
OSF® DCE Administration Guide—
Core Components

Revision 1.2.2

December 8, 1998

Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

OSF® DCE Administration Guide—
Core Components
Revision 1.2.2

IBM

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Copyright 1995, 1996 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

v © Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

v © Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

v © Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

v © Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG

v © Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996 International Business Machines

v © Copyright1988, 1989 Massachusetts Institute of Technology

v © Copyright 1988, 1989 The Regents of the University of California

v © Copyright 1995, 1996 Hitachi, Ltd.

All Rights Reserved

Printed in U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS
LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSFMotif, and Motif are registered trademarks of the Open Software
Foundation, Inc.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark in the US and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark, and the X device is a trademark, of the X/Open Company Limited.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

NetWare is a registered trademark of Novell, Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Not withstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the
rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer
Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph
(b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with
″restricted rights.″ Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April
1985) ″Commercial Computer Software-Restricted Rights (April 1985).″ If the contract contains the Clause at 18-52.227-74 ″Rights in
Data General″ then the ″Alternate III″ clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

iii

iv OSF® DCE Administration Guide— Core Components

Contents

Figures . xix

Tables . xxi

Preface . xxiii
Audience. xxiii
Applicability . xxiii
Purpose . xxiii
Document Usage. xxiii
Related Documents . xxiii
Typographic and Keying Conventions xxiv
Problem Reporting . xxv
Pathnames of Directories and Files in DCE Documentation xxv

Part 1. The DCE Control Program . 1

Chapter 1. DCE Control Program Introduction 3
Flexible, Portable, and Extensible Administration 3
DCE Administration Objects . 4
Using the DCE Control Program 5

Starting and Stopping dcecp 5
Invoking dcecp Operations 6

Doing More with dcecp . 7
When to Use an Interactive Command or Script 9
Editing Command Lines . 10

Editing the Current Command Line 10
Editing Command Lines with the history Command 13

Using the dcecp Help Facilities 14
Customizing dcecp Sessions 16

Adding Scripts to dcecp Sessions 16
Adding New Objects to the DCE Control Program. 18

Chapter 2. Using the DCE Control Program Command Language 19
Chapter Preview . 19
Variable Substitution . 20
Command Substitution. 21
Grouping Elements and Controlling Interpretation 21

Grouping Elements with Braces 22
Grouping Elements with Double Quotes 22
Including Special Characters with Backslashes 23

Documenting Scripts with Comments 24
Convenience Variables . 24

Current Principal (User) Name (_u) 25
Current Cell Name (_c) . 25
Current Host Name (_h) . 25
Most Recent Operation Argument Name (_n) 26
Parent of _n (_p) . 26
Last dcecp Object Name (_o) 27
Last Operation’s Return Value (_r) 27
DCE Servers to Use (_s(xxx)) 28
Last Security Server Used (_b(sec)) 29
Most Recent Error Code (_e) 29
CDS Confidence Level (_conf) 30

v

Measuring and Counting with Expressions 30
Operating on Lists . 31
Controlling Scripts . 32

Conditionalizing with if Statements 32
Controlling Script Execution with Loops 33
Terminating Loops with continue and break 34
Testing with Patterns Before Execution with case 35

Creating Commands Dynamically. 36
Reading Other Files as dcecp Scripts 36
Creating New Commands . 37
String Manipulation . 39

Constructing Strings . 40
Parsing Strings . 40
Other String Handling Operations. 40

Dealing with Errors and Exceptions 41
Using Global Error Information Variables 42
Using catch to Trap Errors and Exceptions 42
Reissuing Complex Errors 43

Working with Files . 44
Specifying Filenames . 44
Reading and Writing Files 45

Spawning Subprocesses . 46
Running Operating System Commands from a Script 46

Chapter 3. Writing Scripts and dcecp Objects 47
Informal Administration Scripts 47
Formal Task Objects . 49

A Model for Task Objects . 49
Using the parseargs Procedure 55
Invoking Task Objects . 57

Part 2. DCE Administration Tasks . 59

Chapter 4. DCE Administration Task Objects 61
Using Task Objects to Simplify DCE Administration 61
Looking Beyond the Tools . 62

Chapter 5. Managing a DCE Cell 63
Showing All Configured DCE Servers and DCE Hosts 63
Testing Cell Operation . 64
Backing Up the Security Service Registry and CDS 65
Modifying or Extending the Cell Object 66

Chapter 6. Managing Your Cell Name 67
Registering in Multiple Global Directory Services 67
Modifying or Extending the cellalias Object 67

Chapter 7. Managing DCE Hosts 69
Listing the DCE Hosts in a Cell 69
Showing All Servers Configured for a DCE Host 70
Testing Whether a DCE Host is Running 70
Starting Configured DCE Processes on a Host 71
Stopping DCE Processes Running on a Host 71
Configuring a DCE Host in a Cell 71
Removing a DCE Host from a Cell 72
Modifying or Extending the Host Object 73

vi OSF® DCE Administration Guide— Core Components

Chapter 8. Managing DCE Users 75
Creating a New User . 75
Showing User Information . 76
Deleting a User . 77
Modifying or Extending the User Object 78

Part 3. DCE Host and Application Administration 79

Chapter 9. Managing DCE Host Services and Host Data 81
DCE Host Services . 81
Starting and Stopping DCE Host Services 82
Managing Host Data . 83

Permissions for Accessing Host Data 83
Modifying Host Cell Name Information 85
Manipulating Data in Other Host Files 86

Routing Serviceability Messages 87
Serviceability Message Severity Levels 87
How to Route Serviceability Messages 88

Chapter 10. DCE Application Administration 93
Controlling Server Operation 93

Common Server Configuration Needs 94
Configuring Servers . 99
Listing and Retrieving Server Configuration Information. 100
Unconfiguring Servers . 101
Starting and Stopping Servers 101
Disabling and Enabling Services 101
Extending Server Configurations 102
Changing Server Configurations 104
Checking Whether Servers Are Running 104

Managing Client/Server Binding Information 105
Using the Endpoint Map for Easy Application Development and Administration . 106

Automatic Endpoint Map Administration 107
Restricting Endpoints . 108
Viewing Information in the Endpoint Map 108

Managing Server Entries, Groups, and Profiles in CDS. 109
Using Unique Server Entry Names to Identify Individual Servers and Objects 109
Using Group Entries to Help Balance Server Workloads 113
Using Profiles to Direct Client Searches for Servers 117

Client Administration . 121
Determining the Entry Name 122
Providing the Entry Name to Clients 122

Part 4. Cell Directory Service .125

Chapter 11. Introduction to the DCE Directory Service 127
How the DCE Components Use the DCE Directory Service 127
How to Use DCE Directory Services. 128
Directory Services and the Cell Environment 129
How Cells Determine Naming Environments. 130

Global Names . 130
Hierarchical Cell Names . 131
Alias Cell Names. 132
Cell-Relative Naming in a Standalone Cell 133
Cell-Relative Naming in a Hierarchy of Cells. 134

Contents vii

Local Filenames . 134
An In-Depth Analysis of DCE Names 134

CDS Names . 134
GDS Names . 135
DNS Names . 137
Names Outside of the DCE Directory Service 138

Chapter 12. CDS Concepts 141
How CDS Works . 141
Replicas and Their Contents 143

Object Entries . 144
Soft Links . 145
Child Pointers . 145
Summary . 145

Security in the Cell Directory Environment 146
CDS User Interfaces . 147

Chapter 13. How CDS Looks Up Names 149
Translating from Names to Resources 149
How CDS Finds Names . 153

The Solicitation and Advertisement Protocol 154
Lookups . 154
The cdscache create Command 154

Chapter 14. How CDS Updates Data 157
Update Propagation. 157
Skulk Operation . 157
How Timestamps Help Keep Data Consistent 158

Chapter 15. Managing the DCE Directory Service 159
Using the DCE Control Program 159

CDS Managed Objects . 159
DCE Control Program Operations for CDS 160
CDS Object Attributes . 160

Using dcecp to Maintain CDS 161

Chapter 16. Controlling Access to CDS Names 163
Overview of DCE Authorization for CDS 163
ACL Types Supported by CDS 163
How Permissions Propagate to CDS Directories and Their Contents 164
ACL Entry Types Used for Principals 165
DCE Permissions Supported by CDS 166
Controlling Access to CDS Clerk and Server Management Operations 167
Control Program Commands and Required Permissions 168
Editing ACLs on CDS Names 170
How CDS Servers Gain Access to the Namespace 171
Setting Up Access Control in a New Namespace 171

Adding Members to the Namespace Authorization Group 171
Creating Additional Authorization Groups 172
Establishing Maximum Permissions for Unauthenticated Principals 172

Chapter 17. Managing Clerks, Servers, and Clearinghouses 173
Monitoring Clerk, Server, and Clearinghouse Counters 173

Displaying Clerk Counters 173
Displaying Server Counters 173
Displaying Clearinghouse Counters 173

viii OSF® DCE Administration Guide— Core Components

Monitoring Clerk Communications with Specific Clearinghouses 173
Displaying the Contents of a Clearinghouse 174
Forcing the Clearinghouse to Checkpoint to Disk 174
Disabling Clerks and Servers 174

Disabling a Clerk . 174
Disabling a Server . 174

Restarting Clerks and Servers 175
Restarting a Clerk . 175
Restarting a Server . 175

Preserving a Clearinghouse Across a Server System Upgrade 175
Backing Up Namespace Information. 176

Using Replication to Back Up Namespace Information 176
Using Operating System Backups 176

Chapter 18. Managing CDS Directories 179
Creating Directories . 179

Permissions for Creating a Directory 179
Entering the directory create Command 180
Checking the ACL Entries for a New Directory 180
Upgrading the Directory Version on the Cell Root Directory 180
Upgrading the Directory Version on a Directory. 181

Creating a Read-Only Replica 181
Before You Create a Replica 182
Permissions for Creating Replicas 183
Entering the directory create Command 183

Deleting a Read-Only Replica 183
Permissions for Deleting a Replica 184
Entering the directory delete Command 184

Skulking a Directory. 184
Permissions for Skulking a Directory 184
Entering the directory synchronize Command 184
Synchronizing CDS Server Clocks 185

Modifying a Directory’s Convergence 186
Before You Modify a Directory’s Convergence 186
Permissions for Modifying a Directory’s Convergence 186
Entering the directory modify Command 186

Chapter 19. Viewing the Structure and Contents of a Namespace 187
Viewing the Namespace with the CDS Browser 187

Displaying the Default Namespace 187
Expanding and Collapsing Selected Directories 188
Expanding and Collapsing the Entire Cell Namespace 188
Filtering the Namespace Display 188
Navigating the Namespace 188

Listing the Contents of Directories 189
Displaying the Attribute Values of CDS Names 189
Displaying Clerk and Server Attribute Information 190

Chapter 20. Using the CDS Subtree Commands to Restructure CDS
Directories . 193

Overview of the Merge and Append Procedures 193
Merging CDS Directories . 194

Appending CDS Directories 196
Modifying ACLs at the Target Location 197

Handling Errors . 198
Duplicate Names . 198

Contents ix

Unreachable Name Failures. 198
Insufficient Permissions . 198

Merging CDS Directories into a Foreign Cell. 199
Establishing Cross-Cell Authentication 199
Performing a Merge Operation into a Foreign Cell 199

Restoring Merged CDS Directories 199

Chapter 21. Restructuring a Namespace 201
Managing Soft Links . 201

Creating a Soft Link. 201
Changing a Soft Link’s Destination Name. 202
Changing a Soft Link’s Expiration or Extension Value 203
Deleting a Soft Link . 203

Modifying a Directory’s Replica Set 204
Before You Modify a Replica Set 204
Permissions Required for Modifying a Replica Set 204
Designating a New Master Replica 205
Excluding a Replica from a Replica Set 206

Deleting Directories . 207
Deleting a Nonreplicated Directory 207
Deleting a Directory Replica. 208

Relocating a Clearinghouse . 209
Dissociating a Clearinghouse from Its Host Server System 209
Copying the Clearinghouse Database Files to the Target Server System . . 210
Starting the Clearinghouse on the Target Server 210

Deleting a Clearinghouse. 211
Before You Delete a Clearinghouse 211
Permissions for Deleting a Clearinghouse. 211
Deleting a Clearinghouse. 211

Creating and Managing Hierarchical Cells 212
Creating a Cell Hierarchy. 212

Chapter 22. Managing Intercell Naming 213
How the Global Directory Agent Works. 213
Managing the Global Directory Agent 216
Enabling Other Cells to Find Your Cell 217

Defining a Cell in the Domain Name System 217
Defining a Cell in the Global Directory Service 218

Part 5. DCE Distributed Time Service .221

Chapter 23. Introduction to DCE Distributed Time Service 223
DTS Advantages . 224

Applications Support . 224
External Time-Provider Support 225
Manageability . 225
Quantitative Inaccuracy Measurement 225

Basic DTS Concepts . 226
Time Measurement Factors 226
Inaccuracy Values . 227
Synchronizing System Clocks 228
How DTS Adjusts System Clocks 229
DTS Time Representation 230

How DTS Works . 233
Clerks . 233
Servers . 234

x OSF® DCE Administration Guide— Core Components

Chapter 24. Planning Your DTS Implementation 237
The DTS Planning Team . 237
General Planning Guidelines 237
Configuring DTS for a LAN . 238
Configuring DTS for an Extended LAN 239
Configuring DTS for WANs and WAN Links 239

LANs with WAN Links to Remote Sites. 239
LANs Connected by WAN Links 240
WAN Cells . 240

Planning for External Time-Providers 241

Chapter 25. Managing the DCE DTS 243
Using the DCE Control Program 243

DTS Objects . 243
dcecp Operations for DTS 243
DTS Object Attributes and Counters. 244

DTS Timestamp Format . 245
Reconfiguring DTS on Nodes 246

Stopping an Existing Clerk or Server 246
Creating a New Clerk or Server 246
Setting Clerk and Server Attribute Values 247

Temporarily Reconfiguring DTS 247
Modifying Clerk and Server Attributes 248

The minservers Attribute . 249
Use of minservers Attribute with Global Servers 251
Use of minservers Attribute with Systems on Point-to-Point Lines 252
The maxinaccuracy Attribute 252
The syncinterval Attribute. 252
The tolerance Attribute. 253
The localtimeout, globaltimeout, and queryattempts Attributes 255
The serverentry and serverprincipal Attributes 255

Management Tasks Specific to Servers 256
Designating Global and Courier Servers 256
Matching Server Epochs . 257
Setting the checkinterval Attribute for Connection to a Time-Provider 258

Changing the System Time . 259
Updating the Time Monotonically 259
Updating the Time Nonmonotonically 260
Forcing System Synchronization 260

Controlling Access to DTS . 261

Chapter 26. Interoperation with Network Time Protocol 263
Getting the Time from NTP Time Sources. 263

Getting the Time from Local NTP Time Sources 263
Getting the Time from Remote NTP Time Sources 264

Giving the Time to NTP Nodes. 265
Preventing Loops . 267

Part 6. DCE Security Service .269

Chapter 27. Overview of DCE Security 271
DCE Authentication Service Servers and Clients 271
The Registry Database . 272
Physical Security of the Database 273
How the Registry Database is Stored 273
Replicated Databases . 274

Contents xi

How Updates Are Handled . 274
Master and Slave Replicas 274
Handling Database Updates. 276
Propagating Database Changes 277
Master/Slave Authentication 277

The /etc/passwd and /etc/group Files and the Registry 277
The Local Registry . 278
Names for Security Objects . 278

Using Names with dcecp Security Commands 279
Using Names with the dcecp acl Command 279

Chapter 28. Using Access Control Lists 281
Authorization Overview . 281

ACL Managers . 282
ACL Interpretation . 283
Credentials Inherited by Processes 283

ACL Entries and Masks . 283
ACL Syntax . 284
ACL Entry Types for Principals and Groups 284
Group Permissions and Project Lists 287
Using Principal and Group ACL Entries 288
ACL Entry Types for Masks 288
ACL Entry Types for Dissimilar DCE Releases 289
The Checking Sequence for ACL Entries 289
Denying Access . 292

ACL Management Tasks . 292
Copying ACLs . 293
Generating ACLs from Files . 293
Container ACLs . 294

Objects and Containers . 294
Initial ACLs for Objects and Containers 294
Effect of Masks When Editing ACLs 297

Chapter 29. Control Programs for Managing the DCE Security Service . . 299
Using the DCE Control Program 299

Security Service Objects . 299
DCE Control Program Operations for the DCE Security Service 300

Using the Registry Editor . 301
Starting, Stopping, and Getting Help. 302
rgy_edit Commands for Local Registry Maintenance 302

Chapter 30. Creating and Maintaining Principals, Groups, and
Organizations . 305

Principal, Group, and Organization Names 305
Primary Names . 305
Full Names . 305
Aliases . 305
Name Formats . 306

Reserved Principals and Accounts 306
Object Creation Quotas . 307
Universal Unique Identifiers and UNIX IDs 307
Adding and Maintaining Principals 308

Adding Principals. 308
Changing Principals. 309
Deleting Principals and Aliases 310

Extended Security Attributes for Principals 310

xii OSF® DCE Administration Guide— Core Components

DCE Authentication . 310
Managing Invalid Login Handling 314
Managing Password Strength and Password Generation 315
Managing Password Expiration 317

Adding and Maintaining Groups and Organizations 318
Project Lists . 318
Adding Groups and Organizations 318
Changing Groups and Organizations 319
Deleting Groups and Organizations 320

Maintaining Membership Lists 321
Effects of Account Creation on Membership Lists 321
Adding and Deleting Group Members 321

Creating and Maintaining Aliases for Principals or Groups. 322
Creating Aliases . 322
Changing Primary Names to Aliases and Vice Versa. 322

Chapter 31. Creating and Maintaining Accounts 325
User Accounts . 325
Server Accounts . 326

Passwords for Server Accounts 326
Steps for Creating Server Accounts 326

Machine Accounts . 326
How Identities Represented by Accounts Are Authenticated 327

Privilege Attributes . 327
Ticket-Granting Tickets and Tickets to Services. 328
Displaying Privilege Attributes and Tickets 328
Destroying a Principal’s Tickets 329

Adding Accounts . 329
Setting Ticket Lifetimes . 333
Ticket-Granting Ticket Lifetimes and Service Ticket Lifetimes. 333
Adding Accounts Example 334
Modifying Accounts . 334
Deleting Accounts . 335

Creating, Maintaining, and Deleting Keytab Files 335
The Keytab File . 335
Creating and Maintaining Keys and Keytab Files 337
Removing Keytab Files . 339
Changing Server and Machine Passwords in the Keytab File 340
Handling Compromised Server or Machine Passwords in the Keytab File . . 340

Maintaining the Local Registry 340
The Registry Capacity Property 341
Setting the Capacity and Lifespan Properties 341
Purging Expired Entries . 342

Chapter 32. Creating and Using Extended Registry Attributes 343
The xattrschema Object . 343
Creating and Maintaining Attribute Types 343

Creating Attribute Types . 343
Modifying Attribute Types . 345
Renaming Attribute Types 346
Deleting Attribute Types . 346
Defining the ACL Managers for Attributes 346
Defining Attribute Type Encoding 348

Defining Attribute Trigger Servers 349
The -trigtype Option. 349
The -trigbind Option. 349

Contents xiii

Creating and Maintaining Attribute Instances 351
Attaching Attribute Instances to Objects 352
Modifying Attribute Instances 352
Deleting Attribute Instances 353
Using Attribute Sets . 353

Chapter 33. Administering a Multicell Environment 355
Trust Relationships . 355

Direct Trust Relationships 355
Transitive Trust Relationships 356
Establishing Trust Relationships 356
Constraints on Transitive Trust Relationships 357

Creating Trust Relationships 361
Command Options for the registry connect Command 362
Creating Cross-Cell Authentication Accounts Example 363
The Accounts Created by the registry connect Command 363

Modifying Cross-Cell Authentication Accounts 364

Chapter 34. Viewing Registry Information 365
Displaying Account Information 365
Displaying Group and Organization Information 366
Displaying Principal Information 368
Displaying xattrschema Information 369
Displaying ACL Information . 370
Displaying keytab Information 371

Chapter 35. Maintaining Policies and Properties 373
Policies . 373

Standard Policy . 373
Authentication Policy . 375
Handling Conflicting Policies 376
The Effects of Changes on Existing Policies 377
Displaying and Setting Standard and Authentication Policies 377

Properties . 378
Default Ticket Lifetime Property 378
Hidden Password Property 378
Minimum Group ID Property. 378
Minimum Organization ID Property 379
Minimum UNIX ID Property 379
Maximum UNIX ID Property 379
Minimum Ticket Lifetime Property. 379
Displaying and Setting Properties. 380

Chapter 36. Performing Routine Maintenance 381
Adding Accounts . 381
Overriding Entries in the Local Registry 381

How Overrides Work . 381
The passwd_override File Format 382
The group_override File Format 383
Creating Override File Entries 385
Leaving passwd_override File Fields Blank 386
Specifying Passwords for a Specific Machine 386
Preventing Login to a Machine. 386
Omitting Users from the Local Password Files 386
Specifying a Home Directory and Login Shell for a Machine 387
Overriding a Principal’s Group Affiliation 387

xiv OSF® DCE Administration Guide— Core Components

Applying Overrides to All Members of a Group 387
How passwd_override Handles Multiple Override Entries 388

Changing the Registry’s Master Key. 388
Validating the Authenticity of the DCE Security Service 388
Backing Up and Restoring the Registry Database. 389

Procedures for Backing Up the Registry Database 389
Procedure for Restoring the Registry Database 389

Setting the _s(sec) Variable . 390
Ensuring Consistent Local Files 391

Chapter 37. Handling Network Reconfigurations 393
Changing the Master Replica Site 393
Removing a Server Machine from the Network 394
Handling Network Address Changes. 394

Updating the pe_site File . 394
Handling Simultaneous Address Changes. 395

Chapter 38. Setting Up the Registry 397
Planning Sites for DCE Security Service Components 397
Creating the Master Registry Database 398

The sec_create_db Command Format 398
An sec_create_db Run Example 400
The Results of sec_create_db 400

Starting the Master Replica . 402
Populating the New Registry Database. 402

Setting Policies and Properties. 402
Adding Accounts . 402

Creating Slave Replicas . 402
Verifying that the Replicas Are Running 403

Chapter 39. Importing UNIX Accounts to DCE 405
How passwd_import Works . 405

The passwd_import Processing Steps 405
Registry Entries Created by passwd_import 406

The passwd_import Command Syntax 407
Using passwd_import . 407

Using the Identical User Option 407
Using Check Mode . 407
Resolving Conflicts . 408
Answering Prompts . 408

Sample passwd_import Session 408
Invoking passwd_import . 409
Examining the Group File 410
Examining the Password File 411
Adding Members to Groups 411
Completing Processing . 412

Chapter 40. Troubleshooting Procedures 413
Restarting Security Servers . 413
Restarting the Master Server in Locksmith Mode 413

Automatic Changes to the Locksmith Account 413
Starting a Security Server in Locksmith Mode 414
Restarting a Security Server in Locksmith Mode 415

Recovering the Master Replica 415
Determining the Most Current Database 416
Converting a Slave to a Master 416

Contents xv

Recovering Slave Replicas . 416
Converting a Master to a Slave 417
Forcibly Deleting a Slave Replica 417
Restoring a Duplicate Master 418
Adopting Registry Orphans . 418

Chapter 41. Accessing Registry Objects 421
The Registry Database . 421
Registry Permissions . 422

Management, Authentication, and User Information 422
Permission Required to Create Principals, Groups, or Organizations 424
Permissions Required to Delete Principals, Group, or Organizations 425
Permissions Required to Add Accounts 425
Permissions Required to Delete Accounts. 428
Permissions Required to Add Members to Groups 429
Permissions Required to Add Members to Organizations 429
Permissions to Delete Members from Groups or Organizations 430
Permissions Required to Change a Principal’s, Group’s, or Organization’s

Full Name . 430
Permissions Required to Change Management Information for Principals,

Groups, or Organizations 430
Permissions Required to Change Management, Authentication, and User

Information (Except Passwords) for Accounts 431
Permissions Required to Change Passwords for Accounts 431
Permissions Required to Change Authentication and Management

Information for Registry Policies and Properties. 432
Permissions Required to Execute Commands That Act on Replicas 432
Permissions Required to Create Extended Registry Attribute Types 432
Permissions Required to Delete Extended Registry Attribute Types 433
Permissions Required to View Extended Registry Attribute Types 433
Permissions Required to Modify Extended Registry Attribute Types 433
Permission Required to Change ACLs on Registry Objects 433
Permissions Required by Slave Replicas 434

Registry ACL Manager. 434
Initial Registry ACLs . 435

Chapter 42. DCE Audit Service 437
Features of the DCE Audit Service 437
Components of the DCE Audit Service 437
DCE Audit Service Concepts 437

Audit Clients . 438
Code Points . 438
Audit Events . 438
Event Numbers . 438
Event Classes . 438
Filters . 440
Audit Trail File . 443

Administration and Programming in DCE Audit 444
Programmer Tasks . 444
Administrator Tasks . 445

Chapter 43. DCE Audit Service Administrative Tasks 449
Setting DCE Audit Environment Variables 449
Starting the Audit Daemon . 449
Controlling Access to the Audit Daemon 450

DCE Permissions Supported by the DCE Audit Service. 450

xvi OSF® DCE Administration Guide— Core Components

Initial ACL of the Audit Daemon 450
Giving Permissions to Audit Clients and Administrators 450

Defining Event Classes . 451
Steps in Defining an Event Class 451
Example Event Class File 451

Creating and Maintaining Filters 452
Creating Filters . 452
Modifying Filters . 453
Deleting Filters . 453
Default Filters . 453
Enabling Audit Filters . 454

Enabling and Disabling the Audit Logging Service. 455
Modifying and Querying Audit Daemon Attributes 455
Controlling and Displaying Audit Trails 455

Displaying Audit Trail Files 456
Controlling the Audit Trail Size 456
Changing the Audit Trail File Storage Option 457

Chapter 44. Kerberos Interoperability with DCE and Secure Remote
Utilities . 459

The Secure Remote Utilities. 459
Related Kerberos Terms and Concepts 460
Components of the Secure Environment 461
Forwarding Tickets . 462
Remote Utility Interoperability 463
Encrypted Sessions . 463

KDC Interoperability. 463
Configuration . 463

Credential Cache and Keytab File Compatibility 464

Part 7. Appendixes .467

Appendix A. Valid Characters and Naming Rules for CDS 469
Metacharacters . 471
Additional Rules . 471
Maximum Name Sizes. 473

Appendix B. Object Identifier Files 475
Origin of Object Identifiers . 475
The cds_attributes File. 475
The cds_globalnames File . 476
Modifying the Files . 478
Modifying a CDS Entity’s Attributes 478

Adding a New Attribute . 478
Modifying the Value of an Existing Attribute 479
Removing an Attribute . 479

Appendix C. Time-Providers and Time Services 481
Criteria for Selecting a Time Source 481
Sources of Coordinated Universal Time 482

Telephone Services . 482
Radio Transmissions . 482
Network Time Protocol. 482
Satellite . 483

World Time Zone Map . 483

Contents xvii

Appendix D. DTS Extended BNF 485

Index . 487

xviii OSF® DCE Administration Guide— Core Components

Figures

1. Server Binding Information 105
2. Possible Information in a Server Entry 110
3. Possible Mappings of a Group 114
4. Possible Mappings of a Profile 118
5. Cell and Global Naming Environments 129
6. Interaction of CDSs, GDAs, and Global Directory Services 130
7. Sample CDS Namespace Hierarchy 135
8. RDNs and Distinguished Names 136
9. Comparison of CDS and GDS Names 137

10. Sample Portion of the BIND Namespace 138
11. CDS Clerks and Servers on a LAN 142
12. A Sample CDS Lookup. 143
13. Components of a CDS Server Node 146
14. Logical and Physical Views of a Namespace. 150
15. Clearinghouse Object Entries and Clearinghouses. 151
16. A Soft Link and Its Resolution 152
17. Child Pointers and Directories 153
18. How the Clerk Finds a Name 155
19. Example Namespace Hierarchy 194
20. Example Namespace Before and After the Merge Operation 196
21. Example Namespace Before and After the Append Operation 197
22. Example Replica Set . 205
23. Example Replica Set After Master Redesignation 205
24. Example Replica Set After Replica Exclusion 206
25. How the CDS Clerk Finds a GDA 214
26. How the GDA Helps CDS Find a Name 215
27. Time and Inaccuracy . 228
28. Computed Time . 229
29. Adjustment of the Clock 230
30. ISO-Compliant Time Format 231
31. ISO-Compliant Time Format Variation 232
32. Relative Time Format . 233
33. DTS Configuration—LAN 238
34. DTS Configuration—LAN with WAN Links 240
35. DTS Configuration—WAN Networks 241
36. DTS Timestamp Format 245
37. Local Fault . 254
38. Local Time Source . 264
39. Getting the Time from a Remote NTP Time Source (Scenario 1) 265
40. Getting the Time from a Remote NTP Time Source (Scenario 2) 265
41. Giving the Time to NTP 267
42. Configuration Before Stratum 2 Node Fails 267
43. Configuration After Stratum 2 Node Fails 268
44. Machines, Servers, and the Database 272
45. Disk Memory and Virtual Memory Copies of the Registry Database . . . 274
46. The Master Replica Update Process 275
47. Slave Replica Update Process 276
48. ACL Managers in Servers. 282
49. Sample ACL Entries . 284
50. Order of Checking ACLs and Applying Masks 291
51. Initial ACLs for Objects Created in Containers 295
52. Initial ACLs for Containers Created in Containers 296
53. Transitive Trust Relationships 356

xix

54. Direct and Transitive Trust Relationships 358
55. Cell Traversal in Transitive Trust Relationships 358
56. Limited Direct Trust Peer Traversal in Transitive Trust 359
57. Transitive Trust Without Direct Trust Peer Traversal 359
58. Limited Trust Traversal to Cell Ancestors 360
59. Alternate Trust Traversal to Cell Ancestors 361
60. The Registry Database Structure 422
61. Permission Required to Create Principals, Groups, or Organizations . . . 425
62. Permissions Required to Delete Principals, Groups, or Organizations. . . 425
63. Permissions Required to Add an Account and the Account Principal to the

Group and Organization 426
64. Adding an Account For Which the Principal Is Already a Member of the

Group and Organization 427
65. Permissions to Add an Account and the Principal to the Group Only . . . 428
66. Permissions to Add an Account and the Principal to the Organization Only 428
67. Permissions Required to Delete Accounts 429
68. Permissions Required to Add Members to Groups. 429
69. Permissions Required to Add Members to Organizations 429
70. Permissions to Delete Members From Groups or Organizations. 430
71. Permissions Required to Change a Principal’s, Group’s, or Organization’s

Full Name . 430
72. Permissions Required to Change Management Information For Principals,

Groups, or Organizations 431
73. Permissions Required to Change Management, Authentication, and User

Information (Except Passwords) For Accounts 431
74. Permissions Required to Change Passwords For Accounts 431
75. Permissions Required to Change Authentication and Management

Information For Registry Policies and Properties 432
76. Permissions Required to Execute Commands That Act on

Replicas 432
77. Permissions Required to Create Extended Registry Attribute Types . . . 432
78. Permissions Required to Delete Extended Registry Attribute Types . . . 433
79. Permissions Required to View Extended Registry Attributes 433
80. Permissions Required to Modify Extended Registry Attribute Types . . . 433
81. Permission Required to Change ACLs on Registry Objects 434
82. Event Class Number Formats 440
83. Override Relations Between Filter Types 443
84. Valid Characters in CDS, GDS, and DNS Names 470
85. World Time Zone Map . 484

xx OSF® DCE Administration Guide— Core Components

Tables

1. Serviceability Message Severity Levels 87
2. DCE Control Program Operations for CDS 160
3. dcecp Commands that Control CDS 161
4. ACL Entry Types Used for CDS Principals 165
5. DCE Control Program Commands and Required Permissions 168
6. Permissions Required To Create Target Objects 198
7. dcecp Operations for DTS 243
8. Settable DTS Object Attributes 244
9. Unsettable DTS Object Attributes 245

10. DCE Control Program Operations for the DCE Security Service. 300
11. rgy_edit Commands for Maintaining the Local Registry 302
12. Attribute Options to Create Principals 308
13. DCE Version 1.1/Pre-DCE Version 1.1 Authentication Interoperation . . . 313
14. Attribute Options to Create Groups and Organizations 319
15. Attribute Options to Create Accounts. 330
16. The keytab create and keytab add Options 337
17. Options to Create Extended Attributes 344
18. Encoding Types . 348
19. Default Attribute Values of Cross-Cell Authorization Principals and

Accounts . 363
20. Stricter Standard Policies 376
21. Initial Persons, Groups, and Organizations 400
22. Group Memberships Created by sec_create_db 401
23. Locksmith Account Changes Made by the Security Server 414
24. Registry Policy Changes Made by the Security Server 414
25. Permissions for Registry Objects 422
26. ACL managers and Valid Permissions and ACL Entry Types 434
27. Credential Cache Files . 464
28. Keytab Files. 464
29. Metacharacters and Their Meanings 471
30. Summary of CDS, GDS, and DNS Characteristics. 471
31. Maximum Sizes of Directory Service Names 473
32. Time-Provider Selection Criteria 481

xxi

xxii OSF® DCE Administration Guide— Core Components

Preface

The OSF DCE Administration Guide provides concepts and procedures that enable
you to manage the OSF® Distributed Computing Environment (DCE). Basic OSF
DCE terms are introduced throughout the guide. A glossary for all of the DCE
documentation is provided in the Introduction to OSF DCE. The Introduction to OSF
DCE helps you to gain a high-level understanding of the DCE technologies and
describes the documentation set that supports DCE.

Audience

This guide is written for system and network administrators who have previously
administered a UNIX environment.

Applicability

This revision applies to the OSF DCE Release 1.2.2 offering and related updates.
(See your software license for details.)

Purpose

The purpose of this guide is to help system and network administrators to plan,
configure, and manage DCE. After reading the guide, you will understand what the
system administrator needs to do to plan for DCE. Once you have built the DCE
source code on your system, use this guide to assist you in installing executable
files and configuring DCE. The OSF DCE Release Notes contain instructions for
installing and building DCE source code.

Document Usage

The OSF DCE Administration Guide consists of two books, each of which is divided
into parts, as follows:

v The OSF DCE Administration Guide—Introduction

– Part 1. Introduction to DCE Administration

– Part 2. Configuring and Starting Up DCE

v The OSF DCE Administration Guide—Core Components

– Part 1. The DCE Control Program

– Part 2. DCE Administration Tasks

– Part 3. DCE Host and Application Administration

– Part 4. DCE Cell Directory Service

– Part 5. DCE Distributed Time Service

– Part 6. DCE Security Service

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

v Introduction to OSF DCE

v OSF DCE Administration Commands Reference

xxiii

v OSF DCE Application Development Reference

v OSF DCE Application Development Guide—Introduction and Style Guide

v OSF DCE Application Development Guide—Core Components

v OSF DCE Application Development Guide—Directory Services

v OSF DCE DFS Administration Guide and Reference

v OSF DCE GDS Administration Guide and Reference

v OSF DCE/File-Access Administration Guide and Reference

v OSF DCE/File-Access User’s Guide

v OSF DCE Problem Determination Guide

v OSF DCE Testing Guide

v OSF DCE/File-Access FVT User’s Guide

v Application Environment Specification/Distributed Computing

v OSF DCE Release Notes

For a detailed description of OSF DCE documentation, see the Introduction to OSF
DCE.

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

<Ctrl- x> or | x
The notation <Ctrl- x> or | x followed by the name of a key indicates a
control character sequence. For example, <Ctrl-C> means that you hold
down the control key while pressing <C>.

<Return>
The notation <Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

xxiv OSF® DCE Administration Guide— Core Components

Problem Reporting

If you have any problems with the software or documentation, please contact your
software vendor’s customer service department.

Pathnames of Directories and Files in DCE Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
OSF DCE Administration Guide—Introduction and OSF DCE Testing Guide.

Preface xxv

xxvi OSF® DCE Administration Guide— Core Components

Part 1. The DCE Control Program

1

2 OSF® DCE Administration Guide— Core Components

Chapter 1. DCE Control Program Introduction

DCE is an integrated set of services that supports the development and execution
of distributed applications between heterogeneous networked computers. Each DCE
environment (called a cell) maintains at least the following core DCE services:

v DCE Threads

v DCE Host Services

v DCE Cell Directory Service

v DCE Time Service

v DCE Security Service

With the exception of DCE Threads, all of the core services require administration
in one way or another. Some services, such as CDS and the DCE Security Service,
usually need more managing than, say, the DCE Time Service, which after you
have set it up needs practically no intervention. If your DCE cell consists of just a
few computers and their users, you could probably manage the naming, time, and
security needs of users, programs, and host systems by logging into individual
hosts to perform any necessary administration tasks. But most cells will consist of
many, perhaps hundreds or even thousands, of computers and their users.

Consequently, the core services in such large cells will likely be extensive and
complex, with some services being replicated or even partitioned across multiple
heterogeneous systems. Some services, such as the DCE host services, will exist
on every computer in the cell. Such large-scale operations demand an
administrative interface that provides consistent and uniform access to DCE
administration functions, wherever they reside, from any and every point in the cell.
This means that administrative operations must work consistently and predictably
regardless of the platform on which they execute.

The DCE control program (dcecp) fills this need, providing consistent, portable,
extensible, and secure access to nearly all DCE administration functions from any
point in a DCE cell. dcecp implements all of the operations previously performed by
using various component control programs.

dcecp further streamlines administration by providing a number of task objects for
performing complex DCE operations. For example, adding a host to a cell requires
adding a host principal to the registry, adding the principal to various security
groups and organizations, creating an account, placing host information in CDS and
probably setting some ACLs on CDS directories. All of these operations can be
accomplished using a single task object.

Flexible, Portable, and Extensible Administration

dcecp is built on a portable command language called Tcl (pronounced ′′tickle’’),
which stands for Tool Command Language developed by John K. Ousterhout at the
University of California at Berkeley, California. Most computers provide a command
language of some sort to give users a flexible and extensible way to access and
use system capabilities. For instance, many UNIX systems offer shell language
interpreters, and Digital Equipment Corporation’s OpenVMS operating system offers
the Digital Command Language (DCL). But these command languages are not
always portable. Commands and scripts based on one command language might
not work in other command language environments.

3

Tcl, on the other hand, is a platform-independent command language that runs on
every system where DCE is installed. A Tcl command interpreter and the DCE
control program that uses it are provided as part of the DCE software.

The availability of both the DCE control program and the DCE control program
language offer important benefits to DCE administrators:

v You can perform all routine DCE operations from within a single administrative
interface.

v Most DCE administrative operations are consistently and uniformly executed from
any DCE platform, allowing administrators to manage just about all DCE
operations from any DCE system in the cell. DCE platforms that are not UNIX
systems might not handle all DCE control program file operations.

v dcecp provides administration objects with names like clearinghouse , principal ,
and endpoint . This direct approach makes DCE administration intuitive and
consistent. While for now this has only the appearance of being object oriented, it
is an important step toward a true object-oriented administration interface.

v Task objects (high-level dcecp scripts that perform complex DCE operations)
reduce the training requirements for DCE administrators. One need not be a
DCE guru to perform routine DCE administrative tasks.

v You can adapt the supplied task objects to new uses or write new task objects or
scripts by using the dcecp operations along with more general commands
provided within Tcl.

v The dcecp language allows the use of variables, if statements, looping functions
and other programming operations that let you boost the power of your
operations. For instance, looping functions let you repeat operations on multiple
objects such as users, servers, or CDS entries.

v Administrators can easily share their tools because scripts can be moved to
foreign platforms without change. For instance, enterprises with multiple cells
could use dcecp scripts to propagate a common cell configuration throughout the
enterprise.

