
OSF® DCE Application Development Guide
—Core Components

Release 1.2.2

December 10, 1998

Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

OSF® DCE Application Development
Guide
—Core Components
Release 1.2.2

IBM

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Copyright © 1995, 1996 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 International Business Machines

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of California

Copyright © 1995, 1996 Hitachi, Ltd.

All Rights Reserved

Printed in U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS
LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSFMotif, and Motif are registered trademarks of the Open Software
Foundation, Inc.

X/Open is a registered trademark, and the X device is a trademark, of the X/Open Company Limited.

The Open Group is a trademark of the Open Software Foundation, Inc. and X/Open Company Limited.

UNIX is a registered trademark in the US and other countries, licensed exclusively through X/Open Company Limited.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

NetWare is a registered trademark of Novell, Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Not withstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the
rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer
Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph
(b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with
″restricted rights.″ Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April
1985) ″Commercial Computer Software-Restricted Rights (April 1985).″ If the contract contains the Clause at 18-52.227-74 ″Rights in
Data General″ then the ″Alternate III″ clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

iii

iv OSF® DCE Application Development Guide —Core Components

Contents

Figures . xvii

Tables . xix

Preface . xxi
Audience. xxi
Applicability . xxi
Purpose . xxi
Document Usage. xxi
Related Documents . xxi
Typographic and Keying Conventions xxii
Problem Reporting . xxii
Pathnames of Directories and Files in DCE Documentation xxii

Part 1. DCE Facilities . 1

Chapter 1. Introduction to DCE Facilities 3

Chapter 2. DCE Host Services 5
Types of Applications . 5
Issues of Distributed Applications 6
Managing a Host’s Endpoint Map. 6
Binding to dced’s Services . 7

Host Service Naming in Applications 8
The dced Program Maintains Entry Lists 9
Reading All of a Host Service’s Data 11
Managing Individual dced Entries 12

Managing Hostdata on a Remote Host 15
Kinds of Hostdata Stored . 15
Adding New Hostdata . 16
Modifying Hostdata . 17
Running Programs Automatically When Hostdata Changes 17

Controlling Servers Remotely 19
Two States of Server Management: Configuration and Execution 20
Configuring Servers . 20
Starting and Stopping Servers 22
Enabling and Disabling Services of a Server 24

Validating the Security Server 24
Managing Server Key Tables 25
Sample dced Application . 27

Running the Program . 27
greet_dced.idl . 28
greet_dced_server.c . 29
greet_dced_manager.c . 31
greet_dced_client.c . 31
util.c . 32
util.h . 33
greet_dced.install . 33
greet_dced.delete . 34
Makefile . 34

Chapter 3. DCE Application Messaging 37
DCE and Messages. 37

v

DCE Messaging Interface Usage 38
A Simple DCE Messaging Example 38
The DCE Message Interface and sams Input and Output Files 41

DCE Messaging Routines . 43
Message Output Routines 44
Message Retrieval Routines. 46
Message Table Routines . 47
DCE XPG4 Routines . 48

Chapter 4. Using the DCE Serviceability Application Interface 51
Overview. 51

How Programs Use Serviceability. 52
Simple Serviceability Interface Tutorial 52
Serviceability Input and Output Files. 60

Integrating Serviceability into a Server 62
Serviceability Strategy . 62
Components and Subcomponents 63
Identifying Event Points . 63

Application Use of Serviceability 64
Basic Server Calls . 64
Extended Format Notation for Message Text. 67
Specifying Message Severity 67
How to Route Messages . 69
Table of Message Processing Specifiers 73
Logging and Log Reading 73
Message Action Attributes 74
Suppressing the Serviceability Message Prolog 75
Serviceability Use of the __FILE__ Macro 75
Forcing Use of the In-Memory Message Table 75
Dynamically Filtering Messages Before Output 76
Using Serviceability for Debug Messages 78
Performance Costs of Serviceability Debugging 83
Using the Remote Serviceability Interface. 84

Chapter 5. The DCE Backing Store 91
Data in a Backing Store . 91
Using a Backing Store . 91
Header for Data . 91
The User Interface . 92
The IDL Encoding Services . 93

Encoding and Decoding in the Backing Store 93
Conformant Arrays Not Allowed 93

The Backing Store Routines. 94
Opening a Backing Store . 94
Closing a Backing Store . 95
Storing or Retrieving Data 95
Freeing Data . 95
Making or Retrieving Headers 96
Performing Iteration . 96
Deleting Items from a Backing Store 96
Locking and Unlocking a Backing Store 97

Example of Backing Store Use. 97

Part 2. DCE Threads .101

Chapter 6. Introduction to Multithreaded Programming 103

vi OSF® DCE Application Development Guide —Core Components

Advantages of Using Threads 103
Software Models for Multithreaded Programming 103

Boss/Worker Model . 104
Work Crew Model . 104
Pipelining Model . 104
Combinations of Models . 105

Potential Disadvantages of Multithreaded Programming 105

Chapter 7. Thread Concepts and Operations 107
Thread Operations . 107

Starting a Thread. 107
Terminating a Thread . 108
Waiting for a Thread to Terminate 108
Deleting a Thread . 108

New Primitives . 109
Attributes Objects . 109

Creating an Attributes Object 109
Deleting an Attributes Object 109
Thread Attributes . 110
Mutex Attributes . 111
Condition Variable Attributes 112

Synchronization Objects . 112
Mutexes . 112
Condition Variables . 113
Other Synchronization Methods 116

One-Time Initialization Routines 116
Thread-Specific Data . 116
Thread Cancellation. 117
Thread Scheduling . 118

Chapter 8. Programming with Threads 121
Calling UNIX Services . 121

Jacket Routines . 121
Blocking System Calls . 123
Calling fork() in a Multithreaded Environment 123

Using Signals . 124
Types of Signals . 124
DCE Threads Signal Handling 126
Alternatives to Using Signals 126

Nonthreaded Libraries . 127
Working with Nonthreaded Software. 127
Making Nonthreaded Code Thread-Reentrant 128

Avoiding Nonreentrant Software 128
Global Lock. 128
Thread-Specific Storage . 129

Avoiding Priority Inversion . 129
Using Synchronization Objects. 129

Race Conditions . 129
Deadlocks . 130

Signaling a Condition Variable 130

Chapter 9. Using the DCE Threads Exception-Returning Interface 133
Syntax for C . 133
Invoking the Exception-Returning Interface 135
Operations on Exceptions . 135

Declaring and Initializing an Exception Object 135

Contents vii

Raising an Exception . 135
Defining a Region of Code over Which Exceptions Are Caught 136
Catching a Particular Exception or All Exceptions 136
Defining Epilogue Actions for a Block 136
Importing a System-Defined Error Status into the Program as an Exception . 137

Rules and Conventions for Modular Use of Exceptions 137
DCE Threads Exceptions and Definitions 139

Chapter 10. DCE Threads Example 141
Details of Program Logic and Implementation 141
DCE Threads Example Body 142

Part 3. DCE Remote Procedure Call .147

Chapter 11. Developing a Simple RPC Application 149
The Remote Procedure Call Model 149

RPC Application Code . 150
Stubs . 151
The RPC Runtime . 152
RPC Application Components That Work Together 152
Overview of DCE RPC Development Tasks 154

Writing an Interface Definition 155
RPC Interfaces That Represent Services 156
Generating an Interface UUID 157
Naming the Interface . 158
Specifying Interface Attributes 158
Import Declarations . 159
Constant Declarations . 159
Type Declarations . 159
Operation Declarations . 160

Running the IDL Compiler . 161
Writing the Client Code . 161
Writing the Server Code . 163

The greet_server.c Source Code 163
The greet_manager.c Source Code 165

Building the greet Programs. 165
Running the greet Programs 166

Chapter 12. RPC Fundamentals 169
Universal Unique Identifiers . 170
Communications Protocols . 170
Binding Information . 171

Server Binding Information 172
Defining a Compatible Server 173
How Clients Obtain Server Binding Information. 174
Client Binding Information for Servers 175

Endpoints . 176
Well-Known Endpoints . 176
Dynamic Endpoints . 177

Execution Semantics . 178
Communications Failures. 179
Scaling Applications. 179
RPC Objects . 180

Chapter 13. Basic RPC Routine Usage 183
Overview of the RPC Routines. 183

viii OSF® DCE Application Development Guide —Core Components

Basic Operations of RPC Communications 183
Basic Operations of the NSI. 183
Basic Operations of Authenticated RPCs 184

Server Initialization Using the RPC Routines 185
Assigning Types to Objects 185
Registering Interfaces . 187
Selecting RPC Protocol Sequences 187
Obtaining a List of Server Binding Handles 188
Registering Endpoints . 188
Making Binding Information Accessible to Clients 189
Listening for Calls . 190

How Clients Find Servers . 191
Searching a Namespace . 191
Using String Bindings to Obtain Binding Information 192

Chapter 14. RPC and Other DCE Components 195
Threads of Execution in RPC Applications 195

Remote Procedure Call Threads 197
Cancels . 199
Multithreaded RPC Applications 200

Security and RPC: Using Authenticated Remote Procedure Calls 201
Authentication . 202
Authorization . 204
Authenticated RPC Routines 205
Using RPC Within a Single Thread 207

Directory Services and RPC: Using the Namespace 208
NSI Directory Service Entries 208
Searching the Namespace for Binding Information 219
Strategies for Using Directory Service Entries 226
The Service Model for Defining Servers 229
The Resource Model for Defining Servers 233

Chapter 15. Developing Applications that Use Distributed Objects 241
IDL and the Class Hierarchy of a DCE Application 241

Specifying a C++ Class via an IDL Interface 241
IDL-Generated Classes as Part of Your Hierarchy. 243

Servers that Manage Distributed Objects 244
Initializing Object-Oriented Servers 244
Implementing Distributed-Dynamic Objects 245
Implementing Static Member Functions 247
When Function Parameters Are Remote Objects 249
Naming Objects . 250

Clients That Use Distributed Objects 256
Creating Remote-Dynamic Objects 256
Creating Client-Local Objects 258
Location Transparency of Local and Remote Objects 259
Finding Known Remote Objects 262

Multiple Interfaces and Interface Inheritance 264
Implementing Multiple Managers 267
Using Objects that Support Multiple Interfaces 269

Passing C++ Objects as DCE RPC Parameters 272
Representation . 273
Delegation . 275

Integrating C and C++ Clients and Servers 277
Writing a C++ Client for C Servers 277
Writing a C Client for C++ Servers 278

Contents ix

Chapter 16. Writing Internationalized RPC Applications 281
Character Sets, Code Sets, and Code Set Conversion 282
Remote Procedure Call with Character/Code Set Interoperability 282
Building an Application for Character and Code Set Interoperability 286

Writing the Interface Definition File 286
Writing the Attribute Configuration File 288
Writing the Stub Support Routines 289
Writing the Server Code . 293
Writing the Client Code . 299
Writing the Evaluation Routine 303

Chapter 17. Topics in RPC Application Development 313
Memory Management . 313

Using the Memory Management Defaults 313
Using rpc_ss_allocate and rpc_ss_free. 314
Using Your Own Allocation and Free Routines 315
Using Thread Handles in Memory Management 316

Guidelines for Error Handling 317
Exceptions . 317
The fault_status Attribute . 318
The comm_status Attribute 318
Determining Which Method to Use for Handling Exceptions 319
Examples of Error Handling 319

Context Handles . 321
Context Handles in the Interface 322
Context Handles in a Server Manager 323
Context Rundown . 330
Binding and Security Information 331

Pipes . 332
Input Pipes . 333
Output Pipes . 335
Pipe Summary. 337

Nested Calls and Callbacks . 338
Routing Remote Procedure Calls 339

Obtaining an Endpoint . 340
Buffering Call Requests . 344
Queuing Incoming Calls . 345
Selecting a Manager . 347

Creating Portable Data via the IDL Encoding Services 348
Memory Management . 349
Buffering Styles . 349
IDL Encoding Services Handles 350
Programming Example. 351
Performing Multiple Operations on a Single Handle 356
Determining the Identity of an Encoding 356

Chapter 18. Interface Definition Language 357
The Interface Definition Language File 357
Syntax Notation Conventions 357

Typography . 357
Special Symbols . 357

IDL Lexical Elements . 358
Identifiers . 358
Keywords . 358
Punctuation Characters . 358
Whitespace . 358

x OSF® DCE Application Development Guide —Core Components

Case Sensitivity . 359
IDL Versus C . 359

Declarations . 359
Data Types . 359
Attributes. 360

Interface Definition Structure 360
Interface Definition Header 360
Interface Definition Body . 360

Overview of IDL Attributes . 361
Interface Definition Header Attributes 362

The uuid Attribute . 362
The version Attribute . 363
The endpoint Attribute . 364
The exceptions Attribute . 364
The pointer_default Attribute 365
The local Attribute . 365
Rules for Using Interface Definition Header Attributes 366
Examples of Interface Definition Header Attributes 366

Import Declarations . 366
Constant Declarations . 367

Integer Constants . 367
Boolean Constants . 367
Character Constants . 368
String Constants . 368
NULL Constants . 368

Type Declarations . 368
Type Attributes . 368
Base Type Specifiers . 369
Constructed Type Specifiers. 369
Predefined Type Specifiers 370
Type Declarator . 370

Operation Declarations . 370
Operation Attributes . 371
Operation Attributes: Execution Semantics 371
Operation Attributes: Memory Management 372

Parameter Declarations . 372
Basic Data Types . 373

Integer Types . 373
Floating-Point Types . 374
The char Type . 374
The boolean Type . 374
The byte Type . 374
The void Type . 375
The handle_t Type . 375
The error_status_t Type . 375
International Characters . 375

Constructed Data Types . 376
Structures . 376
Unions . 377
Enumeration . 380
Pipes . 380
Arrays . 383
Strings . 389
Pointers . 390
Customized Handles . 403
Context Handles . 404

Contents xi

IDL Support for C++ . 409
The idl-generated Class Hierarchy 410
The Interface Inheritance Operator 411
The static Keyword for Operations 412
The C++ Reference Operator (&) on Parameters 412
Functions Generated by IDL 412

Associating a Data Type with a Transmitted Type 416
IDL Grammar Synopsis . 418

Chapter 19. Attribute Configuration Language 425
Syntax Notation Conventions 425
Attribute Configuration File . 425

Naming the ACF . 425
Compiling the ACF . 425
ACF Features . 425

Structure . 426
ACF Interface Header . 426
ACF Interface Body . 427
The include Statement and the C++ Attributes cstub and sstub 427
The auto_handle Attribute 428
The explicit_handle Attribute 430
The implicit_handle Attribute 431
The client_memory Attribute. 432
The comm_status and fault_status Attributes 432
The code and nocode Attributes 435
The represent_as Attribute 436
The enable_allocate Attribute 438
The heap Attribute . 438
The extern_exceptions Attribute 439
The encode and decode Attributes 440
The cs_char Attribute . 442
The cs_stag, cs_drtag, and cs_rtag Attributes 446
The cs_tag_rtn Attribute . 447
The binding_callout Attribute 448
The C++ Attributes cxx_new, cxx_static, cxx_lookup, and cxx_delegate. . . 450

Summary of Attributes . 452
Attribute Configuration Language 453

Part 4. DCE Distributed Time Service .457

Chapter 20. Introduction to the Distributed Time Service API 459
DTS Time Representation . 459

Absolute Time Representation 459
Relative Time Representation 461

Time Structures . 463
The utc Structure. 463
The tm Structure . 464
The timespec Structure . 464
The reltimespec Structure 464

DTS API Header Files . 465
DTS API Routine Functions . 465

Chapter 21. Time-Provider Interface 469
General TPI Control Flow . 469

ContactProvider Procedure 471
ServerRequestProviderTime Procedure 472

xii OSF® DCE Application Development Guide —Core Components

Time-Provider Process IDL File 473
Initializing the Time-Provider Process 475
Time-Provider Algorithm . 477
DTS Synchronization Algorithm 477
Running the Time-Provider Process 478
Sources of Additional Information 478

Chapter 22. DTS API Routines Programming Example 479

Part 5. DCE Security Service .481

Chapter 23. Overview of Security 483
Purpose and Organization of the Security Chapters 483
About Authenticated RPC . 483
About the GSSAPI . 484
UNIX System Security and DCE Security 484
What Authentication and Authorization Mean 485
Authentication, Authorization, and Data Protection in Brief. 485
Summary of DCE Security Services and Facilities. 487

Interfaces to the Security Server 488
Interfaces to the Login Facility 489
Interfaces to the Extended Registry Attribute Facility 490
Interfaces to the Extended Privilege Attribute Facility 490
Interfaces to the Key Management Facility 490
Interfaces to the ID Map Facility 490
Interfaces to the Access Control List Facility 490
DCE Implementations of UNIX System Program Interfaces 490
Interfaces to the Password Management Facility 491

Relationships Between the DCE Security Service and DCE Applications . . . 491
DTS, the Cell Namespace, and Security 491

DTS and Security . 491
The Cell Namespace and the Security Namespace 492

Chapter 24. Authentication 493
Background Concepts . 493

Principals . 493
The Shared-Secret Authentication Protocol 494
Cells and Realms . 494
Protection Levels. 494
Data Encryption Mechanisms 496

A Walkthrough of Shared-Secret Authentication Protocols 496
Authenticating a User . 497
Authenticating an Application 512

Intercell Authentication. 519
KDS Surrogates . 519
Intercell Authentication by Trust Peers 520

Chapter 25. Authorization . 523
DCE Authorization . 523

Object Types and ACL Types 523
ACL Manager Types . 525
Access Control Lists . 525
ACL Entries. 525
Access Checking. 528
Examples of ACL Checking 529

Name-Based Authorization . 532

Contents xiii

Chapter 26. GSSAPI Credentials 533
Using Default Credentials . 533

Initiating a Security Context 534
Accepting a Security Context 534

Creating New Credential Handles. 534
Initiating a Security Context with New Credential Handles 534
Accepting a Security Context Using New Credential Handles 535

Delegating Credentials. 535
Initiating a Security Context to Delegate Credentials 535
Accepting a Security Context with Delegated Credentials 535

Chapter 27. The Extended Privilege Attribute API 537
Identities of Principals in Delegation 537

ACL Entry Types for Delegation 538
ACL Checking for Delegation 539

Calls to Establish Delegation Chains 539
Types of Delegation. 539
Target and Delegate Restrictions 540
Optional and Required Restrictions 541
Compatibility Between Version 1.1 and Pre-Version 1.1 Servers and Clients . 542

Calls to Extract Privilege Attribute Information 542
Disabling Delegation . 544
Setting Extended Attributes . 544

Chapter 28. The Registry API 545
Binding to a Registry Site . 545
The Registry Database . 546

Creating and Maintaining PGO Items 547
Creating and Maintaining Accounts 548
Registry Properties and Policies 549
Routines to Return UNIX Structures 549
Miscellaneous Registry Routines 550

Chapter 29. The Extended Attribute API 551
The ERA API . 551

Attribute Schema. 552
Attribute Types and Instances 552
Attribute Type Components 552

Calls to Manipulate Schema Entries 557
The sec_attr_schema_entry_t Data Type 557
Creating and Managing Schema Entries 558
Reading Schema Entries . 560
Reading the ACL Manager Types 561

Calls to Manipulate Attribute Instances 561
The sec_attr_t Data Type. 561
Creating and Managing Attribute Instances 562
Reading Attribute Instances 563

The Attribute Trigger Facility. 565
Defining an Attribute Trigger/Attribute Association 566
Trigger Binding . 567
Access Control on Attributes with Triggers 568

Calls that Access Attribute Triggers 568
Using sec_attr_trig_cursor_t with sec_attr_trig_query() 568
The sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update() Calls 569
The priv_attr_triq_query() Call 569

The DCE Attribute API . 569

xiv OSF® DCE Application Development Guide —Core Components

Macros to Aid Extended Attribute Programming 571
Macros to Access Binding Fields 571
Macros to Access Schema Entry Fields 572
Macros to Access Attribute Instance Fields 573
Binding Data Structure Size Calculation Macros 575
Schema Entry Data Structure Size Calculation Macros 576
Attribute Instance Data Structure Size Calculation Macros 576
Binding Semantic Check Macros 576
Schema Entry Semantic Check Macros 578
Attribute Instance Semantic Check Macros 578
Schema Entry Flag Set and Unset Macros 579
Schema Trigger Entry Flag Check Macros 579

Utilities to Use with Extended Attribute Calls. 580

Chapter 30. The Login API . 581
Establishing Login Contexts . 581

Validating the Login Context and Certifying the Security Server 582
Validating the Login Context Without Certifying the Security Server 582
Example of a System Login Program 583

Context Inheritance . 583
The Initial Context . 583
Private Contexts . 584

Handling Expired Certificates of Identity 584
Importing and Exporting Contexts. 585
Changing a Groupset . 585
Miscellaneous Login API Functions 586

Getting the Current Context 586
Getting Information from a Login Context 586
Getting Password and Group Information for Local Process Identities . . . 586
Releasing and Purging a Context 586

Chapter 31. The Key Management API 587
Retrieving a Key . 587
Changing a Key . 588
Automatic Key Management 589
Deleting Expired Keys . 589
Deleting a Compromised Key 589

Chapter 32. The Access Control List APIs 591
The Client-Side API . 592

Binding to an ACL . 592
ACL Editors and Browsers 592
Errors . 593

Guidelines for Constructing ACL Managers 593
Extended Naming of Protected Objects 594

The ACL Network Interface 594
The ACL Library . 595

Chapter 33. The ID Map API 601

Chapter 34. DCE Audit Service 603
Features of the DCE Audit Service 603
Components of the DCE Audit Service 603
DCE Audit Service Concepts 603

Audit Clients . 603
Code Point . 604

Contents xv

Events . 604
Event Class. 606
Event Class Number . 606
Filters . 606
Audit Records . 607
Audit Trail File . 607

Administration and Programming in DCE Audit 607
Programmer Tasks . 608
Administrator Tasks . 609

Chapter 35. Using the Audit API Functions 613
Adding Audit Capability to Distributed Applications 613

Opening the Audit Trail . 613
Initializing the Audit Records 614
Adding Event-Specific Information 615
Committing an Audit Record. 616
Closing an Audit Trail File 616

Writing Audit Trail Analysis and Examination Tools 616
Opening an Audit Trail File for Reading 617
Reading the Desired Audit Records into a Buffer 617
Transforming the Audit Record into Readable Text 618
Discarding the Audit Record. 619
Closing the Audit Trail File 619

Chapter 36. The Password Management API 621
The Client-Side API . 622
The Password Management Network Interface 623

Chapter 37. The DCE Certification Service 625
Who Needs to Use the Certification API? 625
Overview of DCE Certification 626

Use of Public Keys . 626
Contents of Certificates . 628
Component Parts of the DCE Certification API 629
High Level Certification API 630
Policy Models . 631

Implementing and Registering a Cryptographic Module 633
Contents of a Cryptographic Module. 633
Accessing a Registered Cryptographic Module 633
Signature Algorithms Provided by DCE Certification 634
Registering a Cryptographic Module. 634

Implementing and Registering a Policy Module 635
Policy Modules Provided with DCE Certification 635

The Low Level Certificate Manipulation API 636
Policy Module Implementation 637
Accessing a Registered Policy Module 637
Registering a Policy Module. 638
Registering the module . 639

Part 6. Appendixes .641

Index . 643

xvi OSF® DCE Application Development Guide —Core Components

Figures

1. The dced Entry Lists . 10
2. Structure of an Entry . 10
3. Accessing Hostdata . 13
4. sams and DCE Messages 42
5. Serviceability and DCE Applications 61
6. Work Crew Model . 104
7. Pipelining Model . 105
8. Thread State Transitions 107
9. Only One Thread Can Lock a Mutex. 112

10. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds . . . 114
11. Thread B Signals Condition Ready 115
12. Thread A Wakes Up and Proceeds 115
13. Flow with SCHED_FIFO Scheduling 119
14. Flow with SCHED_RR Scheduling 119
15. Flow with SCHED_OTHER Scheduling 119
16. The Parts of an RPC Application 151
17. Marshalling and Unmarshalling Between ASCII and EBCDIC Data 152
18. Interrelationships During a Remote Procedure Call 153
19. Generating Stubs . 154
20. Building a Simple Client and Server 155
21. Role of RPC Interfaces. 157
22. A Binding . 171
23. Information Used to Identify a Compatible Server 174
24. Client Binding Information Resulting from a Remote Procedure Call . . . 176
25. Manager Types . 186
26. Exporting Server Binding Information 190
27. Importing Server Binding Information 192
28. Local Application Thread During a Procedure Call 196
29. Server Application Thread and Multiple Call Threads 197
30. Execution Phases of an RPC Thread 197
31. Concurrent Call Threads Executing in Shared Address Space 198
32. Phases of a Cancel in an RPC Thread 199
33. A Multithreaded RPC Application Acting as Both Server and Client. . . . 201
34. NSI Attributes . 209
35. Parts of a Global Name 211
36. Possible Information in a Server Entry 212
37. Possible Mappings of a Group 213
38. Possible Mappings of a Profile 215
39. The import_next, lookup_next Search Algorithm in a Single Entry 222
40. Priorities Assigned on Proximity of Members 229
41. Service Model: Interchangeable Instances on Two Hosts 230
42. Service Model: Interchangeable Instances on One Host 231
43. Service Model: Distinct Instances on One Host 233
44. Resource Model: A System-Specific Application. 236
45. Resource Model: A Single Server Entry for Each Server 237
46. Resource Model: A Separate Server Entry for Each Object 238
47. Servers Need the Client Stub to Access Client-Local Objects. 249
48. Clients Use the Server Stub 260
49. Multiple Interfaces and Inheritance 265
50. Clients Do Not Know About Server Implementations 269
51. Phases of a Nested RPC Call 338
52. Phases of a Nested RPC Call to Client Address Space 339
53. Steps in Routing Remote Procedure Calls. 340

xvii

54. Mapping Information and Corresponding Endpoint Map Elements 341
55. Decisions for Looking Up an Endpoint 343
56. A Request Buffer at Full Capacity 345
57. Stages of Call Routing by a Server Process 346
58. Decisions for Selecting a Manager 348
59. ISO Format for Time Displays 460
60. Variations to the ISO Time Format 460
61. Full Syntax for a Relative Time 461
62. Syntax for Representing a Duration 462
63. DTS API Routines Shown by Functional Grouping. 465
64. DTS/Time-Provider RPC Calling Sequence 471
65. Shared-Secret Authentication and DCE Authorization in Brief 487
66. DCE Security and the DCE Application Environment 491
67. Conventions Used in Authentication Walkthrough Illustrations 497
68. Client Initiation of Private Key Acquisition 501
69. Client Acquisition of Private Key from PKSS 503
70. Client Acquires TGT Using Third-Party Protocol. 504
71. Client Acquires TGT Using the DCE Version 1.0 Protocol 508
72. Client Acquires PTGT . 511
73. Client Sets Authentication and Authorization Information 513
74. Client Principal Makes Application Request 515
75. Application Server Responds to Client’s Request 517
76. Derivation of ACL Defaults 524
77. The sec_attr_schema_entry_t Data Type 558
78. The sec_attr_t Data Type 562
79. The sec_attr_bind_info_t Data Type 567
80. ACL Program Interfaces 591
81. Protection with Extended Naming 594
82. Event Number Formats 605
83. Overview of the DCE Audit Service 610
84. Use of Password Management Facility APIs 621
85. How Public Keys Work: Part 1 627
86. How Public Keys Work: Part 2 627
87. The Essential Parts of a Certificate 629
88. Certification API Organization 630
89. A Certificate Chain . 632

xviii OSF® DCE Application Development Guide —Core Components

Tables

1. API Routines for Remote Server Management 20
2. Serviceability Message Severities 68
3. Serviceability Message Processing Specifiers 73
4. Remote Operations by Application Servers 84
5. Sample Thread Properties 118
6. Signals for Which Handlers Are Not Provided 126
7. DCE Threads Exceptions 139
8. Basic Tasks of an RPC Application 150
9. Execution Semantics for DCE RPC Calls 178

10. Basic Runtime Routines 184
11. NSI next Operations. 218
12. Tasks of an Internationalized RPC Application 282
13. IDL Attributes . 361
14. Base Data Type Specifiers 369
15. Summary of the ACF Attributes. 452
16. Absolute Time Structures 463
17. Relative Time Structures 463
18. Credential Types . 533
19. Encodings and Required Data Types 559

xix

xx OSF® DCE Application Development Guide —Core Components

Preface

The OSF DCE Application Development Guide provides information about how to
program the application programming interfaces (APIs) provided for each OSF®

Distributed Computing Environment (DCE) component.

Audience

This guide is written for application programmers with UNIX operating system and C
language experience who want to develop and write applications to run on DCE.

Applicability

This revision applies to the OSF® DCE Release 1.2.2 offering and related updates.
See your software license for details.

Purpose

The purpose of this guide is to assist programmers in developing applications that
use DCE. After reading this guide, you should be able to program the Application
Programming Interfaces provided for each DCE component.

Document Usage

The OSF DCE Application Development Guide consists of three books, as follows:

v OSF DCE Application Development Guide—Introduction and Style Guide

v OSF DCE Application Development Guide—Core Components

– Part 1. DCE Facilities

– Part 2. DCE Threads

– Part 3. DCE Remote Procedure Call

– Part 4. DCE Distributed Time Service

– Part 5. DCE Security Service

v OSF DCE Application Development Guide—Directory Services

– Part 1. DCE Directory Service

– Part 2. CDS Application Programming

– Part 3. GDS Application Programming

– Part 4. XDS/XOM Supplementary Information

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

v Introduction to OSF DCE

v OSF DCE Administration Commands Reference

v OSF DCE Application Development Reference

v OSF DCE Administration Guide

v OSF DCE DFS Administration Guide and Reference

xxi

v OSF DCE GDS Administration Guide and Reference

v OSF DCE/File-Access Administration Guide and Reference

v OSF DCE/File-Access User’s Guide

v OSF DCE Problem Determination Guide

v OSF DCE Testing Guide

v OSF DCE/File-Access FVT User’s Guide

v Application Environment Specification/Distributed Computing

v OSF DCE Technical Supplement

v OSF DCE Release Notes

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

<Ctrl-x> or | x
The notation <Ctrl-x> or |x followed by the name of a key indicates a
control character sequence. For example, <Ctrl-C> means that you hold
down the control key while pressing <C>.

<Return>
The notation <Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or documentation, please contact your
software vendor’s customer service department.

Pathnames of Directories and Files in DCE Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
OSF DCE Administration Guide—Introduction and OSF DCE Testing Guide.

xxii OSF® DCE Application Development Guide —Core Components

Part 1. DCE Facilities

1

2 OSF® DCE Application Development Guide —Core Components

Chapter 1. Introduction to DCE Facilities

By now you are aware that DCE consists of a number of major components, each
of which addresses some necessary aspect of distributed computing: DCE Threads
make programs more efficient by allowing parallel execution of portions of code,
remote procedure calls (RPCs) hide network details from applications, the DCE
Time Service gives consistent time to widely scattered cells and hosts, the DCE
Security Service gives programs assurances that users and other programs are
who they say they are and that they are authorized to do what they are supposed
to do, and the DCE Directory Service helps clients find servers and other resources.
For most applications, a DCE component is not used by itself, but the components
all work together to create a very useful and powerful environment.

The more you understand DCE and its components, the more you’ll realize that a
strict division by component is not always clear. The document set for DCE is
organized by component mostly for the convenience of people trying to explain and
understand DCE, but applications often contain a blend of aspects of all the
components. This is why it often seems like the information you need to do your
work is scattered across many chapters or volumes, and why advanced or unusual
features seem to be described along-side basic or typical tasks. DCE also has
some special facilities that just do not fit neatly into any one discussion of a DCE
component, and these are the facilities we describe in this first part of the OSF
DCE Application Development Guide—Core Components.

You should read the OSF DCE Application Development Guide—Introduction and
Style Guide prior to using the DCE facilities described here, and you may want to
skip to other parts of this guide before learning details about the DCE facilities.

Most DCE facilities are already used by one or more major components of DCE to
accomplish some feature they require; others are standalone facilities intended to
make developing distributed applications easier. These facilities are described
separately here so that you can use them for your own applications too. The DCE
facilities include the following:

v Host Services

Host services give remote access to several kinds of data and functionality with
respect to each DCE host and its servers. Each host runs a DCE host daemon
(dced) as the interface to the host services. In many cases, dced automatically
maintains the data and performs the functions. Some of the data that you can
access (and maintain) remotely includes the host name, the host’s cell name,
configuration and execution data for all servers on the host, and a database of
endpoints (server addresses) through which running servers can be contacted.
Some of the functions that you can remotely perform include starting and
stopping servers.

v Application Message Service

This service provides a convenient way to manage readable character strings of
information that are usually displayed to application users. The service uses
message catalogs to maintain message text and explanations separate from the
program so that language, cultural, or other site-specific issues are easily
managed for applications. The message text can also be in memory during
program execution for more efficient programs.

v Serviceability

Serviceability is another kind of message text service with functionality beyond
just the display of general-purpose text. Serviceability is typically used for

3

message text about a server’s activity. Messages can be displayed through
standard output or standard error, or they can be routed to log files. The
serviceability facility maintains message text in catalogs (or memory) just as the
application message service does; but, in addition to the text and its explanation,
additional attributes specify subcomponents (program modules), message
severity, the action users or programs should take, and the debug level.

v Backing Store Database Service

You use a backing store to maintain typed data between invocations of
applications. For example, you could store application-specific configuration data
in a backing store, and then, when the application restarts, it could read the
previous configuration from the backing store. Data is stored and retrieved by a
Universal Unique Identifier (UUID) or character string key, and each record (or
data item) may have a standard header if you wish.

As DCE has developed and improved, useful facilities such as serviceability have
been added to make DCE easier and more useful. For example, serviceability
makes a distributed application much easier to develop. With it, you can log and
distinguish debug messages from complex applications involving multiple clients,
servers, and threads. Although the major components are required to make DCE
work, this kind of facility is not required.

Some solutions developed to implement a major component’s feature can also
prove useful to your applications. For example, the security component must have a
way to maintain access control lists (ACLs). While the backing store was developed
to handle this kind of task, you can use this facility to store your own
application-specific data across invocations.

This first part of the OSF DCE Application Development Guide—Core Components
describes how you might put these useful facilities to work in your applications.

4 OSF® DCE Application Development Guide —Core Components

Chapter 2. DCE Host Services

Every DCE host must maintain certain kinds of data about itself and the servers it
provides. For example, each host stores configuration data about its DCE
environment, and it also stores data about servers registered and running on the
host. In addition, each host needs some services to not only manage this data but
also to administer the host and DCE servers. For example, a service that can start
and stop specific servers has obvious value. The DCE host services consist of the
following:

v Endpoint Mapper

The endpoint mapper service enables a client to find servers on a particular host
and the services and objects provided by those services. This service maintains
on each host an endpoint map that contains a mapping of port addresses
(endpoints) to servers, the services servers provide, and the objects servers
manage.

v Hostdata Management

The hostdata management service stores and controls access to such data as
the host’s cell name, the host name, and the cell alias names, among other
things.

v Server Management

The server management service can start and stop specified servers on a host,
enable or disable specific services provided by a server, and manage
configuration and execution data about these servers.

v Security Validation

The security validation service maintains a login context for the host’s identity of
itself, maintains the host principal’s keys, and ensures applications (especially
login programs) that the DCE security daemon (secd) is genuine.

v Key Table Management

A server uses private keys for its security instead of human-entered passwords.
The key table management service can be used to manage the keys stored in
key tables on a server’s host.

Of course, in a distributed environment, these data and services must be easily yet
securely accessible from other hosts. The DCE host daemon (dced) is a
continuously running program on each host that provides access to the host
services either locally on that host or remotely from another host.

Types of Applications

Although applications may need some aspect of these host services (control over
which services are enabled for a particular server, for example), typical servers do
not have to do any special coding for them. This reduces the size and complexity of
server code and keeps the details of administration out of applications. It also
removes the burden of server administration so you can concentrate on the
application’s business functionality.

System administrators will appreciate this development model too because it is
unlikely that many servers implementing their own administrative mechanisms will
all behave in the same manner. Administrators commonly use the DCE control
program, dcecp , to access the host services (via dced) of any host in their
distributed environment (provided the user has the appropriate permissions). The
DCE control program also uses a script language for more sophisticated

5

administration. See the OSF DCE Administration Guide—Core Components for
more on using dcecp to access the host services.

Although dcecp commands offer an administrator a great deal of control over DCE
hosts and servers, a set of APIs are also supplied for application developers who
need to access the DCE host services from an application rather than from scripts
or the operating system’s command line.

Typical business applications do not use the APIs of these services, but a
management application might. A management application is a client or server that
manages other servers or some aspect of the distributed environment. (The dced
program is itself a management application that is built into DCE.) Some other
types of applications that might use these API include

v Applications that control other servers for load balancing or server redundancy.

v An application that uses a graphical user interface (GUI) instead of the
command-line interface provided by dcecp .

v An application that needs to monitor a server’s current state. For example, an
application may need to make sure a particular server or one of its services is
available.

Issues of Distributed Applications

The most important aspect of dced is that it gives system administrators the ability
to remotely manage services, servers, endpoints, and even objects on any host in
DCE. This eliminates the frustrating and tedious task of logging into many different
hosts to manage them. This also allows for scalability because it is impractical to
manage a large system by logging into all its hosts.

The features of dced are greatly enhanced when used remotely. Of course, an
administrator can use dced to locally manage a host’s services, but dced ’s real
power is in remotely managing system and application server configurations, key
tables, server startup, login configurations, and cell information.

Security becomes a major issue when it comes to remote services. With the power
of dced ’s services and dcecp , it is important that only authorized principals can use
them. The dced program controls access to its various objects by using ACLs.
Server keys are security-sensitive data that must be seldom transmitted over the
network. All key table data is encrypted when it is transmitted for secure remote key
table management.

Finally, the remote capabilities of dced give you real-time status of processes and
services in DCE.

Managing a Host’s Endpoint Map

Each DCE host has an endpoint map that contains a mapping of servers to
endpoints. Each endpoint map server entry is associated with an array of services
(interfaces) provided by the server, and each service is associated with an array of
objects supported by the service.

When a typical server calls the dce_server_register() routine, the RPC runtime
generates the endpoints on which the server will listen for calls and then uses
dced ’s endpoint mapper service of the local host to register the endpoints. Later,
when a typical client makes a remote procedure call, its RPC runtime uses the

6 OSF® DCE Application Development Guide —Core Components

server host’s endpoint mapper service to find the server. When the typical server
shuts down, it calls the dce_server_unregister() routine to remove its endpoints
from the endpoint map so that clients do not later try to bind to it.

Applications can also use the lower-level rpc_ep_register() and associated RPC
routines. Because the endpoint map is essential for RPCs to work, endpoints are
fully described in “Chapter 12. RPC Fundamentals” on page 169 and the endpoint
map structure is described with respect to routing of RPCs in “Chapter 16. Writing
Internationalized RPC Applications” on page 281.

The endpoint map is for the most part maintained automatically by dced . For
example, it periodically removes stale endpoints so that the RPC runtime will not try
to complete a binding for a client to a server that is no longer running. However,
administrative applications may find it necessary to peruse a remote endpoint map
and even remove specific endpoints from a local host’s endpoint map.

To read the elements of a remote endpoint map, applications use a loop with the
set of routines rpc_mgmt_ep_elt_inq_begin() , rpc_mgmt_ep_elt_inq_next() , and
rpc_mgmt_ep_elt_inq_done() . The inquiry can return all elements until the list is
exhausted, or the inquiry can be restricted to return elements for the following:

v Elements matching an interface identifier (UUID and version number)

v Elements matching an object UUID

v Elements matching both an interface identifier and object UUID

Administrators can manage the endpoint map by using dcecp with the endpoint
object.

You can use the dced_server_disable_if() routine to mark as disabled all the
endpoints for a specific interface. This will prevent any new RPCs with partial
bindings from binding to the server for this interface, but not prevent clients from
using the interface if they already have a full binding with these endpoints. You can
use the dced_server_enable_if() routine to reenable previously disabled interfaces.
In an extreme situation, you could permanently remove endpoints directly from the
local endpoint map by calling the rpc_mgmt_ep_unregister() routine. This function
cannot be done remotely for security reasons.

Binding to dced’s Services

When you write a program that uses a host service, you begin by creating a dced
binding to the service on a particular host. Bindings are relationships between
clients and servers that allow them to communicate. A dced binding is a specific
kind of binding that not only gives your application a binding to the dced 1 server
but also associates the binding with a specific host service on that server.

In general, an application follows these basic steps to use a host service:

1. Establish a binding to the service on the desired host. For example, your
application can establish a binding to the host data management service on
another host.

1. Applications must establish a binding to each host service used. However, the endpoint mapper service uses a different binding
mechanism and API from the other host services. This is due to the fact that the endpoint mapper service already existed within
the very large RPC API in earlier versions of DCE, prior to the development of dced .

Chapter 2. DCE Host Services 7

2. Obtain one or more dced entries for that service. For example, your application
can obtain the hostdata entry that identifies the host’s cell name, among other
things. This step is valid for the following services:

v hostdata management

v server management

v key table management

Depending on the service and function desired, this step may or may not be
necessary. For example, the security validation service does not store data, so
dced maintains no entries for this service.

3. Access (read or write) the actual data for the entries obtained or perform other
functions appropriate for the service. For example, if your application reads the
hostdata management service’s cell name entry, the API accesses dced which
may actually read the data from a file. For another example, if your application
established a binding to the security validation service, it could validate the
security daemon.

4. Release the resources obtained in step 2.

5. Free the binding established in step 1.

Applications bind to a host service by using the dced_binding_create() or
dced_binding_from_rpc_binding() routine. The first routine establishes a dced
binding to a service on a host specified in a service name, and the second routine
establishes a dced binding to a service on a host for which the application already
has a binding. Both of the routines return a dced binding handle of type
dced_binding_handle_t , which is used as an input parameter to all other dced API
routines.

Host Service Naming in Applications

Applications include a host service name as input to the dced binding routine
dced_binding_create() . A host service name is a string that may include a host
name, or a cell and host name. The following key words in the host service name
refer to a specific DCE host service:

hostdata
Refers to configuration data of the hostdata management service.

srvrconf
Refers to the static server configuration portion of the server management
service. This refers to the management of a DCE-installed server.

srvrexec
Refers to the dynamic server execution portion of the server management
service. This refers to the management of a running DCE-installed server.

secval
Refers to the security validation service.

keytab
Refers to the private key data of the key table management service.

The following examples show service names and the locations of the hosts in the
namespace:

service
The host is local, the same as the application’s.

8 OSF® DCE Application Development Guide —Core Components

service@hosts/ host
The host is in the local namespace.

/.:/hosts/ host/config/ service
The complete specification for service@hosts/ host where the host is in the
local namespace.

/.../ cell/hosts/ host/config/ service
The host is in the global namespace.

Because the dced_binding_from_rpc_binding() routine already knows which host
to bind to from an RPC binding input parameter, it uses one of the global variables
defined for each service (instead of a string) to specify which dced service to use.

The dced Program Maintains Entry Lists

One dced service’s data is very different from another’s (for example, server
configuration data versus key table data), but you manipulate the data in a similar
way. This is because it is a simpler and more efficient design to implement a few
API routines that can handle more than one kind of data rather than many routines
that do essentially the same thing but on a different service’s data. An added
benefit is a flexible API that can handle your own application’s data and new kinds
of DCE data in the future.

To separate the actual data from the API implementation, a dced service maintains
a list of all data items in an entry list. Entry lists contain entries that describe the
name and location of each item of data, but they do not contain the actual data.
With this mechanism, dced can obtain and manipulate data very efficiently, without
concern for the implementation and location of the actual data. It also supports well
the model that administrators commonly need when accessing data: scan a list,
select an item, and use the data.

The dced program maintains entry lists for the hostdata , srvrconf , srvrexec , and
keytab services. The secval service does not need an entry list because it does
not maintain any data, but functions are performed to set its state.

There is a special relationship between srvrconf and srvrexec entries. In order for
dced to control the start of a server, the server must have a srvrconf entry
associated with server configuration data. When dced starts a server, it generates
from the srvrconf entry and data a srvrexec entry and associates the new entry
with the running server’s state.

Figure 1 on page 10 shows the entry lists maintained by dced .

Chapter 2. DCE Host Services 9

Although an entry can be associated with many different kinds of data items, all
entries have the same structure, shown in Figure 2.

Each entry is a dced_entry_t data structure. Each member of this data structure is
described as follows:

id An entry UUID is necessary to uniquely identify the data item. Some data
items have well-known UUIDs (the same UUID for the particular item on all
hosts). The data type is uuid_t .

name Each data item is identified with a name, to which applications refer. The
name need only be unique within an entry list because the entry UUID
guarantees the entry’s uniqueness. Some item names are well-known and
defined in header files. The data type is dced_string_t .

description
This is a human-readable description of the data item. Its data type is
dced_string_t .

storage_tag
The storage tag locates the actual data. Each service knows how to
interpret this tag to find the data. For example, some data is stored in a file,

dced

Server Management Entry Lists

hostdata entry list

Host Data Entry

.

.

.

.

.

.

srvrconf entry list

Server Configuration Entry
.
.
.

.

.

.

srvrexec entry list

Server Execution Entry
.
.
.

.

.

.

keytab entry list

Key Table Entry
.
.
.

.

.

.

Figure 1. The dced Entry Lists

Entry UUID, Name, Description, Storage Tag

Figure 2. Structure of an Entry

10 OSF® DCE Application Development Guide —Core Components

the name of which is contained in the storage tag. Other data is stored in
memory and the storage tag contains a pointer to the memory location. The
data type is dced_string_t .

Reading All of a Host Service’s Data

Suppose you want to display host service data in an application that has a
graphical user interface. The dcecp commands may not be adequate to display
data for this application. The following example shows how to obtain the entire set
of data for each host service:

dced_binding_handle_t dced_bh;
dced_string_t host_service;
void *data_list;
unsigned32 count;
dced_service_type_t service_type;
error_status_t status;
.
.
.

while(user_selects(&host_service, &service_type)){ /*application*/
/*specific */

dced_binding_create(host_service,
dced_c_binding_syntax_default,

&dced_bh,
&status);

if(status == error_status_ok) {
dced_object_read_all(dced_bh, &count, &data_list, &status);
if(status == error_status_ok) {
display(service_type, count, data_list); /* application */

/* specific */
dced_objects_release(dced_bh, count, data_list, &status);

}
dced_binding_free(dced_bh, &status);

}
}

user_selects()
This is an example of an application-specific routine that constructs the
complete service name from host and service name information. Data is
stored and retrievable for the hostdata , srvrconf , srvrexecD , and keytab
services. No data is stored for the secval service.

dced_binding_create()
Output from the dced_binding_create routine includes a dced binding
handle whose data type is dced_binding_handle_t . If an application
already has an RPC binding handle to a server on the host desired, it can
use the dced_binding_from_rpc_binding() routine to bind to dced and
one of its host services on that host. (Applications also use these routines
to bind to the secval service to perform other functions.)

dced_object_read_all()
Applications use the dced_object_read_all() routine to read data for all the
objects in an entry list. The output includes the address of an allocated
buffer of data and a count of the number of objects the buffer contains. The
data type in the buffer depends on the service used.

display()
This is an application-specific routine that displays the data. Before the data
is displayed, it must be interpreted depending on the service. The hostdata
data is an array of sec_attr_t data structures, the srvrconf and srvrexec

Chapter 2. DCE Host Services 11

data are arrays of server_t structures, and the keytab data is an array of
dced_key_list_t structures. The following code fragments show the data
type for each service:

void display(
dced_service_type_t service_type, /* dced service type */
int count, /* count of the number of data items */
void *data) /* obtained from dced_object_read{_all}() */
{
sec_attr_t *host_data;
server_t *servers;
dced_key_list_t *keytab_data;
.
.
.
switch(service_type) {
case dced_e_service_type_hostdata:
host_data = (sec_attr_t *)data;
. . .

case dced_e_service_type_srvrconf:
servers = (server_t *)data;
. . .

case dced_e_service_type_srvrexec:
servers = (server_t *)data;
. . .

case dced_e_service_type_keytab:
keytab_data = (dced_key_list_t *)data;
. . .

default:
/* No other dced service types have data to read. */
break;

}
return;

}

dced_objects_release()
Each call to the dced_object_read_all() routine requires a corresponding
call to dced_objects_release() to release the resources allocated.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the resources for the binding
allocated.

Managing Individual dced Entries

Figure 3 on page 13 shows examples of individual dced entries and the locations of
associated data. The data item name or its UUID is used to find an entry, and then
the storage tag is used to find the data.

12 OSF® DCE Application Development Guide —Core Components

The data for each hostdata item is stored in a file on disk. The dced program uses
the UUID to find the entry in the hostdata entry list. The entry’s storage tag is then
used to find the data. For hostdata , the tag contains a filename in OSF’s reference
implementation. The data returned for one entry is an array of strings in a
sec_attr_t structure.

The server management data is stored in memory. The dced program uses UUIDs
(maintained in the entry lists by dced) to find an entry. The location of the data in
memory is indicated by the storage tag. The data returned for one entry is a

dced

hostdata entry

UUID...file location

keytab entry

UUID...file location

srvrexec entry

UUID...object location

datasrvrconf entry

UUID...object location

data

data

data

Local Host's Disk

DCE Host

Figure 3. Accessing Hostdata

Chapter 2. DCE Host Services 13

structure of server data (server_t). All data for the srvrconf and srvrexec entries
are accessed from memory for fast retrieval, but the srvrconf data is also stored on
disk for use when a host needs to reboot.

Each keytab entry stores its data in a file on disk. However, like the server
management entries, the keytab entries use server names and corresponding
UUIDs (maintained by dced) to identify each entry. The storage tag contains the
name of the key table file. The data returned for one entry is a list of keys of type
dced_key_list_t .

The following example shows how to obtain and manage individual entries for the
hostdata , srvrconf , srvrexec , or keytab services:

handle_t rpc_bh;
dced_binding_handle_t dced_bh;
dced_entry_list_t entries;
unsigned32 i;
dced_service_type_t service_type;
void *data;
error_status_t status;
.
.
.

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh, &status);
if(status != error_status_ok)
return;

dced_list_get(dced_bh, &entries, &status);
if(status == error_status_ok) {
for(i=0; i<entries.count; i++) {
if(select_entry(entries.list[i].name)) {/* application specific */
dced_object_read(dced_bh, &(entries.list[i].id), &data, &status);
if(status == error_status_ok) {
display(service_type, 1, &data); /* application specific */
dced_objects_release(dced_bh, 1, data, &status);

}
}

}
dced_list_release(dced_bh, &entries, &status);

}
dced_binding_free(dced_bh, &status);

Each routine is described as follows:

dced_binding_from_rpc_binding()
The dced_binding_from_rpc_binding() routine returns a dced binding
handle whose data type is dced_binding_handle_t . This binding handle is
used in all subsequent dced API routines to access the service. The host is
determined from the RPC binding handle, rpc_bh, and the service_type is
selected from the following list:

v dced_e_service_type_hostdata

v dced_e_service_type_srvrconf

v dced_e_service_type_srvrexec

v dced_e_service_type_keytab

dced_list_get()
Applications use the dced_list_get() routine to get a service’s entire list of
names. Using the dced_list_get() routine gives your application great
flexibility when manipulating entries in an entry list. If you prefer, your
application can use the dced_entry_cursor_initialize() ,

14 OSF® DCE Application Development Guide —Core Components

dced_entry_get_next() , and dced_entry_cursor_release() set of routines
to obtain individual entries, one at a time.

select_entry()
This is an application-specific routine that selects which entry to use based
on the entry name.

dced_object_read()
The default attribute for dced_object_read() is to return an array of strings.
The hostdata and keytab services have other read routines that allow you
to specify binary data.

display()
This is an example of an application-specific routine that simply displays the
server configuration data read. Depending on the service, a different data
structure is used. For the hostdata service, a sec_attr_t is used. For the
srvrconf and srvrexec services server_t structures are used. For the
keytab service, a dced_key_list_t structure is used.

dced_objects_release()
After your application is finished with the data read with the
dced_object_read() routine, free the buffer of allocated data by using the
dced_objects_release() routine.

dced_list_release()
Each call to the dced_list_get() routine requires a corresponding call to
dced_list_release() to release the resources allocated for the entry list.

dced_binding_free()
Each call to the dced_binding_from_rpc_binding() routine requires a
corresponding call to dced_binding_free() to release the resources of the
allocated binding.

Managing Hostdata on a Remote Host

Administrators typically use the dcecp hostdata object to remotely manage the
data of the hostdata service. However, application developers can use the dced
API for their own management applications or if dcecp does not handle a task in
the desired way, such as for a browser of hostdata that uses a graphical user
interface.

Kinds of Hostdata Stored

Each hostdata item is stored in a file, and dced has a UUID associated with each.
The standard data items include the following well-known names:

cell_name
The name of the cell to which your host belongs is stored.

cell_aliases
When the cell name changes, the old names are designated as cell aliases.

dce_cf.db
The DCE configuration data file is stored.

host_name
The host name is stored.

pe_site
The location of the security server is stored.

Chapter 2. DCE Host Services 15

post_processors
The post_processors file contains UUID-program pairs for which the
UUIDs represent other hostdata items. If changes occur to an associated
hostdata item, the system runs the program.

svc_routing
The default routing file for serviceability messages is stored.

Depending on your DCE provider, additional items may exist. In addition to the
well-known hostdata items, applications can also add their own. The well-known
hostdata items have well-known UUIDs defined in the file
/usr/include/dce/dced_data.h , but you can use the dced_inq_uuid() routine to
obtain any UUID associated with any name known to dced .

Adding New Hostdata

In addition to modifying existing hostdata, you can add your own data by using the
hostdata API. For example, suppose you want to add a printer to a host and make
the configuration file part of that host’s dced data. The following example shows
how to do this:
dced_binding_handle_t dced_bh;
error_status_t status;
dced_entry_t entry;
dced_attr_list_t data;
int num_attr, str_size;
sec_attr_enc_str_array_t *attr_array;
.
.
.

dced_binding_create(dced_c_service_hostdata,
dced_c_binding_syntax_default,

&dced_bh,
&status);

/*Create Entry Data */
uuid_create(&(entry.id), &status);
entry.name = (dced_string_t)("NEWERprinter");
entry.description = (dced_string_t)("Configuration for a new printer.");
entry.storage_tag = (dced_string_t)("/etc/NEWprinter");
/* Create the Attributes, one for this example */
data.count = 1;
num_attr = 1;
data.list = (sec_attr_t *)malloc(data.count * sizeof(sec_attr_t));
(data.list)->attr_id = dced_g_uuid_fileattr;
(data.list)->attr_value.attr_encoding = sec_attr_enc_printstring_array;
str_size = sizeof(sec_attr_enc_str_array_t) +

num_attr * sizeof(sec_attr_enc_printstring_p_t);
attr_array = (sec_attr_enc_str_array_t *)malloc(str_size);
(data.list)->attr_value.tagged_union.string_array = attr_array;
attr_array->num_strings = num_attr;
attr_array->strings[0] = (dced_string_t)("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);
dced_binding_free(dced_bh, &status);

The description of this example is as follows:

dced_binding_create()
This routine creates a dced binding to a dced service. The binding handle
created is used in all subsequent calls to appropriate dced API routines. By
using the dced_c_server_hostdata value for the first parameter, we are
using the hostdata service on the local host.

16 OSF® DCE Application Development Guide —Core Components

Create Entry Data
Prior to creating a hostdata entry, we have to set its values. These include
the name and UUID that dced will use to identify the new data, a
description of the entry, and a filename with the full pathname of where the
actual data will reside.

Create the Attributes
The data stored is of type sec_attr_t . This data type is a very flexible one
that can store many different kinds of data. In this example, we set the file
to have one attribute, printable string information. This example has only
one string of data. You can also establish binary data for the file.

dced_hostdata_create()
This routine takes the binding handle, entry, and new data as input; it
creates the file with the new data and returns a status code.

If the printer configuration file already exists on the host, but you want to
now make it accessible to dced , use the dce_entry_add() routine instead
of dced_hostdata_create() .

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the binding resources allocated.

Use the dced_hostdata_delete() routine to delete application-specific hostdata
items and their entries. For example, the printer installed in the example is easily
removed with this routine. If you are only taking the printer out of service for a short
time, use the dced_entry_remove() routine to remove the dced entry but not the
data file itself. When the printer is later ready again, use the dced_entry_add()
routine to reinstall it.

Do not delete the well-known hostdata items or remove their entries.

Modifying Hostdata

Changing hostdata cannot only change the way the host works but it also affects
other files and processes on the host. Therefore, care should be taken when
changing hostdata. Deleting the well-known hostdata entries can cause even more
serious operational problems for the host.

The current as well as earlier versions of DCE provide configuration routines that
use a dce_cf.db file for data. When hostdata changes, dced also makes the
appropriate changes to this file so that the dce_cf* routines continue to work
correctly. This is one reason the hostdata items are established as well-known
names with well-known UUIDs so that dced knows which values to monitor.

Management applications use the dced_hostdata_read() routine to obtain the data
for an entry referred to by an entry UUID. To modify an entry’s actual data,
applications use the dced_hostdata_write() routine. This routine replaces the old
data with the new data for the hostdata entry represented by the entry UUID. The
hostdata entry must already exist because this routine will not create it. Use the
dced_hostdata_create() routine to create new hostdata entries.

Running Programs Automatically When Hostdata Changes

The following example shows how to use the post_processors feature of the
well-known hostdata to cause dced to automatically run a program if another

Chapter 2. DCE Host Services 17

hostdata entry changes. In this example, the post_processors file is read, and
data is added for the NEWERprinter hostdata entry created in an earlier example.
The data is placed in a dced_attr_list_t structure and written back to the
post_processors hostdata entry.
dced_binding_handle_t dced_bh;
uuid_t entry_uuid;
sec_attr_t *data_ptr;
error_status_t status;
int i, num_strings, str_size;
sec_attr_enc_str_array_t *attr_array;
unsigned_char_t *string_uuid, temp_string[200];
dced_attr_list_t attr_list;

dced_binding_create(dced_c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,

&status);
dced_hostdata_read(dced_bh,

&dced_g_uuid_hostdata_post_proc,
&dced_g_uuid_fileattr,
&data_ptr,
&status);

/* Create New Array and Copy Old Data into it */
num_strings = data_ptr->attr_value.tagged_union.string_array->num_strings + 1;
str_size = sizeof(sec_attr_enc_str_array_t) +

num_strings * sizeof(sec_attr_enc_printstring_p_t);
attr_array = (sec_attr_enc_str_array_t *)malloc(str_size);
attr_array->num_strings = num_strings;
for(i=0; i<(num_strings-1); i++) {
attr_array->strings[i] =
data_ptr->attr_value.tagged_union.string_array->strings[i];

}

dced_inq_id(dced_bh, "NEWERprinter", &entry_uuid, &status);

uuid_to_string(&entry_uuid, &string_uuid, &status);
sprintf(temp_string, "%s %s", string_uuid, "/path/and/program/to/run");
attr_array->strings[num_strings-1] = (dced_string_t)(temp_string);
data_ptr->attr_value.tagged_union.string_array = attr_array;
attr_list.count = 1;
attr_list.list = (sec_attr_t *)malloc(attr_list.count * sizeof(sec_attr_t));
attr_list.list = data_ptr;
dced_hostdata_write(dced_bh,

&dced_g_uuid_hostdata_post_proc,
&attr_list,
&status);

dced_objects_release(dced_bh, 1, (void*)(data_ptr), &status);
dced_binding_free(dced_bh, &status);

The description of this example is as follows:

dced_binding_create()
This routine creates a dced binding to the hostdata service on a specified
host. The binding handle created is used in all subsequent calls to
appropriate dced API routines. The dced_c_service_hostdata argument is
a constant string that is the well-known name of the hostdata service.
When this string is used by itself, it refers to the service on the local host.

dced_hostdata_read()
This routine reads the hostdata item referred to by the entry UUID. In this
example, the global variable dced_g_uuid_hostdata_post_proc
represents the UUID for the well-known post_processors file. The second

18 OSF® DCE Application Development Guide —Core Components

parameter specifies an attribute for the data. Attributes describe how the
data is to be interpreted. In this example, we know the data to be read is
plain text, so we use the global variable dced_g_uuid_fileattr to specify
plain text rather than binary data (dced_g_uuid_binfileattr).

Create a New Array
The next few lines copy the existing array of print strings into a new array
that has additional space allocated for the new data.

dced_inq_id()
This routine acquires the UUID dced that maintains for a known entry
name. In this example, we need the UUID for the NEWERprinter hostdata
entry so that it can be included in the data stored back in the
post_processors file.

uuid_to_string()
This routine returns the string representation of a UUID. Each line in the
post_processors file contains a string UUID and a program name for dced
to run if the hostdata entry referred to by the UUID changes. The next few
lines create a new string containing the string UUID and a program name,
adds the new string to the new array, and reassigns the new array to the
old data pointer.

dced_hostdata_write()
Since hostdata could have more than one attribute associated with each
entry, the data must be inserted in an attribute list data structure before the
dced_hostdata_write() routine is called. In the case of the well-known
post_processors hostdata object, the attribute is for a plain text file. The
dced_hostdata_write() routine replaces the old data with the new data for
the hostdata entry represented by the entry UUID.

dced_objects_release()
Each call to the dced_hostdata_read() routine requires a corresponding
call to dced_objects_release() to release the resources allocated.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the resources allocated.

The post_processors data for this dced now contains an additional string with a
UUID and program name. If the hostdata item represented by the UUID for
NEWERprinter is changed, dced automatically runs the program.

Controlling Servers Remotely

Both applications developers and system administrators may want servers to have
certain support services and control functionality. For example, servers may need
mechanisms to store operational data, and they may need to start or stop in various
ways. The dced program provides these support and control mechanisms for
servers.

Servers are typically configured by an administrator using the dcecp server object
in a script after the server is installed on the host. In addition to configuring the
server, this script would commonly include other tasks like create an account and
assign a principal name for the server, modify the ACLs and key table files
(keytabs) to control access to the server and its resources, and export the server
binding information to the Cell Directory Service (CDS) so that clients can find a
server that will start dynamically later.

Chapter 2. DCE Host Services 19

After a server is configured, whether it runs as a persistent daemon or an
on-demand (dynamic) process, administrators would again use dcecp if they need
to control or modify its behavior. Although server management is typically an
administrator’s task, you may want a management application to perform these
tasks, including the following:

v Configure a server to describe how it can be invoked

v Start a server based on configuration data

v Stop a running server

v Disable a specific service provided by a running server

v Enable a specific service for a running server

v Modify a server’s configuration

v Delete a server’s configuration, effectively removing the server from dced ’s
control

Two States of Server Management: Configuration and Execution

If all servers ran as persistent processes, dced could maintain data about each
server in a single (albeit complex) data structure. However, due to the fact that
some servers may run on demand, it is a more flexible design to have two sets of
data: one that describes the default configuration to start the server, and one that
describes the executing (running) server. Earlier in this chapter when we described
dced service naming, we defined srvrconf and srvrexec objects to name the two
portions of the server management service.

Table 1 lists the routines that applications can use to control servers. It also shows
the valid object names to use when establishing a dced binding prior to using the
routine.

Table 1. API Routines for Remote Server Management

API Routine Service Name for Binding

dced_server_create() srvrconf

dced_server_start() srvrconf

dced_server_disable_if() srvrexec

dced_server_enable_if() srvrexec

dced_server_stop() srvrexec

dced_object_read() srvrexec or srvrconf

dced_object_read_all() srvrexec or srvrconf

dced_server_modify_attributes() srvrconf

dced_server_delete() srvrconf

Configuring Servers

Although administrators commonly use dcecp to configure servers remotely,
management applications can use dced API routines to configure a new server
remotely by creating server configuration data, changing a remote server’s
configuration, and deleting a server’s configuration data.

Configuring a New DCE Server

Management applications use the dced_server_create() routine to add a new
server to a host. After a server is configured, it can be remotely controlled by

20 OSF® DCE Application Development Guide —Core Components

modifying its configuration attributes, starting and stopping it, enabling or disabling
the RPC interfaces it supports, and deleting its configuration.

Configuring the server involves describing the server for DCE by allocating and
filling in a server_t data structure, as shown in the following example. Note that not
all server_t fields are assigned values in this example.
int i;
dced_binding_handle_t dced_bh;
server_t conf, exec;
dced_string_t server_name;
uuid_t srvrconf_id, srvrexec_id;
dced_attr_list_t attr_list;
error_status_t status;
static service_t nil_service;
.
.
.

dced_binding_create("srvrconf@hosts/somehost",
dced_c_binding_syntax_default,
&dced_bh,
&status);

dced_inq_id(dced_bh, server_name, &srvrconf_id, &status);
if(status == error_status_ok) {
puts("Configuration already exists for this server.");
dced_binding_free(dced_bh, &status);
return;

}
/* ___________setup a server_t structure ________________*/
uuid_create(&(conf.id), &status);
conf.name = server_name;
conf.entryname = (dced_string_t)"/.:/greeter";
conf.services.count = 1;
/* ___service_t structures represent each interface supported ___*/
conf.services.list =
(service_t *)malloc(conf.services.count * sizeof(service_t));

for(i=0; i<conf.services.count; i++) {
rpc_if_inq_id(greetif_v1_0_c_ifspec,

&(conf.services.list[i].ifspec),
&status);

conf.services.list[i] = nil_service;
conf.services.list[i].ifname = (dced_string_t)"greet";
conf.services.list[i].annotation = (dced_string_t)"The greet application";
conf.services.list[i].flags = 0;

}

/* ______________server_fixedattr_t structure _______________*/
conf.fixed.startupflags =
server_c_startup_explicit | server_c_startup_on_failure;

conf.fixed.flags = 0;
conf.fixed.program = (dced_string_t)"/server/path/and/program/name";

dced_server_create(dced_bh, &conf, &status);
dced_binding_free(dced_bh, &status);

dced_binding_create()
To configure a server, the application must first create a dced binding to the
srvrconf portion of the server management service on a specified host.
The binding handle created is used in all subsequent calls to appropriate
dced API routines.

dced_inq_id()
This routine returns the UUID that dced associates with the name input.

Chapter 2. DCE Host Services 21

Each configured server has an associated UUID used by dced to identify it.
In this example, we won’t try to create a configuration for a server that
already exists.

Set Up a server_t Structure for the Server
The server_t structure contains all the information DCE uses to specify a
server.

Set Up service_t Structures for Each Interface
Each service that the server supports is represented by a service_t data
structure that contains the interface specification, among other things. In
this example the client stub for the interface was compiled with the program
so that the interface specification (greetif_v1_0_c_ifspec) could be
obtained without building the structure from scratch.

Set Up a server_fixedattr_t Structure
Other fixed attributes required for all servers describe how the server can
start, the program name and pathname for the server so that dced knows
which program to start, and the program’s arguments, among other things.

dced_server_create()
This routine uses the filled-in server_t structure to create a srvrconf entry
for dced . The data is stored in memory for quick access whenever the
server is started.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the binding resources allocated.

Modifying a Server’s Configuration Attributes

The data for configuring servers includes arrays of attributes. For flexibility, dced is
implemented using the extensible and dynamic data structures developed for the
DCE security registry attributes. This extended registry attribute (ERA) schema
gives vendors the flexibility to modify the attributes appropriate for configuring
servers on various systems. The use and modification of these data structures are
described in “Chapter 28. The Registry API” on page 545.

Applications commonly use dced_server_modify_attributes() after the
dced_server_create() routine to change the default configuration attributes (the
attributes field of a server_t structure) for a remote server. A dced_attr_list_t data
structure is input that contains an array of sec_attr_t data structures and a count of
the number in the array.

Deleting a DCE Server

Management applications use dced_server_delete() to delete a server’s
configuration data and entry in its hosts dced . Although this does not delete the
actual server program from the host, it removes it from DCE control.

Starting and Stopping Servers

A server typically runs as persistent process or is started on demand when a client
makes a remote procedure call to it. Management applications can start remote
servers by using the dced_server_start() routine. This is a srvrconf routine that
takes as input server configuration data in the form of an attribute list.

22 OSF® DCE Application Development Guide —Core Components

Once a server has started, it tends to remain running until an administrator or
management application stops it, but some applications may stop themselves if, for
example, they do not detect activity within a specified time. To stop remote servers,
applications can use the dced_server_stop() routine.

The following example shows how an application starts or stops a server:
dced_binding_handle_t dced_bh, conf_bh, exec_bh;
server_t conf, exec;
dced_string_t server_name;
uuid_t srvrconf_id, srvrexec_id;
error_status_t status;
.
.
.

/* Toggle the Starting or Stopping of a Server */
dced_binding_create("srvrconf@hosts/somehost",

dced_c_binding_syntax_default,
&conf_bh,
&status);

dced_binding_create("srvrexec@hosts/somehost",
dced_c_binding_syntax_default,
&exec_bh,
&status);

dced_inq_id(exec_bh, server_name, &srvrexec_id, &status);
if(status != error_status_ok) {
puts("Server is NOT running.");
dced_inq_id(conf_bh, server_name, &srvrconf_id, &status);
dced_server_start(conf_bh, &srvrconf_id, NULL, &srvrexec_id, &status);

}
else {
puts("Server is RUNNING.");
dced_server_stop(exec_bh, &srvrexec_id, srvrexec_stop_rpc, &status);

}
dced_binding_free(conf_bh, &status);
dced_binding_free(exec_bh, &status);

dced_binding_create()
These routines create dced bindings to the srvrconf and srvrexec portions
of the server management service on a specified host. The binding handles
created are used in all subsequent calls to appropriate dced API routines.

dced_inq_id()
This routine returns the UUID that dced associates with the name input.
Each name used to identify an object of each service has a UUID. If dced
maintains a UUID for a srvrexec object, the server is running. However, it
is possible that the server is in an in-between state as it is starting up or
shutting down. For a more robust check as to whether the server is running,
use the dced_object_read() routine to read the server_t structure for the
srvrexec object. If the exec_data.tagged_union.running_data.instance UUID
is the same as the srvrconf UUID (srvrconf_id), the server is running.

dced_server_start()
This routine starts the server via dced . The srvrconf binding handle and
UUID are input. For special server configurations, you can start a server
with a specific list of attributes, but a value of NULL in the third parameter
uses the attributes of the server configuration data. You can input a
srvrexec UUID for dced to use, or allow it to generate one for you.

dced_server_stop()
This routine stops a running server identified by its srvrexec UUID. The
cleanest stop method is to cause dced to use the

Chapter 2. DCE Host Services 23

rpc_mgmt_server_stop_listening() routine so that all outstanding remote
procedure calls complete before the server stops.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the binding resources allocated.

Enabling and Disabling Services of a Server

Most servers have all their services enabled to process all requests. However, a
server may need to enable or disable services to synchronize them, for example.
For another example, an administrator (or management application) may need to
disable or enable services to perform orderly startup or shutdown of a server.

Each service provided by a server is implemented as a set of procedures. DCE
uses an interface definition to define a service and its procedures, and application
code refers to the interface when controlling the service.

When a server starts, it initializes itself by registering with the RPC runtime and the
dced process on its host by using the dce_server_register() routine. This enables
all services (interfaces) that the server can support. The server can then disable
and reenable services (in whatever order it requires) by using the
dce_server_disable_if() and dce_server_enable_if() routines.

To control the services of remote servers, management applications use the
dced_server_disable_if() and dced_server_enable_if() routines. These routines
work on the srvrexec object. When a service (interface) is disabled, a client that
already knows about the service (through a binding handle to this interface and
server) will no longer work because the interface is unregistered with the RPC
runtime. If you wish to have clients that already know about the server and service
work, but wish to prohibit any new clients from finding the server and service, you
can use rpc_mgmt_ep_unregister() to remove from the endpoint map the server
address information with respect to the service. This routine does not affect the
RPC runtime.

Validating the Security Server

The security validation service (secval) has the following major functions:

v It maintains a login context for the host’s self-identity which includes periodic
changes to the host’s key (password).

v It validates and certifies to applications, usually login programs, that the DCE
security daemon (secd) is legitimate.

Clients (including remote clients, local servers, host logins, and administrators) all
need the security validation service to make sure that the secd) process being used
by the host is legitimate. The security validation service establishes the link in a
trust chain between applications and secd so that applications can trust the DCE
security mechanism.

An application can trust its host’s security validation service because they are on
the same host, but an application has no way to convince itself that secd ,
presumably on another host, is genuine. However, if the application trusts another
principal (in this case, the security validation service), which in turn trusts secd ,
then the trust chain now extends from the application to secd .

24 OSF® DCE Application Development Guide —Core Components

Typically, a login program accesses the security validation service when it uses the
DCE Security Service’s login API, described in “Chapter 29. The Extended Attribute
API” on page 551. Administrators access the secval service by using the dcecp
secval object. However, suppose you are writing a security monitoring application
to watch for and respond to security attacks. After the application binds to the
secval service, it can call the dced_secval_validate() routine to verify that the
secd process is legitimate.

Applications can also use the dced_secval_start() and dced_secval_stop()
routines to start and stop the security validation service on a given host.

For example, during configuration of a host, the dced program can start with or
without the security validation service. Later when security is configured, a
management application can start secval by using the dced_secval_start() routine.
For another example, suppose our security monitoring application mentioned earlier
suspects an attack. The application can call dced_secval_stop() to stop the
security validation service without stopping the entire dced . This makes the login
environment more restrictive.

Managing Server Key Tables

Keys for servers are analogous to passwords for human users. Keys also play a
major role in authenticated remote procedure calls. Keys have some similarities with
passwords. For example, server keys and user passwords have to follow the same
change policy (or a more stringent one) for a given host or cell. This means that,
just as a user has to periodically come up with a new password, a server has to
periodically generate a new key. It is easy to see that a human user protects a
password by memorizing it. But a server memorizes a key by storing it in a file
called a key table.

It is more complex for a server to change keys than it is for a human user to
change a password. For example, a human user needs to only remember the latest
password, but a server may need to maintain a history of its keys by using version
numbers so that currently active clients do not have difficulty completing a remote
procedure call. When a client prepares to make authenticated remote procedure
calls, it obtains a ticket to talk with the server. (The security registry of the
authentication service encrypts this ticket by using the server’s key, and later the
server decrypts the ticket when it receives the remote procedure call.)

Timing can become an issue when a client makes a remote procedure call because
tickets have a limited lifetime before they expire, and servers must also change
their keys on a regular basis. Assuming the client possesses a valid ticket, suppose
that, by the time the client makes the call, the server has generated a new key. If a
server maintains versions of its keys, the client can still complete the call.
Authentication is described in detail in “Chapter 23. Overview of Security” on
page 483.

A key table usually contains keys stored by one server, and it must be located on
the same host as that server. However, a key table can hold keys for a set of
related servers, as long as all the servers reside on the same host. Servers usually
maintain their own keys, and “Chapter 30. The Login API” on page 581 describes
the API they use. Administrators can remotely manage key tables and the keys in

Chapter 2. DCE Host Services 25

the tables by using the dcecp keytab object. This section describes the API
routines that management applications can use to manage the key tables and keys
of other servers on the network.

Suppose you discover that a server or an entire host’s security has been
compromised. Applications can use the dced_keytab_change_key() routine to
change a key table’s key. The following example shows how to reset the key for all
key tables on a specified host:
dced_binding_handle_t dced_bh;
dced_entry_list_t entries;
unsigned32 i;
error_status_t status;
dced_key_t key;
dced_binding_create("keytab@hosts/somehost",

dced_c_binding_syntax_default,
&dced_bh,
&status);

dced_binding_set_auth_info(dced_bh,
rpc_c_protect_level_default,
rpc_c_authn_default,
NULL,
rpc_c_authz_dce,
&status);

dced_list_get(dced_bh, &entries, &status);

for(i=0; i<entries.count; i++) {
generate_new_key(&key); /* application specific */
dced_keytab_change_key(dced_bh, &entries.list[i].id, &key, &status);

}
dced_list_release(dced_bh, &entries, &status);
dced_binding_free(dced_bh, &status);

dced_binding_create()
This routine creates a dced binding to a dced service on a specified host.
The binding handle created is used in all subsequent calls to appropriate
dced API routines. The keytab portion of the first argument represents the
well-known name of the keytab service. When this string is used by itself, it
refers to the service on the local host.

dced_binding_set_auth_info()
Accessing keytab data requires authenticated remote procedure calls. The
dced_binding_set_auth_info() routine sets authentication for the dced
binding handle, dced_bh.

dced_list_get()
Applications use the dced_list_get() routine to get a service’s entire list of
names.

generate_new_key()
This application-specific routine generates the new key and fills in a
dced_key_t data structure. This routine could use the
sec_key_mgmt_gen_rand_key() routine to randomly generate a new key.

dced_keytab_change_key()
The dced_keytab_change_key() routine tries to change the principal’s key
in the security service’s registry first. If that is successful, it changes the key
in the key table.

dced_list_release()
Each call to the dced_list_get() routine requires a corresponding call to
dced_list_release() to release the resources allocated for the entry list.

26 OSF® DCE Application Development Guide —Core Components

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the resources allocated for a dced
binding handle.

For more detailed key table management, applications can peruse a key table’s list
of keys by using the dced_keytab_initialize_cursor() ,
dced_keytab_get_next_key() , and dced_keytab_release_cursor() routines.
Reading key table data remotely presents a greater security risk because data is
sent over the network. For remote access, these routines actually get all the keys
during one remote procedure call to be more efficient and to minimize the time keys
are being sent over the network.

Earlier in this section we described how to change the key of a key table with the
dced_keytab_change_key() routine. The key table management service also
provides the routines dced_keytab_add_key() and dced_keytab_remove_key() to
control key modification in even greater detail.

Finally, you can create a new key table by using dced_keytab_create() , or you can
delete an existing key table by using dced_keytab_delete() .

Sample dced Application

The following sections contain the complete source code, Makefile, and dcecp
installation scripts for a simple DCE application that uses some of the dced server
management facilities.

The greet_dced application is an adaptation of the greet application described in
the Introduction to OSF DCE. The greet_dced server is registered and executed
via dced .

Once started, greet_dced ’s behavior is identical to that of greet . The client side of
the application sends a greeting to the server side of the application. The server
prints the client’s greeting and sends a return greeting back to the client. The client
prints the server’s reply and terminates. (Note that the server does not catch
signals, so when it is stopped it does not clean up its namespace or registry entries;
this must be done manually.)

Running the Program

To run greet_dced , do the following:

1. Build the program by invoking the make command.

2. Change the uid and gid values in greet_dced.install according to your
preferences. If you do change them, make sure that you chown the keytab file
to the same uid in Step 4 below.

3. As cell_admin , do:
dcecp greet_dced.install

This creates a server principal and account with the password “secret”, creates
a CDS directory and changes permissions on it (so that the server principal has
rights to create its server entry), creates a keytab entry and creates a srvrconf
entry. It handles errors, so if something fails (e.g. if the user already exists) the
program will still run to completion.

4. As root, do:
Chapter 2. DCE Host Services 27

chown your_user_name greet_dced.ktab

This is necessary because the form of the chown command in
greet_dced.install will fail—it is present there only as a reminder. If you use a
different uid in the script, change it here as well.

5. As cell_admin , do:
dcecp -c server start greeter_dced

6. Wait a few moments and check /tmp/srv.out to make sure the server has
started.

7. Start the client as follows:
./greet_dced_client /.:/subsys/my_company/greet_dced/greeter_dced_entry

After you are done, you can get rid of everything as follows:

1. As cell_admin , stop the server:
dcecp -c server stop greeter_dced -method soft

2. As cell_admin , run the delete script:
dcecp greet_dced.delete

The program has the following limitations:

1. The server does not catch signals, so when it is stopped it does not clean up
anything.

2. The dce_server_sec_begin() routine logs in using the server principal and
keytab specified in the srvrconf file. It also starts a thread to manage the
server’s key. However, it does not start a thread to refresh the server’s login
context. That still needs to be done by the application writer, using the same
method that was used in DCE 1.0.x:

create a thread to run the following:

loop
find out when the login context expires
do a pthread_delay_np for
(expiration time - current time - 10 minutes)
sec_login_refresh_identity();
sec_key_mgmt_get_key();
sec_login_validate_identity();
sec_key_mgmt_free_key();
end loop

greet_dced.idl

Following are the contents of the greet_dced.idl file.

/*
* greet_dced.idl
*
* The "greet_dced" interface.
*/

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)]

interface greet_dcedif
{
const long int REPLY_SIZE = 100;

void greet_dced(

28 OSF® DCE Application Development Guide —Core Components

[in] handle_t h,
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_SIZE]

);
}

greet_dced_server.c

Following are the contents of the greet_dced_server.c file, which contains the
greet_dced server setup and cleanup routines. This is where the server’s
interaction with dced takes place.

/* greet_dced_server_dce.c
* Main program (initialization) for "greet_dced" server.
* NEW SERVER for DCE 1.1.
*/

#include <stdio.h>
#include <dce/dced.h>
#include "greet_dced.h"
#include "util.h"

char invocation_instructions[] = "Usage:\n\
1. Invoke the dcecp program: dcecp\n\
dcecp>\n\

2. Start the server:\n\
dcecp> server start greeter_dced\n\

3. If dced cannot find a matching server object,
create server configuration:\n\
dcecp> source greet_dced.install\n\
dcecp> server start greeter_dced\n\

4. exit dcecp.\n\
dcecp> exit";

FILE * out = NULL;

boolean32 rpc_mgmt_authorize (rpc_binding_handle_t client_bn,
unsigned32 op_no,
unsigned32 *st);

int main(
int argc,
char *argv[]

)
{
server_t *server_conf;
dce_server_register_data_t register_data[1];
dce_server_handle_t server_handle;
error_status_t status;

/* if we are a daemon stderr is missing */
out = fopen ("/tmp/srv.out" , "w");

/* otherwise just use
out = stderr;
*/

fprintf(out, "Server start\n"); fflush(out);

/********** Get the server's configuration from the local dced ******/
fprintf(out, "dce_server_inq_server() call\n");
fflush(out);
dce_server_inq_server(&server_conf, &status);
fprintf(out, "dce_server_inq_server() return\n");
fflush(out);

Chapter 2. DCE Host Services 29

if(status != error_status_ok) { /* Describe startup via dcecp */
/* and dced */

fprintf(out, "%s\n", invocation_instructions);
fflush(out);
ERROR_CHECK(status, "Cannot get server configuration structure");

}

/********** login and manage key *******************************/
fprintf(out, "dce_server_sec_begin() call\n");
fflush(out);
dce_server_sec_begin(dce_server_c_login|dce_server_c_manage_key, &status);
fprintf(out, "dce_server_sec_begin() return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed in dce_server_sec_begin()\n");
fflush(out);
ERROR_CHECK(status, "Cannot sec_begin");

}

/********** Only the protocol sequences we want ****************/
fprintf(out, "dce_server_use_protseq() call\n");
fflush(out);
dce_server_use_protseq(NULL, (idl_char *)"ncadg_ip_udp", &status);
fprintf(out, "dce_server_use_protseq() return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed to specify protocol sequence\n");
fflush(out);
ERROR_CHECK(status, "Cannot specify protocol sequence");

}

/******* Fill in rest of registration data structures ***********/
register_data[0].ifhandle = greet_dcedif_v1_0_s_ifspec;
register_data[0].epv = NULL; /* use default entry point vector */
register_data[0].num_types = 0;
register_data[0].types = NULL;

/************************** Register the Server *****************/
fprintf(out, "dce_server_register() call\n");
fflush(out);
dce_server_register(dce_server_c_ns_export, /* flag says register server with CDS */
server_conf,
register_data,
&server_handle,
&status

);
fprintf(out, "dce_server_register() return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed dce_server_register. Error %d\n", status);
fflush(out);

ERROR_CHECK(status, "Can't register server with DCE");
}

/******************* Listen for remote procedure calls **********/
fprintf(out, "Listening...\n"); fflush(out);
rpc_server_listen(rpc_c_listen_max_calls_default, &status);
fprintf(out, "Returned from listening...\n");
fflush(out);
if (status != rpc_s_ok) {
fprintf(out, "Failed rpc_server_listen\n");
fflush(out);

ERROR_CHECK(status, "Can't start listening for calls");
}

/************************ Unregister from DCE *******************/
fprintf(out, "dce_server_unregister call\n");

30 OSF® DCE Application Development Guide —Core Components

fflush(out);
dce_server_unregister(&server_handle, &status);
fprintf(out, "dce_server_unregister return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed dce_server_unregister\n");
fflush(out);

ERROR_CHECK(status, "Can't unregister server from DCE");
}

fprintf(out, "dce_server_sec_done call\n");
fflush(out);
dce_server_sec_done(&status);
fprintf(out, "dce_server_sec_done return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed dce_server_sec_done\n");
fflush(out);

ERROR_CHECK(status, "Can't do sec_done");
}

}

greet_dced_manager.c

Following are the contents of the greet_dced_manager.c file, which contains the
implementation of the greet_dced interface.

/*
* greet_dced_manager.c
*
* Implementation of "greet_dced" interface.
*/

#include <stdio.h>
#include "greet_dced.h"

void
greet_dced(
handle_t h,
idl_char *client_greeting,
idl_char *server_reply

)
{
printf("The client says: %s\n", client_greeting);

strcpy(server_reply, "Hi, client!");
}

greet_dced_client.c

Following are the contents of the greet_dced_client.c file.

/*
* greet_dced_client.c
*
* Client of "greet_dced" interface.
*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/rpc.h>

#include "greet_dced.h"

Chapter 2. DCE Host Services 31

#include "util.h"

int
main(
int argc,
char *argv[]

)
{
rpc_ns_handle_t import_context;
handle_t binding_h;
error_status_t status;
idl_char reply[REPLY_SIZE];

if (argc < 2) {
fprintf(stderr, "usage: greet_dced_client <CDS pathname>\n");
exit(1);

}

/*
* Start importing servers using the name specified
* on the command line.
*/

rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],
greet_dcedif_v1_0_c_ifspec, NULL, &import_context, &status);

ERROR_CHECK(status, "Can't begin import");

/*
* Import the first server (we could interate here,
* but we'll just take the first one).
*/

rpc_ns_binding_import_next(import_context, &binding_h, &status);
ERROR_CHECK(status, "Can't import");

/*
* Make the remote call.
*/

greet_dced(binding_h, (idl_char *) "hello, server", reply);

printf("The Greet Server said: %s\n", reply);
}

util.c

Following are the contents of the util.c file, which contains the error message
handling routines for the greet_dced server and client.

/*
* util.c
*
* Utility routine(s) shared by "greet_dced" client
* and server programs.
*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/dce_error.h>

void
error_exit(
error_status_t status,
char *text

)
{
unsigned char error_text[100];

32 OSF® DCE Application Development Guide —Core Components

int dummy;

dce_error_inq_text(status, error_text, &dummy);
fprintf(stderr, "Error: %s - %s\n", text, error_text);
exit(1);

}

util.h

Following are the contents of the util.h file, which contains declarations used in the
util.c file.

/*
* util.h
*
* Declarations of utility routine(s) shared by "greet_dced" client
* and server programs.
*/

#define ERROR_CHECK(status, text) if (status != error_status_ok) \
error_exit(status, text)

void
error_exit(
error_status_t status,
char *text

);

greet_dced.install

Following are the contents of the greet_dced.install file, which is the dcecp install
script for the greet_dced server.

set dir
/users/ your_user_name/src/dce/greet_dced/greet_dced
set cds_dir /.:/subsys/my_company/greet_dced

Unix and group id of the server process owner
has to own the keytab file as well
set uid 1265
set gid 1000

add a PGO for the server
set cmd "user create greet_dced_server -group servers \

-o osf -password secret -mypwd -dce-"
if {[catch $cmd msg] != 0} {
echo "user create:" $msg
}

create a directory in CDS and give access to the server
this will fail if any directory in the chain is not already there
set cmd "directory create $cds_dir"
if {[catch $cmd msg] != 0} {
echo "directory create: " $msg
}

set cmd "acl modify $cds_dir -add {user greet_dced_server rwdit}"
if {[catch $cmd msg] != 0} {
echo "acl modify: " $msg
}

create a keytab for the server
set cmd "keytab create greet_dced.ktab \
-storage $dir/greet_dced.ktab \

Chapter 2. DCE Host Services 33

-data {greet_dced_server plain 1 secret}"
if {[catch $cmd msg] != 0} {
echo "keytab create: " $msg
}

dced create the keytab file with root as its owner
so we have to chown it, but
this may require root permission, so it's likely to fail.
set cmd "exec chown $uid $dir/greet_dced.ktab"
if {[catch $cmd msg] != 0} {
echo "chown: " $msg
}

create the srvrconf object
set cmd "server create greeter_dced \
-program $dir/greet_dced_server \
-entryname $cds_dir/greeter_dced_entry \
-keytabs [attrlist getvalues [keytab show greet_dced.ktab]\

-type uuid]\
-principals {greet_dced_server} \
-starton explicit \
-directory $dir/exec_dir \
-services { {ifname greet_dced} \

{interface {3d6ead56-06e3-11ca-8dd1-826901beabcd 1.0}}} \
-uid $uid -gid $gid"
if {[catch $cmd msg] != 0} {
echo "server create: " $msg
}

greet_dced.delete

Following are the contents of greet_dced.delete , which contains the dcecp
cleanup script for the greet_dced server.

set dir /users/ your_user_name/src/dce/greet_dced/greet_dced
set cds_dir /.:/subsys/my_company/greet_dced

catch "server delete greeter_dced"
catch "keytab delete greet_dced.ktab"
catch "directory delete $cds_dir -tree"
catch "user delete greet_dced_server"

Makefile

Following are the contents of the greet_dced Makefile.

###
#
Makefile: A generic makefile suitable for building the greet_dced
application.
#
-77 cols-
##

DCEROOT = /opt/dcelocal
CC = /bin/c89
IDL = idl
LIBDIRS = -L${DCEROOT}/usr/lib
LIBS = -ldce -lc_r
LIBALL = ${LIBDIRS} ${LIBS}
INCDIRS = -I. -I${DCEROOT}/share/include
CFLAGS = -g ${INCDIRS} -D_SHARED_LIBRARIES -D__hppa -Dhp9000s800 \
-Dhp9000s700 -D__hp9000s800 -D__hp9000s700 -DHPUX -D__hpux \
-Dunix +DA1.1 -D_HPUX_SOURCE

34 OSF® DCE Application Development Guide —Core Components

IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet_dced_client greet_dced_server

greet_dced.h greet_dced_cstub.o greet_dced_sstub.o: greet_dced.idl
${IDL} ${IDLFLAGS} greet_dced.idl

greet_dced_client: greet_dced.h greet_dced_client.o util.o \
greet_dced_cstub.o
${CC} -o greet_dced_client greet_dced_client.o \
greet_dced_cstub.o util.o ${LIBALL}

greet_dced_server: greet_dced.h greet_dced_server.o \
greet_dced_manager.o util.o greet_dced_sstub.o
${CC} -o greet_dced_server greet_dced_server.o \
greet_dced_manager.o greet_dced_sstub.o util.o ${LIBALL}

greet_dced_client.c greet_dced_server.c util.c: util.h
greet_dced_manager.c greet_dced_client.c greet_dced_server.c: greet_dced.h

clobber:
rm -f greet_dced.h greet_dced_client greet_dced_client.o \
greet_dced_cstub.o greet_dced_manager.o greet_dced_server \
greet_dced_server.o greet_dced_server_dce.o \
greet_dced_sstub.o server_struct.o greet_dced_server_dce
util.o

Chapter 2. DCE Host Services 35

36 OSF® DCE Application Development Guide —Core Components

Chapter 3. DCE Application Messaging

Message generation by distributed programs can be divided into two broad kinds:

v Normal (often user-prompted, client-generated) messages

v Server event messages, containing information about server activity, either
normal or extraordinary

Similarly, DCE makes available to applications two messaging APIs:

v The DCE messaging interface

v The DCE serviceability interface

The DCE serviceability interface is designed specifically to route messages of the
second type; it is described in “Chapter 4. Using the DCE Serviceability Application
Interface” on page 51. Messages in the first category are output using the DCE
general-purpose application messaging routines, which are the subjects of this
chapter.

Although the two interfaces, broadly speaking, do the same general thing (that is,
write messages), their functionality was designed to serve different needs, both of
which occur in most distributed applications. Nevertheless, either interface can be
used more or less exclusively of the other, if desired.

DCE and Messages

A message is a readable character string conveying information about some aspect
of a program’s state or activity to a human audience. Messages may be purely
informational or they may be intended to be responded to (that is, be interactive).
Prompts, error displays, warnings, logs, announcements and program responses
are all various kinds of message.

DCE applications can simply use the standard output routines (such as printf() ,
sprintf() , and so on) for messaging. However, DCE provides two message
interfaces that automatically and transparently take care of many of the special
problems that distributed application messaging can give rise to. These interfaces
are used by the DCE components themselves to implement their messaging.

Both of the DCE message facilities use XPG4 message catalog files (see the
X/Open Portability Guide) to hold message text. The message catalogs are
generated by a DCE utility (called sams) during the application development
process, and must be installed in the correct platform-dependent location in order
for the DCE messaging library routines to be able to find them (and, consequently,
the messages) at runtime.

The main purpose of message catalogs is to allow programs’ message text to be
stored and organized (separately from the programs themselves) in a culture- or
nationality-specific way. This enables programs to switch their I/O styles and
contents to the form appropriate to the geographical location (locale) they are
running in, simply by using the appropriate catalog. Thus, it is essential to compose
catalogs in such a way that each one contains message text appropriate only to a
single (same) locale.

37

Questions such as the proper use of locales, proper language style for messages,
where catalogs should be installed, and so on, all fall under the broad topic of
internationalization, and are not discussed in this chapter. The other important
aspect of internationalization, namely character and code set compatibility, is
discussed in detail in “Chapter 16. Writing Internationalized RPC Applications” on
page 281.

DCE Messaging Interface Usage

Use of the DCE messaging API is very straightforward. In the application code
itself, all that is usually required is simply to call one of the output routines, passing
it the ID of the message to be output. The messages themselves must first be
defined in a text file which must then be processed by the DCE sams (symbols and
message strings) utility, which generates the message catalog file along with other
C source files that contain code necessary to facilitate the additional layer of
functionality that DCE has added to the XPG4 message catalog mechanism.

A Simple DCE Messaging Example

The following subsections describe all the steps and code necessary to compile an
application that uses the DCE messaging API to print the familiar ″Hello World’’
message.

Defining the Message

For our example, we will define a sams file with the minimum contents necessary
to print the one brief message we want to display. (Additional information on the
use of sams can be found in the sams(1dce) reference page, which contains
comprehensive descriptions of all aspects of the utility.)

Each line in a sams file consists of a simple header and value combination. The
header indicates the meaning of the value being specified, and value is the value
itself. A sams file for messaging use is normally made up of three parts (although
only two parts are needed for the short example in this chapter). The first part
consists of a minimum of one line that specifies the name of the component (that is,
the application) that is to use the messages that will be generated from the file.

Each invocation of sams to process a separate .sams input file produces a
complete set of output files that can be used by the DCE messaging routines to
print or log messages as required. These sets of output files are organized by DCE
component. (In DCE itself, these components are identical to the DCE components:
RPC, DTS, and so on; for applications, the categorization of components is
determined by the developer.) Each set of output files will have names in which the
component name (also determined by the developer) appears.

The component name that you specify at the top of a sams file must consist of a
three-character (no more, no less) string. For the ″Hello World’’ program we will use
the component name hel :

Part I of simple sams message file...
component hel

The hel string will be used to identify all the files and data structures that sams will
generate from the file.

38 OSF® DCE Application Development Guide —Core Components

The second (and final) part of a sams file for DCE messaging consists of a series
of records that specify the messages themselves. Each record is delimited by the
start and end keywords. Within each record, a series of keywords identifies the
various information that each message consists of or has associated with it.

Our file will contain only one message, the text of which is to be ″Hello World’’. The
record that specifies it is as follows:

start
code hello_msg
text "Hello World"
action "None required"
explanation "Greeting message for sample messaging program"
end

The keywords specified have the following meanings:

code Identifies the message.

text Specifies the text of the message itself.

explanation
Describes the meaning of the message. The text following this keyword is
used to generate the documentation of the component’s messages.

action Describes any action(s) that should be taken in response to the message.
The text following this keyword is used to generate the documentation of
the component’s messages.

Processing the .sams File

The entire sams file for the hello program is as follows:

Part I
component hel

Part II
start
code hello_msg
text "Hello World"
action "None required"
explanation "Greeting message for sample messaging program"
end

We create the file with these contents and name it hel.sams .

A sams file containing DCE messaging API message definitions (in other words, a
sams file not containing definitions for DCE serviceability API messages) should be
compiled by invoking sams as follows:

sams -o thmc sams_filename

where:

-o Introduces output flags as follows:

t Specifies that a file containing source code to generate an
in-memory message table be output by sams .

h Specifies that a header file defining codes for the message
numbers be output by sams .

m Specifies that a .msg file be output by sams .

Chapter 3. DCE Application Messaging 39

c Specifies that sams call gencat (with the .msg file as input) to
produce a message catalog.

Running the command as shown will result in four files being output:

dcehel.cat
XPG4 message catalog file created by gencat . If you wish to use the
message catalog, you must install it yourself.

dcehel.msg
Message input file for gencat .

dcehelmsg.c
Code defining the in-memory table of message texts. By using this table
you can avoid depending on extracting message texts from the message
catalog.

dcehelmsg.h
Header file containing definitions for dcehelmsg.c .

The header file should be included in the program source code. The dcehelmsg.c
module should be compiled and linked with the program object module. The
message catalog should be installed in the correct platform-dependent location.

All that remains now is to create a simple C program that calls a DCE messaging
routine to output the ″Hello World’’ message.

Program Source

The complete source code for hello.c is as follows:

#include <dce/dce_svc.h>
#include "dcehelmsg.h"

int
main(
int argc,
char *argv[])

{

dce_printf(hello_msg);

}

To build the application, you simply

v Process the hel.sams file with the sams command.

v Build and link hello from the following modules:

– dcehelmsg.c

– hello.c

When executed, the program will print the following:

Hello World

This is the text of the hello_msg message as defined in the hel.sams file.

40 OSF® DCE Application Development Guide —Core Components

DCE Messaging and Message Catalogs

The reader may be wondering why, in the previous example, it was not necessary
to explicitly open the message catalog before making the call to retrieve and print
the message itself. The answer is that dce_printf() takes care of this step implicitly.
It is able to find the message catalog because the catalog’s name is generated from
the component field in the first part of the sams file. Of course, for this to work, the
message catalog must be installed in the correct system-defined location before the
application is run.

An application may even dispense with the use of installed message catalogs
altogether, and use in-memory message tables instead. The necessary code to
declare the sams file messages as arrays in program memory is contained in the
dce cmpmsg.c file generated with the sams -o t option. To initialize the table
before using it the application must also call the dce_msg_define_msg_table()
routine, described in “Message Table Routines” on page 47. The message routines
will, when called, attempt to use the application’s message catalog; but if it cannot
be found, the in-memory table will be used instead.

The DCE Message Interface and sams Input and Output Files

Figure 4 on page 42 shows the relationship of the various files, both source and
sams output, that go to make up DCE application code that uses the DCE
messaging API.

The two parallelogram-shaped objects represent the files that must be created by
the developer (you).

Rectangular objects with solid lines represent files that are generated by sams ; the
two ovals represent executable utilities: one is sams , the other gencat (which is
implicitly run by sams when message catalogs are generated).

The large rectangular object in dashed lines represents libdce , which contains the
DCE message API library.

This illustration makes no attempt to show how a DCE application that uses DCE
messaging should be compiled and linked, nor how it runs. It is merely a static map
of the general place of DCE application messaging in DCE development.

Chapter 3. DCE Application Messaging 41

The sams output filenames are made up of the following pieces:

tech_name + comp_name + part_name + extension

where:

tech_name
Is the technology name (optionally specified at the top of the hel.sams file);
by default dce .

comp_name
Is the component name (specified at the top of the hel.sams file); in this
case, hel .

part_name
Is a substring identifying the particular file; for example, svc or msg , and so
on. This piece of the name is omitted from the message catalog filenames
(in our example, dcehel.msg and dcehel.cat).

extension
Is the file extension (preceded by a . (dot) character).

The files dcehelmsg.man (generated by sams -p d hel.sams) and
dcehelmsg.sml (generated by sams -p p hel.sams), which are shown in Figure 4,
were not generated by the following command:

sams -o thmc hel.sams

They could have been generated by executing this command:

dcehelmsg.man
(doc)

dcehelmsg.sml
(doc)

dcehelmsg.idx
(doc)

dcehelmsg.h

dcehelmsg.c

sams

dcehel.cat
(message catalog)

dcehel.msg

gencat

sams
(executed by

)

hel.sams

hello.c

dce_printf(hello_msg);

libdce
(DCE Library)

Figure 4. sams and DCE Messages

42 OSF® DCE Application Development Guide —Core Components

sams -o dp hel.sams

These are automatically generated documentation files (their nature and purpose
were previously described) that have nothing to do with the operation of the
interface itself.

A definitive description of sams and the contents of sams files can be found in the
sams(1dce) reference page.

DCE Messaging Routines

There are several different DCE messaging routines. It is possible for an application
to accomplish all of its messaging tasks with only one or two of these routines
(dce_printf() and dce_error_inq_text()); additional routines allow applications to
perform manipulations on message tables, open and close message catalogs
explicitly, retrieve messages without printing them, and so on. The complete list of
routines is as follows:

v Message output routines

These routines retrieve and output a specified message. If necessary, the
message catalog is opened.

– dce_printf()

– dce_fprintf()

– dce_sprintf()

– dce_pgm_printf()

– dce_pgm_sprintf()

– dce_pgm_fprintf()

v Message retrieval routines

These routines retrieve a specified message. If necessary, the message catalog
is opened.

– dce_msg_get_msg()

– dce_msg_get()

– dce_msg_get_default_msg()

– dce_error_inq_text()

v Message table routines

Miscellaneous routines for manipulating in-memory message tables.

– dce_msg_define_msg_table()

– dce_msg_translate_table()

v DCE XPG4 routines

DCE versions of the XPG messaging routines catopen() , catgets() , and
catclose() .

– dce_msg_cat_open()

– dce_msg_cat_get_msg()

– dce_msg_get_cat_msg()

– dce_msg_cat_close()

Generally speaking, routines that retrieve or print messages will first try to get a
message from the message catalog file (the routines deduce the correct message

Chapter 3. DCE Application Messaging 43

catalog from the message ID that is passed to them). Routines will look for the
catalog in the current locale’s system-specific location for correctly installed
message catalogs.

If the message catalog cannot be found, and an in-memory message table has
been defined, the message will be retrieved from there.

The only exception to this message-finding algorithm occurs with
dce_msg_get_default_msg() , which always attempts to retrieve the in-memory
message only.

The following sections describe each of the DCE messaging routines in detail.
Complete reference pages for the routines can be found in the OSF DCE
Application Development Reference.

Message Output Routines

The six message output routines in this group essentially reproduce the functionality
of printf() , fprintf() , and sprintf() , with the difference being that they operate on a
specified message rather than on a string variable. The routines can be called
without any special preparation (but see the descriptions of the three dce_pgm_
routines).

dce_fprintf()
Retrieves the message text associated with the specified message ID, and
prints the message and its arguments on the specified stream. The
message is printed without a concluding newline; if a newline is desired at
the end of the message, then it should be coded (as \n) in the message
definition in the sams file.

The routine determines the correct message catalog and, if necessary,
opens it. If the message catalog is inaccessible, and the message exists in
an in-memory table, then this message (the default message) is printed. If
for any reason the message cannot be retrieved, an error message is
printed.

dce_printf()
Performs a dce_fprintf() of the specified message to standard output.

dce_sprintf()
Retrieves the message text associated with the specified message ID, and
writes the message and its arguments into an allocated string (which should
be freed by the caller). The routine determines the correct message catalog
and, if necessary, opens it. If the message catalog is inaccessible, and the
message exists in an in-memory table, then this message (the default
message) is printed. If for any reason the message cannot be retrieved, an
error message is printed.

For example, assume that the following message is defined in an
application’s sams file:

start
code arg_msg
text "This message has exactly %d not %d argument(s)"
action "None required"
explanation "Test message with format arguments"
end

The following code fragment shows how dce_sprintf() might be called to
write the message (with some argument values) into a string:

44 OSF® DCE Application Development Guide —Core Components

unsigned char *my_msg;

my_msg = dce_sprintf(arg_msg, 2, 8);

/* Process my_msg as appropriate... */

free(my_msg);

Of course, dce_printf() could also be called to print the message and
arguments:

dce_printf(arg_msg, 2, 8);

dce_pgm_printf()
Equivalent to dce_printf() , except that it prefixes the program name to the
message (in the standard style of DCE error messages), whereas
dce_printf() does not. This allows clients (which do not usually use the
serviceability interface) to produce error (or other) messages that
automatically include the originating application’s name. The message is
printed with a concluding newline.

Note that the client should call dce_svc_set_progname() first to set the
desired application name. Otherwise, the default program name will be

PID# nnnn

where nnnn is the process ID of the application making the call.

dce_pgm_sprintf()
Equivalent to dce_sprintf() , except that it prefixes the program name to the
string (in the standard style of DCE error messages), whereas
dce_sprintf() does not. Note that the client must call
dce_svc_set_progname() first to set the desired application name.

Otherwise, the default name is

PID# nnnn

where nnnn is the process ID of the application making the call.

dce_pgm_fprintf()
Equivalent to dce_fprintf() , except that it prefixes the program name to the
string (in the standard style of DCE error messages), whereas dce_fprintf()
does not. The message is printed with a concluding newline.

Note that the client must call dce_svc_set_progname() first to set the
desired application name. Otherwise, the default name is

PID# nnnn

where nnnn is the process ID of the application making the call.

dce_error_inq_text()
Opens a message catalog, extracts a message identified by a message ID,
and places the message in the space pointed to by the text parameter. If
the message catalog is inaccessible, and there is a default message in
memory, the default message is copied into the space passed. If neither the
catalog nor the default message is available, a status code is placed in the
status output parameter and the message is returned as a hexadecimal
number; the routine always returns a printable message.

Chapter 3. DCE Application Messaging 45

This routine existed in prior releases of DCE and has been modified for
DCE Version 1.1 to use the default message arrays. Programs prior to
Version 1.1 that use the routine do not need to be modified.

For example, assume that the following message is defined in an
application’s sams file:

start
code error_msg
text "Error: %s"
action ""
explanation "DCE error status message"
end

The following code fragment shows how dce_error_inq_text() could be
used to retrieve the error status received from a DCE routine:

dce_error_string_t error_string;
unsigned32 status;
int error_inq_status;
uuid_t type_uuid, obj_uuid;

<. . .>

rpc_object_set_type(&obj_uuid, &type_uuid, &status);
if (status != rpc_s_ok)
{
dce_error_inq_text(status, error_string, \

&error_inq_status);
dce_printf(error_msg, error_string);
}

Message Retrieval Routines

The following three routines retrieve messages, but do not print them.

dce_msg_get_msg()
Retrieves a message (identified by a global message ID) from a message
catalog, and returns a pointer to a malloc() ’d space containing the
message. The routine determines the correct message catalog and opens
it. If the message catalog is inaccessible, and the message exists in an
in-memory table, then this message (the default message) is returned in the
allocated space. If neither the catalog nor the default message is available,
an error status code is placed in the status output parameter.

The following code fragment shows how dce_msg_get_msg() might be
called to retrieve the ″Hello World’’ message defined in the example
program earlier in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned char *my_msg;
unsigned32 status;

<. . .>

my_msg = dce_msg_get_msg(hello_msg, &status);
printf("Message is: %s\n", my_msg);
free(my_msg);

46 OSF® DCE Application Development Guide —Core Components

dce_msg_get()
This is a convenience form of dce_msg_get_msg() . If it fails, it does not
pass back or return a status code, but instead fails with an assertion error,
that is, aborts the calling process.

The following code fragment shows how the routine might be called to
retrieve the ″Hello World’’ message defined in the example program earlier
in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned char *my_msg;

<. . .>

my_msg = dce_msg_get(hello_msg);
printf("Message is: %s\n", my_msg);
free(my_msg);

dce_msg_get_default_msg()
Retrieves a message (identified by a global message ID) from an
in-memory message table and returns a pointer to static space containing
the message retrieved. If the default message is not available, an error
status code is placed in the status output parameter.

The following code fragment shows how dce_msg_get_default_msg()
might be called to retrieve the in-memory copy of the ″Hello World’’
message defined in the example program earlier in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned char *my_msg;
unsigned32 status;

<. . .>

my_msg = dce_msg_get_default_msg(hello_msg, &status);
printf("Message is: %s\n", my_msg);

Note that, in order for this call to be successful,
dce_msg_define_msg_table() must first have been called to set the table
up in memory. For an example of how this is done, see the following
section.

Message Table Routines

The two routines in this group are intended to be used to perform manipulations on
the in-memory message table.

The in-memory table is implemented with code generated by sams and contained
in the dce cmpmsg.c module (where cmp is the component name of the
application, as specified in the component field in part I of the sams file). This file
must then be compiled and linked with the application, and
dce_msg_define_msg_table() is called at runtime to set up the table.

Note that, even if an in-memory table is defined, the DCE messaging routines still
will always attempt first to extract the specified message from the message catalog,

Chapter 3. DCE Application Messaging 47

and only if unsuccessful will they revert to the in-memory table. The exception to
this rule is dce_msg_get_default_msg() , which always attempts to retrieve the
in-memory message only.

dce_msg_define_msg_table()
Installs a default in-memory message table accessible to DCE messaging
routines. This routine is intended to be used by programs that load all
messages from a catalog into memory in order to avoid file access
overhead on message retrieval.

The following code fragment shows how dce_msg_define_msg_table()
might be called to set up an in-memory message table consisting of the
contents of the messages defined in hel.sams earlier in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned32 status;

<. . .>

dce_msg_define_msg_table(hel_msg_table,
sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);

dce_msg_translate_table()
Makes a new copy of the specified in-memory message table (that is,
updates the table with the contents of a message table, which has changed
because of a change in locale).

Note that this routine will fail if the message catalog is not installed or if
LANG is not properly set, since the update depends on accessing the
contents of the message catalog (unlike the initial table setup, which is
done from the code in the dce cmpmsg.c file).

The following code fragment shows how dce_msg_translate_table() might
be called to translate the in-memory table that was set up by the call to
dce_msg_define_msg_table() in the previous example:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <locale.h>
#include "dcehelmsg.h"

char *loc_return;
unsigned32 status;

<. . .>

loc_return = setlocale(LC_MESSAGES, "C");
dce_msg_translate_table(hel_msg_table,
sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);

DCE XPG4 Routines

The four routines in this group provide DCE versions of functionality of the XPG
messaging routines catopen() , catgets() , and catclose() .

dce_msg_cat_open()
(DCE abstraction over catopen()) Opens a message catalog identified by a
message ID. The routine returns a handle to the open catalog from which

48 OSF® DCE Application Development Guide —Core Components

messages will be extracted. This routine is intended for use by applications
(such as user interface programs) that display many messages from a
particular catalog.

The routine will fail if the message catalog is not installed or if LANG is not
properly set.

The following code fragment shows how dce_msg_cat_open() might be
called to open the message catalog containing the ″Hello World’’ message
defined for the example application earlier in this chapter:
#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg_handle;
unsigned32 status;

<. . .>

hel_msg_handle = dce_msg_cat_open(hello_msg, &status);

dce_msg_cat_get_msg()
(DCE abstraction over catgets()) Retrieves a message from an open
catalog. If the message is not available, returns NULL.

The routine will fail if the message catalog is not installed or if LANG is not
properly set.

The following code fragment shows how dce_msg_cat_get_msg() might
be called to retrieve the ″Hello World’’ message. Note that the message
catalog must first be opened.
#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg_handle;
unsigned32 status;
unsigned_char_t *msg;

<. . .>

hel_msg_handle = dce_msg_cat_open(hello_msg, &status);
msg = (unsigned_char_t *)dce_msg_cat_get_msg(hel_msg_handle,

hello_msg,
&status);

printf("Message from dce_msg_cat_get_msg == %s\n", msg);

dce_msg_get_cat_msg()
Convenience form of previous routine. Opens a message catalog, extracts
a message identified by a global message ID, and returns a pointer to
malloc() ’d space containing the message. If the message catalog is
inaccessible, returns an error.

The routine will fail if the message catalog is not installed or if LANG is not
properly set.

The following code fragment shows how dce_msg_get_cat_msg() might
be called to retrieve the ″Hello World’’ message:
#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned32 status;
unsigned_char_t *msg;

<. . .>

Chapter 3. DCE Application Messaging 49

msg = dce_msg_get_cat_msg(hello_msg, &status);
printf("Message from dce_msg_get_cat_msg == %s\n", msg);

dce_msg_cat_close()
(DCE abstraction over catclose()) Closes the catalog specified by handle.

The following code fragment shows how dce_msg_cat_close() might be
called to close the message catalog containing the ″Hello World’’ message:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg_handle;
unsigned32 status;

<. . .>

dce_msg_cat_close(hel_msg_handle, &status);

50 OSF® DCE Application Development Guide —Core Components

Chapter 4. Using the DCE Serviceability Application Interface

DCE serviceability was originally developed simply as a way of standardizing server
messages. The goal of its design was to make sure that all situations requiring
human intervention that can be encountered by a server are documented and
identified (both by the server when reporting them, and by the documentation when
explaining them) in a standard coordinated way so that system administrators can
easily determine the proper corrective action to take in response. Both the server
message text and the relevant documentation are derived from the same source
(that is, a .sams input file), which minimizes the possibility of any discrepancies
appearing between the two.

The serviceability component is used by the DCE components (RPC, DTS, Security,
and so on) for their server messaging, and it is made available as an API for use by
DCE application programmers who wish to standardize their applications’ server
messaging. (The DCE components are required to use the serviceability routines,
but applications are not.)

Overview

Serviceability uses XPG4 message catalogs to hold message text, but it adds an
additional layer to the XPG4 functionality. The message catalogs and other required
data (and documentation) files are generated by a utility called sams (symbols and
message strings). Its input is a text file that establishes some organizational
information about the program that is to use the messages, followed by a series of
specifications of the messages themselves.

Each message specification contains, along with the message text itself, a detailed
explanation of the situation in which the message will be displayed, together with a
description of the action required, where applicable, to correct the situation. Part of
the output of sams thus consists of automatic documentation of all the messages
writable via the serviceability API. This output was used as the basis of the contents
of the OSF DCE Problem Determination Guide for the DCE component server
messages.

Messages also have one or more attributes specified in the sams input file. The
attributes fall into three broad categories: those that indicate message severity,
those that specify message routing, and those that specify some action (usually
some form of program exit) that should be taken immediately after the message is
written. The effect of the presence of a severity attribute is to cause the message
text to contain a severity-identifying string when displayed or written. The effect of
the presence of a routing attribute is to cause the message to be routed by default
to one of a couple of standard destinations (more flexible routing is available
dynamically). The effect of the presence of an action attribute is to cause the
program to terminate execution in one of three ways as soon as the message has
been written or displayed, or to cause a special short form of the message to be
generated.

The serviceability API can also be used by DCE applications. The advantage in
using it consists mainly in the following:

v It allows all application messaging to be routed uniformly, on the basis of the
severity of the message and the functional part of the program originating the
message.

v It allows application messages to be made self-documenting.

51

Serviceability also contains facilities for debug messaging, which can be compiled in
or out of executables and which can be activated and routed by component at nine
different levels.

How Programs Use Serviceability

The DCE serviceability mechanism uses XPG4 message catalogs to hold message
text. Additional files contain the messages’ associated documentation and other
extra information used by the mechanism. All of these files, including the message
catalog, are generated in a single step by running the DCE sams utility. The input
to sams is a single sams file that is written by the developer, and which contains all
the necessary information (text, documentation, additional information) for each
message. The message catalogs and associated information generated by sams
are then accessed whenever dce_svc_printf() or one of the other serviceability
routines is called to print or log a message.

Thus, the result of converting a program to use serviceability will essentially be that
all printf() , fprintf() , and other such routines will be replaced by calls to
dce_svc_printf() or one of the related serviceability routines. For example, a line of
code such as the first one that follows would be replaced by the second:

fprintf(stderr, "File %s not found\n", filename);

dce_svc_printf(DCE_SVC(cmp_svc_handle, ""), cmp_s_server, \
svc_c_sev_error, cmp_s_file_not_found, filename);

where the constants cmp_s_server and cmp_s_file_not_found were generated by
sams , and identify the server subcomponent of the application and the message to
be written, respectively. The cmp_svc_handle constant is the application’s handle
to its serviceability message tables and other necessary data; cmp_s_server is
actually an index to a subtable within this dynamically generated area, and
cmp_s_file_not_found is the index of the message text within the subtable.

By convention, cmp is a three-character code identifying the application as a whole;
serviceability uses it to group all of an application’s message and table data
together. Specifying svc_c_sev_error gives the message the severity of error; the
significance of severity in serviceability will be explained in the following sections.
DCE_SVC() is a macro that helps simplify the coding of dce_svc_printf() calls; as
will be seen, another macro mechanism can be used to make the calls much
simpler still.

Simple Serviceability Interface Tutorial

In this section, we’ll see how to go about creating a simple C program that uses the
serviceability interface to print the familiar ″Hello World’’ message.

All that is necessary to do this is to replace the first call that follows with something
like the second:

printf("Hello World\n");

dce_svc_printf(hello_world_message);

However, making the dce_svc_printf() call requires the following preliminary steps:

1. Defining the message in a sams file.

52 OSF® DCE Application Development Guide —Core Components

2. Processing the sams file to obtain a set of files that contain code used by the
serviceability routines.

3. Coding some serviceability initialization calls into the C program itself.

4. Coding the dce_svc_printf() call.

The next several sections describe each of these steps.

Defining the Message

In order to print any message through the serviceability interface, we must first
define the message in a sams file and process the file with the sams utility. For the
hello_svc program, we will define a sams file with the bare minimum contents
necessary. Additional information on the use of sams can be found in the
sams(1dce) reference page.

Each line in a sams file consists of a simple header and value combination. The
header indicates the meaning of the value being specified, and value is the value
itself. A sams file for serviceability use is made up of three parts. The first part
consists of a minimum of one line that specifies the name of the component (that is,
the application) that is to use the messages that will be generated from the file.

The component name that you specify at the top of a sams file must consist of a
three-character (no more, no less) string. For the ″Hello World’’ program, we will
use the component name hel :

Part I of simple sams file ...
component hel

The hel string will be used to identify all the files and data structures that sams will
generate from the file.

The second part of the sams file contains some additional serviceability-specific
information about the message data structures that will be generated. (This
information is necessary if the sams file is intended for serviceability use because
sams is also used to generate message files for general, nonserviceability use.)

This part of the file specifies the names of the serviceability table and the
serviceability handle. It also contains a list of the component’s subcomponents. A
subcomponent consists of a distinct functional module of executing code. For
example, most distributed applications would have a basic server subcomponent, a
reference monitor subcomponent that would handle authorization decisions, and
one or more subcomponents that would contain the application’s particular
functionality.

The serviceability interface finds a component’s messages in one or more
subtables, each one associated with a subcomponent. When the message is
displayed or written, the associated subcomponent name is written in a field of the
message. This allows messages to be distinguished during routing or other
processing on the basis of the subcomponent with which they are associated.

Following is what the second part of our simplified sample sams file looks like. We
call the serviceability table hel_svc_table , and we call the serviceability handle
hel_svc_handle . Although we have used the three-letter component code hel in
these names, we were under no obligation to do so; we could have named the

Chapter 4. Using the DCE Serviceability Application Interface 53

table and the handle anything we wanted. (We will need to know both of these
names when we make the call in the application to initialize the interface in
preparation for displaying messages.)

A component must have at least one subcomponent specified in its sams file.
Subcomponents are specified in this part simply by supplying their table index, their
name, and their descriptive id in a series of separate lines, one per subcomponent
and each one beginning with the sub-component keyword, between a set of start
and end keywords:

Part II
serviceability table hel_svc_table handle hel_svc_handle
start
subcomponent hel_s_main "main" hel_i_svc_main
end

In our example,

hel_s_main
is the table index name for the subcomponent. Serviceability routines need
this name in order to locate and print any of the subcomponent’s
messages.

main is the name of the subcomponent, specified in quotes.

hel_i_svc_main
is a name that will be used (later on in the file) to identify a message that
describes the subcomponent.

(Note that sams assigns values to all of these indexes automatically.)

The third (and final) part of the sams file consists of a series of records that specify
the messages themselves. Each record is delimited by the start and end keywords.
Within each record, a series of keywords identifies the various information that each
message consists of or has associated with it.

Our file will contain only one message, the text of which is to be ″Hello World’’. The
record that specifies it is as follows:

Part III
start
code hel_s_hello
subcomponent hel_s_main
attributes "svc_c_sev_notice | svc_c_route_stderr"
text "Hello World"
explanation "A short informational greeting"
action "None required."
end

The keywords specified have the following meanings:

start Marks the beginning of a message definition. This keyword can optionally
be followed by various values.

v A number following the keyword specifies that the ID that is generated by
sams for the message should be based on (number multiplied by 100).
This allows the ID numbers of messages that belong to the same
subcomponent of an application to be in the same numerical subseries
(collection), even if additional messages for subcomponents have to be
added later on. If each subcomponent’s first message is start ed with a
collection number that allows for enough extra ID space in the previous

54 OSF® DCE Application Development Guide —Core Components

subcomponent to accommodate a reasonable number of future additional
definitions, then each subcomponent’s ID series will be able to maintain
its unbroken series.

As mentioned, the default size of a collection number is 100. Thus, the
following collection specification is interpreted as ″200’’:

start 2

To change the default collection size, specify

collection size dddd

(where dddd is the collection size you desire) in a separate line in Part
1 of the sams file.

code Identifies the message.

sub-component
Identifies the subcomponent that will use the message. (This must also
have been defined in Part II of the sams file.)

attributes
Specifies various things about the message: what kind of message it is,
how it is to be routed, and so on. Multiple attributes are specified by ORing
their values together. In the example shown, the message has the severity
attribute svc_c_sev_notice , and the routing attribute svc_c_route_stderr ;
the latter forces the message to be routed to stderr whenever it is written
by a serviceability routine.

text Specifies the text of the message itself.

explanation
Describes the meaning of the message. The text following this keyword is
used to generate the documentation of the component’s messages.

action Describes any action(s) that should be taken in response to the message.
The text following this keyword is used to generate the documentation of
the component’s messages.

Not all the possible keywords are illustrated in our example, and, of those
illustrated, only code and text are required in all circumstances. In the example,
explanation and action have been specified because it is simpler at this point to
do so than to leave them out, and attributes and sub-component have been
specified for reasons that will be made clear later on.

This final part of the sams file also contains a series of one or more records that
specify messages identifying each of the subcomponents themselves. Since our
application has only one subcomponent, it contains only one such
subcomponent-identifying message:
Part IIIa
Messages for serviceability table

start !intable undocumented
code hel_i_svc_main
text "hello_svc main"
end

The keywords have the same meanings as they did in the ″Hello World’’ message.
A couple of flags have been specified after the start keyword. The first will cause
the message to not be generated in the message table, and the second means that

Chapter 4. Using the DCE Serviceability Application Interface 55

the message does not need any explanation or action text associated with it. By
specifying undocumented (with intable , to cause the message to actually be
generated even though it was to be undocumented) for the “Hello” message, we
could have eliminated the explanation and action keywords there also.

Processing the sams File

The entire sams file for the hello_svc program is as follows:

Part I
component hel
table hel_msg_table

Part II
serviceability table hel_svc_table handle hel_svc_handle
start
subcomponent hel_s_main "main" hel_i_svc_main
end
Part III
start
code hel_s_hello
subcomponent hel_s_main
attributes "svc_c_sev_notice | svc_c_route_stderr"
text "Hello World"
explanation "?"
action "None required."
end
Part IIIa
start !intable undocumented
code hel_i_svc_main
text "hello_svc main"
end

We create the file with these contents and name it hel.sams . It can be processed
with the simple command that follows:

sams hel.sams

Running the command as shown will result in ten files being created:

dcehel.cat
XPG4 message catalog file created by gencat . If you wish to use the
message catalog, you must install it yourself. Its proper location is platform
dependent.

dcehel.msg
Message input file for gencat .

dcehelmac.h
Defines convenience macros for use with the serviceability interface to write
serviceability messages.

dcehelmsg.c
Code defining the in-memory table of message texts. By using this table,
you can avoid depending on extracting message texts from the message
catalog.

dcehelmsg.h
Header file containing definitions for dcehelmsg.c .

dcehelmsg.sml
Code for a OSF DCE Problem Determination Guide subsection
documenting the messages.

56 OSF® DCE Application Development Guide —Core Components

dcehelmsg.man
Code for a reference page subsection documenting the messages.

dcehelmsg.idx
Code for building an index for the OSF DCE Problem Determination Guide
subsection.

dcehelsvc.c
Code defining the serviceability table. (This is a separate table containing
the serviceability subcomponent identifying messages specified at the end
of the sams file.)

dcehelsvc.h
Header file containing definitions for dcehelsvc.c .

Of these files, only the following are needed for the hello_svc program:

dcehelmac.h
Contains convenience macro code.

dcehelmsg.c
Contains in-memory message table code.

dcehelmsg.h
Contains definitions for in-memory message table code.

dcehelsvc.c
Contains serviceability message table code.

dcehelsvc.h
Contains definitions for serviceability message table code.

The three header files should be included into the program source code. The
dcehelmsg.c and dcehelsvc.c modules should be compiled and linked with the
program object module.

All that remains now is to create a simple C program that calls the necessary
serviceability routines to output the ″Hello World’’ message.

Coding the Serviceability Calls

The bare minimum required to initialize the serviceability interface and use it to
display our message is

v Call dce_svc_register() to get a serviceability handle that we can pass to
serviceability message routines.

v Call dce_msg_define_msg_table() to set up the in-memory message table.

v Call dce_svc_printf() to print the message.

To call dce_svc_register() , you must declare the serviceability handle that you
defined in hel.sams :

#include "dcehelsvc.h"

<. . .>

dce_svc_handle_t hel_svc_handle;
unsigned32 status;

<. . .>

hel_svc_handle = dce_svc_register(hel_svc_table, \

Chapter 4. Using the DCE Serviceability Application Interface 57

(idl_char*)"hel", &status);
if (status != svc_s_ok)
{
printf("dce_svc_register failed\n");
exit(1);

}

This call is the only initialization we need if we have installed our message catalog
and are willing to depend on the message(s) being extracted from there. However,
if we wish to have the messages available in program memory (and thus not
depend on the catalog’s being correctly installed), then we have to call
dce_msg_define_msg_table() to initialize the in-memory table, as follows:

#include <dce/dce_msg.h>
#include "dcehelmsg.h"

<. . .>

dce_msg_define_msg_table(hel_msg_table,
sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);
if (status != svc_s_ok)
{
printf("dce_svc_define_msg_table failed\n");
exit(1);

}

Now we can call dce_svc_printf() to print the message, as follows:
#include "dcehelmac.h"

<. . .>

dce_svc_printf(HEL_S_HELLO_MSG);

Note the argument HEL_S_HELLO_MSG , which we did not define in the hel.sams
file. HEL_S_HELLO_MSG is, in fact, a macro that was generated by sams from
our definition for the hel_s_hello message, as you can see from the following code:

start
code hel_s_hello
subcomponent hel_s_main
attributes "svc_c_sev_notice | svc_c_route_stderr"
text "Hello World"
explanation "?"
action "None required."
end

The macro automatically generates the long argument list that must be passed to
dce_svc_printf() to get it to print the message. The code for this convenience
macro is contained in dcehelmac.h .

A convenience macro is generated for every message in a sams file that has both
sub-component and attributes specified. The macro’s name is formed from the
uppercase version of its code value (as specified in the sams file), with the string
_MSG appended.

The complete source code for hello_svc.c is as follows:
#include <dce/dce.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

58 OSF® DCE Application Development Guide —Core Components

#include <dce/utctypes.h>
#include <pthread.h>
#include <dce/dce_msg.h>

#include "hel_svc.h"
#include <dce/dcesvcmsg.h>
#include "dcehelmsg.h"
#include "dcehelsvc.h"
#include "dcehelmac.h"

int main(int argc,
char *argv[])

{

dce_svc_handle_t hel_svc_handle;
unsigned32 status;

hel_svc_handle = dce_svc_register(hel_svc_table, \
(idl_char*)"hel", &status);

if (status != svc_s_ok)
{

printf("dce_svc_register failed\n");
exit(1);

}

dce_msg_define_msg_table(hel_msg_table,
sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);
if (status != svc_s_ok)

printf("dce_svc_define_msg_table failed \
-- will use catalogs\n");

dce_svc_printf(HEL_S_HELLO_MSG);

}

Building and Running the Program

To build the application, you simply perform these steps:

1. Process the hel.sams file with the sams command

2. Build and link hello_svc from the following modules:

v dcehelmsg.c

v dcehelsvc.c

v hello_svc.c

Fields of a Serviceability Message

When executed, the program prints a message similar to the following:
1994-04-05-20:13:34.500+00:00I----- PID#9467 \

NOTICE hel main hello_svc.c 47 0xa444e208
Hello World

This message is made up of the following fields:
time inaccuracy process_ID severity component subcomponent src_file src_line thread_ID
text

Where the field names have the following meanings:

time The time that the message was written, in ISO format:

CCYY-MM-DD-hh:mm:ss.fff[+|-]II:ii

Chapter 4. Using the DCE Serviceability Application Interface 59

Where the digit groups represent:

CCYY Century and year

MM Month

DD Day

hh Hour

mm Minutes

ss Seconds

fff Fractions of second

II:ii Time inaccuracy expressed in hours and minutes

The final groups represent a time differential factor (expressed in hours and
minutes), followed by an inaccuracy component. For further information on
time format, see “Chapter 20. Introduction to the Distributed Time Service
API” on page 459.

process_ID
The process ID of the program that wrote the message (PID#9467 in the
example). If dce_svc_set_progname() had been called to establish the
application’s program name, that name would appear in this field instead of
the process ID. See “Basic Server Calls” on page 64 for further information.

severity
The severity level of the message (NOTICE in the example).

component
The component name of the program that wrote the message (hel in the
example).

subcomponent
The subcomponent that wrote the message (main in the example; note that
this program has only one subcomponent).

src_file
The name of the C source file in which the dce_svc_printf() call was
executed.

src_line
The line number, in the source file, at which the dce_svc_printf() call is
located.

thread_ID
The thread ID of the thread that wrote the message, expressed as a
hexadecimal number (0xa444e208 in the example).

text The text of the message (Hello world in the example).

Serviceability Input and Output Files

Figure 5 on page 61 shows the relationship of the various files, both source and
sams output, that go to make up the hello_svc application.

The two parallelogram-shaped objects represent the files that must be created by
the developer (you).

60 OSF® DCE Application Development Guide —Core Components

Rectangular objects with solid lines represent files that are generated by sams ; the
two ovals represent programs: one is sams , the other gencat (which is implicitly
run by sams when message catalogs are generated).

The large rectangular object in dashed lines represents libdce , which contains the
serviceability library.

The diagram makes no attempt to show how hello_svc.c itself is compiled and
linked, nor how it runs. It is just a static map of the general place of serviceability in
DCE development.

The sams output filenames are constructed as follows:

tech_name.comp_name.part_name.extension

where:

tech_name
Is the technology name (optionally specified at the top of the hel.sams file);
by default it is dce .

comp_name
Is the component name (specified at the top of the hel.sams file); in this
case, hel .

part_name
Is a substring identifying the particular file; for example, svc or msg , and so
on. This piece of the name is omitted from the message catalog filenames
(in our example, dcehel.msg and dcehel.cat).

dcehelmsg.man
(doc)

dcehelmsg.sml
(doc)

dcehelmsg.idx
(doc)

dcehelmsg.h

dcehelmsg.c

dcehelmac.h

dcehelsvc.c

dcehelsvc.h
sams

dcehel.cat
(message catalog)

dcehel.msg

gencat

sams
(executed by

)

hel.sams

hello_svc.c

dce_svc_printf(HEL_S_HELLO_MSG);

libdce
(DCE Library)

Figure 5. Serviceability and DCE Applications

Chapter 4. Using the DCE Serviceability Application Interface 61

extension
Is the file extension (preceded by a . (dot) character).

Because we executed the simplest form of the sams command (that is, without
specifying any output flags), the full repertory of sams output files was created,
even though the following files were not needed for our application:

v dcehel.msg and dcehel.cat

The file dcehel.msg is input to gencat when it is invoked by sams to create
dcehel.cat , the message catalog. (Although our example application used
in-memory tables, the serviceability routines always attempt to use the message
catalog first.)

v dcehelmsg.man and dcehelmsg.sgm

These are automatically generated documentation files (their nature and purpose
were previously described) that have nothing to do with the operation of the
interface itself.

The many additional features of serviceability will be described in the following
sections. A definitive description of sams and the contents of sams files can be
found on the sams(1dce) reference page.

Integrating Serviceability into a Server

The purpose of the preceding tutorial was simply to give a brief taste of what it feels
like to use the interface. The main task involved in using serviceability does not,
however, lie in mastering the mechanics of the interface, but rather in understanding
the purpose of handling server messages in this way, and then applying this
understanding in order to develop an effective and serviceable messaging strategy
for one’s own application.

Serviceability Strategy

The serviceability mechanism is designed to be used mainly for server informational
and error messaging—that is, for messages that are of interest to those who are
concerned with server maintenance and administration (in the broadest sense of
these terms). The essential idea of the mechanism is that all server events that are
significant for maintaining or restoring normal operation should be reported in
messages that are made to be self-documenting so that (provided all significant
events have been correctly identified and reported) users and administrators will by
definition always be able to learn what action they should take whenever anything
out of the ordinary occurs. User-prompted, interactive, client-generated messaging
should be handled through the DCE messaging interface, which is described in
“Chapter 3. DCE Application Messaging” on page 37.

It follows that serviceability is not just an interface; it is partly a state of mind. The
first thing that a developer who wishes to use serviceability should do is examine
his or her server code with a view to identifying all the event points that should be
covered by serviceability calls. Once these have been determined, the sams file
(containing the message definitions) should be written; the last step will be to insert
the messaging calls into the code.

62 OSF® DCE Application Development Guide —Core Components

Components and Subcomponents

The very first step in incorporating serviceability into a server is to analyze it into
functionally discrete modules (called subcomponents), each of which will usually be
associated with a separate set of messages.

The program itself is regarded as the component. The main significance of
subcomponents is that each one uses a separate part of the message table
generated by sams , and every message is identified both by component and by
subcomponent; message routing and the level of debug messaging can be
specified separately by subcomponent.

Identifying Event Points

Once you have established the subcomponent organization of the server
application, you can begin the work of identifying all the points in the server code at
which events occur or can occur that require serviceability messaging.

Following is a list of the events and kinds of events that should be reported through
the serviceability interface:

v Server startup

Servers should report when they are started, when they have completed their
initialization, and when they are ready to perform work. They should also indicate
when they are going offline.

v Server exit

All fatal exits should be reported as fatal errors, using the svc_c_sev_fatal
severity attribute in a call to dce_svc_printf() . In other words, exit() or abort()
should not be called directly; this ensures that all such fatal errors will be logged.
For an explanation of severity level attributes, see “Basic Server Calls” on
page 64.

v Other fatal errors

Errors that make it impossible to proceed should be detected as close as
possible to the point where the actual failure occurred. This class of error
includes such impossible conditions as failure to successfully allocate memory,
failure to open a configuration file for reading, failure to open a log file for writing,
and so on.

v Impaired efficiency

Conditions that may indicate system-level malfunction or poor performance
should be reported as warnings. An example of such a situation (from one of the
DCE components) would be the RPC runtime detecting that it is having to make
an excessive number of retransmits.

v Significant routine activity

Routine administrative actions should be reported as informational
(svc_c_sev_notice) messages. Such activity includes creation, modification and
deletion of tickets, threads, files, sockets, RPC endpoints, or other objects;
message transfer, including name lookup, binding, and forwarding; directory
maintenance (including caching, advertising, skulking, and replication); and
database maintenance (including replication or synchronization).

v Data input syntax errors

Routines that process data that could have been entered from a keyboard should
fail gracefully (and not core dump, for example) if the data is syntactically
incorrect. Serviceability can be used to report this kind of failure.

Chapter 4. Using the DCE Serviceability Application Interface 63

Once you have identified the points in your code that should be reported with
serviceability messaging, the next step is to define the messages themselves (in the
sams file) and code the serviceability calls. The serviceability features of sams files
were described previously; the following sections describe the various parts of the
serviceability interface itself.

Using the serviceability interface to report errors ensures that the error codes used
will be unique within DCE.

Application Use of Serviceability

The following subsections describe in detail the various elements of the
serviceability API and what you can do with them.

Complete reference pages for all the serviceability routines can be found in the
OSF DCE Application Development Reference.

Basic Server Calls

The basic serviceability routines are the following:

v DCE_SVC_DEFINE_HANDLE()

This is a macro that can be used instead of dce_svc_register() to register a
table (it does this by means of a global variable created at compile time). It could
have been used in the hello_svc.c code as follows, with exactly the same
results as from using dce_svc_register() :
DCE_SVC_DEFINE_HANDLE(hel_svc_handle, hel_svc_table,
"hel");
/* handle | | */
/* table | */
/* component name
*/

Note that either DCE_SVC_DEFINE_HANDLE() or dce_svc_register() must be
called before the interface can be used.

v dce_svc_register()

This is the function call for registering a serviceability message table. Either it or
DCE_SVC_DEFINE_HANDLE() must be called before any routines can be called
to display or log messages. An example of its use can be seen in the illustrated
hello_svc.c code.

v dce_svc_unregister()

This is the function call for destroying a serviceability handle. Calling it closes
any open message routes and frees all allocated resources associated with the
handle. However, it is not usually necessary to call this routine since the normal
process exit will perform the required cleanup.

The routine could have been called at the end of the hello_svc.c application as
follows:

dce_svc_unregister(hel_svc_handle, &status);

where hel_svc_handle is the serviceability handle that was originally returned by
the call to dce_svc_register() , or filled in by the DCE_SVC_DEFINE_HANDLE()
call.

v dce_svc_set_progname()

64 OSF® DCE Application Development Guide —Core Components

This function sets the application’s program name, which is included in all
messages. In this way, multiple programs can write messages to the same file
and the messages will remain distinguishable.

For example, this routine could have been called in the hello_svc.c code, as
follows:

dce_svc_set_progname("hello_program", &status);

The message printed by the program would, as a result, have looked like the
following:
1994-04-05-20:13:34.500+00:00I----- hello_program \

NOTICE hel main ...
Hello World

instead of looking like this:
1994-04-05-20:13:34.500+00:00I----- PID#9467 NOTICE hel
main ...
Hello World

where the default process ID information has been replaced by the string
hello_program in the first example. The second example shows what the
message looks like if the routine is not called. The PID# nnnn value is the value
returned by getpid() .

This call is optional.

v dce_svc_printf()

This is the normal call for writing or displaying serviceability messages. It cannot
be called with a literal text argument; instead, the message text and other
necessary information must be pre-specified in a file that is processed by the
sams utility, which in turn outputs sets of tables from which the messages are
extracted for output. The tutorial in “Simple Serviceability Interface Tutorial” on
page 52 provides a brief example of how this is done.

There are two main ways in which to call the routine. If a message has been
defined in the sams file with both sub-component and attributes specified, then
the sams output will include a convenience macro for the message that can be
passed as the single argument to dce_svc_printf() , for example:

dce_svc_printf(HEL_S_HELLO_MSG);

The convenience macro’s name will be generated from the uppercase version of
the message’s code value (as specified in the sams file), with the string _MSG
appended.

If a convenience macro is not generated, or if you want to override some of the
message’s attributes at the time of output, then you must call the routine in its
long form. For the hel_s_hello message, such a form of the call might look as
follows:

dce_svc_printf(DCE_SVC(hel_svc_handle, ""), hel_s_main,\
svc_c_sev_error | svc_c_route_stderr, hel_s_hello);

DCE_SVC() is a macro that must be passed as the first argument to
dce_svc_printf() if a convenience macro is not being used. It takes two
arguments:

– The caller’s serviceability handle

Chapter 4. Using the DCE Serviceability Application Interface 65

– A format string for the message that is to be output

The format string is for use with messages that have been coded with argument
specifiers. The hel_s_hello message had no argument specifiers, so an empty
string is passed here to DCE_SVC. For an example of printing a message with
arguments, see the end of this subsection.

The remaining arguments passed to dce_svc_printf() are as follows:

– Subcomponent table index

This symbol was declared in the sub-component list coded in Part II of the
sams file; its value is used to index into the subtable of messages in which
the desired message is located.

– Message attribute(s)

This argument consists of one or more attributes to be applied to the
message that is to be printed. Note that you must specify at least a severity
here (for a list of message severity values, see “Specifying Message Severity”
on page 67). Multiple attributes are ORed together, as shown in the example.

There are four categories of message attributes:

routing
The available routing attribute constants are

- svc_c_route_stderr

- svc_c_route_nolog

However, most routing is done either by passing specially formatted
strings to dce_svc_routing() or by environment variable values. See
“How to Route Messages” on page 69 for more detailed information.

severity
The available severity attribute constants are

- svc_c_sev_fatal

- svc_c_sev_error

- svc_c_sev_warning

- svc_c_sev_notice

- svc_c_sev_notice_verbose

For more detailed information, see “Specifying Message Severity” on
page 67.

action The available message action attribute constants are

- svc_c_action_abort

- svc_c_action_exit_bad

- svc_c_action_exit_ok

- svc_c_action_brief

For more detailed information, see “Message Action Attributes” on
page 74.

debug level
Nine different debug levels can be specified. For more detailed
information, see “Using Serviceability for Debug Messages” on
page 78.

– message ID

66 OSF® DCE Application Development Guide —Core Components

This argument consists of the message’s code , as declared in the sams file.

As an example of how to use format specifiers in messages, consider the
following sams file fragment, in which we define a second message for the
hello_svc.c application:
start
code hel_s_testmessage
text "This message has exactly %d not %d argument(s)"
explanation "This message is to show how to pass arguments"
action "None required."
end

The message could be printed by a call like the following:
dce_svc_printf(DCE_SVC(hel_svc_handle, "%d%d"), hel_s_main,\

svc_c_sev_notice | svc_c_route_stderr,\
hel_s_testmessage, 2, 7);

Note the format specifiers passed in the format string to DCE_SVC, and the
argument values passed at the end of the argument list. This call would cause
the following message to be printed:
1994-04-06-20:06:33.113+00:00I----- hello \

NOTICE hel main hello_svc.c line_nr 0xa444e208
This message has exactly 2 not 7 argument(s)

Extended Format Notation for Message Text

A slightly extended notation allows you to define message texts in the sams file that
will (if desired) have format specifiers in their application code forms (that is, in the
.c and .msg files output by sams), but which will be replaced by some specified
string constant in the message texts that are generated for documentation use (that
is, in the .sml and .man files).

The notation consists in surrounding the format specifier and alternative constant
with < and > (angle bracket) characters, and separating the two with a | (vertical
bar). (You can use a preceding \ (backslash) to escape these symbols.) For
example, the following message text field:

text Can't open input file %s for reading

would become something like the following:

text Can't open input file <%s|filename> for reading

This message text definition, when processed by sams , would generate a format
string with %s in the .c and message files, but this format specifier would be
replaced by the string filename in the .sml and .man file versions.

Specifying Message Severity

Production (that is, nondebug) serviceability messages are categorized by their
severity level, which implies various important things about the kind of situation that
causes the message to be printed. Every message’s severity is stated in the text of
the message itself (for example, NOTICE in the examples given previously shows
that the messages are informational notices), and the serviceability routines can
route and process messages differently on the basis of their severity levels.

Chapter 4. Using the DCE Serviceability Application Interface 67

Severity levels are attached to messages either when the messages are defined (in
the sams file) or when the messages are written (by specifying an argument to the
routine writing the message). These severity levels can then be used at runtime as
the basis on which to route the messages (the way this is done will be explained in
the next section).

Thus, each severity level is represented by a constant by which it is specified in
program code, and a name by which it is referred to in routing files and
environment variables. Each level’s name and constant is shown, together with an
explanation, in Table 2.

Table 2. Serviceability Message Severities

Name Specifier Meaning

FATAL svc_c_sev_fatal A fatal error has occurred;
the program is about to exit.

ERROR svc_c_sev_error An error has occurred.

WARNING svc_c_sec_warning An error has been detected;
the program is continuing
execution.

NOTICE svc_c_sev_notice A nonerror event has
occurred; this message is an
informational notice of it.

NOTICE_VERBOSE svc_c_sev_notice_verbose A nonerror event has
occurred; this message is a
verbose informational notice
of it.

Detailed explanations of the levels are as follows:

FATAL
Fatal error exit: An unrecoverable error (such as database corruption) has
occurred which will probably require manual intervention to be corrected.
The program usually terminates immediately after such an error.

ERROR
Error detected: An unexpected event that is nonterminal (such as a
timeout), or is correctable by human intervention, has occurred. The
program will continue operation, although some functions or services may
no longer be available. This severity level may also be used to indicate that
a particular request or action could not be completed.

WARNING
Correctible error: An error occurred that was automatically corrected (for
example, a configuration file was not found, and default values were used
instead). This severity level may also be used to indicate a condition that
may be an error if the effects are undesirable (for example, removing all
files as a side effect of removing a nonempty directory), or to indicate a
condition which, if not corrected, will eventually result in an error (for
example, a printer’s running low on paper).

NOTICE
Informational notice: A significant routine major event has occurred; for
example, a server has started.

NOTICE_VERBOSE
Verbose information notice: A significant routine event has occurred; for
example, a directory entry was removed.

68 OSF® DCE Application Development Guide —Core Components

Note that debug messages are identified as such by their own set of levels; see
“Using Serviceability for Debug Messages” on page 78 for more information.

How to Route Messages

Serviceability messages can be written to any of the normal output destinations.
Routing for serviceability messages can be specified in any of three different ways
(in ascending order of precedence):

1. By the contents of a routing file

2. By the contents of a routing environment variable

3. By calling the dce_svc_routing() routine (often as part of processing an
application’s command-line arguments)

Additional routing (that is, in addition to whatever routing has been specified by the
means described) of a message to standard error can be performed in either of the
following two ways:

v By specifying the routing as one of the message’s attributes (in the sams file
definition of the message)

v By specifying the attribute in the call to dce_svc_printf() (or other serviceability
output routine) to generate the message

Routing a message actually consists of specifying two things:

v How the message should be processed (the form it should be put in)

v Where the message should be sent (its destination)

The two specifications are sometimes closely interrelated, and sometimes
specifying a certain destination implies that the message must be put into a certain
form. This fact allows certain combinations of processing and destination to be
abbreviated.

In the following sections, each of the ways to route serviceability messages is
described.

Note that debug messages are routed by a similar, but slightly different, technique.
For a full description, see “Using Serviceability for Debug Messages” on page 78.

Using a Routing File

If a file called dce-local-path/svc/routing exists, the contents of the file (if in the
proper format) will be used to determine the routing of messages written via
serviceability routines.

