayed that allows you to change the value.

5. If you want to provide a default name-service entry, on the Edit menu, click Add
Value .

6. For Value Name, type DefaultEntry in the syntax shown here. The default data
type, REG_SZ, is correct.

7. Click OK, then in the Next box provide your default name-service entry.

After the task is completed, the right half of the HKEY_LOCAL_MACHINE window
displays parameter information similar to the following:

DefaultEntry:REG_SZ:/.:/Foobar
DefaultSyntax:REG_SZ:3
Endpoint:REG_SZ:
NetworkAddress:REG_SZ:16.64.0.79
Protocol:REG_SZ:ncacn_ip_tcp
ServerNetworkAddress:REG_SZ:16.64.0.79

To finish setting up the Registry, on the Registry menu, click Exit .

Chapter 17. Using the Name Service Interface Daemon 297

APIs Supported by the nsid

All of the NSI is supported by the nsid , but not on all platforms. For instance,
because DOS and Windows provide only client RPC services, server-only APIs are
not supported.

The following list of APIs is in the DCE style. The native Microsoft style is slightly
different. For example, rpc_ns_group_delete appears as RpcNsGroupDelete in
the Microsoft native style. A dceport.h include file is provided to enhance
application portability on Microsoft platforms.

rpc_ns_binding_import_begin

rpc_ns_binding_import_next

rpc_ns_binding_import_done

rpc_ns_binding_lookup_begin

rpc_ns_binding_lookup_next

rpc_ns_binding_lookup_done

rpc_ns_binding_export (not supported on DOS or Windows)

rpc_ns_binding_unexport(not supported on DOS or Windows)

rpc_ns_group_mbr_add

rpc_ns_group_mbr_remove

rpc_ns_group_delete

rpc_ns_mgmt_inq_exp_age

rpc_ns_mgmt_set_exp_age

rpc_ns_profile_elt_add

rpc_ns_profile_elt_remove

rpc_ns_profile_eelete

rpc_ns_mgmt_entry_create

rpc_ns_mgmt_entry_delete

rpc_ns_mgmt_entry_inq_if_ids

rpc_ns_mgmt_binding_unexport

rpc_ns_entry_expand_name

rpc_ns_group_mbr_inq_begin

rpc_ns_group_mbr_inq_next

rpc_ns_group_mbr_inq_done

rpc_ns_profile_elt_inq_begin

rpc_ns_profile_elt_inq_next

rpc_ns_profile_elt_inq_done

rpc_ns_entry_object_inq_begin

rpc_ns_entry_object_inq_next

rpc_ns_entry_object_inq_done

298 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 18. Using the Example Programs

The DCE for Windows NT Application Development Kit provides a full range of
example programs, including those designed specifically for a Windows NT
environment. Also included are programs written in C++ that illustrate use of
distributed objects.

Several example programs are supplied with the DCE for Windows NT Application
Development Kit. These programs are located in directories under
%dceloc%\dcelocal\examples. In addition to the information provided here, each
example program includes an online readme file located in the same directory as
the program. The following table shows the different features of each example
program.

Example Program Description

RPC Test Program #1 Makes minimal use of DCE services. Server does not register endpoints; binding
information not exported to namespace.

RPC Test Program #2 Makes minimal use of DCE services. Server registers endpoints; binding informa
exported to namespace; uses security.

RPC Test Program #3 Makes minimal use of DCE services. Server registers endpoints; binding informa
exported to namespace.

Bank Program Simulates an automated teller machine. Uses all DCE services, including security

Timop Program Calculates the span of time it takes a server to perform an operation. Uses all D
services, including security and threads.

PC Phone book Program Looks up employee contact information that resides with the phnbk server.Uses
RPC and the name service.

Mandelbrot Set Program Uses multiple DCE RPC servers per client; also uses the name service.

DTSS Programs Are time provider services that work in conjunction with a DTSS service to provid
accurate time source.

GSSAPI Program Shows how a distributed application can make itself secure by using the GSSAP

Stock Quote Program Uses two DCE RPC servers distributing data to multiple clients and the name se

Tic-Tac-Toe Program Uses two DCE RPC clients interoperating with a server and the name service

Virtual Whiteboard Program Uses multiple DCE RPC clients exchanging large amounts of data in real-time w
and the name service.

Account Program Tests inheritance, binding to an object using another interface, binding to an obje
unsupported interface, and the reflexive, symmetic, and transitive relation proper
bind() API.

Accountc Program Tests the same properties as the account program , but uses the C interfaces fo
APIs.

Card Program Tests the passing of C++ objects as parameters using the [cxx_delegate] attribut
polymorphism property of the base class.

Stack Program Tests the passing of C++ objects as parameters using the [cxx_delegate] attribut
user defined Stack class.

EMS Consumer and Supplier Programs Shows how basic consumer and supplier programs can be written to work in con
with EMS for simple event transmission.

Serviceability Programs Shows how to use DCE Messaging and Serviceability APIs.

You should copy the example program files to a private area before you attempt to
build them.