The DCE control program is an administrative interface that you can use to manage
most aspects of the DCE core components. You cannot use dcecp to manage
every aspect of DCE. For instance, dcecp cannot control GDS or DFS.

The chapters in “Part 1. The DCE Control Program” on page 1 discuss how you can
use dcecp to administer the core services in your DCE environment. We also
discuss how to make your operations do more by using Tcl constructs on the
command line and by writing your own customized operations as scripts. We do not
provide a complete discussion of Tcl or its companion toolkit (called Tk) for the X11
window system. For in-depth discussions of these topics, refer to Tcl and the Tk
Toolkit, John K. Ousterhout, (c)1994, Addison Wesley Publishing Company.

DCE Administration Objects

A DCE cell consists of many things that need administration. As examples, CDS
servers (clearinghouses), DTS clocks, and server location information are all entities
in a DCE cell that require administration in one way or another. The DCE control
program treats all of DCE’s administrative entities as individual administration
objects.

4 OSF® DCE Administration Guide— Core Components

You operate on an entity by invoking its object name with some operation. For
example, to check the time of a DTS clock, you invoke the object’s name (clock)
and the desired operation (show) as in the following:
dcecp> clock show
1994-09-23-10:46:42.016-04:00I-----
dcecp>

Each administrative entity in DCE has a corresponding administration object in the
DCE control program. As a few examples, you can manage CDS clearinghouse
operations in a cell by using the clearinghouse object. Manage application servers
and their configuration information on DCE hosts by using the server object.
Compare and manipulate time information using the utc object. Administer users in
a DCE cell with the user task object. These examples represent just a few of the
dcecp administration objects. All of the objects are listed in the dcecp(8dce)
reference page.

Using the DCE Control Program

This section provides a quick look at how to start and stop the DCE control program
and how to perform operations. Additional information about these topics is
contained in the dcecp reference pages.

Starting and Stopping dcecp

You can enter dcecp operations directly from your operating system prompt or from
within the DCE control program. If you are performing just one or two simple dcecp
operations, you can invoke them directly at the operating system prompt.

If you will be doing several operations, you can invoke the DCE control program
and then enter operations at the dcecp prompt. This method offers several
advantages.

v It is more efficient for multiple operations because dcecp is initialized once rather
than for each separate operation.

v The program stores operations in a history facility so they can be recalled and
reused.

v You avoid the extra keystrokes needed to precede each operation with the dcecp
command.

The following example shows how to invoke the DCE control program and perform
a directory operation:
% dcecp
dcecp> directory create /.:/hosts/appserver2
dcecp>

When you are through using the DCE control program, use the exit or quit
operation to stop the program and return to the operating system prompt. The
following example illustrates using the exit operation:
dcecp> exit
%

Chapter 1. DCE Control Program Introduction 5

Invoking dcecp Operations

If you are performing a single dcecp operation, you can invoke it directly from the
operating system prompt. Just precede the desired operation with the dcecp
command and the -c (command-line operation) flag, as follows:
% dcecp -c directory list /.:/subsys -simplename
HP applications dce sales eng admin accts
% dcecp -c cell show
{secservers
/.../my_cell.goodco.com/subsys/dce/sec/master}

{cdsservers
/.../my_cell.goodco.com/hosts/krypton}

{dtsservers
/.../my_cell.goodco.com/hosts/mars}

{hosts
/.../my_cell.goodco.com/hosts/earth
/.../my_cell.goodco.com/hosts/jupiter
/.../my_cell.goodco.com/hosts/kyrpton
/.../my_cell.goodco.com/hosts/mars
/.../my_cell.goodco.com/hosts/mercury
/.../my_cell.goodco.com/hosts/neptune
/.../my_cell.goodco.com/hosts/pluto
/.../my_cell.goodco.com/hosts/saturn
/.../my_cell.goodco.com/hosts/uranus
/.../my_cell.goodco.com/hosts/venus}

%

You can also enter some limited multiple operations using the ; (semicolon) as a
command separator and enclosing the operations in ″″ (double quotes). The
following example adds a principal to the registry and then checks that the principal
is added:
% dcecp -c "principal create S_Preska ; principal show S_Preska"
{fullname {}}
{uid 28}
{uuid 0000001c-dc77-21cd-b700-0000c08adf56}
{alias no}
{quota unlimited}
%

Be careful entering multiple operations via the dcecp command with the -c option
because operation results return to the dcecp interpreter, not to the shell. An
operation like the following returns the results of just the last operation (group list
users) to the shell:
% dcecp -c "group list staff; group list managers; group list users"
/.../ward_cell.osf.org/P_Pestana
/.../ward_cell.osf.org/R_Parsons
/.../ward_cell.osf.org/L_Jones
/.../ward_cell.osf.org/S_Preska
/.../ward_cell.osf.org/N_Long
/.../ward_cell.osf.org/D_Witt
/.../ward_cell.osf.org/C_Pilat
.
.
.

%

This particular problem can be overcome by:

6 OSF® DCE Administration Guide— Core Components

% dcecp -c "puts [group list staff]; puts [group list manager]; puts [group
list users]"

.

.

.
%

To invoke a dcecp script, omit the -c argument but include the name of the script.
The following example invokes a script that lists the names of all hosts in the cell in
alphabetical order:
% dcecp list_hosts
earth
jupiter
krypton
mars
mercury
neptune
planets
pluto
saturn
uranus
venus
%

When you want to invoke complex or multiple operations, you might want to invoke
operations from within dcecp . The program provides a convenient history facility
and a command-line editing capability that is useful for recalling and reusing
previous operations. The following example operations invoke dcecp and add a
new user to a DCE cell:
% dcecp
dcecp> principal create J_Jones
dcecp> group add users -member J_Jones
dcecp> organization add staff -member J_Jones
dcecp> account create J_Jones -group users -organization staff \
> -password change.me -mypwd mxyzptlk
dcecp>

All dcecp object, operation, and option names can be abbreviated to the shortest
unique string when used interactively. These names have been chosen with this in
mind so that unique abbreviations are usually not more than one or two characters.

Avoid using object or command abbreviations within scripts as this limits a script’s
portability. Users defining their own commands could alter the uniqueness of
abbreviations, resulting in ambiguous command names or object names.

Doing More with dcecp

The DCE control program accepts commands ranging from simple to complex, with
more complex commands offering greater strength and versatility. Although simple
commands are the easiest to compose, they are also limited, usually to performing
one operation on a single object. So while it is always possible to enter simple
commands, you will probably find that, at times, you want to repeat operations over
several or even many objects, or to perform some operation only under certain
conditions. For instance you might want to add some entry to a CDS directory only
if some other specified entry already exists in CDS. dcecp makes this possible by
utilizing Tcl’s built-in commands that imitate elements commonly found in numerous
programming and shell languages.

Chapter 1. DCE Control Program Introduction 7

The DCE control program contains many C-like constructs that control command
execution. Some examples are if statements for conditional execution, looping
commands such as while , for , and foreach used to repeat operations under
various conditions, a case command for testing values against various patterns,
and proc for writing your own customized commands.

The DCE control program also includes other syntactic elements such as ″″
(quotes), { } (braces), [] (brackets), and \ (backslash), which it uses to group
elements together and for controlling interpretation of special characters.

Although many features are designed for use in scripts, you will probably find
yourself using some constructs and elements (particularly quotes, braces, brackets,
and backslashes) in interactive operations as well. You will need to decide when it
makes sense to perform operations interactively or to use a script. In general,
complexity and potential for reuse can help you decide.

Now let us look at a couple of simple examples that illustrate some DCE control
program and Tcl basics. Some dcecp operations can be very straightforward like
dcecp> account modify N_Long -expdate 1996-06-30
dcecp>

This operation lets you change information in the DCE Security Service registry.
Here, we are changing the account expiration date for the principal (N_Long)
named in the command line. While it is relatively simple to execute this operation
for one or two principals, it is more difficult to change the account expiration date for
many principals.

Imagine that your organization employs six temporary workers and the project they
are associated with has been extended for three months. Rather than execute the
account modify operation six times, you can use a dcecp foreach command to
loop (repeat) an action for each item of a list:
dcecp> foreach i {N_Long L_Jones P_Sawyer \
> D_Witt M_Dougherty S_Preska} { \
> account modify $i -expdate 1996-06-30 }
dcecp>

In the example, the foreach looping command has three arguments: a variable, a
list, and the body. The variable i substitutes sequentially for each item in the list
(N_Long , L_Jones , and so on). The foreach command executes the body
(account modify $i -expdate 1996-06-30) for each item in the list. The $i variable
in the body takes on the value of each principal name in the list, in turn, until all
items in the list have been used. See “Controlling Script Execution with Loops” on
page 33 for more detailed information about looping commands.

This example illustrates several other important syntax rules. The DCE control
program uses { } (braces) to determine where command arguments, such as the
script body, begin and end. For example, the foreach command has three
arguments: a variable name, a list, and a script body. Normally, command
arguments are separated by spaces. To prevent dcecp from incorrectly interpreting
the spaces between list elements as argument separators, we use braces to
enclose the list and disable special interpretation of the spaces. Thus, all of the list
elements appear as one argument. Similarly, we use braces to enclose the
individual elements in the script body.

Braces also help dcecp determine whether a command is complete; incomplete
commands will have more opening than closing braces. The lack of a closing brace

8 OSF® DCE Administration Guide— Core Components

at the end of the first line signals dcecp that more command input is coming, so
dcecp prompts with the secondary prompt (>). Similarly, the opening brace at the
end of line 2 signals that you are still not finished entering the command. This lets
you wrap lines without using a \ (backslash) line wrap character. The DCE control
program executes the command when you press <Return> after the closing brace
at the end of line 3. “Chapter 2. Using the DCE Control Program Command
Language” on page 19 contains more information about braces.

Now assume that, instead of six temporary workers, your organization has fifty
temporary workers (all in one group called temps) for whom you want to add
three-month account extensions. We’ll still use the foreach command but, rather
than write all fifty principals directly in the list, use the dcecp group list temps
operation to generate a list for you, as follows:
dcecp> foreach i [group list temps] {
> account modify $i -expdate 1996-06-30 }
dcecp>

In this example, we have put the group list temps operation in [] (brackets).
Called command substitution, this technique replaces the command inside the
brackets with the results returned by that command. The results of the group list
temps operation produces a valid Tcl list that might look like the following:
dcecp> group list temps
N_Long
L_Jones
P_Sawyer
D_Witt
M_Dougherty
S_Preska
.
.
.

J_Jones

Here, we have provided a high-level look at some practical uses of dcecp . Of
course there is a lot we have not seen, too. In the next chapter we will look more
closely at some of the dcecp operations that you are likely to use for DCE
administration. Remember that dcecp is based on Tcl, and Tcl has other commands
and command variations we will not discuss. So be sure you have access to the
standard Tcl publications for detailed information on all of the commands.

When to Use an Interactive Command or Script

There is no absolute dividing line for when you should enter commands interactively
or with a script. In general though, the simpler operations—those that perform one
or maybe two tasks—make the best candidates for interactive use. The following
examples typify interactive operations:
dcecp> directory create /.:/printers

dcecp> account show w_shakespeare

dcecp> server start/.:/hosts/curley/config/srvrconf/BBSserver

The next example is a little more complicated, so at first you might choose to run
this as a script:
foreach i [group list temps] {

account modify $i -expdate 1996-06-30}

Chapter 1. DCE Control Program Introduction 9

Saving a frequently used operation as a script (in a file) has its advantages; it can
help to automate repetitive or complicated tasks and you can keep it around for
possible modification and use in other situations later on. Whichever method you
choose, as you become more comfortable using dcecp and Tcl, you might find
yourself entering fairly complex operations interactively. For information on how to
how to create and invoke scripts, refer to “Customizing dcecp Sessions” on
page 16.

Editing Command Lines

We have seen some basic ways to enter interactive dcecp commands. But let us
say that now you want to edit the command you are entering or that you want to
recall and modify a command you entered previously. The DCE control program
offers several ways to edit commands. You can edit a current command line by
using the command-line editing facility. You can use the history command to recall,
edit, and reissue a previously used command.

Editing the Current Command Line

You can edit a command line before sending it to dcecp by typing control
characters or escape sequences that resemble ksh or emacs editing commands. A
control character, shown as <Ctrl- x>, where x is a letter, is entered by holding
down <Ctrl> (or <Control>) and pressing the letter key. For example, <Ctrl-A> is
<Ctrl> and <A>, pressed at the same time. Enter an escape sequence by pressing
Escape followed by one or more characters. In an escape sequence, <Escape> is
referred to as ESC, as in <ESC f> for example. Case matters in escape sequences
(unlike control characters, which do not distinguish between upper and lower case);
<ESC F> is not the same as <ESC f>.

You can enter an editing command anywhere on the line, not just at the beginning.
In addition, a return may also be pressed anywhere on the line, not just at the end.

Most editing commands accept a repeat count, n, where n is a number. Enter a
repeat count by pressing <Escape> , the number, and then the command to
execute. For example, <ESC 4><Ctrl-f> moves forward four characters. Some of
the descriptions that follow are marked with [n] to identify commands that accept a
repeat count.

The following control characters are accepted:

<Ctrl-A>
Move to the beginning of the line

<Ctrl-B>
Move left (backward) [n]

<Ctrl-D>
Delete character [n]

<Ctrl-E>
Move to end of line

<Ctrl-F>
Move right (forward) [n]

<Ctrl-G>
Ring the bell

10 OSF® DCE Administration Guide— Core Components

<Ctrl-H>
Delete character before cursor (<Backspace>)[n]

<Ctrl-I>
Complete filename (<Tab>); see following text

<Ctrl-J>
Done with line (<Return>)

<Ctrl-K>
Kill to end of line (or column [n])

<Ctrl-L>
Redisplay line

<Ctrl-M>
Done with line (alternate <Return>)

<Ctrl-N>
Get next line from history [n]

<Ctrl-P>
Get previous line from history [n]

<Ctrl-R>
Search backward (forward if [n]) through history for text; must start line if
text begins with an up arrow

<Ctrl-T>
Transpose characters

<Ctrl-V>
Insert next character, even if it is an edit command

<Ctrl-W>
Wipe to the mark

<Ctrl-X><Ctrl-X>
Exchange current location and mark

<Ctrl-Y>
Yank back last killed text

<Ctrl-[>
Start an escape sequence

<Ctrl-]> C
Move forward to next character C

<Ctrl-?>
Delete character before cursor (<Delete>) [n]

The following escape sequences are accepted:

<ESC><Ctrl-H>
Delete previous word (<Backspace>) [n]

<ESC DEL>
Delete previous word (<Delete>) [n]

<ESC SPC>
Set the mark (<Spacebar>); see <Ctrl-X><Ctrl-X> and <Ctrl-Y>

<ESC .>
Get the last (or [nth]) word from previous line

Chapter 1. DCE Control Program Introduction 11

<ESC ?>
Show possible completions; see following text

<ESC <>
Move to start of history

<ESC >>
Move to end of history

<ESC b>
Move backward a word [n]

<ESC d>
Delete word under cursor [n]

<ESC f>
Move forward a word [n]

<ESC l>
Make word lowercase [n]

<ESC u>
Make word uppercase [n]

<ESC y>
Yank back last killed text

<ESC w>
Make area up to mark yankable

<ESC nn>
Set repeat count to the number nn

In some cases, existing terminal key bindings take precedence over these dcecp
control keys. In particular, the bindings used for erase , kill , eof , intr , quit , and
susp in your environment will supercede any dcecp bindings for those same
control keys. In most instances, control keys will not be interpreted by the terminal
but will be passed through to dcecp . One of the few exceptions is lnext (literal
next), which quotes the next character typed. When you type the control key that is
bound to lnext it is interpreted by the terminal, which will pass the next character
typed through to dcecp .

The DCE control program also provides filename completion. Suppose the root
directory has the following files in it:
bin vmunix
core vmunix.old

If you type rm /v and then press <Tab>, the command processor completes as
much of the name as possible by adding munix . Because the example name is not
unique, it beeps. If you press <Escape> followed by the ? (question mark), it
displays the two choices. The command processor completes the filename when
you then enter the period (which makes the name unique) followed by <Tab>, as
shown in the following:
rm /v <Tab>munix.<Tab>old

In this example, the constant width font indicates text automatically entered by the
command processor.

12 OSF® DCE Administration Guide— Core Components

Editing Command Lines with the history Command

Sometimes when you are entering interactive commands, you want to recall and
reuse a previously entered command. Let us say you list the objects in a CDS
directory and then you modify one of the objects. Now you want to list the objects
again to verify that your modification took effect. You can use the history command
to recall, edit, and reissue a previously used command. The history facility saves
only interactive commands. Commands issued from scripts are not saved and
cannot be recalled.

The history command takes various arguments depending on what you want to do.
Entering history with no arguments lists all the commands (called events) entered
during the current invocation of dcecp , as shown:
dcecp> history

1 principal create wardr -fullname {Ward Rosenberry} \
-quota unlimited

2 group add users -member wardr
3 organization add consultants -member wardr
4 account create wardr -mypwd mxyptlk -password qwerty \

-group users -organization consultants
5 history

dcecp>

Each history event is independent of previous events. This means that, if a recalled
command used a variable, its current value may not be the same as when it was
first entered. The history command itself generates a history event, too.

By default, the history list keeps the 20 most recent commands. You can use the
history keep command to lengthen or shorten the history list. For example, the
following command lengthens the history list to keep the 50 most recent events:
dcecp> history keep 50
dcecp>

You can specify events in various ways. Positive numbers specify events relative to
the earliest event in the list. Negative numbers specify events relative to the most
recent command. You can also specify an event by typing characters that match all
or part of a previous event.

The history facility lets you reuse previous events in many ways. The following
discussion covers just a few of the history commands you can use.

v You can execute a previous command without revision by using the history redo
command:
dcecp> history

1 directory show /.:/printers
2 object create /.:/printers/ascii_printer1
3 object create /.:/printers/ascii_printer2
4 object create /.:/printers/ascii_printer3
5 history

dcecp> history redo directory
directory show /.:/printers
.
. [output omitted]
.

dcecp>

You can save the most typing by entering just the unique first characters of
words in a history command. For instance, you can enter the history redo
directory command from the previous example as

Chapter 1. DCE Control Program Introduction 13

dcecp> hi r d
directory show /.:/printers
.
. [output omitted]
.

dcecp>

Other ways to redo commands include !! , which recalls the most recent
command, and ! event number to recall a specific event.

v You can revise and reexecute a previous command by using the history
substitute command. A common use of this command is to correct typing
mistakes. The command syntax is as follows:
history substitute old new [event number]

If you omit the event number, you’ll redo the most recent command. Replace the
old part of the recalled command with new information:
dcecp> history

1 directory show /.:/printers
2 object create /.:/printers/ascii_printer1
3 object create /.:/printers/ascii_printer2
4 object create /.:/printers/ascii_printer3
5 directory show /.:/printers
6 history

dcecp> hi s printer3 printer4 -3
object create /.:/printers/ascii_printer4
dcecp>

You can also recall and revise the most recent command by using the | old| new
syntax familiar to users of the UNIX csh shell, as follows:
dcecp> |4|5
object create /.:/printers/ascii_printer5
dcecp>

Using the dcecp Help Facilities
v If you want to see a list of objects provided by the DCE control program, enter

help at the dcecp prompt as shown in the following example:
dcecp> help
The general format of all dcecp commands is as follows:
dcecp> <object> <operation> [argument] [options]

In addition to all of the standard tcl commands, dcecp supports many
commands to administer DCE objects. A dcecp object or task represents
a DCE entity. Type 'man dcecp_<command>' for more information. All
of the following dcecp objects and tasks require an operation:
account cdsalias dts log rpcprofile
acl cdscache endpoint name secval
attrlist cdsclient group object server
aud cell host organization user
audevents cellalias hostdata principal utc
audfilter clearinghouse hostvar registry uuid
audtrail clock keytab rpcentry xattrschema
cds directory link rpcgroup

Miscellaneous commands perform specific functions. Type 'man dcecp'
for more information. These commands take no operation:
echo errtext login logout quit resolve shell

To list all dcecp objects: dcecp> help -verbose
To list all operations an object supports: dcecp> <object> help

14 OSF® DCE Administration Guide— Core Components

To list all options for an object operation: dcecp> <object> help <operation>
For verbose information on a dcecp object: dcecp> <object> help -verbose
For the manual page of a dcecp object: dcecp> man dcecp_<object>
dcecp>

v If you just need to know which operations an object supports, use the command
object operations

which returns a list of the actions you can take on an object. The following
example shows how to list the operations available for the principal object:
dcecp> principal operations
catalog create delete modify show operations help
dcecp>

You can save typing by abbreviating this command to something like prin oper .

v Get more detailed help about an object and its operations by using the object
help command. The following example returns a 1-line description of each
operation supported by the principal object:
dcecp> principal help
catalog Returns all the names of principals in the registry.
create Creates a DCE principal.
delete Deletes a principal from the registry.
modify Changes the information about a principal.
rename Renames the specified principal.
show Returns the attributes of a principal.
help Prints a summary of command-line options.
operations Returns a list of the valid operations for this command.
dcecp>

v Get information about available command options by adding an operation
argument to the object help command. The following example returns a 1-line
description of each option supported by the principal create operation:
dcecp> principal help create
-alias Indicates the principal name is an alias of the uid.
-attribute Specify principal attributes in an attribute list format.
-fullname Fullname of the principal.
-quota How many registry objects can the principal create.
-uid User Identifier of the new principal.
-uuid Orphaned UUID to be adopted by the principal.
dcecp>

v Get help about an object itself by using an object help -verbose command. The
following example returns a description of the principal object along with
information about how to use the object:
dcecp> principal help -verbose
This object allows manipulation of principal information stored
in the DCE registry. The argument is a list of either relative or
fully-qualified principal names. Specify fixed attributes using
attribute options or an attribute list. Specify any extended attributes
using an attribute list. Principal operations connect to a registry that
can service the request. Specify a particular registry by setting the
_s(sec) convenience variable to be a cell-relative or global replica
name, or the binding of the host where the replica exists. The
completed operation sets the _b(sec) convenience variable to the name
of the registry contacted.
dcecp>

v

Finally, some POSIX style systems will have reference pages for dcecp objects
as well as a Tcl summary reference page. Each dcecp object has its own
reference page that describes the object and the operations available to it. The
general syntax for viewing a dcecp object reference page is

man object_name

Chapter 1. DCE Control Program Introduction 15

The following example shows how to invoke the reference page for the principal
object. Note that you can use the man command from within dcecp .
dcecp> man principal
.
. [output omitted]
.

dcecp>

The Tcl reference page summarizes the Tcl built-in commands. You can view the
Tcl summary reference page on a UNIX style system by entering
dcecp> man Tcl
.
. [output omitted]
.

dcecp>

Customizing dcecp Sessions

The DCE control program includes a number of commands, objects, and task
scripts for performing most of the day-to-day DCE administration operations.
Nevertheless, as you gain experience using the dcecp interface, you may find you
want to add new commands and capabilities or to customize some existing ones.
The following sections explain how to add scripts and new objects to your dcecp
session. An object is just a formal implementation of a script that uses the dcecp
help system and takes the form of object operation. “Grouping Elements with
Braces” on page 22 and “Chapter 3. Writing Scripts and dcecp Objects” on page 47
explain the fundamentals of writing dcecp scripts and creating new objects.

Adding Scripts to dcecp Sessions

Once you have written a script, you can make it available to one person or to
everyone who is logged into the host by modifying one or more of the following files
invoked when dcecp initializes:

[info library]/init.tcl
This file is read first and contains standard Tcl initialization commands for
the host. This affects all instances of dcecp running on a host. The file
contains definitions for the Tcl unknown command and the auto_load
facility used for initializing all of the dcecp objects. Administrators should
avoid adding dcecp customizations to this file.

dcelocal/init.dcecp
This file contains dcecp -specific startup information for the host. This
affects all instances of dcecp running on a host. The dcecp scripts
implementing operations and tasks are stored in the dcelocal/dcecp
directory. Add customizations in the form of procedures to this file to make
them available to all dcecp users on the host.

$HOME/.dcecprc
This optional file stores user customizations that affect individual dcecp
users (the owners of the .dcecprc files). Each DCE user can maintain a
.dcecprc file and store private procedures or alias names for operations.
Modified .dcecprc files allow flexible administration in environments with
multiple administrators. For example, different .dcecprc files for each
administrator could use dcecp source commands to call specific
commands and task scripts that are tailored to particular areas of
administration.

16 OSF® DCE Administration Guide— Core Components

The rest of this section illustrates a simple task script and shows one way to make
the script available for personal use. Our example begins with the control program’s
existing clock object that shows the current time. However, the time is simply a
DTS timestamp from the clock on the local host as in
dcecp> clock show
1994-10-03-10:22:59.991-04:00I-----
dcecp>

Let us say you create a procedure that gets a timestamp from a DTS server but
also displays the name of the DTS server with the time as in the following example
which invokes a user-created procedure called show_clock :
dcecp> show_clock
Time on mars is 1994-09-30-15:03:43.979-04:00I-----
dcecp>

You can make this procedure available to one user by including the procedure in
the user’s .dcecprc file. The following sample .dcecprc file includes user
customizations consisting of the _dcp_show_clocks procedure and an alias that
lets you invoke the procedure with the simpler show_clocks command name.
Another procedure called _dcp_whoami shows the current login identity
information. Note the order of operations in the .dcecprc file. Procedures are
defined at the beginning of the file. Renaming and invoking the procedures must
occur after the procedures are defined.
##
Start up commands
##
A simple command to rerun .dcecprc after modifications
proc .d {} {source $HOME/.dcecprc}

Show your current login name and your current cell name.
proc _dcp_whoami {} {
global _c _u
return "You are '$_u' logged into '$_c'."

}
Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {

set x [directory list /.:/hosts]
foreach n $x {

if {[catch {object show $n/dts-entity}] == 0} {
set index [string last "/" $n]
set y [string range $n [incr index] end]
if {[catch {clock show $n/dts-entity} msg] == 0} {

set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

[clock show $n/dts-entity]]
} else {

set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

"Server not responding."]
}

}
}

}

Give some procs usable names
rename _dcp_whoami whoami
rename _dcp_show_clocks show_clocks

If I am authorized, say so
if {$_u != ""} {
whoami

}

Chapter 1. DCE Control Program Introduction 17

The rename command near the end of the file lets you invoke the
_dcp_show_clocks and _dcp_whoami procedures using the easier command
names show_clocks and whoami .

When you start dcecp , the last part of this file invokes the _dcp_whoami
procedure if you are logged into DCE. If the _u convenience variable is set, the
_dcp_whoami procedure prints your current login identity as follows:
% dcecp
You are ' principal_name' logged into ' cell_name'.
dcecp>

Adding New Objects to the DCE Control Program

If you have written a script as a formal dcecp object, you can make it available by
including the new object in the same directory where other task objects reside. On
UNIX systems, this is often dcelocal/dcecp . As a rule, you should add the new
object to each host in the DCE cell. “Chapter 3. Writing Scripts and dcecp Objects”
on page 47 describes how you can use the dcecp hostdata object to copy scripts

or other files to every host in a cell.

When you install a new script, you must run the auto_mkindex utility to make the
new object available to other users on the host. For more information about running
the auto_mkindex utility, see “Chapter 3. Writing Scripts and dcecp Objects” on
page 47.

18 OSF® DCE Administration Guide— Core Components

Chapter 2. Using the DCE Control Program Command
Language

In “Chapter 1. DCE Control Program Introduction” on page 3, we provided a
high-level look at some ways to use the DCE control program to administer your
DCE environment. In this chapter, we will discuss some syntax rules and some of
the more important commands you will need to use in composing your dcecp
administration commands and task scripts.

The dcecp command language consists of DCE administration commands like
directory create and object modify , as well as Tcl built-in commands such as if
and foreach . We will not discuss DCE administration commands here. These
commands are discussed in sections that deal with administering the particular DCE
component. Instead, we will focus on using the more generic syntax rules and
built-in commands.

The Tool Command Language (Tcl) on which dcecp is based is a general-purpose
language that is also used for other applications besides dcecp . Although there are
many ways you can use Tcl for various purposes, we will limit our discussion to
those commands most likely to be used for administering DCE environments.
Furthermore, our command discussions do not describe every aspect of individual
commands. Rather, they suggest why and how you might use a command in the
context of administering a DCE environment. If you are not already familiar with Tcl,
you’ll likely need to have access to the appropriate Tcl documentation, including the
Tcl reference pages, for writing sophisticated commands and task scripts.

Chapter Preview

This chapter walks you through the basic dcecp syntax and then looks at some
commands that you are likely to use in interactive commands and task scripts. The
discussions will focus on

v Use of variables as an easy way to pass data around in your command or script

v Command substitution as a way to channel the output from one command to the
input of another command

v Grouping elements together so that dcecp parses commands correctly

v Using lists to sort, find, and reuse information

v Using arithmetic functions in commands and task scripts

v Conditionalizing and controlling your script with if statements and loops

v Executing scripts associated with character patterns by using the case command

v Synthesizing commands by using eval

v Importing operations with source

v Creating new dcecp commands with proc

v Using error and exception information

v Handling strings

v Working with files

v Spawning subprocesses

19

Variable Substitution

Like other programming languages, dcecp provides shorthand ways to express and
use values. Variable substitution is one shorthand method that lets you represent a
value—say, the name of an object in a CDS directory—as a variable.

Use the set command to establish a value for a variable. For readability, a variable
name can consist of any combination of letters, numbers, and _ (underscore)
characters. Use ″″ (quotes) or \ (backslash) to include spaces in variable names
(although this is not usually recommended) or values. All of the following examples
use valid variable names:
set a $i
set CDS_clearinghouse_name cambridge_ch
set DCE_user_1 "William Rosenberry"

The following example sets variable a to have a value of 7. The second use of the
set a command without a value causes dcecp to display the current value of the
variable:
dcecp> set a 7
7
dcecp> set a
7

Once you have established a value for a variable using the dcecp set command,
the variable can be subsequently used elsewhere in your script or interactive
command. The DCE control program uses the $ (dollar sign) to trigger insertion of
the current value into the command word. A simple example is
dcecp> set a 7
7
dcecp> expr $a+2
9

Here we first set variable a to 7. In line 2, we use the expr command to add 2 to
the value of a (7). The dollar sign triggers dcecp to insert the value 7. The last line
shows the return value from the expr command.

A more relevant example might be
dcecp> set a /.:/sec
/.:/sec
dcecp> object show $a
{RPC_ClassVersion
{01 00}}

{RPC_ObjectUUIDs
{06 3b 23 00 72 e5 e0 1d 8c b4 00 00 c0 8a df 56}}

{RPC_Group
{2f 2e 2e 2e 2f 77 61 72 64 5f 63 65 6c 2e 6f 73 66 2e 6f 72
67 2f 73 75 62 73 79 73 2f 64 63 65 2f 73 65 63 2f 6d 61 73 74
65 72 00}}

{CDS_CTS 1994-05-23-17:21:37.481+00:00I0.000/00-00-c0-8a-df-56}
{CDS_UTS 1994-05-23-17:22:36.607+00:00I0.000/00-00-c0-8a-df-56}
{CDS_Class RPC_Group}
{CDS_ClassVersion 1.0}
dcecp>

Remove (undefine) a variable by using the unset command as in the following
example:

20 OSF® DCE Administration Guide— Core Components

dcecp> unset a
dcecp> set a
Error: cannot read "a": no such variable
dcecp>

Command Substitution

Command substitution provides a convenient way to express the return value of
one command within another command. This is useful when you want to use the
return value of one command as input to another command. Use brackets to invoke
command substitution. The following example uses the expr command, which we’ll
discuss shortly. Generally, expr performs a math function, returning the computed
value expressed by its arguments, as shown:
dcecp> set a 4
4
dcecp> set b [expr $a+2]
6
dcecp> set b
6
dcecp>

A more practical example might use command substitution for a command that
returns a long name or a list. Let us recall an example we saw in “Chapter 1. DCE
Control Program Introduction” on page 3. In this example, the [group list temps]
command returns a list to the foreach command that performs the account modify
operation on each element in the list. We’ll look more closely at the foreach looping
command later in this section.
dcecp> foreach i [group list users] {
> account modify $i -change {expdate 1995-12-31}}
dcecp>

Another practical use of command substitution is to set up a test condition for an if
statement. We show an example of this usage in “Controlling Scripts” on page 32.

Grouping Elements and Controlling Interpretation

Programming languages often use symbols such as braces, quotes, and
parentheses to operate on selected elements as a group rather than individually.
Similarly, dcecp uses ″″ (double quotes) and {} (braces) to group elements into
structures. Double quotes allow elements that would usually be parsed separately
to be grouped and treated as a single element. Braces are used to group elements
into a list so that dcecp can correctly parse commands and other data like return
values.

The dcecp command elements are separated by whitespace: the space, tab, and
newline characters. The following dcecp command uses space characters to
separate its three elements:
dcecp> directory create /.:/subsys/comm_services
dcecp>

Use either the newline character or the ; (semicolon) to separate commands in a
script. The following two examples, which set and then use a variable, are
equivalent:

Chapter 2. Using the DCE Control Program Command Language 21

dcecp> set a /.:/subsys/comm_services
/.:/subsys/comm_services
dcecp> directory create $a
dcecp>

dcecp> set a /.:/subsys/comm_services; directory create $a
dcecp>

The choice to use braces or quotes to group elements together depends on how
you want dcecp to interpret special characters like $, [, and {. While braces disable
special interpretation of most of these characters, double quotes disable special
interpretation of just a few. The backslash character, discussed in “Including Special
Characters with Backslashes” on page 23, offers another way to disable
interpretation of special characters. When used together, braces, quotes, and
backslashes offer lots of flexibility in composing dcecp command strings.

Grouping Elements with Braces

Braces group separate elements to create a new element that consists of
everything between a { (left brace) and its corresponding } (right brace). You can
also nest braced elements. Each of the following example lists contain three
elements:
larry moe curly

1 {3 5 7 11 13} {17 19}

red {orange yellow {green blue} indigo} violet

Braces disable command ([]), variable ($), and backslash substitution. While the
most important use of braces is to ensure a dcecp command has the correct
number of arguments, this also provides a convenient way to include special
characters in a list. To see how this works, consider the following example:
dcecp> set a solution
solution
dcecp> puts $a
solution
dcecp> puts {This is a convenient $a}
This is a convenient $a

While the puts command is often used for writing to files, when called with only one
argument it writes the argument to stdout . In our example, the first use of puts
allows normal interpretation of the variable a. The second use of puts groups the
separate elements into one argument by disabling special interpretation of space
characters and the dollar sign.

Grouping Elements with Double Quotes

Like braces, double quotes also group elements together. But unlike braces, double
quotes cannot be nested. Furthermore, while braces disable almost all special
characters, double quotes disable just a few—spaces, tabs, newlines and
semicolons— letting you avoid the potentially awkward use of backslashes in a
string of text elements. The most convenient use of double quotes is to allow clean,
readable expansion of variables using the dollar sign trigger. For instance, in the
following example we set a variable (a) to a value that includes spaces:

22 OSF® DCE Administration Guide— Core Components

dcecp> set a "XYZ server for /.:/corp/comm_groups"
XYZ server for /.:/corp/comm_groups
dcecp> puts $a
XYZ server for /.:/corp/comm_groups
dcecp>

Use of double quotes does not disable command, variable, and backslash
substitution. Let us look at a variation of the example used in the “Grouping
Elements with Braces” on page 22:
dcecp> set a solution
solution
dcecp> puts $a
solution
dcecp> puts "This is a convenient $a."
This is a convenient solution.
dcecp>

In this example, the use of quotes with the second puts command gathers five
elements into a single argument for puts by disabling special interpretation of the
space characters. However, the quotes do not affect interpretation of the dollar sign.

Including Special Characters with Backslashes

We already know that dcecp relies on certain special characters such as spaces,
braces, quotes, or dollar signs to control its interpretation of elements. Sometimes,
you might want to include one special character in a string, temporarily suspending
its special interpretation. The backslash provides a form of substitution that
suppresses special interpretation of the character immediately following the
backslash.

Use the backslash to insert a nonprinting space character in a string of elements.
For instance, each of the following dcecp lists have three elements:
a b\ c d
a b \{

The elements in the first example are a, b c , and d. The elements in the second
example are a, b, and {. A more practical example could use the backslash to
include quotes in error messages as shown in the following code fragment:
if {[llength $a] < 2} {

error "Unable to parse \"$element_list\"."
}

The following list shows the special characters that you can include in a string of
elements by using the backslash character:

\b Backspace
\t Tab
\e Escape
\n Newline
\r Carriage-return
\{ Left brace
\} Right brace
\[Open bracket
\] Close bracket
\$ Dollar sign
\ (space) Space (″ ″)
\; Semi-colon

Chapter 2. Using the DCE Control Program Command Language 23

\″ Double quote
\\ Backslash
\(newline) Nothing
\ ddd Octal value

Documenting Scripts with Comments

When you are writing scripts, you might want to include some comment lines to
remind yourself and others what the script is doing. Use the # (number sign) to
insert comments. The DCE control program suppresses interpretation between a
number sign and the next newline. You must place the number sign in a position
where dcecp expects the first character of a command. Both of the following
examples are valid:
set a 5
sets a to 5

set a 5 ;# sets a to 5

The following example is not valid because the number sign is not positioned where
dcecp expects the first character of a command:
set a 5 # sets a to 5

A common use of comments is to document procedures in scripts as in the
following sample script fragment:
#
_dcp_cleanup_user_create - This function undoes changes
after a failure in one of the user create functions as
though the operation never occurred.
#

proc _dcp_cleanup_user_create {account_name args}
{

Convenience Variables

The DCE control program remembers what you enter as well as command output,
and stores certain pieces of that information in convenience variables for reuse in
subsequent commands. Using these variables in your interactive commands can
reduce typing and help eliminate typing mistakes.

Convenience variables apply only to dcecp commands like directory , principal ,
acl , account , and so on. They do not apply to Tcl commands like for or eval , or
UNIX commands like mv or grep . As an example, the convenience variable _n
holds the name (the argument) used in the following principal create operation.
The principal show operation retrieves the name by using the $_n variable.
dcecp> principal create D_Kalivas
dcecp> principal show $_n -all
{fullname {}}
{uid 17}
{uuid 00000011-d957-21cd-8d00-0000c08adf56}
{alias no}
{quota unlimited}
dcecp>

While this simple explanation demonstrates the general operation of convenience
variables, it understates their usefulness. Most of the convenience variables are
intended to aid interactive use, but some can be used in scripts as well, adding

24 OSF® DCE Administration Guide— Core Components

flexibility because the information they contain is not hardcoded in the script.
Moreover, as you gain experience with the DCE control program, you will likely find
these variables to be indispensible administrative tools.

The DCE control program provides several convenience variables that substitute for
previously entered information or command output. All of the convenience variables
begin with an _ (underscore) to leave 1-character variable names free for other
uses.

The following sections describe the convenience variables. Their order of
presentation generally keeps similar or related variables together.

Current Principal (User) Name (_u)

The _u convenience variable holds the current simple principal name. The DCE
control program sets this variable from the login context inherited from the parent
process. You can change its value by performing another login operation. Setting it
using set generates an error.
dcecp> puts $_u
cell_admin
dcecp>

A practical use of this variable could be in scripts that test for a certain DCE identity
before proceeding. On finding an incorrect identity, scripts could prompt for the
necessary identity information and perform a dce_login operation.