The value of dce-local-path is usually /opt/dcelocal ; the default location of the
serviceability routing file is usually /opt/dcelocal/svc/routing . However, a different
location for the file can be specified by setting the value of the environment variable
DCE_SVC_ROUTING_FILE to the complete desired pathname.

The routing file consists of formatted strings specifying the routing desired for the
various kinds of messages (based on message severity). Each string consists of
three fields as follows:

sev:out_form:dest[;out_form:dest . . .] [GOESTO:{sev | comp}]

Chapter 4. Using the DCE Serviceability Application Interface 69

where:

sev Specifies the severity level of the message, and must be one of the
following:

v FATAL

v ERROR

v WARNING

v NOTICE

v NOTICE_VERBOSE

The meanings of these severity levels are explained in detail in “Specifying
Message Severity” on page 67.

out_form
(output form) Specifies how the messages of a given severity level should
be processed, and must be one of the following:

BINFILE
Write these messages as binary log entries.

TEXTFILE
Write these messages as human-readable text.

FILE Equivalent to TEXTFILE.

DISCARD
Do not record messages of this severity level.

STDOUT
Write these messages as human-readable text to standard output.

STDERR
Write these messages as human-readable text to standard error.

Files written as BINFILEs can be read and manipulated with a set of log file
functions, or with the svcdumplog command. For further information, see
“Logging and Log Reading” on page 73.

The out_form specifier may be followed by a two-number specifier of the
form:

.gens.count

where:

gens Is an integer that specifies the number of files (that is, generations)
that should be kept.

count Is an integer specifying how many entries (that is, messages)
should be written to each file.

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified by count, the file is closed,
the generation number is incremented, and the next file is opened. When
the maximum generation number files have been created and filled, the
generation number is reset to 1, and a new file with that number is created
and written to (thus overwriting the already-existing file with the same
name), and so on, as long as messages are being written. Thus the files

70 OSF® DCE Application Development Guide —Core Components

wrap around to their beginning, and the total number of log files never
exceeds gens, although messages continue to be written as long as the
program continues writing them.

dest (destination) Specifies where the message should be sent and is a
pathname. The field can be left blank if the out_form specified is DISCARD,
STDOUT, or STDERR. The field can also contain a %ld string in the
filename that, when the file is written, is replaced by the process ID of the
program that wrote the messages. Filenames may not contain colons,
semicolons, or periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as semicolon-separated strings in the following format:

out_form:dest

For example, consider the following:

FATAL:TEXTFILE:/dev/console
WARNING:DISCARD:--
NOTICE:BINFILE.50.100:/tmp/log%ld;STDERR:-

These strings specify that

v Fatal error messages should be sent to the console.

v Warnings should be discarded.

v Notices should be written both to standard error and as binary entries in files
located in the /tmp directory. No more than 50 files should be written, and there
should be no more than 100 messages written to each file. The files will have
names of the form

/tmp/logprocess_id.nn

where process_id is the process ID of the program originating the messages, and
nn is the generation number of the file.

The GOESTO specifier allows messages for the severity whose routing
specification it appears in to be routed to the same destination (and in the same
output form) as those for the other, specified, severity level (or component name).
For example, the following specification:

WARNING:STDERR:;GOESTO:FATAL
FATAL:STDERR:;FILE:/tmp/foo

means that WARNING messages should show up in three places: twice to stderr ,
and then once to the file /tmp/foo .

Note that a GOESTO specification should be the last element in a multidestination
route specification.

Routing by Environment Variable

Serviceability message routing can also be specified by the contents of certain
environment variables. If environment variables are used, the routes they specify
will override any conflicting routings specified by a routing file.

Chapter 4. Using the DCE Serviceability Application Interface 71

The routings are specified (on the basis of severity level) by putting the desired
routing instructions in the following environment variables:

v SVC_FATAL

v SVC_ERROR

v SVC_WARNING

v SVC_NOTICE

v SVC_NOTICE_VERBOSE

Each variable should contain a single string in the following format:

out_form:dest;[out_form:dest . . .] [GOESTO:{sev | comp}]

where out_form and dest have the same meanings and form as described in “Using
a Routing File” on page 69. Multiple routings can be specified with
semicolon-separated additional strings specifying the additional routes, as shown.

Calling dce_svc_routing() to Set Routing

Message routing can be set up by the application itself, by calling the routine
dce_svc_routing() and passing to it a string formatted in the same way as a line of
text from a routing file. The routine must be called separately for each severity
level. When routing is specified this way, the routings so specified will override any
conflicting routings specified by environment variable or routing file (as described in
the preceding sections). This is especially useful for setting routes from
command-line arguments.

For example, to set routing in this way for the hello_svc.c application described
previously, use the following code:
unsigned_char_t *my_route = "NOTICE:STDOUT:-;TEXTFILE:/tmp/my_log";
unsigned_char_t *error_route = "ERROR:TEXTFILE:/tmp/errors_%ld";

dce_svc_routing(my_route, &status);
if (status != svc_s_ok)
{
printf("dce_svc_routing failed\n");
exit(1);

}

dce_svc_routing(error_route, &status);
if (status != svc_s_ok)
{
printf("dce_svc_routing failed\n");
exit(1);

}

Additional Routing by Attribute

Limited additional routing for messages can be specified by attribute, either in the
message definition itself in the sams file or as part of the argument list to
dce_svc_printf() . Two routing attribute specifiers are available:

svc_c_route_stderr
Route the message to standard error.

svc_c_route_nolog
Discard the message.

72 OSF® DCE Application Development Guide —Core Components

Note also the svc_c_action_brief attribute, which is described in “Message Action
Attributes” on page 74.

Table of Message Processing Specifiers

As was seen, message processing can be specified either by text strings (read from
an environment variable or routing file, or passed to a routine) or, to a limited
degree, by attribute in the message definition or when the message is output.
Table 3 shows all the available types of serviceability message processing; the
name by which it is specified in strings, and the attribute (where it exists) by which
it is specified in message definitions and calls are both given, along with the
meaning of each.

Table 3. Serviceability Message Processing Specifiers

Name Attribute Meaning

BINFILE Write binary log entry.

TEXTFILE Write human-readable text.

FILE Equivalent to TEXTFILE.

DISCARD svc_c_route_nolog Do not record.

STDOUT Write human-readable text to
standard output.

STDERR svc_c_route_stderr Write human-readable text to
standard error.

GOESTO Route messages in same way
as named level or component.

Logging and Log Reading

The serviceability interface includes a set of functions for reading and manipulating
log files written as BINFILEs (see “Using a Routing File” on page 69).

dce_svc_log_open()
Opens a log file for reading.

dce_svc_log_get()
Reads the next entry from a log file. It returns the contents thereof in the
form of a filled-in prolog structure to which it returns a pointer (see below
for a description of the structure fields).

dce_svc_log_rewind()
Returns log processing back to the first message in the log file.

dce_svc_log_close()
Closes the open log file.

The contents of the log prolog structure (defined in dce/svclog.h) are as follows:

int version
Version number of the interface that generated the message.

utc_t t
Pointer to an opaque binary timestamp containing the time at which the
message was written. The opaque timestamp can be converted to a tm
structure by calling one of the DCE DTS utc_ xxx() routines.

Chapter 4. Using the DCE Serviceability Application Interface 73

unsigned32 attributes
Message attributes, ORed together (a bit flag).

unsigned32 message_index
Index number of message in message table (for example, hel_s_hello in
the example at the beginning of this chapter).

pthread_t thread_id
ID of application thread that caused the message to be written.

char *argtypes
The format-specifier string for the message.

int argtypes_size
The number of format specifiers for the message.

char *fac_name
The component or subcomponent (“facility”) name string.

char *message_text
Message text string.

char *progname
Program name string, set by the application’s call to
dce_svc_set_progname() .

char *file
Filename string identifying file from which entry was read.

int line
Line number in file from where the message was printed.

int file_size
Length of filename string.

Message Action Attributes

Routing and severity attributes affect what happens to the messages they are
applied to, and nothing else. However, there is an additional set of attributes that,
when applied to a message, mainly affect what happens to the program after the
message is sent:

svc_c_action_abort
Causes the program to abort (with core dump) as soon as the message is
output.

svc_c_action_exit_bad
Causes the program to exit (with failure status) as soon as the message is
output.

svc_c_action_exit_ok
Causes the program to exit (with successful status) as soon as the
message is output.

svc_c_action_brief
Suppresses the standard prolog of the message. The prolog of a
serviceability includes all the nonmessage information that is output before
the message text itself. The prologs of all messages can be suppressed by
setting the SVC_BRIEF environment variable; see the next section.

74 OSF® DCE Application Development Guide —Core Components

Suppressing the Serviceability Message Prolog

You can suppress the prolog (nonmessage text) part of all serviceability messages
generated by an application by setting the value of the SVC_BRIEF environment
variable to 1.

The prolog of a serviceability consists of all the nonmessage information that is
output before the message text itself. For example, examine the following message:
1994-04-05-20:13:34.500+00:00I----- PID#9467 \

NOTICE hel main hello_svc.c line_nr 0xa444e208
Hello World

In this example, the first line is the message prolog, and the second line is the
message text. If the message were generated with the SVC_BRIEF environment
variable set to 1, the message would appear as follows:
Hello World

Prologs of separate messages can be suppressed selectively through the use of the
svc_c_action_brief attribute; see the previous section.

Serviceability Use of the __FILE__ Macro

Whenever a serviceability message is generated, information identifying the source
file and line at which the invoked routine was called is included in the message
information. This information appears in the text-form nonerror messages, and it is
also written into the binary form serviceability logs (when binary logs are specified).
The information also appears in the text form of messages announcing error
situations. For example:
1994-07-20-11:11:09.906-04:00I----- sample_server FATAL \

smp server sample_server.c 2851 0xa44b0c18
server_renew_identity(): login context has not been certified \

(dce / sec)

(The preprocessor variable DCE_SVC_WANT__FILE__ (in dce/dce_svc.h) will be
defined or undefined depending on whether or not the serviceability component has
been set up on your system to include the filename and line number information in
serviceability messages.)

The serviceability routines receive the source file information from
DCE_SVC__FILE__, which, by default, is defined to be the C preprocessor macro
__FILE__. However, if you desire to avoid these macro expansions in your
application code, you can redefine the symbol to be some kind of variable. For
example:

#define DCE_SVC__FILE__ myfile
#include <dce/dce.h>
static char myfile[] = __FILE__;

Forcing Use of the In-Memory Message Table

As described elsewhere in this chapter, the dce_msg_define_msg_table() routine
can be called by an application to initialize an in-memory copy of its message table,
thus freeing the application from depending on its message catalog’s being properly
installed for its serviceability messages to be properly generated.

Chapter 4. Using the DCE Serviceability Application Interface 75

However, the serviceability routines will still, by default, attempt first to retrieve a
specified message from the message catalog, even if an in-memory table has been
initialized; only if the message catalog cannot be found will the in-memory table be
used.

You can change the default behavior of the serviceability routines by setting the
SVC_NOXPGCAT environment variable to 1 (or any nonzero value). This will force
the routines to always go to the in-memory table for the specified message; they
will never look for the message catalog.

Dynamically Filtering Messages Before Output

The serviceability interface provides for a hook into the message-output mechanism
that allows applications to decide at the time of messaging whether the given
message should be output or not. The application defines its own routine to perform
whatever checking is desired, and installs the routine with a call to
dce_svc_define_filter() .

In addition, an application that installs such a message-filtering routine can also
define and install a routine that can be called remotely to alter the operation of the
filter routine. The remote-control routine is installed by the same call to
dce_svc_define_filter() .

The two routines must have the following signatures. The yes/no routine you define
and install is as follows:

boolean your_filter_routine(
dce_svc_prolog_t prolog,
va_list args)

The filter remote-control call is as follows:

void your_filter_remote_control(
idl_long_int arg_size;
idl_byte *arg;
error_status_t *status)

Once installed, the filter routine will be automatically invoked every time a
serviceability routine is called to output a message. The filter receives a prolog
argument that contains all the pertinent information about the message. If the filter
returns TRUE, the message is output per the original serviceability call. If the filter
returns FALSE, the message is not output. The information in the prolog allows
such decisions to be made on the basis of severity level, subcomponent, message
index, and so on. Its fields are as follows:

dce_svc_handle_t handle
Serviceability handle of the application writing the message.

int version
Version number of the interface that generated the message.

utc_t t
Pointer to an opaque binary timestamp containing the time at which the
message was written. The opaque timestamp can be converted to a tm
structure by calling one of the DCE DTS utc_...() routines.

const char *argtypes
The format-specifier string for the message.

76 OSF® DCE Application Development Guide —Core Components

unsigned32 table_index
sams file in “Defining the Message” on page 53.

unsigned32 attributes
Message attributes, ORed together.

unsigned32 message_index
Index number of the message in the message table (for example,
hel_s_hello in the example at the beginning of this chapter).

char *format
Format argument values for the message.

const char *file
Filename string identifying the file to which the message is to be output.

char progname[dce_svc_c_progname_buffsize]
Program name string, set by the application’s call to
dce_svc_set_progname() .

int line
Line number in file from where the message was printed.

pthread_t thread_id
ID of the application thread that is causing the message to be output.

The filter remote control routine is part of the remote serviceability interface, which
is described in detail in “Using the Remote Serviceability Interface” on page 84. Its
operation is simple. If filter remote control is desired, the filter routine should be
coded so that its operation can be switched to the various desired alternatives by
the values of static variables to which it has access. These variables are also
accessible to the remote control routine, and can be changed by it. The filter routine
receives an argument string (which it uses to set the variables) whose contents are
entirely application defined.

The following code fragments show a skeleton filter that can be added to the
hello_svc.c example at the beginning of this chapter:

#include <stdarg.h>
#include <dce/svcfilter.h>

<. . .>

/*****
* Filter routine-- once installed, this routine will be called
* automatically every time a serviceability
* routine (in our case, dce_svc_printf()) is
* called to write a message.
*****/
boolean hel_filter(dce_svc_prolog_t prolog,

va_list args)
{

/* Code could be inserted here to test the values of static
variables that would control the operation of the filter,
and which could be altered by calling the filter control
routine below. */

printf("The progname is %s\n", prolog->progname);

if (prolog->attributes | svc_c_sev_notice)
printf("This is a Notice-type message\n");

switch (prolog->table_index)
{

Chapter 4. Using the DCE Serviceability Application Interface 77

case hel_s_main:
printf("Main subcomponent\n");
break;

default:
printf("Error\n");
break;

}

/* The routine returns 1, thus permitting the output
operation to go ahead; if 0 were returned here, the
operation would be suppressed ... */

return 1;

}

/*****
* Filter Control routine-- this routine is normally called
* through the remote interface.
*****/
void hel_filter_control(idl_long_int arg_size,

idl_byte *arg,
error_status_t *status)

{

/* Code would be inserted here to interpret the arg passed
and, on the basis of that, change the value(s) of one
or more static variables that control the operation of
hel_filter() */

}
/*****
* install_filters-- calls dce_svc_define_filter() to install
* the above 2 routines. Note that this must
* be done after dce_svc_register() is
* called, not before.
*****/
void install_filters()
{
unsigned32 status;

dce_svc_define_filter(hel_svc_handle, hel_filter, \
hel_filter_control, &status);

}

Using Serviceability for Debug Messages

Apart from the dce_svc_printf() routine for writing production serviceability
messages, the interface provides several macros that can be used for debug
messaging in a server. The advantages in using these macros in debugging are the
following:

v All of the debug messaging code can easily be compiled in or out of the
executable by changing the value of a compilation switch.

v Nine levels of debug messaging are provided for; the active level of debug
messaging can be controlled through the remote serviceability interface or by a
value passed to the server at startup.

v One of the macros allows message text to be specified in the call itself, rather
than extracting it by message ID from the message table.

The debug serviceability messaging routines are the following:

v DCE_SVC_LOG()

78 OSF® DCE Application Development Guide —Core Components

Outputs a message specified by the message ID. The main differences between
using this routine and using dce_svc_printf() to write a message are (1) that
DCE_SVC_LOG() generates records only in binary format, and (2) the macro
can be compiled out of the executable by turning off debugging.

Suppose the following message had been defined in the hel.sams file for the
example application at the beginning of this chapter:

start
code hel_s_debug_message_1
subcomponent hel_s_main
attributes "svc_c_debug3 | svc_c_route_stderr"
text "This is a level 1 test debug message"
explanation "Debug level 3 test"
action "None required."
end

The following call in hello_svc.c would have written this message as a binary
record to the specified route, provided that debug level 3 had been activated:

DCE_SVC_LOG((HEL_S_DEBUG_MESSAGE_1_MSG));

Note the use of the double parentheses. This is made necessary by the fact that
it is a macro that takes a variable number of arguments. Note also the use of the
convenience macro form of the message. A full form of the call, with all
arguments explicitly specified, would have been as follows:

DCE_SVC_LOG((DCE_SVC(hel_svc_handle, ""), \
hel_s_main, svc_c_debug3, hel_s_debug_message_1));

/* | | | */
/* table_index | | */
/* debug level | */
/* message ID
*/

Debug messages, like normal serviceability messages, can also contain format
specifiers and argument lists.

v DCE_SVC_DEBUG()

Outputs a message whose text is specified in the call. For example, the following
call could have appeared in hello_svc.c :
DCE_SVC_DEBUG((hel_svc_handle, \
/* | */
/* handle */
/* */
hel_s_main, svc_c_debug2, "A Debug Level %d message", 2));

/* | | | | */
/* table_index | | | */
/* debug level | | */
/* message text | */
/* argument
*/

Note here too the use of the double parentheses.

Note also that DCE_SVC_DEBUG cannot be used with the convenience macro
forms of serviceability messages.

v DCE_SVC_DEBUG_ATLEAST()

Tests the active debug level for a subcomponent. Returns TRUE if the debug
level (set by calling dce_svc_debug_set_levels() ; see “Setting Debug Levels”
on page 80

Chapter 4. Using the DCE Serviceability Application Interface 79

on page 80) is not less than the specified level; otherwise returns FALSE. For
example, the following call would return TRUE if the debug level for the
hel_s_main subcomponent of the hello_svc application had been set to
svc_c_debug2 or any higher value:
DCE_SVC_DEBUG_ATLEAST(hel_svc_handle, hel_s_main, svc_c_debug2);

This macro can be used to test the active debug level and avoid calling a debug
output routine if the level of its message is disabled at the time of the call
(disabling the level does not stop any routines from being executed; it only
suppresses the output messages at that level). See “Performance Costs of
Serviceability Debugging” on page 83 for more information.

v DCE_SVC_DEBUG_IS()

Tests the active debug level for a subcomponent. Returns TRUE if the debug
level is the same as that specified in the call; otherwise returns FALSE. For
example, the following call would return TRUE only if the debug level for
hel_s_main had been set to svc_c_debug2 :

DCE_SVC_DEBUG_IS(hel_svc_handle, hel_s_main, svc_c_debug2);

v dce_assert()

Evaluates an int expression passed to it and, if the expression evaluates to 0
(that is, if the expression is false), automatically calls dce_svc_printf() with
parameters that will cause a message with a severity level of svc_c_sev_fatal
(that is, fatal) and an action attribute of svc_c_action_abort to be printed that
will identify the following:

– The expression

– The source file in which the assertion failed

– The line at which the assertion failed

For example, the following call will cause the failed expression (namely, the
string) to be printed and the program to be aborted.
dce_assert(hel_svc_handle, ("Test diagnostic message" == NULL))

A NULL can be substituted for the serviceability handle as the first argument.

It is very important that debug messages not be used for errors that can occur
during ordinary operation. This is because the debug messaging code can be
omitted when compiling for production.

Setting Debug Levels

Nine serviceability debug message levels are available. The precise meaning of
each level for an application is left to the developer; but the general intention is that
ascending to a higher level (for example, from svc_c_debug2 to svc_c_debug3)
should increase the level of information detail.

Setting debug messaging at a certain level means that all levels up to and including
the specified level are enabled. For example, if the debug level is set at
svc_c_debug4 , then the svc_c_debug1 , svc_c_debug2 , and svc_c_debug3
levels are enabled as well.

A message can have a debug level attached to it in either of two ways:

v The debug level can be specified as one of the attributes in the message’s
definition in the sams file.

80 OSF® DCE Application Development Guide —Core Components

v If DCE_SVC_DEBUG() or DCE_SVC_LOG() is used to output the message, the
debug level is specified in the call.

The debug level can be set by calling dce_svc_debug_set_levels() and passing to
it a specially formatted string (the debug level is also set when debug routing is
specified; see the next section for further information). Levels can be separately
specified for subcomponents. For example, suppose two subcomponents (rather
than one) had been defined in the sams file for the hello_svc application at the
beginning of this chapter, as follows:

Part II
serviceability table hel_svc_table handle hel_svc_handle
start
subcomponent hel_s_main "main" hel_i_svc_main
subcomponent hel_s_utils "utils" hel_i_svc_utils

end

The following string would, when passed to dce_svc_debug_set_levels() , set the
debug level for the main subcomponent to be svc_c_debug1 , and the debug level
for the utils subcomponent to be svc_c_debug4 :

unsigned_char_t *levels = "hel:main.1,utils.4";

The general format for the debug level specifier string is as follows:

component:sub_comp.level,sub_comp.level,. . .

where:

component
Is the three-character component code for the program.

sub_comp. level
Is a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

If there are multiple subcomponents, and it is desired to set the debug level to be
the same for all of them, then the following form will do this (where the * (asterisk)
specifies all subcomponents).

component:*.level

The string can be passed to dce_svc_debug_set_levels() as follows:

dce_svc_debug_set_levels(levels, &status);

where levels is a string declared similarly to the example shown earlier in this
section.

The nine serviceability debug message level specifiers are as follows:

v svc_c_debug1

v svc_c_debug2

v svc_c_debug3

v svc_c_debug4

v svc_c_debug5

Chapter 4. Using the DCE Serviceability Application Interface 81

v svc_c_debug6

v svc_c_debug7

v svc_c_debug8

v svc_c_debug9

Routing Debug Messages

Routing for serviceability debug messages can be specified in any of four ways:

v By calling the dce_svc_debug_routing() routine

v By the contents of the SVC_ CMP_DBG environment variable (where CMP is the
three-character serviceability name of the component, in uppercase)

v By the contents of the routing file dce-local-path/svc/routing

v By one of the message’s attributes (as coded in the sams file)

In all but the last method, the routing is specified by the contents of a specially
formatted string that is either included in the value of the environment variable, is
part of the contents of the routing file, or is passed to the
dce_svc_debug_routing() routine.

The general format for the debug routing specifier string is
component:sub_comp.level, ...:out_form:dest [out_form:dest ...] [GOESTO:{sev | comp}]

where:

component
Specifies the component name.

sub_comp. level
Specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

The meanings of the remaining elements of the string are the same as those for the
identically named elements in “How to Route Messages” on page 69.

Multiple routings for the same group of subcomponents can be specified by adding
semicolon-separated strings of the following format:

out_form:dest

to the specification, in a form analogous to that followed for specifying production
(nondebug) message routes, shown previously.

The following string would, when passed to dce_svc_debug_routing() , set the
debug level and routing for all hel subcomponents:

unsigned_char_t *debug_routes = \
"hel:*.4:TEXTFILE:/tmp/hel_debug_log_%ld;STDERR:-";

A debug level of svc_c_debug4 is specified, and all debug messages of that level
or lower will be written both to standard error and in text form to the following file:

/tmp/hel_debug_log_process_ID

where process_ID is the process ID of the program writing the messages.

82 OSF® DCE Application Development Guide —Core Components

The specification string could be passed to dce_svc_debug_routing() as follows:

dce_svc_debug_routing(debug_routes, &status);

To specify the same routing by environment variable, the string following value
should be assigned to SVC_ CMP_DBG:

hel:*.4:TEXTFILE:/tmp/hel_debug_log_%ld;STDERR:-

The same string information could also be inserted into the SVC_ CMP environment
variable or into the contents of the routing file.

Debug routing by attribute (as specified in the sams file) is done in the same way
as routing for normal messages. See “Additional Routing by Attribute” on page 72.

Performance Costs of Serviceability Debugging

If serviceability debugging routines are used in an application, one of three different
things can happen to any given debugging routine at runtime:

v The routine is called, and its output is generated (because the debug level
associated with the message has been enabled).

v The routine is called, but its output is not generated (because the debug level
associated with the message has been disabled).

v The routine call is not present in the application code because serviceability
debugging has been compiled out (DCE_DEBUG was not defined when the
application was compiled).

Note that, even if a certain debug level has been disabled, any routine or macro call
to output a message with that level will still be executed unless other steps are
taken to prevent this. The performance cost associated with such smothered calls
will usually be insignificant, but situations can occur in which this will not be so.

For example, developers should understand the implications of supplying function
calls as arguments to serviceability debug output routines (such as
DCE_SVC_DEBUG). If the debug code is compiled in (that is, if DCE_DEBUG is
defined), then the parameterized function calls will always be executed because the
output routine itself will still be called—even though it will produce no output.

In situations like this, the desirable course of action is simply to not call the output
routine at all if the currently set debug level has turned it into a no-op. This can be
done by using the DCE_SVC_DEBUG_ATLEAST macro to check the current level,
as shown in the following example:
if (DCE_SVC_DEBUG_ATLEAST(hel_svc_handle, hel_s_main, vc_c_debug3))
{
DCE_SVC_DEBUG((
hel_svc_handle,
hel_s_main,
svc_c_debug3,
" a_function_call() return value is: %s",
a_function_call(parm, status)));

}

The normal performance cost of a serviceability logging operation normally amounts
to one mutex lock and (usually) one file lock access per operation.

Chapter 4. Using the DCE Serviceability Application Interface 83

Using the Remote Serviceability Interface

Serviceability is primarily a mechanism intended to be used by servers. Like other
server functionality, it should be remotely controllable by properly authorized
entities. This allows such things as message routing and debug levels to be
adjusted without having to restart the server.

The standard remote serviceability interface is defined in the file
/usr/include/dce/service.idl .

An application server using serviceability is responsible for providing routines that
implement the operations defined in service.idl . However, implementing the
operations themselves is a simple matter of calling library routines that actually
perform them. The job of the application implementation is mainly to check the
authorization of the remote caller and then either reject the request (if authorization
is found to be insufficient) or call the appropriate library routine to perform the
operation.

Table 4 lists such remote operations.

Table 4. Remote Operations by Application Servers

Server Implementation Library Routine Purpose

com_svc_set_route() dce_svc_routing() Remotely sets serviceability
message routing.

com_svc_set_dbg_route() dce_svc_debug_routing() Remotely sets serviceability
debug message routing.

com_svc_set_dbg_levels() dce_svc_debug_set_levels() Remotely sets serviceability
debug message levels.

com_svc_inq_components() dce_svc_components() Returns a listing of all
components that have been
registered with the
dce_svc_register() routine.

com_svc_inq_table() dce_svc_table() Returns the message table
registered with a given
component.

com_svc_inq_routings() dce_svc_routings() Returns a list of routings in
effect for a component.

com_svc_filter_control() dce_svc_filter() Remotely controls the
behavior of the serviceability
message filtering routine (if
one exists).

com_svc_inq_stats() dce_svc_inq_stats() Returns operating statistics.

Basic Steps in Setting Up the Remote Interface

To make the interface available, the developer must do the following:

1. Coding steps

v Define the server implementation routines for the remote operations.

v Initialize the serviceability interface manager entry point vector (manager
EPV) with the implementation routines.

2. Build steps

v Process the service.idl file to produce the following:

84 OSF® DCE Application Development Guide —Core Components

– Client stub

This will be linked into the client object. The client itself can contain calls
to the remote routines, expressed by their interface names.

– Server stub

This will be linked into the server object (just as its own stub(s) are) to
produce the server executable. Note that the server stub is generated with
the -no_mepv IDL option, which allows the implementation routines to be
named anything that suits the developer. This is why the EPV must be
explicitly initialized with the implementation routines’ addresses.

3. Runtime steps

v At server startup:

The binding handles that the server receives from the RPC runtime, and
which it then registers both with the Name Server Interface (NSI) and the
endpoint mapper under its own interface, must also be registered to the
endpoint mapper with the serviceability interface. Note that servers do not
explicitly register the serviceability interface with the NSI. Instead, they use
their existing namespace entries without change. They do register the
serviceability interface with their endpoint mapper.

v For a client application:

To call one of a server’s remote serviceability routines, the client must import
a binding handle using a NULL UUID; this operation will yield a plain handle.
The client can then pass this handle to the desired remote serviceability
routine and make the call. The server’s host endpoint mapper will recognize
the incoming serviceability UUID in the RPC, and will send the RPC on to
one of the registered endpoints.

The following code fragments illustrate how to define, export, and access the
serviceability remote interface.

Implementing the Remote Routines

The following code fragments show in skeletal form how an application’s remote
serviceability routines should be implemented. The pseudo-code references to
access tests are calls to the application’s ACL manager to assess the caller’s
authorization. For information on implementing an ACL manager, see the security
chapters of the OSF DCE Application Development Guide—Introduction and Style
Guide and the OSF DCE Administration Guide—Core Components.
#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include <dce/svcremote.h>

struct serviceability_v1_0_epv_t dce_svc_epv;

/*****
*
* hel_svc_set_route -- remote call-in to set routing.
*
*****/
static void
hel_svc_set_route(
handle_t h,
idl_byte where[],
error_status_t *st

)
{

Chapter 4. Using the DCE Serviceability Application Interface 85

if (! your_test_write_access(h))
*st = no_authorization_error;

else
dce_svc_routing(where, st);

}

/*****
*
* hel_svc_set_dbg_route -- remote call-in to set debug routing.
*
*****/
static void
hel_svc_set_dbg_route(
handle_t h,
idl_byte where[],
error_status_t *st

)
{

if (! your_test_write_access(h))
*st = no_authorization_error;

else
dce_svc_debug_routing(where, st);

}

<. . .>

/*****
*
* hel_svc_inq_stats -- remote request for operating statistics.
*
*****/
static void
hel_svc_inq_stats(
handle_t h,
dce_svc_stats_t *stats,
error_status_t *st

)
{

if (! your_test_access(h))
*st = no_authorization_error;

else
/* operation is currently not implemented in library... */
*st = svc_s_no_stats;

}

/* */
/* The table of slots is created by IDL from the service.idl */
/* file, src/dce/utils/svc/service.idl, the output of which */
/* is service.h. It's then the job of the application that */
/* wishes to offer the remote operations to fill in the table */
/* with the implementations' entry points. That's what's being */
/* done below. Typically the application simply interposes an */
/* appropriate ACL check between the entry into an */
/* implementation and the subsequent call to the "real" */
/* operation as implemented in the serviceability library. */
/* */

serviceability_v1_0_epv_t dce_svc_epv = {
hel_svc_set_route,
hel_svc_set_dbg_route,
hel_svc_set_dbg_levels,
hel_svc_inq_components,

86 OSF® DCE Application Development Guide —Core Components

hel_svc_inq_table,
hel_svc_inq_routings,
hel_svc_filter_ctl,
hel_svc_inq_stats

};

Registering and Exporting the Remote Interface

The following code fragments show how the remote serviceability interface could be
exported and registered by a hello_svc server. Note that only the steps that are
closely or directly related to exporting and registering the server’s and the
serviceability remote interface are shown. For a full example of how to get a DCE
server application up and running, see the OSF DCE Application Development
Guide—Introduction and Style Guide.

The steps shown are the following:

1. Register interfaces with the RPC runtime

2. Request binding handles for the server interface from the RPC runtime

3. Request binding handles for the serviceabilty interface from the RPC runtime

4. Register both sets of binding handles with the endpoint map

5. Export both sets of binding handles to the namespace

Note that (for brevity’s sake) status return checks have been omitted from this code.

<. . .>

/* Register server interface/type_uuid/epv associations */
/* with rpc runtime. */
rpc_server_register_if(timop_v1_0_s_ifspec, &type_uuid,
(rpc_mgr_epv_t)&manager_epv, &status);

/* Register serviceability remote interface with rpc */
/* runtime ... */
rpc_server_register_if(serviceability_v1_0_s_ifspec, &type_uuid,
(rpc_mgr_epv_t)&dce_svc_epv, &status);

<. . .>

/* Tell rpc runtime we want to use all supported protocol */
/* sequences. */
rpc_server_use_all_protseqs(MAX_CONC_CALLS_PROTSEQ, &status);

/* Get server binding handles ... */
rpc_server_inq_bindings(&hello_bind_vector_p, &status);

/* Get binding handles for serviceability remote */
/* interface ... */
rpc_server_inq_bindings(&svc_bind_vector_p, &status);

<. . .>/* Register endpoints with server interface ... */
rpc_ep_register(hello_v1_0_s_ifspec, hello_bind_vector_p,
(uuid_vector_t *)&obj_uuid_vec,
(unsigned_char_t *)"hello server, version 1.0",
&status);

/* Register endpoints with serviceability interface ... */
rpc_ep_register(serviceability_v1_0_s_ifspec, svc_bind_vector_p,
(uuid_vector_t *)&obj_uuid_vec,
(unsigned_char_t *)"Hello SVC",
&status);

/* Export server interface binding info to the namespace. */

Chapter 4. Using the DCE Serviceability Application Interface 87

rpc_ns_binding_export(rpc_c_ns_syntax_dce, server_name,
hello_v1_0_s_ifspec, hello_bind_vector_p,
(uuid_vector_t *)&obj_uuid_vec, &status);

Importing and Accessing the Remote Interface

The following code fragments are intended to give an idea how a client might import
both the hello_svc server’s interface and its exported serviceability interface.

Note that (for brevity’s sake) status return checks have been omitted from this code.
/* Import binding info from namespace. */
for (server_num = 0; server_num < nservers; server_num++)
{
/* Begin the binding import loop. */
rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
server_name[server_num], hello_v1_0_c_ifspec,
&obj_uuid, &import_context, &status);

/* Begin the svc binding import loop. */
rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
server_name[server_num], NULL,
&obj_uuid, &svc_import_context, &status);

/* Import bindings one at a time. */
while (1)
{
rpc_ns_binding_import_next(import_context,
&bind_handle[server_num], &status);

rpc_ns_binding_import_next(svc_import_context,
&svc_bind_handle[server_num], &status);

/* Select, say, the first binding over UDP. */
rpc_binding_to_string_binding(bind_handle[server_num],
&string_binding, &status);

rpc_binding_to_string_binding(svc_bind_handle[server_num],
&svc_string_binding, &status);

rpc_string_binding_parse(string_binding, NULL,
&protseq, NULL, NULL, NULL, &status);

rpc_string_binding_parse(svc_string_binding, NULL,
&svc_protseq, NULL, NULL, NULL, &status);

rpc_string_free(&string_binding, &status);
ret = strcmp((char *)protseq, "ncadg_ip_udp");
rpc_string_free(&protseq, &status);

rpc_string_free(&svc_string_binding, &status);
svc_ret = strcmp((char *)svc_protseq, "ncadg_ip_udp");
rpc_string_free(&svc_protseq, &status);

if ((svc_ret == 0) || (ret == 0))
{
break;

}

}

/* End the binding import loop. */
rpc_ns_binding_import_done(&import_context, &status);
rpc_ns_binding_import_done(&svc_import_context, &status);

}
/* Annotate binding handles for security. */
for (server_num = 0; server_num < nservers; server_num += 1)

88 OSF® DCE Application Development Guide —Core Components

rpc_binding_set_auth_info(bind_handle[server_num],
SERVER_PRINC_NAME, rpc_c_protect_level_pkt_integ,
rpc_c_authn_dce_secret, NULL /*default login context*/,
rpc_c_authz_name, &status);

for (server_num = 0; server_num < nservers; server_num += 1)
rpc_binding_set_auth_info(svc_bind_handle[server_num],
SERVER_PRINC_NAME, rpc_c_protect_level_pkt_integ,
rpc_c_authn_dce_secret, NULL /*default login context*/,
rpc_c_authz_name, &status);

Chapter 4. Using the DCE Serviceability Application Interface 89

90 OSF® DCE Application Development Guide —Core Components

Chapter 5. The DCE Backing Store

This chapter describes the backing store library that DCE provides for the
convenience of programmers who are writing DCE servers. A backing store is a
persistent database or persistent object store from which typed data can be stored
and retrieved by a key.

Note: Sometimes the backing store is called a database. For instance, the
associated IDL file is dce/database.idl , and the name of the backing store
routines begin with dce_db_ . The backing store is, however, not a
full-fledged database in the conventional sense, and it has no support for
SQL or for any other query system.

Servers generally need to manage several objects. Good design often requires that
the state of the objects be maintained over sequential instances of a particular
server. For example, the ACLs used by a server should not need to be recalculated
each time the system is rebooted. The backing store interface provides a way to
store, into a file, any data that can be described with IDL so that it can persist
across instances of software that run from time to time. For example, the ACL
library uses the backing store library. The backing store routines can be used in
servers, in clients or in standalone programs that do not involve remote procedure
calls (RPCs). Backing store data should not be used for sharing data between
processes.

Data in a Backing Store

The backing store interface provides the applications programmer with the capability
for tagged storage and retrieval of typed data. The tag (or retrieval key) can be
either a UUID or a standard C string. For a specific backing store, the data type
must be specified at compile time and is established through the IDL encoding
services. Each backing store can contain only a single data type.

Each data item (which may also be called a data object, or a data record) consists
of the data stored in a single call to a storage routine. The storage routines are
dce_db_store() , dce_db_store_by_name() , and dce_db_store_by_uuid() .
Optionally, data items may have standard headers. If a backing store has been
created to use headers, then every data item has the header.

A program can have more than one backing store open at the same time.

Using a Backing Store

Although the backing store library is a generalized service, you are encouraged to
use it in a particular, standardized way. You should use the header and the
recommended IDL interface format that are described in the following sections.
Standardized use will ease the transition to later developments in DCE.

Header for Data

An optional standard header is available for data objects or items in the backing
store. If it is employed, then the backing store library automatically maintains the
created , modified , and modified_count fields, as shown in the following IDL
description, taken from the dce/database.idl file:

91

/* The standard header for each "object" n the database. */

typedef struct dce_db_dataheader_s_t {
uuid_t uuid;
uuid_t owner_id;
uuid_t group_id;
uuid_t acl_uuid;
uuid_t def_object_acl;
uuid_t def_container_acl;
unsigned32 ref_count;
/* The following fields are updated by the library */
utc_t created;
utc_t modified;
unsigned32 modified_count;

} dce_db_dataheader_t;

typedef enum {
dce_db_header_std,
dce_db_header_acl_uuid,
dce_db_header_none

} dce_db_header_type_t;

typedef union switch (dce_db_header_type_t type) tagged_union {
case dce_db_header_none: /* none */ ;
case dce_db_header_std: dce_db_dataheader_t h;
case dce_db_header_acl_uuid: uuid_t acl_uuid;

} dce_db_header_t;

void dce_db_header_convert(
[in] handle_t h,
[in,out] dce_db_header_t *data,
[out] error_status_t *st

);

The acl_uuid field is intended for use as a UUID retrieval key in a server’s ACL
database.

The User Interface

The recommended, standardized backing store IDL interface for a server looks like
the following, where XXX is the server name:

interface XXX_convert
{
import "dce/database.idl"

typedef XXX_data_s_t {
dce_db_header_t header; /* Header must be first! */
/* (server-specific data goes here) */

} XXX_data_t;

void XXX_data_convert(
[in] handle_t h,
[in, out] XXX_data_t *data
[out] error_status_t *st

);
}

It should be compiled with the following Attribute Configuration File (ACF), which
instructs the idl compiler to write the data conversion routine into the XXX_cstub.c
file:

92 OSF® DCE Application Development Guide —Core Components

interface XXX
{
[encode, decode] XXX_data_convert([comm_status] st);

}

The IDL Encoding Services

When remote procedure call sends data between a client and a server, it serializes
the user’s data structures by using the IDL encoding services, described in
“Chapter 16. Writing Internationalized RPC Applications” on page 281 of this book.

Encoding and Decoding in the Backing Store

The backing store uses this same serialization scheme for encoding and decoding,
informally called pickling, when storing data structures to disk. The IDL compiler, idl ,
writes the routine that encodes and decodes the data. This routine is passed to
dce_db_open() , remembered in the handle, and used by the following store and
fetch routines:

v dce_db_fetch()

v dce_db_fetch_by_name()

v dce_db_fetch_by_uuid()

v dce_db_header_fetch()

v dce_db_store()

v dce_db_store_by_name()

v dce_db_store_by_uuid()

Conformant Arrays Not Allowed

You cannot use conformant arrays in objects stored to a backing store. This is
because the IDL-generated code that encodes (pickles) the structure has no way to
predict or detect the size of the array. When the object is fetched, there will likely be
insufficient space provided for the structure, and the array’s data will destroy
whatever is in memory after the structure.

To illustrate the problem more clearly, here is an example. An IDL file has a
conformant array, na, as an object in a struct :
typedef struct {
unsigned32 length;
[size_is(length)]
unsigned32 numbers[];

} num_array_t
typedef struct {
char *name;
num_array_t na;

} my_type_t;

The idl compiler turns the IDL specification into the following .h file contents:

typedef struct {
unsigned32 length;
unsigned32 numbers[1];

} num_array_t

Chapter 5. The DCE Backing Store 93

typedef struct {
idl_char *name;
num_array_t na;

} my_type_t;

When the object is fetched, and the array length is greater than the 1 (one)
assumed in the .h file, the decoding operation destroys whatever follows my_struct
in memory:

my_type_t my_struct;
dce_db_fetch(dbh, key, &my_struct, &st);

The correct method is to use a pointer to the array, not the array itself, in the IDL
file. For example:

typedef struct {
char *name;
num_array_t *na;

} my_type_t;

The Backing Store Routines

Many of the backing store routines appear in three versions: plain, by name, and by
UUID. The plain version will work with backing stores that were created to be
indexed either by name, or by UUID; the restricted versions accept only the
matching type. It is advantageous to use the restricted versions when they are
appropriate because they provide type checking by the compiler, as well as visual
clarity of purpose.

The backing store operations described in the following sections are supported.

Opening a Backing Store

The dce_db_open() routine creates a new backing store or opens an existing one.
The backing store is identified by a filename. There are flags to permit the following
choices:

v Create a new backing store or open an existing one.

v Create a new backing store indexed by name or UUID. (The choice depends
upon the server’s purpose.) This index is called the backing store key.

v Open an existing backing store read/write or read-only.

v Use the standard header or not.

Every backing store is created with one of the two possible index schemes, by
name or by UUID, and you cannot subsequently open it for use with the other
scheme. Also, once a backing store has been created with (or without) standard
headers, you cannot subsequently open it the other way.

The routine returns a handle by which subsequent operations identify the backing
store.

The following conventions for filenames are recommended:

xxx.acl
ACL storage.

xxx.db Backing store filename.

94 OSF® DCE Application Development Guide —Core Components

Closing a Backing Store

The dce_db_close() routine frees the handle. It closes any open files and releases
all other resources associated with the backing store.

Storing or Retrieving Data

The following routines store data into a backing store:

dce_db_store()

This routine can store into a backing store that is indexed by name or by
UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_store_by_name()

This routine can store only into a backing store that is indexed by name.

dce_db_store_by_uuid()

This routine can store only into a backing store that is indexed by UUID.

To retrieve data from a backing store, use the appropriate one of the following
routines:

dce_db_fetch()

This routine can retrieve data from a backing store that is indexed by name
or by UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_fetch_by_name()

This routine can retrieve data only from a backing store that is indexed by
name.

dce_db_fetch_by_uuid()

This routine can retrieve data only from a backing store that is indexed by
UUID.

When storing or retrieving data, a function that was specified at open time converts
between native format and on-disk (serialized) format. This function is generated
from the IDL file by the IDL compiler.

Freeing Data

When fetching data, the encoding services allocate memory for the data structures
that are returned. These services accept a structure and use rpc_sm_allocate() to
provide additional memory needed to hold the data.

The backing store library does not know what memory has been allocated and,
therefore, cannot free it. For fetch calls that are made from a server stub, this is not
a problem because the memory is freed automatically when the server call
terminates. For fetch calls that are made from a nonserver, the programmer is
responsible for freeing the memory.

Programs that call the fetch or store routines, such as dce_db_fetch() , outside of a
server operation (for instance, if a server does some backing store initialization, or
in a standalone program) must call rpc_sm_enable_allocate() first.

Chapter 5. The DCE Backing Store 95

Making or Retrieving Headers

The dce_db_std_header_init() routine initializes a standard backing store header
from the values the caller provides in its arguments. It places the values into the
header only and does not write into the backing store file. The
dce_db_header_fetch() routine retrieves the header of an object in the backing
store.

Performing Iteration

The following routines iteratively traverse all of the keys (name or UUID) in a
backing store. The order of retrieval of the keys is indeterminate; they are not
sorted, nor are they necessarily returned in the order in which they were originally
stored. It is strongly recommended to use the locking and unlocking routines,
dce_db_lock() and dce_db_unlock() , whenever performing iteration.

dce_db_iter_start()

This routine prepares for the start of iteration.

dce_db_iter_next()

This routine returns the key for the next item from a backing store that is
indexed by name or by UUID. The db_s_no_more status code indicates
that there are no more items.

dce_db_iter_next_by_name()

This routine returns the key for the next item only from a backing store that
is indexed by name. Again, db_s_no_more indicates that no items remain.

dce_db_iter_next_by_uuid()

This routine returns the key for the next item only from a backing store that
is indexed by UUID. Again, db_s_no_more indicates that no items remain.

dce_db_iter_done()

This routine is counterpart to dce_db_iter_start() and should be called
when iteration is done.

dce_db_inq_count()

This routine returns the number of items in a backing store.

Deleting Items from a Backing Store

The following routines delete an item from a backing store.

dce_db_delete()

This routine deletes an item from a backing store that is indexed by name
or by UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_delete_by_name()

This routine deletes an item only from a backing store that is indexed by
name.

dce_db_delete_by_uuid()

This routine deletes an item only from a backing store that is indexed by
UUID.

96 OSF® DCE Application Development Guide —Core Components

To delete an entire backing store, ensure that the data file is not open, and remove
it. There is only one file.

Locking and Unlocking a Backing Store

The dce_db_lock() and dce_db_unlock() routines lock and unlock a backing store.
If a backing store is already locked, dce_db_lock() provides an indication. A lock is
associated with an open backing store’s handle. The storage routines,
dce_db_store() , dce_db_store_by_name() , and dce_db_store_by_uuid() , all
acquire the lock before updating. Explicit use of locking is appropriate in some
circumstances; for example, when reading or writing pairs (or multiples) of closely
associated items in a backing store, or when using iteration.

The locks are advisory. It is possible to write a backing store even if it is locked so,
if you want to rely upon the locks, you must always check them.

Example of Backing Store Use

For a full example of backing store use, see the OSF DCE Application Development
Guide—Introduction and Style Guide.

The following brief example shows a portion of a server that manages an office
telephone directory. Following are the relevant structures, defined in an IDL file:

typedef struct phone_record_s_t {
[string,ptr] char *name;
[string,ptr] char *email;
[string,ptr] char *phone;
[string,ptr] char *office;

} phone_record_t;

typedef struct phone_record_array_s_t {
unsigned32 count;

[ptr,size_is(count)] phone_record_t *entry;
} phone_record_array_t;

typedef struct phone_data_s_t {
dce_db_header_t h;
phone_record_t ph;

} phone_data_t;
/*
* The following routine returns the entire contents of the
* directory from the backing store by using the iteration
* routines. First, the portion of the IDL file that
* defines the routine's RPC format:
*/

[idempotent] void entire_phone_book(
[in] handle_t h,
[out] phone_record_array_t *e_array,
[out] error_status_t *st
);

Next the routine itself, written in C:

/* global variables */
dce_db_handle__t db_h; /* handle to phonebook backing store */

/* Other routines are not shown here, including the routine
* that opened the backing store.
*/

Chapter 5. The DCE Backing Store 97

void
entire_phone_book(
/* [in] */ handle_t h, /* For RPC, but not used

* here. An ACL check
* would use it. */

/* [out] */ phone_record_array_t *e_array,
/* [out] */ error_status_t *st

)
{
uuid_t *dbkey;
phone_data_t pd;
unsigned32 i;
error_status_t st2;

*st = error_status_ok;
/* Lock before starting work, so that the backing
* store does not change until after all the info
* has been returned.
*/

dce_db_lock(db_h, st);
/* Count the entries so enough storage can be allocated */
e_array->count = 0;
dce_db_inq_count(db_h, &e_array->count, st);
if (*st != error_status_ok) {
dce_fprintf(stderr, *st); /* or some other treatment */
dce_db_unlock(db_h, st);
return;

}
if (e_array->count == 0) { /* No items, nothing to do */
dce_db_unlock(db_h, st);
return;

}
/* Allocate the space for the output. */
e_array->entry = rpc_sm_allocate(

e_array->count*sizeof(e_array->entry[0]),st);
if (*st != rpc_s_ok) {
dce_fprintf(stderr, *st); /* or some other treatment */
return

}
dce_db_iter_start(db_h, st);
i = 0;
while (TRUE) {
/* Get the next key. */
dce_db_iter_next(db_h, &dbkey, st);
/* break when we've scanned the entire backing store */
if (*st == db_s_no_more) break;
/* Get the data associated with the next key. */
dce_db_fetch_by_uuid(db_h, dbkey, (void *)&pd, st);
if (*st != error_status_ok) {
dce_fprintf(stderr, *st);
/* Don't forget to stop iterating and unlock after

* an error. */
dce_db_iter_done(db_h, &st2);
dce_db_unlock(db_h, &st2);
return;

}
/* Stick the item into the array to be returned
* when done. */

e_array->entry[i].name = strdup(pd.ph.name);
e_array->entry[i].email = strdup(pd.ph.email);
e_array->entry[i].phone = strdup(pd.ph.phone);
e_array->entry[i].office = strdup(pd.ph.office);
i++;
/* The use of strdup() above is illustrative, but it
* is not correct within a server, because the

98 OSF® DCE Application Development Guide —Core Components

* allocated memory is never freed. Correct code
* would involve the use of rpc_sm_allocate().

*/
}
/* The iteration is finished. */
dce_db_iter_done(db_h, st);
dce_db_unlock(db_h, st);

}

Chapter 5. The DCE Backing Store 99

100 OSF® DCE Application Development Guide —Core Components

Part 2. DCE Threads

101

102 OSF® DCE Application Development Guide —Core Components

Chapter 6. Introduction to Multithreaded Programming

DCE Threads is a user-level (nonkernel) threads package based on the pthreads
interface specified by POSIX in 1003.4a, Draft 4. This chapter introduces
multithreaded programming, which is the division of a program into multiple threads
(parts) that execute concurrently. In addition, this chapter describes four software
models that improve multithreaded programming performance.

A thread is a single sequential flow of control within a program. It is the active
execution of a designated routine, including any nested routine invocations. Within a
single thread, there is a single point of execution. Most traditional programs consist
of a single thread.

Threads are lightweight processes that share a single address space. Each thread
shares all the resources of the originating process, including signal handlers and
descriptors. Each thread has its own thread identifier, scheduling policy and priority,
errno value, thread-specific data bindings, and the required system resources to
support a flow of control.

Advantages of Using Threads

With a threads package, a programmer can create multiple threads within a
process. Threads execute concurrently and, within a multithreaded process, there
are at any time multiple points of execution. Threads execute within a single
address space. Multithreaded programming offers the following advantages:

v Performance

Threads improve the performance (throughput, computational speed,
responsiveness, or some combination of these) of a program. Multiple threads
are useful in a multiprocessor system where threads run concurrently on
separate processors. In addition, multiple threads also improve program
performance on single processor systems by permitting the overlap of input and
output or other slow operations with computational operations.

You can think of threads as executing simultaneously, regardless of the number
of processors present. You cannot make any assumptions about the start or
finish times of threads or the sequence in which they execute, unless explicitly
synchronized.

v Shared Resources

An advantage of using multiple threads over using separate processes is that the
former share a single address space, all open files, and other resources.

v Potential Simplicity

Multiple threads can reduce the complexity of some applications that are
inherently suited for threads.

Software Models for Multithreaded Programming

The following subsections describe four software models for which multithreaded
programming is especially well suited:

v Boss/worker model

v Work crew model

v Pipelining model

v Combinations of models

103

Boss/Worker Model

In a boss/worker model of program design, one thread functions as the boss
because it assigns tasks to worker threads. Each worker performs a different type
of task until it is finished, at which point the worker interrupts the boss to indicate
that it is ready to receive another task. Alternatively, the boss polls workers
periodically to see whether or not each worker is ready to receive another task.

A variation of the boss/worker model is the work queue model. The boss places
tasks in a queue, and workers check the queue and take tasks to perform. An
example of the work queue model in an office environment is a secretarial typing
pool. The office manager puts documents to be typed in a basket, and typists take
documents from the basket to work on.

Work Crew Model

In the work crew model, multiple threads work together on a single task. The task is
divided into pieces that are performed in parallel, and each thread performs one
piece. An example of a work crew is a group of people cleaning a house. Each
person cleans certain rooms or performs certain types of work (washing floors,
polishing furniture, and so forth), and each works independently. Figure 6 shows a
task performed by three threads in a work crew model.

Pipelining Model

In the pipelining model, a task is divided into steps. The steps must be performed in
sequence to produce a single instance of the desired output, and the work done in
each step (except for the first and last) is based on the preceding step and is a
prerequisite for the work in the next step. However, the program is designed to
produce multiple instances of the desired output, and the steps are designed to
operate in a parallel time frame so that each step is kept busy.

An example of the pipelining model is an automobile assembly line. Each step or
stage in the assembly line is continually busy receiving the product of the previous
stage’s work, performing its assigned work, and passing the product along to the
next stage. A car needs a body before it can be painted, but at any one time
numerous cars are receiving bodies, and then numerous cars are being painted.

Setup

Thread A

Thread B

Thread C

Cleanup

(Time)

Task

Figure 6. Work Crew Model

104 OSF® DCE Application Development Guide —Core Components

In a multithreaded program using the pipelining model, each thread represents a
step in the task. Figure 7 shows a task performed by three threads in a pipelining
model.

Combinations of Models

You may find it appropriate to combine the software models in a single program if
your task is complex. For example, a program could be designed using the
pipelining model, but one or more steps could be handled by a work crew. In
addition, tasks could be assigned to a work crew by taking a task from a work
queue and deciding (based on the task characteristics) which threads are needed
for the work crew.

Potential Disadvantages of Multithreaded Programming

When you design and code a multithreaded program, consider the following
problems and accommodate or eliminate each problem as appropriate:

v Potential Complexity

The level of expertise required for designing, coding, and maintaining
multithreaded programs may be higher than for most single-threaded programs
because multithreaded programs may need shared access to resources,
mutexes, and condition variables. Weigh the potential benefits against the
complexity and its associated risks.

v Nonreentrant Software

If a thread calls a routine or library that is not reentrant, use the global locking
mechanism to prevent the nonreentrant routines from modifying a variable that
another thread modifies. “Chapter 8. Programming with Threads” on page 121
discusses nonreentrant software in more detail.

Note: A multithreaded program must be reentrant; that is, it must allow multiple
threads to execute at the same time. Therefore, be sure that your
compiler generates reentrant code before you do any design or coding
work for multithreading. (Many C, Ada, Pascal, and BLISS compilers
generate reentrant code by default.)

If your program is nonreentrant, any thread synchronization techniques
that you use are not guaranteed to be effective.

v Priority Inversion

Thread A

TASK

Thread B Thread C

(Time)

Figure 7. Pipelining Model

Chapter 6. Introduction to Multithreaded Programming 105

Priority inversion prevents high-priority threads from executing when
interdependencies exist among three or more threads. “Chapter 8. Programming
with Threads” on page 121 discusses priority inversion in more detail.

v Race Conditions

A type of programming error called a race condition causes unpredictable and
erroneous program behavior. “Chapter 8. Programming with Threads” on
page 121 discusses race conditions in more detail.

v Deadlocks

A type of programming error called a deadlock causes two or more threads to be
blocked from executing. “Chapter 8. Programming with Threads” on page 121
discusses deadlocks in more detail.

v Blocking Calls

Certain system or library calls may cause an entire process to block while waiting
for the call to complete, thus causing all other threads to stop executing.
“Chapter 8. Programming with Threads” on page 121 discusses blocking in more
detail.

106 OSF® DCE Application Development Guide —Core Components

Chapter 7. Thread Concepts and Operations

This chapter discusses concepts and techniques related to DCE Threads. The
following topics are covered:

v Thread operations

v New primitives

v Attributes objects

v Synchronization objects

v One-time initialization code

v Thread-specific data

v Thread cancellation

v Thread scheduling

For detailed information on the multithreading routines referred to in this chapter,
see the reference page for that routine in the OSF DCE Application Development
Reference.

Thread Operations

A thread changes states as it runs, waits to synchronize, or is ready to be run. A
thread is in one of the following states:

v Waiting

The thread is not eligible to execute because it is synchronizing with another
thread or with an external event.

v Ready

The thread is eligible to be executed by a processor.

v Running

The thread is currently being executed by a processor.

v Terminated

The thread has completed all of its work.

Figure 8 shows the transitions between states for a typical thread implementation.

The operations that you can perform include starting, waiting for, terminating, and
deleting threads.

Starting a Thread

To start a thread, create it using the pthread_create() routine. This routine creates
the thread, assigns specified or default attributes, and starts execution of the

Waiting Ready Running Terminated

Figure 8. Thread State Transitions

107

function you specified as the thread’s start routine. A unique identifier (handle) for
that thread is returned from the pthread_create() routine.

Terminating a Thread

A thread exists until it terminates and the pthread_detach() routine is called for the
thread. The pthread_detach() routine can be called for a thread before or after it
terminates. If the thread terminates before pthread_detach() is called for it, then
the thread continues to exist and can be synchronized (joined) until it is detached.
Thus, the object (thread) can be detached by any thread that has access to a
handle to the object.

Note that pthread_detach() must be called to release the memory allocated for the
thread objects so that this storage does not build up and cause the process to run
out of memory. For example, after a thread returns from a call to join, it detaches
the joined-to thread if no other threads join with it. Similarly, if a thread has no other
threads joining with it, it detaches itself so that its thread object is deallocated as
soon as it terminates.

A thread terminates for any of the following reasons:

v The thread returns from its start routine; this is the usual case.

v The thread calls the pthread_exit() routine.

The pthread_exit() routine terminates the calling thread and returns a status
value, indicating the thread’s exit status to any potential joiners.

v The thread is canceled by a call to the pthread_cancel() routine.

The pthread_cancel() routine requests termination of a specified thread if
cancellation is permitted. (See “Thread Cancellation” on page 117 for more
information on canceling threads and controlling whether or not cancellation is
permitted.)

v An error occurs in the thread.

Examples of errors that cause thread termination are programming errors,
segmentation faults, or unhandled exceptions.

Waiting for a Thread to Terminate

A thread waits for the termination of another thread by calling the pthread_join()
routine. Execution in the current thread is suspended until the specified thread
terminates. If multiple threads call this routine and specify the same thread, all
threads resume execution when the specified thread terminates.

If you specify the current thread with the pthread_join() routine, a deadlock results.

Do not confuse pthread_join() with other routines that cause waits and that are
related to the use of a particular multithreading feature. For example, use
pthread_cond_wait() or pthread_cond_timedwait() to wait for a condition variable
to be signaled or broadcast.

Deleting a Thread

A thread is automatically deleted after it terminates; that is, no explicit deletion
operation is required. Use pthread_detach() to free the storage of a terminated
thread. Use pthread_cancel() to request that a running thread terminate itself.

108 OSF® DCE Application Development Guide —Core Components

If the thread has not yet terminated, the pthread_detach() routine marks the thread
for deletion, and its storage is reclaimed immediately when the thread terminates. A
thread cannot be joined or canceled after the pthread_detach() routine is called for
the thread, even if the thread has not yet terminated.

If a thread that is not detached terminates, its storage remains so that other threads
can join with it. Storage is reclaimed when the thread is eventually detached.

New Primitives

Routines implemented by DCE Threads that are not specified by Draft 4 of the
POSIX 1003.4a standard are indicated by an _np suffix to the name. These
routines have not been incorporated into the POSIX standard, and as such are
extensions to that document. The routines are fully portable.

Attributes Objects

An attributes object is used to describe the behavior of threads, mutexes, and
condition variables. This description consists of the individual attribute values that
are used to create an attributes object. Whether an attribute is valid depends on
whether it describes threads, mutexes, or condition variables.

When you create an object, you can accept the default attributes for that object, or
you can specify an attributes object that contains individual attributes that you have
set. For a thread, you can also change one or more attributes after thread
execution starts; for example, calling the pthread_setprio() routine to change the
priority that you specified with the pthread_attr_setprio() routine.

The following subsections describe how to create and delete attributes objects and
describe the individual attributes that you can specify for different objects.

Creating an Attributes Object

To create an attributes object, use one of the following routines, depending on the
type of object to which the attributes apply:

v The pthread_attr_create() routine for thread attributes objects

v The pthread_condattr_create() routine for condition variable attributes objects

v The pthread_mutexattr_create() routine for mutex attributes objects

These routines create an attributes object containing default values for the
individual attributes. To modify any attribute values in an attributes object, use one
of the set routines described in the following subsections.

Creating an attributes object or changing the values in an attributes object does not
affect the attributes of objects previously created.

Deleting an Attributes Object

To delete an attributes object, use one of the following routines:

v The pthread_attr_delete() routine for thread attributes objects

v The pthread_condattr_delete() routine for condition variable attributes objects

v The pthread_mutexattr_delete() routine for mutex attributes objects

Chapter 7. Thread Concepts and Operations 109

Deleting an attributes object does not affect the attributes of objects previously
created.

Thread Attributes

A thread attributes object allows you to specify values for thread attributes other
than the defaults when you create a thread with the pthread_create() routine. To
use a thread attributes object, perform the following steps:

1. Create a thread attributes object by calling the routine pthread_attr_create() .

2. Call the routines discussed in the following subsections to set the individual
attributes of the thread attributes object.

3. Create a new thread by calling the pthread_create() routine and specifying the
identifier of the thread attributes object.

You have control over the following attributes of a new thread:

v Scheduling policy attribute

v Scheduling priority attribute

v Inherit scheduling attribute

v Stacksize attribute

Scheduling Policy Attribute

The scheduling policy attribute describes the overall scheduling policy of the
threads in your application. A thread has one of the following scheduling policies:

v SCHED_FIFO (First In, First Out)

The highest-priority thread runs until it blocks. If there is more than one thread
with the same priority, and that priority is the highest among other threads, the
first thread to begin running continues until it blocks.

v SCHED_RR (Round Robin)

The highest-priority thread runs until it blocks; however, threads of equal priority,
if that priority is the highest among other threads, are timesliced. (Timeslicing is a
mechanism that ensures that every thread is allowed time to execute by
preempting running threads at fixed intervals.)

v SCHED_OTHER, SCHED_FG_NP (Default)

All threads are timesliced. SCHED_OTHER and SCHED_FG_NP do the same
thing; however, SCHED_FG_NP is simply more precise terminology. The FG
stands for foreground and the NP for new primitive. All threads running under the
SCHED_OTHER and SCHED_FG_NP policy, regardless of priority, receive some
scheduling. Therefore, no thread is completely denied execution time. However,
SCHED_OTHER and SCHED_FG_NP threads can be denied execution time by
SCHED_FIFO or SCHED_RR threads.

v SCHED_BG_NP (Background)

Like SCHED_OTHER and SCHED_FG_NP, SCHED_BG_NP ensures that all
threads, regardless of priority, receive some scheduling. However,
SCHED_BG_NP can be denied execution by the SCHED_FIFO or SCHED_RR
policies. The BG stands for background.

The following two methods are used to set the scheduling policy attribute:

v Set the scheduling policy attribute in the attributes object, which establishes the
scheduling policy of a new thread when it is created. To do this, call the
pthread_attr_setsched() routine.

110 OSF® DCE Application Development Guide —Core Components

v Change the scheduling policy of an existing thread (and, at the same time, the
scheduling priority) by calling the pthread_setscheduler() routine.

“Thread Scheduling” on page 118 describes and shows the effect of scheduling
policy on thread scheduling.

Scheduling Priority Attribute

The scheduling priority attribute specifies the execution of a thread. This attribute is
expressed relative to other threads on a continuum of minimum to maximum for
each scheduling policy. A thread’s priority falls within one of the following ranges,
which are implementation defined:

v PRI_FIFO_MIN to PRI_FIFO_MAX

v PRI_RR_MIN to PRI_RR_MAX

v PRI_OTHER_MIN to PRI_OTHER_MAX

v PRI_FG_MIN_NP to PRI_FG_MAX_NP

v PRI_BG_MIN_NP to PRI_BG_MAX_NP

The following two methods are used to set the scheduling priority attribute:

v Set the scheduling priority attribute in the attributes object, which establishes the
execution priority of a new thread when it is created. To do this, call the
pthread_attr_setprio() routine.

v Change the scheduling priority attribute of an existing thread by calling the
pthread_setprio() routine. (Call the pthread_setscheduler() routine to change
both the scheduling priority and scheduling policy of an existing thread.)

Inherit Scheduling Attribute

The inherit scheduling attribute specifies whether a newly created thread inherits
the scheduling attributes (scheduling priority and policy) of the creating thread (the
default), or uses the scheduling attributes stored in the attributes object. Set this
attribute by calling the routine pthread_attr_setinheritsched() .

Stacksize Attribute

The stacksize attribute is the minimum size (in bytes) of the memory required for a
thread’s stack. The default value is machine dependent. Set this attribute by calling
the pthread_attr_setstacksize() routine.

Mutex Attributes

A mutex attributes object allows you to specify values for mutex attributes other
than the defaults when you create a mutex with the routine pthread_mutex_init() .

The mutex type attribute specifies whether a mutex is fast, recursive, or
nonrecursive. Set the mutex type attribute by calling the routine
pthread_mutexattr_setkind_np() . (Any routine with the _np suffix is a new
primitive; see “New Primitives” on page 109.) If you do not use a mutex attributes
object to select a mutex type, calling the pthread_mutex_init() routine creates a
fast mutex by default.

Chapter 7. Thread Concepts and Operations 111

Condition Variable Attributes

Currently, attributes affecting condition variables are not defined. You cannot change
any attributes in the condition variable attributes object.

“Condition Variables” on page 113 describes the purpose and uses of condition
variables.

Synchronization Objects

In a multithreaded program, you must use synchronization objects whenever there
is a possibility of corruption of shared data or conflicting scheduling of threads that
have mutual scheduling dependencies. The following subsections discuss two kinds
of synchronization objects: mutexes and condition variables.

Mutexes

A mutex (mutual exclusion) is an object that multiple threads use to ensure the
integrity of a shared resource that they access, most commonly shared data. A
mutex has two states: locked and unlocked. For each piece of shared data, all
threads accessing that data must use the same mutex; each thread locks the mutex
before it accesses the shared data and unlocks the mutex when it is finished
accessing that data. If the mutex is locked by another thread, the thread requesting
the lock is blocked when it tries to lock the mutex if you call pthread_mutex_lock()
(see Figure 9). The blocked thread continues and is not blocked if you call
pthread_mutex_trylock() .

Each mutex must be initialized. (To initialize mutexes as part of the program’s
one-time initialization code, see “One-Time Initialization Routines” on page 116.) To
initialize a mutex, use the pthread_mutex_init() routine. This routine allows you to
specify an attributes object, which allows you to specify the mutex type. The
following are types of mutexes:

v A fast mutex (the default) is locked only once by a thread. If the thread tries to
lock the mutex again without first unlocking it, the thread waits for itself to release
the first lock and deadlocks on itself.

This type of mutex is called fast because it can be locked and unlocked more
rapidly than a recursive mutex. It is the most efficient form of mutex.

v A recursive mutex can be locked more than once by a given thread without
causing a deadlock. The thread must call the pthread_mutex_unlock() routine

var

mutex_var

Thread A Thread B

access

lock block

Figure 9. Only One Thread Can Lock a Mutex

112 OSF® DCE Application Development Guide —Core Components

the same number of times that it called the pthread_mutex_lock() routine before
another thread can lock the mutex. Recursive mutexes have the notion of a
mutex owner. When a thread successfully locks a recursive mutex, it owns that
mutex and the lock count is set to 1. Any other thread attempting to lock the
mutex blocks until the mutex becomes unlocked. If the owner of the mutex
attempts to lock the mutex again, the lock count is incremented, and the thread
continues running. When an owner unlocks a recursive mutex, the lock count is
decremented. The mutex remains locked and owned until the count reaches 0
(zero). It is an error for any thread other than the owner to attempt to unlock the
mutex.

A recursive mutex is useful if a thread needs exclusive access to a piece of data,
and it needs to call another routine (or itself) that needs exclusive access to the
data. A recursive mutex allows nested attempts to lock the mutex to succeed
rather than deadlock.

This type of mutex requires more careful programming. Never use a recursive
mutex with condition variables because the implicit unlock performed for a
pthread_cond_wait() or pthread_cond_timedwait() may not actually release
the mutex. In that case, no other thread can satisfy the condition of the predicate.

v A nonrecursive mutex is locked only once by a thread, like a fast mutex. If the
thread tries to lock the mutex again without first unlocking it, the thread receives
an error. Thus, nonrecursive mutexes are more informative than fast mutexes
because fast mutexes block in such a case, leaving it up to you to determine why
the thread no longer executes. Also, if someone other than the owner tries to
unlock a nonrecursive mutex, an error is returned.

To lock a mutex, use one of the following routines, depending on what you want to
happen if the mutex is locked:

v The pthread_mutex_lock() routine

If the mutex is locked, the thread waits for the mutex to become available.

v The pthread_mutex_trylock() routine

If the mutex is locked, the thread continues without waiting for the mutex to
become available. The thread immediately checks the return status to see if the
lock was successful, and then takes whatever action is appropriate if it was not.

When a thread is finished accessing a piece of shared data, it unlocks the
associated mutex by calling the pthread_mutex_unlock() routine.

If another thread is waiting on the mutex, its execution is unblocked. If more than
one thread is waiting on the mutex, the scheduling policy and the thread scheduling
priority determine which thread acquires the mutex.

You can delete a mutex and reclaim its storage by calling the
pthread_mutex_destroy() routine. Use this routine only after the mutex is no
longer needed by any thread. Mutexes are automatically deleted when the program
terminates.

Condition Variables

A condition variable allows a thread to block its own execution until some shared
data reaches a particular state. Cooperating threads check the shared data and
wait on the condition variable. For example, one thread in a program produces
work-to-do packets and another thread consumes these packets (does the work). If
the work queue is empty when the consumer thread checks it, that thread waits on

Chapter 7. Thread Concepts and Operations 113

a work-to-do condition variable. When the producer thread puts a packet on the
queue, it signals the work-to-do condition variable.

A condition variable is used to wait for a shared resource to assume some specific
state (a predicate). A mutex, on the other hand, is used to reserve some shared
resource while the resource is being manipulated. For example, a thread A may
need to wait for a thread B to finish a task X before thread A proceeds to execute a
task Y. Thread B can tell thread A that it has finished task X by using a variable
they both have access to, a condition variable . When thread A is ready to execute
task Y, it looks at the condition variable to see if thread B is finished (see
Figure 10).

First, thread A locks the mutex named mutex_ready that is associated with the
condition variable. Then it reads the predicate associated with the condition variable
named ready . If the predicate indicates that thread B has finished task X, then
thread A can unlock the mutex and proceed with task Y. If the condition variable
predicate indicated that thread B has not yet finished task X; however, then thread
A waits for the condition variable to change. Thread A calls the wait primitive.
Waiting on the condition variable automatically unlocks the mutex, allowing thread B
to lock the mutex when it has finished task X. (see Figure 11 on page 115).

mutex_ready

mutex_ready

Thread A

lock

read
predicate

wait

proceed

and unlock

ready
System activity

(transparent
to thread)

YES

NO
(unlock)

wait
(lock)

unlock

Figure 10. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds

114 OSF® DCE Application Development Guide —Core Components

Thread B updates the predicate named ready associated with the condition variable
to the state thread A is waiting for. It also executes a signal on the condition
variable while holding the mutex mutex_ready .

Thread A wakes up, verifies that the condition variable is in the correct state, and
proceeds to execute task Y (see Figure 10 on page 114).

Note that, although the condition variable is used for explicit communications
among threads, the communications are anonymous. Thread B does not
necessarily know that thread A is waiting on the condition variable that thread B
signals. And thread A does not know that it was thread B that woke it up from its
wait on the condition variable.

Use the pthread_cond_init() routine to create a condition variable. To create
condition variables as part of the program’s one-time initialization code, see
“One-Time Initialization Routines” on page 116.

Use the pthread_cond_wait() routine to cause a thread to wait until the condition is
signaled or broadcast. This routine specifies a condition variable and a mutex that
you have locked. (If you have not locked the mutex, the results of
pthread_cond_wait() are unpredictable.) This routine unlocks the mutex and
causes the calling thread to wait on the condition variable until another thread calls
one of the following routines:

mutex_ready

mutex_ready

ready=
YES

Signal

write

X

Thread B

unlock

lock

Figure 11. Thread B Signals Condition Ready

var

mutex_var

Thread A Thread B

access

lock block

Figure 12. Thread A Wakes Up and Proceeds

Chapter 7. Thread Concepts and Operations 115

v The pthread_cond_signal() routine to wake one thread that is waiting on the
condition variable

v The pthread_cond_broadcast() routine to wake all threads that are waiting on a
condition variable

If you want to limit the time that a thread waits for a condition to be signaled or
broadcast, use the pthread_cond_timedwait() routine. This routine specifies the
condition variable, mutex, and absolute time at which the wait should expire if the
condition variable is not signaled or broadcast.

You can delete a condition variable and reclaim its storage by calling the
pthread_cond_destroy() routine. Use this routine only after the condition variable
is no longer needed by any thread. Condition variables are automatically deleted
when the program terminates.

Other Synchronization Methods

There is another synchronization method that is not anonymous: the join primitive.
This allows a thread to wait for another specific thread to complete its execution.
When the second thread is finished, the first thread unblocks and continues its
execution. Unlike mutexes and condition variables, the join primitive is not
associated with any particular shared data.

One-Time Initialization Routines

You probably have one or more routines that must be executed before any thread
executes code in your application, but must be executed only once regardless of
the sequence in which threads start executing. For example, you may want to
create mutexes and condition variables (each of which must be created only once)
in an initialization routine. Multiple threads can call the pthread_once() routine, or
the pthread_once() routine can be called multiple times in the same thread,
resulting in only one call to the specified routine.

Use the pthread_once() routine to ensure that your application initialization routine
is executed only a single time, that is, by the first thread that tries to initialize the
application. This routine is the only way to guarantee that one-time initialization is
performed in a multithreaded environment on a given platform. The pthread_once()
routine is of particular use for runtime libraries, which are often called for the first
time after multiple threads are created.

Refer to the thr_intro(3thr) reference page for a list of the DCE Threads routines
which, when called, implicitly perform any necessary initialization of the threads
package. Any application that uses DCE Threads must call one of these routines
before calling any other threads routines.

Thread-Specific Data

The thread-specific data interfaces allow each thread to associate an arbitrary value
with a shared key value created by the program.

Thread-specific data is like a global variable in which each thread can keep its own
value, but is accessible to the thread anywhere in the program.

Use the following routines to create and access thread-specific data:

116 OSF® DCE Application Development Guide —Core Components

v The pthread_keycreate() routine to create a unique key value

v The pthread_setspecific() routine to associate data with a key

v The pthread_getspecific() routine to obtain the data associated with a key

The pthread_keycreate() routine generates a unique key value that is shared by all
threads in the process. This key is the identifier of a piece of thread-specific data.
Each thread uses the same key value to assign or retrieve a thread-specific value.
This keeps your data separate from other thread-specific data. One call to the
pthread_keycreate() routine creates a cell in all threads. Call this routine to specify
a routine to be called to destroy the context value associated with this key when the
thread terminates.

The pthread_setspecific() routine associates the address of some data with a
specific key. Multiple threads associate different data (by specifying different
addresses) with the same key. For example, each thread points to a different block
of dynamically allocated memory that it has reserved.

The pthread_getspecific() routine obtains the address of the thread-specific data
value associated with a specified key. Use this routine to locate the data associated
with the current thread’s context.

Thread Cancellation

Canceling is a mechanism by which one thread terminates another thread (or itself).
When you request that a thread be canceled, you are requesting that it terminate as
soon as possible. However, the target thread can control how quickly it terminates
by controlling its general cancelability and its asynchronous cancelability.

The following is a list of the pthread calls that are cancellation points:

v The pthread_setasynccancel() routine

v The pthread_testcancel() routine

v The pthread_delay_np() routine

v The pthread_join() routine

v The pthread_cond_wait() routine

v The pthread_cond_timedwait() routine

General cancelability is enabled by default. A thread is canceled only at specific
places in the program; for example, when a call to the pthread_cond_wait() routine
is made. If general cancelability is enabled, request the delivery of any pending
cancel request by using the pthread_testcancel() routine. This routine allows you
to permit cancellation to occur at places where it may not otherwise be permitted
under general cancelability, and it is especially useful within very long loops to
ensure that cancel requests are noticed within a reasonable time.

If you disable general cancelability, the thread cannot be terminated by any cancel
request. Disabling general cancelability means that a thread could wait indefinitely if
it does not come to a normal conclusion. Therefore, be careful about disabling
general cancelability.

Asynchronous cancelability, when it is enabled, allows cancels to be delivered to
the enabling thread at any time, not only at those times that are permitted when just
general cancelability is enabled. Thus, use asynchronous cancellation primarily
during long processes that do not have specific places for cancel requests.

Chapter 7. Thread Concepts and Operations 117

Asynchronous cancelability is disabled by default. Disable asynchronous
cancelability when calling threads routines or any other runtime library routines that
are not explicitly documented as cancel-safe.

Note: If general cancelability is disabled, the thread cannot be canceled, regardless
of whether asynchronous cancelability is enabled or disabled. The setting of
asynchronous cancelability is relevant only when general cancelability is
enabled.

Use the following routines to control the canceling of threads:

v The pthread_setcancel() routine to enable and disable general cancelability

v The pthread_testcancel() routine to request delivery of a pending cancel to the
current thread

v The pthread_setasynccancel() routine to enable and disable asynchronous
cancelability

v The pthread_cancel() routine to request that a thread be canceled

Thread Scheduling

Threads are scheduled according to their scheduling priority and how the
scheduling policy treats those priorities. To understand the discussion in this
section, you must understand the concepts in the following sections of this chapter:

v “Scheduling Policy Attribute” on page 110 discusses scheduling policies, including
the way in which each policy handles thread scheduling priority.

v “Scheduling Priority Attribute” on page 111 discusses thread scheduling priorities.

v “Inherit Scheduling Attribute” on page 111 discusses inheritance of scheduling
attributes by created threads.

To specify the minimum or maximum priority, use the appropriate symbol; for
example, PRI_OTHER_MIN or PRI_OTHER_MAX. To specify a value between the
minimum and maximum priority, use an appropriate arithmetic expression.

For example, to specify a priority midway between the minimum and maximum for
the default scheduling policy, specify the following concept using your programming
language’s syntax:

pri_other_mid = (PRI_OTHER_MIN + PRI_OTHER_MAX)/2

If your expression results in a value outside the range of minimum to maximum, an
error results when you use it. Priority values are integers.

To show results of the different scheduling policies, consider the following example:
a program has four threads, called threads A, B, C, and D. For each scheduling
policy, three scheduling priorities have been defined: minimum, middle, and
maximum. The threads have the priorities shown in Table 5.

Table 5. Sample Thread Properties

Thread Priority

A Minimum

B Middle

C Middle

118 OSF® DCE Application Development Guide —Core Components

Table 5. Sample Thread Properties (continued)

D Maximum

Figure 13 through Figure 15 show execution flows, depending on whether the
threads use the SCHED_FIFO, SCHED_RR, or SCHED_OTHER (default)
scheduling policy. Assume that all waiting threads are ready to execute when the
current thread waits or terminates and that no higher-priority thread is awakened
while a thread is executing (during the flow shown in each figure).

Figure 13 shows a flow with SCHED_FIFO (First In, First Out) scheduling.

Thread D executes until it waits or terminates, then Thread B starts because it has
been waiting longer than Thread C and it executes until it waits or terminates, then
Thread C executes until it waits or terminates, then Thread A executes.

Figure 14 shows a flow with SCHED_RR (Round Robin) scheduling.

All four threads are timesliced. Threads with higher priority are generally scheduled
when more than one thread is ready to run; however, to ensure fairness, all threads
are given some time. The effective priority of threads may be modified over time by
the scheduler, depending on the use of processor resources.

Thread D executes until it waits or terminates, then threads B and C are timesliced
because they both have middle priority, then thread A executes.

Figure 15 shows a flow with SCHED_OTHER (default) scheduling.

Thread D executes until it waits or terminates; then threads B, C, and A are
timesliced, even though thread A has a lower priority than the other two. Thread A
receives less execution time than thread B or C if either is ready to execute as
often as thread A is. However, the default scheduling policy protects thread A
against being blocked from executing indefinitely.

Because low-priority threads eventually run, the default scheduling policy protects
against the problem of priority inversion discussed in “Chapter 8. Programming with
Threads” on page 121.

AB CD

Figure 13. Flow with SCHED_FIFO Scheduling

B C AB CD

Figure 14. Flow with SCHED_RR Scheduling

A B CB CD

Figure 15. Flow with SCHED_OTHER Scheduling

Chapter 7. Thread Concepts and Operations 119

120 OSF® DCE Application Development Guide —Core Components

Chapter 8. Programming with Threads

This chapter discusses issues you face when writing a multithreaded program and
how to deal with those issues.

The topics discussed in this chapter are as follows:

v Calling UNIX services

v Using signals

v Nonthreaded libraries

v Avoiding nonreentrant software

v Avoiding priority inversion

v Using synchronization objects

v Signaling a condition variable

Calling UNIX Services

On a UNIX system that does not have kernel support for threads, making system
and library calls from within a multithreaded program raises the following issues:

v System calls may not be thread-reentrant.

v If a system call blocks, it blocks the entire process instead of blocking the calling
thread only.

Jacket Routines

To resolve the previous two issues, DCE Threads provides jacket routines for a
number of UNIX system calls. Threads call the jacket routine instead of the UNIX
system service; this allows DCE Threads to take action on behalf of the thread
before or after calling the system service. For example, the jacket routines ensure
that only one thread calls any particular service at a time to avoid problems with
system calls that are not thread-reentrant.

Jacket routines are provided for UNIX input and output system calls (documented in
any UNIX programmer’s manual) and the fork() and sigaction() system calls.
Jackets are not provided for any other UNIX system calls or for any of the C
runtime library services. See /usr/include/dce/cma_ux.h for the full list of jacket
routines.

Input and Output Jacket Routines

Jacket routines are provided for routines that perform input and output operations.
Examples of these operations are as follows:

1. Open or create files, pipe symbols, and sockets

2. Send and receive messages on sockets

3. Read and write files and pipe symbols

Jacket routines are provided for Input/Output services so that DCE Threads can
determine when to issue or block the service call based on the results of the
select() system call. For these UNIX services, DCE Threads can determine whether
issuing the system call causes the process to block. If the system call causes the
process to block, DCE Threads blocks only the calling thread and schedules
another thread to run in its place.

121

Periodically, DCE Threads checks whether the original calling thread can issue its
operation without blocking the process. When the thread runs without blocking the
process, that thread is placed back into the queue of ready threads and, at its turn,
the thread resumes execution and issues the system call. Therefore, the jacket
routines provide thread-synchronous I/O operations where otherwise the system
calls block the entire process.

The fork() Jacket Routine

Jackets are provided for the fork() system call. A specific thread environment must
exist in the forked process when it resumes (begins) execution. These jacket
routines allow code to be executed in the context of the new process before the
user code resumes execution in it.

The atfork() Routine

The atfork() routine allows an application or library to ensure predicted behavior
when the fork() routine is used in a multithreaded environment. Using the fork()
routine from a threaded application or from an application that uses threaded
libraries can result in unpredictable behavior. For example, one thread has a mutex
locked, and the state covered by that mutex is inconsistent while another thread
calls the fork() routine. In the child process, the mutex will be in the locked state,
and it cannot be unlocked because only the forking thread exists in the child
process. Having the child reinitialize the mutex is unsatisfactory because this
approach does not resolve the question of how to correct the inconsistent state in
the child.

The atfork() routine provides a way for threaded applications or libraries to protect
themselves when a fork() occurs. The atfork() routine allows you to set up routines
that will run at the following times:

v Prior to the fork() in the parent process

v After the fork() in the child process

v After the fork() in the parent process

Within these routines, you can ensure that all mutexes are locked prior to the fork()
and that they are unlocked after the fork() , thereby protecting any data or resources
associated with the mutexes. You can register any number of sets of atfork()
routines; that is, any number of libraries or user programs can set up atfork()
routines and they will all execute at fork() time.

Note: Using the atfork() routine can potentially cause a deadlock if two
applications or libraries call into one another using calls that require locking.
Specifically, when these component’s routines use the atfork() routine to run
prior to the fork in the parent process, a deadlock may occur when these
routines are executing.

Using the Jacketed System Calls

You do not have to rename your system calls to take advantage of the jacket
routines. Macros put the jacket routines into place when you compile your program;
these macros rename the jacketed system calls to the name of the DCE Threads
jacket routine. Thus, a reference to the DCE Threads jacket routine is compiled into
your code instead of a reference to the system call. When the code is executed, it
calls the jacket routine, which then calls the system on your code’s behalf.

122 OSF® DCE Application Development Guide —Core Components

If you do not wish to use any of the jacket routines, you can add the following line
to your program before any of the thread header files:

#define _CMA_NOWRAPPERS_

By adding this definition, you prevent the jacket routines from being substituted for
the real routines.

If you wish to use most of the jackets but do not wish to use a specific jacket, you
can undefine a specific jacket by adding the following directive after the thread
header files:

#undef routine_name

For example, to not use the fork jacket, you can add the following:

#undef fork

Blocking System Calls

DCE Threads provides jacket routines that make certain system calls
thread-synchronous. If calling one of these jacketed system calls would normally
block the process, the jacket routine ensures that only the calling thread is blocked
and that the process remains available to execute other threads. Examples of
jacketed system calls include read() , write() , open() , socket() , send() , and recv() .

If a thread makes a call to any of the other nonjacketed blocking system calls (or if
it calls one of the jacketed system calls without going through the jacket), then
when the system call blocks the thread, it blocks the whole process, preventing any
other threads in the process from executing. Examples of nonjacketed system calls
include wait() , sigpause() , msgsnd() , msgrcv() , and semop() .

Some care must be used when calling nonjacketed blocking system calls from a
multithreaded program. Other threads in the program may not be able to tolerate
not running for an extended period of time while the process blocks for the system
call. If your program must make use of such system calls, the calling thread should
specify a nonblocking or polling option to the system call. If the call is not
successful, then the calling thread should retry; however, to prevent the retry code
from becoming a hot loop, a yield or delay function call should be inserted into the
path. This gives other threads in the program a chance to run between poll
attempts.

Calling fork() in a Multithreaded Environment

The fork() system call creates an exact duplicate of the address space from which
it is called, resulting in two address spaces executing the same code. Problems can
occur if the forking address space has multiple threads executing at the time of the
fork() . When multithreading is a result of library invocation, threads are not
necessarily aware of each other’s presence, purpose, actions, and so on. Suppose
that one of the other threads (any thread other than the one doing the fork()) has
the job of deducting money from your checking account. Clearly, you do not want
this to happen twice as a result of some other thread’s decision to call fork() .

Because of these types of problems, which in general are problems of threads
modifying persistent state, POSIX defined the behavior of fork() in the presence of

Chapter 8. Programming with Threads 123

threads to propagate only the forking thread. This solves the problem of improper
changes being made to persistent state. However, it causes other problems, as
discussed in the next paragraph.

In the POSIX model, only the forking thread is propagated. All the other threads are
eliminated without any form of notice; no cancels are sent and no handlers are run.
However, all the other portions of the address space are cloned, including all the
mutex state. If the other thread has a mutex locked, the mutex will be locked in the
child process, but the lock owner will not exist to unlock it. Therefore, the resource
protected by the lock will be permanently unavailable.

The fact that there may be mutexes outstanding only becomes a problem if your
code attempts to lock a mutex that could be locked by another thread at the time of
the fork() . This means that you cannot call outside of your own code between the
call to fork() and the call to exec() . Note that a call to malloc() , for example, is a
call outside of the currently executing application program and may have a mutex
outstanding. The following code obeys these guidelines and is therefore safe:

fork ();
a = 1+2; /* some inline processing */
exec();

Similarly, if your code calls some of your own code that does not make any calls
outside of your code and does not lock any mutexes that could possibly be locked
in another thread, then your code is safe.

One solution to the problem of calling fork() in a multithreaded environment exists.
(Note that this method will not work for server application code or any other
application code that is invoked by a callback from a library.) Before an application
performs a fork() followed by something other than exec() , it must cancel all of the
other threads. After it joins the canceled threads, it can safely fork() because it is
the only thread in existence. This means that libraries that create threads must
establish cancel handlers that propagate the cancel to the created threads and join
them. The application should save enough state so that the threads can be
recreated and restarted after the fork() processing completes.

Using Signals

The following subsections cover three topics: types of signals, DCE Threads signal
handling, and alternatives to using signals.

Types of Signals

Signals are delivered as a result of some event. UNIX signals are grouped into the
following four categories of pairs that are orthogonal to each other:

v Terminating and synchronous

v Terminating and asynchronous

v Nonterminating and synchronous

v Nonterminating and asynchronous

The action that DCE Threads takes when a particular signal is delivered depends
on the characteristics of that signal.

124 OSF® DCE Application Development Guide —Core Components

Terminating Signals

Terminating signals result in the termination of the process by default. Whether a
particular signal is terminating or not is independent of whether it is synchronously
or asynchronously delivered.

Nonterminating Signals

Nonterminating signals do not result in the termination of the process by default.

Nonterminating signals represent events that can be either internal or external to
the process. The process may require notification or ignore these events. When a
nonterminating asynchronous signal is delivered to the process, DCE Threads
awakens any threads that are waiting for the signal. This is the only action that
DCE Threads takes because, by default, the signal has no effect.

Synchronous Signals

Synchronous signals are the result of an event that occurs inside a process and are
delivered synchronously with respect to that event. For example, if a floating-point
calculation results in an overflow, then a SIGFPE (floating-point exception signal) is
delivered to the process immediately following the instruction that resulted in the
overflow.

The default behavior of DCE Threads in DCE Version 1.0.2 when a synchronous
terminating signal occurs is to dump core; that is, to not handle the signal. This
differs from the behavior prior to DCE Version 1.0.2, in which such a signal would
be turned into an exception and propagated out to whatever process was the
original owner of the thread (namely the client, even though the exception might
have occurred in the server). Therefore, if an application using DCE Threads wants
to handle such signals, it must now set up a signal handler to do so by calling
sigaction() . Note that the new DCE Threads behavior is in fact similar to the
default behavior of most UNIX programs.

Synchronous, terminating signals represent an error that has occurred in the
currently executing thread.

Asynchronous Signals

Asynchronous signals are the result of an event that is external to the process and
are delivered at any point in a thread’s execution when such an event occurs. For
example, when a user running a program types the interrupt character at the
terminal (generally <Ctrl-C>), a SIGINT (interrupt signal) is delivered to the process.

Asynchronous, terminating signals represent an occurrence of an event that is
external to the process and, if unhandled, results in the termination of the process.
When an asynchronous terminating signal is delivered, DCE Threads catches it and
checks to see if any threads are waiting for it. If threads are waiting, they are
awakened, and the signal is considered handled and is dismissed. If there are no
waiting threads, then DCE Threads causes the process to be terminated as if the
signal had not been handled.

Chapter 8. Programming with Threads 125

DCE Threads Signal Handling

DCE Threads provides the POSIX sigwait() service to allow threads to perform
activities similar to signal handling without having to deal with signals directly. It also
provides a jacket for sigaction() that allows each thread to have its own handler for
synchronous signals.

In order to provide these mechanisms, DCE Threads installs signal handlers for
most of the UNIX signals during initialization.

DCE Threads do not provide handlers for several UNIX signals. Those signals and
the reasons why handlers are not provided are shown in Table 6.

Table 6. Signals for Which Handlers Are Not Provided

Signal Reason Handler Is Not Provided

SIGKILL and SIGSTOP These signals cannot be caught by user mode
code.

SIGTRAP Catching this signal interferes with debugging.

SIGTSTP and SIGQUIT These signals are caught only while a thread has
issued a sigwait() call because their default
actions are otherwise valuable.

The POSIX sigwait() Service

The DCE Threads implementation of the POSIX sigwait() service allows any thread
to block until one of a specified set of signals is delivered. A thread waits for any of
the asynchronous signals, except for SIGKILL and SIGSTOP.

A thread cannot wait for a synchronous signal. This is because synchronous signals
are the result of an error during the execution of a thread; if the thread is waiting for
a signal, then it is not executing. Therefore, a synchronous signal cannot occur for
a particular thread while it is waiting, and so the thread waits forever. POSIX
stipulates that the thread must block the signals (using the UNIX system service
sigprocmask()) it waits for before calling sigwait() .

The POSIX sigaction() Service

The DCE Threads implementation of the POSIX sigaction() service allows for
per-thread handlers to be installed for catching synchronous signals. The
sigaction() routine modifies behavior only for individual threads and works only for
synchronous signals. Setting the signal action to SIG_DFL for a specific signal will
restore the thread’s default behavior for that signal. Attempting to set a signal action
for an asynchronous signal is an error.

The itimer VTALARM

DCE Threads installs a handler for the itimer VTALARM . Therefore, VTALARM is
unavailable for use by other applications.

Alternatives to Using Signals

Avoid using UNIX signals in multithreaded programs. DCE Threads provides
alternatives to signal handling. These alternatives are discussed in more detail in
“Using Synchronization Objects” on page 129 and “Signaling a Condition Variable”
on page 130.

126 OSF® DCE Application Development Guide —Core Components

Note: In order to implement these alternatives, DCE Threads must install its own
signal handlers. These are installed when DCE Threads initializes itself,
typically on the first thread-function call. At this time, any existing signal
handlers are replaced.

Following are several reasons for avoiding signals:

v They cannot be used in a modular way in a multithreaded program.

v They are unnecessary when used as an asynchronous programming technique in
a multithreaded program.

v There are almost no threads services available at signal level.

v There is no reliable, portable way to modify predicates.

v The signal-handler interface is unsuitable for use with threads. (For example,
there is one signal action per signal per process, there is one signal mask per
process, and sigpause() blocks the whole process.)

In a multithreaded program, signals cannot be used in a modular way because, on
most current UNIX implementations, signals are inherently a process construct.
There is only one instantiation of each signal and of each signal handler routine for
all of the threads in an application. If one thread handles a particular signal in one
way, and a different thread handles the same signal in a different way, then the
thread that installs its signal handler last handles the signal. This applies only to
asynchronously generated signals; synchronous signals can be handled on a
per-thread basis using the DCE Threads sigaction() jacket.

Do not use asynchronous programming techniques in conjunction with threads,
particularly those that increase parallelism such as using timer signals and I/O
signals. These techniques can be complicated. They are also unnecessary because
threads provide a mechanism for parallel execution that is simpler and less prone to
error where concurrence can be of value. Furthermore, most of the threads routines
are not supported for use in interrupt routines (such as signal handlers), and
portions of runtime libraries cannot be used reliably inside a signal handler.

Nonthreaded Libraries

As programming with threads becomes common practice, you need to ensure that
threaded code and nonthreaded code (code that is not designed to work with
threads) work properly together in the same application. For example, you may
write a new application that uses threads (for example, an RPC server), and link it
with a library that does not use threads (and is thus not thread-safe). In such a
situation you can do one of the following:

v Work with the nonthreaded software.

v Change the nonthreaded software to be thread-safe.

Working with Nonthreaded Software

Thread-safe code is code that works properly in a threaded environment. To work
with nonthread-safe code, associate the global lock with all calls to such code.

You can implement the lock on the side of the routine user or the routine provider.
For example, you can implement the lock on the side of the routine user if you write
a new application like an RPC server that uses threads, and you link it with a library

Chapter 8. Programming with Threads 127

that does not. Or, if you have access to the nonthreaded code, the locks can be
placed on the side of the routine provider, within the actual routine. Implement the
locks as follows:

1. Associate one lock, a global lock, with execution of such code.

2. Require all of your threads to lock prior to execution of nonthreaded code.

3. Perform an unlock when execution is complete.

By using the global lock, you ensure that only one thread executes in outside
libraries, which may call each other, and in unknown code. Using a single global
lock is safer than using multiple local locks because it is difficult to be aware of
everything a library may be doing or of the interactions that library can have with
other libraries.

Making Nonthreaded Code Thread-Reentrant

Thread-reentrant code is code that works properly while multiple threads execute it
concurrently. Thread-reentrant code is thread-safe, but thread-safe code may not be
thread-reentrant. Document your code as being thread-safe or thread-reentrant.

More work is involved in making code thread-reentrant than in making code
thread-safe. To make code thread-reentrant, do the following:

1. Use proper locking protocols to access global or static variables.

2. Use proper locking protocols when you use code that is not thread-safe.

3. Store thread-specific data on the stack or heap.

4. Ensure that the compiler produces thread-reentrant code.

5. Document your code as being thread-reentrant.

Avoiding Nonreentrant Software

The following subsections discuss two methods to help you avoid the pitfalls of
nonreentrant software. These methods are as follows:

v Global lock

v Thread-specific storage

Global Lock

Use a global lock, which has the characteristics of a recursive mutex, instead of a
regular mutex when calling routines that you think are nonreentrant. (When in
doubt, assume the code is nonreentrant.)

The pthread_lock_global_np() routine is a locking protocol that is used to call
nonreentrant routines, often found in existing library packages that were not
designed to run in a multithreaded environment.

The way to call a library function that is not reentrant from a multithreaded program
is to protect the function with a mutex. If every function that calls a library locks a
particular mutex before the call and releases the mutex after the call, then the
function completes without interference. However, this is difficult to do successfully
because the function may be called by many libraries. A global lock solves this
problem by providing a universal lock. Any code that calls any nonreentrant function
uses the same lock.

128 OSF® DCE Application Development Guide —Core Components

To lock a global lock, call the pthread_lock_global_np() routine. To unlock a global
lock, call the pthread_unlock_global_np() routine.

Note: Many COBOL and FORTRAN compilers generate inherently nonreentrant
code. Many C, Ada, Pascal, and BLISS compilers generate reentrant code
by default. It is possible to write nonreentrant code in the reentrant
languages by not following a locking protocol.

Thread-Specific Storage

To avoid nonreentrancy when writing new software, avoid using global variables to
store data that is thread-specific data.

Alternatively, allocate thread-specific data on the stack or heap and explicitly pass
its address to called routines.

Avoiding Priority Inversion

Priority inversion occurs when interaction among three or more threads blocks the
highest-priority thread from executing. For example, a high-priority thread waits for a
resource locked by a low-priority thread, and the low-priority thread waits while a
middle-priority thread executes. The high-priority thread is made to wait while a
thread of lower priority (the middle-priority thread) executes.

To avoid priority inversion, associate a priority with each resource and force any
thread using that object to first raise its priority to that associated with the object.
This method of avoiding priority inversion is not a complete solution because all
threads will then block at the same ceiling priority and be unblocked in FIFO order
rather than by their actual priority.

The SCHED_OTHER (default) scheduling policy prevents priority inversion from
causing a complete blockage of the high-priority thread because the low-priority
thread is permitted to execute and release the resource. The SCHED_FIFO and
SCHED_RR policies, however, do not force resumption of the low-priority thread if
the middle-priority thread executes indefinitely.

Using Synchronization Objects

The following subsections discuss the use of mutexes to prevent two potential
problems: race conditions and deadlocks. Also discussed is why you should signal
a condition variable with the associated mutex locked.

Race Conditions

A race condition occurs when two or more threads perform an operation, and the
result of the operation depends on unpredictable timing factors; specifically, when
each thread executes and waits and when each thread completes the operation.

An example of a race condition is as follows:

1. Both A and B are executing (X = X + 1).

2. A reads the value of X (for example, X = 5).

3. B comes in and reads the value of X and increments it (making X = 6).

Chapter 8. Programming with Threads 129

4. A gets rescheduled and now increments X. Based on its earlier read operation,
A thinks (X+1 = 5+1 = 6). X is now 6. It should be 7 because it was
incremented once by A and once by B.

To avoid race conditions, ensure that any variable modified by more than one
thread has only one mutex associated with it. Do not assume that a simple add
operation can be completed without allowing another thread to execute. Such
operations are generally not portable, especially to multiprocessor systems. If it is
possible for two threads to share a data point, use a mutex.

Deadlocks

A deadlock occurs when one or more threads are permanently blocked from
executing because each thread waits on a resource held by another thread in the
deadlock. A thread can also deadlock on itself.

The following is one technique for avoiding deadlocks:

1. Associate a sequence number with each mutex.

2. Lock mutexes in sequence.

3. Do not attempt to lock a mutex with a sequence number lower than that of a
mutex the thread already holds.

Another technique, which is useful when a thread needs to lock the same mutex
more than once before unlocking it, is to use a recursive mutex. This technique
prevents a thread from deadlocking on itself.

Signaling a Condition Variable

When you are signaling a condition variable and that signal may cause the
condition variable to be deleted, it is recommended that you signal or broadcast
with the mutex locked.

The recommended coding for signaling a condition variable appears at the end of
this chapter. The following two C code fragments show coding that is not
recommended. The following C code fragment is executed by a releasing thread:

pthread_mutex_lock (m);
/* Change shared variables to allow */
/* another thread to proceed */

pthread_mutex_unlock (m); <---- Point A
pthread_cond_signal (cv); <---- Statement 1

The following C code fragment is executed by a potentially blocking thread:

pthread_mutex_lock (m);
while (!predicate ...
pthread_cond_wait (cv, m);

pthread_mutex_unlock (m);

Note: It is possible for a potentially blocking thread to be running at Point A while
another thread is interrupted. The potentially blocking thread can then see
the predicate true and therefore not become blocked on the condition
variable.

130 OSF® DCE Application Development Guide —Core Components

Signaling a condition variable without first locking a mutex is not a problem.
However, if the released thread deletes the condition variable without any further
synchronization at Point A, then the releasing thread will fail when it attempts to
execute Statement 1 because the condition variable no longer exists.

This problem occurs when the releasing thread is a worker thread and the waiting
thread is the boss thread, and the last worker thread tells the boss thread to delete
the variables that are being shared by boss and worker.

The following C code fragment shows the recommended coding for signaling a
condition variable while the mutex is locked:

pthread_mutex_lock (m);
/* Change shared variables to allow */
/* some other thread to proceed */

pthread_cond_signal (cv); <---- Statement 1
pthread_mutex_unlock (m);

Chapter 8. Programming with Threads 131

132 OSF® DCE Application Development Guide —Core Components

Chapter 9. Using the DCE Threads Exception-Returning
Interface

DCE Threads provides the following two ways to obtain information about the status
of a threads routine:

v The routine returns a status value to the thread.

v The routine raises an exception.

Before you write a multithreaded program, you must choose only one of the
preceding two methods of receiving status. These two methods cannot be used
together in the same code module.

The POSIX P1003.4a (pthreads) draft standard specifies that errors be reported to
the thread by setting the external variable errno to an error code and returning a
function value of −1. The threads reference pages document this
status-value-returning interface (see the OSF DCE Application Development
Reference). However, an alternative to status values is provided by DCE Threads in
the exception-returning interface.

This chapter introduces and provides conventions for the modular use of the
exception-returning interface to DCE Threads.

Syntax for C

Access to exceptions from the C language is defined by the macros in the
exc_handling.h file. The exc_handling.h header file is included automatically
when you include pthread_exc.h (see “Invoking the Exception-Returning Interface”
on page 135).

The following example shows the syntax for handling exceptions:

TRY
try_block

[CATCH (exception_name)
handler_block]...

[CATCH_ALL
handler_block]

ENDTRY

A try_block or a handler_block is a sequence of statements, the first of which
may be declarations, as in a normal block. If an exception is raised in the
try_block , the catch clauses are evaluated in order to see if any one matches the
current exception.

The CATCH or CATCH_ALL clauses absorb an exception; that is, they catch an
exception propagating out of the try_block , and direct execution into the associated
handler_block . Propagation of the exception, by default, then ends. Within the
lexical scope of a handler, it is possible to explicitly cause propagation of the same
exception to resume (this is called reraising the exception), or it is possible to raise
some new exception.

The RERAISE statement is allowed in any handler statements and causes the
current exception to be reraised. Propagation of the caught exception resumes.

133

The RAISE (exception_name) statement is allowed anywhere and causes a
particular exception to start propagating. For example:
TRY
sort(); /* Call a function that may raise an exception.

* An exception is accomplished by longjumping
* out of some nested routine back to the TRY
* clause. Any output parameters or return
* values of the called routine are therefore
* indeterminate.
*/

CATCH (pthread_cancel_e)
printf("Alerted while sorting\n"); RERAISE;

CATCH_ALL
printf("Some other exception while sorting\n"); RERAISE;

ENDTRY

In the preceding example, if the pthread_cancel_e exception propagates out of the
function call, the first printf is executed. If any other exception propagates out of
sort, the second printf is executed. In either situation, propagation of the exception
resumes because of the RERAISE statement. (If the code is unable to fully recover
from the error, or does not understand the error, it needs to do what it did in the
previous example and further propagate the error to its callers.)

The following shows the syntax for an epilogue:

TRY try_block
[FINALLY final_block]
ENDTRY

The final_block is executed whether the try_block executes to completion without
raising an exception, or if an exception is raised in the try_block . If an exception is
raised in the try_block , propagation of the exception is resumed after executing the
final_block .

Note that a CATCH_ALL handler and RERAISE could be used to do this, but the
epilogue code would then have to be duplicated in two places, as follows:
TRY

try_block
CATCH_ALL

final_block
RERAISE;

ENDTRY
{ final_block }

A FINALLY statement has exactly this meaning, but avoids code duplication.

Note: The behavior of FINALLY along with the CATCH or CATCH_ALL clauses is
undefined. Do not combine them for the same try_block .

Another example of the FINALLY statement is as follows:

pthread__mutex_lock (some_object.mutex);
some_object.num_waiters = some_object.num_waiters + 1;
TRY
while (! some_object.data_available)
pthread_cond_wait (some_object.condition);

/* The code to act on the data_available goes here */

134 OSF® DCE Application Development Guide —Core Components

FINALLY
some_object.num_waiters = some_object.num_waiters - 1;
pthread_mutex_unlock (some_object.mutex);

ENDTRY

In the preceding example, the call to pthread_cond_wait() could raise the
pthread_cancel_e exception. The final_block ensures that the shared data
associated with the lock is correct for the next thread that acquires the mutex.

Invoking the Exception-Returning Interface

To use the exception-returning interface, replace the first statement that follows with
the second:

#include <pthread.h>

#include <pthread_exc.h>

Operations on Exceptions

An exception is an object that describes an error condition. Operations on exception
objects allow errors to be reported and handled. If an exception is handled properly,
the program can recover from errors. For example, if an exception is raised from a
parity error while reading a tape, the recovery action may be to retry 100 times
before giving up.

The DCE Threads exception-returning interface allows you to perform the following
operations on exceptions:

v Declare and initialize an exception object

v Raise an exception

v Define a region of code over which exceptions are caught

v Catch a particular exception or all exceptions

v Define epilogue actions for a block

v Import a system-defined error status into the program as an exception

These operations are discussed in the following subsections.

Declaring and Initializing an Exception Object

Declaring and initializing an exception object documents that a program reports or
handles a particular error. Having the error expressed as an exception object
provides future extensibility as well as portability. Following is an example of
declaring and initializing an exception object:

EXCEPTION parity_error; /* Declare it */
EXCEPTION_INIT (parity_error); /* Initialize it */

Raising an Exception

Raising an exception reports an error, not by returning a value, but by propagating
an exception. Propagation involves searching all active scopes for code written to
handle the error or code written to perform scope-completion actions in case of any
error, and then causing that code to execute. If a scope does not define a handler
or epilogue block, then the scope is simply torn down as the exception propagates

Chapter 9. Using the DCE Threads Exception-Returning Interface 135

through the stack. This is sometimes referred to as unwinding the stack. DCE
Threads exceptions are terminating; there is no option to make execution resume at
the point of the error. (Execution resumes at the point where the exception was
caught.)

If an exception is unhandled, the entire application process is terminated. Aborting
the process, rather than just the faulting thread, provides clean termination at the
point of error. This prevents the disappearance of the faulting thread from causing
problems at some later point.

An example of raising an exception is as follows:

RAISE (parity_error);

Defining a Region of Code over Which Exceptions Are Caught

Defining a region of code over which exceptions are caught allows you to call
functions that can raise an exception and specify the recovery action.

Following is an example of defining an exception-handling region (without indicating
any recovery actions):

TRY {
read_tape ();
}

ENDTRY;

Catching a Particular Exception or All Exceptions

It is possible to discriminate among errors and perform different actions for each
error.

Following is an example of catching a particular exception and specifying the
recovery action (in this case, a message). The exception is reraised (passed to its
callers) after catching the exception and executing the recovery action:

TRY {
read_tape ();
}

CATCH (parity_error) {
printf ("Oops, parity error, program terminating\n");
printf ("Try cleaning the heads!\n");
RERAISE;
}

ENDTRY

Defining Epilogue Actions for a Block

A FINALLY mechanism is provided so that multithreaded programs can restore
invariants as certain scopes are unwound; for example, restoring shared data to a
correct state and releasing locks. This is often the ideal way to define, in one place,
the cleanup activities for normal or abnormal exit from a block that has changed
some invariant.

Following is an example of specifying an invariant action whether or not there is an
error:

136 OSF® DCE Application Development Guide —Core Components

lock_tape_drive (t);
TRY
TRY
read_tape ();

CATCH (parity_error)
printf ("Oops, parity error, program terminating\n");
printf ("Try cleaning the heads!\n");
RERAISE;

ENDTRY
/* Control gets here only if no exception is raised */
/* ... Now we can use the data off the tape */

FINALLY
/* Control gets here normally, or if any exception is */
raised unlock_tape_drive (t);

ENDTRY

Importing a System-Defined Error Status into the Program as an
Exception

Most systems define error messages by integer-sized status values. Each status
value corresponds to some error message text that should be expressed in the
user’s own language. The capability to import a status value as an exception
permits the DCE Threads exception-returning interface to raise or handle
system-defined errors as well as programmer-defined exceptions.

An example of importing an error status into an exception is as follows:

exc_set_status (&parity_error, EPARITY);

The parity_error exception can then be raised and handled like any other
exception.

Rules and Conventions for Modular Use of Exceptions

The following rules ensure that exceptions are used in a modular way so that
independent software components can be written without requiring knowledge of
each other:

v Use unique names for exceptions.

A naming convention makes sure that the names for exceptions that are declared
EXTERN from different modules do not clash. The following convention is
recommended:

<facility-prefix>_<error_name>_e

For example, pthread_cancel_e .

v Avoid putting code in a TRY routine that belongs before it.

The TRY only guards statements for which the statements in the FINALLY ,
CATCH, or CATCH_ALL clauses are always valid.

A common misuse of TRY is to put code in the try_block that needs to be
placed before TRY. An example of this misuse is as follows:

TRY
handle = open_file (file_name);
/* Statements that may raise an exception here */

FINALLY
close (handle);

ENDTRY

Chapter 9. Using the DCE Threads Exception-Returning Interface 137

The preceding FINALLY code assumes that no exception is raised by open_file .
This is because the code accesses an invalid identifier in the FINALLY part if
open_file is modified to raise an exception. The preceding example needs to be
rewritten as follows:

handle = open_file (file_name);
TRY
{
/* Statements that may raise an exception here */
}

FINALLY
close (handle);

ENDTRY

The code that opens the file belongs prior to TRY, and the code that closes the
file belongs in the FINALLY statement. (If open_file raises exceptions, it may
need a separate try_block .)

v Raise exceptions to their proper scope.

Write functions that propagate exceptions to their callers so that the function
does not modify any persistent process state before raising the exception. A call
to the matching close call is required only if the open_file operation is
successful in the current scope.

If open_file raises an exception, the identifier will not be written, so open_file
must not require that close be called when open_file raises an exception; that
is, open_file should not be part of the TRY clause because that means close is
called if open_file fails, and you cannot close an unopened file.

v Do not place a RETURN or nonlocal GOTO between TRY and ENDTRY.

It is invalid to use RETURN or GOTO, or to leave by any other means, a TRY,
CATCH, CATCH_ALL , or FINALLY block. Special code is generated by the
ENDTRY macro, and it must be executed.

v Use the ANSI C volatile attribute.

Variables that are read or written by exception-handling code must be declared
with the ANSI C volatile attribute. Run your tests with the optimize compiler
option to ensure that the compiler thoroughly tests your exception-handling code.

v Reraise exceptions that are not fully handled.

You need to reraise any exception that you catch, unless your handler performs
the complete recovery action for the error. This rule permits an unhandled
exception to propagate to some final default handler that prints an error message
to terminate the offending thread. (An unhandled exception is an exception for
which recovery is incomplete.)

A corollary of this rule is that CATCH_ALL handlers must reraise the exception
because they may catch any exception, and usually cannot do recovery actions
that are proper for every exception.

Following this convention is important so that you also do not absorb a cancel or
thread-exit request. These are mapped into exceptions so that exception
handling has the full power to handle all exceptional conditions from access
violations to thread exit. (In some applications, it is important to be able to catch
these to work around an erroneously written library package, for example, or to
provide a fully fault-tolerant thread.)

v Declare only static exceptions.

For compatibility with C++, you need to only declare static exceptions.

138 OSF® DCE Application Development Guide —Core Components

DCE Threads Exceptions and Definitions

Table 7 lists the DCE Threads exceptions and briefly explains the meaning of each
exception. Exception names beginning with pthread_ are raised as the result of
something happening internal to the DCE Threads facility and are not meant to be
raised by your code. Exceptions beginning with exc_ are generic and belong to the
exception facility, the underlying system, or both. The pthread-specific extensions
are listed followed by the generic extensions, each in alphabetical order.

Table 7. DCE Threads Exceptions

Exception Definition

pthread_badparam_e An improper parameter was used.

pthread_cancel_e A thread cancellation is in progress.

pthread_defer_q_full_e No space is currently available to process an
interrupt request.

pthread_existence_e The object referenced does not exist.

pthread_in_use_e The object referenced is already in use.

pthread_nostackmem_e No space is currently available to create a new
stack.

pthread_notstack_e The current stack was not created by DCE
Threads.

pthread_signal_q_full_e Unable to process condition signal from interrupt
level.

pthread_stackovf_e An attempted stack overflow was detected.

pthread_unimp_e This is an unimplemented feature.

pthread_use_error_e The requested operation is improperly invoked.

exc_decovf_e An unhandled decimal overflow trap exception
occurred.

exc_exquota_e The operation failed due to an insufficient quota.

exc_fltdiv_e An unhandled floating-point division by zero trap
exception occurred.

exc_fltovf_e An unhandled floating-point overflow trap
exception occurred.

exc_fltund_e An unhandled floating-point underflow trap
exception occurred.

exc_illaddr_e The data or object could not be referenced.

exc_insfmem_e There is insufficient virtual memory for the
requested operation.

exc_intdiv_e An unhandled integer divide by zero trap
exception occurred.

exc_intovf_e An unhandled integer overflow trap exception
occurred.

exc_nopriv_e There is insufficient privilege for the requested
operation.

exc_privinst_e An unhandled privileged instruction fault
exception occurred.

exc_resaddr_e An unhandled reserved addressing fault
exception occurred.

Chapter 9. Using the DCE Threads Exception-Returning Interface 139

Table 7. DCE Threads Exceptions (continued)

Exception Definition

exc_resoper_e An unhandled reserved operand fault exception
occurred.

exc_SIGBUS_e An unhandled bus error signal occurred.

exc_SIGEMT_e An unhandled EMT trap signal occurred.

exc_SIGFPE_e An unhandled floating-point exception signal
occurred.

exc_SIGILL_e An unhandled illegal instruction signal occurred.

exc_SIGIOT_e An unhandled IOT trap signal occurred.

exc_SIGPIPE_e An unhandled broken pipe signal occurred.

exc_SIGSEGV_e An unhandled segmentation violation signal
occurred.

exc_SIGSYS_e An unhandled bad system call signal occurred.

exc_SIGTRAP_e An unhandled trace or breakpoint trap signal
occurred.

exc_SIGXCPU_e An unhandled CPU time limit exceeded signal
occurred.

exc_SIGXFSZ_e An unhandled file-size limit exceeded signal
occurred.

exc_subrng_e An unhandled subscript out-of-range trap
exception occurred.

exc_uninitexc_e An uninitialized exception was raised.

140 OSF® DCE Application Development Guide —Core Components

Chapter 10. DCE Threads Example

The example in this chapter shows the use of DCE Threads in a C program that
performs a prime number search. The program finds a specified number of prime
numbers, then sorts and displays these numbers. Several threads participate in the
search: each thread takes a number (the next one to be checked), sees if it is a
prime, records it if it is prime, and then takes another number, and so on.

This program shows the work crew model of programming (see “Chapter 6.
Introduction to Multithreaded Programming” on page 103). The workers (threads)
increment a number (current_num) to get their next work assignment, which in this
case is the same task as before, but with a different number to check for a prime.
As a whole, the worker threads are responsible for finding a specified number of
prime numbers, at which point their work is completed.

Details of Program Logic and Implementation

The number of workers to be used and the requested number of prime numbers to
be found are defined constants. A macro is used to check for bad status (bad status
returns a value of −1), and to print a given string and the associated error value
upon bad status. Data to be accessed by all threads (mutexes, condition variables,
and so forth) are declared as global items.

Worker threads execute the prime search routine, which begins by synchronizing
with the boss (or parent) thread by using a predicate and a condition variable.
Always enclose a condition wait in a predicate loop to prevent a thread from
continuing if it receives a spurious wakeup. The lock associated with the condition
variable must be held by the thread when the condition wait call is made. The lock
is implicitly released within the condition wait call and acquired again when the
thread resumes. The same mutex must be used for all operations performed on a
specific condition variable.

After the parent sets the predicate and broadcasts, the workers begin finding prime
numbers until canceled by a fellow worker who has found the last requested prime
number. Upon each iteration, the workers increment the current number to be
worked on and take the new value as their work item. A mutex is locked and
unlocked around getting the next work item. The purpose of the mutex is to ensure
the atomicity of this operation and the visibility of the new value across all threads.
This type of locking protocol needs to be performed on all global data to ensure its
visibility and protect its integrity.

Each worker thread then determines if its current work item (a number) is prime by
trying to divide numbers into it. If the number proves to be nondivisible, it is put on
the list of primes. Cancels are explicitly turned off while working with the list of
primes in order to better control any cancels that do occur. The list and its current
count are protected by locks, which also protect the cancellation process of all other
worker threads upon finding the last requested prime. While still under the prime list
lock, the current worker checks to see if it has found the last requested prime, and
if so unsets a predicate and cancels all other worker threads. Cancels are then
reenabled. The canceling thread falls out of the work loop as a result of the
predicate that it unsets.

141

The parent thread’s flow of execution is as follows: set up the environment, create
worker threads, broadcast to them that they can start, join each thread as it
finishes, and sort and print the list of primes.

v Setting up of the environment requires initializing mutexes and the one condition
variable used in the example.

v Creation of worker threads is straightforward and utilizes the default attributes
(pthread_attr_default). Note again that locking is performed around the
predicate on which the condition variable wait loops. In this case, the locking is
simply done for visibility and is not related to the broadcast function.

v As the parent joins each of the returning worker threads, it receives an exit value
from them that indicates whether a thread exited normally or not. In this case the
exit values on all but one of the worker threads are −1, indicating that they were
canceled.

v The list is then sorted to ensure that the prime numbers are in order from lowest
to highest.

The following pthread routines are used in this example:

v pthread_cancel()

v pthread_cond_broadcast()

v pthread_cond_init()

v pthread_cond_wait()

v pthread_create()

v pthread_detach()

v pthread_exit()

v pthread_join()

v pthread_mutex_init()

v pthread_mutex_lock()

v pthread_mutex_unlock()

v pthread_setcancel()

v pthread_testcancel()

DCE Threads Example Body

The following is the DCE Threads example.
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
/*
* Constants used by the example.
*/

#define workers 5 /* Threads to perform prime check */
#define request 110 /* Number of primes to find */
/*
* Macros
*/

#define check(status,string) \
if (status == -1) perror (string)
/*
* Global data
*/

pthread_mutex_t prime_list; /* Mutex for use in accessing the prime */
pthread_mutex_t current_mutex; /* Mutex associated with current number */
pthread_mutex_t cond_mutex; /* Mutex used for ensuring CV integrity */
pthread_cond_t cond_var; /* Condition variable for thread start */

142 OSF® DCE Application Development Guide —Core Components

int current_num= -1;/* Next number to be checked, start odd */
int thread_hold= 1; /* Number associated w/condition state */
int count=0; /* Prime numbers count;/index to primes */
int primes[request];/* Store primes; synchronize access */
pthread_t threads[workers]; /* Array of worker threads */
/*
* Worker thread routine.
*
* Worker threads start with this routine, which begins with a condition
* wait designed to synchronize the workers and the parent. Each worker
* thread then takes a turn taking a number for which it will determine
* whether or not it is prime.
*
*/

void
prime_search (pthread_addr_t arg)
{
div_t div_results; /* DIV results: quot and rem */
int numerator; /* Used for determining primeness */
int denominator; /* Used for determining primeness */
int cut_off; /* Number being checked div 2 */
int notifiee; /* Used during a cancellation */
int prime; /* Flag used to indicate primeness */
int my_number; /* Worker thread identifier */
int status; /* Hold status from pthread calls */
int not_done=1; /* Work loop predicate */
my_number = (int)arg;
/*
* Synchronize threads and the parent using a condition variable,
* for which the predicate (thread_hold) will be set by the parent.
*/

status = pthread_mutex_lock (&cond_mutex);
check(status,"1:Mutex_lock bad status\n");

while (thread_hold) {
status = pthread_cond_wait (&cond_var, &cond_mutex);
check(status,"3:Cond_wait bad status\n");
}

status = pthread_mutex_unlock (&cond_mutex);
check(status,"4:Mutex_unlock bad status\n");
/*
* Perform checks on ever larger integers until the requested
* number of primes is found.
*/

while (not_done) {

/* cancellation point */
pthread_testcancel ();
/* Get next integer to be checked */
status = pthread_mutex_lock (¤t_mutex);
check(status,"6:Mutex_lock bad status\n");

current_num = current_num + 2; /* Skip even numbers */
numerator = current_num;

status = pthread_mutex_unlock (¤t_mutex);
check(status,"9:Mutex_unlock bad status\n");

/* Only need to divide in half of number to verify not prime */
cut_off = numerator/2 + 1;
prime = 1;

/* Check for prime; exit if something evenly divides */
for (denominator = 2; ((denominator < cut_off) && (prime));

denominator++) {
prime = numerator % denominator;

Chapter 10. DCE Threads Example 143

}
if (prime != 0) {

/* Explicitly turn off all cancels */
pthread_setcancel(CANCEL_OFF);

/*
* Lock a mutex and add this prime number to the list. Also,
* if this fulfills the request, cancel all other threads.
*/

status = pthread_mutex_lock (&prime_list);
check(status,"10:Mutex_lock bad status\n");

if (count < request) {
primes[count] = numerator;
count++;
}

else if (count == request) {
not_done = 0;
count++;
for (notifiee = 0; notifiee < workers; notifiee++) {
if (notifiee != my_number) {
status = pthread_cancel (threads[notifiee]);
check(status,"12:Cancel bad status\n");
}

}
}

status = pthread_mutex_unlock (&prime_list);
check(status,"13:Mutex_unlock bad status\n");
/* Reenable cancels */
pthread_setcancel(CANCEL_ON);
}

pthread_testcancel ();
}

pthread_exit (my_number);
}

main()
{
int worker_num; /* Counter used when indexing workers */
int exit_value; /* Individual worker's return status */
int list; /* Used to print list of found primes */
int status; /* Hold status from pthread calls */
int index1; /* Used in sorting prime numbers */
int index2; /* Used in sorting prime numbers */
int temp; /* Used in a swap; part of sort */
int not_done; /* Indicates swap made in sort */

* Create mutexes
*/

status = pthread_mutex_init (&prime_list, pthread_mutexattr_default);
check(status,"15:Mutex_init bad status\n");
status = pthread_mutex_init (&cond_mutex, pthread_mutexattr_default);
check(status,"16:Mutex_init bad status\n");
status = pthread_mutex_init (¤t_mutex, pthread_mutexattr_default);
check(status,"17:Mutex_init bad status\n");

/*
* Create condition variable
*/

status = pthread_cond_init (&cond_var, pthread_condattr_default);
check(status,"45:Cond_init bad status\n");

/*
* Create the worker threads.
*/

for (worker_num = 0; worker_num < workers; worker_num++) {

144 OSF® DCE Application Development Guide —Core Components

status = pthread_create (
&threads[worker_num],
pthread_attr_default,
prime_search,
(pthread_addr_t)worker_num);

check(status,"19:Pthread_create bad status\n");
}
/*
* Set the predicate thread_hold to zero, and broadcast on the
* condition variable that the worker threads may proceed.
*/

status = pthread_mutex_lock (&cond_mutex);
check(status,"20:Mutex_lock bad status\n");

thread_hold = 0;

status = pthread_cond_broadcast (&cond_var);
check(status,"20.5:cond_broadcast bad status\n");

status = pthread_mutex_unlock (&cond_mutex);
check(status,"21:Mutex_unlock bad status\n");
/*
* Join each of the worker threads inorder to obtain their
* summation totals, and to ensure each has completed
* successfully.
*
* Mark thread storage free to be reclaimed upon termination by
* detaching it.
*/

for (worker_num = 0; worker_num < workers; worker_num++) {

status = pthread_join (
threads[worker_num],
&exit_value);

check(status,"23:Pthread_join bad status\n");

if (exit_value == worker_num) printf("thread terminated normally\n");

status = pthread_detach (&threads[worker_num]);
check(status,"25:Pthread_detach bad status\n");
}

/*
* Take the list of prime numbers found by the worker threads and
* sort them from lowest value to highest. The worker threads work
* concurrently; there is no guarantee that the prime numbers
* will be found in order. Therefore, a sort is performed.
*/
not_done = 1;
for (index1 = 1; ((index1 < request) && (not_done)); index1++) {
for (index2 = 0; index2 < index1; index2++) {
if (primes[index1] < primes[index2]) {
temp = primes[index2];
primes[index2] = primes[index1];
primes[index1] = temp;
not_done = 0;
}

}
}

/*
* Print out the list of prime numbers that the worker threads
* found.
*/

printf ("The list of %d primes follows:\n", request);
printf("%d",primes[0]);

for (list = 1; list < request; list++) {

Chapter 10. DCE Threads Example 145

printf (", %d", primes[list]);
}

printf ("\n");
}

146 OSF® DCE Application Development Guide —Core Components

Part 3. DCE Remote Procedure Call

147

148 OSF® DCE Application Development Guide —Core Components

Chapter 11. Developing a Simple RPC Application

This chapter first explains how to write an interface definition in the DCE RPC
Interface Definition Language (IDL) and illustrates the basic features of IDL. As an
example, we present an interface definition for greet , a very simple application that
prints greetings from a client and a remote server. The remainder of the chapter
describes how to develop, build, and run the greet client and server programs.

The OSF DCE Application Development Guide—Introduction and Style Guide
describes how to develop a DCE application by using many of the features of DCE.
The following chapters use the term remote procedure call application (RPC
application) to mean essentially the same thing, except in this context an RPC
application concentrates on the features of the RPC technology, glossing over other
DCE issues such as security, threads, and messaging. Since the RPC mechanism
is the root technology for all DCE applications, the basic development approach is
the same.

The Remote Procedure Call Model

A remote procedure call executes a procedure located in a separate address space
from the calling code. The RPC model is a well-tested, industry-wide framework for
distributing applications. The RPC model is derived from the programming model of
local procedure calls and takes advantage of the fact that every procedure contains
a procedure declaration. The procedure declaration defines the interface between
the calling code and the called procedure. The procedure declaration defines the
call syntax and parameters of the procedure. All calls to a procedure must conform
to the procedure declaration.

Applications that use remote procedure calls look and behave much like local
applications. However, an RPC application is divided into two parts: a server, which
offers one or more sets of remote procedures, and a client, which makes remote
procedure calls to RPC servers. A server and its clients generally reside on
separate systems and communicate over a network. RPC applications depend on
the RPC runtime to control network communications for them. The DCE RPC
runtime supports additional tasks, such as finding servers for clients and managing
servers.

A distributes application uses dispersed computing resources such as CPUs,
databases, devices, and services. The following are examples:

v A calendar-management application that allows authorized users to access the
personal calendars of other users.

v A graphics application that processes data on central CPUs and displays the
results on workstations.

v A manufacturing application that shares information about assembly components
among design, inventory, scheduling, and accounting programs located on
different computers.

DCE RPC meets the basic requirements of a distributed application, including

v Clients finding the appropriate servers

v Data conversion for operating in a heterogeneous environment

v Network communications

149

Distributed applications include tasks such as managing communications, finding
servers, providing security, and so forth. A standalone distributed application needs
to perform all of these tasks itself. Without a convenient mechanism for these
distributed computing tasks, writing distributed applications is difficult, expensive,
and error-prone.

DCE RPC software provides the code, called stubs, and the RPC runtime that
perform distributed computing tasks for your applications. This code and the runtime
libraries are linked with client and server application code to form an RPC
application.

Table 8 shows the basic tasks for the client and server of a distributed application.
Calling the procedure and executing the remote procedure, shown in bold text, are
performed by your application code (just as in a local application) but here they are
in the client and server address spaces. For the other tasks, some are performed
automatically by the stubs and RPC runtime, while others are performed by the
RPC runtime via API calls in your application.

Table 8. Basic Tasks of an RPC Application
Client Tasks Server Tasks

1. Select network protocols.
2. Register RPC interfaces.
3. Register endpoints in endpoint map.
4. Advertise RPC interfaces and objects in

the namespace.
5. Listen for calls.
6. Find compatible servers that offer the

procedures.
7. Call the remote procedure .
8. Establish a binding with the server.
9. Convert input arguments into network

data.
10. Transmit arguments to the server’s

runtime.
11. Receive a call.
12. Disassemble network data and convert

input arguments into local data.
13. Locate and invoke the called procedure.
14. Execute the remote procedure .
15. Convert the output arguments and

return value into network data.
16. Transmit results to the client’s runtime.
17. Receive results.
18. Disassemble network data and convert

output arguments into local data.
19. Return results and control to calling

code.

RPC Application Code

An RPC server or client contains application code, one or more RPC stubs, and the
RPC runtime. RPC application code is the code written for a specific RPC
application by the application developer. Application code implements and calls
remote procedures, and also calls any RPC runtime routines the application needs.
An RPC stub is an interface-specific code module that uses an RPC interface to
pass and receive arguments. A server and a client contain complementary stubs for

150 OSF® DCE Application Development Guide —Core Components

each RPC interface they share. The DCE RPC runtime manages communications
for RPC applications. In addition, the DCE RPC runtime supports an application
programming interface (API) used by RPC application code to enable RPC
applications to set up their communications, manipulate information about servers,
and perform optional tasks such as remotely managing servers and accessing
security information.

Figure 16 shows the relationship of application code, stubs, and the RPC runtime in
the server and client portions of an RPC application. The arrows show the direction
calls are made by pointing to the called code.

RPC application code differs for servers and clients. Minimally, server application
code contains the remote procedures that implement one RPC interface, and the
corresponding client contains calls to those remote procedures.

Stubs

The stub performs basic support functions for remote procedure calls. For instance,
stubs prepare input and output arguments for transmission between systems with
different forms of data representation. The stubs use the RPC runtime to handle the
transmission between the client and server. The client stub can also use the
runtime to find servers for the client.

When a client application calls a remote procedure, the client stub first prepares the
input arguments for transmission. The process for preparing arguments for
transmission is known as marshalling. Marshalling converts call arguments into a
byte-stream format and packages them for transmission. Upon receiving call
arguments, a stub unmarshalls them. Unmarshalling is the process by which a stub
disassembles incoming network data and converts it into application data by using a
format that the local system understands. Marshalling and unmarshalling both occur
twice for each remote procedure call; that is, the client stub marshalls input
arguments and unmarshalls output arguments, and the server stub unmarshalls
input arguments and marshalls output arguments. Marshalling and unmarshalling
permit client and server systems to use different data representations for equivalent

RPC Client

Runtime Calls

Calling Code

Client Stub

RPC Runtime

RPC Server

Runtime Calls

Remote Procedures

Server Stub

RPC Runtime

Application
Code

RPC Interface

Code Provided
by RPC

Mechanisms

Figure 16. The Parts of an RPC Application

Chapter 11. Developing a Simple RPC Application 151

data. For example, the client system can use ASCII characters and the server
system can use EBCDIC characters, as shown in Figure 17.

The DCE IDL compiler (a tool for DCE application development) generates stubs by
compiling an RPC interface definition written by application developers. The
compiler generates marshalling and unmarshalling routines for platform-independent
IDL data types.

To build the client for an RPC application, a developer links client application code
with the client stubs of all the RPC interfaces the application uses. To build the
server, the developer links the server application code with the corresponding
server stubs.

The RPC Runtime

In addition to one or more RPC stubs, every RPC server and RPC client is linked
with a copy of the RPC runtime. Runtime operations perform tasks such as
controlling communications between clients and servers and finding servers for
clients on request. An interface’s client and server stubs exchange arguments
through their local RPC runtimes. The client runtime transmits remote procedure
calls to the server. The server runtime receives the calls and dispatches each call to
the appropriate server stub. The server runtime sends the call results to the client
runtime. The DCE RPC runtime supports the RPC API used by RPC application
code to call runtime routines.

Server application code must also contain server initialization code that calls RPC
runtime routines when the server is starting up and shutting down. Client application
code can also call RPC runtime routines. Server and client application code can
also contain calls to RPC stub-support routines. Stub-support routines allow
applications to manage programming tasks such as allocating and freeing memory.

RPC Application Components That Work Together

Figure 18 on page 153 shows the roles of application code, RPC stubs, and RPC
runtimes during a remote procedure call.

Client Stub Server Stub

Byte-stream Format

Input argument

Output argument

ASCII

ASCII

marshalling

unmarshalling marshalling

unmarshalling

EBCDIC

EBCDIC

Figure 17. Marshalling and Unmarshalling Between ASCII and EBCDIC Data

152 OSF® DCE Application Development Guide —Core Components

The following steps describe the interrelationships of the components of RPC
applications, as shown in Figure 18:

1. The client’s application code invokes a remote procedure call, passing the input
arguments to the stub for the particular RPC interface.

2. The client’s stub marshalls the input arguments and dispatches the call to the
client’s RPC runtime.

3. The client’s RPC runtime transmits the input arguments to the server’s RPC
runtime, which dispatches the call to the server stub for the RPC interface of the
called procedure.

4. The server’s stub unmarshalls the input arguments and passes them to the
called remote procedure.

5. The procedure executes and then returns any results (output arguments or a
return value or both) to the server’s stub.

6. The server’s stub marshalls the results and returns them to the server’s RPC
runtime.

7. The server’s RPC runtime transmits the results to the client’s RPC runtime,
which dispatches them to the correct client stub.

8. The client’s stub unmarshalls output arguments and returns them to the calling
code.

Output Arguments/return value

Input Arguments

RPC Client

1

2

3

4

6

7

8

RPC Server

5

RPC Runtime

Server Stub

Remote Procedures

Client Stub

RPC Runtime

Calling Code

Figure 18. Interrelationships During a Remote Procedure Call

Chapter 11. Developing a Simple RPC Application 153

Overview of DCE RPC Development Tasks

The tasks involved in developing an RPC application resemble those involved in
developing a local application. As an RPC developer, you perform the following
basic tasks:

1. Design your application, deciding what procedures you need, which will be
remote procedures, and how the remote procedures will be grouped into RPC
interfaces.

2. Use the Universal Unique Identifier (UUID) generator to generate a UUID for
each new interface.

3. Use the IDL to describe the RPC interfaces for the planned data types and
remote procedures.

4. Use the DCE IDL compiler to generate the client and server stubs. (The IDL
compiler can invoke the C compiler to create the stub object code.) Figure 19
illustrates this task.

Note: Optionally, instead of generating stub object code (which is not portable),
the IDL compiler can generate the stubs as ANSI C compliant source
code.

5. Write or modify application code by using a compatible programming language,
that is, a language that can be linked with C and can invoke C procedures, so
the application code works with the stubs.

Application code includes several kinds of code, as follows:

a. Remote procedure calls

b. Remote procedure implementations

c. Initialization code (calls to RPC stub-support or runtime routines)

d. Any non-RPC code your application requires

6. Generate object code from application code.

7. Create an executable client and server from the object files. Figure 20 on
page 155 illustrates this task.

For the client, link object code of the client stub(s) and the client application with
the RPC runtime and any other needed runtime libraries.

Client
stub

Server
stub

IDL Compiler

Interface
definition

file

Figure 19. Generating Stubs

154 OSF® DCE Application Development Guide —Core Components

For the server, link object code for the server stub(s), the initialization routines,
and the set(s) of remote procedures with the RPC runtime and any other
needed runtime libraries.

8. After initial testing, distribute the new application by separately installing the
server and client executable images on systems on the network.

Writing an Interface Definition

Traditionally, calling code and called procedures share the same address space. In
an RPC application, the calling code and the called remote procedures are not
linked; rather, they communicate indirectly through an RPC interface. An RPC
interface is a logical grouping of operations, data types, and constants that serves
as a contract for a set of remote procedures. DCE RPC interfaces are compiled
from formal interface definitions written by application developers using IDL.

The first step in developing a distributed application is to write an interface definition
file in IDL. The IDL compiler, idl , uses the interface definition to generate a header
file, a client stub file, and a server stub file. The IDL compiler produces header files
in C and can produce stubs as C source files or as object files.

For some applications, you may also need to write an Attribute Configuration File
(ACF) to accompany the interface definition. If an ACF exists, the IDL compiler
interprets the ACF when it compiles the interface definition. Information in the ACF
is used to modify the code that the compiler generates. (The greet example does
not require an ACF.)

The remainder of this section briefly explains how to create an interface definition
and gives simple examples of each kind of IDL declaration. For a detailed
description of IDL, see “Chapter 18. Interface Definition Language” on page 357.
For information on the IDL compiler, see the idl(1rpc) reference page.

An IDL interface definition consists of a header and a body. The following example
shows the interface definition for the greet application:

/*
* greet.idl
*
* The "greet" interface.
*/

Calling
code

Client

Client
stub

Server
stub

Server

Server
initialization
code

Remote
procedure
code

RPC and
other DCE
runtime
libraries

RPC and
other DCE
runtime
libraries

Linker Linker

Figure 20. Building a Simple Client and Server

Chapter 11. Developing a Simple RPC Application 155

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)]

interface greetif
{
const long int REPLY_SIZE = 100;

void greet(
[in] handle_t h,
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_SIZE]

);
}

The header of each RPC interface contains a UUID, which is a hexadecimal
number that uniquely identifies an entity. A UUID that identifies an RPC interface is
known as an interface UUID. The interface UUID ensures that the interface can be
uniquely identified across all possible network configurations. In addition to an
interface UUID, each RPC interface contains major and minor version numbers.
Together, the interface UUID and version numbers form an interface identifier that
identifies an instance of an RPC interface across systems and through time.

The interface body can contain the following constructs:

v Import declarations (not shown)

v Constant declarations (REPLY_SIZE)

v Data type declarations (not shown)

v Operation declarations (void greet(...);)

IDL declarations resemble declarations in ANSI C. IDL is purely a declarative
language, so, in some ways, an IDL interface definition is like a C header file.
However, an IDL interface definition must specify the extra information that is
needed by the remote procedure call mechanism. Most of this information is
expressed via IDL attributes. IDL attributes can apply to types, to type members, to
operations, to operation parameters, or to an interface as a whole. An attribute is
represented in [] (brackets) before the item to which it applies. In the greet.idl
example, the [in, string] attributes associated with the client_greeting array
means the parameter is for input only and that the array of characters has the
properties of strings.

A comment can be inserted at any place in an interface definition where whitespace
is permitted. IDL comments, like C comments, begin with /* (a slash and an
asterisk) and end with */ (an asterisk and a slash).

RPC Interfaces That Represent Services

The simplest RPC application uses only one RPC interface. However, an
application can use multiple RPC interfaces, and, frequently, an integral set of RPC
interfaces work together as an RPC service. An RPC server is a logical grouping of
one or more RPC interfaces. For example, you can write a calendar server that
contains only a personal calendar interface or a calendar server that contains
additional RPC interfaces such as a scheduling interface for meetings.

Different servers can share one or more RPC interfaces. For example, an
administrative-support application can include an RPC interface from a calendar
service.

156 OSF® DCE Application Development Guide —Core Components

An RPC interface exists independently of specific applications. Each RPC interface
can be implemented by any set of procedures that conforms to the interface
definition. The operations of an interface are exactly the same for all
implementations of the same version of the interface. This makes it possible for
clients from different implementations to call the same interface, and servers from
different implementations to offer the same interface.

Figure 21 shows the role of RPC interfaces in remote procedure calls. This client
contains calling code that makes two remote procedure calls. The first is a remote
procedure call to Procedure A. The second is a remote procedure call to Procedure
B.

Clients can use any practical combination of RPC interfaces, whether offered by the
same or different servers. For this example, using a database access interface, a
client on a graphics workstation can call a remote procedure on a database server
to fetch data from a central database. Then, using a statistics interface, the client
can call a procedure on another server on a parallel processor to analyze the data
from the central database and return the results to the client for display.

Generating an Interface UUID

The first step in building an RPC application is to generate a skeletal interface
definition file and a UUID for the interface. Every interface in an RPC application
must have a UUID. When you define a new interface, you must generate a new
UUID for it.

Typically, you run uuidgen with the -i option, which produces a skeletal interface
definition file and includes the generated UUID for the interface. For example, the
following command creates a file chess.idl :

uuidgen -i > chess.idl

The contents of the file are as follows:

Database Server

Statistics Server

Procedure A

Procedure B

A ()

B ()

Client

A ()

B ()

RPC Interfaces

Figure 21. Role of RPC Interfaces

Chapter 11. Developing a Simple RPC Application 157

[
uuid(443f4b20-a100-11c9-baed-08001e0218cb),
version(1)
]
interface INTERFACENAME {

}

The first part of the skeletal definition is the header, which specifies a UUID, a
version number, and a name for the interface. The last part of the definition is { }
(an empty pair of braces); import, constant, type, and operation declarations go
between these braces.

By convention, the names of interface definition files end with the suffix .idl . The
IDL compiler constructs names for its output files based on the interface definition
filename and uses the following default suffixes:

v .h for header files

v _cstub.o for client stub files

v _sstub.o for server stub files

For example, compilation of a chess.idl interface definition file would produce a
chess.h header file, a chess_cstub.o client stub file, and a chess_sstub.o server
stub file. (The IDL compiler creates C language intermediate files and by default
invokes the C compiler to produce object files, but it can also retain the C language
files.)

For more information on the UUID generator, see the uuidgen(1rpc) reference
page.

Naming the Interface

After you have used uuidgen to generate a skeletal interface definition, replace the
dummy string INTERFACENAME with the name of your interface.

By convention, the name of an interface definition file is the same as the name of
the interface it defines, with the suffix .idl appended. For example, the definition for
a bank interface would reside in a bank.idl interface definition file, and, if the
application required an ACF, its name would be bank.acf .

The IDL compiler incorporates the interface name in identifiers it constructs for
various data structures and data types in the .h file, so the length of an interface
name can be at most 17 characters. (Most IDL identifiers have a maximum length
of 31 characters.)

Specifying Interface Attributes

Interface attributes are defined within [] (brackets) in the header of the interface
definition. The definition for any remote interface needs to specify the uuid and
version interface attributes, so these are included in the skeletal definition that
uuidgen produces.

If an interface is exported by servers on well-known endpoints, these endpoints
must be specified via the endpoint attribute. Interfaces that use dynamic endpoints

158 OSF® DCE Application Development Guide —Core Components

do not have this attribute. (A well-known endpoint is a stable address on the host,
while a dynamic endpoint is an address that the RPC runtime requests when the
server is started.)

The interface definition language can be used to specify procedure prototypes for
any application, even if the procedures are never used remotely. If all of the
procedures of an interface are called only locally and never remotely, the interface
can be given the local attribute. Since local calls do not have any network
overhead, the local attribute causes the compiler to generate only a header file, not
stubs, for the interface.

Import Declarations

The IDL import declaration specifies another interface definition whose types and
constants are used by the importing interface. (Similar to the include declaration in
C.)

The import declaration allows you to collect declarations for types and constants
that are used by several interfaces into one common file. For example, if you are
defining two database interfaces named dblookup and dbupdate , and these
interfaces have many data types and constants in common, you can declare those
data types and constants in a dbcommon.idl file and import this file in the
dblookup.idl anddbupdate.idl interface definitions. For example:

import "dbcommon.idl";

By default, the IDL compiler resolves relative pathnames of imported files by looking
first in the current working directory and then in the system IDL directory. The -I
option of the IDL compiler allows you to specify additional directories to search. You
can thereby avoid putting absolute pathnames in your interface definitions. For
example, if an imported file has the absolute pathname
/dbproject/src/dbconstants.idl , then the IDL compiler option -I/dbproject/src
allows you to import the file by its leaf name, dbconstants.idl .

Constant Declarations

The IDL const declaration allows you to declare integer, Boolean, character, string,
and null pointer constants, some of which are shown in the following examples:

const short TEN = 10;
const boolean VRAI = TRUE;
const char* JSB = "Johann Sebastian Bach";

Type Declarations

To support application development in a variety of languages and to support the
special needs of distributed applications, IDL provides an extensive set of data
types, including the following:

v Simple types, such as integers, floating-pointing numbers, characters, Booleans,
and the primitive binding-handle type handle_t (usually equivalent to
rpc_binding_handle_t)

v Predefined types, including ISO international character types and the error status
type error_status_t

v Constructed types, such as strings, structures, unions, arrays, pointers, and pipes

Chapter 11. Developing a Simple RPC Application 159

The IDL typedef declaration lets you give a name to any types you construct.

The general form of a type declaration is

typedef [type_attribute,...] type_specifier type_declarator,...;

where the bracketed list of type attributes is optional. The type_specifier specifies a
simple type, a constructed type, a predefined type, or a type previously named in
the interface. Each type_declarator is a name for the type being defined. As in C,
arrays and pointers are declared by the type_declarator constructs [] (brackets)
and * (an asterisk).

The following type declaration uses the IDL’s simple data type, long (a 32-bit data
type), to define the integer32 integer type:

typedef long integer32;

The type_specifier constructs for structures and unions permit the application of
attributes to members. In the following example, one member of a structure is a
conformant array (an array without a fixed upper bound), and the size_is attribute
names another member of the structure that at runtime provides information about
the size of the array:

typedef struct {
long dsize;
[size_is(dsize)] float darray[];
} dataset;

Operation Declarations

Operation declarations specify the signature of each operation in the interface,
including the operation name, the type of data returned, and the types of all
parameters passed (if any) in a call.