299

To build the example programs, do the following:

1. Use the Windows Explorer or a command such as xcopy to copy the files in
%dceloc%\dcelocal\examples program_directory * to your own directory. For
example:

C:\> cd \mydir
C:\MYDIR> xcopy /s %DCELOC%\dcelocal\examples\test1

2. Build the test program using the provided makefile. For example:
C:\MYDIR>nmake -f makefile.test1

Notes:

1. For Visual C++ Version 4.2 or greater, you need to modify the *.mak makefiles
in the xidl directory.

2. The example makefiles assume that the C compiler has been fully configured in
a standard manner. For Visual C++, one way to do this is to include the
statement
call <msdevdir>\vcvars32.bat

in your autoexec.bat .

300 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 19. Enhanced Online Information

Extensive online documentation is shipped as part of DCE for Windows NT. Both
online OSF DCE books and the DCE for Windows NT product documentation are
provided as native Windows Help files. In addition the online information has been
enhanced to provide the following:

v OSF documentation set, in native Windows Help format

v Additional product information

v Important online information to help troubleshoot problems

v Improved viewing, navigation, and print capabilities.

For more information, see:

“Online Documents”

“Online Help Files”

Online Documents

The following books are available online:

v Quick Beginnings

v Introduction to OSF DCE

v OSF DCE Command Reference

v OSF DCE Adminstration Guide - Inroduction

v OSF DCE Adminstration Guide - Core Components

v OSF DCE Application Development Guide - Introduction and Style Guide

v OSF DCE Application Development Guide - Core Components

v OSF DCE Application Development Guide - Directory Services

v OSF DCE Application Development Guide - Reference

v DCE Problem Determination Guide

v Guide to DECthreads

v DCE Enhancements

v Troubleshooting

Online Help Files

DCE for Windows NT provides the following value-added files in Windows help file
format:

v Using DCEsetup

v Using Visual ACL Editor

v Using DCE Director

301

302 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

Chapter 20. Additional Considerations

This section outlines the compatibility and interoperbility issues with other DCE
systems. Refer to the README file to review the latest updates.

For more information, see:

“Readme File”

“Compatibility and Interoperability with Other DCE Systems”

“Interoperability with Microsoft RPC on Windows NT Systems” on page 304

“Supported Transport Protocols” on page 304

Readme File

All last minute information is documented in the online readme file that is located in
the following directory where you installed the program.
%DCELOC%\dcelocal\bin\readme.txt

where %DCELOC% is the drive and directory in which you have your program files.

Compatibility and Interoperability with Other DCE Systems

DCE for Windows NT has been tested with and is compatible with most other
vendor DCE products that are based on the OSF DCE R1.1, R1.2.1, or R1.2.2 code
bases.

This product provides interoperability and source-level runtime compatibility with
DCE systems from other vendors, as long as DCE implementations and
applications conform to the OSF DCE Application Environment Specification (AES).

Note: If your system is configured with CDS Version 3.0 and you configure a
secondary CDS server specifying a Directory Version of 4.0, there may be
compatibility problems. These problems are caused by the acl format
differences between the 3.0 and 4.0 versions of the CDS server.

If you plan on testing or debugging with this type of configuration, you need
to do the following :

Configure your AIX machine with its CDS server. Before you configure any NT
machines with additional CDS servers, for every directory created at configuration
time for the primary CDS server, which includes:

/.:
/.:/hosts
/.:/hosts/<AIX machine name>
/.:/subsys
/.:/subsys/dce
/.:/subsys/dce/dfs
/.:/subsys/dce/sec
/.:/users

Type the next four commands::

303

dcecp -c directory modify -add {CDS_UpgradeTo 4.0} -single
dcecp -c directory synchronize
dcecp -c clearinghouse verify /.:/<primary_cds_ch>
dcecp -c directory synchronize <dir>

If the versions do not match, one of the following error messages is displayed:

Replica cannot be added to old Clearinghouse.

Old replica cannot be included in new replica set.

An error occurred trying to create the clearinghouse for the secondary cds server.

Interoperability with Microsoft RPC on Windows NT Systems

Microsoft provides DCE-compatible Remote Procedure Call (RPC) component with
the Windows NT operating system. Although functionally compatible, the Microsoft
RPC uses different routine names and syntax. With DCE for Windows NT, you can
write portable code directly to the OSF DCE RPC standard because DCE for
Windows NT maps OSF DCE RPC to Microsoft RPC.

Supported Transport Protocols

DCE for Windows NT, Version 2.2 is supported on Microsoft Windows NT Version
4.0 with Service Pack 3 (or later). Service Pack updates are automatically sent to
Microsoft Developer Network (MSDN) Level 2 members. If you are not an MSDN
Level 2 member, you can obtain the appropriate Service Pack by accessing the
Microsoft FTP server directly from the Internet (ftp ftp.microsoft.com) or from a
World-Wide web browser (ftp://ftp.microsoft.com) .

If you cannot obtain the Service Pack as described above, you can obtain it by
calling Microsoft to order a CD or 3.5″ diskette version.

DCE for Windows NT provides RPC communications over the following transport
protocols:

DCE String
Protocol Name

ncacn_ip_tcp
NCA Connection over Transmission Control Protocol/Internet Protocol
(TCP/IP)

ncadg_ip_udp
Datagram-oriented TCP/IP.NCA Datagram over User Datagram
Protocol/Internet Protocol (UDP/IP)

304 Distributed Computing Environment for Windows NT, Version 2.2: DCE Enhancements

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