See the cell name variable description in “Current Cell Name (_c)” for information
about composing fully qualified principal names.

Current Cell Name (_c)

The _c convenience variable holds the name of the cell in which the principal is
registered. The DCE control program sets this variable from the login context
inherited from the parent process. You can change its value by performing another
login operation. Setting it using set generates an error.
dcecp> puts $_c
/.../my_cell.goodco.com
dcecp>

This variable is generally useful in environments where administrators deal with
multiple cells. For example, you could use the _c variable as a building block in
constructing the current context’s fully qualified principal name for use in scripts.
Join the cell name and user name variables together with a / (slash) as shown in
the following example:
dcecp> puts $_c/$_u
/.../my_cell.goodco.com/cell_admin
dcecp>

Current Host Name (_h)

The _h convenience variable holds the DCE name of the current host. The DCE
control program sets this variable when dcecp is invoked. Setting it using set
generates an error.

Chapter 2. Using the DCE Control Program Command Language 25

dcecp> puts $_h
hosts/planets
dcecp>

The _h variable is useful for returning the name of the host to an interactive user.
You can also use it with the _c variable, as shown, to construct names such as a
host principal name in a script:
dcecp> puts $_c/$_h/self
/.../my_cell.goodco.com/hosts/planets/self
dcecp>

Most Recent Operation Argument Name (_n)

The _n variable holds the name or names used as an argument to the most recent
control program operation. Most dcecp objects take a name or a list of names as
an argument. Those that do not use names as an argument include the
miscellaneous dcecp commands dcecp_initInterp , login , logout , errtext , quit ,
resolve , and shell .

The name is usually the third argument in a dcecp operation, as shown in the
following directory operation:
dcecp> directory create /.:/sales/printers/text_printers
dcecp>

Once set, you can use $_n in subsequent operations in place of the name
argument. For example, you could modify a directory attribute for the
/.:/sales/printers/text_printers directory created in the preceding example, as
follows:
dcecp> directory mod $_n -change {CDS_Convergence low}
dcecp>

The _n variable can also hold a list of names, as when you perform a directory
service operation on more than one name. For instance, you could create several
directories and then decide to modify an attribute:
dcecp> directory create {
> /.:/sales/printers/text_printers
> /.:/sales/printers/graphics_printers
> /.:/sales/printers/colorgraphics_printers }
dcecp>

A subsequent directory service operation can simply use the _n variable in place of
the name or list of names:
dcecp> directory modify $_n -change {CDS_convergence high}
dcecp>

Parent of _n (_p)

The _p variable holds the parent of the name stored in _n. The _n variable holds
the name or list of names used in the argument to the most recent operation (see
“Most Recent Operation Argument Name (_n)”). The _p variable holds the name or
list of names that are hierarchically above the name in _n (closer to the cell root).

One use of the _p variable is in traversing up a CDS hierarchy of directories.
Another use is showing the access control list (ACL) of a parent object. The
following operations view the ACLs of a server configuration object and of its parent
object (/.:/hosts/krypton/config/srvrconf):

26 OSF® DCE Administration Guide— Core Components

dcecp> acl show /.:/hosts/krypton/config/srvrconf/video_clip
{appl_admin cdfrwx}
{unauthenticated r}
{any_other r}
dcecp>
dcecp> puts $_p
/.:/hosts/krypton/config/srvrconf
dcecp>
dcecp> acl show $_p
{appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

Last dcecp Object Name (_o)

The _o variable holds the name of the dcecp object used in the most recent
operation. The following example uses the _o variable to avoid retyping account :
dcecp> account show j_wanders
{acctvalid yes}
{client yes}
.
. [output omitted]
.

{home /}
.
. [output omitted]
.

{shell {}}
{stdtgtauth yes}
dcecp> $_o modify j_wanders -home/.:/fs/corporate_services/users/j_wanders
dcecp>

Last Operation’s Return Value (_r)

The _r variable holds the return value of the most recent operation. Many dcecp
commands return multiple lines of output which are in the form of a list.

The following example shows one use of the _r convenience variable. The dts
show command returns multiple lines as a list. The attrlist getvalues operation
(see the attrlist(8dce) reference page) searches through the returned list for the
string toofewservers and returns its associated value.
dcecp> dts show -counters
{creationtime 1994-09-16-07:50:13.067-04:00I-----}
{nointersections 0}
{nointersections 0}
{diffepochs 0}
{toofewservers 1}
{providertimeouts 82}
{badprotocols 0}
{badtimerep 0}
{noglobals 81}
{noresponses 0}
{abrupts 0}
{epochchanges 0}
{syserrors 0}
{syncs 1574}
{updates 0}
{enables 1}
{disables 0}
{nomemories 0}
{providerfailures 0}
{badlocalservers 0}

Chapter 2. Using the DCE Control Program Command Language 27

{badservers 0}
dcecp> attrlist getvalues $_r -type toofewservers
1
dcecp>

DCE Servers to Use (_s(xxx))

The _s(xxx) variables hold the names of the DCE servers to use for the next DCE
operation. The DCE control program provides four of these variables. Because the
variables are not set by dcecp , users must set these variables if they want to use
them. The variables are as follows:

_s(sec)
This variable holds the name of the security server you want to use for the
next registry operation. If you set this to specify a read-only replica and the
operation (such as principal create) requires a master replica, dcecp
ignores the variable and tries to bind to the master registry. Registry
operations that use the _s(sec) variable include principal , group ,
organization , registry , account , and xattrschema .

DCE control program operations use the _s(sec) variable in conjunction
with the _b(sec) variable, which holds the name of the most recent registry
used. A registry operation uses the following order to select a security
server:

1. Use the server passed as a name argument to the registry operation.

2. If the operation lacks a name argument, use the server named in the
_s(sec) variable.

3. If the_s(sec) variable has not been set, use the server named in the
_b(sec) variable.

4. If the_b(sec) variable has not been set (that is, this is the first registry
operation since dcecp was initialized), the service provides an arbitrary
server that is suitable for the operation.

_s(cds)
This variable holds the name of the CDS server you want to use for the
next directory service operation. When set, CDS operations attempt to use
the specified server. The operation fails if the attempt is unsuccessful such
as when the server is unavailable for some reason. To overcome such a
failure, you must unset this variable or make the server available.

It makes sense to use the _s(cds) variable when all of your application
needs can be satisfied by the clearinghouse named in the variable.
Consider not using the _s(cds) variable when name lookups in CDS are
likely to traverse directories in several clearinghouses. In this case, you’ll
get lookup errors because the _s(cds) variable limits the lookup operation
to using just the named clearinghouse.

_s(dts)
This variable holds the name of the DTS server you want to use for the
next time service operation. When set, DTS operations attempt to use the
specified server. The operation fails if the attempt is unsuccessful such as
when the server is unavailable for some reason. To overcome such a
failure, you must unset this variable or make the server available.

One use of this variable is to restrict DTS operations to a single DTS server
for monitoring purposes. Normally, time service operations can use any
available DTS server.

28 OSF® DCE Administration Guide— Core Components

_s(aud)
This variable holds the name of the audit daemon you want to use for the
audit operation. By default, audit operations affect the local host’s audit
daemon. You can operate on a remote host’s audit daemon by specifying
its name as the value of the _s(aud) variable, as follows:
dcecp> set _s(aud) /.:/hosts/planets/audit-server
/.:/hosts/planets/audit-server
dcecp>

When _s(aud) is set, audit operations attempts to use the specified audit
daemon. The operation fails if the attempt is unsuccessful such as when
the specified audit daemon is unavailable for some reason. To overcome
such a failure, you must unset this variable or make the audit daemon
available.

You can specify a DCE server or audit daemon as any of the following:

v A DCE name. An example of a global registry name is
/.../my_cell.goodco.com/subsys/dce/sec/oddball . An example of a cell-relative
CDS clearinghouse name is /.:/Paris_CH .

v The string binding for the host where the server resides. String bindings can
represent security servers, DTS servers, and audit daemons. They cannot
represent CDS servers. An example of a string binding is {ncacn_ip_tcp
110.15.22.131}. The DCE control program resolves the binding to the appropriate
service on the host.

v The name of the cell. For a remote cell, specify a global cell name, for example
/.../my_cell.goodco.com . For the local cell you can specify the root as /.:. These
operations use an arbitrary server that is suitable for the operation.

Last Security Server Used (_b(sec))

The _b(sec) convenience variable holds the name of the security server used for
the most recent registry operation. The DCE control program sets this variable
based on previous registry operations. Consequently, users can view, but not set,
this variable.

One reason to read the value of this variable is to check which registry performed
the most recent operation as shown in the following example:
dcecp> puts $_b(sec)
/.../my_cell.goodco.com/subsys/dce/sec/oddball
dcecp>

Registry operations use the value of the _b(sec) variable in conjunction with the
value of the _s(sec) variable to determine which security server to use. Refer to
“DCE Servers to Use (_s(xxx))” on page 28 for information about the _s(sec)
variable and how these values work together for registry operations.

Most Recent Error Code (_e)

The _e convenience variable holds the last DCE error code encountered. If the
DCE control program can determine what the error code is, this variable is set. If an
actual error code is unknown, the variable is set to -1 (negative one).

Chapter 2. Using the DCE Control Program Command Language 29

CDS Confidence Level (_conf)

The _conf convenience variable indicates the confidence you have in the local CDS
daemon to fulfill requests. It alters the behavior of most commands that operate on
a CDS object. A confidence level can be low , medium , and high .

Measuring and Counting with Expressions

The expr command offers flexible ways to express and use arithmetic functions in
your scripts. Expressions are useful for things like comparing numeric information
such as the number of elements in a list, setting thresholds for monitoring purposes,
incrementing counters that control your script’s execution, and producing statistical
information.

A simple dcecp expression is a combination of an operator like + (add) or *
(multiply) and some operands. The expr command takes one argument—the
expression—so parentheses or braces may be needed if your expression has
spaces. Use parentheses to control grouping in expressions. Expressions can also
be nested. All of the following are valid expressions:
dcecp> expr {2 + 3}
5
dcecp> expr 2+3
5
dcecp> set x 24
24
dcecp> expr ($x-8)*2
32
dcecp> expr $x-(8*2)
8
dcecp> expr $x-8*2
8
dcecp>

Be careful using variables in expressions; variables like $x must be numeric strings
like 24, not nonnumeric strings like 4*6.

The DCE control program normally treats numbers as decimal integers, but can
read numbers in octal and hexadecimal formats too. Precede a number with 0
(zero) for octal interpretation, as in 0477. Precede a number with 0x for
hexadecimal interpretation, as in 0x9FF. You can also represent numbers in
floating-point format by using any of the forms specified by the ANSI C standard
(with the exception of the f, F, l, and L suffixes).

The DCE control program also supports numerous mathematical functions in
expressions such as cos, exp, log, tan, sin, and others, by invoking the C math
library functions of the same name.

Here is a partial list of operators you can use with the expr command. The list
order also denotes precedence. This means, for instance, that expr multiplies
before adding (2+2*4 equals 10).

- unary minus
x bitwise NOT
! logical NOT
* multiply
/ divide
% remainder

30 OSF® DCE Administration Guide— Core Components

+ add
- subtract
<< left shift
>> right shift
< Boolean less than
<= Boolean less than or equal
> Boolean greater than
>= Boolean greater than or equal
== Boolean equal
!= not equal
& bitwise AND
| bitwise exclusive OR
| bitwise OR
&& logical AND
|| logical OR
a? b: c if-then-else (as in C).

Operating on Lists

Lists provide convenient ways to operate on collections of things such as sets of
principals, group members, or other objects. Lists are collections of objects entered
by you or returned from commands. We have already seen lists in previous
examples in this chapter; they are any number of elements separated by spaces,
tabs, or newlines. Usually, a list is enclosed in braces.

All of the following are examples of lists:
{n_long l_jones p_sawyer d_witt m_dougherty s_preska}

{{/.:/hosts} {/.:/subsys}}

The DCE control program relies on lists to group elements so they can be correctly
parsed by the dcecp command interpreter. For example, the set command takes
two arguments:
set varName value

The following set command cannot be correctly parsed because dcecp detects a
third argument:
dcecp> set a John Hunter
Error: wrong # args: should be "set varName ?newValue?"
dcecp>

Use braces, quotes, or backslashes to create a valid list, as follows:
dcecp> set a {John Hunter}
John Hunter
dcecp> set a "John Hunter"
John Hunter
dcecp> set a John\ Hunter
John Hunter
dcecp>

The commands that operate on lists provide convenient ways to evaluate, select,
and act on individual elements or groups of elements in a list. The DCE control
program provides a comprehensive set of commands that let you create, modify,
search, sort, and convert to and from lists.

Chapter 2. Using the DCE Control Program Command Language 31

For example, the following script returns the last element in a list. The llength
command returns the number of elements in the list. Our list has four elements so
llength returns 4. The DCE control program numbers the elements from left to right
starting with 0 (zero) so our list with three elements has elements numbered 0, 1, 2,
and 3. The value of variable c is set to the number of the last element in the list (3).
Finally the lindex command returns element 2 (f).
dcecp> set a {a b {c d e} f}
a b {c d e} f
dcecp> set b [llength $a]
4
dcecp> set c [expr $b-1]
3
dcecp> lindex $a $c
f
dcecp>

The DCE control program provides numerous commands for working with lists. You
can join lists together using the concat command. Use linsert to add elements to
an existing list. Extract a range of elements by using lrange , replace elements in a
list with lreplace , and sort list elements in alphabetical (dictionary) order by using
lsort . The DCE control program also includes an attrlist object (see attrlist(8dce)
for use in manipulating list elements.

Here is an example that lists all child directories in a tree in alphabetic order. The _r
variable is a dcecp convenience variable that holds the output of the last command.
In this case, _r holds the list of directories returned by the directory list -simple
command.
dcecp> directory list -simple /.:
hosts subsys cell-profile fs lan-profile planets_ch sec sec-v1
dcecp> lsort $_r
cell-profile fs hosts lan-profile planets_ch sec sec-v1 subsys
dcecp>

Controlling Scripts

The DCE control program provides several commands for controlling your script’s
execution. Commands such as if , while , for , foreach , and case execute parts of
scripts under various conditions. The break and continue commands can stop
execution of part or all of a command script.

Conditionalizing with if Statements

Sometimes, you’ll want part of your script to execute only under certain conditions.
Use an if statement to detect a condition and conditionally perform some operation.
The syntax for an if statement is
if test true_body else false_body

Let us say you are writing a script that searches through a list of attributes for a
particular attribute. An if statement could take particular actions depending on
whether an attribute exists. The following example script fragment returns an error
message if the account name does not exist in the list_of_group_entries variable:
set list_of_group_entries [group list $group -simplename]
if { [lsearch $list_of_group_entries $account_name] == -1} {

group add $group -member $account_name

32 OSF® DCE Administration Guide— Core Components

} else {
error "Group \"$group\" already has an entry \
for \"$account_name\"."

}

Controlling Script Execution with Loops

Programming languages use loops to repeat operations as long as specified
conditions exist. The DCE control program offers three kinds of loops: foreach ,
while , and for . The type of loop you use depends on the way conditions are
specified.

The foreach Loop

When you want to perform a given operation on each element in a list, use the
foreach command. Remember that a list is a colletion of objects, or things enetered
by you or returned from a command.

The syntax is
foreach variable_name
list body

The foreach command consists of a list, a script body, and a variable that
represents each element of the list, in turn. The command runs the script body on
the element represented by the variable and then sets the variable to be the next
element in the list.

The following sample foreach command could be part of a script that manages
hosts in a DCE cell. This script fragment removes the host principal name from the
registry if a failure occurs while configuring the host in the cell. The foreach
command looks at each principal name in the cell. If the string commands find the
host name listed in the output from principal catalog , the script deletes the
principal name from the registry.
foreach princ [principal catalog -simplename] {

if {[string match $host_name [string range $princ 0 \
[expr [string length $host_name] - 1]]] == 1} {
principal delete $princ

}
}

Keep in mind that loops return their results to the interpreter, not to stdout . You
need to take extra steps to send the results to stdout . The next example uses a
puts command to send the results of the foreach loop to stdout :
foreach i [group list subsys/dce/dts-servers] {

puts [principal show $i]
}

You can also append all the results together into a variable in a script, or you can
use lappend to append the results as separate list elements, as follows:
foreach i [group list subsys/dce/dts-servers] {
append result [principal show $i]

}
return $result

The while Loop

The while loop behaves like the while loop in C. It takes two arguments: an
expression and a script (called the body). When the expression evaluates to

Chapter 2. Using the DCE Control Program Command Language 33

nonzero, the while command executes the body and then reevaluates the
expression, continuing the loop until the expression evaluates to 0. The syntax for a
while loop is
while expression body

The following example procedure uses a while loop to search through each
element in a list for a pattern. As long as the list size contains more than zero
elements ($size > 0), the procedure continues looping.
proc _dcp_list_find {search_list pattern} {

set found_items ""
set size [llength $search_list]

while { $size > 0 } {
set size [expr $size - 1]
set index [lsearch $search_list $pattern]
if { $index == -1 } {
return $found_items

}
lappend found_items [lindex $search_list $index]
set search_list [lreplace $search_list $index $index]

}
}

The for Loop

The for loop also behaves just like its C counterpart. Although for is more complex
than its sibling while , for keeps all of the loop control information together, making
it easier to see what is going on. The for command syntax is
for initial_expression
test reinit script_body

To use for , set an initial expression and then test for that condition before executing
the script body. After executing the script body, the for command reinitializes the
initial expression and again tests for the new value, repeating the loop until the test
becomes false.

The following example shows a for loop that performs an operation a specified
number of times and stops. In this example, we create 50 guest principal names in
the registry.
dcecp> for {set i 0} {$i < 50} {incr i} {
> principal create guest$i
> }
dcecp>

Terminating Loops with continue and break

The continue and break commands terminate loops started with the while , for ,
and foreach commands.

Use the continue command to terminate the current iteration of a loop. For
instance, your loop can test for, and selectively ignore, particular elements in a list
while continuing to operate on the rest of the elements. Use the break command to
immediately terminate loop execution.

The following example script fragment is a foreach command loop that includes
continue and break commands. The foreach command looks through all the DTS
servers in a cell until it finds one that is a time-provider. (A time-provider is a special

34 OSF® DCE Administration Guide— Core Components

DTS server that receives time from an external time source.) If the first server in the
list (created by the dts catalog operation) returns output from a dts show
operation, the continue command invokes the next lines in the script which search
the output for the {provider yes} attribute and value. If the provider attribute
(examined by the attrlist getval operation) is yes , the script sets the server
variable to be the name of that DTS server, and the break command terminates the
entire foreach loop.
foreach s [dts catalog] {

if {[catch {dts show $s} dts_sh_out] != 0} {
continue

}
set p [attrlist getval $dts_sh_out -type provider]
if {[string match $p "yes"] == 1} {

set provider "yes"
set server $s
break

}
set provider "no"
}

Testing with Patterns Before Execution with case

Some commands return a list such as a list of objects in a directory or a list of
servers running on a host system. You can use the case command to test a list or
string for specific patterns such as the name of a particular object or server. On
detecting a specified pattern, the case command then executes a script associated
with the pattern detected. The syntax for the case command is
case string in pattern {script} pattern {script}

The case command looks in string for pattern and executes { script}. The word in
may be omitted. The following example illustrates how the case command works:
dcecp> set x {one ten twenty}
one ten twenty
dcecp> foreach el $x {case $el in one {puts script1} two {puts script2}}
script1
dcecp>

The case command first checks in $x for the pattern one . On finding this pattern,
the associated script echoes script 1 on the display. When it finds no more
matches, the case command ends.

For a more practical example, say you run a dcecp command that lists all the
servers on a particular system. You could search the list for particular server names
and execute a script that appends each name to a particular file, as follows:
case $x in server1 {lappend filename1} server2 {lappend filename2}

If your list of patterns is lengthy and likely to break across lines, you can prevent
newlines from being interpreted as separators by enclosing the entire list of target
patterns and scripts in braces. This has the additional benefit of preventing variable
and command substitutions in the braced list.

Patterns can include wildcard characters. A ? (question mark) in a search pattern
matches any single character in the target pattern. For instance, ?at matches bat
and hat . An * (asterisk) in a pattern matches any string in the target pattern. For
instance, *at matches both bat and ″three cornered hat ″ (note the use of quotes
to disable spaces as separators).

Chapter 2. Using the DCE Control Program Command Language 35

You might want a way to execute some default script when no pattern matches are
found. The case command has a special pattern called default whose
corresponding script executes when no pattern match is found. You should place
the default pattern as the last position in the list:
case $x in {
a {puts "script for case a"}
b {puts "script for case b"}
default {puts "run this script if no matches are found"}

}

Creating Commands Dynamically

The eval command lets you create scripts as you go along by chaining smaller
scripts together. This technique could be useful in a script that records administrator
responses to various questions and then constructs a specialized script based on
those responses. The syntax is
eval arg ... arg

The following example uses variables to hold options and their values for an
account create operation. The eval command ensures that the variables expand
and execute properly.
dcecp> set mpwd {-mypwd mxyzptlk}
-mypwd mxyzptlk
dcecp> set pwd {-password change.me}
-password change.me
dcecp> set org {-organization guests}
-organization guests
dcecp> set grp {-group guest}
-group guest
dcecp> eval account create guest1 $mpwd $pwd $org $grp
dcecp>

Be careful when using variables to construct eval commands. An eval command
such as the following can sometimes cause problems within scripts because dcecp
parses it twice. First, dcecp parses the eval command and its arguments. Then it
again parses the eval arguments when they are executed as scripts.
dcecp> eval $a $b $c
dcecp>

You can avoid some parsing problems by placing braces around the arguments as
in this example:
dcecp> eval {$a $b $c}
dcecp>

To make certain dcecp parses your eval command correctly, you can invoke the
dcecp list command to generate a valid list structure:
dcecp> eval [list $a $b $c]
dcecp>

Reading Other Files as dcecp Scripts

The source command reads the contents of other files, executing them as dcecp
scripts. This capability lets you construct higher level scripts by plugging lower level
functions together—like building blocks. Because you re-use your scripts rather than
duplicate them with potential variations, scripts are more consistent and easy to
develop and maintain. The command syntax is

36 OSF® DCE Administration Guide— Core Components

source filename

The return value from source is the return value from the last command in
filename.

As a practical example, imagine we have one script that lists entries in CDS
subtrees, another script that deletes subtrees, and another script that moves
subtrees. One common function needed by all these scripts might be to list every
child directory under the root of the subtree. You could write a script that lists every
child and name it something like children_list.dcp . (The .dcp extension is a dcecp
convention for naming script files.) When any of your scripts need to list all the child
directories, simply use the source command:
source children_list.dcp

Terminate a source command by using the return command. The return command
provides a way for commands like source and proc to exit in a controlled manner,
even when expected or unexpected error conditions occur. Rather than allow error
conditions to cause the whole script to exit and fail, the return command manages
error information and allows the script to continue executing. We discuss the use of
return with other error-handling techniques in “Dealing with Errors and Exceptions”
on page 41.

Creating New Commands

The DCE control program provides a powerful and comprehensive set of
commands for controlling and monitoring DCE operations. But the exact uses to
which DCE is put by end users is unpredictable. Consequently, it is quite likely that
some administrators will need additional commands to meet very specific needs.
The proc command offers an easy way to create additional commands that look
and behave just like built-in commands such as set , list , and while . But unlike
built-in commands, which are written in C, commands created with proc are written
using scripts, as follows:
dcecp> proc div {x y} {expr $x/$y}
dcecp>

The proc command takes three arguments: the procedure name, a list of names of
procedure arguments, and the dcecp script that forms the body of the new
procedure. Our new procedure div requires two arguments. For example:
dcecp> div 12 4
3
dcecp>

By default, proc assumes all variables are local variables. That is, their names and
values are set only within the procedure and they expire when the procedure
completes. The following command produces an error because variables x and y
have not been set within the procedure:
dcecp> set x 15
15
dcecp> set y 3
3
dcecp> proc div {} {expr $x/$y}
dcecp> div
Error: cannot read "x": no such variable

Chapter 2. Using the DCE Control Program Command Language 37

You can import global variables (variables defined outside the procedure) by using
the global command:
dcecp> set x 15
dcecp> set y 3
dcecp> proc div {} {
> global x y
> expr $x/$y
> }
dcecp> div
5
dcecp>

Once you import a global variable, it persists for the duration of the procedure. Your
procedure can change the value of the variable by using unset and set . The new
value will be available for use inside and outside of your procedure, as shown.

You can use the return command to make your procedure return immediately. The
value of the argument to return becomes the procedure’s return value.
proc find {a} {
<some pattern matching script that looks for a specific CDS entry>

if {a != b} {
return 1

}
return 0

}

You can design procedures to take either no arguments or variable numbers of
arguments. For instance, a procedure with no arguments could simply perform
some straightforward operation as in the following example:
proc _do_create_group {} {

global rpcgroupname
rpcgroup create $rpcgroupname

}

You can also specify a default value for an argument by using a nested list structure
in the argument list. In the following example, the first argument, attr, must be
supplied. The second argument, value, defaults to unset if no argument is supplied.
proc _attr_show {attr {value "unset"}} {

puts "$attr is $value"
}

Procedures can call other procedures. The current procedure can import variables
from any calling procedure by using the upvar command, as shown:
upvar level otherVar1 myVar1 otherVar2 myVar2

A level argument of 1 gets the variable context of the parent procedure. An
argument of 2 gets the variable context of parent’s parent procedure. You can also
specify levels relative to the global context by preceding the level argument with #.
A level of #0 gets global variables. A level of #1 gets variables from a procedure
invoked from the global level.

The otherVar argument names the variable you want to import. You need to include
the myVar argument to rename the variable for use in the current procedure. The
following example renames the imported variable to cargs :
upvar 1 local_args cargs

Procedures can also execute scripts under the context of parent procedures by
using the uplevel command. This command offers a convenient way to manage

38 OSF® DCE Administration Guide— Core Components

your procedure’s context. For instance, rather than import and manipulate
numerous variables from a parent procedure, use uplevel to connect to them all at
once. The syntax is
uplevel level arg
arg arg

The uplevel command is similar to eval ; it concatenates arguments and executes
them as scripts but, unlike eval , uplevel executes the script in the context specified
by level rather than the current context. The level argument works the same in
uplevel as it does in upvar . Use the parent’s context with a level argument of 1.
Use the context of a first-level procedure with a level argument of #1.

If a proc command specifies a command name that is already in effect, the new
procedure replaces the existing procedure with the same name. Except in unusual
cases, you should avoid naming new commands so that they replace existing
built-in commands.

You can rename or delete Tcl commands by using the rename command. For
instance, you could temporarily rename list to list.old and then use proc to create
another command called list . When you are through using the manufactured list
command, you could rename list old to list , restoring the original function of list as
in the following:
rename list list.old
proc list {} {

<some list operation>
}
rename list.old list

Delete a command by omitting the second argument to the rename command. The
following example deletes the list command:
rename list

String Manipulation

Many DCE administrative operations return information of some sort. For instance,
the principal show operation returns information about a principal. Usually this
information is in the form of a list, as in the following example:
dcecp> principal show R_Parsons
{fullname {}}
{uid 15}
{uuid 0000000f-d6f9-21cd-8d00-0000c08adf56}
{alias no}
{quota unlimited}
{groups users}
dcecp>

Although it is fairly easy for an administrator to scan a list and extract the necessary
information from it, scripts operate differently. When scripts search for specific
information, they usually ignore the notion of lists, operating instead on the
collection of characters (called a string) that makes up a list. The DCE control
program provides a set of commands to operate on strings, letting you construct,
parse, compare, extract values from, and modify strings.

Chapter 2. Using the DCE Control Program Command Language 39

Constructing Strings

Often, scripts need to construct strings for use in other commands or for displaying
on the screen for users. The DCE control program provides a format command that
you use to construct strings for use by your script.

The format command substitutes variables where needed. The following example
constructs the variable _dcp_host_entries by using the format command to
prepend the cell name string (the string type is indicated by %s) to the string
/hosts . The cell name is contained in the _c convenience variable.
dcecp> set _dcp_host_entries [format "%s/hosts" $_c]
/.../my_cell.goodco.com/hosts
dcecp>

The format command can also convert arguments between differing forms including
decimal, octal, hexadecimal, floating-point, and scientific notation. You can also
specify to print or omit signs for signed numbers, right or left justify output, and pad
with spaces or zeroes. The following examples convert the integer 8 to its octal
equivalent. The second example shifts the output nine character spaces to the right.
dcecp> format %1o 8
10
dcecp> format %9o 8

10
dcecp>

Parsing Strings

The DCE control program includes a scan command that parses strings and then
converts and stores relevant parts of strings in variables. This capability is useful,
for instance, when converting information returned by a previous command into
data that can be input to another command. The syntax for the scan command is
as follows:
scan "string" "format" [varname [varname]...]

You can specify the string literally or by using a variable. The format section
controls parsing, ignoring blanks and tab characters you might have included in the
format section for readability. This section consists of one or more conversion
specifiers delimited by % (percent sign). Conversion specifiers define which parts of
string get converted and stored, as well as the type of conversion.

The following example parses the string contained in the variable _dcp_temp for a
valid floating-point number and stores it in the variable _dcp_temp2 :
if { [scan $_dcp_temp "%f" _dcp_temp2] != 1 } {

error "Variable \"$_dcp_temp\" is not a \
valid floating-point number"

}

Other String Handling Operations

You can specify one character or a range of characters in a string by using string
index and string range . These commands would be useful for extracting
information from a string of predictable length.

The string index command has one argument that is the position of one character
(counting from left to right beginning with 0 (zero) to be extracted from the string.
The string range command includes two arguments that are the positions of the

40 OSF® DCE Administration Guide— Core Components

leftmost and rightmost characters to be included in the range. The following
example illustrates one use of the string range command:
dcecp> string range {The quick brown fox} 4 9
quick
dcecp>

You can determine whether one string is lexicographically (alphabetically) greater
than, less than, or equal to another string by using string compare . Generally, this
operation performs a byte comparison of ASCII codes that make up the string.

Count the number of characters in a string using the string length command. Here
is an example:
dcecp> string length "The quick brown fox"
19
dcecp>

Convert characters between uppercase and lowercase by using the string toupper
and string tolower commands. Here is an example:
dcecp> string toupper "The quick brown fox"
THE QUICK BROWN FOX
dcecp>

Trim specific characters from a string by using the string trim command. Remove
the leftmost or rightmost characters from a string by using the string trimleft and
string trimright commands.

You can perform pattern-matching operations in any of several ways. Invoke ′′glob’’
style pattern matching with the string match command. This mimics the glob
pattern matching capabilities available in csh , returning 1 for a match and 0 for no
match. More flexible regular expression pattern matching (like that found in egrep)
can be performed using regexp command. You can extend this operation to
perform regular expression substitution by using the regsub command.

The following example illustrates the use of the regsub command. The first
argument specifies the search pattern. The second argument is the string to search.
The third argument specifies the replacement pattern. The last argument is a
variable into which regsub places the new string. The command returns 0 if no
substitution occurs and 1 if substitution does occur.
dcecp> regsub brown "The quick brown fox" blue color
1
dcecp> puts $color
The quick blue fox

Dealing with Errors and Exceptions

The dcecp interpreter includes error facilities that return error information when
something goes wrong with a dcecp script. Error information tells users what went
wrong so that they can avoid making the same mistake in the future. Many things
can cause dcecp errors. For instance, a command might not receive the correct
number of arguments, a command might have a typographic error of some kind, or
the object of an operation (such as a CDS directory) might be unavailable for some
reason.

Here, we discuss three ways of dealing with errors and exceptions:

v Using global error information variables

v Catching exceptions

Chapter 2. Using the DCE Control Program Command Language 41

v Reissuing complex errors

Using Global Error Information Variables

When dcecp encounters an error it prints a descriptive message, such as:
Error: wrong # args: should be "set varName ?newValue?"

In some cases, error messages may be insufficient for determining exactly where a
problem occurred. So dcecp stores additional error information in a global variable
called errorInfo . Your script can access and print this information to help you find
the error. Generally, it traces the commands that were executing when the error
occurred.

The following example shows the kind of information that can be stored in
errorInfo . Reading backwards, you can determine that the error occurred near line
4 of the script body in the parseargs procedure called from the _dcp_create_user
procedure of a user operation.
dcecp> puts $errorInfo
Unknown option "group"

while executing
"

invoked from within
"

("while" body line 4)
invoked from within

"
(procedure "parseargs" line 60)
invoked from within

"
(procedure "_dcp_create_user" line 64)
invoked from within

"
invoked from within

"
invoked from within

"
(procedure "user" line 24)

"
dcecp>

In addition, dcecp may store another kind of error information in another global
variable called errorCode . This variable contains a list like the following that can
identify other classes of errors.
UNIX, ENOENT, "insufficient arguments for filename"

The DCE control program sets the errorCode variable to NONE if an error
produces no useful error information.

Using catch to Trap Errors and Exceptions

Occasionally, you might want to trap some kinds of errors rather than let them
terminate an active command. The catch command lets you trap and ignore errors
so your script can continue processing. Let us say your script wants to rename a
command if it exists. However, it is possible that the command name might not exist
when you execute the rename command.
dcecp> rename move move.old
Error: cannot rename "move": command does not exist
dcecp>

42 OSF® DCE Administration Guide— Core Components

Use catch to invoke the rename command as a script.
dcecp> catch {ren move move.old}
1
dcecp>

The catch command treats its argument as a script and executes it, returning a 0
on successful execution. If an error occurs, it is caught by the catch command
which returns a 1.

You can add a second argument to the catch command. This argument is a
variable that catch modifies to hold the script’s return value (on successful
completion) or the error message. The syntax for the catch command is
catch command varName

One use of catch in scripts is to invoke other procedures. You can read the
following script fragment as follows: ′′If the _dcp_create_group procedure returns
unsuccessfully (!= 0) then perform the _dcp_cleanup_user_create procedure and
display the error stored in the msg variable.’’
if {[catch {_dcp_create_group $group group_created}
msg] != 0 } {

_dcp_cleanup_user_create $element -principal
error $msg

}

Exceptions are a special class of error generated by the break , continue , and
return commands. You use the break and continue commands to terminate loops
such as while , for , and foreach , and you use the return command to terminate a
proc or source command.

Resulting exceptions can be hard to handle in procedures where loops exist inside
(as part of) a more comprehensive command. For instance, a user-written
procedure that searches for specific object types in CDS might invoke foreach as
part of a looping activity to test for the occurrence of particular attributes.

If you use the break , continue , or return commands to manage loop execution or
to manage some other nested command (like case or if , for example), the parent
command will not be ready to catch the exception. The parent command will abort
and issue an error message as usual. However, the error is associated with the
parent command and is difficult to track to the looping command where it actually
occurred.

If it is necessary to use a continue , break , or return command to terminate a
command that has been called by another command, consider using catch to
invoke the nested command which, in turn, calls the continue , break , or return
command to recover from errors or exceptions. Used this way, the catch command
keeps the exception within the looping or nested procedure where it is easier to
track down.
foreach s [server catalog] {

if {[catch {server show $s} srv_sh_out] != 0} {
continue

}

Reissuing Complex Errors

The proc command lets you create procedures or commands that perform very
precise operations. For instance, a user-written procedure called _dcp_get_servers

Chapter 2. Using the DCE Control Program Command Language 43

that retrieves and filters information about running servers could include nested
commands or procedures that perform various subtasks such as looping through
server information looking for certain strings. While use of nested commands or
procedures lets you develop comprehensive procedures or commands, they can
also produce errors that are difficult to pinpoint if errors are not passed along
properly.

Complex scripts can use the error command to reissue errors that have been
triggered by some previously executing part of the script. The following script
fragment simply prints out a hard-coded error message. This use also lets you
custom tailor messages to precisely explain error conditions.
set dts_cat_out [_dcp_dts_catalog]
if {[llength $dts_cat_out] == 0} {

error "Unable to find any DTS servers"
}

The next script fragment does more, using catch to store any error information
returned from the _dcp_create_group procedure in the msg variable. On failure (!=
0), the script invokes a cleanup procedure that undoes whatever was done, and
then prints out the message stored in the msg variable.
if {[catch {_dcp_create_group $group group_created}
msg] != 0 } {

_dcp_cleanup_user_create $element -principal
error $msg

}

This discussion has provided some fairly simple error handling techniques. Note,
though, that error handling can be complicated, especially in more complex
situations. We encourage you to read more about error handling in other
publications that cover more general use of Tcl.

Working with Files

The DCE control program has several commands for use in reading from and
writing to files. Files are useful for things like storing the output of dcecp operations
for later reference. Here are several useful examples of file manipulation:

v You could run a server catalog operation across all of the hosts in a cell and
store the results from each host in a host-specific file. Later, you could compare
the files to produce a report of server configurations.

v You could detect inactive accounts by running a dcecp script that shows the last
time each account was logged into, storing this information in a file for later
evaluation.

v You could also modify DCE files that are not manipulated easily by using the
dcecp hostdata object. For example, you could write a function that added a
new attribute to the cds_attributes file.

DCE as provided by OSF currently supports file operations only for UNIX systems
or for systems that support POSIX system calls. However, some vendor DCE
versions may support file operations on other systems.

Specifying Filenames

Specify filenames using customary UNIX rules. For instance,
/opt/dcelocal/dcecp/server_snap.dcecp refers to a file named
server_snap.dcecp in a directory called /opt/dcelocal/dcecp . You can also refer to

44 OSF® DCE Administration Guide— Core Components

files by using relative filenames, for example
xdce_admin/scripts/server_snap.dcecp and x/admin/server_snap.dcecp . You
can print the current working directory by using the pwd command and set the
current working directory by using the cd command. The following command sets
the current directory to be xdce_admin/scripts :
dcecp> cd xdce_admin/scripts
dcecp>

You can view a list of files in a directory by using the glob command. This
command returns a list of filenames that match pattern arguments to the command.
Here is an example:
dcecp> glob *
help local_lib.dcp
dcecp>

You can view lots of other information about files by using the file command with
various options. The file commands can help select a file based on its age, its size,
or its permissions (whether it is executable, or readable, or writable by the current
user).

Reading and Writing Files

The dcecp commands for reading and writing to files look and act like their C
language counterparts fopen , fclose , and so on.

Open a file for reading and writing using the open command. The second argument
to the open command (shown in the following example as +r) specifies the file
access mode. You can open files for reading, or writing, or both and you can
specify whether to replace existing files or to add to them with new information. You
can also set the initial access position to the beginning or the end of a file. The
default access mode is read-only (the file must already exist).
dcecp> open server_snap.dcecp +r
file5
dcecp>

The open command assigns a file identifier to each file when it is opened. Use the
file identifier to refer to files in subsequent commands.

Once a file is opened, you can add lines to a file by using the puts command.
Normally, dcecp waits until it has accumulated sufficient data before writing this
information to a file. If you want dcecp to immediately write the information to a file,
use the flush command. Use gets to read the next line from a file or use read to
read a number of bytes or all of the bytes in a file. The following example writes a
list of all principals in a file named prins :
dcecp> open prins w+
file8
dcecp> puts file8 [principal catalog]
dcecp> close file8
dcecp>

Sometimes, you do not want to start reading or writing at the first line of a file. The
DCE control program provides several commands that set the access position so
you do not have to advance through every line in the file. These commands will
produce an error if you use them for devices like terminals or other sequential
devices that do not support random access. Use the seek command to set the
access point in a file. Specify the offset as a number of bytes from the origin, which

Chapter 2. Using the DCE Control Program Command Language 45

can be the beginning or end of the file or the current position. Use a negative
number to move toward the beginning of the file, as in the following example which
moves back 16 bytes from the current access position.
dcecp> seek file5 -16 current
dcecp>

You can determine the current access position by using the tell command. Save the
return value in a variable so you can go back to that position in the file later on.