The general form of an operation declaration is
[operation_attribute, ...] type_specifier operation_identifier ([parameter_declaration,...]);

where the bracketed list of operation attributes is optional. Among the possible
attributes of an operation are idempotent , broadcast , and maybe , which specify
semantics to be applied by the RPC runtime mechanism when the operation is
called. If an operation when called once can safely be executed more than once,
the IDL declaration of the operation may specify the idempotent attribute;
idempotent semantics allow remote procedure calls to execute more efficiently by
letting the underlying RPC mechanism retry the procedure if it deems it necessary.

The type_specifier specifies the type of data returned by the operation.

The operation_identifier names the operation. Although operation names are
arbitrary, a common convention is to use the name of an interface as a prefix for
the names of its operations. For example, a bank interface may have operations
named bank_open , bank_close , bank_deposit , bank_withdraw , and
bank_balance .

Each parameter_declaration in an operation declaration declares a parameter of the
operation. A parameter_declaration takes the following form:

160 OSF® DCE Application Development Guide —Core Components

[parameter_attribute, ...] type_specifier parameter_declarator

Every parameter attribute must have at least one of the parameter attributes in or
out to specify whether the parameter is passed as an input, as an output, or in both
directions. The type_specifier and parameter_declarator specify the type and name
of the parameter.

Output parameters must be passed by reference and therefore must be declared as
pointers via the pointer operator * (an asterisk) or an array.

If you want an interface to always use explicit binding handles, the first parameter
of each operation declaration must be a binding handle, as in the following
example:

void greet(
[in] handle_t h,
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_SIZE]

);

However, if you want applications to use the ACF feature of an implicit binding
handle (or even an automatic binding handle) for some or all procedures, operation
declarations must not have binding handle parameters in the interface definition:

void greet_no_handle(
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_SIZE]

);

This form of operation declaration is the most flexible because applications can
always specify explicit, implicit, or automatic binding handles through an ACF.

Running the IDL Compiler

After you have written an interface definition, run the IDL compiler to generate
header and stub files. The compiler offers many options that, for example, allow you
to choose what C compiler or C preprocessor commands are run, what directories
are searched for imported files, which of the possible output files are generated,
and how the output files are named.

The greet.idl interface definition can be compiled by the following command:

idl greet.idl

This compilation produces a header file (greet.h), a client stub file (greet_cstub.o),
and a server stub file (greet_sstub.o . For complete information on running the IDL
compiler, see the idl(1rpc) reference page.

Writing the Client Code

This section describes the client program for the greet application, whose interface
definition was shown earlier in this chapter.

The client performs the following major steps:

Chapter 11. Developing a Simple RPC Application 161

1. It checks the command-line arguments for an entry name to use for its search in
the namespace.

2. It calls rpc_ns_binding_import_begin() to start the search in the namespace.

3. It calls rpc_ns_binding_import_next() to obtain a binding to a server.

4. It calls the greet remote procedure with a string greeting.

5. It prints the reply from the server.

The greet_client.c module is as follows:
/*
* greet_client.c
*
* Client of "greet" interface.
*/

#include <stdio.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"

int
main(
int argc,
char *argv[]

)
{
rpc_ns_handle_t import_context;
handle_t binding_h;
error_status_t status;
idl_char reply[REPLY_SIZE];

if (argc < 2) {
fprintf(stderr, "usage: greet_client <CDS pathname>\n");
exit(1);

}
/*
* Start importing servers using the name specified
* on the command line.
*/

rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],
greetif_v1_0_c_ifspec, NULL, &import_context, &status);

ERROR_CHECK(status, "Can't begin import");
/*
* Import the first server (we could iterate here,
* but we'll just take the first one).
*/

rpc_ns_binding_import_next(import_context, &binding_h, &status);
ERROR_CHECK(status, "Can't import");
/*
* Make the remote call.
*/

greet(binding_h, (idl_char *) "hello, server", reply);

printf("The Greet Server said: %s\n", reply);
}

The module first includes greet.h , the header file for the greet interface generated
by the IDL compiler.

162 OSF® DCE Application Development Guide —Core Components

In this example, after each call to an RPC runtime routine, the client program calls
the application-specific ERROR_CHECK macro. If the status from the RPC runtime
routine is not error_status_ok , dce_error_inq_text() is called and the error
message is printed.

As specified in the greet.idl interface definition, the greet application uses explicit
handles. The client therefore passes a binding handle of type handle_t as the first
parameter of the greet procedure. At runtime, when the client makes its first remote
procedure call, the handle is only partially bound because the client does not know
the particular endpoint on which the server is listening; for delivery of its requests to
the server endpoint, the client depends on the endpoint mapping service of the
dced process on the server host.

Writing the Server Code

The following subsections describe the server program for the greet application.
The greet_server program takes one argument and is invoked as follows:

greet_server CDS_pathname

The greet_server program uses the input argument to establish an entry for itself in
the DCE CDS namespace.

The greet server program has two user-written modules:

v The greet_server.c module contains the server main function and performs the
initialization and registration required to export the greet interface.

v The greet_manager.c module contains the code that actually implements the
greet operation.

The greet_server.c Source Code

Most applications should use the DCE convenience routines for server initialization
routines (routines that begin with dce_server_) to prepare servers to listen for
remote procedure calls. These routines are simple to use, prepare a server so that
dced can manage it, and they allow enough flexibility to do most typical
initializations. However, for detailed control, applications can also use the
lower-level RPC API to do server initialization. In this chapter, we describe how to
use the RPC API for server initialization.

In this section, the greet_server.c module is described and shown in successive
pieces.

Including idl-Generated Headers

Like greet_client.c , the greet_server.c module includes greet.h so that constants,
data types, and procedure prototypes are available in the application. For example:
/*
* greet_server.c
*
* Main program (initialization) for "greet" server.
*/

#include <stdio.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>

Chapter 11. Developing a Simple RPC Application 163

#include "greet.h"
#include "util.h"
int
main(
int argc,
char *argv[]

)
{
unsigned32 status;
rpc_binding_vector_t *binding_vector;

if (argc < 2) {
fprintf(stderr, "usage: greet_server <CDS pathname>\n");
exit(1);

}

Registering the Interface

The server calls rpc_server_register_if() , supplying its interface specifier (defined
in greet.h), to register each interface with the RPC runtime:

/*
* Register interface with RPC runtime.
*/

rpc_server_register_if(greetif_v1_0_s_ifspec, NULL, NULL,
&status);

ERROR_CHECK(status, "Can't register interface");

Selecting Protocol Sequences

The server calls rpc_server_use_all_protseqs() to obtain endpoints on which to
listen for remote procedure calls:

/*
* Use all protocol sequences that are available.
*/

rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default,
&status);

ERROR_CHECK(status, "Can't use protocol sequences");

Obtaining the Server’s Binding Handles

To obtain a vector of binding handles that it can use when registering endpoints, the
server calls rpc_server_inq_bindings() :

/*
* Get the binding handles generated by the runtime.
*/

rpc_server_inq_bindings(&binding_vector, &status);
ERROR_CHECK(status, "Can't get bindings for server");

Registering Endpoints

A call to rpc_ep_register() registers the server endpoints in the endpoint mapper
service of the local dced :

/*
* Register assigned endpoints with endpoint mapper.
*/

rpc_ep_register(
greetif_v1_0_s_ifspec, binding_vector, NULL,
(unsigned_char_p_t) "greet server version 1.0", &status);

ERROR_CHECK(status, "Can't register with endpoint map");

164 OSF® DCE Application Development Guide —Core Components

Exporting to CDS

To advertise itself to clients, the server calls rpc_ns_binding_export() . The server
entry for the namespace is obtained from the argument input when the server is
invoked (argv[1]).

/*
* Export ourselves into the CDS namespace.
*/

rpc_ns_binding_export(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],
greetif_v1_0_s_ifspec, binding_vector, NULL, &status);

ERROR_CHECK(status, "Can't export into CDS namespace");

Listening for Calls

To begin listening for remote procedure call requests, the server calls
rpc_server_listen() .

/*
* Start listening for calls.
*/

printf("Listening...\n");

rpc_server_listen(rpc_c_listen_max_calls_default, &status);
ERROR_CHECK(status, "Can't start listening for calls");

The greet_manager.c Source Code

The greet_manager.c module includes greet.h and it also defines the routine
greet , as follows:
/*
* greet_manager.c
*
* Implementation of "greet" interface.
*/

#include <stdio.h>
#include "greet.h"

void
greet(
handle_t h,
idl_char *client_greeting,
idl_char *server_reply

)
{
printf("The client says: %s\n", client_greeting);

strcpy(server_reply, "Hi, client!");
}

Building the greet Programs

The client side of the greet application is the greet_client program, which is built
from the following:

v The user-written greet_client.c client module

v The IDL-compiler-generated greet_cstub.o client stub module

v The user-written util.c module containing the error-checking routine

Chapter 11. Developing a Simple RPC Application 165

v DCE libraries

The server side of the greet application is the greet_server program, which is built
from the following:

v The user-written greet_server.c server module

v The user-written greet_manager.c manager module

v The user-written util.c module containing the error-checking routine

v The IDL-compiler-generated greet_sstub.o server stub module

v DCE libraries

These programs can be built by make with a makefile such as the following:
DCEROOT = /opt/dcelocal
CC = /bin/cc
IDL = idl
LIBDIRS = -L${DCEROOT}/usr/lib
LIBS = -ldce
LIBALL = ${LIBDIRS} ${LIBS}
INCDIRS = -I. -I${DCEROOT}/share/include
CFLAGS = -g ${INCDIRS}
IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet_client greet_server

greet.h greet_cstub.o greet_sstub.o: greet.idl
${IDL} ${IDLFLAGS} greet.idl

greet_client: greet.h greet_client.o util.o greet_cstub.o
${CC} -o greet_client greet_client.o greet_cstub.o util.o \
${LIBALL}

greet_server: greet.h greet_server.o greet_manager.o util.o \
greet_sstub.o

${CC} -o greet_server greet_server.o greet_manager.o \
greet_sstub.o util.o ${LIBALL}

greet_client.c greet_server.c util.c: util.h
greet_manager.c greet_client.c greet_server.c:
greet.h

Running the greet Programs

Running the greet application involves starting the server program and then running
the client program. Before starting the server program, you need write access to the
CDS namespace and you need to ensure that the dced process is running on the
server host. For more information, see the dced(8dce) reference page.

You start the server program by using a CDS entry such as the following:
greet_server /.:/greet_entry
Listening...

You start the client on another host (or even the same host) by using the same
CDS entry as follows:

greet_client /.:/greet_entry

The following message is printed on the server’s host:

The client says: hello, server

166 OSF® DCE Application Development Guide —Core Components

The following reply is printed on the client’s host:

The Greet Server said: Hi, client!

The server program can be terminated at any time by a signal, which on many
systems can be generated by <Ctrl-C> .

When applications such as greet execute, many errors can occur that have nothing
to do with your own code. In general, errors that occur when a remote procedure
call executes are reported as exceptions. For example, exceptions that the client
side of greet_client could raise if the server suddenly and unexpectedly halts
include (but are not limited to) rpc_x_comm_failure and rpc_x_call_timeout .
Other ways to respond to these errors are available through the comm_status and
fault_status attributes in an interface definition or attribute configuration file.
Explanations of these attributes appear in “Chapter 19. Attribute Configuration
Language” on page 425. Also, see “Chapter 17. Topics in RPC Application
Development” on page 313, which explains the guidelines for error handling.

In addition, “Part 2. DCE Threads” on page 101 of this guide contains information
about the macros (such as those specified by TRY, CATCH, and ENDTRY
statements) for exception handling. If an exception occurs that the client application
does not handle, it causes the client to terminate with an error message. The
client’s termination could include a core dump or other system-dependent
error-reporting method. Detailed explanations of RPC status codes and RPC
exceptions are in the OSF DCE Problem Determination Guide.

Chapter 11. Developing a Simple RPC Application 167

168 OSF® DCE Application Development Guide —Core Components

Chapter 12. RPC Fundamentals

DCE RPC provides a call environment that behaves essentially like a local call
environment. However, some special requirements are imposed on remote
procedure calls by the remoteness of calling code to the called procedure.
Therefore, a remote procedure call may not always behave exactly like a local
procedure call.

This chapter discusses the following topics:

v Universal unique identifiers

v Communications protocols

v Binding information

v Endpoints

v Execution semantics

v Communication failures

v Scaling applications

v RPC Objects

Distributed applications have the following implications:

v Client/server relationship—binding

Like a local procedure call, a remote procedure call depends on a static
relationship between the calling code and the called procedure. In a local
application, this relationship is established by linking the calling and called code.
Linking gives the calling code access to the address of each procedure to be
called. Enabling a remote procedure call to go to the right procedure requires a
similar relationship (called a binding) between a client and a server. A binding is
a temporary relationship that depends on a communications link between the
client and server RPC runtimes. A client establishes a binding over a specific
protocol sequence to a specific host system and endpoint.

v Independent address spaces

The calling code and called remote procedure reside in different address spaces,
generally on separate systems. The calling and called code cannot share global
variables or other global program state such as open files. All data shared
between the caller and the called remote procedure must be specified as
procedure parameters in the IDL specification. Unlike a local procedure call that
commonly uses the call-by-reference passing mechanism for input/output
parameters, remote procedure calls with input/output parameters have
copy-in/copy-out semantics due to the differing address spaces of the calling and
called code. These two passing mechanisms are only slightly different, and most
procedure calls are not sensitive to the differences between call-by-reference and
copy-in/copy-out semantics.

v Independent failure

Distributing a calling program and the called procedures to physically separate
machines increases the complexity of procedure calls. Remoteness introduces
issues such as a remote system crash, communications failures, naming and
binding issues, security problems, and protocol incompatibilities. Such issues can
require error handling that is unnecessary for local procedure calls. Also, as with
local procedure calls, remote procedure calls are subject to execution errors that
arise from the procedure call itself.

169

Universal Unique Identifiers

Each UUID contains information, including a timestamp and a host identifier.
Applications use UUIDs to identify many kinds of entities. DCE RPC identifies
several uses of UUIDs, according to the kind of entities each identifies:

v Interface UUID

A UUID that identifies a specific RPC interface. An interface UUID is declared in
an RPC interface definition (an IDL file) and is a required element of the
interface. For example:

uuid(2fac8900-31f8-11ca-b331-08002b13d56d),

v Object UUID

A UUID that identifies an entity for an application; for example, a resource, a
service, or a particular instance of a server. An application defines an RPC object
by associating the object with its own UUID known as an object UUID. The
object UUID exists independently of the object, unlike an interface UUID. A
server usually generates UUIDs for its objects as part of initialization. A given
object UUID is meaningful only while a server is offering the corresponding RPC
object to clients.

To distinguish a specific use of an object UUID, a UUID is sometimes labeled for
the entity it identifies. For example, an object UUID that is used to identify a
particular instance of a server is known as an instance UUID.

v Type UUID

A UUID that identifies a set of RPC objects and an associated manager (the set
of remote procedures that implements an RPC interface for objects of that type).
This is often called a manager type UUID.

Servers can create object and type UUIDs by calling the uuid_create() routine.

Communications Protocols

A communications link depends on a set of communications protocols. A
communications protocol is a clearly defined set of operational rules and
procedures for communications.

Communications protocols include a transport protocol (from the Transport Layer of
the OSI network architecture) such as the Transmission Control Protocol (TCP) or
the User Datagram Protocol (UDP); and the corresponding network protocol (from
the OSI Network Layer) such as the Internet Protocol (IP).

For an RPC client and server to communicate, their RPC runtimes must use at
least one identical communications protocol, including a common RPC protocol,
transport protocol, and network protocol. An RPC protocol is a communications
protocol that supports the semantics of the DCE RPC API and runs over specific
combinations of transport and network protocols. DCE RPC provides two RPC
protocols: the connectionless RPC protocol and the connection-oriented RPC
protocol.

v Connectionless (Datagram) RPC protocol

This protocol runs over a connectionless transport protocol such as UDP. The
connectionless protocol supports broadcast calls.

v Connection-oriented RPC protocol

This protocol runs over a connection-oriented transport protocol such as TCP.

170 OSF® DCE Application Development Guide —Core Components

Each binding uses a single RPC protocol and a single pair of transport and network
protocols. Only certain combinations of communications protocols are functionally
valid (are actually useful for interoperation); for instance, the RPC connectionless
protocol cannot run over connection-oriented transport protocols such as TCP. DCE
RPC supports the following combinations of communications protocols (as provided
by OSF):

v RPC connection-oriented protocol over the Internet Protocol Suite, Transmission
Control Protocol (TCP/IP)

v RPC connectionless protocol over the Internet Protocol Suite, User Datagram
Protocol (UDP/IP)

Binding Information

Binding information includes a set of information that identifies a server to a client
or a client to a server. Each instance of binding information contains all or part of a
single address. The RPC runtime maintains binding information for RPC servers
and clients. To make a specific instance of locally maintained binding information
available to a given server or client, the runtime creates a local reference known as
a binding handle. Servers and clients use binding handles to refer to binding
information in runtime calls or remote procedure calls. A server obtains a complete
list of its binding handles from its RPC runtime. A client obtains one binding handle
at a time from its RPC runtime. Figure 22 illustrates a binding.

Binding information includes the following components:

v Protocol sequence

A valid combination of communications protocols presented by the runtime as a
character string. Each protocol sequence includes a network protocol, a transport
protocol, and an RPC protocol that works with them.

An RPC server tells the runtime which protocol sequences to use when listening
for calls to the server, and its binding information contains those protocol
sequences.

v Network addressing information

Includes the network address and the endpoint of a server.

– The network address identifies a specific host system on a network. The
format of the address depends on the network protocol portion of the protocol
sequence.

– The endpoint acts as the address of a specific server instance within the host
system. The format of the endpoint depends on the transport protocol portion
of the protocol sequence. For each protocol sequence a server instance uses,

Server's SystemClient's System

Client
Server

Network
address

Endpoint

Network
RPC & comm. protocols

Figure 22. A Binding

Chapter 12. RPC Fundamentals 171

it requires a unique endpoint. A given endpoint can be used by only one
server per system, assigned by the local system on a first-come, first-served
basis.

v Transfer Syntax

The server’s RPC runtime must use a transfer syntax that matches one used by
the client’s RPC runtime. A transfer syntax is a set of encoding rules used for the
network transmission of data and the conversion to and from different local data
representations. A shared transfer syntax enables communications between
systems that represent local data differently. DCE RPC currently uses a single
transfer syntax, Network Data Representation (NDR). NDR encodes data into a
byte stream for transmission over a network. A transfer syntax such as NDR
enables machines with different formats to exchange data successfully. (The
DCE RPC communications protocols support the negotiation of transfer syntax.
However, at present, the outcome of a transfer-syntax negotiation is always
NDR.)

v RPC protocol version numbers

The client and server runtimes must use compatible versions of the RPC protocol
specified by the client in the protocol sequence. The major version number of the
RPC protocol used by the server must equal the specified major version number.
The minor version number of the RPC protocol used by the server must be
greater than or equal to the specified minor version number.

Server Binding Information

Binding information for a server is known as server binding information. A binding
handle that refers to server binding information is known as a server binding
handle. The use of server binding handles differs on servers and clients.

Server Binding On a Server

Servers use a list of server binding handles. Each represents one way to establish
a binding with the server. Before exporting binding information to a namespace, a
server tells the RPC runtime which RPC protocol sequences to use for the RPC
interfaces the server supports. For each protocol sequence, the server runtime
creates one or more server binding handles. Each server binding handle refers to
binding information for a single potential binding, including a protocol sequence, a
network (host) address, an endpoint (server address), a transfer syntax, and an
RPC protocol version number.

Server Binding On a Client

A client uses a single server binding handle that refers to the server binding
information the client needs for making one or more remote procedure calls to a
given server. Server binding information on a client contains binding information for
one potential binding.

On a client, server binding information always includes a protocol sequence and the
network address of the server’s host system. However, sometimes a client obtains
binding information that lacks an endpoint, resulting in a partially bound binding
handle. A partially bound binding handle corresponds to a system, but not to a
particular server instance. When a client makes a remote procedure call using a
partially bound binding handle, the client runtime gets an endpoint either from the
interface specification (if one a well-known endpoint is specified) or from the
endpoint map on the server’s system. Bindings almost never use well-known
endpoints. Adding the endpoint to the server binding information results in a fully

172 OSF® DCE Application Development Guide —Core Components

bound binding handle, which contains an endpoint and corresponds to a specific
server instance. Note clients can get a partially bound handle even if a server is not
running.

Defining a Compatible Server

Compatible binding information identifies a server whose communications
capabilities (RPC protocol and protocol version, network and transport protocols,
and transfer syntax) are compatible with those of the client. Compatible binding
information is sufficient for establishing a binding. However, binding information is
insufficient for ensuring that the binding is to a compatible server.

The additional information required that a client imposes on the RPC runtime
includes an RPC interface identifier and an object UUID, as follows:

v Interface identifier

The interface UUID and version numbers of an RPC interface:

– Interface UUID: The interface UUID, unlike the interface name, clearly
identifies the RPC interface across time and space.

– Interface version number: The combined major and minor version numbers
identify one generation of an interface.

Version numbers allow multiple versions of an RPC interface to coexist. Strict
rules govern valid changes to an interface and determine whether different
versions of an interface are compatible. For a description of these rules, see
“Chapter 18. Interface Definition Language” on page 357 on IDL syntax and
usage.

The runtime uses the version number of an RPC interface to decide whether
the version offered by a given server is compatible with the version requested
by a client. The offered and requested interface are compatible under the
following conditions:

- The interface requested by the client and the interface offered by the server
have the same major version number.

- The interface requested by the client has a minor version number less than
or equal to that of the interface offered by the server.

v Object UUID

A UUID that identifies a particular object.

An object is a distinct computing resource, such as a particular database, a
specific RPC service that a remote procedure can access, and so on; for
example, personal calendars may be RPC objects to a calendar service.
Accessing an object requires including its object UUID with the binding
information used for establishing a binding. A client can request a specific RPC
object when requesting new binding information, or the client can ask the runtime
to associate an object UUID with binding information the client already has
available.

Sometimes the object UUID is the nil UUID; when calling an RPC runtime
routine, you can represent the nil UUID by specifying NULL. In this case, the
object UUID does not represent any object. Often, however, the object UUID
represents a specific RPC object and is a non-nil value. To create a non-nil
object UUID, a server calls the uuid_create() routine, which returns a UUID that
the server then associates with a particular object.

If a client requests a non-nil object UUID, the client runtime uses that UUID as
one of the criteria for a compatible server. When searching the namespace for

Chapter 12. RPC Fundamentals 173

server binding information, the client runtime looks for the requested interface
identifier and object UUID. The endpoint map service uses this same information
to help find a compatible server.

Figure 23 illustrates the aspects of a server and its system that are identified by the
client’s server binding information, requested interface identifier, and requested
object UUID.

How Clients Obtain Server Binding Information

When a client initiates a series of related remote procedure calls, the RPC runtime
tries to establish a binding, which requires the address of a compatible server. An
RPC client can use compatible binding information obtained from either a
namespace or from a string representation of the binding information. Using the
namespace is the most common approach.

Establishing a binding also involves requesting an endpoint from the endpoint
mapper of the server’s system.

Binding Information in a Namespace

Usually, a server exports binding information for one or more of its interface
identifiers and its object UUIDs, if any, to an entry in a namespace. The namespace
is provided by a directory service such as the DCE Cell Directory Service (CDS).
The namespace entry to which a server exports binding information is known as a
server entry.

To learn about a server that offers a given RPC interface and object, if any, a client
can import binding information from a server entry belonging to that server. A client
can delegate the finding of servers from the namespace to a stub. In this case, if a
binding is accidentally broken, the RPC runtime automatically tries to establish a
new binding with a compatible server.

Advantages of using a directory service to obtain binding information include the
following:

v It is convenient for large RPC environments. Initial overhead of understanding
and configuring a directory service is balanced by easier management over time.

v Management of data in a directory service is more automated.

v It is effective in dynamic end-user environments.

v Binding information is stored in a named server entry. Data can be dynamic.
Servers can automatically place their binding information in the namespace.

System

Network
address

Endpoint

Server

Interface

Object

Network
Comm. protocols

Object UUID

Interface UUID & version numbers

Protocol sequence

Figure 23. Information Used to Identify a Compatible Server

174 OSF® DCE Application Development Guide —Core Components

Changes in binding information are made once by a server or administrator and
then propagated automatically by the directory service to the replicas of the data.

v There is centralized administration of data in a namespace. Sophisticated access
control is possible.

v It supports searching for and choosing services based on an interface identifier
and object UUID. Clients access data by specifying an entry name. Groups and
profiles in directory service entries provide search paths for importing binding
information.

Binding Information in Strings

Occasionally, a client can receive binding information in the form of a string (also
known as a string binding). The client can receive a string binding (or the
information to compose a string binding) from many sources; for example, an
application-specific environment variable, a file, or the application user. The client
must call the RPC runtime to convert a string binding to a binding handle. The
runtime returns this binding handle to the client to use for remote procedure calls.

String representations of binding information have several possible components.
The binding information includes an RPC protocol sequence, a network address,
and an endpoint. The protocol sequence is mandatory; the endpoint is optional; and
for a server on the client’s system, the network address is optional. Also, a string
binding optionally associates an object UUID with the binding information.

The string bindings have the following format:
obj-uuid@rpc-protocol-seq:network-addr[endpoint,option-name=opt-value...]

or
obj-uuid@rpc-protocol-seq:network-addr[endpoint=endpoint,option-name=opt-value...]

The following example string binding contains all possible components:
b07122e2-83df-11c9-be29-08002b1110fa@ncacn_ip_tcp:130.105.1.1.123[2001]

The following example string binding contains only the protocol sequence and
network address:

ncacn_ip_tcp:130.105.1.1.123

For more information about the string binding format, see the RPC introduction
reference page, rpc_intro(3rpc) .

String bindings are useful in small environments; for example, when developing and
testing an application. However, string bindings are inappropriate as the principal
way of providing binding information to clients. Applications should use the directory
service to advertise binding information.

Client Binding Information for Servers

When making a remote procedure call, the client runtime provides information about
the client to the server runtime. This information, known as client binding
information, includes the following information:

v The address where the call originated (network address and endpoint)

v The RPC protocol used by the client for the call

v The object UUID that a client requests

Chapter 12. RPC Fundamentals 175

v The client authentication information (if present)

The server runtime maintains the client binding information and makes it available
to the server application by a client binding handle. Figure 24 illustrates the
relationships between what a client supplies when establishing a binding and the
corresponding client binding information.

The callouts in the figure refer to the following:

1. The requested object UUID, which may be the nil UUID

2. Client authentication information, which is optional

3. The address from which the client is making the remote procedure call, which
the communications protocols supply to the server

A server application can use the client binding handle to ask the RPC runtime about
the object UUID requested by a client or about the client’s authentication
information.

Endpoints

An endpoint is the address of a specific server instance on a host system. Two
kinds of endpoints exist: well-known endpoints and dynamic endpoints.

Well-Known Endpoints

A well-known endpoint is a preassigned stable address that a server uses every
time it runs. Well-known endpoints typically are assigned by a central authority
responsible for a transport protocol; for example, the Internet Assigned Numbers

Client's system

Client

Appl.
code

Runtime

Key:

Object
UUID

Network
address

Endpoint

Object

Protocols
Network

Server's system

Server

= Contributes to client binding information
= Refers to client binding information

Client
authorization
information

binding
Client

information

Client
binding handle

1

2

3

Figure 24. Client Binding Information Resulting from a Remote Procedure Call

176 OSF® DCE Application Development Guide —Core Components

Authority assigns endpoint values for the IP family of protocols. If you use
well-known endpoints for a server, you should register them with the appropriate
authority.

Well-known endpoints can be declared for an interface (in the interface declaration)
or for a server instance, as follows:

v Any interface definition can be associated with one or more endpoints, along with
the RPC protocol sequence corresponding to each endpoint (the endpoint
attribute).

When compiling an interface, the IDL compiler stores each combination of
endpoint and protocol sequence in the interface specification. If a call is made
using binding information that lacks an endpoint, the RPC runtime automatically
looks in the interface specification for a well-known endpoint specified for the
protocol sequence obtained from the binding information. If the interface
specification contains an appropriate endpoint, the runtime adds it to the binding
information.

v Alternatively, server-specific, well-known endpoints can be defined in server
application code. When asking the runtime to use a given protocol sequence, the
server supplies the corresponding endpoints to the RPC runtime. On a given
system, each endpoint can be used by only one server at a time. If server
application code contains a hardcoded endpoint or the server’s installers always
specify the same well-known endpoint, only one instance of the server can run
per system.

When a server exports its binding information to a namespace server entry, the
export operation includes any well-known endpoints within the server binding
information stored in the server entry.

Dynamic Endpoints

A dynamic endpoint is requested and assigned at runtime. For some transport
protocols, the number of endpoints is limited; for example, TCP/IP and UDP/IP use
a 16-bit number for endpoints, which allows 65,535 endpoints. When the supply of
endpoints for a transport protocol is limited, the protocol ensures an adequate
supply of endpoints by limiting the portion that can be reserved as well-known
endpoints. A transport, on request, dynamically makes its remaining endpoints
available on a first-come, first-served basis to specific processes such as RPC
server instances.

When a server requests dynamic endpoints, the server’s RPC runtime asks the
operating system for a unique dynamic endpoint for each protocol sequence the
server is using. For a given protocol sequence, the local implementation of the
corresponding transport protocol provides the requested endpoints. When an RPC
server with dynamic endpoints stops listening, its dynamic endpoints are released.

Because of the transient nature of dynamic endpoints, the NSI of the RPC API does
not export them to a namespace; however, NSI does export the rest of the server’s
binding information. References to expired endpoints would remain indefinitely in
server entries, causing clients to import and try, unsuccessfully, to establish bindings
to nonexistent endpoints. Therefore, the export operation removes dynamic
endpoints before adding binding information to a server entry; the exported server
address contains only network addressing information. The import operation returns
a partially bound binding handle. The client makes its first remote procedure call
with the partially bound handle, and the endpoint mapper service on the server’s
system resolves the binding handle with the endpoint of a compatible server. To

Chapter 12. RPC Fundamentals 177

make dynamic endpoints available to clients that are using partially bound binding
handles, a server must register its dynamic endpoints in the local endpoint map.

By using object UUIDs, a server can ensure that a client that imports a partially
bound handle obtains one of a particular server’s endpoints. This requires that the
server do the following:

1. Specify a list of one or more object UUIDs that are unique to the server.

2. Export the list of object UUIDs.

3. Supply the list of object UUIDs to the endpoint map service when registering
endpoints.

4. If the server provides different managers that implement an interface for
different types of objects, the server must specify the type of each object.

To request binding information for a particular server, a client specifies one of the
server’s object UUIDs, which is then associated with the server binding information
the client uses for making a remote procedure call.

Note: If a client requests the nil object UUID when importing from a server entry
containing object UUIDs, the client runtime selects one of those object
UUIDs and associates it with the imported server binding information. This
object UUID guarantees that the call goes to the server that exported the
binding information and object UUID to the server entry.

Execution Semantics

Execution semantics identify the ability of a procedure to execute more than once
during a given remote procedure call. The communications environment that
underlies remote procedure calls affects their reliability. A communications link can
break for a variety of reasons such as a server termination, a remote system crash,
a network failure, and so forth; all invocations of remote procedures risk disruption
due to communications failures. However, some procedures are more sensitive to
such failures, and their impact depends partly on how reinvoking an operation
affects its results.

To maximize valid outcomes for its operations, the operation declarations of an RPC
interface definition indicate the effect of multiple invocations on the outcome of the
operations.

Table 9 summarizes the execution semantics for DCE RPC calls.

Table 9. Execution Semantics for DCE RPC Calls

Semantics Meaning

at-most-once The operation must execute either once, partially, or not at all; for
example, adding or deleting an appointment from a calendar can
use at-most-once semantics. This is the default execution
semantics for remote procedure calls.

idempotent The operation can execute more than once; executing more than
once using the same input arguments produces identical outcomes
without undesirable side effects; for example, an operation that
reads a block of an immutable file is idempotent . DCE RPC
supports maybe semantics and broadcast semantics as special
forms of idempotent operations.

Semantics Meaning

178 OSF® DCE Application Development Guide —Core Components

Table 9. Execution Semantics for DCE RPC Calls (continued)

Semantics Meaning

maybe The caller neither requires nor receives any
response or fault indication for an operation,
even though there is no guarantee that the
operation completed. An operation with
maybe semantics is implicitly idempotent
and must lack output parameters.

broadcast The operation is always broadcast to one
server on each host system on the local
network, rather than delivered to a specific
server, and one reply is returned to the
client. An operation with broadcast
semantics is implicitly idempotent .

The broadcast capabilities of RPC runtime have a number of distinct limitations:

v Not all systems and networks support broadcasting. In particular, broadcasting is
not supported by the RPC connection-oriented protocol.

v Broadcasts are limited to hosts on the local network.

v Broadcasts make inefficient use of network bandwidth and processor cycles.

v The RPC runtime library does not support at-most-once semantics for broadcast
operations; it applies idempotent semantics to all such operations.

v The input arguments for broadcast calls are limited to 944 bytes.

Communications Failures

If a server detects a communications failure during a remote procedure call, the
server runtime attempts to terminate the now orphaned call by sending a cancel to
the called procedure. A cancel is a mechanism by which a client thread of execution
notifies a server thread of execution (the to be canceled thread) to terminate as
soon as possible. A cancel sent by the RPC runtime after a communications failure
initiates orderly termination for a remote procedure call. (For a brief discussion of
how cancels work with remote procedure calls, see the discussions with respect to
Threads.)

Applications that use context handles to establish a client context require a context
rundown procedure to enable the server to clean up client context when it is no
longer needed. The name of the context rundown procedure is determined from the
type name of the context handle declared in the interface definition; this ensures
that the stub knows about the procedure in the server application code. If a
communications link with a client is lost while a server is maintaining context for the
client, the RPC runtime will inform the server to invoke the context rundown
procedure. For a more thorough discussion of context handles see “Chapter 17.
Topics in RPC Application Development” on page 313.

Scaling Applications

Unlike local applications, RPC applications require network resources, which are
possible bottlenecks to scaling an RPC application. RPC clients and servers require
network resources that are not required by local programs. The main network
resources to consider are network bandwidth, endpoints, network descriptors (the
identifiers of potential network channels such as UNIX sockets), kernel buffers and,

Chapter 12. RPC Fundamentals 179

for a connection-oriented transport, the connections. Also, RPC applications place
extra demands on system resources such as memory buffers, various quotas, and
the CPU.

The number of remote procedure calls that a server can support depends on
various factors, such as the following:

v The resources of the server and the network

v The requirements of each call

v The number of calls that can be concurrently offered at some level of service

v The performance requirements

An accurate analysis of the requirements of a given server involves detailed work
load and resource characterization and modeling techniques. Although
measurement of live configurations under load will offer the best information,
general guidelines apply. You should consider the connection, buffering, bandwidth,
and CPU resources as the most likely RPC bottlenecks to scaling. Use these
application requirements to scale resources.

Many system implementations limit the number of network connections per process.
This limit provides an upper bound on the number of clients that can be served
concurrently using the connection-oriented protocol. Some UNIX based systems set
this limit at 64. However, except for applications that use context handles, the
connection-oriented RPC runtime allows pooling of connections. Pooling permits
simultaneously supporting more clients than the maximum number of connections,
provided they do not all make calls at the same instant and occasionally can wait
briefly.

RPC Objects

DCE RPC enables clients to find servers that offer specific RPC objects. An RPC
object is an entity that an RPC server defines and identifies to its clients.
Frequently, an RPC object is a distinct computing resource such as a particular
database, directory, device, process, or processor. Identifying a resource as an
RPC object enables an application to ensure that clients can use an RPC interface
to operate on that resource. An RPC object can also be an abstraction that is
meaningful to an application such as a service or the location of a server.

RPC objects are defined by application code. The RPC runtime provides substantial
flexibility to applications about whether, when, and how they use RPC objects. RPC
applications generally use RPC objects to enable clients to find and access a
specific server. When servers are completely interchangeable, using RPC objects
may be unnecessary. However, when clients need to distinguish between two
servers that offer the same RPC interface, RPC objects are essential. If the servers
offer distinct computing resources, each server can identify itself by treating its
resources as RPC objects. Alternatively, each server can establish itself as an RPC
object that is distinct from other instances of the same server.

RPC objects also enable a single server to distinguish among alternative
implementations of an RPC interface, as long as each implementation operates on
a distinct type of object. To offer multiple implementations of an RPC interface, a
server must identify RPC objects, classify them into types, and associate each type
with a specific implementation.

180 OSF® DCE Application Development Guide —Core Components

The set of remote procedures that implements an RPC interface for a given type of
object is known as a manager. The tasks performed by a manager depend on the
type of object on which the manager operates. For example, one manager of a
queue-management interface may operate on print queues, while another manager
may operate on batch queues.

Chapter 12. RPC Fundamentals 181

182 OSF® DCE Application Development Guide —Core Components

Chapter 13. Basic RPC Routine Usage

This chapter introduces a number of basic DCE RPC routines for directory service,
communications, and authentication operations and discusses major usage issues
important for developing DCE RPC applications.

This chapter discusses the following topics:

v Overview of basic runtime routines

v Server initialization tasks

v How clients find servers

Overview of the RPC Routines

This section summarizes the major concerns of RPC communications, name
service interface (NSI) usage, and authenticated RPCs.

Basic Operations of RPC Communications

The DCE RPC runtime provides the following communications operations for RPC
applications:

v Managing communications for RPC applications

As part of server initialization, a server sets up its communications capabilities by
a series of calls to the RPC runtime. These runtime calls register the server’s
RPC interfaces, tell the RPC runtime what combination of communications
protocols to use for the server, and register the endpoints of the server for each
of its interfaces. After completing these and any other initialization tasks, the
server tells the runtime to begin listening for incoming calls.

v Managing binding information

A variety of communications operations allow servers to access and manipulate
binding information. In addition, a set of communications operations enables
applications to manipulate string representations of binding information (string
bindings).

Basic Operations of the NSI

The NSI routines perform operations on a namespace for RPC applications. The
fundamental operations include the following:

v Creating and deleting entries in namespaces

v Exporting

A server uses the NSI export operation to place binding information associated
with its RPC interfaces and objects into the namespace used by the RPC
application.

v Importing

Clients can search for exported binding information associated with an interface
and object by using the NSI import operation or lookup operation. These two
operations are collectively referred to as the NSI search operations.

v Unexporting

The unexport operation enables a server to remove some or all of its binding
information from a server entry.

v Managing information in a namespace

183

Applications use the NSI interface to place information about server entries into a
namespace and to inquire about and manage that information.

Basic Operations of Authenticated RPCs

The authenticated RPC routines provide a mechanism for establishing secure
communications between clients and servers.

To engage in authenticated RPC, a client and server must agree on the
authentication service to be used. The server’s responsibility is to register its
principal name and the authentication service to be supported with the RPC
runtime. The client’s responsibility is to establish the authentication service, a given
protection level, and an authorization service for the server binding handle. The
protection level determines the degree of protection applied to individual messages
between the client and server. The authorization service determines the form in
which the client’s credentials will be presented to the server (for access checking).

Once authenticated RPC has been established between a client and server, the
client issues remote procedure calls in the usual fashion, with all authentication and
protection being handled by the DCE Security Service and the RPC runtime.

Table 10 relates several of the RPC runtime operations just discussed with specific
routines or sets of routines.

Table 10. Basic Runtime Routines

Description of Operation Usage Routine Name(s)

Communications Routines

Set the type of an RPC object with
the RPC runtime

Server rpc_object_set_type()

Register RPC interfaces Server rpc_server_register_if()

Select RPC protocol sequences Server rpc_network_inq_protseqs() ,
rpc_server_use_*protseq*_...()

Obtain server binding handles Server rpc_server_inq_bindings()

Register endpoints Server rpc_ep_register() ,
rpc_ep_register_no_replace()

Unregister endpoints Server rpc_ep_unregister()

Listen for calls Server rpc_server_listen()

Manipulate string representations
of binding information (string
bindings)

Client rpc_binding_from_string_binding()

Client, Server rpc_binding_to_string_binding() ,
rpc_string_binding_compose() ,
rpc_string_binding_parse()

Change the RPC object in server
binding information

Client rpc_binding_set_object()

Convert a client binding handle to a
server binding handle

Server rpc_binding_server_from_client()

Name Service Interface Routines

Export binding information to a
namespace

Server rpc_ns_binding_export()

184 OSF® DCE Application Development Guide —Core Components

Table 10. Basic Runtime Routines (continued)

Description of Operation Usage Routine Name(s)

Search a namespace for binding
information

Client rpc_ns_binding_import_...() ,
rpc_ns_binding_lookup_...() ,
rpc_ns_binding_select()

Authentication Routines

Authentication and authorization Server, Client rpc_*auth...()

Server Initialization Using the RPC Routines

Before a server can receive any remote procedure calls, it should usually initialize
itself by calling the dce_server_register() routine so that the server is properly
recognized by DCE. However, servers can instead use a series of the lower-level
RPC runtime routines. The server initialization code, written by the application
developer, varies among servers. However, every server must set up its
communications capabilities, which usually involves most of the following tasks:

1. Assigning types to objects

2. Registering at least one interface

3. Specifying which protocol sequences the server will use

4. Obtaining a list of references to a server’s binding information (a list of binding
handles)

5. Registering endpoints

6. Exporting binding information to a server entry or entries in the namespace

7. Listening for remote procedure calls

8. Performing cleanup tasks including unregistering endpoints

The following pseudocode illustrates the calls a server makes to accomplish these
basic initialization tasks:

/* Initialization tasks */

rpc_object_set_type(...);
rpc_server_register_if(...);
rpc_server_use_all_protseqs(...);
rpc_server_inq_bindings(...);
rpc_ep_register(...);
rpc_ns_binding_export(...);
rpc_server_listen(...);

/* Cleanup tasks */

rpc_ep_unregister(...);

Assigning Types to Objects

An object type is a mechanism for associating a set of RPC objects and the
manager whose remote procedures implement an RPC interface for those objects.
Object types allow an application to cluster objects, such as computing resources,
according to any relevant criteria. For example, a single accounting interface can be
implemented to operate on accounting databases that contain equivalent
information but that are formatted differently; each database format represents a
distinct type.

Chapter 13. Basic RPC Routine Usage 185

To simultaneously offer alternative implementations of an RPC interface for different
types of objects, a server uses alternative managers. Servers that implement each
of their interfaces with only one manager can usually avoid the tasks associated
with assigning object types. However, when a server offers multiple managers, each
manager must be dedicated to operating on a separate type of object. In this case,
a server must classify some or all of its objects into types; for example, a calendar
application that specifies one non-nil type UUID for departmental calendars and
another non-nil type UUID for personal calendars.

By default, objects have the nil type. Only a server that implements different
managers for different objects or sets of objects needs to type classify its RPC
objects. To type classify an object, a server associates the object UUID of the
object with a single type UUID by calling the rpc_object_set_type() procedure
separately for each object. To create a UUID, a server calls the uuid_create()
routine.

The exact implementation of a manager can vary with the type of object on which
each manager operates. For example, a queue-management interface may be
implemented to manage print queues as objects in one case and to manage batch
queues as objects in another. Figure 25 illustrates the use of type UUIDs to identify
two types of managers.

When the server receives an incoming call that specifies an object UUID, the server
dispatches the call to the manager for the type to which the object belongs. For
information on how a type is used to select a manager for an incoming call, see
“Chapter 17. Topics in RPC Application Development” on page 313.

Manager A (operates on objects of first type)

Type UUID:
4086B9D4-FB6C-11C9-B09A-08002B0F4528

Procedure get_sum

Procedure get_sums

Type UUID:
E5E46D28-FB6A-11C9-881D-08002B0F4528

Procedure get_sum

Procedure get_sums

Manager B (operates on objects of second type)

Figure 25. Manager Types

186 OSF® DCE Application Development Guide —Core Components

Registering Interfaces

A server calls the rpc_server_register_if() routine to tell the RPC runtime about a
specific RPC interface. Registering an interface informs the runtime that the server
is offering that interface and makes it available to clients. A server can register any
number of interfaces with the RPC runtime by calling the rpc_server_register_if()
routine once for each set of procedures, or manager, that implements an interface.

To offer more than one manager for an interface, a server must register each
manager separately.

When registering an interface, the server provides the following information:

v Interface specification

This is a reference to information about an RPC interface as offered by its server
stub. The DCE IDL compiler generates an interface specification as part of the
stub code. For a specific version of an interface, all managers use the same
interface specification. Information in an interface specification that concerns
application developers includes the following:

– The interface identifier (UUID and major and minor version numbers)

– The supported transfer syntaxes

– A list of any well-known endpoints (and their associated protocol sequences)
specified in the interface definition (.idl) file

– The interface’s default manager entry point vector (manager EPV), if present

A default manager EPV, constructed using the operation names of the
interface definition, is typically generated for stubs by the DCE IDL compiler
(the --no_mepv compiler option suppresses this feature).

v A type UUID for the manager

Each implementation of an interface, a manager, is represented by a type UUID.

v A manager EPV for the interface

A server can register a given interface more than once by specifying a different
type UUID and manager EPV each time it calls rpc_server_register_if() .

A manager EPV is a list of the addresses (the entry points of the remote
procedures provided by the manager) that represent the location of each remote
procedure implementation. A manager EPV must contain exactly one entry point
for each procedure defined in the interface definition.

The server can use the default manager EPV only once, and only for a manager
that uses the procedure names as they are declared in the interface definition.
For any additional manager of the RPC interface, (and if the server needs to
rename the implemented procedures), the server must create and register a
unique manager EPV. Also, each manager must be associated with a distinct
type UUID.

Selecting RPC Protocol Sequences

A server can inquire about whether the local RPC runtime supports a specific
protocol sequence by using the rpc_network_is_protseq_valid() routine. The
server can also use the rpc_network_inq_protseqs() routine to ask the RPC
runtime for a list of all protocol sequences supported by both the RPC runtime and
the operating system.

To prepare to receive remote procedure calls, a server uses
rpc_server_use_all_protseqs() or rpc_server_use_protseq() calls to tell the RPC

Chapter 13. Basic RPC Routine Usage 187

runtime to use at least one protocol sequence. For each protocol combination, the
RPC runtime creates one or more binding handles with dynamic endpoints on which
the server will listen for remote procedure calls. The server then can use a list of
these binding handles to register dynamic endpoints in the endpoint map and to
export its binding information (except the endpoints) to the name service.

As an option, an interface can contain one or more well-known endpoints, each of
which is accompanied by a protocol sequence. A server uses the
rpc_server_use_all_protseqs_if() , rpc_server_use_protseq_if() , or
rpc_server_use_protseq_ep() , to notify the RPC runtime about which protocol
sequence and well-known endpoint combinations will be used.

A server can use any protocol sequence declared in an interface endpoint
declaration, or the server can ignore the endpoint declarations, as long as it
registers at least one endpoint.

Obtaining a List of Server Binding Handles

After a server passes to the RPC runtime the protocol sequences over which it will
listen for remote procedure calls, the RPC runtime constructs server binding
handles. Each binding handle refers to a complement of binding information that
defines one potential binding; that is, a specific RPC protocol sequence, RPC
protocol major version, network address, endpoint, and transfer syntax that an RPC
client can use to establish a binding with an RPC server.

Before registering endpoints or exporting binding information, a server must obtain
a list of its binding handles from the RPC runtime by using the
rpc_server_inq_bindings() routine. The server passes this list back to the runtime
as an argument when registering endpoints and exporting binding information.

Registering Endpoints

Servers can use well-known or dynamic endpoints with any protocol sequence.

When a server asks the runtime to use a dynamic endpoint with a protocol
sequence, the runtime asks the operating system to generate the endpoint. To use
the dynamic endpoints, a server must register the server’s binding information,
including the endpoints, by using the rpc_ep_register() routine. For each
combination of RPC interface identifier, object UUID, and binding information that
the server offers, the endpoint mapper service creates an element in the local
endpoint map.

A server does not necessarily need to register well-known endpoints; however, by
registering well-known endpoints, the server ensures that clients can always obtain
them. Registration also makes the endpoints accessible to administrators, who can
use the DCE control program, dcecp , to show the map elements of an endpoint
map by using the endpoint show operation.

Servers can remove map elements from a local endpoint map by using the
rpc_ep_unregister() routine. Servers should unregister endpoints after they stop
listening.

188 OSF® DCE Application Development Guide —Core Components

Making Binding Information Accessible to Clients

A server needs to make its binding information accessible to clients. Usually, a
server uses the NSI export operation to place its binding information into a server
entry. However, it is also possible for servers to make string bindings accessible to
clients. In any case, the server obtains its binding information from the runtime by
first using the rpc_server_inq_bindings() routine to ask for a list of binding
handles.

Using String Bindings to Provide Binding Information

While implementing and debugging a server program you may temporarily want to
communicate binding information to clients by using string bindings. This allows a
server to establish a client/server relationship without registering endpoints in the
local endpoint map or exporting binding information to a namespace.

The server can convert into a string each binding handle in the list obtained from
the rpc_server_inq_bindings() call by calling rpc_binding_to_string_binding() .
The resulting string binding is always fully bound. The server then makes some or
all of its string bindings available to clients somehow; for example, by placing the
string bindings in a file to be read by clients or users or both.

Exporting Binding Information

Servers can export binding information (and interface identifiers) or objects or both
by calling the rpc_ns_binding_export() routine. To export binding information
associated with a given RPC interface, a server uses an interface handle. The
interface handle is created by the IDL compiler as a reference to information about
the interface that the compiler stores in an interface specification.

To refer to binding information, the application code obtains a list of server binding
handles from the RPC runtime and passes the list to the export operation. The list
contains binding handles for all the protocol sequence and endpoint combinations
that the server has requested; it does this by calling the use-protocol-sequence
operations. However, the server can remove any of those binding handles from the
list before exporting it. This enables a server to export the binding information
associated with a subset of its binding handles.

To export object UUIDs, a server application must provide a list of object UUIDs for
the RPC objects it offers. The server can generate these object UUIDs itself or
obtain them from some application-specific source such as an object-UUID
database. All object UUIDs in a given server entry are associated with every
interface UUID and server address in the entry.

Figure 26 on page 190 illustrates how server binding handles in the application code
refer to server binding information in the runtime, which is exported to the name
service.

Chapter 13. Basic RPC Routine Usage 189

A server entry must belong exclusively to a server running on a given host. If there
are identical, interchangeable instances of a server on the host, they can share a
single set of server entries. However, if clients need to distinguish between
coexisting instances of a server (for example, when each offers a different RPC
object), each instance requires its own server entry.

Note: CDS databases are subject to access control. To access entries in a CDS
database, you need access control list (ACL) permissions. Depending on the
NSI operation, you need ACL permissions to the parent directory, the CDS
object entry, or both. If you need ACL permissions, see your CDS
administrator.

The ACL permissions are as follows:

v To create an entry, you need insert permission to the parent directory.

v To read an entry, you need read permission to the CDS object entry.

v To write to an entry, you need write permission to the CDS object entry.

v To delete an entry, you need delete permission either to the CDS object entry or
to the parent directory.

v To test an entry, you need either test permission or read permission to the CDS
object entry.

Note that write permission does not imply read permission.

Listening for Calls

When a server is ready to accept remote procedure calls, it initiates listening,
specifying the maximum number of calls it can execute concurrently; it does this by
calling the rpc_server_listen() routine. If a server allows concurrent calls, its

Server entry

Server

Server
binding

information

= Reference to binding information

Application

Runtime

Server
binding handle

Server
binding handle

Server
binding handle

1

2

Server
binding

information

3

Exporting

Figure 26. Exporting Server Binding Information

190 OSF® DCE Application Development Guide —Core Components

remote procedures are responsible for concurrency control. If executing a set of
remote procedures concurrently requires concurrency control and a server lacks this
control, the server must allow only one call at a time.

Under normal circumstances, the rpc_server_listen() routine does not return but
the RPC runtime continues listening for new remote procedure calls to the server’s
registered interfaces until one of the following events occurs:

v Any of the server’s procedures makes a local management call to stop a server
from listening for future remote procedure calls.

v For applications whose servers enable clients to stop servers from listening, a
client makes a remote management call to stop a server from listening for future
remote procedure calls.

On receipt of a stop listening request, the RPC runtime stops accepting new remote
procedure calls for all registered interfaces. However, currently executing calls are
allowed to complete. After all executing calls complete, the listen operation stops
listening and returns control to the server. Servers should unregister endpoints after
they stop listening.

How Clients Find Servers

A client runtime can obtain server binding information from a namespace.
Alternatively, a client can obtain server binding information in string format from an
application-specific source such as a file. Runtime routines enable client
applications to obtain server binding handles that refer to server binding information
obtained from either source.

Searching a Namespace

To obtain binding information from a namespace, a client can do one of the
following:

v The client must call the import routines rpc_ns_binding_import_begin() ,
rpc_ns_binding_import_next() , and rpc_ns_binding_import_done() to obtain
a binding handle for a compatible server.

v The client must call the lookup routines rpc_ns_binding_lookup_begin() ,
rpc_ns_binding_lookup_next() , and rpc_ns_binding_lookup_done() to obtain
a list of binding handles for a compatible server. Select a binding handle from the
list by calling either of the following:

– The NSI select routine rpc_ns_binding_select() , which selects a binding
handle at random

– A user-defined select routine, which implements an application-specific
selection algorithm

v The client must use the automatic method of binding management to make the
client stub transparently manage binding information.

In this case, the application code lacks any calls to the NSI interface. However,
the automatic method does require the client to identify the directory service
entry at which to begin the search for binding information. The client must specify
the starting entry name as the value of the NSI-defined RPC_DEFAULT_ENTRY
environment variable.

An NSI import or lookup operation searches server entries for a compatible server.
On finding such a server entry, the search operation copies the server binding
information associated with the requested interface and an object UUID. The search

Chapter 13. Basic RPC Routine Usage 191

operation then creates a randomly ordered list of server binding handles to refer to
the potential bindings represented by the binding information.

Figure 27 illustrates the use of a server binding handle to refer to server binding
information selected by an import operation.

The callouts in the figure refer to the following operations:

1. The import operation looks up binding information of a server that is compatible
with the client.

The import operation finds a server entry based on the specified interface
identifier, and then looks at the list of object UUIDs. If the importing client
specifies a non-nil object UUID, the import operation looks for and returns that
object UUID. If the client specifies the nil object UUID and the server entry
contains any object UUIDs, the import operation selects and returns one UUID
at random. If the entry lacks any object UUIDs, the import operation returns the
nil UUID.

2. The import operation fetches the compatible binding information and creates a
binding handle for each potential binding represented in the binding information.

3. The import operation then selects a binding handle at random and passes it to
the client application.

Using String Bindings to Obtain Binding Information

To use a string binding, a client starts with either an existing string binding or with
the components of the binding information. Do not hardcode string bindings into
application code. Rather, specify them at runtime using a command argument,
environment variable, file, or other means. The simplest way to specify a string
binding is for a user to supply a string binding manually to a client. However, this
manual approach is awkward for users who must know how to obtain and
manipulate the string bindings. Also, if binding information changes, the users are

Server entry

Client

Server
binding

information

= Reference to binding information

Application

Runtime

Server
binding handle

Server
binding

information

3

Importing

1

2

Figure 27. Importing Server Binding Information

192 OSF® DCE Application Development Guide —Core Components

responsible for updating any string bindings used by their clients. Reducing manual
intervention in the use of string bindings requires that an application provide its own
mechanisms for storing, maintaining, and accessing binding information. In contrast,
a directory service such as CDS provides these mechanisms automatically to
applications that store binding information in a namespace.

Regardless of how a client obtains a string binding, before establishing a binding,
the client must ask the RPC runtime for a binding handle that refers to the server
binding information depicted in the string binding. The client converts the string
binding into a server binding handle by calling the
rpc_binding_from_string_binding() routine.

The following pseudocode lists the calls for composing a string binding and for
using it to obtain a server binding handle:

rpc_string_binding_compose(...);

rpc_binding_from_string_binding(...);
.
.
.

rpc_string_free(...);

Chapter 13. Basic RPC Routine Usage 193

194 OSF® DCE Application Development Guide —Core Components

Chapter 14. RPC and Other DCE Components

This chapter discusses aspects of the internal behavior of remote procedure calls
that are significant for advanced RPC programmers, including the following topics:

v Threads of execution in RPC applications

v Authenticated remote procedure calls

v Using the Name Service Interface

DCE RPC is a fully integrated part of the distributed computing environment. The
communications capabilities of DCE RPC are used by clients and servers of other
DCE components. In turn, RPC uses services provided by DCE Threads, the DCE
Security Service, and the DCE Cell Directory Service.

A thread is a single sequential flow of control with one point of execution on a
single processor at any instant. Multiple threads can coexist in a single process.
DCE RPC uses threads internally for its own operations. DCE RPC also provides
an environment where RPC applications can use thread services.

The DCE RPC runtime provides RPC applications with a programming interface to
the security service. The RPC authentication interface enables RPC clients and
servers to mutually authenticate (that is, prove the identity of) each other. An
authenticated remote procedure call provides client authorization information and
authentication information to servers. Authorization information includes the
credentials a client has and the identities a client is associated with at the time of a
call. By comparing client authorization information to access control lists, a server
can find out whether a client is eligible to use a requested remote procedure. Client
authentication information identifies a client to a server.

To help RPC clients find RPC servers, RPC applications typically use a namespace.
A namespace is a collection of information about applications, systems, and any
other relevant computing resources. A namespace is maintained by a directory
service such as CDS. DCE RPC provides a Name Service Interface (NSI) that is
independent of any particular directory service.

NSI communicates with supported directory services for both RPC applications and
the RPC control program. NSI insulates RPC applications from the intricacies of
using a directory service. An RPC server uses NSI to store information about itself
in a namespace, and a client uses NSI to access information about a server that
meets the client’s requirements for a specific RPC interface and object, among
other things. The client uses this information to establish a relationship, known as a
binding, with the server.

Threads of Execution in RPC Applications

Each remote procedure call occurs in an execution context called a thread. A thread
is a single sequential flow of control with one point of execution on a single
processor at any instant. A thread created and managed by application code is an
application thread.

Traditional processing occurs exclusively within local application threads. Local
application threads execute within the confines of one address space on a local
system and pass control exclusively among local code segments, as illustrated in
Figure 28 on page 196.

195

RPC applications also use application threads to issue both remote procedure calls
and runtime calls, as follows:

v An RPC client contains one or more client application threads; that is, a thread
that executes client application code that makes one or more remote procedure
calls.

v A DCE RPC server uses one server application thread to execute the server
application code that listens for incoming calls.

In addition, for executing called remote procedures, an RPC server uses one or
more call threads that the RPC runtime provides. As part of initiating listening, the
server application thread specifies the maximum number of concurrent calls it will
execute. The maximum number of call threads in multithreaded applications
depends on the design of the application. The RPC runtime creates the same
number of call threads in the server process.

The number of call threads is significant to application code. When using only one
call execution thread, application code does not have to protect itself against
concurrent resource use. When using more than one call thread, application code
must protect itself against concurrent resource use.

Figure 29 on page 197 shows a multithreaded server with a maximum of four
concurrently executing calls. Of the four call threads for the server, only one is
currently in use; the other three threads are available for executing calls.

Traditional application

Calling
code

Called
procedure

Single address space

local application thread

Figure 28. Local Application Thread During a Procedure Call

196 OSF® DCE Application Development Guide —Core Components

Remote Procedure Call Threads

In distributed processing, a call extends to and from client and server address
spaces. Therefore, when a client application thread calls a remote procedure, it
becomes part of a logical thread of execution known as an RPC thread. An RPC
thread is a logical construct that encompasses the various phases of a remote
procedure call as it extends across actual threads of execution and the network.
After making a remote procedure call, the calling client application thread becomes
part of the RPC thread. Usually, the RPC thread maintains execution control until
the call returns.

The RPC thread of a successful remote procedure call moves through the
execution phases illustrated in Figure 30.

The execution phases of an RPC thread in the preceding figure include the
following operations:

1. The RPC thread begins in the client process, as a client application thread
makes a remote procedure call to its stub; at this point, the client thread
becomes part of the RPC thread.

2. The RPC thread extends across the network to the server address space.

Server

The server
application thread
(listening for calls)

Available
call threads

Maximum concurrent calls = 4

Remote procedure
executing in
call thread

Single address space

remote procedures

Figure 29. Server Application Thread and Multiple Call Threads

Client Server

Calling
code

Called
remote
procedure

RPC thread

1 2

3

45
Call threadClient

application
thread

Remote procedure call

Figure 30. Execution Phases of an RPC Thread

Chapter 14. RPC and Other DCE Components 197

3. The RPC thread extends into a call thread, where the remote procedure
executes. While a called remote procedure is executing, the call thread
becomes part of the RPC thread. When the call finishes executing, the call
thread ceases being part of the RPC thread.

4. The RPC thread then retracts across the network to the client.

5. When the RPC thread arrives at the calling client application thread, the remote
procedure call returns any call results and the client application thread ceases
to be part of the RPC thread.

Figure 31 shows a server executing remote procedures in its two call threads, while
the server application thread listens.

Note: Although a remote procedure can be viewed logically as executing within the
exclusive control of an RPC thread, some parallel activity does occur in both
the client and server.

An RPC server can concurrently execute as many remote procedure calls as it has
call threads. When a server is using all of its call threads, the server application
thread continues listening for incoming remote procedure calls. While waiting for a
call thread to become available, DCE RPC server runtimes can queue incoming
calls. Queuing incoming calls avoids remote procedure calls failing during
short-term congestion. The queue capacity for incoming calls is implementation
dependent; most implementations offer a small queue capacity. The queuing of
incoming calls is discussed in “Chapter 17. Topics in RPC Application Development”
on page 313, under the topic of the routing of incoming calls.

Client

Client

Server

Calling
code

Calling
code

Called
remote
procedure

Called
remote
procedure

RPC thread

RPC thread

Call thread

Call thread

Concurrent remote procedure calls

A client application
thread

A client application
thread

Single
address
space

Maximum concurrent calls = 2

The server application
thread

Figure 31. Concurrent Call Threads Executing in Shared Address Space

198 OSF® DCE Application Development Guide —Core Components

Cancels

DCE RPC uses and supports the synchronous cancel capability provided by POSIX
threads (pthreads). A cancel is a mechanism by which a thread informs another
thread (the canceled thread) to terminate as soon as possible. Cancels operate on
the RPC thread exactly as they would on a local thread, except for an
application-specified, cancel-timeout period. A cancel-timeout period is an optional
value that limits the amount of time the canceled RPC thread has before it releases
control.

During a remote procedure call, if its thread is canceled and the cancel-timeout
period expires before the call returns, the calling thread regains control and the call
is orphaned at the server. An orphaned call may continue to execute in the call
thread. However, the call thread is no longer part of the RPC thread, and the
orphaned call is unable to return results to the client.

A client application thread can cancel any other client application thread in the
same process (it is possible, but unlikely, for a thread to cancel itself.) While
executing as part of an RPC thread, a call thread can be canceled only by a client
application thread.

A cancel goes through several phases. Figure 32 shows where each of these
phases occur.

The phases of a cancel in the preceding figure include the following:

1. A cancel that becomes pending at the client application thread at the start of or
during a remote procedure call becomes pending for the entire RPC thread.
Thus, while still part of the RPC thread, the call thread also has this cancel
pending.

2. If the call thread of an RPC thread makes a cancelable call when cancels are
not deferred and a cancel is pending, the cancel exception is raised.

3. The RPC thread returns to the canceled client application thread with one of the
following outcomes:

v If a cancel exception has not been taken, the RPC thread returns normal call
results (output arguments, return value, or both) with a pending cancel.

v If the remote procedure is using an exception handler, a cancel exception can
be handled. The procedure resumes, and the RPC thread returns normal call
results without pending any cancel.

v If the remote procedure failed to handle a raised cancel exception, the RPC
thread returns with the cancel exception still raised. This is returned as a
fault.

Client Server

Calling
code

Called
remote
procedure

RPC thread

1 2

3
Call threadClient

application
thread

Figure 32. Phases of a Cancel in an RPC Thread

Chapter 14. RPC and Other DCE Components 199

v If the cancel-timeout period expires, the RPC thread returns either a
cancel-timeout exception or status code, depending on how the application
sets up its error handling. This is true for all cases where any abnormal
termination is returned.

Multithreaded RPC Applications

DCE RPC provides an environment for RPC applications that create multiple
application threads (multithreaded applications). The application threads of a
multithreaded application share a common address space and much of the common
environment. If a multithreaded application must be thread-safe (guarantee that
multiple threads can execute simultaneously and correctly), the application is
responsible for its own concurrency control. Concurrency control involves
programming techniques such as controlling access to code that can share a data
structure or other resource to prevent conflicting overlapping access by separate
threads.

A multithreaded RPC application can have diverse activities going on
simultaneously. A multithreaded client can make concurrent remote procedure calls
and a multithreaded server can handle concurrent remote procedure calls. Using
multiple threads allows an RPC client or server to support local application threads
that continue processing independently of remote procedure calls. Also,
multithreading enables the server application thread and the client application
threads of an RPC application to share a single address space as a joint
client/server instance. A multithreaded RPC application can also create local
application threads that are uninvolved in the RPC activity of the application.

Figure 33 on page 201 shows an address space where application threads are
executing concurrently.

The application threads in Figure 33 on page 201 are performing the following
activities:

v The server application thread is listening for calls.

v A call thread is available to execute an incoming remote procedure call.

v One client application thread has separated from an RPC thread and another is
currently part of an RPC thread.

v A local application thread is engaging in non-RPC activity.

200 OSF® DCE Application Development Guide —Core Components

Security and RPC: Using Authenticated Remote Procedure Calls

DCE RPC supports authenticated communications between clients and servers.
Authenticated RPC works with the authentication and authorization services
provided by the DCE Security Service.

Remote server

Remote server

Calling
code

Calling
code

Called
remote
procedure

Called
remote
procedure

RPC thread

RPC thread

Call thread

Call thread

Concurrent remote procedure calls

A client application
thread

A client application
thread

Single address space

Multithreaded RPC application

The server application
thread (listening)

The call thread (available)

A local application thread
(engaged in non-RPC activity)

Figure 33. A Multithreaded RPC Application Acting as Both Server and Client

Chapter 14. RPC and Other DCE Components 201

On the application level, a server makes itself available for authenticated
communications by registering its principal name and the authentication service that
it supports with the RPC runtime. The server principal name is the name used to
identify the server as a principal to the registry service provided by the security
service. In practice, this name is usually the same as the name that the server uses
to register itself with the DCE Directory Service.

A client must establish the authentication service, protection level, and authorization
service that it wishes to use in its communications with a server. The client
identifies the intended server by means of the principal name that the server has
registered with the RPC runtime. Once the required authentication, protection, and
authorization parameters have been established for the server binding handle, the
client issues remote procedure calls to the server as it normally does.

The security service, in conjunction with the RPC runtime, assumes responsibility
for the following:

v Authenticating the client and server in accordance with the requested
authentication service

v Applying the requested level of protection to communications between the client
and server

v Providing client authorization data to the server in a form determined by the
requested authorization service

Note: For a detailed discussion of authentication within the context of DCE
security, refer to “Chapter 24. Authentication” on page 493 of this guide.

Authentication

When a client establishes authenticated RPC, it must indicate the authentication
service that it wants to use. The possible values are the following:

rpc_c_authn_none
No authentication

rpc_c_authn_dce_secret
DCE shared-secret key authentication

rpc_c_authn_dce_public
DCE public key authentication

rpc_c_authn_default
DCE default authentication service

The value rpc_c_authn_none is used to turn off authentication already established
for a binding handle. The default authentication is DCE shared-secret (also known
as private key) authentication.

Before a client and server can engage in authenticated RPC, they must “agree” on
which authentication service to use. Specifically, the server must register the
“agreed on” authentication service with the RPC runtime, along with the server’s
principal name. For its part, the client must select the same service for the server’s
binding handle. The client indicates the appropriate server by supplying the server’s
principal name. If the client does not know the server’s name, it can use the
rpc_mgmt_inq_server_princ_name() routine to determine the name.

202 OSF® DCE Application Development Guide —Core Components

Cross-Cell Authentication

A client can engage in authenticated RPC with a target server that is in the client’s
cell or in a foreign cell. In the case of cross-cell authentication, DCE security
performs the necessary additional steps on behalf of the client.

To establish authenticated RPC with a foreign server, a client must supply the fully
qualified principal name of the server. A fully qualified name includes the name of
the cell as well as the name of the principal and takes the following form:

/.../ cell_name/ principal_name

Protection Levels

When a client establishes authenticated RPC, it can specify the level of protection
to be applied to its communications with the server. The protection level determines
how much of client/server messages are encrypted. As a rule, the more restrictive
the protection level, the greater the impact on performance. Different levels are
provided so that applications can control the protection versus performance
tradeoffs.

Note that the protection level is entirely a client responsibility. When a server
registers its supported authentication service with the RPC runtime, it does not
specify any protection information for that service. However, the server can include
the protection level used for a particular operation when deciding if the caller is
authorized to perform the operation.

Authenticated RPC supports the following protection levels:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication service.

rpc_c_protect_level_none
There is no protection level.

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship with the
server. This level performs an encrypted handshake when the client first
communicates with the server. Encryption or decryption is not performed on
the data sent between the client and server. The fact that the handshake
succeeds indicates that the client is active on the network.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote procedure call
when the server receives the request. This level attaches a verifier to each
client call and server response.

This level does not apply to remote procedure calls made over a
connection-based protocol sequence; that is, ncacn_ip_tcp . If this level is
specified and the binding handle uses a connection-based protocol
sequence, the routine uses the rpc_c_protect_level_pkt level instead.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client. This level
attaches a verifier to each message.

rpc_c_protect_level_pkt_integrity
Ensures and verifies that none of the data transferred between client and
server has been modified. This level computes a cryptographic checksum of

Chapter 14. RPC and Other DCE Components 203

each message to verify that none of the data transferred between the client
and server has been modified in transit.

This is the highest protection level that is guaranteed to be present in the
RPC runtime.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and also
encrypts each remote procedure call argument and return values. This level
encrypts all user data in each call.

This is the highest protection level, but it may not be available in the RPC
runtime.

If a client wants to use the default protection level but does not know what this level
is, it can use the rpc_mgmt_inq_dflt_protect_level() routine to determine what the
default level is.

Authorization

Authorization is the process of checking a client’s permissions to an object that is
controlled by the server. Access checking is entirely a server responsibility and
involves matching the client’s credentials against the permissions associated with
the object. A client’s credentials consist of the principal ID and group memberships
contained in the client’s network login context.

Authenticated RPC supports the following options for making client authorization
information available to servers for access checking:

rpc_c_authz_none
No authorization information is provided to the server, usually because the
server does not perform access checking.

rpc_c_authz_name
Only the client principal name is provided to the server. The server can then
perform authorization based on the provided name. This form of
authorization is sometimes referred to as name-based authorization.

rpc_c_authz_dce
The client’s credentials (DCE Privilege Attribute Certificate or PAC) is
provided to the server with each remote procedure call that is made using
the binding parameter. The server performs authorization by using the client
credentials. Generally, access is checked against DCE ACLs.

When a client establishes authenticated RPC, it must indicate which authorization
option it wants to use.

It is the server’s responsibility to implement the type of authorization appropriate for
the objects that it controls. When the server calls rpc_binding_inq_auth_caller() to
return information about an authenticated client, it gets back either the client’s
principal name or a pointer to the data structure that contains the client’s
credentials. The value that is returned depends on which type of authorization the
client specified on its call to establish authenticated RPC with that server.

Each server is responsible for implementing its own access checking by means of
ACL managers. When a server receives a client request for an object, the server
invokes the ACL manager appropriate for that type of object and passes the
manager the client’s authorization data. The manager compares the client
authorization data to the permissions associated with the object and either refuses

204 OSF® DCE Application Development Guide —Core Components

or permits the requested operation. In the case of certified (PAC-based)
authorization, servers must implement access checking by using the ACL facility
provided by the DCE Security Service.

An ACL management API (dce_acl*) is also available.

Name-Based Authorization

Name-based authorization (rpc_c_authz_name) provides a server with the client’s
principal name. The server call to rpc_binding_inq_auth_caller() retrieves the
name from the binding handle associated with the client and returns it as a
character string.

It is not recommended that names be used for authorization. To perform access
checking using client principal names, the names must be stored in the access lists
associated with the protected objects. Each time a name is changed, the change
must be propagated through all the access lists in which the name is defined.

DCE Authorization

DCE authorization (rpc_c_authz_dce) provides a server with the client’s
credentials.

Credentials offer a trusted mechanism for conveying client authorization data to
authenticated servers. The security service generates a client’s credentials in a
tamper-proof manner. When a server receives a client credentials, it knows that the
credentials has been certified by DCE security.

Credentials are designed to be used with the DCE ACL facility. The ACL facility
provides an editor and a set of API routines that support the implementation of
access control lists and the managers to control them.

Authenticated RPC Routines

Authenticated RPC is implemented as a set of related RPC routines. Some of the
routines are for use by clients, some are for use by servers and their managers,
and some are for use by both clients and servers. The authenticated RPC routines
are as follows:

rpc_binding_set_auth_info()
A client calls this routine to establish an authentication service, protection
level, and authorization service for a server binding handle. The client
identifies the server by supplying the server’s principal name. The RPC
runtime, in conjunction with the security service, applies the authentication
service and protection level to all subsequent remote procedure calls made
using the binding handle.

rpc_binding_inq_auth_info()
A client calls this routine to return the authentication service, protection
level, and authorization service that are in effect for a specified server
binding handle. This routine also returns the principal name of the server
associated with the binding handle.

rpc_mgmt_inq_dflt_protect_level()
A client or a server calls this routine to learn the default protection level that
is in force for a given authentication service.

Chapter 14. RPC and Other DCE Components 205

rpc_mgmt_inq_server_princ_name()
A client, a server, or a server manager can call this routine to return the
principal name that a server has registered with the RPC runtime via the
rpc_server_register_auth_info() routine. A client can identify the desired
server by supplying a server binding handle and the authentication service
associated with the registered principal name.

rpc_server_register_auth_info()
A server calls this routine to register an authentication service that it wants
to support and the server principal name to be associated with the
registered service. The server can also optionally supply the address of a
key retrieval routine to be called by the security service as part of the client
authentication process. The routine is a user-supplied function whose
purpose is to provide the server’s key to the DCE security runtime.

Note that the server registers only an authentication service. It does not
establish a protection level or an authorization service. These are the
responsibilities of the client.

rpc_binding_inq_auth_caller()
A server calls this routine to return the authentication service, protection
level, and authorization service that is associated with the binding handle of
an authenticated client. This call also returns the server principal name
specified by the client on its call to rpc_binding_set_auth_info() .

rpc_mgmt_set_authorization_fn()
A server calls this routine to establish a user-supplied authorization function
to validate remote client calls to the server’s management routines. For
example, the user function can call rpc_binding_inq_auth_caller() to
return authentication and authorization information about the calling client.
The RPC runtime calls the user-supplied function whenever it receives a
client request to execute one of the following server management routines:

v rpc_mgmt_inq_if_ids()

v rpc_mgmt_inq_server_princ_name()

v rpc_mgmt_inq_stats()

v rpc_mgmt_is_server_listening()

v rpc_mgmt_stop_server_listening()

When an unauthenticated client calls a server that has specified authentication, the
RPC runtime will not perform any authentication, and the call will reach the
application manager code. It is up to the manager to decide how to deal with the
unauthenticated call.

Typically, servers and clients establish authentication as follows:

v The server specifies an authentication service for a principal identity under which
it runs by calling rpc_server_register_auth_info() . The authentication service is
specified by the authn_svc parameter of this call. Currently, servers may specify
either DCE secret key authentication (by supplying either
rpc_c_authn_dce_secret or rpc_c_authn_default) or no authentication (by
supplying rpc_c_authn_none). The specified authentication service will be used
if it is also requested by the client.

v The client sets authentication for a binding handle by calling
rpc_binding_set_auth_info() . The choices are also currently either DCE secret
key or no authentication. Client calls made on the binding handle attempt to use
the specified authentication service.

206 OSF® DCE Application Development Guide —Core Components

v The server manager code calls rpc_binding_inq_auth_caller() to extract any
authorization information from the client binding for the call.

Using RPC Within a Single Thread

The default behavior for an application client is to be single-threaded. This means
that only one thread, the main thread, exists in the client process. All application
and RPC runtime execution takes place within this single thread. This behavior
applies only to clients that use the User Datagram Protocol (UDP). If another
protocol sequence is used for RPC transport, the RPC runtime will spawn several
threads and revert to multithreaded behavior.

Single-threaded behavior, compared to multithreaded client behavior, provides
several benefits to application developers:

v Debugging is easier. Using advanced thread-aware debuggers and following
code execution through multiple thread context switches are unnecessary. The
same debugging techniques and tools used to debug standard applications can
be used to debug an RPC client.

v Usage of system resources is lower. The DCE Threads runtime is not initialized
in single-threaded mode. This means startup time will be faster, less memory will
be used, and performance will improve because context switching does not take
place.

v Linking libraries that are not thread-safe into DCE applications is less dangerous.
Some third-party libraries depend on default behavior from certain operating
system functions. However, in a multithreaded process this behavior is defined
differently. Examples of this include signal handling, I/O, and fork , and exec
functions. When an application client is single-threaded, the default behavior for
these functions is guaranteed, and without risk when using libraries that are not
thread-safe.

If any application-level threads are created in the RPC client, the single-threaded
process immediately reverts to multithreaded behavior. This means that both the
RPC runtime and DCE Threads runtime will be initialized and create several
runtime-level threads, and the benefits described for a single-threaded client will no
longer apply. Once the client becomes multithreaded, it remains so even if all of the
user-level threads have terminated.

Existing applications can take advantage of single-threaded mode without requiring
changes to the code. As long as the client is using the UDP protocol sequence and
has not performed a pthread_create call, single-threaded behavior automatically
remains; applications can continue to make pthread API calls and remain in
single-threaded mode. If, for example, the application creates mutex variables, and
even locks or unlocks these variables, these calls will behave correctly and not
cause the process to become multithreaded. However, after the first
pthread_create call takes place in the client application, it becomes multithreaded
and all previously initialized pthreads primitives will function as expected in a
multithreaded environment.

To implement single-threaded behavior, the DCE Threads library performs its
initialization in two phases:

v Phase 1 occurs when the first pthread API call is made. This initializes mutexes,
condition variables, and attributes.

v Phase 2 occurs when the first pthread_create call is made. This initializes the
remaining DCE Threads functionality, including thread management, context

Chapter 14. RPC and Other DCE Components 207

switching, the creation of a null background thread, and all of the multithreaded
operating system behavior as described in the chapter on multithreaded
programming.

Directory Services and RPC: Using the Namespace

This section discusses how the DCE RPC NSI configures directory service entries
and how RPC applications can use those entries. The following topics are included:

v Directory service entries defined by NSI

Describes the kinds of directory service entries NSI defines.

v Searching the namespace

Describes how the namespace is searched when a client requests binding
information.

v Strategies for using directory service entries

Outlines strategies for using each kind of entry.

v The service model

Describes the service model for defining RPC servers and introduces NSI usage
models intended to guide application developers in assessing how to best use
NSI for a given application.

v The resource model

Describes the resource model for defining RPC servers.

NSI Directory Service Entries

To store information about RPC servers, interfaces, and objects, NSI defines the
following directory service entries in the namespace: server entries, groups, and
profiles. These directory service entries are CDS objects.

v A server entry is a directory service entry that stores binding information and
object UUIDs for an RPC server.

v A group is a directory service entry that corresponds to one or more RPC servers
that offer one or more RPC interfaces, type of RPC object, or both in common.

v A profile is a directory service entry that defines search paths in a namespace for
a server that offers a particular RPC interface and object.

The use of server entries, groups, and profiles determines how clients view servers.
A server describes itself to its clients by exporting binding information associated
with interfaces and objects to one or more server entries. A group corresponds to
servers that offer a given interface, service, or object. Profiles enable clients to
access alternative directory service entries when searching for an interface or
object. Used together, groups and profiles offer sophisticated ways for RPC
applications to maintain and use directory service data.

NSI Attributes

Usually, the distinct server entries, groups, and profiles concepts are adequate for
using NSI. However, the way NSI stores RPC information allows you to combine
server entries, groups, and profiles into a single directory service entry. To store
information about RPC applications in a directory service entry, the RPC directory
service interface defines several RPC-specific directory service attributes, or NSI
attributes. NSI attributes contain information about RPC applications in a directory
service entry. The NSI attributes are as follows:

v NSI binding attribute

208 OSF® DCE Application Development Guide —Core Components

The binding attribute stores binding information and interface identifiers (interface
UUID and version numbers) exported to the server entry. This attribute identifies
a directory service entry as a server entry.

v NSI object attribute

The object attribute stores a list of one or more object UUIDs. Whenever a server
exports any object UUIDs to a server entry, the server entry contains an object
attribute as well as a binding attribute. When a client imports from that entry, the
import operation returns an object UUID from the list stored in the object
attribute.

v NSI group attribute

The group attribute stores the entry names of the members of a single group.
This attribute identifies a directory service entry as an RPC group.

v NSI profile attribute

The profile attribute stores a set of profile elements. This attribute identifies a
directory service entry as an RPC profile.

Figure 34 represents the correspondence between NSI attributes and the different
directory service entries: server entries, groups, and profiles.

Any directory service entry can contain any combination of the four NSI attributes.
However, to facilitate administrating directory service entries, avoid creating binding,
group, and profile attributes in the same entry. Instead, use distinct directory service
entries for server entries, groups, and profiles. The object attribute, in contrast, is
designed as an adjunct to another NSI attribute, especially the binding attribute.

When implementing the resource model or when used to distinguish server
instances, a server entry contains an object attribute as well as a binding attribute.
On finding a server entry whose binding attribute contains compatible binding
information, an NSI search operation also looks in the entry for an object attribute.
For groups whose membership is selected according to a shared object or set of
objects, it may be useful to export those objects to the group. In this case, the

Server entry

NSI attributes

Binding attribute

Object attribute

Group attribute

Profile attribute

Group

Profile

Key:
= Basic attribute that defines an NSI name service entry

= Optional attribute

Figure 34. NSI Attributes

Chapter 14. RPC and Other DCE Components 209

directory service entry of the group contains both group and object attributes. For
reading the object UUIDs in the NSI object attribute in any directory service entry,
NSI provides a set of object inquiry operations, called using the
rpc_ns_entry_object_inq_ {begin ,next ,done }() routines.

Using separate entries facilitates administration of the namespace; for example, by
enabling entry names to specifically describe their contents. Keeping server entries,
profiles, and groups separate allows clear references to each of them.

Note: In addition to any NSI attributes, a directory service entry contains other
kinds of directory service attributes. Every entry in a namespace contains
standard attributes created by the directory service. NSI operations rely on
some standard attributes to identify and use an entry.

Structure of Entry Names

Each entry in a namespace is identified by a unique global name comprising a cell
name and a cell-relative name.

A cell is a group of users, systems, and resources that share common DCE
services. A cell configuration includes at least one cell directory server and one
security server. A cell’s size can range from one system to thousands of systems. A
host is assigned to its cell by a DCE configuration file. For information on cells, see
the OSF DCE Administration Guide.

The following is an example of a global name:

/.../C=US/O=uw/OU=MadCity/LandS/anthro/Stats_host_2

The parts of a global name are as follows:

v Cell name (using X.500 name syntax):

/.../C=US/O=uw/OU=MadCity

The symbol /... begins a cell name. The letters before the = (equal signs) are
abbreviations for Country (C), Organization (O), and Organization Unit (OU). For
entries in the local cell, the cell name can be represented by a /.: prefix, in place
of the actual cell name; for example:

/.:/LandS/anthro/Stats_host_2

The / (slash) to the right of the cell name represents the root of the cell directory
(the cell root).

For NSI operations on entries in the local cell, you can omit the cell name.

v Cell-relative name (using DCE name syntax):

Each directory service entry requires a cell-relative name, which contains a
directory pathname and a leaf name.

– A directory pathname follows the cell name and indicates the hierarchical
relationship of the entry to the cell root.

The directory pathname contains the names of any subdirectories in the path;
each subdirectory name begins with a / (slash), as follows: / sub-dir-a-name/
sub-dir-b-name/ sub-dir-c-name

Directory pathnames are created by directory service administrators. If an
appropriate directory pathname does not exist, ask your directory service

210 OSF® DCE Application Development Guide —Core Components

administrator to extend an existing pathname or create a new pathname. In a
directory pathname, the name of a subdirectory should reflect its relationship
to its parent directory (the directory that contains the subdirectory).

– A leaf name identifies the specific entry.

The leaf name constitutes the right-hand part of a global name, beginning with
the rightmost / (slash).

For example, /.:/LandS/anthro/Cal_host_4 , where /.:/ represents the cell name,
/LandS/anthro is the directory pathname, and /Cal_host_4 is the leaf name. If
the directory service entry is located at the cell root, the leaf name directly
follows the cell name; for example, /.:/cell-profile .

Note: When NSI is used with CDS, the cell-relative name is a CDS name.

Figure 35 shows the parts of a global name.

Server Entries

NSI enables any RPC server with the necessary directory service permissions to
create and maintain its own server entries in the namespace. A server can use as
many server entries as it needs to advertise combinations of its RPC interfaces and
objects.

Each server entry must correspond to a single server (or a group of
interchangeable server instances) on a given system. Interchangeable server
instances are instances of the same server running on the same system that offer
the same RPC objects (if any). Only interchangeable server instances can share a
server entry.

Each server entry must contain binding information. Every combination of protocol
sequence and network addressing information represents a potential binding. The
network addressing information can contain a network address, but lacks an
endpoint, making the address partially bound.

A server entry can also contain a list of object UUIDs exported by the server. Each
of the object UUIDs corresponds to an object offered by the server. In a given
server entry, each interface identifier is associated with every object UUID, but with
only the binding information exported with the interface.

Figure 36 on page 212 represents a server entry. This server entry was created by
two calls to the rpc_ns_binding_export() routine. The first call created the first
column of the top half of the figure. The routine’s binding_vec parameter had three
elements, each of which is paired with the routine’s if_handle parameter. The
vertical ellipsis points under the last box indicate that more elements in the routine’s
binding_vec parameter would have resulted in more interface UUID/binding
information pairs in the first column.

/.../C=Country_code/O=Org_unit/OU=Location/Subdir_a/Subdir_b/Subdir_c/Name_Svc_entry

Cell name

Directory pathname Leaf name

Figure 35. Parts of a Global Name

Chapter 14. RPC and Other DCE Components 211

Similarly, the second call to the rpc_ns_binding_export() routine created the
second column of the top half of the figure. The routine’s binding_vec parameter
had two elements, each of which is paired with the routine’s if_handle parameter.
For example, the first element could have contained binding information with the
ncacn_ip_tcp protocol sequence, and the second element could have contained
binding information with the ncadg_ip_udp protocol sequence. As in the first
column, more elements in the routine’s binding_vec parameter would have resulted
in more interface UUID/binding information pairs.

Third and subsequent calls to the rpc_ns_binding_export() routine would create
more columns; the two pairs of horizontal ellipsis points indicate this expansion.

Finally, note that the rpc_ns_binding_export() routine optionally takes a vector of
object UUIDs. The four object UUIDs in the bottom half of the figure came from the
two calls to the routine, or from another call to the routine with no interface
UUID/version and with no binding information, but with object UUIDs. The object
UUIDs are associated with no particular binding. Instead, they are associated with
all the bindings. Third and subsequent calls to the routine could create more object
UUIDs; the vertical ellipsis points indicate this expansion.

Note: To distinguish among RPC objects when using the CDS ACL editor, export
the RPC objects to separate directory service entries.

Groups

Administrators or users of RPC applications can organize searches of a namespace
for binding information by having clients use an RPC group as the starting point for
NSI search operations. A group provides NSI search operations (import_next or
lookup_next operations) with access to the server entries of different servers that
offer a common RPC interface or object. A group contains names of one or more
server entries, other groups, or both. Since a group can contain group names,

Objects

Bindings

One Server Entry

Interface UUID/version pair 1
with binding information 1

Interface UUID/version pair 1
with binding information 3

Interface UUID/version pair 2
with binding information 3

Object UUID 1

Object UUID 2

Object UUID 3

Object UUID 4

Interface UUID/version pair 1
with binding information 2

Interface UUID/version pair 2
with binding information 1

Figure 36. Possible Information in a Server Entry

212 OSF® DCE Application Development Guide —Core Components

groups can be nested. Each server entry or group named in a group is a member
of the group. A group’s members must offer one or more RPC interfaces, the type
of RPC object, or both in common.

Figure 37 shows an example of the kinds of members a group can contain and how
those members correspond to database entries.

The members of Group A are Server Entry 1, Server Entry 2, and Group B. The
members of the nested group, Group B, are Server Entry 3 and Server Entry 4. An
additional server entry that advertises the common interface or object, Server Entry
5, is omitted from either group.

Profiles

Administrators or users of RPC applications can organize searches of a namespace
for binding information by having clients use an RPC profile as the starting point for
NSI search operations. A profile is an entry in a namespace that contains a
collection of profile elements. A profile element is a database record that
corresponds to a single RPC interface and that refers to a server entry, group, or
profile. Each profile element contains the following information:

v Interface identifier

This field is the key to the profile. The interface identifier consists of the interface
UUID and the interface version numbers.

v Member name

The entry name of one of the following kinds of directory service entries:

– A server entry for a server offering the requested RPC interface

– A group corresponding to the requested RPC interface

Member name

Member name

Member name

Member name

Member name

Group A:

Group B:

Server entry 1:

Server entry 2:

Server entry 3:

Server entry 4:

Server entry 5:

= Member of Group A
Key:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Figure 37. Possible Mappings of a Group

Chapter 14. RPC and Other DCE Components 213

– A profile

v Priority value

The priority value (0 is the highest priority; 7 is the lowest priority) is designated
by the creator of a profile element to help determine the order for using the
element NSI search operations to select among like-priority elements at random.

v Annotation string

The annotation string enables you to identify the purpose of the profile element.
The annotation can be any textual information; for example, an interface name
associated with the interface identifier or a description of a service or resource
associated with a group.

Unlike the interface identifier field, the annotation string is not a search key.

Optionally, a profile can contain one default profile element. A default profile
element is the element that an NSI search operation uses when a search using the
other elements of a profile finds no compatible binding information; for example,
when the current profile lacks any element corresponding to the requested
interface. A default profile element contains the nil interface identifier, a priority of 0,
the entry name of a default profile, and an optional annotation.

A default profile is a backup profile, referred to by a default profile element in
another profile. A profile designated as a default profile should be a comprehensive
profile maintained by an administrator for a major set of users, such as the
members of an organization or the owners of computer accounts on a local area
network (LAN).

A default profile must not create circular dependencies between profiles; for
example, when a public profile refers to an application’s profile, the application’s
profile must not specify that public profile as a default profile.

Figure 38 on page 215 shows an example of the kinds of elements a profile can
contain and how those elements correspond to database entries.

214 OSF® DCE Application Development Guide —Core Components

NSI search operations use a profile to construct an NSI search path. When an NSI
search operation reads a profile, the operation dynamically constructs its NSI
search path from the set of elements that correspond to a common RPC interface.

A profile element is used only once per NSI search path. The construction of NSI
search paths depends partly on the priority rankings of the elements. A search
operation uses higher-priority elements before lower-priority elements. Elements of
equal priority are used in random order, permitting some variation in the NSI search
paths between searches for a given interface. If nondefault profile elements do not
satisfy a search, the search path extends to the default profile element, if any.

Member name

Member name

Profile A:

Default Profile:

Group:

Server entry:

Server entry:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Server entry:

Server entry:

Server entry:

Server entry:

Server entry:

= Member in element of
Profile A

Key:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Profile element:

Interface UUID
Interface version
member name
priority
annotation

Profile element:

Default profile
element:

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Interface UUID
Interface version
member name
priority
annotation

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Figure 38. Possible Mappings of a Profile

Chapter 14. RPC and Other DCE Components 215

Profiles meet the needs of particular individuals, systems, LANs, sites,
organizations, and so forth, with minimal configuration management. The
administrator of a profile can set up NSI search paths that reflect the preferences of
the profile’s user or users. The profile administrator can set up profile elements that
refer (directly or indirectly) to only a subset of the server entries that offer a given
RPC interface. Also, the administrator can assign different search priorities to the
elements for an interface.

Guidelines for Constructing Names of Directory Service Entries

A global name includes both a cell name and a cell-relative name composed of a
directory pathname and a leaf name. The cell name is assigned to a cell root at its
creation. When you specify only a cell-relative name to an NSI operation, NSI
automatically expands the name into a global name by inserting the local cell name.
When returning the name of a directory service entry, a group member, or a
member in a profile element, NSI operations return global names.

The directory pathname and leaf name uniquely identify a directory service entry.
The leaf name should somehow describe the entry; for example, by identifying its
owner or its contents. The remainder of this section contains guidelines for
choosing leaf names.

Note: Directory pathnames and leaf names are case sensitive.

Use the following guidelines for constructing names:

v Naming a server entry

For a server entry that advertises an RPC interface or service offered by a
server, the leaf name must distinguish the entry from the equivalent entries of
other servers. When a single server instance runs on a host, you can ensure a
unique name by combining the name of the service, interface (from the interface
definition), or the system name for the server’s host system.

For example, consider two servers, one offering a calendar service on host
JULES , and one on host VERNE.

The server on JULES uses the following leaf name:

calendar_JULES

The server on VERNE uses the following leaf name:

calendar_VERNE

For servers that perform tasks on or for a specific system, an alternative
approach is to create server entries in a system-specific host directory within the
namespace. Each host directory takes the name of the host to which it
corresponds. Because the directory name identifies the system, the leaf name of
the server entry name does not need to include the host name, for example:

/.:/LandS/host_1/Process_control

To construct names for the server entries used by distinctive server instances on
a single host, you can construct unique server entry names by combining the
following information: the name of the server’s service, interface, or object; the
system name of the server’s host system; and a reusable instance identifier such
as an integer.

216 OSF® DCE Application Development Guide —Core Components

For example, the following leaf names distinguish two instances of a calendar
service on the JULES system:

calendar_JULES_01

calendar_JULES_02

Avoid automatically generating entry names for the server entries of server
instances; for example, by using unique data such as a timestamp
(calendar_verne_15OCT91_21:25:32) or a process identifier
(calendar_jules_208004D6). When a server incorporates such unique data into
its server entry names, each server instance creates a separate server entry,
causing many server entries. When a server instance stops running, it leaves an
obsolete server entry that is not reused. The creation of a new entry whenever a
server instance starts may impair performance.

A server can use multiple server entries to advertise different combinations of
interfaces and objects. For example, a server can create a separate server entry
for a specific object, and the associated interfaces. The name of such a server
entry should correspond to a well-known name for the object. For example,
consider a server that offers a horticulture bulletin board known to users as
horticulture_bb . The server exports the horticulture_bb object, binding
information, and the associated bulletin-board interface to a server entry whose
leaf name identifies the object, as follows:

horticulture_bb

Note: An RPC server that uses RPC authentication can choose identical names
for its principal name and its server entry. Use of identical names permits
a client that calls the rpc_binding_set_auth_info() routine to
automatically determine a server’s principal name. (The client will assume
the principal name to be the same as the server’s entry name.) If a server
uses different principal and server entry names, users must explicitly
supply the principal name. For an explanation of principal names, see
“Part 5. DCE Security Service” on page 481 of this guide.

v Naming a group

The leaf name of a group should indicate the interface, service, or object that
determines membership in the group. For example, for a group whose members
are selected because they advertise an interface named Statistics , the following
is an effective leaf name:

Statistics

For a group whose members advertise laser printer print queues as objects, the
following is an effective leaf name:

laser-printer

v Naming a profile

The leaf name of a profile should indicate the profile users; for example, for a
profile that serves the members of an accounting department, the following is an
effective leaf name:

accounting_profile

Chapter 14. RPC and Other DCE Components 217

The following text describes the NSI begin , next , and done operations. NSI
accesses a variety of search and inquire operations that read NSI attributes in
directory service entries. An NSI attribute is an RPC-defined attribute of a directory
service entry used by the DCE RPC directory service interface. An NSI attribute
stores one of the following: binding information, object UUIDs, a group, or a profile.
Reading information from any attribute involves an equivalent set of search or
inquire operations; that is, an integral set of begin , next , and done operations. An
RPC application uses these operations as follows:

1. The application creates a directory service handle (a reference to the context of
the ensuing series of next operations) by calling an NSI begin operation.

2. The application calls the NSI next operation corresponding to the begin
operation one or more times. Each next operation returns another value or list
of values from the target RPC directory service attribute. For example, an
import_next operation returns binding information from a binding attribute and
an object from an object attribute.

3. The application deletes the directory service handle by calling the corresponding
NSI done operation.

Note: Search and inquire operations are also accessible interactively from within
the RPC control program.

Table 11 lists the NSI next operations used by RPC applications.

Table 11. NSI next Operations

Search Operation Attributes Traversed

rpc_ns_binding_import_next() Searches for binding and object attributes of
a compatible server; reads any NSI attribute
in a search path. Returns a binding handle
that refers to a potential binding for a
compatible server, and also to a single
object UUID.

rpc_ns_binding_lookup_next() Searches for binding and object attributes of
a compatible server; reads any NSI attribute
in a search path. Returns a list of binding
handles, each of which refers to a potential
binding for a compatible server, and also to
a single object UUID. The same object
UUID is associated with each potential
binding. Note that, after calling the
lookup_next operation, the client must
select one binding handle from the list. To
select a binding handle at random, the client
can call the NSI binding select routine
rpc_ns_binding_select() . For an
alternative selection algorithm, the client can
define and call its own application-specific
select algorithm.

Inquire Operation Attributes Traversed

rpc_ns_group_mbr_inq_next() Reads a group attribute and returns a
member name.

rpc_ns_profile_elt_inq_next() Reads a profile attribute and returns the
fields of a profile element.

218 OSF® DCE Application Development Guide —Core Components

Selecting the Starting Entry

When searching a namespace for an RPC interface and object, a client supplies the
name of the directory service entry where the search begins. The entry can be a
server entry, group, or profile. Generally, an NSI search starts with a group or
profile. The group or profile defines a search path that ends at a server entry
containing the requested interface identifier, object UUID, and compatible binding
information.

A user may know in advance what server instance to use. In this case, starting with
a server entry for the server instance is appropriate.

Environment Variables

DCE RPC provides predefined environment variables that a client can use for NSI
operations. An environment variable is a variable that stores information, such as a
name, about a particular environment. The NSI interface provides two environment
variables, RPC_DEFAULT_ENTRY and RPC_DEFAULT_ENTRY_SYNTAX , which
are described in the OSF DCE Application Development Reference. Used together,
these environment variables identify an entry name and indicate its syntax.

When a client searches for binding information, the search starts with a specific
entry name. Optionally, a client can specify this entry name as the value of the
RPC_DEFAULT_ENTRY variable. A client can also specify the name syntax of the
starting entry as the value of the RPC_DEFAULT_ENTRY_SYNTAX variable; the
default name syntax is dce .

Note: The dce name syntax is the only syntax currently supported by CDS.
However, NSI is independent of any specific directory service and depending
on your vendor, may support one or more alternative directory services that
use different name syntaxes.

Searching the Namespace for Binding Information

Searching the namespace for binding information requires that a client specify a
starting point for the search. A client can start with a specific server entry. However,
this is a limiting approach because the client is restricted to using one server. To
avoid this, a client can start searching with a group or a profile instead of with a
server entry. Searches that start with a profile or a group should encounter the
server entry of a compatible server. If such an entry is not encountered, a search
operation returns the rpc_s_no_more_bindings status code to the client. When
calling the routines rpc_ns_binding_import_next() or
rpc_ns_binding_lookup_next() , a client must track whether the routine returns this
status code.

The import_next and lookup_next Search Algorithm

The NSI search operations (import_next and lookup_next) traverse one or more
entries in the namespace when searching for compatible binding information. In
each directory service entry, these operations ignore non-RPC attributes and
process the NSI attributes in the following order:

1. Binding attribute (and object attribute, if present)

2. Group attribute

3. Profile attribute

Chapter 14. RPC and Other DCE Components 219

If an NSI search path includes a group attribute, the search path can encompass
every entry named as a group member. If a search path includes a profile attribute,
the search path can encompass every entry named as the member of a profile
element that contains the target interface identifier. A search finishes only when it
finds a server entry containing compatible binding information and the nonnil object
UUID, if requested. Search operations take the following steps when traversing a
directory service entry:

Step 1:
Binding attribute

In each entry, the search operation starts by searching for a compatible
interface identifier in the binding attribute, if present.

The absence of a binding attribute or of any compatible interface identifier
causes the search operation to go directly to step 2.

The presence of any compatible interface identifier indicates that compatible
potential bindings may exist in the binding attribute. At this point, object
UUIDs may impact the search, as follows:

v If the client specified the nil object UUID, object UUIDs do not affect the
success or failure of the search. The search returns compatible binding
information for one or more potential bindings.

v If the client specified a nonnil object UUID, the search reads the object
attribute, if present, to look for the requested object UUID. This search
for an object UUID has one of the following outcomes:

– On finding the specified object UUID, the search returns the object
UUID along with compatible binding information for one or more
potential bindings.

– If a requested object UUID is absent, the search continues to step 2.

Note: If a search involves a series of import_next or lookup_next
operations, a subsequent next operation resumes the search at the
point in the search path where the preceding operation left off.

Step 2:
Group attribute

If the binding attribute does not lead to compatible binding information or if
a series of import_next or lookup_next operations exhausts the
compatible binding information, the search continues by reading the group
attribute, if present; if the directory service entry lacks a group attribute, the
search goes directly to step 3.

The search operation selects a member of the group at random, goes to
the entry of that member, and resumes the search at step 1. Unless a
group member leads the search to compatible binding information, the
search looks at all the members of the group, one by one in random order,
until none remain.

Step 3:
Profile attribute

If the binding and group attributes do not lead to compatible binding
information, the search continues by reading the profile attribute, if present;
if the directory service entry lacks a profile attribute, the search fails.

The search operation identifies all the profile elements containing the
requested interface identifier and searches them in the order of their priority,
beginning with the 0 (zero) priority elements. Profile elements of a given

220 OSF® DCE Application Development Guide —Core Components

priority are searched in random order. For the selected profile element, the
search reads the member name and goes to the corresponding directory
service entry. There, the search resumes at step 1. Unless a profile element
leads the search to compatible binding information, the search eventually
looks at all the profile elements with the requested interface identifier, one
by one, until none remain.

If the starting entry does not contain NSI attributes, or if none of the steps satisfies
the search, the search operation returns the status code rpc_s_no_more_bindings
to the client.

Note: The inquire next (inq_next) operations for objects, groups, or profiles look at
only the entry specified in its corresponding inquire begin (inq_begin)
operation. The search ignores nested groups or nested profiles.

Figure 39 on page 222 illustrates the three steps of the import_next and
lookup_next search operations.

Chapter 14. RPC and Other DCE Components 221

Examples of Searching for Server Entries

This subsection provides several examples of how the NSI import_next and
lookup_next operations search for binding information associated with a given
RPC interface and object in a namespace.

The examples in this guide use the following conventions:

v To simplify the following examples, each member name is represented by a leaf
name preceded by the symbol that represents the local cell (/.:). For example,
the full global name of the group for the Bulletin_board_interface is as follows:

/.../C=US/O=uw/OU=MadCity/LandS/bb_grp

Binding
attribute

?

Group
attribute

?

Profile
attribute

?

rpc_s_no_more_bindings

No

Yes

Yes

Yes

Yes

No

No No

No

Compatible
binding

info.
?

Compatible
object
UUID

?

Search
STARTS

For each
potentially
compatible
binding, DO

compatible
binding

information

RETURNS

for each group
member, DO

For each profile element of a
compatible interface id, DO

Step 1

Step 2

Step 3

Yes

Figure 39. The import_next, lookup_next Search Algorithm in a Single Entry

222 OSF® DCE Application Development Guide —Core Components

The abridged name is /.:/LandS/bb_grp .

v Except for the nil interface UUID of the default profile, the examples avoid string
representations of actual UUIDs. Instead, the examples represent a UUID as a
value consisting of the name of the interface and the string if-uuid or of the name
of the object and the string object-uuid; for example:

calendar-if-uuid,1.0

laser-printer-object-uuid

v Profile elements in the examples are organized as follows (annotations are not
displayed):

interface-identifier member-name priority

For example,
2fac8900-31f8-11ca-b331-08002b13d56d,1.0 /.:/LandS/C_host_7 0

which, in the following examples, is represented as follows:

calendar-if-uuid,1.0 /.:/LandS/C_host_7 0

Note: The priority is a value of 0 to 7, with 0 having the highest search priority
and 7 having the lowest priority.

The first two examples begin with the personal profile of a user, Esther Rose,
whose user name is esther_r and whose profile has the leaf name of
esther_r_profile . To use this profile, Esther must specify its entry name to the
client. Usually, a client either uses the predefined RPC environment variable
RPC_DEFAULT_ENTRY or prompts for an entry name. For a client to use
RPC_DEFAULT_ENTRY , the client or user must have already set the variable to a
directory service entry.

The following example illustrates six profile elements from the individual user profile
used in the first two examples. The six elements include five nondefault elements
for some frequently used interfaces and a default profile element. Each profile
element is displayed on three lines, but in an actual profile all the fields occupy a
single record. The fields are the interface identifier (interface UUID and version
numbers), member name, priority, and annotation.

/.:/LandS/anthro/esther_r_profile contents:

ec1eeb60-5943-11c9-a309-08002b102989,1.0
/.../C=US/O=uw/OU=MadCity/LandS/Cal_host_7
0 Calendar_interface_V1.0

ec1eeb60-5943-11c9-a309-08002b102989,2.0
/.../C=US/O=uw/OU=MadCity/LandS/Cal_host_4
1 Calendar_interface_V2.0

62251ddd-51ed-11ca-852c-08002b1bb4f6,2.0
/.../C=US/O=uw/OU=MadCity/bb_grp
0 Bulletin_board_interface_V2.0

62251ddd-51ed-11ca-852c-08002b1bb4f6,2.1
/.../C=US/O=uw/OU=MadCity/bb_grp
1 Bulletin_board_interface_V2.1

9e18d295-51ec-11ca-9cc0-08002b1bb4f5,1.0
/.../C=US/O=uw/OU=MadCity/LandS/anthro/Zork_host_2

Chapter 14. RPC and Other DCE Components 223

0 Zork_interface_V1.0

00000000-0000-0000-0000-000000000000,0.0
/.../C=US/O=uw/OU=MadCity/cell-profile
0 Default_profile_element

Example 1: Importing for an Interface with Multiple Versions: Target
Interface: Calendar V2.0

1. The search for binding information associated with Calendar V2.0 starts with the
entry esther_r_profile :

/.../C=US/O=uw/OU=MadCity/LandS/anthro/esther_r_profile contents:

calendar-if-uuid,1.0 /.:/LandS/C_host_7 0
calendar-if-uuid,2.0 /.:/LandS/C_host_4 1

bulletin_board-if-uuid,2.0 /.:/LandS/bb_grp 2
bulletin_board-if-uuid,2.1 /.:/LandS/bb_grp 3

Zork-if-uuid,1.0 /.:/Eng/Zork_host_2 0
00000000-0000-0000-0000-000000000000,0.0 /.:/cell-profile 0

The search operation examines only the two profile elements that refer to the
Calendar interface:

a. The operation rejects the first profile element for the interface because it
refers to the wrong version numbers.

b. In the next profile element, the operation finds the correct version numbers
(2.0). The search proceeds to the associated server entry,
/.:/LandS/Cal_host_4 .

2. The search ends with the indicated server entry, where the binding information
requested by the client resides:

/.:/LandS/Cal_host_4 contents:
calendar-if-uuid,2.0

binding-information

Example 2: Using a Default Profile for Importing an Interface: Target
Interface: Statistics V1.0

1. The search for binding information associated with Statistics V1.0 starts with the
entry esther_r_profile . But the profile lacks any elements for the interface.
Thus the search reaches the default profile element, which provides the entry
name for the default profile, /.:/cell-profile :

/.:/LandS/anthro/esther_r_profile contents:

calendar-if-uuid,1.0 /.:/LandS/C_host_7 0
calendar-if-uuid,2.0 /.:/LandS/C_host_4 1

bulletin_board-if-uuid,2.0 /.:/LandS/bb_grp 2
bulletin_board-if-uuid,2.1 /.:/LandS/bb_grp 3

Zork-if-uuid,1.0 /.:/Eng/Zork_host_2 0
00000000-0000-0000-0000-000000000000,0.0 /.:/cell-profile

0

2. The search continues to the indicated default profile, /.:/cell-profile , which
contains a profile element for the requested Statistics V1.0 interface:

224 OSF® DCE Application Development Guide —Core Components

/.:/LandS/cell-profile contents:
.
.
.
Statistics-if-uuid,1.0 /.:/LandS/Stats_host_6 0
.
.
.

3. The search ends at the indicated server entry, /.:/LandS/Stats_host_6 , where a
server address for the requested interface resides:

/.:/LandS/Stats_host_6 contents:

Statistics-if-uuid,1.0

binding-information

Example 3: Importing an Interface and an Object: Target Interface: Print
Server V2.1

Target Object: Laser Printer Print Queue

1. The search starts with the entry /.:/Bldg/Print_queue_grp , which contains the
entry names of several server entries that advertise the Print_server interface
and the object UUID of a given Laser_printer print queue. The search begins
by randomly selecting a member name. In this instance, the search selects the
name /.:/Bldg/Print_server_host_3 :

/.:/Bldg/Print_queue_grp contents:

/.:/Bldg/Print_server_host_3
/.:/Bldg/Print_server_host_7
/.:/Bldg/Print_server_host_9

2. The search continues with the /.:/Bldg/Print_server_host_3 entry. There, it
finds the requested Version 2.1 of the Print_server interface. However, the
search continues because the entry lacks the object UUID of the requested
Laser_printer queue:

/.:/Bldg/Print_server_host_3 contents:

print_server-if-uuid,2.1

binding-information

line_printer_queue-object-uuid

3. The search goes back to the previous entry, which was
/.:/Bldg/Print_queue_grp , to select another entry name; in this instance
/.:/Bldg/Print_server_host_9 :

/.:/Bldg/Print_queue_grp contents:

/.:/Bldg/Print_server_host_3
/.:/Bldg/Print_server_host_7
/.:/Bldg/Print_server_host_9

4. The search selects the /.:/Bldg/Print_server_host_9 entry. This entry contains
both a server address for the requested Version 2.1 of the interface and the
requested object UUID of the Laser_printer queue:

Chapter 14. RPC and Other DCE Components 225

/.:/Bldg/Print_server_host_9 contents:

print_server-if-uuid, 2.1

binding-information

laser_printer_queue-object-uuid

The search returns binding information from this entry to the client.

Expiration Age of a Local Copy of Directory Service Data

To prevent accessing a namespace unnecessarily, previously requested directory
service data is sometimes stored on the system where the request originated. A
local copy of directory service data is not automatically updated at each request.
Automatic updating of the local copy occurs only when it exceeds its expiration age.
The expiration age is the amount of time that a local copy of directory service data
from an NSI attribute can remain unchanged before a request from an RPC
application for the attribute requires updating of the local copy. When an RPC
application begins running, the RPC runtime randomly specifies a value between 8
and 12 hours as the default expiration age for that instance of the application. Most
applications use only this default expiration age, which is global to the application.

An expiration age is used by an NSI next operation, which reads data from directory
service attributes. For a given search or inquire operation, you can override the
default expiration age by calling the routine rpc_ns_mgmt_handle_set_exp_age()
after the operation’s begin routine. Note that specifying a low default age will result
in increased network updates among the name servers in your cell. This will
adversely affect the performance of all network traffic. Therefore, use the default
whenever possible. If you must override the default age, specify a number that is
high enough to avoid frequent updates of local data.

An NSI next operation usually starts by looking for a local copy of the attribute data
being requested by an application. In the absence of a local copy, the NSI next
operation creates one with fresh attribute data from the namespace. If a local copy
already exists, the operation compares its actual age to the expiration age used by
the application. If the actual age exceeds the expiration age, the operation
automatically tries to update the local copy with fresh attribute data. If updating is
impossible, the old local data remains in place and the NSI next operation fails,
returning the rpc_s_name_service_unavailable status code.

Strategies for Using Directory Service Entries

When developing an RPC application, decide how an application will use the
namespace and design your application accordingly. The following subsections
discuss issues associated with how servers use different types of directory service
entries.

Using Server Entries

An application requires separate server entries for servers on different hosts. For
example, if a server offering the calendar service runs on two hosts, JULES and
VERNE, one server entry is necessary for the server on JULES and another is
necessary for the server on VERNE.

226 OSF® DCE Application Development Guide —Core Components

Each server entry requires a unique cell-relative entry name. If a server adheres to
a simple and consistent arrangement of server entries, you may be able to use
server initialization code to automatically generate a name for each server entry,
and also to ensure that the entry exists. However, some servers will need to obtain
the entry name of a server entry from an external source such as a command-line
argument or a local database belonging to the application.

Note: Applications that obtain entry names and UUIDs as command-line arguments
should accept user-defined values that represent them as an alternative to
accepting the actual names.

Some applications, such as a process-control application, require only one server
instance per system. Many applications, however, can accommodate multiple server
instances on a system. When multiple instances of a server run simultaneously on
a single system, all instances on a host can use a single server entry, every
instance can use separate server entries, or the instances can be classified into
subsets with a separate server entry. A client importing from a shared server entry
cannot distinguish among the server instances that export to the entry. Therefore,
the recommended strategy for a server on a given system depends on which server
instances are viewed by clients as interchangeable entities and which are viewed
as unique entities, as follows:

v Interchangeable server instances

When clients consider all the server instances on a host as equivalent
alternatives, all of the instances can (and should) share a server entry. For
example, multiple instances of the calendar service running on host JULES can
all export to the calendar_JULES entry.

v Unique server instances

A unique server instance possesses a significant difference from other instances
of the same host. Unique server instances require separate server entries. Each
server instance must export unique information to its own server entry; this
unique information can be either a server-specific, well-known endpoint or an
object UUID belonging exclusively to the one server instance.

Before exporting, each server instance must acquire the entry name of its server
entry from an external source. When a unique server instance stops running, its
server entry becomes available. An available server entry should be reused for a
new instance of that server by providing the existing entry’s name for a new
server instance to use with the export operation. If any existing server entries are
unavailable, a new server instance requires a new server entry name.

For a discussion of when a server instance should remove the binding
information from its server entry, see the rpc_ns_binding_unexport(3rpc)
reference page.

Using Groups

When a server is first installed on a system, the server or the installer creates one
or more server entries for the server. Also, when installing the first instance of the
server within a cell, the installer usually creates one or more groups for the
application. For any application, the local system and directory service
administrators can create site-specific groups whose members are server entries,
groups, or both. Typically, a server adds a server entry to at least one group.

Design decisions for defining groups may reflect a number of possible factors.
Typical factors that help define effective groups include the proximity of services or
resources to clients, the types of any resources offered by servers, the uses of
UUIDs, and the types of users that require a specific server.

Chapter 14. RPC and Other DCE Components 227

For example, for a print server, proximity to the clients and the type of supported file
formats are both relevant. These factors may affect print servers as follows:

v Proximity

If the proximity of a server is important to clients, assign servers to groups
according to their locations. For example, print servers that are located together
can use their own group (for example, print servers in building 1 use the group
bldg_1_print_servers). Each server instance can add its own entry to the group,
or a system administrator can add server entries by using the RPC control
program.

To select randomly among servers in a given location, a client imports using the
name of a group that corresponds to those servers (or of a profile that refers to
that group).

Note: If proximity is the key factor in selecting among servers, name each server
entry for the server’s location; for example,
bldg_1_pole_27_print_server .

v Object types

When accessing specific classes of resources is important to clients, you can
group server instances based on the type of object they offer.

For servers that advertise resources in server entries, groups often use subsets
for server entries according to the resources they advertise. For example, print
servers can be grouped according to supported file formats. In this case, an
administrator creates a group entry for each file format; for example,
post_printers , sixel_printers , and ascii_printers . Each print server entry is a
member of one or more groups.

Users that specify a group for a file format must find the printer that processes
the print command. To help the user find the printer, the client can obtain the
name of the server entry that supplied the server binding information by calling
rpc_ns_binding_inq_entry_name() , and then display the name for the user. If
the server entry name indicates the location of the print server (for example,
floor_3_room_45A_print_server), the user can then find the printer.

An application can set up groups according to different factors for different
purposes. For example, the print server application can set up groups of
neighboring print servers and a group of print servers for each of the file formats.
The same server is a member of at least one group of each kind. Clients require
users to specify the name of a directory service entry as a command-line argument
of remote print commands. The user specifies the name of the appropriate group.

Note: If a user wants a specific print server and knows the name of its server
entry, the user can specify that name to the client instead of a group.

Using Profiles

Profiles are tools for managing NSI searches (performed by import_next or
lookup_next operations). Often profiles are set up as public profiles for the users of
a particular environment, such as a directory service cell, a system, a specific
application, or an organization. For example, the administrator of the local directory
service cell should set up a cell profile for all RPC applications that use the cell,
and the administrator of each system in the distributed computing environment
should set up a system profile for local servers.

For each application, a directory service administrator or the owner of an application
should add profile elements to the public profiles that serve the general user

228 OSF® DCE Application Development Guide —Core Components

population; for example, a cell profile, a system profile, or a profile of an
organization. Each profile element associates a profile member (represented in the
member field of an element as the global name of a directory service entry) with an
interface identifier, access priority, and optional annotation. A candidate for
membership in a cell profile is a group or another profile; for example, a group that
refers, directly or indirectly, to the servers of an application installed in the local cell
or an application-specific profile.

An application may benefit from an application-specific profile. For example, an
administrator at a specific location, such as a company’s regional headquarters, can
assign priorities to profile elements based on the proximity of servers to the
headquarters, as illustrated by Figure 40.

An individual user can have a personalized user profile that contains elements for
interfaces the user uses regularly and a default element that specifies a public
profile, such as the cell profile, as the default profile. NSI searches use the default
profile when a client needs an RPC interface that lacks an element in the user
profile.

The Service Model for Defining Servers

The NSI operations accommodate two distinct models for defining servers: the
service model and the resource model. These models express different views of
how clients use servers and how servers can present themselves in the directory
service database. The models are not mutually exclusive, and an application may
need to implement both models to meet diverse goals. By evaluating these models
before designing an RPC application, you can make informed decisions about
whether and how to use object UUIDs, how many server entries to use per server,
how to distinguish among instances of a server on a system, whether and how to
use groups or profiles or both, and so forth. The two models are the service model
and resource model.

The service model views a server exclusively as a distributed service composed of
one or more application-defined interfaces that meet a common goal independently
of specific resources. The service model is used by applications whose servers offer
an identical service and whose clients do not request an RPC resource when
importing an interface. Often, with the service model, all the server instances of an

Priority 7

Priority 5

Priority 3

Priority 0

Local City

Rest of region

Other regions

Regional
Headquarters

Figure 40. Priorities Assigned on Proximity of Members

Chapter 14. RPC and Other DCE Components 229

application are equivalent and are viewed as interchangeable. However, the service
model can accommodate applications that view each server instance as unique.
The implications of whether server instances are viewed as interchangeable or
unique are significant, so the following subsections address these alternatives
separately.

Interchangeable Server Instances

With the service model, servers offer an identical service that operates the same
way on all host systems. For example, an application that uses the service model is
a collection of equivalent print servers that support an identical set of file formats,
and that are installed on printers in a single location. The print servers in any
location can be segregated from printer servers elsewhere by using a
location-specific group.

Figure 41 shows interchangeable print servers offering an identical print service on
different hosts. To access this service, clients request the Print V1.0 interface and
specify the nil object UUID. In this illustration, the starting entry for the NSI search
is a group corresponding to local print servers. Note that a client may be able to
reach this print server group by starting from a profile or another group.

Note: To simplify the illustrations of the usage models, the contents of server
entries are represented without listing any binding information.

Note: The number of entries traversed by a search operation is unrelated to the
number of binding handles it returns.

Print server 1 Print server 2

Exporting Exporting
Name service database

Interface ID for Print V1.0 Interface ID for Print V1.0

/.:/Bldg/Print_server_1 /.:/Bldg/Print_server_2

/.:/Bldg/Print_server_group

/.../C=US/O=TheU/CO=MadCity/Bldg/Print_server_1

/.../C=US/O=TheU/CO=MadCity/Bldg/Print_server_2

Print V1.0 interface
Error_reports V2.0 interface

Print V1.0 interface
Error_reports V2.0 interface

Search Requirements
Target Interface
Target Object
Starting Entry
Maximum number of traversed entries

: Printer V1.0
: None
: /.:/Bldg/Print_server_group

: 2

Figure 41. Service Model: Interchangeable Instances on Two Hosts

230 OSF® DCE Application Development Guide —Core Components

Figure 42 shows interchangeable service instances offering an identical statistics
service on a single host. To access this service, clients request the Statistics V1.0
interface and specify the nil object UUID. The starting entry for the NSI search is a
group corresponding to local servers that offer the service (or a profile that refers to
that group).

Note that, if an application with interchangeable server instances uses the
connectionless RPC protocol, the default behavior of the endpoint map service is to
always return the endpoint from the first map element for that set of server
instances. To avoid having all clients using only one of the instances, before making
a remote procedure call to the server, each client must inquire for an endpoint. For
a random selection, a client calls the rpc_ep_resolve_binding() routine.
Alternatively, a client can call the rpc_mgmt_ep_elt_inq_...() routines to obtain all
the map elements for compatible server instances, and then use an
application-specific selection algorithm to select one of the returned elements.

Distinct Service Instances on a Single Host

With the service model, when multiple server instances on a given host are
somehow unique, each instance must export to a separate server entry. The
exported binding information must contain one or more instance-specific,
well-known endpoints or an instance UUID. Well-known endpoints and instance
UUIDs are used under the following circumstances:

v Well-known endpoints

An instance-specific, well-known endpoint must be provided to a server instance
as part of its installation; for example, as a command-line argument. Before

MAYA system
Statistics-service server instance 1

Exporting Exporting
Name service database

Interface ID for Statistics V1.0

/.:/LandS/Statistics_service_AZTEC

/.:/LandS/Statistics_service_grp

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_AZTEC

Statistics V1.0 interface

Report_writer V2.0 interface

Search Requirements
Target Interface
Target Object
Starting Entry
Maximum number of traversed entries

: Statistics V1.0
: None
: /.:/LandS/Statistics_service_grp

: 2

MAYA system
Statistics-service server instance 2

/.:/LandS/Statistics_service_MAYA

Interface ID for Statistics V1.0

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA

Statistics V1.0 interface

Report_writer V2.0 interface

Figure 42. Service Model: Interchangeable Instances on One Host

Chapter 14. RPC and Other DCE Components 231

calling the export operation, the server instance tells the RPC runtime to use
each of its well-known endpoints; it does this by calling
rpc_server_use_protseq_ep() . The runtime includes these endpoints in the
instance’s binding information, which the runtime makes available to the instance
via a list of server binding handles. The server instance uses this list of binding
handles to export its binding information, including the well-known endpoints. The
server also uses this list of binding handles to export its well-known endpoint with
the local endpoint map; it does this by calling rpc_ep_register() or
rpc_ep_register_no_replace() . Remote calls made using an imported
well-known endpoint from a server entry are guaranteed by the RPC runtime to
go only to the server instance that exported the endpoint to that entry.

Note: Only one server instance per system can use a well-known endpoint
obtained from a given interface specification.

v Instance UUID

Create an instance UUID only for a new server entry. Generating a new instance
UUID each time a server instance exports to a server entry will result in many
instance UUIDs that are difficult to manage and may affect performance as new
instance UUIDs are constantly added to server entries. If a new server instance
inherits a currently unused server entry left behind by an earlier instance, before
exporting, the new server instance should inquire for an instance UUID in the
server entry; this is done by calling the
rpc_ns_entry_object_inq_ {begin ,next ,done }() routines. If the inherited entry
contains an instance UUID, the server uses it for an instance UUID, rather than
creating and exporting a new instance UUID. If an inherited entry lacks an
instance UUID, however, the server must create a UUID and export it to the
server entry.

Note that every server instance must register its instance UUID along with its
endpoints in the local endpoint map.

Note: Using an instance UUID precludes any other use of object UUIDs for the
application.

Figure 43 on page 233 shows distinct instances of a statistics-service server on the
same host. Each server instance uses an instance UUID to identify itself to clients.
The instance UUID is the only object UUID a server instance exports to its server
entry. Starting at the statistics-service group, clients import the statistics interface.

After finding a server entry with compatible binding information for the statistics
interface, the import operation returns an instance UUID along with binding
information. Every remote procedure call made with that binding information goes to
the server instance that exported the instance UUID.

232 OSF® DCE Application Development Guide —Core Components

The Resource Model for Defining Servers

The resource model views servers and clients as manipulating resources. A server
and its clients use object UUIDs to identify specific resources. With the resource
model, any resource an application’s servers and clients manipulate using an object
UUID is considered an RPC resource. Typically, an RPC resource is a physical
resource such as a database. However, an RPC resource may be abstract; for
example, a print format such as ASCII. Note that an application that uses the
resource model for one context may use the service model for another. (See earlier
sections for details of the service model.)

Applications use object UUIDs to refer to resources as follows:

1. Servers offer resources by assigning an object UUID to each specific resource.

2. Clients obtain those object UUIDs and use them to learn about a server that
offers a given resource.

3. When making a remote procedure call, a client requests a resource by passing
its UUID as part of the server binding information.

Each RPC resource or type of resource requires its own object UUID. A calendar
server, for example, may require a distinct UUID to identify each calendar.

MAYA system
Statistics-service server instance 1

Exporting Exporting
Name service database

Interface ID for Statistics V1.0
Instance UUID for instance 2

/.:/LandS/Statistics_service_MAYA_01

/.:/LandS/Statistics_service_grp

Statistics V1.0 interface
Report_writer V2.0 interface

Search Requirements
Target Interface
Target Object
Starting Entry
Maximum number of traversed entries

: Statistics V1.0
: None
: /.:/LandS/Statistics_service_grp

: 2

MAYA system
Statistics-service server instance 2

Statistics V1.0 interface
Report_writer V2.0 interface

/.:/LandS/Statistics_service_MAYA_02

Interface ID for Statistics V1.0
Instance UUID for instance 1

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA_01

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA_02

Figure 43. Service Model: Distinct Instances on One Host

Chapter 14. RPC and Other DCE Components 233

RPC interfaces can be defined to operate with different types of resources and can
be implemented separately for each type; for example, a print server application
that supports PostScript, sixel, and ASCII file formats. When using different
implementations of an interface (different managers), servers must associate the
object UUID of a resource, such as an ASCII file format and its manager, by
assigning them a single type UUID. To request the resource, a client specifies its
object UUID in the server binding information. When a print server receives the
remote procedure call, it looks up the corresponding type UUID and selects the
associated manager.

Some RPC resources, such as print queues, belong exclusively to a single server
instance. Some can be shared among server instances; for example, a file format
or an airline reservation database. For server instances on the same system,
sharing a resource means that its object UUID cannot distinguish between the two
instances. For a print server, this is unlikely to be a problem, assuming that each
printer runs only one instance of the print server. In contrast, an application with a
widely accessed database, such as an airline reservation application, may need to
ensure that clients can distinguish server instances from each other. An application
can distinguish itself by supplying its clients with instance-specific information; for
example, a well-known endpoint or an instance UUID.

Note: Multiple server instances that access the same set of resources can
introduce concurrency control problems, such as two instances accessing a
tape drive at the same time. Also, where the system provides concurrency
control, servers may compete and have to wait for resources such as
databases. Dealing with delayed access to shared resources may require an
application-specific mechanism, such as queuing access requests.

Guidelines for Defining and Using RPC Resources

When developing an RPC application, you need to decide whether to use object
UUIDs to identify RPC resources and, if so, what sorts of resources receive UUIDs
that servers export to the namespace. When making these decisions, consider the
following questions:

v Will users need to select a server entry from the namespace based on what
object UUIDs the entry contains (and what the client needs)?

If yes, then a client must specify an object UUID to the import operation.

v Does the type of resource you are using last for a long time (months or years),
so you can advertise object UUIDs efficiently in the namespace?

The information kept in a namespace should be static or rarely change. For
example, print queues are appropriate RPC resources. In contrast, quickly
changing information, such as the jobs queued for the printer, owners of the jobs,
or the time the job was added to the queue, should not be viewed as RPC
resources. Such short-lived data may be viewed as local objects, which are
stored and managed at a specific server. Programming with local objects is in the
area of regular object-oriented programming and is independent of an
application’s use of RPC resources.

v Is the number of objects belonging to the type of resource bounded in order to
avoid placing high demands on the directory service?

v Will the server implement an interface for different types of a resource, such as
different forms of calendar databases or different types of queues?

If yes, then the server must classify objects into types. For each type, the server
generates a nonnil UUID for the type UUID, sets the type UUID for every object
of the type, and specifies that type as the manager type when registering the

234 OSF® DCE Application Development Guide —Core Components

interface. When making a remote procedure call to the interface, a client must
supply an object UUID to specify an RPC resource.

v Is control over specific resources an important factor for distinguishing among
server instances on a host?

If yes, then each server must generate an object UUID for each of its resources.

For some applications, such as those accessing a database that many people use,
shared access to one or more objects may be essential. However, not all objects
accommodate such shared access.

Using Objects and Groups Together

Servers can associate object UUIDs with a group. Each server exports one or more
object UUIDs (without exporting any binding information) to the directory service
entry of the group. This involves specifying the NULL interface identifier to the
export operation along with the list of object UUIDs. The object UUIDs reside in the
directory service entry of the group. If a server stops offering an advertised object, a
server must unexport its object UUID from the group entry in order to keep its
object list up-to-date.

Clients use objects in a group entry as follows:

1. The client inquires for an object UUID from the group entry by calling the
rpc_ns_entry_object_inq_ {begin ,next ,done }() routines. This routine selects
one object UUID at random and returns it to the client.

2. The client imports binding information for the returned object UUID (and the
interface of the called remote procedure), specifying the group for the start of
the search.

3. The import operation returns a binding handle that refers to the requested object
UUID and binding information for a server that offers the corresponding object.

4. The client issues the remote procedure call by using that binding handle.

5. The server looks up the type of the requested object.

6. The server assigns the remote procedure call to the manager that implements
the called remote procedure for that type of object.

System-Specific Applications

For some applications, the clients need to import an RPC resource that belongs to
a specific system, and the clients can specify a server entry name to learn about a
server on that system. For example, a process server that allows clients to monitor
and control processes on a remote machine is useful only to that machine.
Figure 44 on page 236 illustrates this type of system-specific interpretation of the
resource model.

Chapter 14. RPC and Other DCE Components 235

Because clients usually find a system-specific server by specifying its server entry
to the import operation, groups are usually not part of the NSI search path for
system-specific applications. However, groups are a management tool for such
applications. A group containing the names of the server entries of all the current
servers can act as an accounting database. Also, a group for the servers on each
set of related systems, such as the members of a LAN or an administrative
grouping, permits a client to sequentially use the application on every system in the
set. An application with system-specific servers should not use profiles.

Exporting Multiple Object UUIDs to a Single Server Entry

Often a single server offers more than one resource, or it offers several types of
resources. In cases where a server instance has a large number of object UUIDs,
the application should usually place multiple object UUIDs into a single server entry.
Typically, an application places all its object UUIDs into one server entry; however,
it may need to segregate them into several server entries according to factors such
as object type, location, or who uses the different types of objects. When you are
subsetting resources, try to assign each resource to a single set so that its object
UUID is exported to only one server entry. Figure 45 on page 237 illustrates a single
server entry implementation for each server for the resource model.

AZTEC system
Process-control server

Exporting
Name service database

/.:/hosts/AZTEC/Process_control

Search Requirements
Target Interface
Target Object
Starting Entry
Maximum number of traversed entries

: Process_control V1.2
: Process-status file of MAYA system
: /.:/hosts/MAYA/Process_control

: 1

Interface ID for Process_control V1.2
Object UUID for AZTEC's process-status file

AZTEC's
process stats

file

Process_control V1.2 interface

MAYA's
process stats

file

Process_control V1.2 interface

MAYA system
Process-control server

Exporting

/.:/hosts/MAYA/Process_control

Interface ID for Process_control V1.2
Object UUID for MAYA's process-status file

Figure 44. Resource Model: A System-Specific Application

236 OSF® DCE Application Development Guide —Core Components

Exporting Every Object UUID to a Separate Server Entry

For some applications, exporting each object UUID to a separate server entry is a
practical strategy. To avoid excessive demands on directory service resources,
however, this strategy requires that the set of objects remain small. Applications
with many RPC resources should usually have each server create a single server
entry for itself and export the object UUIDs of the resources it offers to that server
entry. For example, an application that accesses a different personal calendar for
every member of an organization needs to avoid using a separate server entry for
each calendar.

For some applications, however, you can use a separate server entry for each
object UUID; for example, a print server application that supports a small number of
file formats. Each server can create a separate server entry for each supported file
format and export its object UUID to that server entry. The server entries for a file
format are members of a distinct group.

To import binding information for a server that supports a required file format, a
client specifies the nil UUID as the object UUID and the group for that format as the
starting entry. The import operation selects a group member at random and goes to
the corresponding server entry. Along with binding information, the operation returns

AZTEC system
Calendar server

Exporting
Name service database

/.:/LandS/anthro/calendars_AZTEC

Search Requirements
Target Interface
Target Object
Starting Entry
Maximum number of traversed entries

: Calendar V1.1
: A specific personal calendar
: /.:/LandS/anthro/personal_calendars_grp

: 3

MAYA system
Calendar server

Exporting

Calendar V1.1 interface

Dick's
calendar

Pete's
calendar

Mac's
calendar

Calendar V1.1 interface

Margy's
calendar

Molly's
calendar

Jane's
calendar

Interface ID for Calendar V1.1
Object UUIDs for:

Mac's calendar
Dick's calendar
Pete's calendar

Interface ID for Calendar V1.1
Object UUIDs for:

Jane's calendar
Margy's calendar
Molly's calendar

/.:/LandS/anthro/calendars_MAYA

/.:/LandS/anthro/personal_calendars_grp

/.../C=US/O=TheU/OU=MadCity/LandS/anthro/calendars_AZTEC
/.../C=US/O=TheU/OU=MadCity/LandS/anthro/calendars_MAYA

Figure 45. Resource Model: A Single Server Entry for Each Server

Chapter 14. RPC and Other DCE Components 237

the server’s object UUID for the requested file format from the server entry. When
the client issues a remote procedure call to the server, the imported object UUID
correctly identifies the file format the client needs. Figure 46 illustrates this use of
object UUIDs.

Applications that use a separate entry for each object UUID need to use groups
cautiously. Keeping groups small when clients are requesting a specific object is
essential because an NSI search looks up the group members in random order.
Therefore, the members of a group form a localized flat NSI search path rather than
the hierarchical path. Flat search paths are inefficient because the average search
will look at half the members. Small groups are not a problem. For example, if a
group contains only 4 members, each of whom refers to a server entry that
advertises a distinct set of RPC resources, the average number of server entries
accessed in each search is 2 entries and the maximum is only 4. The larger the

Exporting
Name service database

Search Requirements
Target Interface
Target Object
Starting Entry
Maximum number of traversed entries

: Print V1.0
: ASCII file format (client specifies nil object UUID)
: /.:/Bldg/ASCII_FF_group

: 2

Exporting

Print server 1

Print V1.0 interface

PostScript
format

ASCII
format

Print server 2

Print V1.0 interface

PostScript
format

Sixel
format

ASCII
format

/.:/Bldg/PrintServer_1_FF/ASCII

Interface ID for Print V1.0
Object UUID for ASCII format

/.:/Bldg/PrintServer_1_FF/Post /.:/Bldg/PrintServer_2_FF/Post

/.:/Bldg/ASCII_FF_group

/.:/Bldg/PrintServer_2_FF/sixel

/.:/Bldg/PrintServer_2_FF/ASCII

Interface ID for Print V1.0
Object UUID for PostScript format

/.:/Bldg/PrintServer_1_FF/ASCII
/.:/Bldg/PrintServer_2_FF/ASCII

Interface ID for Print V1.0
Object UUID for sixel format

Interface ID for Print V1.0
Object UUID for ASCII format

Interface ID for Print V1.0
Object UUID for PostScript format

Figure 46. Resource Model: A Separate Server Entry for Each Object

238 OSF® DCE Application Development Guide —Core Components

group, however, the more inefficient the resulting search path. For example, for a
group containing 12 members, each of whom refers to a server entry that
advertises a distinct set of object UUIDs, the average search accesses 6 entries
and some searches access all 12 server entries.

Chapter 14. RPC and Other DCE Components 239

240 OSF® DCE Application Development Guide —Core Components

Chapter 15. Developing Applications that Use Distributed
Objects

Before you read this chapter and begin developing with distributed objects, first
read OSF DCE Application Development Guide—Introduction and Style Guide,
chapter 8. This chapter describes how to develop object-oriented, DCE applications
that have distributed objects. The chapter introduces C++ features of the Interface
Definition Language (IDL) that allow direct development of C++ DCE applications. It
covers the following topics:

v IDL and the class hierarchy of a DCE application

v Servers that manage distributed objects

v Clients that use distributed objects

v Multiple interfaces and interface inheritance

v Integrating C and C++ clients and servers

v Using objects from class libraries as RPC parameters

IDL and the Class Hierarchy of a DCE Application

When you develop a DCE application, be it object oriented or otherwise, you begin
by creating an interface definition file. This file specifies the operations (with
necessary data structures) available for a client to call, all of which a server of this
interface must implement.

Although IDL resembles the C programming language, it is intended to be language
independent. This means that the applications that are developed could use any
programming language that makes sense for them. However, the IDL compiler
generates intermediate stub files in either C or C++, two of the most popular
languages in use today. We use a particular programming language to take
advantage of its features when developing an application. However, an application
developed in another language could use mechanisms (such as wrapper routines)
that call the routines generated by the IDL compiler.

The -lang option of the IDL compiler when used with a cxx argument generates
C++ intermediate stub files rather than C intermediate stub files. In order to support
the generation of C++ stubs, the IDL also needs additional features to give
applications developed in C++ a cleaner and more efficient use of the distributed
application features of DCE. This section describes how to use these features in
interface definitions.

Specifying a C++ Class via an IDL Interface

An IDL interface definition and a C++ class are very similar. An IDL interface
definition specifies the data structures and operations that an application needs to
use a distributed interface. A C++ class specifies the data structures and functions
that an application needs to use a type of object. IDL and the IDL compiler blend
together the distributed computing capabilities of an interface definition with the
object-oriented features of a C++ class to specify distributed objects.

The following example shows an interface definition for a distributed Matrix object:

FILE matrix.idl

241

[
uuid(24cb0eda-3eb9-11ce-b1ce-08002bbbf636)

] interface Matrix
{
/* Create a new 2 by 2 Matrix. This operation requires an ACF */
/* to tell the stubs this is a creator operation. */
Matrix * createMatrix(

[in] long v11,
[in] long v12,
[in] long v21,
[in] long v22
);

/* Create a new Matrix of size rows by columns and return TRUE.*/
/* If server does not support the size requested, return FALSE */
/* and the maximum size in rows and columns that it supports.*/
/* This operation requires an ACF to tell the stubs this is a */
/* static operation. */
boolean newMatrix(

[in, out] long &rows,
[in, out] long &columns,
[out] Matrix ** m
);

/* The rest of the operations operate on the existing object */
/* that invokes them (this Matrix). */

/* Set a new value in this Matrix. */
void set(

[in] long row,
[in] long col,
[in] long value
);

/* Get a value from this Matrix. */
long get(

[in] long row,
[in] long col
);

/* Return a new Matrix that is the inverse of this Matrix. */
Matrix * inverse();

/* Return a new Matrix that is the product of this Matrix */
/* and m1.*/
Matrix * multiply(

[in] Matrix * m1
);

/* Return in Matrix m2 the sum of this Matrix and m1. */
void add(

[in] Matrix * m1,
[out] Matrix ** m2
);

}

Interface definitions and C++ classes are both specifications, not implementations.
An implementation of the IDL interface definition is a server’s manager code, and
an instance of the class is an object of that class. The operations of the Matrix
interface are described as follows:

createMatrix
If an interface designer expects clients to create dynamic objects, at least
one operation must be a static function that creates a new object. For

242 OSF® DCE Application Development Guide —Core Components

example, the createMatrix operation is intended to be a static member
function. Static member functions do not require an existing object before
they are called.

newMatrix

Parameters are typically passed-by-value in C++. Apply the reference
operator (&) to parameters you want to pass by reference. A reference
parameter is required if the function changes the value. In this example, the
number of the rows and columns are input but the values change if the
function cannot create the Matrix requested.

set The set operation sets an individual value in an existing Matrix object.

get The get operation obtains an individual value from an existing Matrix object.

inverse
The inverse operation returns a new Matrix object that is the inverse of an
existing Matrix object.

add The add operation does not return a value but has an output parameter
that is a new Matrix object. The output is the sum of an existing Matrix
object and an input parameter that is a Matrix object.

It is not appropriate to encapsulate data in the definition of a public interface; that
would be implementation detail, which does not belong in the interface definition.
Therefore, there is no IDL concept of private data as there is in C++. However, the
base class from which all IDL interface classes are derived does encapsulated
binding data and RPC mechanisms.

IDL-Generated Classes as Part of Your Hierarchy

The interface definition is compiled with the following IDL compiler command to
generate an intermediate C++ header file, client stub, server stub, and manager
class header file:

idl -lang cxx matrix.idl

The IDL compiler then automatically invokes the local language compiler by default.
In this case it invokes the C++ compiler to create binary stub files that are used in
the development of clients and servers.

The IDL compiler automatically uses an Attribute Configuration File (ACF) if one is
available in its search directories. C++ applications use an ACF to specify features
such as static member functions, implementation class names, a lookup function for
named or persistent objects, and header files for inclusion in stub files.

Class hierarchies are created by the IDL compiler and made part of the clients and
servers. The hierarchies include an RPC base class that encapsulates the
distributed nature of objects. An abstract interface class is also created by the IDL
compiler and derived from the RPC base class. The interface class includes the
data types and nonstatic member functions of the interface definition and is the
common interface used by clients and servers. The interface class contains no
implementation. Therefore, clients and servers each need to derive implementation
classes from the interface class. Clients have an idl -generated implementation
class generated for them, called a proxy class. Servers have an idl -generated class
generated for them called a manager class.

Chapter 15. Developing Applications that Use Distributed Objects 243

Server developers must implement the manager class functions by either modifying
the generated manager class header file or deriving an application-specific class
from the manager class. The manager class name generated by the IDL compiler is
a combination of the interface name and Mgr . For example, the manager class for
our Matrix interface is MatrixMgr . The generated class is placed in a header file
with a name created from the combination the interface file name and the _mgr
suffix. For example, matrix_mgr.h .

If you decide to implement the manager by modify the generated manager class,
you want to be sure that any subsequent invocation of the IDL compiler does not
overwrite your manager class code. Use the -no_cxxmgr option with the IDL
compiler command to suppress generating a manager class.

idl -lang cxx -no_cxxmgr matrix.idl

Servers that Manage Distributed Objects

An application creates local objects for its own internal use. Servers must manage
these application-specific objects, just as any application does. In addition,
distributed object servers must manage two other basic kinds of objects for their
clients: distributed dynamic objects and distributed named objects. The following
subsections cover a number of programming tasks and topics of interest to server
developers. The basic programming tasks server developers typically perform
include the following:

1. Implementing dynamic objects for clients, if needed

2. Implementing static member functions, if any

3. If clients can pass local objects in calls to the server, linking in both server and
client stubs so that manager functions automatically access parameters that are
client-local objects

Other topics of interest to server developers include naming objects, dynamically
creating named or persistent objects with a lookup function, and using the DCE
backing store for persistent objects.

Initializing Object-Oriented Servers

DCE servers consist of two major portions of code: initialization code and manager
code. All servers must perform some initialization prior to providing services and
objects. In addition to initialization code, the server also has manager code that
implements each interface that a server supports. The manager code contains the
implementation of both the static and nonstatic member functions (or methods).

In an object-oriented development environment, there would generally be a server
class with each server being an instance of that class. Although interesting and
important for object-oriented applications, the design and implementation of such an
environment is beyond the scope of this chapter. However, there are a few issues
to consider when initializing C++ servers, as follows:

v Server Registration

Servers are automatically registered by server stubs, so if your code calls the
rpc_server_register_if() routine, you will get a warning indicating the server is
already registered.

v Entry point vectors (EPVs) and C++ function tables

244 OSF® DCE Application Development Guide —Core Components

When a C++ application is compiled, a function table is automatically generated
for each class. The EPV mechanism in DCE is necessary for languages that do
not supply such a feature, such as C. Use NULL (the default EPV) for C++
applications.

v Named and persistent objects

Your server may need to create persistent or long-lived named objects before the
server begins servicing client requests. Naming objects is described later in this
chapter.

v Exceptions

DCE supplies exception handling macros such as TRY,CATCH, and FINALLY for
use in distributed applications. You should use DCE’s macros in your applications
instead of the standard C++ macros to be sure exceptions are propagated
properly from servers to clients.

See the first chapter of the OSF DCE Application Development Guide—Introduction
and Style Guide for the typical steps DCE requires to initialize a server. The
following subsections describe features needed in manager code, the code
responsible for a server’s specific implementations of the interfaces supported.

Implementing Distributed-Dynamic Objects

After the server has been initialized and is listening for calls, one obvious question
arises: How does the server create distributed objects? The server creates objects
locally, just as they are created in typical C++ applications, by allocating variables of
the class types or by dynamically creating them with the C++ new operator, as
shown in the following example:

// m1 is allocated as a variable of class Matrix
Matrix m1;
// m2 is a pointer variable of class Matrix allocated with "new"
Matrix *m2 = new MatrixMgr(0, 0, 0, 0);

However, clients have no way to use these objects since they are only local and not
yet available as distributed objects.

For distributed dynamic objects, the server needs a way to know when a client
requests that the server create a dynamic object. This is done by using an ACF to
associate an appropriate interface operation with the server’s implemented manager
class. You must then write manager code that turns server-local objects into
distributed dynamic objects.

When you compile the interface definition file to create the interface header file and
server stub, you use an ACF to customize how your application code uses the
interface, as shown in the following:

/* FILE NAME: matrix.acf */
/* This file defines some attributes for the Matrix interface */
interface Matrix
{
/* include header files generated into the server stub */
[sstub] include "matrix_mgr";

/* createMatrix should be mapped as a creator function. */
/* The MatrixMgr is a class derived from the interface class. */

Chapter 15. Developing Applications that Use Distributed Objects 245

[cxx_new(MatrixMgr)] createMatrix();
.
.
.

[sstub] include
Use the include statement with thesstub attribute to make the IDL compiler
include specific header files in the server stub. In this example, this is
required so that the stub has a declaration of the manager class.