Finally, you can close a file by using the close command, as follows:
dcecp> close file5
dcecp>

Spawning Subprocesses

Using subprocesses to execute commands offers several convenient solutions to
some complex scripting or special administrative needs. Subprocesses can provide

v Access to operating system commands

v A way to establish synchronous, orderly execution

v Methods for streamlining complex or sophisticated scripts

Running Operating System Commands from a Script

Although the DCE control program is versatile, there are times when you may want
your script to use operating system commands to accomplish some simple (or even
not-so-simple) operation. The exec command provides a way for scripts to perform
external commands by forking a subprocess in which the command executes. The
following example uses the exec command to retrieve the local host name which is
then established as a hostname variable and subsequently used in the script.
dcecp> set hostname [exec hostname]
myhost
dcecp> directory list /.:/hosts/$hostname -simple
cds-clerk cds-server dts-entity profile self
dcecp>

The exec command normally returns the results of the operation performed in the
subprocess. However, you can use UNIX redirection symbols (<, <<, and >) to
redirect standard input or standard output. You can also use the | (vertical bar) to
pipe the output through filters such as nroff , sort , or grep .

When used alone, the exec command is synchronous, meaning that the external
command completes before the script continues executing. But when a subprocess
will take a long time to complete, for instance when you synchronize directories in a
CDS cell, you can use the exec command with an & (ampersand) to push a
subprocess into the background. The following example uses the exec command to
send previously collected output to a printer. This lets your script continue without
having to wait for the print command to complete.
dcecp> exec lpr output.log &
dcecp>

46 OSF® DCE Administration Guide— Core Components

Chapter 3. Writing Scripts and dcecp Objects

The DCE control program supplies a number of objects that offer administrative
access to each manageable component in a DCE cell. For instance, the principal
object lets administrators manage principal information in the DCE Security Service
registry database. Similarly, the rpcgroup object lets administrators manage group
information in CDS.

Some DCE operations affect multiple components as when several operations must
be performed to add a new user to a DCE cell. To meet this need, the DCE control
program provides task objects which let administrators operate on multiple
components with a single operation. For instance, the user task object performs
several operations that include creating principal information in the registry, adding
the principal to an organization and to relevant groups, creating a CDS directory for
the user, and so on. Task objects look and behave just like other dcecp objects,
implementing the same help system used by other dcecp objects. However, task
objects are written using the dcecp language instead of the C programming
language. This makes it easy for administrators to extend or customize existing
scripts.

While the DCE control program provides task objects to handle some
multicomponent operations, variations in cell configurations and differences in the
ways administrators manage their cells make it impractical for the supplied DCE
task objects to satisfy all the needs of every DCE cell. For instance, some cells may
use DFS or GDS components, or a cell may implement a cell directory naming
scheme that differs from the standard OSF DCE implementation. Alternatively, some
DCE implementations could have specialized administrative components, such as
services or repositories, that need distinct dcecp objects for managing them.

To accommodate a cell’s specific needs, the DCE control program language lets
administrators create their own scripts. Administrators can also extend or modify
existing task objects or they can create new task objects to manage specialized
components in a DCE cell. This chapter provides information for extending,
modifying, or creating the following kinds of dcecp scripts:

v Informal administration scripts

v Formal task objects

Informal Administration Scripts

Informal administration scripts let administrators store multiple operations in a file
and replay them whenever necessary. Informal scripts are useful for operations that
take only one or two arguments or that just perform simple tasks. Furthermore, the
script’s precise behavior and output can be custom tailored to the needs of its
author. While informal scripts can be shared among administrators in a cell, they
are typically included just in the author’s .dcecprc file.

Scripts generally consist of one or more procedures created with the proc
command. This lets you invoke the scripted operation by simply typing the
procedure’s name at the dcecp prompt.

The following simple script prints information about your current cell and login
identity:

47

Show your current login name and your current cell name.
proc _dcp_whoami {} {
global _c _u
puts stdout "You are '$_u' logged into '$_c'."

}

This script can be included in your .dcecprc file either directly or by using the
source command and keeping the actual script in an external file. The second
method lets other administrators include your same script by simply pointing to it
with source commands in their .dcecprc files. This method also keeps your
.dcecprc file uncluttered, making it easier for others to understand what is going
on. Alternatively, you can place the script or a pointer in the init.dcecp file.
Changes to this file are available to all users on a host. For more information about
the init.dcecp file and the .dcecprc file, see “Customizing dcecp Sessions” on
page 16. The following is an example of the source command in a .dcecprc file:
source /usr/users/wardr/dcecp/local_lib.dcp

The .dcp filename extension is a convention for naming files used by the DCE
control program. Another convention precedes procedure names with _dcp , as in
_dcp_whoami . Many dcecp procedures adhere to this convention to distinguish
their names from user-created procedures that do not need to use this convention.
If you find procedure names like _dcp_whoami hard to remember or type, you can
rename them. For instance, you could rename the procedure to whoami by using
the rename command in the .dcecprc file, as follows:
rename _dcp_whoami whoami

Restart dcecp to pick up any changes. Now you can enter whoami at the DCE
control program prompt, as follows:
dcecp> whoami
You are 'cell_admin' logged into '/.../my_cell.goodco.com'.
dcecp>

By chaining operations together, you can create scripts that do more. For example,
the following script lists all the hosts in a DCE cell. Then it checks whether each
host has an object entry in CDS for a dts-entity. (This would indicate that a DTS
server is available on the host.) For each host with an object entry for a dts-entity,
the script does a clock show operation which returns the time on that host. The
script prints the information on the display, formatting it for readability, and continues
looping through all the hosts in the cell until all host entries have been checked.

Make the _dcp_show_clocks procedure available to your dcecp session in the
same way as the simpler script described previously.
Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {

set x [directory list /.:/hosts]
foreach n $x {

if {[catch {object show $n/dts-entity}] == 0} {
set index [string last "/" $n]
set y [string range $n [incr index] end]
if {[catch {clock show $n/dts-entity} msg] == 0} {

set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

[clock show $n/dts-entity]]
} else {

set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

"Server not responding."]

48 OSF® DCE Administration Guide— Core Components

}
}

}
}

Formal Task Objects

Some DCE environments might have special administration needs that are not
strictly addressed by the standard DCE control program objects. While you could
write and distribute informal scripts to meet this administration need, you would
likely need to document their operation in some way. More importantly, though, a
complicated operation might require the use of numerous options to precisely
control the script’s behavior. Rather than invent your own mechanisms to provide
help information and handle complicated argument parsing operations, you could
rely on the existing help system and the parseargs facility utilized by other formal
task objects supplied with dcecp . This approach makes your script consistent with
other dcecp objects.

Formal task objects build on the idea of the informal scripts presented previously
with some important additions:

v An argument table at the beginning of the script defines operations as separate
procedures within the script. An argument table can also define available options.
A parseargs procedure is called to parse the arguments and options passed to
the script when it is invoked.

v Help information for each operation is placed in the argument tables in the script.
Other script users can get this information by using standard dcecp help
operations.

v Extensive error control is included because you cannnot predict or control the
conditions in which the script executes.

The rest of this section shows the general structures and conventions used in a
formal task object. To aid our explanation, we use the dcecp user task object
supplied with the DCE control program.

A Model for Task Objects

This section examines the parts of the user task object that should be emulated in
other task objects that you create for use with the DCE control program. Adhering
to the basic model ensures that your task object will look and behave consistently
with other parts of dcecp .

For efficiency and readability, the example does not include all of the procedures
contained in the user task object. Furthermore, we have omitted some repetitive
parts of the included procedures, replacing the omitted parts with vertical ellipses in
the code examples. The entire user task object is contained in dcelocal/dcecp .

Name your object after the entity on which it operates rather than as a verb such as
″show″ or ″modify.″ DCE control program objects are named for the DCE entity on
which they operate. Primitive objects like rpcentry and principal objects operate on
single manageable DCE entities. Task objects operate at a higher level, generally
invoking several primitive objects to achieve their goal. The authors of the user task
object contrived a higher-level entity—a user—as a manageable object.

Chapter 3. Writing Scripts and dcecp Objects 49

The user object begins with the top level proc command and its argument table
that defines the procedures and operations provided by the user object. Use this
syntax to define separate procedures in this argument table:
verb command function_call procedure_name "helptext_string"

The call to the parseargs procedure (defined in a separate file called
parseargs.dcp) returns the name of the internal procedure that is to be called
along with its arguments. The parseargs procedure is explained in “Using the
parseargs Procedure” on page 55.
proc user - This procedure is the front end for the user task
scripts. All argument checking for the provided switches is done
in the individual functions.
#

proc user { args } {
set arg_table {
{create command function_call _dcp_create_user

"Create a DCE user" }
{delete command function_call _dcp_delete_user

"Delete a DCE user"}
{show command function_call _dcp_show_user

"Show the attributes of a DCE user"}
{help help help_list

"Print summary of command-line options and abort"}
{operations operations operation_list

"Return valid operations for command."}}

set verbose_prose
"This object allows the manipulation of a DCE user. A user is
represented as a principal and account with membership in a group and
organization as well as having a directory in the CDS namespace. A user
may be created, deleted or have attribute information returned. The
argument is a list of either relative or fully qualified principal names.
All fixed attributes of the principal and account object may be specified
when creating a user. The -force option to the create verb allows the
group or organization for that user to be created if necessary. The user
is provided a directory in the CDS namespace, with the appropriate ACLs.
Access to create a user requires the correct ACLs on principal, group and
organization directories within the registry and the clearinghouse and
users directory in the CDS namespace."

set local_args $args

parseargs $arg_table local_args -found_one

if { [info local help_prose] > 0 } { return $help_prose }

if { [info local function_call] > 0 } {
return [$function_call local_args]

} else {
error "\"user\" object requires a verb to form a command."

}

}

The next part of the script examines a procedure that takes many options or
attributes as input: the _dcp_create_user procedure. While this procedure relies on
numerous lower-level procedures to do the actual work of creating a user, the
example begins by showing just one of the lower-level procedures,
_dcp_create_principal_entry .

Then the script continues with the _dcp_create_user procedure. Notice that the
name of this procedure (and all lower-level procedures) begins with an underscore.

50 OSF® DCE Administration Guide— Core Components

That is because the Tcl info command is frequently used to return the names of all
procedures. This convention distinguishes these internal procedure names from
procedures like user , which are documented procedures. Furthermore, the _dcp
part of the name distinguishes dcecp procedures from other Tcl procedures on a
host.

The _dcp_create_user procedure has an argument table defining its available
options. This argument table differs from the script’s initial argument table in that it
lacks the command keyword and the function_call variable that define separate
procedures in the script.

Next it initializes variables entered either as options or as attributes in a list. A
process_attribute_list procedure (at the end of the example) actually parses
attributes that have been passed as a list. Then it does the work of creating the
user information in the registry and in CDS. Near the end, the cleanup procedure
_dcp_cleanup_user_create can undo a failed user create operation.
.
. [several low-level procedures omitted]
.

#
This procedure creates a principal in the current registry _s(sec)
if that principal does not yet exist.
#

proc _dcp_create_principal_entry { principal_name princ_args} {

set list_of_principals [principal catalog]
if { [lsearch $list_of_principals $principal_name] == -1} {
if { [llength $princ_args] != 0 } {
principal create $principal_name -attribute $princ_args

} else
} else {
error "Principal \"$principal_name\" already exists."

}
}
#
proc _dcp_create_user - This procedure actually creates a DCE user.
Several steps are performed. If the principal does not exist
a new one is created. If the groups do not exist and a -force switch is
set, then two new groups will be added. The user will be added to the

groups. The account will then be created. An entry in the CDS
namespace will then be created with the appropriate ACLs.
#

proc _dcp_create_user { local_args } {
set arg_table {
{-alias string alias

"Add principal named as an alias of specified uid."}
{-attribute string attribute_list

"Provide attributes in an attribute list format."}
{-client string client

"Can the account principal be a client."}
{-description string descr

"A general description of the account."}
{-dupkey string dupkey

"Can the accounts' principal have duplicate keys."}
{-expdate string expdate

"When does the account expire."}
.
. [repetitive elements omitted]
.

Chapter 3. Writing Scripts and dcecp Objects 51

{-uid integer uid
"User Identifier of the principal to be added."}}

#
Initializing some variables.
#

upvar 1 local_args cargs
set local_args $cargs
set account_args ""
set princ_args ""
set group_args ""
set force 0

parseargs $arg_table local_args -no_leftovers

if { [info local help_prose] > 0 } { return }

if { [llength $local_args] > 1 } {
error "Unrecognized argument [lindex $local_args 1]."

} elseif { [llength $local_args] == 0 } { error "No user name."
} else { set account_name $local_args }

#
If parseargs returned attributes in a list instead of options,
create an attribute list. Then call process_attribute_list to
parse the list.
#

if { [info local attribute_list] > 0} {
set pile_of_attributes "alias client descr dupkey expdate\
forwadabletkt fullname force group home organization maxtktlife \
maxtktrenew mypwd password postdatedtkt proxiabletkt pwdvalid \
renewabletkt server quota shell stdgtauth"
process_attribute_list attribute_list $pile_of_attributes

}
#
If user entered attributes as options rather than in a list,
check for attribute options.
#

if { [info local group] > 0} {
set account_args [format "%s {%s %s}" $account_args group $group]

} else { error "No group name specified." }

if { [info local organization] > 0} {
set account_args [format "%s {%s %s}" $account_args organiz \

$organization]
} else { error "No organization name specified." }

if { [info local password] > 0} {
set account_args [format "%s {%s %s}" $account_args password \

$password]
} else { error "No password specified." }

if { [info local mypwd] > 0 } {
set account_args [format "%s {%s %s}" $account_args mypwd $mypwd]

} else { error "No admin password specified." }
#
principal and group operations both use the principal's fullname
#

if { [info local fullname] > 0 } {
set princ_args [format "%s {%s {%s}}" $princ_args fullname \

$fullname]
set group_args [format "%s {%s {%s}}" $group_args fullname \

$fullname]
}

if { [info local uid] > 0 } {

52 OSF® DCE Administration Guide— Core Components

set princ_args [format "%s {%s %s}" $princ_args uid $uid]
}

.

. [repetitive elements omitted]

.

if { [info local stdtgtauth] > 0 } {
set account_args [format "%s {%s %s}" $account_args stdtgtauth \

$stdtgtauth]
}

#
set variables if entered as attributes in an attribute list
#

set account_name [lindex $account_name 0]
set group_created 0
set org_created 0
set group_arg ""
set org_arg ""

#
do the work - create principal, do group and organization
operations, create the account, and create directory in CDS
#

foreach element $account_name {
set clup_user "_dcp_cleanup_user_create $element -principal"

_dcp_create_principal_entry $element $princ_args

if { $force == 1 } {
if {[catch {_dcp_create_group $group group_created} \
msg] != 0 } {

_dcp_cleanup_user_create $element -principal
error $msg

}
if { $group_created == 1 } {

set group_arg "-group group"
}
if {[catch {_dcp_create_org $organization org_created} \

msg] != 0 } {
set clup_user [concat $clup_user $group_arg]
eval $clup_user
error $msg

}
if { $org_created == 1 } {

set org_arg "-org organization"
}

}
set clup_user [concat $clup_user $group_arg $org_arg]
if {[catch {_dcp_add_group_entry $group $element} msg] != 0} {

eval $clup_user
error $msg

}

if {[catch {_dcp_add_org_entry $organization $element} msg] != 0 }
{
eval $clup_user

error $msg
}

if {[catch {_dcp_add_account_entry $element $account_args} \
msg] != 0} {

eval $clup_user
error $msg

}

if {[catch {_dcp_add_namespace_entry $element} msg] != 0} {
eval $clup_user
error $msg

Chapter 3. Writing Scripts and dcecp Objects 53

}
}
set _n $account_name
return

}

#
_dcp_cleanup_user_create - This function undoes changes after a
failure in one of the user create functions as though the operation
never occurred
#

proc _dcp_cleanup_user_create {account_name args} {

if { [lsearch $args -principal] != -1 } {
principal delete $account_name

}
if { [lsearch $args -group] != -1 } {

upvar 1 group clean_group
group delete $clean_group

}
if { [lsearch $args -org] != -1 } {

upvar 1 organization clean_org
organization delete $clean_org

}
}

#
process_attribute_list - Takes an attribute_list and parses out the
appropriate attributes contained in the
pile_of_attributes variable
#

proc process_attribute_list {attribute_list pile_of_attributes} {

foreach element $pile_of_attributes { upvar 1 $element _dcp_$element
}

upvar 1 attribute_list _dcp_attribute_list

set _dcp_attribute_list [check_list_list $_dcp_attribute_list]
foreach element $_dcp_attribute_list {

if { [llength $element] != 2 } {
error "Incorrect attribute list element

}
set attribute_name [lindex $element 0]
set attribute_value [lindex $element 1]
set _dcp_attr_name [info vars _dcp_$attribute_name*]
if {[llength $_dcp_attr_name] > 1} {

error
"Ambiguous attribute "\$attribute_name\" could be: $_dcp_attr_name."

}
set [set _dcp_attr_name] $attribute_value

}
}

proc check_list_list {attribute_list} {

set not_list_list 0
set i 1

foreach element $attribute_list {
if {[llength $element] != 2 && [llength $attribute_list] < 3} {

if {$i == 1} {
return [format "{%s}" $attribute_list]

}
}

54 OSF® DCE Administration Guide— Core Components

incr i
}

return $attribute_list
}

The next procedure we discuss in the user task object is one that takes a single
optional argument and returns lots of output information: the _dcp_show_user
procedure. This procedure returns the results of principal show , and account
show operations.
#
#_dcp_show_user - This procedure shows the principal and account
attribute lists for a specified user.
#

proc _dcp_show_user {local_args} {

upvar 1 local_args cargs
set local_args $cargs

parseargs "" local_args -no_leftovers

if { [info local help_prose] > 0 } { return }

if { [llength $local_args] > 1 } {
error "Unrecognized argument [lindex $local_args 1]."

} elseif { [llength $local_args] == 0 } { error "No user name."
} else { set account_name $local_args }

Take the first element of the account_name in order to
eliminate list nesting.

set account_name [lindex $account_name 0]
set _dcp_principals [principal catalog -simplename]

Show each account that has been requested.

foreach element $account_name {
if { [lsearch $_dcp_principals $element] == -1 } {

error "User \"$element\" does not exist."
} else {

set _dcp_user_attributes [principal show $element]
}

set _dcp_accounts [account catalog -simplename]
if { [lsearch $_dcp_accounts $element] == -1 } {

error "User \"$element\" does not exist."
} else {

set _dcp_user_attributes [format "%s\n%s" \
$_dcp_user_attributes [account show $element -all]]
}

}
return $_dcp_user_attributes

}

Using the parseargs Procedure

Task objects and scripts that take arguments or options can call the parseargs
procedure to parse arguments passed along with the object or script invocation.
The parseargs procedure is a script in a separate file that provides a convenient
and reusable method for argument parsing within a dcecp script. The basic syntax
is

Chapter 3. Writing Scripts and dcecp Objects 55

parseargs parse_options local_args args

The procedure relies on arguments passed to it by the calling script. The parseargs
procedure requires the following inputs:

parse_options
The argument table (arg_table) describing the parsing options. The
parse_options argument can consist of five elements, as in the script’s
top-level argument table, or four elements as in lower-level argument tables
for called procedures within a script. The two syntaxes for parse_options
are
verb command variable command_name "help string"

or
-options
type variable "help string"

verb Provides top-level parsing. Typically an operation contains an object
and a verb. The verb portion generally calls another procedure.

command
A keyword indicating that the procedure being defined is a verb of
an object.

variable
The name of the variable that holds the value of the option. When
parsing verbs, the variable is named function call . When parsing
options, the variable is named for the option being parsed. For
example, if the option name is -alias , the variable is named alias .

command_name
The procedure name to store in the variable.

help string
The string that describes the use of the verb or option.

-options
The actual string value of the option to be parsed such as
-attribute or -mypwd .

type The type of variable to be associated with -option . Acceptable
types are integer , string , float , boolean , command , and help .

local_args
The arguments to be parsed. The parseargs procedure extracts all of the
recognized entries into a list and resets local_args with the values that were
not parsed (or not parsable). For instance, a top-level command like user
create includes options that are parsed later when the procedure
implementing the create operation is invoked within the script.

args One of two flags:

-found_one
Tells the parser to return when one procedure argument has been
found. In user create , for example, the parser would return after
one create command had been found and processed.

-no_leftovers
Looks for extra options and generates an error if one is found.

56 OSF® DCE Administration Guide— Core Components

Invoking Task Objects

Once your task object is written (and tested), you need to make it available for use.
If your script is intended just for your personal use, you can include it in your
.dcecprc file and invoke it as described in “Informal Administration Scripts” on
page 47.

Formal task objects require a few steps to make them behave like other dcecp
objects.

1. Log in as root and copy the finished script into the dcelocal/dcecp directory and
set the file permissions to executable.

2. Start dcecp and run the auto_mkindex utility. This creates information that
informs the DCE control program about all available objects. With root
privileges, run the following command in the directory where the task objects
reside. On UNIX systems, this is often the dcelocal/dcecp directory.
% dcecp
dcecp> auto_mkindex /opt/dcelocal/dcecp *.dcp
dcecp>

3. To include the new task object name in the dcecp help screen, edit the file
/opt/dcelocal/dcecp/help.dcp . This file is displayed in response to the dcecp
help operation.

You need to make this file available on each DCE host where the script will be
executed. Generally this means copying the file to each host’s /opt/dcelocal/dcecp
directory and then running the auto_mkindex utility on the files in the directory. You
might want to place the object name in the /opt/dcelocal/dcecp/help.dcp file as
well.

As a convenience, you could write a script that uses the DCE control program’s
hostdata object to create the file on each host. The script could then run the
auto_mkindex utility using the hostdata object’s postprocessor attribute.
“Chapter 9. Managing DCE Host Services and Host Data” on page 81 contains
information on using the dcecp hostdata object.

Chapter 3. Writing Scripts and dcecp Objects 57

58 OSF® DCE Administration Guide— Core Components

Part 2. DCE Administration Tasks

59

60 OSF® DCE Administration Guide— Core Components

Chapter 4. DCE Administration Task Objects

This part of the OSF DCE Administration Guide—Core Components discusses the
purpose and use of DCE administration task objects provided with DCE. Generally,
these special dcecp objects perform routine high-level administration tasks by
combining several lower-level operations.

Often, a single task object uses or affects multiple DCE services. For example, one
of the task objects, the host object, can configure a host computer into a DCE cell.
This task adds specific kinds of information to the DCE Security Service, the Cell
Directory Service, and the DCE host daemon services. Because a single invocation
of the host object can perform multiple steps, it shields DCE administrators from
some of the lower-level administration details that would otherwise have to be
attended to by using several lower-level dcecp administration objects.

While we discuss the task objects at a high level, you will need to keep in mind that
there is often more going on that we are not describing in detail. In these cases, we
will point out where to go in this guide for more detailed information. Usually you
will be directed to the corresponding lower-level discussion in the relevant
component’s part of this guide.

Using Task Objects to Simplify DCE Administration

Individual DCE control program objects operate on very specific pieces of
information in DCE. For example, the group object operates solely on security
groups in the DCE Security Service registry database. The group object enables
administrators to create and delete security groups, add and remove members from
security groups, rename the groups, and so on. Such precise control is necessary
because it allows you to custom tailor DCE to meet very specific needs or
circumstances.

While such control might be necessary when configuring a new cell or fixing some
access control problem, it can overwhelm routine DCE administration tasks. As an
example, let us look at the minimum steps needed to add a new user to a DCE cell:

1. Use the principal object to create a principal name for the user.

2. Use the group object to add the principal to a security group.

3. Use the organization object to add the principal to a security organization.

4. Use the account object to create an account for the principal.

5. Use the directory object to create a directory for the principal in CDS.

6. Use the acl object to give the principal access to the CDS directory.

Performing these six steps probably would not pose any problems in a small cell
with 15 or 20 users. But consider a cell with more, perhaps a hundred or maybe
even a thousand or more users, and the need to automate this and other
administration tasks becomes evident.

To meet this administration need, the DCE control program includes several
administration task objects for performing some routine DCE administration tasks.
Here, we’re using the term task to mean doing something that requires multiple
steps, such as when adding a user consists of performing six lower-level
operations.

61

One of the task objects is the user object that you can use to add and remove user
information in your DCE environment. For instance, a single invocation of the user
object can perform all six of the previously mentioned steps needed to correctly add
a new user to your DCE environment. You can also use this same task object to
delete the user from your environment.

The task objects are implemented as dcecp scripts by using the DCE control
program language, which means that you can extend the scripts or change their
behavior according to your needs. For instance, the default implementation of the
user task object does not operate on any GDS or DFS information. If your DCE
environment includes these extended services, you might want to add some GDS
or DFS operations to the script. “Part 1. The DCE Control Program” on page 1 of
this guide explains how to use the DCE control program language to write and
modify a dcecp task object.

Looking Beyond the Tools

Although you use the task objects to perform various administrative operations, your
most important focus is on the elements or entities that you’re managing. Each of
four task objects provided with DCE enables you to manage a specific element or
entity in your DCE cell. The elements are as follows:

A DCE cell
You can test whether a cell is running, show general information about
available services in a cell, and back up security and CDS information by
using the cell task object.

Cell name
You can create and manage cell alias names, which are needed for
registering a cell in multiple global directory services. These operations use
the cellalias task object.

DCE hosts
You can configure and remove DCE hosts in a cell, show information about
hosts in a cell, and start and stop DCE processes on hosts in a cell by
using the host task object.

DCE users
You can add and remove users and show information about users in a DCE
cell with the user task object.

The remaining chapters in this part discusses how to manage these DCE elements
by using the default implementations of the four dcecp task objects provided with
DCE.

62 OSF® DCE Administration Guide— Core Components

Chapter 5. Managing a DCE Cell

From a cell administrator’s point of view, a DCE cell consists of a set of networked
services that supports the execution of distributed applications. This simple
statement, however, does not really say anything about what services are currently
available in your cell. In fact, the exact number of DCE servers and their locations
differs from cell to cell. Even in the same cell, host and network outages and
reconfigurations affect service availability.

Although you could use various service-related dcecp objects to test whether and
where services are available in a cell, it would be cumbersome. Instead, the DCE
control program provides a cell task object that conveniently lists configured DCE
servers and tests whether services are available. It can also back up critical data
maintained by the DCE Security Service and CDS.

Showing All Configured DCE Servers and DCE Hosts

Some DCE cells may be relatively stable, with few DCE hosts or DCE servers
being added or removed. Other cells can be quite dynamic, with hosts and DCE
servers being added, removed, or moved weekly or even daily. In this environment,
tracking the locations of DCE resources can be difficult, so the cell task object has
a show operation that scans various databases in the cell returning the names of
configured DCE servers and DCE hosts.

One use of a cell show command could be to track performance problems. For
example, maybe many new hosts and users have been added, but the number or
location of CDS or security servers has not grown accordingly. Or perhaps you’ve
just been hired to administer a new cell and you want to see what your cell consists
of.

To show configured DCE servers and hosts in a cell, enter a cell show operation.
The command returns a list of servers grouped by type, along with a list of DCE
hosts, as follows:

secservers
Each value is the name of a security server.

cdsservers
Each value is the name of a machine running a CDS server. The name is
the simple name found under /.:/hosts . A clearinghouse must be configured
on that machine.

dtsservers
Each value is the name of a DTS server in the cell.

hosts Each value is the name of a host in the cell, including machines mentioned
previously as servers. This is simply the return value of a directory list
/.:/hosts operation.

The following example shows the names of all the configured DCE servers and
hosts in the local cell:
dcecp> cell show
{secservers
/.../my_cell.goodco.com/subsys/dce/sec/earth}

{cdsservers
/.../my_cell.goodco.com/hosts/earth}

{dtsservers

63

/.../my_cell.goodco.com/hosts/krypton}
{hosts
/.../my_cell.goodco.com/hosts/earth
/.../my_cell.goodco.com/hosts/jupiter
/.../my_cell.goodco.com/hosts/krypton
/.../my_cell.goodco.com/hosts/mars
/.../my_cell.goodco.com/hosts/mercury
/.../my_cell.goodco.com/hosts/neptune
/.../my_cell.goodco.com/hosts/pluto
/.../my_cell.goodco.com/hosts/saturn
/.../my_cell.goodco.com/hosts/uranus
/.../my_cell.goodco.com/hosts/venus}

dcecp>

If you have the necessary permission, you can show the configured DCE servers
and hosts in another cell by including that cell’s name as an argument as shown in
the following example:
dcecp> cell show /.../their_cell.goodco.com
{secservers
/.../their_cell.goodco.com/subsys/dce/sec/gold}

{cdsserver
/.../their_cell.goodco.com/gold}

{dtsservers
/.../their_cell.goodco.com/hosts/silver/dts-entity}

{hosts
/.../their_cell.goodco.com/hosts/brass
/.../their_cell.goodco.com/hosts/bronze
/.../their_cell.goodco.com/hosts/copper
/.../their_cell.goodco.com/hosts/gold
/.../their_cell.goodco.com/hosts/iron
/.../their_cell.goodco.com/hosts/mercury
/.../their_cell.goodco.com/hosts/silver
/.../their_cell.goodco.com/hosts/steel
/.../their_cell.goodco.com/hosts/tin}

dcecp>

Testing Cell Operation

When client-server communication problems occur, it is easy to suspect that one or
more DCE services is not operating in the cell. You can easily test whether a cell’s
DCE services are running by invoking a cell ping operation.

If called with no option, the cell ping operation performs a server ping operation
on the master security server, on the CDS server that has a master clearinghouse,
and all the DTS servers in the cell. Use the -replicas option to test CDS and
security service replicas as well as the masters. The -clients option tests every
DCE host in the cell by looping though the /.:/hosts directory in CDS and
performing a host ping , with each host name as an argument.

In case of failure, the operation generates an error and returns a list of servers or
hosts that could not be contacted. For any successes, the operation returns the
message DCE Services Available . For successes with the -clients option, the
message is DCE Clients Available .

The following example pings the names of all the configured master DCE servers in
the local cell:
dcecp> cell ping
DCE services available
dcecp>

64 OSF® DCE Administration Guide— Core Components

The following example pings the names of all the configured DCE hosts in the local
cell. Depending on the size of a cell and timeout values set, this command can take
a long time (from several to many minutes) to complete.
dcecp> cell ping -clients
DCE clients available
dcecp>

If you have the necessary permission, you can ping the configured DCE servers
and hosts in another cell by including that cell’s name as an argument as shown in
the following example:
dcecp> cell ping /.../their_cell.goodco.com
DCE services available
dcecp>

Backing Up the Security Service Registry and CDS

As organizations increasingly depend on DCE cells for their day-to-day operations,
they cannot afford to lose the cell’s directory and security data. Organizations
generally rely on regular backup schemes to prevent the loss of this and other
critical data. But backing up these DCE databases by using traditional backup
methods can cause security holes in your cell if the archives are not properly
protected.

Fortunately, DCE includes features that let you back up these essential databases
to destinations of your choosing. Once you’ve begun using the DCE mechanism to
back up CDS and security data, you can redirect your traditional backup program to
ignore these DCE databases.

The cell backup operation backs up the master security database and each
clearinghouse with master replicas in the cell. This operation requires that a dced
program is running on each of the server hosts being backed up.

Prepare a cell for regular backup operations by setting up an Extended Registry
Attribute (ERA) that can specify a backup destination (typically a tape archive).
Then add the new attribute to the principals for the master DCE Security Service
registry database and all CDS clearinghouses with master replicas that you want to
back up. To do this, follow these steps:

1. Put the DCE daemon into partial service mode by sending the dced process the
correct signal:
kill -SIGUSR1 pid_of_dced
#

2. Invoke dcecp with the -local option:
% dcecp -local
dcecp>

3. Modify ACLs on the local hostdata and srvrconf objects to allow the
subsys/dce/dced-admin group access by using the following dcecp acl
operations:
dcecp> acl modify
hostdata -add {group subsys/dce/dced-admin -riI}
-local
dcecp> acl modify srvrconf -add {group subsys/dce/dced-admin -riI}
-local
dcecp> acl modify srvrconf -add {group subsys/dce/dced-admin -d-rwx} -io
-local
dcecp>

4. Put the DCE daemon back into full service mode with the following command:

Chapter 5. Managing a DCE Cell 65

% kill
-SIGUSR1 pid_of_dced
%

5. Create an ERA as a string that specifies a backup destination. Name the ERA
/.:/sec/xattrschema/bckp_dest and the type printstring . Select the ACL
manager named principal and set its four permission bits to r (read), m
(manage), r (read), and D (Delete) as shown in the following command:
dcecp> xattrschema create /.:/sec/xattrschema/bckp_dest \
> -encoding printstring -aclmgr {principal r m r D}
dcecp>

6. Add the new ERA (bckp_dest) to the principal dce-rgy (the DCE Security
Service registry database). Set the value to be the tar filename or the device
that is the backup destination:
dcecp> principal modify dce-rgy -add {bckp_dest tarfilename_or_device}
dcecp>

7. Add the new ERA (bckp_dest) to the principal /.:/hosts/ hostname/cds-server
(the CDS server). Set the value to be the tar filename or the device that is the
backup destination:
dcecp> principal modify /.:/hosts/ hostname/cds-server \
> -add {bckp_dest tarfilename_or_device}
dcecp>

Now, whenever you want to back up your registry database or CDS database, just
invoke a cell backup operation as follows:
dcecp> cell backup
dcecp>

You can back up another cell by including the cell name as an argument to the cell
backup operation. Note that you need the necessary permissions in the remote
cell. (Refer to the cell(8dce) reference page for the required privileges.)

Modifying or Extending the Cell Object

The cell task object is implemented as a script so that administrators can modify or
extend it on a per-site basis. Here are a few examples of possible modifications or
extensions you can make:

v Add a way to show GDS or DFS server information.

v Add options to the cell show operation to omit listing all the hosts in a cell or to
show only certain DCE servers.

v Add a command to configure a new cell. Such a command could perform the
lower-level operations currently performed by the CONFIGURE selection in the
DCE Installation and Configuration main menu of the dce_config program.

“Part 1. The DCE Control Program” on page 1 of this guide discusses ways to
create new dcecp objects or modify existing objects written with the dcecp
language.

66 OSF® DCE Administration Guide— Core Components

Chapter 6. Managing Your Cell Name

Although cell names tend to be stable, at times you may want to create and display
alternative names for cells. Cell aliases can be managed by the cellalias task
object. You can create multiple aliases for a single cell, but only one per cellalias
command.

When you create an alias, the cellalias task object forms a new principal (to
represent the cell alias) in the registry, verifies the registry to make sure the cell’s
Security replicas are current, creates an alias name in CDS and updates each CDS
replica. The cellalias task object also performs a hostdata operation on each host
in the cell for which you are creating the alias. All dced objects, as well as the
dcelocal/dce_cf.db and dcelocal/etc/security/pe_site files, are updated to reflect
the new alias name. If your cell contains many hosts, this action can take a long
time to complete.

Registering in Multiple Global Directory Services

You can make your cell resources available to users or applications in other DCE
cells by registering your cell in a global directory service such as DNS (Domain
Name System) or GDS (an X.500 global directory service). Once your cell is
registered, users in remote cells can access your cell’s resources (provided they
have the necessary permissions) by using global names. The following example
shows a global DNS name identifying an ASCII line printer in a cell managed by the
fictitious Goodco company:
/.../sales.goodco.com/subsys/bldg6/resources/floor2/printer_ascii

But let us say you also want to register your cell in GDS so that foreign cells that
have access to only an X.500 global directory service can access your cell’s
resources. Now, your cell needs a second X.500-style name and, for this, you must
establish an alias such as the following:
/.../C=us/O=goodco/OU=sales

Use a cellalias create operation to create a second name for your cell. This
operation creates a new cell principal in the registry service and performs a
registry verify operation to ensure that all the replicas are up-to-date. Next, it
creates a cell alias name in CDS by using the cdsalias object. Finally, it performs a
hostdata operation on each host in the cell, updating each dcelocal/dce_cf.db file
and dcelocal/etc/security/pe_site file with the cell alias name. This last step can
take a long time to complete in a cell with many hosts.

The following creates the cell alias name /.../C=us/O=goodco/OU=sales :
dcecp> cellalias create /.../C=us/O=goodco/OU=sales
dcecp>

Once you have completed this operation, you can register your cell name with the
authority responsible for the particular global service.

Modifying or Extending the cellalias Object

The cellalias task object is implemented as a script so that administrators can
modify or extend it on a per-site basis. Here are a few examples of possible
modifications or extensions you can make:

67

v Extend the script to create hierarchical cells. “Chapter 21. Restructuring a
Namespace” on page 201 describes the procedure to create a hierarchy of cells.

v Add a -verbose option to display the results of each step as it completes.

“Part 1. The DCE Control Program” on page 1 of this guide discusses ways to
create new dcecp objects or modify existing objects written with the dcecp
language.

68 OSF® DCE Administration Guide— Core Components

Chapter 7. Managing DCE Hosts

Larger DCE cells can contain many host computers, with some running both DCE
servers and application servers while others act only as client systems. Still other
hosts might run application servers but also act as clients to their resident users.
Such flexibility in DCE host configurations can make it difficult to control or track
what is running or available on each host in a cell. The host task object represents
DCE and application processes associated with hosts, letting administrators more
easily manage DCE server and application processes on machines.

You can use the host task object to show information about processes on local and
remote hosts in a cell, and start and stop DCE processes on hosts throughout a
cell. You can also configure local DCE hosts in a cell and remove (unconfigure)
remote DCE hosts from a cell. Online help for this object is available using the host
help and host operations commands in dcecp .

All of the host object operations performed on a remote host except host catalog
require dced to be running on the remote host.

Listing the DCE Hosts in a Cell

You can determine the number and names of DCE hosts configured in your DCE
cell by using the host catalog operation. This operation might be useful for
determining whether a specific host has already been configured into your cell. The
host does not have to be running for this operation to work because the host
catalog operation actually performs a directory list /.:/hosts operation and does
not interact with the host. This method relies on the convention that hosts register
their names in the /.:/hosts directory. If your hosts register in some other directory,
you need to modify the host catalog operation in the host task object. You can
read more about the purpose and use of CDS directories in “Chapter 18. Managing
CDS Directories” on page 179.

The host catalog operation resembles the cell show operation except that it does
not separately list DCE servers. The following example operation lists all DCE hosts
that have been configured in the cell:
dcecp> host catalog
/.../my_cell.goodco.com/hosts/bigbox
/.../my_cell.goodco.com/hosts/drifter
/.../my_cell.goodco.com/hosts/duh
/.../my_cell.goodco.com/hosts/heater
/.../my_cell.goodco.com/hosts/pc1
/.../my_cell.goodco.com/hosts/pc2
/.../my_cell.goodco.com/hosts/pc3
/.../my_cell.goodco.com/hosts/peewee
/.../my_cell.goodco.com/hosts/xoltar
/.../my_cell.goodco.com/hosts/xray
/.../my_cell.goodco.com/hosts/zoof
dcecp>

You can omit the cell name by using the -simplename option as in the following
example:
dcecp> host catalog -simplename
hosts/bigbox
hosts/drifter
hosts/duh
hosts/heater
hosts/pc1

69

hosts/pc2
hosts/pc3
hosts/peewee
hosts/xoltar
hosts/xray
hosts/zoof
dcecp>

Showing All Servers Configured for a DCE Host

In larger cells, in which DCE servers and application servers reside on multiple
hosts, you will likely want to see what servers are configured to run on particular
hosts from time to time. The DCE control program’s host show operation reads a
DCE host’s server configuration and execution information and returns a list of
configured servers on that host. The list contains each server’s simple name and
indicates whether it is running. The list also indicates whether a security server is a
master or replica and whether a DTS entity is a clerk or server.