[cxx_new(MatrixMgr)] createMatrix();

Use the cxx_new attribute with the name of the implemented manager
class (MatrixMgr) as an argument, and apply it to the interface operation
that is intended to create a dynamic object, createMatrix. The manager
class can be the idl -generated one, as in this example, or it can be one you
derived from the generated manager class.

The following C++ code shows examples of constructor and destructor functions
you write for the manager class (MatrixMgr):

.

.

.
// Constructor
MatrixMgr::MatrixMgr(idl_long_int v1, idl_long_int v2,

idl_long_int v3, idl_long_int v4)
{
d[0][0] = v1;
d[0][1] = v2;
d[1][0] = v3;
d[1][1] = v4;
}

// Destructor for a 2x2 Matrix.
// In this application, the destructor does nothing.
MatrixMgr::
x MatrixMgr(void)
{
return;
}

MatrixMgr::MatrixMgr

In the trivial case, a constructor automatically initializes the object allocated
by the C++ new operator. For this application, the constructor simply fills in
the data structure with the values sent in the remote procedure call. In more
realistic applications, the C++ constructor may have to perform additional
work. C++ allows you to define constructor functions that contain
application-specific code that is automatically called immediately after the
object is created.

MatrixMgr:: xMatrixMgr

In addition to a constructor, C++ allows you to define destructor code that is
called to do application-specific cleanup just prior to the release of storage
for the object. In this example, the destructor is a dummy function that has
no special code and does nothing.

When a client initiates the creation of a dynamic object, the server receives a
remote procedure call request for the createMatrix function. This causes the server
stub to call the C++ constructor for the specified manager class (in this example
MatrixMgr), which creates a new object on the server. When this happens, the

246 OSF® DCE Application Development Guide —Core Components

DCE runtime stores information about the object in a table that also associates the
object with the requesting client. No other clients have access to a dynamic object
unless the originating client gives an object reference to another client. The runtime
uses reference counting to keep track of how many clients know about the object.
When a client deletes the object, the reference count on the server is reduced. The
object on the server is deleted only when the reference count reaches zero, which
indicates that there are no more clients with references to the object.

Implementing Static Member Functions

Static member functions are specified in the interface definition or with an ACF.
Those operations of an interface that the designer knows should be static have the
static keyword before the operation in the interface definition file. For example, the
newMatrix operation of the Matrix interface is designed to work without an invoking
Matrix, so it could have been specified in the interface definition as a static member
function as follows:

interface Matrix
.
.
.
static boolean newMatrix(...);

The IDL compiler automatically compiles this kind of operation as a static member
function in both the server and client stubs. Depending on how a developer wants
to implement the interface, it may be undesirable to commit to a static function. For
example, the CreateMatrix() function described in the previous section could have
been specified as static in the interface, but it would prevent the server developer
from directly using the built-in constructor feature of C++ to implement an object
creator function. Therefore, to give maximum flexibility to both client and server
developers, the static keyword can be left off the operation and then specified as
needed in an ACF file.

Of course, creating new objects is just one thing a static member function can do,
and so any number of other static member functions may be specified in the
interface to do whatever application-specific work is required.

The Matrix interface declares the following operations:

Matrix * createMatrix(
[in] long v11,
[in] long v12,
[in] long v21,
[in] long v22
);

boolean newMatrix(
[in, out] long &rows,
[in, out] long &columns,
[out] Matrix ** m
);

The IDL compiler requires an ACF to implement these as static member functions. A
sample server ACF contains the following:

/* FILE NAME: matrix.acf */
/* This file defines some attributes for the Matrix interface */

interface Matrix

Chapter 15. Developing Applications that Use Distributed Objects 247

{
/* include header files generated into the server stub */
[sstub] include "matrix_mgr";

/* createMatrix should be mapped as a creator function. */
/* The MatrixMgr is a class derived from the interface class. */
[cxx_new(MatrixMgr)] createMatrix();

/* newMatrix should be mapped as a static member function. */
[cxx_static] newMatrix();
}

[sstub] include
Use the include statement with the sstub attribute to make the IDL
compiler include specific header files in the server stub. In this example,
this is required so that the stub has a declaration of the manager class.

[cxx_new(MatrixMgr)] createMatrix();

Use the cxx_new attribute with the name of the implemented manager
class (MatrixMgr) as an argument, and apply it to the interface operation
that is intended to create a dynamic object, createMatrix . This feature is
described in the previous section.

[cxx_static] newMatrix;

Apply the cxx_static attribute to the names of all interface operations you
intend to implement as static member functions.

To complete the story of a static function, the following is an example of one trivial
implementation of the newMatrix function. The code implements only a 2 by 2
Matrix. If a client inputs values other than 2 for rows or columns , the values are
changed to 2, and FALSE is returned.

// Implementation of the static member function declared with an ACF
idl_boolean
Matrix::newMatrix(idl_long_int &rows, idl_long_int &columns, Matrix **m)
{
if(rows != 2 && columns != 2) //implementing only a 2 by 2 Matrix
{
rows = columns = 2;
*m = 0;
return FALSE;

}
else
{
*m = new MatrixMgr(0, 0, 0, 0);
return TRUE;

}
}

The cxx_static attribute can also take an argument that represents a new name to
use for the function. This may be necessary in your application if it needs to
distinguish between remote and local versions of a static member function. In any
case, to minimize changes to your code modules, it is a good idea to keep the
implementation of static functions in files separate from the nonstatic member
functions (the rest of the manager code). The following section describes a common
example of when to use an argument for the cxx_static attribute.

248 OSF® DCE Application Development Guide —Core Components

When Function Parameters Are Remote Objects

With distributed applications, especially with distributed objects, the distinction
between a client and server is not determined so much by a program on a specific
machine as it is by a state the program is currently in. Thus a program can be both
a client and a server, depending on its purposes. For example, it is possible that,
when a client object uses a function that has another object as an input parameter
(our add() function, for example), the input could easily be an object that is local to
the client. When the server is executing the add() function, it needs a way to
transparently access the input object that is now remote to the server (but local to
the client).

A server accesses client objects by linking in the client stub in addition to the server
stub. When an object is remote to the server, information in the binding from a
client is used automatically by the server stub during unmarshalling to create an
object reference (a proxy) and make remote calls back to the client to access the
object there. Server code itself does not have to do any special calls.

The following figure illustrates a brief review of all the code modules a typical server
needs. The server stub for each interface and initialization code are required to
access DCE’s distributed environment. Each interface requires a manager class,
manager code, and static member functions to implement them. Each interface with
input object parameters should include the client stub in order for the server stub to
access client-local objects.

Making this work includes one other step besides linking in a client stub. If there are
any static member functions in the interface class, linking together a client and
server stub will produce a C++ compiler error due to a name conflict in the server
and client stub versions of the function. You use the cxx_static attribute in an ACF
to rename the server’s local version of the static functions. An example of such an
ACF is as follows:

/* FILE NAME: matrix.acf */

interface Matrix
{
/* include files generated into the server stub */
[sstub] include "matrix_mgr", "staticfunc";

Manager
Class

Initialization
code

server
stub

Manager
Code

(non-static)

static
member
functions

client stub

Figure 47. Servers Need the Client Stub to Access Client-Local Objects

Chapter 15. Developing Applications that Use Distributed Objects 249

/* createMatrix should be mapped as a creator function. The */
/* argument represents the class that implements the interface.*/
[cxx_new(MatrixMgr)] createMatrix();

/* newMatrix should be mapped as a static member function. */
[cxx_static(LocalMatrix)] newMatrix();
}

The LocalMatrix argument to the cxx_static attribute is the name for this server’s
local implementation of the function, and the newMatrix name refers to the remote
(in this case, the client stub) function.

The include statement is needed with the sstub attribute to include header files
that contain declarations needed by the server stub only. In this example, the
matrix_mgr.h file contains the server’s manager class declaration, and the
staticfunc.h file contains the declaration of the renamed static function,
LocalMatrix . The staticfunc.h header file is as follows:

// FILE NAME: staticfunc.h
// This file declares the function(s) to call
// when invoking local versions of an interface's static functions.
// The prototype signatures should match that of the remote versions.

idl_boolean LocalMatrix(idl_long_int, idl_long_int, Matrix **m);

Note: Servers will work without including the client stub and renaming the local
version of the static functions. However, if a client ever uses a member
function with an object parameter that is remote to the server, a runtime error
occurs. If this happens, the server raises an exception
(rpc_x_no_client_stub) to propagate back to the client that indicates the
client stub is not included in the server.

Naming Objects

This section explains how to do the following for named objects:

v Register named objects

The built-in register_named_object() function uses the name service and
endpoint map to name and advertise an object.

v Place object names in name service directly

The name service can be used to advertise objects for which an instance has not
yet been created.

v Dynamically create instances of named or persistent objects

The server’s runtime can automatically call a lookup function to create objects it
supports but does not yet have an instance created.

Registering Named Objects

DCE RPC supplies every interface class with a member function,
register_named_object() , to do all that is required to register named objects. The
following example shows how a server might create an object and then register it
as a named object. The server first creates an object by using the new operator.
Then the server calls the register_named_object function to register the object’s
name, universal unique identifier (UUID), and its server binding information with the
name service. The function also registers the object’s UUID and binding information
with the host’s endpoint map, and it updates the runtime’s object table.

250 OSF® DCE Application Development Guide —Core Components

.

.

.
// Create an object on the server.

Matrix * matrix = new MatrixMgr(1, 1, 1, 1);
matrix->register_named_object((unsigned_char_t *) \

"/.:/MatrixObject");
.
.
.

The register_named_object() function greatly simplifies your work, but you need to
be aware of the information it uses and generates. The following lists the
approximate order of events that occur when an object invokes this function:

1. A name service entry is created if one is not already there, using the name in
the first argument of the function.

2. If the named object does not already have a UUID associated with it in the
name service, one is created.

3. The server’s binding information is associated with the name service entry.

4. All interfaces supported by the object are also registered with the name service.

5. The object UUID is associated with the server’s location on the host by
registering endpoints in the host’s endpoint map.

The function has an optional second argument of type boolean . The default
value is TRUE, which means this is the only server on this host that services
this interface. (In C++, using no argument is the same as using the default
value for the argument.) If the default value is used, values in the endpoint map
are updated.

If the second argument to the function is FALSE , this is not the only server this
host has that services this interface. In this case, the register_named_object()
function adds server binding information to the endpoint map (rather than
updating the endpoint map) so clients can find any of the servers. See the
rpc_ep_register_no_replace(3rpc) reference page for more on this topic.

6. Finally, an object table maintained by the server’s RPC runtime is updated so
that requests for specific objects are directed to the correct member function
invocation. Even though creating the object in the first place registers it with the
runtime’s object table, some information (such as the object’s UUID) may need
to be updated.

Placing an Object’s Name Directly in the Name Service

Consider the following situations:

v Suppose you want a server to just advertise the named objects it supports and
not use resources to create them until they are needed. As described in the
previous section, an object must be created before it can register itself with the
register_named_object() function.

v Suppose you want to use a known UUID to represent a named object. If the
name does not already exist in the name service, a new UUID is generated via
the register_named_object() call on the fly. This may be fine for many
applications, but, for some, manipulating objects only by their name service
names may be cumbersome and inflexible.

If you wish to place a named object in the name service and at the same time use
a consistent, stable, and well-known UUID for a named object, you first associate

Chapter 15. Developing Applications that Use Distributed Objects 251

the UUID with the named object in the name service prior to using the
register_named_object() function. There are typically two ways to place object
names in the name service:

v Prior to server startup, you can create or update a named object entry by using
dcecp with the rpcentry object and its export operation.

v Your server can create or update a named object entry by using
rpc_ns_binding_export() during server initialization.

The following example shows a script of dcecp commands and arguments to
execute on the server’s host to export an object’s name and then show the data
exported to the entry:

dcecp -c rpcentry export /.:/objects/IdentityMatrix
-interface {24cb0eba-3eb9-11ce-b1ce-08002bbbf636 0.0} \
-binding {ncacn_ip_tcp ′hostname′} \
-binding {ncadg_ip_udp ′hostname′} \
-object {dcea4900-65ba-11cd-bb34-08002b3d8412}
dcecp -c rpcentry show /.:/objects/IdentityMatrix

Attributes and arguments are as follows:

/.:/objects/IdentityMatrix
The object name.

-interface ...
The interface’s UUID and version numbers from the interface definition
header.

-binding ncacn_ip_tcp ′hostname ′ \
Binding information including a protocol sequence and the host’s name
(generated with the hostname command).

-object ...
The object UUID desired.

Whether you call dcecp ’s rpcentry export operation or the
rpc_ns_binding_export() routine, the first call automatically creates the entry in the
name service and each additional call adds binding information to the entry.

Dynamically Creating Named or Persistent Objects

If there are potentially thousands of persistent objects, you may want your
application to conserve resources and not register all of them at server startup.
Servers may defer creating objects until a client makes a request to use one.

The server’s runtime maintains a table of all its objects. The server gets a request
from a client on an object that is uniquely identified by an object UUID (from the
binding handle), and the object table maps object UUIDs to each object’s address
in the server’s address space. The server’s object table is a C++ class containing
the following information:

v Object UUIDs

v Interface UUIDs

v Object addresses

If the runtime cannot find the UUID of the object requested, an exception is raised
on the server to propagate to the client unless a user-defined object lookup function
exists. If the lookup function does exist, the runtime automatically executes it. The
lookup function is created by the server developer to create the object and, if

252 OSF® DCE Application Development Guide —Core Components

required, register it as a named object. If the lookup function cannot create an
object for the specified UUID, it should return a 0, which causes the runtime to raise
an exception (rpc_x_object_not_found).

After the named object is registered, the object table contains the new object UUID,
so subsequent attempts to use the object do not invoke the lookup function again.
Alternatively, the lookup function can maintain its own object map. By not
registering with the runtime, subsequent operations will invoke the lookup function.
This allows the developer to use the lookup function to maintain complete control
over the existence of the object.

A lookup function name is specified using an ACF when the interface is compiled.
The following example is a portion of an ACF that specifies a lookup function:

[
cxx_lookup(object_lookup)
]
interface Matrix
{
[sstub] include "matrix_mgr", "lookup";
.
.
.

cxx_lookup(object_lookup)

To specify a lookup function use the cxx_lookup attribute with the name of
the lookup function (in this case, object_lookup) as an argument. A lookup
function is interface-wide, so it is defined in the ACF header.

[sstub] include
Use the include statement with the sstub attribute to make the IDL compiler
include implementation-specific header files in the server stub. The
matrix_mgr.h header file contains the manager class and the lookup.h file
contains a declaration of the lookup function you create.

The following example shows the declaration of the object_lookup function in the
lookup.h header file:

//FILE NAME: lookup.h
//This file declares the lookup function used
// for server management of object lookup.

Matrix *object_lookup(uuid_t *);

A lookup function has the following signature requirements:

v The lookup function returns a pointer to the interface class (Matrix *).

v The function name matches the one declared in the ACF (object_lookup).

v There is one input parameter pointer of type uuid_t .

An implementation of the object_lookup() function is shown in the following
section.

Storing and Retrieving Persistent Objects

DCE provides a convenient database storage facility called the backing store, that
lets you store and retrieve objects in a system-independent manner. The following
implementation of a lookup function shows how to use a backing store database to
lookup an object.

Chapter 15. Developing Applications that Use Distributed Objects 253

// FILE NAME: lookup.cxx
// This file contains the server lookup callout function
// specified by the [cxx_lookup] attribute in an ACF. It is called
// whenever an object cannot be found within the DCE runtime.

extern "C" {
#include <dce/dce.h> // standard DCE header file
#include <dce/dbif.h> // backing store facility header file
}
#include "matrix_mgr.h"
#include <check_status.h>
#include "backing.h" // IDL generated header file
//
// This function performs the server management of object lookups.
// If the uuid_t parameter identifies one of the persistent objects,
// this function creates and returns the object.
//

Matrix *
object_lookup(uuid_t *key)
{
dce_db_handle_t db_h;
backing_data_s_t data;
int found;
unsigned32 status;
Matrix *matrix;

//
// Lookup the UUID's in a backing store database
// and get the data.
//
dce_db_open(
"backing.store",
0,
db_c_index_by_uuid | db_c_readonly,
(dce_db_convert_func_t) backing_data_convert,
&db_h,
&status
);

dce_db_fetch_by_uuid(
db_h,
key,
(void *) &data,
&status
);

if (status != rpc_s_ok)
found = 0;

else
found = 1;

dce_db_close(&db_h, &status);

if (!found)
return 0;

// Found the object's data so create an instance of it.
matrix = new MatrixMgr(data.v00, data.v01, data.v10, data.v11);

// register the object so clients can find it directly
// and the server won't have to look it up again.
matrix->register_named_object((unsigned_char_t *) data.name);

return matrix;
}

254 OSF® DCE Application Development Guide —Core Components

The example is described as follows:

dce_db_open()

Applications that have persistent objects commonly store in a database the
information necessary to regenerate the object. In this example, the data is
stored in a backing store data file (backing.store). The argument
db_c_index_by_uuid | db_c_readonly indicates the file is opened for
read-only access and to be indexed by UUID. The argument
backing_data_convert is the function (defined in the backing interface)
that the backing store facility uses to store or retrieve the data. A record for
this database is also defined in the backing interface to contain the entry
name and values for a two-by-two matrix. The backing interface is in the file
backing.idl , and looks as follows:

[
uuid(3e9400dc-0895-11cf-abec-08002b39f4b8)
] interface backing
{

import "dce/database.idl";

/* Data: object name (for CDS) and values */
/* for 2-by-2 matrix */
typedef struct backing_data_s_t {

[string] char name[100];
int v00;
int v01;
int v10;
int v11;

} backing_data_s_t;

/* conversion function declaration */
void backing_data_convert(

[in] handle_t h,
[in,out] backing_data_s_t *data,
[in,out] error_status_t *st

);
}

dce_db_fetch_by_uuid()

This DCE routine obtains the data for the object represented by the key
UUID.

matrix = new MatrixMgr(data.v00, data.v01, data.v10, data.v11);
An instance of the persistent object is created for this server. Note that
each server of the object would have its own implementation and instance
of the object.

register_named_object((unsigned_char_t *) data.name);

This function registers the object’s name, UUID, and its server binding
information with the cell’s name service. It also registers the object’s UUID
and binding information with the host’s endpoint map. Finally, this routine
updates the runtime object table. As an option for more specific control, you
can choose not to call this function and implement your own object table
instead.

return(0);

If the object was not found, return a 0 value. This will cause the server to
raise an exception (rpc_x_object_not_found).

The backing.idl file is compiled with the following ACF:

interface backing
{

Chapter 15. Developing Applications that Use Distributed Objects 255

[encode,decode] backing_data_convert(
[comm_status] st

);
}

The application must also declare the database conversion function as shown in the
following backing.cxx file:

#include "backing.h"

extern "C" {

void
backing_data_convert(

idl_es_handle_t h,
backing_data_s_t *data

) {
}

}

For more on how to use the backing store facility, see the chapter, The DCE
Backing Store.

Clients That Use Distributed Objects

This section describes how to write object-oriented DCE clients. The subsections
describe how to do the following:

v Create remote, dynamic objects

v Create both local and remote instances of the same class

v Call functions that intermix the use of local and remote objects

v Bind to named objects by using names stored in the name service

v Bind to named objects by using their UUID identifiers. This method uses your
local name service hierarchy to begin the namespace search.

v Bypass the name service to bind to objects by using binding information

Creating Remote-Dynamic Objects

In C++ we create new objects dynamically by calling the new operator for the class.
This works to creates local objects, but how do clients create remote dynamic
objects? In order for a client to create dynamic objects, at least one static object
creator operation must be defined in an interface to create its objects. Remember
that a static member function does not have to be invoked by an existing object,
and thus it is appropriate as a way to create new objects. The operation can be
declared to return a new object as a return value or an output parameter. Object
creator functions are declared as static in either of two ways:

v In the IDL file explicitly by using the static keyword

v In an ACF by using the cxx_static (or cxx_new) attribute

The following example is an ACF that specifies object creator member functions for
the Matrix interface:

/* FILE NAME: matrix.acf */
/* This file defines some attributes for a simple client */
/* of the Matrix interface. */

256 OSF® DCE Application Development Guide —Core Components

interface Matrix
{

/* createMatrix needs to be mapped as a creator function */
[cxx_static] createMatrix();

/* newMatrix needs to be mapped as a static member function */
[cxx_static] newMatrix();

}

When the interface is compiled with this ACF, the IDL compiler generates a proxy
class for the client in which these operations are declared as static member
functions. The proxy class is our client’s interface to DCE, and it is DCE’s
mechanisms that let clients interact with objects in the distributed environment.

In some ACFs, static object creator functions may be specified with the cxx_new
attribute instead of cxx_static , and both the attributes may include an argument.
These differences do not affect the client stub and are significant only for server
stubs.

The following example shows how a client calls the Matrix interface’s static member
functions:

#include "matrix.h" // IDL generated header file
#include printmatrix.h

void
main()
{

Matrix *m1;

cout << "Creating dynamic objects:" << endl;

// Create a remote Matrix object on a server using an
// object creator function.
m1 = Matrix::createMatrix(1, 2, 3, 4);
cout << "m1 created by an object creator function:" << endl;
print(m1);
delete m1;

// Create a remote Matrix object on a server using
// a static member function.
idl_boolean result = Matrix::newMatrix(2, 2, &m1);
if(result)
{
print(m1);
delete m1;

}
.
.
.

#include ″matrix.h ″
The interface class and proxy class are defined in the matrix.h header file
generated by the IDL compiler.

Matrix *m1;

Object references are declared as pointers to an interface class. The
interface class is an abstract class, and C++ does not allow you to create
instances of it. However, pointers to abstract classes are allowed. When a
remote object is created for one of these object references, the client stub
actually creates a proxy class object on the client.

m1 = Matrix::createMatrix(...)

Chapter 15. Developing Applications that Use Distributed Objects 257

Object creator functions are invoked using the interface class name (Matrix)
with the standard C++ scope operator (::). This function creates a remote
Matrix object on a server and returns a reference to the remote object.

print(m1);
After a dynamic object is created, the application uses it just like any local
object. This function is an application-specific inline function to display a
Matrix. It is defined in the printmatrix.h header file and uses the Matrix
interface’s get() function.

delete m1;

Remote dynamic objects are deleted with the standard C++ delete
operator, just like local objects. However, for the remote object, an RPC is
sent to it to decrement the reference count. If no other clients have a
reference to it, the object is also deleted from the server’s address space.
Client applications should take care to delete all dynamic objects prior to
exiting. Otherwise, the object remains in the server’s address space wasting
resources. Dynamic objects are created for the use of the invoking client.
This means that servers cannot give a different client a reference to a
dynamic object. However, the client could behave as a server and give a
copy of the object reference to another client. For this reason, a reference
count is maintained on the server for objects.

... = Matrix::newMatrix(2, 2, &m1)

Static member functions are invoked using the interface class name (Matrix)
with the standard C++ scope operator (::). This function is also an object
creator function that creates a remote Matrix object on a server.

Creating Client-Local Objects

The client code in the previous section showed only the case in which a class of
objects is remote. However, many client applications also need to create and use
local objects of the same class. The significant difference is that the local object is
not created by way of a remote procedure call as is the remote object. The
interface class generated by the IDL compiler from the interface definition is an
abstract class. This means that another class must be derived from it to create and
manipulate objects. The client stub has a proxy class automatically defined for
remote objects, but your client application must define a local implementation class
so that your client can create and manipulate local interface objects.

Do the following to create and use local versions of interface objects:

1. Derive a local class from the interface class to implement the client-local
objects. This class is just like a manager class used in server development: in
fact, this example uses the same manager class as the server.

2. Write the local code that implements the interface class. Our example uses the
same manager code implementation as for the server. You implement the
manager class by adding the code to the manager header file generated by the
IDL compiler, or by deriving a new class from the manager class and
implementing those functions.

3. Link the local class and local implementation code into your client application.

The following sample code shows how a client creates a local Matrix object:

#include "matrix.h" // IDL generated header file

#include "matrix_mgr.h" // local class implementation

258 OSF® DCE Application Development Guide —Core Components

.

.

.
Matrix *mlocal;
// Create a local Matrix object in this program
mlocal = new MatrixMgr(4, 3, 2, 1);
cout << "mlocal created:" << endl;
print(mlocal);

.

.

.

#include ″matrix_mgr.h ″
To implement client-local objects, the application includes a local manager
class that is derived from the interface class. Local code is also linked to
the application that implements the client-local objects.

mlocal = new MatrixMgr(...)
Clients create a local object by using the C++ new operator on the local
manager class defined in the matrix_mgr.h header file.

Location Transparency of Local and Remote Objects

The previous sections showed separate cases of how to create objects that are
either remote or local. However, many applications use a mixture of remote and
local objects. For example, a presentation application can link in a video clip from
another system (remote), or it can embed a copy of the video clip into the
presentation itself (local). After the objects are created, we want the distinction to be
as transparent as possible to simplify application code. In DCE, you can also
intermix local and remote objects in function calls without needing to keep track of
which is which.

To prepare your application to handle both local and remote objects simultaneously,
do the following development steps:

1. Use the cxx_static ACF attribute to rename local versions of static functions.

2. Use the IDL compiler to produce both the client and server stub code.

3. Link into your client the client stub, server stub, and local object implementation
code.

To accomplish this, you develop the client as if you are producing both a client and
a server simultaneously. The only real difference is that you do not need any server
initialization code. This means that your application includes the idl -generated
manager class header and server stub, and manager implementation code for each
interface. (See the following figure.) A client uses the client stub to produce and use
remote objects. The client uses the server code to produce and use client-local
objects of the interface class. This makes more sense when you think about server
development: the manager class and code implement distributed objects of the
interface class that are local to the server, so it helps to think local implementation
code rather than server implementation code when we use server stubs, manager
classes, and manager code in a client. If your application fails to use the server
stub, the exception rpc_x_no_server_stub is raised by the client if your application
tries to use local objects.

Chapter 15. Developing Applications that Use Distributed Objects 259

The IDL compiler requires an ACF such as the following when a client uses both
remote and local objects:

/* FILE NAME: matrix.acf */

interface Matrix
{

/* include files generated into the server stub */
[sstub] include "matrix_mgr", "staticfunc";

/* createMatrix must be mapped as a creator member function. */
/* The argument MatrixMgr names the class that implements the */
/* interface for the server stub. */
[cxx_new(MatrixMgr)] createMatrix();

/* The "newMatrix" name represents the remote version of the */
/* function that is used by either the client application or */
/* the server stub. */
[cxx_static(LocalMatrix)] newMatrix();

}

[sstub] include
The include statement causes the IDL compiler to include header files in
stubs. Data structures and definitions in code that are required by stubs
need to be included in this way. This example applies the sstub attribute to
specify the inclusion of matrix_mgr.h and staticfunc.h files in the server
stub only. The matrix_mgr.h file contains the definition of the client-local
manager class. This class defines the implementation of the interface and is
derived from the interface class. The file staticfunc.h contains declarations
of static member functions for the interface. In this example, there is only
one static member function: LocalMatrix() .

[cxx_new(MatrixMgr)] createMatrix();
The cxx_new attribute specifies that a static member function of the
interface is an object creator function. An argument (in this case,
MatrixMgr) is needed to name the manager class, the class derived from
the interface class to implement local interface objects. For the client stub,
the argument is ignored and the function createMatrix() is generated as a
static member function. The client application uses this function to create a
remote interface object. For the server stub (or, in this case, the client-local
implementation), the MatrixMgr argument represents the manager class

Local
Implementation

Class

Local
Implementation

Code

server
stub

Client
application

code

client stub

Figure 48. Clients Use the Server Stub

260 OSF® DCE Application Development Guide —Core Components

name defined in a header file previously specified in the ACF with the
include statement. The application uses the new operator on the
MatrixMgr class to create a local interface object.

[cxx_static(LocalMatrix)] newMatrix();
The cxx_static attribute specifies the interface’s static member functions.
All static member functions need to have this attribute (unless you use the
static keyword in the interface definition to specify the function as static).
An argument is required to avoid name conflicts between the local and
remote versions of the function when both client and server stubs are linked
together in the same application. For the client stub, the argument is
ignored and the client application calls newMatrix() for remote access to
the interface. For the client-local (server) stub, the argument is used to
name the function, and the application calls LocalMatrix() for local access
to the interface.

The following example shows client code to create and use both remote and local
objects from an interface class:

#include "matrix_mgr.h"
#include "printmatrix.h" // print() macro

void
main()
{
idl_long_int d1, d2, d3, d4;
Matrix *mremote, *mlocal, *mr, *ml;

d1 = 1; d2 = 2; d3 = 3; d4 = 4;

cout << "Creating dynamic objects:" << endl;

// Create a remote Matrix object on a server
mremote = Matrix::createMatrix(d1, d2, d3, d4);
cout << "mremote created:" << endl;
print(mremote);

// Create a local Matrix object in this program
mlocal = new MatrixMgr(d4, d3, d2, d1);
cout << "mlocal created:" << endl;
print(mlocal);

// Create another object from a local and remote one.
// Whether the new matrix is local or remote depends on whether
// the invoking object is local or remote.

// create another remote Matrix while accessing a local object
mremote->add(mlocal, &mr);
cout << "mr is remote. It's the sum of mremote and mlocal:"

<< endl;
print(mr);

// create another local Matrix while accessing a remote object
mlocal->add(mremote, &ml);
cout << "ml is local. It is the sum of mlocal and mremote:"

<< endl;
print(mr);

// Applications should ALWAYS delete remote dynamic objects when
// through, otherwise, the server will waste resources maintaining
// them.
delete mremote, mlocal, mr, ml;

Chapter 15. Developing Applications that Use Distributed Objects 261

cout << "Client exiting" << endl;

return;
}

Matrix *mremote, *mlocal, *mr, *ml;

Local and remote object references are both defined as pointers to the
interface class. Depending on how an object is created, polymorphism
causes the invocation of a client stub function for remote objects or the
locally defined function for local objects.

mremote = Matrix::createMatrix(d1, d2, d3, d4);

mlocal = new MatrixMgr(d4, d3, d2, d1);
Clients call a static creator function to create a remote object on a server
and use the C++ new operator to create a local object.

mremote->add(mlocal, &mr);
A client can use remote and local objects together. In this example, a local
object (mlocal) is added to the invoking remote object (mremote) to create
a new remote object (mr) that is the sum of the two.

mlocal->add(mremote, &ml);
In this example, a remote object (mremote) is added to the invoking local
object (mlocal) to create a new local object (ml). Whether the resulting
object is local or remote depends on the invoking object.

delete mremote, mlocal, mr, ml;
Clients use the C++ delete operator to delete both local and remote
objects. If a client does not delete local objects prior to exiting, no real harm
is done since all the memory for the application is released. However,
clients should always delete remote objects when finished with them
because the servers maintain them even after the client has exited.

Finding Known Remote Objects

Servers can register objects with the name service, such as the Cell Directory
Service (CDS). Such objects are termed named objects. When an interface is
compiled, the IDL compiler generates an overloaded bind() operation that allows a
client to bind to a named object in several ways. These include the following:

v Bind by an object’s name

v Bind by an object’s UUID

v Bind by a binding handle

An overloaded operation’s argument list and functionality varies depending on which
argument is used. The bind() operation of an interface is a static operation that
returns a typed interface pointer. A zero is returned upon failure to locate and bind
to the object.

Binding to Named Objects By Name

To bind to a named object by its CDS name, the argument provided to the bind()
operation should be an unsigned_char_t pointer that specifies the name of the
registered object in the CDS hierarchy. For example, the following code fragment
uses a CDS name to create a local object proxy in the client application bound to a
remote object:

262 OSF® DCE Application Development Guide —Core Components

Matrix m;

cout << "Binding to objects by name stored in CDS:" << endl;
m = Matrix::bind((unsigned_char_t *) "/.:/objects/identityMatrix");
if (m) {

print (m);
} else {

cerr << Cant bind to named object << endl;
}

In order for this to work, a server must have registered the object in CDS by calling
the register_named_object() function.

Binding to Named Objects by UUID

To bind to a named object by its object ID, the argument provided to the bind()
operation should be a uuid_t reference. The argument specifies the UUID of the
registered object in the CDS hierarchy. The DCE environment variable
RPC_DEFAULT_ENTRY must be set to indicate where the search for the object is
to begin in the CDS name space. For example, the following code fragment uses
an object’s UUID to create a local object proxy in the client application bound to the
remote object:

const char *UUID = "f063cf5a-c5c8-11ce-8a4b-08002be415b2";
Matrix *m; // interface pointer
uuid_t u; // uuid of named object
unsigned32 status; // error status

// get a uuid from string format
uuid_from_string ((unsigned_char_t *) UUID, &u, &status);
if (status !=uuid_s_ok) {

// handle error case
}
// bind to a named object by uuid
m = Matrix::bind(u);
if (m) {

print (m);
} else {

cerr << Cannot bind to named object << endl;
}

Binding Explicitly to Known Objects

To bind to an object explicitly by its binding handle, the argument provided to the
bind() operation should be a server binding handle of type rpc_binding_handle_t .
Note that this method does not use CDS at all. For example, the following code
fragment uses a binding handle to create a local object proxy in the client
application bound to a remote object:

const char *UUID = "f063cf5a-c5c8-11ce-8a4b-08002be415b2";
const char *PROT = "ncacn_ip_tcp";
const char *HOST = "16.01.02.03";
const char *ENDP = "4041";

Matrix *m; // interface pointer
unsigned_char_t *string_binding; // string binding
rpc_binding_handle_t binding_handle; // binding handle
unsigned32 status; // error status

// build a string binding from the various components
rpc_string_binding_compose(

Chapter 15. Developing Applications that Use Distributed Objects 263

(unsigned_char_t *) UUID, // object uuid
(unsigned_char_t *) PROT, // protocol sequence
(unsigned_char_t *) HOST, // host address
(unsigned_char_t *) ENDP, // transport endpoint
NULL, // network options
&string_binding,
&status

);
if (status != rpc_s_ok) {
// handle error case
}

// convert a string binding into a binding handle
rpc_binding_from_string_binding(

string_binding,
&binding_handle,
&status

);
if (status != rpc_s_ok) {

// handle error case
}

m = Matrix::bind(binding_handle);
if (m) {

print(m);
} else {

cerr << "Cannot bind to named object" << endl;
}

rpc_string_binding_compose()
This RPC API routine combines string components of binding information
into a single string representation of a binding.

rpc_binding_from_string_binding()
This RPC API routine creates a binding handle from a string representation
of a binding handle.

m= Matrix::bind(binding_handle);
The bind() operation when used with a binding handle parameter binds to
the object specified by the object’s UUID and specific server binding
information.

Multiple Interfaces and Interface Inheritance

Objects in useful applications are organized into groups (using classes) and
hierarchies in order for people to more easily develop and maintain them. For the
same reason, you use more than one IDL interface to logically group the objects
and functionality of your applications. In addition, you can organize your interfaces
into hierarchies that take advantage of the inheritance capabilities of C++ classes.

This discussion uses a traditional savings account example, as shown in the class
hierarchy diagram of the following figure. First there is a high-level Account
interface and then a Savings interface derived from the Account interface. The
Account interface is specified separately from the Savings interface for the basic
operations all accounts might have and to show how interface inheritance works.
With this scheme, we can easily specify other kinds of accounts by using additional
interfaces. (For example, we could also have a Checking interface.) Our example
also has a separate Loan interface to show how to combine interfaces in
applications. In the implementation of these interfaces, we derive a simple savings
account class (simpleSave) from the savings interface, and we derive an

264 OSF® DCE Application Development Guide —Core Components

overdraft-protected savings account class (overdraft) from both the savings and the
loan interfaces.

The Account interface contains the most basic operations for accounts, including
one to obtain the account’s balance, one to make deposits, and one to make
withdrawals. This interface definition is as follows:

[
uuid(b3896a1c-8ee2-11ce-badc-08002b2bf322)
] interface Account
{
double getAccountBalance();

double deposit(/* Value returned is the balance. */
[in] double amt

);

double withdraw(/* Value returned is actual amount withdrawn */
[in] double amt

);
}

Use the inheritance operator, :, in an interface definition to specify interface
inheritance. In the following example, the Savings interface inherits operations from
the Account interface. (Depending on your perspective, you can also say the
Savings interface is derived from the Account interface.) When an interface inherits
another, it also uses the import statement to be sure the operations and any data
types of the inherited interface are available to the derived interface. The Savings
interface definition is as follows:

[
uuid(b388ab7c-8ee2-11ce-badc-08002b2bf322)

] interface Savings : Account
{

import "account.idl";

static Savings * openSimple(
[in] double amt

);

Account
Interface

Savings
Interface

Loan
Interface

Simple
Savings
Class

Overdraft
Savings
Class

Interface
Classes

Manager
Classes

Figure 49. Multiple Interfaces and Inheritance

Chapter 15. Developing Applications that Use Distributed Objects 265

static Savings * openOverdraft(
[in] double amt

);

double getSavingsBalance();

void setInterestRate(
[in] double rate

);

void addInterest();
}

The openSimple() and openOverdraft() static operations are object creator
operations used to create new accounts on a server. Notice that the Account
interface has no creator operations specified. This means that clients cannot create
an Account object directly, but servers of course can. The non-static operations for
the Savings interface include one to get the savings account balance
(getSavingsBalance()), one to set the interest rate (setInterestRate()), and one to
add the interest to the balance of the account (addInterest())

In this application, we have decided that our server implements the overdraft
account with a Loan interface. (Note we could have chosen to implement it in
another way, and without an additional interface.) The Loan interface is not derived
from another interface and is shown in the following example:

[
uuid(912ef43d-8ee2-11ce-a54e-08002b2bf322)

]
interface Loan
{
static Loan * openLoan(
[in] double amt,
[in] double rate,
[in] long months,
[out] double &payment

);

double getLoanBalance();

void payment(
[in] double amt

);

double recalculateLoan(/* returns payment amount required */
[in] double rate,
[in] long months

);
}

The openLoan() operation is a static object creator operation to create a loan
object. The getLoanBalance() operation gets the current balance of the loan and
the payment() operation is used to make a payment on the loan. The
recalculateLoan() operation sets new terms for the loan and returns the new
monthly payment required.

There are no special techniques to follow in server initialization code except be sure
that whatever is required for an individual interface is done for each interface your
application uses. For example, the initialization code must be sure to register the
endpoints for all interfaces.

266 OSF® DCE Application Development Guide —Core Components

Implementing Multiple Managers

Our implementation derives a simple savings account manager class (simpleSave)
from the Savings interface class. Since the Savings interface is derived from the
Account interface, all nonstatic operations in both interfaces must be declared in the
manager class and defined in the manager code. Of course, additional functions
and data types (such as constructors and destructors) can also be declared to
specifically implement the interface.

Our implementation also derives an overdraft manager class for an overdraft type
of savings account. The overdraft account has characteristics of both a savings
account and a loan and demonstrates multiple interface inheritance. It is defined to
have multiple inheritance by being derived from both the Savings and Loan
interface classes.

Note: Applications can create C++ classes that inherit from multiple interface
classes, but interface classes cannot inherit from multiple interfaces.

The following code shows the overdraft manager class and its implementation. This
example has the manager implementation included within the class definition
header file itself, rather than in separate C++ code. C++ allows you to combine
implementation as part of the C++ class declarations. This is common practice
when the implementation code for each member function is small.

#ifndef overdraft_i_h
#define overdraft_i_h
#include <iostream.h>
#include "savings.h"
#include "loan.h"

class overdraft : public Savings, public Loan {
public:
overdraft(idl_long_float amt)
{
balance = amt;

}
xoverdraft(void)
{

return;
}
idl_long_float getBalance()
{
return balance;

}
/////////////// Member Functions from all interfaces ///////////////

idl_long_float deposit(idl_long_float amt)
{

balance += amt;
return balance;

}
void payment(idl_long_float amt)
{

balance += amt;
}
idl_long_float withdraw(idl_long_float amt)
{

balance -= amt;
return amt;

}
void setInterestRate(idl_long_float r)
{

rate = r/loanTerm;

Chapter 15. Developing Applications that Use Distributed Objects 267

}
void addInterest()
{

balance += (balance * rate);
}
idl_long_float recalculateLoan(idl_long_float r, idl_long_int m)
{

if(balance < 0)
{
loanRate = r;
loanTerm = m;
return abs(balance) / loanTerm;
}

else
return 0;

}
idl_long_float getAccountBalance()
{

return getBalance();
}
idl_long_float getSavingsBalance()
{

return getBalance();
}
idl_long_float getLoanBalance()
{

static idl_long_float loanBalance;
if(balance < 0)
loanBalance = abs(balance);

else
loanBalance = 0;

return loanBalance;
}

private:
idl_long_float balance = 0; //loan is automatic if negative balance
idl_long_float rate = 0.02; //2%
idl_long_float loanRate = 0.15; //15%
idl_long_int loanTerm = 12; //12 months

};

The manager class must declare all the nonstatic functions of all its inherited
interfaces. These include all nonstatic operations defined in all three interfaces,
including the Account, Savings, and Loan interfaces. Be sure to define the operation
signatures exactly as they are declared in each idl -generated header file, or else
the C++ compiler may not interpret the function as an implementation but rather as
a new function. If this occurs, the class is interpreted as an abstract class, which
means that your application cannot create instances of the manager class.

For this example, refer to the savings_mgr.h and loan_mgr.h header files
generated by the IDL compiler to find the signatures of all the functions required.
For example, the deposit() , withdraw() , and getAccountBalance() functions are
from the Account interface but are redeclared in the derived Savings interface. The
payment() , recalculateLoan() , and getLoanBalance() functions are declared in the
Loan interface. The setInterestRate() ,addInterest() , and getSavingsBalance() are
declared in the Savings interface.

The static function implementations for the Savings and the Loan interface classes
are not shown here but include openSimple() , openOverdraft() , and openLoan() .

268 OSF® DCE Application Development Guide —Core Components

Using Objects that Support Multiple Interfaces

When clients use objects whose interfaces are independent from each other, no
special coding is required beyond the conventions described earlier: you just create,
use, and delete objects for each interface. The most interesting circumstances
involving multiple interfaces are those in which an object itself supports more than
one interface.

Binding by Object Reference to Use a Different Interface

We defined our overdraft savings account to be derived from two different interfaces
(see the following figure). However, the client does not have any knowledge of how
a server implements the overdraft account. The client does have a way to create an
overdraft account by calling the static function openOverdraft() , but that is defined
in the Savings interface which has no access to the Loan interface. So how does
an overdraft object inquire about its loan balance by using the Loan interface’s
getLoanBalance() member function, when the object reference is to the Savings
interface? We obviously cannot simply create another object reference to the Loan
interface and expect the two different object references to both refer to the same
overdraft object.

The solution is to use an idl -generated member function. When the IDL compiler
generates the interface classes, it also generates an additional bind() member
function that allows the client to easily use other interfaces. The following examples
show sample client code that creates and uses a new simple savings account
object and an overdraft account object:

#include "savings.h"
#include "loan.h"

Account *a = 0;
Savings *ss = 0;
Savings *od = 0;
Loan *iLoan = 0;

The interface classes are declared in the header files generated by the IDL compiler
as follows:

Account
Interface

Savings
Interface

Loan
Interface

Overdraft
Savings
Class

Clients know about
the interface class

Clients do not know about the
server implementations

Figure 50. Clients Do Not Know About Server Implementations

Chapter 15. Developing Applications that Use Distributed Objects 269

ss = Savings::openSimple(456.12);
od = Savings::openOverdraft(568.19);

In this example, the client creates a new simple savings account object on a server
by calling the openSimple() function. The function creates an object reference to
the Savings interface. The client also creates a new overdraft account object on a
server by calling the openOverdraft() function. This function also creates an object
reference to the Savings interface.

A robust server would likely give clients a way to find accounts again later by
making the objects named and persistent; but, to simplify our examples, we use
only dynamic objects. Therefore, accounts must be recreated each time a client
runs.

balance = ss::getSavingsBalance();
assert(balance == 456.12);
balance = od::getSavingsBalance();
assert(balance == 568.19);

Object references to the Savings interface can call any member functions of the
Savings and Account interfaces as follows:

iLoan = Loan::bind(od);

To use a different interface, clients use the built-in bind() member function with an
object reference parameter. In this example, the function creates an object
reference to the Loan interface, iLoan , from the object reference to the Savings
interface, od :

balance = iLoan->getLoanBalance();
cout << "Loan Balance: " << balance << endl;

The object can now call any member function of the Loan interface as follows:

ss->deposit(20.01);

An object reference to one interface can access member functions of its inherited
interfaces, as expected. In this example, ss is an object reference to a Savings
object, but the deposit() function is specified in the Account interface:

balance = ss->getAccountBalance();
cout << Balance: " << balance << endl;
a = Account::bind(ss);
balance = a->getAccountBalance();
cout << Balance: " << balance << endl;

As an aid to debugging, it is a good idea to use the interface in which the operation
is declared, even if the inherited operation can be resolved. When the object calls
getAccountBalance() with a Savings object reference, the function is executed in
the client stub for the Savings interface. On the other hand, when the same function
is called with an Account object reference, the Account client stub function is
executed.

Finding Out if an Interface is Supported

One of the most common reasons to find out if an interface is supported is to
determine whether or not a new version of an application uses an additional

270 OSF® DCE Application Development Guide —Core Components

interface. The new clients must check for application compatibility by inquiring as to
whether the new interface is supported. Compatibility is easily tested by calling the
idl -generated bind() function with an object reference parameter, as described in
the previous section. An interface is not supported if the returned result is 0 (zero).
This simple test implies that it is easy to create new versions of applications by
adding additional interfaces, rather than running the risk of creating incompatibility
by modifying existing interfaces.

The following example shows how to inquire if an interface is supported. Suppose
we are told that some servers on our network implemented the overdraft account
without using the Loan interface. This would not prevent our clients from creating
and using overdraft objects; we would just not have the Loan interface to use to
inquire about the status of an overdraft. In this scenario, the client that has the
Savings interface could inquire as to whether the object also supports the Loan
interface, as in the following:

iLoan = Loan::bind(ss);
if(iLoan == 0)
cout <<"Simple accounts do not support the Loan interface."<< endl;

iLoan = Loan::bind(od);
if(iLoan == 0)
cout <<
"This overdraft account doesn't support the Loan interface." << endl;

In the first case, attempting to bind a simple savings object to the Loan interface
should always return 0 (zero). In the second case, if a zero value is returned, this
overdraft object does not support the Loan interface (the Loan interface is not
inherited).

Multiple Interfaces and Local Objects: a C++ Enhancement

The bind() member function that takes an object reference also works for local
interfaces and objects. This means that you can use IDL to specify, implement, and
test combinations of local interfaces without the overhead of remote procedure
calls. You may find this a useful approach when designing, prototyping, and
debugging your interfaces and implementations. The steps are as follows:

1. Create your IDL files by using the uuid and local attributes in the interface
headers.

2. Use the IDL compiler with the -lang cxx option to compile the interfaces. The
IDL compiler generates only the header files for each interface when the
interface has the local attribute. No stubs are generated.

3. Develop the manager class, manager implementations, and static member
functions as you would for typical servers.

4. Create a client that includes the idl -generated header files. The client also calls
the idl -generated bind() function that binds by object reference, to switch
between local interfaces.

5. Link together the machine object code for the client, manager class, manager
code, and static functions.

6. Test the client application program.

Chapter 15. Developing Applications that Use Distributed Objects 271

Passing C++ Objects as DCE RPC Parameters

IDL allows the passing of any C language basic or constructed data type as an
RPC parameter, mainly through the use of attributes. However, the C++ language
makes it much easier and convenient for the programmer to define new types using
class definitions. A C++ application can contain a wealth of class definitions
modeled after real world objects, usually in the form of class libraries. The
implementation details of a class library definition are hidden from the programmer
in favor of a public interface or set of operations to manipulate the class instance. In
addition, software vendors are in the business of providing class libraries containing
all sorts of class definitions that are ready to use by the application programmer.

As applications move towards the client/server model, and as distributed object
technology becomes the vehicle for such a model, RPC must be able to pass C++
objects as parameters efficiently and intrinsically.

When an application is distributed, a number of issues arise that must be dealt with.
These issues include the ability of the network to pass large amounts of data, the
problem of passing pointers as RPC arguments, and the differences in the
representation of a piece of data in the computer’s memory that results from
different machine architectures. These problems are addressed by DCE
implementations adhering to the network data representation (NDR) for data types
and the effective use of attributes in the interface definition. However, other
problems that are specific to the C++ language include the following:

Data Hiding

One advantage of a class definition is that it allows the application designer
to model a programming language construct after some real world object
and to interact with the construct in a high level fashion. The details of how
the construct is built and manipulated should be handled by the designer of
the class. The application programmer should be insulated from the class
internals and only needs to be aware of the public interface to the object.
However, this programming model exposes a fundamental problem when
extended to DCE RPC. In passing a parameter to a remote procedure, the
DCE runtime library must be able to marshal the RPC parameters over the
network on behalf of the caller of the remote operation and unmarshal
those parameters and reconstruct the data type on the server side of the
application. If users are able to create new and exotic data types, how can
the DCE runtime know how to marshal them? It is unreasonable to expect
that DCE could be extensible enough to track and know how to marshal
new data types as they are created. It is also unreasonable to expect class
designers to supply their own support for marshaling objects. This is
especially true for data types that are provided as class libraries by outside
vendors having no connection at all with DCE.

Inheritance

Inheritance and polymorphism are techniques available with C++ whereby a
generic class type is used by an application but the actual object is created
from a more specific class type. A classic example of this is a generic class
called Shape and a number of specific classes such as Circle, Square and
Cylinder that all derive from the Shape class. Shape might have operations
such as draw() and rotate() which cause the object to be drawn onto the
screen and rotated. The application can have an array of Shape objects
and cause each one in turn to be displayed and manipulated. However, the
array could be a mix of Circle, Square and Cylinder objects. Each object

272 OSF® DCE Application Development Guide —Core Components

will know how to draw and rotate itself. For some objects, a function such
as rotate() may have no meaning. The polymorphic behavior of the Shape
class will forward the draw() operation to the correct specific drawing
operation implemented by the object. The rotate() operation behaves
similarly for classes that support rotation. And if the object does not support
rotation, the Shape class will supply its own rotate implementation which
may actually do nothing.

The problem of passing a Shape object is that the DCE runtime may not
know what type of shape the object really is. A Shape could have some
self-identifying information, but this will often not be the case. Furthermore,
if there were some shape identifier, it would need to track new class types
as they are introduced into the application. This type of design is not very
extensible and contrary to the object oriented methodology.

Lots of data
Another problem with passing a C++ object over the network is fundamental
to any RPC argument. As the amount of data needed to be passed over the
wire and recreated in the server process increases, the performance of the
RPC call will obviously decrease. The decision as to what kinds of
operations are remote and what types of data they require is a basic design
issue. For example, consider a stack type. If the stack is small then it may
be advantageous to pass the entire stack over the wire, recreate it on the
server side, allow the server to update it, and then pass it back to the client
side so that it reflects any updates the server made to it. The IDL language
supports such a paradigm by using an array network type along with other
parameters to indicate the array size. However, this paradigm quickly
breaks down as the stack size increases. A better way for the server to
access a large stack would be to pass a stack reference to the server and
allow the server to access the stack by making RPC calls to it.

Two programming methodologies are presented to illustrate how C++ objects can
be passed as DCE RPC parameters: data representation and delegation. It is a
design choice as to which solution better applies to a specific application problem.
By using these methodologies, class libraries can be easily integrated into an
application. Both solutions are intended to be handled primarily at the interface
definition level so that the application itself can be designed in a normal and natural
way while minimizing the issue of distributing the application.

Representation

The DCE IDL compiler supports a feature to allow a network representation of a
data type to differ from the representation used by the application. This feature is
invoked by using the represent_as attribute on a data type in the Attribute
Configuration File (ACF). Applying this attribute to an IDL data type allows the
network representation of a data type to be isolated within the generated stubs. The
programmer is required to supply four conversion routines when using this feature.
The function signatures for these four routines are generated by the IDL compiler.
Their purpose is to convert an RPC argument from the application presented type
to the network type, convert from the network type to the presented type, and to
free memory used by the network and presented types. Presumably, a class library
designer could supply the four conversion routines along with the IDL generated
stub routines as a library. In this way, the application programmer need not be
aware of how the data is transmitted across the wire nor that the conversions take
place.

Chapter 15. Developing Applications that Use Distributed Objects 273

For example, consider the C++ String class which is commonly supplied by C++
compiler vendors or easily implemented by the programmer. The IDL compiler has
no notion of a String class since it is not a primitive or constructed IDL type. The
class definition must be made known to the IDL compiler by using the include
directive to include the class definition into the generated header file. But the DCE
runtime does not know how to marshal the String type since its internals are hidden
and, in fact, could very well differ in its implementation between vendors.

To allow a String type to be passed as an RPC argument, a network type for a
String object is defined in the IDL file to be an array of characters with the string
attribute applied. An ACF file is then created for the interface to apply the
represent_as attribute to the network type. The following code fragment is for the
IDL file represent an IDL character array as a String class in an application:

[uuid(c5a7c094-c5e3-11ce-bac2-08002be415b2)]
IText {

typedef [string,unique] char * net_string; /* 1 */
static net_string toUpper([in] net_string s); /* 2 */
static net_string toLower([in] net_string s); /* 3 */

}

The following code is an ACF definition for a String type:

{
include "String"; /* 4 */

typedef [represent_as(String)] net_string; /* 5 */
}

The code is described as follows:

1. A net_string is defined to be a unique pointer to a string

2. The static toUpper() operation takes a String argument and returns another one

3. The static toLower() operation takes a String argument and returns another one

4. Include the String.h file into the idl -generated header file

5. The network type net_string is presented as the C++ String type in the
application

Using automatic binding, the client application would invoke the static toUpper()
operation as follows:

String s1("Hello, World"); // create a local String object
String s2 = IText::toUpper(s1); // RPC call returns another

// String object

Note that a unique attribute is specified for the net_string type. Unique pointers
should always be used when the represent_as attribute is applied to a pointer type.

The routines to convert between the network type and the presented type are
automatically invoked by the DCE runtime during the marshalling and unmarshalling
process. The IDL compiler generates a function signature to free the presented data
type. In this example, this routine would be named net_string_free_local(String *) .
The purpose of this routine is to free the memory occupied by the stack variable in
the server stub that represents the RPC parameter. But since the C++ compiler will
generate code to delete local stack objects when the server stub routine is exited,
this routine should not free its argument.

274 OSF® DCE Application Development Guide —Core Components

The represent_as attribute is properly used when the data comprising the C++
object can be represented by some primitive or constructed IDL data type. The
object’s data must be accessible by the application. The overhead involved with
using the represent_as attribute is the conversion from one type to the other and
the freeing of memory.

It may not always be advantageous to use the represent_as attribute to pass a
C++ object as an RPC parameter. Consider the case presented earlier where a
generic Shape class is used in a class hierarchy with the more specific Square,
Circle, and Cylinder shapes derived from it. An application may wish to pass a
Shape object as an RPC parameter. Using the represent_as feature would require
the conversion routines to convert from a shape to some NDR structure that can be
defined in IDL. However, this is complicated by the fact that one IDL type may not
be sufficient to represent all possible shapes. To solve this, a discriminated union of
different shape types could be defined. But it is also very possible that the internals
of the classes are not exposed to the application. The user may have no knowledge
of what data types are needed to represent even the simplest shapes such as a
square. Furthermore, as new shapes are introduced into the application, the
conversion routines would also require extensions to handle the new shapes. An
object oriented application should be extensible without requiring such overhead.

Another drawback to using conversion routines is efficiency. Consider a common
C++ Stack class and a distributed implementation of a reverse Polish notation
algorithm. The algorithm maintains a stack of operands. When an operator is
processed, the required number of operands are popped off the stack, the operation
is performed on them, and the result is pushed back onto the stack. For this
example, let’s assume that the algorithm supports the plus() , minus() , multiply()
and divide() binary operations. In order to illustrate the distributed nature of the
algorithm, we can further assume that the client reads an equation in reverse Polish
notation from standard input and maintains the stack locally, but the binary
operations are implemented within a remote server process. Hence, the server
process needs access to the same stack as the client. Simply passing the stack to
the server process in its entirety would be inefficient since only the top two
elements need to be accessed per operation. A large stack would quickly degrade
the performance of the algorithm, especially since the stack would have to be
passed as both an input and output parameter.

Delegation

An alternative to passing the stack is to treat the stack as a distributed object and
pass a reference to it. The server and client would have access to the single stack
in the application and the server could use the stack object reference to push and
pop elements. A DCE distributed object requires that there be an interface defined
for the object and the object implementation be derived from the generated
interface class. If the stack being used is supplied by a third party vendor, it may
not be possible to modify its definition to derive it from an IDL generated class. The
solution is to create a delegate class for the stack to act as an interface to the
actual stack object. A delegate class encapsulates the real object and forwards
operation invocations to it. The IDL language has been extended to include the ACF
attribute cxx_delegate to take advantage of this idiom.

An interface using this attribute will cause the generated interface class to wrap the
real object. Only the operations that need to be remote need to be defined in the
delegate class interface definition file. The application would then link the delegate
server stub with the client. Likewise, the delegate client stub would be linked with
the server. The DCE runtime will transparently perform the necessary setup to allow

Chapter 15. Developing Applications that Use Distributed Objects 275

the client application to act as a server for the delegate class. The following
example illustrates the use of the cxx_delegate attribute with a Stack class
definition:

[uuid(0ea74f20-e2dc-11ce-9a8e-08002be415b2)]
interface IStack /* 1 */
{

void push([in] double x); /* 2 */
double pop(); /* 3 */

}

The ACF definition for delegation of the IStack interface is as follows:

[cxx_delegate(Stack)] /* 4 */
interface IStack{

include "Stack"; /* 5 */
}

1. An IStack interface is defined

2. The push() operation pushes an element onto the encapsulated stack

3. The pop() operation pops an element from the encapsulated stack

4. The IStack interface is a delegate for a Stack class

5. include the Stack.h file into the IDL generated header file

Using the generated server stub and header file from the above IDL fragment, the
client application would instantiate an IStack interface pointer and pass it to the
remote procedure as follows:

Stack s; // create a local stack object
IStack *iStack; // declare an interface pointer to the local stack
iStack = new IStackMgr(&s); // create the interface ptr

// using the local
stack

The cxx_delegate attribute causes the IDL generated classes to be built slightly
different than a normal interface class. The interface class contains a constructor
that takes a pointer to the delegated class instance as an argument and the
manager class supplies complete function bodies. The programmer does not need
to supply a manager class for an interface using this attribute.

The server application would use the interface pointer to invoke the push() and
pop() operations on the client’s stack instance. The overhead involved is the
remoteness of the push() and pop() operations which are implemented as RPC
calls from the server to the client. In this example, the client application would be
linked with the IDL generated server stub from the IStack interface and the server
application would be linked with the IDL generated client stub from the IStack
interface. No extra DCE API calls are required on the part of the client or server
stubs. The DCE runtime will handle the necessary overhead to allow the client
application to act as a server for the IStack interface.

This idiom is most effectively used when a class type is needed as an RPC
argument but the class hierarchy can not be changed by the application or when
the overhead of the RPC calls to access the object is outweighed by the combined
overhead of converting the object to a network type and the complexity of passing
or updating a large amount of data in the RPC call.

276 OSF® DCE Application Development Guide —Core Components

Integrating C and C++ Clients and Servers

This chapter has assumed your clients and servers are both written in C++, and the
rest of this guide describes how to write clients and servers that are both written in
C. Two fundamental differences between these types of applications are their
perception of what interfaces represent and whether clients bind to servers or
objects.

For C applications, the model tends to be functionally oriented. The important
features are the operations, in which an interface represents a convenient set of
operations with associated data structures. Clients bind to servers that support the
set of operations and data.

For C++ applications, the model tends to be object oriented. In this model, the
important feature is the interface itself, which represent a class of objects.
Operations are an integral part of each object, but data structures tend to be hidden
in the implementations on the servers and not exposed in the interface. In this
model, clients bind to objects that support the interfaces.

This section addresses the intersection of these two models in the following ways:

v Writing C++ clients with a functional approach so that they bind to servers
(written in C) rather than to distributed objects

v Writing C clients so that they can bind to distributed objects rather than to
servers

Writing a C++ Client for C Servers

Suppose you are writing a C++ client that needs to use an interface definition that
has not taken advantage of the IDL C++ features. A logical example is an older
interface definition written prior to the introduction of the C++ features of OSF DCE
Version 1.2. An older interface is not designed to specify a class of objects and the
associated member functions. This means that servers for older interfaces do not
maintain objects in the way described in this chapter (if they maintain objects at all).

This section uses the following simplistic interface for demonstration:

[
uuid(166ab38b-95f9-11ce-9387-08002b2bf322)

] interface old_interface
{

double op1();

void op2([in] long input);

void op3();
}

If you simply compile this interface definition for the C++ language and build the
C++ client application, the application cannot invoke any of the old interface’s
member functions because no object can exist on a server. However, static member
functions do not require an object in order to invoke them, so the solution is to
make the operations of an older interface static member functions.

In order for your C++ client to use an older interface, perform the following steps:

1. Create an ACF for the interface and apply the cxx_static attribute to every
operation of the interface. For example:

Chapter 15. Developing Applications that Use Distributed Objects 277

interface old_interface
{

[cxx_static] op1();
[cxx_static] op2();
[cxx_static] op3();

}

2. Use the IDL compiler with the -lang cxx option to compile the interface and
generate the header files and C++ stubs. Link the code into your C++ client
application as usual.

3. Call the static functions where needed in the C++ client application by using the
scope operator (::). For example:

#include "old_interface.h"

main()
{
idl_long_float result;
idl_long_int input = 1;

result = old_interface::op1();
old_interface::op2(input);
old_interface::op3();
return 0;
}

Writin g a C Client for C++ Servers

If you wish, you can develop C language clients that use interfaces written with C++
features. Whenever the interface definition is compiled for C++, C structures,
macros, and function prototypes are automatically built into the header file and
stubs to give this capability.

For example, the following get() operation is defined in the Matrix interface
definition:

long get(
long row,
long col
);

The macros generated by the IDL compiler are formed by combining the name of
the interface and the name of the operation with an underscore between. For
example, to allow a C client to invoke the get operation on the interface, the IDL
compiler generates the following macro in the header file:

Matrix_get(obj, row, col)

Since member functions cannot be called in C with an implied object (the C++ this
object), each member function for the C macros has an additional object argument
as the first parameter. The remaining arguments are the same as those specified in
the IDL input file.

To obtain the interface pointer using the C mapping, use one of the bind routines
generated by the IDL compiler for the C interface. These are also generated in the
header file. For example, the Matrix interface supports the following C macros for
binding to a remote object:

278 OSF® DCE Application Development Guide —Core Components

Matrix *Matrix_bind_by_name(unsigned_char_t *name);
Matrix *Matrix_bind_by_uuid(uuid_t * u);
Matrix *Matrix_bind_by_hndl(rpc_binding_handle_t bh);

All static member functions of an interface are also supported for C. The macros
are formed in a manner similar to the normal member functions (by joining the
interface name and the operation name with an underscore), except there is no
need for an additional argument to represent a current object. For example, if the
Matrix interface supports the createMatrix() static operation, the following example
C code invokes the operation:

/* code fragment showing the use of C macros */
Matrix *m; /* a C structure to represent an interface */
/*
** invoke a static member function to get an interface
** pointer and invoke operations on it.
*/
m = Matrix_createMatrix(1, 2, 3, 4);
if (!m) {
/* handle error */
} else {
printf("[%d, %d]\n", Matrix_get(m, 0, 0), Matrix_get(m, 0, 1));
printf("[%d, %d]\n", Matrix_get(m, 1, 0), Matrix_get(m, 1, 1));
}

Chapter 15. Developing Applications that Use Distributed Objects 279

280 OSF® DCE Application Development Guide —Core Components

Chapter 16. Writing Internationalized RPC Applications

An internationalized DCE RPC application is one that

v Uses the operating system platform’s locale definition functions to establish
language-specific and culture-specific conventions for the user and programming
environment.

v Isolates all user-visible messages into message catalogs by using the sams
(symbols and message strings) utility.

v Uses the DCE general-purpose application messaging routines, dce_msg_ *()
and dce_svc_ *(), to display all program messages.

v Uses DCE RPC-provided or user-defined character and code set evaluation and
automatic conversion features to ensure character and code set interoperability
during the transfer of international characters in remote procedure calls between
RPC clients and servers.

A locale defines the subset of a user’s environment that depends upon language
and cultural conventions. A locale consists of categories; each category controls
specific aspects of some operating system components’ behaviors. Categories exist
for character classification and case conversion, collation order, date and time
formats, numeric nonmonetary formatting, monetary formatting, and formats of
informative and diagnostic messages and interactive responses.

The locale also determines the character sets and code sets used in the
environment. The syntax and use of a locale definition function depends on the
operating system platform in use with DCE. See your operating system
programming guide and reference documentation for a description of the system’s
locale definition functions and locale categories.

The sams utility provides DCE services and application programs with a method for
defining and cataloging user-visible messages, while the DCE messaging functions
allow DCE services and application programs to display messages in a consistent
manner. “Chapter 3. DCE Application Messaging” on page 37 describes how to
develop an application that uses the DCE messaging routines and how to use the
sams utility to create and generate message catalogs. See the OSF DCE
Application Development Reference for a description of DCE messaging routine
syntax, and the sams(1dce) reference page for a description of sams usage.

The remainder of this chapter describes the DCE RPC features for character and
code set interoperability in remote procedure calls that are available to
programmers who are developing internationalized DCE RPC applications. The first
section describes the concepts of character sets, code sets and code set
conversion and explains the default character and code set conversion mechanism
that the RPC runtime protocol supports for remote procedure calls. The remaining
sections describe the execution of a remote procedure call when it uses the DCE
RPC features for character and code set interoperability, and explains how to build
an RPC application that uses these features.

281

Character Sets, Code Sets, and Code Set Conversion

A character set is a group of characters, such as the English alphabet, Japanese
Kanji, and the European character set. To enable world-wide connectivity, DCE
guarantees that a minimum group of characters is supported in DCE. The DCE
RPC communications protocol ensures this guarantee by requiring that all DCE
RPC clients and servers support the DCE Portable Character Set (PCS). The
Introduction to OSF DCE lists the characters in the DCE PCS. The IDL base type
specifiers char and idl_char identify DCE PCS characters.

A code set is a mapping of the members of a character set to specific numeric code
values. Examples of code sets include ASCII, JIS X0208 (Japanese Kanji), and ISO
8859-1 (Latin 1). The same character set can be encoded in different code sets;
consequently, DCE can contain RPC clients and servers that use the same
character set but represent that character set in different numeric encodings. Code
set conversion is the ability for a DCE RPC client or server to convert character
data between different code sets.

The DCE RPC communications protocol, through the NDR transfer syntax, provides
automatic code set conversion for DCE PCS characters encoded in two code sets:
ASCII and EBCDIC. The RPC communications protocol automatically converts
character data declared as char or idl_char between ASCII and EBCDIC
encodings, as necessary, for all DCE RPC clients and servers.

The DCE RPC communications protocol does not provide support for the
recognition of characters outside of the DCE PCS, nor does it provide automatic
conversion for characters encoded in code sets other than ASCII and EBCDIC.

However, DCE RPC does provide IDL constructs and RPC runtime routines that
programmers can use to write RPC applications that exchange nonPCS, or
international, character data that is encoded in code sets other than ASCII and
EBCDIC. These features provide mechanisms for international character and code
set evaluation and automatic code set conversion between RPC clients and
servers. Using these features, programmers can design their applications to run in a
DCE that supports multiple heterogeneous character sets and code sets.

The next section describes the remote procedure call execution model when the
DCE RPC features for character and code set interoperability are used.

Remote Procedure Call with Character/Code Set Interoperability

Table 8 on page 150 in “Chapter 11. Developing a Simple RPC Application” on
page 149 illustrates the basic tasks of an RPC application. Table 12 shows these
basic tasks integrated with the additional tasks required to implement an RPC that
provides character and code set interoperability.

Table 12. Tasks of an Internationalized RPC Application
Client Tasks Server Tasks

1. Set locale.
2. Select network protocols.
3. Register RPC interfaces.
4. Advertise RPC interfaces and objects
in the namespace.
5. Get supported code sets and register
them in the namespace.

282 OSF® DCE Application Development Guide —Core Components

Table 12. Tasks of an Internationalized RPC Application (continued)
Client Tasks Server Tasks

6. Listen for calls.
7. Set locale.
8. Establish a character and code set
evaluation routine.
9. Find compatible servers that offer the
procedures.
10. Call the remote procedure .
11. Establish a binding relationship with
the server.
12. Get code set tags from the binding
handle.
13. Calculate the buffer size for possible
conversion of input arguments from a local to
a network code set.
14. Convert input arguments from a local
to a network code set (if necessary).
15. Marshall input arguments
16. Transmit arguments to the server’s
runtime.

17. Receive a call.
18. Get code set tags sent from the client.
19. Calculate the buffer size for possible
conversion of input arguments from network
to local code set.
20. Unmarshall input arguments.
21. Convert input arguments from a
network to a local code set (if necessary).
22. Locate and invoke the called
procedure.
23. Execute the remote procedure
24. Calculate the buffer size for possible
conversion of output arguments from a local
to network code set
25. Convert output arguments from a local
to a network code set (if necessary).
26. Marshall output arguments and return
value.
27. Transmit results to the client’s
runtime.
28. Remove code set information from
namespace on exit.

29. Receive results.
30. Calculate the buffer size for possible
conversion of output arguments from a
network to a local code set.
31. Unmarshall output arguments.
32. Convert output arguments from a
network to a local code set (if necessary).
33. Pass to the calling code the results
and return control to it.

As illustrated in the table, the internationalized RPC execution model consists of the
following new steps:

1. Both client and server invoke a platform-dependent function to set their locale
during initialization. This step establishes the client’s and the server’s local

Chapter 16. Writing Internationalized RPC Applications 283

character and code set; that is, the character and code set currently in use by
processes on the client host and processes on the server host.

2. The server, as part of its initialization phase, calls a DCE RPC routine that
retrieves information about code sets support on the server’s host. The RPC
routine examines the host’s locale environment and its code set registry to
determine the host’s supported code sets; that is, code sets for which
conversion routines exist that processes on the host can use to convert
between code sets, if necessary.

The code set registry is a per-host file that contains mappings between string
names for the supported code sets and their unique identifiers. OSF assigns
the unique identifiers for the code sets and DCE licensees, and DCE
administrators assign their platform string names for the code sets. The DCE
RPC routines for character set and code set interoperability depend upon a
code set registry existing on each DCE host. For more information about the
code set registry, see the OSF DCE Administration Guide—Introduction and
the csrc(8dce) reference page.

The routine returns a list of the supported code sets to the server; the list
consists of each code set’s unique identifier.

3. The server next calls a new RPC NSI routine to register the supported code
sets information in the name service database. Recall that a server can use
the NSI to store its binding information (information about its interfaces,
objects, and addresses) into its own namespace entry, called a server entry.
The new RPC NSI routine adds the supported code sets information as an
attribute that is associated with the server entry, which the server created
when it used the NSI export operation to export its binding information into the
name service database. Placing the code sets information into the name
service database gives RPC clients access to this information.

4. Before it calls the RPC NSI routines that locate a server that offers the desired
remote procedure, the client calls a new RPC routine that sets up a character
and code sets compatibility evaluation routine.

5. The client calls RPC NSI routines to locate a compatible server. The RPC NSI
routines invoke the character and code set compatibility evaluation routine set
up by the client to evaluate potential compatible servers for character and code
set compatibility with the client.

6. The evaluation routine imports the server’s supported code sets information
from the name service database, retrieves the client’s supported code sets
information from the client host, and compares the two. If the client and the
server are using the same local code set—the code set that processes on the
host use to encode character data—then no code set conversion is necessary,
and no data loss will result.

If client and server are using different local code sets, then it is possible that
the server is using a different character set than the client. The client does not
want to bind to a server that is using a different character set, since significant
data loss would result during character data conversion. Consequently, the
evaluation routine uses the server’s code set information to determine its
supported character sets, and rejects servers using incompatible character
sets. For example, if a client is using the Japanese Kanji character set (such
as JIS0208), the evaluation routine rejects a server that offers the desired
remote procedure but which is using the Korean character set (such as KS C
5601).

If the client and server are character set compatible, and they support a
common code set into which one or the other (or both) can convert, the
evaluation routine deems the server to be compatible with the client. The NSI
import routines return this server’s binding information to the client.

284 OSF® DCE Application Development Guide —Core Components

7. The client makes the remote procedure call.

8. A client stub is called, with the character data represented in the local form
and in the local code set.

9. Before marshalling the input arguments, the client stub calls a new stub
support routine that retrieves code set identifying information that the
evaluation routine established in the binding handle.

10. The client stub next calls a new stub support routine that determines, based on
the code set identifying information, whether the character data needs to be
converted to another code set and, if so, whether the buffer that currently
holds the character data in the local form and code set is large enough to hold
the data once it is converted. If the routine determines that conversion is
necessary and a new buffer is required, it calculates the size of that buffer and
returns the value to the client stub.

11. The client stub next calls a new stub support routine that converts, based on
the code set identifying information, the character data from the local code set
to the appropriate code set to be used to transmit the data over the network to
the server (called the network code set).

12. The client stub then marshalls the input arguments and transmits them to the
server runtime along with code set identifying information.

13. The server stub is called, with the character data represented in the network
form (which is always idl_byte) and in the network code set.

14. The server stub unmarshalls the input arguments.

15. The server stub next calls a new stub support routine that determines, based
on the code set identifying information passed in the client call, whether the
character data needs to be converted from the network code set to the
server’s local code set and, if so, whether the buffer that currently holds the
character data in the network format and code set is large enough to hold the
data once it is converted. If the routine determines that conversion is
necessary and a new buffer is required, it calculates the size of that buffer and
returns the value to the server stub.

16. The server stub next calls a new stub support routine that converts, based on
the code set identifying information, the character data from the code set used
on the network to the server’s local code set.

17. The server stub invokes the manager routine to execute the remote procedure.

18. Before marshalling the results of the remote procedure (the output arguments
and return values), the server calls a new stub support routine to determine
whether conversion from the server’s local code set is necessary, based on the
code set identifying information it received from the client, and whether or not
the buffer currently holding the character data is large enough to accommodate
the converted data. If a new buffer is required, the stub support routine
calculates the size of this new buffer and returns it to the server stub.

19. The server stub next calls a new stub support routine that converts, based on
the code set identifying information from the client, the character data from the
server’s local code set to the network code set.

20. The server stub marshalls the converted output arguments and transmits them
to the client runtime along with code set identifying information.

21. The server initialization procedure also contains a call to a new RPC routine
that removes the code set information from the server entry in the name
service database if the server exits or is terminated.

22. The client stub is called, with the character data in network format and code
set.

23. The client stub unmarshalls the output arguments.

Chapter 16. Writing Internationalized RPC Applications 285

24. The client stub next calls a new stub support routine that determines, based on
the code set identifying information passed by the server, whether the
character data needs to be converted from the network code set to the client’s
local code set and, if so, whether the buffer that currently holds the character
data in the network format and code set is large enough to hold the data once
it is converted. If the routine determines that conversion is necessary and a
new buffer is required, it calculates the size of that buffer and returns the value
to the client stub.

25. The client stub next calls a new stub support routine that converts, based on
the code set identifying information, the character data from the code set used
on the network to the client’s local code set.

26. The client stub passes the data to the client in the local format and code set.

Note that the stub conversion routines do not implement code set conversion.
Instead, they call POSIX compliant iconv code set conversion routines, which are
part of the local operating system. As a result, if the platform to which DCE is
ported does not provide these POSIX conversion routines, DCE applications that
run on this platform cannot use the DCE RPC character and code set
interoperability features.

Building an Application for Character and Code Set Interoperability

An application programmer who wishes to design his or her RPC application for
character and code set interoperability performs the following steps:

1. Writes the interface definition file (.idl) to include constructs that will enable
automatic code set conversion during remote procedure execution.

2. Writes an associated attribute configuration file (.acf) for the interface that
includes ACF attributes that will enable automatic code set conversion during
remote procedure execution.

3. Writes the stub support routines that client and server stubs use to carry out
automatic code set conversion during a remote procedure call. You can omit this
step if you use the stub support routines supplied with DCE.

4. Writes the server code and includes the steps to get the server’s supported
code sets and export them to the name service database, and to remove them
from the name service database upon termination or exit.

5. Writes the client code and includes the steps to set up the character and code
set evaluation mechanism.

6. Writes the character and code set compatibility evaluation routine. You can omit
this step if you use one of the evaluation routines supplied with DCE.

Note that building an RPC application for character and code set interoperability
imposes some restrictions on the application. For example, an application that uses
the RPC character and code set interoperability features cannot use customized
binding handles. See “Chapter 18. Interface Definition Language” on page 357 for
more details on internationalized RPC application restrictions.

The next sections describe the steps just outlined in more detail.

Writing the Interface Definition File

The interface definition file is where the set of remote operations that constitute the
interface are defined. The first step in writing an interface definition file that supports
automatic code set conversion is to create a special typedef that, when used in

286 OSF® DCE Application Development Guide —Core Components

operation parameters, represents international character data that can be
automatically converted, if necessary, before marshalling and unmarshalling at client
and server sites.

As described in “Chapter 17. Topics in RPC Application Development” on page 313,
the data representation for a byte data type is guaranteed not to change when the
data is transmitted by the RPC communications protocol. Consequently, the special
international character data type defined in the .idl is always declared to be a byte
type so that the RPC protocol will not automatically treat it as a DCE PCS character
and convert it between ASCII and EBCDIC.

The second step in writing an interface definition file that supports automatic code
set conversion is to define, for each operation that will transmit the special
international character data type, a maximum of three operation parameters that will
tag the international characters being passed in the operation’s input and output
parameters with code set identifying information established during the client-server
evaluation and binding procedure. These parameters are the following:

v The sending tag, which indicates the code set the client is using for international
characters it transmits over the network. The sending tag has the in parameter
attribute and is applied to international character data declared in the operation’s
input parameters. If the operation does not specify any international character
data as input, then it is not necessary to create this parameter.

v The desired receiving tag, which indicates the code set in which the client prefers
to receive international character data sent back from the server as output. The
desired receiving tag has the in parameter attribute. If the operation does not
specify any international character output data, then it is not necessary to create
this parameter.

v The receiving tag, which indicates the code set the server is using for
international characters it transmits over the network. The receiving tag has the
out parameter attribute and is applied to international character data declared in
the operation’s output parameters. If the operation does not specify any
international character output data, then it is not necessary to create this
parameter.

You must define these code set tag parameters as unsigned long integers or
unsigned long integers passed by reference. The receiving tag parameter must be
declared as a pointer to the receiving tag unsigned long integer.

When international character data is to be unmarshalled, the client or server stub
needs to have received a description of the code set being used before it receives
the data. For this reason, the sending tag parameter must occur in an operation’s
parameter list before any in international character data, and the receiving tag
parameter must occur in an operation’s parameter list before any out international
character data. The requirement that a tag must be received before the data it
relates to is received also means that a customized binding handle cannot include
international characters. This is because a binding handle must be the first
parameter in a parameter list.

Here is an example .idl file for an interface named cs_test that uses the special
international character type definition and the code set tag parameters for input and
output parameters that are fixed arrays of characters from an international character
set:

[
uuid(b076a320-4d8f-11cd-b453-08000925d3fe),

Chapter 16. Writing Internationalized RPC Applications 287

version(1.0)
]
interface cs_test
{
const unsigned short SIZE = 100;
typedef byte net_byte;

error_status_t cs_fixed_trans (
[in] handle_t IDL_handle,
[in] unsigned long stag,
[in] unsigned long drtag,
[out] unsigned long *p_rtag,
[in] net_byte in_string[SIZE],
[out] net_byte out_string[SIZE]
);

Writing the Attribute Configuration File

The next step in building an RPC application that supports character and code set
interoperability is to create an attribute configuration file (.acf) to be associated with
the .idl file. This .acf file uses the following attributes:

v The cs_char attribute, which associates the local data type that the application
code uses to represent international characters in the local code set with the
special typedef defined in the .idl file. This is a required ACF attribute for an
RPC application that passes international character data. “Chapter 18. Interface
Definition Language” on page 357 provides complete details on how to specify
the cs_char ACF attribute and the programming restrictions associated with its
use.

v The cs_stag , cs_drtag , and cs_rtag attributes, for each operation in the
interface that specifies sending tag, desired receiving tag, and/or receiving tag
parameters. These ACF attributes declare the tag parameters defined in the
corresponding .idl file to be special code set tag parameters. Operations defined
in the .idl file that specify international character in input parameters must use
the cs_stag attribute. Operations defined in the .idl file that specify international
character in output parameters must use the cs_drtag and cs_rtag attributes.
“Chapter 19. Attribute Configuration Language” on page 425 provides complete
details on how to specify the cs_stag , cs_drtag , and cs_rtag ACF attributes.

v The cs_tag_rtn attribute, which specifies the name of a routine that the client
and server stubs will call to set an operation’s code set tag parameters to
specific code set values. The cs_tag_rtn attribute is an optional ACF attribute for
internationalized RPC applications; application developers can use it to provide
code set tag transparency for callers of their application’s operations. See
“Chapter 19. Attribute Configuration Language” on page 425 for complete details
on how to specify the cs_tag_rtn attribute. “Tag-Setting Routine” on page 292
provides more information on the role of the tag-setting routine.

Here is the companion .acf file for the cs_test interface defined in “Writing the
Interface Definition File” on page 286:
[
explicit_handle
]
interface cs_test
{
include "dce/codesets_stub";

typedef [cs_char(cs_byte)] net_byte;

288 OSF® DCE Application Development Guide —Core Components

[comm_status, cs_tag_rtn(rpc_cs_get_tags)] cs_fixed_trans (
[cs_stag] stag,
[cs_drtag] drtag,
[cs_rtag] p_rtag);

The ACF for cs_test uses the cs_char attribute to define net_byte as a data type
that represents international characters. Note that the local type specified in the
cs_char attribute definition is cs_byte . This local type is analogous to the byte
type. The ACF for cs_test also uses the cs_tag_rtn attribute to specify a
tag-setting routine.

Writing the Stub Support Routines

When you use the cs_char attribute to define an international character data type,
you must provide stub support routines that check the buffer storage requirements
for character data to be converted and stub support routines that perform the
conversions between the local and network code sets. And, if you use the
cs_tag_rtn attribute, you must provide the routine that sets the code set tag
parameters for the operations in the application that transfer international
characters.

DCE RPC provides several buffer-sizing routines and one tag-setting routine. You
can use the DCE RPC routines, or you can develop your own customized
buffer-sizing and tag-setting routines; the choice depends upon your application’s
requirements. The next sections describe these types of stub support routines in
more detail.

Buffer-Sizing Routines

Different code sets use different numbers of bytes to encode a single character.
Consequently, there is always the possibility that the converted string can be larger
than the original string when converting data from one code set to another. The
function of the buffer-sizing routines is to calculate the necessary buffer size for
code set conversion between local and network code sets and return their findings
to the client and server stubs, which call these buffer-sizing routines before
marshalling and unmarshalling any international character data. The stubs then
allocate a new buffer, if necessary, before calling the code set conversion routines.

You must provide the following buffer-sizing routines for each local type that you
define with the cs_char attribute:

v local_type_name_net_size() —Calculates the necessary buffer size for code set
conversion from a local code set to a network code set. Client and server stubs
call this routine before they marshall any international character data.

v local_type_name_local_size() —Calculates the necessary buffer size for code set
conversion from a network code set to a local code set. Client and server stubs
call this routine before they unmarshall any international character data.

You specify the name for the local data type in the local_type_name portion of the
function name and the appropriate suffix name (_net_size or _local_size).

DCE RPC provides buffer-sizing routines for the cs_byte and wchar_t data types.
The cs_byte data type is equivalent to the byte type, while the wchar_t data type
is a platform-dependent data type whose range of values can represent encodings
for all members of the largest international character set that exists within the set of
character/code sets supported on the host.

Chapter 16. Writing Internationalized RPC Applications 289

The DCE RPC buffer-sizing routines are

v cs_byte_net_size() —Calculates the necessary buffer size for code set
conversion from a local code set to a network code set when the cs_byte type
has been specified as the local data type in the .acf file.

v cs_byte_local_size() —Calculates the necessary buffer size for code set
conversion from a network code set to a local code set when the cs_byte type
has been specified as the local data type in the .acf file.

v wchar_t_net_size() —Calculates the necessary buffer size for code set
conversion from a local code set to a network code set when the wchar_t data
type has been specified as the local data type in the .acf file.

v wchar_t_local_size() —Calculates the necessary buffer size for code set
conversion from a network code set to a local code set when the wchar_t data
type has been specified as the local data type in the .acf file.

If your internationalized RPC application uses either of these data types as the local
type in the ACF, it can use these DCE RPC buffer-sizing routines; in order to do so,
simply link with the DCE library when compiling your application. The example ACF
shown earlier in this chapter uses the cs_byte type as the local type. Consequently,
the client and server stubs will use the cs_byte_ buffer-sizing routines. Refer to the
cs_byte_ *(3rpc) and wchar_t_ *(3rpc) reference pages for a description of the
cs_byte_ and wchar_t_ routine signatures and functions.

Applications that use data types other than cs_byte or wchar_t as their local data
types will need to provide their own buffer-sizing routines. User-provided
buffer-sizing routines must follow the same signature as the DCE RPC-provided
buffer-sizing routines. See the cs_byte_ *(3rpc) and wchar_t_ *(3rpc) reference
pages for a description of the required routine signatures.

Code Set Conversion Routines

When RPC clients and servers exchange international character data, the data
being exchanged needs to be understood by both client and server. Both client and
server need to understand a character set, and both client and server need to
understand the way that character set is expressed. Code set conversion provides
a way for a character set to be represented in a form that both client and server
can understand, given that the client and server are using a compatible character
set. (In general, character set conversion is not recommended; it is unlikely that
clients and servers would want to map, for example, German characters to Chinese
characters due to the data loss that would occur as a result.)

The stub support routines for code set conversion provide the mechanism for the
stubs to use to convert between different code sets, given that character set
compatibility has been established. The code set conversion routines translate a
character set from one encoding to another. Consequently, the code set conversion
routines provide the way for a character set to be represented in a form that both
client and server can understand.

You must provide the following code set conversion routines for each local type that
you define with the cs_char attribute:

v local_type_name_to_netcs() —Converts international character data from a local
code set to a network code set. Client and server stubs call this routine before
they marshall any international character data.

v local_type_name_from_netcs() —Converts international character data from a
network code set to a local code set. Client and server stubs call this routine
before they unmarshall any international character data.

290 OSF® DCE Application Development Guide —Core Components

You specify the name for the local data type in the local_type_name portion of the
function name and the appropriate suffix name (_to_netcs or _from_netcs).

DCE RPC provides code set conversion routines for the cs_byte and wchar_t data
types. These routines are

v cs_byte_to_netcs() —Converts international character data from a local code set
to a network code set when the cs_byte type has been specified as the local
data type in the .acf file.

v cs_byte_from_netcs() —Converts international character data from a network
code set to a local code set when the cs_byte type has been specified as the
local data type in the .acf file.

v wchar_t_to_netcs() —Converts international character data from a local code set
to a network code set when the wchar_t data type has been specified as the
local data type in the .acf file.

v wchar_t_from_netcs() —Converts international character data from a network
code set to a local code set when the wchar_t data type has been specified as
the local data type in the .acf file.

If your application uses either of these data types as the local type, it can use these
DCE RPC code set conversion routines; in order to do so, simply link with the DCE
library when compiling your application. Refer to the cs_byte_ *(3rpc) and
wchar_t_ *(3rpc) reference pages for a description of the cs_byte_ and wchar_t_
routine signatures and functions.

Applications that use data types other than cs_byte or wchar_t as their local data
types will need to provide their own code set conversion routines. User-provided
code set conversion routines must follow the same signature as the DCE
RPC-provided code set conversion routines. See the cs_byte_ *(3rpc) and
wchar_t_ *(3rpc) reference pages for a description of the cs_byte_ and wchar_t_
routine signatures and functions.

The DCE code set conversion routines depend upon the presence of the XPG4
iconv code set conversion facility in the underlying operating system platform. The
iconv facility consists of the following routines:

v iconv_open() —Code conversion allocation function; returns a conversion
descriptor that describes a conversion from the code set specified in one string
pointer argument to the code set specified in another string pointer argument.

v iconv() —Code conversion function; converts the sequence of characters from
one code set into a sequence of corresponding characters in another code set.

v iconv_close() —Code conversion deallocation function; deallocates the
conversion descriptor and all associated resources allocated by the
iconv_open() function.

Note that the iconv facility identifies a code set by a string name. This string name
is the name that the local platform uses to refer to the code set. However, all of the
stub support routines for automatic code set conversion use the unique identifier
assigned to the code set in the code set registry to identify a code set. Before the
DCE code set conversion routines can invoke the iconv facility, they must access
the code set registry to retrieve the platform-specific string names associated with
the local and network code set identifiers.

The DCE code set conversion routines use the dce_cs_loc_to_rgy() and
dce_cs_rgy_to_loc() routines to access the code set registry and translate
between code set string names and their corresponding unique identifiers. The OSF

Chapter 16. Writing Internationalized RPC Applications 291

DCE Application Development Reference provides a description of these routines’
signatures and functions; developers who are writing their own code set conversion
routines and who are using the iconv facility for conversion may want to use these
DCE routines to convert between code set names and identifiers.

Tag-Setting Routine

Recall from “Writing the Interface Definition File” on page 286 that operations that
specify international characters as input and output parameters declare special
code set tag parameters. The purpose of these parameters is to hold the unique
identifier for the code set into which the input or output data is to be encoded when
it is transferred over the network.

The function of the tag-setting routine is to provide a way to set an operation’s code
set tag parameters to specific code set values from within the stubs rather than in
the application code. The application specifies the name of the tag-setting routine
as the argument to the cs_tag_rtn ACF attribute; the client and server stubs call
this routine when the operation is invoked to set the tag parameters to specific
network code set values before they call the stub support routines for buffer-sizing
and code set conversion. The stubs use the network code set values returned by
the tag-setting routine as input to the buffer-sizing and conversion routines. In turn,
these routines compare the network code set values to be used for input and output
data to the local code set in use for the data, and determine whether or not new
buffer allocation and code set conversion are necessary.

When called from the client stub, the tag-setting routine sets the sending tag
parameter to the code set to use for input character data. If the client expects
output character data from the server, the routine also sets the desired receiving tag
parameter to the code set that the client prefers the server to use for sending back
the output data. On the client side, the buffer-sizing routines
local_type_name_net_size() and the code set conversion routines
local_type_name_to_netcs() use the value in the sending tag as the network code
set value to use for transmitting the input data. When the input data arrives at the
server side, the server stub uses the sending tag as input to the
local_type_name_local_size() buffer-sizing routine and the
local_type_name_from_netcs() code set conversion routines, which use the value
to determine whether or not new buffer allocation and conversion is necessary from
the network code set to the local code set.

When called from the server stub, the tag-setting routine sets the receiving tag
parameter to the code set to use for transmitting the output character data back to
the server. The routine can use the desired receiving tag value as input to
determine the most appropriate code set in which to encode output data for the
client. On the server side, the buffer-sizing routines local_type_name_net_size()
and the code set conversion routines local_type_name_to_netcs() use the value in
the receiving tag as the network code set value to use for transmitting the output
data. When the output data arrives at the client side, the client stub uses the
receiving tag as input to the local_type_name_local_size() buffer-sizing routine and
the local_type_name_from_netcs() code set conversion routines, which use the
value to determine whether or not new buffer allocation and conversion is
necessary from the network code set to the local code set.

DCE RPC provides one tag-setting routine named rpc_cs_get_tags() that
applications can use to set code set tag values within the stubs. To use this routine,

292 OSF® DCE Application Development Guide —Core Components

specify its name as the argument to the cs_tag_rtn attribute and link your
application with the DCE library. The example ACF for the cs_test interface
specifies the rpc_cs_get_tags() routine.

Note that the rpc_cs_get_tags() routine always sets the receiving tag value on the
server side to the value that the client specified in the desired receiving tag. See
the rpc_cs_get_tags(3rpc) reference page for an explanation of this routine’s
signature and function.

RPC application programmers who are developing their own tag-setting routines
can also refer to the rpc_cs_get_tags(3rpc) reference page to obtain the required
signature for their user-written routine.

The tag-setting routine generally obtains the code set tag values from the binding
handle. These values are usually determined by the character and code set
evaluation routine invoked during the server binding import process, although they
can be explicitly set in the binding handle by using the rpc_cs_binding_set_tags()
routine. However, applications can design the tag-setting routine to perform
evaluation within the stubs rather than in the application (client) code. For example,
when called from the client side, the DCE RPC tag-setting routine
rpc_cs_get_tags() performs character and code set compatibility evaluation itself if
it does not find the tag values in the binding handle. See “Writing the Evaluation
Routine” on page 303 for more information on deferred evaluation.

Writing the Server Code

A programmer who is developing an RPC server that supports character and code
set interoperability needs to add the following steps to the server’s initialization
functions in addition to the normal initialization functions it carries out for RPC:

v Setting the server’s locale

v Establishing the server’s supported code sets

v Registering the server’s supported code sets in the name service database

v Establishing a cleanup function that removes the server’s supported code sets
from the name service database on the server’s termination or exit.

The next sections explain these steps in detail.

Setting the Server’s Locale

The server initialization code needs to include a platform-specific routine that sets
the locale environment for the server. This step establishes

v The name of the server’s local code set.

v The names of the code sets for which converters exist on the host and
consequently, into which processes that run on the host can convert if necessary.

An example of a locale-setting function is the POSIX, XPG3, XPG4 setlocale()
function, which is defined in locale.h . The server code should call the locale-setting
function as the first step in the initialization code, before calling the DCE RPC
routines that register the interface and export the binding information.

The locale-setting function also establishes the value for two platform-specific
macros that indicate

v The maximum number of bytes the local code set uses to encode one character.

Chapter 16. Writing Internationalized RPC Applications 293

v The maximum number of bytes that any of the supported code sets on the host
will use to encode one character.

On POSIX, XPG3, and XPG4 platforms, these macros are MB_CUR_MAX and
MB_LEN_MAX and are defined in stdlib.h and limits.h , respectively. The
buffer-sizing routines use MB_CUR_MAX when calculating the size of a new buffer
to hold converted character data.

Note that all hosts that are members of an internationalized DCE cell (that is, a cell
that supports internationalized RPC applications) must provide converters that
convert between their supported code sets and the ISO 10646 universal code set.
The DCE RPC functions for character and code set interoperability use the
universal code set as the default intermediate code set into which a client or server
can convert if there are no other compatible code sets between them. “Writing the
Evaluation Routine” on page 303 discusses intermediate code sets in more detail.

Establishing the Server’s Supported Code Sets

The next step in writing an internationalized RPC server is to add to the server’s
initialization code a call to the DCE RPC routine rpc_rgy_get_codesets() . This
routine gets the supported code set names defined in the locale environment and
translates those names to their unique identifiers by accessing the code set registry
on the host. The server initialization code should call this routine after it has
registered the interface and created a server entry for its binding information in the
name service database (by calling the DCE RPC NSI binding export routine
rpc_ns_binding_export()).

The routine returns an array of unique identifiers from the code set registry that
correspond to the server’s local code set and the code sets into which the server
can convert, if necessary; this data structure is called the code sets array. The code
sets array also contains, for each code set, the maximum number of bytes that
code set uses to encode one character.

The purpose of this step is to obtain the registered unique identifiers for the server’s
supported code sets for use by the DCE character and code set interoperability
features, rather than using the string names for the code sets. The DCE features for
character and code set interoperability do not use string names because different
operating systems commonly use different string names to refer to the same code
set, and clients and servers passing international characters in a cell of
heterogeneous platforms need to ensure that they both refer to the same code set
when establishing compatibility.

The code set registry provides the means for clients and servers to uniquely identify
a code set while permitting different platforms and the code set converters offered
on those platforms to continue to use the string names for the code sets.

See the rpc_rgy_get_codesets(3rpc) reference pages for a description of the
rpc_rgy_get_codesets() routine’s signature and arguments.

Registering the Server’s Supported Code Sets in the Namespace

The next step in writing an internationalized RPC server is to make a call in the
server’s initialization code to the DCE RPC routine rpc_ns_mgmt_set_attribute() ,
which takes the code sets array returned by rpc_rgy_get_codesets() and exports it

294 OSF® DCE Application Development Guide —Core Components

to the server’s entry in the name service database. The routine creates a code sets
NSI attribute in the name service database and associates it with the server entry
created by the NSI export operation.

The purpose of this step is to register the server’s supported code sets into the
name service database so that clients can gain access to the information. Note,
then, that server entries for internationalized RPC servers will have code sets
attributes in addition to the binding attributes and object attributes for the servers.
For a general discussion of NSI attributes, see “Chapter 14. RPC and Other DCE
Components” on page 195. Refer to the rpc_ns_mgmt_set_attribute(3rpc)
reference page for a description of the rpc_ns_mgmt_set_attribute() routine’s
signature and arguments.

Establishing a Cleanup Function for the Namespace

The last step in writing an internationalized RPC server is to add a call to the DCE
RPC routine rpc_ns_mgmt_remove_attribute() to the cleanup code within the
server’s initialization code. This DCE RPC routine will remove the code sets
attribute associated with the server entry from the name service database when it is
called from the cleanup code as the result of a server crash or exit. See the
rpc_ns_mgmt_remove_attribute(3rpc) reference page for a description of the
rpc_ns_mgmt_remove_attribute() routine’s signature and arguments.

Sample Server Code

Here is an example of an internationalized RPC server that exports the cs_test
interface defined in “Writing the Interface Definition File” on page 286.
#include <stdio.h>
#include <stdlib.h>
#include <dce/rpc.h>
#include <dce/nsattrid.h>
#include <dce/dce_error.h>
#include <locale.h>
#include <pthread.h>
#include <dce/codesets.h>
#include "cs_test.h"

/*
* Macro for result checking
*/

#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \
if (returned_st == expected_st) { \
} \
else { \

dce_error_inq_text(returned_st, \
(unsigned char *)unexpected, &dce_status); \

dce_error_inq_text(expected_st,\
(unsigned char *)expected, &dce_status); \

printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \
func, unexpected, expected); \
} \

} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

int
main(int argc, char *argv[])
{
error_status_t status;

Chapter 16. Writing Internationalized RPC Applications 295

int i;
rpc_ns_handle_t inq_contxt;
rpc_binding_vector_t *binding_vector;
rpc_codeset_mgmt_p_t arr;
pthread_t this_thread = pthread_self();
sigset_t sigset;
char *nsi_entry_name;
char *server_locale_name;
error_status_t expected = rpc_s_ok;
int server_pid;
/* The environment variable I18N_SERVER_ENTRY needs
* to be set before running this program. This is
* not a DCE environment variable, so you can set up
* your own environment variable if you like.
*/

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

(void)pthread_mutex_init(&mutex, pthread_mutexattr_default);

/* Set the locale. In this way, the current locale
* information is extracted from XPG/POSIX defined
* environment variable LANG or LC_ALL.
*/

setlocale(LC_ALL, "");

/*
* Get supported code sets.
*/

rpc_rgy_get_codesets (
&arr,
&status);

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, expected);

rpc_server_register_if (
cs_test_v1_0_s_ifspec,
NULL,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_server_register_if", status, expected);

rpc_server_use_all_protseqs (
rpc_c_protseq_max_reqs_default,
&status);

CHECK_STATUS(TRUE, "rpc_server_use_all_protseqs", status, expected);

rpc_server_inq_bindings (
&binding_vector,
&status);

CHECK_STATUS(TRUE, "rpc_server_inq_bindings", status, expected);
rpc_ns_binding_export (

rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_s_ifspec,
binding_vector,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_export", status, expected);

rpc_ep_register (
cs_test_v1_0_s_ifspec,

296 OSF® DCE Application Development Guide —Core Components

binding_vector,
NULL,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ep_register", status, expected);

/*
* Register the server's supported code sets into the name space.
*/

rpc_ns_mgmt_set_attribute (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
rpc_c_attr_codesets,
(void *)arr,
&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_set_attribute", status, expected);

/*
* Free memory allocated by getting code sets.
*/

rpc_ns_mgmt_free_codesets (&arr, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codeset", status, expected);

sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);

if (pthread_signal_to_cancel_np(&sigset, &this_thread) != 0)
{

printf("pthread_signal_to_cancel_np failed\n");
exit(1);
}
TRY
{

server_pid = getpid();

printf("Listening for remote procedure calls...\n");

rpc_server_listen (
rpc_c_listen_max_calls_default,

&status);

CHECK_STATUS(TRUE, "rpc_server_listen", status, expected);

/*
* Remove code set attributes from namespace on return.
*/

rpc_ns_mgmt_remove_attribute (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
rpc_c_attr_codesets,
&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, \
expected);

rpc_ns_binding_unexport (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_s_ifspec,
(uuid_vector_p_t)NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

Chapter 16. Writing Internationalized RPC Applications 297

rpc_ep_unregister (
cs_test_v1_0_s_ifspec,
binding_vector,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

rpc_binding_vector_free (
&binding_vector,
&status);

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

rpc_server_unregister_if (
cs_test_v1_0_s_ifspec,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

(void)pthread_mutex_destroy(&mutex);
}
CATCH_ALL
{

/*
* Remove code set attribute from namespace on a signal.
*/

rpc_ns_mgmt_remove_attribute (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
rpc_c_attr_codesets,
&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, \
expected);

rpc_ns_binding_unexport (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_s_ifspec,
(uuid_vector_p_t)NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

rpc_ep_unregister (
cs_test_v1_0_s_ifspec,
binding_vector,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

rpc_binding_vector_free (
&binding_vector,
&status);

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

rpc_server_unregister_if (
cs_test_v1_0_s_ifspec,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

298 OSF® DCE Application Development Guide —Core Components

(void)pthread_mutex_destroy(&mutex);
}
ENDTRY;

}

Writing the Client Code

A programmer who is developing an RPC client that supports character and code
set interoperability needs to add the following steps to the client code in addition to
the basic functions for RPC:

1. Setting the client’s locale

2. Establishing a character and code set compatibility evaluation routine that the
NSI server binding import routines will call to evaluate potential servers for
character and code set compatibility

The next sections explain these steps in detail.

Setting the Client’s Locale

The first step in developing an internationalized RPC client is to add a call within
the client code to a platform-specific function that sets the locale environment for
the client. This step establishes

v The name of the client’s local code set.

v The names of the code sets for which converters exist on the host and,
consequently, into which processes that run on the host can convert if necessary.

The call to the locale-setting function must be the first call made within the client
code. An example of a locale-setting function is the POSIX, XPG3, XPG4
setlocale() function, which is defined in locale.h .

The locale-setting function also establishes the value for two platform-specific
macros that indicate

v The maximum number of bytes the local code set uses to encode one character.

v The maximum number of bytes that any of the supported code sets on the host
will use to encode one character.

On the POSIX, XPG3, XPG4 platform, these macros are MB_CUR_MAX and
MB_LEN_MAX and are defined in stdlib.h and limits.h , respectively. The
buffer-sizing routines use the MB_CUR_MAX macro when calculating the size of a
new buffer to hold converted character data.

Note that all hosts that are members of an internationalized DCE cell must provide
converters that convert between their supported code sets and the ISO 10646
universal code set. The DCE RPC functions for character and code set
interoperability use the universal code set as the default intermediate code set into
which a client or server can convert if there are no other compatible code sets
between them. “Writing the Evaluation Routine” on page 303 discusses intermediate
code sets in more detail.

Establishing the Compatibility Evaluation Routine

The last step in writing an internationalized RPC client is to call the DCE RPC NSI
routine rpc_ns_import_ctx_add_eval() . The purpose of this NSI routine is to add
evaluation routines to the import context created by the

Chapter 16. Writing Internationalized RPC Applications 299

rpc_ns_binding_import_begin() routine that the NSI routine
rpc_ns_binding_import_next() will call to perform additional compatibility
evaluation on potential servers.

The internationalized RPC client code calls the rpc_ns_import_ctx_add_eval()
routine to set up one or more character and code set compatibility evaluation
routines to be called from rpc_ns_binding_import_next() . The client code must
make the call to rpc_ns_import_ctx_add_eval() once for each compatibility routine
that it wants to add to the import context for rpc_ns_binding_import_next() . See
the rpc_ns_import_ctx_add_eval(3rpc) reference page for a description of the
rpc_ns_import_ctx_add_eval() routine’s signature and arguments.

The rpc_ns_import_ctx_add_eval() must be used in conjunction with the
rpc_ns_binding_import_begin/next/done() suite of RPC NSI binding functions
because these functions provide an import context argument. If you want to use the
rpc_ns_binding_lookup_begin/next/done/select() suite of RPC NSI routines, your
client code will need to perform character and code set evaluation logic on the
binding handle returned by rpc_ns_binding_select() . “Example Character and
Code Set Evaluation Logic” on page 306 provides a sample client that performs
character and code set evaluation in conjunction with the lookup and select RPC
NSI routines.

Sample Client Code

Here is an example of an internationalized RPC client that calls the operation
defined in the cs_test interface shown in “Writing the Interface Definition File” on
page 286 . The client establishes the DCE RPC evaluation routine
rpc_cs_eval_without_universal() as the character and code set evaluation routine
to use.
#include <stdio.h>
#include <locale.h>
#include <dce/rpc.h>
#include <dce/rpcsts.h>
#include <dce/dce_error.h>

#include "cs_test.h" /* IDL generated header file */

/*
* Result check MACRO
*/

#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \
if (returned_st == expected_st) { \
/*
* Do nothing.
*/
} else { \

dce_error_inq_text(returned_st,\
(unsigned char *)unexpected, &dce_status); \

dce_error_inq_text(expected_st, \
(unsigned char *)expected, &dce_status); \

printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \
func, unexpected, expected); \
} \

} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;
void
main(void)

300 OSF® DCE Application Development Guide —Core Components

{
rpc_binding_handle_t bind_handle;
rpc_ns_handle_t import_context;
error_status_t status;
error_status_t temp_status;
cs_byte net_string[SIZE];
cs_byte loc_string[SIZE];
unsigned char err_buf[256];
char *nsi_entry_name;
char *client_locale_name;
int i, rpc_num;
FILE *fp_in, *fp_out;

/* The environment variable I18N_SERVER_ENTRY needs
* to be set before running this program. This is
* not a DCE environment variable, so you can set up
* your own environment variable if you like.
*/

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

setlocale(LC_ALL, "");

rpc_ns_binding_import_begin (
rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_c_ifspec,
NULL,
&import_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_begin", status, rpc_s_ok);

/*
* Add code set compatibility checking logic to the context.
*/

rpc_ns_import_ctx_add_eval (
&import_context,
rpc_c_eval_type_codesets,
(void *)nsi_entry_name,
rpc_cs_eval_without_universal,
NULL,
&status);

CHECK_STATUS(TRUE, "rpc_ns_import_ctx_add_eval", status, rpc_s_ok);
while (1) {

rpc_ns_binding_import_next (
import_context,
&bind_handle,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_next", status, \
rpc_s_ok);
if (status == rpc_s_ok)

break;
else
{

return;
}
}

rpc_ns_binding_import_done (
&import_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_done", status, rpc_s_ok);

Chapter 16. Writing Internationalized RPC Applications 301

rpc_ep_resolve_binding (bind_handle,
cs_test_v1_0_c_ifspec,
&temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);

if(rpc_mgmt_is_server_listening(bind_handle, &status)
&& temp_status == rpc_s_ok)
{

; /* Do nothing. */
}
else
{

dce_error_inq_text ((unsigned long)status,
err_buf, (int *)&temp_status);

printf("is_server_listening error -> %s\n", err_buf);
}
/*
* This program reads the data from a file.
*/

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)
{

printf("i18n_input_data open failed\n");
return;
}

fp_out = fopen("./i18n_method_fixed_result_file", "w");

if (fp_out == NULL)
{

printf("i18n_result_file open failed\n");
fclose(fp_in);
return;
}

rpc_num = 1;
while (!feof(fp_in))
{

(void)fgets((char *)net_string, SIZE, fp_in);

temp_status = cs_fixed_trans(bind_handle, net_string, loc_string);

if (temp_status != rpc_s_ok)
{
dce_error_inq_text(temp_status, err_buf, (int *)&status);

printf("FAILED %ld MSG: %s\n", (unsigned long)temp_status, \
err_buf);

}
else
{
printf("PASSED rpc #%d\n", rpc_num++);
(void)fputs((char *)loc_string, fp_out);
(void)fputs("\n", fp_out);

}
}

fclose(fp_in);
fclose(fp_out);

return;
}

302 OSF® DCE Application Development Guide —Core Components

Writing the Evaluation Routine

Recall from “Chapter 1. Introduction to DCE Facilities” on page 3 of the OSF DCE
Application Development Guide—Introduction and Style Guide and “Chapter 11.
Developing a Simple RPC Application” on page 149 of this guide that when a
prospective client attempts to import binding information from a namespace entry
that it looks up by name, the NSI import routine checks the binding for compatibility
with the client by comparing interface UUIDs and protocol sequences. If the UUIDs
match and the protocol sequences are compatible, the NSI operation considers the
binding handle contained in the server entry to be compatible and returns it to the
client. Internationalized clients need to perform additional compatibility checking on
potential server bindings: they need to evaluate the server for character and code
set compatibility.

The purpose of the character and code set compatibility evaluation routine is to
determine

v Whether the character set the server supports is compatible with the client’s
character set, since incompatible character sets result in unacceptable data loss
during character conversion.

v The level of code set compatibility between client and server, which determines
the conversion method that the client and server will use when transferring
character data between them.

A conversion method is a process for converting one code set into another. There
are four conversion methods:

v Receiver Makes It Right (RMIR)—The recipient of the data is responsible for
converting the data from the sender’s code set to its own code set. This is the
method that the RPC communications protocol uses to convert PCS character
data between ASCII and EBCDIC code sets.

v Client Makes It Right (CMIR)—The client converts the input character data to be
sent to the server into the server’s code set before the data is transmitted over
the network, and converts output data received from the server from the server’s
code set into its own local code set.

v Server Makes It Right (SMIR)—The server converts the input character data
received from the client into its local code set from the client’s code set and
converts output data to be sent to the client into the client’s code set before the
data is transmitted over the network.

v Intermediate—Both client and server convert to a common code set. DCE
defines a default intermediate code set to be used when there is no match
between the client and server’s supported code sets; this code set is the ISO
10646 universal code set. Sites can also specify other code sets to be used as
intermediate code sets in preference to ISO 10646; to do this, they run the csrc
utility. See the csrc(8dce) reference pages for a description of csrc utility usage.

A character and code set compatibility evaluation routine generally employs a
conversion model when determining the level of code set compatibility. A conversion
model is an ordering of conversion methods; for example, CMIR first, then SMIR,
then intermediate. Consequently, the actual conversion method used is determined
at runtime.

DCE RPC Evaluation Routines

DCE RPC provides two character and code set compatibility evaluation routines:
rpc_cs_eval_with_universal() and rpc_cs_eval_without_universal() . To use

Chapter 16. Writing Internationalized RPC Applications 303

either one of these routines, specify their names in the evaluation function argument
to the rpc_ns_import_ctx_add_eval() routine. (The sample client code shown in
“Sample Client Code” on page 300 specifies a DCE RPC character and code set
evaluation routine.)

The rpc_cs_eval_with_universal() routine first compares the client’s local code set
with the server’s local code set. If they are the same, client-server character and
code set compatibility exists. The routine returns to the NSI import routine, which
returns the server binding to the client.

If the routine finds that the client and server local code sets differ, it calls the routine
rpc_cs_char_set_compat_check() to determine client-server character set
compatibility. If the client and server are using the same character set, it will be safe
for them to exchange character data despite their use of different encodings for the
character data. Clients and servers using different character sets are considered to
be incompatible since the process of converting the character data from one
character set to the other will result in significant data loss.

Using the client and server’s local code set identifiers as indexes into the code set
registry, the rpc_cs_char_set_compat_check() routine obtains the registered
values that represent the character set(s) that the specified code sets support. If the
client and server support just one character set, the routine compares the values for
compatibility. If the values do not match, then the client-server character sets are
not compatible; for example, the client is using the German character set and the
server is using the Korean character set. In this case, the routine returns the status
code rpc_s_ss_no_compat_charsets to the evaluation routine so that binding to
that server will be rejected.

If the client and server support multiple character sets, the
rpc_cs_char_set_compat_check() routine determines whether at least two of the
sets are compatible. If two or more sets match, the routine considers the character
sets compatible and returns a success status code to the evaluation routine.

In the case where the client and server are character set compatible, the
rpc_cs_eval_with_universal() routine uses the following model to determine a
conversion method:

v RMIR (receiver makes it right)

v SMIR (client uses its local code set, server converts to and from it)

v CMIR (server uses its local code set, client converts to and from it)

v Use an intermediate code set

v Use the universal (ISO 10646) code set

This conversion model translates into the following steps:

1. The rpc_cs_eval_with_universal() routine takes the client’s local code set and
searches through the server’s code sets array to determine whether it has a
converter for the client’s local set. Then it takes the server’s local code set and
searches through the client’s code sets array to see if it has a converter for the
server’s local code set.

2. If both client and server support converters for each other’s local code sets (that
is, they can convert to and from each other’s local code set), the routine sets
the conversion method to RMIR.

3. If the server can convert to and from the client’s local code set, but the client
cannot convert from the server’s local code set, the routine sets the conversion
method to SMIR.

304 OSF® DCE Application Development Guide —Core Components

4. If the client can convert to and from the server’s local code set, but the server
cannot convert to and from the client’s local code set, the routine sets the
conversion method to CMIR.

If the conversion method is SMIR or RMIR, the rpc_cs_eval_with_universal()
routine sets both the sending tag and the desired receiving tag to the code set
value that represents the client’s local code set. In the case of CMIR, the
routine sets both the sending tag and the desired receiving tag to the code set
value that represents the server’s local code set.

5. If neither client nor server support each other’s local code set, the routine next
determines if they both support a code set into which they both can convert
to/from their local code sets. If it finds an intermediate set into which they both
can convert, it sets the conversion method to INTERMEDIATE and sets the
sending tag and desired receiving tag to the code set value that represents the
intermediate code set to use.

6. If the routine does not find any intermediate code set into which client and
server can convert, it sets the sending tag and desired receiving tag to the code
set value that represents the ISO 10646 universal code set, which is the default
intermediate code set that all DCE clients and servers support.

The rpc_cs_eval_without_universal() routine uses the following conversion model
to determine a conversion method:

v RMIR

v SMIR (client uses its local code set, server converts to and from it)

v CMIR (server uses its local code set, client converts to and from it)

v Intermediate

v Reject for code set incompatibility

Consequently, the rpc_cs_eval_without_universal() uses the same evaluation
logic as rpc_cs_eval_with_universal() except that it rejects the server binding if
the client and server do not support a common code set to use as an intermediate
code set.

Writing Customized Evaluation Routines

Programmers writing internationalized RPC applications can develop their own
character and code set compatibility evaluation routines if their applications’ needs
are not met by the DCE RPC evaluation routines. These programmers may want to
use the following DCE RPC routines within their evaluation routine:

v The rpc_rgy_get_codesets() routine

v The rpc_cs_char_set_compat_check() routine

v The rpc_cs_binding_set_tags() routine

v The dce_cs_loc_to_rgy() routine

v The rpc_ns_mgmt_read_codesets() routine

v The rpc_ns_mgmt_free_codesets() routine

Refer to the OSF DCE Application Development Reference for complete details
about these routines.

Programmers who write their own evaluation routines can also select when
evaluation is performed; that is, they can defer evaluation from occurring in the
client code, or they can defer evaluation completely at the client side and let it take
place in the server instead. Programmers who desire to defer evaluation to the
client stub can write an evaluation routine that sets the client’s and server’s

Chapter 16. Writing Internationalized RPC Applications 305

supported code sets into the binding handle returned by the client, then write the
evaluation logic into the stub support routine for tag setting so that it performs
evaluation within the client stub.

Applications that do evaluation in the client stub take the chance that the binding
handle that is evaluated is the only binding handle available. For example, suppose
there are three binding handles. Two are character and code set compatible, and
one is incompatible. The incompatible binding is selected for RPC. If you evaluate
in the tag-setting routine, you cannot reselect to get the other compatible bindings.

In general, it is recommended that character and code set evaluation take place in
the client, rather than the server, for performance reasons. Also, once the server is
selected and a connection is established between it and the client, the client cannot
typically reselect the server because the code sets are incompatible.

Within the client, it is recommended that evaluation be performed in the client code
rather than in the client stub because deferring evaluation to occur in the client stub
removes any way for the client to gain access to other potential binding handles.

Notes About Tag Setting

The DCE RPC character and code set compatibility evaluation routines set the
method and the code set tag values into a data structure in the binding handle
returned to the client. These routines always set the sending tag and desired
receiving tag to the same code set value.

In addition, if the application uses the DCE RPC routine rpc_cs_get_tags() to set
the code set tags for the stubs, the value of the server’s receiving tag will always be
the value of what the client sent to it in the desired receiving tag. If RMIR is used,
the desired receiving tag is the server’s current code set.

RPC application programmers who do not want to use the DCE RPC-provided
evaluation routines can use the rpc_cs_binding_set_tags() routine to set the code
set tag values into a binding handle.

Example Character and Code Set Evaluation Logic

Here is an example client program of the cs_test interface that provides its own
character and code set evaluation logic. This example client uses the
rpc_cs_binding_set_tags() routine to set the code set tags within the client code
rather than using a tag-setting routine to set them within the stub code.
#include <stdio.h>
#include <locale.h>
#include <dce/rpc.h>
#include <dce/rpcsts.h>
#include <dce/dce_error.h>

#include "cs_test.h" /* IDL generated header file */
/*
* Result check MACRO
*/

#define CHECK_STATUS(t, func, returned_st, expected_st) \
{ \
if (returned_st == expected_st) { \
; /* No operation */

} else { \
dce_error_inq_text(returned_st,\
(unsigned char *)unexpected, &dce_status); \

306 OSF® DCE Application Development Guide —Core Components

dce_error_inq_text(expected_st,\
(unsigned char *)expected, &dce_status); \

printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \
func, unexpected, expected); \
} \

} \

static unsigned char unexpected[dce_c_error_string_len];
static unsigned char expected[dce_c_error_string_len];
static int dce_status;

void
main(void)
{
rpc_binding_handle_t bind_handle;
rpc_ns_handle_t lookup_context;
rpc_binding_vector_p_t bind_vec_p;
unsigned_char_t *entry_name;
unsigned32 binding_count;
cs_byte net_string[SIZE];
cs_byte loc_string[SIZE];
int i, k, rpc_num;
int model_found, smir_true, cmir_true;
rpc_codeset_mgmt_p_t client, server;
unsigned32 stag;
unsigned32 drtag;
unsigned16 stag_max_bytes;
error_status_t status;
error_status_t temp_status;
unsigned char err_buf[256];
char *nsi_entry_name;
char *client_locale_name;
FILE *fp_in, *fp_out;

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

setlocale(LC_ALL, "");
rpc_ns_binding_lookup_begin (

rpc_c_ns_syntax_default,
(unsigned_char_p_t)nsi_entry_name,
cs_test_v1_0_c_ifspec,
NULL,
rpc_c_binding_max_count_default,
&lookup_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_begin", status, rpc_s_ok);

rpc_ns_binding_lookup_next (
lookup_context,
&bind_vec_p,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_next", status, rpc_s_ok);

rpc_ns_binding_lookup_done (
&lookup_context,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_done", status, rpc_s_ok);

/*
* Get the client's supported code sets
*/

rpc_rgy_get_codesets (
&client,

Chapter 16. Writing Internationalized RPC Applications 307

&status);

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, rpc_s_ok);

binding_count = (bind_vec_p)->count;
for (i=0; i < binding_count; i++)
{

if ((bind_vec_p)->binding_h[i] == NULL)
continue;

rpc_ns_binding_select (
bind_vec_p,
&bind_handle,
&status);

CHECK_STATUS(FALSE, "rpc_ns_binding_select", status, rpc_s_ok);
if (status != rpc_s_ok)
{
rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}

rpc_ns_binding_inq_entry_name (
bind_handle,
rpc_c_ns_syntax_default,
&entry_name,
&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_inq_entry_name", status, \
rpc_s_ok);

if (status != rpc_s_ok)
{
rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}

/*
* Get the server's supported code sets from NSI
*/

rpc_ns_mgmt_read_codesets (
rpc_c_ns_syntax_default,
entry_name,
&server,
&status);

CHECK_STATUS(FALSE, "rpc_ns_mgmt_read_codesets", status, \
rpc_s_ok);

if (status != rpc_s_ok)
{
rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}
/*

* Start evaluation
*/

if (client->codesets[0].c_set == server->codesets[0].c_set)
{
/*
* client and server are using the same code set
*/

stag = client->codesets[0].c_set;
drtag = server->codesets[0].c_set;
break;

308 OSF® DCE Application Development Guide —Core Components

}

/*
* check character set compatibility first
*/

rpc_cs_char_set_compat_check (
client->codesets[0].c_set,
server->codesets[0].c_set,
&status);

CHECK_STATUS(FALSE, "rpc_cs_char_set_compat_check",
status, rpc_s_ok);

if (status != rpc_s_ok)
{
rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

}

smir_true = cmir_true = model_found = 0;

for (k = 1; k <= server->count; k++)
{
if (model_found)

break;

if (client->codesets[0].c_set
== server->codesets[k].c_set)
{

smir_true = 1;
model_found = 1;
}
if (server->codesets[0].c_set

== client->codesets[k].c_set)
{

cmir_true = 1;
model_found = 1;
}

}

if (model_found)
{
if (smir_true && cmir_true)
{

/* RMIR model works */
stag = client->codesets[0].c_set;
drtag = server->codesets[0].c_set;
stag_max_bytes
= client->codesets[0].c_max_bytes;
}
else if (smir_true)
{

/* SMIR model */
stag = client->codesets[0].c_set;
drtag = client->codesets[0].c_set;
stag_max_bytes
= client->codesets[0].c_max_bytes;
}
else
{

/* CMIR model */
stag = server->codesets[0].c_set;
drtag = server->codesets[0].c_set;
stag_max_bytes
= server->codesets[0].c_max_bytes;
}

Chapter 16. Writing Internationalized RPC Applications 309

/*
* set tags value to the binding
*/

rpc_cs_binding_set_tags (
&bind_handle,
stag,
drtag,
stag_max_bytes,
&status);
CHECK_STATUS(FALSE, "rpc_cs_binding_set_tags",
status, rpc_s_ok);

if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);

rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",
status, rpc_s_ok);
}

}
else
{
/*
* try another binding
*/

rpc_binding_free (
&bind_handle,
&status);

CHECK_STATUS(FALSE, "rpc_binding_free", status, rpc_s_ok);
if (status != rpc_s_ok)
{

rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets", \
status, rpc_s_ok);

rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets", \
status, rpc_s_ok);
}

}
}

rpc_ns_mgmt_free_codesets(&server, &status);
CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

rpc_ns_mgmt_free_codesets(&client, &status);
CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

if (!model_found)
{

printf("FAILED No compatible server found\n");
tet_result(TET_DCE_FAIL);
}

rpc_ep_resolve_binding (bind_handle,
cs_test_v1_0_c_ifspec,
&temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);
if(rpc_mgmt_is_server_listening(bind_handle, &status)

&& temp_status == rpc_s_ok)
{

printf("PASSED rpc_mgmt_is_server_listening());
}
else

310 OSF® DCE Application Development Guide —Core Components

{
dce_error_inq_text ((unsigned long)status, err_buf,
(int *)&temp_status);
printf("is_server_listening error -> %s\n", err_buf);
}

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)
{

printf("i18n_input_data open failed\n");
tet_result(TET_DCE_FAIL);
}

fp_out = fopen("./i18n_tags_fixed_result_file", "w");

if (fp_out == NULL)
{

printf("i18n_result_file open failed\n");
tet_result(TET_DCE_FAIL);
}

rpc_num = 1;
while (!feof(fp_in))
{

(void)fgets((char *)net_string, SIZE, fp_in);

temp_status = cs_fixed_trans(bind_handle, net_string, loc_string);

if (temp_status != rpc_s_ok)
{
dce_error_inq_text(temp_status, err_buf, (int *)&status);

printf("FAILED %ld MSG: %s\n", (unsigned long)temp_status, \
err_buf);

}
else
{
printf("PASSED rpc #%d\n", rpc_num++);
(void)fputs((char *)loc_string, fp_out);
(void)fputs(", fp_out);

}
}
fclose(fp_in);
fclose(fp_out);

return;
}

Chapter 16. Writing Internationalized RPC Applications 311

312 OSF® DCE Application Development Guide —Core Components

Chapter 17. Topics in RPC Application Development

This chapter describes special features of DCE RPC for application development.
The topics include

v Memory management

v Error handling

v Context handles

v Pipes

v Nested calls and callbacks

v Routing RPCs

v Portable data and the IDL encoding services

Memory Management

When called to handle a remote operation, RPC client stubs allocate and free
memory by using whatever memory management scheme is currently in effect. The
client code—the generic code that can be called from either RPC clients or RPC
servers—can use DCE RPC stub support routines to control which memory
management scheme the stubs will use.

If client code has not explicitly set the memory management routines, the RPC
client stubs use the following defaults:

v When called from manager code, and the operation contains one or more
parameters that are full or unique pointers, or the ACF enable_allocate attribute
has been applied, the client stubs use the rpc_ss_allocate() and rpc_ss_free()
routines.

v When called from any other context, the RPC client stubs use the operating
system allocation and free routines (for example, malloc() and free()) on POSIX
platforms.

Note that the memory management scheme established, whether explicitly or by
default, is on a per-thread basis.

RPC server stubs do not allocate memory. Instead, they rely on the manager
code—the code that the server stubs call—to allocate it for them.

The following sections gives guidelines for how client code and manager code
should use the the various allocation and free routines provided with DCE.

Note: DCE provides two versions of DCE RPC stub support routines. The rpc_ss_
*() routines raise an exception, while the rpc_sm_ *() routines return an error
status value. In all other ways, the routines are identical. It is generally
recommended that you use the rpc_sm_ *() routines instead of the rpc_ss_
*() routines for compliance with the Application Environment
Specification/Distributed Computing.

Using the Memory Management Defaults

If it does not matter to the client code which memory allocation routine the RPC
client stubs use, the client code should call the rpc_ss_client_free() routine to free
any memory that the client stub allocates and returns. The rpc_ss_client_free()
routine uses the current free routine that is in effect. Client code that uses

313

rpc_ss_client_free() must use caution if it calls other routines before it frees all of
the pieces of allocated storage with rpc_ss_client_free() , because it is possible
that the called code has been written so that it swaps in a different allocation/free
pair without reestablishing the previous allocation/free pair on exit.

Using rpc_ss_allocate and rpc_ss_free

Both client code and manager code can use rpc_ss_allocate() and rpc_ss_free() .
The next sections describe how.

Using rpc_ss_allocate and rpc_ss_free in Manager Code

Manager code uses either the rpc_ss_allocate() and rpc_ss_free() routines or the
operating system allocation and free routines to allocate and free memory.

Manager code uses rpc_ss_allocate() to allocate storage for data that the server
stub is to send back to the client. Manager code can either use rpc_ss_free() to
free the storage explicitly, or it can rely on the server stub to free it. After the server
stub marshalls the output parameters, it releases any storage that the manager
code has allocated with rpc_ss_allocate() .

Manager code can also use the rpc_ss_free() routine to release storage pointed to
by a full pointer in an input parameter and have the freeing of the memory reflected
on return to the calling application if the reflect_deletions attribute has been
specified as an operation attribute in the interface definition. See “Chapter 18.
Interface Definition Language” on page 357 for instructions on how to declare the
reflect_deletions operation attribute.

Manager code uses the operating system allocation routine to create storage for its
internal data. The server stub does not automatically free memory that operating
system allocation routines have allocated. Instead, manager code must use the
operating system free routine to deallocate the memory explicitly before it exits.

When manager code makes a remote call, the default memory management
routines are rpc_ss_allocate() and rpc_ss_free() .

Using rpc_ss_allocate and rpc_ss_free in Client Code

Client code may also want to use the rpc_ss_allocate() and rpc_ss_free() routines
as the stub memory management scheme. However, before client code can use
rpc_ss_allocate() and rpc_ss_free() , it must first call the
rpc_ss_enable_allocate() routine, which enables the use of rpc_ss_allocate() . If
client code calls rpc_ss_enable_allocate() , it must also call the
rpc_ss_disable_allocate() routine before it exits its thread to disable use of
rpc_ss_allocate() . This routine releases all of the memory allocated by calls to
rpc_ss_allocate() in that thread since the call to rpc_ss_enable_allocate() was
made. As a result, client code can either free each piece of allocated storage with
rpc_ss_free() , or it can have rpc_ss_disable_allocate() free it all at once when it
disables the rpc_ss_allocate/free memory management scheme.

Before calling rpc_ss_enable_allocate() , client code must ensure that it has not
been called by code that has already set up the rpc_ss_allocate/free memory
management scheme. As a result, if the client code can ensure that it has not been
called from a manager routine, and it can ensure that any previous calls to

314 OSF® DCE Application Development Guide —Core Components

rpc_ss_enable_allocate() have been paired with calls to
rpc_ss_disable_allocate() , it can safely call rpc_ss_enable_allocate() .

If client code cannot ensure that these conditions are true, it should check to make
sure the rpc_ss_allocate/free scheme has not already been set up. For example:
/* Get RPC memory allocation thread handle */

rpc_ss_thread_handle_t thread_handle;
idl_void_p_t (*p_saved_alloc)(unsigned long);
void (*p_saved_free)(idl_void_p_t);

TRY
thread_handle = rpc_ss_get_thread_handle();

CATCH(pthread_badparam_e)
thread_handle = NULL;

ENDTRY

if (thread_handle == NULL) {

/* Set up rpc_ss_allocate environment */

rpc_ss_enable_allocate();
}

rpc_ss_swap_client_alloc_free(
appl_client_alloc,appl_client_free,
&p_saved_alloc,&p_saved_free);

After control returns from the client stub, the client code should again check to see
whether rpc_ss_allocate/free has already been enabled before it calls
rpc_ss_disable_allocate() :

rpc_ss_set_client_alloc_free(p_saved_alloc,p_saved_free);

/* If we set up rpc_ss_allocate environment, disable it now */

if (thread_handle == NULL)

rpc_ss_disable_allocate();

Using Your Own Allocation and Free Routines

At times it might be necessary for client code to change the routines that the client
stubs use to allocate and free memory. For example, client code that is making an
RPC call might want to direct the RPC client stubs to use special debug versions of
malloc() and free() that check for memory leaks. Another example might be an
application that uses DCE RPC but needs to preserve its users’ ability to free
memory returned from the application by using the platform’s memory management
scheme (rather than exposing the user to DCE).

Client code that wants to use its own memory allocation and free routines can use
the rpc_ss_swap_client_alloc_free() routine to exchange the current client
allocation and freeing mechanism for one supplied in the call. The routine returns
pointers to the memory allocation and free routines formerly in use. Before calling
rpc_ss_swap_client_alloc_free() , client code must ensure that it has not been
called from a manager routine.

Chapter 17. Topics in RPC Application Development 315

Deallocation of allocated storage returned from the client stubs is not automatic.
Therefore, client code must ensure that it uses the free routine that it specified in
the call to rpc_ss_swap_client_alloc_free() to deallocate each piece of allocated
storage.

Client code that swaps in memory management routines with
rpc_ss_swap_client_alloc_free() should use the rpc_ss_set_client_alloc_free()
routine before it exits to restore the old allocation and free routines.

Using Thread Handles in Memory Management

There are two situations where control of memory management requires the use of
thread handles. The more common situation is when the manager thread spawns
additional threads. The less common situation is when a program transitions from
being a client to being a server, then reverts to being a client.

Spawning Threads

When a remote procedure call invokes the manager code, the manager code may
wish to spawn additional threads to complete the task for which it was called. To
spawn additional threads that are able to perform memory management, the
manager code must first call the rpc_ss_get_thread_handle() routine to get its
thread handle and then pass that thread handle to each spawned thread. Each
spawned thread must call the rpc_ss_set_thread_handle() routine with the handle
received from the manager code.

These routine calls allow the manager and its spawned threads to share a common
memory management environment. This common environment enables memory
allocated by the spawned threads to be used in returned parameters and causes all
allocations in the common memory management environment to be released when
the manager thread returns to the server stub.

The main manager thread must not return control to the server stub before all the
threads it spawned complete execution; otherwise, unpredictable results may occur.

The listener thread can cancel the main manager thread if the remote procedure
call is orphaned or if a cancellation occurs on the client side of the application. You
should code the main manager thread to terminate any spawned threads before it
exits. The code should anticipate exits caused by an unexpected exception or by
being canceled.

Your code can handle all of these cases by including a TRY/FINALLY block to
clean up any spawned threads if a cancellation or other exception occurs. If
unexpected exceptions do not concern you, then your code can perform two steps.
They are disabling cancelability before threads are spawned followed by enabling
cancelability after the join operation finishes and after testing for any pending cancel
operations. Following this disable/enable sequence prevents routine pthread_join()
from producing a cancel point in a manager thread that has spawned threads
which, in turn, share thread handles with the manager thread.

Transitioning from Client to Server to Client

Immediately before the program changes from a client to a server, it must obtain a
handle on its environment as a client by calling rpc_ss_get_thread_handle() .

316 OSF® DCE Application Development Guide —Core Components

When it reverts from a server to a client, it must reestablish the client environment
by calling the rpc_ss_set_thread_handle() routine, supplying the previously
obtained handle as a parameter.

Guidelines for Error Handling

During a remote procedure call, server and communications errors may occur.
These errors can be handled using any or all of the following methods:

v Writing exception handler code to recover from the error or to exit the application

v Using the fault_status attribute in the ACF to report an RPC server failure

v Using the comm_status attribute in the ACF to report a communications failure

Use of exceptions, where the procedure exits the program due to an error, tends to
improve code quality. It does this by making errors obvious because the program
exits at that point, and by lessening the amount of code needed to detect error
conditions and handle them. When you use the fault_status attribute, an exception
that occurs on the server is not reported to the client as an exception. The variable
to which the comm_status attribute is attached contains error codes that report
errors that would not have occurred if the application were not distributed over a
communications network. The comm_status attribute provides a method of
handling RPC errors without using an exception handler.

Exceptions

Exceptions report either RPC errors or errors in application code. Exceptions have
the following characteristics:

v You do not have to adjust procedure declarations between local and distributed
code.

v You can distribute existing interfaces without changing code.

v You do not have to check for failures. This results in more robust code because
errors are reported even if they are not checked.

v Your code is more efficient when there is no recovery coded for failures.

v You can use a simpler coding style.

v Exceptions work well for coarse-grained exception handling.

v If your application does not contain any exception handlers and the application
thread gets an error, the application thread is terminated and a
system-dependent error message from the threads package is printed.

Note: RPC exceptions are equivalent to RPC status codes. To identify the status
code that corresponds to a given exception, replace the _x_ string of the
exception with the string _s_. For example, the exception
rpc_x_comm_failure is equivalent to the status code rpc_s_comm_failure .
The RPC exceptions are defined in the dce/rpcexc.h header file, and the
equivalent status codes are described in the OSF DCE Problem
Determination Guide .

The set of exceptions that can always be returned from the server to the client
(such as the rpc_x_invalid_tag exception) are referred to as system exceptions.
These exceptions are defined in dce/rpcexec.h and dce/exec_handling.h .

An interface definition can also specify a set of user-defined exceptions that the
interface’s operations can return to the client. You can declare user-defined

Chapter 17. Topics in RPC Application Development 317

exceptions in an interface definition by using the exceptions interface attribute,
which is described in “Chapter 18. Interface Definition Language” on page 357.

If a user-defined exception in the implementation of a server operation occurs
during server execution, the server terminates the operation and propagates the
exception to the client in a manner similar to the way system exceptions are
propagated. If a server implementation of an operation raises an exception that is
neither a system exception nor a user-defined exception, the exception returned to
the client is rpc_x_unknown_remote_fault .

By default, the IDL compiler defines and initializes all exceptions under a once block
in the generated stubs. If you want to share exception names in multiple interfaces
or you desire greater control over how these exceptions are defined and initialized,
you can use the ACF extern_exceptions attribute to disable the automated
mechanism that the IDL compiler uses to define and initialize exceptions. See
“Chapter 19. Attribute Configuration Language” on page 425 for more information on
the extern_exceptions attribute.

Because exceptions are associated with operation implementation, they are not
imported into other interfaces by way of the import declaration. For more
information about using exceptions to handle errors, see “Part 2. DCE Threads” on
page 101 of this guide.

The fault_status Attribute

The fault_status attribute requests that errors occurring on the server due to
incorrectly specified parameter values, resource constraints, or coding errors be
reported by a designated status parameter instead of by an exception.

If a user-defined exception is returned from a server to a client that has specified
fault_status on the operation in which the exception occurred, the value given to
the fault_status parameter is rpc_s_fault_user_defined .

The fault_status attribute has the following characteristics:

v Occurs where you do not want transparent local/remote behavior

v Occurs where you expect that you may be passing incorrect data to the server or
the server is not coded robustly, or both

v Works well for fine-grained error handling

v Requires that you adjust procedure declarations between local and distributed
code

v Controls the reporting only of errors that come from the server and that are
reported via a fault packet

For more information on the fault_status attribute, see “Chapter 19. Attribute
Configuration Language” on page 425.

The comm_status Attribute

The comm_status attribute requests that RPC communications failures be reported
through a designated status parameter instead of by an exception. The
comm_status attribute has the following characteristics:

v Occurs where you expect communications to fail routinely; for instance, no server
is available, the server has no resources, and so on

318 OSF® DCE Application Development Guide —Core Components

v Works well for fine-grained error handling; for example, trying a procedure many
times until it succeeds

v Requires that you adjust procedure declarations between local and distributed
code to add the new status parameter

v Controls the reporting of errors only from RPC runtime error status codes

For more information on the comm_status attribute, see “Chapter 19. Attribute
Configuration Language” on page 425.

Determining Which Method to Use for Handling Exceptions

Some conditions are better for using the comm_status or fault_status attribute on
an operation, rather than the default approach of handling exceptions.

The comm_status attribute is useful only if the call to the operation has a specific
recovery action to perform for one or more communications failures; for example,
rpc_s_comm_failure or rpc_s_no_more_bindings . The comm_status attribute is
recommended only when the application knows that it is calling a remote operation.
If you expect communications to fail often because the server does not have
enough resources to execute the call, you can use this attribute to allow the call to
be retried several times. If you are using an implicit or explicit binding, you can use
the comm_status attribute if you want to try another server because the operation
cannot be performed on the one you are currently using. You can also use an
exception handler for each of the two previous instances.

In general, the advantange of using comm_status if the recovery is local to the
routine is that the overhead is less. The disadvantage of using comm_status is
that it results in two different operation signatures. Distributed calls contain the
comm_status attribute, however; local calls do not. Also, if all of the recovery
cannot be done locally (where the call is made), there must be a way to pass the
status to outer layers of code to process it.

The fault_status attribute is useful only if the call to the operation has a specific
recovery action to perform for one or more server faults; for example,
rpc_s_invalid_tag , rpc_s_fault_pipe_comm_error , rpc_s_fault_int_overflow , or
rpc_s_fault_remote_no_memory . Use fault_status only when the application
calls a remote operation and wants different behavior than if it calls the same
operation locally. If you are requesting an operation on a large data set, you can
use this attribute to trap rpc_s_fault_remote_no_memory and retry the operation
to a different server, or you may break your data set into two smaller sections. You
can also handle the previous case with exception handlers. The advantange of
using fault_status if the recovery is local is that the overhead is less. The
disadvantage of fault_status is that the operation is different between the local and
distributed case. Also, if all of the recovery cannot be done locally, there must be a
way to pass the status to outer layers of code to process it.

Examples of Error Handling

The following subsections present two examples of error handling. The first
example assumes that the comm_status attribute is in use in the ACF. The second
example assumes that the comm_status attribute is not in use.

Chapter 17. Topics in RPC Application Development 319

The Matrix Math Server Example

Assume that you have an existing local interface that provides matrix math
operations. Since it is local, errors such as floating-point overflow or divide by zero
are returned to the caller of a matrix operation as exceptions. It is likely that these
exceptions are caused by providing data to the operation in an improper form.

In this case, the exceptions are part of the interface, so fault_status changes the
way the application calls the matrix interface and probably is undesirable.
Depending on the environment, finding a server may not be difficult (if the network
is relatively stable and has enough resources), and adding comm_status serves
only to introduce differences between the local and distributed applications.

If a decision as to what action to take is based upon a communications failure, then
you may try to add the conditional code comm_status requires. Otherwise, using
auto_handle allows an attempt on each available server. If no server is available,
the application terminates because it cannot proceed. You can add an exception
handler to the main program to report the error in a user-friendly manner.

The Stock Quote Application Example

Assume that you have an application that reads from stock quote servers and
displays graphs of the data. Since you do not expect to get server failures because
it is a commercial-quality server, you are not interested in writing code to handle
values returned from fault_status . If high availability and robustness is important,
you may have a list of recovery plans to make sure a stock analyst can get the
necessary information as quickly as possible. For example:

retry_count = 10;
do {
query_stock_quote(h, ...,&st);
switch (st) /* st parameter can be used because */
{ /* [comm_status] is in the ACF */
case rpc_s_ok:
break;

case rpc_s_comm_failure:
retry_count -= 1;
break;

case rpc_s_network_unreachable:
h = some_other_handle;
break;

case
.
.
.

default:
retry_count -= 1;

}
}
while ((st == rpc_s_ok) || (retry_count <= 0))

If this is not a critical application, you may only report that the server is currently
unavailable. Depending upon the design of the application, there may be several
places to put the exception handler to report the failure but continue processing. For
example:

320 OSF® DCE Application Development Guide —Core Components

TRY
update_a_quote(...);

CATCH_ALL
display_message("Stock quote not currently available");

ENDTRY

This example assumes that update_a_quote() eventually calls the remote
operation query_stock_quote() and that this call may raise an exception that is
detected and reported here.

The advantage of using exceptions in this case is that all of the work done in
update_a_quote() has the same error recovery and it does not need to be
repeated at every call to a remote operation. Another advantage is that, if one of
the remote operations does have a recovery for one exception, it can handle that
one exception and allow the rest to propagate to the more general handler in an
outer layer of the code.

Context Handles

During a series of remote procedure calls, the client may need to refer to a context
maintained by a specific server instance. Server application code can maintain
information it needs for a particular client (such as the state of RPC the client is
using) as a context. To provide a client with a means of referring to its context, the
client and server pass back and forth an RPC-specific parameter called a context
handle. A context handle is a reference (a pointer) to the server instance and the
context of a particular client. A context handle ensures that subsequent remote
procedure calls from the client can reach the server instance that is maintaining
context for the client.

On completing the first procedure in a series, the server passes a context handle to
the client. The context handle identifies the context that the server uses for
subsequent operations. The client is not supposed to do anything with the context
handle; it merely passes it to subsequent calls as needed, and it is used internally
by the remote calls. This allows applications to have such things as remote calls
that handle file operations much as local calls would; that is, a client application can
remotely open a file, get back a handle to it, and then perform various other remote
operations on it, passing the context handle as an argument to the calls. A context
handle can be used across interfaces (where a single server offers the multiple
interfaces), but a context handle belongs only to the client that caused it to be
activated.

The server maintains the context for a client until the client calls a remote
procedure that terminates use of the context or communications are lost. In the
latter case, the server’s runtime can invoke a context rundown procedure. This
application-specific routine is called by the server stub automatically to reclaim
(rundown) the pointed-to resource in the event of a communications break between
the server and client. For example, in the case of the remote file pointer just
mentioned, the context rundown routine would simply close the file.

As usual with RPC, you need to apply indirection operators in a variety of ways to
maintain the correct [in] and [out] semantics. Typical declarations for a context
handle are as follows. In the .idl file, declare a named type such as

typedef [context_handle] void* my_handle_t;

Chapter 17. Topics in RPC Application Development 321

A manager routine that returns a context handle as an out parameter declares it as

my_handle_t *h;

The routine then sets the value of the handle as follows:

*h = &context_data;

A routine that refers to a context handle as an in parameter declares it as

my_handle_t h;

and dereferences the handle as follows:

context_data = (my_handle_t*)h;

For the in,out case, the routine uses the same declaration as in the out case, and
dereferences the handle as follows:

context_data = (my_handle_t*)*h;

The following extensive example shows a simple use of context handles. In the
sample code, the client requests a unit of storage from the server, using the
store_open() call, and receives a handle to the allocated storage. The
store_read() , store_write() , and store_set_ptr() routines allow the client to read
from and write to specific locations in the allocated storage. The store_close()
routine releases the server resources.

Context Handles in the Interface

The .idl file declarations for the store interface are as follows:
/*
* store.idl
* A sample interface that demonstrates server maintained context.
* The client requests temporary storage of a specified size,
* and the server returns a handle that can be used to read and
* write to storage. The interface doesn't care how the
* server implements the storage.
*/

[
uuid(0019b8c5-e8b5-1c84-9a41-0000c0d4de56),
pointer_default(ref),
version(1.0)
]
interface store
{

/* A context handle used to access remote storage: */
typedef [context_handle] void* store_handle_t;

/* A storage object name string: /
/* typedef [string] char* store_name_t; */

/* A buffer type for data: */
typedef byte store_buf_t[*];

/* Note that the context handle is an [out] parameter of the open */
/* routine, an [in, out] parameter of the close routine, and an */
/* [in] parameter of the other routines. If the context handle */
/* were treated as an [in] parameter of the close routine, the */

322 OSF® DCE Application Development Guide —Core Components

/* stubs would never learn that the context had been set to NULL, */
/* and would consider the context to still be live. This would */
/* result in the rundown routine's being called when the client */
/* terminated, even though there would be no context to run down. */

void store_open(
[in] handle_t binding,
[in] unsigned32 store_size,
[out] store_handle_t *store_h,
[out] error_status_t *status
);

void store_close(
[in,out] store_handle_t *store_h,
[out] error_status_t *status
);

void store_set_ptr(
[in] store_handle_t store_h,
[in] unsigned32 offset,
[out] error_status_t *status
);

void store_read(
[in] store_handle_t store_h,
[in] unsigned32 buf_size,
[out, size_is(buf_size), length_is(*data_size)] \
store_buf_t buffer,

[out] unsigned32 *data_size,
[out] error_status_t *status
);

void store_write(
[in] store_handle_t store_h,
[in] unsigned32 buf_size,
[in, size_is(buf_size)] store_buf_t buffer,
[out] unsigned32 *data_size,
[out] error_status_t *status
);

}

Context Handles in a Server Manager

Server manager code to provide a rudimentary implementation of the store
interface is as follows:

/* context_manager.c -- implementation of "store" interface. */
/* */
/* The server maintains a certain number of storage areas, only one of */
/* which can be (or should be) opened by a single client at a time. */
/* More than one client can, however, apparently be invoked (up to the */
/* number of separate storelets == store handles available, defined by */
/* the value of NUM_STORELETS). Each client keeps track of its store */
/* (and likewise enables the server to do the same) by means of the */
/* context handle it receives when it opens its store. */
/* */
/**/
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <pthread.h>
#include <dce/dce_error.h>
#include <dce/daclif.h>

Chapter 17. Topics in RPC Application Development 323

#include "context.h"

#define NUM_STORELETS 10

/**/
/* The actual "storelet" structure... */

typedef struct store_hdr{
pthread_mutex_t ref_lock;
unsigned32 size;
unsigned32 refcount;
idl_byte *storage;

} store_hdr_t;

store_hdr_t headers[NUM_STORELETS]; /* There's an array of these. */

/**/
/* The store specification structure; note that it is equivalent to the */
/* handle; the pointer to it is returned as the handle by the */
/* store_open() routine below... */
/* The assumption is that all access to a given handle is serialized */
/* in a single thread, so no locking is needed for these. */

typedef struct store_spec{
unsigned32 number; /* The storelet number we've opened. */
unsigned32 offset; /* The current read/write position. */

} store_spec_t; /* There's only one of these; it's the handle that */
/* gives access to one of the NUM_STORELETS set of */
/* "storelets". */

/* The server entry name: */
extern unsigned_char_p_t entry;

/* Initialization control block: */
pthread_once_t init_once_blk = pthread_once_init;
/******
*
* store_mgmt_init -- Zeroes out all the storelet structures; executed
* only once per server instance, as soon as a client
* has called the store_open() routine.
*
******/
/**/
void
store_mgmt_init(
)
{
int i;
store_hdr_t *hdr;

fprintf(stdout, "Store Manager: Initializing Store);
memset(headers, 0, sizeof(store_hdr_t) * NUM_STORELETS);
for (i = 0; i < NUM_STORELETS; i++)
{

hdr = headers + i;
pthread_mutex_init(
(pthread_mutex_t *)hdr,
pthread_mutexattr_default);
}

}

/******
*
* store_open -- Opens a store and returns a handle to it. Store consists

324 OSF® DCE Application Development Guide —Core Components

* of one "storelet" selected from array of NUM_STORELETS.
*
******/
/**/
void
store_open(
handle_t binding,
unsigned32 store_size, /* Size specified for actual storage. */
store_handle_t *store_h, /* To return the store handle in. */
error_status_t *status

)
{
int i; /* Index variable. */
store_spec_t *spec; /* Store specification == handle. */
store_hdr_t *hdr; /* Storelet structure. */

/* Do the store initialization if this is the first open call... */
/* Zero out the store headers... */
pthread_once(&init_once_blk, store_mgmt_init);
/* The following loop goes through all the storelets, looking for */
/* one whose reference count is zero. As soon as one such is */
/* found, a handle is allocated for it, storage is allocated for */
/* its store structure, and the loop (and the call) terminates. If */
/* no unreferenced storelet is found, a status of -1 is returned */
/* and no handle is allocated... */
for(i = 0; i < NUM_STORELETS; i++)
{

/* Go to the next storelet... */
hdr = headers + i;

/* Is it unreferenced?... */
if (hdr->refcount == 0)
{
/* If so, lock the header... */
*status = pthread_mutex_lock((pthread_mutex_t *)hdr);
if (*status != 0)
{

return;
}

/* ...and check the reference count again... */
if (hdr->refcount == 0)
{

/* Now we know we "really" have this one. */
/* Only one open is allowed, so lock only */
/* the reference count... */
hdr->refcount++;

/* Now unlock the header so other threads */
/* can continue to check it... */
*status = pthread_mutex_unlock((pthread_mutex_t *)hdr);
if (*status != 0)
return;

/* Now allocate space for the specifica- */
/* tion structure... */
spec = (store_spec_t *)malloc(sizeof(store_spec_t));
spec->number = i;
spec->offset = 0;
*store_h = spec;

/* Allocate space for the storage part of */
/* the header... */
hdr->storage = (idl_byte *)malloc(store_size);
hdr->size = store_size;

/* Finally, set the return status to OK, */
/* and return... */

Chapter 17. Topics in RPC Application Development 325

*status = error_status_ok;
return;
}

/* If the reference count turned out to have */
/* been accessed between our first check and our */
/* locking the mutex, we must now unlock the mutex */
/* preparatory to looping around to check the next */
/* storelet... */
*status = pthread_mutex_unlock((pthread_mutex_t *)hdr);
if (*status != 0)
{

return;
}

}
}

/* The following is reached only if we never found a free */
/* storelet... */
*store_h = NULL;
*status = -1;

}

/******
*
* store_set_ptr -- Insert a new value into the store buffer pointer.
*
*******/
/**/
void store_set_ptr(
store_handle_t store_h, /* The store handle. */
unsigned32 offset, /* Value to insert into store buffer pointer. */
error_status_t *status

)
{
store_spec_t *spec; /* Our pointer to store handle. */

spec = (store_spec_t *)store_h; /* Get the store spec. */
spec->offset = offset; /* Copy in the new buffer pointer value. */
*status = error_status_ok;

}
/******
*
* store_close -- Close the opened storelet.
*
******/
/**/
void
store_close(
store_handle_t *store_h, /* Store handle. */
error_status_t *status

)
{
store_spec_t *spec; /* Our pointer to store handle. */
store_hdr_t *hdr; /* Pointer to a storelet. */

printf("Store Manager: Closing Store);

spec = (store_spec_t *)*store_h; /* Get the store spec. */
hdr = headers + spec->number; /* Point to the correct storelet. */

/* If the thing is actually opened, close it... */
if (hdr->refcount > 0)
{

/* Lock the header first... */
*status = pthread_mutex_lock((pthread_mutex_t *)hdr);

326 OSF® DCE Application Development Guide —Core Components

if (*status != 0)
{
printf("Close: lock failed);
return;

}

/* Check the reference count to make sure no one slipped in */
/* before we could lock the header, and already closed the */
/* critter... */
if (hdr->refcount > 0)
{
/* The store is open, and it's locked by us, so we */
/* can safely close it. So do it. First, decrement */
/* the reference count... */
hdr->refcount--;

/* Is it completely closed now? */
if (hdr->refcount == 0)
{

/* If so, get rid of its storage space... */
hdr->size = 0;
free(hdr->storage);
}

}
/* If the store turned out to be closed before we could */
/* close it, we have nothing to do but release the lock... */
*status = pthread_mutex_unlock((pthread_mutex_t *)hdr);
if (*status != 0)
{
printf("Close: unlock failed);
return;

}
}

/* And free our handle space... */
free(spec);

/* Be sure to NULL the context handle. Otherwise, the context */
/* will be considered to be live as long as the client is run- */
/* ning... */
*store_h = NULL;
*status = error_status_ok;

}

/******
*
* store_read -- Read a certain number of bytes from the opened store.
*
******/
/**/
void
store_read(
store_handle_t store_h, /* Store handle. */
unsigned32 buf_size, /* Number of bytes to read. */
store_buf_t buffer, /* Space to return data read in. */
unsigned32 *data_size, /* To return number of bytes read in. */
error_status_t *status

)
{
store_spec_t *spec; /* Our handle pointer. */
store_hdr_t *hdr; /* Pointer to a storelet. */

spec = (store_spec_t *)store_h; /* Get the storelet spec. */
hdr = headers + spec->number; /* Point to the correct storelet. */

/* If the amount we're to read is less than the amount left to be */
/* read, then read it... */

Chapter 17. Topics in RPC Application Development 327

if (buf_size <= hdr->size)
{

/* Copy bytes from the storelet storage, beginning at off- */
/* set, into the return buffer, up to the size of the */
/* buffer... */
memcpy(buffer, hdr->storage + spec->offset, buf_size);

/* Update the storelet buffer pointer past what we've just */
/* read... */
spec->offset += buf_size;

/* Show return size of data read... */
*data_size = buf_size;
*status = error_status_ok;
return;
}

/* If there's less data left than has been specified to read, don't */
/* read it... */
*data_size = 0;
*status = -1;

}

/******
*
* store_write -- Write some data into the opened store.
*
******/

void
store_write(
/* handle_t IDL_handle,*/ /* If the server ACF declares */

/* [explicit_handle] */
store_handle_t store_h, /* Store handle. */
unsigned32 buf_size, /* Number of bytes to write. */
store_buf_t buffer, /* Data to be written. */
unsigned32 *data_size, /* To return number of bytes written. */
error_status_t *status

)
{
store_spec_t *spec; /* Our pointer to store handle. */
store_hdr_t *hdr; /* Pointer to a storelet. */

/* Do an access check on IDL_handle here... */
/* [--ORIGINAL NOTE] -- I don't know what the above means. */

spec = (store_spec_t *)store_h; /* Get the storelet spec. */
hdr = headers + spec->number; /* Point to the correct storelet. */

/* If the amount of unused room left in the storelet is greater */
/* than what we're supposed to write in it, write it... */
if ((hdr->size - spec->offset) > buf_size)
{

/* Copy bytes from the buffer into the storelet storage, */
/* beginning at the current read/write position... */
memcpy(hdr->storage + spec->offset, buffer, buf_size);

/* Update the storelet buffer pointer to point past what */
/* we've just written... */
spec->offset += buf_size;

/* Add a null in case we want to read the store as a */
/* string... */
*(hdr->storage + spec->offset) = 0;

328 OSF® DCE Application Development Guide —Core Components

/* Show return size of data written... */
*data_size = buf_size;
*status = error_status_ok;
return;
}

/* If we don't have room to write the whole buffer, don't write */
/* anything... */
*data_size = 0;
*status = error_status_ok;

}

/******
*
* print_manager_error-- Manager version. Prints text associated with
* bad status code.
*
*
******/

void
print_manager_error(
char *caller, /* String identifying routine that received the error. */
error_status_t status) /* status we want to print the message for. */
{
dce_error_string_t error_string;
int print_status;

dce_error_inq_text(status, error_string, &print_status);
fprintf(stderr," Manager: %s: %s, caller, error_string);

}

The sample implementation of the store interface is obviously too limited for any
practical use, but it does demonstrate the application of context handles in a
straightforward way. A context handle returned by the store_open() routine is
opaque to the client. To the server, it is a pointer to the server’s representation of a
storage unit. In this case, it points to a structure that keeps track of the client’s
current location within a specific piece of server-maintained storage.

Aside from deallocating the actual storage, the store_close() routine sets the
context handle to NULL. The NULL value indicates to the server stub that the
context is no longer active, and the stub, in turn, tells the RPC runtime not to
maintain the context. For example, after the store_close() routine has been
invoked, the rundown routine will not be invoked if communication ends between
client and server. The context rundown routine takes care of closing the client’s
storage in case of a communication failure while the context is active.

The global array of store_hdr structures that keeps track of allocated storage,
obviously servers no practical purpose in the example. (Presumably the operating
system is already doing this!) However, it does provide a demonstration of the fact
that global server manager data is shared data in the implicitly multithreaded server
environment. The routines that manipulate this shared data may be called
simultaneously by multiple server threads (in response to multiple simultaneous
client calls); therefore, locking must be provided, in this case on the refcount field.
The sample also demonstrates how the pthread_once() facility can be used to
provide one-time initialization of the shared data on the first store_open() call.

As an exercise, the storage interface can easily be made more interesting by
providing multiple clients simultaneous access to a given storage area. To
implement this, the application could add a store_name parameter to the
store_open() routine and replace the refcount field with counts of readers and

Chapter 17. Topics in RPC Application Development 329

writers. The division of the storage management between the store_hdr and the
store_spec data structures is intended to facilitate this; the store_hdr holds shared
state relating to each store, while the store_spec holds each thread’s private state.

Context Rundown

Context handles typically point to some state maintained by a server instance for a
client over a series of RPC operations. If the series of operations fails to complete
because communication is lost between client and server, the server will probably
have to take some kind of recovery action such as restoring data to a consistent
state and freeing resources.

The stub detects outstanding context when it marshals context handle parameters.
Outstanding context is considered to exist from the point at which a non-NULL
pointer value is returned, until a NULL pointer value is returned. When outstanding
context exists, the server stub code will call a context rundown routine in response
to certain exceptions that indicate a loss of contact with the client. You should note
that the exact timing of the call depends on the transport. In particular, with the
connectionless protocol, servers that maintain context for clients expect clients to
indicate periodically that they are still running. If the server fails to hear from the
client during a specified timeout period, the server will assume that the client has
stopped and call the context rundown routine. This can mean a substantial delay
between the time the client actually fails and the time at which context maintained
for the client is actually cleaned up. If the context being held represents a scarce
resource on the server, one consequence of the delayed rundown may be that
failed calls continue to hold the scarce resource for some time before it is made
available again.

Since a context handle may be freely shared among threads of the calling client
context, it is possible for outstanding context to exist for more than one call
simultaneously. Such shared context is considered to be outstanding as long as it is
outstanding for any of the participating threads. Also, any communications failures
are likely to be detected at different times for each such call thread, and the
difference in timing may be especially noticeable in the case of the connectionless
protocol. Context rundown occurs only after all server call threads have been
terminated. This means that call operations in progress on the server need not be
concerned that the context they are operating on will be changed unexpectedly.
Imagine a situation in which context handles represent open file descriptors, and
the rundown routine closes the files. A manager thread that shares these
descriptors via a context handle is guaranteed that the files will remain open even if
a communications failure is detected in another thread that also is using the same
context handle.
/******
*
* store_handle_t_rundown -- Closes the opened storelet.
*
******/
/**/
void
store_handle_t_rundown(
store_handle_t store_h

)
{
error_status_t st;

printf("Store Manager: Running down context.");
store_close(&store_h, &st);

}

330 OSF® DCE Application Development Guide —Core Components

Binding and Security Information

One element that is clearly missing from the context handle sample code is any
access checking. To do this, it is necessary to get the client binding, although it may
not be immediately obvious how to do this with a context handle. The answer is
actually quite simple but, to understand it, it helps to have a clear idea of how
binding parameters operate in RPC.

Every call requires binding information, whether this is supplied explicitly as a
binding parameter or not. When a call is made with a binding handle, the client
uses cached binding information associated with the binding handle. When no
binding handle parameter is passed, the client derives the binding information it
needs by some other means. For example, with a context handle, the client uses
cached binding information associated with the context handle.

Even when an explicit binding handle parameter is present, the handle is not
marshalled as call data in the same way other call parameters are. Similarly, on the
server side, when a binding handle parameter is present in a manager operation, it
is unmarshalled simply as a reference to the binding information cached by the
server runtime for the call. It is irrelevant whether the call was made with an explicit
binding handle parameter on the client side.

Therefore, it is perfectly possible for a server manager operation to have a binding
handle as a parameter even when the client RPC call is made without an explicit
binding parameter.

The mechanics of this are to use different .acf declarations on the client and server
sides. The .idl file declaration for the operation does not declare an explicit binding
handle parameter, but the server .acf file applies the [explicit_handle] attribute to
the operation. This results in a server stub that expects to unmarshal a binding
handle as the first parameter of the operation, while the client stub does not expect
an explicit binding handle parameter for the call.

An example of a server-side .acf file for the store interface is as follows:

/* store.acf - server side
* Unmarshal a client binding handle on each call
*/

interface store
{
store_open();
[explicit_handle]store_close();
[explicit_handle]store_set_ptr();
[explicit_handle]store_read();
[explicit_handle]store_write();

}

You could achieve the same effect by using different .idl files for the client and
server, but this is not recommended. The .idl file serves as the canonical
representation of an interface and hence should be the same for all clients and
servers.

This technique can be used in a number of ways; for example, to permit the client
to use implicit binding while the server manager operations extract authorization
information from a client binding handle. In the case of a context handle, the
principle is the same. You use the server .acf declarations to add a binding

Chapter 17. Topics in RPC Application Development 331

parameter to the call on the server side. The client continues to call using the
context handle, while the server manager receives the client binding as a first extra
parameter.

In the case of the sample code, the client calls to the store interface remain the
same, but the server manager implementations now contain an extra parameter.
For example:
void
store_write(
handle_t IDL_handle,
store_handle_t store_h,
unsigned32 buf_size,
store_buf_t buffer,
unsigned32 *data_size,
error_status_t *status

)
{
store_spec_t *spec;
store_hdr_t *hdr;

if (check_access(IDL_handle, sec_acl_perm_write) == 0)
{
*status = str_s_no_perms;
return;

}
.
.
.

}

Pipes

Pipes are a mechanism for efficiently handling large quantities of data by
overlapping the transfer and processing of data. Input data is transferred in chunks
to the server for processing, and output data is processed by the server in chunks
and transferred to the client. A pipe is declared in a type definition of an interface
definition, and the data type is used as parameters in the operations of the
interface. The server manager calls stub pipe support routines in a loop, and the
client stub calls pipe support routines that the client application must provide.

One of the pipe support routines that the client must provide is an alloc routine,
which allocates a buffer for each chunk of pipe data. Given that pipes are intended
to process data asynchronously, consuming it as it arrives, the alloc routine should
not just blindly allocate a new buffer each time it is called, since the net effect would
be to allocate space for the whole stream. A reasonable approach is either to
declare a buffer statically or allocate it on the first call (per thread), and thereafter
simply return the same buffer. The following code example shows the form an alloc
routine takes in client application code.

#define CLIENT_BUFFER_SIZE 2048
idl_byte client_buffer[CLIENT_BUFFER_SIZE];

void client_alloc (state, bsize, buf, bcount)
rpc_ss_pipe_state_t state;
unsigned int bsize;
byte **buf;
unsigned int *bcount;

332 OSF® DCE Application Development Guide —Core Components

{
*buf = client_buffer;
*bcount = CLIENT_BUFFER_SIZE;

}

Input Pipes

In the following example, a client sends the contents of a file to a server as a set of
chunks allocated from the same static buffer. The chunks are processed (in this
case simply printed) as they arrive.

The declaration in the interface definition is as follows:

typedef pipe char test_pipe_t;

void pipe_test1(
[in] handle_t handle,
[in] test_pipe_t test_pipe,
[out] error_status_t *status

);

Note that the pipe is declared as a typedef , resulting in an IDL-generated C typedef
for test_pipe_t , which is a structure containing pointers to the pipe support routines
and a pipe state field. The server manager and client code then implement the pipe
in a complementary fashion.

For an [in] pipe, the server manager code consists of a cycle of calls to the
test_pipe.pull routine (a server stub routine) which terminates when a zero-length
chunk is received:

void
pipe_test1(
handle_t binding_h,
test_pipe_t test_pipe,
error_status_t *status

)
{
char buffer[SBUFFSIZE];
int count;
char *cptr;
do
{
(*(test_pipe.pull))(test_pipe.state, buffer, \

SBUFFSIZE, &count);
for (cptr = buffer; cptr < buffer + count; cptr++)
putchar(*cptr);

} while (count > 0);
}

Using the buffer supplied by the manager, the test_pipe.pull routine unmarshals an
amount of data that is nonzero, but not more than the buffer can hold. There is no
guarantee that the buffer will be filled. The actual amount of data in the buffer is
indicated by the count parameter returned in the test_pipe.pull routine. This count
equals the number of test_pipe_t data elements in the buffer.

The test_pipe.pull routine signals the end of data in the pipe by returning a chunk
whose count is 0 (zero). Any attempt to pull data from the pipe after the zero-length
chunk has been encountered will cause an exception to be raised. The in pipes
must be processed in the order in which they occur in the operation signature.
Attempting to pull data from an in pipe before end-of-data on any preceding in pipe

Chapter 17. Topics in RPC Application Development 333

has been encountered will result in an exception being raised. If the manager code
attempts to write to an out pipe or return control to the server stub before
end-of-data has been encountered on the last in pipe, an exception will be raised.
(Note that there is no guarantee that chunks seen by the manager will match the
chunks supplied by the client’s pull routine.)

The client application code must supply pull and alloc routines and a pipe state.
These routines must work together to produce a sequence of pointers to chunks, of
which only the last is empty. In the following example, the client code provides a
test_pipe.pull routine that reads chunks of the input file into a buffer and returns a
count of the chunk size, returning a zero count when the end of the file is reached.
The pipe state block is used here simply as a convenient way to make the file state
available to the pull routine. Applications need not make any use of the pipe state.

/* Client declares types and routines */

typedef struct client_pipe_state_t {
idl_char *filename;
idl_boolean file_open;
int file_handle;

} client_pipe_state_t;

client_pipe_state_t client_in_pipe_state = {false, 0};

void client_pull(state,buf,esize,ecount)
client_pipe_state_t * state;
byte *buf;
unsigned int esize;
unsigned int *ecount;

{
if (! state->file_open)
{
state->file_handle = open(state->filename,O_RDONLY);
if (state->file_handle == -1)
{
printf("Client couldn't open %s", state->filename);
exit(0);

}
state->file_open = true;

}
*ecount = read(state->file_handle, buf, esize);
if (*ecount == 0)
{
close(state->file_handle);
state->file_open = false;

}
}

Finally, the client must do the following:

1. Allocate the test_pipe_t structure.

2. Initialize the test_pipe_t.pull , test_pipe_t.alloc , and test_pipe_t.state fields.

3. Include code where appropriate for checking the pipe_t.state field.

4. Pass the structure as the pipe parameter. The structure can be passed either by
value or by reference, as indicated by the signature of the operation that
contains the pipe parameter:

/* Client initializes pipe */
test_pipe_t test_pipe;

test_pipe.pull = client_pull;
test_pipe.alloc = client_alloc;

334 OSF® DCE Application Development Guide —Core Components

test_pipe.state = (rpc_ss_pipe_state_t)&client_in_pipe_state;

/* Client makes call */

pipe_test1(binding_h, test_pipe, &status);

To transmit a large amount of data that is already in the proper form in memory
(that is, the data is already an array of test_pipe_t), the client application code can
have the alloc routine allocate a buffer that already has the information in it. In this
case, the pull routine becomes a null routine.

Output Pipes

An [out] pipe is implemented in a similar way to an input pipe, except that the client
and server make use of the push routine instead of the pull routine. The following
samples show an [out] pipe used to read the output from a shell command
executed by the server.

The declarations in the interface definition are as follows:

typedef pipe char test_pipe_t;

void pipe_test2(
[in] handle_t handle,
[in, string] char cmd[],
[out] test_pipe_t *test_pipe,
[out] error_status_t *status

);

The server manager routines demonstrate a couple of possible implementations. In
each case, the manager makes a cycle of calls to the server stub’s push routine,
ending by pushing a zero-length chunk:

#include <dirent.h>
#define SBUFFSIZE 256

void
pipe_test2(
handle_t binding_h,
idl_char *cmd,
test_pipe_t *test_pipe,
error_status_t *status

)
{

DIR *dir_ptr;
struct dirent *directory;

char buffer[SBUFFSIZE];
FILE *str_ptr;
int n;

/* An elementary mechanism to execute a command and get
* the output back. Note that popen() and fread() are
* thread-safe, so the whole process won't block while
* the call thread waits for them to return.
*
* This is potentially a dangerous operation!
* Here we'll only allow a couple of "safe" commands.
*/

if (!strcmp(cmd, "ps") || !strcmp(cmd, "ls"))

Chapter 17. Topics in RPC Application Development 335

{
if ((str_ptr = popen(cmd, "r")) == NULL)
return;

while ((n = fread(buffer, sizeof(char), \
SBUFFSIZE, str_ptr)) > 0)

{
(*(test_pipe->push))(test_pipe->state, buffer, n);

}
(*(test_pipe->push))(test_pipe->state, buffer, 0);
fclose(str_ptr);

}

/* Here's another method: list an arbitrary directory
* This time, we buffer the directory names as null-
* terminated strings of various lengths. The client
* will need to provide formatting of the output stream,
* for example, by substituting a CR for each NULL byte.
*/

/*
if ((dir_ptr = opendir(cmd)) == NULL)
{
printf("Can't open directory %s, cmd);
return;

}
while ((directory = readdir(dir_ptr)) != NULL)
{
if (directory->d_ino == 0)
continue;

(*(test_pipe->push))(test_pipe->state, \
directory->d_name,

strlen(directory->d_name)+1);
}
(*(test_pipe->push))(test_pipe->state, \
directory->d_name, 0);

closedir(dir_ptr);
*/

*status = error_status_ok;
}

The stub enforces well-behaved pipe filling by the manager by raising exceptions as
necessary. After all in pipes have been drained completely, the out pipes must be
completely filled, in order.

The client code uses the same declarations as in the input pipe example, except
that instead of using a client_pull routine it uses a test_push routine that prints out
the contents of each received buffer:

/*
* Our push routine prints each received buffer-full.
*/

void test_push(
rpc_ss_pipe_state_t *state,
idl_char *buf,
unsigned32 count

)
{
unsigned_char_t *cptr;
for (cptr = buf; cptr < buf + count; cptr++)
{
/* For the second, directory reading example,
uncomment the following:

if (*cptr == 0)
*cptr = ';

336 OSF® DCE Application Development Guide —Core Components

*/
putchar(*cptr);

}
}

For an out pipe, the client code must do the following:

1. Allocate the test_pipe_t structure.

2. Initialize the test_pipe_t.push and test_pipe_t.state fields.

3. Pass the structure as the pipe parameter, either by value or by reference.

test_pipe_t test_pipe;

test_pipe.alloc = (void (*)())client_alloc;
test_pipe.push = (void (*)())test_push;
test_pipe.state = (rpc_ss_pipe_state_t)&out_test_pipe_state;

pipe_test2(binding_h, cmd, &test_pipe, &status);

The client stub unmarshals chunks of the pipe into a buffer and calls back to the
application, passing a reference to the buffer. To allow the application code to
manage its memory usage, and possibly avoid unnecessary copying, the client stub
first calls back to the application’s test_pipe.alloc routine to get a buffer. In some
cases, this may result in the test_pipe.push routine’s not having any work to do.

The client stub may go through more than one (test_pipe.alloc , test_pipe.push)
cycle in order to unmarshal data that the server marshalled as a single chunk. Note
that there is no guarantee that chunks seen by the client stub will match the chunks
supplied by the server’s push routine.

Pipe Summary

The pipe examples show how the client and server tasks are complementary. The
client implements the appropriate callback routines (test_pipe.alloc and either
test_pipe.push or test_pipe.pull), and the server manager makes a cycle of calls
to either test_pipe.push or test_pipe.pull of the stub. The application code gives
the illusion that the server manager is calling the client-supplied callbacks. In fact,
the manager is actually calling stub-supplied callbacks, and the client callbacks are
asynchronous: a server manager call to one of the callback routines does not
necessarily result in a call to the corresponding client callback.

One result of this is that the client and server should not count on the chunk sizes
being the same at each end. For example, in the last directory reading example, the
manager calls the test_pipe.push routine once with each NULL-terminated
filename. However, the client test_push routine does not necessarily receive the
data stream one filename at at time. For example, if the test_push routine
attempted to print the filenames using printf(″%s\n″,buf); , it might fail. An
interesting exercise would be to add printf() routines to the client callbacks and the
server manager to show when each callback is made.

Note also that the use of the pipe state field by the client is purely local and entirely
at the discretion of the client. The state is not marshalled between client and server,
and the server stubs use the local state field in a private manner. The server
manager should not alter the state field.

Pipes may also be [in,out] , although the utility of this construct is somewhat limited.
Ideally, a client would like to be able to pass a stream of data to the server and

Chapter 17. Topics in RPC Application Development 337

have it processed and returned asynchronously. In practice, the input and output
streams must be processed synchronously; that is, all input processing must be
finished before any output processing can be done. This means that [in, out] pipes,
while they can reduce latency within both the server and the client, cannot reduce
latency between server and client; the client must still wait for all server processing
to finish before it can begin to process the returned data stream.

For an in,out pipe, both the pull routine (for the in direction) and a push routine
(for the out direction) must be initialized, as well as the alloc routine and the state.
During the last pull call (when it will return a zero count to indicate that the pipe is
drained), the application’s pull routine must reinitialize the pipe state so that the
pipe can be used by the push routine correctly.

Nested Calls and Callbacks

A called remote procedure can call another remote procedure. The call to the
second remote procedure is nested within the first call; that is, the second call is a
nested remote procedure call. A nested call involves the following general phases,
as illustrated in Figure 51:

1. A client makes an initial remote procedure call to the first remote procedure.

2. The first remote procedure makes a nested call to the second remote
procedure.

3. The second remote procedure executes the nested call and returns it to the first
remote procedure.

4. The first remote procedure then resumes executing the initial call.

A specialized form of a nested remote procedure call involves a called remote
procedure that is making a remote procedure call (callback) to the address space of
the calling client application thread. Calling the client’s address space requires that
a server application thread be listening in that address space. Also, the second
remote procedure needs a server binding handle for the address space of the
calling client.

The remote procedure can ask the local RPC runtime to convert the client binding
handle, provided by the server runtime, into a server binding handle. This is done
by calling the rpc_binding_server_from_client() routine. This routine returns a
partially bound binding handle (the server binding information lacks an endpoint).
For a nested remote procedure call to find the address space of the calling client,
the application must ensure that the partially bound binding handle is filled in with
the endpoint of that address space. The the
rpc_binding_server_from_client(3rpc) reference page discusses alternatives for
ensuring that the endpoint is obtainable for a nested remote procedure call.

Calling
code

Call thread

Call thread

RPC thread

Client application thread
Client First server Second server

Second
remote
procedure

remote
procedure

(acting as a client)
3

4

21

Nested RPC thread

Figure 51. Phases of a Nested RPC Call

338 OSF® DCE Application Development Guide —Core Components

Using the server binding handle, a remote procedure can attempt a nested remote
procedure call. The nested call involves the general phases illustrated by Figure 52.

The application threads in the preceding figure are performing the following
activities:

1. A client application thread from a multithreaded RPC application makes an initial
remote procedure call to the first remote procedure.

2. After converting the client binding handle into a server binding handle and
obtaining the endpoint for the address space of the calling client application
thread, the first remote procedure makes a nested call to the second remote
procedure at that address space.

3. The second remote procedure executes the nested call and returns it to the first
remote procedure.

4. The first remote procedure then resumes executing the initial call (the client).

Routing Remote Procedure Calls

The following section discusses routing incoming remote procedure calls between
their arrival at a server’s system and the server’s invocation of the requested
remote procedure. The following routing steps are discussed:

1. If a client has a partially bound server binding handle, before sending a call
request to a server, the client runtime must get the endpoint of a compatible
server from the endpoint mapper service of the server’s system. This endpoint
becomes the server address for a call request.

2. When the request arrives at the endpoint, the server’s system places it in a
request buffer belonging to the corresponding server.

Calling
code

First
remote
procedure

Remote ServerClient application thread

Second
remote
procedure

Call thread
acting as
a client

}
Single address space

The server application
thread (listening)

Call thread

RPC thread

1

2

3

4

Nested RPC thread

Multithreaded RPC application

Figure 52. Phases of a Nested RPC Call to Client Address Space

Chapter 17. Topics in RPC Application Development 339

3. As one of its scheduled tasks, the server gets the incoming calls from the
request buffer. The server either accepts or rejects an incoming call, depending
on available resources. If no call thread is available, an accepted call is queued
to wait its turn for an available call thread.

4. The server then allocates an available call thread to the call.

5. The server identifies the appropriate manager for the called remote procedure
and invokes the procedure in that manager to execute the call.

6. When the call thread finishes executing a call, the server returns the call’s
output arguments and control to the client.

Figure 53 illustrates these steps.

The concepts in the following subsections are for the advanced RPC developer.
The first subsection discusses how clients obtain endpoints when using partially
bound binding handles. Then we discuss how a system buffers call requests and
how a server queues incoming calls; this information is relevant mainly to advanced
RPC developers. The final subsection discusses how a server selects the manager
to execute a call; it is relevant for developing an application that implements an
interface for different types of RPC objects.

Obtaining an Endpoint

The endpoint mapper service of dced maintains the local endpoint map. The
endpoint map is composed of elements which contain fully bound server binding
information for a potential binding and an associated interface identifier and object
UUID (which may be nil). Optionally, a map element can also contain an annotation
such as the interface name.

DCE Daemon

Endpoint Map

Interface ID Object UUID Prot. seq. Ept.
ncacn_ip_tcp

ncadg_ip_udp

1025

2001

...

...

...

Step 1

Step 2

Step 4

Step 6

Server process

Call
thread

1025

2001

Endpoint

Endpoint

Request buffer

Request buffer

Returned
call

Incoming
call

Step 3

Call queue

Select
manager
for call

Step 5

Key:
= remote procedure call

Figure 53. Steps in Routing Remote Procedure Calls

340 OSF® DCE Application Development Guide —Core Components

Servers use the local endpoint mapper service to register their binding information.
Each interface for which a server must register binding information requires a
separate call to an rpc_ep_register...() routine, which calls the endpoint map
service. The endpoint map service uses a new map element for every combination
of binding information specified by the server. Figure 54 shows the correspondence
between server binding information specified by a server and a graphic
representation of the resulting endpoint map elements.

A remote procedure call made with server binding information that lacks an
endpoint uses an endpoint from the endpoint map service. This endpoint must
come from binding information of a compatible server. The map element of a
compatible server contains the following:

v A compatible interface identifier

The requested interface UUID and compatible version numbers are necessary.
For the version to be compatible, the major version number requested by the

Server's Inputs to Endpoint-Register Operation

interface-handle Interface ID:

Server addresses:

Object UUIDs:

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0

ncacn_ip_tcp:16.20.15.25[1025]
ncadg_ip_udp:16.20.15.25[2001]

47F40D10-E2E0-11C9-BB29-08002B0F4528
30DBEEA0-FB6C-11C9-8EEA-08002B0F4528
16977538-E257-11C9-8DC0-08002B0F4528

binding-handle-list*

object-UUID-list

Binding handles also enable the endpoint map service to learn the server's RPC protocol
version and transfer syntaxes; this information is identical for every map element, however,
and is ignored here to simplify the following representation of endpoint map elements.
For the same reason, the network address of the server's host system is omitted from this
representation of map elements.

*

Corresponding Representation of Endpoint Map Elements

Interface ID Object UUID

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0
47F40D10-E2E0-11C9-BB29-08002B0F4528

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0
47F40D10-E2E0-11C9-BB29-08002B0F4528

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0
16977538-E257-11C9-8DC0-08002B0F4528

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0
16977538-E257-11C9-8DC0-08002B0F4528

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0
30DBEEA0-FB6C-11C9-8EEA-08002B0F4528

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0
30DBEEA0-FB6C-11C9-8EEA-08002B0F4528

Prot. seq.

ncacn_ip_tcp

ncadg_ip_udp

ncacn_ip_tcp

ncadg_ip_udp

ncacn_ip_tcp

ncadg_ip_udp

Ept.

1025

2001

1025

2001

1025

2001

Figure 54. Mapping Information and Corresponding Endpoint Map Elements

Chapter 17. Topics in RPC Application Development 341

client and registered by the server must be identical, and the requested minor
version number must be less than or equal to the registered minor version
number.

v The requested object UUID, if registered for the interface

v A server binding handle that refers to compatible binding information that
contains the following:

– A protocol sequence from the client’s server binding information

– The same RPC protocol major version number that the client runtime supports

– At least one transfer syntax that matches one used by the client’s system

To identify the endpoint of a compatible server, the endpoint service uses the
following rules:

1. If the client requests a nonnil object UUID, the endpoint map service begins by
looking for a map element that contains both the requested interface UUID and
object UUID.

a. On finding an element containing both of the UUIDs, the endpoint map
service selects the endpoint from that element for the server binding
information used by the client.

b. If no element contains both UUIDs, the endpoint map service discards the
object UUID and starts over (see rule 2).

2. If the client requests the nil object UUID (or if the requested nonnil object UUID
is not registered), the endpoint map service looks for an element containing the
requested interface UUID and the nil object UUID.

a. On finding that element, the endpoint map service selects the endpoint from
the element for the client’s server binding information.

b. If no such element exists, the lookup fails.

The RPC protocol service inserts the endpoint of the compatible server into the
client’s server binding information.

Figure 55 on page 343 illustrates the decisions the endpoint map service makes
when looking up an endpoint for a client.

342 OSF® DCE Application Development Guide —Core Components

You can design a server to allow the coexistence on a host system of multiple
interchangeable instances of a server. Interchangeable server instances are
identical, except for their endpoints; that is, they offer the same RPC interfaces and
objects over the same network (host) address and protocol sequence pairs. For
clients, identical server instances are fully interchangeable.

Usually, for each such combination of mapping information, the endpoint map
service stores only one endpoint at a time. When a server registers a new endpoint
for mapping information that is already registered, the endpoint map service
replaces the old map element with the new one.

For interchangeable server instances to register their endpoints in the local endpoint
map, they must instruct the endpoint map service not to replace any existing
elements for the same interface identifier and object UUID. Each server instance
can create new map elements for itself by calling the
rpc_ep_register_no_replace() routine.

When a client uses a partially bound binding handle, load sharing among
interchangeable server instances depends on the RPC protocol the client is using.

v Connectionless (datagram) protocol

The map service selects the first map element with compatible server binding
information. If necessary, a client can achieve a random selection among all the
map elements with compatible binding information. However, this requires that,

Interface
UUID

(with
nil object

UUID)
?

registered

Other

?

mapping
information
compatible

Call
asking for

?

non-nil
Object
UUID

Non-nil
Object UUID

and Interface UUID

?

registered
togetherNo

No

No

No

Yes

Yes

Yes

Insert
endpoint into
server binding
information.

Endpoint
lookup

.fails

Yes

Figure 55. Decisions for Looking Up an Endpoint

Chapter 17. Topics in RPC Application Development 343

before making a remote procedure call, the client needs to resolve the binding by
calling the rpc_ep_resolve_binding() routine.

v Connection-oriented protocol

The client RPC runtime uses the rpc_ep_resolve_binding() routine, and the
endpoint map service selects randomly among all the map elements of
compatible servers.

For an alternative selection criteria, a client can call the
rpc_mgmt_ep_elt_inq_ {begin ,next ,done }() routines and use an
application-specific routine to select from among the binding handles returned to the
client.

When a server stops running, its map elements become outdated. Although the
endpoint map service routinely removes any map element containing an outdated
endpoint, a lag time exists when stale entries remain. If a remote procedure call
uses an endpoint from an outdated map element, the call fails to find a server. To
avoid clients getting stale data from the endpoint map, before a server stops, it
should remove its own map elements.

A server also has the option of removing any of its own elements from the local
endpoint map and continuing to run. In this case, an unregistered endpoint remains
accessible to clients that know it.

Buffering Call Requests

Call requests for RPC servers come into the RPC runtime over the network. For
each endpoint that a server registers (for a given protocol sequence), the runtime
sets up a separate request buffer. A request buffer is a first-in, first-out queue where
an RPC system temporarily stores call requests that arrive at an endpoint of an
RPC server. The request buffers allow the runtime to continue to accept requests
during heavy activity. However, a request buffer may fill up temporarily, causing the
system to reject incoming requests until the server fetches the next request from
the buffer. In this case, the calling client can try again, with the same server or a
different server. The client does not know why the call is rejected, nor does the
client know when a server is available again.

Each server process regularly dequeues requests, one by one, from all of its
request buffers. At this point, the server process recognizes them as incoming calls.
The interval for removing requests from the buffers depends on the activities of the
system and of the server process.

How the runtime handles a given request depends partly on the communications
protocol over which it arrives, as follows:

v A call over a connectionless transport is routed by the server’s system to the call
request buffer for the endpoint specified in the call.

v A call over a connection-oriented transport may be routed by the server’s system
to a request buffer or the call may go directly to the server process.

Whether a remote procedure call goes to the request buffer depends on whether
the client sends the call over an established connection. If a client makes a
remote procedure call without an established connection, the server’s system
treats the call request as a connection request and places the call request into a
request buffer. If an established connection is available, the client uses it for the
remote procedure call; the system handles the call as an incoming call and
sends it directly to the server process that owns the connection.

344 OSF® DCE Application Development Guide —Core Components

Whether a server gets an incoming call from a request buffer or over an existing
connection, the server process manages the call identically. A server process
applies a clear set of call-routing criteria to decide whether to dispatch a call
immediately, queue it, or reject it (if the server is extremely busy). These call-routing
criteria are discussed in “Queuing Incoming Calls”.

When telling the RPC runtime to use a protocol sequence, a server specifies the
number of calls it can buffer for the specified communications protocol (at a given
endpoint). Usually, it is best for a server to specify a default buffer size, represented
by a literal whose underlying value depends on the communications protocol. The
default equals the capacity of a single socket used for the protocol by the server’s
system.

The default usually is adequate to allow the RPC runtime to accept all the incoming
call requests. For a well-known endpoint, the size of a request buffer cannot exceed
the capacity of a single socket descriptor (the default size); specifying a higher
number causes a runtime error. For well-known endpoints, specify the default for
the maximum number of call requests.

For example, consider the request buffer at full capacity as represented in
Figure 56. This buffer has the capacity to store five requests. In this example, the
buffer is full, and the runtime rejects incoming requests, as is happening to the sixth
request.

Queuing Incoming Calls

Each server process uses a first-in, first-out call queue. When the server is already
executing its maximum number of concurrent calls, it uses the queue to hold
incoming calls. The capacity of queues for incoming calls is implementation
dependent; most implementations offer a small queue capacity, which may be a
multiple of the maximum number of concurrently executing calls.

A call is rejected if the call queue is full. The appearance of the rejected call
depends on the RPC protocol the call is using, as follows:

v Connectionless (datagram) protocol

The server does not notify the client about this failure. The call fails as if the
server does not exist, returning an rpc_s_comm_failure communications status
code (rpc_x_comm_failure exception).

v Connection-oriented protocol

System

Request buffer --
call request maximum = 5

6 5 4 3 2 1

Rejected
request

(connection
refused;

datagram
timed out)

Figure 56. A Request Buffer at Full Capacity

Chapter 17. Topics in RPC Application Development 345

The server rejects the call with an rpc_s_server_too_busy communications
status code (rpc_x_server_too_busy exception).

The server process routes each incoming call as it arrives. Call routing is illustrated
by the server in Figure 57. This server has the capacity to execute only one call
concurrently. Its call queue has a capacity of eight calls. This figure consists of four
stages (A through D) of call routing by a server process. On receiving any incoming
call, the server begins by looking at the call queue.

The activities of the four stages in the preceding figure are described as follows:

1. In stage A, call 1 arrives at a server that lacks any other calls. When the call
arrives, the queue is empty and a call thread is available. The server accepts
the call and immediately passes it to a call thread. The requested remote
procedure executes the call in that thread, which becomes temporarily
unavailable.

Server processA.

Server process

Call queue--
capacity = 8

Call thread--
concurrent calls
maximum = 1

1 No available
call thread 2

3

4

5

6

7

8

9

C.

queue
full

Incoming
call

11

Rejected
call

10 (Server
too busy)

B. Server process

Call thread--
concurrent calls
maximum = 1

1 No available
call thread

5

Incoming
call

Call
queue

2

3

4

queue
NOT full

Call thread Call
queue

Call thread Call
queueAvailable

call thread queue
empty

Incoming
call

1

Incoming
call

3

4

5

6

7

8

9

12

1

Server processD.

queue
NOT full

Available
call thread 2

Returned
arguments

Figure 57. Stages of Call Routing by a Server Process

346 OSF® DCE Application Development Guide —Core Components

2. In stage B, call 5 arrives. The call queue is partially full, so the server accepts
the call and adds it to the end of the queue.

3. In stage C, call 11 arrives. The queue is full, so the server rejects this call, as it
rejected the previous call, 10. (The caller can try again with the same or a
different server.)

4. In stage D, the called procedure has completed call 1, making the call thread
available. The server has removed call 2 from the queue and is passing it to the
call thread for execution. Thus, the queue is partially empty as call 12 arrives,
so the server accepts the call and adds it to the queue.

Selecting a Manager

2Unless an RPC interface is implemented for more than one specific type of object,
selecting a manager for an incoming call is a simple process. When registering an
interface with a single manager, the server specifies the nil type UUID for the
manager type. In the absence of any other manager, all calls, regardless of whether
they request an object, go to the nil type manager.

The situation is more complex when a server registers multiple managers for an
interface. The server runtime must select from among the managers for each
incoming call to the interface. The DCE RPC dispatching mechanism requires a
server to set a nonnil type UUID for a set of objects and for any interface that will
access the objects in order to register a manager with the same type UUID.

To dispatch an incoming call to a manager, a server does the following:

1. If the call contains the nil object UUID, the server looks for a manager
registered with the nil type UUID (the nil type manager).

a. If the nil type manager exists for the requested interface, the server
dispatches the call to that manager.

b. Otherwise, the server rejects the call.

2. If the call contains a nonnil object UUID, the server looks to see whether it has
set a type for the object (by assigning a nonnil type UUID).

If the object lacks a type, the server looks for the nil type manager.

a. If the nil type manager exists for the requested interface, the server
dispatches the call to that manager.

b. Otherwise, the server rejects the call.

3. If the object has a type, the call requires a remote procedure of a manager
whose type matches the object’s type. In its absence, the RPC runtime rejects
the call.

Figure 58 on page 348 illustrates the decisions a server makes to select a manager
to which to dispatch an incoming call.

2. The API uses NULL to specify a synonym to the address of the nil UUID, which contains only zeros.

Chapter 17. Topics in RPC Application Development 347

Creating Portable Data via the IDL Encoding Services

The IDL encoding services provide client and server RPC applications with a
method for encoding data types in input parameters into byte stream format and
decoding data types in output parameters from a byte stream without invoking the
RPC runtime. Encoding and decoding functions are just like marshalling and
unmarshalling, except that the data is stored locally and is not transmitted over the
network; the IDL encoding services separate the data marshalling and
unmarshalling functions from interaction with the RPC runtime.

Client and server applications can use the IDL encoding services to flatten (or
serialize) a data structure, even binary data, and then store it; for example, by
writing it to a file on disk. An RPC application on any DCE machine, regardless of
its data type size and byte endianess, is then able to use the IDL encoding services
to decode previously encoded data. Without the IDL encoding services, you cannot
create a file of data on one machine and then successfully read that data on
another machine that has different size data types and byte endianess.

No

Call
asking for

?

non-nil
Object
UUID

Non-nil
type UUID

set for
object

?

Yes

Yes

Yes

Dispatch call

non-nil type
to appropriate

manager.

Dispatch call
to
manager.

nil type

No

Manager
registered with

?

same non-nil
type UUID

No

Reject
call.

No

Manager
registered

for

?

nil
type
UUID

Key:

= The default decision path

Yes

Figure 58. Decisions for Selecting a Manager

348 OSF® DCE Application Development Guide —Core Components

The IDL encoding services can generate code that takes the input parameters to a
procedure and places them in a standard form in one or more buffers that are
delivered to user code. This process is called encoding. Encoded data can be
written to a file or forwarded by a messaging system. The IDL encoding services
can also generate code that delivers, as the output parameters of a procedure, data
that has been converted into the standard form by encoding. Delivery of data in this
way is called decoding. Data to be decoded can be read from a file or received by
a messaging system.

Applications use the ACF attributes encode and decode as operation attributes or
as interface attributes to direct the IDL compiler to generate IDL encoding services
stubs for operations rather than generating RPC stubs. See “Chapter 19. Attribute
Configuration Language” on page 425 for usage information on encode and
decode .

Memory Management

IDL encoding services stubs handle memory management in the same way as RPC
client stubs: when you call an operation to which the encode and/or decode
attributes have been applied, the encoding services stub uses whatever client stub
memory management scheme is currently in effect. See “Memory Management” on
page 313 for further details on client stub memory management defaults and setting
up memory management schemes.

You can control which memory management scheme the stubs will use by calling
the rpc_ss_swap_client_alloc_free() and rpc_ss_set_client_alloc_free()
routines. The first routine sets the memory management routines used by both the
encoding and decoding stubs, and the second routine restores the previous
memory management scheme after encoding and decoding are complete.

Note that the memory management scheme established, whether explicitly or by
default, is on a per-thread basis.

Buffering Styles

There are a number of different ways in which buffers containing encoded data can
be passed between the application code and the IDL encoding services. These are
referred to as different buffering styles. The different buffering styles are:

v Incremental encoding

The incremental encoding style requires that you provide an allocate routine
which creates an empty buffer into which IDL encoding services can place
encoded data, and a write routine which IDL encoding services will call when the
buffer is full or all the parameters of the operation have been encoded. The IDL
encoding services call the allocate and write routines repeatedly until the
encoding of all of the parameters has been delivered to the user code. See the
idl_es_encode_incremental(3rpc) reference page for a description of the
required parameters for the allocate and write routines.

v Fixed buffer encoding

The fixed buffer encoding style requires that the application supply a single buffer
into which all the encoded data is to be placed. The buffer must have an address
that is 8-byte aligned and must be a multiple of 8 bytes in size. It must also be
large enough to hold an encoding of all the data, together with an encoding
header for each operation whose parameters are being encoded; 56 bytes
should be allowed for each encoding header.

Chapter 17. Topics in RPC Application Development 349

v Dynamic buffer encoding

With the dynamic buffer encoding style, the IDL encoding services build a single
buffer containing all the encoded data and deliver the buffer to application code.
The buffer is allocated by whatever client memory management mechanism has
been put in place by the application code. The default for this is malloc() . When
the application code no longer needs the buffer, it should release the memory
resource.

The dynamic buffer encoding style has performance implications. The IDL
encoding services will usually allocate a number of intermediate buffers, then
allocate the buffer to be delivered to the application code, copy data into it from
the intermediate buffers, and release the intermediate buffers.

v Incremental decoding

The incremental decoding buffering style requires that you provide a read routine
which, when called, delivers to the IDL encoding services a buffer that contains
the next part of the data to be decoded. The IDL encoding services will call the
read routine repeatedly until all of the required data has been decoded. See the
idl_es_encode_incremental(3rpc) reference page for a description of the
required parameters for the read routine.

v Buffer decoding

The buffer decoding style requires that you supply a single buffer containing all
the encoded data. Where application performance is important, note that, if the
supplied buffer is not 8-byte aligned, the IDL encoding services allocate a
temporary aligned buffer of comparable size and copy data from the
user-supplied buffer into it before performing the requested decoding.

IDL Encoding Services Handles

When an application’s encoding or decoding operation is invoked, the handle
passed to it must be an IDL encoding services handle (the idl_es_handle_ t type).
The IDL encoding services handle indicates whether encoding or decoding is
required, and what style of buffering is to be used. The IDL encoding services
provides a set of routines to enable the application code to obtain encoding and
decoding handles to the IDL encoding services. The IDL encoding services
handle-returning routine you call depends on the buffering style you have chosen:

v If you have selected the incremental encoding style, you call the
idl_es_encode_incremental() routine, which returns an incremental encoding
handle.

v If you have selected the fixed buffer encoding style, you call the
idl_es_encode_fixed_buffer() routine, which returns a fixed buffer encoding
handle.

v If you have selected dynamic buffer encoding, you call the
idl_es_encode_dyn_buffer() routine, which returns a dynamic buffer encoding
handle.

v If you have selected incremental decoding as your buffering style, you call the
idl_es_decode_incremental() routine, which returns an incremental decoding
handle.

v If you have selected the buffer decoding style, you call the
idl_es_decode_buffer() routine, which returns a buffer decoding handle.

When the encoding or decoding for which an IDL encoding services handle was
required is completed, the application code should release the handle resources by

350 OSF® DCE Application Development Guide —Core Components

calling the idl_es_handle_free() routine. See the OSF DCE Application
Development Reference for a complete description of the IDL encoding service
routines.

It is an error to call an operation for which encode or decode has been specified
by using an RPC binding handle, and it is an error to call an RPC operation by
using an IDL encoding services handle.

The following restrictions apply to the use of IDL encoding services handles:

v An operation can be called with an encoding handle only if the operation has
been given the encode ACF attribute.

v An operation can be called with a decoding handle only if the operation has been
given the decode ACF attribute.

v The auto_handle ACF attribute cannot be used with the IDL encoding services.

v The implicit_handle ACF attribute cannot be used with the IDL encoding
services.

v Customized handles cannot be used with the IDL encoding services.

v An in context handle does not contain the handle information needed by the IDL
encoding services.

Programming Example

The following example uses the IDL encoding service features described in the
preceding sections. The example verifies that the results of a number of decoding
operations are the same as the parameters used to create the corresponding
encodings.

The interface definition for this example is as follows:
[uuid(20aac780-5398-11c9-b996-08002b13d56d), version(0)]
interface es_array
{
const long N = 5000;

typedef struct
{
byte b;
long l;

} s_t;

typedef struct
{
byte b;
long a[7];

} t_t;

void in_array_op1([in] handle_t h, [in] long arr[N]);
void out_array_op1([in] handle_t h, [out] long arr[N]);

void array_op2([in] handle_t h, [in,out] s_t big[N]);

void array_op3([in] handle_t h, [in,out] t_t big[N]);
}

The attribute configuration file for the example is as follows:

interface es_array
{
[encode] in_array_op1();

Chapter 17. Topics in RPC Application Development 351

[decode] out_array_op1();
[encode, decode] array_op2();
[encode, decode] array_op3();

}

The test code for the example is as follows:
#include <dce/pthread_exc.h>
#include "rpcexc.h"
#include <stdio.h>
#include <stdlib.h>
#include <file.h>
#include <sys/file.h>
#include "es_array.h"

/*
* User state for incremental encode/decode
*/

typedef struct es_state_t {
idl_byte *malloced_addr;
int file_handle;

} es_state_t;

static es_state_t es_state;

#define OUT_BUFF_SIZE 2048
static idl_byte out_buff[OUT_BUFF_SIZE];
static idl_byte *out_data_addr;
static idl_ulong_int out_data_size;

/*
* User allocate routine for incremental encode
*/

void es_allocate(state, buf, size)
idl_void_p_t state;
idl_byte **buf;
idl_ulong_int *size;
{
idl_byte *malloced_addr;
es_state_t *p_es_state = (es_state_t *)state;

malloced_addr = (idl_byte *)malloc(*size);
p_es_state->malloced_addr = malloced_addr;
*buf = (idl_byte *)(((malloced_addr - \

(idl_byte *)0) + 7) & (x 7));
*size = (*size - (*buf - malloced_addr)) & (x 7);

}
/*
* User write routine for incremental encode
*/

void es_write(state, buf, size)
idl_void_p_t state;
idl_byte *buf;
idl_ulong_int size;
{
es_state_t *p_es_state = (es_state_t *)state;

write(p_es_state->file_handle, buf, size);
free(p_es_state->malloced_addr);

}

/*
* User read routine for incremental decode
*/

void es_read(state, buf, size)
idl_void_p_t state;
idl_byte **buf;

352 OSF® DCE Application Development Guide —Core Components

idl_ulong_int *size;
{
es_state_t *p_es_state = (es_state_t *)state;

read(p_es_state->file_handle, out_data_addr, out_data_size);
*buf = out_data_addr;
*size = out_data_size;

}

static ndr_long_int arr[N];
static ndr_long_int out_arr[N];
static s_t sarr[N];
static s_t ref_sarr[N];
static s_t out_sarr[N];
static t_t tarr[N];
static t_t ref_tarr[N];
static t_t out_tarr[N];
static ndr_long_int (*oarr)[M];

#define FIXED_BUFF_STORE (8*N+64)
static idl_byte fixed_buff_area[FIXED_BUFF_STORE];
/*
* Test Program
*/

main()
{
idl_es_handle_t es_h;
idl_byte *fixed_buff_start;
idl_ulong_int fixed_buff_size, encoding_size;
idl_byte *dyn_buff_start;
error_status_t status;
int i,j;

for (i = 0; i < N; i++)
{
arr[i] = random()%10000;
sarr[i].b = i & 0x7f;
sarr[i].l = random()%10000;
ref_sarr[i] = sarr[i];
tarr[i].b = i & 0x7f;
for (j = 0; j < 7; j++) tarr[i].a[j] = random()%10000;
ref_tarr[i] = tarr[i];

}

/*
*Incremental encode/decode
*/

/* Encode data using one operation */
es_state.file_handle = open("es_array_1.dat", \

O_CREAT|O_TRUNC|O_WRONLY, 0777);
if (es_state.file_handle < 0)
{
printf("Can't open es_array_1.dat\n");
exit(0);

}
idl_es_encode_incremental((idl_void_p_t)&es_state, es_allocate,

\
es_write, &es_h, &status);

if (status != error_status_ok)
{
printf("Error %08x from idl_es_encode_incremental\n", status);
exit(0);

}
in_array_op1(es_h, arr);
close(es_state.file_handle);
idl_es_handle_free(&es_h, &status);
if (status != error_status_ok)

Chapter 17. Topics in RPC Application Development 353

{
printf("Error %08x from idl_es_handle_free\n", status);
exit(0);

}
/* Decode the data using another operation with */
/* the same signature */
out_data_addr = (idl_byte *)(((out_buff - (idl_byte *)0) + 7) & (x7));
out_data_size = (OUT_BUFF_SIZE - (out_data_addr - out_buff)) & (x7);
es_state.file_handle = open("es_array_1.dat", O_RDONLY, 0);
if (es_state.file_handle < 0)
{
printf("Can't open es_array_1.dat for reading\n");
exit(0);

}
idl_es_decode_incremental((idl_void_p_t)&es_state, es_read,

&es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_decode_incremental\n", status);
exit(0);

}
out_array_op1(es_h, out_arr);
close(es_state.file_handle);
idl_es_handle_free(&es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_handle_free\n", status);
exit(0);

}

/* Check the input and output are the same */
for (i = 0; i < N; i++)
{
if (out_arr[i] != arr[i])
{
printf("out_arr[%d] - found %d - expecting %d\n",

i, out_arr[i], arr[i]);
}

}

/*
* Fixed buffer encode/decode
*/

fixed_buff_start = (idl_byte *)(((fixed_buff_area - \
(idl_byte *)0) + 7)

&(x7));
fixed_buff_size = (FIXED_BUFF_STORE - \

(fixed_buff_start - fixed_buff_area))
& (x7);

idl_es_encode_fixed_buffer(fixed_buff_start, fixed_buff_size,
&encoding_size, &es_h, &status);

if (status != error_status_ok)
{
printf("Error %08x from idl_es_encode_fixed_buffer\n", status);
exit(0);

}
array_op2(es_h, sarr);
idl_es_handle_free(&es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_handle_free\n", status);
exit(0);

}
idl_es_decode_buffer(fixed_buff_start, encoding_size, &es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_decode_buffer\n", status);

354 OSF® DCE Application Development Guide —Core Components

exit(0);
}
array_op2(es_h, out_sarr);
idl_es_handle_free(&es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_handle_free\n", status);
exit(0);

}
for (i = 0; i < N; i++)
{
if (out_sarr[i].b != ref_sarr[i].b)
{
printf("array_op2 - out_sarr[%d].b = %c\n", i, out_sarr[i].b);

}
if (out_sarr[i].l != ref_sarr[i].l)
{
printf("array_op2 - out_sarr[%d].l = %d\n", i, out_sarr[i].l);

}
}

/*
* Dynamic buffer encode - fixed buffer decode
*/

idl_es_encode_dyn_buffer(&dyn_buff_start, &encoding_size, &es_h, \
&status);

if (status != error_status_ok)
{
printf("Error %08x from idl_es_encode_dyn_buffer\n", status);
exit(0);

}
array_op3(es_h, tarr);
idl_es_handle_free(&es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_handle_free\n", status);
exit(0);

}
idl_es_decode_buffer(dyn_buff_start, encoding_size, &es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_decode_buffer\n", status);
exit(0);

}
array_op3(es_h, out_tarr);
rpc_ss_free (dyn_buff_start);
idl_es_handle_free(&es_h, &status);
if (status != error_status_ok)
{
printf("Error %08x from idl_es_handle_free\n", status);
exit(0);

}
for (i = 0; i < N; i++)
{
if (out_tarr[i].b != ref_tarr[i].b)
{
printf("array_op3 - out_tarr[%d].b = %c\n", i, out_tarr[i].b);

}
for (j=0; j<7; j++)
{
if (out_tarr[i].a[j] != ref_tarr[i].a[j])
{
printf("array_op3 - out_tarr[%d].a[%d] = %d\n",

i, j, out_tarr[i].a[j]);
}

}

Chapter 17. Topics in RPC Application Development 355

}

printf("Test Complete\n");
}

Performing Multiple Operations on a Single Handle

Multiple operations can be performed using one encoding handle before the handle
is released. In this case, all the encoded data is part of the same buffer system.

A single decoding handle is used to obtain the contents of the encoded data.
Decoding operations must be called in the same order the encoding operations
were called to create the encoded data.

The definition of the user client memory management functions, and any memory
allocated by IDL encoding services using the client memory allocator, must not be
modified between operations for which the same encoding handle is used.

Determining the Identity of an Encoding

Applications can use the idl_es_inq_encoding_id() routine to determine the
identity of an encoding operation, for example, before calling their decoding
operations.

356 OSF® DCE Application Development Guide —Core Components

Chapter 18. Interface Definition Language

This chapter describes how to construct an Interface Definition Language (IDL) file.
First, it describes the IDL syntax notation conventions and lexical elements. It then
describes the interface definition structure and the individual language elements
supported by the IDL compiler.

The Interface Definition Language File

The IDL file defines all aspects of an interface that affect data passed over the
network between a caller (client) and a callee (server). An interface definition file
has the suffix .idl . In order for a caller and callee to interoperate, they both need to
incorporate the same interface definition.

Syntax Notation Conventions

In addition to the documentation conventions described in the Preface of this guide,
the IDL syntax uses the special notation described in the following subsections.

Typography

IDL documentation uses the following typefaces:

Bold Bold typeface indicates a literal item. Keywords and literal punctuation are
represented in bold typeface. Identifiers used in a particular example are
represented in bold typeface when mentioned in the text.

Italic Italic typeface indicates a symbolic item for which you need to substitute a
particular value. In IDL syntax descriptions, all identifiers that are not
keywords are represented in italic typeface.

Constant width
Constant width typeface is used for source code examples (in IDL or in C)
that are displayed separately from regular text.

Special Symbols

IDL documentation uses the following symbolic notations:

[item] Italic brackets surrounding an item, which may include brackets in regular
typeface, indicate that the item contained within them is optional.

[item] Brackets shown in regular typeface surrounding a variable item indicate that
the brackets are a required when the item is included, whether or not the
item itself is required.

item ...
Ellipsis points following an item indicate that the item may occur one or
more times.

item, ...
If an item is followed by a literal punctuation character and then by
ellipsis points, the item may occur either once without the punctuation
character or more than once with the punctuation character separating each
instance.

357

... If ellipsis points are shown on a line by themselves, the item or set of items
in the preceding line may occur any number of additional times.

item | item
If several items are shown separated by vertical bars, exactly one of those
items must occur.

IDL Lexical Elements

The following subsections describe these IDL lexical elements:

v Identifiers

v Keywords

v Punctuation characters

v Whitespace

v Case sensitivity

Identifiers

The character set for IDL identifiers comprises the alphabetic characters A to Z and
a to z, the digits 0 to 9, and the _ (underscore) character. An identifier must start
with an alphabetic character.

No IDL identifier can exceed 31 characters. In some cases, an identifier has a
shorter maximum length because the IDL compiler uses the identifier as a base
from which to construct other identifiers; we identify such cases as they occur.

Keywords

IDL reserves some identifiers as keywords. In the text of this chapter, keywords are
represented in bold typeface, and identifiers chosen by application developers are
represented in italic typeface.

Punctuation Characters

IDL uses the following graphic characters:

" ' () * , . / : ; | = [\] { }

The { (left brace) and } (right brace) characters are national replacement set
characters that may not be available on all keyboards. Wherever IDL specifies a left
brace, the ??< trigraph may be substituted. Wherever IDL specifies a right brace,
the ??> trigraph may be substituted.

Use of these trigraph sequences adds the following punctuation characters to the
set in the preceding list:

< > ?

Whitespace

Whitespace is used to delimit other constructs. IDL defines the following whitespace
constructs:

v A space

358 OSF® DCE Application Development Guide —Core Components

v A carriage return

v A horizontal tab

v A form feed at the beginning of a line

v A comment

v A sequence of one or more of the preceding whitespace constructs

A keyword, identifier, or number not preceded by a punctuation character must be
preceded by whitespace. A keyword, identifier, or number not followed by a
punctuation character must be followed by whitespace. Unless we note otherwise,
any punctuation character may be preceded and/or followed by whitespace.

When enclosed in ″″ (double quotes) or ’’ (single quotes), whitespace constructs
are treated literally. Otherwise, they serve only to separate other lexical elements
and are ignored.

Just as in C, the character sequence /* (slash and asterisk) begins a comment, and
the character sequence */ (asterisk and slash) ends a comment. For example:

/* all natural */
import "potato.idl"; /* no preservatives */

Comments do not nest.

Case Sensitivity

The IDL compiler does not force the case of identifiers in the generated code.

The only case sensitivity issue that you have to be aware of is the implications
involved in calling generated stubs from languages other than C.

IDL Versus C

IDL resembles a subset of ANSI C. The major difference between IDL and C is that
there are no executable statements in IDL.

Declarations

An interface definition specifies how operations are called, not how they are
implemented. IDL is therefore a purely declarative language.

Data Types

To support applications written in languages other than C, IDL defines some data
types that do not exist in C and extends some data types that do exist in C. For
example, IDL defines a Boolean data type.

Some C data types are supported by IDL only with modifications or restrictions. For
example, unions must be discriminated, and all arrays must be accompanied by
bounds information.

Chapter 18. Interface Definition Language 359

Attributes

The stub modules that are generated from an interface definition require more
information about the interface than can be expressed in C. For example, stubs
must know whether an operation parameter is an input or an output.

The additional information required to define a network interface is specified via IDL
attributes. IDL attributes can apply to types, to structure members, to operations, to
operation parameters, or to the interface as a whole. Some attributes are legal in
only one of the preceding contexts; others are legal in more than one context. An
attribute is always represented in [] (brackets) before the item to which it applies.
For example, in an operation declaration, inputs of the operation are preceded by
the in attribute and outputs are preceded by the out attribute:

void arith_add (
[in] long a,
[in] long b,
[out] long *c,
);

Interface Definition Structure

An interface definition has the following structure:

[interface_attribute, ...] interface interface_name
{

declarations
}

The portion of an interface definition that precedes the { (left brace) is the interface
header. The remainder of the definition is the interface body. Interface header
syntax and interface body syntax are described separately in the following two
subsections.

Interface Definition Header

The interface header comprises a list of interface attributes enclosed in []
(brackets), the keyword interface , and the interface name:

[interface_attribute, ...] interface interface_name

Interface names, together with major and minor version numbers, are used by the
IDL compiler to construct identifiers for interface specifiers, entry point vectors, and
entry point vector types. If the major and minor version numbers are single digits,
the interface name can be up to 17 characters long.

For C++ output, the interface header can also inherit an interface by using the
inheritance operator (:) as follows:

[interface_attribute, ...] interface interface_name : inherited_interface

Interface Definition Body

The declarations in an interface definition body are one or more of the following:

360 OSF® DCE Application Development Guide —Core Components

import_declaration
constant_declaration
type_declaration
operation_declaration

A ; (semicolon) terminates each declaration, and { } (braces) enclose the entire
body.

Import declarations must precede other declarations in the interface body. Import
declarations specify the names of other IDL interfaces that define types and
constants used by the importing interface.

Constant, type, and operation declarations specify the constants, types, and
operations that the interface exports. These declarations can be coded in any order,
provided any constant or type is defined before it is used.

Overview of IDL Attributes

Table 13 lists the attributes allowed in interface definition files and specifies the
declarations in which they can occur.

Table 13. IDL Attributes

Attribute Where Used

uuid Interface definition headers

version

endpoint

exceptions

pointer_default

local

broadcast Operations

maybe

idempotent

reflect_deletions

in Parameters

out

ignore Structures

max_is Arrays

min_is

size_is

first_is

last_is

length_is

Chapter 18. Interface Definition Language 361

Table 13. IDL Attributes (continued)

Attribute Where Used

string Arrays

ptr Pointers

ref

unique

handle Customized handles

context_handle Context handles

transmit_as Type declarations

Interface Definition Header Attributes

The following subsections describe in detail the usage and semantics of the IDL
attributes that can be used in interface definition headers. The attributes provided
for interface definition headers are as follows:

v uuid

v version

v endpoint

v exceptions

v pointer_default

v local

The uuid Attribute

The uuid attribute specifies the Universal Unique Identifier (UUID) that is assigned
to an interface. The uuid attribute takes the following form:

uuid (uuid_string)

A uuid_string is the string representation of a UUID. This string is typically
generated as part of a skeletal interface definition by the utility uuidgen . A
uuid_string contains one group of 8 hexadecimal digits, three groups of 4
hexadecimal digits, and one group of 12 hexadecimal digits, with hyphens
separating the groups, as in the following example:

01234567-89ab-cdef-0123-456789abcdef

A new UUID should be generated for any new interface. If several versions of one
interface exist, all versions should have the same interface UUID but different
version numbers. A client and a server cannot communicate unless the interface
imported by the client and the interface exported by the server have the same
UUID. The client and server stubs in an application must be generated from the
same interface definition or from interface definitions with identical uuid attributes.

362 OSF® DCE Application Development Guide —Core Components

Any remote interface must have the uuid attribute. An interface must have either
the uuid attribute or the local attribute, but cannot have both.

The uuid attribute can appear at most once in an interface.

The following example illustrates use of the uuid attribute:

uuid(4ca7b4dc-d000-0d00-0218-cb0123ed9876)

The version Attribute

The version attribute specifies a particular version of a remote interface. The
version attribute takes the following form:

version (major [. minor])

A version number can be either a pair of integers (the major and minor version
numbers) or a single integer (the major version number). If both major and minor
version numbers are supplied, the integers should be separated by a period without
whitespace. If no minor version number is supplied, 0 (zero) is assumed.

The following examples illustrate use of the version attribute:

version (1.1) /* major and minor version numbers */

version (3) /* major version number only */

The version attribute can be omitted altogether, in which case the interface is
assigned 0.0 as the default version number.

A client and a server can communicate only if the following requirements are met:

v The interface imported by the client and the interface exported by the server
have the same major version number.

v The interface imported by the client has a minor version number less than or
equal to that of the interface exported by the server.

You must increase either the minor version number or the major version number
when you make any compatible change to an interface definition. You must not
decrease the minor version number unless you simultaneously increase the major
version number.

You must increase the major version number when you make any incompatible
change to an interface definition. (See the definition of compatible changes that
follows.) You cannot decrease the major version number.

The following are considered compatible changes to an interface definition:

v Adding operations to the interface, if and only if the new operations are declared
after all existing operation declarations in the interface definition.

v Adding type and constant declarations, if the new types and constants are used
only by operations added at the same time or later. Existing operation
declarations cannot have their signatures modified.

The major and minor integers in the version attribute can range from 0 to 65,535,
inclusive. However, these typically are small integers and are increased in
increments of one.

Chapter 18. Interface Definition Language 363

The following are considered incompatible changes to an interface definition:

v Changing the signature of an existing operation

v Changing the order of existing operations

v Adding a new operation other than at the end

The version attribute can appear at most once in an interface.

The endpoint Attribute

The endpoint attribute specifies the well-known endpoint or endpoints on which
servers that export the interface will listen. The endpoint attribute takes the
following form:

endpoint (endpoint_spec, ...)

Each endpoint_spec is a string in the following form:

" family : [endpoint] "

The family identifies a protocol family. The following are accepted values for family:

v ncacn_ip_tcp : NCA Connection over Internet Protocol: Transmission Control
Protocol (TCP/IP)

v ncadg_ip_udp : NCA Datagram over Internet Protocol: User Datagram Protocol
(UDP/IP)

The endpoint identifies a well-known endpoint for the specified family. The values
accepted for endpoint depend on the family but typically are integers within a limited
range. IDL does not define valid endpoint values.

Well-known endpoint values are typically assigned by the central authority that
“owns” a protocol. For example, the Internet Assigned Numbers Authority assigns
well-known endpoint values for the IP protocol family.

At compile time, the IDL compiler checks each endpoint_spec only for gross syntax.
At runtime, stubs pass the family and endpoint strings to the RPC runtime, which
validates and interprets them.

Most applications should not use well-known endpoints and should instead use
dynamically assigned opaque endpoints. Most interfaces designed for use by
applications should therefore not have the endpoint attribute.

The following example illustrates use of the endpoint attribute:

endpoint ("ncacn_ip_tcp:[1025]", "ncadg_ip_udp:[6677]")

The endpoint attribute can appear at most once in an interface.

The exceptions Attribute

The exceptions attribute specifies a set of user-defined exceptions that can be
generated by the server implementation of the interface. The exceptions attribute
takes the following form:

exceptions (exception_name [,exception_name] ...)

364 OSF® DCE Application Development Guide —Core Components

The following is a sample declaration of an exceptions attribute:

[uuid(06255501-08AF-11CB-8C4F-08002B13D56D),
version (1.1),
exceptions (
exc_e_exquota,
binop_e_aborted,
binop_e_too_busy,
binop_e_shutdown)

] interface binop
{
long binop_add(

[in] long a,
[in] long b
);

}

See “Chapter 17. Topics in RPC Application Development” on page 313 for more
information on using exceptions.

The pointer_default Attribute

IDL supports two kinds of pointer semantics. The pointer_default attribute specifies
the default semantics for pointers that are declared in the interface definition. The
pointer_default attribute takes the following form:

pointer_default (pointer_attribute)

Possible values for pointer_attribute are ref, unique, and ptr .

The default semantics established by the pointer_default attribute apply to the
following usages of pointers:

v A pointer that occurs in the declaration of a member of a structure or a union.

v A pointer that does not occur at the top level of an operation parameter declared
with more than one pointer operator. A top-level pointer is one that is not the
target of another pointer and is not a field of a data structure that is the target of
a pointer. (See “Pointer Attributes in Parameters” on page 394 for more
information on top-level pointers.)

Note that the pointer_default attribute does not apply to a pointer that is the return
value of an operation because this is always a full pointer.

The default semantics can be overridden by pointer attributes in the declaration of a
particular pointer. If an interface definition does not specify pointer_default and
contains a declaration that requires default pointer semantics, the IDL compiler will
issue a warning. For additional information on pointer semantics, refer to “Unique
Pointers” on page 393.

The pointer_default attribute can appear at most once in an interface.

The local Attribute

The local attribute indicates that an interface definition does not declare any remote
operations and that the IDL compiler should therefore generate only header files,
not stub files. The local attribute takes the following form:

Chapter 18. Interface Definition Language 365

local

An interface containing operation definitions must have either the local attribute or
the uuid attribute. No interface can have both.

The local attribute can appear at most once in an interface.

Rules for Using Interface Definition Header Attributes

An interface cannot have both the local attribute and the uuid attribute. In an
interface definition that contains any operation declarations, either local or uuid
must be specified. In an interface definition that contains no operation declarations,
both local and uuid can be omitted.

The local , uuid , and version attributes cannot be coded more than once. If the
endpoint or the pointer_default attribute is coded more than once, the IDL
compiler issues a warning and, where conflicts exist, the IDL compiler accepts the
last value specified.

Examples of Interface Definition Header Attributes

The following example uses the uuid and version attributes:

[uuid(df961f80-2d24-11c9-be74-08002b0ecef1), version(1.1)]
interface my_interface_name

The following example uses the uuid , endpoint , and version attributes:

[uuid(0bb1a080-2d25-11c9-8d6e-08002b0ecef1),
endpoint("ncacn_ip_tcp:[1025]", "ncacn_ip_tcp:[6677]"), version(3.2)]
interface my_interface_name

Import Declarations

The IDL import_declaration specifies interface definition files that declare types and
constants used by the importing interface. It takes the following form:

import file,... ;

The file argument is the pathname, enclosed in double quotes, of the interface
definition you are importing. This pathname can be relative; the -I option of the IDL
compiler allows you to specify a directory from which to resolve import pathnames.

The effect of an import declaration is as if all constant, type, and import declarations
from the imported file occurred in the importing file at the point where the import
declaration occurs. Operation declarations are not imported.

For example, suppose that the interface definition aioli.idl contains a declaration to
import the definitions for the garlic and oil interfaces:

import "garlic.idl", "oil.idl";

The IDL compiler will generate a C header file named aioli.h that contains the
following #include directives:

366 OSF® DCE Application Development Guide —Core Components

#include "garlic.h"
#include "oil.h"

The stub files that the compiler generates will not contain code for any garlic and
oil operations.

Importing an interface many times has the same effect as importing it once.

Constant Declarations

The IDL constant_declaration can take any one of the following forms:

const integer_type_spec identifier = integer | value | integer_const_expression;
const boolean identifier = TRUE | FALSE | value;
const char identifier = character | value;
const char* identifier = string | value;
const void* identifier = NULL | value;

The integer_type_spec is the data type of the integer constant you are declaring.
The identifier is the name of the constant. The integer, integer_const_expression,
character, string, or value specifies the value to be assigned to the constant. A
value can be any previously defined constant.

IDL provides only integer, Boolean, character, string, and null pointer constants.

Following are examples of constant declarations:

const short TEN = 10;
const boolean FAUX = FALSE;
const char* DSCH = "Dmitri Shostakovich";

Integer Constants

An integer_type_spec is a type_specifier for an integer, except that the int_size for
an integer constant cannot be hyper .

Aninteger is the decimal representation of an integer. IDL also supports the C
notation for hexadecimal, octal, and long integer constants.

You can specify any previously defined integer constant as the value of an integer
constant.

You can specify any arithmetic expression as the integer_const_expression that
evaluates to an integer constant.

Boolean Constants

A Boolean constant can take one of two values: TRUE or FALSE.

You can specify any previously defined Boolean constant as the value of a Boolean
constant.

Chapter 18. Interface Definition Language 367

Character Constants

A character is an ASCII character enclosed in single quotes. A white space
character is interpreted literally. The \ (backslash) character introduces an escape
sequence, as defined in the ANSI C standard. The ’ (single quote) character can be
coded as the character only if it is escaped by a backslash.

You can specify any previously defined character constant as the value of a
character constant.

String Constants

A string is a sequence of ASCII characters enclosed in double quotes. Whitespace
characters are interpreted literally. The \ (backslash) character introduces an escape
sequence, as defined in the ANSI C standard. The ″ (double quote) character can
be coded in a string only if it is escaped by a backslash.

You can specify any previously defined string constant as the value of a string
constant.

NULL Constants

A void* constant can take only one literal value: NULL.

You can specify any previously defined void* constant as the value of a void*
constant.

Type Declarations

The IDL type_declaration enables you to associate a name with a data type and to
specify attributes of the data type. It takes the following form:

typedef [[type_attribute, ...]] type_specifier type_declarator, ... ;

A type_attribute specifies characteristics of the type being declared.

The type_specifier can specify a base type, a constructed type, a predefined type,
or a named type. A function pointer can be specified if the local attribute has been
specified.

Each type_declarator is a name for the type being defined. Note, though, that a
type_declarator can also be preceded by an * (asterisk), followed by [] (brackets),
and can include () (parentheses) to indicate the precedence of its components.

Type Attributes

A type_attribute can be any of the following:

v handle : The type being declared is a user-defined, customized-handle type.

v context_handle : The type being declared is a context-handle type.

v transmit_as : The type being declared is a presented type. When it is passed in
remote procedure calls, it is converted to a specified transmitted type.

v ref : The type being declared is a reference pointer.

v ptr : The type being declared is a full pointer.

368 OSF® DCE Application Development Guide —Core Components

v unique : The type being declared is a unique pointer.

v string : The array type being declared is a string type.

Base Type Specifiers

IDL base types include integers, floating-point numbers, characters, a boolean type,
a byte type, a void type, and a primitive handle type.

Table 14 lists the IDL base data type specifiers. Where applicable, the table shows
the size of the corresponding transmittable type and the type macro emitted by the
IDL compiler for resulting declarations.

Table 14. Base Data Type Specifiers

Specifier Type Macro

(sign) (size) (type) Size Emitted by idl

small int 8 bits idl_small_int

short int 16 bits idl_short_int

long int 32 bits idl_long_int

hyper int 64 bits idl_hyper_int

unsigned small int 8 bits idl_usmall_int

unsigned short int 16 bits idl_ushort_int

unsigned long int 32 bits idl_ulong_int

unsigned hyper int 64 bits idl_uhyper_int

float 32 bits idl_short_float

double 64 bits idl_long_float

char 8 bits idl_char

boolean 8 bits idl_boolean

byte 8 bits idl_byte

void — idl_void_p_t

handle_t — —

The base types are described individually later in this chapter.

Note that you can use the idl_ macros in the code you write for an application to
ensure that your type declarations are consistent with those in the stubs, even
when the application is ported to another platform. The idl_ macros are especially
useful when passing constant values to RPC calls. For maximum portability, all
constants passed to RPC calls declared in your network interfaces should be cast
to the appropriate type because the size of integer constants (like the size of the int
data type) is ambiguous in the C language.

The idl_ macros are defined in dce/idlbase.h , which is included by header files that
the IDL compiler generates.

Constructed Type Specifiers

IDL constructed types include structures, unions, enumerations, pipes, arrays, and
pointers. (In IDL, as in C, arrays and pointers are specified via declarator constructs
rather than type specifiers.) Following are the keywords used to declare constructed
type specifiers:

Chapter 18. Interface Definition Language 369

struct
union
enum
pipe

Constructed types are described in detail later in this chapter.

Predefined Type Specifiers

While IDL per se does not have any predefined types, DCE RPC IDL implicitly
imports nbase.idl , which does predefine some types. Specifically, nbase.idl
predefines an error status type, several international character data types, and
many other types. Following are the keywords used to declare these predefined
type specifiers:

error_status_t
ISO_LATIN_1
ISO_MULTI_LINGUAL
ISO_UCS

The error status type and international characters are described in detail later in this
chapter.

Type Declarator

An IDL type_declarator can be either a simple declarator or a complex declarator.

A simple declarator is just an identifier.

A complex declarator is an identifier that specifies an array, a function pointer, or a
pointer.

Operation Declarations

The IDL operation_declaration can take the following forms:

[[operation_attribute, ...]] [static] type_specifier operation_identifier (parameter_declaration, .

[[operation_attribute, ...]] [static] type_specifier operation_identifier ([void]);

Use the first form for an operation that has one or more parameters; use the
second form for an operation that has no parameters. Use the static keyword if the
operation is a static member function of the interface class (C++ output only).

An operation_attribute can take the following forms:

v idempotent : The operation is idempotent.

v broadcast : The operation is always to be broadcast.

v maybe : The caller of the operation does not require and will not receive any
response.

v reflect_deletions : If rpc_ss_free() is applied by application code on the server
side to memory used for the referent of a full pointer that is part of an [in]
parameter, the storage occupied by that referent on the client side is released.

370 OSF® DCE Application Development Guide —Core Components

v ptr : The operation returns a full pointer. This attribute must be supplied if the
operation returns a pointer result and reference pointers are the default for the
interface.

v context_handle : The operation returns a context handle.

v string : The operation returns a string.

The type_specifier in an operation declaration specifies the data type that the
operation returns, if any. This type must be either a scalar type or a previously
defined type. If the operation does not return a result, its type_specifier must be
void .

For information on the semantics of pointers as operation return values, refer to the
discussion of pointers in “Pointers” on page 390.

The operation_identifier in an operation declaration is an identifier that names the
operation.

Each parameter_declaration in an operation declaration declares a parameter of the
operation. A parameter_declaration takes the following form:

[parameter_attribute, ...] type_specifier parameter_declarator

Parameter declarations and the parameter attributes are described separately in the
following sections.

Operation Attributes

Operation attributes determine the semantics to be applied by the RPC client and
server protocol when an operation is called.

Operation Attributes: Execution Semantics

The idempotent attribute specifies that an operation is idempotent; that is, it can
safely be executed more than once.

The broadcast attribute specifies that an operation is to be broadcast to all hosts
on the local network each time the operation is called. The client receives output
arguments from the first reply to return successfully, and all subsequent replies are
discarded.

An operation with the broadcast attribute is implicitly idempotent.

Note that the broadcast capabilities of RPC runtime have a number of distinct
limitations:

v Not all systems and networks support broadcasting. In particular, broadcasting is
not supported by the RPC connection-oriented protocol.

v Broadcasts are limited to hosts on the local network.

v Broadcasts make inefficient use of network bandwidth and processor cycles.

v The RPC runtime library does not support at-most-once semantics for broadcast
operations; it applies idempotent semantics to all such operations.

v The input arguments for broadcast calls are limited to 944 bytes.

Chapter 18. Interface Definition Language 371

The maybe attribute specifies that the caller of an operation does not expect any
response. An operation with the maybe attribute cannot have any output
parameters and cannot return anything. Delivery of the call is not guaranteed.

An operation with the maybe attribute is implicitly idempotent.

Operation Attributes: Memory Management

Use the reflect_deletions attribute to mirror the release of memory from server
pointer targets to client pointer targets. When you use the reflect_deletions
attribute, memory occupied by pointer targets on the client will be released when
the corresponding pointer targets on the server are released. This is only true for
pointer targets that are components of [in] parameters of the operation. By default,
the mechanism used by RPC to release the pointer targets is the C language free()
function unless the client code is executing as part of RPC server application code,
in which case the rpc_ss_free() function is used. You can override the default by
calling rpc_ss_set_client_alloc_free() or rpc_ss_swap_client_alloc_free() before
the call to the remote operation.

Parameter Declarations

A parameter_declaration is used in an operation declaration to declare a parameter
of the operation. A parameter_declaration takes the following form:

[parameter_attribute, ...] type_specifier parameter_declarator

If an interface does not use implicit handles or use interface-based binding, the first
parameter must be an explicit handle that gives the object UUID and location. The
handle parameter can be of a primitive handle type, handle_t , or a nonprimitive
user-defined handle type.

A parameter_attribute can be any of the following:

v array_attribute: One of several attributes that specifies the characteristics of
arrays.

v in : The parameter is an input attribute.

v out : The parameter is an output attribute.

v ref : The parameter is a reference pointer; it cannot be NULL and cannot be an
aliased pointer.

v ptr : The parameter is a full pointer; it can be NULL and can be an aliased
pointer.

v unique : The parameter is a unique pointer; it can be NULL.

v string : The parameter is a string.

v context_handle : The parameter is a context handle.

v switch_is :

The directional attributes in and out specify the directions in which a parameter is
to be passed. The in attribute specifies that the parameter is passed from the caller
to the callee. The out attribute specifies that the parameter is passed from the
callee to the caller.

An output parameter must be passed by reference and therefore must be declared
with an explicit * (asterisk). (Note that an array is implicitly passed by reference and

372 OSF® DCE Application Development Guide —Core Components

so an output array does not require an explicit *.) At least one directional attribute
must be specified for each parameter of an operation.

An explicit handle parameter must have at least the in attribute.

The ref, unique, and ptr attributes are described later in “Pointers” on page 390.
The string attribute is described in “Strings” on page 389. The context_handle
attribute is described in “The context_handle Attribute” on page 404.

The type_specifier in a parameter declaration specifies the data type of the
parameter.

The declarator in a parameter declaration can be any simple or complex declarator.

A parameter with the out attribute must be either an array or an explicitly declared
pointer. An explicitly declared pointer is declared by a pointer_declarator, rather
than by a simple_declarator with a named pointer type as its type_specifier.

For information on the semantics of pointers as operation parameters, refer to the
discussion of pointers in “Pointers” on page 390.

Basic Data Types

The following subsections describe the basic data types provided by IDL and the
treatment of international characters within IDL. The basic data types are as follows:

v Integer types

v Floating-point types

v The char type

v The boolean type

v The byte type

v The void type

v The handle_t type

v The error_status_t type

“Constructed Data Types” on page 376 describes the constructed data types that
are built on the basic data types.

Integer Types

IDL provides four sizes of signed and unsigned integer data types, specified as
follows:

int_size [int]
unsigned int_size [int]
int_size unsigned [int]

The int_size can take the following values:

hyper

long

Chapter 18. Interface Definition Language 373

short

small

The hyper types are represented in 64 bits. A long is 32 bits. A short is 16 bits. A
small is 8 bits.

The keyword int is optional and has no effect. The keyword unsigned denotes an
unsigned integer type; it can occur either before or after the size keyword.

Floating-Point Types

IDL provides two sizes of floating-point data types, specified as follows:

float
double

A float is represented in 32 bits. A double is represented in 64 bits.

The char Type

The IDL character type is specified as follows:

[unsigned] char

A char is unsigned and is represented in 8 bits.

The keyword unsigned is optional and has no effect. IDL does not support a signed
character type. IDL provides the small data type for representing signed 8-bit
integers.

The boolean Type

The IDL boolean type is specified as follows:

boolean

A boolean is represented in 8 bits. A boolean is a logical quantity that assumes
one of two values: TRUE or FALSE. Zero is FALSE and any nonzero value is
TRUE.

The byte Type

The IDL byte type is specified as follows:
byte

A byte is represented in 8 bits. The data representation format of byte data is
guaranteed not to change when the data is transmitted by the RPC mechanism.

The IDL integer, character, and floating-point types (and hence any types
constructed from these) are all subject to format conversion when they are
transmitted between hosts that use different data representation formats. You can
protect data of any type from format conversion by transmitting that type as an
array of byte .

374 OSF® DCE Application Development Guide —Core Components

The void Type

The IDL void type is specified as follows:

void

The void type may be used to do the following:

v Specify the type of an operation that does not return a value

v Specify the type of a context handle parameter, which must be void*

v Specify the type of a NULL pointer constant, which must be void*

The handle_t Type

The IDL primitive handle type is specified as follows:

handle_t

A handle_t is a primitive handle type that is opaque to application programs but
meaningful to the RPC runtime library. “Customized Handles” on page 403
discusses primitive and nonprimitive handle types.

The error_status_t Type

IDL provides the following predefined data type to hold RPC communications status
information:

error_status_t

The values that can be contained in the error_status_t data type are compatible
with the unsigned long and unsigned32 IDL data types. These data types are
used for status values in the DCE.

The error_status_t data type contains an additional semantic to indicate that this
particular unsigned long contains a DCE format error status value. This additional
semantic enables the IDL compiler to perform any necessary translation when
moving the status value between systems with differing hardware architectures and
software operating systems. If you are using status codes that are not in the DCE
error status format or if you do not require such conversion, use an unsigned long
instead of error_status_t .

International Characters

The implicitly imported nbase.idl provides predefined data types to support present
and emerging international standards for the representation of characters and
strings:

ISO_LATIN_1
ISO_MULTI_LINGUAL
ISO_UCS

Data of type char is subject to ASCII-EBCDIC conversion when transmitted by the
RPC mechanism. The predefined international character types are constructed from
the base type byte and are thereby protected from data representation format
conversion.

Chapter 18. Interface Definition Language 375

The ISO_LATIN_1 type is represented in 8 bits and is predefined as follows:

typedef byte ISO_LATIN_1;

The ISO_MULTI_LINGUAL type is represented in 16 bits and is predefined as
follows:

typedef struct {
byte row, column;
} ISO_MULTI_LINGUAL;

The ISO_UCS type is represented in 32 bits and is predefined as follows:

typedef struct {
byte group, plane, row, column;
} ISO_UCS;

Constructed Data Types

The following subsections describe the constructed data types that are provided by
IDL. The constructed types are built on the basic data types, which are described in
“Basic Data Types” on page 373. The constructed data types are as follows:

v Structures

v Unions

v Enumerations

v Pipes

v Arrays

v Strings

In IDL, as in C, arrays and pointers are specified via declarator constructs. The
other constructed types are specified via type specifiers.

Structures

The type_specifier for a structure type can take the following forms:

struct [tag] {

struct_member;
...
}

struct tag

A tag, if supplied in a specifier of the first form, becomes a shorthand form for the
set of member declarations that follows it. Such a tag can subsequently be used in
a specifier of the second form.

A struct_member takes the following form:

[[struct_member_attribute, ...]] type_specifier declarator, ...;

A struct_member_attribute can be any of the following:

v array_attribute: One of several attributes that specify characteristics of arrays.

376 OSF® DCE Application Development Guide —Core Components

v ignore : An attribute indicating that the pointer member being declared is not to
be transmitted in remote procedure calls.

v ref : An attribute indicating that the pointer member being declared is a reference
pointer; it cannot be NULL and cannot be an alias.

v ptr : An attribute indicating that the pointer member being declared is a full
pointer; it can be NULL and can be an alias.

v unique : An attribute indicating that the pointer member being declared is a
unique pointer.

v string : An attribute indicating that the array member being declared is a string.

v switch_is :

A structure can contain a conformant array (conformant structure) only as its last
member. And such a structure can be contained by another structure only as its last
member, and so on. A conformant structure cannot be returned by an operation as
its value and cannot be simply an out parameter. Note that a structure can contain
any number of pointer to conformant arrays. Structure fields defined as pointers to
an array base type and with one or more of the array size attributes define pointers
to conformant arrays. Since the size of the pointer field in the structure is fixed, the
structure itself is not conformant, although the array that it points to is conformant.

A structure cannot contain a pipe or context handle.

The ignore attribute specifies that the pointer is not to be transmitted in remote
procedure calls. Note that the ignore attribute can be applied only to a pointer that
is a member of a structure. The ignore attribute is not allowed in a type declaration
that defines a pointer type.

Unions

IDL provides two types of unions: encapsulated and nonencapsulated. An IDL union
must be discriminated. In an encapsulated union, the discriminator is part of the
union. In a nonencapsulated union, the discriminator is not part of the union.

The following type_specifier can be used to indicate either kind of union.

union [tag]

A definition of the union identified by tag must appear elsewhere in the interface
definition.

Encapsulated Unions

To define an encapsulated union, use the following syntax:

union [tag] switch (disc_type_spec discriminator) [union_name]
{

case ...

[default_case] }

If a tag is supplied, it can be used in a type_specifier of the form shown in “Unions”.

The disc_type_spec indicates the type of the discriminator, which can be an integer,
a character, a boolean , or an enumeration.

Chapter 18. Interface Definition Language 377

The union_name specifies a name to be used in C code generated by the IDL
compiler. When the IDL compiler generates C code to represent an IDL union, it
embeds the union and its discriminator in a C structure. The name of the IDL union
becomes the name of the C structure. If you supply a union_name in your type
declaration, the compiler assigns this name to the embedded C union; otherwise,
the compiler assigns the generic name tagged_union .

A case contains one or more labels and may contain a member declaration:

case constant:
...
[union_member];

Each label in a case specifies a constant. The constant can take any of the forms
accepted in an integer, character, or Boolean constant declaration, each of which is
described earlier in this chapter.

A default_case can be coded anywhere in the list of cases:

default:

[union_member];

A union_member takes the following form:

[[union_member_attribute, ...]] type_specifier declarator;

A union_member_attribute can be any of the following:

v ptr : An attribute indicating that the pointer member being declared is a full
pointer; it can be NULL and can be an alias.

v string : An attribute indicating that the character array member being declared is
a string.

In any union, the type of the discriminator and the type of all constants in all case
labels must resolve to the same type. At the time the union is used, the value of the
discriminator selects a member, as follows:

v If the value of the discriminator matches the constant in any label, the member
associated with the label is selected.

v If there is no label whose constant matches the value of the discriminator and
there is a default case, the default member is selected.

v If there is no label whose constant matches the value of the discriminator and
there is no default case, no member is selected and the exception
rpc_x_invalid_tag is raised.

Note that IDL prohibits duplicate constant label values.

A union_ member can contain only one declarator. If no union_member is supplied,
the member is NULL; if that member is selected when the union is used, no data is
passed. But note that the discriminator is always passed.

A union cannot contain a pipe, a conformant array, a varying array, or any structure
that contains a conformant or varying array. A union also cannot contain a ref or
unique pointer or any structure that contains a ref or unique pointer.

The following is an example of an encapsulated union.

378 OSF® DCE Application Development Guide —Core Components

/* IDL construct /*

typedef
union fred switch (long a) ralph {
case 1: float b;
case 2: long c;

} bill;

/* becomes in the generated header file /*

typedef
struct fred {
long a;
union {
float b;
long c;

} ralph;
} bill;

Nonencapsulated Unions

To define a nonencapsulated union, use the following syntax:

[switch_type(datatype)] union [tag]
{

case ...

[default_case] }

If a tag is supplied, it can be used in a type_specifier of the form shown in “Unions”
on page 377.

A parameter or a structure field that is a nonencapsulated union must have an
attribute attached to it. This attribute has the following form:

switch_is(attr_var)

where attr_var is the name of the parameter or structure field that is the
discriminator for the union.

If a nonencapsulated union is used as a structure field, the discriminator of the
union must be a field of the same structure. If a nonencapsulated union is used as
a parameter of an operation, the discriminator must be another parameter of the
same operation.

The following example shows uses of a nonencapsulated union.

typedef
[switch_type(long)] union {
[case (1,3)] float a_float;
[case (2)] short b_short;
[default] ; /* An empty arm. Nothing is shipped. */

} n_e_union_t;

typedef
struct {
long a; /* The discriminant for the */
/* union later in this struct. */
[switch_is (a)] n_e_union_t b;

} a_struct;

Chapter 18. Interface Definition Language 379

/* Note switch can follow union in operation */
void op1 (
[in] handle_t h,
[in,switch_is (s)] n_e_union_t u,
[in] long s

);

Enumeration

An IDL enumeration provides names for integers. It is specified as follows:

enum { identifier[= integer], ...}

Each identifier in an enumeration is assigned an integer, either explicitly in the
interface or automatically by the IDL compiler. If all the identifiers are unassigned,
the IDL compiler begins assigning 0 (zero) to the first identifier, 1 to the next
identifier, and so on. If an unassigned identifier follows an assigned one, the
compiler restarts number assignment with the next consecutive integer. An
enumeration can have up to 32,767 identifiers.

Assignments can be made in any order, and multiple identifiers can have the same
value. For example:

typedef enum {
SHOVEL = 9, AX, MATTOCK = 3, PITCHFORK, SPADE = 9
} yard_tools;
/* values assigned: SHOVEL:9, AX:10, MATTOCK:3, PITCHFORK:4, */
/* SPADE:9
*/

Pipes

IDL supports pipes as a mechanism for transferring large quantities of typed data.
An IDL pipe is an open-ended sequence of elements of one type. A pipe permits
application-level optimization of bulk data transfer by allowing the overlap of
communication and processing. Applications that process a stream of data as it
arrives, rather than simply storing the data in memory, can make efficient use of the
pipe mechanism.

A pipe is specified as follows:

pipe type_specifier

The type_specifier specifies the type for the elements of the pipe. This type cannot
be a pointer type, a type that contains a pointer, a conformant type, a context
handle, a handle_t element type, or a data type that is declared as transmit_as .

A pipe type can be used to declare only the type of an operation parameter. IDL
recognizes three kinds of pipes, based on the three operation parameters:

v An in pipe is for transferring data from a client to a server. It allows the callee
(server) to pull an open-ended stream of typed data from the caller (client).

v An out pipe is for transferring data from a server to a client. It allows the callee
(server) to push the stream of data to the caller (client).

v An in,out pipe provides for two-way data transfer between a client and server by
combining the behavior of in and out pipes.

380 OSF® DCE Application Development Guide —Core Components

A pipe can be defined only through a typedef declaration. Anonymous pipe types
are not supported.

At the interface between the stub and the application-specific code (for both the
client and server), a pipe appears as a simple callback mechanism. To the user
code, the processing of a pipe parameter appears to be synchronous. The IDL
implementation of pipes in the RPC stub and runtime allows the apparent callbacks
to occur without requiring actual remote callbacks. As a result, pipes provide an
efficient transfer mechanism for large amounts of data.

Note however, that pipe data communications occur at about the same speed as
arrays. Pipes can improve latency and minimum memory utilization, but not
throughput. Pipes are intended for use where the receiver can process the data in
some way as it arrives, for example by writing it to a file or passing it to a consumer
thread. If the intent is to store the data in memory for later processing, pipes offer
no advantage over arrays.

IDL Pipes Example

To illustrate the IDL implementation of pipes, consider the following IDL fragment:

typedef
pipe element_t pipe_t;

When the code containing this fragment is compiled, the IDL compiler will generate
the following declarations in the derived header file:
typedef struct pipe_t {
void (* pull)(
rpc_ss_pipe_state_t state,
element_t *buf,
idl_ulong_int esize,
idl_ulong_int *ecount

);
void (* push)(
rpc_ss_pipe_state_t state,
element_t *buf,
idl_ulong_int ecount

);
void (* alloc)(
rpc_ss_pipe_state_t state,
idl_ulong_int bsize,
element_t **buf,
idl_ulong_int *bcount

);
rpc_ss_pipe_state_t state;

} pipe_t;

The pipe data structure specifies pointers to three separate routines and a pipe
state. The client application has to implement these routines for the client stub to
call, and the server manager must call the associated routines generated in the
server stub.

The pull routine is used for an input pipe. It pulls the next chunk of data from the
client application into the pipe. The input parameters include the pipe state , the
buffer (*buf) containing a chunk of data, and the size of the buffer (esize) in terms
of the number of pipe data elements. The output parameter is the actual count
(*ecount) of the number of pipe data elements in the buffer.

Chapter 18. Interface Definition Language 381

The push routine is used for an output pipe. It pushes the next chunk of data from
the pipe to the client application. The input parameters include the pipe state , the
buffer (*buf) containing a chunk of data, and a count (ecount) of the number of
pipe data elements in the buffer.

The alloc routine allocates a buffer for the pipe data. The input parameters include
the pipe state and the requested size of the buffer (bsize) in bytes. The output
parameters include a pointer to the allocated buffer (**buf), and the actual count
(bcount) of the number of bytes in the buffer. The routine allocates memory from
which pipe data can be marshalled or into which pipe data can be marshalled. If
less memory is allocated than requested, the RPC runtime uses the smaller
memory and makes more callbacks to the user. If the routine allocates more
memory than requested, the excess memory is not used.

Finally, the state is used to coordinate between these routines.

For more on how to write the code for the client and server manager, see
“Chapter 17. Topics in RPC Application Development” on page 313.

Rules for Using Pipes

Observe the following rules when defining pipes in IDL:

v Pipe types must only be parameters. In other words, pipes of pipes, arrays of
pipes, and structures or unions containing pipes as members are illegal.

v A pipe cannot be a function result.

v The element type of a pipe cannot be a pointer or contain a pointer.

v The element type of a pipe cannot be a context_handle or handle_t type.

v A pipe type cannot be used in the definition of another type. For example, the
following code fragment is illegal:

typedef
pipe char pipe_t;

typedef
pipe_t * pipe_p_t;

v A pipe type cannot have the transmit_as attribute.

v The element type of a pipe cannot have the transmit_as attribute.

v A pipe parameter can be passed by value or by reference. A pipe that is passed
by reference (that is, has an * (asterisk)) cannot have the ptr or unique
parameter attributes.

v Pipes that pass data from the client to the server must be processed in the order
in which they occur in an operation’s signature. All such pipes must be processed
before data is sent from the server to the client.

v Pipes that pass data from the server to the client must be processed in the order
in which they occur in an operation’s signature. No such pipes must be
processed until all data has been sent from the client to the server.

v Manager routines must reraise RPC pipe and communications exceptions so that
client stub code and server stub code continue to execute properly.

For example, consider an interface that has an out pipe along with other out
parameters. Suppose that the following sequence of events occurs:

– The manager routine closes the pipe by writing an empty chunk whose length
is 0 (zero).

– The manager routine attempts to write another chunk of data to the pipe.

382 OSF® DCE Application Development Guide —Core Components

– The generated push routine raises the exception rpc_x_fault_pipe_closed .

– The manager routine catches the exception and does not reraise it.

– The manager routine exits normally.

– The server stub attempts to marshall the out parameters.

After this sequence, neither the server stub nor the client stub can continue to
execute properly.

To avoid this situation, you must reraise the exception.

v A pipe cannot be used in an operation that has the broadcast or idempotent
attribute.

v The element type of a pipe cannot be a conformant structure.

v The maximum length of pipe type IDs is 29 characters.

Arrays

IDL supports the following types of arrays:

v Fixed: The size of the array is defined in IDL and all of the data in the array is
transferred during the call.

v Conformant: The size of the array is determined at runtime. At least one bound of
the array is determined at runtime by a value referenced through a min_is ,
max_is , or size_is attribute. All of the data in the array is transferred during the
call.

v Varying: The size of the array is defined in IDL but the part of its contents
transferred during the call is determined by the values of fields or parameters
named in one or more data limit attributes. The data limit attributes are first_is ,
length_is , and last_is .

An array can also be both conformant and varying (or, as it is sometimes termed,
open). In this case, the size of the array is determined at runtime by the value of
the field or parameter referenced by the min_is , max_is or size_is attributes. The
part of its contents transferred during the call is determined by the values of fields
or parameters named in one or more of the data limit attributes.

An IDL array is declared via an array_declarator construct whose syntax is as
follows:

array_identifier array_bounds_declarator ...

An array_bounds_declarator must be specified for each dimension of an array.

Array Bounds

The array_bounds_declarator for the first dimension of an array can take any of the
following forms:

[lower.. upper]
The lower bound is lower. The upper bound is upper.

[size] The lower bound is 0 (zero). The upper bound is size − 1.

[*] The lower bound is 0 (zero). The upper bound is determined by a max_is
or size_is attribute.

[] The lower bound is 0 (zero). The upper bound is determined by a max_is
or size_is attribute.

Chapter 18. Interface Definition Language 383

[lower ..]
The lower bound is lower. The upper bound is determined by a max_is or
size_is attribute.

[* .. upper]
The lower bound is determined by a min_is attribute. The upper bound is
upper.

[* .. *] The lower bound is determined by a min_is attribute. The upper bound is
determined by a size_is or max_is attribute.

Conformance in Dimensions Other Than the First

If a multidimensional array is conformant in a dimension other than the first, the C
description for this array, which is located in the header (.h) file generated by the
IDL compiler, will be a one-dimensional conformant array of the appropriate element
type. This occurs because there is no “natural” C binding for conformance in
dimensions other than the first.

The following examples show how IDL type definitions and parameter declarations
that contain bounds in dimensions other than the first are translated into their C
equivalents at runtime.

IDL Type Definition:

typedef struct {
long a;
long e;
[max_is(,,e),min_is(a)] long g7[*..1][2..9][3..*];

} t3;

C Translation:

typedef struct {
idl_long_int a;
idl_long_int e;
idl_long_int g7[1];

IDL Parameter Declaration:

[in,out,max_is(,,e),min_is(a)] long g7[*..1][2..9][3..*];

C Translation:

/* [in, out] */ idl_long_int g7[]

Arrays that have a nonzero first lower bound and a first upper bound that is
determined at runtime are translated into the equivalent C representation of a
conformant array, as shown in the following IDL type definition and parameter
declaration examples:

IDL Type Definition:

typedef struct {
long s;
[size_is(s)] long fa3[3..*][-4..1][-1..2];

} t1;

C Translation:

384 OSF® DCE Application Development Guide —Core Components

typedef struct {
idl_long_int s;
idl_long_int fa3[1][6][4];

} t1;

IDL Parameter Declaration:

[in,out,size_is(s)] long fa3[3..*][-4..1][-1..2]

C Translation:

/* [in, out] */ idl_long_int fa3[][6][4]

Array Attributes

Array attributes specify the size of an array or the part of an array that is to be
transferred during a call. An array attribute specifies a variable that is either a field
in the same structure as the array or a parameter in the same operation as the
array.

An array_attribute can take the following forms:

min_is ([*] variable)
max_is ([*] variable)
size_is ([*] variable)
last_is ([*] variable)
first_is ([*] variable)
length_is ([*] variable)

where variable specifies a variable whose value at runtime will determine the bound
or element count for the associated dimension. A pointer variable is indicated by
preceding the variable name with an * (asterisk).

If the array is a member of a structure, any referenced variables must be members
of the same structure. If the array is a parameter of an operation, any referenced
variables must be parameters of the same operation.

Only the ..._is(variable) form is allowed when the array is a field of a structure. In
this case, the ..._is(* variable) form is not allowed.

Note that an array with an array attribute (that is, a conformant or varying array) is
not allowed to have the transmit_as attribute.

The min_is Attribute: The min_is attribute is used to specify the variable(s) from
which the values of one or more lower bounds of the array will be obtained at
runtime. If any dimension of an array has an unspecified lower bound, the array
must have a min_is attribute. A variable must be identified for each such
dimension. The following examples show the syntax of the min_is attribute:
/* Assume values of variables are as
follows
long a = -10;
long b = -20;
long c = -30;

*/

long [min_is(a)] g1[*..10]; /* g1[-10..10] */
long [min_is(a)] g2[*..10][4]; /* g2[-10..10[0..3] */
long [min_is(a,b)] g3[*..10][*..20]; /* g3[-10..10][-20..20] */

Chapter 18. Interface Definition Language 385

long [min_is(,b)] g4[2][*..20]; /* g4[0..1][-20..20] */
long [min_is(a,,c)] g5[*..7][2..9][*..8];

/* g5[-10..7][2..9][-30..8] */
long [min_is(a,b,)] g6[*..10][*..20][3..8];

/* g6[-10..10][-20..20][3..8]
*/

The following examples show the min_is attribute being applied to the first
dimension of an array in an IDL type definition and parameter declaration, and how
the definition or parameter is translated into its C equivalent:

IDL Type Definition:

typedef struct {
long n;

[min_is(n)] long fa3[*..10][-4..1][-1..2]
} t2;

C Translation:

typedef struct {
idl_long_int n;
idl_long_int fa3[1][6][4];

} t2;

IDL Parameter Declaration:

[in,out,min_is(n)] long fa3[*..10][-4..1][-1..2]

C Translation:

/* [in, out] */ idl_long_int fa3[][6][4]

The max_is Attribute: The max_is attribute is used to specify the variables from
which the values of one or more upper bounds of the array are obtained at runtime.
If any dimension of an array has an unspecified upper bound, the array must have
a max_is or size_is attribute. A variable must be identified for each dimension in
which the upper bound is unspecified. In a max_is attribute, the value in the
identified variable specifies the maximum array index in that dimension. An array
with one or more unspecified upper bounds may have a max_is attribute or a
size_is attribute, but not both.

The max_is attribute is for use with conformant arrays. The following is an example
of the max_is attribute:
/* Assume values of variables are as follows:
long a = 10;
long b = 20;
long c = 30;

*/

long [max_is(a)] f1[]; /* f1[0..10] /*
long [max_is(a)] f2[][4]; /* f2[0..10][0..3] */
long [max_is(a,b)] f3[][]; /* f3[0..10][0..20] */
long [max_is(,b)] f4[2][]; /* f4[0..1][0..20] */
long [max_is(a,,c)] f5[1..*][2..9][3..*]; /* f5[1..10][2..9][3..30] */
long [max_is(a,b,)] f6[1..*][2..*][3..8]; /* f6[1..10][2..20][3..8] */

The size_is Attribute: The size_is attribute is used to specify the variables from
which the values of the element counts for one or more dimensions of the array are
obtained at runtime. If any dimension of an array has an unspecified upper bound,

386 OSF® DCE Application Development Guide —Core Components

the array must have a max_is or size_is attribute. A variable must be identified for
each dimension in which the upper bound is unspecified. In a size_is attribute, the
value in the identified variable specifies the number of elements in that dimension.
An array with one or more unspecified upper bounds may have a max_is attribute
or a size_is attribute, but not both.

The size of a dimension is defined as the upper bound, minus the lower bound, + 1.

The size_is attribute is for use with conformant arrays. The following is an example
of the size_is attribute:
/* Assume the following values for the referenced
variables:
n3 = 5;
x2 = 12;
x3 = 14;
z2 = 9;
z3 = 10;

*/

/* The following declaration */

int [min_is(,,n3),max_is(,x2,x3)] hh[3..13,4..*,*..*];

/* specifies the same data to be */
/* transmitted as the declaration */

int [min_is(,,n3),size_is(,z2,z3)]
hh[3..13,4..*,*..*];

The last_is Attribute: The last_is attribute is one of the attributes that can be
used to allow the amount of data in an array that will be transmitted to be
determined at runtime. Each last_is attribute specifies an upper data limit, which is
the highest index value in that dimension for the array elements to be transmitted. If
the entry in a last_is attribute for a dimension is empty, the effect is as if the upper
bound in that dimension had been specified.

An array can have either the last_is attribute or the length_is attribute, but not
both.

When an array with the last_is attribute is used in a remote procedure call, the
elements actually passed in the call can be a subset of the maximum possible.

The last_is attribute is for use with varying arrays. The following is an example of
the last_is attribute:
/* Assume the following values for the
referenced variables:
long a = 1;
long b = 2;
long c = 3;
long e = 25;
long f = 35;

*/

long [last_is(a,b)] bb1[10][20]; /* transmit bb1[0..1][0..2] */
long [last_is(a,b)] bb2[-1..10][-2..20][-3..30];

/* transmit bb2[-1..1][-2..2][-3..30] */
long [last_is(a,,c)] bb3[-1..10][-2..20][-3..30];

/* transmit bb3[-1..1][-2..20][-3..3] */
long [last_is(,b,c),max_is(,e)] cc1[10][][30];

Chapter 18. Interface Definition Language 387

/* transmit cc1[0..9][0..2][0..3] */
long [last_is(a,b),max_is(,e,f)] cc2[-4..4][][];

/* transmit cc2[-4..1][0..2][0..35] */

The first_is Attribute: The first_is attribute is one of the attributes that can be
used to allow the amount of data in an array that will be transmitted to be
determined at runtime. Each first_is attribute specifies a lower data limit, which is
the lowest index value in that dimension for the array elements to be transmitted. If
the entry in a first_is attribute for a dimension is empty, the effect is as if the lower
bound in that dimension had been specified.

When an array with the first_is attribute is used in a remote procedure call, the
elements actually passed in the call can be a subset of the maximum possible.

The first_is attribute is for use with varying arrays. The following is an example of
the first_is attribute:
/* Assume the following values for the
referenced variables:
long p = -1;
long q = -2;
long r = -3;
long t = -25;
long u = -35;
long x = 1;
long y = 2;
long z = 3;

*/

long [first_is(p)] dd1[-10..10]; /* transmit dd1[-1..10] */
long [first_is(p),last_is(x)] dd2[-10..10]; /* transmit dd2[-1..1] */
long [first_is(p,q)] ee1[-10..10][-20..20];

/* transmit ee1[-1..10][-2..20] */
long [first_is(p,q)] ee2[-10..10][-20..20][-30..30];

/* transmit ee2[-1..10][-2..20][-30..30] */
long [first_is(p,q,r),last_is(,,z)] ee3[-10..10][-20..20][-30..30]:

/* transmit ee3[-1..10][-2..20[-3..30] */
double [first_is(,q,r),min_is(,t)] ff1[10][*..2][-30..30];

/* transmit ff1[0..9][-2..2][-3..30] */
double [first_is(p,q),min_is(,t,u)] ff2[-4..4][*..2][*..35];

/* transmit ff2[-1..4][-2..2][-35..35] */
double [max_is(x,,z),min_is(,t,u),first_is(p,,r)] ff3[-20..*][*..30][*..*]

/* transmit ff3[-1..1][-25..30][-3..3] */

The length_is Attribute: The length_is attribute is one of the attributes that can
be used to allow the amount of data in an array that will be transmitted to be
determined at runtime. Each length_is attribute specifies the number of elements in
that dimension to be transmitted. If the entry in a length_is attribute for a
dimension is empty, the effect is for the highest index value in that dimension for
the elements to be transmitted to be determined from the upper bound in that
dimension.

An array can have either the last_is attribute or the length_is attribute, but not
both.

When an array with the length_is attribute is used in a remote procedure call, the
elements actually passed in the call can be a subset of the maximum possible.

The length_is attribute is for use with varying arrays. The following is an example
of the length_is attribute:

388 OSF® DCE Application Development Guide —Core Components

/* Assume the following values for the referenced
variables:
n3 = 5;
f2 = 10;
a1 = 11;
a2 = 12;
a3 = 14;
e1 = 9;
e2 = 3;
e3 = 10;

*/
/* The following declaration: */

int [min_is(,,n3),first_is(,f2,),last_is(a1,a2,a3)] \
gg[3..13,4..14,*..15];

/* specifies the same data to be */
/* transmitted as the declaration: */

int [min_is(,,n3),first_is(,f2,),length_is(e1,e2,e3)] \
gg[3..13,4..14,*..15];

Rules for Using Arrays

Observe the following rules when defining arrays in IDL:

v A structure can contain only one conformant array, which must be the last
member in the structure.

v Conformant arrays are not valid in unions.

v A structure parameter containing a conformant array can be passed only by
reference.

v Arrays that have the transmit_as attribute cannot be conformant or varying
arrays.

v The structure member or parameter referenced in an array attribute cannot be
defined to have either the represent_as or transmit_as attribute.

v Array bounds must be integers. Array attributes can reference only structure
members or parameters of integer type.

v A parameter that is referenced by an array attribute on a conformant array must
have the in attribute.

v Array elements cannot be context handles or pipes, or conformant arrays or
conformant structures.

Strings

IDL implements strings as one-dimensional arrays to which the string attribute is
assigned. The element type of the array must resolve to one of the following:

v Type char

v Type byte

v A structure all of whose members are of type byte or of a named type that
resolves to byte

v A named type that resolves to one of the previous three types

v Type unsigned short

v Type unsigned long

v A named type that resolves to unsigned short or unsigned long

Strings built from byte or char data types are referred to as byte-string types while
strings built from unsigned short or unsigned long types are called integer-string

Chapter 18. Interface Definition Language 389

types. Integer string types allow for multioctet character sets whose characters are
represented by 16-bit or 32-bit quantities, rather than as groups of bytes. For
example:
/* A structure that contains a fixed string */
/* and a conformant string */
typedef unsigned long PRIVATE_CHAR_32;
typedef struct {
[string] PRIVATE_CHAR_32 fixed[27];
[string] PRIVATE_CHAR_32 conf[];

} two_strings;

/* A structure that contains pointers to two strings */
typedef unsigned short PRIVATE_CHAR_16;
typedef struct {
[string] PRIVATE_CHAR_16 *astring;
[string] PRIVATE_CHAR_16 *bstring;

} stringptrs;

Integer-string types use the array element zero (0) to specify the string terminator,
while byte-string types use the NULL character. Both byte-type and integer-type
strings conform to the same usage rules.

An array with the string attribute represents a string of characters. The string
attribute does not specify the format of the string or the mechanism for determining
its length. Implementations of IDL provide string formats and mechanisms for
determining string lengths that are compatible with the programming languages in
which applications are written. For DCE RPC IDL, the number of characters in a
string array includes the NULL terminator (for byte-string types) or the zero (0)
terminator (for integer-string types), and the entire terminated string is passed
between stubs.

The array_bounds_declarator for a string array determines the maximum number
of characters in the array. Note that, when you declare a string, you must allocate
space for one more than the maximum number of characters the string is to hold.
For instance, if a string is to store 80 characters, the string must be declared with a
size of 81:

/* A string type that holds 80 characters */
typedef
[string] char string_t [81];

If an array has the string attribute or if the type of an array has the string attribute,
the array cannot have the first_is , the last_is , or the length_is attribute.

Pointers

Use the following syntax to declare an IDL pointer:

[]...pointer_identifier

The * (asterisk) is the pointer operator, and multiple asterisks indicate multiple
levels of indirection.

Pointer Attributes

Pointers are used for several purposes, including implementing a parameter
passing mechanism that allows a data value to be returned, and building complex
data structures.

390 OSF® DCE Application Development Guide —Core Components

IDL offers three classes of pointers: reference pointers, full pointers, and unique
pointers. The attributes that indicate these pointers are as follows:

v ref : Indicates reference pointers. This is the default for top-level pointers used in
parameters.

v ptr : Indicates full pointers.

v unique : Indicates unique pointers.

Pointer attributes are used in parameters, in structure and union members, and in
type definitions. In some instances, IDL infers the applicable pointer class from its
usage. However, most pointer declarations require that you specify a pointer class
by using one of the following methods:

v Use the ref , ptr , or unique attribute in the pointer declaration.

v Use the pointer_default attribute in the IDL interface heading. The default
pointer class is determined by the pointer_default attribute.

Pointer attributes are applied only to the top-level pointer within the declaration. If
multiple pointers are declared in a single declaration, the pointer_default
established applies to all but the top-level pointer. (See “Pointer Attributes in
Parameters” on page 394, which describes pointer attributes in parameters.)

Examples of pointers are shown at the end of this section.

Reference Pointers: A reference pointer is the least complex form of pointer. The
most common use for this class of pointer is as a passing mechanism; for example,
passing an integer by reference. Reference pointers have significantly better
performance than full pointers, but are restrictive; you cannot create a linked list by
using a reference pointer because a reference pointer cannot have a NULL value,
and the list cannot be terminated.

A reference pointer has the following characteristics:

v It always points to valid storage; it can never have a NULL value.

v Its value does not change during a call; it always points to the same storage on
return from the call as it did when the call was made.

v It does not support aliasing; it cannot point to a storage area that is pointed to by
any other pointer used in a parameter of the same operation.

When a manager routine is entered, all the reference pointers in its parameters will
point to valid storage, except those reference pointers that point neither to targets
whose size can be determined at compile time nor to values that have been
received from the client.

In the following example, the size of the targets of the reference pointers can be
calculated at compilation time:

typedef [ref] long *rpl;

void op1([in] long f,
[in] long l,
[in,first_is(f),last_is(l)] rpl rpla[10]);

For this example, when the manager is entered, all the pointers in rpla will point to
usable storage, although only *rpla[f] through *rpla[l] will be the values received
from the client.

Chapter 18. Interface Definition Language 391

Conversely, the size of the targets of the reference pointers cannot be calculated at
compile time in the following example:

typedef [ref,string] char *rps;

void op1([in] long f,
[in] long l,
[in,first_is(f),last_is(l)] rps rpsa[10]);

In this case, only rpsa[f] through rpsa[l] , which point to values received from the
client, will point to usable storage.

Full Pointers: A full pointer is the most complex form of pointer. It supports all
capabilities associated with pointers. For example, by using a full pointer you can
build complex data structures such as linked lists, trees, queues, or arbitrary
graphs.

A full pointer has the following characteristics:

v Its value can change during a call; it can change from a NULL to non-NULL
value, non-NULL to NULL, or from one non-NULL value to another non-NULL
value.

v It supports aliasing; it can point to a storage area that is also pointed to by any
other full pointer used in a parameter of the same operation. However, all such
pointers must point to the beginning of the structure. There is no support for
pointers to substructures or to overlapping storage areas. For example, if the
interface definition code contains the following:
[uuid(0e256080-587c-11ca-878c-08002b111685), version(1.0)]
interface overlap
{
typedef struct {

long bill;
long charlie;

} foo;
typedef struct {

long fred;
foo ken;

} bar;

void op ([in] foo *f, [in] bar *b);
}

and the client application code includes the following:

bar bb;
.
.
.

op (&bb.ken, &bb);

then the server stub treats these two separate parameters as distinct, and the
manager application code does not see them as overlapping storage.

v It allows dynamically allocated data to be returned from a call.

Note that you might need to take some extra steps if you use large linked lists in
your application. Linked lists are marshalled and unmarshalled using recursion
which can cause the stack size to grow. Linked lists usually do not cause problems
in simple clients that do not spawn threads for remote procedure calls. In this case,
the stack can grow as needed.

392 OSF® DCE Application Development Guide —Core Components

Large linked lists can cause problems in servers because the server’s thread-stack
usually cannot grow automatically. Large lists can overrun the stack, causing the
server to crash.

DCE offers several ways to avoid this server memory problem while using large
linked lists.

One method is to increase the server stack size using the
rpc_mgmt_set_server_stack_size() routine. This method is useful when you
suspect that the linked list is just slightly larger than the server stack. For
information about using the rpc_mgmt_set_server_stack_size() routine, refer to
the OSF DCE Application Development Reference.

If you suspect that the list size is much greater than the stack, you can convert the
list to an array using the transmit_as idl attribute. Servers handle arrays by
allocating memory from the heap rather than from the stack. For information about
using the transmit_as idl attribute, refer to “Chapter 19. Attribute Configuration
Language” on page 425 in this guide.

Unique Pointers: A unique pointer is more flexible than a reference pointer.
However, both types of pointers share several important characteristics.

A unique pointer has the following characteristics:

v It can have a NULL value.

v It can change from NULL to non-NULL during a call. This change results in
memory being allocated on return from the call, whereby the result is stored in
the allocated memory.

v It can change from non-NULL to NULL during a call. This change can result in
the orphaning of the memory pointed to on return from the call. Note that, if a
unique pointer changes from one non-NULL value to another non-NULL value,
the change is ignored.

v It does not identify particular extents of memory, but only extents of memory that
are suitable for storing the data. If it is important to know that the data is being
stored in a specific memory location, then you should use a full pointer.

v If it has a value other than NULL, output data is placed in existing storage.

Unique pointers are similar to reference pointers in the following ways:

v No storage pointed to by a unique pointer can be reached from any other name
in the operation. That is, a unique pointer does not allow aliasing of data within
the operation.

v Data returned from the called subroutine is written into the existing storage
specified by the unique pointer, if the pointer did not have the value NULL.

With regard to performance, unique pointers have an advantage over full pointers
because unique pointers do not support the referencing of common data by more
than one pointer (aliasing), and they are significantly more flexible than reference
pointers because they can have a value of NULL.

Unique pointers are particularly suitable for creating optional parameters (because
you can specify them as NULL) and for simple tree or singly linked-list data
structures. You specify the three different levels of pointers by attributes, as follows:

[ref] Reference pointers

Chapter 18. Interface Definition Language 393

[unique]
Unique pointers

[ptr] Full pointers

The following example shows how a unique pointer can be used:

[
uuid(D37A0E80-5D23-11C9-B199-08002B13D56D)

] interface Unique_ptrs
{
typedef [ref] long *r_ptr;
typedef [unique] long *u_ptr;
typedef [ptr] long *f_ptr;

void op1 (
[ref,in,out,string] char *my_rname,
[unique,in,out,string] char *my_uname,
[ptr,in,out,string] char *my_pname
);

}

Pointer Attributes in Parameters

A pointer attribute can be applied to a parameter only if the parameter contains an
explicit pointer declaration (*).

By default, a single pointer (*) operator in a parameter list of an operation
declaration is treated as a reference pointer. To override this, specify a pointer
attribute for the parameter. When there is more than one pointer operator, or
multiple levels of indirection in the parameter list, the rightmost pointer is the
top-level pointer; all pointers to the left of the rightmost pointer are of a lower level.
The top-level pointer is treated as a reference pointer by default; the lower-level
pointers have the semantics specified by the pointer_default attribute in the
interface.

The following example illustrates the use of top- and lower-level pointers:

void op1 ([in] long **p_p_l)

In this example, p_p_l is a pointer to a pointer to a long integer. The first or leftmost
pointer (*) signifies that the pointer to the long integer is a lower-level pointer, and
the second or rightmost pointer (*) signifies that the pointer to the pointer is a
top-level pointer.

Any pointer attribute you specify for the parameter applies to the top-level pointer
only. Note that unless you specify a pointer attribute, the top-level explicit pointer
declaration in a parameter defaults to a reference pointer even if the
pointer_default(ptr) interface attribute is specified.

Using a reference pointer improves performance but is more restrictive. For
example, the pointer declared in the following operation, for the parameter
int_value , is a reference pointer. An application call to this operation can never
specify NULL as the value of int_value .

void op ([in] long *int_value);

To pass a NULL value, use a full pointer. The following two methods make
int_value into a full pointer:

394 OSF® DCE Application Development Guide —Core Components

v Applying the ptr attribute to the declaration of the parameter, int_value :

void op ([in, ptr] long *int_value);

v Using the pointer_default (ptr) attribute in an interface header :

[uuid(135e7f00-1682-11ca-bf61-08002b111685,
pointer_default(ptr),
version(1.0)] interface full_pointer

{
typedef long *long_ptr;
void op ([in] long_ptr int_value);
}

A NULL pointer can also be passed via a unique pointer.

Array Attributes on Pointers

To apply array attributes to pointers, use the max_is or size_is attributes. When
applied to a pointer, the max_is and size_is attributes convert the pointer from a
single element of a certain type to a pointer to an array of elements of that type.
The number of elements in the array is determined by the variable in the max_is
and size_is attributes.

Pointer Attributes in Function Results

Function results that are pointers are always treated as full pointers. The ptr
attribute is allowed on function results but it is not mandatory. The ref pointer
attribute is never allowed on function results.

A function result that is a pointer always indicates new storage. A pointer parameter
can reference storage that was allocated before the function was called, but a
function result cannot.

Pointers in Structure Fields and Union Case

If a pointer is declared in a member of a structure or union, its default is determined
by the pointer_default attribute you specify for the interface. To override this,
specify a pointer attribute for the member.

Resolving a Possible Pointer Ambiguity

A declaration of the following form raises a possible ambiguity about the type of
myarray:
void op ([in, out] long s, [in, out, size_is(s)] long **myarray);

IDL defines myarray in this case to be an array of pointers to longs , not a pointer to
an array of longs . The max_is and size_is attributes always apply to the top-level,
or rightmost, * (asterisk) in the IDL signature of a parameter.

Rules for Using Pointers

Use the following rules when developing code in IDL:

v Do not use the full pointer attribute on the following:

– The parameter in the first parameter position, when that parameter is of type
handle_t or is of a type with the handle attribute.

– Context handle parameters.

– A parameter that has the output attribute (out), but not the input attribute (in).

Chapter 18. Interface Definition Language 395

v The element type of a pipe must not be a pointer or a structure containing a
pointer.

v A member of a union or a structure contained in a union cannot contain a
reference pointer.

v A reference pointer must point to valid storage at the time the call is made.

v A parameter containing a varying array of reference pointers must have all array
elements initialized to point to valid storage even if only a portion of the array is
input, since the manager code (the application code supporting an interface on a
server) may use the remaining array elements. (Recall that a varying array is one
to which any of the array attributes first_is, last_is, length_is is applied).

v The type name in a declaration that defines a pointer type must have no more
than 28 characters.

Memory Management for Pointed-to Nodes

A full pointer can change its value across a call. Therefore, stubs must be able to
manage memory for the pointed-to nodes. Managing memory involves allocating
and freeing memory for user data structures.

Allocating and Freeing Memory: Manager code within RPC servers usually uses
the rpc_ss_allocate() routine to allocate storage. Storage that is allocated by
rpc_ss_allocate() is released by the server stub after any output parameters have
been marshalled by the stubs. Storage allocated by other allocators is not released
automatically but must be freed by the manager code. When the manager code
makes a remote call, the default memory management routines are
rpc_ss_allocate() and rpc_ss_free() .

The syntax of the rpc_ss_allocate() routine is as follows:

idl_void_p_t rpc_ss_allocate (idl_size_t size);

The size parameter specifies the size of the memory allocated.

Note: In ANSI standard C environments, idl_void_p_t is defined as void * and in
other environments is defined as char * .

Use rpc_ss_free() to release storage allocated by rpc_ss_allocate() . You can also
use the rpc_ss_free() routine to release storage pointed to by a full pointer in an
input parameter and have the freeing of the memory reflected on return to the
calling application by specifying the reflect_deletions attribute as an
operation_attribute. See “Declarations” on page 359 for more information.

The syntax of the routine is as follows:

void rpc_ss_free (idl_void_p_t node_to_free);

The node_to_free parameter specifies the location of the memory to be freed.

Enabling and Disabling Memory Allocation: It may be necessary to call
manager routines from different environments; for example, when the application is
both a client and a server of the same interface. In this case, the same routine may
be called both from server manager code and from client code. The
rpc_ss_allocate() routine, when used by the manager code to allocate memory,
must be initialized before its first use. The stub performs the initialization

396 OSF® DCE Application Development Guide —Core Components

automatically. Code, other than stub code, that calls a routine, which in turn calls
rpc_ss_allocate() , first calls the rpc_ss_enable_allocate() routine.

The syntax of the routine is as follows:

void rpc_ss_enable_allocate (void);

The environment set up by the rpc_ss_enable_allocate() routine is released by
calling the rpc_ss_disable_allocate() routine. This routine releases all memory
allocated by calls to rpc_ss_allocate() since the call to rpc_ss_enable_allocate()
was made. It also releases memory that was used by the memory management
mechanism for internal bookkeeping.

The syntax of the rpc_ss_disable_allocate() routine is as follows:

void rpc_ss_disable_allocate (void);

Advanced Memory Management Support

Memory management may also involve setting and swapping the mechanisms used
for allocating and freeing memory. The default memory management routines are
malloc() and free() , except when the remote call occurs within manager code, in
which case the default memory management routines are rpc_ss_allocate() and
rpc_ss_free() .

Setting the Client Memory Mechanism: Use the rpc_ss_set_client_alloc_free()
routine to establish the routines used in allocating and freeing memory.

The syntax of the routine is as follows:

void rpc_ss_set_client_alloc_free (
idl_void_p_t (*p_allocate) (
idl_size_t size),

void (*p_free) (
idl_void_p_t ptr)

);

The p_allocate parameter points to a routine that has the same procedure
declaration as the malloc() routine, and is used by the client stub when performing
memory allocation. The p_free parameter points to a routine that has the same
procedure declaration as the free() routine, and is used by the client stub to free
memory.

Swapping Client Memory Mechanisms: This routine exchanges the current
client allocation and freeing mechanism for one supplied in the call. The primary
purpose of this routine is to simplify the writing of modular routine libraries in which
RPC calls are made. To preserve modularity, any dynamically allocated memory
returned by a modular routine library must be allocated with a specific memory
allocator. When dynamically allocated memory is returned by an RPC call that is
then returned to the user of the routine library, use
rpc_ss_swap_client_alloc_free() , before making the RPC call, to make sure the
desired memory allocator is used. Prior to returning, the modular routine library calls
rpc_ss_set_client_alloc_free() to restore the previous memory management
mechanism.

The syntax of the routine is as follows:

Chapter 18. Interface Definition Language 397

void rpc_ss_swap_client_alloc_free (
idl_void_p_t (*p_allocate) (

idl_size_t size),
void (*p_free) (
idl_void_p_t ptr),

idl_void_p_t (**p_p_old_allocate) (
idl_size_t size),

void (**p_p_old_free) (
idl_void_p_t ptr)

);

The p_allocate parameter points to a routine that has the same procedure
declaration as the malloc() routine, and is used by the client stub when performing
memory allocation. The p_free parameter points to a routine that has the same
procedure declaration as the free() routine, and is used by the client stub to free
memory. The p_p_old_allocate parameter points to a pointer to a routine that has
the same procedure declaration as the malloc() routine, and is the default routine
used for memory allocation in the client stub. The p_p_old_free parameter points to
a pointer to a routine that has the same procedure declaration as the free() routine,
and is used for memory release in the client.

Use of Thread Handles in Memory Management

There are two situations where control of memory management requires the use of
thread handles. The more common situation is when the manager thread spawns
additional threads. The less common situation is when a program transitions from
being a client to being a server, then reverts to being a client.

Spawning Threads: When a remote procedure call invokes the manager code,
the manager code may wish to spawn additional threads to complete the task for
which it was called. To spawn additional threads that are able to perform memory
management, the manager code must first call the rpc_ss_get_thread_handle()
routine to get its thread handle and then pass that thread handle to each spawned
thread. Each spawned thread that uses the rpc_ss_allocate() and rpc_ss_free()
routines for memory management first calls the rpc_ss_set_thread_handle()
routine by using the handle obtained by the original manager thread.

These routine calls allow the manager and its spawned threads to share a common
memory management environment. This common environment enables memory
allocated by the spawned threads to be used in returned parameters, and causes
all allocations in the common memory management environment to be released
when the manager thread returns to the server stub.

The main manager thread must not return control to the server stub before all the
threads it spawned complete execution; otherwise, unpredictable results may occur.

The listener thread can cancel the main manager thread if the remote procedure
call is orphaned or if a cancellation occurs on the client side of the application. You
should code the main manager thread to terminate any spawned threads before it
exits. The code should anticipate exits caused by an unexpected exception or by
being canceled.

Your code can handle all of these cases by including a TRY/FINALLY block to
clean up any spawned threads if a cancellation or other exception occurs. If
unexpected exceptions do not concern you, then your code can perform two steps.
They are disabling cancelability before threads are spawned followed by enabling
cancelability after the join operation finishes and after testing for any pending cancel

398 OSF® DCE Application Development Guide —Core Components

operations. Following this disable/enable sequence prevents routine pthread_join()
from producing a cancel point in a manager thread that has spawned threads
which, in turn, share thread handles with the manager thread.

Transitioning from Client to Server to Client: Immediately before the program
changes from a client to a server, it must obtain a handle on its environment as a
client by calling rpc_ss_get_thread_handle() . When it reverts from a server to a
client, it must reestablish the client environment by calling the
rpc_ss_set_thread_handle() routine, supplying the previously obtained handle as
a parameter.

Syntax for Thread Routines: The syntax for the rpc_ss_get_thread_handle()
routine is as follows:

rpc_ss_thread_handle_t rpc_ss_get_thread_handle(void);

The syntax for the rpc_ss_set_thread_handle() routine is as follows:

void rpc_ss_set_thread_handle (
rpc_ss_thread_handle_t id
);

The rpc_ss_thread_handle_t() value identifies the thread to the RPC stub support
library. The id parameter indicates the thread handle passed to the spawned thread
by its creator, or the thread handle returned by the previous call to
rpc_ss_get_thread_handle() .

Rules for Using the Memory Management Routines

You can use the rpc_ss_allocate() routine in the following environments:

v The manager code for an operation that has a full pointer in its argument list

v The manager code for an operation to which the enable_allocate ACF attribute
is applied

v Code that is not called from a server stub but that has called the
rpc_ss_enable_allocate() routine

v A thread, spawned by code of any of the previous three types, that has made a
call to the rpc_ss_set_thread_handle() routine using a thread handle obtained
by this code

Examples Using Pointers

The examples in this subsection contain the following files, listed here with the
function of each file:

STRING_TREE.IDL
Defines data types and interfaces

CLIENT.C
User of the interface

MANAGER.C
Server code that implements the procedure

SERVER.C
Declares the server; enables the client code to find the interface it needs

STRING_TREE.OUTPUT
Shows the output

Chapter 18. Interface Definition Language 399

The STRING_TREE.IDL Example
[uuid(0144d600-2d28-11c9-a812-08002b0ecef1), version(0)]
interface string_tree
{
/*
* Maximum length of a string in the tree
*/

const long int st_c_name_len = 32;

/*
* Definition of a node in the tree.
*/

typedef struct node
{
[string] char name[0..st_c_name_len];
[ptr] struct node *left;
[ptr] struct node *right;

} st_node_t;

/*
* Operation that prunes the left subtree of the specified
* tree and returns it as the value.
*/

st_node_t *st_prune_left (
[in, out] st_node_t *tree /* root of tree by ref */
);

}

The CLIENT.C Example
#include <stdio.h>
#include "string_tree.h"

#include <stdlib.h>

/*
** Routine to print a depiction of the tree
*/
void st_print_tree (tree, indent)
st_node_t *tree;
int indent;

{
int i;
if (tree == NULL) return;
for (i = 0; i < indent; i++) printf(" ");
printf("%s\n",tree->name);
st_print_tree(tree->left, indent + 1);
st_print_tree(tree->right, indent + 1);

}
/*
** Create a tree with a few nodes
*/
st_node_t *st_make_tree()
{
st_node_t *root = (st_node_t *)malloc(sizeof(st_node_t));
strcpy(root->name,"Root Node");

/* left subtree node */
root->left = (st_node_t *)malloc(sizeof(st_node_t));
strcpy(root->left->name,"Left subtree");

/* left subtree children */
root->left->right = NULL;
root->left->left = (st_node_t *)malloc(sizeof(st_node_t));
strcpy(root->left->left->name,"Child of left subtree");
root->left->left->left = NULL;
root->left->left->right = NULL;

400 OSF® DCE Application Development Guide —Core Components

/* right subtree node */
root->right = (st_node_t *)malloc(sizeof(st_node_t));
strcpy(root->right->name,"Right subtree");
root->right->left = NULL;
root->right->right = NULL;

return root;
}

main()
{
st_node_t *tree;
st_node_t *subtree;

/* setup and print original tree */
tree = st_make_tree();
printf("Original Tree:\n");
st_print_tree(tree, 1);

/* call the prune routine */
subtree = st_prune_left (tree);

/* print the resulting trees */
printf("\nPruned Tree:\n");
st_print_tree(tree, 1);

printf("\nPruned subtree:\n");
st_print_tree(subtree, 1);
}

The MANAGER.C Example
#include <stdio.h>
#include "string_tree.h"

/*
** Prune the left subtree of the specified tree and return
** it as the function value.
*/
st_node_t *st_prune_left (tree)
/* [in,out] */ st_node_t *tree;

{
st_node_t *left_sub_tree = tree->left;
tree->left = (st_node_t *)NULL;
return left_sub_tree;

}

The SERVER.C Example
#include <stdio.h>
#include "string_tree.h" /* header created by idl compiler */
#define check_error(s, msg) if(s != rpc_s_ok) \
{fprintf(stderr, "%s", msg); exit(1);}

main ()
{
unsigned32 status; /* error status (nbase.h) */
rpc_binding_vector_p_t binding_vector;

/* set of binding handles (rpc.h) */

rpc_server_register_if(/* register interface with RPC runtime */
string_tree_v0_0_s_ifspec,

/* interface specification (string_tree.h) */
NULL,
NULL,
&status /* error status */

);

Chapter 18. Interface Definition Language 401

check_error(status, "Can't register interface\n");

rpc_server_use_all_protseqs(/* establish protocol sequences */
rpc_c_protseq_max_calls_default,

/* concurrent calls server takes (rpc.h) */
&status

);
check_error(status, "Can't establish protocol sequences\n");
rpc_server_inq_bindings(/* get set of this server's binding handles

*/
&binding_vector,
&status

);
check_error(status, "Can't get binding handles\n");
rpc_ep_register(/* register addresses in endpoint map database */
string_tree_v0_0_s_ifspec, /* interface specification */
binding_vector, /* (string_tree.h) the set of binding handles */
NULL,
"",
&status

);
check_error(status, "Can't add address to the endpoint database\n");

rpc_ns_binding_export(/* establish namespace entry */
rpc_c_ns_syntax_dce, /* syntax of the entry name (rpc.h) */
"string_tree", /* entry name in directory service */
&string_tree_v0_0_s_ifspec, /* interface specification */
binding_vector, /* (string_tree.h) the set of binding handles */
NULL,
&status

);
check_error(status, "Can't export to directory service\n");

rpc_binding_vector_free(/* free set of binding handles */
&binding_vector,
status

);
check_error(status, "Can't free binding handles and vector\n");

rpc_server_listen(/* listen for remote calls */
rpc_c_listen_max_calls_default,

/* concurrent calls server executes (rpc.h) */
&status

);
check_error(status, "rpc listen failed\n");

}

The STRING_TREE.OUTPUT Example
Original Tree:
Root Node
Left subtree
Child of left subtree

Right subtree
Pruned Tree:
Root Node
Right subtree

Pruned subtree:
Left subtree
Child of left subtree

402 OSF® DCE Application Development Guide —Core Components

Customized Handles

The handle attribute specifies that the type being declared is a user-defined,
nonprimitive handle type, and is to be used in place of the predefined primitive
handle type handle_t . The term customized handle is used to denote a nonprimitive
handle.

The following example declares a customized handle type filehandle_t , a structure
containing the textual representations of a host and a pathname:

typedef [handle] struct {
char host[256];
char path[1024];
} filehandle_t;

If the handle parameter is the first parameter in the list, then it is a customized
handle that is used to determine the binding for the call, and it must have the in
attribute or the in,out attributes. A handle parameter that is not the first parameter
in the parameter list need not have the in or in,out attributes.

Note that a handle_t parameter that is the first parameter in the list must not have
the transmit_as attribute.

To build an application that uses customized handles, you must write custom
binding and unbinding routines, and you must link those routines with your
application client code. At runtime, each time the client calls an operation that uses
a customized handle, the client stub calls the custom binding routine before it sends
the remote procedure call request, and the client stub calls the custom unbinding
routine after it receives a response.

The following paragraphs specify C prototypes for customized binding and
unbinding routines; in these prototypes, CUSTOM is the name of the customized
handle type.

The custom binding routine CUSTOM_bind generates a primitive binding handle
from a customized handle and returns the primitive binding handle:

handle_t CUSTOM_bind (CUSTOM c-handle)

The custom unbinding routine CUSTOM_unbind takes two inputs, a customized
handle and the primitive binding handle that was generated from it, and has no
outputs:

void CUSTOM_unbind (

CUSTOM c-handle,
handle_t rpc-handle)

A custom unbinding routine typically frees the primitive binding handle and any
unneeded resources associated with the customized handle, but it is not required to
do anything.

Because the handle attribute can occur only in a type declaration, a customized
handle must have a named type. Because customized handle type names are used
to construct custom binding and unbinding routine names, these names cannot
exceed 24 characters.

Chapter 18. Interface Definition Language 403

A customized handle can be coded either in a parameter list as an explicit handle
or in an interface header as an implicit handle.

Context Handles

Manager code often maintains state information for a client. A handle to this state
information is passed to the client in an output parameter or as an operation result.
The client passes the unchanged handle-to-the-state information as an input or
input/output parameter of a subsequent manager operation that the client calls to
manipulate that data structure. This handle-to-the-state information is called a
context handle. A context handle is implemented as an untyped pointer or a pointer
to a structure by tag name.

The manager causes the untyped pointer or the structure pointer to point to the
state information it will need the next time the client asks the manager to
manipulate the context. For the client, the context handle is an opaque pointer
(idl_void_p_t or an opaque structure tag). The client receives or supplies the
context handle by means of the parameter list but does not perform any
transformations on it.

The RPC runtime maintains the context handle, providing an association between
the client and the address space running the manager and the state information
within that address space.

If a manager supports multiple interfaces, and a client obtains a context handle by
performing an operation from one of these interfaces, the client can then supply the
context handle to an operation from another of these interfaces.

A context handle can only be exchanged between the server process that created it
and the client process for which it was created. No other client except the one that
obtained the context handle can use it without causing an application error.

The context_handle Attribute

Specify a context handle by one of the following methods:

v Use the context_handle attribute on a parameter of type void * .

v Use the context_handle attribute on a type that is defined as void * .

v Use the context_handle attribute on a type that is defined as a pointer to a
structure by tag name.

For example, in the IDL file, you can define a context handle within a type
declaration as follows:

typedef [context_handle] void * my_context;

or within a parameter declaration as follows:

[in, context_handle] void * my_context;

You can also define a context handle within a type declaration as a forward
reference to a structure type by tag, as follows:

typedef [context_handle] struct opaque_struct * opaque_ch_t;

404 OSF® DCE Application Development Guide —Core Components

Note that you do not need to define the structure type in the IDL file; it is a forward
reference to a structure whose definition can be included into the server code,
either from a private .h file or from a server IDL file. As a result, the structure type is
opaque to the client. This method of defining a context handle provides type
checking and permits the server code to avoid extensive casting when manipulating
the context handle.