This operation relies on the server object (and consequently on the DCE host
daemon) to show information about configured servers. You can read more about
controlling server operation in “Chapter 10. DCE Application Administration” on
page 93.

The following example shows the servers configured to run on DCE host xoltar :
dcecp> host show /.:/hosts/xoltar
video_clip running
dts-entity running clerk
dcecp>

Testing Whether a DCE Host is Running

Because DCE communications often involve several steps before clients
communicate with their servers, communication failures can be difficult to diagnose.
For instance, a server may not be running on a host or the DCE services may not
be currently running, even though the host has been configured into the cell. You
can use a server ping operation to test whether a server process is running but, if
this fails, you might need a way to see if the DCE host is even accessible through
the network. The DCE control program’s host ping operation tests whether a host’s
DCE services are accessible on the network, returning a 1 if it is and a 0 if it is not
accessible.

The host ping operation tests for the presence of the remote host’s DCE daemon
(dced). You can read more about the purpose and use of dced in “Chapter 9.
Managing DCE Host Services and Host Data” on page 81.

The following example tests whether dced on host duh is accessible on the
network:
dcecp> host ping /.:/hosts/duh
1
dcecp>

70 OSF® DCE Administration Guide— Core Components

Starting Configured DCE Processes on a Host

Each host’s DCE daemon (dced) can maintain configuration information for servers
set to run on that particular host. This information is established using an
application’s installation script or by using the server object directly. While the
server object provides its own start operation that can start individual servers on a
host, you must explicitly name each server. The host start operation lets you start
all configured DCE servers and clients and all configured application servers on a
host with a single command.

To operate on a remote host, its DCE daemon must be running. Remote host start
operations also require at least one CDS server and one security server to be
running in the cell. The host start operation operates on DCE servers and clients
and on application servers that are configured by using the server object.

Application servers must be configured with the starton attribute set to boot or
explicit . You can read more about configuring application servers in “Chapter 10.
DCE Application Administration” on page 93.

The following example starts all configured servers on host bigbox :
dcecp> host start /.:/hosts/bigbox
dcecp>

Stopping DCE Processes Running on a Host

Like the host start operation discussed in the previous section, the host stop
operation is more encompassing than a server stop operation. It lets you stop all
DCE processes on a host with a single command rather than issue a separate
server stop operation for each server. This operation stops application servers,
then DCE processes and finally, when stopping DCE processes on the local
machine, stops dced . You can read more about controlling servers in “Chapter 10.
DCE Application Administration” on page 93.

To operate on a remote host, its DCE daemon must be running. Remote host stop
operations also require at least one CDS server and one security server to be
running in the cell. The host stop operation operates on DCE servers and clients
and on application servers that have been configured by using the server object.

The following example stops all DCE processes and application servers on host
bigbox :
dcecp> host stop /.:/hosts/bigbox
dcecp>

Configuring a DCE Host in a Cell

Once DCE Version 1.1 software has been installed on a host, you can configure the
local host as a DCE client machine by using a host configure operation. You must
have root or system administrator privileges on the local host to execute a host
configure operation.

You can read more about requirements for DCE server and client systems in the
OSF DCE Administration Guide—Introduction.

Chapter 7. Managing DCE Hosts 71

Note that you cannot configure DCE servers such as a DCE Security Service
registry or a CDS server by using a host configure operation. Instead, use the
DCE Installation and Configuration program to configure DCE servers in your cell.

Before configuring a DCE client system, be sure the DCE software has been
installed on the host. For information about installing DCE, refer to your DCE
installation instructions or the OSF DCE Administration Guide—Introduction.

To configure a DCE client system, perform the following steps:

1. Log into a privileged account (root or system administrator) on the host to be
configured.

2. Start the DCE control program and perform a host configure -client operation.
Include an argument specifying the cell-relative name of the local host being
configured. The operation adds this name to CDS. Use required options to
specify the host names where the master security server and a CDS server are
running. Other required options are -administrator , which specifies the principal
name of the person configuring the host (usually the cell administrator), and
-password followed by the administrator’s password.

The following example shows configuring host ptarmigan as a DCE client
system. The cell’s security server is on host eagle and the CDS server is on
host owl . The administrator’s principal name is cell_admin and the
administrator’s password is −dce- .
dcecp> host configure /.:/hosts/ptarmigan -client -secmaster
eagle \
> -cds owl -administrator cell_admin -password -dce-
dcecp>

Removing a DCE Host from a Cell

Occasionally, you might want to remove a DCE host from a cell. For instance, your
organization is replacing some older systems that are being sold to another
organization.

Removing or unconfiguring a DCE host is more than just erasing DCE information
from the host’s disk because CDS and the DCE Security Service both maintain
host-specific information that needs to be removed as well. The host unconfigure
operation deletes all objects, directories, and links from the /.:/hosts/ hostname
CDS directory including the directory itself. It also deletes all principal names
beginning with hosts/ hostname/ which, in turn, removes all accounts with the same
name. Finally, it removes all local configuration files and stops all running DCE
processes ending with the DCE daemon (dced).

The host unconfigure operation operates only on remote hosts. You cannot
perform this operation on a local host because it removes the DCE Security Service
registry information needed to complete the operation. Also note that you need cell
administrator privileges to perform a host unconfigure operation.

To remove a remote DCE host from a cell, use a host unconfigure operation
providing the host name of the host to be unconfigured. The following example
removes host calypso from the cell:
dcecp> host unconfigure /.:/hosts/calypso
dcecp>

72 OSF® DCE Administration Guide— Core Components

If you have cell administrator privileges in a foreign cell, you can remove a remote
DCE host from that cell by supplying a global DCE name of the host to be
unconfigured. The following example removes host gobo from foreign cell
/.../their_cell.goodco.com :
dcecp> host unconfigure /.../their_cell.goodco.com/hosts/gobo
dcecp>

Modifying or Extending the Host Object

The host task object is implemented as a script so that administrators can modify
or extend it on a per-site basis. For example, administrators might want to add GDS
and DFS information to the object. You could also add calls to specialized
commands to start or stop application servers. For instance a printer stop
operation could be useful.

“Part 1. The DCE Control Program” on page 1 of this guide discusses ways to
create new dcecp objects or modify existing objects written with the dcecp
language.

Chapter 7. Managing DCE Hosts 73

74 OSF® DCE Administration Guide— Core Components

Chapter 8. Managing DCE Users

One of the most frequent DCE administration tasks is likely to be managing users in
your DCE environment. Corporate reorganizations, changing business needs, and
fluctuating economics all exert pressures causing users to come and go or to move
between various groups or organizations.

DCE users represent a big part of what DCE is designed to support; the DCE
services authenticate and admit some while denying access to those who are
unauthorized. Indeed, users have complex management requirements; their
information is spread among multiple services that help validate and control their
activities. User information includes principal names, group and organization
information, account information, and information in CDS.

The DCE control program includes separate administration objects for managing
each piece of user information in a DCE cell. While these separate objects might be
very useful for making minor adjustments to certain user information, their constant
use for repetitive tasks such as adding and removing users from a cell would prove
quite tedious. A simpler method relies on the user task object that you can use to
more easily create, delete, and show user information in a DCE cell. Online help for
this object is available using the user help and user operations commands in
dcecp .

Creating a New User

Each user in a DCE environment is a person with a unique identity (principal
name). Each principal is a member of at least one security group and organization
and has an account in the DCE Security Service registry database. Although it is
not required, each principal can also have a directory in CDS.

When you create a user with the user task object, you perform several lower-level
operations:

1. The user create operation creates a new principal name and adds the principal
to a security group and organization. If the security group or organization does
not exist when you invoke the operation, you can force their creation by using
the -force option. The principal attributes assume default values, but you can
specify other attributes if necessary. All of the attributes are listed in the
user(8dce) reference page.

Typically, a security group’s name is included in access control lists (ACLs) that
regulate user access to various server and data objects in the DCE
environment. A security organization maintains policies that are applied to all the
principals that are members of that organization. Policies control things like the
lifespan of accounts, whether or when account passwords expire, or whether
passwords can contain nonalphanumeric characters. You can read more about
administering principals, groups, and organizations in “Chapter 30. Creating and
Maintaining Principals, Groups, and Organizations” on page 305.

2. The user create operation creates an account for the principal and creates the
user’s password. The account attributes assume default values but you can
specify other attributes if necessary. All of the attributes are listed in the
user(8dce) reference page.

A principal’s account contains information about the principal such as group and
organization names, account creation and expiration information, and
information about tickets (which identify principals to resources in a DCE

75

environment). You can read more about administering accounts in “Chapter 31.
Creating and Maintaining Accounts” on page 325.

3. Finally, the user create operation adds a directory called /.:/users/
principalname to CDS. This directory can store user-specific application location
information. The operation also adds an ACL entry to the default ACL which
gives the user rwtci permissions on the directory. These permissions allow
users to insert objects and links, but they cannot delete the directory or
administer replication on the directory. Furthermore, users cannot create
additional directories unless you give them w (write) access to the
clearinghouse. You can read more about the purpose and use of CDS
directories in “Chapter 18. Managing CDS Directories” on page 179. You can
read more about ACLs and CDS directories in “Chapter 16. Controlling Access
to CDS Names” on page 163.

You generally need numerous permissions to create new users in your DCE cell, so
you should log into the cell administrator’s account (or a similar privileged account).
The user(8dce) reference page lists the required permissions.

To create a new user in a DCE cell, invoke a user create operation. The following
example creates a principal name P_Pestana and an account with the same name.
The create operation requires your password to prevent someone else from using
an unattended session to create an unauthorized account. You must also provide
the -password option to specify a password for the user. The required -group and
-organization options add principal P_Pestana to the named group and
organization. The optional -fullname option creates a fullname to help other human
users recognize the principal.
dcecp> user create P_Pestana -fullname {Patricia Pestana} \
> -mypwd mxyzptlk -password change.me -group users \
> -organization managers
dcecp>

You can create multiple users by specifying a list of user names as an argument to
the user create operation. This method poses some limitations, however. All
created users will have the same initial password, group name, and organization
name. Furthermore, you cannot specify the uid attribute since this is unique for
each user. The following example creates several users with a password
change.me , a group name of users , and an organization named staff :
dcecp> user create {R_Lee B_Joy N_Lynn D_Dee} -mypwd mxyzptlk \
> -password change.me -group users -organization staff
dcecp>

Showing User Information

Sometimes you might want to view the attributes for a user. For instance, you might
want to see the expiration date for one or more accounts or view the fullname of a
principal.

The user show command returns the attributes associated with users that are
included as arguments to the command. The attributes include principal attributes
and ERAs, and account attributes and policies. The information is returned as if the
following commands were run in the following order:

v principal show

v account show -all

76 OSF® DCE Administration Guide— Core Components

The following command displays the principal and account attributes associated
with user P_Pestana :
dcecp> user show P_Pestana
{fullname {Pat Pestana}}
{uid 5139}
{uuid 00001413-ad4f-21cd-8c00-0000c08adf56}
{alias no}
{quota unlimited}
{groups users}
{acctvalid yes}
{client yes}
{created /.../my_cell.goodco.com/cell_admin \

1994-08-01-16:41:32.000+00:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1994-08-01-16:41:32.000+00:00I-----}
{group users}
{home /}
{lastchange /.../my_cell.goodco.com/cell_admin \

1994-08-01-16:41:32.000+00:00I-----}
{organization managers}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}
nopolicy
dcecp>

You can show information about multiple users by specifying a list of user names as
an argument to the user create operation.

Deleting a User

When users leave your organization, you might need to delete the user from the
cell. Use the user delete command to do this. This operation removes the principal
name from the registry which, in turn, deletes the account and removes the
principal from any groups and organizations. The operation also deletes the
/.:/users/ principalname directory and any contents from CDS.

You need numerous permissions, such as those generally associated with cell
administrator, to delete a user. See the user(8dce) reference page.

The following example operation removes user P_Pestana from the cell:
dcecp> user delete P_Pestana
dcecp>

You can remove multiple users from your cell by specifying a list of user names as
an argument to the user delete operation, as follows:
dcecp> user delete {W_Rosenberry J_Hunter P_Pestana}
dcecp>

If you have permissions in a foreign cell, you can remove one or more users from
that cell by specifying the global principal name of the users to be deleted. For
example:

Chapter 8. Managing DCE Users 77

dcecp> user delete /.../their_cell.goodco.com/J_Jones
dcecp>

Modifying or Extending the User Object

The user task object is implemented as a script so that administrators can modify
or extend it on a per-site basis. For example, administrators might want to add GDS
and DFS information to the object. Other possible modifications include the
following:

v Changing the location of the CDS directory created for users, or removing it
completely.

v Changing the default ACLs placed on the various objects.

v Adding an option to give users write access to the clearinghouse where the
master replica of the /.:/users/ username directory resides. This allows users to
create their own subdirectories. The option could add individual principal names
to the clearinghouse ACL. An easier method could add principals to a group that
has write access to the clearinghouse.

v Setting certain attributes or policies on all newly created principals and accounts
to match the site’s policies. For example, you could set principals to have a
pwd_val_type ERA and set accounts to generate random passwords.

v Setting up site-specific defaults for passwords (to be changed by the user later),
groups, organizations, principal directories, and so on.

v Supporting a user modify command. Such a command could change group or
organization information or some other attributes associated with users.

“Part 1. The DCE Control Program” on page 1 of this guide discusses ways to
create new dcecp objects or modify existing objects written with the dcecp
language.

78 OSF® DCE Administration Guide— Core Components

Part 3. DCE Host and Application Administration

79

80 OSF® DCE Administration Guide— Core Components

Chapter 9. Managing DCE Host Services and Host Data

Some services like DTS, CDS, and the DCE Security Service registry, which
produce or maintain cell-wide information, are centralized. Although the services
they provide are available throughout a cell, the servers themselves typically reside
on just a few selected hosts in a cell.

Other DCE services are pervasive; that is, they reside on every host in a DCE cell.
The DCE software that runs on every DCE host provides essential services that
enable local client and server programs to interact with remote client and server
programs in a reliable and secure way. Consequently, each host in a DCE cell has
administrative aspects which are discussed in the first part of this chapter.

Each DCE host maintains local data that is essential to host operation in a DCE
environment. Occasionally, you may find it necessary to modify parts of this data as
your cell configuration changes, or as you add DCE capabilities or DCE
applications. The second part of this chapter discusses how to use the DCE control
program to gain remote, authenticated access to this data.

When DCE operations do not succeed for some reason, you want to inform the
right people about what happened. DCE’s serviceability messaging facility lets you
route error messages based on the severity level of the message. The last part of
this chapter explains how to manage this facility.

DCE Host Services

Some DCE host services such as the runtime libraries are inert and require no
administration once DCE has been configured on a host. But other services are
active programs. One such active service is the endpoint mapper which acts as a
lookup service on a host. The endpoint mapper lists server communication ports
(called endpoints) in the host’s endpoint map. Remote clients looking for particular
servers query the endpoint mapper which returns information contained in the
endpoint map. The endpoint mapper, along with other active services, are contained
in a single program called the DCE host daemon or dced . Typically, once a host
has been configured with DCE software, the host booting process starts the dced
process along with other daemons or processes. Occasionally however, you may
need to manually start or restart this daemon.

The dced program comprises a set of DCE host services that satisfies many needs
of DCE client and server applications on a host system:

v The endpoint mapper service acts as a directory of servers running on a host.
Clients can acquire a registered server’s communication endpoint by looking in
the host endpoint map.

v A security validation service manages DCE security on the local host.

v A server configuration and execution service lets administrators remotely set
servers’ starting and stopping conditions, explicitly start and stop individual
servers, and monitor running servers’ states.

v A key management service lets administrators manage server passwords
remotely.

v A hostdata service lets administrators remotely manage data stored in files on a
host. Administrators will find this most useful for remotely managing a host’s cell
name and cell alias information.

81

v An attribute schema capability lets administrators add new attributes to server
configuration information.

Normally, any system that hosts a DCE server (such as a DCE cell directory server)
or that runs a DCE-based application server or client that uses authentication, must
also run the dced process.

It is clear that if the dced process failed for some reason, it would take all of its
component services down along with it, leaving the host unable to respond to client
requests. Similarly, a failure of one of the component services (for example the key
management service) might be caused by the dced process unexpectedly exiting
for some reason. This relationship between dced and its component services is
worth remembering if problems occur.

Starting and Stopping DCE Host Services

Although the dced process generally starts as part of the host booting process,
sometimes you may need to start the process manually.

Before starting dced , any underlying network services on which client/server
communication depends must be available; on most UNIX systems, for example,
network interfaces and routing services must be enabled. Once these
transport-layer services are established, you can start dced . After dced starts,
RPC-based servers can start.

The endpoint mapper listens on privileged or reserved communication ports
(well-known endpoints) for client requests for service. Consequently, dced must be
started as a privileged user.

Part of dced (the endpoint map) contains information that clients use to locate
servers on a host system. The dced process maintains a copy of this information in
a database file named dcelocal/var/dced/Ep.db so it will not be lost if you stop and
then restart dced for some reason. Another database file called
dcelocal/var/dced/Srvrexec.db maintains information about servers (such as each
server’s process ID) that are currently running on the host. The information in both
of these databases becomes obsolete when a system reboots because most
servers get different endpoints and different process IDs each time they start.

You can configure dced to start each time a host boots. In some cases, the
dcelocal/etc/rc.dce file is linked to or copied to /etc/rc.dce . This way, dced is
invoked when other daemons are started. The dcelocal/etc/rc.dce file is also
responsible for deleting the Srvrexec.db and Ep.db database files before starting
dced . If your system does not automatically delete these files, you will have to
manually delete them before starting dced .

While you normally do not need to start dced in a shell, if you ever need to do so,
log in as root and enter the following command:
dcelocal/bin/dced

By default, dced listens on one endpoint for each transport that is supported by the
host on which it is running. That is, if a host supports both TCP/IP and UDP/IP
transports, dced will listen on one TCP and one UDP socket for client requests. An
optional protseq argument lets you limit the transports that dced uses to the ones
you specify. Intended as a debugging capability, this feature should be used with
care; if you limit transports, clients will not be able to locate servers over the

82 OSF® DCE Administration Guide— Core Components

excluded transports, and servers will not be able to register themselves in the
endpoint map by using the excluded transports. For information about the optional
protseq argument, see the dced(8dce) reference page.

If the DCE daemon stops or exits unexpectedly, you can restart it. The restarted
dced process does not lose any previously registered server bindings. It simply
loads the information from the Ep.db and Srvrexec.db files. As a rule, stopping and
restarting dced is not recommended because it also stops the security validation
service.

Although you should run the host services on all hosts where DCE client or server
applications run, there are some situations where you can avoid running them:

v DCE clients that do not perform authentication

v DCE servers that do not perform authentication and that do not use the endpoint
mapper or other active DCE host services

Once you’ve started the DCE host services, you can perform all DCE host and
server administration tasks by using the DCE control program, dcecp . The control
program offers secure, remote access to host and server administrative functions,
which means you can manage all of your DCE hosts without having to log into each
host. “Part 1. The DCE Control Program” on page 1 of this book explained how to
use dcecp in interactive mode as well as how to write dcecp scripts to manage
DCE activities. You should be acquainted with those basics before performing
administrative tasks explained in this chapter or elsewhere in this document.

Managing Host Data

Each host in a DCE cell maintains local data that is essential for operating in a
DCE environment. For instance, each host’s DCE identity relies on certain data
items that specify the host’s host name, cell name, and any cell aliases. Currently,
these data items are stored in a local file called dcelocal/dce_cf.db . These and
other data items can be modified remotely using the DCE control program’s
hostdata object.

The hostdata object has a much broader application, too; administrators will find it
extremely useful for accessing general data and files on remote hosts using secure
and platform-independent methods. The last part of this chapter examines this
powerful access method.

Permissions for Accessing Host Data

Access control lists (ACLs) prevent unauthorized principals from creating, changing,
or deleting hostdata information. Two types of ACLs protect hostdata information.
One type of ACL protects the container in which the hostdata items reside. A
second type protects each individual hostdata item.

This section shows how to manage ACLs that protect hostdata information. For
detailed information about setting and using ACL protections, see “Chapter 28.
Using Access Control Lists” on page 281.

Chapter 9. Managing DCE Host Services and Host Data 83

Permissions for the Hostdata Container

In DCE, the hostdata items reside in a container which is really a backing storage
mechanism maintained by dced . On UNIX systems this is usually a file called
dcelocal/var/dced/Hostdata.db . The file is owned by root and its access via dced
is protected by an ACL. These ACL permissions control who can access the data in
the container. Each DCE host has one hostdata Container ACL with the following
name:
/.../ cellname/hosts/ hostname/config/hostdata

The hostdata Container ACL has the following permissions:

c (control)
Modify the Container ACL.

r (read)
Read the list of hostdata items in the container.

i (insert)
Create new hostdata items.

I (Insert)
Although the I permission is present, it does not apply to hostdata items.
The permission applies to server control facilities, which are explained in
“Chapter 10. DCE Application Administration” on page 93.

Use the dcecp acl object to view or modify ACLs. For example, use the following
operation to view the ACL for the hostdata container object on host silver :
dcecp> acl show /.:/hosts/silver/config/hostdata
{user hosts/silver/self criI}
{unauthenticated r}
{any_other r}
dcecp>

Permissions for the Hostdata Items

Each of the following host identity data items is protected by an ACL:
/.../cellname/hosts/hostname/config/hostdata/host_name

/.../cellname/hosts/hostname/config/hostdata/cell_name

/.../cellname/hosts/hostname/config/hostdata/cell_aliases

/.../cellname/hosts/hostname/config/hostdata/post_processors

Each ACL can have the following permissions:

c (control)
Modify the ACL

d (delete)
Delete the item

p (purge)
Delete the backing storage for an item

r (read)
Read an item’s data

w (write)
Modify an item’s data

84 OSF® DCE Administration Guide— Core Components

Use the acl object to view or modify ACLs. For example, use the following
operation to view the ACL for the cell_aliases hostdata item on host silver :
dcecp> acl show /.:/hosts/silver/config/hostdata/cell_aliases
{unauthenticated ---r-}
{user hosts/silver/self cdprw}
{any_other ---r-}
dcecp>

Modifying Host Cell Name Information

Using the hostdata object, you can add, change, and remove data items on DCE
hosts. While administrators will find this useful for modifying a host’s cell name or
cell alias information, they can also operate on other data that is accessible on a
host.

Each DCE host maintains a protected local copy of the cell name and cell aliases of
the cell in which the host is registered. Hosts keep this information in a local file
called dcelocal/dce_cf.db which is owned by root . A host uses this information for
authentication purposes—as part of its host identity information.

Although host cell name information tends to be fairly stable, there are
circumstances where it is necessary to change this information:

v When a host moves to a different cell

v When a host’s cell name changes or the cell name acquires an alias

When either of these situations occurs, however, it is usually not enough to just
update the cell name information on the host. Cell name information must also be
updated in CDS and in the DCE Security Service registry as well. For these
purposes, dcecp provides the host and cellalias task objects which update cell
name information wherever it needs to be changed.

When a host moves to a different cell, you should usually perform a host
unconfigure operation to remove the host from one cell. Then run a host
configure operation to establish the host in the new cell. For details on using the
host task object, refer to “Chapter 7. Managing DCE Hosts” on page 69.

When a host’s cell name changes or the cell name acquires an alias, you should
perform a cellalias operation which updates cell information in CDS, in the DCE
Security Service registry, and in the dce_cf.db file of every affected host in the cell.
For details on using the cellalias task object, refer to “Chapter 6. Managing Your
Cell Name” on page 67.

Sometimes however, the higher-level dcecp task objects do not offer enough
control such as you might need when fixing a corrupted file somewhere or when
configuring a host by hand for some reason. In these cases, you can use the
hostdata object to change cell name information on individual hosts.

Note though, that this use of the hostdata object is intended mostly to be a
troubleshooting operation to be relied on when a host’s cell information is out of
synchronization with other cell information stored in the DCE registry or stored in
CDS. This situation might be a common occurrence in cells with many hosts.

To update the cell name or cell alias name information on a host, use the hostdata
object. The following example catalogs the hostdata objects in the cell named

Chapter 9. Managing DCE Host Services and Host Data 85

/.../my_cell.goodco.com . Then it shows the contents of the cell_name object on
host silver . Finally, it modifies the cell name to be /.../my_cell.goodco.com on host
silver .
dcecp> hostdata cat
/.../my_cell.goodco.com/bronze/config/hostdata/dce_cf.db
/.../my_cell.goodco.com/bronze/config/hostdata/cell_name
/.../my_cell.goodco.com/bronze/config/hostdata/host_name
/.../my_cell.goodco.com/bronze/config/hostdata/cell_aliases
/.../my_cell.goodco.com/bronze/config/hostdata/post_processors

dcecp> hostdata show cell_name
{uuid 00174f6c-6eca-1d6a-bf90-0000c09ce054}
{annotation {Name of cell}}
{storage cell_name}
{data {/.../old_cell.goodco.com}}

dcecp> hostdata modify \
> /.../my_cell.goodco.com/hosts/bronze/config/hostdata/cell_name \
> -data {/.../my_cell.goodco.com}}
dcecp>

Manipulating Data in Other Host Files

While the hostdata object is useful for changing cell name and cell alias
information, it has a broader use too; you can use it to add, change, and remove
data from any file that is accessible on a DCE host.

One useful example is adding a new CDS attribute. Every DCE host has its own
CDS attributes file (cds_attributes) where it stores object IDs for each CDS
attribute. You could use the local host’s editor to add the attribute and then copy the
new file to each host. But this method requires you to log into each host. A simpler
method would be to use the hostdata object to add the new attribute to the CDS
attributes file. Place the operation within a foreach loop that reexecutes it for each
host in the cell.

1. Make the CDS attributes file accessible as an object of the hostdata object.
First, use the hostdata object to create a CDS entry representing the CDS
attributes file. Set the storage attribute to be the host filename of the CDS
attributes file. The following example assumes the CDS attributes file is in the
default location, and that the file exists:
dcecp> hostdata create /.:/hosts/silver/config/hostdata/cds_attr \
> -storage /opt/dcelocal/etc/cds_attributes -entry
dcecp>

2. The hostdata object modifies data in files by replacing all the data in the file
with new data that you specify. The following example shows one way to do
this. First, retrieve and store all the lines as dcecp list elements in a variable.
Then create a new variable by using the attrlist command to add the new line
as a list element to the variable. Finally, copy the new variable back to the file.
dcecp> set val
[attrlist getvalues [hostdata show \
> /.:/hosts/silver/config/hostdata/cds_attr] -type hostdata/data]
dcecp> set newval [attrlist add $val -member {NEW_ATTR 1.2.3.4}]
dcecp> hostdata modify /.:/hosts/silver/config/hostdata/cds_attr -data $newval
dcecp>

86 OSF® DCE Administration Guide— Core Components

Routing Serviceability Messages

The DCE serviceability mechanism is designed to be used mainly for server
informational and error messaging—that is, for messages that are of interest to
those who are concerned with server maintenance and administration (in the
broadest sense of these terms). The essential idea of the mechanism is that all
server events that are significant for maintaining or restoring normal operation
should be reported in messages that are made to be self-documenting. As a result
(assuming that all events have been correctly identified and reported), users and
administrators will always be able to learn what action they should take in a given
situation.

Note: User-prompted, interactive, client-generated messaging is handled through
the standard DCE messaging interface.

The serviceability component is used by the DCE components (RPC, DTS, Security,
and so on) for their own server messaging, and it is made available as an API for
use by DCE application programmers who wish to standardize their applications’
server messaging. (The serviceability API is described in the OSF DCE Application
Development Guide—Core Components.)

Messaging uses XPG4 (X/Open Portability Guide) message catalogs to hold
message texts, but it adds an additional layer to the XPG4 functionality. The
message catalogs and other required data (and documentation) files are generated
by a utility called sams (symbols and message strings). Its input is a text file that
establishes some organizational information about the program that is to use the
messages, followed by a series of specifications of the messages themselves. The
serviceability mechanism allows system administrators to control the routing of
these messages. Specifically, you can define message routings based on the
severity levels (FATAL , ERROR, and so on) defined for the messages.

The following sections describe how to control the routing of serviceability
messages. First, you are provided with an overview of serviceability messaging in
the DCE. Then the text describes how you can use message severity levels to
control routing. Finally, it describes the different ways in which you can specify
routing for serviceability messages.

Serviceability Message Severity Levels

Serviceability messages are categorized by their severity level, which provides
important information about the situation that causes the program to issue the
message. Every message’s severity is defined in the text of the message itself (for
example, NOTICE indicates that a message is an informational notice), and system
administrators can route messages differently on the basis of their severity levels.

The following table lists the possible severity levels and provides an explanation for
each.

Table 1. Serviceability Message Severity Levels

Name Meaning

FATAL Fatal error exit: An unrecoverable error (such as database
corruption) has occurred and will probably require manual
intervention to be corrected. The program usually terminates
immediately after such an error.

Chapter 9. Managing DCE Host Services and Host Data 87

Table 1. Serviceability Message Severity Levels (continued)

Name Meaning

ERROR Error detected: An unexpected event that is nonterminal (such as a
timeout), or is correctable by human intervention, has occurred.
The program will continue operation, although some functions or
services may no longer be available. This severity level may also
be used to indicate that a particular request or action could not be
completed.

WARNING Correctable error: An error occurred that was automatically
corrected (for example, a configuration file was not found, and
default values were used instead). This severity level may also be
used to indicate a condition that may be an error if the effects are
undesirable (for example, removing all files as a side effect of
removing a nonempty directory). This severity level may also be
used to indicate a condition that, if not corrected, will eventually
result in an error (for example, a printer is running low on paper).

NOTICE Informational notice: A significant routine major event has
occurred; for example, a server has started.

NOTICE_VERBOSE Verbose information notice: A significant routine event has
occurred; for example, a directory entry was removed.

How to Route Serviceability Messages

Serviceability messages can be written to any of the normal output destinations.
You can specify routing for serviceability messages in any of the following four
ways:

v Through the dcecp log object, if the server supports the remote serviceability
interface

v By the contents of a routing file

v By the contents of an environment variable

v By command-line flags (usually -w), if supported by the server

Note: Each of the methods accepts the string syntax form for serviceability routing
specifications. In addition, dcecp allows you to use Tcl (Tool Command
Language) syntax, which is easier to use when writing scripts.

Routing a message actually consists of specifying two things:

v How the message should be processed (that is, the form in which it should be
put)

v Where the message should be sent (its destination)

The two specifications are sometimes closely interrelated, and sometimes
specifying a certain destination implies that the message must be put into a certain
form. This fact allows certain combinations to be abbreviated.

The ways to route serviceability messages are described separately in the following
sections.

Using the dcecp log Object

The dcecp log object represents the current state of routing for DCE serviceability
messages for a given server. The log object supports both serviceability routing and
debug routing.

88 OSF® DCE Administration Guide— Core Components

The log object exports a number of operations. The following operations are useful
for serviceability message routing:

v The log list operation returns a list of the components registered by the server.
The -comp option allows you to also return a list of the subcomponents for one
or more named components.

v The log show operation returns a list describing the current serviceability routing
specifications for a server.

v The log modify operation sets message routing specifications for one or more
specified servers.

For a complete description of the dcecp log object and the syntax for its supported
operations, refer to the log(8dce) reference page.

The remainder of this section describes only the log modify operation and how to
use it to establish routings for serviceability messages. Remember that routing is
always set on a per-server basis and is recorded in the log object for each server.

The syntax for the log modify operation is
log modify {string_binding_to_server | RPC_server_namespace_entry} \

{-change serviceability_routing_specifications}

You can specify multiple target servers as a space-separated list. Specify each
server by supplying either the RPC string binding that describes the server’s
network location (string_binding_to_server) or a namespace entry of the server (
RPC_server_namespace_entry). When specifying multiple servers, you can mix the
forms in the same list.

A serviceability_routing_specification is a space-separated list of serviceability
routing elements. No spaces are allowed within the specification of an individual
routing element. Each routing element is a substring consisting of four fields
containing portable character set (PCS) data, as follows (shown in string syntax
form):
severity:output_form:destination[:application-defined]

where:

severity
A message severity level: FATAL , ERROR, WARNING, NOTICE, or
NOTICE_VERBOSE.

output_form
Specifies how messages of the associated severity level should be
processed, and must be one of the following:

BINFILE
Write these messages as binary log entries

TEXTFILE
Write these messages as human-readable text

FILE Equivalent to TEXTFILE

DISCARD
Do not record these messages

STDOUT
Write these messages as human-readable text to standard output

Chapter 9. Managing DCE Host Services and Host Data 89

STDERR
Write these messages as human-readable text to standard error

Files written as BINFILEs can be read and manipulated with a set of log file
APIs, which are described in the OSF DCE Application Development
Guide—Directory Services.

The BINFILE , TEXTFILE, and FILE output_form specifiers may be followed
by a 2-number specifier of the form
.gens.count

where:

gens Is an integer that specifies the number of files (that is, generations)
that should be kept

count Is an integer specifying how many entries (that is, messages)
should be written to each file

The multiple files are named by appending a . (dot) to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified by count, the file is closed,
the generation number is incremented, and the next file is opened.

When the maximum number of files have been created and filled, the
generation number is reset to 1, and a new file with that number is created
and written to (thus overwriting the already existing file with the same
name), and so on. Thus the files wrap around to their beginning, and the
total number of log files never exceeds gens, although messages continue
to be written as long as the program continues writing them.

destination
Specifies where the message should be sent, and is a pathname. You can
leave this field blank if the output_form specified is DISCARD, STDOUT, or
STDERR. The field can also contain a %ld string in the filename which,
when the file is written, will be replaced by the process ID of the program
that wrote the message(s). Filenames may not contain : (colon), ;
(semicolons), % (percent sign), or the space character.

application-defined
Is used for application-specific information. Standard DCE programs ignore
it.

String Syntax:

The string syntax for a serviceability routing specification is
severity:output_form:destination[:application-defined][; . . .]

Note that you can define multiple routing specifications as a semi-colon separated
list.

For example, this specification
FATAL:TEXTFILE:/dev/console;STDOUT:
ERROR:TEXTFILE.5.100:/tmp/errors
EXIT:DISCARD:
*:FILE:/tmp/svc-log
NOTICE:BINFILE:/tmp/log%ld
WARNING:STDOUT:

90 OSF® DCE Administration Guide— Core Components

instructs the serviceability mechanism to do the following:

v Send fatal error messages to the console and to standard output

v Send other error messages to a log-rolled file

v Discard normal exit reports

v Write all messages to a log file

v Send informational messages to a temporary binary log

v Send warnings to standard output

Tcl Syntax:

The Tcl syntax for a serviceability routing specification is
{severity output_form destination application-defined}

where severity, output_form, destination, and application-defined are specified as
previously described. In Tcl syntax, multiple routing specifications take the following
form:
{ {specification} {specification} {specification} }

For example, the sample specification shown previously for string format would be
expressed in Tcl syntax as follows:
{FATAL { {TEXTFILE /dev/console} STDOUT} }
{ERROR TEXTFILE.5.100 /tmp/errors}
{EXIT DISCARD}
{* FILE /tmp/svc-log}
{NOTICE BINFILE /tmp/log%ld }
{WARNING STDOUT {} }

Using a Routing File

If a file called dce-local-path/var/svc/routing exists, the contents of the file (if in the
proper format) will be used to determine the routing of messages written by the
serviceability mechanism.

The default location of the serviceability routing file is normally
/opt/dcelocal/var/svc/routing . However, you can specify a different location for the
file by setting the value of the environment variable DCE_SVC_ROUTING_FILE to
the complete desired pathname.

The routing file contains lines that specify the routing desired for the various kinds
of messages (based on message severity level). Each line consists of three fields
as follows:
severity:output_form:destination[:application-defined][; . . .]

You can supply multiple routings by specifying additional output_form: destination
pairs as a semicolon-separated list.

In the routing file, blank lines beginning with the # character are treated as
comments.

Using Environment Variables

Serviceability message routing can also be specified by the contents of certain
environment variables. If you use environment variables, the routings you specify
will override any conflicting routings specified by a routing file.

Chapter 9. Managing DCE Host Services and Host Data 91

The routings are specified (on the basis of severity level) by putting the desired
routing instructions in the following environment variables:

v SVC_FATAL

v SVC_ERROR

v SVC_WARNING

v SVC_NOTICE

v SVC_NOTICE_VERBOSE

v SVC_BRIEF

Each variable should contain a single string in the following format:
severity:output_form:destination[:application-defined][; . . .]

You can supply multiple routings by specifying additional output_form: destination
pairs as a semicolon-separated list.

92 OSF® DCE Administration Guide— Core Components

Chapter 10. DCE Application Administration

As DCE evolves, commonly needed functions are being included in the DCE
infrastructure. As an example, DCE includes server control capabilities that can
manage server operation and help servers exit in a controlled and efficient manner.
Application developers can rely on these capabilities rather than implement special
mechanisms to handle them independently in every server.

Moving commonly needed functions out of applications and into the DCE
infrastructure provides important benefits. Applications can be smaller and easier to
develop and maintain. Even more important, because applications are not
encumbered with lots of special code, they are easier to reconfigure and reconnect
with different kinds of clients. This adaptability is critical as organizations strive to
keep up with changing business needs.

DCE applications have always had administrative aspects. Often, programs include
the necessary functions to manage their own administrative needs, but this
approach can be awkward and somewhat inflexible for administrators. Now, virtually
all administrative functions are available to programmers and administrators alike
through dcecp . This does not mean programmers no longer need to deal with
these issues. We expect some programmers to provide scripts written with dcecp
that configure client and server programs to start and stop under specified
conditions.

Although this approach offers a convenient and consistent way to administer
applications, it also creates an area where programming and administrative
concerns overlap. Our discussions in this chapter will include this area of overlap,
noting circumstances where administrative action might be needed.

Controlling Server Operation

The conventional notion of a DCE application server assumes that a server is
running, waiting for client requests to service. While this is an effective model for
some general server operations, it does not offer the flexibility needed by DCE
applications. Commercial environments will likely have many kinds of servers. Some
may need to be constantly available, while others may be needed only at certain
times of the day. Still others may be needed on an infrequent or unpredictable
basis.

An application programmer or administrator could solve these kinds of problems by
writing a script or application that monitors server operation, automatically starting
or restarting servers when necessary. Such solutions frequently rely on host utilities
like startup and shutdown programs or schedulers like cron . However, this often
requires administrators to log into separate system administration accounts on each
host. Moreover, this approach places more burden on developers and
administrators to device independent server control mechanisms which may not be
portable, especially in heterogeneous environments.

DCE solves some of these problems by providing a server control facility that offers
a variety of ways to control DCE application servers. The server control facility is
part of the DCE daemon (dced) so servers can rely on it wherever dced runs.
Additionally, the facility’s administration functions are accessible via dcecp , so
administrators can use consistent (portable) methods to manage servers from any

93

host where dcecp is available. Furthermore, access to the server control facility is
authenticated, preventing unauthorized or accidental tampering of server control
information.

The following sections show some common configuration needs and describe ways
to configure and unconfigure servers, how to start and stop servers, and how to
view server information.