A structure type in a context handle type definition must be referenced by tag name
and not by type name. So, for example, the first of the following declarations is
valid, while the second is not:

typedef [context_handle] struct struct_tag * valid_ch_t;
/* valid */

typedef [context_handle] struct_type * invalid_ch_t;
/* error

*/

The following example illustrates context handles defined as untyped pointers and
as pointers to structures by tag name.
/* A context handle implemented as untyped pointer */
typedef [context_handle] void * void_ch_t;

/* A context handle implemented as a */
/* pointer to a structure by tag name */
typedef [context_handle] struct opaque_struct * opaque_ch_t;

/* Operations using both types of context handles */
void ch_oper(

[in] void_ch_t v1,
[in,out] void_ch_t *v2,
[out] void_ch_t *v3,
[in] opaque_ch_t *o2,
[out] opaque_ch_t *o3

);

void_ch_t void_ch_oper ([in] handle_t h);

opaque_ch_t opaque_ch_oper([in] handle_t h);

It is possible to define a structure type in a context handle in the IDL file; for
example, the following structure definition can either precede or follow the definition
of valid_ch_t in the example previously shown:

typedef struct struct_tag {long l;} struct_type;

This practice is not recommended, however, since it violates the opaqueness of the
context handle type.

The type name in a context handle declaration must be no longer than 23
characters.

The first operation on a context creates a context handle that the server procedure
passes to the client. The client then passes the unmodified handle back to the
server in a subsequent remote call. The called procedure interprets the context
handle. For example, to specify a procedure that a client can use to obtain a
context handle, you can define the following:

Chapter 18. Interface Definition Language 405

typedef [context_handle] void * my_context;
void op1(
[in]handle_t h,
[out] my_context * this_object);

To specify a procedure that a client can call to make use of a previously obtained
context handle, you can define the following:

void op2([in] my_context this_object);

To close a context, and to clean the context on the client side, you can define the
following:

[in, out, context_handle] void * my_context;

The resources associated with a context handle are reclaimed when, and only
when, the manager changes the value of the in,out context handle parameter from
non-NULL to NULL.

The Context Rundown Procedure

Some uses of context handles may require you to write a context rundown
procedure in the application code for the server. If communications between the
client and server are broken while the server is maintaining context for the client,
RPC invokes the context rundown procedure on the server to recover the resources
represented by the context handle. If you declare a context handle as a named
type, you must supply a rundown procedure for that type.

When a context requires a context rundown procedure, you must define a named
type that has the context_handle attribute. For each different context handle type,
you must provide a context rundown procedure as part of the manager code.

The format for the rundown procedure name is as follows:

context_type_name_rundown

A rundown procedure takes one parameter, the handle of the context to be run
down, and delivers no result. For example, if you declare the following:

typedef [context_handle] void * my_context;

then the rundown procedure is as follows:

void my_context_rundown (my_context this_object);

Server application code that uses a certain context handle may be executing in one
or more server threads at the time that RPC detects that communications between
the server and the client that is using that context have broken. The context
rundown routine will not be invoked until a return of control to the server stub has
happened in each of the threads that were using the context handle.

If application code in any of these threads destroys the context before returning
control to the server stub from which it was called, your context rundown procedure
will not be executed.

406 OSF® DCE Application Development Guide —Core Components

Creating New Context

When a client makes its first request to the manager to manipulate context, the
manager creates context information and returns this information to the client
through a parameter of the type context_handle . This parameter must be an
output parameter or an input/output parameter whose value is NULL when the call
is made. A context handle can also be a function result.

Reclaiming Client Memory Resources for the Context Handle

In the event that a communications error causes the context handle to be unusable,
the resources that maintain the context handle must be reclaimed. Use the
rpc_ss_destroy_client_context() routine in the client application to reclaim the
client-side resources and to set the context handle value to NULL.

The syntax of the routine is as follows:

void rpc_ss_destroy_client_context(
void *p_unusable_context_handle);

Relationship of Context Handles and Binding

For the client, the context handle specifies the state within a server and also
contains binding information. If an operation has an input context handle or
input/output context handle that is not NULL, it is not necessary to supply any other
binding information. A context handle that has only the in attribute cannot be NULL.
If an operation has in,out context handle parameters but no in context handle
parameters, at least one of the in,out context handle parameters cannot be NULL.
However, if the only context handle parameters in an operation are output, they
carry no binding information. In this case, you must use another method to bind the
client to a server.

If you specify multiple context handles in an operation, all active context handles
must map to the same remote address space on the same server or the call fails.
(A context handle is active while it represents context information that the server
maintains for the client. It is inactive if no context has yet been created, or if the
context is no longer in use.)

Rules for Using Context Handles

The following rules apply to using context handles:

v A context handle can be a parameter or a function result. You cannot use context
handles as an array element, as a structure or union member, or as the element
type of a pipe.

v A context handle cannot have the transmit_as or ptr attributes.

v An input-only context handle cannot be NULL.

v A context handle cannot be pointed to, except by a top-level reference pointer.

Examples Using Context Handles

The following examples show a sample IDL file that uses context handles and a
sample context rundown procedure file.

Example of an IDL File That Uses a Context Handle

Chapter 18. Interface Definition Language 407

/*
* Filename: context_handle.idl
*/

[uuid(f38f5080-2d27-11c9-a96d-08002b0ecef1),
pointer_default(ref), version (1.0)]

interface files
{
/* File context handle type */
typedef [context_handle] void * file_handle_t;
/* File specification type */
typedef [string] char * filespec_t;
/* File read buffer type */
typedef [string] char buf_t[*];

/*
* The file_open call requires that the client has located a
* file server interface files and that an RPC handle that is
* bound to that server be passed as the binding parameter h.
*
* Operation to OPEN a file; returns context handle for that
* file.
*/

file_handle_t file_open
(
/* RPC handle bound to file server */
[in] handle_t h,

/* File specification of file to open */
[in] filespec_t fs

);
/*
* The file_read call is able to use the context handle
* obtained from the file_open as the binding parameter,
* thus an RPC handle is not necessary.
*
* Operation to read from an opened file; returns true if
* not end-of-file
*/

boolean file_read
(
/* Context handle of opened file */
[in] file_handle_t fh,

/* Maximum number of characters to read */
[in] long buf_size,

/* Actual number of characters of data read */
[out] long *data_size,

/* Buffer for characters read */
[out, size_is(buf_size), length_is(*data_size)] \
buf_t buffer

);
/* Operation to close an opened file */

void file_close
(
/* Valid file context handle goes [in]. On successful close,
* null is returned.
*/
[in,out] file_handle_t *fh

);
}

Example of a Context Rundown Procedure

/*
* fh_rundown.c: A context rundown procedure.
*/

408 OSF® DCE Application Development Guide —Core Components

#include <stdio.h>
#include "context_handle.h" /* IDL-generated header file */

void file_handle_t_rundown
(
file_handle_t file_handle /* Active context handle */

* (open file handle) */
)

{
/*
* This procedure is called by the RPC runtime on the
* SERVER side when communication is broken between the
* client and server. This gives the server the
* opportunity to reclaim resources identified by the
* passed context handle. In this case, the passed
* context handle identifies a file, and simply closing
* the file cleans up the state maintained by the context
* handle, that is "runs down" the context handle. Note
* that the file_close manager operation is not used here;
* perhaps it could be, but it is more efficient to use
* the underlying file system call to do the close.
*
* File handle is void*, it must be cast to FILE*
*/

fclose((FILE *)file_handle);
}

IDL Support for C++

Most of the IDL features apply to both C and C++ applications. However, just as
C++ is an extension to C, this section describes additional IDL features required to
use IDL effectively with C++.

When the IDL compiler compiles an interface definition, it typically generates a
header file and one or more intermediate stub files in C or C++, and then it invokes
the appropriate compiler to generate object stub files. The IDL Compiler generates
C language intermediate stub files by default, but you can use the -lang cxx option
to cause it to generate C++ files instead.

This section describes the following topics:

v The idl -generated class hierarchy

This is important for a basic understanding of how to integrate the interface into
an object-oriented application.

v Interface inheritance

One interface can be derived from another, just as classes are derived from other
classes.

v Static operations

Static operations specify member functions that are called independently from an
object. All other operations specify nonstatic member functions which are only
invoked with respect to an existing object.

v Reference parameters

Reference parameters are passed by reference instead of being passed by
value.

v idl -generated member functions

Several member functions are generated by IDL and made part of the interface
class. These functions perform useful operations for all interfaces.

Chapter 18. Interface Definition Language 409

The idl-generated Class Hierarchy

For C++ applications, the interface definition specifies a public interface class. This
means that IDL data types specify public data members of the interface class, and
IDL operations specify member functions. The IDL compiler generates this interface
class within C++ class hierarchies for both the client and server. The RPC network
mechanisms are encapsulated in a class above the interface class. Clients use (and
servers implement) the objects of classes below the interface class.

The rpc_object_reference Base Class

Because C++ makes it easy to hide information, the IDL compiler generates an
rpc_object_reference base class for identifying, distributing, and tracking objects.
All interface classes inherit the rpc_object_reference class, which encapsulates
the following information:

v Object binding information, including server binding information and an object
UUID representing the object on the particular server

v Transport protocol information for the server

v A name identifying an optional location in the namespace for the object’s binding
information

v A location flag indicating whether the object is on the local system or a remote
system

v A reference count to keep track of how many clients currently access the object

The Interface Class

For each interface, the IDL compiler generates and places in the header file the
interface class derived from the rpc_object_reference class. The class name
generated is the interface name specified in the interface definition. For example,
the compiler generates the following class:

class interface_name : public virtual rpc_object_reference

This is an abstract class that contains public functions for all the operations
specified in the IDL interface. The member functions that are not static object
creator functions are defined as pure virtual functions. In C++, an abstract class
contains at least one pure virtual function, which means that the implementation is
postponed until a later, derived class. Therefore, object instances cannot be created
for abstract classes, and thus the interface class is not implemented but is only a
declaration. Other classes must be derived from the interface class so that objects
can be created for clients and servers.

No constructor operations are allowed in the interface definition, and the IDL
compiler does not generate one because no objects are created for the interface
class. No destructor operations are allowed in the interface definition, but the
compiler generates one automatically for the interface class.

The Client’s Proxy Class

The IDL compiler places in the header file a proxy class derived from the interface
class. An instance of a proxy class is also known as an object reference, which
clients use to access a remote object. This class provides proxy (or surrogate)
objects on the client whose member functions (or methods) transparently perform

410 OSF® DCE Application Development Guide —Core Components

the RPCs that invoke the actual remote object’s member functions on the server.
The proxy class name is generated from the interface name and the word Proxy ,
as follows:

class interface_name Proxy : public interface_name

Implementations of the proxy class’s member functions are automatically generated
in the client stub and represent the client’s implementation of the interface’s
operations.

The Server’s Manager Class

A manager class is required for servers to implement the interface. The class is
generated by the IDL compiler and derived from the interface class as follows:

class interface_name_Mgr : public interface_name {
public:
.
.
.

}

The class is placed in a header file whose name is based on the IDL file and an
_mgr suffix. When generated, the manager class contains empty functions of all the
nonstatic member functions of the interface class. The member function
implementations and other implementation details of this class are called manager
code.

The Interface Inheritance Operator

An interface definition can inherit properties of a previously defined interface, just as
a C++ class can inherit properties of previously defined classes. You can modify an
interface definition to inherit an interface by using the inheritance operator (:) in the
interface header, as follows:

[interface_attribute, ...] interface interface_name [: inherited_interface]

This idl -generated header file contains the inherited interface’s data types and
interface class. The interface definition must also declare the information in the
inherited interface’s header file by using an import declaration in the body of the
interface. The following example shows how the derived interface inherits another
interface and imports that interface’s definition file. The inherited interface definition
file is named inherit.idl , and the interface it contains is named inherit .

interface derived : inherit
{
import "inherit.idl";
.
.
.
}

A interface may inherit only one interface; that is, multiple interface inheritance is
not allowed.

Chapter 18. Interface Definition Language 411

The static Keyword for Operations

In C++ applications, the interface definition operations specify the member functions
of the interface class. The majority of the member functions are invoked by an
existing object, but some operations are intended to work regardless of whether an
object invokes them or not. Static member functions are invoked independently from
any object and are good for such things as object creator functions and for
obtaining a class’s static data; that is, data that is class-wide and independent from
a specific object.

Static member functions may be specified in an interface definition by using the
static keyword in front of the operation, in one of the following ways:

static return_type operation_identifier(...);

[operation_attribute, ...] static return_type operation_identifier(...);

Instead of using the static keyword in the interface definition, you can use the
cxx_static attribute in an ACF.

Since non-static member functions are invoked by an object for which the
application must already have a binding, nonstatic operations cannot have a binding
handle parameter. If you want to use explicit binding for an interface, only static
operations can have a binding handle as the first parameter.

The C++ Reference Operator (&) on Parameters

C++ passes arguments by value; however, to override this and cause a member
function argument to be passed by reference, apply the reference operator (&) to
the parameter in the interface definition. Specify a reference parameter as follows:

[parameter_attribute,...] parameter_type ¶meter

Using the reference operator on a parameter is the same as applying the reference
pointer attribute ([ref]) to a pointer parameter.

Functions Generated by IDL

The IDL compiler generates some additional member functions for an interface
class. For clients, these functions include overloaded static member functions to
bind to remote named objects in various ways and a member function to set
security information. For servers, additional member functions exist to advertise
named objects and get the binding handle on which a member function was called
from within the member function implementation.

Four overloaded functions for binding clients to known objects are named bind() .
The functions otherwise differ by the type of parameter passed in. Three of these
functions are intended for use with named objects and one is used to swap
between interfaces when an object supports more than one interface. Each bind()
function obtains an object reference (instance of a proxy class) by returning a
pointer to the interface class. These functions are described in the following
sections.

412 OSF® DCE Application Development Guide —Core Components

The bind() Function for Binding by an Object’s Name

A client can bind to a named object (an object whose name is advertised in a name
service) by calling the idl -generated bind() static member function with the name
service name as an argument. The function’s prototype is as follows:

interface_class * interface_class::bind(unsigned_char_t *)

This function takes a pointer argument of type unsigned_char_t that points to a
name service name. The function returns a pointer to the interface class. For
example:

char *CDS_name = "/.:/object_name";
IF_class * object = IF_class::bind((unsigned_char_t *) CDS_name);

If the entry contains more than one binding, one is returned at random. The function
obtains a full binding (the binding information includes a server’s endpoint.)

Before a client uses this function, a persistent object on a server typically places its
name and binding information in the name service by using the idl -generated
register_named_object() member function.

The bind() Function for Binding by an Object’s UUID

A client can bind to a named object by using the object’s UUID as an argument to
the idl -generated bind() static member function. This function’s prototype is as
follows:

interface_class * interface_class::bind(uuid_t &)

This function takes an argument of type uuid_t that is the UUID of a named object.
The function returns a pointer to the interface class. For example:

uuid_t objectUUID;
interface_class * object = interface_class::bind(objectUUID);

The search in the namespace for an entry that contains the matching UUID begins
with the default entry named in the RPC_DEFAULT_ENTRY environment variable.
The binding obtained is fully bound.

The bind() Function for Binding by Binding Handle

A client can bind to a known object directly by using a binding handle as an
argument to the idl -generated bind() static member function. This function’s
prototype is as follows:

interface_class * interface_class::bind(rpc_binding_handle_t)

This function takes an argument of type rpc_binding_handle_t that is a binding
handle to an object. The function returns a pointer to the interface class. For
example:

rpc_binding_handle_t bindingHandle;
interface_class * object = interface_class::bind(bindingHandle);

This function does not use the name service because the client obtains the binding
information and binding handle prior to the call. The binding handle can be either

Chapter 18. Interface Definition Language 413

partially or fully bound. If the binding handle is partially bound, it becomes fully
bound when the object calls a member function.

The bind() Function for Binding by Object Reference

Depending on the application, objects can have the behavior of more than one
interface class. However, your code can access only one interface’s member
functions at a time. A client uses the idl -generated bind() static member function
with an existing object reference as an argument to bind to a different interface.
This function’s prototype is as follows:

different_interface_class * different_interface_class::bind(rpc_object_reference *)

This function takes a pointer argument of type rpc_object_reference that is an
existing object reference to an interface class. The function returns a pointer to a
different interface class that the object also supports. The original object is obtained
through a previous bind() call, an object creator function, or an output parameter of
a member function. For example:

rpc_binding_handle_t bindingHandle;
interface_class * object = interface_class::bind(bindingHandle);
diff_if_class * new_object = diff_if_class::bind(object);

The secure() Function for Setting Object Security

Objects use the idl -generated secure() member function to set their authorization
and authentication information from the client. This sets the information for all the
binding handles encapsulated in the client proxy object. The secure() function is a
public member function of the rpc_object_reference class. This function’s
prototype is as follows:

void interface_class::secure(
[unsigned_char_t * server_principal_name =0,]
[unsigned32 protection_level = rpc_c_protect_level_default,]
[unsigned32 authentication_protocol =rpc_c_authn_default,]
[rpc_auth_identity_handle_t authorization_identity =NULL,]
[unsigned32 authorization_policy =rpc_c_authz_name]

)

The following code shows an example of how to use the secure() member function:

Matrix *m;

cout << "creating a remote matrix" << endl;
m = Matrix::createMatrix(1, 2, 3, 4);

cout << "calling set() operation without authorization" << endl;
m->set(0,0,99);
// Without authorization, operation should have not changed anything.
assert(m->get(0,0) == 1);

cout << "setting security privileges on object" << endl;
m->secure(
(unsigned_char_t *) "refmon_test", // server principal name
rpc_c_protect_level_pkt_integ, // protection level
rpc_c_authn_dce_secret, // authentication protocol
NULL, // inherited login context
rpc_c_authz_name // authorization policy
);

414 OSF® DCE Application Development Guide —Core Components

// since we now have set security flags, the set() operation
// should work
m->set(0,0,99);
assert(m->get(0,0) == 99);

The example shows that unauthorized use of a matrix’s member function will not
change values (m->get(0,0,99);). However, after setting the appropriate
authorization and authentication information with secure() , the member function will
work as expected. All parameters to the secure() function are optional, but it is
recommended that you specify values rather than depend on the default values.

The SetRebind() Function

A client can automatically rebind to an object if the client first sets a rebind policy by
using the SetRebind() function. This allows a degree of fault tolerance in an
application. For example, if a server goes down and is restarted, the client can
re-establish communications with the new server. In another example, if a server
provides access over multiple protocols or addresses and one of those links fails,
the client can choose another link automatically. Finally, if multiple servers support
the same object and one server exits, clients can still access the object via another
server.

The format of the function is as follows:

void interface_class::SetRebind(
DCERebindPolicy policy,
[unsigned32 * n = 0]

)

The second argument is optional and only used when the rebind policy is
attempt_rebind_n . The valid policies include the following:

attempt_rebind_n

If a communication fails, try to communicate with the object by selecting
another binding until successful or until n attempts have been tried.

wait_on_rebind

If a communication fails, try to communicate with the object by selecting
another binding until successful or until the calling thread is canceled.

attempt_rebind

If a communication fails, try to communicate with the object by selecting
another binding, if possible. If all handles have been tried, return an error.
This is the default policy.

never_rebind

If a communication fails, return an error.

The register_named_object() Function

Persistent objects can name and register themselves from the server by using the
idl -generated register_named_object() member function. This function performs
the following tasks:

v Creates the name service entry (if it doesn’t already exist) and adds the server’s
binding information so clients can find the server’s host

v Replaces or adds the object’s binding information in this host’s endpoint map so
clients can find this server

Chapter 18. Interface Definition Language 415

This function’s prototype is as follows:

void interface_class::register_named_object(
unsigned_char_t * name_service_name

[, boolean32 replace_endpoint = TRUE]
)

The function takes a pointer argument of type unsigned_char_t , representing the
name to use for the name service entry. The function has an optional second
argument of type boolean32 to indicate whether to replace or add the object’s
binding information to the host’s endpoint map. If the second argument is not used
(or is set to TRUE) and the object’s binding information already exists, this function
replaces the information. If the second argument is set to FALSE , the object’s
binding information is added to the endpoint map (not replaced). You should add
the binding information rather than replace it in circumstances where a single host
has more than one server that offers the same interface. The function does not
return a value.

The get_binding_handle() Function

Server manager code uses the idl -generated get_binding_handle() function to
obtain the binding handle used to invoke the call. The function’s prototype is as
follows:

rpc_binding_handle_t get_binding_handle();

Member functions (that are not static) cannot have an explicit binding handle
argument since the handle is encapsulated in the rpc_object_reference base
class. A member function implementation uses this function to obtain the binding
handle to verify security information, among other things.

Associating a Data Type with a Transmitted Type

The transmit_as attribute associates a transmitted type that stubs pass over the
network with a presented type that clients and servers manipulate. The specified
transmitted type must be a named type defined previously in another type
declaration.

There are two primary uses for this attribute:

v To pass complex data types for which the IDL compiler cannot generate
marshalling and unmarshalling code.

v To pass data more efficiently. An application can provide routines to convert a
data type between a sparse representation (presented to the client and server
programs) and a compact one (transmitted over the network).

To build an application that uses presented and transmitted types, you must write
routines to perform conversions between the types and to manage storage for the
types, and you must link those routines with your application code. At runtime, the
client and server stubs call these routines before sending and after receiving data of
these types.

The following paragraphs specify C prototypes for generic binding and unbinding
routines; in these prototypes, PRES is the name of the presented type and TRANS
is the name of the transmitted type.

416 OSF® DCE Application Development Guide —Core Components

The PRES_to_xmit() routine allocates storage for the transmitted type and converts
from the presented type to the transmitted type:

void PRES_to_xmit (PRES *presented, TRANS **transmitted)

The PRES_from_xmit() routine converts from the transmitted type to the presented
type and allocates any storage referenced by pointers in the presented type:

void PRES_from_xmit (TRANS *transmitted, PRES *presented)

The PRES_free_inst() routine frees any storage referenced by pointers in the
presented type by PRES_from_xmit() :

void PRES_free_inst (PRES *presented)

Suppose that the transmit_as attribute appears either on the type of a parameter
or on a component of a parameter and that the parameter has the out or in,out
attribute. Then, the PRES_free_inst() routine will be called automatically for the
data item that has the transmit_as attribute.

Suppose that the transmit_as attribute appears on the type of a parameter and
that the parameter has only the in attribute. Then, the PRES_free_inst() routine will
be called automatically.

Finally, suppose that the transmit_as attribute appears on a component of a
parameter and that the parameter has only the in attribute. Then, the
PRES_free_inst() routine will not be called automatically for the component; the
manager application code must release any resources that the component uses,
possibly by explicitly calling the PRES_free_inst() routine.

The PRES_free_xmit() routine frees any storage that has been allocated for the
transmitted type by PRES_to_xmit() :

void PRES_free_xmit (TRANS *transmitted)

A type with the transmit_as attribute cannot have other type attributes, specifically
the following:

v A pipe type.

v A pipe element type.

v A type with the context_handle attribute.

v A type of which any instance has the context_handle attribute.

v A type that includes the handle attribute in its definition cannot be used, directly
or indirectly, in the definition of a type with the transmit_as attribute. Nor can a
type that includes the transmit_as attribute in its definition be used, directly or
indirectly, in the definition of a type with the handle attribute.

v A conformant array type.

v A varying array type.

v A structure type containing a conformant array.

v An array type of which any instance is varying.

v A type with the represent_as attribute.

The type name in a declaration for a transmit_as attribute is restricted to 21
characters.

Chapter 18. Interface Definition Language 417

A transmitted type specified by the transmit_as attribute must be either a base
type, a predefined type, or a named type defined via typedef . A transmitted type
cannot be a conformant array type or a conformant structure type if any instance of
that type is an in parameter or an in, out parameter.

The following is an example of transmit_as . Assuming the following declarations:

typedef
struct tree_node_t {
data_t data;
struct tree_node_t * left;
struct tree_node_t * right;

} tree_node_t;

typedef
[transmit_as(tree_xmit_t)] tree_node_t *tree_t;

The application code must include routines that match the prototypes:

void tree_t_to_xmit (tree_t *, (tree_xmit_t **));
void tree_t_from_xmit ((tree_xmit_t *), (tree_t *));
void tree_t_free_inst (tree_t *);
void tree_t_free_xmit ((tree_xmit_t *)
);

IDL Grammar Synopsis

This section summarizes IDL syntax, in extended Backus-Naur Format (BNF)
notation.
<interface> ::= <interface_header> "{" <interface_body> "}"

<interface_header> ::=
"[" <interface_attributes> "]" "interface" <identifier> \

[":" <identifier>]

<interface_attributes> ::=
<interface_attribute> ["," <interface_attribute>] ...

<interface_attribute> ::= "uuid" "(" <uuid_rep> ")"
| "version" "(" <major> ["." <minor>] ")"
| "endpoint" "(" <endpoint_spec> ["," <endpoint_spec>] ... ")"
| "pointer_default" "(" <pointer_attribute> ")"
| "local"
| "exceptions" "(" <excep_name> ["," <excep_name>] ... ")"

<excep_name> ::= <Identifier>

<major> ::= <integer>

<minor> ::= <integer>

<endpoint_spec> ::=
""" <family_string> ":" "[" <endpoint_string> "]" """

<family_string> ::= <identifier>

<endpoint_string> ::= <identifier>

<interface_body> ::= [<import>] ... [<export>] ...

<export> ::= <const_declaration> ";"
| <type_declaration> ";"
| <op_declaration> ";"

418 OSF® DCE Application Development Guide —Core Components

<import> ::= import <import_files> ";"

<import_files> ::= <filename> ["," <filename>] ... ";"

<filename> ::= """ <character> ... """

<const_declaration> ::=
"const" <const_type_spec> <identifier> "=" <const_exp>

<const_type_spec> ::=
<integer_type> | "char" | "char" "*" | "boolean" | "void" "*"

<const_exp> ::=
<integer_const_exp> | <character_const> | <string_const>
| <identifier> | "TRUE" | "FALSE" | "NULL"

<integer_const_exp> ::= <conditional_exp>

<conditional_exp> ::= <logical_or_exp>
| <logical_or_exp> "?" <integer_const_exp> ":" <conditional_exp>

<logical_or_exp> ::= <logical_and_exp>
| <logical_or_exp> "||" <logical_and_exp>

<logical_and_exp> ::= <inclusive_or_exp>
| <logical_and_exp> "&&" <inclusive_or_exp>

<inclusive_or_exp> ::= <exclusive_or_exp>
| <inclusive_or_exp> "|" <exclusive_or_exp>

<exclusive_or_exp> ::= <and_exp>
| <and_exp> "|" <and_exp>

<and_exp> ::= <equality_exp>
| <and_exp> "&" <equality_exp>

<equality_exp> ::= <relational_exp>
| <equality_exp> "==" <relational_exp>
| <equality_exp> "!=" <relational_exp>

<relational_exp> ::= <shift_exp>
| <relational_exp> "<" <shift_exp>
| <relational_exp> ">" <shift_exp>
| <relational_exp> "<=" <shift_exp>
| <relational_exp> ">=" <shift_exp>

<shift_exp> ::= <additive_exp>
| <shift_exp> "<<" <additive_exp>
| <shift_exp> ">>" <additive_exp>

<additive_exp> ::= <multiplicative_exp>
| <additive_exp> "+" <multiplicative_exp>
| <additive_exp> "-" <multiplicative_exp>

<multiplicative_exp> ::= <unary_exp>
| <multiplicative_exp> "*" <unary_exp>
| <multiplicative_exp> "/" <unary_exp>
| <multiplicative_exp> "%" <unary_exp>

<unary_exp> ::= <primary_exp>
| "+" <primary_exp>
| "-" <primary_exp>
| "x" <primary_exp>
| "!" <primary_exp>

<primary_exp> ::= <integer_literal>
| <identifier>

Chapter 18. Interface Definition Language 419

<character_const> ::= "'" <character> "'"

<string_const> ::= """ [<character>] ... """

<type_declaration> ::=
"typedef" [<type_attributes>] <type_spec> <declarators>

<type_spec> ::= <simple_type_spec>
| <constructed_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <predefined_type_spec>
| <identifier>

<declarators> ::= <declarator> ["," <declarator>] ...

<declarator> ::= <simple_declarator>
| <complex_declarator>

<simple_declarator> ::= <identifier>

<complex_declarator> ::= <array_declarator>
| <function_ptr_declarator>
| <ptr_declarator>
| <ref_declarator>

<ref_declarator> ::= "&" <identifier>

<tagged_declarator> ::= <tagged_struct_declarator>
| <tagged_union_declarator>

<base_type_spec> ::= <integer_type>
| <floating_type>
| <char_type>
| <boolean_type>
| <byte_type>
| <void_type>
| <handle_type>

<floating_type> ::= "float" | "double"

<integer_type> ::= <signed_int> | <unsigned_int>

<signed_int> ::= <int_size> ["int"]
<unsigned_int> ::= <int_size> "unsigned" ["int"]
| "unsigned" <int_size> ["int"]

<int_size> ::= "hyper" | "long" | "short" | "small"

<char_type> ::= ["unsigned"] "char"

<boolean_type> ::= "boolean"

<byte_type> ::= "byte"

<void_type> ::= "void"

<handle_type> ::= "handle_t"

<constructed_type_spec> ::= <struct_type>
| <union_type>
| <tagged_declarator>
| <enumeration_type>
| <pipe_type>

<tagged_struct_declarator> ::= "struct" <tag>

420 OSF® DCE Application Development Guide —Core Components

| <tagged_struct>

<struct_type> ::= "struct" "{" <member_list> "}"

<tagged_struct> ::= "struct" <tag> "{" <member_list> "}"

<tag> ::= <identifier>

<member_list> ::= <member> [<member>] ...

<member> ::= <field_declarator> ";"

<field_declarator> ::= [<field_attribute_list>]
<type_spec> <declarators>

<field_attribute_list> ::= "[" <field_attribute> [","
<field_attribute>] ... "]"

<tagged_union_declarator> ::= "union" <tag>
| <tagged_union>

<union_type> ::= "union" <union_switch> "{" <union_body>
"}" | "union" "{" <union_body_n_e> "}"

<union_switch> ::= "switch" "(" <switch_type_spec> <identifier> ")"
[<union_name>]

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enumeration_type>

<tagged_union_declarator> ::= "union" <tag>
| <tagged_union>

<union_type> ::= "union" <union_switch> "{" <union_body> "}"
| "union" "{" <union_body_n_e> "}"

<union_switch> ::= "switch" "(" <switch_type_spec> \
<Identifier> ")" [<union_name>]

<switch_type_spec> ::= <primitive_integer_type>
| <char_type>
| <boolean_type>
| <enumeration_type>

<tagged_union> ::= "union" <tag> <union_switch> "{"
<union_body> "}"
| "union" <tag> "{" <union_body_n_e> "}"

<union_name> ::= <Identifier>

<union_body> ::= <union_case> [<union_case>] ...

<union_body_n_e> ::= <union_case_n_e> [<union_case_n_e>] ...

<union_case> ::= <union_case_label> \
[<union_case_label>] ... <union_arm> | <default_case>

<union_case_n_e> ::= <union_case_label_n_e> <union_arm>
| <default_case_n_e>

<union_case_label> ::= "case" <const_exp> ":"

<union_case_label_n_e> ::= "[" "case" "(" <const_exp> \
[, <const_exp>] ...")" "]"

<default_case> ::= "default" ":" <union_arm>

Chapter 18. Interface Definition Language 421

<default_case_n_e> ::= "[" "default" "]" <union_arm>

<union_arm> ::= [<field_declarator>] ";"

<union_type_switch_attr> ::= "switch_type" "(" \
<switch_type_spec> ")"

<union_instance_switch_attr> ::= "switch_is" "(" <attr_var> ")"

<enumeration_type> ::=

<enum_identifier> ::= <identifier> ["=" <const_exp>]

<pipe_type> ::= "pipe" <type_spec> <pipe_declarators>

<array_declarator> ::= <identifier> <array_bounds_list>

<array_bounds_list> ::= <array_bounds_declarator>
[<array_bounds_declarator>] ...

<array_bounds_declarator> ::= "[" [<array_bound>] "]"
| "[" <array_bounds_pair> "]"

<array_bounds_pair> ::= <array_bound> ".." <array_bound>

<array_bound> ::= "*"
| <integer_literal>
| <identifier>

<type_attribute> ::= "transmit_as" "(" <xmit_type> ")"
| "handle"
| <usage_attribute>
| <union_type_switch_attr>
| <ptr_attr>

<usage_attribute> ::= "string"
| "context_handle"

<xmit_type> ::= <simple_type_spec>

<field_attribute> ::= "first_is" "(" <attr_var_list> ")"
| "last_is" "(" <attr_var_list> ")"
| "length_is" "(" <attr_var_list> ")"
| "max_is" "(" <attr_var_list> ")"
| "min_is" "(" <attr_var_list> ")"
| "size_is" "(" <attr_var_list> ")"
| <usage_attribute>
| <union_instance_switch_attr>
| "ignore"
| <ptr_attr>

<attr_var_list> ::= <attr_var> ["," <attr_var>] ...

<attr_var> ::= [["*"]<identifier>]

<ptr_declarator> ::= "*"<identifier>

<ptr_attr> ::= "ref"
| "unique"
| "full"

<op_declarator> ::= [<operation_attributes>]
<simple_type_spec> <identifier> <parameter_declarators>

<operation_attributes> ::= "[" <operation_attribute> ["static"]
["," <operation_attribute>] ... "]"

<operation_attribute> ::= "idempotent"
| "broadcast"

422 OSF® DCE Application Development Guide —Core Components

| "maybe"
| "reflect_deletions"
| <usage_attribute>
| <ptr_attr>

<param_declarators> ::= "(" "void" ")"
| "(" [<param_declarator> ["," <param_declarator>] ...] ")"

<param_declarator> ::= <param_attributes> <type_spec> <declarator>

<param_attributes> ::=
"[" <param_attribute> ["," <param_attribute>] ... "]"

<param_attribute> ::= <directional_attribute>
| <field_attribute>

<directional_attribute> ::= "in" ["(" "shape" ")"]
| "out" ["(" "shape" ")"]

<function_ptr_declarator> ::= <simple_type_spec>
"(" "*"<identifier> ")" <param_declarators>

<predefined_type_spec> ::= "error_status_t"
| <international_character_type>

<international_character_type> ::= ISO_LATIN_1
| ISO_MULTI_LINGUAL
| ISO_UCS

<pipe_declarators> ::= <pipe_declarator> \
["," <pipe_declarator>] ...

<pipe_declarator> ::= <simple_declarator>
| <ptr_declarator>
| <ref_declarator>

Chapter 18. Interface Definition Language 423

424 OSF® DCE Application Development Guide —Core Components

Chapter 19. Attribute Configuration Language

The Attribute Configuration Language is used for writing an Attribute Configuration
File (ACF). Use the attributes in the ACF to modify the interaction between the
application code and stubs without affecting the client/server network interaction.

Syntax Notation Conventions

The syntax of the Attribute Configuration Language is similar to the syntax of IDL.
For syntax information, see the syntax notation conventions for the IDL.

The use of [] (brackets) can be either a required part of the syntax or can denote
that a string is optional to the syntax. To differentiate this, brackets that are required
are shown as [] (plain square brackets). Brackets that contain optional strings are
shown as [] (italicized square brackets).

A | (vertical bar) denotes a logical OR.

Attribute Configuration File

The ACF changes the way the IDL compiler interprets the interface definition,
written in IDL. The IDL file defines a means of interaction between a client and a
server. For new server implementations to be compatible across the network with
existing servers, the interaction between the client and server must not be modified.
If the interaction between an application and a specific stub needs to change, you
must provide an ACF when you build this stub.

The ACF affects only the interaction between the generated stub code and the local
application code; it has no effect on the interaction between local and remote stubs.
Therefore, client and server writers are likely to have different attribute configuration
files that they can modify as desired.

Naming the ACF

To name the ACF, replace the extension of the IDL file (.idl) with the extension of
the ACF (.acf). For example, the ACF associated with my_idl_filename.idl is
my_idl_filename.acf .

Compiling the ACF

When you issue the idl command, naming the IDL file to compile, it searches for a
corresponding ACF and compiles it along with the IDL file. The compiler also
searches for any ACF (there can be more than one) associated with any imported
IDL files. The stubs that the compiler creates contain the appropriate modifications.

ACF Features

The following list contains the ACF attributes and the features associated with the
attributes:

v include statement: Includes header files in the generated code

v auto_handle , explicit_handle , implicit_handle , binding_callout : Controls
binding

425

v comm_status , fault_status : Indicates parameters to hold status conditions
occurring in the call

v cs_char , cs_tag_rtn , cs_stag , cs_drtag , cs_rtag : Controls the transmission of
international (non-PCS) characters

v code , nocode : Controls which operations of the IDL file are compiled

v encode , decode : Controls the generation of IDL encoding services stubs to
perform encoding or decoding operations

v extern_exceptions : Indicates user-defined parameters to hold status conditions
occurring in the call

v represent_as : Controls conversion between local and network data types

v enable_allocate : Forces the initialization of the memory management routines

v heap : Specifies objects to be allocated from heap memory

v cxx_lookup, cxx_delegate, cxx_new, cxx_static : Specifies C++ features

Structure

The structure of the ACF is as follows:

interface_header
{

interface_body
}

Follow these structural rules when creating an ACF:

v The basename of the ACF must be the same as the basename of the IDL file
although the extensions are different.

v The interface name in the ACF must be the same as the interface name in the
corresponding IDL file.

v With a few exceptions, any type, parameter, or operation names in the ACF must
be declared in the IDL file, or defined in files included by use of the include
statement, as the same class of name.

v Except for additional status parameters, any parameter name that occurs within
an operation in the ACF must also occur within that operation in the IDL file.

ACF Interface Header

The ACF interface header has the following structure:

[[acf_attribute_list]] interface idl_interface_name

The acf_attribute_list is optional. The interface header attributes can include one or
more of the following attributes, entered within brackets. If you use more than one
attribute, separate them with commas and include the list within a single pair of
brackets. (Note that some of these attributes can be used in the ACF body also.
See “ACF Interface Body” on page 427 for more information.)

v code

v nocode

v implicit_handle(handle_type handle_name)

v auto_handle

v explicit_handle

426 OSF® DCE Application Development Guide —Core Components

v encode

v decode

v binding_callout(routine_name)

v extern_exceptions(exception_name[, exception_name]...)

v cs_tag_rtn(tag_set_routine)

v cxx_lookup (function_name)

v

cxx_delegate (class_name)

The following example shows how to use more than one attribute in the ACF
interface header:

[auto_handle, binding_callout(rpc_ss_bind_authn_client)] \
interface phone_direct

{
}

ACF Interface Body

The ACF interface body can contain the elements in the following list. Note that
some of the attributes listed here can also be used in the ACF header, as described
in “ACF Interface Header” on page 426. If you use more than one attribute,
separate them with commas and include the list within a single pair of brackets.

v An include statement

v A declared type

typedef [[represent_as (local_type_name)] | [heap] |
[cs_char (local_type_name)]] type_name;

v An operation

[[explicit_handle] | [comm_status] | [fault_status] |
[code] | [nocode] | [enable_allocate] |
[cxx_new(manager_class)] | [cxx_static] | [cxx_static(local_function)] |
[encode] | [decode] | [cs_tag_rtn (tag_set_routine)]
] operation_name ([parameter_list]);

A parameter_list is a list of zero or more parameter names as they appear in the
corresponding operation definition of the IDL file. You do not need to use all the
parameter names that occur in the IDL operation definition; use only those to
which you attach an ACF attribute. If you use more than one parameter name,
the names must be separated by commas.

v A parameter within an operation

[[comm_status] | [fault_status] | [heap] |
[cs_stag] | [cs_drtag] | [cs_rtag]] parameter_name

The include Statement and the C++ Attributes cstub and sstub

The include statement specifies any additional header files you want included in
the generated stub code. You can specify more than one header file. The include
statement is placed in the body of the ACF and has the following syntax:

Chapter 19. Attribute Configuration Language 427

include "filename" [,"filename"] ...;

[[sstub | cstub | sstub, cstub]] include "filename";

Do not specify the directory name or file extension when you use the include
statement. The compiler appends the .h extension. If you want to specify the
directory name(s), use the -cc_opt or -I IDL compiler command options.

Use the include statement whenever you use the represent_as, implicit_handle,
cs_char, cxx_static, cxx_new, cxx_lookup , or cxx_delegate attributes and the
specified type is not defined or imported in the IDL file.

The sstub and cstub attributes are optional. By default, the IDL compiler places
directives only in the idl -generated header file when neither the sstub nor cstub
attributes are used. These attributes restrict where #include compiler directives are
placed in order to include application-specific header files in C++ client and server
stub files. In C++ applications, local and remote versions of operations are included
together by linking in both the client and server stubs. C++ applications need to
control #include compiler directives so that the operations for local objects can be
easily renamed to avoid name conflicts with the operations for remote objects.

The following table shows to which output file the IDL compiler places the #include
compiler directive for the application-specific file. Note, that the idl-generated header
file is always included automatically in each stub.

ACF Statement Header File Client Stub Server Stub

include ″ file″; X

[cstub] include ″ file″; X

[sstub] include ″ file″; X

[cstub, sstub] include ″ file″; X X

The auto_handle Attribute

This attribute causes the client stub and RPC runtime to manage the binding to the
server by using a directory service. Any operation in the interface that has no
parameter containing binding information is bound automatically to a server so the
client does not have to specify a binding to a server.

When an operation is automatically bound, the client does not have to specify the
server on which an operation executes. If you make a call on an operation without
explicit binding information in an interface for which you have specified
auto_handle , and no client/server binding currently exists, the client stub selects an
available server and establishes a binding. This binding is used for this call and
subsequent calls to all operations in the interface that do not include explicit binding
information, while the server is still available.

When a client uses the automatic binding method, DCE must use the name service
to obtain binding information. However, the client host must have a starting entry
from which to begin the namespace search. If the RPC_DEFAULT_ENTRY
environment variable is defined on the client host, DCE uses the entry in that
variable to obtain binding information. If RPC_DEFAULT_ENTRY is not defined,
DCE looks for binding information from the host’s name service profile.

428 OSF® DCE Application Development Guide —Core Components

Server termination, network failure, or other problems can cause a break in binding.
If this occurs during the execution of an automatically bound operation, the client
stub issues the call to another server, provided one is available and the operation is
idempotent, or it determines that the call did not start to run on the server. Similarly,
if a communications or server failure occurs between calls, the client stub binds to
another server for the next call, if a server is available.

If the client stub is unable to find a server to run the operation, it reports this by
returning the status code rpc_s_no_more_bindings in the comm_status
parameter, or by raising the exception rpc_x_no_more_bindings if the operation
does not use the comm_status attribute for error reporting. Note that, if a binding
breaks, the search for another server begins at the directory service entry following
the one where the binding broke. This means that, even if a server earlier in the list
becomes available, it is not treated as a candidate for binding. After the RPC
runtime tries each server in the list, it reinitializes the list of server candidates and
tries again. If the second attempt is unsuccessful, the RPC runtime reports the
status code rpc_s_no_more_bindings . The next call on an operation in the
interface starts from the top of the list when looking for a server to bind to.

The auto_handle attribute can occur at most once in the ACF.

If an interface uses the auto_handle attribute, the presence of a binding handle or
context handle parameter in an operation overrides auto_handle for that operation.

The auto_handle attribute declaration has the following syntax. (See the example at
the end of this section.)

[auto_handle] interface interface_name

You cannot use auto_handle if you use implicit_handle or if you use
explicit_handle in the interface header. You also cannot use auto_handle if you
use the encode or decode ACF attributes.

Example Using the auto_handle Attribute

ACF

[auto_handle] interface math_1
{
}

IDL File

[uuid(b3c86900-2d27-11c9-ab09-08002b0ecef1)]
interface math_1
{
/* This operation has no handle parameter,
* therefore, uses automatic binding.
*/

long add([in] long a,
[in] long b);

/*
* This operation has an explicit handle parameter, h,
* that overrides the [auto_handle] ACF attribute.
* Explicit handles also override [implicit_handle].
*/

Chapter 19. Attribute Configuration Language 429

long subtract ([in] handle_t h,
[in] long a,
[in] long b);

}

The explicit_handle Attribute

This attribute allows the application program to manage the binding to the server.
The explicit_handle attribute indicates that a binding handle is passed to the
runtime as an operation parameter.

The explicit_handle attribute has the following syntax. (See the example at the end
of this section.)

For an interface:

[explicit_handle] interface interface_name

For an operation:

[explicit_handle] operation_name ([parameter_list]);

When used as an ACF interface attribute, the explicit_handle attribute applies to
all operations in the IDL file. When used as an ACF operation attribute, this attribute
applies to only the operation you specify.

If you use the explicit_handle attribute as an ACF interface attribute, you must not
use the auto_handle or implicit_handle attributes. Also, you cannot use the
encode and decode attributes if you use explicit_handle .

Using the explicit_handle attribute on an interface or operation has no effect on
operations in IDL that have explicit binding information in their parameter lists.

Example Using the explicit_handle Attribute

ACF

[explicit_handle] interface math_2
{

/* This causes the operation, as called by the client, to
* have the parameter handle_t IDL_handle, at the start of
* the parameter list, before the parameters specified here
* in the IDL file.
*/

}

IDL File

[uuid(41ce5b80-0ba7-11ca-87ba-08002b111685)]
interface math_2
{
long add([in] long a,

[in] long b);
}

430 OSF® DCE Application Development Guide —Core Components

The implicit_handle Attribute

This attribute allows the application program to manage the binding to the server.
You specify the data type and name of the handle variable as part of the
implicit_handle attribute. The implicit_handle attribute informs the compiler of the
name and type of the global variable through which the binding handle is implicitly
passed to the client stub. A variable of this type and name is defined in the client
stub code, and the application initializes the variable before making a call to this
interface.

The implicit_handle attribute declaration has the following syntax. (See the
example at the end of this section.)

For an interface:

[implicit_handle (handle_type handle_name)] interface interface_name

If an interface uses the implicit_handle attribute, the presence of a binding handle
or in or in,out context handle parameter in an operation overrides the implicit
handle for that operation.

The implicit_handle attribute can occur at most once in the ACF.

You cannot use the implicit_handle attribute if you are using the auto_handle
attribute or the explicit_handle attribute as an interface attribute. You also cannot
use implicit_handle if you use the encode or decode ACF attributes.

If the type in the implicit_handle clause is not handle_t , then it is treated as if it
has the handle attribute.

The ACF in the following example modifies the math_3 interface to use an implicit
handle.

Example Using the implicit_handle Attribute

ACF

[implicit_handle(user_handle_t global_handle)] interface math_3
{
/*
* Since user_handle_t is not a type defined in IDL, you
* must specify an header file that contains the definition
*/

include "user_handle_t_def";
}

IDL File

[uuid(a01d0280-2d27-11c9-9fd3-08002b0ecef1)]
interface math_3
{
long add([in] long a,

[in] long b);
}

Chapter 19. Attribute Configuration Language 431

The client_memory Attribute

While marshalling parameters, the client stub uses built-in routines to manage
memory. You can use the client_memory attribute to specify different memory
allocation and free routines. The client_memory attribute has the following syntax
in the ACF header:

[client_memory(malloc_routine, free_routine)] interface
idl _interface_name

The routines you specify must have the same respective procedure declarations as
the system’s malloc() and free() routines.

Applications need to manage memory consistently, so if your application needs to
do other memory allocation, be sure to use the same routines you specified with the
client_memory attribute.

You can use the client_memory attribute in conjunction with RPC stub support API
routines such as rpc_sm_set_client_alloc_free() and
rpc_sm_swap_client_alloc_free() .

The comm_status and fault_status Attributes

The comm_status and fault_status attributes cause the status code of any
communications failure or server runtime failure that occurs in a remote procedure
call to be stored in a parameter or returned as an operation result, instead of being
raised to the client application code as an exception.

The comm_status attribute causes communications failures to be reported through
a specified parameter. The fault_status attribute causes server failures to be
reported through a specified parameter. Applying both attributes causes all remote
and communications failures to be reported through status. Any local exception
caused by an error during marshalling, correctness checking performed by the client
stubs, or an error in application routines continues to be returned as an exception.

The comm_status and fault_status attributes have the following syntax. (See the
examples at the end of this section.)

For an operation:

[comm_status | fault_status] operation_name ([parameter_list]);

For a parameter:

operation_name ([comm_status | fault_status] parameter_name);

Note: You can apply one of each attribute to the same operation and/or parameter
at the same time. Separate the attributes with a comma. (See the example
at the end of this section.)

If the parameter named in a comm_status or fault_status attribute is in the
parameter list for the operation in the IDL file, then it must have the out
attribute in the IDL file. (Additional ACF parameters do not have in and out
directional attributes.)

432 OSF® DCE Application Development Guide —Core Components

If the status attribute occurs on the operation, the returned value result must be
defined as type error_status_t in the IDL file. If an error occurs during execution of
the operation, the error code is returned as the operation result. If the operation
completes successfully, the value returned to the client is the value returned by the
manager code.

Note: The error_status_t type is equivalent to unsigned32 , which is the data type
used by the RPC runtime for an error status. The status code
error_status_ok is equivalent to rpc_s_ok , which is the RPC runtime
success status code.

If the status attribute occurs on a parameter, the parameter name does not have to
be defined in the IDL file, although it can be. Note the following:

v If the parameter name is one used in the IDL file, then that parameter must be
an output parameter of type error_status_t . If the operation completes
successfully, the value of this parameter is the value returned by the manager
code.

v If the parameter name is different from any name defined within the operation
definition in the IDL file, the IDL compiler creates an extra output parameter of
type error_status_t in the application code after the last parameter defined in
the IDL file. In a successfully completed remote call, this extra parameter has the
value error_status_ok .

In either case, if an error occurs during the remote call, the error code is returned to
the parameter that has the status attribute. (See the OSF DCE Problem
Determination Guide for an explanation of status codes.)

If you define both additional comm_status and additional fault_status parameters,
they are automatically added at the end of the procedure declaration in the order of
specification in the ACF.

In the following example, there are three possible uses of the status attributes: as
the operation result of add , as a parameter of subtract as defined in the IDL file,
and as an additional parameter of multiply .

Example Using the comm_status and fault_status Attributes

ACF

[auto_handle] interface math_4
{
[comm_status,fault_status] add();

subtract ([comm_status,fault_status] s);

/*
* 'sts' is not a parameter in the interface definition of
* operation 'multiply'. This specifies that the application
* wants a trailing parameter 'sts' that is of type
* error_status_t, after the parameters a and b.
*/

multiply ([comm_status] c_sts,[fault_status] f_sts);
}

IDL File

[uuid(91365000-2d28-11c9-ad5a-08002b0ecef1)]
interface math_4

Chapter 19. Attribute Configuration Language 433

{
error_status_t add ([in] double a,

[in] double b,
[out] double *c);

double subtract ([in] double a,
[in] double b,
[out] error_status_t *s);

double multiply ([in] double a,
[in] double b);

}

server.c

/*
* The three server procedures below illustrate the different
* models of comm_status and fault_status appearing in the
* idl and acf declarations above.
*
* RPC automatically passes back DCE error codes through
* comm_status and fault_status. These examples differ in
* their handling of the nonerror case.
*/

error_status_t add (double a,
double b,
double * c)

{
...
*c = answer;

/*
* comm_status and fault_status are operation attributes.
* If no error occurs, the client will see the value that
* the server returns.
*
* We return error_status_ok here for the normal
* successful case.
*/

return error_status_ok;
}

double subtract (double a,
double b,
error_status_t * s)

{
/*
* "s" appears in both the idl definition and the acf
* specification.
*
* In the successful case, the client is returned the
* value that the server puts in *s. Therefore, assume
* success here.
*/

*s = error_status_ok;

...
return answer;

}
double multiply (double a,

double b,
error_status_t * c_sts,

error_status_t * f_sts)
{
/*

434 OSF® DCE Application Development Guide —Core Components

* c_sts and f_sts appear in the acf, but do not appear
* in the idl definition. In this case, c_sts and f_sts
* are placed at the end of the parameter list generated
* by the idl compiler. To conform to the prototype
* generated by idl, your server code must also declare
* these parameters.
*
* In the successful case, c_sts and f_sts are
* automatically returned to the client as
* error_status_ok. Even though c_sts and f_sts are
* parameters to the function, the server code must not
* modify these parameters or store through them.
*/

...
return answer;

}

The code and nocode Attributes

The code and nocode attributes allow you to control which operations in the IDL
file have client stub code generated for them by the compiler. These attributes affect
only the generation of a client stub; they have no effect when generating the server
stub.

The code and nocode attributes have the following syntax. (See the example at
the end of this section.)

For an interface:

[code | nocode] interface interface_name

For an operation:

[code | nocode] operation_name ([parameter_list]);

When you specify nocode as an attribute on an ACF interface, stub code is not
generated for the operations in the corresponding IDL interface unless you also
specify code for the particular operation(s) for which you want stub code generated.
Similarly, when you specify code (the default) as an attribute on an ACF interface,
stub code is generated for the operations in the corresponding IDL interface unless
you also specify nocode for the particular operations for which you do not want
stub code generated.

Do not use nocode on any of the operations if the compiler is generating only
server stub code because it has no effect. Server stubs must always contain
generated code for all operations.

In the following example, the IDL compiler generates client stub code for the
operations open , read , and close , but not for the operation write . An alternative
method for specifying the same behavior is to use [nocode] write() in the ACF.

Example Using the code and nocode Attributes

ACF

[nocode,auto_handle] interface open_read_close
{

Chapter 19. Attribute Configuration Language 435

[code] open();
[code] read();
[code] close();
}

IDL File

[uuid(2166d580-0c69-11ca-811d-08002b111685)]
interface open_read_close
{
void open (...);
void read (...);
void write (...);
void close (...);
}

The represent_as Attribute

This attribute associates a local data type that your application code uses with a
data type defined in the IDL file. Use of the represent_as attribute means that,
during marshalling and unmarshalling, conversions occur between the data type
used by the application code and the data type specified in the IDL.

The represent_as attribute has the following syntax. (See the example at the end
of this section.)

typedef [represent_as (local_type_name)] net_type_name;

The local_type_name is the local data type that the application code uses. You can
define it in the IDL file or in an application header file. If you do not define it in the
IDL file, use the include statement in the ACF to make its definition available to the
stubs.

The net_type_name is the data type that is defined in the IDL file.

The represent_as attribute can appear at most once in a typedef declaration in an
ACF.

If you use the represent_as attribute, you must write routines that perform the
conversions between the local and network types, and routines that release the
memory storage used to hold the converted data. The conversion routines are part
of your application code.

The suffix for the routine names, the function of each, and where they are used
(client or server) appear in the following list:

v _from_local() : Allocates storage instance of the network type and converts from
the local type to the network type (used for client and server).

v _to_local() : Converts from the network type to the local type (used for client and
server).

v _free_inst() : Frees storage instance used for the network type (used by client
and server).

v _free_local() : Frees storage used by the server for the local type (used in
server). This routine frees any object pointed to by its argument but does not
attempt to free the argument itself.

436 OSF® DCE Application Development Guide —Core Components

Suppose that the represent_as attribute is applied to either the type of a parameter
or to a component of a parameter and that the parameter has the out or in,out
attribute. Then, the _free_local() routine will be called automatically for the data
item that has the type to which the represent_as attribute was applied.

Suppose that the represent_as attribute is applied to the type of a parameter and
that the parameter has only the in attribute. Then, the _free_local() routine will be
called automatically.

Finally, suppose that the represent_as attribute is applied to the type of a
component of a parameter and that the parameter has only the in attribute. Then,
the _free_local() routine will not be called automatically for the component; the
manager application code must release any resources that the component uses,
possibly by explicitly calling the _free_local() routine.

Append the suffix of the routine name to the net_type_name. The syntax for these
routines is as follows:

void net_type_name_from_local ((local_type_name *), (net_type_name **))

void net_type_name_to_local ((net_type_name *), (local_type_name *))

void net_type_name_free_inst ((net_type_name *))

void net_type_name_free_local ((local_type_name *))

Example Using the represent_as Attribute

ACF

[auto_handle] interface phonedir
{
/*
* You must specify an included file that contains the
* definition of my_dir_t.
*/

include "user_types";

/*
* The application code wants to pass data type my_dir_t
* rather than dir_t. The [represent_as] clause allows
* this, and you must supply routines to convert dir_t
* to/from my_dir_t.
*/

typedef [represent_as(my_dir_t)] dir_t;
}

IDL File

[uuid(06a12100-2d26-11c9-aa24-08002b0ecef1)]
interface phonedir
{
typedef struct
{
short int area_code;
long int phone_num;
char last_name[20];
char first_name[15];
char city[20];
} dir_t;

Chapter 19. Attribute Configuration Language 437

void add ([in] dir_t *info);
void lookup ([in] char city[20],

[in] char last_name[20],
[in] char first_name[15],
[out] dir_t *info);

void delete ([in] dir_t *info);
}

The enable_allocate Attribute

The enable_allocate attribute on an operation causes the server stub to initialize
the rpc_ss_allocate() routine. The rpc_ss_allocate() routine requires initialization
of its environment before it can be called. The server stub automatically initializes
(enables) rpc_ss_allocate() if the operation uses either full pointers or a type with
the represent_as attribute. If the operation does not meet either of these
conditions, but the manager application code needs to make use of the
rpc_ss_allocate() and rpc_ss_free() routines, then use the enable_allocate
attribute to force the stub code to enable.

The enable_allocate attribute has the following syntax.

For an operation:

[enable_allocate] operation_name ([parameter_list]);

Example Using the enable_allocate Attribute

ACF

[auto_handle] interface phonedir
{
[enable_allocate] lookup ();
}

IDL File

[uuid(06a12100-2d26-11c9-aa24-08002b0ecef1)]
interface phonedir
{
typedef struct
{
short int area_code;
long int phone_num;
char last_name[20];
char first_name[15];
char city[20];
} dir_t;

void add ([in] dir_t *info);
void lookup ([in] char city[20],

[in] char last_name[20],
[in] char first_name[15],
[out] dir_t *info);

void delete ([in] dir_t *info);
}

The heap Attribute

This attribute specifies that the server stub’s copy of a parameter or of all
parameters of a specified type is allocated in heap memory rather than on the
stack.

438 OSF® DCE Application Development Guide —Core Components

The heap attribute has the following syntax. (See the example at the end of this
section.)

For a type:

typedef [heap] type_name;

For a parameter:

operation_name ([heap] parameter_name);

Any identifier occurring as a parameter name within an operation declaration in the
ACF must also be a parameter name within the corresponding operation declaration
in IDL.

The heap attribute is ignored for pipes, context handles, and scalars.

Example Using the heap Attribute

ACF

[auto_handle] interface galaxies
{
typedef [heap] big_array;
}

IDL File

[uuid(e61de280-0d0b-11ca-6145-08002b111685)]
interface galaxies
{
typedef long big_array[1000];
}

The extern_exceptions Attribute

By default, the IDL compiler declares and initializes all exceptions listed in an
exceptions interface attribute in the stub code that it generates. You can use the
extern_exceptions attribute to override this behavior; the extern_exceptions
attribute allows you to specify one or more exceptions listed in the exceptions
interface attribute that you do not want the idl-generated stub code to declare. If the
extern_exceptions attribute appears with no list, it has the same effect as if all
IDL-defined exceptions were specified in the list.

The extern_exceptions attribute has the following syntax. (See the example at the
end of this section.)

[extern_exceptions (exception_name [,exception_name]...)]
interface interface_name

The extern_exceptions attribute indicates that the specified exceptions are defined
and initialized in some other external manner before calling the extern_exceptions
attribute. They may be predefined exceptions (such as exc_e_exquota) that were
provided by another interface, or exceptions that are defined and initialized explicitly
by the application itself.

Example Using the extern_exceptions Attribute

Chapter 19. Attribute Configuration Language 439

In the following example, the exception named in the list in the extern_exceptions
attribute in the ACF is not defined or initialized in the idl-generated stub code. All of
the other exceptions listed in the exceptions interface attribute are defined and
initialized in the generated stub.

ACF

[extern_exceptions(exc_e_exquota)] interface binop {}
/*
*The exc_e_exquota exception is a predefined exception
*(provided in exc_handling.h) and so does not need
*to be declared and initialized in the idl-generated stub.
*/

IDL File

[uuid(06255501-08af-11cb-8c4f-08002b13d56d),
version (1.1),
exceptions (
exc_e_exquota,
binop_e_aborted,
binop_e_too_busy,
binop_e_shutdown)

] interface binop
{
long binop_add(

[in] long a,
[in] long b
);

}

The encode and decode Attributes

The encode and decode attributes are used in conjunction with IDL encoding
services routines (idl_es *) to enable RPC applications to encode data types in
input parameters into a byte stream and decode data types in output parameters
from a byte stream without invoking the RPC runtime. Encoding and decoding
operations are analogous to marshalling and unmarshalling, except that the data is
stored locally and is not transmitted over the network.

The stubs that perform encoding or decoding operations are different from the stubs
that perform RPC operations. The ACF attributes encode and decode direct the
IDL compiler to generate encoding or decoding stubs for operations defined in a
corresponding IDL interface rather than generating RPC stubs for those operations.

The encode and decode attributes have the following syntax. (See the example at
the end of this section.)

For an interface:

[encode] | [decode] | [encode,decode] interface interface_name

For an operation:

[encode] | [decode] | [encode,decode] operation_name ([parameter_list]);

When used as an ACF interface attribute, the encode and decode attributes apply
to all operations defined in the corresponding IDL file. When used as an ACF
operation attribute, encode and decode apply only to the operation you specify. If

440 OSF® DCE Application Development Guide —Core Components

you apply the encode or decode attribute to an ACF interface or operation, you
must not use the auto_handle or the implicit_handle ACF attributes.

When you apply the encode or decode attribute to an operation, the IDL compiler
generates IDL encoding services stubs that support encoding or decoding,
depending on the attribute used, in the client stub code; it does not generate stub
code for the operation in the server stub. To generate an IDL encoding services
stub that supports both encoding and decoding, apply both attributes to the
operation.

If you apply the encode or decode attribute to all of the operations in an interface,
no server stub is generated. If you apply the encode and decode attributes to
some, but not all, of the operations in an interface, the stubs for the operations that
do not have the encode and decode attributes applied to them are generated as
RPC stubs into the server stub module.

When data encoding takes place, only the operation’s in parameters provide data
for the encoding. When data decoding takes place, the decoded data is delivered
only to the operation’s out parameters.

If data is being both encoded and decoded, you generally declare all of the
operation’s parameters to be in ,out . However, you can encode data by using the in
parameters of one operation, and decode it by using the out parameters of another
operation if the types and order of the in and out parameters are the same. For
equivalence, the IDL encoding services treat a function result as an out parameter
that appears after all other out parameters.

In the following example, the IDL compiler generates IDL encoding services stub
code for the in_array_op1 , out_array_op1 , and array_op2 operations, but not for
the array_op3 operation. The stub code generated for the in_array_op1 operation
supports encoding, the stub code generated for the out_array_op1 operation
supports decoding, and the stub code generated for the array_op2 operation
supports both encoding and decoding. The stub code generated for the array_op3
is an RPC client stub. For further information on using the IDL encoding services,
see “Chapter 18. Interface Definition Language” on page 357 of this guide and the
reference pages for the idl_es_ *(3rpc) routines.

Example Using the encode and decode Attributes

ACF

interface es_array
{
[encode] in_array_op1();
[decode] out_array_op1();
[encode, decode] array_op2();

}

IDL File

[uuid(20aac780-5398-11c9-b996-08002b13d56d), version(0)]
interface es_array
{
void in_array_op1([in] handle_t h, [in] long arr[100]);
void out_array_op1([in] handle_t h, [out] long arr[100]);
void array_op2([in] handle_t h, [in,out] long big[100]);
void array_op3([in] handle_t h, [in,out] long big[100]);

}

Chapter 19. Attribute Configuration Language 441

The cs_char Attribute

The cs_char attribute is intended for use in internationalized RPC applications. It is
used in conjunction with the cs_stag , cs_drtag , cs_rtag and cs_tag_rtn attributes
and the DCE RPC routines for automatic code set conversion to provide RPC
applications with a mechanism for ensuring character and code set interoperability
between clients and servers transferring international (non-PCS) characters.

The cs_char attribute is very similar in function to the represent_as attribute, in
that it associates a local data type that your application code uses with a data type
defined in the IDL file. The cs_char attribute permits the application code to use the
local data type for international character data and converts between the local data
type and the format specified in the IDL file when transferring international
characters over the network. The cs_char ACF attribute permits the conversion of
characters, arrays of characters, and strings of characters between the format in
which the application code requires them and the format in which they are
transmitted over the network.

As with represent_as , use of the cs_char attribute means that, during marshalling
and unmarshalling, conversions occur between the data type that the application
code is using and the data type specified in IDL. In the case of cs_char , the local
data type is automatically converted between the local data type in the local code
set encoding and the idl_byte data type in the network code set encoding. The
network code set is the code set encoding that the application code, through the
use of the DCE RPC automatic code set conversion routines, has selected to use
when transmitting the international characters over the network.

The cs_char attribute differs from the [transmit_as] attribute in that it does not
affect the network contract between the client and server. It differs from the
[represent_as] attribute in that multiple data items (for example, the characters of
an array or string) can be converted with a single stub call to user-written
conversion code, and that the conversion can modify array size and data limit
information between what is transmitted over the network and what is used by
application code.

The cs_char attribute has the following syntax. (See the examples at the end of
this section.)

typedef [cs_char (local_type_name)] net_type_name;

The local_type_name is the local data type that the application code uses. You can
define it in the IDL file or in an application header file. If you do not define it in the
IDL file, use the include statement in the ACF to make its definition available to the
stubs.

The net_type_name is the data type that is defined in the IDL file. When used with
the cs_char attribute, this data type is always byte in the IDL file.

If you use the cs_char attribute, you must write the following stub support routines
for each local type that you define:

v Routines that check the buffer storage requirements for international character
data to be converted to determine whether or not more buffer space needs to be
allocated to hold the converted data

v Routines to perform conversion between local and network code sets

442 OSF® DCE Application Development Guide —Core Components

The suffix for the routine names, the function of each, and where they are used
(client or server) appear in the following list:

v local_type_name_net_size() : Calculates the necessary buffer size for code set
conversion from a local code set to a network code set. Client and server stubs
call this routine before they marshall any international character data.

v local_type_name_local_size() : Calculates the necessary buffer size for code set
conversion from a network code set to a local code set. Client and server stubs
call this routine before they unmarshall any international character data.

v local_type_name_to_netcs() : Converts international character data from a local
code set to a network code set. Client and server stubs call this routine before
they marshall any international character data.

v local_type_name_from_netcs() : Converts international character data from a
network code set to a local code set. Client and server stubs call this routine
before they unmarshall any international character data.

You specify the name for the local data type in the local_type_name portion of the
function name. The name that you specify cannot exceed 20 characters because
the entire generated name must not exceed the 31-character limit for C identifiers.

For each piece of international character data being marshalled, the _net_size and
_to_netcs routines are called once each. For each piece of international character
data being unmarshalled, the _local_size and _from_netcs routines are called
once each.

DCE RPC provides buffer sizing and code set conversion routines for the cs_byte
and wchar_t data types (the cs_byte type is equivalent to the byte type). If they
meet the needs of your application, you can use these RPC routines (cs_byte_ *
and wchar_t_ *) instead of providing your own routines.

If you do provide your own routines for buffer sizing and code set conversion, they
must follow a specific signature. See the reference pages for the cs_byte_ *(3rpc)
and wchar_t_ *(3rpc) routines for a complete description of the required signatures
for these routines.

When international character data is to be unmarshalled, a stub needs to have
received a description of the code set being used before it receives the data. For
this reason, the cs_char attribute cannot be applied to the base type of a pipe or to
a type used in constructing the base type of a pipe.

The cs_char attribute also cannot be applied to a type if there is an array that has
this type as a base type and the array has more than one dimension, or if the
attributes min_is , max_is , first_is , last_is , or string have been applied to the
array. As a result, all instances of the type to which cs_char has been applied must
be scalars or one-dimensional arrays. Only the length_is and/or size_is attributes
can be applied to these arrays.

The following restrictions apply to the use of variables that appear in array
attributes:

v Any parameter that is referenced by a size_is or length_is attribute of an array
parameter whose base type has the cs_char attribute cannot be referenced by
any attribute of an array parameter whose base type does not have the cs_char
attribute.

Chapter 19. Attribute Configuration Language 443

v Any structure field that is referenced by a size_is or length_is attribute of an
array field whose base type has the cs_char attribute cannot be referenced by
any attribute of an array field whose base type does not have the cs_char
attribute.

The cs_char attribute cannot interact with the transmit_as or represent_as
attributes. This restriction imposes the following rules:

v The cs_char attribute cannot be applied to a type that has the transmit_as
attribute, nor can it be applied to a type in whose definition a type with the
transmit_as attribute is used.

v The cs_char attribute cannot be applied to a type that has the represent_as
attribute, nor can it be applied to a type in whose definition a type with the
represent_as attribute is used.

v The cs_char attribute cannot be applied to the transmitted type specified in a
transmit_as attribute or to any type used in defining such a transmitted type.

The cs_char attribute cannot be applied to any type that is the type of the referent
of a pointer that has a max_is or size_is attribute applied to it. It also cannot be
applied to the base type of an array parameter that has the unique or ptr attribute
applied to it.

An application that uses the cs_char ACF attribute cannot use the IDL encoding
services encode and decode ACF attributes.

Examples Using the cs_char Attribute

Arrays of cs_char can be fixed, varying, conformant, or conformant varying. The
treatment of a scalar cs_char is similar to that of a fixed array of one element. The
following examples show the relationship between IDL declarations and declarations
in the generated header file when the cs_char attribute has been applied. The
examples assume that the ACF contains the type definition:

typedef [cs_char(ltype)] my_byte;

For a fixed array, if the IDL file contains

typedef struct {
my_byte fixed_array[80];

} fixed_struct;

the declaration generated in the header file is

typedef struct {
ltype fixed_array[80];

} fixed_struct;

The number of array elements in the local and network representations of the data
must be the same as the array size stated in the IDL.

For a varying array, if the IDL file contains

typedef struct {
long l;
[length_is(l)] my_byte varying_array[80];

} varying_struct;

444 OSF® DCE Application Development Guide —Core Components

the declaration generated in the header file is

typedef struct {
idl_long_int l;
ltype varying_array[80];

} varying_struct;

Neither the number of array elements in the local representation nor the number of
array elements in the network representation may exceed the array size in the IDL.

For a conformant array, if the IDL file contains

typedef struct {
long s;
[size_is(s)] my_byte conf_array[];

} conf_struct;

the declaration generated in the header file is

typedef struct {
idl_long_int s;
ltype conf_array[1];

} conf_struct;

The number of array elements in the local representation and the number of array
elements in the network representation need not be the same. The conversions
between these numbers are done in the user-provided _net_size and _local_size
routines.

For a conformant varying array, if the IDL file contains

typedef struct {
long s;
long l;
[size_is(s), length_is(l)] my_byte open_array[];

} open_struct;

the declaration generated in the header file is

typedef struct {
idl_long_int s;
idl_long_int l;
ltype open_array[1];

} open_struct;

The maximum number of array elements in the local representation and the
maximum number of array elements in the network representation need not be the
same. The conversions between these numbers are done in the user-provided
_net_size and _local_size routines.

For fixed or varying arrays, the size of the storage available to hold the local data is
determined by the array size specified in IDL and the local type specified in the
cs_char attribute. For conformant or conformant varying arrays, you must
determine the transformations between local storage size and network storage size
without reference to the characters being transmitted or received. Where a
variable-width character set is in use, this means making the most conservative
assumption about the size of the data.

Chapter 19. Attribute Configuration Language 445

The cs_stag, cs_drtag, and cs_rtag Attributes

The cs_stag , cs_drtag , and cs_rtag attributes are used in conjunction with the
cs_char and (optionally) the cs_tag_rtn attributes and DCE RPC routines for
automatic code set conversion to provide internationalized RPC applications with a
mechanism to ensure character and code set interoperability between clients and
servers handling international character data.

The cs_stag , cs_drtag , and cs_rtag attributes are parameter ACF attributes that
correspond to the sending tag, desired receiving tag, and receiving tag parameters
defined in operations in the IDL file that handle international character data. These
operation parameters tag international characters being passed in the operation’s
input and output parameters with code set identifying information. The cs_stag ,
cs_drtag , and cs_rtag ACF parameter attributes declare the tag parameters in the
corresponding operation definition to be special code set parameters.

The cs_stag attribute has the following syntax:

operation_name ([cs_stag] parameter_name);

The cs_stag attribute identifies the code set used when the client sends
international characters to the server. Operations defined in the IDL file that specify
international characters in in parameters must use the cs_stag attribute in the
associated ACF.

The cs_drtag attribute has the following syntax:

operation_name ([cs_drtag] parameter_name);

The cs_drtag attribute identifies the code set the client would like the server to use
when returning international characters.

The cs_rtag attribute has the following syntax:

operation_name ([cs_rtag] parameter_name);

The cs_rtag attribute identifies the code set that is actually used when the server
sends international characters to the client. Operations defined in the IDL file that
specify international characters in out parameters must apply the cs_rtag attribute
in the associated ACF.

Example Using the cs_stag, cs_drtag, and cs_rtag Attributes

Here is an example ACF for an IDL file in which the operation my_op has the tag
parameters my_stag , my_drtag , and my_rtag , whose types are either unsigned
long or [ref] unsigned long .
my_op([cs_stag] my_stag, [cs_drtag] my_drtag,[cs_rtag] my_rtag);

For more information about the cs_stag , cs_drtag , and cs_rtag ACF attributes and
their use in internationalized RPC applications, see “Chapter 16. Writing
Internationalized RPC Applications” on page 281 of this guide.

446 OSF® DCE Application Development Guide —Core Components

The cs_tag_rtn Attribute

The cs_tag_rtn attribute is an ACF attribute for use in RPC applications that handle
international character data. This attribute specifies the name of a user-written
routine that the client and server stubs will call to set an operation’s code set tag
parameters to specific code set values. The cs_tag_rtn attribute is an optional ACF
attribute that you can use to provide code set tag transparency for callers of your
interface’s operations. If an operation that transfers international character data has
the cs_tag_rtn attribute applied to it in the corresponding ACF, the code set tag
parameters will not appear in the operation’s definition within the generated header
file. If the cs_tag_rtn attribute is not used, the operation’s caller must provide
appropriate values to the operation’s code set tag parameters before international
character data is marshalled.

The cs_tag_rtn attribute has the following syntax. (See the example at the end of
this section.)

For an interface:

[cs_tag_rtn(
tag_set_routine)] interface interface_name

For an operation:

[cs_tag_rtn(tag_set_routine)] operation_name ([parameter_list]);

When used as an ACF interface attribute, the cs_tag_rtn attribute applies to all
operations defined in the corresponding IDL file. When used as an ACF operation
attribute, the cs_tag_rtn attribute applies only to the operation you specify.

The tag_set_routine is the name of the stub support routine that the client and
server stubs will call to set the operation’s code set tag parameters. The IDL
compiler will generate a function prototype for tag_set_routine in the generated
header file.

Applications can specify the DCE RPC tag-setting routine rpc_cs_get_tags() if it
meets their applications’ needs, or they can write their own tag-setting routines. The
routine name must be distinct from any type name, procedure name, constant
name, or enumeration name appearing in the interface definition. It must also have
a specific calling signature. See the rpc_cs_get_tags(3rpc) reference page for a
complete description of the required routine signature.

When the tag-setting routine is called from a client stub, it is called before any in
parameters are marshalled. When called from a server stub, it is called before any
out parameters are marshalled. For more information on the cs_tag_rtn attribute
and its use in internationalized RPC applications, see “Chapter 16. Writing
Internationalized RPC Applications” on page 281 of this guide.

Example Using the cs_tag_rtn Attribute

As shown in the following example, the cs_tag_rtn attribute is used in conjunction
with the cs_char , cs_stag , cs_drtag , and cs_rtag ACF attributes. In the example,
the stub generated for a_op will call the tag-setting routine set_tags to set the code
set tag parameters to specific values before any data is marshalled. For b_op , it is
the responsibility of the operation’s caller to ensure that the code set tag
parameters are set correctly before any data is marshalled.

Chapter 19. Attribute Configuration Language 447

IDL File

typedef byte my_byte;

void a_op(
[in] unsigned long stag,
[in] unsigned long drtag,
[out] unsigned long *p_rtag,
[in] long s,
[in, out] long *p_l,
[in, out, size_is(s), length_is(*p_l)] my_byte a[]

);

void b_op(
[in] unsigned long stag,
[in] unsigned long drtag,
[out] unsigned long *p_rtag,
[in] long s,
[in, out] long *p_l,
[in, out, size_is(s), length_is(*p_l)] my_byte a[]

);

ACF

typedef [cs_char(ltype)] my_byte;

[cs_tag_rtn(set_tags)] a_op([cs_stag] stag,
[cs_drtag] drtag,
[cs_rtag] p_rtag);

b_op([cs_stag] stag,
[cs_drtag] drtag,
[cs_rtag] p_rtag);

Generated Header File

typedef byte my_byte;

void a_op(
/* [in] */ idl_long_int s,
/* [in, out] */ idl_long_int *p_l,
/* [in, out, size_is(s), length_is(*p_l)] */ ltype a[]

);

void b_op(
/* [in] */ idl_ulong_int stag,
/* [in] */ idl_ulong_ing drtag,
/* [out] */ idl_ulong_int *p_rtag,
/* [in] */ idl_long_int s,
/* [in, out] */ idl_long_int *p_l,
/* [in, out, size_is(s), length_is(*p_l)] */ ltype a[]

);

The binding_callout Attribute

The binding_callout attribute permits you to specify the name of a routine that the
client stub is to call automatically to modify a server binding handle before it
initiates a remote procedure call. This attribute is intended for use by client
applications that employ the automatic binding method through the auto_handle
ACF interface attribute. In automatic binding, it is the client stub, rather than the
client application code, that obtains the binding handle to the server. The
binding_callout attribute allows a client application using automatic binding to

448 OSF® DCE Application Development Guide —Core Components

modify the binding handle obtained by the client stub. Without this attribute, it is
impossible for the client application to modify the binding handle before the client
stub attempts to initiate a remote procedure call to the selected server.

Clients typically use this attribute to augment automatic binding handles with
security context, for example, so that authenticated RPC is used between client and
server.

The binding_callout attribute has the following syntax. (See the example at the
end of this section.)

[binding_callout(routine_name)] interface interface_name

The routine_name specifies the name of a binding callout routine that the client stub
will call to modify the server binding handle before initiating the remote procedure
call to the server. The IDL compiler will generate a function prototype for
routine_name in the generated header file.

You can specify the name of a routine that you supply, or you can specify the DCE
RPC routine rpc_ss_bind_authn_client() to modify the binding handle if it meets
the needs of your application. See the rpc_ss_bind_authn_client(3rpc) reference
page for more information.

The binding callout routine you provide must have a specific routine signature. See
the rpc_ss_bind_authn_client(3rpc) reference page for information about the
required routine signature.

The binding_callout attribute can occur at most once in the ACF and applies to all
of the operations in the corresponding IDL file.

A binding callout routine should return the error_status_ok status code when it
successfully modifies the binding handle or determines that no action is necessary.
This status code causes the client stub to initiate the remote procedure call.

A binding callout routine can also return error status. If it does, the client stub does
not initiate the remote procedure call. Instead, if the auto_handle attribute has
been applied in the ACF, the client stub attempts to locate another server of the
interface and then calls the binding callout routine again. If auto_handle is not in
use, the client stub invokes its normal error-handling logic. A binding callout routine
for a client using auto_handle can return the status code
rpc_s_no_more_bindings to prevent the client stub from searching for another
server and instead invoking its error-handling logic immediately.

By default, the client stub handles an error condition by raising an exception. If a
binding callout routine returns one of the rpc_s_ status codes, the client stub raises
a matching rpc_x_ exception. However, if a binding callout routine returns any other
type of status code, the client stub will most likely raise it as an “unknown status”
exception.

If the comm_status parameter ACF attribute has been applied to an operation, the
client stub handles an error condition by returning the error status value in the
comm_status parameter. Consequently, a binding callout routine can return any
error status value to the client application code if the comm_status attribute has
been applied to the operation.

Chapter 19. Attribute Configuration Language 449

A binding callout routine can raise a user-defined exception, rather than return a
status code, to report application-specific error conditions back to the client
application code using exceptions.

Example Using the binding_callout Attribute

ACF

[auto_handle,binding_callout(my_bh_callout)] interface \
bindcall

{
}

Generated Header File (bindcall.h)

void my_bh_callout(
rpc_binding_handle_t *p_binding,
rpc_if_handle_t interface_handle,
error_status_t *p_st

);

The C++ Attributes cxx_new, cxx_static, cxx_lookup, and cxx_delegate

The IDL compiler uses an ACF to do the following for C++ applications:

v Declare a server’s manager class and object constructor by using cxx_new .

v Declare interface member functions as static by using the cxx_static attribute, if
they are not already declared in the interface definition file.

v Rename static member functions by using cxx_static. .

v Specify a lookup function by using the cxx_lookup attribute. The server calls this
application-specific function automatically if a client requests a known object not
currently maintained by the server.

v Specify a delegate interface class by using the cxx_delegate attribute. A
third-party class is encapsulated by a delegate class so it can be used in RPCs
without modifying the original class.

v Control in which stub files application-specific header files are included. (See also
the include statement and the cstub and sstub attributes.)

Using cxx_new to Declare an Object Creator Function

Member functions may be specified as static object creator functions by applying
the cxx_new attribute to the function name. An object creator function allows clients
to dynamically create remote objects of an interface class. Servers require this
feature to specify their implementation-specific manager class, and clients can use
this feature to specify their local implementation of the interface class. The
cxx_new attribute is applied to an operation and has the following format:

[cxx_new (manager_class)] creator_function();

The associated IDL file must contain a function that returns a pointer to the
interface class and that matches the creator_function name.

The manager_class argument to the cxx_new attribute specifies the class name the
application uses to locally implement the interface class. The server stub requires
the manager_class,which must be declared for it in a header file and included by
using the sstub attribute with the include statement. The format in C++ of the
manager_class declaration is as follows:

450 OSF® DCE Application Development Guide —Core Components

class manager_class : public interface_class {
// The constructor, destructor, function declarations, and data.
...

}

The manager class may include not only a constructor to create objects of the
class, but also all the nonstatic member functions declared in the interface class. A
server implements the manager_class member functions in its manager code.
Manager code handles requests from clients for all of the interface’s member
functions (static and nonstatic), including the creator_function which dynamically
creates interface objects on the server for the client.

When a client calls the creator_function, the client stub executes a proxy function
that uses RPCs to execute a manager class constructor on a server. A client can
use the manager_class argument to specify a class name when implementing its
own local version of the interface class. In this case, the client links into its
application the idl -generated server stub along with a local implementation of the
interface class. When the client uses the new operator to creates objects of the
manager_class type, the object is local and no RPCs are involved.

Using cxx_static to Specify Static Interface Member Functions

Member functions can be specified as static by applying the cxx_static attribute to
the function name. The cxx_static attribute is an operation attribute with a format
as follows:

[cxx_static [(local_function)]] member_function();

The member_function name must match a function named in the associated IDL
file.

Both remote and local versions of objects are implemented in an application by
linking in both client and server stubs. A client links in the server stub to implement
client-local versions of interface objects. A server links in the client stub to allow
access to remote (in this case, client-local) objects that are passed in as
parameters to member functions. The local_function argument to the cxx_static
attribute specifies the function name that the application uses to locally implement
the static member function and avoid name conflicts with the remote version of the
function (always defined in the client stub).

The server implements a static function named member_function in its manager
code if no local_function is specified. However, if a local_function is specified, the
server implements a static function named local_function in its manager code. In
this case, the manager_function is automatically implemented in the client stub
which is linked into the application (along with the server stub) to handle
marshalling of parameters that are client- local objects (remote to the server). When
there is a local_function, it must be declared for the server stub in a header file and
included by using the sstub attribute with the include statement in the ACF.

When a client calls the static member_function, the client stub executes a proxy
function that uses RPCs to execute the associated remote function on a server. A
client uses the local_function argument to specify a function name to use when
implementing its own local version of the member_function. In this case, in addition
to linking in the client stub, the client application also links in the idl -generated
server stub with a local implementation of the function. When you develop a client,
it might be easier if you think of the server stub as a local-implementation stub,

Chapter 19. Attribute Configuration Language 451

because, when the client calls the static local_function, the call is strictly local and
no RPCs are involved. If you compile an interface such that a server stub is not
generated, the local_function argument to cxx_static is ignored.

An interface can instead specify static member functions by using the static
keyword in the interface definition, in front of a member function.

Using cxx_lookup to Declare a Server’s Object Lookup Function

If a client requests the use of a known object that is not yet in the server’s runtime,
the server can automatically look it up and create it by using an application-specific
function. The object lookup function name is specified by using the cxx_lookup
attribute in an ACF header. The ACF format is as follows:

cxx_lookup (object_lookup_function)

The object_lookup_function must be declared in a header file and included in the
server stub by using the sstub attribute with the include statement in the ACF. The
C++ function declaration must have the following format:

interface_name *object_lookup_function(uuid_t *);

The lookup function has one input pointer argument of type uuid_t representing the
UUID of the object desired. The function returns a pointer to the interface class. The
returned pointer represents the newly created object. If the object cannot be found
or created, the function must return a zero.

Summary of Attributes

The following table lists the attributes available for use in the ACF and where in the
file the attribute can be used.

Table 15. Summary of the ACF Attributes

Attribute Where Used

auto_handle Interface header

binding_callout Interface header

code Interface header, operation

comm_status Operation, parameter

cs_char Type

cs_drtag Parameter

cs_rtag Parameter

cs_stag Parameter

cs_tag_rtn Operation, interface header

cxx_delegate Interface header

cxx_lookup Interface header

cxx_new Operation

cxx_static Operation

cstub include statement

decode Operation, interface header

enable_allocate Operation

452 OSF® DCE Application Development Guide —Core Components

Table 15. Summary of the ACF Attributes (continued)

Attribute Where Used

encode Operation, interface header

explicit_handle Interface header, operation

extern_exceptions Interface header

fault_status Operation, parameter

heap Type, parameter

implicit_handle Interface header

nocode Interface header, operation

represent_as Type

sstub include statement

Attribute Configuration Language

This section summarizes the ACF syntax, in extended BNF notation.
<acf_interface> ::=
<acf_interface_header> "{" <acf_interface_body> "}"

<acf_interface_header> ::=
[<acf_interface_attr_list>] "interface" <idl_interface_name>

<acf_interface_attr_list> ::= "[" <acf_interface_attrs> "]"

<acf_interface_attrs> ::=
<acf_interface_attr> ["," <acf_interface_attr>] ...

<acf_interface_attr> ::= <acf_code_attr>
| <acf_nocode_attr>
| <acf_auto_handle_attr>
| <acf_explicit_handle_attr>
| <acf_implicit_handle_attr>
| <acf_cs_tag_rtn_attr>
| <acf_extern_exceps_attr>
| <acf_encode_attr>
| <acf_decode_attr>
| <acf_binding_callout_attr>
| <acf_delegate_attr>
| <acf_lookup_attr>

<acf_auto_handle_attr> ::= "auto_handle"

<acf_explicit_handle_attr> ::= "explicit_handle"

<acf_implicit_handle_attr> ::=
"implicit_handle" "(" <acf_named_type> <Identifier> ")"

<acf_extern_exceps_attr> ::=
"extern_exceptions" "(" <acf_ext_excep_list> ")"

<acf_ext_exceps_list> ::=
"<acf_ext_excep> ["," <acf_ext_excep] ...

<acf_ext_excep> ::= <Identifier>

Chapter 19. Attribute Configuration Language 453

<acf_binding_callout_attr> ::=
"binding_callout" "(" <acf_bind_call_rtn_name> ")"

<acf_delegate_attr> ::= "cxx_delegate" "(" acf_delegate_name ")"

<acf_delegate_name> ::= <Identifier>

<acf_lookup_attr> ::= "cxx_lookup" "(" acf_lookup_name ")"

<acf_lookup_name> ::= <Identifier>

<acf_bind_call_rtn_name> ::= <Identifier>

<acf_interface_name> ::= <Identifier>

<acf_interface_body> ::= [<acf_body_element>] ...

<acf_body_element> ::= <acf_include> ";"
| <acf_type_declaration> ";"
| <acf_operation> ";"

<acf_include> ::= [<acf_include_attr>] \
"include" <acf_include_list>

<acf_include_attr> ::= "sstub" | "cstub" | "sstub" "," "cstub"

<acf_include_list> ::= <acf_include_name> \
["," <acf_include_name>] ...

<acf_include_name> ::= """ <filename> """

<acf_type_declaration> ::= typedef [<acf_type_attr_list>] \
<acf_named_type>

<acf_named_type> ::= <Identifier>

<acf_type_attr_list> ::= "[" <acf_type_attrs> "]"

<acf_type_attrs> ::= <acf_type_attr> ["," <acf_type_attr>] ...

<acf_type_attr> ::= <acf_represent_attr>
| <acf_cs_char_attr>
| <acf_heap_attr>

<acf_represent_attr> ::= "represent_as" "(" <acf_repr_type> ")"

<acf_cs_char_attr> ::=
"cs_char" "C" "(" <acf_cs_char_type> ")"

<acf_cs_char_type> ::= <acf_named_type>

<acf_repr_type> ::= <acf_named_type>

<acf_operation> ::= [<acf_op_attr_list>] <Identifier> "("
[<acf_parameters>] ")"

<acf_op_attr_list> ::= "[" <acf_op_attrs> "]"

454 OSF® DCE Application Development Guide —Core Components

<acf_op_attrs> ::= <acf_op_attr> ["," <acf_op_attr>] ...

<
acf_op_attr> ::= <acf_explicit_handle_attr>
| <acf_comm_status_attr>
| <acf_cs_tag_rtn_attr>
| <acf_encode_attr>
| <acf_decode_attr>
| <acf_fault_status_attr>
| <acf_code_attr>
| <acf_nocode_attr>
| <acf_enable_allocate_attr>
| <acf_static_attr>
| <acf_new_attr>

<acf_cs_tag_rtn_attr> ::=
"cs_tag_rtn" "(" <acf_cs_tag_rtn_name> ")"

<acf_cs_tag_rtn_name> ::=
<Identifier>

<acf_parameters> ::= <acf_parameter> ["," <acf_parameter>] ...

<acf_parameter> ::= [<acf_param_attr_list>] <Identifier>

<acf_param_attr_list> ::= "[" <acf_param_attrs> "]"

<acf_param_attrs> ::= <acf_param_attr> ["," <acf_param_attr>] ...

<acf_param_attr> ::= <acf_comm_status_attr>
| <acf_fault_status_attr>
| <acf_cs_stag_attr>
| <acf_cs_drtag_attr>
| <acf_cs_rtag_attr>
| <acf_heap_attr>

<acf_code_attr> ::= "code"

<acf_nocode_attr> ::= "nocode"

<acf_encode_attr> ::= "encode"

<acf_decode_attr> ::= "decode"

<acf_cs_stag_attr> ::= "cs_stag"

<acf_cs_drtag_attr> ::= "cs_drtag"

<acf_cs_rtag_attr> ::= "cs_rtag"

<acf_comm_status_attr> ::= "comm_status"

<acf_fault_status_attr> ::= "fault_status"

<acf_enable_allocate_attr> ::= "enable_allocate"

<acf_static_attr> ::= "cxx_static" | "cxx_static" \
"(" <acf_static_name> ")"

<acf_static_name> ::= <Identifier>

Chapter 19. Attribute Configuration Language 455

<acf_new_attr> ::= "cxx_new" "(" <acf_new_name> ")"
<acf_new_name> ::= <Identifier>

<acf_heap_attr> ::= "heap"

456 OSF® DCE Application Development Guide —Core Components

Part 4. DCE Distributed Time Service

457

458 OSF® DCE Application Development Guide —Core Components

Chapter 20. Introduction to the Distributed Time Service API

This chapter describes the DCE Distributed Time Service (DTS) programming
routines. You can use these routines to obtain timestamps that are based on
Coordinated Universal Time (UTC). You can also use the DTS routines to translate
among different timestamp formats and perform calculations on timestamps.
Applications can use the timestamps that DTS supplies to determine event
sequencing, duration, and scheduling. Applications can call the DTS routines from
any host that has the libdce . The dtsd need not be running.

DTS routines are written in the C programming language. You should be familiar
with basic DTS concepts before you attempt to use the application programming
interface (API). The DTS chapters of the OSF DCE Administration Guide—Core
Components provide conceptual information about DTS.

The DTS API routines offer the following basic functions:

v Retrieving timestamp information

v Converting between binary timestamps that use different time structures

v Converting between binary timestamps and ASCII representations

v Converting between UTC time and local time

v Manipulating binary timestamps

v Comparing two binary time values

v Calculating binary time values

v Obtaining time zone information

The sections that follow describe how DTS represents time, discuss the DTS time
structures, discuss the DTS API header files, and briefly describe the DTS API
routines.

DTS Time Representation

UTC is the international time standard that has largely replaced Greenwich Mean
Time (GMT). The standard is administered by the International Time Bureau (BIH)
and is widely used. DTS uses opaque binary timestamps that represent UTC for all
of its internal processes. You cannot read or disassemble a DTS binary timestamp;
the DTS API allows applications to convert or manipulate timestamps, but they
cannot be displayed. DTS also translates the binary timestamps into ASCII text
strings, which can be displayed.

Absolute Time Representation

An absolute time is a point on a time scale. For DTS, absolute times reference the
UTC time scale; absolute time measurements are derived from system clocks or
external time-providers. When DTS reads a system clock time, it records the time in
an opaque binary timestamp that also includes the inaccuracy and other
information. When you display an absolute time, DTS converts the time to ASCII
text as shown in the following display:

1990-11-21-13:30:25.785-04:00I000.082

459

DTS displays all times in a format that complies with the International Organization
for Standardization (ISO) 8601 (1988) standard. Note that the inaccuracy portion of
the time is not defined in the ISO standard; times that do not include an inaccuracy
are accepted.

Figure 59 explains the ISO format that generated the previous display.

In this figure, the relative time preceded by the + (plus) or − (minus) character
indicates the hours and minutes that the calendar date and time are offset from
UTC. The presence of this time differential factor (TDF) in the string also indicates
that the calendar date and time are the local time of the system, not UTC. Local
time is UTC plus the TDF. The Inaccuracy (I) designator indicates the beginning of
the inaccuracy component associated with the time.

Although DTS displays all times in the previous format, variations to the ISO format
shown in Figure 60 are also accepted as input for the ASCII conversion routines.

CCYY-MM-DD-hh:mm:ss.fff [+ l -]hh:mm sss.fffI

Inaccuracy
designator

hours

minutes

+ l - TDF

TDF
component

Inaccuracy
component

Calendar date and time
component

fractions

secondsYear

Century

Day

Month

minute

hour

fraction

second

Figure 59. ISO Format for Time Displays

CCYY-MM-DDThh:mm:ss,fff [+ l -]hh:mm ss,fffI

hours

minutes

+ l - TDF

TDF
component

Inaccuracy
component

Calendar date and time
component

fractions

secondsYear

Century

Day

Time
designator

Inaccuracy
designator

Month

minute

hour

fraction

second

Figure 60. Variations to the ISO Time Format

460 OSF® DCE Application Development Guide —Core Components

In this figure, the Time (T) designator separates the calendar date from the time, a ,
(comma) separates seconds from fractional seconds, and the + or − indicates the
beginning of the inaccuracy component.

The following examples show some valid time formats.

The following represents July 4, 1776 17:01 GMT and an unspecified inaccuracy
(default):

1776-7-4-17:01:00

The following represents a local time of 12:01 (17:01 GMT) on July 4, 1776 with a
TDF of −5 hours and an inaccuracy of 100 seconds:

1776-7-4-12:01:00-05:00I100

Both of the following represent 12:00 GMT in the current day, month, and year with
an unspecified inaccuracy:

12:00 and T12

The following represents July 14, 1792 00:00 GMT with an unspecified inaccuracy:

1792-7-14

Relative Time Representation

A relative time is a discrete time interval that is usually added to or subtracted from
another time. A TDF associated with an absolute time is one example of a relative
time. A relative time is normally used as input for commands or system routines.

Figure 61 shows the full syntax for a relative time.

The following example shows a relative time of 21 days, 8 hours, and 30 minutes,
25 seconds with an inaccuracy of 0.300 seconds:

21-08:30:25.000I00.300

The following example shows a negative relative time of 20.2 seconds with an
unspecified inaccuracy (default):

-20.2

DD-hh:mm:ss.fff ss.fffI

Inaccuracy
designator

Inaccuracy
component

Calendar date and time
component

fractions

seconds

Days

minutes

hours

fractions

seconds

Figure 61. Full Syntax for a Relative Time

Chapter 20. Introduction to the Distributed Time Service API 461

The following example shows a relative time of 10 minutes, 15.1 seconds with an
inaccuracy of 4 seconds:

10:15.1I4

Notice that a relative time does not use the calendar date fields, since these fields
concern absolute time. A positive relative time is unsigned; a negative relative time
is preceded by a − (minus) sign. A relative time is often subtracted from or added to
another relative or absolute time. Relative times that DTS uses internally are
opaque binary timestamps. The DTS API offers several routines that can be used to
calculate new times by use of relative binary timestamps.

Representing Periods of Time

A given duration of a period of time can be represented by a data element of
variable length that uses the syntax shown in Figure 62.

The Data Element Parts

The data element contains the following parts:

v The designator P precedes the part that includes the calendar components,
including the following:

– The number of years followed by the designator Y

– The number of months followed by the designator M

– The number of weeks followed by the designator W

– The number of days followed by the designator D

v The T designator precedes the part that includes the time components, including
the following:

– The number of hours followed by the designator H

– The number of minutes followed by the designator M

– The number of seconds followed by the designator S

v The designator I precedes the number of seconds of inaccuracy.

The following example represents a period of 1 year, 6 months, 15 days, 11 hours,
30 minutes, and 30 seconds and an unspecified inaccuracy:
P1Y6M15DT11H30M30S

The following example represents a period of 3 weeks and an inaccuracy of 4
seconds:

P3WI4

P Y M W DT H M SIn n n n n n n n

Inaccuracy Designator/Inaccuracy

Seconds/Second Designator

Minutes/Minute Designator

Hours/Hour Designator

Time Designator

Period Designator

Years/Year Designator

Months/Month Designator

Weeks/Week Designator

Days/Day Designator

Figure 62. Syntax for Representing a Duration

462 OSF® DCE Application Development Guide —Core Components

Time Structures

DTS can convert among several types of binary time structures that are based on
different base dates and time unit measurements. DTS uses UTC-based time
structures and can convert other types of time structures to its own presentation of
UTC-based time. The DTS API routines are used to perform these conversions for
applications on your system.

Table 16 lists the absolute time structures that the DTS API uses to modify binary
times for applications.

Table 16. Absolute Time Structures

Structure Time Units Base Date Approximate Range

utc 100-nanosecond 15 October 1582 A.D. 1 to A.D. 30,000

tm second 1 January 1900 A.D. 1 to A.D. 30,000

timespec nanosecond 1 January 1970 A.D. 1970 to A.D.
2106

Table 17 lists the relative time structures that the DTS API uses to modify binary
times for applications.

Table 17. Relative Time Structures

Structure Time Units Approximate Range

utc 100-nanosecond +/− 30,000 years

tm second +/- 30,000 years

reltimespec nanosecond +/- 68 years

The remainder of this section explains the DTS time structures in detail.

The utc Structure

UTC is useful for measuring time across local time zones and for avoiding the
seasonal changes (summer time or daylight savings time) that can affect the local
time. DTS uses 128-bit binary numbers to represent time values internally;
throughout this guide, these binary numbers representing time values are referred
to as binary timestamps. The DTS utc structure determines the ordering of the bits
in a binary timestamp; all binary timestamps that are based on the utc structure
contain the following information:

v The count of 100-nanosecond units since 00:00:00.00, 15 October 1582 (the
date of the Gregorian reform to the Christian calendar)

v The count of 100-nanosecond units of inaccuracy applied to the preceding item

v The TDF, expressed as the signed quantity

v The DTS version number

The binary timestamps that are derived from the DTS utc structure have an opaque
format. This format is a cryptic character sequence that DTS uses and stores
internally. The opaque binary timestamp is designed for use in programs, protocols,
and databases.

Note: Applications use the opaque binary timestamps when storing time values or
when passing them to DTS.

Chapter 20. Introduction to the Distributed Time Service API 463

The API provides the necessary routines for converting between opaque binary
timestamps and character strings that can be displayed and read by users.

The tm Structure

The tm structure is based on the time in years, months, days, hours, minutes, and
seconds since 00:00:00 GMT (Greenwich Mean Time), 1 January 1900. The tm
structure is defined in the time.h header file.

The tm structure declaration follows:
struct tm {

int tm_sec; /* Seconds (0 - 59) */
int tm_min; /* Minutes (0 - 59) */
int tm_hour; /* Hours (0 - 23) */
int tm_mday; /* Day of Month (1 - 31) */
int tm_mon; /* Month of Year (0 - 11) */
int tm_year; /* Year - 1900 */
int tm_wday; /* Day of Week (Sunday = 0) */
int tm_yday; /* Day of Year (0 - 364) */
int tm_isdst; /* Nonzero if Daylight Savings Time */

/* is in effect */
};

Not all of the tm structure fields are used for each routine that converts between tm
structures and utc structures. (See the parameter descriptions contained in the
reference pages in the OSF DCE Application Development Reference for additional
information about which fields are used for specific routines.)

The timespec Structure

The timespec structure is normally used in combination with or in place of the tm
structure to provide finer resolution for binary times. The timespec structure is
similar to the tm structure, but the timespec structure specifies the number of
seconds and nanoseconds since the base time of 00:00:00 GMT, 1 January 1970.
You can find the structure in the dce/utc.h header file.

The timespec structure declaration follows:

struct timespec {
time_t tv_sec; /* Seconds since 00:00:00 GMT, */

/* 1 January 1970 */
long tv_nsec; /* Additional nanoseconds since */

/* tv_sec */
} timespec_t;

The reltimespec Structure

The reltimespec structure represents relative time. This structure is similar to the
timespec structure, except that the first field is signed in the reltimespec structure.
(The field is unsigned in the timespec structure.) You can find the reltimespec
structure in the dce/utc.h header file.

The reltimespec structure declaration follows:

464 OSF® DCE Application Development Guide —Core Components

struct reltimespec {
time_t tv_sec; /* Seconds of relative time */
long tv_nsec; /* Additional nanoseconds of */

/* relative time */
} reltimespec_t;

DTS API Header Files

The time.h and dce/utc.h header files contain the data structures, type definitions,
and define statements that are referenced by the DTS API routines. The time.h
header file is a standard UNIX file. The dce/utc.h header file includes time.h and
contains the timespec , reltimespec , and utc structures.

These header files are located in /usr/include/dce .

DTS API Routine Functions

Figure 63 categorizes the DTS portable interface routines by function.

An alphabetical listing of the DTS portable interface routines and a brief description
of each one follows:

utc_anytime
utc_gmtime
utc_localtime
utc_mkanytime
utc_mkgmtime
utc_mklocaltime
utc_mkreltime
utc_reltime

utc_binreltime
utc_bintime
utc_mkbinreltime
utc_mkbintime

utc_ascanytime
utc_ascgmtime
utc_asclocaltime
utc_ascreltime
utc_mkasctime
utc_mkascreltime

To/From
ASCII text:

To/From
Structures:bn

To/From
Structures:timespec

Converting Times ...

Retrieving Time ...

Manipulating Times ...

Obtaining Timezone
Information ...

Comparing Times ...

Calculating Times ...

utc_gettime
utc_getusertime

utc_boundtime
utc_spantime
utc_pointtime

utc_anyzone
utc_gmtzone
utc_localzone

utc_cmpintervaltime
utc_cmpmidtime

utc_abstime
utc_addtime
utc_mulftime
utc_multime
utc_subtime

Figure 63. DTS API Routines Shown by Functional Grouping

Chapter 20. Introduction to the Distributed Time Service API 465

v utc_abstime : Computes the absolute value of a binary relative timestamp

v utc_addtime : Computes the sum of two binary timestamps; the timestamps can
be two relative times or a relative time and an absolute time

v utc_anytime : Converts a binary timestamp into a tm structure by using the TDF
information contained in the timestamp to determine the TDF returned with the
tm structure

v utc_anyzone : Gets the time zone label and offset from GMT by using the TDF
contained in the input utc

v utc_ascanytime : Converts a binary timestamp into an ASCII string that
represents an arbitrary time zone

v utc_ascgmtime : Converts a binary timestamp into an ASCII string that
expresses a GMT time

v utc_asclocaltime : Converts a binary timestamp to an ASCII string that
represents a local time

v utc_ascreltime : Converts a binary timestamp that expresses a relative time to its
ASCII representation

v utc_binreltime : Converts a relative binary timestamp into two timespec
structures that express relative time and inaccuracy

v utc_bintime : Converts a binary timestamp into a timespec structure

v utc_boundtime : Given two UTC times, one before and one after an event,
returns a single UTC time whose inaccuracy includes the event

v utc_cmpintervaltime : Compares two binary timestamps or two relative binary
timestamps

v utc_cmpmidtime : Compares two binary timestamps or two relative binary
timestamps, ignoring inaccuracies

v utc_gettime : Returns the current system time and inaccuracy as an opaque
binary timestamp

v utc_getusertime : Returns the time and process-specific TDF, rather than the
system-specific TDF

v utc_gmtime : Converts a binary timestamp into a tm structure that expresses
GMT or the equivalent UTC

v utc_gmtzone : Gets the time zone label, given utc

v utc_localtime : Converts a binary timestamp into a tm structure that expresses
local time

v utc_localzone : Gets the time zone label and offset from GMT, given utc

v utc_mkanytime : Converts a tm structure and TDF (expressing the time in an
arbitrary time zone) into a binary timestamp

v utc_mkascreltime : Converts a null-terminated character string, which represents
a relative timestamp, to a binary timestamp

v utc_mkasctime : Converts a null-terminated character string, which represents an
absolute timestamp, to a binary timestamp

v utc_mkbinreltime : Converts a timespec structure expressing a relative time to a
binary timestamp

v utc_mkbintime : Converts a timespec structure into a binary timestamp

v utc_mkgmtime : Converts a tm structure that expresses GMT or UTC to a binary
timestamp

v utc_mklocaltime : Converts a tm structure that expresses local time to a binary
timestamp

466 OSF® DCE Application Development Guide —Core Components

v utc_mkreltime : Converts a tm structure that expresses relative time to a binary
timestamp

v utc_mulftime : Multiplies a relative binary timestamp by a floating-point value

v utc_multime : Multiplies a relative binary timestamp by an integer factor

v utc_pointtime : Converts a binary timestamp to three binary timestamps that
represent the earliest, most likely, and latest time

v utc_reltime : Converts a binary timestamp that expresses a relative time into a
tm structure

v utc_spantime : Given two (possibly unordered) binary timestamps, returns a
single UTC time interval whose inaccuracy spans the two input timestamps

v utc_subtime : Computes the difference between two binary timestamps that
express either an absolute time and a relative time, two relative times, or two
absolute times

Chapter 20. Introduction to the Distributed Time Service API 467

468 OSF® DCE Application Development Guide —Core Components

Chapter 21. Time-Provider Interface

This chapter describes the Time-Provider Interface (TPI) for DCE Distributed Time
Service software. The chapter provides a brief overview of the TPI, explains how to
use external time-providers with DTS, and describes the data structures and
message protocols that make up the TPI.

Coordinated Universal Time (UTC) is widely used and is disseminated throughout
the world by various standards organizations. Several manufacturers supply devices
that can acquire UTC time values via radio, satellite, or telephone. These devices
can then provide standardized time values to computer systems. Normally, one
device is connected to a computer system; the device runs a process that interprets
signals and translates them to time values, which can either be displayed or be
provided to the server process running on the connected system.

To synchronize its system clock with UTC using an external time-provider device, a
DTS server needs a software interface to the device to periodically obtain UTC. In
effect, this interface serves as an intermediary between the DTS server and
external time-provider processes. The DTS server requires the interface to obtain
UTC time values and to determine the associated inaccuracy of each value. The
interface between the DTS server process and the time-provider process is called
the Time-Provider Interface.

The remainder of this chapter describes the TPI and its attendant processes in
detail. The following section describes the control flow between the DTS server
process, the TPI, and the time-provider process.

General TPI Control Flow

When you use a time-provider with a system running DTS, the external
time-provider is implemented as an independent process that communicates with a
DTS server process through remote procedure calls (RPCs). A remote procedure
call is a synchronous request and response between a main calling program and a
procedure executing in another process. RPC applications are based on the
client/server model. In this context, the following processes act as the client and
server components in the RPC-based application:

v The DTS daemon is the client.

v The Time-Provider process (TP process) is the server.

Both the RPC-client (DTS daemon) and the server (TP process) must be running
on the same system.

Applications running on RPC communicate through an interface that is well known
to both the client and the server. The RPC interface consists of a set of procedures,
data types, and constants that describe how a client can invoke a routine running
on the server. The server offers the interface to the clients through the Interface
Definition Language (IDL) file.

The IDL file defines the syntax for an operation, including the following:

v The name of the operation

v The data type of the value that the operation returns (if any)

v The order and data types of the operation’s parameters (if any)

469

The TP process offers two procedures that DTS calls to obtain time values. These
procedures are ContactProvider and ServerRequestProviderTime .

At each system synchronization, DTS makes the initial remote procedure call
(ContactProvider) to a TP process that is assumed to be running on the same
node.

If the TP process is active, the RPC call returns the following arguments:

v A successful communication status message

v A control message that DTS uses for further processing

If the TP process is not active, the RPC call either returns a communication status
failure or a time-out occurs. DTS then synchronizes with other servers instead of
with the external time-provider.

If the initial call (ContactProvider) is successful, DTS makes a second call
(ServerRequestProviderTime) to retrieve the timestamps from the external
time-provider. The control message sent by the TP process in the first RPC call
specifies the length of time DTS waits for the RPC call to complete. The TP process
returns the following parameters in the procedure call:

v A communication status message.

v A time structure that contains timestamps collected from the external
time-provider. (DTS then uses these timestamps to complete its synchronization.)

Figure 64 on page 471 illustrates the RPC calling sequence between DTS and the
TP process. Note that solid black lines represent the path followed by input
parameters; dashed lines represent the path followed by output parameters and
return values.

The following steps describe the process shown in Figure 64 on page 471:

1. At synchronization time, DTS calls the ContactProvider remote procedure.
Input parameters are passed to the TP client stub, dispatched to the RPC
runtime library, and then passed to the TP server stub.

2. The TP process receives the call and executes the ContactProvider procedure.

3. The procedure terminates and returns the results through the TP server stub,
the RPC runtime library, and the TP client stub.

4. The procedure terminates in the DTS call, where the returned parameters are
examined.

5. DTS then calls the ServerRequestProviderTime remote procedure. Input
parameters are passed to the TP client stub, dispatched to the RPC runtime
library, and then passed to the TP server stub.

470 OSF® DCE Application Development Guide —Core Components

6. The TP process receives the call and executes the
ServerRequestProviderTime procedure.

7. The procedure terminates and returns the results through the TP server stub,
the RPC runtime library, and the TP client stub.

8. The DTS remote procedure call terminates and the timestamps are returned as
an output parameter. DTS then synchronizes using the timestamps returned by
the external time-provider.

The following section describes the remote procedures that are exported by the TP
process during the previous sequence.

ContactProvider Procedure

ContactProvider is the first routine called by DTS. The routine is called to verify
that the TP process is running and to obtain a control message that DTS uses for
subsequent communications with the TP process and for synchronization after it
receives the timestamps. The parameters passed in the ContactProvider
procedure call consist of the following elements:

v Binding Handle

An input parameter that establishes the relationship between DTS and the TP
process. A binding handle enables the client (DTS) to recognize and find a server
(the TP process) that offers the same interface.

DTS daemon TP process

RPC interface RPC interface

ContactProvider ServerRequestProviderTime

TP client stub TP server stub

RPC runtime library

1 4 285 7 6 3

Figure 64. DTS/Time-Provider RPC Calling Sequence

Chapter 21. Time-Provider Interface 471

v Control Message

An output parameter that contains information used by DTS for subsequent
processing. The control message consists of the following elements:

TPstatus
One of the following values:

– K_TPI_SUCCESS

– K_TPI_FAILURE

nextPoll
A time value that tells DTS when to contact the TP process again. For
example, once a day through dial-up, radio, or satellite.

timeout
A value that tells DTS how long to wait for a response from the TP
process.

noClockSet
A value that specifies whether or not DTS is allowed to alter the system
clock. If noClockSet is specified as 0x01 (TRUE), DTS does not adjust or
set the clock during the current synchronization. This option is useful for
systems whose system clock is known to be accurate (such as systems
equipped with special hardware) or systems that are managed by some
other time service (such as Network Time Protocol (NTP)), but which still
wish to function as a DTS server.

v Communication Status

An output parameter that contains a status code returned by the DCE RPC
runtime library. The status rpc_s_ok is returned if the TP process is successfully
contacted.

ServerRequestProviderTime Procedure

After the TP process is successfully contacted, DTS makes the
ServerRequestProviderTime procedure call to obtain the timestamps from the
external time-provider. The parameters passed in the ServerRequestProviderTime
procedure call consist of the following elements:

v Binding Handle

An input parameter that establishes the relationship between DTS and the TP
process. A binding handle enables the client (DTS) to recognize and find a server
(the TP process) that offers the same interface.

v Time Response Message

An output parameter that contains a TP process status value (K_TPI_SUCCESS
or K_TPI_FAILURE), a count of the timestamps that are returned, and the
timestamps obtained from the external time-provider. The timestamp count is an
integer in the range K_MIN_TIMESTAMPS to K_MAX_TIMESTAMPS . Each
timestamp consists of three utc time values:

– The system clock time immediately before the TP process polls the external
time source. (The TP process normally obtains the time from the
utc_gettime() DTS API routine.)

– The time value returned to the TP process by the external time source.

– The system clock time immediately after the external time source is read.
(The TP process obtains the time from the utc_gettime() DTS API routine.)

v Communication Status

472 OSF® DCE Application Development Guide —Core Components

An output parameter that contains a status code returned by the DCE RPC
runtime library. The status rpc_s_ok is returned if the TP process is successfully
contacted.

Time-Provider Process IDL File

A remote procedure call can only work if an interface definition that clearly defines
operation signatures exists. Operation signatures define the syntax for an operation,
including its name and parameters (input and output) that are passed as part of the
procedure call. The TP process interface exports the two operation signatures that
have been previously explained. The interface is located in the file
examples/dts/dtsprovider.idl . When building the TP process application, this file
must be compiled using the IDL compiler, which creates three files:

v dtsprovider.h (header file)

v dtsprovider_sstub.c (server stub file)

v dtsprovider_cstub.c (client stub file)

The Time-Provider program (TP program) must be compiled along with the
dtsprovider_sstub.c code and then linked together. The TP program must also
include the stub-generated file dtsprovider.h . The following sample code shows the
structure of this interface.

/*
* Time Service Provider Interface
*
* This interface is defined through the Network Interface
* Definition Language (NIDL).
*/

[uuid (bfca1238-628a-11c9-a073-08002b0dea7a),
version(1)

]
interface time_provider
{

import "dce/nbase.idl";
import "dce/utctypes.idl";

/* Minimum and Maximum number of times to read time source at
* each synchronization
*/

const long K_MIN_TIMESTAMPS = 1;
const long K_MAX_TIMESTAMPS = 6;

/* Message status field return values
*/

const long K_TPI_FAILURE = 0;
const long K_TPI_SUCCESS = 1;

/* This structure contains one reading of the TP wrapped in
* the timestamps of the local clock.
*/

typedef struct TimeResponseType
{
utc_t beforeTime; /* local clk just before getting UTC */
utc_t TPtime; /* source UTC; inacc also supplied */
utc_t afterTime; /* local clk just after getting UTC */

} TimeResponseType;

/* Time-provider control message. This structure is returned
* in response to a time service request. The status field
* returns TP success or failure. The nextPoll gives the

Chapter 21. Time-Provider Interface 473

* client the time at which to poll the TP next. The timeout
* value tells the client how long to wait for a time response
* from the TP. The noClockSet will tell the client whether
* or not it is allowed to alter the system clock after a
* synchronization with the TP.
*/

typedef struct TPctlMsg
{
unsigned long status;
unsigned long nextPoll;
unsigned long timeout;
unsigned long noClockSet;

} TPctlMsg;
/* TP timestamp message. The actual time-provider
* synchronization data. The status is the result of the
* operation (success or failure). The timeStampCount
* parameter returns the number of timestamps being returned
* in this message. The timeStampList is the set of
* timestamps being returned from the TP.
*/

typedef struct TPtimeMsg
{
unsigned long status;
unsigned long timeStampCount;
TimeResponseType timeStampList[K_MAX_TIMESTAMPS];

} TPtimeMsg;

/* The Time-Provider Interface structures are described here.
* There are two types of response messages from the TP:
* control message and data message.
*
* <<<< TPI CONTROL MESSAGE >>>>
*
* 31 0
* +--+
* | Time-Provider Status |
* +--+
* | Next Poll Delta |
* +--+
* | Message Time Out |
* +--+
* | NoSet Flag |
* +--+
*
* <<<< a single timestamp >>>>
*
* 128 0
* +--+
* | Before Time |
* +--+
* | TP Time |
* +--+
* | After Time |
* +--+
*
* <<<< TPI DATA MESSAGE >>>>
*
* 31 0
* +--+
* | Time-Provider Status |
* +--+
* | Timestamp Count |
* +--+
* | |
* | <timestamp one> |
* | |

474 OSF® DCE Application Development Guide —Core Components

* +--+
* | . |
* | . |
* | . |
* | . |
* | . |
* +--+
* | |
* | <timestamp K_MAX_TIMESTAMPS> |
* | |
* +--+
*/

/* The RPC-based Time-Provider Program (TPP) interfaces are
* defined here. These calls are invoked by a Time Service
* daemon running as a server (in this case it makes an RPC
* client call to the TPP server).
*/

/* CONTACT_PROVIDER
* Send initial contact message to the TPP. The TPP server
* responds with a control message.
*/

void ContactProvider
(
[in] handle_t bind_h,
[out] TPctlMsg *ctrlRespMsg,
[out] error_status_t *comStatus
);

/* SERVER_REQUEST_PROVIDER_TIME
* The client sends a request to the TPP for times. The
* TPP server responds with an array of timestamps obtained
* by querying the Time-Provider hardware that it polls.
*/

void ServerRequestProviderTime
(
[in] handle_t bind_h,
[out] TPtimeMsg *timesRspMsg,
[out] error_status_t *comStatus
);

}

Initializing the Time-Provider Process

Initializing the RPC-based TP process prepares it to receive remote procedure calls
from a DTS daemon requesting the timestamps. The following steps are involved:

1. Include the header file (dtsprovider.h) that is created by compiling
/usr/include/dce/dtsprovider.idl , which contains the interface definition.

2. Register the interface with the DCE RPC runtime.

3. Select one or more protocol sequences that are compatible with both the
interface and the runtime library. It is recommended that the TP process
application selects all protocol sequences available on the system. Available
protocol sequences are obtained by calling an RPC API routine, described in
the example that follows. This ensures that transport independence is
maintained in RPC applications.

4. Register the TP process with the endpoint mapper service of the DCE daemon
(dced) running on the system. This makes the TP process available to the DTS
daemon.

Chapter 21. Time-Provider Interface 475

5. Obtain the name of the machine’s principal and then register an authentication
service to use with authenticated remote procedure calls coming from the DTS
daemon. Note that DTS and the TP program are presumed to be running in an
authenticated environment.

6. Listen for remote procedure calls.

The following shows these steps, including the sequence of calls needed:

/* Register the TP server interface with the RPC runtime.
* The interface specification time_provider_v1_0_ifspec
* is obtained from the generated header file dtsprovider.h
* The entry point vector is normally defined at the top of
* the TP source program similar to this:
*
* globaldef time_provider_v1_0_epv_t time_provider_epv =
* {
* ContactProvider,
* ServerRequestProviderTime
* };
*/

rpc_server_register_if (time_provider_v1_0_s_ifspec,
NULL,
(rpc_mgr_epv_t) &time_provider_epv,
&RPCstatus);

/*
* This call tells the DCE RPC runtime to listen for remote
* procedure calls using all supported protocol sequences.
* To listen for a specific protocol sequence, use the
* rpc_server_use_protreq call.
*/

rpc_server_use_all_protseqs (max_calls,
&RPCstatus);

/* This routine is called to obtain a vector of binding
* handles that were established with registration of
* protocol sequences.
*/

rpc_server_inq_bindings (&bind_vector,
&RPCstatus);

/* This routine adds the address information of the binding
* handle for the TP server to the endpoint mapper database.
*/

rpc_ep_register (time_provider_v1_0_s_ifspec,
bind_vector,
NULL,
"Time-Provider",
&RPCstatus);

/* Obtain the name of the machine's principal and register an
* authentication service to use for authenticated remote
* procedure calls coming from the time service daemon.
*/

dce_cf_prin_name_from_host (NULL,
&machinePrincipalName,
&status);

rpc_server_register_auth_info (machinePrincipalName,
rpc_c_authn_dce_private,
NULL,
NULL,
&RPCstatus);

/* This routine is called to listen for remote procedure calls

476 OSF® DCE Application Development Guide —Core Components

* sent by the DTS client. Possible RPC calls coming from DTS
* client are ContactProvider and ServerRequestProviderTime.
*/

rpc_server_listen (max_calls,
&RPCstatus);

Time-Provider Algorithm

The time-provider algorithm assumes that the two remote procedure calls will come
in the following order: ContactProvider followed by ServerRequestProviderTime .
The algorithm to create a generic time-provider follows:

1. Initialize the TP process, as described previously. Listen for RPC calls.

2. If the ContactProvider procedure is invoked, perform the following steps:

a. Initialize the control message to the appropriate values (status value to
K_TPI_SUCCESS; nextPoll, timeout, and noClockSet to valid integer
values).

b. Set the communication status output parameter to rpc_s_ok .

c. Return from the procedure call. (The DCE RPC runtime returns the values to
DTS.)

3. If the ServerRequestProviderTime procedure is run, perform the following
steps:

a. Initialize the timestamp count to the appropriate number.

b. Use the utc_gettime() DTS API routine to read the system time.

c. Poll the external time source and read a UTC value. Use the utc_gmtime()
routine to convert the UTC time value to a binary timestamp.

d. Use the utc_gettime() routine to read the system time.

e. Repeat steps b, c, and d the number of times specified by the values of
K_MIN_TIMESTAMPS and K_MAX_TIMESTAMPS .

f. If steps b, c, or d return erroneous data, initialize the TP process status field
(TPstatus) of the data message to K_TPI_FAILURE ; otherwise, initialize the
data message timestamps.

g. Set the communication status output parameter to rpc_s_ok .

h. Return from the procedure call. (The DCE RPC runtime sends the values
back to DTS.)

4. The TP process continues listening for RPC calls.

DTS Synchronization Algorithm

DTS performs the following steps to synchronize with an external time-provider:

1. At startup time, creates the binding handle for the TPI. The binding handle is
obtained from the list of available protocol sequences on the system.

2. At synchronization time, makes the remote procedure call ContactProvider ,
assuming that a TP process is running on the system. If the procedure call fails,
examine the RPC communication status, checking the availability of the server.
If the server is unavailable, synchronize with peer servers; otherwise, continue.

3. Waits for the procedure call to return the control message in the output
parameter. If the procedure call does not return within the specified LAN timeout
interval, synchronizes with peer servers. Otherwise, go to step 4.

4. If the procedure call returned successfully (communication status is rpc_s_ok),
reads the data in the control message.

Chapter 21. Time-Provider Interface 477

5. Makes the remote procedure call ServerRequestProviderTime to obtain the
timestamps from the external time-provider. If the procedure does not return
within the elapsed time specified by the control message (timeout), then
synchronizes with peer servers. Schedules the next synchronization based upon
the applicable DTS management parameters, ignoring nextPoll.

6. If the procedure returns successfully, verifies that the TP process status is
K_TPI_SUCCESS. Otherwise, synchronizes with peer servers and schedule the
next synchronization.

7. Extracts the timestamps from the data message and synchronizes using the
timestamps.

8. Schedules the next synchronization time by adding the value of nextPoll
seconds to the current time. At the next synchronization, goes to step 2.

Note: Application developers do not have to perform these steps; DTS performs
these steps internally during synchronization with an external time-provider.

Running the Time-Provider Process

Both the TP process and the DTS daemon must run on the same system. The TP
process must be started up under the login context of the machine’s principal,
which has root privileges. The DTS daemon and the TP process are started
independently. However, before starting the TP process, ensure that dced is
running on the system. If it is not running, start it. The TP process can always exit
without affecting the DTS daemon. DTS dynamically reestablishes communications
with the TP process when it creates binding handles.

Sources of Additional Information

Refer to the following for additional information:

v See /examples/dts for examples of time-provider programs that you can use
with several different types of external time-provider devices.

v See the OSF DCE Administration Guide—Core Components for commercial
sources of external time-providers.

v See the OSF DCE Application Development Reference for reference pages
describing the RPC API and DTS API routines.

478 OSF® DCE Application Development Guide —Core Components

Chapter 22. DTS API Routines Programming Example

This chapter contains a C programming example showing a practical application of
the DTS API programming routines. The program performs the following actions:

v Prompts the user to enter two sets of time coordinates corresponding to the
timestamps of two “events.”

v Stores those coordinates in a tm structure.

v Converts the tm structure to a utc structure.

v Prints out the utc structure in ISO text format.

v Determines which event occurred first.

v Determines if Event 1 may have caused Event 2 by comparing the intervals.
#include time.h /* time data structures */
#include dce/utc.h /* utc structure definitions */

void ReadTime();
void PrintTime();

/* This program requests user input about events, then prints
* out information about those events.
*/

main()
{
struct utc event1,event2;
enum utc_cmptype relation;

/* Read in the two events. */
ReadTime(&event1);
ReadTime(&event2);

/* Print out the two events. */
printf("The first event is : ");
PrintTime(&event1);
printf("\nThe second event is : ");
PrintTime(&event2);
printf("\n");

/* Determine which event occurred first. */
if (utc_cmpmidtime(&relation,&event1,&event2))
exit(1);

switch(relation)
{
case utc_lessThan:
printf("comparing midpoints: Event1 < Event2\n");
break;
case utc_greaterThan:
printf("comparing midpoints: Event1 > Event2\n");
break;
case utc_equalTo:
printf("comparing midpoints: Event1 == Event2\n");
break;
default:
exit(1);
break;

}

/* Could Event 1 have caused Event 2? Compare the
* intervals.
*/

if (utc_cmpintervaltime(&relation,&event1,&event2))
exit(1);

switch(relation)

479

{
case utc_lessThan:
printf("comparing intervals: Event1 < Event2\n");
break;
case utc_greaterThan:
printf("comparing intervals: Event1 > Event2\n");
break;
case utc_equalTo:
printf("comparing intervals: Event1 == Event2\n");
break;
case utc_indeterminate:
printf("comparing intervals: Event1 ? Event2\n");
default:
exit(1);
break;

}
}
/* Print out a utc structure in ISO text format. */
void PrintTime(utcTime)
struct utc *utcTime;
{
char string[50];

/* Break up the time string.
*/

if (utc_ascgmtime(string, /* Out: Converted time */
50, /* In: String length */
utcTime)) /* In: Time to convert */

exit(1);
printf("%s\n",string);

}

/* Prompt the user to enter time coordinates. Store the
* coordinates in a tm structure and then convert the tm
* structure to a utc structure.
*/

void ReadTime(utcTime)
struct utc *utcTime;
{
struct tm tmTime,tmInacc;
(void)memset((void *)&tmTime, 0, sizeof(tmTime));
(void)memset((void *)&tmInacc, 0, sizeof(tmInacc));
(void)printf("Year? ");
(void)scanf("%d",&tmTime.tm_year);
tmTime.tm_year -= 1900;
(void)printf("Month? ");
(void)scanf("%d",&tmTime.tm_mon);
tmTime.tm_mon -= 1;
(void)printf("Day? ");
(void)scanf("%d",&tmTime.tm_mday);
(void)printf("Hour? ");
(void)scanf("%d",&tmTime.tm_hour);
(void)printf("Minute? ");
(void)scanf("%d",&tmTime.tm_min);
(void)printf("Inacc Secs? ");
(void)scanf("%d",&tmInacc.tm_sec);
if (utc_mkanytime(utcTime,

&tmTime,
(long)0,
&tmInacc,
(long)0,
(long)0))

exit(1);
}

480 OSF® DCE Application Development Guide —Core Components

Part 5. DCE Security Service

481

482 OSF® DCE Application Development Guide —Core Components

Chapter 23. Overview of Security

This chapter provides a brief overview of the two security services available in DCE:

v DCE Security Service

v Generic Security Services (GSS)

Refer to the OSF DCE Application Development Reference for detailed information
on the Application Program Interfaces (APIs) discussed in the security chapters of
this guide.

Purpose and Organization of the Security Chapters

This part of the guide explains the major features of DCE security so that you can
decide what, if anything, you need to do to ensure that your DCE application is
sufficiently secure. A lot of security is built into DCE, so in many cases you will need
to do nothing, or very little, to secure your DCE application. Furthermore, you do
not need to understand all of the details of the DCE security services in order to
use them effectively.

Following the overview of the DCE Security Service in this chapter are two chapters
that contain conceptual discussions of authentication and authorization. The
remaining chapters in this part of the guide discuss the DCE Security Service
APIs—registry, login, extended registry attribute (ERA), extended privilege attribute
(EPA), key management, access control list (ACL), password management, and ID
map—and GSS credentials.

About Authenticated RPC

Perhaps the most important security facility is the authenticated remote procedure
call (RPC) facility. Authenticated RPC enables distributed applications to participate
in authenticated network communications. Applications using the authenticated RPC
routines may select the authentication protocol and the authorization protocol to be
used, and set various protocol-independent protection levels for communicating with
remote entities (users, servers, and computers).

The use of authenticated RPC is explained in “Chapter 13. Basic RPC Routine
Usage” on page 183 and “Chapter 14. RPC and Other DCE Components” on
page 195. “Chapter 14. RPC and Other DCE Components” on page 195 contains
information about a number of RPC routines that relate directly to security issues,
such as rpc_binding_set_auth_info() .

These security chapters, however, contains conceptual information that is useful for
understanding the authentication and authorization protocols that authenticated
RPC routines use; for this information, we recommend that you read “Chapter 24.
Authentication” on page 493 and “Chapter 25. Authorization” on page 523, as well
as this one.

483

About the GSSAPI

The GSS provides an alternate way of providing DCE security to distributed
applications that handle network communications by themselves. With GSSAPI, you
can include established applications in DCE and ensure the security and integrity of
the applications and their data. In peer-to-peer communications, the application that
establishes the secure connection is the context initiator or simply initiator. The
context initiator is like a DCE RPC client. The application that accepts the secure
connection is the context acceptor or simply acceptor. The context acceptor is like a
DCE RPC server.

The GSS available with DCE includes two sets of routines:

v Standard GSSAPI routines, which are defined in the Internet RFC 1509 “Generic
Security Service API: C-bindings.” These routines have the prefix gss_ .

v OSF DCE extensions to the GSSAPI routines. These are additional routines that
enable an application to use DCE security services. These routines have the
prefix gssdce_ .

The chapters that follow provide information about how the GSSAPI routines use
the authentication and authorization protocols. “Chapter 26. GSSAPI Credentials” on
page 533 provides information about GSS credentials, which are used to establish
an application’s identity in DCE.

UNIX System Security and DCE Security

UNIX system security mostly presumes that a computer’s backplane can be trusted
because computing operations are assumed to be local, and because the computer
itself can be physically secured. In a distributed environment, the logical equivalent
of the single system’s backplane is the network itself. Network computing means
distributed, rather than localized, computing operations and, in the case of an open
network (which DCE assumes), little of the network is physically secure. Thus, the
nature of distributed systems poses special security risks, in addition to those posed
by nondistributed systems. Unlike UNIX system security, DCE security is designed
specifically to address those risks.

These considerations notwithstanding, network security is ultimately dependent on
the security features that are local to the individual computers in the network and,
what is more important, the manner in which those features are used and
administered. Since any compromise to the local security of a computer in the
distributed environment may introduce opportunities for compromising network
security, DCE security does not diminish the importance of local security. In fact, the
relative importance of local system security is greater in the distributed environment
because the consequences of a local security breach may not be local. Finally,
while DCE security does nothing to enhance local security, neither does it introduce
any new avenues for compromising local security.

In the discussions in this guide, we assume you are familiar with the authentication
and authorization features that UNIX systems provide: /etc/passwd and/etc/group
file processing, routines that return or change file attributes, routines that return or
change real or effective user IDs (UIDs) and group IDs (GIDs), and data encryption
and decryption.

484 OSF® DCE Application Development Guide —Core Components

What Authentication and Authorization Mean

There are two questions that DCE security can answer for a principal about another
principal with which it might want to communicate:

v Is this principal really who it says it is?

v Does it have the right to do what it wants to do?

Depending on the answers to these questions, a security-sensitive principal takes
different courses of action with respect to a principal with which it is communicating.

To authenticate a principal means to verify that the principal is representing its true
identity. To authorize a principal means to grant permission for the principal to
perform an operation. While distinct, the concepts of authentication and
authorization are also intertwined. For one thing, a principal’s authorization is
explicitly linked to its identity. For another, there is the possibility that authorization
data concerning an authenticated principal can be falsified, which raises the
additional question, “Should the authorization data concerning this principal be
believed?” To this question also, DCE security can provide an answer to a principal
for which this issue is a concern.

The discussions of authenticated RPC refer to the specific mechanisms by which
authentication and authorization are performed as authentication and authorization
protocols. Authenticated RPC supports at least one of each. However, RPC
documentation refers to authentication and authorization protocols as services. The
security chapters use the term protocol instead of service in this context to prevent
confusion between the protocol-independent DCE authentication and authorization
services and the various authentication and authorization protocols that those
services support.

The GSSAPI combines authentication and authorization under a single security
concept called a mechanism. The security mechanism provides applications a
choice of either Kerberos security or Privilege Attribute Certificate (PAC)
authorization under DCE security.

Authentication, Authorization, and Data Protection in Brief

When one principal talks to another in a distributed computing environment, there is
a risk that communications between the two will provide a means for compromising
the security of one or the other. For example, a client may attack a server, or a
server may set a trap for clients. An attack is most likely to succeed if the
malevolent principal can convince its victim that it is something other than what it
really is (an attacker), and/or that it possesses authorization that it does not really
have. A counterfeit identity and/or authorization data grants an attacker access that
it presumably would not otherwise have, and so provides an opportunity for the
attacker to do damage.

One way an attacker might obtain counterfeit credentials is to intercept network
transmissions between a client and a server, and then attempt to decipher (and
perhaps modify) the transmitted data. If the attacker is able to intercept and
decipher a principal’s authentication or authorization information, it can later use this
data to masquerade as an authentic principal with proper authorization.

DCE security protects against these kinds of attacks. It contains features that
enable principals to

Chapter 23. Overview of Security 485

v Detect whether data they receive has been modified in transit

v Be certain that an attacker will be unable to decipher any authentication and
authorization data it may succeed in intercepting

DCE security gives DCE principals confidence that the identity and authorization of
principals they communicate with are authentic.

Figure 65 on page 487 is an extremely condensed and highly stylized
representation of the essentials of DCE security in terms of the DCE shared-secret
authentication protocol and the DCE authorization protocol. Unless we note
otherwise, assume that discussions in the security chapters of this guide refer to
these two protocols, used in conjunction with one another.

The following is a description of the events depicted in the illustration:

1. Principal A (which could be an attacker masquerading as Principal A) requests
authentication of its identity from the authentication service. This request is
encrypted using several keys, one of which is a key derived from the password
supplied by Principal A. A copy of Principal A’s key also exists in the registry
database, having been stored there when the principal’s account was created
(or when the password was changed). It is thus available to the authentication
service.

The authentication service then obtains the registry’s copy of Principal A’s key
and uses it to decrypt Principal A’s authentication request. If the decryption
succeeds, the keys are the same; Principal A is therefore authenticated and the
authentication service replies with information that enables Principal A to ask the
privilege service to authenticate its privilege attributes. (Privilege attributes are
data used in making authorization decisions; they consist of the principal’s name
and group memberships.) If Principal A fails to get authenticated privilege
attributes (also referred to as credentials), it may simply assert its privilege
attributes to Principal B.

2. Principal A now makes a request to Principal B to perform some operation that
requires the c permission to object d, and presents its certified privilege
attributes. Principal B may grant or deny c access to d after examining the ACL
that protects object d. (An ACL associates the privilege attributes of principals
with permissions to an object.) If c is one of the permissions listed in the ACL
granted to Principal A, then Principal A is allowed to perform the operation; if the
c permission is not granted, A is denied access.

486 OSF® DCE Application Development Guide —Core Components

Had the authentication service been unable to decrypt the principal’s
authentication request, the principal would have been unauthenticated and, as a
consequence, unable to acquire certified privilege attributes from the privilege
service. In that case, Principal A might have simply asserted its privilege
attributes to B; that is, claimed them for itself, without the benefit of having the
privilege service certify this data as being genuine. Had Principal A then
presented asserted privilege attributes to Principal B, then B might have denied
the requested permission or granted it, depending on whether B grants
permissions to unauthenticated principals, and whether c is among the
permissions that B grants to such principals.

If Principals A and B are especially sensitive to security concerns, they may
request that transmitted data be checked for integrity to establish whether it has
been modified in transit, and possibly also encrypted to ensure that the data is
unintelligible to any party other than Principals A and B.

Summary of DCE Security Services and Facilities

The DCE Security Service consists of services and facilities. The security services
are

v The registry service, which maintains a database of principals, groups,
organizations, accounts, and administrative policies.

v The authentication service, which verifies the identity of a principal and issues
tickets that the principal uses to access remote services. (A ticket is data about a
principal that is presented to the entity providing the service.)

v The privilege service, which certifies a principal’s privilege attributes (that is, its
name and group memberships, which are represented as UUIDs).

The three security services are implemented in a single daemon, the security
server.

Principal A

Authentication
Service

"How to contact Privilege Service"RPC

Request for authentication
encrypted in several keys, one
of which is principal A's key

RPC

Privilege
Service

Certified privilege attributesRPC

Request for privilege attributes RPC

Principal B

Response to requestRPC

"Do c to d"
RPC

Certified privilege attributes

Figure 65. Shared-Secret Authentication and DCE Authorization in Brief

Chapter 23. Overview of Security 487

The DCE Security Service facilities are

v The login facility, which enables a principal to establish its network identity.

v The ERA facility, which extends the registry database to maintain attribute types
and instances.

v The EPA facility, which provides access to the information in extended privilege
attribute certificates (EPACs)

v The ACL facility, which enables a principal’s access to an object to be determined
by a comparison of the principal’s privilege attributes to the object’s permissions.

v The key management facility, which enables noninteractive principals (most
frequently, servers) to manage their secret keys.

v The ID map facility, which maps cell-relative principal names to global principal
names, and global principal names to cell-relative principal names. This facility is
used in connection with the transmission of information about principals that are
members of different DCE cells.

v The password management facility, which enables principal’s passwords to be
generated, and to be subjected to strength-checks beyond those defined in DCE
standard policy.

For UNIX system compatibility with DCE, the DCE Security Service also provides
implementations of UNIX system C library interfaces to the /etc/passwd and
/etc/group files.

Interfaces to the Security Server

Following are the user interfaces to the security server itself (see the OSF DCE
Administration Guide—Core Components and the OSF DCE Administration
Commands Reference):

v secd

The security daemon (a replicated server)

v sec_create_db

Creates the security databases

v sec_admin

Administers instances of the security daemon

v sec_salvage_db

Converts the security database from one version of DCE to another

Salvages a corrupted security database

v The security validation service of dced

Enables clients of the security server to communicate with it

All other interfaces to the security server are more precisely characterized as
interfaces to its three services: registry, authentication, and privilege.

Registry Service Interfaces

User interfaces to the registry service are described in the OSF DCE Administration
Guide—Core Components and the OSF DCE Administration Commands Reference.
Following is a summary of them:

v rgy_edit

Edits registry database entries

v passwd_import

488 OSF® DCE Application Development Guide —Core Components

Creates registry database entries from UNIX system /etc/passwd and /etc/group
files

v passwd_export

Creates local registry information that corresponds to network registry database
entries

v chpass

Changes a user’s password in a registry database entry

Authentication Service Interfaces

Following is a summary of the user interfaces to the authentication service when
the default authentication protocol is in effect (the default protocol is DCE
shared-secret, which is based on the Kerberos Version 5 network authentication
system).

v kinit

Obtains a login session’s ticket(s) to remote services (the login and su tools also
perform this service)

v klist

Lists a login session’s tickets to remote services

v kdestroy

Destroys a login session’s tickets to remote services

There are two security APIs that distributed applications are most likely to call to
use the authentication service:

v Authenticated RPC facility

v GSSAPI

Although an application that uses GSSAPI may not make explicit calls to RPC
routines, the GSSAPI implementation itself uses DCE RPC to communicate with the
DCE registry.

Privilege Service Interfaces

There are no user interfaces or APIs to the privilege service. The login facility and
authenticated RPC or GSSAPI encapsulate interactions between a principal and the
privilege service.

Interfaces to the Login Facility

User interfaces to the login facility consist of the following tools:

v dce_login

Enables an interactive principal to log into DCE, but does not change the
principal’s local identity

v login

Enables an interactive principal to log in

v su

Enables a logged-in interactive principal to assume a different principal identity

The API to the login facility consists of calls that are prefixed with sec_login_ . This
API enables application processes to assume their network identities. Network login
and system login programs are examples of applications that call this API.

Chapter 23. Overview of Security 489

Interfaces to the Extended Registry Attribute Facility

The user interface to the ERA facility consists of DCE control program (dcecp)
commands that allow users to modify the registry schema to create and maintain
attribute types and to create and maintain instances of those types.

The API to the ERA facility consists of calls that are prefixed with sec_rgy_attr_ .

Interfaces to the Extended Privilege Attribute Facility

There are no user interfaces to the EPA facility. The API to this facility consists of
calls that are prefixed with sec_cred_ . These routines extract data from EPACs.

Interfaces to the Key Management Facility

For a distributed application, it may be important for a server to have a network
identity that is distinct from the principal identity it inherits from the user who
invokes it or the host on which it runs. The key management facility provides
features that enable noninteractive principals to manage their secret keys.

The user interface to the key management facility consist of a few rgy_edit
subcommands that enable an administrator to maintain a key table. A remote
interface allows users and administrators to maintain key tables on remote
machines through the dcecp keytab verbs. A subset of local operations is also
available though this interface. These subcommands call the key management API,
which consists of several calls with the prefix sec_key_ .

Interfaces to the ID Map Facility

There are no user interfaces to the ID map facility. The API to this facility consists of
calls that are prefixed wht sec_id_ . These routines map a global principal or group
name into a cell name and a cell-relative principal or group name, and generate a
global principal or group name from a cell name and a cell-relative principal or
group name. This API also converts between the internal (UUID) representation of a
name and the human-readable string.

Interfaces to the Access Control List Facility

The only user interface to the ACL facility is the dcecp ACL object acl_edit . This
tool edits an object’s ACL, the entries of which specify the permissions to the object
that may be granted to principals possessing specified privilege attributes.

The ACL API consists of routines that are prefixed with sec_acl_ . This is the same
API that acl_edit calls, so an ACL editor or browser that is intended to replace
acl_edit would call this API. A different case is that of an application server that
needs to store and retrieve application-specific, access-control information for its
clients. Such an application needs to implement its own ACL manager by using the
DCE ACL library. (Refer to “Chapter 32. The Access Control List APIs” on page 591
for more information on ACL managers).

DCE Implementations of UNIX System Program Interfaces

DCE security provides implementations of UNIX system C library interfaces related
to security. These are getpwent() and the related program interfaces to the

490 OSF® DCE Application Development Guide —Core Components

/etc/passwd file, and getgrent() and the related program interfaces to the
/etc/group file. Applications that bind with libdce.a are bound with the DCE security
implementations of these interfaces.

Interfaces to the Password Management Facility

The user interface to the password management facility is provided by
subcommands to the rgy_edit and dcecp commands. These subcommands
enforce password management policy for principals and enable them to request
generated passwords. See the rgy_edit(8sec) and dcecp(8dce) reference pages
and the OSF DCE Administration Guide—Core Components for information on
using these commands to create and change principal passwords.

The API to the password management facility consists of routines that are prefixed
with sec_pwd_mgmt_ . See the appropriate reference pages and “Chapter 36. The
Password Management API” on page 621 for information on these routines.

Relationships Between the DCE Security Service and DCE
Applications

Figure 66 is a schematic illustration of the relationships among the interfaces to the
DCE Security Service, and the relationship of security interfaces to DCE
applications.

DTS, the Cell Namespace, and Security

The following subsections discuss the dependencies of DCE security on the
Distributed Time Service (DTS), and the relationship between the security
namespace and the Cell Directory Service (CDS) namespace. For information about
how DCE components such as CDS use features of DCE security, refer to the
documentation on the component of interest (for example, the section of the OSF
DCE Administration Guide—Core Components on CDS).

DTS and Security

The DCE Security Service depends on a relatively close synchronization of network
clocks, a service provided by DTS. When network clocks become too skewed,

Default DCE
Security tools

Security API

Applications

RPC API

Security and RPC runtime libraries

Local operating system

Remote
client

or
server

RPC
or

Peer
to

Peer

Local OS
Security APIs

Figure 66. DCE Security and the DCE Application Environment

Chapter 23. Overview of Security 491

unexpired tickets to services may be regarded as invalid, and/or expired tickets
considered valid. Excessive skewing can inconvenience users and introduce
opportunities for security breaches; in the latter case, administrative intervention is
required.

The Cell Namespace and the Security Namespace

The registry database maintains three security namespaces: the principal, group,
and organization (PGO) namespaces. These namespaces are distinct from the cell
namespace maintained by CDS. Security names take the following form:

/.../ cell_name/ pgo_name

CDS names take the following form:

/.../ cell_name/ pathname/ object_name

Since the security namespace is rooted in the CDS namespace, security names
have equivalent CDS names. Thus, for example, an entry for a principal in the
registry database has the first of the following forms in the security namespace and
the second of the following forms in the CDS namespace:

/.../ cell_name/ principal_name
/.../cell_name/ security_mount_point/ principal/ principal_name

Note: The security mount point (security_mount_point as shown in the preceding
syntax) is determined when DCE is configured. Therefore, the name may
differ at individual sites.

There is no ambiguity about the security namespace to which a name refers
because security names are always used in contexts that identify the namespace in
question. For example, logging into DCE requires a principal name to be supplied.

However, an ACL is an object that is referenced not directly, but by the name of the
object it protects. Since protected objects are not always security objects (and
therefore may be registered only in the CDS namespace), ACL management
interfaces always take CDS names rather than security names as input, whether or
not it is the ACL of a security object (such as a registry database entry) that is
being read or modified.

492 OSF® DCE Application Development Guide —Core Components

Chapter 24. Authentication

This chapter describes the authentication process of users and applications, as well
as of principals in other cells.

Note: The authenticated RPC facility may also be referred to as the protected RPC
facility, as it involves services beyond authentication.