Common Server Configuration Needs

Before you configure a server, you might need to perform some preliminary steps. If
a server uses DCE authentication and authorization, its principal name must be
registered with the DCE Security Service or run under the DCE identity of the
parent process. For details on creating server accounts, see “Chapter 31. Creating
and Maintaining Accounts” on page 325.

Naming Server Configuration Information

Server configuration information is accessible using a name of the form: /.../
cellname/hosts/ hostname/config/srvrconf/ servername. If you have the necessary
permissions, you can use the global name to access the configuration database on
a remote host (even a host in another cell). The following example shows
configuration information for the video_clip server on host krypton in remote cell
/.../their_cell.goodco.com :
dcecp> server show /.../their_cell.goodco.com/hosts/krypton/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}
{program {vclip}}
{arguments {-catalog}}
.
. (Output Omitted)
.

dcecp>

The next example shows configuration information for the video_clip server on host
silver in the local cell:
dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}
{program {vclip}}
{arguments {-catalog}}
.
. (Output Omitted)
.

dcecp>

Use the simple name to show configuration information for the video_clip server on
the local host:
dcecp> server show video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}
{program {vclip}}
{arguments {-catalog}}
.
. (Output Omitted)
.

dcecp>

94 OSF® DCE Administration Guide— Core Components

Server Configuration Information

Each DCE has a database that can store configuration information for servers on
that host. Use the DCE control program server object to store, modify, or remove
server configuration information in the server configuration database on the host
system.

You need to specify some or all of the following information when managing server
configuration:

uuid An identifier for the particular server configuration object.

program
The name (including the pathname) that invokes the server program.

directory
The name of the program’s working directory. Once a server is running, it
might need a place to store its output or temporary files.

arguments
Command-line arguments used to start the server.

entryname
The name of an RPC entry to which the server exports its binding.

keytabs
A list of one or more UUIDs of related keytab objects (files) where the
server stores its keys. This information is needed for servers that use DCE
authentication or authorization.

principals
A list of one or more principal names for the server that are registered in
the DCE Security Service. This information is needed for servers that use
DCE authentication or authorization.

services
Identifies the services offered by the server. Each service attribute consists
of an attribute list with the following elements:

annotation
A human-readable string describing the service.

ifname
The interface name of this service (specified in the interface
definition file).

interface
The interface identifier (UUID and version number) of this service
(specified in the interface definition file).

binding
A list of string bindings identifying this service.

entryname
The name of an RPC entry to which the server exports its binding
for this service.

flags A list of keywords to identify flags for this server. Only the disabled
flag is currently supported.

objects
A list of object UUIDs supported by this service.

uid A POSIX UID that the server is started with.

Chapter 10. DCE Application Administration 95

starton
Specifies server starting conditions. The value is a list of one or more of the
following:

auto The server starts whenever a request for its service is received by
the DCE daemon.

explicit
The server starts (or stops) whenever an administrator performs a
server start or server stop operation that directly names the
server.

boot The server starts whenever the host system starts.

failure The server starts whenever it has exited with a unsuccessful exit
status.

Permissions for Accessing Server Control Facilities

An ACL prevents unauthorized principals from creating, reading, changing, or
deleting information maintained by the server control facilities.

The server control facility maintains two kinds of server control information. Server
configuration information (named srvrconf in DCE) consists of the information
needed to start servers. Server execution information (named srvrexec in DCE)
consists of information needed to control or stop servers when they are running.

Server configuration information is protected by two types of ACLs. One ACL
protects the container in which the server control information resides. A second ACL
type protects each individual server’s configuration information.

Similarly, server execution information is protected by two types of ACLs. One ACL
protects the container in which the server execution information resides. A second
ACL type protects each running server’s execution information.

This section shows how to manage ACLs that protect server control information. For
detailed information about setting and using ACL protections, see “Chapter 28.
Using Access Control Lists” on page 281.

Permissions for the Server Configuration Container:

The server configuration information resides in a container. The container, a
backing storage mechanism implemented as a file on UNIX systems, is owned by
root and is also protected by an ACL. These ACL permissions control who can
access information in the container. Each DCE host has one server configuration
Container ACL with the following name:
/.../ cellname/hosts/ hostname/config/srvrconf

The server configuration Container ACL has the following permissions:

c (control)
Modify the Container ACL.

r (read)
Read configuration information in the container.

i (insert)
Create new configuration information.

96 OSF® DCE Administration Guide— Core Components

I (Insert)
Create new configuration information for a server that runs as a privileged
user (for example, as root on a POSIX system). Such operations also
require the i permission.

Use the dcecp acl object to view or modify ACLs. For example, use the following
operation to view the ACL for the server configuration container object on host
silver :
dcecp> acl show /.:/hosts/silver/config/srvrconf
{user appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

Because /.:/hosts/silver/config/srvrconf is a container, it also has an Initial
Container ACL and an Initial Object ACL. You can operate on these initial ACLs by
using the -ic and -io options to acl operations. Note, however, that because you
cannot currently create child containers under /.:/hosts/ hostname/config/srvrconf ,
the Initial Container ACL has no effect.

Permissions for Accessing Server Configuration Information:

Each server’s configuration information is protected by its own ACL. These ACLs
can prevent unauthorized principals from creating, reading, changing, or deleting
server configuration information, and from starting, stopping, enabling, and disabling
servers.

Each ACL is named for the server configuration information it protects and has a
name like the following:
/.../ cellname/hosts/ hostname/config/srvrconf/ server_name

This ACL has the following permissions:

c (control)
Modify the ACL.

d (delete)
Delete the server configuration information.

f (flag)
Start the server with custom flags.

r (read)
Read the server configuration information.

w (write)
Modify the server configuration information.

x (execute)
Start the server.

Use the acl object to view or modify ACLs. For example, use the following
operation to view the ACL for the video_clip server on host silver :
dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip
{user appl_admin cdfrwx}
{unauthenticated r}
{any_other r}
dcecp>

Chapter 10. DCE Application Administration 97

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the -io option to acl operations. The
following example shows the Initial Object ACL for the video_clip server:
dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip -io
{unauthenticated r}
{any_other r}
dcecp>

Permissions for the Server Execution Container:

When servers are started, the DCE daemon copies server configuration information
into the server execution database. The dced process also adds more information
about the running server such as a UUID, the server’s communication endpoints
and its process name and ID. The execution information controls the running
server; for instance, the process ID is used to stop a server. When a server exits,
the DCE daemon removes its server execution information.

The server execution information resides in a container. The container, a backing
storage mechanism implemented as a file on UNIX systems, is owned by root and
its access through dced is protected by an ACL. These ACL permissions control
who can access information in the container. Each DCE host has one server
execution Container ACL with the following name:
/.../ cellname/hosts/ hostname/config/srvrexec

The server execution Container ACL has the following permissions:

c (control)
Modify the Container ACL.

r (read)
Read execution information in the container.

i (insert)
Create new execution information.

I (Insert)
Create new execution information for a server that runs as a privileged user
(for example, as root). Such operations also require the i permission.

Use the acl object to view or modify ACLs. For example, use this operation to view
the ACL for the server execution container object on host silver :
dcecp> acl show /.:/hosts/silver/config/srvrexec
{user appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

Because /.:/hosts/silver/config/srvrexec is a container, it also has an Initial
Container ACL and an Initial Object ACL. You can operate on these initial ACLs by
using the -ic and -io options to acl operations. Note that the Initial Container ACL
has no effect because currently, child containers do not exist under /.:/hosts/
hostname/config/srvrexec .

Permissions for Accessing Server Execution Information:

Each server’s configuration information is protected by its own ACL. These ACLs
can prevent unauthorized principals from creating, changing, reading, or deleting
server configuration information, and from starting, stopping, enabling, and disabling
servers.

98 OSF® DCE Administration Guide— Core Components

Each ACL is named for the server execution information it protects and has a name
like the following:
/.../ cellname/hosts/ hostname/config/srvrexec/ server_name

This ACL has the following permissions:

c (control)
Modify the ACL

r (read)
Read the server execution information

w (write)
Modify the server execution information

s (stop)
Stop the server.

As an example, use the following operation to view the ACL for the server execution
information for the video_clip server on host silver :
dcecp> acl show /.:/hosts/silver/config/srvrexec/video_clip
{user appl_admin crws}
{unauthenticated r}
{any_other r}
dcecp>

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the -io option to acl operations. The
following example shows the Initial Object ACL for the video_clip server:
dcecp> acl show /.:/hosts/silver/config/srvrexec/video_clip -io
{unauthenticated r}
{any_other r}
dcecp>

Configuring Servers

Use the server create operation to make an application server accessible to the
server control facility. Configuring a server means creating the information needed
to start and control the server. Typically this includes a server’s starting command
line and arguments, along with other information needed to start DCE applications.

Some servers need to be available whenever a host system is running. For
instance, you might want a server that provides information on host activity to start
at the host boot time and run until the host shuts down. Other kinds of services
might be needed or only for brief periods. The server control facility has an
administrative interface that lets you specify some conditions for starting and
stopping servers:

v Explicit : You can set a server so that you can explicitly start it whenever you
want.

v Boot : You can set a server to start at boot time.

v Automatic : You can set a server to start on demand; that is, it starts whenever a
client request for its services is received at the host system.

v Failure : You can set a server to start automatically if it exits unexpectedly.

The following example creates an entry for a fictitious video clip server named
video_clip on the local host. For a remote host or a host in another cell, use the
cell-relative or the global name. The program name vclip invokes the server that is

Chapter 10. DCE Application Administration 99

located in the /usr/local/bin working directory. The server has a catalog mode that
was set by specifying -catalog as the argument. The server uses the DCE Security
Service, so the server has a principal name Vclip_Srv_1 . The -entryname option
specifies the entry name in the Cell Directory Service (CDS) where the server
stores its binding information. The -starton option sets the server to start when
dced receives an explicit server start operation that names the video_clip server.
The failure attribute further specifies to restart the server if it exits with a status that
is not successful. The -services option has annotation information to help
administrators identify servers when this information is returned with server show
operations. The interface attribute is needed because the DCE daemon copies this
information into the host endpoint map when the server starts.
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
> -program {/usr/local/bin/vclip} \
> -directory {/tmp} -arguments {-catalog} \
> -principal {Vclip_Srv_1} \
> -entryname {/.:/subsys/applications/video_clip_1} \
> -starton {explicit failure} \
> -services {{annotation {Video Clip Catalog and Server}} \
> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}
dcecp>

The next example configures the same server to start whenever the host system
boots. The only difference from the preceding example is that the -starton option
has a value of boot .
dcecp> server create/.:/hosts/silver/config/srvrconf/video_clip \
> -program {/usr/local/bin/vclip} \
> -directory {/tmp} -arguments {-catalog} \
> -principal {Vclip_Srv_1} \
> -entryname {/.:/subsys/applications/video_clip_1} \
> -starton {boot} \
> -services {{annotation {Video Clip Catalog and Server}} \
> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}
dcecp>

The final configuration example sets the video_clip server to start whenever a
client request for its services is received at the host system. The -starton option
value is auto . “Using Unique Server Entry Names to Identify Individual Servers and
Objects” on page 109 discusses the steps for disabling and enabling services.
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
> -program {/usr/local/bin/vclip} \
> -directory {/tmp} -arguments {-catalog} \
> -principal {Vclip_Srv_1} \
> -entryname {/.:/subsys/applications/video_clip_1} \
> -starton {auto} \
> -services {{annotation {Video Clip Catalog and Server}} \
> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}
dcecp>

Listing and Retrieving Server Configuration Information

When you want to see a list of the names of servers configured on a particular
host, use a server catalog operation, as shown. This operation does not show
every server available on a host, just those that have configuration information
stored in the server configuration database.
dcecp> server catalog /.:/hosts/silver
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip
dcecp>

100 OSF® DCE Administration Guide— Core Components

List the names of all the configured servers in a DCE cell by using a foreach
command to repeat the server catalog operation for each host in a cell:
foreach h [directory list /.:/hosts]{

echo [server catalog $h]
}

If you are unsure of the configuration information established for a server, you can
view it using a server show operation, as shown. Use the -executing option to
view information about a running server.
dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
{program {/usr/local/bin/vclip}}
{arguments {-catalog}}
{prerequisites {}}
{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56}}
{services {{annotation "Video Clip Catalog and Server"}}
{principals {Vclip_Srv_1}}
{starton {explicit failure}}
{uid 1441}
{gid 1000}
{dir {/tmp}}
dcecp>

Unconfiguring Servers

You can remove server configuration information from a host’s configuration
database by using a server delete operation. You would perform this operation, for
instance, when a server moves to a different host. A server delete operation does
not stop a server that is currently running.

The following example removes the video_clip server’s configuration information
from the configuration database on host silver :
dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip
dcecp>

Starting and Stopping Servers

Once a server has been appropriately configured, you can use a server start or
server stop operation to start or stop the server remotely. For example, the
following server start operation starts the server video_clip on host silver in the
local cell:
dcecp> server start /.:/hosts/silver/config/srvrconf/video_clip
eb814e2a-0099-11ca-8678-02608c2ea96e
dcecp>

The next example stops the server video_clip on the local host silver in the local
cell:
dcecp> server stop video_clip
dcecp>

Disabling and Enabling Services

You can prevent clients from using a service offered by a server—even when the
server is running—by setting its services to disabled. When set to disabled, server
endpoint information is not returned to requesting clients, thereby preventing clients

Chapter 10. DCE Application Administration 101

from finding servers. Instead, clients receive a server status of endpoint not
registered. Clients that previously acquired the server endpoint can still
communicate with the server, however.

When a server provides multiple interfaces, you can disable any one or more of its
interfaces by specifying their interface identifiers. The following example disables
one service of the video_clip server:
dcecp> server disable /.:/hosts/silver/config/srvrexec/video_clip \
> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
dcecp>

The next example enables the vidsrv service of the video_clip server after it has
been disabled. This operation allows clients to acquire a server’s endpoint.
dcecp> server enable /.:/hosts/silver/config/srvrexec/video_clip \
> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
dcecp>

Extending Server Configurations

Some servers may require configuration information that is not supported by the set
of attributes provided with your DCE software. You can add arbitrary information to
your server configuration information by creating additional extended registry
attributes ERAs with the xattrschema object.

For example, say you have a server that needs an attribute that specifies an object
family. You create such an attribute by using the xattrschema object. The following
example creates an ERA called srvrconf/objfamily . The operation specifies the
permissions needed to query, update, test, and delete the ERA, and it specifies the
ACL manager that supports the permissions.
dcecp> xattrschema create \
> /.:/hosts/silver/config/xattrschema/srvrconf/objfamily \
> -attribute {{annotation {object family}} {encoding uuid} \
> {aclmgr {srvrconf r w r d}}}
dcecp>

Once you have created a new attribute, use a server modify operation, as
explained in “Changing Server Configurations” on page 104, to insert the necessary
data. More information about ERAs is provided in “Chapter 32. Creating and Using
Extended Registry Attributes” on page 343.

You can review the attributes associated with an ERA by using an xattrschema
show operation as shown in the following example:
dcecp> xattrschema show/.:/hosts/silver/config/xattrschema/srvrconf/objfamily
{aclmgr {srvrconf {{query r} {update w} {test r} {delete d}}}}
{annotation {object family}}
{applydefs no}
{encoding uuid}
{intercell reject}
{multivalued yes}
{reserved no}
{scope {}}
{trigbind {}}
{trigtype none}
{unique no}
{uuid 1bef2222-e687-11cd-b74a-0000c08adf56}
dcecp>

102 OSF® DCE Administration Guide— Core Components

ERAs in server configuration information are protected by two levels of ACLs. One
ACL type protects the container in which the ERA resides. The second ACL type
protects the individual ERA.

The ERA Container ACL is named as follows:
/.../ cellname/hosts/ hostname/config/xattrschema

The ERA Container ACL has the following permissions:

c (control)
Modify the Container ACL.

r (read)
Read the ERA in the container.

i (insert)
Create new ERA information.

I (Insert)
Although the I permission is present, it does not apply to ERA items. The
permission applies to server control facilities, which are explained in “Listing
and Retrieving Server Configuration Information” on page 100.

Use the dcecp acl object to view or modify the Container ACL. For example, the
following operation views the ERA Container ACL on host silver :
dcecp> acl show /.:/hosts/silver/config/xattrschema
{user appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

The ACL for an individual ERA is named as follows:
/.../ cellname/hosts/ hostname/config/xattrschema/ERA_name

ACLs on individual ERAs can prevent unauthorized principals from creating,
reading, changing, or deleting ERA information. The following example shows
permissions established for the srvrconf/objfamily ERA. In this example, the c
permission has no effect because it was not assigned when the ERA was created
with the xattrschema create operation. All users can query and test the ERA. Only
the user named appl_admin can also update and delete the ERA.
dcecp> acl show/.:/hosts/silver/config/xattrschema/srvrconf/objfamily
{user appl_admin crwd}
{unauthenticated cr}
{any_other cr}
dcecp>

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the -io option to acl operations. The
following example shows the Initial Object ACL for the xattrschema container on
host silver :
dcecp> acl show /.:/hosts/silver/config/xattrschema -io
{unauthenticated cr}
{any_other cr}
dcecp>

Chapter 10. DCE Application Administration 103

Changing Server Configurations

Sometimes you might want to change a server’s configuration information. For
instance, you want to change the -starton attribute from boot to explicit so that
you can control the server manually.

To change the normal server configuration attributes, you must first delete all of the
existing attributes and then create new ones. Avoid losing the current information by
first using a server show operation to display it on your screen.

The steps are illustrated in the following example which uses a server show
operation to capture the current server configuration information. The server delete
operation removes the configuration information, and a server create operation
inserts the new −starton attribute along with the remaining server configuration
information.
dcecp> server show/.:/hosts/silver/config/srvrconf/video_clip
{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
{program {/usr/local/bin/vclip}}
{arguments {-catalog}}
{prerequisites {}}
{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56}}
{services {{annotation "Video Clip Catalog and Server"}}
{principals {Vclip_Srv_1}}
{starton {boot}}
{uid 1441}
{gid 1000}
{dir {/tmp}}
dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
> -program /usr/local/bin/vclip \
> -directory /tmp \
> -arguments {-catalog} \
> -principal Vclip_Srv_1 \
> -entryname /.:/subsys/applications/video_clip_1 \
> -starton {explicit} \
-services {{annotation "Video Clip Catalog and Server"}}

dcecp>

You can directly change ERA information by using a server modify operation. The
following example changes a server’s ERA called srvrconf/objfamily to contain
new values. This operation assumes the ERA has already been created using an
xattrschema create operation described in “Extending Server Configurations” on
page 102.
dcecp> server modify /.:/hosts/silver/config/srvrconf/video_clip \
> -change {srvrconf/objfamily {c09dcc40-e4f4-11cd-bd59-0000c08adf56}}
dcecp>

Checking Whether Servers Are Running

You can check whether a particular server is running by performing a server ping
operation. This might be a convenient test when some client users report they
cannot communicate with a server. The server ping operation communicates with
the named server to test its presence, returning a 1 is a server is listening and a 0
if it is not listening. The argument to the server ping operation is the entryname of
the server, not the name of the srvrconf object. The following example tests
whether the video_clip server is running:
dcecp> server ping /.:/subsys/applications/video_clip_1
1
dcecp>

104 OSF® DCE Administration Guide— Core Components

Managing Client/Server Binding Information

In a DCE environment, clients and their servers frequently reside on different hosts
in a network, so clients need a way to find servers.

Clients need three pieces of information to communicate with a server:

v The host name (or network address) of the host where the server is running

v The name of the network transport the server is using

v The communication port (endpoint) the server is using for client communications

Of course, an application programmer could simply hardcode a server’s location
information (also called binding information) into the client side of the application
where it is immediately available for use. However, this approach requires that a
programmer have advance knowledge of precise network details such as host
names and available port numbers. Furthermore, servers with hardcoded binding
information do not easily adapt to configuration changes. If you move a server to a
different host, you need to recompile all of the clients with the server’s new host
name. So DCE provides more flexible ways for clients to obtain server bindings.

The standard way for clients to find servers is by using CDS and the server host’s
endpoint map. Figure 1 provides a high-level example of this method, showing how
a fictitious dictionary client application on host larry finds a dictionary server on host
curly .

1. When the dictionary server starts up, DCE host software assigns the server a
communications port (endpoint), which clients will use to communicate with this

Server Entry

DCE Host
Services

Application Servers

Dict Server

Spell Server

Start Server

BBS Server

Host: larry Host: moe Host: curly

Server Entry

Server_Name Endpoint
BBS Server 1012
Stat Server 1013
Spell Server 1014
Dict Server 1015

Endpoint Map

Application Client

Dict Client

DCE Host
Services CDS Server

Server: Dict Server

Host: curly

Transport: TCP/IP

2

4

5

3

1

Figure 1. Server Binding Information

Chapter 10. DCE Application Administration 105

server. Here, the endpoint is TCP/IP port 1015. The DCE host software also
places the server identification information along with the current endpoint in the
host’s endpoint map.

2. The dictionary server then advertises its availability to clients by placing (
exporting) its host name (usually it is the host address) and the transport it uses
to a server entry in CDS.

3. When the dictionary client makes a call to a remote procedure provided by the
server, the DCE software on the client queries the CDS server to find the
dictionary server’s host name and the transport.

4. The client system’s host software then queries the endpoint map on host curly
to find the dictionary server’s endpoint (port 1015).

5. Equipped with all the necessary binding information, the host services on host
larry transmit the remote procedure call directly to port 1015 on host curly .

Although we have omitted some details in this high-level example, the figure still
shows the major binding activities performed by clients and servers. That is, servers
place their binding information in CDS and in the host endpoint map where clients
look for it. There are other ways for clients to find servers and there are variations
on the mechanism we have described. But these alternatives are generally
controlled by the applications themselves rather than through conventional DCE
administration facilities like dcecp .

This section discussed one basic client/server binding mechanism. The following
sections examine the roles played by the endpoint map and by CDS. We will also
discuss specific administration tasks for managing binding information in endpoint
maps and in CDS.

Using the Endpoint Map for Easy Application Development and
Administration

Remote clients can find a server by using the server host’s endpoint map to
determine the server’s communication endpoint. But how do remote clients know
where to find the endpoint map itself? They know because the endpoint map is
always accessible at a well-known endpoint (that is, it is always the same endpoint)
on each host so clients can easily find it.

When hosts support multiple transports, the endpoint map listens on one port for
each transport. In the IP address family (both TCP and UDP), the endpoint map
process listens on port 135. In the Domain Domain Sockets (DDS) address family, it
listens on port 12. In the DECnet NSP address family, it listens on port 69. A
complete list of the protocol sequences and well-known endpoints used by the
endpoint mapper service can be found in the header file
/opt/dcelocal/share/include/dce/ep.idl .

Note that not all hosts support all transports. DCE software tries to ensure that at
least one transport is shared between a client and a server.

While well-known endpoints provide convenient access to some critical servers, for
most servers they are impractical. That’s because some address families have a
limited number of endpoints and well-known endpoints can be assigned only by a
central administrative authority. So most servers use dynamic endpoints. When a
server starts up, the RPC runtime library gets an available endpoint from the
operating system and registers it in the host endpoint map.

106 OSF® DCE Administration Guide— Core Components

Because a server can be assigned a different endpoint each time it starts, the
endpoint information is stored in the endpoint map rather than CDS, which is a
repository for more stable information; namely, the server’s host address and the
transports it uses. As long as the server stays on the same machine, host and
transport information need not be updated, which tends to reduce bottlenecks at
CDS.

This scheme makes application development and administration easier because it
reduces the need to manage endpoints. Servers need not worry about passing
dynamic endpoints to clients. Furthermore, unless a server moves to a new host, or
removes or adds a transport, it does not even have to update the information in
CDS.

Automatic Endpoint Map Administration

Each server that uses the endpoint map stores a set of information in the endpoint
map when it starts up. The information includes universal unique identifiers (UUIDs)
for objects and interfaces offered by the server, an annotation string, and other
fields.

The endpoint map resides on disk in dcelocal/var/dced/Ep.db and
dcelocal/var/dced/Srvrexec.db . After a system reboot, DCE-based servers restart
and reregister with the endpoint mapper service, so the database files need to be
deleted before the DCE daemon starts. This happens automatically on most
systems.

DCE-based servers normally need to register with the endpoint mapper service on
startup and unregister on termination. If any servers exit without unregistering, the
endpoint map may contain stale entries.

DCE provides server control facilities that help servers unregister and avoid leaving
stale entries in the endpoint map. Servers that do not use these facilities (older
servers, for example) are more likely to leave stale entries if they exit unexpectedly.
So periodically, the DCE daemon (dced) purges stale entries by scanning the
endpoint map, pinging each server that is registered, and deleting entries for
servers that do not respond.

The background process of removing stale entries is not intended to be highly
responsive. It is not intended to replace the need for servers to unregister
themselves from the endpoint map when they no longer service RPCs. Rather, this
processing is intended only to clean up after a server failure.

While the behavior of the pinging/purging mechanism is implementation dependent,
in a typical implementation the database is scanned (that is, servers are pinged and
stale entries removed) only infrequently; for example, a few times an hour. Once a
ping to a server fails, the server is pinged several times over a shorter interval; for
example, every 5 minutes. If the server continues to not respond, the dced process
determines that its entry is stale and removes it from the database. Ultimately, the
rate at which stale server entries are detected and purged depends on the number
of stale entries in the database; the more stale entries, the longer it takes to detect
and purge the stale entries.

Chapter 10. DCE Application Administration 107

Restricting Endpoints

You can restrict the assignment of endpoints (ports) for DCE servers and clients to
a specific set. This is useful if your environment has applications other than DCE
that are designed to use certain endpoints, and you do not want to be concerned
about DCE servers or clients monopolizing them.

The facility is activated by setting the RPC_RESTRICTED_PORTS environment
variable with the list of endpoints to which dynamic assignment should be restricted
before starting a client or server application. RPC_RESTRICTED_PORTS governs
only the dynamic assignment of server ports by the RPC runtime. It does not affect
well-known endpoints.

The following example restricts servers to using TCP/IP endpoints ranging from
5000 to 5110, and 5500 to 5521. It restricts UDP/IP endpoints to the range of 6500
to 7000.
% set RPC_RESTRICTED_PORTS \

ncacn_ip_tcp[5000-5110,5500-5521]:ncadg_ip_udp[6500-7000]
%

To use RPC_RESTRICTED_PORTS for DCE servers such as CDS, set the
environment variable each time before starting your cell.

Note that this facility does not add any security to RPC and is not intended as a
security feature. It merely facilitates configuring a network firewall to allow incoming
calls to DCE servers.

Viewing Information in the Endpoint Map

For the most part, the endpoint map on each host takes care of itself, purging stale
entries when necessary and removing the endpoint information each time the host
reboots. So there is really no administration needed for the endpoint map.

However, when client/server communication problems arise, the information stored
in the endpoint map might be useful to administrators, particularly for determining
whether servers are supplying the correct endpoint information to clients. In this
case, you can use the endpoint object to view endpoint map information. Besides
its use in troubleshooting, you can also use the endpoint object for other
specialized server operations such as adding new object UUIDs to existing
mappings.

Endpoints are not protected by ACLs. This means anyone who can run dcecp can
use an endpoint show operation on their host to view endpoint information on any
other host in the cell. Other endpoint operations, such as creating or deleting
endpoints, can be performed only by users who are logged into the local host. No
other special privileges, such as system administrator or root privileges, are needed
for local access to endpoint information.

You can view information stored in a host’s endpoint map database by using an
endpoint show operation. The following example shows the endpoint map
information for the video_clip server on a remote host megazoid . Omit the
hostname argument to operate on the local endpoint map.
dcecp> endpoint show /.:/hosts/megazoid \
> -interface {2fa417e8-bb4c-11cd-831b-0000c08adf56 1.0}
{{object 99ff4fb8-c042-11cd-91cd-0000c08adf56}

108 OSF® DCE Administration Guide— Core Components

{interface {2fa417e8-bb4c-11cd-831b-0000c08adf56 1.0}}
{binding {ncacn_ip_tcp 130.105.1.227 1028}}
{annotation {Text Development Utilities}}}

dcecp>

You can view all of the endpoints in an endpoint map by not using any options with
the endpoint show operation.

Managing Server Entries, Groups, and Profiles in CDS

An endpoint map acts as a directory of servers on a host. Similarly, CDS acts as a
directory of servers in the cell. In the first part of this chapter, we gave a high-level
look at how applications can use CDS to store relatively stable binding information
such as a server’s name, its host address, and the transports over which the server
is available. In this section, we will show how to use CDS facilities for organizing
your servers and other distributed objects in meaningful ways.

Many of the operations discussed in the following sections operate on CDS
directories that are protected by ACLs against unauthorized access. For detailed
information about ACLs and CDS see “Chapter 16. Controlling Access to CDS
Names” on page 163.

Using Unique Server Entry Names to Identify Individual Servers and
Objects

We know that servers store their binding information in CDS where clients can find
it. But so far, we have been treating CDS like a black box. If a DCE cell consisted
of just a few servers or objects and a handful of users, CDS could be as simple as
a data file accessible to both servers and clients. Finding unique names for objects
would probably not pose a big problem. And you could probably even devise some
effective scheme for protecting objects from unauthorized use. But DCE cells can
include many hundreds or even thousands of objects. Large cells will likely contain
many similar or even identical servers that need convenient and effective ways to
offer their services to clients.

DCE CDS answers this need by providing a hierarchical (tree-structured) name
system that servers use to store binding information. CDS acts much like a
hierarchical file system of directories that stores names and other information
instead of files. You can build on its hierarchical structure, imposing directory names
that can correspond to your company’s organizational structure.

Servers have CDS names like /.:/admin/finance/payroll/check_writer . When this
check_writer server exports its server entry name to CDS, CDS stores it in a
directory named /.:/admin/finance/payroll . Consequently, clients will not confuse
this check_writer with another check_writer named
/.:/admin/finance/accts_payable/check_writer . Thus, unique server entry names
fill a critical administration need, providing a way to access and control individual
servers.

“Part 4. Cell Directory Service” on page 125 of this book provides more information
about CDS and the structure and uses of CDS names. For our current purposes, it
is enough to know how and why CDS directory names help make potentially
identical server entries unique.

Chapter 10. DCE Application Administration 109

While servers themselves often manage exporting and removing their names and
binding information from CDS, sometimes administrators need to manually add,
change, or remove binding information. For instance, when a server host machine
crashes unexpectedly and stays offline for a long time, its resident servers cannot
remove their entry names and binding information from CDS. Clients can waste
time looking for these phantom servers. The DCE control program provides the
rpcentry object that you can use to manage server entry names and their binding
information in CDS.

Before we get to the actual management tasks, let us examine a server entry to
see exactly what it is we’ll be managing. Figure 2 shows possible information in a
server entry.

The top part of Figure 2 contains bindings. Each binding consists of an interface
identifier and a binding. The interface identifier identifies an interface offered by the
server, and its binding information indicates the host address and network transport
to use to access that interface. The following example of a binding (shown in dcecp
syntax) indicates the server is on the host with internet address 120.101.13.157 and
is available using the User Datagram Protocol (UDP):
{nacdg_ip_udg 120.101.13.157}

When an interface identifier is available over several transports, the server entry
contains bindings (one binding for each transport). Servers can offer more than one
interface. Multiple interfaces can be available through a single endpoint. That is,
different interfaces can have the same bindings.

One Server Entry

Bindings

Objects

Interface UUID/version pair 1
with binding information 1

Interface UUID/version pair 1
with binding information 2

Interface UUID/version pair 1
with binding information 3

Interface UUID/version pair 2
with binding information 1

Interface UUID/version pair 2
with binding information 3

Object UUID 1

Object UUID 2

Object UUID 3

Object UUID 4

Figure 2. Possible Information in a Server Entry

110 OSF® DCE Administration Guide— Core Components

The lower part of the figure contains object UUIDs. Object UUIDs offer additional
information to clients; they identify specific objects or resources managed by the
server. For instance, one print server offers printers on floor 2 while another print
server offers printers on floor 1. In this case, object UUIDs let clients select printers
on the appropriate floor. In other words, object UUIDs help clients distinguish from
among otherwise identical services.

Although application servers can manage their own server entries in CDS, you may
find it more convenient (and more straightforward) to manually add, remove, or
change information in a server entry. There are four methods for managing server
entries in CDS:

v Server entry names can be hardcoded into an application. You can change
server entry information in the source code, but you need to recompile and rerun
the application before the entry names take effect.

v Server entry names can be stored as the entryname attribute of the server’s
configuration information (using the server object) where it is accessible to the
application. This is more convenient than recompiling but, more importantly, this
method places the server’s entry name in a standard (platform independent)
place where administrators can see it too. You might need to restart an
application to use this method, however.

v Server entry names can be passed to an application through environment
variables or arguments. While these are effective methods and they are more
convenient than recompiling, they are not platform independent. This means you
might need different approaches on different operating systems.

v Server entry names can be directly managed in CDS by using the DCE control
program’s rpcentry object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use the rpcentry object to manually manage
server entries in CDS.

Creating a Server Entry in CDS

Often, servers will create their own entries in CDS either when they initialize or
when they are configured after installation. But sometimes, you might want to create
a server entry manually. When you create a server entry, it is empty; it does not
contain any interface or binding information.

One reason to create an empty server entry is to establish ownership of the entry.
Server entries are owned by the creator. If a server creates an entry, the server can
also delete the entry later. You can preempt such a circumstance by creating the
entry yourself. Later, the server exports its bindings to the existing server entry
(provided that the ACL allows this).

Use an rpcentry create operation to create an empty server entry as in the
following, which creates one named /.:/subsys/applications/bbs_server . The CDS
directory /.:/subsys/applications must already exist for this operation to succeed.
dcecp> rpcentry create /.:/subsys/applications/bbs_server
dcecp>

Deleting a Server Entry from CDS

Because server entries generally contain stable server binding information, they
tend to stay around rather than be deleted. Even when a server goes away for a
short time, say, overnight, it might not be practical to remove its entry. But when a

Chapter 10. DCE Application Administration 111

server goes away for a long time, you can avoid the client expense of trying to use
the phantom server by removing the server’s entry from CDS.

Use an rpcentry delete operation to remove a server entry from CDS as shown in
the following example:
dcecp> rpcentry delete /.:/subsys/applications/bbs_server
dcecp>

Exporting Binding Information to a Server Entry in CDS

Servers usually export their own binding information to CDS when they initialize or
when they are configured after installation. But sometimes, binding information may
have been removed for some reason or by accident and you want to restore it. Or
another transport has been added and you want to export the binding for the new
transport.

You can manually export server binding information to a server entry by using an
rpcentry export operation. If the entry does not already exist, the rpcentry export
operation creates it provided the directory already exists and you have the
necessary permissions.

The following example illustrates exporting a server’s binding information to a server
entry named /.:/subsys/applications/bbs_server . The object UUID identifies the
data file resource used by bbs_server .
dcecp> rpcentry export /.:/subsys/applications/bbs_server \
> -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0} \
> -binding {ncacn_ip_tcp 130.105.1.227} \
> -object {76030c42-98d5-11cd-88bc-0000c08adf56}
dcecp>

Importing Binding Information from a Server Entry in CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But
occasionally, an administrator might want to import a binding. For instance, a client
might lack access to CDS but it could still communicate with the server if you
supplied it with a valid binding.

Use an rpcentry import operation to return a server’s binding information, as
follows:
dcecp> rpcentry import /.:/subsys/applications/bbs_server \
> -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0}
{ncacn_ip_tcp 130.105.1.227}
dcecp>

Viewing Information in a Server Entry

When clients are having difficulty communicating with servers, you might want to
see what binding information is contained in a server entry as a troubleshooting
step. Or say you are adding object UUIDs to server entries and you wonder
whether a server entry has been overlooked. You can use an rpcentry show
operation to view the information in a server entry as illustrated in the following
example. The returned information includes the interface identifier, two bindings
over which the server can be reached, and an object UUID of a resource
maintained by the server.

112 OSF® DCE Administration Guide— Core Components

dcecp> rpcentry show /.:/subsys/applications/bbs_server
{458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0
{ncadg_ip_udp 130.105.1.227}
{ncacn_ip_tcp 130.105.1.227}}

{76030c42-98d5-11cd-88bc-0000c08adf56}
dcecp>

Removing Binding Information from a Server Entry in CDS

Occasionally, you might want to remove binding information from a server entry. If a
server host crashes, its servers cannot remove their server entries from CDS. To
prevent clients from trying to communicate with these phantom servers, you should
unexport the bindings from CDS manually. Unlike the endpoint delete operation,
this operation does not remove the entry name from CDS.

Use an rpcentry unexport operation to remove server binding information as
shown in the following example. Notice that the object UUID is not removed from
the server entry unless you specify it as an option to the unexport operation.
dcecp> rpcentry unexport /.:/subsys/applications/bbs_server \
> -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0}
dcecp>
dcecp> rpcentry show /.:/subsys/applications/bbs_server
{76030c42-98d5-11cd-88bc-0000c08adf56}
dcecp>

Using Group Entries to Help Balance Server Workloads

When a client queries CDS for a server binding, the request includes the name of
the entry to look in for the binding. When only one server offers the client’s
requested service, CDS will return the same binding for every client request for this
service. While this model works fine for limited client requests, it can cause service
bottlenecks when many client requests converge on one server. Applications can
avoid bottlenecks by providing multiple servers to service large numbers of client
requests. Server entry names alone do not provide a convenient way to distribute
client requests evenly among multiple servers because you’d have to explicitly
direct each client to a particular server. So CDS provides group entries as a
convenient mechanism for distributing the client load across multiple servers.

A CDS group entry gathers related servers together under a common group name.
Group entries contain members that are generally pointers to server entries, but
members can point to other group entries, too. When a client requests a binding
from a group entry, CDS returns, at random, one of the pointers contained in the
group entry. If the entry picked at random is another group entry, CDS does not
return that. Instead CDS goes to that group and picks another random member,
continuing until a server entry is returned. This model requires that any group
member can service the client request. Figure 3 on page 114 shows how a group
entry contains members that point to other groups and to server entries.

Chapter 10. DCE Application Administration 113

Now, let us see how group entries help balance a workload. Consider an
organization with 12 identical laser printers equally spread among three
departments. The following group entry examples show how each group entry name
returns any one of the four printers assigned to its own department:
Group entry name:
/.:/admin/finance/accts_payable_printers
/.:/admin/finance/accts_payable/laser_10
/.:/admin/finance/accts_payable/laser_11
/.:/admin/finance/accts_payable/laser_12
/.:/admin/finance/accts_payable/laser_13

Group entry name:
/.:/admin/finance/accts_receivable_printers
/.:/admin/finance/accts_receivable/laser_10
/.:/admin/finance/accts_receivable/laser_11
/.:/admin/finance/accts_receivable/laser_12
/.:/admin/finance/accts_receivable/laser_13

Group entry name:
/.:/admin/finance/payroll_printers
/.:/admin/finance/payroll/laser_10
/.:/admin/finance/payroll/laser_11
/.:/admin/finance/payroll/laser_12
/.:/admin/finance/payroll/laser_13

You could temporarily make one department’s printers available to another group by
adding its group name to the group entry of the other group as shown in the next
group entry example:
Group entry name:
/.:/admin/finance/accts_payable_printers
/.:/admin/finance/accts_payable/laser_10

Key:

= Member of Group A

Member name

Member name

Member name

Group A

Member name

Member name

Group B

Binding information
Interface identifiers
Object UUIDs

Server entry 1:

Binding information
Interface identifiers
Object UUIDs

Server entry 2:

Binding information
Interface identifiers
Object UUIDs

Server entry 5:

Binding information
Interface identifiers
Object UUIDs

Server entry 3:

Binding information
Interface identifiers
Object UUIDs

Server entry 4:

Figure 3. Possible Mappings of a Group

114 OSF® DCE Administration Guide— Core Components

/.:/admin/finance/accts_payable/laser_11
/.:/admin/finance/accts_payable/laser_12
/.:/admin/finance/accts_payable/laser_13
/.:/admin/finance/accts_receivable_printers

The configuration in the preceding example means the clients in accounts payable
can use the printers in accounts receivable 20% of the time. You could offer a
higher percentage of use by adding server entry names rather than the group
name. The next group entry example shows a situation where the clients in
accounts payable can use the printers in accounts receivable 50% of the time.
However, do not try to increase the percentage of use by including a group name
multiple times because you’ll get an error.
Group entry name:
/.:/admin/finance/accts_payable_printers
/.:/admin/finance/accts_payable/laser_10
/.:/admin/finance/accts_payable/laser_11
/.:/admin/finance/accts_payable/laser_12
/.:/admin/finance/accts_payable/laser_13
/.:/admin/finance/accts_receivable/laser_10
/.:/admin/finance/accts_receivable/laser_11
/.:/admin/finance/accts_receivable/laser_12
/.:/admin/finance/accts_receivable/laser_13

Although application servers can manage their own group entries in CDS, you may
find it more convenient (and more straightforward) to manually add, remove, or
change server information in a group entry. Like managing server entries, there are
several methods for managing group entries in CDS:

v Group entry names can be hardcoded into an application. You can change group
entry information in the source code, but you need to recompile and rerun the
application before the entry names take effect.

v Group entry names can be passed to an application through environment
variables or arguments. These are more convenient methods than recompiling,
but you might need to restart an application to use either method.

v Group entry names can be directly managed in CDS by using the DCE control
program’s rpcgroup object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use the rpcgroup object to manually manage
group entries in CDS.

Creating a New Group Entry in CDS

You can create an empty group entry in CDS by using an rpcgroup create
operation. While group creation is frequently performed by applications that first use
a group entry, creating an entry yourself establishes you as the owner of the entry.
As the owner, you have ultimate control over who can export and manage
information in the entry.

To create an empty group entry in CDS, use an rpcgroup create operation as in
the following example:
dcecp> rpcgroup create /.:/subsys/applications/admin_bbs_servers
dcecp>

Adding a Member to a Group Entry in CDS

You can use an rpcgroup add operation to add a member to a group entry. If the
group entry does not exist, the operation creates the group entry and adds the

Chapter 10. DCE Application Administration 115

member. The member can be a server entry or another group entry. Note that no
operations check whether the members you add actually exist. This lets you
configure the namespace even before servers are up and running.

To add a member to the /.:/subsys/applications/admin_bbs_servers group entry
in CDS, use an rpcgroup add operation as in the following example:
dcecp> rpcgroup add /.:/subsys/applications/admin_bbs_servers \
> -member /.:/subsys/applications/bbs_server4
dcecp>

Viewing the Members of a Group Entry

You can list the members of a group entry by using an rpcgroup list operation.
This is useful for troubleshooting or for just seeing how servers are distributed in
group entries.

To list the members of a group entry in CDS, use an rpcgroup list operation, as
shown in the following example, which lists the members of the group
/.:/subsys/applications/admin_bbs_servers :
dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers
/.../my_cell.goodco.com/subsys/applications/bbs_server3
/.../my_cell.goodco.com/subsys/applications/bbs_server4
dcecp>

Importing Binding Information from a Group Entry in CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But
occasionally, an administrator might want to import a binding. In the case where a
client lacks access to CDS, it could still communicate with the server if you supplied
the client with a valid binding.

You can use an rpcgroup import operation to return a server’s binding information.
You must specify an interface by using the -interface option as shown in the
following example:
dcecp> rpcgroup import /.:/subsys/applications/admin_bbs_servers \
> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0}
{ncacn_ip_tcp 130.105.1.227}
dcecp>

You can use other options such as -version and -object to further specify a
binding. Use the -max option to limit the number of bindings returned.

Removing Members from a Group Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE
cell. You might, for instance, want to move server entries from one group entry into
another.

Use an rpcgroup remove operation to remove one or more members from a
group. The following example removes bbs_server3 from the group
/.:/subsys/applications/admin_bbs_servers :
dcecp> rpcgroup remove /.:/subsys/applications/admin_bbs_servers \
> -member /.../my_cell.goodco.com/subsys/applications/bbs_server3
dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers

116 OSF® DCE Administration Guide— Core Components

/.../my_cell.goodco.com/subsys/applications/bbs_server4
/.../my_cell.goodco.com/subsys/applications/bbs_server5
/.../my_cell.goodco.com/subsys/applications/bbs_server6
dcecp>

Deleting a Group Entry from CDS

Organization changes or server redeployments can make some groups obsolete.
When you want to remove a group entry from CDS, use an rpcgroup delete
operation. The following example illustrates removing an obsolete group entry called
/.:/subsys/admin/temporaries/wp_services from CDS:
dcecp> rpcgroup delete /.:/subsys/admin/temporaries/wp_services
dcecp>

Using Profiles to Direct Client Searches for Servers

Group entries offer clients a random choice from among multiple available services.
Although a group entry can help in load balancing and resource allocation, its
random nature resists fine tuning. Furthermore, it does not offer a way to prioritize
servers for use by particular clients.

Profiles offer a complementary way to organize servers because you can prioritize
the search order of the profile members. (These were called elements in previous
DCE versions.) Members identify servers by providing the following information:

v Interface identifier

This field is the key to the profile. The interface identifier consists of the interface
UUID and the interface version numbers.

v Member name

The entry name of one of the following kinds of directory service entries:

– A server entry for a server offering the requested RPC interface

– A group corresponding to the requested RPC interface

– A profile

v Priority value

The priority value (0 is the highest priority; 7 is the lowest priority) is designated
by the creator of a profile member to help determine the search order to select
among like-priority members at random.

v Annotation string

The annotation string enables you to identify the purpose of the profile member.
The annotation can be any textual information; for example, an interface name
associated with the interface identifier or a description of a service or resource
associated with a group.

Unlike the interface identifier field, the annotation string is not a search key.

Profiles are flexible; they contain members that can point to server entries, groups,
and to other profiles. Profiles can also contain a special member called a default
profile member. This optional member should point to a default profile, usually a
comprehensive backup profile that can serve the needs of most users in an
organization. Figure 4 on page 118 shows some possible mappings of a profile.

Chapter 10. DCE Application Administration 117

To get an idea of how profiles can work, let us build on our printer example from the
preceding discussion on group entries. The following profile entry example shows
one way to use profiles to prioritize resources based on proximity to clients.

In the figure, three users have personalized printer profiles that return server entries
for printers nearest to them first. For example, user John is closest to laser_20O
so the profile priority1 returns that binding first. John is furthest from laser_23 , so
the profile priority 4 returns that binding last.
Profile entry name:
/.:/admin/finance/accts_receivable_printers/johns_profile
/.:/admin/finance/accts_receivable/laser_20 1
/.:/admin/finance/accts_receivable/laser_21 2
/.:/admin/finance/accts_receivable/laser_22 3
/.:/admin/finance/accts_receivable/laser_23 4

Profile A:

Profile member:
Interface UUID
Interface version
member name
priority
annotation

Profile member:
Interface UUID
Interface version
member name
priority
annotation

Profile member:
Interface UUID
Interface version
member name
priority
annotation

Default profile
member:

Interface UUID
Interface version
member name
priority
annotation

Server entry:

Binding Information
Interface identifiers
Object UUIDs

Server entry:

Binding Information
Interface identifiers
Object UUIDs

Server entry:

Binding Information
Interface identifiers
Object UUIDs

Server entry:

Binding Information
Interface identifiers
Object UUIDs

Server entry:

Binding Information
Interface identifiers
Object UUIDs

Group:

Member name
Member name

Server entry:

Binding Information
Interface identifiers
Object UUIDs

Server entry:

Binding Information
Interface identifiers
Object UUIDs

Profile member:
Interface UUID
Interface version
member name
priority
annotation

Profile member:
Interface UUID
Interface version
member name
priority
annotation

Profile member:
Interface UUID
Interface version
member name
priority
annotation

Default profile

Key:
=Member in element

of Profile A

Figure 4. Possible Mappings of a Profile

118 OSF® DCE Administration Guide— Core Components

Profile entry name:
/.:/admin/finance/accts_receivable_printers/pats_profile
/.:/admin/finance/accts_receivable/laser_20 3
/.:/admin/finance/accts_receivable/laser_21 4
/.:/admin/finance/accts_receivable/laser_22 2
/.:/admin/finance/accts_receivable/laser_23 1

Profile entry name:
/.:/admin/finance/accts_receivable_printers/wills_profile
/.:/admin/finance/accts_receivable/laser_20 2
/.:/admin/finance/accts_receivable/laser_21 1
/.:/admin/finance/accts_receivable/laser_22 3
/.:/admin/finance/accts_receivable/laser_23 4

To conclude this example, let us say that your department’s server is being
overused by another department. You could further limit its use by lowering the
server’s priority value in the foreign department’s profile that points to your server.

Just as application servers can manage their own profile entries in CDS, they can
also manage their own profile entries. However, you may find it more convenient
(and more straightforward) to manually add, remove, or change server information
in a profile entry. Like managing server entries and group entries, there are several
methods for managing profile entries in CDS:

v Profile entry names can be hardcoded into an application. You can change profile
entry information in the source code, but you need to recompile and rerun the
application before the entry names take effect.

v Profile entry names can be passed to an application through environment
variables or arguments. These methods are more convenient than recompiling,
but you might need to restart an application to use either method.

v Profile entry names can be directly managed in CDS by using the DCE control
program’s rpcprofile object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use the rpcprofile object to manually manage
profile entries in CDS.

Creating a New Profile

You can create an empty profile entry in CDS by using a rpcprofile create
operation. While profile creation is frequently performed by applications that first use
a profile entry, creating an entry yourself establishes you as the owner of the entry.
As the owner, you have ultimate control over who can export and manage
information in the entry.

To create an empty profile entry in CDS, use an rpcprofile create operation as in
the following example:
dcecp> rpcprofile create/.:/subsys/applications/admin_group_profile
dcecp>

Adding a Profile Member

You can use an rpcprofile add operation to add a member to a profile entry. If the
profile entry does not exist, the operation creates the profile entry and adds the
member. The member can be a server entry or another profile entry.

To add a member to the /.:/subsys/applications/wards_profile profile entry in
CDS, use an rpcprofile add operation as in the following example which adds the
server entry /.:/subsys/applications/bbs_server3 with a priority of 2:

Chapter 10. DCE Application Administration 119

dcecp> rpcprofile add /.:/subsys/applications/wards_profile \
> -member /.:/subsys/applications/bbs_server3 \
> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0} \
> -priority 2
dcecp>

Viewing the Members of a Profile Entry

You can simply list the members of a profile entry by using an rpcprofile list
operation. This is useful for troubleshooting or for just seeing how servers are
distributed in profile entries.

To list the members of a profile entry in CDS, use an rpcprofile list operation as in
the following example which lists the members of the profile
/.:/subsys/applications/admin_group_profile :
dcecp> rpcprofile list /.:/subsys/applications/wards_profile
/.../my_cell.goodco.com/subsys/applications/admin_bbs_servers
/.../my_cell.goodco.com/subsys/applications/bbs_server
dcecp>

You can view the complete information stored with a profile entry by using an
rpcprofile show operation. This shows the priority and the interface UUIDs
associated with a member. The following example shows all of the information
contained in the profile named /.:/cell-profile :
dcecp> rpcprofile show /.:/cell-profile
{{d46113d0-a848-11cb-b863-08001e046aa5 2.0} /.../cell.co.com/sec 0 rs_bind}
{{0d7c1e50-113a-11ca-b71f-08001e01dc6c 1.0} /.../cell.co.com/sec-v1 0 secidmap}
{{8f73de50-768c-11ca-bffc-08001e039431 1.0} /.../cell.co.com/sec 0 krb5rpc}
{{b1e338f8-9533-11c9-a34a-08001e019c1e 1.0} /.../cell.co.com/sec 0 rpriv}
{{b1e338f8-9533-11c9-a34a-08001e019c1e 1.1} /.../cell.co.com/sec 0 rpriv}
{{6f264242-b9f8-11c9-ad31-08002b0dc035 1.0} /.../cell.co.com/lan-profile 0 LAN}
{{4d37f2dd-ed43-0000-02c0-37cf2e000001 4.0} /.../cell.co.com/fs 0 fs}
dcecp>

Importing Binding Information from a Profile Entry in CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But
occasionally, an administrator might want to import a binding. In the case where a
client lacks access to CDS, it could still communicate with the server if you supplied
the client with a valid binding.

You can use an rpcprofile import operation to return a server’s binding
information. You must specify an interface by using the -interface option as shown
in the following example:
dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0}
{ncacn_ip_tcp 130.105.1.202}
{ncacn_ip_tcp 130.105.1.227}
dcecp>

You can use other options such as -version and -object to further specify a
binding. Use the -max option to limit the number of bindings returned, as shown in
the following example:
dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0} \
> -max 1
{ncacn_ip_tcp 130.105.1.202}
dcecp>

120 OSF® DCE Administration Guide— Core Components

Removing Members from a Profile Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE
cell. You might, for instance, want to move server entries from one profile entry into
another.

Use an rpcprofile remove operation to remove one or more members from a
profile. In the following example, the rpcprofile remove operation removes member
/.:/subsys/applications/admin_bbs_servers from the profile
/.:/subsys/applications/wards_profile :
dcecp> rpcprofile remove /.:/subsys/applications/wards_profile \
> -member /.:/subsys/applications/admin_bbs_servers \
> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0}
dcecp>

Deleting a Profile Entry from CDS

Organization changes or server redeployments can make some profiles obsolete.
When you want to remove a profile entry from CDS, use an rpcprofile delete
operation. The following example illustrates removing an obsolete profile entry
called /.:/subsys/admin/temporaries/74232_profile from CDS:
dcecp> rpcprofile delete /.:/subsys/admin/temporaries/74232_profile
dcecp>

Client Administration

So far, this chapter has focused on server administration issues. We’ve seen how to
control some server operations, and how to store server binding information in CDS
and in the host endpoint map where clients can find it. This section discusses the
administration needs of application clients. Although client administration is very
simple— there are just two related operations—it is an essential step in getting
clients and servers working together.

We know that CDS is a hierarchical system of directories that stores server binding
information in the form of server entries. We also know that CDS offers group
entries and profile entries as a way to direct clients to appropriate servers. But how
do clients know where to begin looking for a server?

As we discussed earlier in this chapter, servers register interfaces and their
bindings in CDS. Each interface-binding combination is registered under a server
entry name. When a client makes a remote procedure call, it passes a server entry
name (or a group or profile entry name) to CDS along with the UUID of an interface
that offers the remote procedure. CDS uses the server entry name (or group or
profile entry name) as a starting point in the search for a binding that contains an
interface UUID and version matching that passed by the client. This method
presumes the client has previously acquired the server entry name (or group or
profile name) used by the server.

Getting clients to use an appropriate server entry name is a 2-step process:

1. Determine what entry name a client should use.

2. Pass the name to the client program.

Note that a client uses whatever name you supply. The client program cannot
distinguish whether the name is a server entry name or group entry name or profile
entry name. To the client, all of these names look and behave the same.

Chapter 10. DCE Application Administration 121

Determining the Entry Name

You need to know the entry name exported by a server so you can provide it to
client programs when you configure them. Here, we are just calling this name an
entry name, but it can be a server entry name or group entry name or profile entry
name. Your application documentation should help you decide which kind of entry to
use.

If you are installing and configuring the server and client parts of an application,
make a note of the server’s entry name when you configure the server.

If you are not installing or configuring the server (for instance, the server was
previously installed), you might need to do some detective work to determine the
name to use. There are several places you can look.

If a server uses the server control facility described earlier in this chapter, you can
probably use a server show operation to reveal its entry name. Of course, this
means you need to know the server’s object name on the host where the server
resides. You can see all of the server object names on a host by using a server
catalog operation. The following example lists all the server objects configured on
host silver . The server show operation reveals the entry name used by the
info_server program.
dcecp> server catalog /.:/hosts/silver
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/info_server
dcecp> server show /.:/hosts/silver/config/srvrconf/info_server
{uuid 6d5e7184-71b7-11cd-a205-08000925634b}
{program {/usr/local/bin/infosrv}}
{arguments {-brief}}
{prerequisites {}}
{keytabs {}}
{entryname {/.:/subsys/applications/info_server_1}}
{services {}}
{principals {}}
{starton {explicit failure}}
{uid 1423}
{gid 1000}
{dir {/tmp}}
dcecp>

If a server starts from a boot program or script of some kind, look in the program or
script for the name or names (sometimes servers use multiple names when they
export multiple interfaces). The name might be supplied as an argument to the
command that starts the server, as in the following example:
infosrv /.:/finance/operations/infoserv

When the server side does not easily reveal its entry name, try to determine what
entry other client programs are using. Client programs frequently start from a boot
program or script of some kind, and entry names are generally provided as
arguments to the command to start the client. These commands often follow the
same model shown in the previous example of the server startup command.

Providing the Entry Name to Clients

Sometimes, very simple clients can have the server entry name encoded within
them so you do not have to pass any entry name. But more often, you need to
supply an entry name to a client program when it starts. This approach is more

122 OSF® DCE Administration Guide— Core Components

flexible than hardcoding an entry name because it offers an easy way to use a
different entry name should the need arise.

The client configuration documentation should include instructions on how to pass
the name to the client. One method uses a script or batch file that contains the
command to start the client along with arguments that include the appropriate
server entry name. The following example shows a server entry name passed as a
command argument in a shell script that starts the client:
Shell Script to start the InfoClient application
infoclient /.:/finance/operations/InfoServ_profile

Alternatively, the server entry name can be stored in an environment variable
(called RPC_DEFAULT_ENTRY on UNIX systems). The following example shows a
shell script that defines this variable and then invokes the client:
#! /bin/sh
Shell Script to start the InfoClient application
export RPC_DEFAULT_ENTRY=/.:/finance/operations/InfoServ_profile
infoclient

Chapter 10. DCE Application Administration 123

124 OSF® DCE Administration Guide— Core Components

Part 4. Cell Directory Service

125

126 OSF® DCE Administration Guide— Core Components

Chapter 11. Introduction to the DCE Directory Service

Distributed processing involves the interaction of multiple systems to do work that is
done on one system in a traditional computing environment. One challenge
resulting from this network-wide working environment is the need for a universally
consistent way to identify and locate people and resources anywhere in the
network.

The DCE Directory Service makes it possible to contact people and to use
resources such as disks, print queues, and servers anywhere in the network without
knowing their physical location. The directory service is much like a telephone
directory assistance service that provides a phone number when given a person’s
name. Given the unique name of a person, server, or resource, it can return the
network address and other information associated with that name.

The DCE Directory Service stores addresses and other relevant information as
attributes of the name. For example, attributes can contain the name of an
organizational unit, such as European Sales; a location, such as the first floor of
Building A; or a telephone number. Users can search for a name by supplying one
or more of its attributes. For example, given the search criteria of John Smith and
Chicago , the directory service could produce a list of telephone numbers for users
in Chicago named John Smith.

Note: Search capabilities are currently limited to the global part of the DCE
Directory Service environment.

How the DCE Components Use the DCE Directory Service

The DCE Directory Service is a fundamental service that applications can rely on
and use to their advantage. This section describes how other DCE components use
the DCE Directory Service.

The DCE remote procedure call (RPC) interface facilitates the development and use
of distributed applications that follow a client/server model. In the RPC model,
clients are programs that make remote procedure calls, and servers are programs
that carry out the procedures. The DCE RPC software stores information in the
directory service about the addresses of RPC servers and the interfaces they
support.

When an RPC client wants to make a call to a particular server, it can query the
directory service for the information necessary to contact that server. If the client
wants to access a specific resource that is named in the directory service, it can
query for that specific name. If a client application knows the type of service that it
wants, such as C compilers, printers, or employee information, but does not know
the address of a specific server, it can also use the directory service to find that
information.

The DCE Security Service, which verifies the identity of users when they log in,
uses the directory service to store the addresses of its authentication servers.

The Distributed File Service (DFS) provides a location service for filesets (logical
groups of files) so that users can access remote files as if they are on the local
system. DFS uses the DCE Directory Service to find out how to contact its fileset
location servers.

127

The Distributed Time Service (DTS) is responsible for synchronizing system clocks
in the network. Synchronized clocks are important to any distributed application that
needs to keep track of the order in which events occur across multiple systems.
DTS uses the DCE Directory Service to find out how to locate its time servers.

How to Use DCE Directory Services

Other than DCE administrators, the people who use directory services normally do
so indirectly, through an application interface. An application can interact with the
directory service on behalf of users who create a name for a resource and
subsequently refer to it by that name. The following examples, both real and
hypothetical, explain some of the ways that users can use the directory service:

v A user invokes a spell-checking application on a new document. The application
contains DCE RPC client code on the user’s local system. The RPC client
contacts the directory service for information on an available spell-checking
server. The directory service returns the address of the server, the protocol type
it uses to communicate, and a universal unique identifier (UUID) that represents
an interface. Using this information, the RPC client makes a remote call to the
server and the server checks the spelling in the user’s document. The user is
unaware that use of the spell checker involved a call to the directory service and
interaction with a remote server.

v A user logging into a system enters a name and password. The directory service
helps the login program locate an authentication server, which verifies the user’s
identity in an authentication database.

v A user enters a file specification. The directory service provides the address of a
DFS fileset location database, which contains the network address of a server
that allows the user to access the file.

v A user enters the name of a computer conference or electronic bulletin board and
the directory service provides an address, allowing the application to connect to
the conference service.

v By entering a name or some information about a printer’s capabilities, a user can
learn the printer’s network address. For example, the user may want to find the
address of the closest and fastest available color printer.

v A user needs information from an employee in the marketing department. The
user remembers that the employee’s last name is Wong, but cannot remember
the first name. By entering the last name and department name in an employee
locator application, the user can check the directory service for information on all
Wongs in the marketing department and find out how to contact the employee.

v A user enters a report in a problem-tracking database. Although the database
was recently moved to a new node, the user is not aware of the change because
the database is always referred to by its name only. The directory service stores
the current network address and provides it to the problem-tracking application
and any other application that requests it.

The remainder of this chapter explains how the DCE Directory Service environment
works with regard to cells. It introduces the main directory service components: the
Cell Directory Service (CDS), the Global Directory Service (GDS), and the Global
Directory Agent (GDA), which is a gateway between the local and global naming
environments. The chapter also discusses DCE support for the Domain Name
System (DNS), which is a global name service that is not a part of the DCE
technology offering.

128 OSF® DCE Administration Guide— Core Components

Directory Services and the Cell Environment

This section introduces the following main components of the DCE naming
environment and explains their relationship to the cell:

v CDS

v GDS

v DNS

v GDA

CDS is a high-performance distributed service that provides a consistent,
location-independent method for naming and using resources inside a cell
(intracell). CDS can also be used for communication between cells (intercell) when
cells are connected into a hierarchy.

GDS supports the global naming environment inside cells (intracell) and outside of
cells (intercell). GDS is an implementation of a directory service standard known as
X.500. This standard is specified by the International Organization for
Standardization (ISO) 9594 and the International Telegraph and Telephone
Consultative Committee (CCITT) X.500 series. Because it is based on a worldwide
standard, GDS offers the opportunity for a universally interoperable global directory.

Figure 5 represents a hypothetical configuration of two cells that each use GDS to
access names in the other cell. Names that are stored directly in GDS also are
accessible from each cell. CDS is the directory service within each cell. The same
organization administers both cells, which are configured based on geographic
location and network topology.

DNS is a widely used existing global name service for which DCE offers support.
Many networks currently use DNS primarily as a name service for Internet host
names. Although DNS is not a part of the DCE technology offering, the directory
service contains support for cells to interoperate through DNS.

The GDA is the DCE component that makes cell interoperation possible. The GDA
enables CDS to access a name in another cell through one of the global naming
environments (GDS or DNS), or through the CDS of the parent cell, if the cell is
part of a hierarchical cell configuration. The GDA is an independent process that

GDS

CDS CDS

Cell 1 Cell 2
Figure 5. Cell and Global Naming Environments

Chapter 11. Introduction to the DCE Directory Service 129

can exist on a system separate from a CDS server, although by default the DCE
configuration script configures the GDA on the same machine as a CDS server.
CDS needs to be able to contact at least one GDA to participate in the global
naming environment.

Figure 6 shows how the GDA helps CDS access names outside of a cell. When
CDS determines that a name is not in its own cell, it passes the name to a GDA,
which searches the appropriate naming environment (CDS, GDS, or DNS) for more
information about the name. The GDA returns information that enables the original
CDS server to contact the CDS server in whose cell the name resides. The GDA
can help CDS find names in a cell that is registered in DNS (Scenario A), a cell that
is registered in GDS (Scenario B), or a cell that is registered in the originating cell’s
parent cell (not shown). The GDA decides which name service to use based on the
syntax of the name. “An In-Depth Analysis of DCE Names” on page 134 describes
name syntaxes in detail.

How Cells Determine Naming Environments

In addition to delineating security and administrative boundaries for users and
resources, cells determine the boundaries for sets of names. Because different
naming components operate in a cell and outside of a cell, naming conventions in
the cell and global environments differ as well. The DCE naming environment
supports two kinds of names: global names and cell-relative, or local, names. The
following subsections introduce the concept of global and local names. “An In-Depth
Analysis of DCE Names” on page 134 describes CDS, GDS, and DNS names in
detail.

Global Names

All entries in the DCE Directory Service have a global name that is universally
meaningful and usable from anywhere in the DCE naming environment. The prefix
/... indicates that a name is global. A global name can refer to an object within a cell
(named in CDS) or an object outside of a cell (named in GDS).

The GDA helps CDS resolve names:
A. in another cell that is registered in DNS
B. in another cell that is registered in GDS

DNS

GDA GDA

CDSCDS CDS CDS

GDS

1

2 3

4

5 5

1

2 3

4

Scenario A Scenario B

Figure 6. Interaction of CDSs, GDAs, and Global Directory Services

130 OSF® DCE Administration Guide— Core Components

The following example shows the global name for an entry created in GDS. The
name represents user Ellie Bloggs, who works in the administrative organization
unit of the Widget organization, a British corporation.
/.../C=GB/O=Widget/OU=Admin/CN=Ellie Bloggs

The GDS name syntax consists of a global prefix /... and a set of elements, called
relative distinguished names (RDNs). Each RDN consists of one or more pairs of
parts separated by an = (equal sign) character. The items that are separated by an
equal sign are multiple attribute value assertions (AVAs). See the OSF DCE GDS
Administration Guide and Reference for more information about AVAs. The first part
of a pair is an abbreviation that indicates a type of information. Some common
abbreviations are Country (C), Organization (O), Organization Unit (OU), and
Common Name (CN). The second part of the pair is a value. (See Section “GDS
Names” on page 135 for more information on GDS names.)

The following example shows a global name for a price database server named in
CDS. The server is used by the Portland sales branch of XYZ Company, an
organization in the United States.

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

Cell name CDS name

As the example illustrates, global names for entries that are created in CDS look
slightly different from pure GDS-style names. The first portion of the name,
/.../C=US/O=XYZ/OU=Portland , is a global cell name that exists in GDS. The
remaining portion, /subsys/PriceMax/price_server1 , is a CDS name.

The cell name exists because cells must have names to be accessible in the global
naming environment. The GDA looks up the cell name in the process of helping
CDS in one cell find a name in another cell. Cell names are established during
initial configuration of the DCE components. Before configuring a cell that will
participate in standard intercell communication (that is, via the DNS or GDS global
directory services), the DCE administrator must obtain a unique cell name from
either of the global naming environments, depending on whether the cell needs to
be accessed through GDS or DNS.

The next example shows the global name of a host at ABC Corporation. The global
name of the company’s cell, /.../abc.com , exists in DNS.

/.../abc.com/hosts/mysystem

Cell name CDS name

Hierarchical Cell Names

In a hierarchy of cells, the names of one or more cells, called child cells, are
registered in a cell’s CDS; this cell is called the parent cell. The cell at the top of
the hierarchy must be registered in a global directory service (GDS or DNS), but the

Chapter 11. Introduction to the DCE Directory Service 131

cells underneath do not need to be since they use CDS to communicate. A child
has one and only one parent at any given time, while a parent can have more than
one child.

The GDA is the communications gateway between the CDS namespaces of cells in
a hierarchy, as it is between CDS and the global directory services. When the GDA
receives a request for information about a cell, and the cell is a child cell, the GDA
returns information about the CDS in the parent cell. The CDS of the parent cell
provides the pointers to the child cell.

A child cell’s name begins with the parent’s global cell name; that is, the name of
the cell beginning at the global root /... prefix. (This name is also known as the
parent cell’s fully qualified name.) It ends with the specific child cell name. The
parent’s global name can contain CDS syntax as well as GDS or DNS syntax,
depending on where the parent cell is located in the hierarchy.

The following example shows the global cell names of two child cells:
Global Cell Name for Sales1

------------------------|---------------------------
/

Parent Global Cell Name Child Cell
--------------|-------------------------- --|---
/ \ / \
| || |
/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Sales1

Global Cell Name for Marketing
_______________________|____________________________

/
Parent Global Cell Name Child Cell

--------------|-------------------------- ---|---
/ \ / \
| || |
/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Marketing

The global cell name for each child includes

v The parent’s global name, /.../C=US/O=XYZ/OU=Portland

v The child’s unique CDS name, /Sales1 or /Marketing

If a DCE administrator is establishing a hierarchy of cells during initial cell
configuration, he or she must obtain a unique GDS or DNS cell name for the cell at
the top of the hierarchy from the GDS or DNS global directory service authorities.
All of the cells beneath this cell share this name. The OSF DCE Administration
Guide—Introduction provides details on how to obtain GDS and DNS cell names.

If a DCE administrator establishes a hierarchy of cells after the cells have been
configured, the global names of the child cells change to point to the parent’s cell
name. “Chapter 21. Restructuring a Namespace” on page 201 of this guide provides
details on how to establish a hierarchy of cells.

Alias Cell Names

You can give a cell more than one global name by creating an alias name for the
cell. In this case, the cell has a primary name, which is the name that DCE services
return for the cell when queried, and one or more cell aliases that the DCE services
recognize in addition to the primary name. For example, if your cell is registered in

132 OSF® DCE Administration Guide— Core Components

the DNS global directory service, and you want to register it in GDS as well, you
obtain a GDS name for the cell and set it up as a cell alias. The DNS name
remains the primary name.

“Chapter 6. Managing Your Cell Name” on page 67 of this guide explains how to
use the dcecp cellalias task object to manage your cell names. “Chapter 21.
Restructuring a Namespace” on page 201 of this guide explains how to create a
hierarchical cell.

Cell-Relative Naming in a Standalone Cell

In addition to their global names, all CDS entries have a cell-relative, or local, name
that is meaningful and usable only from within the local cell where that entry exists.
The local name is a shortened form of a global name, and thus is a more
convenient way to refer to resources within a user’s own cell. Local names have the
following characteristics:

v They do not include a global cell name.

v

They begin with the /.: prefix.

Local names do not include a global cell name because the /.: prefix indicates that
the name being referred to is within the local cell. When CDS encounters a /.: prefix
on a name, it automatically replaces the prefix with the local cell’s name, forming
the global name. CDS can handle both global and local names, but it is more
convenient to use the local name when referring to a name in the local cell. For
example, these names are equally valid when used within the cell named
/.../C=US/O=XYZ/OU=Portland :
/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

/.:/subsys/PriceMax/price_server1

The naming conventions required for the interaction of local and global directory
services may at first seem confusing. In an environment where references to names
outside of the local cell are necessary, the following simple guidelines can help
make the conventions easy to remember and use:

v Know your cell name.

v Know whether a name that you are referring to is in your cell.

v When using a name that is within your cell, you can omit the cell name and
include the /.: prefix.

v When using a name that is outside of your cell, enter its global syntax, including
the /... prefix and the cell name.

v When someone asks for the name of a resource in your cell, give its global
name, including the /... prefix.

v When storing a name in persistent storage (for example, in a shell script), use its
global name, including the /... prefix. Local names (that is, names with a /.:
prefix) are intended only for interactive use and should not be stored. (If a local
name is referenced from within a foreign cell, the /.: prefix is resolved to the
name of the foreign cell and the resulting name lookup either fails or produces
the wrong name.)

Chapter 11. Introduction to the DCE Directory Service 133

Cell-Relative Naming in a Hierarchy of Cells

In a hierarchy of cells, cell-relative names and local names may not be the same. A
parent cell can reference a name in a child cell by using cell-relative naming (/.:).
Consequently, you can no longer determine whether a cell is in your local cell by
merely looking at its name. In the following example, the child cell (eng) is named
relative to its parent cell:
/.:/eng

This type of naming allows you to access names in a child cell (for example,
/.:/eng/hosts/admin) from the parent cell, without having to specify the global name
of the cell.

Note: When referencing names in a child cell from a parent cell, you should be
mindful that your status is that of a foreign user. Therefore, the child cell may
have access controls imposed on it that will deny you access to its
namespace.

Local Filenames

When referring to pathnames of files in the local cell, you can shorten a local name
even further by using the /: prefix. This prefix translates to the root of the cell file
system. The default name of the file system root is /.:/fs , which is one level down
from the root of the cell namespace. So, for example, the following are all valid
ways to refer to the same file from within the /.../widget.com cell:
/.../widget.com/fs/smith/myfile

/.:/fs/smith/myfile

/:/smith/myfile

(See the OSF DCE DFS Administration Guide and Reference for more information
on local file system abbreviations.)

An In-Depth Analysis of DCE Names

The rest of this chapter describes in depth the different kinds of names that make
up the DCE namespace. “Appendix A. Valid Characters and Naming Rules for CDS”
on page 469 and the OSF DCE GDS Administration Guide and Reference contain

further details about valid characters and naming conventions in CDS, GDS, and
DNS names.

CDS Names

Every cell contains at least one server that is running a CDS server. A CDS server
stores and maintains names and handles requests to create, modify, and look up
data. The total collection of names shared by CDS servers in a cell is called a cell
namespace. The cell namespace administrator can organize CDS names into a
hierarchical structure of directories. CDS directories, which are conceptually similar
to the directories in your operating system’s file system, are a logical way to group
names for ease of management and use.

In a cell namespace, any directory that has a directory beneath it is considered the
parent of the directory beneath it. Any directory that has a directory above it is

134 OSF® DCE Administration Guide— Core Components

considered a child of the directory above it. The top level of the cell namespace is
called the cell root. You can refer to the cell root either by the global name of the
cell or by the short-form /.: prefix.

Figure 7 shows a simple cell namespace hierarchy, starting at the cell root. The cell
root (/.:) is the parent of the directories named /.:/hosts and /.:/subsys . The
/.:/subsys directory is a child of the cell root directory and the parent of the
/.:/subsys/dce directory.

The complete specification of a CDS name, going left to right from the cell root to
the entry being named, is called the full name. Each element within a full name is
separated by a / (slash) and is called a simple name. For example, suppose the
/.:/hosts directory shown in Figure 7 contains an entry for a host whose simple
name is bargle . The CDS full name of that entry is /.:/hosts/bargle . Multiple
consecutive slashes are turned into a single slash in a full name.

Multiple directory levels enable flexibility in distributing, controlling access to, and
managing many names. A directory hierarchy also reduces the probability of
duplicate names. For example, the names /.:/subsys/Hypermax/printQ/server1
and /.:/subsys/ABC/spell/server1 are unique.

GDS Names

The operation of GDS is similar to that of CDS, but some important differences
exist in the structure of names and the ways they can be looked up. Like CDS,
GDS has a server process that provides access to and management of names.
This process is called a Directory System Agent (DSA). The combined knowledge
of all DSAs that participate in the same global directory service implementation is
called the Directory Information Base (DIB). This collective knowledge is viewed as
a single global directory consisting of many entries.

Information exists in the global directory in the form of a rooted hierarchy that is
called a directory information tree (DIT). The DIT is similar to a CDS namespace.
However, unlike a namespace, which has no inherent rules regarding structure and
content, the GDS hierarchy is influenced by a set of rules that is called a schema.
Every X.500 DSA must define a standard schema to which all of the entries in its
portion of the DIB conform.

Although the X.500 standard does not mandate a specific schema, it does make
general recommendations that are based largely on existing X.400 standards for
electronic mail. For example, countries and organizations should be named close to
the root of the DIT; people, applications, and devices should be named further down
in the hierarchy. GDS supplies a default schema that complies with these
recommendations.

/.:

hosts subsys

dce

d
Figure 7. Sample CDS Namespace Hierarchy

Chapter 11. Introduction to the DCE Directory Service 135

Every GDS entry has a distinguished name, which uniquely and unambiguously
identifies that entry. The distinguished name consists of a sequence of valid relative
distinguished names (RDNs). Each RDN consists of one or more assertions of the
type and value of an attribute at a particular position in the DIT. Attribute types
indicate the nature of the information that is stored in the attribute value. A pair
consisting of an attribute type and value is known as an attribute value assertion
(AVA). RDNs can have multiple AVAs. For example, the distinguished name
/C=us/O=osf/OU=branch1/CN=nollman,OU=doc-team

consists of four RDNs. The final RDN consists of two AVAs that are separated by a
comma.

Figure 8 illustrates the concepts of RDNs and distinguished names and how they
relate to the DIT. The figure shows the following:

v A DIT consisting of a hierarchy of schema-defined attribute types

v RDNs that result from assertions of an attribute type and value

v Distinguished names that result from a concatenation of the RDNs

The shaded boxes in the DIT represent the entries that are named in the column
labeled relative distinguished name. The schema dictates that countries are named
directly below the root, followed by organizations, organization units, and names of
users. Each attribute value that makes up an RDN (and thus a distinguished name)
is called a distinguished value.

As the rightmost column in the figure illustrates, the distinguished name of the entry
at each level of the DIT is a concatenation of RDNs from the root of the global
directory to that entry’s level. The lowest entry in the hierarchy,
/.../C=US/O=ABC/OU=Sales/CN=Smith , represents the name of a user, John
Smith, who works in the sales division of ABC Company, an organization in the
United States. The abbreviated attribute type labels stand for Country (C),
Organization (O), Organization Unit (OU), and Common Name (CN).

Note that the figure shows the global DCE convention for distinguished names.
Each distinguished name starts with the representation of the global root (/...).
Attribute types and values are separated by equal signs, and RDNs are separated

DIT

Relative Distinguished Name Distinguished Name

Schema-Defined
Attribute Type

Distinguished
Value

C = US

O = ABC

OU = Sales

CN = Smith

/.../C=US

/.../C=US/O=ABC

/.../C=US/O=ABC/OU=Sales

/.../C=US/O=ABC/OU=Sales/CN=Smith

Figure 8. RDNs and Distinguished Names

136 OSF® DCE Administration Guide— Core Components

by slashes. These conventions for specifying names are not followed by all X.500
implementations. In addition, these conventions are only used at the GDS
adminstration interface level. Internally, distinguished names are specified in other
ways.

The structure of GDS names points out another important difference between GDS
and CDS. A CDS name is distinct from its attributes; that is, it consists of a string of
directory names ending with the simple name of the entry. In contrast, a GDS name
consists solely of a series of attribute types and their values.