Background Concepts

The following concepts, as they relate to this chapter, are described within this
section:

v Principals, which are the subjects of authentication

v The shared-secret authentication protocol, which is the mechanism by which
authentication is effected when applications specify this protocol via the
authenticated RPC facility

v Cells, which are the environment where authentication takes place

v Protection levels, which are the various degrees to which transmitted
application-level data may be protected

v Data encryption/decryption (cryptographic) algorithms, which are the mechanisms
that the security server and client and server runtimes use to encrypt and decrypt
data exchanged between principals

Principals

For the purposes of this discussion, the term principal may be precisely defined as
an entity that is capable of believing it can communicate securely with another
entity. In DCE security, principals are represented as entries in the registry
database. DCE principals include the following:

v Users, who are also referred to as interactive principals

v Instances of DCE (system-level) servers

v Instances of application-level servers

v Computers (hosts) in a DCE cell

v Key distribution service (KDS) surrogates (these are used for cross-cell
authentication; see “Intercell Authentication” on page 519)

The DCE security server itself comprises three principals that correspond to the
three services that it provides: KDS, registry service, and privilege service. The
KDS in turn provides two subservices: the authentication (sub)service and the
ticket-granting (sub)service (TGS).

Note: As used in the literature, the term authentication service is sometimes
ambiguous. This name may be, in places, associated with at least three
distinct entities: the authentication (sub)service of the KDS, the KDS itself
(comprising its authentication and ticket-granting subservices), and the entire
DCE Security Service (comprising the KDS, the registry service, and the
privilege service).

These three servers (KDS, registry service, and privilege service) comprise the
main part of the DCE network trusted computing base. The KDS, registry service,

493

and privilege service servers are commonly all implemented in a single process
called the security server or security daemon.

The Shared-Secret Authentication Protocol

The registry service maintains a database, which contains an entry representing
every principal, identifying the principal by its name and a secret key bound to it. It
is this binding of the principal identity to a secret key shared with the registry that is
at the root of the DCE shared-secret authentication protocols, as will be seen in this
chapter. In the case of an interactive principal, the secret key is derived from the
user’s password (at login time). In order to establish its identity as a principal, a
noninteractive principal, such as a server or computer, must store its secret key in a
data file or hardware device, or rely on a system administrator to enter it. The
secret keys of servers are considered to be stronger than those of users/clients,
because they are truly random (as opposed to being derived from a password,
which greatly restricts their randomness).

DCE shared-secret authentication implements an extended version of the Kerberos
Version 5 system as its authentication protocol. Namely, the part of the DCE
security server that corresponds to Kerberos is the KDS. The other parts (registry
service and privilege service) do not occur in Kerberos. The Kerberos system was
originally developed at the Massachusetts Institute of Technology as part of Project
Athena, and provides a trustworthy, shared-secret authentication system. The
walkthrough of the authentication protocol in this chapter describes the protocol in
general terms.

Note: The KDS is an exceptional principal in that it does not share its key with any
other principal. KDS surrogates (see “Intercell Authentication” on page 519)
are also exceptional in that they are not autonomous participants in
authenticated communications, as other kinds of principals are.

In the theory of shared-secret authentication all principals are initially considered to
be untrusted, except for those in the trusted computing base itself (KDS, registry
service, privilege service). A security-sensitive application must make use of the
trusted computing base to convince itself of the level of trust it may place in all
other principals. How that is done is the subject of this chapter.

Cells and Realms

The cell is the basic unit of configuration and administration in DCE. In terms of
security, a cell is the set of principals that share a secret key with an instance of the
registry service. Therefore, each instance of a security server (together with its
replicas) defines a separate cell.

From the perspective of security only, a cell is sometimes also known as a realm or
security domain. (The term realm is often used in Kerberos documentation, and so
may be more familiar to some readers than is the term cell.) A security cell is
always configured to coincide with a corresponding CDS cell, and perhaps
Distributed File System (DFS) cell as well. DCE documentation always refers to
such a collective configuration of services as a cell.

Protection Levels

Protection levels specify how much of the information in network messages
exchanged by principals is encrypted. As a rule, the higher the protection level, the

494 OSF® DCE Application Development Guide —Core Components

greater the negative impact on performance. An application can set a protection
level by using either authenticated RPC or GSSAPI.

Authenticated RPC and Protection Levels

The authenticated RPC facility provides several levels of protection so that
applications can control tradeoffs between security and performance. Following is a
summary of some of the protection levels that an application using authenticated
RPC may specify:

v Connect level

Performs authentication only when a client and server establish a relationship (or
connection)

v Call level

Attaches a verifier to each client call and server response that protects the
system-level metadata of every remote call (but not the application-level data)

v Packet-integrity level

In addition to protecting metadata, ensures the integrity of the application-level
data (RPC and return parameters) transferred between two principals, that is,
that none of it has been modified in transit

v Packet-privacy level

In addition to protecting metadata and integrity, encrypts all application-level data,
thus guaranteeing its confidentiality

Refer to the discussion of authenticated RPC in “Chapter 13. Basic RPC Routine
Usage” on page 183 and “Chapter 14. RPC and Other DCE Components” on
page 195 for complete information about protection levels.

GSSAPI and Protection Levels

Unlike authenticated RPC, where the client chooses a protection level that is then
applied automatically to all data transferred in either direction, applications that use
GSSAPI must explicitly protect data on a message-by-message basis. This allows
an application the option of protecting only particularly sensitive messages, and
avoids the overhead of security processing for other messages. (That is possible
with RPC too, of course, provided that the programmer is willing to specify security
attributes on an RPC call-by-call basis.)

GSSAPI offers two distinct types of protection through the gss_sign() / gss_verify()
routines and the gss_seal() /gss_unseal() routines, as follows:

v The gss_sign() routine creates a token containing an encrypted signature to
protect the integrity of the message data. The token contains only the signature
(not the message data). The application must send both the token and the
message to which it applies to the peer application for verification. The receiving
application calls the gss_verify() routine to check the signature.

v The gss_seal() routine creates a token containing both an encrypted signature
and the message data, and may optionally encrypt the message data. Only the
token need be sent to the peer application, which processes it by using the
gss_unseal() routine to verify the signature and extract the message data.

Three distinct signature algorithms are supported by the per-message protection
routines. An algorithm may be requested by providing one of several constants to
the qop_request parameter (qop stands for quality of protection) of either the
gss_sign() or the gss_seal() routine. The constants are as follows:

Chapter 24. Authentication 495

GSSDCE_C_QOP_DES_MAC
Conventional DES MAC. Slow but well understood.

GSSDCE_C_QOP_DES_MD5
DES MAC of an MD5 (Message Digest #5) signature. Faster than DES
MAC.

GSSDCE_C_QOP_MD5
MD5 signature. Fastest supported signature algorithm. The default.

Data Encryption Mechanisms

Authentication protocols assume the availability of a data encryption mechanism,
parameterized by a so-called crypto-variable or key. In fact, it is the knowledge of
such a key that is the concrete manifestation of the abstract notion of
authentication. One mechanism that is frequently used is the Data Encryption
Standard (DES), though the DCE security architecture supports other cryptographic
algorithms. Your version of DCE security may use DES for data privacy or for
principal authentication and data-integrity checking; or it may use another
encryption mechanism, or no encryption at all. Consult the documentation supplied
by your DCE vendor for specific information.

A Walkthrough of Shared-Secret Authentication Protocols

This section walks you through the following topics:

v Authentication of the user during login, in “Authenticating a User” on page 497.

v Authentication of applications, in “Authentication Using Authenticated RPC” on
page 512.

The walkthrough is seen primarily from the user and the associated
application-client side. The illustrations in this chapter show only a high-level view
(not low-level details) of what happens when a user logs in and runs an
authenticated application; they are intended only to provide a general understanding
of the protocol. (See the Security Volume of the Application Environment
Specification/Distributed Computing for full details.)

In these figures, fill patterns represent encryption key values and encrypted data.
The key symbol within a box indicates that a key is being passed as data. The key
symbol on a line indicates that encryption or decryption is taking place, depending
on whether the resulting data is represented as encrypted or not. These
conventions are shown in Figure 67 on page 497.

496 OSF® DCE Application Development Guide —Core Components

Note: All computer-to-computer communications initiated by DCE security are
processed through the RPC mechanism, although the integration of security
with client and server RPC runtimes are not illustrated or explained in any
detail here.

Finally, note that to use shared-secret protocol, you do not need to understand how
it works. It is described here so that application developers can determine whether
it provides sufficient security for their needs. The discussion that follows is technical
and detailed and may not be of interest to every reader.

Authenticating a User

This section explains how DCE security authenticates a user/client. DCE
authentication basically consists of two successive procedures:

1. Acquisition by the security client of a ticket-granting ticket (TGT) for the user.

2. Acquisition by the security client of a privilege-ticket-granting ticket (PTGT) for
the user.

These procedures are described in the following two subsections.

How the Client Obtains a TGT for the User

This section describes the acquisition, by the security client, of the user’s TGT. It is
the authentication service of the KDS that issues TGTs. Acquisition of the user’s
TGT is the first of the two parts of DCE user authentication. The other part is the
acquisition of service tickets, which are issued by the TGS of the KDS.

Authentication protocols used by DCE security clients and servers to obtain TGTs
for users, which is the first part of the user-authentication process, are:

v The public key protocol, which provides the highest level of security

v The third-party protocol, which is less secure than public key protocol

v The timestamps protocol, which is less secure than the third-party protocol

Various
encryption
keys

Data encrypted
with various
encryption keys

An encryption
key being passed
as data

Data being
encrypted

Data being
decrypted

Figure 67. Conventions Used in Authentication Walkthrough Illustrations

Chapter 24. Authentication 497

v The DCE Version 1.0 protocol, which is the least secure of the three and is
provided solely to enable DCE Version 1.1 security servers to process requests
from pre-DCE Version 1.1 clients

The protocol used by the security client when it makes a login request to the
authentication service is determined as follows:

1. Pre-DCE Version 1.1 clients always use the DCE Version 1.0 protocol.

2. DCE Version 1.1 clients always use the third-party protocol, unless the host
machine’s session key, which the client uses to construct the request, is
unavailable. It then uses the timestamps protocol.

3. DCE Version 1.2.2 clients always attempt to use the public key authentication
protocol. If a client is unable to use the protocol, the client reverts to DCE
Version 1.1 behavior.

The protocol used by the authentication service to respond to the client is
determined by the following:

v The protocol used by the client making the login request

v The value of any pre_auth_req ERA attached to the requesting principal

The authentication service always attempts to reply by using the same protocol
used by the client making the request, unless the value of the ERA forbids it to do
so. (See the discussion of DCE Version 1.1 authentication in the OSF DCE
Administration Guide—Core Components for more detailed information on how
security clients and the authentication service determine which protocol to use.)

For a general discussion of the security aspects of these protocols, and of security
administration and security ERAs, see the OSF DCE Administration Guide—Core
Components. The following subsections explain how the three protocols operate.

The Public Key Authentication Protocol: Public key authentication protocol
works via public and private key-pairs. A user’s identity is proven to the DCE Key
Distribution Center (KDC) through a signature in the user’s private authentication
key. The KDC verifies the request through the user’s authentication public key,
which must be contained in the DCE registry. If the request is verified, the KDC
replies with a TGT that is first signed by the KDC using its own private
authentication key, and then is encrypted by the KDC using the client’s key
encipherment public key, which must be stored in the DCE registry. Because the
KDC does not know the user’s private keys, a compromise of the KDC cannot
reveal the private keys. Therefore, public key users will not have any identifying
information exposed to an intruder. This method of public and private key pair
usage constitutes the public key protocol.

The public key protocol invokes routines sec_login_validate_identity() ,
sec_login_valid_and_cert_ident() , and sec_login_validate_first() as follows:

1. The user logs in.

2. The client process sends a message to the KDC. The message consists of a
timestamp and nonce signed by the client’s private digital signature key. An
optional certificate of the client can also be sent along.

3. The KDC checks the timestamp and signature of the client’s message. If the
information is valid, the KDC sends a reply key to the client. The reply consists
of a message signed by the KDC’s digital signature key and then encrypted by
the client’s key encipherment key. The reply key is for encrypting the encrypted
portion of the Kerberos KRB_AS_REP message, which includes the symmetric

498 OSF® DCE Application Development Guide —Core Components

session key associated with the TGT. The session key used in association with
the TGT is returned in the standard EncKDCRepPart field of the KRB_AS_REP
message.

If the KDC is unable to authenticate the user’s supplied public key data, the
KDC returns an error indicating why the authentication failed and whether the
user is required to use the public key authentication protocol. The KDC
determines this from the pre_auth_req ERA attached to the user principal.

If the public key login attempt fails, the sec_login code instead falls back to the
use of existing password-based authentication unless the KDC error information
indicates that the principal is required to use public key login authentication.
Preventing fall back is done by giving each principal a pre_auth_req ERA value
of PADATA_ENC_PUBLIC_KEY .

Authentication information is transmitted as data types:

v KRB5_PADATA_PUBKEY_REQ

v PADATA_ENC_PUBKEY_REP

4. The client checks the signature on the reply to make sure it is from the KDC.
The sesion key can be decrypted only by the legitimate client that possesses
the private key needed to decrypt. The client then uses the TGT and associated
session key.

Storage of the Private Key: Private key information is stored either in a local file
or by the DCE private key storage server (PKSS). If the principal’s
DCEPKPrivateKeyStorage ERA value is not set, the login program assumes the
private key is stored in a local file. If the principal’s DCEPKPrivateKeyStorage ERA
value is set, the login program obtains the private key from the private key storage
mechanism associated with the UUID contained in the ERA. The currently
supported storage mechanisms and their associated UUID’s are the following:

v Local file — The UUID is 8687c5b8-b01a-11cf-b137-0800090a5254 .

v Private key storage server (PKSS) — The UUID is 72053e72-b01a-11cf-8bf5-
0800090a5254.

v Registry Database — The UUID is adb48ed4-e94d-11cf-ab4b-08000919ebb5 .
(This mechanism is supported for internal security server purposes only.)

The PKSS stores private keys in records that have the following information:

v The user’s principal name.

v The user’s public key.

v The key version of the user’s public key (key v.n).

v The application domain. (Currently, private keys are used only in the context of a
DCE login.)

v Key usage flags. (Currently, private keys are used only for authentication and for
key encipherment.)

v Password hash value 2 (H2) derived from the user’s password.

v The user’s private key encrypted under the user’s password hash value 1 (H1).

The PKSS cannot directly access the user’s private key because it does not have
the user’s password H1 value. An ACL protects user records from unauthorized
access, allowing access to only the sec_admin principal.

The following two descriptions depict the initial message exchange between the
login client and the PKSS, and the second (final) exchange in which the PKSS
returns the private key to the client.

Chapter 24. Authentication 499

Client Initiation of Private Key Acquisition from PKSS

The client DCE login program begins the process of key acquisition from the PKSS.
Refer to Figure 68 on page 501 as you read the following steps.

1. The login client sends a message to the PKSS that consists of the following
components:

v The user’s principal name.

v The application domain.

v Key usage flags.

v The key version number (key v.n).

v An exponentiated Diffie-Hellman value (Sc) used for establishing a
Diffie-Hellman key.

v An algorithm list (alg list), which is a list of secret key encryption algorithms
supported by the client (currently only DES). The client and the PKSS use
this algorithm with the Diffie-Hellman key and the session key.

2. Upon receipt of this message from the login client, the PKSS generates a
Diffie-Hellman value of its own (Ss). Using this value along with the client’s
Diffie-Hellman value, the PKSS computes a Diffie-Hellman key.

The PKSS determines whether it supports any of the algorithms listed in the
client message. If so, it can communicate securely with the client and the PKSS
selects one of the supported algorithms for use. (Currently, OSF DCE clients
and servers support only DES.)

3. The PKSS generates a random session key and a nonce (Ns). The session key
will be used to encrypt messages between the client and server. The PKSS
encrypts the nonce (Ns) with the session key, then encrypts the session key with
the user’s password H2 value taken from the user record.

4. The PKSS computes a hash on the algorithm list provided by the client. It
encrypts both the hashed algorithm list and the encrypted session key (see step
3) under the Diffie-Hellman key generated in step 2.

5. The PKSS composes and sends the client a message consisting of

v The nonce (Nc) encrypted under the random session key.

v The session key encrypted by the user’s password H2 value and then
encrypted under the Diffie-Hellman key.

v The hashed algorithm list further encrypted under the Diffie-Hellman key.

v The algorithm to be used for the session key. (The algorithm is chosen from
the client’s algorithm list.)

v The PKSS-generated Diffie-Hellman value.

6. Upon receipt, the login client extracts the PKSS-generated Diffie-Hellman value
and combines it with its own Diffie-Hellman value to obtain its copy of the
Diffie-Hellman key.

7. The client uses the encryption algorithm specified by the PKSS, along with its
Diffie-Hellman key to obtain the hashed algorithm list and the session key (still
encrypted under the user’s password H2 value).

The login client computes a hash on its own algorithm list and compares it with
the hashed algorithm list returned from the PKSS. The two lists must match.
Otherwise, the client determines that the PKSS is invalid and returns an error.

8. The login client decrypts the session key by using H2 derived from the user’s
password. The client uses the session key to decrypt the PKSS-generated
nonce (Ns). The session key will be used to authenticate the current session
communications between the client and PKSS.

500 OSF® DCE Application Development Guide —Core Components

Note: A PKSS imposter would not know the user’s password H2 value. The
resulting session key would differ from the imposter’s session key,
preventing further communications between the client and the imposter.

9. The client composes a message encrypted under the session key. The message
consists of

v The PKSS-generated nonce (Ns)

v A client-generated nonce (Nc)

v An operation identifier that indicates private key acquisition

Client Completion of Private Key Acquisition from PKSS

key
name
principal

usage

USER RECORD

domain
v.n

Nc NsOP-ID

Server-generated nonce

Client-generated nonceH1 (hash 1)

H2 (hash value 2)

Diffie-Hellman value

Session key

Legend:
Client Principal Private Key Server

Hashed algorithm list

User's public key

User's private key

Server-generated seed

Client-generated seed

S

Security Runtime

sN

alg

cS

compute

name
principal

usage
domain

v.n
key

Ss

Ns

Ss

3

N

4

s

6

S

7

c

8

list

9

User Interface

alg

name
principal

5

1

API Layer

usage
domain

v.n

s

key

N

alg

2

algorithm

cN

algorithm

compute

Private Key Server

sS

list
c

cN

sN

cS

sS

sec_login_setup_
identity (principalname...)

cert_ident (password...)
sec_login_valid_and alg

list

alg
list

alg
list

request private key for
client corresponding

RPC

hash

to

OP-ID

principalname

Login: principalname
password

list

Figure 68. Client Initiation of Private Key Acquisition

Chapter 24. Authentication 501

The client DCE login program completes the process of key acquisition from the
PKSS. Refer to Figure 71 on page 508 as you read the following steps.

1. The client sends the PKSS the composed message encrypted under the
session key (see Step 9 in the preceding discussion).

2. Upon receipt of the client message, the PKSS uses the session key to obtain
the operation ID, the client-generated nonce (Nc), and the PKSS-generated
nonce (Ns).

The PKSS compares the client’s copy of Ns with its original nonce (Ns). A match
proves the client had knowledge of the user’s secret password which was
needed to obtain the session key. The client used the session key to obtain Ns.

3. The PKSS composes a message consisting of

v The user’s private key encrypted under the user’s password H1 value

v The user’s public key

v The key version number

v The client-generated nonce (Nc)

4. The PKSS encrypts this message with the session key and sends it to the
client.

5. Upon receipt, the client uses the session key to obtain the user’s private key
(encrypted under the user’s password H1 value), the user’s public key, the key
version number, and the client-generated nonce (Nc).

The client compares the PKSS’s copy of Nc with its own nonce. A match proves
the authenticity of the PKSS because only the true PKSS could have used the
correct user password H2 value to properly encrypt the session key passed to
the client in the first message.

6. The client uses its password H1 value to decrypt the private key. The client’s
security runtime program returns the authenticated private key to the calling
routine.

502 OSF® DCE Application Development Guide —Core Components

The Third-Party Authentication Protocol: The DCE Authentication Service can
use the third-party authentication protocol to provide a user with a TGT. Refer to
Figure 68 on page 501 as you read the following steps.

1. The user logs in, entering the correct user name. The login program invokes
sec_login_setup_identity() , which takes the user’s principal name as one of its
arguments, and sec_login_valid_and_cert_ident() , which has the user’s
password as one of its arguments. The sec_login_valid_and_cert_ident()
routine causes the security runtime to request a TGT from the authentication
service of the KDS. (The client principal will later present the TGT to the TGS,
to acquire service tickets to other servers.) The client’s security runtime
performs the following steps to construct the TGT request to the authentication
service:

a. It requests, from the secval service, a random key, say conversation key 1,
which the client will later use to encrypt its request to the authentication
service. Two copies of conversation key 1 are passed to the client: one

Private Key Server

User's public key

Client Principal
Legend:

H1 (hash value 1)

Session key

Client-generated nonce

Server-generated nonce

User's private key

key

4

3

5

2

cN

sN

name

v.n

v.n

v.n

v.n

key

key

key

key

principal
usage

Private Key Server

USER RECORD

domain

Nc

Nc

Nc

Nc

6

v.n

5

1

password
principalnameLogin: RPC

Nc

Nc

Nc

Ns

Ns

Ns

OP-ID

OP-ID

OP-ID

API Layer

User Interface Security Runtime

Figure 69. Client Acquisition of Private Key from PKSS

Chapter 24. Authentication 503

unencrypted and one encrypted in the machine session key (a copy of
which is sealed inside the machine ticket-granting ticket, or MTGT). (In order
to do this securely, the request to secval must be done over a secure local
communications channel on the host machine.) It then concatenates the
encrypted copy of conversation key 1 with the MTGT.

User Interface secval Process
login: principalname

password

sec_login_valid_and
cert_ident (passwd...)

request TGT for client
corresponding to
principalname

if status=OK, then get PTGT
from PS (Privelege Service)

sec_login_
setup_identity
(principalname...)

API Layer Security Runtime

Registry Service

RPC

RPC

Authentication
Service

Privilege Service

Client Principal

Legend:

user's secret key

conversation key 2 conversation key 3

host machine TGT

timestamp

client's TGT

Security Server

machine session key

conversation key 1

mtgt

mtgt
mtgt

mtgt

TS

TS

TS

TS

TS

TS

TGT

TGT

TGT

TGT

TGT

TGT

mtgt

Figure 70. Client Acquires TGT Using Third-Party Protocol

504 OSF® DCE Application Development Guide —Core Components

b. It generates another random key, conversation key 2, which the
authentication service will later use to encrypt the TGT it returns to the
client. It then concatenates it to a timestamp string.

c. It derives, from the password input by the user, the user’s secret key, a copy
of which also exists in the registry service database. It then encrypts the
timestamp/conversation key 2 twice: first by using the user’s secret key, and
then by using conversation key 1.

d. Finally, it completes constructing the authentication service request message
by concatenating the encrypted conversation key 1 (obtained from secval in
Step 1a) with the doubly encrypted timestamp and conversation key 1.

2. The client’s security runtime then forwards the constructed request to the
authentication service of the KDS. (This corresponds to the first step of the DCE
Version 1.0 protocol, described in “The Third-Party Authentication Protocol” on
page 503.)

3. The authentication service receives the request and performs the following
steps to verify the user and prepare the user’s TGT:

a. It decrypts the MTGT (by using the KDS’s secret key), and obtains the
machine session key from it. (This decryption is not shown pictorially in
Figure 68 on page 501.)

b. Using the machine session key, it decrypts the package containing
conversation key 1.

c. It obtains the user’s secret key from the registry service and then decrypts
the doubly encrypted package containing the timestamp and conversation
key 2 by using the user’s secret key and conversation key 1.

If this decryption fails, the user’s secret key that was used by the login
program to encrypt the package differs from the one stored in the registry
service, and therefore the password supplied to the login program by the
user was incorrect. In this case, the user is not authenticated, and an error
code is returned to the login program.

If the decryption succeeds, and if the decrypted timestamp is within an
allowable clock skew (5 minutes) of the current time, the user has been
authenticated (that is, the user knows the correct principal password and this
isn’t a replay attack), and the authentication service proceeds with
preparation of the user’s TGT.

4. The authentication service then prepares the user’s TGT, encrypts it in the
KDS’s secret key, encrypts the conversation key 3 contained in the TGT (to be
used later by the client to acquire service tickets) in conversation key 2, and
returns this data to the client.

5. The client security runtime decrypts the reply from the authentication service by
using conversation key 2, obtaining the conversation key 3 from the TGT, and it
becomes part of the client’s login context.

Note the following security safeguards inherent in the structure of this protocol:

v All network transmissions between the security client and the authentication
service are encrypted by using strong random keys (not weak keys derived from
passwords), placing even offline decryption attempts at the outer limits of
practical possibility.

v The timestamp and conversation key 2 are encrypted by using the user’s secret
key, which is derived from the user’s password (and subsequently reencrypted by
using conversation key 1). This enables the authentication service to verify that
the requesting client knows the user’s password. (It does this by decrypting the

Chapter 24. Authentication 505

package via the registry service’s copy of the user’s secret key; if the decryption
succeeds, the keys are the same, that is, they were derived from the same
password.)

v The authentication service actively verifies whether the requesting client knows
the user’s password. Contrast this with the DCE Version 1.0 protocol, where the
authentication service blindly issues TGTs without requiring any evidence that the
requestor knows the user’s password. It is therefore aware of, and can manage,
persistent login failures for a given user, eliminating active password-guessing
attacks.

v The authentication service’s reply is encrypted by using conversation key 2,
which was provided by the client. This verifies to the client that the authentication
service itself is authentic since, if it were not, it would not have been able to
obtain the machine session key and user’s secret key it needed to decrypt
conversation key 2.

These safeguards provide assurance to both server and client that the entity with
which each is communicating is, in fact, what it claims to be.

Having acquired the user’s TGT, the login program proceeds with the next step in
the authentication procedure (described in “How the Client Obtains a PTGT for the
User” on page 509).

The Timestamps Authentication Protocol: This section describes how the DCE
Authentication Service uses the timestamps authentication protocol to provide a
user with a TGT.

Since the timestamps protocol is largely identical to the DCE Version 1.0 protocol,
which is fully explained in the next section, this section describes only the
differences between the two.

The timestamps protocol proceeds exactly as the DCE Version 1.0 protocol
described in “The DCE Version 1.0 Authentication Protocol” on page 507, with these
additions:

v In Step 1, the client security runtime sends to the authentication service, in
addition to the user’s stringname, the current timestamp encrypted in the user’s
secret key.

v In Step 2, the authentication service, before preparing the user’s TGT, verifies the
user’s authenticity (albeit not as strongly as in the third-party protocol) as follows:

1. It decrypts the timestamp by using the copy of the user’s key it obtained from
the registry service.

2. If the decryption succeeds, and the timestamp is within an allowable clock
skew (5 minutes) of the current time, the user is authenticated, and the
authentication service proceeds to prepare the TGT. If the decryption fails, or
if the timestamp is not within the allowable clock skew, the authentication
service rejects the login request.

With this protocol, the authentication service can verify the following:

v That the client login request is timely; that is, that the authentication service is
communicating with the client now (within the allowable clock skew)

v That the requesting client knows the user’s password

The authentication service is therefore aware of, and can manage, persistent login
failures for a given user, eliminating passive password-guessing attacks.

506 OSF® DCE Application Development Guide —Core Components

From this point, the timestamps protocol continues as the DCE Version 1.0 protocol
described in the next section, and then proceeds with the next step in the
authentication procedure, described in “How the Client Obtains a PTGT for the
User” on page 509.

Note: Encrypted timestamps (under the name authenticators) are passed in several
places in the protocols, to guarantee fresh communications (within the
allowable clock skew) and thereby guard against replay attacks. This has
been shown explicitly in the preceding, but will be omitted in the remainder
of this chapter.

The DCE Version 1.0 Authentication Protocol: This section explains how the
DCE Authentication Service uses the DCE Version 1.0 protocol to authenticate a
user. This protocol exists in DCE Version 1.1 solely to provide interoperability
between DCE Version 1.1 servers and pre-DCE Version 1.1 clients; only pre-DCE
Version 1.1 clients transmit DCE Version 1.0 login requests, and the authentication
service returns DCE Version 1.0 responses only to pre-DCE Version 1.1 clients.

The DCE Version 1.0 protocol lacks the security features previously described for
the third-party and timestamps protocols, hence this protocol is more vulnerable to
attacks. You should keep this in mind when you are considering the inclusion of
pre-DCE Version 1.1 clients in your DCE Version 1.1 cell.

The DCE Version 1.0 protocol proceeds as follows. Refer to Figure 71 on page 508
as you read these steps.

1. The user logs in, entering the correct user name. The login tool invokes
sec_login_setup_identity() , which takes the user’s principal name as one of its
arguments. This call causes the client security runtime to request a TGT and
passes the user’s name (represented as a string, not a UUID) to the
authentication service. The TGT will later be used by the client to acquire
service tickets to other services; the first such usage will be to acquire a service
ticket to the privilege service (see “How the Client Obtains a PTGT for the User”
on page 509).

Chapter 24. Authentication 507

2. Upon receiving the request for a TGT, the authentication service obtains the
user’s secret key from the registry service database (where the secret keys of
all principals in the cell are stored). Using its own secret key (that is, that of the
KDS), the authentication service encrypts the user’s identity, along with a
conversation key 3 (this conversation key 3 is the same as conversation key 3
in the discussion of the third-party protocol, earlier in this chapter), in a TGT.
The authentication service separately encrypts a copy of conversation key 3
with the user’s secret key and returns this data to the client.

3. When this data arrives at the client, the login tool prompts the user for the
password and invokes sec_login_valid_and_cert_ident() . This call passes the
password to the client’s security runtime library. The security runtime derives the
user’s secret key from the password (using a well-known algorithm), and uses it
to decrypt conversation key 3. (If the user enters the wrong password, this
decryption fails.) The client’s security runtime cannot decrypt the TGT since it

User Interface
login: principalname

password

sec_login_valid_and
cert_ident (passwd...)

if status = OK,
then get ptgt

sec_login_
setup_identity
(principalname...)

If status = OK,
then get password

get TGT for client ID
corresponding to
principalname

API Layer Security Runtime

Registry Service

Prepare TGT

RPC

KDS

Privilege Service

Client Principal

Legend:

Client principal's secret key

KDS's secret key

Conversation key 3

Encrypted with KDS's secret key

Encrypted with conversation key 3

Encrypted with client principal's secret key

Security Server

TGT

ID

TGT

ID

TGT

ID

TGT

ID

TGT

ID

Figure 71. Client Acquires TGT Using the DCE Version 1.0 Protocol

508 OSF® DCE Application Development Guide —Core Components

does not know the KDS’s secret key. The TGT is the client principal’s certificate
of identity—it is usable by the client precisely because the client knows the
conversation key 3 carried in it.

Note: One of the functions of sec_login_valid_and_cert_ident() is to authenticate
the authentication service itself to the host machine’s login program, by
demonstrating that the (purported) authentication service really knows the
secret key of the host computer. (The mere fact that the purported
authentication service knew the user’s secret key is not convincing to the
host’s login program, because that purported authentication service could
have been a bogus server working in league with a bogus user—the host
doesn’t trust any of these things.) The way in which this is accomplished is
not illustrated here but is explained in “Chapter 30. The Login API” on
page 581.

Having acquired the user’s TGT, the login program proceeds with the next step in
the authentication procedure, described in “How the Client Obtains a PTGT for the
User”.

How the Client Obtains a PTGT for the User

This section describes the acquisition, by the client’s security runtime, of the user’s
PTGT. Acquisition of the user’s PTGT is the second of the two parts of DCE user
authentication.

From this point on, the client principal uses four different conversation keys to talk
with other principals. Use of multiple short-lived keys makes an attacker’s task far
more difficult, since there are more encryption keys to discover and less encrypted
material and time with which to crack them.

Refer to Figure 72 on page 511 as you read the following steps.

1.

When the client’s security runtime has succeeded in decrypting conversation
key 3, it next wants to acquire a PTGT from the privilege service. Before a
request for a PTGT can even be formulated, however, a service ticket to the
privilege service must be acquired. The client’s security runtime therefore begins
by requesting such a service ticket from the TGS. The security runtime encrypts
this request by using the conversation key 3 (which is also sealed in the client’s
TGT); it also sends along the client’s TGT.

2. The TGS decrypts the TGT (which was encrypted in the KDS’s secret key),
learning conversation key 3, and verifies that the request was properly
encrypted by using conversation key 3. This convinces the TGS that the identity
of the requesting client is authentic; that is, no other principal could have sent a
message so encrypted because no other principal knows conversation key 3.
(The reader should review the preceding steps if necessary to be convinced that
this is true.) Since the user has demonstrated to the TGS knowledge of the key,
the TGS allows the user to talk to the privilege service, and so prepares a
service ticket to that service. This ticket contains the identity of the user (and a
conversation key 4), encrypted under the secret key of the privilege service
(which the TGS retrieves from the registry service). The TGS separately
encrypts conversation key 4 under conversation key 3, and returns this data to
the client.

Chapter 24. Authentication 509

Note: Beginning with Figure 72 on page 511, the illustrations do not emphasize
all the TGS’s encryption and decryption activities (such emphasis would
be redundant since the TGS knows all of the keys).

3. Upon receipt of this data, the client’s security runtime uses conversation key 3
to decrypt conversation key 4. The client then formulates a request for a PTGT,
encrypting it with conversation key 4, and sends this together with the service
ticket it just received from the TGS, to the privilege service.

4. The privilege service decrypts the service ticket sent to it (using its secret key),
thereby learning the identity of the client and the conversation key 4 it will use
to decrypt the request and to encrypt its response. The privilege service is
convinced of the authenticity of this request because the information was
encrypted under its own secret key, and no principal other than the KDS (acting
as the TGS) could have encrypted the information by using this secret key.
Because the privilege service believes the authenticity of the client’s identity, it
prepares an extended privilege attribute certificate (EPAC) to issue to the client.
(Actually, in the pure DCE Version 1.0 protocol this would be a PAC, not an
EPAC, but since this is a high-level description intended for both releases we’ll
just talk about EPACs without fear of confusion. So what we’re really describing
here is an extended privilege TGT, or EPTGT, though we’ll continue to call it a
PTGT.)

The EPAC describes the user’s privilege attributes (identity information and
group membership) and any extended attributes that are associated with the
user—all represented as UUIDs (not strings). The EPAC (or EPAC chain, in
case of a delegated operation) is sealed with an MD5 checksum. (Delegation is
described in “Chapter 27. The Extended Privilege Attribute API” on page 537.)
The privilege service constructs a PTGT, which is a ticket that contains the
EPAC, the EPAC seal, another copy of the EPAC seal encrypted in the secret
key of the privilege service (this is called a delegation token), and a
conversation key 5 (which is actually generated by the KDS, though the
illustration doesn’t show this detail). All this information except for the EPAC
itself is encrypted in the secret key of the KDS (thus, the delegation token is
doubly encrypted). (The KDS and privilege service cooperate to prepare the
PTGT, although the illustration only shows the privilege service preparing it.)
The EPAC seal inside the PTGT binds the EPAC to the PTGT, guaranteeing its
integrity even though it isn’t encrypted. The conversation key 5 is encrypted in
conversation key 4, and all this data is returned to the client.

510 OSF® DCE Application Development Guide —Core Components

5. The client’s security runtime uses conversation key 4 to decrypt conversation
key 5. It cannot decrypt the PTGT itself, since the PTGT is encrypted under the
secret key of the KDS.

Request ticket to
Privilege service

ID

API Layer Security Runtime

Ticket to
Privilege
service

ID

Ticket to
Privilege
service

ID

Registry Service

Security ServerClient Principal

RPC

Ticket-Granting Service

Privilege Service

Legend:

Privilege Service's secret key

KDS's secret key

Conversation key 4

Conversation key 3

Conversation key 5

Encrypted with Privilege Service's secret key

Encrypted with KDS's secret key

Encrypted with conversation key 3

Encrypted with conversation key 4

Encrypted with conversation key 5

Network interface layer

Sealget PTGT

PTGT

Seal

PTGT

Seal

PTGT

Seal

EPAC
EPAC

EPAC

Request ticket
to Privilege

service
TGT

Figure 72. Client Acquires PTGT

Chapter 24. Authentication 511

The Login Context

At this point, the security service has authenticated the user’s identity (that is, has
verified that the user knows its password), and the user has acquired (trusted)
information about its privilege attributes from the privilege service. The client now
calls sec_login_set_context() to set the login context (a handle to this user’s
network identity and privilege attributes that have been established). Henceforth,
processes invoked by this user inherit the user’s login context, and among these
processes is the client side of distributed applications — those are the subject of
the rest of the walkthrough.

Identities in a Delegation Chain

When a user who has initiated delegation (with sec_login_become_initiator())
makes an authenticated RPC to the next member in a delegation chain (the first
intermediary), the initiator passes its PTGT (including EPAC, seal and delegation
token) to the TGS, and receives an extended privilege service ticket (again
containing EPAC, seal and delegation token) to the intermediary. This is passed to
the intermediary. The intermediary then invokes either routine
sec_login_become_delegate() or sec_login_become_impersonator() , passing to
the privilege service the authorization information it received from the initiator
(EPAC and delegation token), together with the intermediary’s own PTGT (including
the intermediary’s EPAC, seal and delegation token).

The privilege service uses the two delegation tokens, which are seals over the
initiator’s and intermediary’s EPAC encrypted in the privilege service’s own secret
key, to verify the authenticity of the EPACs. If these are valid, the privilege service
creates an EPAC chain, consisting of the initiator’s and intermediary’s EPACs, and
generates a new seal and delegation token for this EPAC chain, and returns to the
intermediary a new PTGT containing this information. Thus, the intermediary’s
authorization information now includes both EPACs in the delegation chain and a
PTGT that contains the EPAC chain’s seal and delegation token. The subsequent
additions of identities to the delegation chain are handled in the same manner,
resulting in PTGTs with each intermediary’s identity being added to the EPAC chain.
Any such PTGT can be used to continue the delegation chain or to acquire a
service ticket to the ultimate target server.

Authenticating an Application

Applications that are run between client and server must also be authenticated. For
specific information about using the authenticated RPC routines see “Chapter 13.
Basic RPC Routine Usage” on page 183 and “Chapter 14. RPC and Other DCE
Components” on page 195. For information about the GSSAPI, see “Chapter 23.
Overview of Security” on page 483 and “Chapter 26. GSSAPI Credentials” on
page 533.

Authentication Using Authenticated RPC

This section explains how DCE security authenticates an application, to which the
application developer has added authenticated RPCs.

Note: The authenticated RPC facility may also be referred to as the protected RPC
facility, as it involves services beyond authentication. Authenticated RPC may
also be referred to as the protected RPC facility,

512 OSF® DCE Application Development Guide —Core Components

Refer to Figure 73 as you read the following steps.

1. Having been authenticated and having acquired a PTGT, the user invokes an
application. The client side of the application makes calls to routines
rpc_binding_import_begin() , rpc_binding_import_next() , and the like. These
calls specify the remote interfaces required by the client for the application.

2. The CDS returns the client binding handles to the specified interfaces. (For
simplicity in this example, we consider the simple binding model in which the
client consults the CDS for the server’s RPC binding name.)

3. The client annotates the binding handle—that is, it sets security information for
the binding handle by calling rpc_binding_set_auth_info() . Among other
parameters, this routine sets the authentication protocol, the protection level,
and authorization protocol for the binding handle corresponding to the remote
interface. It also sets the server’s principal name, which the client must know
securely (it may be the same or different than the server’s RPC binding name).
In this example, assume that the authentication protocol (authn_svc parameter)
is DCE shared-secret authentication, the protection level (protect_level) is
packet privacy (all RPC argument values are encrypted), and the authorization

User Interface

start application

rpc_ns_binding_import_begin()
rpc_ns_binding_import_next()

rpc_binding_set_auth_info(

If status = OK,
then set auth info

(Applies the specified authentication
protocol, protection level, and
authorization protocol to the
binding service)

API Layer

RPC

...

binding
server_princ_name
authn_svc
protect_level
authz_svc)

Binding handle
to application

server

Client Principal

CDS Server

Figure 73. Client Sets Authentication and Authorization Information

Chapter 24. Authentication 513

protocol (authz_svc) is DCE authorization. (DCE authorization means that an
EPAC chain, containing UUIDs representing the client’s or delegation chain’s
privilege attributes, will be sent to the server, which will compare this information
with the ACLs protecting the objects of interest in order to determine whether
the principal is to be granted or denied access.)

Refer to Figure 74 on page 515 as you read the following steps.

4. The client requests some operation (using the annotated binding handle) to be
performed by the server. The client RPC runtime requests from the TGS a
service ticket to the server (identified by the server principal name with which
the binding handle has been annotated). To acquire the ticket, the client security
runtime formulates a request to the TGS. The request includes the server’s
principal name, which the client security runtime encrypts under conversation
key 3. Also sent along with the request is the principal’s PTGT, including EPAC
and seal.

514 OSF® DCE Application Development Guide —Core Components

5. The TGS decrypts the PTGT (which was encrypted in the KDS’s secret key),
thereby recovering conversation key 5, and uses conversation key 5 to decrypt
the rest of the TGS request message. The TGS then constructs a service ticket,
including the EPAC chain information and conversation key 6. By default, the
key that is used to encrypt the service ticket is the application server’s secret
key.

For server principals that must use the user-to-user authentication protocol, the
service ticket granted must be encrypted using the session key obtained from
the server’s current TGT, which the client must pass in with the ticket request. If
the client had used the server-key-based request, and the server requires
user-to-user protocol, the TGS will respond with an error instructing the
client-side runtime to ask the server for its current TGT and to reissue the
request with this TGT.

Application user Interfaceuser action

app_request(binding...)

If status = OK,
then encrypt app request

app_request()

Application Server

RPC

Legend:

Application Server's secret key

KDS's secret key

Conversation key 6

Conversation key 5

Encrypted with Application Server's secret key

Encrypted with KDS's secret key

Encrypted with conversation key 6

Encrypted with conversation key 5

PTGT
Seal

Seal

Seal

API

request ticket
to application

server

Registry Service

Security Server

Client Principal

Privilege Service

Ticket Granting
Service

app_request()

app_request()

Security Runtime

EPAC

EPAC

Figure 74. Client Principal Makes Application Request

Chapter 24. Authentication 515

The service ticket is returned to the client, together with conversation key 6
encrypted under conversation key 5.

6. The client’s security runtime uses conversation key 5 to decrypt conversation
key 6, and then uses conversation key 6 to encrypt the application-level RPC
request to the server. The client’s RPC runtime sends the encrypted application
request to the application server, together with the service ticket.

Refer to Figure 75 on page 517 as you read the following steps.

7. The application server’s security runtime receives the client’s request and
decrypts the service ticket by using its secret key, or the TGT session key if
user-to-user based authentication is used. In this way, the server’s security
runtime learns conversation key 6 and uses it to decrypt the RPC request. If the
server determines from the client’s authorization information (EPAC chain) that
the request is granted, it performs the requested operation and prepares a
response. The server’s runtime encrypts the response by using conversation
key 6 and sends it back to the client.

8. The client runtime receives and decrypts the response, and returns data to the
application (by returning from the RPC).

516 OSF® DCE Application Development Guide —Core Components

The preceding walkthroughs have focused on the security aspect of authenticated
RPC in DCE, not on its communications aspect. The technical details of integrating
security with RPC lie beyond the scope of this chapter. However, the following
remarks apply:

1. In the CO (virtual circuit) RPC protocol, the client’s security credentials (ticket
with conversation key 6 and EPAC) are pushed from client to server at
connection establishment time, that is, at the time of the first remote procedure
call from client to server (and the remote call is of course protected with
conversation key 6). In the CL (datagram) RPC protocol, on the other hand,
while the first remote call from client to server is protected as previously
described (with conversation key 6), the credentials themselves are not sent
with the remote call. Instead, the server itself pulls the credentials, by
performing a callback, that is, a reverse (system-level) RPC back to the client,
requesting the credentials. Once it receives these credentials, the server

Client Principal

Legend:

Conversation key 4 Encrypted with conversation key 4

Application Server

Security Runtime

app_request()

svr_response()

svr_response()

If client is authorized for
app request,
then perform operation.

svr_response()svr_response()

app_request()

Application
User Interface

API

RPC

Figure 75. Application Server Responds to Client’s Request

Chapter 24. Authentication 517

proceeds as if the credentials had been transferred with the original
application-level RPC (from client to server) itself, as in the preceding
walkthroughs.

2. Once the application client and server have established conversation key 6,
they cache it and continue to use it for subsequent RPCs, until it expires. All
tickets and their conversation keys are accompanied by an expiration time,
beyond which a new conversation key must be established (via a new service
ticket, or perhaps even a new TGT if that expires, as described in the preceding
walkthroughs). Thus, the security overhead of these subsequent RPCs is
minimal, namely, it is reduced merely to the overhead of encryption/decryption
processing itself, without the protocol message-passing.

Authentication Using GSSAPI

This section describes the process by which applications that perform their network
communications via a mechanism other than DCE RPC can use GSSAPI and DCE
security to authenticate and otherwise protect their communications. (These
alternative communications mechanisms are called peer-to-peer, to distinguish them
from RPC.)

In peer-to-peer communications, the application component that establishes the
secure connection is called the context initiator or simply initiator. The context
initiator is analogous to a DCE RPC client. The application component that accepts
the secure connection is called the context acceptor or simply acceptor. The context
acceptor is analogous to a DCE RPC server.

The peer application components establish a secure connection in the following
way. (The reader will notice that the underlying security aspects are identical to
those of the preceding RPC case, the only differences being in the explicit
routine-invocation and communications aspects.)

1. The context initiator uses the gss_init_sec_context() routine to request from
the DCE security server a service ticket (as previously described) that will allow
the initiator to talk to the context acceptor.

The initiator’s security runtime creates an envelope that contains:

v The initiator’s PTGT

Note: It is assumed that the initiator’s security runtime already possesses a
PTGT; that is, GSSAPI itself does not handle login.

v The acceptor’s principal name, protected under conversation key 5

The initiator’s security runtime sends the envelope to the TGS. (As in
“Authentication Using Authenticated RPC” on page 512, step 4, this
communication happens via RPC, but this use of RPC is hidden from the
application because it’s an implicit RPC being made by the security runtime, not
an explicit RPC by the application initiator itself.) The TGS issues a service
ticket to the initiator, encrypted in the acceptor’s secret key, exactly as described
in “Authentication Using Authenticated RPC” on page 512, step 5.

2. The initiator’s security runtime recovers conversation key 6 as described in
“Authentication Using Authenticated RPC” on page 512, step 6, and then hands
to the GSSAPI the service ticket (including EPAC chain) and conversation key
4.

3. GSSAPI holds onto conversation key 6 and creates a GSSAPI token containing
the service ticket.

518 OSF® DCE Application Development Guide —Core Components

This GSSAPI token is then returned to the initiator, which forwards it to the
acceptor (via the application’s chosen communications mechanism). (Compare
this with “Authentication Using Authenticated RPC” on page 512, step 6.)

4. The acceptor calls the gss_accept_sec_context() routine, which passes the
token to the acceptor’s security runtime.

5. The acceptor’s security runtime processes the token, in particular recovering
conversation key 6, exactly as described in “Authentication Using Authenticated
RPC” on page 512, step 7.

6. The acceptor’s GSSAPI holds onto conversation key 6 and the EPAC chain,
and creates a GSSAPI token containing the success message. It passes the
token to the acceptor. (Again, refer to “Chapter 24. Authentication” on page 493,
step 7.)

7. The acceptor forwards the GSSAPI token to the initiator.

8. The initiator passes the token to its GSSAPI, which sends it to the security
runtime by calling the gss_init_sec_context() routine again.

9. The initiator’s security runtime tries to decrypt the message. If this succeeds, it
returns a success status to the GSSAPI that the acceptor’s identity is
authenticated. If not, it returns a failure status to the GSSAPI. (Compare this to
“Chapter 24. Authentication” on page 493, step 8.)

The context acceptor and context initiator can then use conversation key 6 in future
communications by calling the gss_sign() and gss_seal() routines. (Compare this
scenario with the RPC remarks following Section “Authentication Using
Authenticated RPC” on page 512, step 8.) The context acceptor can get the
initiator’s EPAC chain in the form of an rpc_authz_cred_handle_t object so it can
perform a DCE ACL check by calling the
gssdce_extract_creds_from_sec_context() routine. If the context initiator wants to
talk to a different context acceptor, it must acquire a ticket to that context acceptor.

Intercell Authentication

While the intercell authentication model is an extension of intracell authentication,
certain concepts are particular to intercell authentication. The following subsections
discuss those concepts.

KDS Surrogates

A principal trusts the DCE Security Service (registry service/KDS/privilege service)
to authenticate other principals in its cell because it trusts the cryptographic
algorithms and protocols, and the security of the code and data of the security
service itself (which is trusted because it is part of the DCE network trusted
computing base). The DCE Security Service can authenticate all principals in its cell
because it shares a secret key with each of them. A client principal that wants to
talk to a foreign server principal (that is, a principal in another cell) must acquire a
ticket targeted to that server. As always, such a ticket must be encrypted in the
secret key of the foreign server, else the server will not trust the ticket. The client
cannot get such a ticket from its own local security service, because only the
foreign security service, not local security service, knows the secret key of the
foreign server. Therefore, some means must be devised by which the two instances
of the security service can securely convey information about their respective
principals to one another (without actually divulging secret keys of principals to
foreign security services, which would be a security risk).

Chapter 24. Authentication 519

Besides the fact that it is trusted a priori, a cell’s KDS is an exceptional principal in
this other respect: other kinds of principals share their secret keys with the local
security service, whereas the KDS’s key is private to the KDS; that is, it is known to
no other principal. Thus, one problem that intercell authentication must overcome is
the means by which the KDS in one cell may trust that in another cell without either
of them having to share their private keys (which would again introduce an
unacceptable security risk).

Note: With respect to cryptographic keys, the term secret refers to keys that are
(securely) shared between a bounded set of two (or more) principals, while
private refers to keys that are known to only a single principal, and public to
keys that are known to an unbounded set of principals (potentially to all
principals). The cryptographic algorithms and protocols that are currently
supported by DCE all depend on secret key technology (typified by DES),
even though a small number of private keys (those of KDSs) are used.

The solution to this problem is a small extension of the shared-secret authentication
model previously discussed in this chapter. Namely, a new principal is invented
specifically for cross-cell authentication, and two entries for this principal are made,
one each in the registry service databases of the two mutually authenticating cells.
The two entries have the same secret key. These two special registry service
database entries are known as mutual authentication surrogates, and the two cells
that maintain mutual authentication surrogates are called trust peers. It is through
their surrogates that the two instances of the KDS can convey information about
their respective principals to one another (though the two KDSs never communicate
directly with one another, nor do the surrogates), thus enabling a client principal
from one cell to acquire a ticket to a server principal in another cell.

An authentication surrogate is a true principal in the sense that it is represented by
an entry in a registry service database, but it is not an autonomous participant in
authenticated communications in the same sense that, for example, a client or a
server is. Rather, it is more like an alias that is assumed by a cell’s KDS when it
communicates with foreign clients. The establishment, via surrogates, of a trust
peer relationship between two cells is an explicit expression of mutual trust in the
two KDSs on the part of the cell administrators who establish the relationship.
Administrators use the rgy_edit tool to create surrogates and establish the trust
relationship. Administrators who do not trust one another’s cells must not establish
such a relationship.

Intercell Authentication by Trust Peers

This section explains how a client principal in one cell is authenticated by the KDS
in a peer cell, so that the client principal may communicate with a server principal
that is a member of the foreign cell. The style of description is the same as in the
walkthroughs earlier in this chapter, though no figures are used here.

1. A client principal, having already been authenticated in the normal way by the
KDS and privilege service in its home cell and acquired its PTGT, requests its
local TGS for a service ticket targeted to a server in a foreign cell. The client
specifies the server principal by its fully qualified principal name, which includes
the name of the foreign cell.

2. The client’s security runtime makes a request to the client’s local TGS for a
service ticket to the foreign server. The TGS recognizes by the server’s principal
name that it is foreign, so this TGS cannot directly issue the desired service
ticket. Instead, it issues a so-called cross-cell TGT (XTGT), which is targeted to
the surrogate shared between the two cells (that is, it is encrypted in the

520 OSF® DCE Application Development Guide —Core Components

surrogate’s secret key). The EPAC data in the client’s PTGT is copied into the
XTGT, and the local TGS returns the XTGT to the client. (For simplicity, we deal
here only with simple case of EPAC data, not a delegation EPAC chain.)

3. The client receives the XTGT, recognizes that it is not targeted to the application
server it had requested, and proceeds to send a request to the foreign TGS for
a service ticket to the foreign privilege service, this time presenting the XTGT
(instead of its original TGT) as proof of authentication. Upon receiving this
request, the foreign TGS decrypts it by using the surrogate’s secret key, and
returns to the client a service ticket to the foreign privilege service. (Note how
knowledge of the surrogate’s shared key makes it possible for the two TGSs to
cooperate in this way.)

4. The client’s security runtime sends this service ticket to the foreign privilege
service, to obtain a cross-cell privilege TGT (XPTGT). This XPTGT contains the
client’s original EPAC, and is encrypted with the secret key of the foreign
privilege service.

5. After the client principal receives the XPTGT, it sends it to the foreign TGS,
requesting a service ticket to the foreign server principal it was originally
interested in. From this point on, the protocol goes exactly as it would in the
case of a client principal in the server’s cell requesting a service ticket to that
server (as previously described). Similarly, the client principal may reuse the
XPTGT to acquire service tickets to any other servers in the foreign cell.

Chapter 24. Authentication 521

522 OSF® DCE Application Development Guide —Core Components

Chapter 25. Authorization

This chapter explains concepts related to authorization. The authenticated RPC
facility enables you to select the authorization protocol that your application uses.
Among the authorization protocols supported by the DCE Security Service for use
by authenticated RPC is DCE authorization (the default), and name-based
authorization.

This chapter first discusses DCE authorization, and more particularly, DCE access
control lists (ACLs). At the end of this chapter, we also briefly discuss the
name-based authorization protocol.

DCE Authorization

The DCE authorization protocol is based in part on the UNIX file-protection model,
but is extended with ACLs. An ACL is a list of access control entries that protects an
object. Each entry in the ACL specifies a set of permissions. Usually, most of the
entries in the ACL specify a privilege attribute (such as membership in a group) and
the set of permissions that may be granted to the principal(s) that possesses that
privilege attribute. Some other entries specify a set of permissions that may mask
the permission set in a privilege attribute entry.

Every ACL is managed by an ACL manager type. An ACL manager type determines
a principal’s authorization to perform an operation on an object by reading the
object’s ACL to find the appropriate entry (or entries) that matches some privilege
attribute possessed by the principal. If the type of access requested by the principal
is one of the permissions listed in the matching entry, and assuming no applicable
mask entry denies that permission, then the ACL manager type allows the principal
to perform the requested operation. If the requested permission is not listed in the
matching ACL entry, or is denied by a mask, permission to perform the operation is
denied. Permission to perform the operation is also denied if the ACL contains no
matching privilege attribute entry.

Unlike UNIX file permissions, DCE ACLs are not limited to the protection of file
system objects such as is, files, directories, and devices. ACLs may also control
access to nonfile-system objects, such as the individual entries in a database.

Note: The implementation of DCE ACLs is aligned with POSIX P1003.6 Draft 12.

In the discussions in this chapter, we use the general term name to refer to a
principal, group, or cell identifier; but readers should always bear in mind that these
names have two representations: as UUIDs in ACL program interfaces and as print
strings in user interfaces.

Object Types and ACL Types

The ACL facility distinguishes between two types of objects: container objects and
simple objects. Container objects contain other objects, which may be simple and/or
other container objects. Simple objects do not contain other objects. Examples of
container objects include file-system directories and databases; examples of simple
objects include files and database entries.

523

To protect both object types, and to enable newly created objects to inherit default
ACLs from their parent container objects, the ACL facility supports two basic kinds
of ACLs:

v An Object ACL is associated with either a container or a simple object, and
controls access to it.

v A Creation ACL is associated with a container object only. Its function is not to
control access to the container but to supply default values for the ACLs of
objects created in the container. There are two types of Creation ACLs:

– An Initial Object Creation ACL supplies default values for a simple object’s
Object ACL and for a container object’s Initial Object Creation ACL.

– An Initial Container Creation ACL supplies default values for both a container
object’s Object ACL and its Initial Container Creation ACL.

Figure 76 illustrates how ACL defaults are derived from Creation ACLs.

Client Principal

Legend:

Conversation key 4 Encrypted with conversation key 4

Application Server

Security Runtime

app_request()

svr_response()

svr_response()

If client is authorized for
app request,
then perform operation.

svr_response()svr_response()

app_request()

Application
User Interface

API

RPC

Figure 76. Derivation of ACL Defaults

524 OSF® DCE Application Development Guide —Core Components

Aside from the distinctions previously described, there are no differences between
Object ACLs and Creation ACLs; therefore, the information about ACLs in the rest
of this chapter does not differentiate between them.

ACL Manager Types

A separate ACL manager type manages the ACLs for each class of objects for
which permissions are uniquely defined. The manager type defines the permissions
for those objects whose ACLs it manages, which are the number of permissions,
the meanings of the permissions, and the tokens that represent the permissions in
user interfaces to ACL manipulation tools.

For example, for the purpose of access control, five classes of objects are defined
in the registry database, and five ACL manager types manage the ACLs for the
registry database objects (the five registry manager types run in a single security
server process). Other DCE components implement their own manager types, and
applications implement manager types for the objects that the applications protect.

Refer to the OSF DCE Administration Guide and the OSF DCE Administration
Commands Reference for information about standard DCE ACL manager types and
the permissions they implement. Refer to “Part 1. DCE Facilities” on page 1 and
“Chapter 32. The Access Control List APIs” on page 591 of this guide for information
about implementing ACL manager types for distributed applications.

Access Control Lists

An ACL consists of the following:

v An ACL manager type identifier, which identifies the manager type of the ACL.

v A default cell identifier, which specifies the cell of which a principal or group
identified as local is assumed to be a member. A DCE global pathname is
necessary to specify a principal or a group from a nondefault cell; this consists of
a pair of UUIDs representing the principal or group, and the cell of which it is a
member. It is necessary to use the ID Map API to convert the global print string
names of foreign principals and groups to the UUID representations that DCE
ACL managers use. (Refer to “Chapter 33. The ID Map API” on page 601 for
more information on this subject.)

v At least one ACL entry.

The rest of this chapter discusses ACLs primarily from a user-interface point of
view, since this perspective provides an orientation to the discussion of the ACL API
in this part.

ACL Entries

DCE authorization defines two basic kinds of ACL entries:

v Those that associate a specified privilege attribute with a permission set; these
are privilege attribute entries.

v Those that specify a permission set that masks a permission set specified in a
privilege attribute entry; these are mask entries.

The following subsections describe the two kinds of ACL entries in detail.

Chapter 25. Authorization 525

Privilege Attribute Entry Types

The privilege attributes of a principal are based on identity and include the
principal’s name, its group membership(s), and native cell. Note that not all ACL
manager types implement all privilege attribute entry types. For example, the ACL
manager type of a database object probably would not support the user_obj and
group_obj entry types.

Note: The term local cell means the cell specified in the ACL header; this is not
necessarily the cell in which the protected object resides.

The descriptions of the ACL entry types that specify privilege attributes are as
follows:

v user_obj

The user_obj entry establishes the permissions for the object’s “user” (in the
established UNIX sense). An ACL may contain only one entry of this type. The
identity of the principal to which this ACL entry refers is assumed to be local and
is specified somewhere other than in this entry. In the case of a file, for example,
the identity is attached to the file’s inode.

v user

The user entry establishes the permissions for the local principal named in this
entry. An ACL may contain a number of entries of this type, but each entry must
be unique with respect to the principal it specifies.

v foreign_user

The foreign_user entry establishes the permissions for the foreign principal
named in this entry. An ACL may contain a number of entries of this type, but
each entry must be unique with respect to the foreign principal it specifies. This
entry type is exactly like the user entry type, except that this entry explicitly
names a cell. (For the entry type user , the principal inherits the cell specified by
the default cell identifier in the ACL header.)

v group_obj

The group_obj entry establishes the permissions for the object’s “group” (in the
established UNIX sense). An ACL may contain only one entry of this type. As is
the case with the user_obj entry, the identity of the group is assumed to be local
and is specified elsewhere than in the group_obj entry itself.

v group

The group entry establishes the permissions for the local group named in this
entry. An ACL may contain a number of entries of this type, but each entry must
be unique with respect to the group it specifies.

v foreign_group

The foreign_group entry establishes the permissions for the foreign group
named in this entry. An ACL may contain a number of entries of this type, but
each entry must be unique with respect to the foreign group it specifies. This
entry type is exactly like the group entry type, except that this entry explicitly
names a cell (for the entry type group , the principals inherit the default cell
identifier).

v other_obj

The other_obj entry establishes the permissions for local principals whose
identities do not correspond to any entry type that explicitly names a principal or
group; an ACL may contain only one entry of this type.

v foreign_other

526 OSF® DCE Application Development Guide —Core Components

The foreign_other entry establishes the permissions for all principals that are
members of a specified foreign cell and whose identities do not correspond to
any foreign_user or foreign_group entry. An ACL may contain a number of
entries of this type, but each entry must specify a different foreign cell.

v any_other

The any_other entry establishes the permissions for principals whose privilege
attributes do not match those specified in any other entry type. An ACL may
contain only one entry of this type.

The following additional ACL entry types are supplied for delegated identities:

v user_obj_delegate

v user_delegate

v foreign_user_delegate

v group_obj_delegate

v group_delegate

v foreign_group_delegate

v foreign_other_delegate

v other_obj_delegate

v foreign_other_delegate

v any_other_delegate

These ACL entry types are described in detail in “Chapter 27. The Extended
Privilege Attribute API” on page 537, along with the extensions to the ACL checking
algorithm for delegation.

ACL entries for privilege attributes consist of three fields in the following form:

entry_type[: key]: permissions

Following are descriptions of the fields:

v The ACL entry_type specifies an ACL entry type as described in the previous list.

v The key field specifies the privilege attribute to which the permissions listed in
the entry apply. The key field for the ACL entry types user , group , foreign_user ,
foreign_group , and foreign_other explicitly names a principal, group, or cell.
For the entry types foreign_user , foreign_group , and foreign_other , the key
field must contain a global DCE pathname of the forms /.../
cellname/principalname, /.../ cellname/groupname, or /.../ cellname, respectively.
The entry types user_obj , group_obj , other_obj , and any_other do not use the
key field.

v The permissions field lists the permissions that may be granted to the principal
possessing the privilege attribute specified in the entry, unless a mask (or masks)
further restricts the permissions that may be granted to the principal. As noted
previously, the number and meaning of the permissions that may protect an
object are defined by the object’s ACL manager type. Therefore, the permissions
that an ACL entry may specify must be the set, or a subset, of the permissions
implemented by the manager type of the ACL in which the entry appears.

A principal is denied access when a user or foreign_user entry that names the
principal contains an empty permission set.

Chapter 25. Authorization 527

Mask Entry Types

Following are descriptions of the ACL entry types that specify masks:

v mask_obj

The mask_obj entry establishes the permission set that masks all privilege
attribute entry types except the user_obj and other_obj types.

v unauthenticated

The unauthenticated entry establishes the permission set that masks the
permission set in a privilege attribute entry that corresponds to a principal whose
privilege attributes have not been certified by an authority such as the privilege
service.

The two masks are similar in that the permission set specified in the mask entry is
intersected (logically ANDed) with the permission set in a privilege attribute entry.
This masking operation yields the effective permission set (the permissions that
may be granted to the principal) for the principal possessing the privilege attribute.
For example, if a privilege attribute entry specifies the permissions ab, and a mask
entry that specifies the permissions bc masks that privilege attribute entry, the
effective permission set is b. Similarly, a mask entry that specifies the empty
permission set means that none of the permissions in any privilege attribute entry
that mask entry masks is granted to the principal possessing the privilege attribute.

The two masks are dissimilar in one notable respect. Adding an unauthenticated
mask entry with an empty permission set to an ACL is equivalent to omitting the
unauthenticated mask entry from the ACL; in both cases, the set of effective
permissions for principals possessing unauthenticated privilege attributes is empty.
However, adding a mask_obj entry with an empty permission set to an ACL is
different from having no mask_obj entry in the ACL. In the first case, the effective
permission set is empty; in the second case, the effective permission set is identical
to the permission set in the privilege attribute entry.

ACL entries for masks consist of two fields in the following form:

entry_type:permissions

Following are descriptions of the fields:

v The entry_type field specifies one of the two masks entry types: mask_obj or
unauthenticated.

v The permissions field specifies the permission set that masks the permission set
in any privilege attribute entry masked by the mask entry.

The Extended ACL Entry Type

The ACL entry type extended is a special entry type for ensuring the compatibility
of ACL data created by different software revisions. It enables old application clients
to copy ACLs from one newer revision object store to another without losing data. It
also enables obsolete clients to manipulate ACL data that they understand without
corrupting the extended entries that they do not understand.

Access Checking

Standard DCE ACL manager types use a common access-check algorithm to
determine the permissions they grant to a principal. Access checking is executed in
up to six stages, in the following order:

528 OSF® DCE Application Development Guide —Core Components

1. The user_obj entry check

2. The check for a matching user or foreign_user entry

3. The group_obj entry check and the check for matching group or
foreign_group entries

4. The other_obj entry check

5. The check for a matching foreign_other entry

6. The any_other check

If during any stage of access checking an ACL manager type finds a privilege
attribute entry that matches a privilege attribute possessed by a principal, then the
manager type does not execute any subsequent stages, even though the principal
may possess other privilege attributes for which there are other matching entries.
See the Security Volume of the Application Environment Specification/Distributed
Computing for descriptions of the algorithms used at each stage of access
checking.

Examples of ACL Checking

The following subsections provide some examples that illustrate ACLs and the
access-check algorithms. The examples use the arbitrary convention of ordering
entries as follows: masks, principals, groups, and ″other’’ entries. However, the
access check algorithm disregards the order in which entries appear in an ACL.
Also note that the permissions in these examples do not refer to any particular
permissions implemented by any ACL manager type.

Example 1

Following is an ACL that protects an object to which three principals, janea ,
/.../cella/fritzb , and mariac , seek access:

mask_obj:ab
user_obj:abc
user:janea:abdef
foreign_user:/.../cella/fritzb:abc
group:projectx:abcf
group:projecty:bcg

Note: The numbered lists in the discussions that follow correspond to stages 1, 2,
3, 4, 5 and 6 of the access-check algorithm referred to in “Access Checking”
on page 528.

The principal janea requests permission cto the object protected by the ACL.
Assume that the principal janea has the privilege attributes of being a member of
the groupsprojectx and projecty (as well as having a user entry that names her)
and that janea is the principal to which the user_obj entry refers. Assume also that
this principal’s privilege attributes are certified:

1. The user_obj check yields the permissions abc .

The result of this check is that the effective permission set for janea is abc .
Because a matching entry is found during the first stage of access checking, none
of the remaining stages of access checking is executed, even though there are
three other matching entries. The mask_obj entry does not mask the user_obj
entry, so janea ’s effective permissions are the permissions in the user_obj entry.
Since janea requested a permission that is a member of the effective permission
set, her request is granted.

Chapter 25. Authorization 529

The second principal seeking access to the protected object is /.../cella/fritzb . This
principal requests permission b. Assume that user_obj resolves to some identity
other than /.../cella/fritzb, and that this principal’s privilege attributes are uncertified:

1. The user_obj check yields no permissions because /.../cella/fritzb ’s identity
does not match that of the user_obj (no foreign principal can ever match this
entry).

2. The foreign_user entry for /.../cella/fritzb specifies the permissions abc . The
application of the mask_obj , which specifies the permissions ab to this
permission set, yields the permissions ab. Since the unauthenticated mask
entry is missing from the ACL, all permissions for unauthenticated identities are
masked, yielding an empty effective permission set.

The result of these checks is that /.../cella/fritzb ’s request is denied (and would be
denied, regardless of the permission requested). In this case, only the first two
stages of access checking are executed.

The third principal seeking access is mariac , who requests permission a. Assume
that the privilege attributes of mariac are certified, that mariac is not the principal
that corresponds to the user_obj entry, and that mariac is a member of the groups
projectx and projecty :

1. The user_obj check yields no permissions.

2. There is no matching user entry.

3. The group check finds two matching entries. The permissions associated with
projectx (abcf) when masked by the mask_obj entry (ab) yield the permissions
ab. The permissions associated with projecty (bcg) when masked by the
mask_obj entry yield the permission b. The union of the permission sets ab
and b is the set ab.

The effective permission set for mariac is ab and since the requested permission
(a) is a member of that set, mariac ’s request is granted. The remaining stages of
access checking are not executed.

Example 2

Following is the ACL for an object to which two principals, ugob and /.../cellb/lolad ,
seek access:
mask_obj:bcde
unauthenticated:ab
user_obj:abcdef
user:ugob:abcdefg
group:projectz:abh
foreign_other:/.../cellb/:abc

Note: The numbered lists in the discussions that follow correspond to stages 1, 2,
3, 4, 5 and 6 of the access check algorithm referred to in “Access Checking”
on page 528.

The principal ugob requests permission b.Assume that ugob is not the principal to
which the user_obj entry refers. Assume also that the privilege attributes of ugob
include membership in the group projectz , in addition to the user entry that names
him. In this case, the principal has failed to acquire certified privilege attributes:

1. The user_obj check yields no permissions.

530 OSF® DCE Application Development Guide —Core Components

2. The matching entry among the user entries specifies the permissions abcdefg.
Applying mask_obj (bcde) yields the permission setbcde . Applying the
unauthenticated mask (ab) to the permission set bcde yields the effective
permission setb.

Since the principal ugob requests a permission (b) that is a member of the effective
permissions set, this principal’s request is granted.

A case that illustrates how access is determined for otherwise undifferentiated
members of a specified foreign cell is that of the principal /.../cellb/lolad , who
requests permission e. Assume that the privilege attributes of this principal are
certified:

1. The principal is foreign, so the user_obj check cannot be a match.

2. There are no foreign_user entries.

3. There are no foreign_group entries.

4. The principal lolad is a member of cellb , meaning that the privilege attributes
match those in the foreign_other entry for cellb. The permissions specified by
the foreign_other entry for cellb (abc) as masked by mask_obj (bcde) yields
the effective permission set bc .

The permission requested (e) is not a member of the effective permission set (bc),
so the request is denied.

Example 3

Following is the ACL for an object to which one principal, silviob seeks access.

unauthenticated:a
user:jeand:abcde
user:denisf:-
group:projectx:abcd
foreign_other:/.../cella:-
foreign_other:/.../cellc:abc
any_other:ab

Note: The user entry for denisf and the foreign_other entry for cella both specify
an empty permission set with the notation - (dash), meaning that identities
corresponding to these entries are explicitly denied all permissions. Also, the
numbered lists in the discussions that follow correspond to stages 1, 2, 3, 4,
5 and 6 of the access-check algorithm referred to in “Access Checking” on
page 528.

The principal silviob requests permission a. Assume that this principal’s privileges
include membership in the group projecty and that they are not certified:

1. There is no user_obj entry, so this check can yield no permissions.

2. There is no user entry for this principal, so this check yields no permissions.

3. There is no entry for the group projecty , so this check yields no permissions.

4. There is no other_obj entry, so this check can yield no permissions.

5. The principal is local, so no foreign_other entry can be a match; this check
yields no permissions.

6. Having failed to match any entry examined in the preceding checks, the
principal matches theany_other entry, which yields the permission setab. There
is no mask_obj entry, but there is the unauthenticated mask entry, which

Chapter 25. Authorization 531

specifies the permission set a. Applying the unauthenticated mask to this
privilege attribute entry yields the effective permission a.

The permission requested (a) is a member of the effective permission set (a), so
this principal’s request is granted.

Name-Based Authorization

The Kerberos authentication service, upon which the DCE shared-secret
authentication protocol is based, authenticates the string name representation of a
principal. The DCE Security Service converts these string representations to UUIDs,
and it is these UUIDs that an ACL manager uses to make authorization decisions.
However, since some existing (non-DCE) applications implement Kerberos
authentication, DCE security supports an authorization protocol based on principal
string names: name-based authorization.

It is assumed that applications that use name-based authorization have a means to
associate string names with permissions, since the DCE Security Service offers no
such facility. Because in name-based authorization there is no UUID representation
of privilege attribute data, and because DCE ACL managers recognize only UUIDs,
if an application uses name-based authorization, then a principal’s privilege
attributes are represented as an anonymous PAC. Such PAC data can only match
the ACL entry types other_obj , foreign_other , or any_other , and are masked by
the unauthenticated mask.

Also note that there is essentially no intercell security for an application that uses
the name-based authorization protocol because such applications never
communicate with the privilege service, which evaluates intercell trust.

532 OSF® DCE Application Development Guide —Core Components

Chapter 26. GSSAPI Credentials

A GSSAPI credential is a data structure that provides proof of an application’s claim
to a principal name. An application uses a credential to establish its global identity.
The global identity can be, but is not necessarily, related to the local user name
under which the application (either the initiator or the acceptor) is running.

A credential can consist of either of the following:

v DCE login context

v Principal name

There are three types of credentials, as shown in Table 18.

Table 18. Credential Types

Credential Content

INITIATE A login context only. This credential identifies applications
that only initiate security contexts.

ACCEPT Principal name and an associated entry key table. This
credential identifies applications that only accept security
contexts.

BOTH A login context and principal name with a key table entry.
This credential identifies applications that can either
initiate or accept security contexts.

Credentials are maintained internally to GSSAPI. When they establish a security
context, applications use credential handles to point to the credentials they need.

When an application initiates or accepts a security context, it can use GSSAPI
routines with either a default credential or a specific credential handle. This chapter
discusses how applications do the following:

v Use default credentials

v Create credential handles to refer to specific credentials

v Delegate credentials

For detailed information on the GSSAPI routines referred to in this chapter, see the
OSF DCE Application Development Reference.

Using Default Credentials

A default credential is a credential that is

v Generated by either of the following routines:

– gss_init_sec_context()

– gss_accept_sec_context()

v Based on the following information:

– The DCE default login context for the application (for INITIATE type
credentials)

– The registered principal name in the token (for ACCEPT or BOTH type
credentials).

533

When an application calls the GSSAPI routine to either initiate
(gss_init_sec_context()) or accept (gss_accept_sec_context()) a security
context, it can specify the use of its default credential.

Use default credentials to help ensure the portability of your applications.

Initiating a Security Context

To use a default credential when initiating a security context, an application calls the
gss_init_sec_context() routine and specifies GSS_C_NO_CREDENTIAL as the
input claimant credential handle to the routine. The routine uses the initiator’s DCE
default login context to generate the default credential. The credential is an
INITIATE type credential.

You can change the default login context by calling the DCE sec_login_ *()
routines. For information on these routines, see see the appropriate sec_login_
*(3sec) reference page.

Accepting a Security Context

To use a default credential when accepting a security context, an application calls
the gss_accept_security_context() routine and specifies
GSS_C_NO_CREDENTIAL as the verifier credential handle to the routine. The
GSSAPI uses a principal name registered for the context acceptor to generate the
default credential handle. The credential is an ACCEPT credential type.

Creating New Credential Handles

An application can create a new credential handle to pass to the
gss_init_sec_context() routine or the gss_accept_sec_context() routine. An
application might create a credential handle rather than use the default credential
for the following reasons:

v Limit the identities the application can use

v Provide an additional identity for the application

Initiating a Security Context with New Credential Handles

To create a credential handle for an INITIATE credential type, the application calls
the gssdce_login_context_to_cred() routine and specifies its login context as
input to the routine. The routine creates a credential handle that points to the
credential consisting of that login context.

An application can also use a BOTH type credential to initiate a security context.
Use the gss_acquire_cred() routine to create a BOTH type credential, as
explained in the next section.

When the application uses a BOTH credential, the gss_acquire_cred() routine
creates a login context from the key table information. Then, it uses the login
context to create the credential. For more details, see the gss_acquire_cred(3sec)
reference page.

534 OSF® DCE Application Development Guide —Core Components

Accepting a Security Context Using New Credential Handles

To create new credential handle for an ACCEPT or BOTH type credential, an
application calls the gss_acquire_cred() routine.

The gss_acquire_cred() routine uses a principal name and its entry in the key
table to generate the credential handle. If the principal name has not yet been
registered (using gssdce_register_acceptor_identity() or the
rpc_server_register_auth_info() routines), the gss_acquire_cred() routine
automatically registers it.

Delegating Credentials

In delegation, an initiator forwards its identity to an acceptor so that the acceptor
can use the identity to act as an agent for the initiator. There are two forms of
delegation:

v Impersonation delegation

v Traced delegation

Initiating a Security Context to Delegate Credentials

An application indicates that it wants to delegate credentials when it calls the
gss_init_sec_context() routine and sets the GSS_C_DELEG_FLAG flag to TRUE.
Notes added to the initiator’s login context can indicate the type of delegation used
and any restrictions in effect (for traced delegation only). If no delegation notes are
included with the login context and the GSS_C_DELEG_FLAG flag is set,
impersonation delegation is used.

Accepting a Security Context with Delegated Credentials

If the GSS_C_DELEG_FLAG flag has been set when the security context was
intiated, the gss_accept_sec_context() routine will pass a credential to the
acceptor. The routine does the following:

1. Uses information from the input token to create the appropriate delegated
credential

2. Creates an impersonation or traced delegation credential with an INITIATE
credential type

3. Passes the delegated INITIATE credential to the acceptor

The principal named in the delegated INITIATE credential is the name of the
initiator (for impersonation delegation) or the acceptor acting for the initiator (for
traced delegation). The acceptor uses the credential to act for the initiator, initiating
security contexts as appropriate.

Chapter 26. GSSAPI Credentials 535

536 OSF® DCE Application Development Guide —Core Components

Chapter 27. The Extended Privilege Attribute API

This chapter describes the extended privilege attribute (EPA) API. The EPA facility
addresses the requirements of complex distributed systems by allowing clients and
servers to invoke secure operations via one or more intermediate servers.

In a simple client/server distributed environment, most operations involve two
principals: the initiator of the operation and the target of the operation. The target of
the operation makes authorization decisions based on the identity of the initiator.
However, in distributed object-oriented environments, there is frequently a need for
server principals to perform operations on behalf of a client principal. In these
cases, it may not be enough for authorization decisions to be based simply on the
identity of the initiator since the initiator of the operation may not be the principal
that requests the operation.

To handle these cases, the EPA API provides routines that allow principals to
operate on objects on behalf of (as delegates of) an initiating principal. The
collection of the delegation initiator and the intermediaries is referred to as a
delegation chain.

Using the EPA API and related sec_login_ *() calls, an application may be written
that allows client Principal A to invoke an operation on server Principal C via server
Principal B. The DCE Security Service will know the true initiator of the operation
(Principal A) and can distinguish the delegated operation from the same operation
invoked directly by Principal A.

The EPA interface consists of the security credential calls (sec_cred_ *()) that
extract privilege attributes and authorization data from an opaque binding handle to
authenticated credentials. In addition, the following sec_login_ *() calls of the login
API are used to establish delegation chains and to perform other delegation related
functions.

v sec_login_become_initiator()

v sec_login_become_delegate()

v sec_login_become_impersonator()

v sec_login_cred_get_delegate()

v sec_login_cred_get_initiator()

v sec_login_cred_initialize_cursor()

v sec_login_disable_delegation()

v sec_login_set_extended_attrs()

Identities of Principals in Delegation

The identity of principals in a delegation chain is maintained in extended privilege
attribute certificates (EPACs), as are the identities for all DCE principals. Each
EPAC contains the name and group memberships of a principal in the delegation
chain and any extended attributes that apply to the principal. The delegation chain
includes an EPAC for each member of the delegation chain.

When delegation is in use, the target server receives the delegation chain, and thus
knows the privilege attributes of the delegation chain initiator and each intermediary
(delegate) in the chain. Authorization decisions can then be made based on the
identities of all principals involved in the operation.

537

ACL Entry Types for Delegation

When a server’s ACL manager is presented with credentials to use as a base of an
authorization decision, the manager evaluates the privilege attributes of each
principal involved in the delegation chain. The ACL manager grants access for the
requested operation only if all principals in the delegation chain have the necessary
permissions on the object that is the eventual target of the operation.

For the initiator of the delegation chain, permission on the target object must be
granted directly using any of the following standard ACL entry types:

v user_obj

v user

v foreign_user

v group_obj

v group

v foreign_group

v foreign_other

v other_obj

v foreign_other

v any_other

v extended

For intermediaries in a delegation chain, permissions to a target object can be
granted directly to the intermediary with the standard ACL entry type previously
described, or permissions can be granted by delegate ACL entries. Delegate ACL
entries grant permissions to principals only if they are acting as delegates. The
following delegate ACL entry types are available:

v user_obj_delegate

v user_delegate

v foreign_user_delegate

v group_obj_delegate

v group_delegate

v foreign_group_delegate

v foreign_other_delegate

v other_obj_delegate

v foreign_other_delegate

v any_other_delegate

Note that, to perform an operation, all delegates in the chain must have the
appropriate permissions. For example, assume a delegation chain consists of
Principal A (the initiator) and Principal’s B and C (the intermediaries). To perform the
operation, the delegation chain requires Mrw permissions on Server X. One way of
granting these permission is to grant them directly to each member of the
delegation chain, as shown in the following:

user:Principal A:Mrw
user:Principal B:Mrw
user:Principal C:Mrw

Providing access directly also allows each intermediary in the chain to perform the
operation of their own initiative, a consequence that may or may not be desired. To

538 OSF® DCE Application Development Guide —Core Components

specify that Principals B and C may only be intermediaries operating on behalf of
an authorized initiating principal without granting them the ability to perform the
operation on their own, use delegation entries. In this case, the Server X’s ACL
would contain the following entries:

user:Principal A:Mrw
user_delegate:Principal B:Mrw
user_delegate:Principal C:Mrw

ACL Checking for Delegation

To determine permissions, the ACL manager first uses the standard access-check
algorithm (described in “Chapter 25. Authorization” on page 523) to determine the
permissions to grant to the delegation initiator. If the requested permission is not
granted, access is denied.

If the requested permission is granted, the ACL manager then checks the
permissions granted to the delegates in the chain. This checking is similar to the
standard access-check algorithm, but it takes into account any additional delegate
permissions granted to the delegates. If the requested permission is not granted to
all delegates, access is denied. If the requested permission is granted to all
delegates, access is granted.

Calls to Establish Delegation Chains

The following sec_login_ *() API calls set up a delegation chain:

v sec_login_become_initiator()

Enables delegation for a client. The principal that executes this call is known as
the delegation initiator.

v sec_login_become_delegate() , sec_login_become_impersonator()

Cause an intermediate server to become a delegate in a delegation chain. The
principals that execute these calls are known as intermediaries in the delegation
chain.

The sec_login_become_delegate() call should be used if the traced delegation
has been enabled. The sec_login_become_impersonator() call should be used if
simple delegation has been enabled. See “Types of Delegation” for more
information about delegation types.

The following subsections describe the information supplied to the calls that
establish delegation chains.

Types of Delegation

When a client application calls sec_login_become_initiator() to enable delegation,
that application specifies the type of delegation that should be enabled. The
delegation type can be any of the following:

v Traced Delegation

Includes the identities of all members of the delegation chain in the credentials
used for authorization. To become an intermediary in a traced delegation chain,
server principals use the sec_login_become_delegate() call.

Chapter 27. The Extended Privilege Attribute API 539

Note that ACLs on objects that are targets of traced delegation must grant the
requested permission (or delegate permission) to each member of the delegation
chain.

v Impersonation

Includes only the identity of the initiator of the delegation chain used for
authorization. All intermediaries “impersonate” the delegation initiator. To become
an impersonator, principals use the sec_login_become_impersonator() call.

Note that ACLs on objects that are targets of impersonation need list only the
delegation initiator, not each delegate in the chain.

Generally, traced delegation is the preferred method. The high degree of location
transparency inherent in simple delegation greatly increases the risk of a client
being compromised by a Trojan horse application.

When server principals run the sec_login_become_delegate() or
sec_login_become_impersonator() call to become an intermediary in a delegation
chain, they must also specify the delegation type as input to the call. The type they
specify must be the same type as the delegation type specified by the initiator of
the chain (unless they specify no delegation).

Target and Delegate Restrictions

When a principal enables delegation or becomes an intermediary in a delegation
chain, the principal may specify target and delegate restrictions. Target restrictions
identify the server principals (by UUID) to which the identities in a delegation chain
can be projected. Delegate restrictions identify the server principals that can further
project the delegation chain.

If a target restriction prohibits a server from seeing an identity in a delegation chain,
the security runtime replaces that identity with the identity of the anonymous
principal. If a delegate restriction prohibits a principal from being an intermediary in
a chain, then the security runtime replaces that principal’s identity with the identity
of the anonymous principal. This replacement with the anonymous identity allows
the authenticated RPC call to complete. Whether the operation requested by the
delegation chain is performed can be controlled by ACL entries that grant
permission to the anonymous principal on the objects that are the targets of the
delegated operation.

If no delegate restrictions are supplied, any principal can be an intermediary in the
delegation chain. If any delegate restrictions are supplied, then only those supplied
can further transmit the delegation chain.

Note: In the current release of DCE, there is no way for a server to register its
DCE credentials with the RPC runtime. Only a server name and key table
can currently be registered. Because of this limitation, target restrictions are
currently implemented so that all target servers see anonymous credentials
for any EPAC that contains any target restriction regardless of the identity
specified in the restriction.

The Anonymous Principal

The DCE Security Service replaces those identities in the delegation chain that are
not allowed to be seen by target or delegate restrictions with the UUIDs associated
with the anonymous principal’s identity. These UUIDs are as follows:

v Anonymous principal UUID: fad18d52-ac83-11cc-b72d-0800092784e9

540 OSF® DCE Application Development Guide —Core Components

v Anonymous group UUID: fc6ed07a-ac83-11cc-97af-0800092784e9

The other_obj , any_other ,other_obj_deleg , and any_other_deleg ACL entries
define the anonymous principal’s access to objects. The entries must be set up just
as for any other principal. The appropriate direct or delegate permissions must be
granted to the anonymous principal or the delegated operation will fail.

Target and Delegate Restriction Syntax

Target and delegate restrictions are expressed as a list of values of type
sec_id_restriction_t . This data type consists of a UUID and an entry type. The
entry type specifies whether the UUID identifies a principal, a group, or “any other”
principals (in a manner similar to the any_other ACL entry type). As in ACL entry
types, the target restriction entry types can refer to principals and groups from the
local cell or from foreign cells.

The possible delegation entry types are as follows:

v sec_rstr_e_type_user

The target or delegate is a local principal identified by UUID.

v sec_rstr_e_type_group

The target or delegate is any member of a local group identified by UUID.

v sec_rstr_e_type_foreign_user

The target or delegate is a foreign principal identified by principal and cell UUID.

v sec_rstr_e_type_foreign_group

The target or delegate is any member of a foreign group identified by group and
cell UUID.

v sec_rstr_e_type_foreign_other

The target or delegate is any principal that can authenticate to the foreign cell
identified by UUID.

v sec_rstr_e_type_any_other

The target or delegate is any principal that can authenticate to any cell.

v sec_rstr_e_type_no_other

No principal can act as a target or delegate.

Optional and Required Restrictions

When a principal calls sec_login_become_initiator() to enable delegation, or
sec_login_become_delegate() or sec_login_become_impersonator() to become
an intermediary, the principal can specify optional and required restrictions. Optional
and required restrictions are provided for use by applications that have specific
authorization requirements. These restrictions, which are defined by the application,
can be set by initiators or intermediaries, and are interpreted and enforced by
application target servers. Servers can ignore optional restrictions that they cannot
interpret, but they must reject requests associated with a required restriction that
they cannot interpret. Both optional and required restrictions are supplied as values
of type sec_id_opt_req_t . They are inserted in an EPAC by the privilege server
and evaluated by the target server application.

Chapter 27. The Extended Privilege Attribute API 541

Compatibility Between Version 1.1 and Pre-Version 1.1 Servers and
Clients

Prior to DCE Version 1.1, a principal’s privilege attributes were stored in a privilege
attribute certificate (PAC). At Version 1.1, the PAC was renamed to EPAC and
extended to include the following:

v Target, delegate, optional, and required restrictions.

v Extended registry attributes (ERAs), as described in “Chapter 29. The Extended
Attribute API” on page 551.

Additionally, authorization credentials can now consist of multiple EPACs, as in
delegation chains, instead of a single PAC.

When a pre-Version 1.1 client interacts with a Version 1.1 server or vice versa, the
Version 1.1 server requires an EPAC and the pre-Version 1.1 server requires a
PAC.

For Version 1.1 servers, the security runtime automatically converts the PAC
supplied by a pre-Version 1.1 client to an EPAC. For pre-Version 1.1 servers, the
security runtime automatically extracts PAC data from the credentials supplied by
the Version 1.1 client. However, because an EPAC for a delegation chain contains
the privilege attributes of multiple principals and a PAC contains only one set of
privilege attributes, the principals engaged in delegation must specify how to handle
this issue of multiple versus single identities.

When a principal initiates delegation or becomes an intermediary in a delegation
chain, that principal can specify whether to use the privilege attributes of the chain
initiator or the last intermediary in the chain to construct the PAC required by a
pre-Version 1.1 server. This compatibility decision is specified as a value of type
sec_id_compatibility_mode_t , which is set to one of the following three values:

v sec_id_compat_mode_none

Compatibility mode is off. The security runtime supplies the application server
with an unauthenticated PAC.

v sec_id_compat_mode_initiator

Compatibility mode is on. The pre-Version 1.1 PAC data is extracted from the
EPAC of the delegation initiator.

v sec_id_compat_mode_caller

Compatibility mode is on. The pre-Version 1.1 PAC data extracted from the EPAC
of the last intermediary in the delegation chain.

Calls to Extract Privilege Attribute Information

The EPA API sec_cred_ *() and login API sec_login_cred_ *() calls extract
privilege attribute information. These calls return information associated with an
opaque handle to an authenticated identity.

The sec_cred_ *() calls are used by servers that have been called by a client with
authenticated credentials. The calls and the information they return are as follows:

v sec_cred_get_authz_session_info()

Returns a client’s authorization information

v sec_cred_get_client_princ_name()

542 OSF® DCE Application Development Guide —Core Components

Returns the principal name of the client

v sec_cred_get_deleg_restrictions()

Returns delegate restrictions

v sec_cred_get_delegate()

Returns a credential handle to the privilege attributes of a delegate in a
delegation chain

v sec_cred_get_delegation_type()

Returns the delegation type

v sec_cred_get_extended_attrs()

Returns extended attributes

v sec_cred_get_initiator()

Returns a credential handle to the privilege attributes of the initiator of a
delegation chain

v sec_cred_get_opt_restrictions()

Returns optional restrictions

v sec_cred_get_pa_data()

Returns privilege attributes from a credential handle

v sec_cred_get_req_restrictions()

Returns required restrictions

v sec_cred_get_tgt_restrictions()

Returns target restrictions

v sec_cred_get_v1_pac()

Returns pre-Version 1.1 privilege attributes

v sec_cred_is_authenticated()

Returns TRUE if the caller’s privilege attributes are authenticated or FALSE
otherwise

The sec_login_cred_ *() calls are used by clients that are part of a delegation
chain. The calls and the information they return are as follows:

v sec_login_cred_get_delegate()

Returns the privilege attributes of a delegate in a delegation chain.

v sec_login_cred_get_initiator()

Returns the privilege attributes of the initiator of a delegation chain

The sec_cred_ *() and sec_login_ *() calls discussed in this chapter return
information about authenticated principals associated with an opaque credential
handle supplied to the call. Two credential handles are used:

v sec_login_handle_t (returned by a client-side sec_login_get_current_context()
call)

v rpc_authz_cred_handle_t (returned by a server-side rpc_inq_auth_caller() call)

These are handles to all the credentials in a delegation chain. The
sec_login_cred_get_initiator() , sec_login_cred_get_delegate() ,
sec_cred_get_initiator() , and sec_cred_get_delegate() calls return a handle of
type sec_cred_pa_handle_t , which is a handle to the extended privilege attributes
of a particular identity in a delegation chain. The other sec_cred_ *() and
sec_login_ *() calls discussed in this chapter take the sec_cred_pa_handle_t
handle and return the requested information for the particular identity.

Chapter 27. The Extended Privilege Attribute API 543

Disabling Delegation

The login API sec_login_disable_delegation() call disables delegation for a
specified login context. It returns a new login context of type sec_login_handle_t
without any delegation information and prevents any further delegation.

Setting Extended Attributes

The login API sec_login_set_extended_attrs() call adds extended registry
attributes to a login context. The extended registry attributes must have been
established and attached to the object by using the ERA API. (For more information
on ERAs, see “Chapter 29. The Extended Attribute API” on page 551.)

544 OSF® DCE Application Development Guide —Core Components

Chapter 28. The Registry API

This chapter describes the registry API. Like the other security APIs, this one
provides a simpler binding mechanism than the standard RPC handle structure. It
includes facilities for creating and maintaining the registry database. Applications
that run in the default DCE registry environment (that is, those that assume the
presence of the default registry tools and servers) have no reason to call this API.

Binding to a Registry Site

Although it is often convenient to speak of the registry database in a way that
implies that it is a single physical database, the registry database is replicated in all
but the very smallest cells. Replication reduces network traffic and increases the
availability of registry data to clients.

A cell’s registry database usually consists of an update site (also known as the
master site), and a number of query sites (also known as read-only, or slave sites).
Changes to data at the master site are propagated to its slaves by messages sent
by the master. Query sites can only satisfy requests for data (for example,
sec_rgy_acct_lookup() , which returns account information). Requests for database
changes (for example, sec_rgy_acct_passwd() , which changes the password for
an account) must be directed to the master site; a query site that receives such a
request returns an error.

To submit requests to the registry server, a client must first select a site and bind to
it. The client may select a site by name, ask the DCE Directory Service to bind to
the master site, or select an arbitrary site. In addition, a client may select a cell and
bind to a registry site in that cell.

The registry API enables a client to communicate with the registry server via a
specified authentication protocol, at a specified protection level, and using a
specified authorization protocol. For instance, a developer may decide that the
protection level for communicating with an update site should be higher (that is,
more secure) than that for a query site; that is, the developer may feel that, on the
one hand, the relatively infrequent changes to registry data should be done in a
highly secure manner and that, on the other hand, authentication overhead should
be reduced for the more frequent requests for registry data. The registry API
accommodates these varying needs.

The following calls bind a client to a registry server in preparation for registry
operations. The argument list of these calls enables an application to specify the
authentication protocol, the protection level, and the authorization protocol to be
used:

v sec_rgy_site_bind()

Binds to a specified site

v sec_rgy_site_bind_update()

Binds to the update site

v sec_rgy_site_bind_query()

Binds to any query site

v sec_rgy_cell_bind()

Binds to any registry site in a specified cell

v sec_rgy_site_binding_get_info()

545

Extracts the registry site name and security information from the binding handle

The following calls are similar to the binding calls just described, except that an
application cannot specify security information. By default, however, the following
calls use DCE shared-secret authentication, the packet-integrity level of protection,
and DCE authorization.

v sec_rgy_site_open()

Binds to the specified site

v sec_rgy_site_open_update()

Binds to any update site

v sec_rgy_site_open_query()

Binds to any query site

v sec_rgy_site_get()

Gets the registry site name from the binding handle

The following calls provide miscellaneous binding management functionality:

v sec_rgy_site_close()

Terminates binding to a registry site and frees resources associated with this
binding

v sec_rgy_site_is_readonly()

Tests whether a bound site is an update or query site

The Registry Database

The registry database comprises three container objects:

v principal

Contains principal names; each name is associated with account information that
is also specified here (for example, the name of the primary group)

v group

Contains groups and the names of their member principals

v organization

Contains organizations and the names of their member principals

These three objects are referred to as name domains, and each member of a
domain is referred to as a PGO item. Principal items are contained in the principal
domain, groups in the group domain, and organizations in the organization domain.
A principal may have a name such as/rd/writers/tom , from which you might infer
that tom is a member of the group writers and the organization rd . However, this is
not the case because the name /rd/writers/tom only indicates that tom and the
data corresponding to the account of this principal (if any) reside in /rd/writers in
the principal domain. There may also be a group named /rd/writers in the group
domain, but the principal tom is not a member unless he is explicitly named in the
group /rd/writers in the group domain.

Each PGO item consists of a print string name, a UUID, and a UNIX number (for
compatibility with UNIX system security interfaces). For various administrative
reasons, it is frequently convenient to be able to refer to a PGO item by more than
one name. Consequently, some PGO items are aliases for other items. An alias
uses the same UUID and UNIX number as the PGO item to which it refers, but
contains only a pointer to that item.

546 OSF® DCE Application Development Guide —Core Components

The registry also contains the rgy object, which describes registry properties and
policies, and organization policies.

Creating and Maintaining PGO Items

The PGO items in the registry database are created and maintained with routines
that are prefixed with sec_rgy_pgo_ . The contents of a PGO item vary with the
domain. If the domain is group or organization , the contents are the membership
list of principal names. If the domain is principal , the contents are the data
corresponding to the registry account using that name.

The sec_rgy_pgo_ *() interface contains the following calls for maintaining the
PGO trees:

v sec_rgy_pgo_add()

Adds a PGO item

v sec_rgy_pgo_delete()

Deletes a PGO item

v sec_rgy_pgo_rename()

Changes the name of a PGO item

v sec_rgy_pgo_replace()

Replaces information corresponding to the specified PGO item

The sec_rgy_pgo_ *() interface contains the following calls for maintaining PGO
membership lists:

v sec_rgy_pgo_add_member()

Adds a member to a group or organization membership list

v sec_rgy_pgo_delete_member()

Deletes a member from a group or organization membership list

v sec_rgy_pgo_get_members()

Returns a list of members of a group or organization

v sec_rgy_pgo_is_member()

Tests whether a principal is a member of a specified group or organization

The sec_rgy_pgo_ *() interface contains the following calls for retrieving PGO item
data:

v sec_rgy_pgo_get_by_id()

Returns the PGO item with the specified UUID

v sec_rgy_pgo_get_by_eff_unix_num()

Returns the PGO item with the specified effective UNIX number

v sec_rgy_pgo_get_by_name()

Returns the PGO item with the specified name

v sec_rgy_pgo_get_by_unix_num()

Returns the PGO item with the specified UNIX number

v sec_rgy_pgo_get_next()

Returns the PGO item that follows the last PGO item returned

The sec_rgy_pgo_ *() interface also contains routines that convert PGO item
specifiers, as follows:

v sec_rgy_pgo_id_to_name()

Chapter 28. The Registry API 547

v sec_rgy_pgo_id_to_unix_num()

v sec_rgy_pgo_name_to_id()

v sec_rgy_pgo_unix_num_to_id()

v sec_rgy_pgo_name_to_unix_num()

v sec_rgy_pgo_unix_num_to_name()

Creating and Maintaining Accounts

The login-name field of an account contains a principal name, a primary group
name, and an organization name. The account may also contain a project list (also
known as a concurrent group set) that specifies all the groups to which the principal
corresponding to the account belongs, but the login-name field itself specifies only
one group name.

An account can be added to the registry database only when all of its constituent
PGO items are established. For instance, to create an account with the principal
name tom , the group name writers , and the organization name rd , all three names
must exist as individual PGO items in the database; and the writers group and the
rd organization must specify that tom is a member.

When an account is created with sec_rgy_acct_add() (and if a project list is
enabled for the new account), the call scans the groups in the registry and creates
a project list containing all the groups in which the principal name appears.
Subsequently, the project list may be modified with the
sec_rgy_pgo_add_member() and sec_rgy_pgo_delete_member() calls.

The following calls create and maintain accounts:

v sec_rgy_acct_add()

Adds an account to an existing principal item

v sec_rgy_acct_delete()

Deletes an account, leaving the principal item

v sec_rgy_acct_rename()

Changes an account login name, perhaps moving the account to a different
principal item

The following calls return the information in an account:

v sec_rgy_acct_get_projlist()

Returns the project list for an account

v sec_rgy_acct_lookup()

Returns all the account data

The following calls modify the information in an account:

v sec_rgy_acct_passwd()

Changes an account password

v sec_rgy_acct_replace_all()

Replaces all of an account’s data

v sec_rgy_acct_admin_replace()

Replaces only the administrative account data

v sec_rgy_acct_user_replace()

Replaces only the account data that is accessible to the user of the account

548 OSF® DCE Application Development Guide —Core Components

Registry Properties and Policies

The following subsections outline some registry API parameters that affect the cell
as a whole, and the routines that enable an application to retrieve and set values
for them.

Registry Properties

Several registry parameters and flags affect all accounts in the registry. These
registry properties include the following:

v The version number of the registry software used to create and read the registry

v The name and UUID of the cell associated with the registry, and whether the
current registry site is an update site or a query site

v Minimum and default lifetimes for certificates of identity issued to principals

v Bounds on the UNIX numbers used for principals, and whether the UUIDs of
principals also contain embedded UNIX numbers

The routines associated with this parameter set are

v sec_rgy_properties_get_info()

v sec_rgy_properties_set_info()

The Registry Authentication Policy

Another set of parameters affecting all principals is the registry authentication policy.
This set only controls the maximum lifetime of certificates of identity, upon first issue
and renewal. Accounts also have authentication policies, and the policy in effect for
any principal is the most restrictive combination of the registry policy and the policy
for a principal’s account. The associated routines are

v sec_rgy_auth_plcy_get_info()

v sec_rgy_auth_plcy_get_effective()

v sec_rgy_auth_plcy_set_info()

Organization Policies

Another parameter set controls the set of accounts of principals that are members
of an organization. These parameters control the lifetime and length of passwords,
as well as the set of characters from which passwords may be composed. This
parameter set also specifies the default lifespan of accounts associated with the
organization. The routines associated with this parameter set are

v sec_rgy_plcy_get_info()

v sec_rgy_plcy_get_effective()

v sec_rgy_plcy_set_info()

Routines to Return UNIX Structures

The registry API provides calls to obtain registry entries in a UNIX compatible
structure. These APIs return account and group entries similar to the getpwnam ,
getgrnam , getpwuid , and getgrid UNIX library routines. These APIs, which can be
called by the corresponding UNIX library routines to ensure compatibility with UNIX
programs, are

v sec_rgy_unix_getpwnam()

Returns a UNIX compatible password entry for an account specified by name

Chapter 28. The Registry API 549

v sec_rgy_unix_getgrnam()

Returns a UNIX compatible group entry for an account associated with a
specified group name

v sec_rgy_unix_getpwuid()

Returns a UNIX compatible password entry for an account specified by UNIX ID

v sec_rgy_unix_getgrgid()

Returns a UNIX compatible group entry for an account associated with a
specified group ID

Miscellaneous Registry Routines

The registry API includes a few miscellaneous routines, as follows:

v sec_rgy_login_get_info()

Returns login information for the specified account.

v sec_rgy_login_get_effective()

Applies local overrides (if such data is available) to registry account information
and returns information about which account information fields have been
overridden

v sec_rgy_wait_until_consistent()

Blocks until all previous database updates have been propagated to all sites.
This is useful for applications that first bind and write to an update site, and then
bind to an arbitrary query site and depend upon up-to-date information.

Note: The sec_rgy_wait_until_consistent() routine is not available in DCE
Release 1.0 Version 1.0.2.

v sec_rgy_cursor_reset()

Resets the database cursor to return the first suitable entry

550 OSF® DCE Application Development Guide —Core Components

Chapter 29. The Extended Attribute API

This chapter describes the extended attribute APIs. There are two extended
attribute APIs: the extended registry attribute (ERA) interface to create attributes in
the registry database and the DCE attribute interface to create attributes in a
database of your choice.

The ERA interface (consisting of sec_attr_ *() calls) provides facilities for extending
the registry database by creating, maintaining, and viewing attribute types and
instances, and providing information to and receiving it from outside attribute
servers known as attribute triggers. It is the preferred API for security schema and
attribute manipulations. Application servers that manage legacy security attributes or
provide third-party processing of attributes stored in the registry database can
export and implement the sec_attr() interface. Trigger servers are accessed
through the sec_attr_trig() interface by the security client agent during certain
sec_rgy_attr_ *() calls. The ERA interface uses the same binding mechanism as
the registry API, described in “Chapter 28. The Registry API” on page 545.

The DCE attribute interface (consisting of dce_attr_sch_ *() calls) is provided for
schema and attribute manipulation of data repositories other than the registry.
Although similar to the ERA interface, the functionality of the DCE attribute interface
is limited to creating schema entries (attribute types). The interface does not
provide calls to create and manipulate attribute instances or to access trigger
servers.

The chapter first describes the ERA interface and then the DCE attribute interface.
Finally is describes macros and utilities provided for developers who use either
attribute API.

The ERA API

The registry is a repository for principal, group, organization, and account data. It
stores the network privilege attributes used by DCE and account data used by local
operating systems. This local account data, however, is appropriate only for UNIX
operating systems. The ERA facility provides a mechanism for extending the
registry schema to include data (attributes) required by or useful to operating
systems other than UNIX operating systems.

The ERA API provides the ability to define attribute types and to attach attribute
instances to registry objects. Registry objects are nodes in the registry database, to
which access is controlled by an ACL manager type. The registry objects are

v principal

v group

v organization

v policy

v directory

v replist

v attr_schema

All registry objects and their accompanying ACL manager type are described in the
OSF DCE Administration Guide—Core Components.

551

The ERA API also provides a trigger interface that application servers use to
integrate their attribute services with ERA services.

Attribute Schema

The schema extensions are implemented in a single attribute schema that is
essentially a catalog of schema entries, each of which defines the format and
function of an attribute type. The schema can be dynamically updated to create,
modify, or delete schema entries.

The attribute schema is identified by the name xattrschema under the security
junction point (usually /.:/sec) in the CDS namespace. Access to the attribute
schema (hereinafter called simply schema) is controlled by an ACL on the schema
object. The schema is propagated from the master security server to replicas, like
other registry data. Since the attribute schema is local to a cell, it defines the types
that can be used within the cell, but not outside the cell (unless the type is also
defined in another cell).

Attribute Types and Instances

Each attribute type definition in the schema consists of attribute type identifiers
(UUID and name) and semantics that control the instances of attributes of this type.
In this manual, schema entry refers to the registry entry that defines an attribute
type.

An attribute instance is an attribute that is attached to an object and has a value (as
opposed to an attribute type, which has no values but simply defines the semantics
to which attribute instances of that attribute type must adhere). Attribute instances
contain the UUID of their attribute type.

Attribute Type Components

The sec_attr_schema_entry_t data type defines an attribute type. This data type
contains attribute type identifiers and characteristics.

The identifiers of attribute types are a name and a UUID. Generally, the name is
used for interactive access and the UUID for programmatic access.

Attribute type characteristics describe the format and function of the attribute type
and thus control the format and function of instances of that type. These
characteristics, all specified in the sec_attr_schema_entry_t data type, are
described in the following sections.

Attribute Encoding

Attribute encoding defines the legal encoding for instances of the attribute type. The
encoding controls the format of the attribute instance values, such as whether the
attribute value is an integer, string, a UUID, or a vector of UUIDs that define an
attribute set.

Attribute encodings are specified in the sec_attr_encoding_t data type (fully
described in the OSF DCE Application Development Reference).

The possible encodings for attribute types are

v any

552 OSF® DCE Application Development Guide —Core Components

The attribute instance value can be of any legal encoding type.

v void

The attribute instance has no value. It is simply a marker that is either present or
absent.

v printstring

The attribute value is a printable IDL character string from the DCE Portable
Character Set (PCS).

v printstring_array

The attribute value is an array of print strings.

v integer

The attribute value is a signed 32-bit integer.

v bytes

The attribute value is a string of bytes. The byte string is assumed to be a pickle
or is otherwise a self-describing type.

v confidential_bytes

The attribute value is a string of encrypted bytes. This encrypted data can be
passed over the network and is available to user-developed applications.

v internationalization_data

An internationalized string of bytes with a tag identifying the OSF registered
codeset used to encode the data.

v uuid

A DCE UUID.

v attr_set

The value is an attribute set, a vector of attribute type UUIDs used to associate
multiple related attribute instances (members of the set). The vector contains the
UUIDs of each member of the set. Attribute sets provide a flexible way to group
related attributes on an object for easier search and retrieval.

The attribute type UUIDs referenced in an attribute set instance must correspond
to existing attribute schema entries. Although the members specified in a set are
generally expected to be attached to the object to which the set instance is
attached, no checking is done to confirm that they are. Thus, it is possible to
create an attribute set instance on an object before creating member attribute
instances on that object. A query on such an attribute set returns all instances of
member attributes that exist on the object along with a warning that some
attribute types were missing.

Note that attribute sets cannot be nested; a member UUID of an attribute set
cannot itself identify an attribute set.

A query on an attribute set expands to a query per the set’s members. In other
words, an attribute lookup operation on an attribute set returns all attribute
instances that are members of the set, not the set instance itself. (Certain
operations, such as sec_rgy_attr_set_lookup_by_id() and
sec_rgy_attr_lookup_by_name() , can retrieve attribute set instances.)

Updates to an attribute set (sec_rgy_attr_update()) do not expand the update to
its members but apply only to the attribute set. Since the value carried by a set
instance is a vector containing the UUIDs of the member attribute types, an
update makes changes only to the set’s members, not the values carried by
those member attributes. Deletions of attribute sets delete only the set instance,
not the member instances.

Since the attributes that are set members exist independently of the attribute set,
they can be manipulated directly like any other attribute.

Chapter 29. The Extended Attribute API 553

v binding

The attribute value is a sec_attr_binding_info_t type containing authentication,
authorization, and binding information suitable for communicating with a DCE
server.

ACL Manager Set

An attribute type’s ACL manager set specifies the ACL manager type or types (by
UUID) that control access to the object types to which attribute instances of this
type can be attached. Attribute instances can be attached only to objects protected
by the ACL manager types in the schema entry. For example, suppose an ACL
manager set for an attribute type named MVSname lists only the ACL manager
type for principals. Then, instances of the attribute type named MVSname can be
attached only to principals and not any other registry objects.

Access to an attribute instance is controlled by the ACL on the object to which the
attribute instance is attached and access control is implemented by the object’s ACL
manager type. For example, access to an attribute named MVSname on the
principal object named delores is controlled by the ACL on the delores object.

Do not confuse access to an attribute type definition (a schema entry) with access
to an attribute instance. As described previously, access to a schema entry is
controlled by the ACL on the xattrschema object. Access to an attribute instance is
controlled by the ACL on the object to which the attribute instance is attached.

In addition to the ACL manager types, the ACL manager set defines the permission
bits needed to query, update, test, and delete instances of the attribute type. These
bits are used by the object’s ACL manager to determine rights to the object’s
attributes.

The ACL manager types and permissions defined for the attribute type apply to all
instances of the attribute type.

Note that the ACL manager facility supports additional generic attribute type
permissions (O through Z inclusive). Administrators can assign these permissions to
attribute types of their choice. All uses of these additional permission bits are
controlled by the cell’s administrator. See the OSF DCE Administration Guide—Core
Components for more information.

Attribute Flags

The attribute type flags set in a schema entry are described in the following
paragraphs.

The Unique Flag: The unique flag specifies whether the value of each instance of
an attribute type must be unique within the cell. For example, assume that an
instance of attribute type A is attached to 25 principals in the cell. If the unique flag
is set on, the value of the A attribute for each of those 25 principals must be
different. If it is set off, all 25 principals can share the same value for attribute A.

The Multivalued Flag: The multivalued flag specifies whether instances of the
attribute can be multivalued. If an attribute is multivalued, multiple instances of the
same attribute type can be attached to a single registry object. For example, if the
multivalued flag is set on, a single principal can have multiple instances of attribute
type A. If the flag is set off, a single principal can have only one instance of attribute
type A.

554 OSF® DCE Application Development Guide —Core Components

All instances’ multivalued attributes share the UUID (the UUID of their attribute
type), but the values carried by the instances differ. Generally, to access all
instances of a multivalued attribute, you supply the attribute UUID. To access a
specific instance of a multivalued attribute, you supply the UUID and the value
carried by that instance.

The Reserved Flag: The reserved flag indicates whether the attribute type can be
deleted from the schema. Note that, when an attribute type is deleted, all instances
of the attribute type are deleted. If the reserved flag is set on, the entry cannot be
deleted. If the reserved flag is set off, authorized principals can delete the schema
entry.

The Apply-Defaults Flag: The apply-defaults flag indicates whether or not default
attributes should be returned when objects are queried by a client with the
sec_rgy_attr_get_effective() call. If the apply-defaults flag is set on, defaults are
applied. If it is set off, defaults are not supplied.

Defaults are determined in the following manner:

1. If the requested attribute exists on the principal, that attribute is returned. If it
does not, the search continues.

2. The next step in the search depends on the type of object:

For principals with accounts:

v The organization named in the principal’s account is examined to see if an
attribute of the requested type exists. If it does, it is returned and the search
ends. If it does not, the search continues to the policy object as described in
Step 2b.

v The registry policy object is examined to see if an attribute of the requested
type exists. If it does, it is returned. If it does not, a message indicating that
no attribute of the type exists for the object is returned.

For principals without accounts, for groups, and for organizations:

The registry policy object is examined to see if an attribute of the requested
type exists. If it does, it is returned. If it does not, a message indicating that no
attribute of the type exists for the object is returned.

The Intercell Action Field

The intercell action field of the schema entry specifies the action that should be
taken by the privilege server when reading attributes from a foreign cell. This field
can contain one of three values:

v sec_attr_intercell_act_accept

To accept the foreign attribute instance

v sec_attr_intercell_act_reject

To reject the foreign attribute instance

v sec_attr_intercell_act_evaluate

To call a remote trigger server to determine how the attribute instance should be
handled

When the privilege server generates a PTGT for a foreign principal, it retrieves the
list of attributes from the foreign principal’s EPAC.

These attributes instances may be attached to the principal object itself or attached
to the group or organization object associated with the principal object.

Chapter 29. The Extended Attribute API 555

The privilege server then checks the local attribute schema for attribute types with
UUIDs that match the UUIDs of the the attribute instances from the foreign cell that
are contained in the EPAC. At this point, the privilege server takes one of the
following two actions:

1. If the privilege server cannot find a matching attribute type in the local attribute
schema, it checks the unknown_intercell_action attribute on the policy object.
If the unknown_intercell_action attribute is set to

v sec_attr_intercell_act_accept , the foreign attribute instance is retained and
included in the EPAC generated for the object by the privilege server.

v sec_attr_intercell_act_reject , the foreign attribute is discarded.

Note: The unknown_intercell_action attribute must be created by the system
administrator and attached to the policy object. The attribute type, which
takes the same values as the intercell_action field, has the following
characteristics:

Name: unknown_intercell_action

Attribute UUID: 171e0ef2c-d12e-11cc-bb7b-080009353559

Encoding: sec_attr_encoding_integer

ACL manager set: policy_acl_mgr

Unique: false

Multivalued: false

Reserved: true

Comment text: Flag indicating whether to accept or reject foreign
attributes for which no schema entry exists

2. If the privilege server finds a matching attribute type in the local attribute
schema, it retrieves the attribute. The action it now takes depends on the setting
of the attribute type’s intercell action field and unique flag as follows:

v If the intercell action field is set to sec_attr_intercell_act_accept and

– The unique flag is not set on, the privilege server includes the foreign
attribute instance in the principal’s EPAC.

– The unique flag is set on, the privilege server includes the foreign attribute
instance in the principal’s EPAC only if the attribute instance value is
unique among all instances of the attribute type within the local cell.

Note: If the unique attribute type flag is set on and a query trigger exists for
a given attribute type, the intercell action field cannot be set to
sec_attr_intercell_act_accept because, in this case, only the query
trigger server can reasonably perform a uniqueness check.

v If the intercell action field is set to sec_attr_intercell_act_reject , the privilege
server unconditionally discards the foreign attribute instance.

v If the intercell action field is set to sec_attr_intercell_act_evaluate , the
privilege server makes a remote sec_attr_trig_intercell_avail() call to an
attribute trigger by using the binding information in the local attribute type
schema entry. The remote attribute trigger decides whether to retain, discard,
or map the attribute instance to another value(s). The privilege server

556 OSF® DCE Application Development Guide —Core Components

includes the values returned by the attribute trigger in the
sec_attr_trig_query() call output array in the principal’s EPAC.

Attribute Scope

The scope field controls the objects to which the attribute can be be attached. If
scope is defined, the attribute can be attached only to objects defined by the scope.
For example, if the scope for a given attribute type is defined as the directory name
/principal/krbgt , instances of that attribute type can be attached only to objects in
the /principal/krbgt directory (a directory that by convention contains only cell
principals). If the scope is narrowed by fully specifying an object in the
/principal/krbgt directory (for example, /principal/krbgt/dresden.com) then the
attribute can be attached only to the dresden.com principal.

Trigger Type Flag

The schema entry trigger type flag specifies whether the trigger server associated
with the attribute type is invoked for update or query operations. See “The Attribute
Trigger Facility” on page 565 for more information on attribute triggers.

Trigger Binding

The schema entry trigger binding field contains a binding handle to a remote trigger
that will perform processing for the attribute instances. See “The Attribute Trigger
Facility” on page 565 for more information on attribute triggers.

Calls to Manipulate Schema Entries

This section first introduces the sec_attr_schema_entry_t data type used by the
calls that create and update schema entries that define attribute types. It then
describes the calls that create, modify, delete, and read schema entries.

The sec_attr_schema_entry_t Data Type

The sec_attr_schema_entry_t data type is used in the calls that create and update
schema entries. The data type consists of four values and six other data types. The
values used by the sec_attr_schema_entry_t are the attribute type name, UUID,
scope, and a text field for comments.

The data types used by the sec_attr_schema_entry_t are

v sec_attr_sch_entry_flags_t

Specifies the unique, multivalued, reserved, and apply defaults attribute flags.

v sec_attr_acl_mgr_info_set_t

Specifies the attribute type’s ACL manager(s). This data type defines the attribute
type ACL manager set. This data type contains an array of pointers of type
sec_attr_mgr_info_p_t , which reference sec_attr_acl_mgr_info_t data types.
There is one sec_attr_acl_mgr_info_t data type for each ACL manager
associated with the attribute type. Each sec_attr_acl_mgr_info_t defines the
ACL manager UUID and the permission bits.

v sec_attr_encoding_t

Specifies the schema entry encoding.

v sec_attr_trig_type_t

Chapter 29. The Extended Attribute API 557

Specifies the type of attribute trigger associated with the attribute type (if an
attribute trigger is to be associated with the attribute type). See “The Attribute
Trigger Facility” on page 565 for more information on attribute triggers.

v sec_attr_intercell_action_t

Specifies the action to be taken attribute instances of this type that come from a
foreign cell.

v sec_attr_bind_info_t

Specifies binding information for the trigger server associated with the attribute
type (if an attribute trigger is associated with the attribute type).

The sec_attr_bind_info_t data type uses two other data types:
sec_attr_bind_auth_info_t and sec_attr_binding_t . The sec_attr_bind_info_t
structure for trigger binding is described fully in “The Attribute Trigger Facility” on
page 565.

Figure 77 illustrates the structure of a sec_attr_schema_entry_t data type.

Creating and Managing Schema Entries

This section describes the calls to create, modify, and delete the schema entries
that define attribute types.

The sec_rgy_attr_sch_create_entry() Call

The sec_rgy_attr_sch_create_entry() call creates a schema entry that defines an
attribute type in the attribute schema.

This call uses the sec_attr_schema_entry_t data type that completely defines the
schema entry, including the following:

v The attribute type name (generally used for interactive access) and UUID
(generally used for programmatic access). Note that attribute instances share the
name and UUID of their attribute type.

v The attribute’s encoding (described in “Attribute Type Components” on page 552).
The encoding is specified as an enumerator of type sec_attr_encoding_t . For
some kinds of encodings, additional data types are used to further specify the
encoding information. These additional data types, the kinds of encodings that
require them, and the purpose of the data types are listed in Table 19 on
page 559.

Object ACL

Initial Container Creation ACL

Initial Object Creation ACL

Object ACL Defaults

Initial Container Creation ACL Defaults

Initial Object Creation ACL DefaultsObject ACL Defaults

Container Object Created in Container A

Container Object A

Simple Object Created in Container A

Figure 77. The sec_attr_schema_entry_t Data Type

558 OSF® DCE Application Development Guide —Core Components

Table 19. Encodings and Required Data Types

Encoding Required Data Type Purpose of Data Type

sec_attr_enc_bytes sec_attr_enc_bytes_t Defines the length of
attribute values

sec_attr_enc_confidential_bytes sec_attr_enc_bytes_t Defines the length of
attribute values

sec_attr_enc_i18n_data sec_attr_i18n_data_t Defines the
internationalization codeset

sec_attr_enc_attr_set sec_attr_enc_attr_set_t Defines the total number of
members in the attribute
set and the UUID of each
member

sec_attr_enc_printstring sec_attr_enc_printstring_t Defines a single print string

sec_attr_enc_printstring_array sec_attr_enc_str_array_t Defines an array of print
strings

The sec_rgy_attr_sch_update_entry() Call

The sec_rgy_attr_sch_update_entry() call updates a schema entry that defines an
attribute type.

The schema entry components that can be modified are controlled by the ERA API
and the modify_parts parameter of the sec_rgy_attr_sch_update_entry() call.

To ensure that registry and access control data remains consistent, the ERA API
allows only the following schema entry components to be modified:

v Attribute name

v Reserved flag

v Apply defaults flag

v Intercell action flag

v Trigger binding

v Comment

Note that ACL managers can be added to a schema entry’s ACL manager set, but
they cannot be modified or deleted.

To modify any other schema entry fields implies a drastic change to the attribute
type. If this change must be made, the schema entry must be deleted (which
deletes all attribute instances of that type) and then recreated.

The modify_parts parameter of the sec_rgy_attr_sch_update_entry() call can also
be used to prohibit modification of additional schema entry fields. This parameter,
which is actually a sec_attr_schema_entry_parts_t data type, lists the fields that
can be modified by the call. Only those fields listed in
sec_attr_schema_entry_parts_t can be modified.

The new values used to update the attribute type are supplied in a
sec_attr_schema_entry_t data type.

Chapter 29. The Extended Attribute API 559

The sec_rgy_attr_sch_delete_entry() Call

The sec_rgy_attr_sch_delete_entry() call deletes attributes types from the
attribute schema. The attribute type to be deleted is specified by UUID. When an
attribute type is deleted, all instances of that attribute type are invalidated.

Reading Schema Entries

This section describes the calls that read schema entries and the cursor used by
the sec_rgy_attr_sch_scan() call.

Using sec_attr_cursor_t with sec_rgy_attr_sch_scan()

The sec_rgy_attr_sch_scan() call, which reads a specified number of attribute
type entries from the attribute schema, uses a cursor of type sec_attr_cursor_t .
This cursor must be allocated before it can be used as input to the
sec_rgy_attr_sch_scan() call. In addition, it can also be initialized to the first
attribute type entry in the schema, although this is not required. After use, the
resources allocated to the sec_attr_cursor_t must be released.

The following calls allocate, initialize, and release a sec_attr_cursor_t for use with
the sec_rgy_attr_sch_scan() call:

v sec_rgy_attr_sch_cursor_init()

The sec_rgy_attr_sch_cursor_init() call allocates resources to the cursor and
initializes the cursor to the first attribute type entry in the attribute schema. This
call also supplies the total number of entries in the attribute schema as part of its
output. The cursor allocation is a local operation. The cursor initialization is a
remote operation and makes a remote call to the registry.

v sec_rgy_attr_sch_cursor_alloc()

The sec_rgy_attr_sch_cursor_alloc() call allocates resources to the cursor but
does not initialize the cursor. However, since the sec_rgy_attr_sch_scan() call
will initialize the cursor if it is passed in uninitialized, you may prefer this call to
limit the number of remote calls performed by an application. Be aware that the
sec_rgy_attr_sch_cursor_init() call provides the total number of entries in the
named schema, a piece of information not provided by the
sec_rgy_attr_sch_cursor_alloc() call.

v sec_rgy_attr_sch_cursor_release()

The sec_rgy_attr_sch_cursor_release() call releases all resources allocated to
a sec_attr_cursor_t cursor used with the sec_rgy_attr_sch_scan() call.

v sec_rgy_attr_sch_cursor_reset()

The sec_rgy_attr_sch_cursor_reset() call initializes a sec_attr_cursor_t cursor
used with the sec_rgy_attr_sch_scan() call. The reset cursor can then be used
without releasing and reallocating.

The sec_rgy_attr_sch_scan() Call

The sec_rgy_attr_sch_scan() call reads a specified number of schema entries
from the attribute schema.

The number of entries to read is specified as an unsigned 32-bit integer. The read
begins at the entry at which the sec_attr_cursor_t cursor is positioned and
continues through the number of entries specified. The cursor must be allocated but
can be initialized or uninitialized since sec_rgy_attr_sch_scan() initializes any
uninitialized cursor it receives as input.

560 OSF® DCE Application Development Guide —Core Components

The call output includes an array of sec_attr_schema_entry_t values and a 32-bit
integer that specifies the number of schema entries returned.

To read through all entries in a schema, continue making sec_rgy_attr_sch_scan()
calls, until the no_more_entries message is received. When all calls are complete,
release the resources allocated to the sec_attr_cursor_t cursor by using the
sec_rgy_attr_sch_cursor_release() call.

The sec_rgy_attr_sch_lookup_by_id() and
sec_rgy_attr_sch_lookup_by_name() Calls

The sec_rgy_attr_sch_lookup_by_id() call reads the attribute schema entry
identified by UUID. The output of the call is a sec_attr_schema_entry_t type that
contains the specified attribute type’s name, UUID, and characteristics. Generally,
this call is used for programmatic access.

For interactive access, use the sec_rgy_attr_sch_lookup_by_name() call. This
call returns the same information as the sec_rgy_attr_sch_lookup_by_id() call but
specifies the schema entry to read by name instead of by UUID.

Reading the ACL Manager Types

Two calls retrieve the ACL manager types that protect objects dominated by a
named schema:

v sec_rgy_attr_sch_get_acl_mgrs()

Retrieves the UUIDs of the ACL manager types protecting all objects in a named
schema.

v sec_rgy_attr_sch_aclmgr_strings()

Retrieves printable strings for each ACL manager type protecting objects in a
named schema. The strings contain the ACL manager type’s name, associated
help information, and supported permission bits.

Calls to Manipulate Attribute Instances

This section introduces the sec_attr_schema_t data type used by the calls that
create and update attribute instances and then describes the calls that create,
modify, delete, and read attribute instances. For all calls, the object whose attributes
should be accessed is identified by name and by the domain in which the object
exists. (The domain parameter is ignored for the Policy and the Replist objects.)
Registry domains are described in “Chapter 28. The Registry API” on page 545.

The sec_attr_t Data Type

The sec_attr_t data type is used in the calls that create and update attribute
instances. The data type consists of a value of type uuid_t that identifies the
attribute to be accessed by UUID and data type of sec_attr_value_t . The
sec_attr_value_t data type is a tagged union of the actual value assigned (or to be
assigned to the attribute instance) and a data type of sec_attr_encoding_t that
specifies the encoding tags that define the attribute type characteristics. Figure 78
on page 562 illustrates the structure of a sec_attr_t data type.

Chapter 29. The Extended Attribute API 561

Creating and Managing Attribute Instances

This section describes the calls to create, modify, and delete the attribute instances.

The sec_rgy_attr_update() Call

The sec_rgy_attr_update() call creates new attribute instances and updates
existing attribute instances attached to an object specified by name and registry
domain. The instances to be created or updated are passed as an array of
sec_attr_t data types.

Because the new values are passed in as an array, if the update of any attribute
instance in the array fails, all fail. However, to help pinpoint the cause of the failure,
the call identifies the first attribute whose update failed in a failure index by array
element number.

For existing attribute instances attached to the object, the values passed in the
array overwrite the existing values. In other words, if the UUID passed in the input
array matches the UUID of an existing instance, the values passed in overwrite the
existing values.

If the attribute instance does not exist, it is created. In other words, if the UUID
passed in in the array does not match any other attribute type UUID attached to the
object, a new attribute instance is created.

For multivalued attributes, because every instance of the multivalued attribute is
identified by the same UUID, every instance is overwritten with the supplied value.
For example, suppose object delores has three attributes of the multivalued type
security_role . If you pass in one value for security_role , the values of all three are
changed to the one you enter.

To change only one of the security_role values, you must supply the values that
should be unchanged as well as the new value. For example, suppose object
delores has three security_role attributes with values of level1 , level2 , and level3 .
To change level1 to level1.5 and retainlevel2 and level3 , the input array must
contain level1.5 , level2 , and level3 .

attribute type UUID

sec_attr_t

encoding tags

tagged union: value of
the attribute instance in
the format indicated by
sec_attr_encoding_t

sec_attr_value_t

sec_attr_encoding_t

Figure 78. The sec_attr_t Data Type

562 OSF® DCE Application Development Guide —Core Components

To create instances of multivalued attributes, you must create individual sec_attr_t
data types to define each multivalued attribute instance and then pass all of them in
the sec_rgy_attr_update() input array.

If an input attribute is associated with an update attribute trigger, the attribute trigger
is invoked (by the sec_attr_trig_update() call), and the values in the
sec_rgy_attr_update() input array are used as input to the update attribute trigger.
The output values from the update attribute trigger are stored in the registry
database and returned in the sec_rgy_attr_update() output array.

The sec_rgy_attr_test_and_update() Call

The sec_rgy_attr_test_and_update() call, like the sec_rgy_attr_update() call,
creates new attribute instances and updates existing attribute instances attached to
an object specified by name and registry domain. However, it performs the update
only if a set of specified attribute instances match the attribute instances that
already exist for the object. This call is useful to ensure that updates are made only
if certain conditions exist.

The attribute instances to be matched are passed in an input array of sec_attr_t
values. Other than this conditional test, this call functions exactly the same as the
sec_rgy_attr_update() call.

The sec_rgy_attr_delete() Call

The sec_rgy_attr_delete() call deletes the specified attribute instances from an
object identified by name and registry domain. The attribute instances to be deleted
are passed in as an array of values of sec_attr_t .

To delete attribute instances that are not multivalued and to delete all instances of a
multivalued attribute, an attribute UUID is all that is required. For these attribute
instances, supply the attribute UUID in the input array and set the attribute
encoding (in sec_attr_encoding_t) to sec_attr_enc_void .

To delete a specific instance of a multivalued attribute, you must supply the UUID
and value that uniquely identify the multivalued attribute instance in the input array.

Note that, if the deletion of any attribute instance in the array fails, all fail. However,
to help pinpoint the cause of the failure, the call identifies the first attribute whose
deletion failed in a failure index by array element number.

Reading Attribute Instances

This section describes the calls that read attribute instances, and it describes the
cursor used by the sec_rgy_attr_lookup_by_id() call.

Using sec_rgy_attr_cursor_t with sec_rgy_attr_lookup_by_id()

The sec_rgy_attr_lookup_by_id() call, which reads attributes for a specified
object, uses a cursor of type sec_attr_cursor_t . This cursor must be allocated
before it can be used as input to the sec_rgy_attr_lookup_by_id() call. In addition,
it can also be initialized to the first attribute in the specified object’s list of attributes,
although this is not required. After use, the resources allocated to the
sec_attr_cursor_t must be released.

Chapter 29. The Extended Attribute API 563

The following calls allocate, initialize, and release a sec_attr_cursor_t for use with
the sec_rgy_attr_lookup_by_id() call:

v sec_rgy_attr_cursor_init()

The sec_rgy_attr_sch_cursor_init() call allocates resources to and initializes
the cursor to the first attribute in the specified object’s list of attributes. This call
also supplies the total number of attributes attached to the object as part of its
output. The cursor allocation is a local operation. The cursor initialization is a
remote operation and makes a remote call to the registry.

v sec_rgy_attr_cursor_alloc()

The sec_rgy_attr_cursor_alloc() call allocates resources to the cursor but does
not initialize the cursor. However, since the sec_rgy_attr_lookup_by_id() call
will initialize the cursor if it is passed in uninitialized, you may prefer this call to
limit the number of remote calls performed by the application. Be aware that the
sec_rgy_attr_cursor_init() call provides the total number of attributes attached
to the specified object, a piece of information not provided by this call.

v sec_rgy_attr_cursor_release()

The sec_rgy_attr_cursor_release() call releases all resources allocated to a
sec_attr_cursor_t cursor used with the sec_rgy_attr_lookup_by_id() call.

v sec_rgy_attr_cursor_reset()

The sec_rgy_attr_cursor_reset() call reinitializes a sec_attr_cursor_t cursor
used with the sec_rgy_attr_lookup_by_id() call. The reset cursor can then be
used without releasing and reallocating.

The sec_rgy_attr_lookup_by_id() Call

The sec_rgy_attr_lookup_by_id() call reads attributes specified by UUID for an
object specified by name and domain. Specifically the call returns the following:

v An array of sec_attr_t values.

v A count of the total number of attribute instances returned.

v A count of the total number of attribute instances that could not be returned
because of size constraints of the sec_attr_t array. (Note that the call allows the
size of the array to be specified.)

For multivalued attributes, the call returns a sec_attr_t for each value as an
individual attribute instance. For attribute sets, the call returns a sec_attr_t for each
member of the set, but not the set instance. This routine is useful for programmatic
access.

If the attribute instance to be read is not associated with a query trigger or no
additional information is required by the query trigger, an attribute UUID is all that is
required. For these attribute instances, supply the attribute UUID in the input array
and set the attribute encoding (in sec_attr_encoding_t) to sec_attr_enc_void .

If the attribute instance to be read is associated with a query attribute trigger that
requires additional information before it can process the query request, use a
sec_attr_value_t to supply the requested information by doing the following:

v Set the sec_attr_encoding_t to an encoding type that is compatible with the
information required by the query attribute trigger.

v Set the sec_attr_value_t to hold the required information.

You can define the number of elements in the input array of sec_attr_t values (in
the num_attr_keys parameter). If you define the number of elements as 0 (zero),
the call returns all of the object’s attribute instances that the caller is authorized to

564 OSF® DCE Application Development Guide —Core Components

see. You should be aware, however, that if you define the number of elements as
zero and the attribute is associated with a query attribute trigger, you will be unable
to pass any information to the query attribute trigger.

The sec_rgy_attr_set_lookup_by_id() Call

The sec_rgy_attr_set_lookup_by_id() call reads attribute sets specified by set
instance UUID for an object specified by name and domain. Specifically the call
returns the following:

v A sec_attr_t for each attribute instance in the attribute set.

v A count of the total number of attribute set instances returned.

v A count of the total number that could not be returned because of size
constraints of the sec_attr_t array. (Note that the call allows the size and length
of the array to be specified.)

Note: Since attribute triggers cannot be associated with an attribute set instance,
this call provides no way to supply input data to a query attribute trigger.

The sec_rgy_attr_lookup_by_name() Call

The sec_rgy_attr_lookup_by_name() call reads a single attribute instance
specified by name for an object specified by name and domain. The call returns a
sec_attr_t for the specified attribute instance.

For multivalued attributes, the call returns the first instance of the multivalued
attribute. (To retrieve every instance of a multivalued attribute, use the
sec_rgy_attr_lookup_by_id() call.)

For attribute sets, the call returns the attribute set instance, not the member
instances. To retrieve all members of the set, use the
sec_rgy_attr_lookup_by_id() call.

Note: This call provides no way to supply input data to a query attribute trigger. If
the attribute to be read is associated with a query trigger that requires input
data, use the sec_rgy_attr_lookup_by_id() call.

The Attribute Trigger Facility

Some attribute types require the support of an outside server either to verify input
attribute values or to supply output attribute values when those values are stored in
an external database. Such a server could, for example, connect a legacy registry
system to the DCE registry. The attribute trigger facility provides for automatic calls
to outside DCE servers, known as attribute triggers.

Trigger servers, which are written by application developers, export the
sec_attr_trig interface. They are invoked automatically when an attribute that has
been associated with an attribute trigger (during schema entry creation) is queried
or updated. The attribute trigger facility consists of three components:

v The attribute schema trigger fields (trig_types and trig_binding) that associate
an attribute trigger and its binding information with an attribute type. These fields
are part of the standard creation of a schema entry that defines an attribute type.
See “Attribute Schema” on page 552.

v The sec_attr_trig APIs that define the query and update trigger operations. The
APIs are provided in the sec_attr_trig_ *() calls.

Chapter 29. The Extended Attribute API 565

v The user-written attribute trigger servers are independent from DCE servers. The
trigger servers implement the trigger operations for the attribute types that require
attribute trigger processing. These servers are not provided as part of DCE, but
must be written by application developers.

Defining an Attribute Trigger/Attribute Association

When an attribute is created with the sec_rgy_attr_update() call, you define the
association between the attribute type and an attribute trigger by specifying the
following:

v Trigger Type

Defines the trigger as a query server (invoked for query operations) or an update
server (invoked for updates operations). The trigger type is defined in a
sec_attr_trig_type_t data type, which is used by a sec_attr_schema_entry_t
data type.

v Trigger Binding

Defines the server binding handle for the attribute trigger. The details of the
trigger binding are defined in a number of data types, which are also used by the
sec_attr_schema_entry_t data type. Trigger binding is described in detail in
“Trigger Binding” on page 557.

Only if both of pieces of information are provided will the association between the
attribute type and the attribute trigger be created. You can associate an attribute
trigger to any attribute type of any encoding except for attribute sets.

Query Triggers

When you execute a call that accesses an attribute associated with a query trigger,
the client-side attribute lookup code performs the following tasks:

v Binds to the attribute trigger (using a binding from the attribute type’s schema
entry)

v Makes the remote sec_attr_trig_query() call to the attribute trigger server,
passing in the attribute keys and optional information provided by the caller

v If the sec_attr_trig_query() call is successful, returns the output attribute(s) to
the caller

If you execute a sec_rgy_attr() update call with an attribute type that is associated
with a query trigger, not an update trigger, the input attribute values are ignored and
a “stub” attribute instance is created on the named object simply to mark the
existence of this attribute on the object. Modifications to the real attribute value
must occur at the attribute trigger.

Update Triggers

When you execute a call that accesses an attribute associated with an update
trigger, the client-side attribute update code performs the following tasks:

v Binds to the attribute trigger (using a binding from the attribute type’s schema
entry)

v Makes the remote sec_attr_trig_update() call to the attribute trigger server,
passing in the attributes provided by the caller

v If the sec_attr_trig_update() call is successful, stores the output attribute(s) in
the registry database and returns the output attribute(s) to the caller

566 OSF® DCE Application Development Guide —Core Components

Trigger Binding

Two data types are used to defined an attribute trigger. The sec_attr_trig_type_t
type defines the type of attribute trigger. The sec_attr_bind_info_t data type,
illustrated in Figure 79 and described in this section, specifies the attribute trigger’s
binding.

The sec_attr_bind_info_t data type uses two data types: sec_attr_binding_t ,
which defines the information used to generate binding handle and
sec_attr_bind_auth_info_t , which defines the binding authentication and
authorization information.

The sec_attr_binding_t Data Type

To describe the binding handle, the sec_attr_binding_t type uses a
sec_attr_bind_type_t data type that specifies the format to the data used to
generate the binding handle and a tagged union that contains the binding handle.
The binding handle can be generated from any of the following:

v A server directory entry name (used with rpc_ns_binding_import_ *() calls)

If the binding information is a server name, call rpc_ns_binding_import_begin()
to establish a context for importing RPC binding handles from the name service
database. For the rpc_ns_binding_import_begin() call, specify the CDS server
directory entry name, an entry name syntax value of rpc_c_ns_syntax_dce , and
sec_attr_trig as the interface handle of the interface to import.

v A string binding (used with rpc_binding_from_string_binding() calls)

If the binding information is a string binding, call
rpc_binding_from_string_binding() to generate an RPC binding handle.

v An RPC protocol tower set (used with rpc_tower_to_binding() calls)

If the binding information is a protocol tower, two additional data types are used
to pass in an unallocated array of towers, which the server must then allocate.
These data types are sec_attr_twr_ref_t to point to the tower and
sec_attr_twr_set_t to define the array of towers.

number of
bindings

array of towers

trigger binding

sec_attr_bind_auth_info_t

sec_attr_bind_auth_info_type_t

defines whether or not
binding is authenticated

tagged union:
authorization
and authentication
parameters

tagged union:
binding handle in the
format indicated by
sec_attr_bind_type_t

bind type:
CDS entry name
string binding
tower set

sec_attr_binding_t

sec_attr_twr_ref_t

sec_attr_twr_set_t

sec_attr_bind_type_t

sec_attr_bind_info_t

Figure 79. The sec_attr_bind_info_t Data Type

Chapter 29. The Extended Attribute API 567

Architectural components of DCE can take advantage of the internal
rpc_tower_to_binding operation in rpcpvt.idl to generate a binding handle from
the canonical representation of a protocol tower.

Although the server directory entry name, with the actual server address stored in
CDS, is the recommended way to specify an attribute trigger binding handle,
prototype applications may want to specify a string binding or protocol tower for
convenience.

The sec_attr_bind_auth_info_t Data Type

To describe whether or not RPC calls to the server will be authenticated and, for
authenticated calls, to provide authentication and authorization information, the
sec_attr_bind_auth_info_t type uses the sec_attr_bind_auth_info_type_t data
type, and a tagged union. The sec_attr_bind_auth_info_type_t type defines
whether or not the call is authenticated. The tagged union contains the
authentication and authorization parameters.

Once a binding handle is obtained, call rpc_binding_set_auth_info() and supply it
with the binding handle and authorization and authentication information.

Access Control on Attributes with Triggers

When a query or update call accesses an attribute associated with an attribute
trigger, the call checks the ACL of the object with which the attribute is associated
to see if the client has the permissions required for the operation. If access is
granted, the operation returns a binding handle authenticated with the client’s login
context. This handle is then used to perform the sec_attr_trig_query or
sec_attr_trig_update operation.

Access to information maintained by an attribute trigger is controlled entirely by that
attribute trigger. The attribute trigger can choose to implement any authorization
mechanism, including none. For example, the attribute trigger can obtain the client’s
identity from the RPC runtime to perform name-based authentication and perform
ACL checks (or any other type of access control mechanism), and it can query the
registry attribute schema for the attribute type’s permission set to use for an ACL
check. Access control on attribute information stored outside of the registry
database is left to the application designer.

Calls that Access Attribute Triggers

This section describes the calls that send information to and receive it from attribute
triggers.

Using sec_attr_trig_cursor_t with sec_attr_trig_query()

The sec_attr_trig_query() call, which reads attributes associated with a query
attribute trigger, uses a cursor of type sec_attr_trig_cursor_t . This cursor must be
allocated and initialized before it can be used as input to the sec_attr_trig_query()
call. After use, the resources allocated to sec_attr_trig_cursor_t must be released.

The following calls allocate, initialize, and release a sec_attr_trig_cursor_t type for
use with the sec_attr_trig_query() call:

v sec_attr_trig_cursor_init()

568 OSF® DCE Application Development Guide —Core Components

The sec_attr_trig_cursor_init() call allocates resources to the cursor and
initializes the cursor to the first attribute in the list of attributes for the object
whose binding handle is specified. This call makes a remote call.

v sec_attr_trig_cursor_release()

The sec_rgy_attr_cursor_release() call releases all resources allocated to a
sec_attr_trig_cursor_t type by sec_attr_trig_cursor_init() .

The sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update() Calls

The sec_attr_trig_query() call reads instances of attributes coded with a trigger
type of query for a specified object. It passes an array of sec_attr_t values to a
query attribute trigger and receives the output parameters back from the server. The
sec_attr_trig_update() routine passes attributes coded with a trigger type of
update to an update attribute trigger for evaluation before the updates are made to
the registry.

Both calls are called automatically by the DCE attribute lookup or update code for
all schema entries that specify a trigger. Although you should not call these calls
directly, if you are implementing a trigger server, it will receive input from these calls
and the attribute trigger’s output should be passed back to them. The data received
must be in a form accessible to the call and, if it is the result of an update, a form
that can be stored in the registry database.

The object whose attribute instances are to be read or updated is identified by

v The name of the cell in which the object exists

v The name of the object or a UUID in string format that identifies the object

The priv_attr_triq_query() Call

The priv_attr_trig_query() call is used by the privilege service to retrieve trigger
attributes and add them to a princpal’s EPAC. The privilege service executes this
call when it receives a request to add a principal and its extended attribute
instances to an EPAC and the attributes are associated with a trigger server. The
call passes an array of sec_attr_t values to the attribute trigger and receives the
attribute values back from the trigger server in another array of sec_attr_t values. If
the principal is being added to a delegation chain, the call also passes the UUIDs of
all of the current members of the delegation chain to the trigger server. The trigger
server can then evaluate all identities to determine access rights to the requested
attributes.

Like the sec_rgy_attr_trig_update() calls, you will not call priv_attr_trig_query()
directly. However, if you are implementing a trigger server, it will receive input from
these calls and the attribute trigger’s output should be passed back to the call. The
data received must be in a form accessible to the call.

The DCE Attribute API

The DCE attribute calls are not described in detail. This is because, with the
exception of the calls that bind to a selected database (dce_attr_sch_bind() (and
dce_attr_sch_bind_free()), the dce_sec_attr_ *() calls are the same as the
sec_rgy_attr_sch_ *() calls. Refer to “The ERA API” on page 551 for information on
using each call. Note also that the DCE attribute calls are suffixed with 3dce , not
3sec (for example, dce_attr_sch_bind.3dce).

Chapter 29. The Extended Attribute API 569

The DCE attribute API consists of the following calls:

v dce_attr_sch_bind()

Returns an opaque handle of type dce_attr_sch_handle_t to a schema object
specified by name and sets authentication and authorization parameters for the
handle. This is the call used to bind to the schema of your choice.

v dce_attr_sch_bind_free()

Releases an opaque handle of type dce_attr_sch_handle_t .

v dce_attr_sch_create_entry()

Creates a schema entry in a schema bound to with dce_attr_sch_bind . This call
is based on sec_rgy_attr_sch_create_entry() and is used in the same way.

v dce_attr_sch_update_entry()

Updates a schema entry in a schema bound to with dce_attr_sch_bind() . This
call is based on sec_rgy_attr_sch_update_entry() and is used in the same way.

v dce_attr_sch_delete_entry()

Deletes a schema entry in a schema bound to with dce_attr_sch_bind() . This
call is based on sec_rgy_attr_sch_delete_entry() and is used in the same way.

v dce_attr_sch_scan()

Reads a specified number of schema entries. This call is based on
sec_rgy_attr_sch_scan() and is used in the same way.

v dce_attr_sch_cursor_init()

Allocates resources to and initializes a cursor used with dce_attr_sch_scan() .
The dce_attr_sch_cursor_init() routine makes a remote call that also returns
the current number of schema entries in the schema. The
dce_attr_sch_cursor_init() call is based on sec_rgy_attr_sch_cursor_init()
and is used in the same way.

v dce_attr_sch_cursor_alloc()

Allocates resources to a cursor used with dce_attr_sch_scan() . The
dce_attr_sch_cursor_alloc() routine is a local operation. The
dce_attr_sch_cursor_alloc() call is based on sec_rgy_attr_sch_cursor_alloc()
and is used in the same way.

v dce_attr_sch_cursor_release()

Releases states associated with a cursor created by
dce_attr_sch_cursor_alloc() or dce_attr_sch_cursor_init() . The
dce_attr_sch_cursor_release() call is based on
sec_rgy_attr_sch_cursor_release() and is used in the same way.

v dce_attr_sch_cursor_reset()

Reinitializes a cursor used with dce_attr_sch_scan() . The reset cursor can then
be reused without releasing and reallocating. This call is based on the
sec_rgy_attr_sch_cursor_reset() and is used in the same way.

v dce_attr_sch_lookup_by_id()

Reads a schema entry identified by UUID. This call is based on
sec_rgy_attr_lookup_by_id() and is used in the same way.

v dce_attr_sch_lookup_by_name()

Reads a schema entry identified by name. This call is based on
sec_rgy_attr_sch_lookup_by_name() and is used in the same way.

v dce_attr_sch_get_acl_mgrs()

Retrieves the UUIDs of ACL manager types protecting objects dominated by a
named schema. This call is based on sec_rgy_attr_sch_get_acl_mgrs() and is
used in the same way.

570 OSF® DCE Application Development Guide —Core Components

v dce_attr_sch_aclmgr_strings()

Retrieves the print strings containing information about ACL manager types
protecting objects dominated by a named schema. The print strings contain the
manager’s name, help information, and supported permission bits. This call is
based on sec_rgy_attr_sch_aclmgr_strings() and is used in the same way.

Macros to Aid Extended Attribute Programming

The extended attribute APIs includes macros to help programmers using the
extended attribute interfaces. The macros perform a variety of functions including

v Accessing fields in data structures

v Calculating the size of data structures

v Performing semantic and flag checks

v Setting flags

The macros are in dce/rpcbase.h , which is derived from dce/rpcbase.idl .

The following subsections list the definitions of each macro.

Macros to Access Binding Fields

In the following macro definitions, which are used by a sec_attr_schema_entry_t
and its equivalent dce_attr_sch data type, B is a pointer to sec_attr_bind_info_t .
#define SA_BND_AUTH_INFO(B) (B)->auth_info
#define SA_BND_AUTH_INFO_TYPE(B) (SA_BND_AUTH_INFO(B)).info_type

#define SA_BND_AUTH_SVR_PNAME_P(B) \

(SA_BND_AUTH_DCE_INFO(B)).svr_princ_name

#define SA_BND_AUTH_PROT_LEVEL(B) \

(SA_BND_AUTH_DCE_INFO(B)).protect_level

#define SA_BND_AUTH_AUTHN_SVC(B) \

(SA_BND_AUTH_DCE_INFO(B)).authn_svc

#define SA_BND_AUTH_AUTHZ_SVC(B) \

(SA_BND_AUTH_DCE_INFO(B)).authz_svc

#define SA_BND_NUM(B) (B)->num_bindings
#define SA_BND_ARRAY(B,I) (B)->bindings[I]
#define SA_BND_TYPE(B,I) (SA_BND_ARRAY(B,I)).bind_type

#define SA_BND_STRING_P(B,I) \

(SA_BND_ARRAY(B,I)).tagged_union.string_binding

#define SA_BND_SVRNAME_P(B,I) \

(SA_BND_ARRAY(B,I)).tagged_union.svrname

#define SA_BND_SVRNAME_SYNTAX(B,I) \

(SA_BND_SVRNAME_P(B,I))->name_syntax

#define SA_BND_SVRNAME_NAME_P(B,I) \

Chapter 29. The Extended Attribute API 571

(SA_BND_SVRNAME_P(B,I))->name

#define SA_BND_TWRSET_P(B,I) \

(SA_BND_ARRAY(B,I)).tagged_union.twr_set

#define SA_BND_TWRSET_COUNT(B,I) (SA_BND_TWRSET_P(B,I))->count
#define SA_BND_TWR_P(B,I,J) (SA_BND_TWRSET_P(B,I))->towers[J]
#define SA_BND_TWR_LEN(B,I,J) (SA_BND_TWR_P(B,I,J))->tower_length

#define SA_BND_TWR_OCTETS(B,I,J) \

(SA_BND_TWR_P(B,I,J))->tower_octet_string

Macros to Access Schema Entry Fields

In the following macro definitions, S is a pointer to sec_attr_schema_entry_t (and
its equivalent dce_attr_sch data type) and I and J are nonnegative integers for
array element selection.

#define SA_ACL_MGR_SET_P(S) (S)->acl_mgr_set
#define SA_ACL_MGR_NUM(S) (SA_ACL_MGR_SET_P(S))->num_acl_mgrs
#define SA_ACL_MGR_INFO_P(S,I) (SA_ACL_MGR_SET_P(S))->mgr_info[I]
#define SA_ACL_MGR_TYPE(S,I) (SA_ACL_MGR_INFO_P(S,I))->acl_mgr_type
#define SA_ACL_MGR_PERMS_QUERY(S,I) (SA_ACL_MGR_INFO_P(S,I))->query_permset
#define SA_ACL_MGR_PERMS_UPDATE(S,I) (SA_ACL_MGR_INFO_P(S,I))->update_permset
#define SA_ACL_MGR_PERMS_TEST(S,I) (SA_ACL_MGR_INFO_P(S,I))->test_permset
#define SA_ACL_MGR_PERMS_DELETE(S,I) (SA_ACL_MGR_INFO_P(S,I))->delete_permset
#define SA_TRG_BND_INFO_P(S) (S)->trig_binding

#define SA_TRG_BND_AUTH_INFO(S) \

(SA_BND_AUTH_INFO(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_INFO_TYPE(S) \

(SA_BND_AUTH_INFO_TYPE(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_DCE_INFO(S) \

(SA_BND_AUTH_DCE_INFO(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_SVR_PNAME_P(S) \

(SA_BND_AUTH_SVR_PNAME_P(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_PROT_LEVEL(S) \

(SA_BND_AUTH_PROT_LEVEL(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHN_SVC(S) \

(SA_BND_AUTH_AUTHN_SVC(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHZ_SVC(S) \

(SA_BND_AUTH_AUTHZ_SVC(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_NUM(S) \

(SA_BND_NUM(SA_TRG_BND_INFO_P(S)))
#define SA_TRG_BND_ARRAY(S,I) \

(SA_BND_ARRAY((SA_TRG_BND_INFO_P(S)),I))

572 OSF® DCE Application Development Guide —Core Components

#define SA_TRG_BND_TYPE(S,I) \

(SA_BND_TYPE((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_STRING_P(S,I) \

(SA_BND_STRING_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_P(S,I) \

(SA_BND_SVRNAME_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_SYNTAX(S,I) \

(SA_BND_SVRNAME_SYNTAX((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_NAME_P(S,I) \

(SA_BND_SVRNAME_NAME_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWRSET_P(S,I) \

(SA_BND_TWRSET_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWRSET_COUNT(S,I) \

(SA_BND_TWRSET_COUNT((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWR_P(S,I,J) \

(SA_BND_TWR_P((SA_TRG_BND_INFO_P(S)),I,J))

#define SA_TRG_BND_TWR_LEN(S,I,J) \

(SA_BND_TWR_LEN((SA_TRG_BND_INFO_P(S)),I,J))

#define SA_TRG_BND_TWR_OCTETS(S,I,J) \

(SA_BND_TWR_OCTETS((SA_TRG_BND_INFO_P(S)),I,J))

Macros to Access Attribute Instance Fields

In the following macro descriptions, S is a pointer to sec_attr_t , and I and J are
nonnegative integers for array element selection.

#define SA_ATTR_ID(S) (S)->attr_id
#define SA_ATTR_VALUE(S) (S)->attr_value
#define SA_ATTR_ENCODING(S) (SA_ATTR_VALUE(S)).attr_encoding

#define SA_ATTR_INTEGER(S) \

(SA_ATTR_VALUE(S)).tagged_union.signed_int

#define SA_ATTR_PRINTSTRING_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.printstring

#define SA_ATTR_STR_ARRAY_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.string_array

#define SA_ATTR_STR_ARRAY_NUM(S) (SA_ATTR_STR_ARRAY_P(S))->num_strings

Chapter 29. The Extended Attribute API 573

#define SA_ATTR_STR_ARRAY_ELT_P(S,I) (SA_ATTR_STR_ARRAY_P(S))->strings[I]

#define SA_ATTR_BYTES_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.bytes

#define SA_ATTR_BYTES_LEN(S) (SA_ATTR_BYTES_P(S))->length
#define SA_ATTR_BYTES_DATA(S,I) (SA_ATTR_BYTES_P(S))->data[I]

#define SA_ATTR_IDATA_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.idata

#define SA_ATTR_IDATA_CODESET(S) (SA_ATTR_IDATA_P(S))->codeset
#define SA_ATTR_IDATA_LEN(S) (SA_ATTR_IDATA_P(S))->length
#define SA_ATTR_IDATA_DATA(S,I) (SA_ATTR_IDATA_P(S))->data[I]

#define SA_ATTR_UUID(S) \

(SA_ATTR_VALUE(S)).tagged_union.uuid

#define SA_ATTR_SET_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.attr_set
#define SA_ATTR_SET_NUM(S) (SA_ATTR_SET_P(S))->num_members
#define SA_ATTR_SET_MEMBERS(S,I) (SA_ATTR_SET_P(S))->members[I]

#define SA_ATTR_BND_INFO_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.binding

#define SA_ATTR_BND_AUTH_INFO(S) \

(SA_BND_AUTH_INFO(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_INFO_TYPE(S) \

(SA_BND_AUTH_INFO_TYPE(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_DCE_INFO(S) \

(SA_BND_AUTH_DCE_INFO(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_SVR_PNAME_P(S) \

(SA_BND_AUTH_SVR_PNAME_P(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_PROT_LEVEL(S) \

(SA_BND_AUTH_PROT_LEVEL(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHN_SVC(S) \

(SA_BND_AUTH_AUTHN_SVC(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHZ_SVC(S) \

(SA_BND_AUTH_AUTHZ_SVC(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_NUM(S) \

(SA_BND_NUM(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_ARRAY(S,I) \

(SA_BND_ARRAY((SA_ATTR_BND_INFO_P(S)),I))

574 OSF® DCE Application Development Guide —Core Components

#define SA_ATTR_BND_TYPE(S,I) \

(SA_BND_TYPE((SA_ATTR_BND_INFO_P(S)),I))
#define SA_ATTR_BND_STRING_P(S,I) \

(SA_BND_STRING_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_P(S,I) \

(SA_BND_SVRNAME_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_SYNTAX(S,I) \

(SA_BND_SVRNAME_SYNTAX((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_NAME_P(S,I) \

(SA_BND_SVRNAME_NAME_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWRSET_P(S,I) \

(SA_BND_TWRSET_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWRSET_COUNT(S,I) \

(SA_BND_TWRSET_COUNT((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWR_P(S,I,J) \

(SA_BND_TWR_P((SA_ATTR_BND_INFO_P(S)),I,J))

#define SA_ATTR_BND_TWR_LEN(S,I,J) \

(SA_BND_TWR_LEN((SA_ATTR_BND_INFO_P(S)),I,J))

#define SA_ATTR_BND_TWR_OCTETS(S,I,J) \

(SA_BND_TWR_OCTETS((SA_ATTR_BND_INFO_P(S)),I,J))

Binding Data Structure Size Calculation Macros

The following macros are supplied to calculate the size of data types that hold
binding information. The macros work with the ERA API data types and their
equivalent dce_attr_sch data types.

/*
* SA_BND_INFO_SIZE(N) - calculate the size required
* for a sec_attr_bind_info_t with N bindings.
*/

#define SA_BND_INFO_SIZE(N) (sizeof(sec_attr_bind_info_t) + \

(((N) - 1) * sizeof(sec_attr_binding_t)))
/*
* SA_TWR_SET_SIZE(N) - calculate the size required
* for a sec_attr_twr_set_t with N towers.
*/

#define SA_TWR_SET_SIZE(N) (sizeof(sec_attr_twr_set_t) + \

(((N) - 1) * sizeof(sec_attr_twr_ref_t)))

/*
* SA_TWR_SIZE(N) - calculate the size required

Chapter 29. The Extended Attribute API 575

* for a twr_t with a tower_octet_string of length N.
*/

#define SA_TWR_SIZE(N) (sizeof(twr_t) + (N) - 1)

Schema Entry Data Structure Size Calculation Macros

The following macro is supplied to calculate the size of a
sec_attr_alc_mgr_info_set_t data type.

/*
* SA_ACL_MGR_SET_SIZE(N) - calculate the size required
* for a sec_attr_acl_mgr_info_set_t with N acl_mgrs.
*/

#define SA_ACL_MGR_SET_SIZE(N) (sizeof(sec_attr_acl_mgr_info_set_t) + \

(((N) - 1) * sizeof(sec_attr_acl_mgr_info_p_t))
)

Attribute Instance Data Structure Size Calculation Macros

The following macros are supplied to calculate the size of data types that hold
attribute information.

/*
* SA_ATTR_STR_ARRAY_SIZE(N) - calculate the size required
* for a sec_attr_enc_str_array_t with N sec_attr_enc_printstring_p_t-s.
*/

#define SA_ATTR_STR_ARRAY_SIZE(N) (sizeof(sec_attr_enc_str_array_t) + \

(((N) - 1) * sizeof(sec_attr_enc_printstring_p_t)))
/*
* SA_ATTR_BYTES_SIZE(N) - calculate the size required
* for a sec_attr_enc_bytes_t with byte string length of N.
*/

#define SA_ATTR_BYTES_SIZE(N) (sizeof(sec_attr_enc_bytes_t) + (N) - 1)

/*
* SA_ATTR_IDATA_SIZE(N) - calculate the size required
* for a sec_attr_i18n_data_t with byte string length of N.
*/

#define SA_ATTR_IDATA_SIZE(N) (sizeof(sec_attr_i18n_data_t) + (N) - 1)

/*
* SA_ATTR_SET_SIZE(N) - calculate the size required
* for a sec_attr_enc_attr_set_t with N members (uuids).
*/

#define SA_ATTR_SET_SIZE(N) (sizeof(sec_attr_enc_attr_set_t) + \

(((N) - 1) * sizeof(uuid_t))
)

Binding Semantic Check Macros

The following macros are supplied to check the semantics of entries in the binding
fields. The macros work with the ERA API data types and their equivalent
dce_attr_sch data types.

/*
* SA_BND_AUTH_INFO_TYPE_VALID(B) - evaluates to TRUE (1)
* if the binding auth_info type is valid; FALSE (0) otherwise.
* B is a pointer to a sec_attr_bind_info_t.
*/

576 OSF® DCE Application Development Guide —Core Components

#define SA_BND_AUTH_INFO_TYPE_VALID(B) (\

(SA_BND_AUTH_INFO_TYPE(B)) == sec_attr_bind_auth_none || \

(SA_BND_AUTH_INFO_TYPE(B)) == sec_attr_bind_auth_dce ? true : false
)

/*
* SA_BND_AUTH_PROT_LEV_VALID(B) - evaluates to TRUE (1)
* if the binding auth_info protect_level is valid; FALSE (0) otherwise.
* B is a pointer to a sec_attr_bind_info_t.
*/

#define SA_BND_AUTH_PROT_LEV_VALID(B) (\

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_default || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_none || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_connect || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_call || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt_integ || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt_privacy ? \

true : false)

/*
* SA_BND_AUTH_AUTHN_SVC_VALID(B) - evaluates to TRUE (1)
* if the binding auth_info authentication service is valid;
* FALSE (0) otherwise.
* B is a pointer to a sec_attr_bind_info_t.
*/

#define SA_BND_AUTH_AUTHN_SVC_VALID(B) (\

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_none || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_secret || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_public || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_dummy || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dssa_public || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_default ? \
true : false)

/*
* SA_BND_AUTH_AUTHZ_SVC_VALID(B) - evaluates to TRUE (1)
* if the binding auth_info authorization service is valid;
* FALSE (0) otherwise.
* B is a pointer to a sec_attr_bind_info_t.
*/

#define SA_BND_AUTH_AUTHZ_SVC_VALID(B) (\

(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_none || \

(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_name || \

(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_dce ? \

true : false)

Chapter 29. The Extended Attribute API 577

Schema Entry Semantic Check Macros

The following macros are supplied to check the semantics of schema entry fields. In
the macros, S is a pointer to sec_attr_schema_entry_t and its equivalent
dce_attr_sch data type.

#define SA_TRG_BND_AUTH_INFO_TYPE_VALID(S) \

(SA_BND_AUTH_INFO_TYPE_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_PROT_LEV_VALID(S) \

(SA_BND_AUTH_PROT_LEV_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHN_SVC_VALID(S) \

(SA_BND_AUTH_AUTHN_SVC_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHZ_SVC_VALID(S) \

(SA_BND_AUTH_AUTHZ_SVC_VALID(SA_TRG_BND_INFO_P(S))

Attribute Instance Semantic Check Macros

The following macros are supplied to check the semantics of entries in the attribute
instance fields. In the following macros, S is a pointer to sec_attr_t . F is a
sec_attr_trigs_types_flags_t .
#define SA_ATTR_BND_AUTH_INFO_TYPE_VALID(S) \

(SA_BND_AUTH_INFO_TYPE_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_PROT_LEV_VALID(S) \

(SA_BND_AUTH_PROT_LEV_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHN_SVC_VALID(S) \

(SA_BND_AUTH_AUTHN_SVC_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHZ_SVC_VALID(S) \

(SA_BND_AUTH_AUTHZ_SVC_VALID(SA_ATTR_BND_INFO_P(S))

#define SA_SCH_FLAG_IS_SET(S,F) \

(((S)->schema_entry_flags & (F)) == (F))

#define SA_SCH_FLAG_IS_SET_UNIQUE(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_IS_SET_MULTI_INST(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_IS_SET_RESERVED(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_IS_SET_USE_DEFAULTS(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_use_defaults))

578 OSF® DCE Application Development Guide —Core Components

Schema Entry Flag Set and Unset Macros

The following macros set and unset flag(s) in the schema entry
schema_entry_flags field. In the following macros, S is a pointer to
sec_attr_schema_entry_t .
/*
* Macros to set the flags.
*/

#define SA_SCH_FLAG_SET(S, FLAG) ((S)->schema_entry_flags |= (FLAG))

#define SA_SCH_FLAG_SET_UNIQUE(S) \

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_SET_MULTI_INST(S) \

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_SET_RESERVED(S) \

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_SET_USE_DEFAULTS(S) \

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_use_defaults))

/*
* Macros to unset the flags.
*/

#define SA_SCH_FLAG_UNSET(S, FLAG) ((S)->schema_entry_flags \
&= x(FLAG))

#define SA_SCH_FLAG_UNSET_UNIQUE(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_UNSET_MULTI_INST(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_UNSET_RESERVED(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_UNSET_USE_DEFAULTS(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_use_defaults))

Schema Trigger Entry Flag Check Macros

The following macros evaluate to TRUE if the requested flag(s) is set in the schema
entry trig_types field. In the following macros, S is a pointer to
sec_attr_schema_entry_t and F is a sec_attr_trigs_types_flags_t type.
#define SA_SCH_TRIG_FLAG_IS_SET(S,F) \

(((S)->trig_types & (F)) == (F))

#define SA_SCH_TRIG_FLAG_IS_NONE(S) \

(SA_SCH_TRIG_FLAG_IS_SET((S),sec_attr_trig_type_none))

#define SA_SCH_TRIG_FLAG_IS_QUERY(S) \

Chapter 29. The Extended Attribute API 579

(SA_SCH_TRIG_FLAG_IS_SET((S),sec_attr_trig_type_query))

#define SA_SCH_TRIG_FLAG_IS_UPDATE(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_trig_type_update))

Utilities to Use with Extended Attribute Calls

The extended attribute APIs includes utilities to help programmers using the
extended attribute interfaces. These utilities are

v sec_attr_util_alloc_copy —Copies data from one sec_attr_t data type to
another.

v sec_attr_util_free —Frees memory allocated to sec_attr_t by the
sec_attr_util_alloc_copy() function.

v sec_attr_util_inst_free_ptrs —Frees nonnull pointers in a sec_attr_t type.

v sec_attr_util_inst_free —Frees nonnull pointers in a sec_attr_t type and the
pointer to the sec_attr_t itself.

v sec_attr_util_sch_ent_free_ptrs —Frees nonnull pointers in a
sec_attr_schema_entry_t type.

v sec_attr_util_sch_ent_free —Frees nonnull pointers in a
sec_attr_schema_entry_t type and the pointer to the sec_attr_schema_entry_t
itself. The utility also works with the equivalent dce_attr_sch data type.

580 OSF® DCE Application Development Guide —Core Components

Chapter 30. The Login API

The login API communicates with the security server to establish, and possibly
change, a principal’s login context. A login context contains the information
necessary for a principal to qualify for (although not necessarily be granted) access
to network services and possibly local resources as well. Login context information
normally includes the following:

v Identity information concerning the principal, including its certificate of identity (in
shared-secret authentication, this is the TGT), its PAC, and registry policy
information such as the maximum lifetime of certificates of identity.

v The context state; that is, whether the authentication service has validated the
context or not.

v The source of authentication information. (It may originate from the network
authentication service, or locally, if that network service is unavailable.)

Establishing Login Contexts

This section outlines the basic procedure by which a network login context is
established. See “Chapter 24. Authentication” on page 493 for a detailed description
of this process.

The procedure is as follows:

1. The client calls sec_login_setup_identity() specifying the name of the principal
whose network identity is to be established. Memory is allocated to receive the
principal’s login context.

2.

The client calls sec_login_valid_and_cert_ident() , which does the following:

a. Forwards a TGT request encrypted with the user’s secret key and with a
random key, to the authentication service, which decrypts the request,
authenticates the principal, and returns a TGT for the principal.

b. The client’s security runtime then decrypts the TGT and forwards it to the
privilege service, which creates a PAC for the principal and encloses it in a
PTGT, which is returned to the client’s security runtime.

c. The runtime decrypts the message containing the PTGT and returns
information about the source of the authentication information to the API. (If
the authentication information comes from the network security server, then
the login context is validated.)

3. Finally, the client invokes sec_login_set_context() , which enables child
processes spawned from the calling process to inherit the validated context.

In the walkthrough of user authentication in “Chapter 24. Authentication” on
page 493, we mentioned that one of the functions of
sec_login_valid_and_cert_ident() is to demonstrate that a valid trust path exists
between the authentication service and the host computer on which the principal is
logging in. After setting up and validating a login context, any application that sets
identity information for local processes should check to be sure that the server that
provided the certificate of identity is legitimate in order to demonstrate that the trust
path between the client and the authentication service is valid.

581

Validating the Login Context and Certifying the Security Server

Whereas a validated login context is one that is regarded as legitimate by the local
security runtime, a validated and certified login context is one that is not only
regarded as legitimate but also can be demonstrated to have been (in all likelihood,
that is) issued by a legitimate security server. Certifying that the security server is
legitimate prevents faked identity information from being propagated to local
processes. For example, a spurious server could collaborate with a dishonest user
in order to obtain an identity that conferred comprehensive permissions (for
example, the root identity). With such an identity, the dishonest user could gain
access to sensitive local objects, such as key-storage files for server principals that
run on the host. (Servers running on other hosts would not trust this principal,
however, because it does not know their keys.) Of course, if a spurious server can
return to the application a ticket encrypted with the host’s secret key, it means the
server has access to the host’s key; but, if this is the case, network security has
already been seriously undermined.

When an application needs to certify the originator of a certificate of identity, it may
call sec_login_certify_identity() . This routine makes an authenticated remote
procedure call to the local security validation service of the dced daemon in order
to acquire a ticket to the host principal. If dced succeeds in decrypting the message
containing the ticket, then the server that granted the certificate of identity must
know the host principal’s secret key; this evidence indicates that it is a legitimate
security server. Since dced runs with the identity root (in order to access the host’s
key), the process calling sec_login_certify_identity() need not.

The sec_login_valid_and_cert_ident() is similar to sec_login_certify_identity() ,
except that it combines the validation and certification procedures (and therefore,
the password of the principal that is logging in must be known to the process
making this call). The sec_login_valid_and_cert_ident() routine calls the security
server for a ticket to the host and attempts decryption. The process calling
sec_login_valid_and_cert_ident() must have access to the host’s secret key, and
so must run as root .

Note: Because system login programs should not set local identities derived from
an uncertified context, all login API routines that return data from an
uncertified context issue a warning.

Validating the Login Context Without Certifying the Security Server

An application that does not use login contexts to set local identity information does
not need to certify its login contexts. Since an illegitimate security server is unlikely
to know the key of a remote server principal with which the application may
communicate, the application will simply be refused the service requested from the
remote server principal. If local operating system identity information is assumed to
be neither of interest nor of concern to an application, it may call
sec_login_validate_identity() , which does not attempt to verify the security
server’s knowledge of the host principal’s key.

The sec_login_validate_identity() routine does not acquire a PTGT, unlike the
sec_login_certify_identity() and sec_login_valid_and_cert_ident() routines.
Instead, the PTGT is acquired when the application first makes an authenticated
remote procedure call.

582 OSF® DCE Application Development Guide —Core Components

Example of a System Login Program

Following is an example of a system login program that obtains a login context that
can be trusted for both network and local operations.

Note: One of the function calls that appears in the following example,
sec_login_purge_context() , is described in “Releasing and Purging a
Context” on page 586.

if (sec_login_setup_identity(principal,sec_login_no_flags,
&login_context,&st))

{
...get password...
if (sec_login_valid_and_cert_ident(login_context, password,
&reset_passwd, &auth_src,&st))

{
if(auth_src==sec_login_auth_src_network)
{
if (GOOD_STATUS(&st)
sec_login_set_context(login_context);

}
}
if (reset_passwd)
{
...reset the user's password...

if (passwd_reset_fails)
{
sec_login_purge_context(login_context)

...application login-failure actions...
}

...application-specific login-valid actions...
}

}

Context Inheritance

A process inherits the login context of its parent process unless the child process is
associated with a principal that has logged in and so established a separate login
context. The following subsections describe two additional aspects of context
inheritance:

v How the initial context is established.

v How a process may inhibit context inheritance.

The Initial Context

An application invokes sec_login_setup_identity() so that it can then make other
authenticated RPC calls. However, sec_login_setup_identity() is itself a local
interface to an authenticated remote procedure call, and authenticated RPC needs
a validated login context in order to execute. For applications like system login, the
daemon dced supplies the validated context. However, a daemon that is started
before dced is running on the host needs to be able to assume its host’s identity.
The initial context is established at boot time with sec_login_init_first() , which
establishes the default context inheritance for processes running on the host. The

Chapter 30. The Login API 583

routines sec_login_setup_first() and sec_login_validate_first() then set up and
validate the context in a procedure like that used for user context validation.

Private Contexts

A process may inhibit context inheritance by setting a flag in
sec_login_setup_identity() . If the flag indicates that the login context is private,
then children of the calling process cannot inherit it. A child process can neither set
a private context (since it is the function of sec_login_set_context() to make the
context inheritable) nor export it to any other process.

Handling Expired Certificates of Identity

For a dishonest principal to make use of an intercepted certificate of identity, it must
succeed in decrypting it. In order to make the task of decryption more difficult, a
certificate of identity has a limited lifespan; and, once it expires, the associated login
context is no longer valid.

Because this security feature may inconvenience users, an application may wish to
warn a user when the certificate of identity is about to expire. The
sec_login_get_expiration() routine returns the expiration date of a certificate of
identity. When a certificate of identity is about to expire, the application may call
sec_login_refresh_identity() , which may be used to refresh any login context.

Similarly, a server principal may need to determine whether a certificate of identity
may expire during some long network operation and, if the certificate of identity is
likely to expire, refresh it to ensure that the operation is not prevented from
completion. Following is an example:

sec_login_get_expiration (login_context,&expire_time,&st);

if (expire_time < (current_time + operation_duration))
{
if (sec_login_refresh_identity(login_context,&st))
{
...identity has changed and must be validated again...

}
else
{
...login context cannot be renewed...

exit(0);
}

}

operation();

Because sec_login_refresh_identity() acquires a certificate of identity, refreshed
contexts must be revalidated with sec_login_validate_identity() or
sec_login_valid_and_cert_ident() before they can be used.

The expiration date of a login context has no meaning with respect to local identity
information; for the same reason, sec_login_refresh_identity() cannot refresh a
login context that has been authenticated locally.

584 OSF® DCE Application Development Guide —Core Components

Importing and Exporting Contexts

Under some circumstances, an application may need two processes to run using
the same login context. A process may acquire its login context in a form suitable
for imparting to another process by calling sec_login_export_context() . This call
collects the login context from the local context cache and loads it into a buffer.
Another process may then call sec_login_import_context() to unpack the buffer
and create its own login context cache to store the imported context. Since the
context has already been validated, the process that imports it may use it
immediately. (The CDS clerk is an example of a context importer.)

These operations are strictly local; that is, the exporting and importing processes
must be running on the same host. In addition, a process cannot export a private
context.

Changing a Groupset

The sec_login_newgroups() routine enables a principal to assume the minimum
groupset that is required to accomplish a given task. For example, a user may have
privilege attributes that include membership in an administrative group associated
with a comprehensive permission set, and membership in a user group associated
with a more restricted permission set. Such a user may not want the permissions
associated with the administrative group, except when those permissions are
essential to an administrative task (so as to avoid inadvertent damage to objects
that are accessible to members of the administrative group, but not to members of
the user group).

To offer users the capability of removing groups from their groupsets, an application
may use the login API as shown in the following example.

Note: Two of the function calls that appear in the following example,
sec_login_get_current_context() and sec_login_inquire_net_info() , are
described in the following section.

sec_login_get_current_context(&login_context,&st);

sec_login_inquire_net_info(login_context,&net_info,&st);

for (i=0; i < num_groups; i++)
{
... query whether user wants to discard any current group
memberships. Copy new group set to new_groups array ...

}

if (!sec_login_newgroups(login_context,sec_login_no_flags,
num_new_groups, new_groups, &restricted_context,&st))

{
if (st == sec_login_s_groupset_invalid)

printf("Newgroupsetinvalid\n");

...application-specific error handling...
}

Note that the sec_login_newgroups() call can only return a restricted groupset: it
cannot return a groupset larger than the one associated with the login context that
is passed to it. This routine also enables the calling process to flag the new login
context as private to the calling process.

Chapter 30. The Login API 585

Miscellaneous Login API Functions

The following subsections describe a few miscellaneous login API routines, some of
which have appeared previously in examples in this chapter.

Getting the Current Context

The sec_login_get_current_context() routine returns a handle to the login context
for the currently established principal. This routine is useful for several login API
functions that take a login context handle as input.

Getting Information from a Login Context

The sec_login_inquire_net_info() routine returns a data structure comprising the
principal’s PAC, account expiration date, password expiration date, and identity
expiration date. The sec_login_free_net_info() frees the memory allocated to this
data structure.

Getting Password and Group Information for Local Process Identities

Two calls, sec_login_get_pwent() and sec_login_get_groups() , are useful for
setting the local identity of a process. These routines return password or group
information from the network registry, if that service is available, or from the local
files of password and group information, if the network service is unavailable.

Releasing and Purging a Context

When a process is finished using a login context, it may call
sec_login_release_context() to free storage occupied by the context handle.
When a process releases a login context, the context is still available to other
processes that use it. If an application needs to destroy a login context, it may call
sec_login_purge_context() , which also frees storage occupied by the handle.
Since a destroyed context is unavailable to all processes that use it, application
developers should be careful when using sec_login_purge_context() .

586 OSF® DCE Application Development Guide —Core Components

Chapter 31. The Key Management API

Every principal has an entry in the registry database that specifies a secret key. In
the case of an interactive principal (that is, a user), the secret key is derived from
the principal’s password. Just as users need to keep their passwords secure by
memorizing them (rather than writing them down, for example), a noninteractive
principal also needs to be able to store and retrieve its secret key in a secure
manner. The key management API provides simple key management functions for
noninteractive principals.

While the key management routines themselves are relatively secure, it is up to the
application to ensure the security of the file or other device used to store the key.
By default, server principals that run on the same computer share a local key file;
however, the key management API also allows principals to specify an alternative
local file.

When users change their passwords, they are free to forget their old passwords.
When a noninteractive principal changes its secret key, however, there may be
clients with valid tickets to that principal that are encoded with the old key. To save
clients the trouble of having to request new tickets to a noninteractive principal
when the principal’s key has changed, every key is flagged with a version number,
and old key versions are retained until all tickets that could have been encoded with
that key have expired.

Finally, if a noninteractive principal’s key has been compromised, it may be
invalidated (along with all the corresponding tickets held by any clients) by simply
deleting it from the local key storage.

Note: The key management API is for use only by applications using the DCE
shared-secret authentication protocol and the key-type DES.

Retrieving a Key

The key management API provides two functions for retrieving a key from the local
key storage. The sec_key_mgmt_get_key() function returns a specified key
version for a specified principal. The meaning of specifying version 0 (zero) in this
routine may vary depending on the authentication protocol in effect. (If the protocol
is DCE shared-secret, the value 0 for the version identifier means the version that
was most recently added to the local storage.) In any case, a principal’s login is
almost always successful if the principal uses the version 0 key.

When there are valid tickets that are encoded with different key versions, an
application may need to retrieve more than one key version. In that case, the
application may call sec_key_mgmt_initialize_cursor() to set a cursor in the local
storage to the first suitable entry corresponding to the named principal and key
type, and then call sec_key_mgmt_get_next_key() to get all versions of that key in
storage. The application may then call sec_key_mgmt_release_cursor() , which
disposes of information associated with the cursor. Neither of the key-retrieval
routines can return keys that have been explicitly deleted, or that have been
garbage collected after expiring.

587

The two key-retrieval functions dynamically allocate the memory for the returned
key(s). To enable the efficient allocation of memory, an application may call
sec_key_mgmt_free_key() , which frees the memory occupied by the key and
returns it to the allocation pool.

Changing a Key

The sec_key_mgmt_change_key() function communicates with the registry to
change the principal’s key to a specified string, and also places the new string in
the local key storage. The keydata input argument for this call may be a new key
that the application specifies or a random key returned by the
sec_key_mgmt_gen_rand_key() routine. An application may call
sec_key_mgmt_get_next_kvno() to determine the next key version number that
should be assigned to the new key so that it may reference this key version when
retrieving a key.

In some circumstances, a principal may need to change its key in the local key
storage but not immediately update the registry database. For example, a database
application may maintain replicas of a master database that are managed by
servers running on different computers. If these servers all provide exactly the same
service, it makes sense for them to share the same key (meaning that they share
the same principal identity). This way, a user with a ticket to the principal can be
directed to whichever server is least busy.

When the registry database obtains a new key for a principal, the authentication
service can immediately begin issuing tickets to the principal that are encoded
under the new key. However, suppose the master for a single-principal replicated
service were to call sec_key_mgmt_change_key() , and a client presented a ticket
encoded with the latest key to a replica that had not yet learned that key. In this
case, the replica would refuse service, even though the ticket was valid. Therefore,
if an application employs replicated servers that are also instances of a single
principal identity, the application should do the following:

1. Generate a new key by calling sec_key_mgmt_gen_rand_key() . This routine
simply returns a key to the calling process, without updating the registry or local
storage.

2. Disseminate the new key to all replicas.

3. Cause the replicas to call sec_key_mgmt_set_key() . This call updates the local
storage to the new key but does not update the registry database entry for the
principal. (The key version specified in this routine must not be 0 [zero].) The
replicas should notify the master when they have completed setting their local
stores to the new key.

4. Cause the master to call sec_key_mgmt_change_key() (here again, the key
version must not be 0) after all replicas have set the new key locally, thereby
updating both the master’s local storage and the registry database entry.

Of course, if the master and each replica has its own principal identity, each server
may call sec_key_mgmt_change_key() without coordinating this activity with any
others.

588 OSF® DCE Application Development Guide —Core Components

Automatic Key Management

It is sometimes convenient for a principal to be able to change its key on a
schedule determined by the password expiration policy for that principal, rather than
to rely on a network administrator to decide when this should be done. In this case,
the application may call sec_key_mgmt_manage_key() . This function invokes
sec_key_mgmt_gen_rand_key() shortly before the current key is due to expire,
updates both the local key storage and the registry database entry with the new
key, and then calls sec_key_mgmt_garbage_collect() to discard any obsolete
keys. This function runs indefinitely; it will never return during normal operation and
so should be invoked from a thread dedicated to key management. It is not
intended for use by server principals that share the same key.

Deleting Expired Keys

In order to prevent service interruptions, the key management API does not
immediately discard keys that have been replaced; instead, it maintains the keys,
with a version number and key-type identifier, in the local key storage. However,
after a key has been out of use for longer than the maximum life of a ticket to the
principal, it is no longer possible that any client of that principal has a valid ticket
encoded with that key. At this time, the key storage may have its garbage collected.

The sec_key_mgmt_garbage_collect() routine collects garbage in the local key
storage by deleting all keys older than the maximum ticket lifetime for the cell. The
garbage_collect_time argument, which is returned by
sec_key_mgmt_change_key() , specifies when key-storage garbage is to be
collected.

Deleting a Compromised Key

When a principal’s key has been compromised, it should be deleted as soon as the
damage has been discovered in order to prevent another party from masquerading
as that principal. Two routines delete a principal’s key:

v The sec_key_mgmt_delete_key() routine removes all key types having the
specified key version identifier from the local key storage, thus invalidating all
extant tickets encoded with that key.

v The sec_key_mgmt_delete_key_type() routine removes only a specified version
of a specified key type.

If the compromised key is the current one, the application should first change the
key with sec_key_mgmt_change_key() . It is not an error for a process to delete
the current key as long as it is done after the login context has been established,
but it may inconvenience legitimate clients of a service. The inconvenience may be
justified, however, if the application data is sensitive.

Since an application may have no means to discover that its key has been
compromised, the rgy_edit tool provides interfaces that call
sec_key_mgmt_delete_key() , sec_key_mgmt_change_key() , and
sec_key_mgmt_gen_rand_key() so that a network administrator, who is more
likely to detect that a key has been compromised, may handle a security breach of
this kind. As an alternative, the application may provide user interfaces to these
routines.

Chapter 31. The Key Management API 589

590 OSF® DCE Application Development Guide —Core Components

Chapter 32. The Access Control List APIs

As a rule, DCE Security Service interfaces are local client-side APIs only. The
access control list (ACL) facility includes this kind of interface, and some others as
well, as follows:

v The DCE client ACL interface, sec_acl_ *(), is a local interface that calls a
client-side implementation of the ACL network interface. It enables clients to
browse or edit DCE ACLs.

v The DCE server ACL manager library, dce_acl_ *(), enables servers to perform
DCE-conformant authorization checks at runtime. This ACL library provides an
implementation of the ACL manager interface and the ACL network interface. It
supports the development of ACL managers for DCE servers.

v The DCE ACL network interface, rdacl_ *(), enables servers that manage access
control to communicate with sec_acl -based clients.

Figure 80 provides a schematic view of the relationships and usage of these
interfaces, as well as some relevant RPC interfaces. This chapter first discusses the
client API, and then the two server program interfaces.

Client Server

ACL
Library

Backing
Store

Librarysec_acl_xxx()

IDL
generated

code

IDL
generated

code

Resolver CodeApplication Code

DCE Library

Application Code

DCE Library

Cell
Directory
Service

ACL
Store

Figure 80. ACL Program Interfaces

591

The Client-Side API

The client-side API is a local interface consisting of a set of routines that are
prefixed sec_acl . This is the interface on which the default DCE ACL editor (the
DCE control program, or dcecp) is built. An application that needs to replace dcecp
with a DCE ACL editor or browser of its own calls this interface. The following
subsections provide specific information on the functionality that this API supports.

Binding to an ACL

Any operation performed on an ACL uses an ACL handle of type handle_t to
identify the target of the operation. The handle is bound to the server that manages
the object protected by the ACL, not to the ACL itself. Since an object may be
protected by more than one ACL manager type (see “Chapter 25. Authorization” on
page 523), the ACL itself can only be uniquely identified by the ACL handle in
combination with the manager type that manages it. ACL editing calls must also
specify the ACL type to be read or otherwise manipulated (the object, default
container, or default Object ACL types).

An application calls sec_acl_bind() to get an ACL handle. The handle itself is
opaque to the calling program, which needs none of the information encoded in it to
use the ACL interface. A program can obtain the list of ACL manager types
protecting an object and pass this data, along with the ACL type identifier, to
another client-side routine. The following two calls perform this function:

v sec_acl_get_manager_types() returns a list of UUIDs of the manager types.

v sec_acl_get_manager_types_semantics() returns UUIDs of the manager types,
and also the POSIX semantics supported by each manager type. The output of
this call is used by the sec_acl_calc_mask() routine when it calculates a new
mask_obj mask.

In the absence of CDS, an application may call sec_acl_bind_to_addr() ; this call
binds to a network address rather than a cell namespace entry.

Once an application is finished using an ACL handle, it should call
sec_acl_release_handle() to dispose of it.

ACL Editors and Browsers

After obtaining a handle to the object in question (and using
sec_acl_get_manager_types() or sec_acl_get_manager_types_semantics() to
determine the ACL manager types protecting the object), editors and browsers use
the sec_acl_lookup() function to return a copy of an object’s ACL.

Once an object’s ACL is retrieved, the editor can call sec_acl_get_printstring() to
receive instructions about how to display the permissions of the ACL in a
human-readable form. This call returns a symbol or word for each permission (a
character string), and also a bitmask, with a bit (or bits) set to encode the
permission. In addition, the print string structure includes a short explanation of
each permission.

An ACL cannot be modified in part. To change an ACL, an editor must read the
entire ACL (the sec_acl_t structure), modify it, and replace it entirely by calling
sec_acl_replace() . If the ACL manager supports the mask_obj mask type, you can
use sec_acl_calc_mask() to calculate a new sec_acl_e_type_mask_obj entry

592 OSF® DCE Application Development Guide —Core Components

type. This function is supported for POSIX compatibility only, for those applications
that use mask_obj with its POSIX semantics. Accordingly, sec_acl_calc_mask()
returns the union of the permissions of all ACL entries other than user_obj ,
other_obj , unauthenticated (and the pre-existing mask_obj). These correspond
approximately to what POSIX calls the “File Group Class” of ACL entries, although
that designation is not appropriate in the DCE context. In particular,
sec_acl_calc_mask() works independently of DCE DFS.

Use the sec_acl_get_manager_types_semantics() routine to obtain the required
POSIX semantics and determine if the manager to which the ACL list will be
submitted supports the sec_acl_e_type_mask_obj entry type.

An ACL can occupy a substantial amount of memory. The memory management
routine, sec_acl_release() , frees the memory occupied by an ACL, and returns it to
the pool. This is implemented strictly as a local operation.

Errors

Although the ACL API saves errors received from the DCE RPC runtime (or other
APIs) in ACL handle data, it returns an error describing the ACL operation that
failed as a result of the RPC error. However, if an error occurs and the client needs
to know the cause of the ACL operation failure, it may call
sec_acl_get_error_info() . This routine returns the error code last stored in the
handle.

Guidelines for Constructing ACL Managers

ACL manager names for all of DCE should follow the convention for naming dcecp
attributes. There is no architectural restriction involved in the guidelines shown here,
merely an attempt at consistency. The DCE control program will accept names
outside of this convention, but adherence to it will make usage of ACL managers
easier.

The guidelines are as follows:

v Alphabetic characters in names must be lowercase only.

v Names should not contain underscores.

v Names should not contain spaces.

v Names should be no longer than 16 bytes, the defined value of
sec_acl_printstring_len .

v Names should be similar to object command names supported in dcecp
whenever possible. For example, the ACL manager name principal refers to the
object, /.:/sec/principal , that contains registry information about principals. Note
that dcecp allows abbreviations. For example, a user can specify org for the
ACL manager name organization .

v Names must be unique within a component’s ACL manager but not necessarily
within DCE. For example, the name xattrschema can be used for a DCE
extended attribute configuration schema ACL object and for a security ERA
schema ACL object.

v The help string for an ACL manager must specify the component that owns or
manages the objects in question because this information cannot always be
derived from the ACL manager name.

Chapter 32. The Access Control List APIs 593

Extended Naming of Protected Objects

The DCE ACL model supports extended naming so that ACL managers can
separately protect objects that are not registered in the cell namespace. This
provides an alternative to registering all the server’s objects with CDS. The server
alone is registered, and it contains code to identify its own objects by name. To
achieve ACL protection for these objects, the ACL manager must be able to identify
the ACLs in the same way the server identifies the objects. A resolution routine
provides this ability.

Figure 81 shows the example of a printer server that is registered with CDS, with
printers that are not. The ACL manager for the printer server uses the
dce_acl_resolve_by_name() resolution routine to obtain the UUIDs of the several
printers that are supported. The administrator in charge of the printers can change
the printers, their names, and their ACLs without concern for registering them with
CDS.

When the dce_acl_register_object_type() routine registers an object type, it
associates a resolution routine with the object type. The ACL library provides two
resolution routines: dce_acl_resolve_by_name() and dce_acl_resolve_by_uuid() .
Other resolution routines can be easily written, as required.

To take advantage of extended naming, an ACL manager must register the server
name, object UUID, and rdaclif.idl interface with the CDS. (Refer to the OSF DCE
Application Development Guide—Directory Services for more information). In
addition, the ACL manager must register the object UUID and rdaclif.idl interface
with the RPC endpoint mapper (refer to the chapters concerning RPC in “Part 3.
DCE Remote Procedure Call” on page 147 of this guide).

The ACL Network Interface

The ACL network interface, rdacl_ *(), provides a DCE-common interface to ACL
managers. It is the interface exported by the default DCE ACL managers to the
default DCE ACL client (that is, the dcecp tool), and any other client based on the
client API.

The client API, sec_acl_ *(), is a local interface that calls a client-side
implementation of the ACL network interface. The server side implementation of this

/.:/servers/printer/4th-floor/janis
/3rd-floor/milhaus
/3rd-floor/myopia
/letterhead
/pen-plotter

Names in Printer Server
CDS Registration

Figure 81. Protection with Extended Naming

594 OSF® DCE Application Development Guide —Core Components

interface must conform to the rdacl_ *(3sec) reference pages. The DCE ACL library
provides such an implementation. Following is a summary of the rdacl_ *() routines:

v rdacl_lookup()

Retrieves a copy of the object’s ACL.

v rdacl_replace()

Replaces the specified ACL.

v rdacl_get_access()

Returns a principal’s permissions to an object (useful for implementing operations
like the conventional UNIX system access function).

v rdacl_test_access()

Determines whether the calling principal has the requested permission(s).

v rdacl_test_access_on_behalf()

Determines whether the principal represented by the calling principal has the
requested permission(s). This function returns TRUE if both the principal and the
calling principal acting as its agent have the requested permission(s).

Note: The rdacl_test_access_on_behalf() routine is deprecated and should not
be used in new code. Delegation has removed the need for this routine.

v rdacl_get_manager_types()

Returns a list of manager types protecting the object.

v rdacl_get_printstring()

Obtains human-readable representations of permissions.

v rdacl_get_referral()

Returns a referral to an ACL update site. This function enables a client that
attempts to modify an ACL at a read-only site to recover from the error and
rebind to an update site.

The ACL Library

The ACL library provides an implementation of the ACL manager interface and the
ACL network interface for the convenience of programmers who are writing ACL
managers for DCE servers.

The ACL library meets the following needs:

v It provides stable storage for ACLs.

v It implements the rdacl_ *() interface, including support for multiple object types,
initial default Object ACLs, and initial default Container ACLs.

v It implements the full access algorithm, including masks and delegation.

v It provides DCE developers with a set of convenience functions so that servers
can easily perform common styles of access control with minimal effort.

ACL Library Capabilities

The ACL library provides simple and practical access to the DCE security model.

The library provides a routine that indicates in a single call whether or not a client
has the appropriate permissions to perform a particular operation. A server can also
easily retrieve the full set of permissions granted to a client by an object’s ACL.

Chapter 32. The Access Control List APIs 595

The library provides the complete rdacl_ *() remote interface. Standard routines are
provided to map either a UUID attached to a handle or a residual name specified as
one of the parameters.

The combination of these capabilities means that most servers will not have any
need to use DCE ACL data types directly.

The ACL API

The ACL library API, dce_acl_ *(), is a local interface that provides the server-side
implementation of the ACL network interface. The reference pages in OSF DCE
Application Development Reference describe the library routines.

The ACL library consists of the following parts:

v Initialization routines, where the server registers each ACL manager type.

v Server queries, where a server can perform various types of access checks.

v ACL object creation, where servers can create ACLs without concern for most
low-level data type details.

v The rdacl_ *() implementation and server callback, where the server maps
rdacl_ *() parameters into a specific ACL object. Two sample resolver routines
are associated with this part:

– dce_acl_resolve_by_name()

Finds an ACL’s UUID, given an object’s name.

– dce_acl_resolve_by_uuid()

Finds an ACL’s UUID, given an object’s UUID.

Initialization Routines: An ACL manager must first define the types of the objects
it manages. For example, a simple directory service would have directories and
entries, and each type of object would have a different ACL manager. On a practical
level, if a server has different types of objects, then the most common difference
between the ACL managers is the printed representation of its permission bits. In
other words, although the sec_acl_printstring_t values differ, the algorithm for
evaluating permissions remains the same.

The ACL library provides a global print string that specifies the read , write , and
control bits. Application developers are encouraged to use this print string
whenever appropriate.

An ACL manager calls the dce_acl_register_object_type() routine to register an
object type, once for each type of object that the server manages. The manager
print string does not define any permission bits; they are set by the library to be the
union of all permissions in the ACL print string.

The server must register the rdacl_ *() interface with the RPC runtime and with the
endpoint mapper. See the dce_server_register(3dce) reference page.

Server Queries: The ACL library provides several routines to automate the most
common use of DCE ACLs:

v dce_acl_is_client_authorized()

Checks whether a client’s credentials are authenticated and, if so, that they grant
the desired access.

v dce_acl_inq_client_permset()

Returns the client’s permissions, corresponding to an ACL.

596 OSF® DCE Application Development Guide —Core Components

v dce_acl_inq_client_creds()

Returns the client’s credentials.

v dce_acl_inq_permset_for_creds()

Determines a client’s complete extent of access to an object.

v dce_acl_inq_acl_from_header()

Retrieves the UUID of an ACL from the header of an object in the backing store.

v dce_acl_inq_prin_and_group()

Inquires the principal and the group of an RPC caller.

Creating ACL Objects: The following convenience functions may be used by an
application programmer to create ACL objects in other servers or clients.

v dce_acl_copy_acl()

Copies an ACL.

v dce_acl_obj_init()

Initializes an ACL for an object.

v dce_acl_obj_free_entries()

Frees space used by an ACL’s entries.

v dce_acl_obj_add_user_entry()

Adds permissions for a user ACL entry to the given ACL.

v dce_acl_obj_add_group_entry()

Adds permissions for a group ACL entry to the given ACL.

v dce_acl_obj_add_id_entry()

Adds permissions for an ACL entry to the given ACL.

v dce_acl_obj_add_unauth_entry()

Adds permissions for an unauthenticated ACL entry to the given ACL.

v dce_acl_obj_add_obj_entry()

Adds permissions for an obj ACL entry to the given ACL.

v dce_acl_obj_add_foreign_entry()

Adds permissions for the ACL entry for a foreign user or group to the given ACL.

v dce_acl_obj_add_any_other_entry()

Adds permissions for the any_other ACL entry to a given ACL.

RDACL Implementation and Server Callback: The ACL library makes a
complete implementation of the rdacl_ *() interface available to programmers
writing servers, in a manner that is mostly transparent to the rest of the server
code.

The operations in the rdacl_ *() interface share an initial set of parameters that
specify the ACL object being operated upon:

handle_t h
sec_acl_component_name_t component_name
uuid_t *manager_type
sec_acl_type_t sec_acl_type

The sec_acl_type parameter indicates whether a protection ACL, an initial default
Object ACL, or an initial default Container ACL is desired. It does not appear in the
access operations as it must have the value sec_acl_type_object .

Chapter 32. The Access Control List APIs 597

In order to implement the rdacl_ *() interface, the server must provide a resolution
routine that maps these parameters into the UUID of the desired ACL object; the
library includes two such routines: dce_acl_resolve_by_uuid() and
dce_acl_resolve_by_name() .

The resolution routine is required because servers use the namespace in different
ways. Here are three examples:

v Servers that export only their binding information and manage a single object,
and hence use a single ACL, do not need the resolution parameters. DTS is an
example of this case.

v Servers with many objects in the namespace, with a UUID in each entry, will call
rpc_binding_inq_object on the handle to obtain the object UUID. They then use
this same UUID as the index of the ACL object. Many application servers will be
of this type. One ACL library resolver function, dce_acl_resolve_by_uuid() ,
matches this paradigm. This paradigm is not appropriate if the number of objects
is immense.

v Servers with many objects will use a junction or similar architecture so that the
component name (also called the residual) specifies the ACL object by name.
The DCE security server is essentially of this type. Another ACL library resolver
function, dce_acl_resolve_by_name() , matches this paradigm.

The following typedef specifies the signature for a resolution routine. The first four
parameters are the common rdacl_ *() parameters mentioned previously.

typedef void (*dce_acl_resolve_func_t)(
/* [in] parameters */
handle_t h,
sec_acl_component_name_t component_name,
sec_acl_type_t sec_acl_type,
uuid_t *manager_type,
boolean32 writing,
void *resolver_arg

/* [out] parameters */
uuid_t *acl_uuid,
error_status_t *st

);

For situations in which neither of the ACL library resolver functions,
dce_acl_resolve_by_uuid() or dce_acl_resolve_by_name() , is appropriate,
application developers must provide their own.

The following two examples illustrate the general structure of the
dce_acl_resolve_by_uuid() API and dce_acl_resolve_by_name() API that are
supplied in the ACL library. They may be used as paradigms for creating additional
resolver routines.

The first example shows dce_acl_resolve_by_name() .

A server has several objects and stores each in a backing store database. Part of
the standard header for each object is a structure that contains the UUID of the
ACL for that object. (The standard header is not intended to be an abstract type,
but rather a common prolog provided to ease server development.) The resolution
routine for this server retrieves the object UUID from the handle, uses that as an
index into its own backing store, and uses the sec_acl_type parameter to retrieve
the appropriate ACL UUID from the standard data header.

598 OSF® DCE Application Development Guide —Core Components

This routine needs the database handle for the server’s object storage, which is
specified as the resolver_arg parameter in the dce_acl_register_object_type() call.
#define STAT_CHECK_RET(st) { if (st != error_status_ok) return; }
dce_acl_resolve_func_t
dce_acl_resolve_by_uuid(
/* in */
handle_t h,
sec_acl_component_name_t component_name,
sec_acl_type_t sec_acl_type,
uuid_t *manager_type,
boolean32 writing,
void *resolver_arg,

/* out */
uuid_t *acl_uuid,
error_status_t *st

)
{
dce_db_handle_t db_h;
dce_db_header_t dbh;
uuid_t obj;

/* Get the object. */
rpc_binding_inq_object(h, &obj, st);
STAT_CHECK_RET(*st);
/* Get object header using the object backing store.
* The handle was passed in as the resolver_arg in the
* dce_acl_register_object_type call.
*/

db_h = (dce_db_handle_t)resolver_arg;
dce_db_std_header_fetch(db_h, &obj, &dbh, st);
STAT_CHECK_RET(*st);

/* Get the appropriate ACL based on the ACL type. */
dce_acl_inq_acl_from_header(dbh, sec_acl_type, acl_uuid, st);
STAT_CHECK_RET(*st);

}

The next example shows dce_acl_resolve_by_name() .

A server uses the residual name to resolve an ACL object by using
dce_acl_resolve_by_name() . This routine requires a DCE database that maps
names into ACL UUIDs. This backing store database must be maintained by the
server application so that created objects always get a name, and that name must
be a key into a database that stores the UUID identifying the object. The
resolver_arg parameter given in the dce_acl_register_object_type() call must be a
handle for that database.
#define STAT_CHECK_RET(st) { if (st != error_status_ok) return; }
dce_acl_resolve_func_t
dce_acl_resolve_by_name(
/* in */
handle_t h,
sec_acl_component_name_t component_name,
sec_acl_type_t sec_acl_type,
uuid_t *manager_type,
boolean32 writing,
void *resolver_arg,

/* out */
uuid_t *acl_uuid,
error_status_t *st

)
{
dce_db_handle_t db_h;
dce_db_header_t dbh;

Chapter 32. The Access Control List APIs 599

/* Get object header using the object backing store.
* The handle was passed in as the resolver_arg in the
* dce_acl_register_object_type call.
*/

db_h = (dce_db_handle_t)resolver_arg;
dce_db_std_header_fetch(db_h, component_name, &dbh, st);
STAT_CHECK_RET(*st);

/* Get the appropriate ACL based on the ACL type. */
dce_acl_inq_acl_from_header(dbh, sec_acl_type, acl_uuid, st);
STAT_CHECK_RET(*st);

}

600 OSF® DCE Application Development Guide —Core Components

Chapter 33. The ID Map API

In the multicell environment, the global print string representation of a principal
identity can be ambiguous, even though every principal and its native cell have
unique names in the form of UUIDs to which the print string representations
normally resolve. For example, all ACLs maintain UUIDs as the definitive
representations of principal and cell names. The acl_edit tool, on the other hand,
takes as input (and also outputs) this same information as print strings. This
string-to-UUID mapping is accomplished easily enough when an ACL entry refers to
a local identity; that is, a member of the local cell. However, when a user adds an
ACL entry for a foreign principal identity such as /.../world/dce/rd/writers/tom , it is
not evident to the ACL manager which part of the name identifies the cell, and
which identifies the principal within the cell. The name /.../world/dce may refer to a
cell containing the principal /rd/writers/tom , or the cell name may be
/.../world/dce/rd and the principal name /writers/tom .

To parse the fully qualified principal name that the user types into its cell name and
local principal-name components, and for these components to be mapped to
UUIDs, ACL managers that support entries for foreign identities use the ID map API.
For the same reasons, many other kinds of servers in a DCE multicell environment
need a facility to parse global names and translate UUIDs into print string names.

The ID map API provides a simple interface to translate a fully qualified name (that
is, the global representation of a name) into its components and back again. This
API consists of the following calls:

v The sec_id_parse_name() call takes as input a registry context handle and a
fully qualified principal name, and returns the principal’s print string name and
UUID, and the print string name and UUID of the principal’s native cell.

v The sec_id_gen_name() call translates a principal UUID and the UUID of its
native cell UUID into a cell-relative principal name, a cell name, and a fully
qualified principal name.

v The sec_id_parse_group() call is likesec_id_parse_name() , except that it
operates on group names.

v The sec_id_gen_group() call is like sec_id_gen_name() , except that it operates
on group names.

601

602 OSF® DCE Application Development Guide —Core Components

Chapter 34. DCE Audit Service

Audit plays a critical role in distributed systems. Adequate audit facilities are
necessary for detecting and recording critical events in distributed applications.

Audit, a key component of DCE, is provided by the DCE Audit Service.

This chapter provides an introduction to the DCE Audit Service.

Features of the DCE Audit Service

The DCE Audit Service has the following features:

v An audit daemon performs the logging of audit records based on specified
criteria.

v Application programming interfaces (APIs) can be used as part of application
server programs to record audit events. These APIs can also be used to create
tools that analyze the audit records.

v An administrative command interface to the audit daemon directs the daemon in
selecting the events that are going to be recorded based on certain criteria.

v An event classification mechanism is used to logically group a set of audit events
for ease of administration.

v Audit records can be directed to logs or to the console.

Components of the DCE Audit Service

The DCE Audit Service has three basic components:

v application programming interfaces (APIs)

Provide the functions that are used to detect and record critical events when the
application server services a client. The application programmer uses these
functions at code points in the application server program to actuate the
recording of audit events.

Other APIs are also provided which can be used to create tools that examine and
analyze the audit event records.

v audit daemon

Maintains the filters and the audit logs.

v audit management interface

Management interface to the audit daemon. Used by the administrator to specify
how the audit daemon will filter the recording of audit events. This interface is
available from the DCE control program.

DCE Audit Service Concepts

This section briefly describes the DCE Audit Service concepts that are relevant to
DCE application programming.

Audit Clients

All RPC-based servers, such as DCE servers and user-written application servers,
are potential audit clients. The DCE Security Service, DTS, and the DCE Audit

603

Service itself are auditable. That is, code points (discussed in “Code Point”) are
already in place on these services.

The audit daemon can also audit itself.

Code Point

A code point is a location in the application server program where DCE audit APIs
are used. Code points generally correspond to operations or functions offered by
the application server for which audit is required. For example, if a bank server
offers the cash withdrawal function acct_withdraw() , this function may be deemed
to be an auditable event and be designated as a code point.

As mentioned previously, code points are already in place in the DCE Security
Service, DTS, and DCE Audit Service. Code points and their associated events for
the DCE Security Service are documented in the sec_audit_events(5sec)
reference page. Code points and their associated events for the DTS are
documented in the dts_audit_events(5sec) reference page. Code points and their
associated events for the DCE Audit Service are documented in the
aud_audit_events(5sec) reference page.

Events

An audit event is any event that an audit client wishes to record. Generally, audit
events involve the integrity of the system. For example, when a client withdraws
cash from his bank account, this can be an audit event.

An audit event is associated with a code point in the application server code.

The terms audit event, event, and auditable event are used interchangeably in this
book.

Event Names and Event Numbers

Each event has a symbolic name as well as a 32-bit number assigned to it.
Symbolic names are used only for documentation in identifying audit events. In
creating event classes, the administrator uses the event numbers associated with
these events.

Event numbers are 32-bit integers. Each event number is a tuple made up of a
set-id and the event-id. The set-id corresponds to a set of event numbers and is
assigned by OSF to an organization or vendor. The event-id identifies an event
within the set of events. The organization or vendor manages the issuance of the
event ID numbers to generate an event number.

Event numbers must be consecutive. That is, within a range of event numbers, no
gaps in the consecutive order of the numbers are allowed.

The structure and administration of event numbers can be likened to the structure
and administration of IP addresses. Recall that an IP address is a tuple of a
network ID (analogous to the set-id) and a host ID (analogous to the event-id). The
format and administration of event numbers are also analogous to IP addresses, as
will be discussed in the next sections.

604 OSF® DCE Application Development Guide —Core Components

Event Number Formats

Events numbers follow one of five formats (A to E), depending on the number of
audit events in the organization. The format of an event number can be determined
from its four high-order bits.

Format A can be used by large organizations (such as OSF or major DCE vendors)
that need more than 16 bits for the event-id. This format allocates 7 bits to the
set-id and 24 bits to the event-id. Format A event numbers with zero (0) as its set-id
are assigned to OSF. That is, all event numbers used by OSF have a zero in the
most significant byte.

Format B can be used by intermediate-sized organizations that need 8 to 16 bits for
the event-id.

Format C can be used by small organizations that need less than 8 bits for the
event-id.

Format D is not administered by OSF and can be used freely within the cell. These
event numbers may not be unique across cells and should not be used by
application servers that are installed in more than one cell.

Format E is reserved for future use.

The event number formats are illustrated in Figure 82.

Sample Event Numbers for DCE Servers

Following are examples of event numbers in the security and time servers, as
defined in a header file used by the security server and time server programs,
respectively.

/* Event numbers 0x00000100 to 0x000001FF are assigned to the
security server. */

#define AS_Request 0x00000100
#define TGS_TicketReq 0x00000101
#define TGS_RenewReq 0x00000102
#define TGS_ValidateReq 0x00000103
...
/* Event numbers 0x00000200 to 0x000002FF are
assigned to the time server. */

#define CNTRL_Create 0x00000200
#define CNTRL_Delete 0x00000201
#define CNTRL_Enable 0x00000202
#define CNTRL_Disable 0x00000203
...

Format A
Format B
Format C
Format D
Format E

0
1 0
1 1 0
1 1 1 0
1 1 1 1

0 1 2 3 4
set-id

set-id
set-id

event-id
event-id

event-id
event-id

reserved

8 16 24 31

Figure 82. Event Number Formats

Chapter 34. DCE Audit Service 605

Sample Event Numbers for Application Servers

The following is an example of the event numbers in a banking server application,
as defined in the application’s header file.

#define evt_vn_bank_server_acct_open 0x01000000
#define evt_vn_bank_server_acct_close 0x01000001
#define evt_vn_bank_server_acct_withdraw 0x01000002
#define evt_vn_bank_server_acct_deposit 0x01000003
#define evt_vn_bank_server_acct_transfer 0x01000004

Administration of Event Numbers

Organizations and vendors must administer the event numbers assigned to them
(through the set-id) to maintain the unique assignment of event numbers.

Event Class

Audit events can be logically grouped together into an event class. Event classes
provide an efficient mechanism by which sets of events can be specified by a single
value. Generally, an event class consists of audit events with some commonality.
For example, in a bank server program, the cash transaction events (deposit,
withdrawal, and transfer) may be grouped into an event class.

Typically, the administrator creates and maintains event classes. For more details to
event classes, see the OSF DCE Administration Guide—Core Components.

Event Class Number

Each event class is assigned an event class number. Like the event number, the
event class number is a 32-bit integer and is administered by OSF. Event class
numbers are discussed in more detail in the OSF DCE Administration Guide—Core
Components.

Filters

Once the code points are identified and placed in the application server, all audit
events corresponding to the code points will be logged in the audit trail file,
irrespective of the outcome of these audit events. However, recording all audit
events under all conditions may neither be practical nor necessary. Filters provide a
means by which audit records are logged only when certain conditions are satisfied.
A filter is composed of filter guides that specify these conditions. Filter guides also
specify what action to take if the condition (outcome) is met.

A filter answers the following questions:

v Who will be audited?

v What events will be audited?

v What should be the outcome of these events before an audit record is written?

v Will the audit record be logged in the audit trail file or displayed on the system
console, or both?

For example, for the bank server program, you can impose the following conditions
before an audit record is written:

606 OSF® DCE Application Development Guide —Core Components

“Audit all withdrawal transactions (the audit events) that fail because of access
denial (outcome of the event) that are performed by all customers in the DCE cell
(who to audit).”

Filter Subject Identity

A filter is associated with one filter subject, which denotes to what the filter applies.
The filter subject is the client of the distributed application who caused the event to
happen.

For more information on the filter subject identity, see the OSF DCE Administration
Guide—Core Components.

Audit Records

An audit record has a header and a trailer. The header contains the common
information of all events; for example, the identities of the client and the server,
group privileges used, address, and time. The trailer contains event-specific
information; for example, the dollar amount of a fund-transfer event.

Audit records are initialized and filled by calling the audit API functions.

There are four stages in the writing of an audit record:

1. First, the code point registers an audit event. At this point, the audit record does
not yet have any form.

2. The audit record descriptor is built. This is a representation of the audit data
that is built by the dce_aud_start() , dce_aud_put_ev_info() , and
dce_aud_commit() functions. This is stored in a data structure in the client’s
core memory until the dce_aud_commit() function is called. This data is not
IDL-encoded until the dce_aud_commit() call.

3. The audit record is written to the log. This is stored as IDL-encoded data in the
audit log.

4. The audit record is transformed into human-readable form. This is a
representation built in a data structure in the core memory by calls to the
dce_aud_next() and dce_aud_print() functions. This is not an IDL-encoded
representation.

Audit Trail File

The audit trail file contains all the audit records that are written by the audit daemon
or the audit APIs. You can specify either a central audit trail file or a local audit trail
file. The central audit trail file is maintained by the audit daemon. The local audit
trail file is maintained by the audit library. The terms audit trail file and audit trail are
used interchangeably in this book.

Administration and Programming in DCE Audit

This section gives you an example of how auditing is accomplished using the DCE
Audit Service. Both the programmer and the administrator have to perform tasks to
enable the writing of audit records in the audit trail. This section looks at the life
cycle of an audit trail, from the time that audit events are identified in the server
code, to the time that they are filtered and recorded in the audit trail file.

Chapter 34. DCE Audit Service 607

A bank server example illustrates each stage of the life cycle. In this example, the
bank server program offers five operations: acct_open() , acct_close() ,
acct_withdraw() , acct_deposit() , and acct_transfer() .

Programmer Tasks

The programmer uses the audit APIs to enable auditing in the application server
program, as illustrated in the following:

1. The programmer identifies the code points in the bank server program. Because
each of the five operations (corresponding to an RPC interface) offered by the
bank server is a security-relevant operation, the programmer deems that all
these operations are security relevant, and assigns a codepoint to each
operation. Each code point corresponds to an audit event.

acct_open() /* first code point */
acct_close() /* second code point */
acct_withdraw() /* third code point */
acct_deposit() /* fourth code point */
acct_transfer() /* fifth code point */

2. The programmer then assigns an event number to each audit event
(corresponding to each code point). For example, the programmer defines these
numbers in his header file as follows:

/* event number for the 1st code point, acct_open() */
#define evt_vn_bank_server_acct_open 0xC1000000

/* event number for the 2nd code point, acct_close() */
#define evt_vn_bank_server_acct_close 0xC1000001

/* event number for the 3rd code point, acct_withdraw() */
#define evt_vn_bank_server_acct_withdraw 0xC1000002

/* event number for the 4th code point, acct_deposit() */
#define evt_vn_bank_server_acct_deposit 0xC1000003

/* event number for the 5th code point, acct_transfer() */
#define evt_vn_bank_server_acct_transfer 0xC1000004

3. The programmer now starts adding audit API functions to the bank server
program.

In the initialization part of the server, the application programmer uses the
dce_aud_open() API to open an audit trail file for writing the audit records. This
function uses the lowest-numbered event as one of its parameters; in this case,
0xC1000000 (evt_vn_bank_server_acct_open). Using the lowest-numbered
event enhances the performance of the filter search.

/* open an audit trail file for writing */
dce_aud_open(aud_c_trl_open_write, description,

evt_vn_bank_server_acct_open,
5, &audit_trail, &status);

4. The programmer invokes the following DCE audit APIs at each code point:

v The dce_aud_start() API, to initialize an audit record. This function assigns
the event number to the event represented by the code point. Thus, it uses
the event number corresponding to that code point as one of its parameters.

v The dce_aud_put_ev_info() API, to add event-specific information to the
audit record.

v The dce_aud_commit() API, to commit the audit record in the audit trail file.

608 OSF® DCE Application Development Guide —Core Components

The use of these three APIs is illustrated in the following example of the bank
server program:

acct_open() /* first code point */

/* Uses the event number for acct_open(),
evt_vn_bank_server_acct_open */

dce_aud_start(evt_vn_bank_server_acct_open,
binding,options,outcome,&ard, &status);

/* If events need to be logged,
add trailer info (optional) */

if (ard)
dce_aud_put_ev_info(ard,info,&status);

/* If events need to be logged,
add header and trailer info */

if (ard)
dce_aud_commit(at,ard,options,format,&outcome,&status);

acct_close() /* second code point */

/* Uses the event number for acct_close(),
* evt_vn_bank_server_acct_close */

dce_aud_start(evt_vn_bank_server_acct_close,
binding,options,outcome,&ard, &status);

if (ard) /* If events need to be logged */
dce_aud_put_ev_info(ard,info,&status);

if (ard) /* If events need to be logged */

dce_aud_commit(at,ard,options,format,&outcome,&status);

5. The programmer uses the dce_aud_close() API in the termination routine of the
application server. This API closes the audit trail file (and frees up memory) if
the applicaton server shuts down.

The coding of the application program to enable auditing is essentially complete
at this point.

Administrator Tasks

The following steps will be performed by the administrator to filter the audit events
and control the audit trail file.

1. The administrator obtains the event numbers corresponding to the events
represented by the code points in the bank server program from the
programmer or from the program’s documentation. These events and their
assigned event numbers are as follows:

acct_open()
0xC1000000

acct_close()
0xC1000001

acct_withdraw()
0xC1000002

acct_deposit()
0xC1000003

acct_transfer()
0xC1000004

Chapter 34. DCE Audit Service 609

2. The administrator decides to create two event classes: the
account_creation_operations class comprised of acct_open() and
acct_close() , and the account_balance_operations class comprised of
acct_withdraw() , acct_deposit() , and acct_transfer() .

3. The administrator decides to create two filters: one for all users within the cell
(for the cell /.:/torolabcell), and the other for all other users.

The filter for all users within the cell has the following guides:

a. Audit the events in the event class account_balance_operations only,
subject to the next condition.

b. Write an audit record only if an operation in that event class failed because
of access denial.

c. If the first condition is fulfilled, write the audit record in an audit trail file only.

The filter for all other users has the following filter guides:

a. Audit the events in both event classes, subject to the next condition.

b. Write an audit record if an operation in that event class succeeded or failed.

c. Write the audit record both in an audit trail file and the console.

The scenarios described here can be summarized as follows:

v The programmer identifies the code points in the distributed application
corresponding to the audit events.

v The programmer uses the audit API functions on those code points to enable
auditing.

v The administrator creates event classes that are used to group the audit events.

v The administrator creates filters to narrow down the conditions by which audit
records are written for the audit events.

Figure 83 illustrates the interactions among the audit client program, the audit API
functions (libaudit), the audit daemon (auditd), and the audit management
interface (available from the DCE control program, dcecp).

The audit management interface (accessed through the DCE control program) is
used by the systems administrator to specify who, what, when, and how to audit.
This is accomplished through the use of the filters. The audit daemon maintains the

filters

Event Class
Configuration

Files

audit API

Timestamps (filter
files), filters,
event table

read/writestat, read

stat, read

trail
files

auditd
(per machine)

audit client

auditcp

emsd

filter update notification

audit records

filter
updates

route
to EMS

auditor
command i/f

log to file

read/write

filter read/write

in-core copy
of filters

Figure 83. Overview of the DCE Audit Service

610 OSF® DCE Application Development Guide —Core Components

filter’s information in its address space. The filters are also stored in local files so
that the filters can be restored when the machine restarts, and so that audit clients
can read the filter information from these files.

The audit clients are the users of the filter information. Using the audit APIs, the
audit client reads the information on filters and event class configuration. The audit
client reads these files only once, unless an update notification is received from the
audit daemon (which is triggered by an update initiated by an administrator using
the DCE control program).

Chapter 34. DCE Audit Service 611

612 OSF® DCE Application Development Guide —Core Components

Chapter 35. Using the Audit API Functions

This chapter describes the use of the audit API functions to add audit capability to
distributed applications and to write audit trail analysis and examination tools.

Adding Audit Capability to Distributed Applications

To record audit events in an audit trail file, the DCE audit API functions must be
called in the distributed application to perform the following:

1. Open the audit trail file during the startup of the application.

2. Initialize the audit records at each code point.

3. Add event information to the audit records at each code point. (This is optional.)

4. Commit the audit records at each code point.

5. Close the audit trail file when the application shuts down.

Note that steps 2, 3, and 4 are repeated in sequence at each code point in the
distributed applcation.

The use of the audit API functions in each of these steps is illustrated with the bank
server example introduced in the previous chapter.

Five code points are identified in the bank server program: acct_open() ,
acct_close() , acct_withdraw() , acct_deposit() , and acct_transfer() . Each code
point has been assigned an event number and defined in the application server’s
header file as follows:

#define evt_vn_bank_server_acct_open 0x01000000
#define evt_vn_bank_server_acct_close 0x01000001
#define evt_vn_bank_server_acct_withdraw 0x01000002
#define evt_vn_bank_server_acct_deposit 0x01000003
#define evt_vn_bank_server_acct_transfer 0x01000004

Opening the Audit Trail

To open the audit trail file, the main routine of the application server uses the
dce_aud_open() function. With this function call, the audit trail file can be

v opened for reading or for writing.

v directed to the default audit trail file or to a specific file. If dce_aud_open() is
called without specifying an audit trail file, (by having NULL as the value of the
description parameter), a default audit trail file is used. This is the central trail file
that is accessed by RPC calls to the audit daemon.

If an audit trail file is specified in the dce_aud_open() call, (through the
description parameter), that file is opened directly by the audit library, bypassing
RPCs and the audit daemon.

In the bank server application, the function call is as follows:

dce_aud_open(aud_c_trl_open_write, &audit_file,
evt_vn_bank_server_acct_open,
5, &audit_trail, &status);

613

In this call, the audit trail file audit_file is opened for writing. The third parameter
(evt_vn_bank_server_acct_open) specifies the lowest event number used in the
bank server application. The fourth parameter (5) specifies the number of events
defined.

The call returns an audit-trail descriptor (audit_trail) that will be used to append
audit records to the audit trail file.

Initializing the Audit Records

Audit records can be initialized by using the dce_aud_start_ *() functions. This
function has five variations, and the use of each variation depends on the available
information about the server. In general, if you have the RPC binding information
about the server, use the dce_aud_start() function. If not, use the other four
variations of this function, depending on the available information. The five
variations are as follows:

v dce_aud_start()

For use by DCE RPC-based server applications.

v dce_aud_start_with_server_binding()

For use by DCE RPC-based client applications.

v dce_aud_start_with_pac()

For use by applications that do not use DCE RPC, but use the DCE authorization
model.

v dce_aud_start_with_name()

For use by applications that use neither DCE RPC nor the DCE authorization
model.

v dce_aud_start_with_uuid()

For use by RPC-based applications that know their client’s identity in UUID form.

The dce_aud_start_ *() functions determine if a specified event must be audited
based on the subject identity and event outcome that were defined for that event by
the filters.

If the event specifics match the event filters (that is, the event has to be audited),
these functions return a pointer to an audit record buffer. If it is determined that the
event does not need to be audited, a NULL pointer is returned, and the application
can then discontinue any auditing activity. If it cannot be determined whether the
event needs to be audited (because the event needs to be audited based on a
specific outcome(s) but the outcome is not yet known) these functions return a
non-NULL pointer.

When an audit record is initialized, the identification of the audit subject (that is, the
client of the distributed application) is recorded.

You can use the dce_aud_start_ *() functions to specify the amount of header
information in the audit record. You can specify any or acombination of the
following:

v Information on all groups and addresses

v Information on groups only

v Information on addresses only.

614 OSF® DCE Application Development Guide —Core Components

Using these functions, you can bypass the filter altogether and log the event to the
audit trail file or display it on the system console. This option is useful for
applications whose events require unconditional audit actions.

In our example, each of the bank server routines (acct_open() , acct_close() ,
acct_withdraw() , acct_deposit() , acct_transfer()) will make a dce_aud_start()
function call. In the acct_transfer() routine, the function call is made as follows:

acct_transfer()

dce_aud_start (evt_vn_bank_server_acct_transfer,
h, aud_c_evt_all_info,
aud_c_esl_cond_success, &ard, &status);

where h points to the RPC binding of the client making the call. The
aud_c_evt_all_info option means that all information about the client’s groups and
addresses are included in the audit record header. The aud_c_esl_cond_success
event outcome means that the event completed successfully.

Adding Event-Specific Information

If the dce_aud_start() function returns an audit record descriptor to the audit record
buffer (meaning that the event needs to be audited), the dce_aud_put_ev_info()
function call can be used to add event-specific information to the tail of the audit
record.

You can opt not to use the dce_aud_put_ev_info() function if the information
provided by the audit record header is already sufficient for your auditing purposes.

If you elect to use this function, it can be called one or more times, the order of
which is preserved in the audit record.

The dce_aud_put_ev_info() function has two parameters: the ard parameter, which
is the pointer to the audit record descriptor, and the info parameter, which is a
dce_aud_ev_info_t type data containing the event-specific information. The
programmer can specify the dce_aud_ev_info_t data type to include all the audit
information that needs to be collected. For more information on the formats of the
audit record, see the OSF DCE Application Development Reference.

In the acct_transfer() code point of the bank server example, if you want to record
the account numbers of the parties involved in the transfer and the amount of each
transaction, the data type declarations and the function calls can be made as
follows:

dce_aud_ev_info_t info;

/* account numbers and transfer amounts are all unsigned
32-bit integers */

info.format = aud_c_evt_info_ulong_int;

info.data = acct_from;
dce_aud_put_ev_info(ard, info, &status);
info.data = acct_to;
dce_aud_put_ev_info(ard, info, &status);
info.data = amount;
dce_aud_put_ev_info(ard, info, &status);

Chapter 35. Using the Audit API Functions 615

Committing an Audit Record

After the header and the optional tail information has been included in the audit
record, the dce_aud_commit() function call is used to write the audit record in the
audit trail file. This function uses the audit trail file previously opened by the
dce_aud_open() function.

You can specify one of two options in the way the function writes the audit record in
the audit trail file:

v Return an error status if the storage or logging service is not available when an
attempt is made to write the audit record. This option can be used if the
application program can handle write failures in the stable storage.

v If the storage or logging service is not available, keep on trying until the function
is able to write to it. This option can be used if the audit record must be written to
stable storage before the routine can proceed safely to another task.

In the bank server example, the function call can be made as follows:

dce_aud_commit(audit_trail, ard, options, format, outcome, &status);

The audit_trail parameter is the trail descriptor returned from the dce_aud_open()
call made earlier. The ard parameter is the audit record descriptor returned from the
dce_aud_start() call (and used in the dce_aud_put_ev_info() function call). The
format parameter specifies a format version number of the event-specific
information. The initial version number should be zero, and be incremented when
the format changes. For example, the data type used for account numbers might
change from 32-bit integer to UUID. The event outcome must be provided in this
call, even if it has been provided in the dce_aud_start() call made earlier. If the
event outcome (except aud_c_esl_cond_unknown) is provided in both calls, the
values must be the same.

Closing an Audit Trail File

The audit trail file must be closed using the dce_aud_close() function when the
application shuts down (because of the rpc_mgmt_stop_server_listening()
function call or other exceptional conditions). For example, to close the trail, the
bank server’s main program can make the following function call:

dce_aud_close(audit_trail, &status);

This function flushes buffered audit records to stable storage and releases the
memory allocated for the trail descriptor.

Writing Audit Trail Analysis and Examination Tools

The audit APIs can be used to write audit trail analysis and examination tools that
selectively review the following:

v Events that are invoked by one or more subjects, for example, principals, groups,
and cells

v Events that have a specific outcome

v Events that occurred during a specified time period

v Events that have specific event IDs

616 OSF® DCE Application Development Guide —Core Components

In its most basic form, an audit trail analysis and examination tool must perform five
functions:

v Open an audit trail file for reading

v Read the audit records into a buffer

v Transform the audit records into human-readable form

v Discard the audit record

v Close the audit trail file

These functions and the APIs that are used for each are discussed in the following
sections.

Opening an Audit Trail File for Reading

To open the audit trail file for reading, use the dce_aud_open() function and specify
aud_c_trl_open_read as the value for the flags parameter. In this case, the values
for the first_evt_number and num_of_evts does not affect the call. For example:

dce_aud_open(aud_c_trl_open_read, AUDIT_TRAIL_FILE,
0, 0, &out_trail, status);

Reading the Desired Audit Records into a Buffer

After opening the audit trail file, you can use the dce_aud_next() function to
retrieve audit records. Audit records are stored in the audit trail file in binary form.
The dce_aud_next() function does not convert the file into readable form. You must
use the dce_aud_print() function to translate the audit record into readable form.

The dce_aud_next() function allows you to specify a criteria that will be used in
selecting the records that will be read from the file. This criteria is known as
predicates and is expressed by setting the condition on the value of certain
attributes. The condition is set by using any of the following operators: = (equal to),
> (greater than), and < (less than).

Predicates can be expressed in any of the following forms:

v attribute= value

v attribute> value

v attribute< value

The following list summarizes these attributes and their acceptable values:

SERVER
UUID of the principal that generated the record

EVENT
Audit event number

OUTCOME
Event outcome of the record

STATUS
Authorization status of the application client

CLIENT
UUID of the client principal

TIME Time when the record was generated.

Chapter 35. Using the Audit API Functions 617

CELL The UUID of the application client’s cell

GROUP
The UUID of the application client’s group or groups

ADDR The address (binding handle) of the client

FORMAT
The format version number of the audit event record

Details of these attributes, their values, and the allowable operators are discussed
in the OSF DCE Application Development Reference.

For example, to have the function retrieve audit records that pertain to the event
number 0xC01000001 only, you can set the predicate to the following:

EVENT=0xC01000001

If the predicate parameter is set to NULL (that is, no criteria), the next audit record
is read. For example, to read the next audit record in a previously opened audit trail
file, the following call is made:

dce_aud_next(out_trail, NULL, &out_ard, status);

You can specify multiple predicates, in which case the predicates are treated as a
logical AND condition.

The dce_aud_next() function returns a pointer to the record that was read. This
pointer is used by the dce_aud_print() , dce_aud_get_ev_info() , and
dce_aud_get_header() functions in transforming the audit records into ASCII
format.

Transforming the Audit Record into Readable Text

After reading in the desired audit record by using the dce_aud_next() function,
these binary audit records must be transformed into human-readable form.

You can use any of the following three functions to transform the audit record
information to human readable form:

v dce_aud_print()

Formats the entire audit record (header and tail) into ASCII format.

v dce_aud_get_header()

Obtains the header information of the audit record and formats it into human
readable form.

v dce_aud_get_ev_info()

Obtains the event-specific information in the tail of the audit record and formats it
into human readable form.

The dce_aud_next() function returns the address of the audit record to these
functions. These functions then allocate memory for the ASCII-format buffer (using
malloc()) and fills it with the ASCII representation of the audit record. The user
must explicitly release this memory (using free()) when all audit record retrieving
and transforming tasks have been accomplished.

618 OSF® DCE Application Development Guide —Core Components

Discarding the Audit Record

The dce_aud_discard() function frees the memory allocated to the binary version
of the audit record, that is, the structure returned by the dce_aud_next() function.
The dce_aud_discard() function does not free the structures allocated by
dce_aud_print() , dce_aud_get_header() , or dce_aud_get_ev_info() .

Closing the Audit Trail File

Finally, the audit trail file from which the audit records were read must be closed
using the dce_aud_close() function.

Chapter 35. Using the Audit API Functions 619

620 OSF® DCE Application Development Guide —Core Components

Chapter 36. The Password Management API

User passwords are the weakest link in the chain of DCE security. Users, unless
their choices are restricted, typically choose passwords that are easy for them to
remember; unfortunately, these memorable passwords are also easy for attackers
to “crack.”

The password management facility is intended to reduce this risk by providing the
tools necessary to develop customized password management servers, and to call
them from client password change programs. This facility enables cell
administrators to

v Enforce stricter constraints on users’ password choices than those in DCE
standard policy

v Offer, or force, automatic generation of user passwords

The password management facility includes the following APIs:

v The password management interface, sec_pwd_mgmt_ *(), which enables
clients to retrieve a principal’s password management ERA values and to request
strength-checking and generation of passwords.

v The password management network interface, rsec_pwd_mgmt_ *(), which
enables a password management server to accept and process password
strength checking and generation requests.

Figure 84 provides a schematic view of the relationships and usages of these
interfaces, as well as some relevant security registry APIs. This chapter first
discusses the client API and then the network API.

For information on how to administer password generation and strength-checking,
see the OSF DCE Administration Guide—Core Components.

rs_pwd_mgmt_setup
rs_acct_passwd

Security Server

Password Management
Server

Security Client
.
.
.(Enforce password validation policy

in password change/add program...)

sec_pwd_mgmt...()
sec_rgy_acct_passwd

rsec_pwd_mgmt_
gen_pwd()

rsec_pwd_mgmt_
str_chk()

RPC RPC

RPC

Figure 84. Use of Password Management Facility APIs

621

The Client-Side API

The DCE control program, dcecp , and rgy_edit provide support for password
generation based on a principal’s password validation type ERA. However, if you
want to enhance your own password change program (such as the UNIX passwd
program), you will need to use the client-side sec_pwd_mgmt_ *() API.

This API provides functions that retrieve a principal’s password management ERA
values and request password strength checking and generation from a password
management server.

The sec_pwd_mgmt_ *() API is defined in the sec_pwd_mgmt.idl file.

The general procedure for using the client-side password management API in a
password change program is as follows. Refer to Figure 84 on page 621 as you
read the following steps:

1. The client calls sec_pwd_mgmt_setup() , specifying the login name of the
principal whose password is being changed. The registry service returns the
pwd_val_type and pwd_mgmt_binding ERAs as well as the registry standard
(password) policy for the principal to the client’s security runtime, which is
stored in a password management handle (an opaque data type).

2. The client calls sec_pwd_mgmt_get_val_type() , specifying the handle returned
by sec_pwd_mgmt_setup() in step 1. The value of the principal’s
pwd_val_type ERA is extracted from the handle and returned to the client.

3. The client analyzes the principal’s pwd_val_type ERA to determine whether a
generated password is required. If so, it calls sec_pwd_mgmt_gen_pwd() ,
specifying the number of passwords needed, and the handle returned by
sec_pwd_mgmt_setup . The client security runtime makes an RPC call to the
password management server, which generates passwords that adhere to the
principal’s password policy.

4. The client calls sec_rgy_acct_passwd() (or some other form), specifying the
new password (either input by the user or generated by
sec_pwd_mgmt_gen_pwd()). If the principal’s pwd_val_type ERA mandates it,
the registry service makes an RPC call to the password management server,
specifying the name of the principal and the password to be strength checked.
The password management server checks the format of the password according
to the user’s password policy and accepts or rejects it.

5. The client calls sec_pwd_mgmt_free_handle() to free the memory associated
with the password management handle.

Following is an example of a password change program that calls the
sec_pwd_mgmt_ *() API as previously described.

sec_pwd_mgmt_setup(&pwd_mgmt_h, context, login_name,
login_context, NULL, &st);

if (GOOD_STATUS(&st)) {
sec_pwd_mgmt_get_val_type(pwd_mgmt_h, &pwd_val_type, &st);

}
if (GOOD_STATUS(&st)) {
switch (pwd_val_type) {
case 0: /* NONE */
case 1: /* USER_SELECT */
... get password ...
break;

case 2: /* USER_CAN_SELECT */
... if user does not want generated password ... {

622 OSF® DCE Application Development Guide —Core Components

... get password ...
break;

}
case 3: /* GENERATION_REQUIRED */
sec_pwd_mgmt_gen_pwd(pwd_mgmt_h, 1, &num_returned,
&passwd, &st);

... display generated password to user - possibly
prompting for confirmation ...

break;
}

}
if (GOOD_STATUS(&st)) {
sec_rgy_acct_passwd(context, &login_name, &caller_key,
&passwd, new_keytype, &new_key_version, &st);

}

sec_pwd_mgmt_free_handle(&pwd_mgmt_h, &st);

The Password Management Network Interface

The password management interface, rsec_pwd_mgmt_ *(), provides a
DCE-common interface to password management servers. It is the interface
exported by the sample password management server provided with DCE Version
1.1 (pwd_strengthd), and it is the interface that application developers should use
to write their own password management servers. Developers should use the
sample code provided as a base for enhancements.

The API is defined in the rsec_pwd_mgmt.idl file.

Implementations must conform to the rsec_pwd_mgmt_gen_pwd(3sec) and
rsec_pwd_mgmt_str_chk(3sec) reference pages.

The rsec_pwd_mgmt_ *() routines are

v rsec_pwd_mgmt_gen_pwd()

Generates one or more passwords for a given principal.

v rsec_pwd_mgmt_str_chk()

Strength checks a principal’s password according to policy.

Chapter 36. The Password Management API 623

624 OSF® DCE Application Development Guide —Core Components

Chapter 37. The DCE Certification Service

The DCE certification service provides for the secure retrieval of public keys, stored
(through the DCE directory service) under the names of the principals with which
the keys are associated. It is a name-to-public key translation service intended to
be used both by DCE components and DCE applications. The keys are stored in
data structures called “certificates”.

Rules that define which entities are trusted to create certificates for which principals
are embodied in policy modules, which have the job of retrieving, upon request, the
public keys from the certificates (and verifying the certificates themselves when
doing so).

DCE certification is a “secondary” facility, in that the service it provides is useful
only in the context of some other application activity. Essentially, it does nothing but
return public keys when presented with principal names (provided that the public
keys have been properly stored under the names in the first place). It is then up to
the application to do something useful with the keys.

This chapter is not intended to provide detailed guidance on how DCE applications
should use public keys, although some discussion of public key usage is included. It
is mainly concerned with explaining how DCE applications can use the certification
service to store and retrieve the keys.

Who Needs to Use the Certification API?

The DCE certification service is intended to form one part of an implementation of a
public key based authentication (and data protection) service in DCE. Thus the
first-level users of the certification API will be various components of DCE itself; for
example, RPC. However, the certification service can also be (and is intended to
be) used by distributed applications that wish to use public keys for their own
authentication or data protection purposes. The high-level public key retrieval
routines are designed for this kind of use.

The low-level certification routines, on the other hand, are intended for applications
that wish to implement and add new policies and/or cryptographic modules. For
example, adding a new policy will involve the following development task(s):

v Implementing and registering a policy module (see below)

For example, a mail application that wished to institute its own model for
authenticating users by public key would need to have its own policy module.

v (Optional) Implementing and registering a cryptographic module (see below)

Cryptographic modules implement the various signature algorithms required to
allow policy modules to verify retrieved certificates. Policy modules are generally
concerned only with signature verification, and (due to licensing constraints)
signature generation functions are not supplied with the cryptographic modules
provided with the DCE reference implementation. Applications that wish to use
the public keys returned by the DCE certification facility will typically augment the
supplied verification functions with signature generation routines.

Other possible users of the DCE certification API might be developers who wish to
implement their own signature algorithms (cryptographic modules). (Signature
algorithms are specified in a field in the certificate; they are selected at the time a
certificate is created.) Only developers who wish to add to the available signature

625

algorithms, or who wish to add signature generation capability to a supplied
algorithm, will need to implement new cryptographic modules.

The low-level certification API is not intended to be accessed directly by
run-of-the-mill DCE applications.

Overview of DCE Certification

In the discussion that follows, note that the term “principal” does not necessarily
mean or imply “DCE principal”. In a general sense, a principal is any name that can
be authenticated—that is, any name that has one or more associated key(s). A DCE
principal (one that is registered in the DCE registry) has DES key(s) maintained
within the registry, while a public key (PK) principal has one or more public keys
(generally stored within certificates). The only situation in which a PK principal has
to be a DCE principal is where an application is using the “registry retrieval” policy
(see “Direct secd” Lookup: DCE Registry Lookup Policy Model’’ below), since this
policy retrieves the principal’s public keys from a its registry entry.

The DCE certification service provides for the secure storage and retrieval (by
principal name) of public keys. The keys are stored in the DCE directory service,
under the principal names with which they are to be associated.

Principals’ public keys are thus easily accessible through the namespace. However,
in order to be regarded as valid (certified), the public key information must be
properly “signed” by the certifying authority (CA) authorized to deposit public key
information for the principal in question. The public key, with the signature of the CA
that issued it, is stored (together with various other data) in a format defined by the
ISO 9594-8/X.509 standard and called a “certificate”. Just who the authorized
certifying authority for a given certificate is is defined by the trust policy model
applicable to the subject in whose name the certificate is issued.

The CA’s signature is in the form of a checksum on the public key encrypted with
the CA’s own private key, and verifiable by decrypting with the CA’s public key. The
certificates are thus secure from tampering by any entity but the authorized
(according to the defined policy model) CA, which alone possesses the private key
required to sign the data.

Use of Public Keys

The DCE certification service stores and retrieves “public” keys. The important
characteristic of such keys is that they exist and operate as pairs. Messages
encrypted under one of the keys can be decrypted by means of the other (and vice
versa); but messages cannot be encrypted and decrypted by means of the same
key.

626 OSF® DCE Application Development Guide —Core Components

This asymmetric behavior of the public key-pair makes it ideal for network
authentication purposes. One of the keys can be freely publicized in the network,
and the other kept secret with, say, a server principal who desires to use it to
authenticate itself. The server does this, whenever it is contacted by a prospective
client, by simply encrypting a message under its secret key and sending it back to
the client. The client then attempts to decrypt the message using the public key it
knows belongs to the principal it wishes to contact. If it can decrypt the message, it
regards the server as having authenticated itself. The same procedure can be used
to authenticate the client (using a different key-pair).

An important detail in the above scenario is that the prospective client “knows” that
the public key it uses to decrypt the server’s message really is that server’s public
key. The other (unmentioned) detail is that the client has to get the public key from
somewhere. The secure distribution of the public keys is the job of the DCE
certification service.

It is not desirable to have all the public keys indiscriminately accessible to
everybody, because then no one will have a reliable criterion for believing whose
key is whose. The public keys must be deposited in such a way that users can
always be sure that a given public key really “belongs” to the principal it is
supposed to belong to; otherwise entities will be able to impersonate each other

Key
B

Key
A

decrypted
text

encrypted
text

clear
text

Figure 85. How Public Keys Work: Part 1

Key
B

Key
A

still-
encrypted

text

encrypted
text

clear
text

Figure 86. How Public Keys Work: Part 2

Chapter 37. The DCE Certification Service 627

simply by switching public keys in the database they are retrieved from. Thus there
needs to be some way to make sure that only authorized entities have access to
principals’ public keys.

The certification service “certifies” public keys by storing them with “signatures”
generated by the distributors of the keys. The authenticating signatures on
certificates are themselves implemented by public/private key pairs. A signature is
simply the data of which the certificate consists, encrypted under the issuer’s
private key. A potential user of the certificate must possess the certificate issuer’s
public key. The issuer’s public key can then be passed (along with the certificate
contents, including the signature) to a library routine that will check whether the
signature can be successfully decrypted to produce the information in the rest of the
certificate. If the signature thus tested is found to be authentic, the user of the
certificate can be certain that it was issued by the entity whose public key it
checked against the certificate signature — namely, the principal that is supposed
to have issued the certificate. The public key signature thus ensures the authenticity
of data that can be distributed (and thus easily accessed) via the namespace.

A principal’s public key can also be used by entities to protect data being sent to
the principal. Data encrypted under the public key can be decrypted only by the
possessor of the private key.

Contents of Certificates

The primary information that any certificate contains is the public key that is to be
associated with some principal name. “Issuance” of a certificate means that the
certificate is deposited into the name service, and attached (as a directory attribute)
to the principal name it is to be associated with. Certificates are issued by certifying
authorities (CAs); the CA’s signature on the certificate is what certifies the public
key information that the certificate contains.

A certificate contains the following information:

subject name
The name of the principal for whom the certificate was issued. This is the
name under which the certificate contents will be read by users.

issuer name
The principal name of the issuer of the certificate, a CA (certifying authority)
authorized to issue certificates for the subject.

version number
Identifies the X.509 format version of the certificate.

serial number
The certificate serial number, used to identify certificates in certificate
revocation lists (CRLs).

start time
The time from which the certificate’s contents are considered to be valid.

end time
The time until which the certificate’s contents are valid.

signature algorithm
An OID (object identifier) that identifies the algorithm used to encrypt the
certificate signature.

parameters
Any parameters necessary to pass to the signature verification algorithm.

628 OSF® DCE Application Development Guide —Core Components

signature
A checksum of the certificate data, encrypted under the certificate issuer’s
private key, successful verification of which, by means of the issuer’s public
key, constitutes authentication of the certificate.

subject key
The public key that is to be associated with the subject of the certificate
(named by “subject name”).

subject UUID
(Optional) A UUID that identifies the certificate subject.

issuer UUID
(Optional) A UUID that identifies the issuer of the certificate.

The most important ingredients of a certificate are: the principal name which it is
stored under; the public key which it contains; and the signature of the CA that
issued it. These can be illustrated as shown in the following diagram:

Component Parts of the DCE Certification API

The DCE certification API is organized into four groups of routines:

v Routines for implementing and registering cryptographic modules

Cryptographic modules embody the signature algorithms that are used to sign
and verify certificates. Certificates are signed by certifying authorities (which are
usually invoked by system administrators or some other specially privileged
authority to create certificates), and are retrieved (and verified) by policy modules
(which are called by various applications seeking principals’ public keys).

v Low-level certificate access and manipulation routines

These routines represent the primitive certificate access operations which are
used in the implementation of policy modules.

v Routines for implementing and registering policy modules

Policy modules embody the rules and mechanisms for finding the public keys
that are associated with some specific set of principals.

High-level routines for use by applications that wish to access the certification
service

The following diagram shows how these four groups of functionality are related to
each other and to their two main groups of user: namely, system administrators and
DCE applications.

Public Key of X

Signer = Certifying Authority n

X

Figure 87. The Essential Parts of a Certificate

Chapter 37. The DCE Certification Service 629

Note that certifying authorities merely create the certificates and deposit them in a
place from which they can be retrieved (the namespace); they play no part in the
retrieval process itself. In fact, this could be said to be the main reason for
certificates in the first place: they allow a facility such as the directory service to be
used as the distribution point for public keys (that is, they allow an application to not
have to arrange for getting its keys to prospective clients by some private
mechanism), and at the same time they assure users that the key information that
they contain has not been tampered with.

High Level Certification API

The following certification API routines are intended for general DCE application
use:

v pkc_get_registered_policies(3sec)

v pkc_init_trustlist(3sec)

v pkc_append_to_trustlist(3sec)

v pkc_init_trustbase(3sec)

v pkc_retrieve_keyinfo(3sec)

v pkc_get_key_count(3sec)

v pkc_get_key_data(3sec)

v pkc_get_key_trust_info(3sec)

DCE application

Certification API System administrator

Certifying Authority

Crypto Module

Certifying Authority's
signature algorithm

implementation

Policy Module

Low-level API

Figure 88. Certification API Organization

630 OSF® DCE Application Development Guide —Core Components

v pkc_get_key_certifier_count(3sec)

v pkc_get_key_certifier_info(3sec)

v pkc_free_trustlist(3sec)

v pkc_free_trustbase(3sec)

v pkc_free_keyinfo(3sec)

v pkc_free(3sec)

Key retrieval consists basically of two operations:

1. Generating an “initial trust base”—a starting point for future certification paths,
consisting of a list of principals and their keys. An application would normally
generate its initial trust base on startup.

2. Using the trust base to retrieve key(s) for a specified principal.

In outline, a typical pattern for an application’s use of the high-level API might
proceed according to the following series of calls:

1. pkc_get_registered_policies(3sec)

Called once for the lifetime of the application. It returns a set of OIDs, which
point to all currently installed policies.

2. pkc_init_trustlist(3sec)

The caller creates an empty “trust list” to hold the set of certificates it initially
trusts.

3. pkc_append_to_trustlist(3sec)

Called one or more times, to add certificates or keys which the caller trusts to
its list of trusted keys.

Steps 2 and 3 together build up the initial trust list.

4. pkc_init_trustbase(3sec)

Computes a trust base, given the initial trust list. The caller uses one of the
OIDs returned in Step 1, together with the list of trust items constructed in Steps
2 and 3, to access a policy and initialize a “trust base” containing all the
certificates initially trusted under the specified policy, given the initial list of
trusted keys.

5. pkc_retrieve_keylist(3sec)

Called one or more times, for each individual’s public key that needs to be
looked up.

6. pkc_free_trustlist(3sec)

Frees storage allocated for the trust list.

7. pkc_free_trustbase(3sec)

Frees storage allocated for the trust base.

Policy Models

A policy model (or trust policy model) is simply some scheme or set of rules that
dictates which certifying authorities are authorized to issue certificates for which
principals. In other words, the policy model will prescribe whose signature is to be
regarded as a valid certifier for any given principal’s certificates. The policy module
which embodies these rules will use them in verifying the certificates it reads from
the namespace.

Since the certificates themselves are stored and accessed through the DCE
directory service (either GDS or CDS), one obvious policy model will be to organize

Chapter 37. The DCE Certification Service 631

the certifying authorities’ reponsibilities according to the same hierarchies. However,
models that employ other certifying hierarchies, or no hierarchy at all, are also
possible.

Certification Paths

The mechanism that the certification service uses to embody more complex models
is certification paths. A certification path is implemented by a sequence of
certificates. Rather than immediately accessing a given principal’s certificate to
determine its public key, the user must access the beginning of a chain of
certificates in order to get to the final certificate that contains the desired principal’s
public key. The intervening certificates consist of a series of public keys of CAs,
each certified by the next CA in the chain.

The following diagram shows how a certificate chain might be used to find the
public key of a principal, X:

In a policy model that uses certification paths, a given principal’s public key is found
by beginning with a certificate signed by a CA that is trusted by the entity
requesting the public key (in the above diagram, the trusted CA is CA0). This
certificate contains the public key of the next CA in the path, namely CA1. The
policy module reads this certificate, learns the key of the next CA, CA2, and so on,
until the certificate for X, the original target, is found.

Signer = Certifying Authority 3

X

Public Key of X

Signer = Certifying Authority 1

Public Key of CA2

CA2

Signer = Certifying Authority 0

Public Key of CA1

CA1

Signer = Certifying Authority 2

Public Keyo of CA3

CA3

Figure 89. A Certificate Chain

632 OSF® DCE Application Development Guide —Core Components

The idea of certificate chains is to propagate authenticity via certifying authorities
while not propagating the authorities’ responsibility, thus reducing the effects of the
compromise of single authorities, wherever they may exist in the hierarchy of
authorities.

Implementing and Registering a Cryptographic Module

The routines in an application’s cryptographic module make up the lowest level of
functionality in the certification mechanism. Each module consists of a set of (at
most) five routines, the most important of which are its sign() and verify() routines.
(Note, however, that the sign() routine is not mandatory.)

Contents of a Cryptographic Module

Cryptographic modules are registered in the form of pkc_signature_algorithm_t
structures, which contain the entry points for the following developer-supplied
routines:

open()
Opens the module

close()
Closes the module

verify()
Verifies a certificate signature

sign() Affixes a signature to a certificate

verify() and sign() are the routines that will actually call the
encryption/decryption functions appropriate to the algorithm.

name()
Returns the algorithm name, a character string that can be used in auditing
or diagnostic messages.

The pkc_signature_algorithm_t structure also contains the following data fields:

v a version number

Note that the version field of a cryptographic module is not the same thing as the
version number of a certificate. A crypto module’s version number is the version
of the certification API that it is designed for (which in particular specifies the
format of the pkc_signature_algorithm_t structure used to register the crypto
module).

v an object identifier (OID) identifying the signature algorithm

Accessing a Registered Cryptographic Module

Signature algorithms are identified by object identifiers (the character string returned
by name() is intended for use in diagnostic or auditing messages). Certificates
contain a field which identifies by OID the algorithm used to sign that certificate.

Policy implementors are recommended to access cryptographic modules mainly
through the following routines, which perform all locking necessary to make the
calls thread safe, and also transparently handle any context information that a given
cryptographic implementation may need.

v pkc_crypto_get_registered_algorithms(3sec)

Chapter 37. The DCE Certification Service 633

Call this routine to get an OID set describing the currently registered algorithm
implementations.

v pkc_crypto_sign(3sec)

Call this routine to get data signed.

v pkc_crypto_verify_signature(3sec)

Call this routine to verify signed data.

v pkc_crypto_generate_keypair(3sec)

Call this routine to generate a pair of public/private keys.

Information about a cryptographic module may be obtained by calling
pkc_crypto_lookup_algorithm(3sec) .

Data can also be signed and verified by looking up the desired algorithm (with
pkc_crypto_lookup_algorithm(3sec)) and then explicitly calling the module’s
(sign)() or verify() routine, although in this case the calling application must take
care to avoid multi-threading issues, and is also responsible for opening the crypto
module prior to use, and closing it afterwards.

A list of the OIDs of all currently registered cryptographic modules can be obtained
by calling pkc_crypto_get_registered_algorithms() . You can then access
information about a specific module by calling the pkc_crypto_lookup_algorithm()
routine. To sign data with a private key or to verify signed data with a public key,
either pkc_crypto_verify_signature() or pkc_crypto_sign() can be called.

In the low-level certificate interrogation API, the verify() routine is automatically
called by the pkc_crypto_verify_signature(3sec) routine.

Signature Algorithms Provided by DCE Certification

The signature algorithms provided with DCE 1.2.2 are md2WithRSA and
md5WithRSA .

Registering a Cryptographic Module

Perform the following steps to register a cryptographic module:

1. Implement the name() and verify() functions. These two routines must be
implemented.

2. If your module needs to perform any initialization or finalization tasks, implement
open() and/or close() routines for them. (These two routines are optional.)

3. Implement sign() and generate_keypair() functions if necessary. (These two
routines are optional.)

4. Create a pkc_signature_algorithm_t structure containing the entrypoints of the
routines implemented in Steps 1 to 3 (use NULL for the entrypoint of any
unimplemented routines), and use this structure to register the algorithm
implementation.

634 OSF® DCE Application Development Guide —Core Components

Implementing and Registering a Policy Module

A certification trust model simply prescribes which certifying authorities (CAs) can
legitimately issue (create and sign) certificates for which principals. A trust model is
implemented by a policy module. The ultimate purpose of the certification service is
to return public keys, and it is the job of the routines in a policy module to do this.
Looked at from this point of view, policy modules are mainly distinguished from
each other by the two following things:

v Which principals a policy module is willing to return keys for.

v Which CAs a module is willing to trust the signatures of on the certificates from
which it retrieves keys.

A principal’s certificates will be retrieved from a directory service entry (exactly what
entry depends on the policy used), and the policy module will only look for certain
signatures known to it on the certificates it retrieves. However, direct retrieval via
the subject’s directory entry name is only one trust model. There can be many
others. For example, see the discussion of certification paths above.

Policy Modules Provided with DCE Certification

Several certification policy modules are provided by DCE. These policies are
described in the following sections.

Direct secd Lookup: DCE Registry Lookup Policy Model

The registry lookup policy module simply looks up principals’ public keys in the DCE
registry, and returns them. These keys are not held in certificates, but are stored as
extended registry attributes.

If a caller of the high-level certificate retreival API has DCE credentials, then the
registry retrieval policy will authenticate the registry as part of the retrieval
operation. If no credentials are available, no authentication is possible. In this case,
keys will still be returned, but the certificate API will indicate to the caller that the
keys are untrusted.

DCE Hierarchical Trust Policy

The DCE hierarchical trust policy supplied with DCE 1.2.2 supports hierarchical
cells/DASS style trust paths. A trust path between principals A and B consists of
zero or more up links, followed by zero or one cross link, followed by zero or more
down links. The DCE hierarchical trust policy extension uses the DCE namespace
certificate store extension (NCSE) for certificate retrieval.

Each cell is assumed to operate as a certification authority (CA) for top level
principals registered within that cell. Thus, the CA for the cell over_cell is assumed
to create a certificate for, say, the principal felix within over_cell , where the
certificate signatory is “over_cell” and the certificate target is “over_cell/felix”. If a
cell employs structured names for principals, each level is considered to act as a
CA for its subordinate. For example, if cell “over_cell” contains a principal
admin/JohnSmith , then over_cell/admin/JohnSmith is certified by two
certificates, the first signed by over_cell and certifying over_cell/admin , and the
second signed by over_cell/admin and certifying over_cell/admin/JohnSmith .

To avoid requiring that the cell’s root CDS directory be used for storing certificates
for the cell’s principals, the DCE NCSE provided in DCE 1.2.2 allows any directory

Chapter 37. The DCE Certification Service 635

(in CDS or GDS) to be given an attribute (with OID 1.3.24.9.15) that names a
subdirectory (of the directory to which the attribute is given) within which certificates
are to be stored. The value of this attribute is a string which will be appended to the
name of the directory to give the name of a new directory within which certificates
will be stored.

For example, if the root directory in the cell over_cell is the directory to which this
“certificate directory” attribute is attached, and the attribute contains the value
principals , the DCE NCSE will attempt to retrieve the certificate for over_cell/P
from the CDS directory over_cell/principals/P . If the “certificate directory” attribute
is missing or empty, the cell root directory will be searched for principal certificates.
(Note that the insertion of the “certificate directory” attribute value applies only to
locating certificates within the directory service; the above certificate would contain
the name over_cell/P as its actual subject.)

At most one “certificate directory” attribute is considered when looking for
certificates for a given name, according to the following algorithm:

v Starting with the name for which certificates are desired, RDNs are removed from
the right of the name until either a directory is found that contains the “certificate
directory” attribute, or the namespace root is reached.

In general, CDS administrators should define the “certificate directory” attribute
within each CDS root directory, rather than storing certificates within the root
directory. As well as reducing clutter in the cell root directory, doing this has
efficiency benefits (terminating the search for the certificate directory at each CDS
root), and also prevents the definition of this attribute at a higher level within the
DCE global namespace from influencing the placement of certificates within a cell’s
namespace.

PEM-like Policy

No explicit PEM-like policy is provided with DCE 1.2.2; however, the DCE
hierarchical policy may be used in a PEM-like fashion by specifying root CA keys as
the initial trust list, rather than keys belonging to the caller’s immediate CA.

The Low Level Certificate Manipulation API

The certificate manipulation API is a C++ interface. C++ must be used to retrieve
the certificates into trust lists and manilupulate them there.

The contents of the

/usr/include/dce/asn.h

and

/usr/include/dce/x509.h

header files define some of the basic types used by the low-level certificate
manipulation routines, including the actual structure of certificates. Following is a list
of the low-level certificate routines defined in the

/usr/include/dce/pkc_certs.h

file:

636 OSF® DCE Application Development Guide —Core Components

v pkc_add_trusted_key(3sec)

v pkc_lookup_keys_in_trustlist(3sec)

v pkc_lookup_key_in_trustlist(3sec)

v pkc_lookup_element_in_trustlist(3sec)

v pkc_check_cert_against_trustlist(3sec)

v pkc_revoke_certificate(3sec)

v pkc_revoke_certificates(3sec)

v pkc_delete_trustlist(3sec)

v pkc_copy_trustlist(3sec)

v pkc_display_trustlist(3sec)

Policy Module Implementation

Implementation of a policy module consists essentially of writing
establish_trustbase() , delete_trustbase() , retrieve_keyinfo() and
delete_keyinfo() routines, and associated interrogation routines. The module will
find certificates for principal names according to the rules set out for that module,
verify their signatures, and return the public keys found in them to the original
callers.

Certificate Revocation Lists (CRLs)

Certificate revocation lists are lists of certificates whose contents are no longer to
be believed. Use of CRLs is policy-specific. pkc_certs provides objects for parsing
and manipulating CRLs, and for using them to invalidate portions of a trust list.

Accessing a Registered Policy Module

Policy modules are registered in the form of pkc_policy_t structures, which contain
the entry points for the following developer-written routines:

open()
opens the module

close()
closes the module

retrieve_keyinfo()
returns the public key for a specified principal name

name()
Returns the name of the policy.

establish_trustbase()
Creates a trust base.

delete_trustbase()
Deletes a trust base.

delete_keyinfo()
Deletes a keyinfo handle.

get_key_count()
Returns the number of keys a keyinfo handle contains.

get_key_data()
Retrieves an individual key.

Chapter 37. The DCE Certification Service 637

get_key_trust()
Returns the type of trust established for a specific key.

get_key_certifier_count()
Returns the number of certifiers in the trust path that certified a key.

get_key_certifier_info()
Returns information about a specific certifier of a key.

The pkc_policy_t structure also contains the following data fields:

v a certificate version number

v an object identifier (OID) identifying the policy module

Policy modules, similarly to signature algorithms (cryptographic modules), are
identified by object identifiers (the character string returned by name() is intended
for use in diagnostic or auditing messages).

Also similarly to cryptographic modules, there are two ways in which cryptographic
modules can be accessed: either by a single call to which the identifying OID is
passed (this is the recommended method); or by calling
pkc_plcy_lookup_policy(3sec) and then (for example) the module’s
(*retrieve_key()) routine to obtain the public key (a list of the OIDs of all currently
registered policy modules can be obtained by calling
pkc_plcy_get_registered_policies()).

Registering a Policy Module

You must implement the following routines in any policy module:

name()
Returns the name of the policy.

establish_trustbase()
Creates a trust base, which is a policy-specific data structure based on the
initial set of trusted keys.

retrieve_keyinfo()
Given a trust base, returns a handle to keys for a specific principal.

delete_trustbase()
Deletes a trust base.

delete_keyinfo()
Deletes a keyinfo handle.

get_key_count()
Given a keyinfo handle, returns the number of keys it contains.

get_key_data()
Retrieves an individual key from a keyinfo handle

get_key_trust()
Returns the type of trust established for a specific key, and the purpose(s)
for which that trust applies.

The following policy routines are optional:

open(), close()
These routines perform any initialization and/or finalization tasks required by
the module.

638 OSF® DCE Application Development Guide —Core Components

get_key_certifier_count()
This routine is required only for policies that return CERTIFIED_TRUST
keys; it returns the number of certifiers in the trust path that certified a key.

get_key_certifier_info()
This routine is required if the module implements
get_key_certifier_count() . It returns information about a specific certifier
with the certification path of a specific key. Certifier 0 is the immediate
certifier of the key; certifier 1 is the CA that certified certifier 0, and so on.

Once you have implemented all necessary routines for you module, you must
create a pkc_policy_t structure containing their entrypoints. Unimplemented
routines’ entrypoints should be specified as NULL .

Registering the module

The module is registered by calling the registration function and passing it a
pkc_policy_t structure, which contains the entry points for the module routines
described above:

pkc_plcy_register_policy()

Chapter 37. The DCE Certification Service 639

640 OSF® DCE Application Development Guide —Core Components

Part 6. Appendixes

641

642 OSF® DCE Application Development Guide —Core Components

Index

Special Characters
&, reference operator 243

A
ACCEPT credential type

creating 535
defined 533

accounts, registry database 548
ACF 317, 425

attribute list 425
body 427
compiling 425
cxx_delegate attribute 275, 276
cxx_lookup attribute 253
cxx_new attribute 248
cxx_static 248
cxx_static attribute 249
features 425
file extension 425
grammar synopsis 453
header 426
naming 425
represent_as attribute 273
sstub attribute 248, 253
sstub attribute use 246
structure 426
table of attributes 452

ACL 205, 523, 525
access checking 528
contents 525
definition 523
editor 592
entries 525
errors 593
extended naming 594
handle 592
manager interface 594
manager types 523
names 492
network interface 594
permissions 190

action after a message 74
Ada compiler

generating reentrant code 129
additional parameter 430, 433
address space association 404
aliasing 391, 392
allocating memory 313, 396, 438
announcements 37
API

access control list 591
backing store 91
definition of 151
extended attribute 551
extended privilege attribute 537
ID map 601
key management 587

API (continued)
login 591
password management 621
registry 545
security 483
security services and facilities 488
serviceability 51

application
application 149
Basic RPC tasks of 150
messaging 37
RPC code 150
RPC thread 195

Application Programming Interface 488
array 383

array_declarator 383
attributes 372, 376, 385, 386, 387, 388
bounds 383
conformant 383
conformant and varying 383
fixed 383
open 383
rules for 389
varying 383

array_attribute attribute 376
array_declarator 383
ASCII text strings

binary timestamps translated to 459
asynchronous cancelability 117
asynchronous signals 125
at-most-once semantics 178
attempt_rebind 415
attempt_rebind_n 415
attribute

code sets 294
instance 552, 554
schema 551
type 552

Attribute Configuration Language 425
syntax 425, 453

attributes
ACF 425
array 376
array_attribute 376
code 452
condition variable 112
IDL 360
ignore 377
inherit scheduling 111
mutex type 111
object 109
out 360
privilege 525
scheduling policy 110
scheduling priority 111
stacksize 111
thread 110

audit 603

643

audit 613 (continued)
APIs 613, 614, 615, 616, 617, 618, 619
clients 603
code point 604
data type 615
event 604
event class 606
event class number 606
event name 604
event number 604, 605
record 607, 617
service 603
trail file 607, 616

authenticated RPC
access checking 204
and DCE security 202, 205
and RPC runtime 202
authenticate 195
authentication 202, 203
authorization 195, 202
basic operations 184
choosing a server principal name 217
definition 201
protection level 202, 203
routines 205
server principal name 202, 206

authentication 202, 485, 493
commands 497
intercell 519
mutual surrogates 520
of applications that use GSSAPI 518
protection level 203
protocols 496, 523
public key protocol 498
server principal name 202, 206
surrogates 493
third-party 503
user-to-user protocol 515

Authentication Service 493
authorization 202, 204, 485, 523

certified 205
DCE 205
name-based 205
options 204
protocols 523
with PACs 205

authorization interface
authenticated RPC 195

auto_handle attribute 426, 428, 452
automatic binding 428
avoiding

deadlocks 130
nonreentrant software 128
priority inversion 129
race conditions 130

B
backing store

closing 95
creating a new 94

backing store (continued)
deleting items from 95
iterating through 96
library 91
locking 97
opening an existing 94
retrieving data from 95
storing data into 95
traversing the keys of 96

backing store API
dce_db_close() 95
dce_db_delete() 96
dce_db_delete_by_name() 96
dce_db_delete_by_uuid() 96
dce_db_fetch() 95
dce_db_fetch_by_name() 95
dce_db_fetch_by_uuid() 95
dce_db_inq_count() 96
dce_db_iter_done() 96
dce_db_iter_next() 96
dce_db_iter_next_by_name() 96
dce_db_iter_next_by_uuid() 96
dce_db_iter_start() 96
dce_db_lock() 97
dce_db_open() 94
dce_db_store() 95
dce_db_store_by_name() 95
dce_db_store_by_uuid() 95
dce_db_unlock() 97

backing store usage 253
base class rpc_object_reference 410
base type specifiers 369
BIH 459
Binary Timestamps 463
bind() and local objects 271
bind() by binding handle 263
bind() by name 262
bind() by object binding handle 413
bind() by object name 413
bind() by object reference 269, 414
bind() by object UUID 413
bind() by UUID 263
binding 169

automatic 428
context handle 407
explicit 430
handle 171
implicit 431
information 171

binding attribute 209
searches of 220

binding by object binding handle 263, 413
binding by object name 262, 413
binding by object reference 269, 414
binding by object UUID 263, 413
binding_callout attribute 427, 448, 452
BLISS compiler

generating reentrant code 129
blocking system calls 123
body, ACF 427
boolean type 374

644 OSF® DCE Application Development Guide —Core Components

Booleans 367
boss/worker software model 104
BOTH credential type

creating 535
defined 533

broadcast attribute 361, 370, 371
broadcast semantics 179
broadcasting 370, 371
buffer decoding 350
buffer-sizing routines 289
buffering styles 349
byte type 374

C
C

compiler 129
library interfaces 490, 491

C++
generating from IDL 409
optional parameters 251

C++ and name conflicts 249
C++ class via IDL interface 241
C++ clients for C servers 277
C++ DCE applications 241
C++ delete operator 258
C++ enhancement 271
C++ features 241
C++ new operator 245, 256
C++ objects as parameters 272
C++ output from IDL 360
C++ overloading 262
C++ reference operator 243
C++ reference operator, & 412
C++ scope operator 258
C++ support in IDL 409
C and C++ integration 277
C Client for C++ Servers 278
call queue 345
call thread 196
calling

fork() 123
UNIX services 121

calls
registry database 547
registry server 545

cancel-timeout period 199
canceled thread 199
canceling a thread 117
cancels

RPC 179, 199
CATCH_ALL statement 133, 137, 138
CATCH statement 133, 137, 138, 167
CDS 262

and security namespace 492
cell

and security 494
name 210
profile 228
root 210
RPC 210

cell-relative name
RPC 210

certificate of identity 581, 584
character set 282

compatibility evaluation 284, 299
evaluation 303
interoperability 281
local 283

characters 368, 374
class hierarchies 243
class hierarchy 241
class libraries 272
client 425

and server components 469
application thread 196
authentication information, RPC 195
binding handle 176
binding information 175
definition of 149
exceptions 432
memory 397
memory management 397

client-local objects 258
client_memory ACF attribute 432
client proxy class 410
client-side password management API 622
client stub for servers 249
clients and distributed objects 256
clients becoming servers 316, 399
clients use server stub 259
closing a backing store 95
COBOL compiler

generating nonreentrant code 129
code attribute 426, 435, 452
code point 604
code set 282

array 294
attribute 294
compatibility evaluation 284, 299
conversion 282, 285, 286, 289, 290, 291, 303
evaluation 284, 303
exporting 284, 294
intermediate 294, 303
interoperability 281
ISO 10646 294, 303
local 283, 293, 299
network 285
registry 284
removing from the namespace 295
supported 284, 294
tags 287, 288
universal 294, 303

combination software model 105
comm_status attribute 167, 317, 427, 429, 432, 452
commands

authentication 497, 509
idl 425

communication failure 167, 317
context rundown 406
status attributes 432

communications
protocols 170
RPC protocol 170

Index 645

compatible
binding information 173
programming language 154

compilers
generating nonreentrant code 129
generating reentrant code 129

compiling
ACF 425

complex types 416
concurrency control

RPC 200
condition variable 113

attributes 112
diagram of 114
figure of 115
signaling 130

configuring a new server remotely 20
conformance in dimensions other than the first 384

code example 384, 385
conformant and varying array 383
conformant array 383
connection-oriented RPC protocol 170
connectionless RPC protocol 170
constant declarations 367
constant expressions 367
constants

Booleans 367
characters 368
integers 367
nulls 368
strings 367, 368

constructed data types 376
constructed type specifiers 369
constructor 410
constructors in C++ 246
ContactProvider

procedure 471
remote procedure call 470

context
login 581

context handle 395, 404
and binding 407
attribute 404
creating new 407
definition of 321
resource recovery 406
usage rules 407

context_handle attribute 361, 368, 371, 372, 404
context rundown procedure 179, 406
conventions 158
conversion method 303
conversion model 303
Coordinated Universal Time 459
creating

attributes object 109
context 407
files with jacket routines 121
new backing store 94
threads 107

credentials
ACCEPT credential type 533

credentials (continued)
and principal types 533
BOTH credential type 533
context initiators 534
creating ACCEPT type credentials 535
creating BOTH type credentials 535
creating credential handles 534
creating INITIATE type credentials 534
default 533
delegating 535
gss_acquire_cred() routine 534
GSSAPI 533
INITIATE credential type 533
portability of applications and 533
registering principal names for 535
types 533
using defaults to accept a security context 534
using defaults to initiate a security context 534

cross-cell authentication 203
cs_byte type 289
cs_char attribute 288, 289, 427, 442, 452
cs_drtag attribute 288, 427, 446, 452
cs_rtag attribute 288, 427, 446, 452
cs_stag attribute 288, 427, 446, 452
cs_tag_rtn attribute 288, 289, 292, 427, 447, 452
cstub attribute 427, 452
customized handles 403
cxx argument to -lang 241
cxx_delegate 427
cxx_delegate attribute 275, 276, 452
cxx_lookup 427
cxx_lookup attribute 253, 452
cxx_new attribute 248, 450, 452
cxx_new attribute of ACF 246
cxx_static attribute 248, 249, 451, 452

D
data

encryption mechanisms 496
thread-specific 116

Data Encryption Standard 496
data hiding 272
database storage 253
DCE

authorization protocol 523
host daemon (dced) 5
host services 5
Threads Exceptions 139
Threads signal handling 126
XPG4 routines 43

dce_db_fetch_by_uuid() 255
dce_db_open() 255
dce/utc.h header file 464
dcecp

rpcentry export 252
dced, DCE host daemon 5
dced services

binding to the services 7
configuring a new server remotely 20
enabling and disabling 24
endpoint mapper 5, 6

646 OSF® DCE Application Development Guide —Core Components

dced services (continued)
entry lists for services 7, 12
host service data 11
hostdata management 5
key table management 5, 25
remote control of servers 19
remote host service data 15
security validation 5, 24
server management 5
starting and stopping servers 22

deadlock
avoiding 130

debug messaging 78
decode attribute 427, 440, 452
decrementing reference count 258
default

authentication protocol 489
authorization protocol 523
pointer semantics 391
profile 214
profile element 214

default credentials 533
defining

epilogue actions 136
delegation 537

and GSSAPI credentials 535
delegation for C++ objects 275
deleting

attributes object 109
condition variables 131
items from a backing store 96
threads 108

derived interface 411
DES 496
destructor 410
destructors in C++ 246
determining the identity of an encoding 356
directional attributes 373
directory pathname

RPC 210
directory service

entries 210, 211
handle 218
when to use 175

disabling memory 396
disabling services of a server 24
distributed applications 6
distributed-dynamic objects 245
distributed objects 241
distributed objects as parameters 249
double type 374
DTS

API routines 479
relative time structures 463
routines 459
security dependencies 491
synchronization algorithm 477
time structures 463, 464

dtsprovider files 473
dynamic buffer encoding 350
dynamic endpoint 177

dynamic objects 244
dynamically creating objects 252

E
editor, ACL 592
enable_allocate attribute 427, 438, 452
enabling memory 396
enabling services of a server 24
encapsulated data 243
encapsulated unions 377
encapsulating RPCs 410
encode attribute 427, 440, 452
encoding and decoding of data 93
encryption mechanisms 496
endpoint

attribute 361, 364
map 340
mapper service 5, 6
register operation 188, 231
role of within server address 171
unregister operation 188

endpoint map 251
ENDTRY statement 133, 137, 138, 167
entry point vectors in C++ 245
entry types, ACL 525
enumeration 380
environment variable

NSI 219
epilogue actions 136
error displays 37
error_status_t type 375, 433
errors 167, 317, 427

ACL 593
attributes 427

evaluation routine 303
establishing 299

event class 606
event class number 606
event points 63
example program

prime number search 141
exception codes, RPC exceptions 317
exception-returning interface 133, 141

invoking 135
syntax for C 133

exceptions 317, 429
and definitions, table of 139
attribute 317, 361, 364
catching 136
client 167, 432
declaring and initializing 135
defining a region of code to catch 136
defining epilogue actions 136
definition 135
extern_exceptions attribute 439
handler 317
importing error status 137
invoking the exception-returning interface 135
naming convention for 137
operations on 135
raising 135, 167

Index 647

exceptions 139, 429 (continued)
rules for modular use of 139
server 167, 432

exceptions in C++ 245
execution semantics 178
expiration age 226
explicit binding 430
explicit_handle attribute 426, 430, 452
export operation 183, 189
exporting code sets to the namespace 284, 294
extended ACL entry type 528
extended attribute

API 551
extended naming, ACL 594
extended privilege attribute

API 537
extern_exceptions attribute 317, 427, 439, 452

F
failures 317, 427, 429

attributes 427
fault_status attribute 167, 427, 432, 452
FIFO (First in, First out) scheduling 110
file

extension, ACF 425
IDL 469
name, ACF 425
reading/writing with jacket routines 121

filter 606
subject identity 607

FINALLY statement 134, 137, 138
finding remote objects 262
first_is attribute 361, 388, 395
fixed array 383
fixed buffer encoding 349
float type 374
floating-point numbers 374
fork()

calling 123
freeing backing store memory 95
freeing memory 313, 396, 438
full pointer 392
fully bound binding handle 172
function results, pointers 395
functions generated by IDL 412

G
general cancelability 117
generating C++ files 409
generating nonreentrant code 129
Generic Security Service 484
get_binding_handle() function 416
global lock 127, 128
Greenwich Mean Time (GMT) 459
group

RPC 208
RPC attribute 209, 220
RPC member 213

GSSAPI 484
about 484

GSSAPI 535 (continued)
and delegation 484
authentication and authorization 485
authentication process 518
context acceptor defined 484
context initiator defined 484
data integrity with 495
Kerberos and 485
per-message security 495
protection levels 495

H
handle 372

ACL 592
attribute 361, 368, 395, 403
context 404
customized 403

handle_t type 375
handlers not provided with UNIX signals 126
header

ACF 426
heap attribute 427, 438, 452
host profile 428
host service naming 8
hostdata management service 5
hyper type 373

I
iconv routines 286
ID map API 601
idempotent attribute 361, 370, 371
idempotent semantics 178
identities

delegating 537
IDL 425

array 383
array attributes 376
attributes 360
basic data types 373
boolean type 374
byte type 374
case sensitivity 359
comments 359
const declaration 367
constant declarations 367
constructed type specifiers 369
constructed types 376
customized handles 403
data types 359
declarations 359
encoding services 93
encoding services handles 350
enumerations 380
file 469
grammar synopsis 418
identifiers 358
idl_macros 369
import declarations 361, 366
import statement 264
interface definition body 360

648 OSF® DCE Application Development Guide —Core Components

IDL 383 (continued)
interface definition header 383
interface definition structure 360
international characters 375
keywords 358
lexical elements 358
memory management 313
named types 368
operation declaration 370
parameter declarations 371
pipes 380
predefined type specifiers 370
punctuation characters 358
special symbols 357
static keyword 247, 412
strings 389
structures 376
syntax notation 357
Time-Provider process file 473
type attributes 368
types 374
typography 357
unions 377
unsigned integer types 374
user-defined exceptions 317
whitespace 358

idl_ macros 369
idl command 425
IDL compiler

-lang cxx option 241
-no_cxxmgr option 244

idl-generated class hierarchy 410
idl-generated functions for C++ 412
IDL inheritance operator 360
IDL support for C++ 409
idl_void_p_t type 396
ignore attribute 361, 377
implicit binding 431
implicit_handle attribute 426, 431, 452
import declarations 366
import operation

RPC 183
import statement 264
in attribute 361, 372, 373
inaccuracy, specifying ISO 460
include in ACF 250
include statement 427
include statement in ACF 248, 427
incremental decoding 350
incremental encoding 349
inherit an interface 360
inherit scheduling attribute 111
inheritance 272
inheritance of interfaces 411
inheritance operator, : 264
initialization routines, one-time 116
initializing object-oriented servers 244
INITIATE credential type

creating 534
defined 533

input jacket routines 121

instance
of an RPC server 211, 230, 231, 234, 343
RPC UUID 170

int type 373
integers 367, 373, 374
interaction of attributes 441
interface 149

body 427
C library 490
checking if supported 270
definitions 157, 357, 360
exception-returning 133
handle 189
header 426
interface 149
password management facility 491
registry database 547
RPC identifier 213
RPC specification 187
RPC UUIDs 156
security server 488
security services and facilities 488
UNIX security 490
UUID 156, 157, 173

interface class 243, 410
Interface Definition Language 149, 425
interface inheritance 264, 360, 411
intermediate code set 294, 303
international characters 282, 375

representing in .idl files 286
International Organization for Standardization 460
International Time Bureau 459
internationalized RPC 281

ACF for 288
application development steps for 286
client code 299
evaluation routines 303
execution model 282
interface definition for 286
server code 293
setting locale in 293
stub support routines 285, 289

ISO format 460
iterating through a backing store 96

J
jacket routines 121
join primitive 116

K
KDC 498
KDS 493
Kerberos

available using GSSAPI 485
Key Distribution Center 498
key distribution service 493
key management 587
key management API 587
key table management service 5, 25

Index 649

L
last_is attribute 361, 387, 395
leaf name, RPC 211
length_is attribute 361, 388, 395
levels of protection 494

authenticated RPC 495
GSSAPI 495

local application thread
RPC 195

local attribute 361, 365
local code set 293
local type 436
locale 281, 299

setting 293, 299
lock

global 128
locking a backing store 97
locking a mutex 130
login context 581, 586

changing a groupset 585
expiration 584
importing and exporting 585
inheritance 583
validating 582

logs 37
long type 373
lookup function for objects 252
lookup operation

RPC 183

M
major version number 172, 173
making backing store headers 96
manager

RPC 181
manager class 243, 268
manager class for server 411
manager class functions 244
manager class header file 243
manager implementation 267
manager interface, ACL 594
managing distributed objects 244
managing several objects 91
mapping string-to-UUID 601
marshalling

RPC 151
masks

ACL entry types 528
max_is attribute 361, 386
maybe attribute 361, 370, 372
maybe semantics 179
memory

advanced management support 397
allocating 313, 396, 438
disabling 396
enabling 396
freeing 313, 396, 438
heap attribute 438
management 313, 316, 396, 397, 398, 399, 438

memory (continued)
routines 397
server threads 316, 398
setting client 397
setting for thread stack 111
swapping memory 397

memory management 349
message

action attributes 74
catalog 37, 41, 51
filtering 76
output routines 43
prolog suppression 75
retrieval routines 43
routing 69
severity 67
table routines 43
text format notation 67

messaging
interface 37
routines and internationalized RPC 281

methods 244
min_is attribute 361, 385
minor version number 172, 173
models for multithreaded programming 103
modular use of exceptions 137
multiple interfaces 264, 271
multiple managers 267
multiple operations on a single IDL encoding services

handle 356
multithreaded applications 200
multithreaded programming 129

introduction 103
potential disadvantages 105, 129, 130
software models 103

mutex 112
locking before signaling condition variable 130
type attribute 111

mutual authentication surrogates 520

N
name

domain 546
name-based authorization 532
name service and objects 251
named objects 244, 262

registering 250
named types 368
names 158

directory service entry 216
server principal 217

naming objects 250
NDR 172
nested remote procedure call 338
network

ACL interface 594
address 171
addressing information 171
descriptor 179
protocol 170
type 436

650 OSF® DCE Application Development Guide —Core Components

network code set 285
Network Data Representation 172
never_rebind 415
new operator 245
nil UUID

RPC 173
no client stub exception 250
no server stub exception 259
nocode attribute 426, 435, 452
nonencapsulated union 379

code example 379
nonreentrant code 129
nonreentrant software 105, 128, 129

using global lock to avoid 128
nonterminating signals 125
nonthreaded libraries 127
NSI

attribute 218, 294
attributes 208, 220
binding attribute 209
CDS ACL permissions 190
directory service entries 208
directory service handle 218
directory service names 216
export operation 189
group attribute 209
import operation 183
lookup operation 183
object attribute 209
operations 183
potential binding 188
profile attribute 209
search operations 212, 220
search path 215
unexport operation 183
usage models 229, 233

null constants 368

O
object

attribute 209
managing several 91
persistence of 91
RPC 173, 180
UUID 170

object creator function 256, 450
object creator operation 266
object hierarchies 264
object location transparency 259
object lookup function 252, 253, 452
object name in name service 251
object not found exception 253
object-oriented servers

initializing 244
object reference 257, 410, 412
object references

local and remote 262
object security 414
object table 251, 252
object UUID 251
objects

automatic rebinding 415

objects (continued)
creating dynamically 415
delegation 275
developing distributed 241
library objects as parameters 272
local and remote 259
multiple interfaces 269
naming 250
persistent 252
registering 415
registering named 250
representation 273
swapping interfaces 269

one-time initialization routines 116
opaque pointer 404
open array 383
opening an existing backing store 94
opening files with jacket routines 121
operation

attributes 371
declaration 370, 371, 372

operations 370, 371, 372
NSI 183
on exceptions 135

optional parameters 251
out attribute 361, 372, 373
output jacket routines 121
overloaded functions 412
overloaded operation 262

P
PAC 205
parameters 371, 372, 373, 394
parameters and remote objects 249
parent directory 211
partially bound binding handle 172
PASCAL compiler

generating reentrant code 129
password management 621

facility 491
network interface 623

password management API
client side 622
rsec_pwd_mgmt_gen_pwd() 623
rsec_pwd_mgmt_str_chk() 623
sec_pwd_mgmt_free_handle() 622
sec_pwd_mgmt_gen_pwd() 622
sec_pwd_mgmt_get_val_type() 622
sec_pwd_mgmt_setup() 622
sec_rgy_acct_passwd() 622

path
for NSI searches 215

PCS 282
per-message security 495
persistent object storage 253
persistent objects 252
pickling of data 93
pipelining software model 104
pipes 380

out 337
pointer_default attribute 361, 365, 391, 395

Index 651

pointer levels 394
pointers 390, 393, 404

array attributes on 395
in function results 395
opaque 404

pointers to abstract classes 257
polymorphism 272
port 364
Portable Character Set (PCS) 282
POSIX

sigaction service 126
sigwait service 126

potential binding
RPC 188

preauthentication 581
predefined type specifiers 370
predicate 113

diagram of 114
prime number search example 141
principal

definition of 493
priority

inversion 129
of scheduling routines 118

private data 243
private key storage server (PKSS) 499
privilege

attributes 525
privilege attribute certificate 205
privilege service 493
privilege ticket-granting ticket 509
procedure declaration 149
processes

Time-Provider 478
profile 208, 213, 215, 228

attribute 209, 220
program responses 37
programming with threads 121
prompts 37
protection levels 202, 203, 494

authenticated RPC 495
GSSAPI 495

protocol
authentication and authorization 485
DCE Authorization 485, 523
family 364
for RPC communications 170
name-based authorization 532
sequence 171

protocols
authentication 496
authentication and authorization 483, 484
shared-secret authentication 494
third-party authentication 503
user-to-user authentication 515

proxy 249
proxy class 243
proxy class for client 410
PTGT 509
pthread functions 108, 128
ptr attribute 361, 368, 377, 378, 390, 392

public interface 243
public key protocol 498
public profile 228

Q
query site 545

R
race conditions 129
RAISE statement 134
raising exceptions 135
reading/writing files with jacket routines 121
realm 494
reentrant code 105, 129
ref attribute 361, 368, 372, 377, 390, 391, 412
reference count decrement 258
reference counting 247
reference operator, & 243, 412
reference pointer 391
reflect_deletions attribute 361, 372
register_named_object() 250, 251, 255, 263, 415
registering code sets in the namespace 284
registering named objects 250
registry 545, 546, 549

database 493
database accounts 548
database calls and interfaces 547
extending 551
server 545
service 202, 493

relative time 461, 462
remote

control of servers 19
management 6
serviceability interface 84

remote and local object references 262
remote and local objects 259
remote-dynamic objects 256
remote objects as parameters 249
remote procedure call 149
represent_as attribute 273, 427, 436, 452
representation of C++ objects 273
request buffer 344
RERAISE statement 133
resource model 233
restrictions on handle use 351
retrieving backing store headers 96
retrieving data from a backing store 95
routines

ACF 436
context rundown 406
error 317
jacket 121
RPC 396, 397, 438

RPC
authenticated 483
interface 155, 173, 187, 189, 213
internationalized 281
object 173, 180
operations 188

652 OSF® DCE Application Development Guide —Core Components

RPC (continued)
parts of application 483
profile 208, 213, 215, 228
profile element 213
protocol 170, 171, 172
public profile 228
resource model 233
runtime 152, 188, 210, 470
search path 215
server instances 234
thread 197

RPC base class 243
RPC_DEFAULT_ENTRY 263, 413, 428
RPC encapsulation 410
rpc_ep_register_no_replace(3rpc) 251
rpc_mgmt_set_server_stack_size() routine 393
rpc_ns_binding_export() 252
rpc_object_reference base class 410
rpc_x_no_client_stub exception 250
rpc_x_no_server_stub exception 259
rpc_x_object_not_found exception 253, 255
RR (Round Robin) scheduling 110
rundown 406
running routines with fork() 122
running Time-Provider process 478
runtime 404, 428

RPC library 470

S
sams utility

and internationalized RPC 281
sams utility for message catalog generation 37, 51
saved server state 404
scheduling 111, 118

policy attribute 110
threads 118

Schema 551, 552
scope operator, :: 258
search

operations 212, 218, 220
path 215

secure() function 414
security

commands used in authentication 497, 509
contexts 535
DTS dependencies 491
for peer-to-peer applications 484
risks 484
server 487, 488, 494
service 217, 492
services and authenticated RPC 485
services and GSSAPI 485
UNIX versus DCE 484
validation service 5, 24

security for objects 414
sending and receiving messages on sockets 121
server 149, 425

application thread 196
binding handle 172
binding information 172

server 19, 425 (continued)
controlling remotely 196
distinguishing RPC instances 231, 234
entry 208
exceptions 432
failure 317
initialization code 152
instance 211
interchangeable instances 230, 343
management service 5
memory management 438
messages 51
state 404
threads 316, 398

server manager class 411
server registration in C++ 244
server stub in clients 259
servers use client stub 249
service

model 229
RPC 156

serviceability
and the __FILE__ macro 75
event points 63
interface 37, 84
interface logs 73

serviceability API
DCE_SVC_DEFINE_HANDLE() 64
dce_svc_printf() 65
dce_svc_register() 64
dce_svc_set_progname() 64
dce_svc_unregister() 64

services
authentication 493
key distribution 493
privilege 493
registry 493
ticket-granting 493

SetRebind() function 415
setting

client memory 397
shared-secret authentication protocol 494
short type 374
signal handlers 126
signals 124
sigwait service 126
size_is attribute 361, 386
skeletal interface definitions 157
small type 374
spawning server threads 316, 398
sstub attribute 246, 248, 250, 253, 427, 452
stacksize attribute 111
starting

threads 107
starting and stopping servers 22
state transitions, threads 107
static function renaming 259
static function specification 451
static keyword 370, 412
static keyword in IDL 247
static member functions 247, 258

Index 653

status 429
attributes 427, 432
codes 219

status codes 226, 345
storing data into a backing store 95
string

attribute 361, 369, 371, 372, 377, 378, 389
bindings 175, 192

string-to-UUID mapping 601
strings 367, 368, 389
struct type 376
structure member attributes 376
stub 150
stub support routines

for internationalized RPC 285
supported code sets

establishing 294
exporting to the namespace 294

surrogates
authentication 493
mutual authentication 520

swapping client memory 397
switch_is attribute 372, 377
synchronization methods 116
synchronization objects 113, 130

mutex 112
race conditions 129

synchronous programming techniques 127
synchronous signals 125
system exceptions 317
system profile 228

T
tag-setting routine 292

ACF attribute 288
TDF 460
terminating

threads 108, 125
terminating signals 125
TGS 493
TGT 497
third-party authentication 503
thread 195

attributes 110
avoiding nonreentrant routines 105
canceling 117
creating 107
definition 103
deleting 108
example 141
exception-returning interface 133
exceptions and definitions, table of 139
memory management for 316, 398
multithreaded programming 105
priorities 118
reentrant 128
scheduling 111
starting 107
state transitions 107
states 107
terminating 108

thread 108 (continued)
waiting for another to terminate 110

thread-specific data 116, 128, 129
thread-specific storage 129
threads

scheduling 110, 118
ticket-granting service 493
ticket-granting ticket 497, 581
time

relative 461
time differential factor 460
time.h header file 464
Time-Provider

algorithm 477
interface 469
process 478

time representation 459
time structures 459
timeslice 110
tm time structures 464
TP stub 470
TPI 469
TPI Control Flow 469
trail file 607
transfer syntax 172
transmit_as attribute 361, 368, 416
transmit_as idl attribute 393
transport errors and exceptions 167
transport protocol 170
traversing the keys of a backing store 96
TRY statement 133, 137, 138, 167
type

declarations 368
declarators 370
of a manager EPV 187
specifiers 369, 370, 371, 373
UUID 170, 186, 187

typedef declaration 368
types 416

IDL 368, 403
of signals 124

U
undefining jackets 123
unexport operation 183
union

nonencapsulated 379
union type 377
unions 377
unique attribute 369, 377, 390
unique pointers 393

example 394
universal code set 294, 303
universal unique identifier 156
UNIX

security interfaces 490
services 121
signals 124, 126

UNIX signals
table of 126

654 OSF® DCE Application Development Guide —Core Components

unmarshalling
RPC 151

unsigned integer types 374
unsigned32 type 433
update site 545
user-to-user authentication 515
using a thread attributes object 110
using jacketed system calls 122
using signals 124
using synchronization objects 129
UTC 459, 469
uuid attribute 361, 362
UUIDs 170

definition of 156

V
varying and conformant array 383
varying array 383
version attribute 361, 363

version numbers 172, 173
void type 375

W
wait_on_rebind 415
waiting

for a thread to terminate 108
warnings 37
wchar_t type 289
well-known endpoint 176
work crew software model 104
work queue variation of boss/worker model 104

X
xattrschema object 552

Index 655