Figure 9 illustrates this difference in the construction of CDS and GDS names. The
CDS full name /.:/Admin/Personnel/Employee_DB is the complete directory
specification of an entry with the simple name Employee_DB . Attributes and their
values are not a part of the CDS full name. The GDS distinguished name
/.../C=US/O=ABC/OU=Sales is a concatenation of attribute types and values, one
from each level of a DIT schema.

GDS supports the ability to search for names by supplying the values of one or
more attributes. This results in what is called descriptive naming; in a sense, users
can describe the name they are looking for. Although the search capability is
valuable, it can be expensive and time consuming, so GDS allows users to restrict
the scope of a search. Support for the search operation is limited to the GDS
environment.

DNS Names

The DCE naming environment supports the version of DNS that is based on
Internet Request for Comments (RFC) 1034 and RFC 1035. Many networks
currently use DNS primarily as a name service for host names. The most commonly
used implementation of DNS is the Berkeley Internet Naming Domain (BIND). The
BIND namespace is a hierarchical tree with its topmost levels under the control of

Admin

Personnel

/.:

O=ABC

C=US

/...

Attribute
name OU

Employee_DB

Attribute
value Sales

CDS full name:

/.:/Admin/Personnel/Employee_DB

GDS distinguished name:

/.../C=US/O=ABC/OU=Sales

Figure 9. Comparison of CDS and GDS Names

Chapter 11. Introduction to the DCE Directory Service 137

the Network Information Center (NIC). (See the OSF DCE Administration
Guide—Introduction for information on how to contact the NIC Domain Registrar to
register a domain name.)

The names directly under the root of the BIND namespace include 2-letter codes for
countries, such as us and gb , as defined in ISO Standard 3166, ′′Codes for the
Representation of Names of Countries.’’ Other names one level below the root
include several generic administrative categories, such as com (commercial), edu
(educational), gov (government), and org (other organizations). The owners of
these names can grant permission to companies and organizations to create new
subordinate names. Figure 10 shows a sample portion of the BIND namespace.
(The double quotes indicate that the root of the namespace has a null name and is
not addressable.) Note that, like CDS names, DNS names are not typed; that is,
they do not consist of pairs of attribute types and values.

A DNS name consists of a string of hierarchical names that are separated by .
(dots) and arranged right to left from the root of the namespace. For example, the
name ai.mit.edu represents the branch of the namespace owned by the
Massachusetts Institute of Technology artificial intelligence department. Note that
the order of elements in the name is the reverse of the order for CDS and GDS
names.

To use a DNS cell name as part of a global DCE name, specify the DNS name
intact between two slashes. For example, a cell whose DNS name is ai.mit.edu
might contain a directory whose CDS name is /.:/profiles . Users should enter
/.../ai.mit.edu/profiles to refer to the directory by its global name.

Names Outside of the DCE Directory Service

Not all DCE names are stored directly in the DCE Directory Service. Some services
connect into the cell namespace by means of specialized CDS entries called
junctions. A junction entry contains binding information that enables a client to
connect to a server outside of the directory service.

For example, the security service keeps a database of principals (users and
servers) and information about them, such as their passwords. The default name of
the security service junction is /.:/sec .

com edu gov org gb

mit usc

" "

Figure 10. Sample Portion of the BIND Namespace

138 OSF® DCE Administration Guide— Core Components

The following example illustrates the parts of a global DCE principal name:

/.../C=US/O=ABC/OU=west/sec/principals/mozart

Cell name
CDS
name

Security Service
name

The cell name, /.../C=US/O=ABC/OU=west , is a GDS name. The sec portion is the
junction entry in CDS, and principals/mozart is a principal name that is stored in
the security service database.

Another service that uses junctions is DFS. The DFS fileset location service keeps
a database that maps DFS filesets to the servers where they reside. The junction to
this database has a default name of /.:/fs . The following example illustrates the
parts of a global DCE filename:

/.../ai.mit.edu/fs/users/mozart/myfile

Cell name
CDS
name Filename

The global name contains a DNS cell name, /.../ai.mit.edu . The fs portion is the file
system junction entry in CDS, and /users/mozart/myfile is the name of a file.

Thus, the DCE namespace is a connected tree of many kinds of names from many
different sources. The GDA component of the directory service provides connections
out of the cell and to other cells through a global namespace, such as GDS or
DNS. In a similar manner, junctions enable connections downward from the cell
namespace to other services.

Chapter 11. Introduction to the DCE Directory Service 139

140 OSF® DCE Administration Guide— Core Components

Chapter 12. CDS Concepts

The Cell Directory Service (CDS) is a high-performance distributed service that
provides a consistent, location-independent method for naming and using resources
inside a cell. CDS offers the ability to replicate CDS names; that is, to store copies
of them on more than one node. CDS automatically keeps multiple copies
consistent. Names also can be distributed among several nodes so that no one
node has to store all of them. This feature is particularly valuable in large cells.

The ability to replicate and distribute information has many benefits, including the
following:

v Availability—Because you can store the same name in more than one place,
data is likely to be available even in the event of a system or network failure.

v Efficiency—CDS finds names efficiently because you can store them close to
where they are used most often. Furthermore, once CDS finds a name, it can
connect to the same name immediately on all subsequent lookups.

v Load Sharing—Because names are in more than one place, several systems can
share the load of looking them up.

v Expandability—New names are easily accommodated as the network grows and
more applications use CDS.

How CDS Works

Operation of the CDS involves several major participants:

v Client applications

v Servers

v Clerks

v Clearinghouses

CDS uses a client/server model. An application that depends on CDS to store and
retrieve information for it is a client of CDS. Client applications create names for
resources on behalf of their users. Through a client application, a user can supply
other information for CDS to store as attributes of a name. Then, when a client
application user refers to the resource by its CDS name, CDS retrieves data from
the attributes for use by the client application.

A system running CDS server software is a CDS server. A CDS server stores and
maintains CDS names and handles requests to create, modify, or look up data.

A component called the clerk is the interface between client applications and CDS
servers. Every DCE node must run a CDS clerk. The clerk receives a request from
a client application, sends the request to a server, and returns the resulting
information to the client. This process is called a lookup. The clerk is also the
interface through which client applications create and modify names. One clerk can
work on behalf of many client applications.

The clerk caches, or saves, the results of lookups so that it does not have to
repeatedly go to a server for the same information. The cache is written to disk
periodically so that the information can survive a system reboot or the restart of an
application. When you stop the CDS advertiser, the cache is written to disk.
Caching improves performance and reduces network traffic.

141

Figure 11 shows a sample configuration of CDS clerks and servers on a 9-node
local area network (LAN). Every node is a clerk, and CDS servers run on two
selected nodes.

Every CDS server has a database called a clearinghouse in which it stores names
and other CDS data. The clearinghouse is where a CDS server adds, modifies,
deletes, and retrieves data on behalf of client applications. Although more than one
clearinghouse can exist at a server node, it is not recommended as a normal
configuration.

Figure 12 on page 143 shows the interaction between a CDS client, clerk, server,
and clearinghouse during a simple lookup. It illustrates the following CDS lookup
steps:

1. The client application on Node 1 sends a lookup request to the local clerk.

2. The clerk checks its cache and, not finding the name there, contacts the server
on Node 2.

3. The server checks to see if the name is in its clearinghouse.

4. The name exists in the clearinghouse, so the server gets the requested
information.

5. The server returns the information to the clerk on Node 1.

6. The clerk passes the requested data to the client application. The clerk also
caches the information so that it does not have to contact a server the next time
a client requests a lookup of that same name.

Clerk Clerk Clerk ClerkClerk

Server

Clerk Clerk ClerkClerk

Server

Figure 11. CDS Clerks and Servers on a LAN

142 OSF® DCE Administration Guide— Core Components

Replicas and Their Contents

Directories are the units by which you distribute and replicate names throughout the
cell’s namespace. Each physical copy of a directory, including the original, is called
a replica. When you create a replica of a directory, you replicate all of the entries in
it as well.

Replicas are stored in clearinghouses. You can think of a clearinghouse as the
collection of directory replicas at a particular server. After you create a directory in
one clearinghouse, you can create replicas of it in other clearinghouses to increase
availability for looking up information. CDS periodically ensures that the contents of
all replicas of a directory remain consistent.

Two types of replicas can exist:

v Master

v Read-only

A replica’s type affects the processing that can be done on it and the way CDS
updates it. The type of replica that CDS uses when it looks up or changes data is
invisible to users. However, it helps to understand how the two types differ.

The master replica is the first instance of a specific directory in the cell’s
namespace. After you make copies of the directory, you can designate a different
replica as the master, if necessary. However, only one master replica of each
directory can exist at a time. (See “Chapter 21. Restructuring a Namespace” on
page 201 for complete information on how to redesignate the master replica of a
directory.)

The master replica is the only directly modifiable replica of a directory. CDS can
create, change, and delete information in a master replica. Because it is modifiable,
the master replica incurs more overhead than read-only replicas, which CDS keeps
up-to-date periodically with changes made to the master replica.

Client
Application

CDS
Clerk C

ac
he

CDS
Server Clearinghouse

NODE 1

NODE 2

1
6

25

3
4

Request path
Response path

Figure 12. A Sample CDS Lookup

Chapter 12. CDS Concepts 143

A read-only replica is a copy of a directory that is available only for looking up
information. CDS does not create, modify, or delete names in read-only replicas; it
simply updates them with changes made to the master replica.

Replicas can contain three kinds of entries:

v Object entries

v Soft links

v Child pointers

Object Entries

An object is any real resource—like a disk, application, or node—that is given a
CDS name. When an object name is created, client applications and the CDS
software supply attributes to be stored with the name. An attribute, consisting of an
attribute name and value(s), describes a particular operational property of an object.
The name and its attributes make up the object entry. When a client application
requests a lookup of the name, CDS returns the value of the relevant attribute or
attributes.

Object entries are typically created and managed through a client application
interface. For example, the DCE control program and the name service interface
(NSI) of the RPC runtime let users create entries that represent RPC servers,
groups, and profiles. These are special kinds of entries that enable an RPC
application to locate and select servers. (See the OSF DCE Application
Development Guide for details on how RPC uses CDS for this purpose.)

You can also create object entries through the DCE control program (dcecp). (See
“Part 1. The DCE Control Program” on page 1 of this document and the OSF DCE
Administration Commands Referencefor information on the commands that allow
you to create and manage object entries by using dcecp .)

Every object can have a defined class, which is an optional attribute of the object
entry. DCE components that use the directory service can define their own object
classes and supply class-specific attributes for the directory service to store on their
behalf. Class-specific attributes have meaning only to the particular class of objects
with which they are associated.

The clearinghouse object entry represents a special class of object that is
predefined by CDS. A clearinghouse object entry serves as a pointer to the location
of a clearinghouse in the network. CDS needs this pointer so that it can look up and
update data in a clearinghouse.

When you create a clearinghouse, CDS creates its clearinghouse object entry
automatically. The clearinghouse object entry acquires the same name as the
clearinghouse. The clearinghouse object entry is like any other object entry in that it
describes an actual resource, but it is different because it is solely for internal use
by CDS. Clearinghouses can only be created in the cell root directory. Therefore, all
clearinghouse object entries are stored in the cell root directory. CDS itself updates
and manages clearinghouse object entries when necessary. They do not require
any external management except in rare problem-solving situations. (See your
vendor for help in these situations.)

144 OSF® DCE Administration Guide— Core Components

Soft Links

A soft link is a pointer that provides an alternate name for an object entry, directory,
or other soft link in the cell’s namespace. You can do minor restructuring of a cell’s
namespace by creating soft links that point from an existing name to a new name.
Soft links also can be a way to give something multiple names so that different
kinds of users can refer to a name in a way that makes the most sense to them.

Soft links can be permanent, or they can expire after a period of time that you
specify. If the name that a soft link points to is deleted, CDS deletes the soft link
automatically when it expires.

CDS managers should use soft links carefully. They should not use soft links to
completely redesign the cell’s namespace or to provide shortcuts for users who do
not want to use the full name of an object entry. Overuse of soft links makes CDS
names more difficult to keep track of and manage.

Child Pointers

A child pointer provides the following kinds of connections for cells:

v Between a directory to another directory immediately beneath it in a cell’s
namespace

v Between a parent and its child cell

Users and applications do not create child pointers; CDS creates a child pointer
automatically when someone creates a new directory. The child pointer is created in
the directory that is the parent of (one level above) the directory to which it points.
CDS uses child pointers to locate directory replicas when it is trying to find a name.
Child pointers do not require management except in rare problem-solving situations.

Summary

To summarize, a cell consists of a complete set of names that are shared and
managed by one or more CDS servers in a cell. A name can designate a directory,
object entry, soft link, or child pointer. The logical representation of a cell’s
namespace is a hierarchical structure of directories and the names they contain.
Every physical instance of a directory is called a replica. Names are physically
stored in replicas, and replicas are stored in clearinghouses. Any node that contains
a clearinghouse and runs CDS server software is a CDS server.

Figure 13 on page 146 shows the components of a CDS server node. Every server
manages at least one clearinghouse containing directory replicas. A replica can
contain object entries, soft links, and child pointers. The figure shows only one
replica and one of each type of entry that is possible in a replica. Normally, a
clearinghouse contains many replicas, and a replica contains many entries.

Chapter 12. CDS Concepts 145

Security in the Cell Directory Environment

In a secure DCE cell operation, a server does not complete a user’s request unless
the user’s identity has been verified through the DCE Authentication Service. So, for
example, a CDS server allows a user to create a new directory only if that user’s
identity has been verified. The process of verifying that users are who they say they
are is called authentication. The proof is in the form of a user name, or principal
name, coupled with a special kind of password.

CDS servers themselves must be authenticated principals for two reasons:

v To prove to clients that they are trustworthy

v To prove to each other that they have the permission to modify and manage the
data that they share

The principal name of a CDS server is automatically selected by the configuration
program and is placed in a group that contains the names of all CDS servers in the
cell. The group is stored as an entry in the DCE Security Service database. After
initial contact with a CDS server, the clerk confirms through the DCE Security
Service that the server is a valid member of the server group.

Authentication is not an end in itself, but is instead a step in the process of
authorization. Once the identity of a principal has been verified, the software must
next determine whether that principal has the permissions that are required to
perform a requested action. This is called authorization. Therefore, to create a new
directory, the user in the previous example must not only be authenticated, but have
the appropriate permissions as well.

Servers need to be authenticated to each other because they share and modify
replicated data. For example, suppose server A and server B both store a replica of
the same directory. Associated with each directory is a list of all the servers
authorized to maintain that directory. When a user modifies an entry in the replica at
server B, server B must notify server A of the change. Server A does not accept the
update unless server B is an authenticated principal and is one of the principals
authorized to modify that directory.

Clearinghouse

CDS server node

Replica

Child pointer

Object entry Soft link

Figure 13. Components of a CDS Server Node

146 OSF® DCE Administration Guide— Core Components

The CDS permissions are read, write, insert, delete, test, control, and administer.
Each has a slightly different meaning depending on the kind of name it is
associated with, but, in general, their meanings are as follows:

v Read permission lets users view data.

v Write permission lets users add or change data.

v Insert permission lets users create entries in a directory.

v Delete permission lets users delete entries.

v Test permission lets users test whether an attribute of a name has a specific
value without being able to see any values—that is, without having read
permission to the name. The main advantage of this permission is that it gives
application programmers a more efficient way to check for a value: rather than
reading a whole set of values, the application can test for a particular value.

v Control permission lets users manage the access control list (ACL) of an entry.

v Administer permission lets users manage directory replication.

Note that it is possible to define a special ACL for users who cannot be
authenticated or who deliberately request unauthenticated operations. In such a
case, the user’s identity is not verified, and the ACL entry for unauthenticated users
determines whether the user has the permissions to perform the requested action.
(See “Part 6. DCE Security Service” on page 269 of this guide for details on
creating ACLs for unauthenticated users.)

CDS User Interfaces

CDS has several entities that can be managed via user interfaces that are provided
in DCE. A CDS entity is any individually manageable piece of the CDS software.
CDS directories, soft links, and object entries are the most common entities that
you manage with the DCE user interfaces. Some object entries, though, are
normally managed through the client application that creates them.

The DCE control program provides many commands for managing CDS entities.
“Chapter 15. Managing the DCE Directory Service” on page 159 of this guide
contains information about these commands.

CDS also comes with one other user interface called the browser.

The browser is a tool for viewing the content and structure of a namespace. It runs
on workstations with windowing software that is based on the OSF/Motif® graphical
user interface. Using a mouse to manipulate pull-down menus, you can view the
directory structure of a namespace, view child directories of a particular directory,
view the object entries and soft links in a directory, and set a filter to display only
object entries of a particular class. (For users who do not have windowing software,
similar functions are available with dcecp .)

In addition to dcecp and the browser, other DCE user interfaces allow access to
and management of CDS names. For example, users can control access to CDS
directories and their contents by using an ACL editor such as the dcecp acl object,
which is supplied with the DCE Security Service. RPC application programmers can
create server entries, groups, and configuration profiles in the cell’s namespace with
dcecp .

Chapter 12. CDS Concepts 147

148 OSF® DCE Administration Guide— Core Components

Chapter 13. How CDS Looks Up Names

This chapter illustrates the relationship between a name and the physical resource
that it describes, and explains how CDS handles requests to look up names.
Understanding these concepts can help you to plan for the location of
clearinghouses and directories in your cell namespace. It can also help you to
isolate the source of a problem if you encounter lookup errors or failures. Note that
the figures in this chapter do not reflect the actual structure of a typical DCE cell
namespace. For simplicity, the figures show fewer directories and directory levels.

Translating from Names to Resources

Just as directory names in a logical namespace hierarchy translate to physical
replicas in clearinghouses, CDS names translate to physical resources that are
used either internally by CDS or by client applications. The attributes of a name are
what make the translation possible. This section describes the relationship between
CDS names and the physical resources that they describe.

Figure 14 on page 150 shows three directories and their contents in a logical
namespace, and how replicas of those directories are physically implemented in two
clearinghouses. The clearinghouses themselves have CDS names: /.:/Paris_CH on
Node 1 and /.:/NY_CH on Node 2. The _CH suffix is a recommended convention
for naming clearinghouses. The /.:/Paris_CH clearinghouse contains replicas of the
root directory and the /.:/subsys/PrintQ directory. The /.:/NY_CH clearinghouse
contains replicas of the root directory and the /.:/subsys directory. Recommended
practice is to create at least two replicas of every directory. Therefore, the
/.:/subsys and /.:/subsys/PrintQ directories each need to be replicated in at least
one other clearinghouse somewhere in the cell.

149

To discover the physical location of a resource, CDS looks up an attribute that is
associated with its name. Figure 15 on page 151, Figure 16 on page 152, and
Figure 17 on page 153 illustrate the connection between the various kinds of CDS
names and the resources that they describe. The figures are based on the
namespace in Figure 14. All of the names in Figure 15 on page 151, Figure 16 on
page 152 and Figure 17 on page 153 are in the same cell namespace, as
evidenced by the use of the /.: prefix to represent the cell root. (See “Chapter 22.
Managing Intercell Naming” on page 213 for information about name resolution
across multiple cells.)

Figure 15 on page 151 shows the relationship between two clearinghouse object
entries and the clearinghouses that they describe. A clearinghouse object entry
differs from other kinds of object entries in that it is created, used, and maintained
by the CDS software instead of by a client application. However, it is like any other
object entry in that it describes a physical resource in the network: the
clearinghouse. CDS creates the object entry automatically when you create and
name the clearinghouse.

Figure 15 on page 151 shows two clearinghouse object entries: /.:/Paris_CH , which
points to the clearinghouse that is named /.:/Paris_CH on Node 1, and /.:/NY_CH,
which points to the clearinghouse that is named /.:/NY_CH on Node 2. Each
clearinghouse object entry has an attribute called CDS_CHLastAddress attribute,
whose Tower subattribute contains RPC binding information that CDS uses to

/.:/NY_CH
/.:/Paris_CH
/.:/subsys

/.:/subsys/Print1
/.:/subsys/PrintQ

/.:/subsys/PrintQ/server1
/.:/subsys/PrintQ/server2

/.:

/.:/subsys

/.:/subsys/PrintQ

Node 1 Node 2

/.:/Paris_CH /.:/NY_CH

/ /

/.:/subsys/PrintQ
/.:/subsys

= Replica
= Object entry
= Child pointer
= Soft link

Legend:

Figure 14. Logical and Physical Views of a Namespace

150 OSF® DCE Administration Guide— Core Components

contact the node where the clearinghouse resides. (See “Appendix B. Object
Identifier Files” on page 475 for a list of CDS attributes and their descriptions.)

Figure 16 on page 152 shows the relationship between a soft link, the object entry it
points to, and the resource that the object entry describes. The soft link,
/.:/subsys/Print1 , has an attribute called CDS_LinkTarget , which contains the
name that the link points to: an object entry that is named
/.:/subsys/PrintQ/server1 . The object entry describes a print server machine that is
used by an application called PrintQ . The replica containing the
/.:/subsys/PrintQ/server1 object entry exists in the /.:/Paris_CH clearinghouse.
The object entry has an attribute called CDS_Towers , whose Tower subattribute
contains RPC binding information that enables the PrintQ application to contact the
print server machine.

/.:/NY_CH
/.:/Paris_CH

/.:

Node 1 Node 2

/.:/Paris_CH

/.:/Paris_CH /.:/Paris_CH

/.:/NY_CH /.:/NY_CH

/.:/NY_CH

/.: /.:

= Replica
= Object entry

Legend:

Figure 15. Clearinghouse Object Entries and Clearinghouses

Chapter 13. How CDS Looks Up Names 151

Figure 17 on page 153 shows the relationship between directories and their
associated child pointers. It illustrates that, although a child pointer has the same
name as its associated directory, the child pointer is a separate entry in the
namespace and resides in the parent of the directory to which it refers.

In the case of hierarchical cells, the directory resides in the child cell and the child
pointer, which has the same name as the associated directory and resides in the
parent cell.

The root replicas in both clearinghouses contain a child pointer for the /.:/subsys(:)
directory. The /.:/subsys child pointer has an attribute called CDS_Replicas which
contains the name and address of the /.:/NY_CH clearinghouse, where a replica of
the /.:/subsys directory exists.

In the /.:/NY_CH clearinghouse, the replica of the /.:/subsys directory contains a
child pointer for the /.:/subsys/PrintQ directory. The child pointer’s
XSCDS_Replicas attribute contains the name and address of the /.:/Paris_CH
clearinghouse, where a replica of the /.:/subsys/PrintQ directory exists.

/.:/subsys/Print1

/.:/subsys/PrintQ/server1

/.:/subsys/PrintQ/server1

/.:

/.:/subsys

/.:/subsys/PrintQ

Node 1

/.:/Paris_CH

/.:/subsys/PrintQ/server1

/.:/subsys/PrintQ

= Replica
= Object entry
= Soft link

Legend:

Node 2

/.:/NY_CH

/.:/subsys/Print1

/.:/NY_CH

Figure 16. A Soft Link and Its Resolution

152 OSF® DCE Administration Guide— Core Components

When a directory has multiple replicas, as is normally the case, the CDS_Replicas
attribute lists all of the clearinghouses containing a replica of the directory. You can
use the dcecp directory show command with the -replica and -clearinghouse
options to display this attribute.

How CDS Finds Names

As Figure 14 on page 150, Figure 15 on page 151, Figure 16 on page 152, and
Figure 17 illustrate, CDS finds information about the physical location of a resource
by looking up one or more attributes that are associated with its name. First,
though, the clerk must know how to find the name. If a name does not yet exist in
the clerk’s cache, the clerk must know of at least one CDS server to contact in
search of the name.

The clerk can learn about CDS servers and their locations in any of three ways:

v Through the solicitation and advertisement protocol

v During a regular lookup

v By response to the cdscache create command

/.:

/.:/subsys/PrintQ

Node 1 Node 2

/.:/Paris_CH /.:/NY_CH

/.: /.:

/.:/subsys/PrintQ /.:/subsys

/.:/subsys

/.:/subsys

/.:/subsys/PrintQ

/.:/subsys/PrintQ

/.:/subsys /.:/subsys

= Replica
= Child pointer

Legend:

Figure 17. Child Pointers and Directories

Chapter 13. How CDS Looks Up Names 153

The Solicitation and Advertisement Protocol

Clerks and servers on the same LAN communicate by using the solicitation and
advertisement protocol. A server broadcasts messages at regular intervals to
advertise its existence to clerks on its LAN. The advertisement message contains
data about the cell that the server belongs to, the server’s network address, and the
clearinghouse it manages. Clerks learn about servers by listening for these
advertisements on the LAN. A clerk also sends out solicitation messages that
request advertisements at startup.

Lookups

During a lookup, if a clearinghouse does not contain a name that the clerk is
searching for, the server managing that clearinghouse gives the clerk as much data
as it can about where else to search for the name. If a clearinghouse contains
replicas that are part of the full name being looked up, but not the replica containing
the target simple name, it returns data from a relevant child pointer in the replica it
does have. The data helps the clerk find the next child directory in the path toward
the target simple name. The child pointer’s CDS_Replicas attribute contains this
data, in the form of clearinghouse names and binding information.

The cdscache create Command

A DCE administrator can run the dcecp cdscache create command to create
knowledge in the clerk’s cache about a server. This command is useful when the
server and clerk are separated by a wide area network (WAN), and the clerk
therefore cannot learn about the server from advertisements on a LAN.

Figure 18 on page 155 is an example of how the clerk works downward from the
root of the cell namespace to locate an object entry. The object entry,
/.:/Sales/Spell , describes a spell-checking server at a company’s London sales
headquarters.

154 OSF® DCE Administration Guide— Core Components

As shown in Figure 18, the clerk locates the desired object entry by performing the
following steps:

1. On Node A, a spell-checking application requests the network address of the
/.:/Sales/Spell server. The clerk does not have that name in its cache, and the
only clearinghouse it knows about so far is the /.:/Bristol_CH clearinghouse on
Node B.

2. The clerk contacts the server on Node B with the lookup request.

3. The /.:/Bristol_CH clearinghouse does not contain the target object entry, but it
does contain a replica of the root directory. From the /.:/Sales child pointer in
the root, the clerk can learn how to contact clearinghouses that have a replica
of the /.:/Sales directory. The server on Node B returns this data to the clerk,
informing it that a replica of /.:/Sales is in the /.:/London_CH clearinghouse on
Node C.

4. The clerk contacts the server on Node C with the lookup request.

5. The /.:/Sales replica in the clearinghouse on Node C contains the
/.:/Sales/Spell object entry, so the server passes the address of the
spell-checking server to the clerk.

6. The clerk returns the information to the client application, which can now make
a remote call to the spell-checking server.

Long lookups, as illustrated in Figure 18, do not normally happen often after a clerk
establishes its cache and becomes more knowledgeable about clearinghouses and
their contents. However, the figure illustrates the resources and connections that
could be involved in an initial lookup. The figure also illustrates the importance of

Node A
Client

Clerk

6 1 /.:/Sales/Spell?

3 /.:/Sales is in
/.:/London_CH

2 ?

5 Success!

4 ?

/.:/Bristol_CH

/.:

/.:/Sales

Node B

Server

/.:/London_CH

/.:/Sales
/.:/Sales/Spell

Node C

Server

= Request Path
= Response Path
= Replica
= Object Entry
= Child Pointer

Legend:

Figure 18. How the Clerk Finds a Name

Chapter 13. How CDS Looks Up Names 155

maintaining connectivity between parent and child directories in the namespace. If
somewhere the directory path is broken or a clearinghouse is unreachable, a clerk
may not be able to find a name.

156 OSF® DCE Administration Guide— Core Components

Chapter 14. How CDS Updates Data

Once names exist in the namespace, users who have the appropriate access can
make changes to the data associated with the names. Any addition, modification, or
deletion of CDS data initially happens in only one replica: the master replica. This
chapter introduces the main methods by which CDS keeps other replicas
consistent: update propagation and the skulk operation. It also describes two
timestamps that help to ensure consistency in CDS data. By understanding the
concepts in this chapter, you can more effectively plan the content and replication of
directories and the organization of hierarchical cells in your namespace.

Update Propagation

An update propagation is an immediate attempt to apply one change to all replicas
of the directory in which the change was just made. Its main benefit is that it
delivers each change in an efficient and timely way.

Unlike a skulk operation, however, update propagation does not guarantee that the
change gets made in all replicas. If a particular replica is not available, the update
propagation does not fail; the change simply does not get made in that replica. The
skulk operation ensures that, when the replica is available again, it becomes
consistent with the other replicas in its set.

You can tune the degree of persistence that CDS uses in attempting an update
propagation—or prevent propagation altogether—by adjusting a directory attribute
called CDS_Convergence . Convergence also affects the frequency of skulks on a
directory. (See “Chapter 18. Managing CDS Directories” on page 179 for details on
viewing and changing a directory’s convergence.)

Skulk Operation

The skulk operation is a periodic distribution of a collection of updates. Its main
functions are to ensure that replicas receive changes that may not have reached
them during an update propagation and to remove outdated information from the
namespace.

For hierarchical cells, the skulk updates the child pointers in the parent cell and the
up pointers in the child cell (which point to the parent) so they reflect the updated
information.

Skulk maintenance functions include the following:

v Removing soft links that have expired. You can specify an expiration time when
you create a soft link.

v Maintaining child pointers, which includes removing pointers to directories that
were deleted.

v Removing information about deleted replicas.

CDS skulks each directory individually. During a skulk, CDS collects all changes
that were made to the master replica since the last successful skulk and then
disseminates the changes to all read-only replicas of the directory. All replicas must
be available for a skulk to be considered successful. If CDS cannot contact a
replica, it continues making changes in the replicas that it can contact, while

157

generating an event to notify you of the replica or replicas it could not update. CDS
then periodically reattempts the skulk until it completes successfully.

A skulk can begin in one of three ways:

v A CDS manager can enter a command to start an immediate skulk on a
directory.

v CDS starts a skulk as an indirect result of other namespace management
activities, which include the following:

– Adding or removing a replica

– Creating or deleting a directory

– Redesigning replica types

– Adding or deleting a child cell name in a parent cell

All of these activities produce changes in the structure of the namespace, so an
immediate skulk ensures that the new structure is reflected throughout the
namespace as quickly as possible.

v The CDS server initiates skulks automatically at a routine interval called the
background skulk time.

The background skulk time interval guarantees a maximum lapse of time
between skulks of a directory, regardless of other factors, such as namespace
management activities and user-initiated skulks. A CDS server periodically
checks each master replica in its clearinghouse and initiates a skulk if changes
were made in a directory since the last successful skulk of that directory.

How Timestamps Help Keep Data Consistent

CDS uses several timestamps to help ensure the consistency and accuracy of data.
The following two timestamps exist for every entry:

v Creation Timestamp (CTS)

v Update Timestamp (UTS)

CDS assigns a CTS to everything that is in a cell namespace: clearinghouses,
directories, object entries, soft links, and child pointers. The CTS is a unique value
reflecting the date, time, and location where a clearinghouse, directory, or entry in a
directory was created. It consists of two parts: a time portion and the system
identifier of the node on which the name was created. The two parts guarantee
uniqueness among timestamps that are generated on different nodes.

During propagation of a new name or a changed name to each replica of the
directory where it was created, every CDS server checks the validity of the CTS
before accepting the new name.

The UTS reflects the most recent change that was made to any of the attributes of
a clearinghouse, directory, object entry, soft link, or child pointer. When a CDS
server receives an update to an existing entry in a directory, it checks the validity of
the UTS before accepting the update.

Directories and replicas have several other timestamps that CDS uses when
determining whether to skulk a directory or make a change in a directory. (See the
directory(8dce) reference page for information about other timestamp attributes
used by CDS.)

158 OSF® DCE Administration Guide— Core Components

Chapter 15. Managing the DCE Directory Service

The DCE control program (dcecp) provides most of the commands you need to
manage CDS. This chapter describes the CDS entities that the DCE control
program permits you to manage and summarizes the available commands for
managing these entities.

For detailed descriptions of dcecp commands, see the dcecp(8dce) reference
page.

Using the DCE Control Program

“Chapter 1. DCE Control Program Introduction” on page 3 of this guide introduced
you to dcecp and its command syntax, so this chapter does not repeat that
information. Instead, this chapter describes commands that dcecp supplies
specifically for managing CDS.

CDS Managed Objects

DCE control program commands operate on the following objects representing CDS
entities:

directory
This object represents a CDS directory. The directory can be a parent or
child directory, or a master or read-only replica of the parent or child
directory. In addition to child directories, a CDS directory can contain soft
links and object entries for other CDS resources.

link This object represents a soft link in a CDS directory. A soft link is a pointer
to (alternate name for) a child directory, object entry, or other soft link.

object This object represents an object entry, which is the name of a CDS
resource that appears in the cell namespace. Some object entries name
resources that CDS clients can access (for example, a disk, machine, or
application). Others name resources solely for internal use by CDS (for
example, servers and clearinghouses).

clearinghouse
This object represents a CDS clearinghouse. A clearinghouse is a database
that is located on a CDS server machine for use by servers.

cdscache
This object represents a CDS cache. A CDS cache is a collection of
information about servers, clearinghouses, and other CDS resources that a
CDS clerk establishes on the local system for its reference.

cdsalias
This object represents an alias name of a DCE cell as known to CDS. This
object can be used to establish a hierarchical relationship between two
DCE cells.

cds This object represents a CDS server.

cdsclient
This object represents a CDS client.

159

DCE Control Program Operations for CDS

Table 2 lits the operations that dcecp performs on CDS objects.

Table 2. DCE Control Program Operations for CDS

Operation Definition

add Adds a child directory to a parent in the cell namespace.

catalog Displays a list of a DCE cell’s alias names or clearinghouses.

create Creates an object in the cell namespace. The object type can be
a directory, object entry, soft link, clearinghouse, CDS cache, or
CDS cell alias.

delete Deletes an object in the cell namespace. The object type can be
a directory, object entry, soft link, clearinghouse, or CDS cell
alias.

disable Removes the knowledge of a clearinghouse from the server
running on the local machine or disables a CDS server or CDS
client.

discard Completely removes the cache information held by a CDS client.

dump Displays an in-core dump of a CDS cache.

help Displays a help message for a CDS object type, describing the
operations that it performs or operations that can be performed
on it. The object type can be a directory, object entry, soft link,
clearinghouse, or CDS cache.

initiate Begins a specific operation on the specified clearinghouse.

list Displays the names of all of the CDS objects contained in a
directory.

merge Copies the contents of a directory into another directory.

modify Modifies the attribute information for a CDS object type. The
object type can be a directory, object entry, or soft link.

operations Displays the operations that a CDS object type can perform or
can have performed on it. The object type can be a directory,
object entry, soft link, or clearinghouse.

ping Checks if all or selected servers are running in a DCE cell.

remove Removes a child directory from a parent in the cell namespace.

repair Begins diagnostic operations on the specified clearinghouse.

show Displays the attribute information for a CDS object type. The
object type can be a directory, object entry, soft link, or
clearinghouse.

synchronize Tells a child or parent directory to synchronize with its replicas
(perform a skulk).

CDS Object Attributes

Every CDS object has attributes, which are pieces or sets of data associated with
the object. Attributes can reflect or affect the operational behavior of the object.
Some attributes are created and modified only by CDS; you can modify others as
needed for your environment. For a complete list of the attributes of a particular
CDS object, refer to the appropriate reference page. Also, you can use the dcecp
show operation for most objects to display the names and values of all attributes or
specific attributes of the objects.

160 OSF® DCE Administration Guide— Core Components

Using dcecp to Maintain CDS

You can use dcecp , for certain CDS maintenance tasks. The dcecp commands to
do this are listed in Table 3.

Table 3. dcecp Commands that Control CDS

Commands Definitions

cdsclient disable Stops the execution of a CDS clerk.

cds disable Stops the execution of a CDS server.

set _conf Permits you to set the confidence level of CDS clerk calls.

directory modify Reconstructs a directory’s replica set by designating a new
master replica.

put $_conf Permits you to see the current confidence level of CDS clerk
calls.

directory show Displays the information needed for creating a cell entry in DNS
or GDS.

cdsclient show Displays the attributes of a CDS clerk.

cds show Displays the attributes of a CDS server.

Chapter 15. Managing the DCE Directory Service 161

162 OSF® DCE Administration Guide— Core Components

Chapter 16. Controlling Access to CDS Names

This chapter presents information on the following CDS authorization topics:

v Overview of DCE authorization for CDS

v DCE authorization components supported by CDS

v DCE permissions supported by CDS

v Controlling access to CDS clerk and server management operations

v Control program commands and required permissions

v Editing ACLs on CDS names

v How CDS servers gain access to the namespace

v Setting up access control in a new namespace

Overview of DCE Authorization for CDS

CDS authorization allows you to control user access to the following CDS
components:

v Names that are stored in the namespace, including clearinghouses, directories,
object entries, soft links, and child pointers

v Execution of privileged CDS clerk and server commands

You control access to a name in the namespace by creating an ACL. An ACL
contains individual ACL entries that specify the permissions you grant a user
(principal) to the name with which the ACL is associated. The ACL entries that you
create determine collectively which principals can use the name and what
management operations they are allowed to perform on it.

CDS ACL management software, incorporated into all CDS clerks and servers,
performs access checking for incoming CDS requests. When a principal requests
an operation on a CDS name, ACL management software on a server that stores
the name examines the ACL entries associated with the name. The software then
grants or denies the operation, based on the permissions granted to the requesting
principal in the ACL entries. Similarly, when a principal requests a privileged
operation on a CDS clerk or server, ACL management software on that system
examines the ACL entries that are associated with the principal name that
represents the clerk or server. The software then grants or denies the operation,
based on the permissions granted to the requesting principal in the ACL entries.

The DCE control program (dcecp) provides commands that add, modify, copy,
delete, and display ACLs that are associated with CDS names, clerks, and servers.
See the OSF DCE Administration Commands Reference for detailed information on
the commands. The remainder of this chapter describes DCE authorization as it
applies specifically to CDS. Before you try to create or modify permissions to CDS
names, clerks, or servers, read “Part 6. DCE Security Service” on page 269 of this
guide for complete information on the DCE authorization mechanism.

ACL Types Supported by CDS

CDS supports the following DCE ACL types:

163

v Object ACL—You can use the object ACL type to grant permissions to any CDS
name (that is, object entries, soft links, child pointers, clearinghouses, and
directories), as well as to CDS clerks and servers. When associated with a CDS
directory, the permissions you grant with the object ACL type apply only to the
directory itself, not to the directory’s contents or to any child directories.

v Initial object creation ACL—The initial object creation ACL type applies only to
CDS directory names. Use this ACL type to grant permissions specifically to a
directory’s future contents, including soft links, application-defined object entries,
child pointers, and clearinghouse object entries. The permissions you grant by
using the initial object creation ACL type apply only to the future contents of the
directory, not to the directory itself. The permissions are inherited only by names
that are created in the directory after you create the ACL entry; permissions are
not propagated to names that already exist in the directory.

To edit an initial object creation ACL, you use the -io option of the dcecp acl
modify command.

v Initial container creation ACL—The initial container creation ACL type applies
only to CDS directory names. Use this ACL type to grant permissions to a
directory that automatically propagate (the default) to all child directories that you
may later create under that directory. The permissions you grant by using the
initial container creation ACL type are inherited only by the child directories that
you create after you create the ACL entry; permissions are not propagated to
child directories that already exist.

To edit an initial container creation ACL, you use the -ic option of the dcecp acl
modify command.

How Permissions Propagate to CDS Directories and Their Contents

By creating all three ACL types (object ACL, initial object creation ACL, and initial
container creation ACL) for a directory, you can grant access not only to the
directory itself but also to the directory’s future contents and all child directories
(and their contents) that may later be created.

Note: Permissions do not propagate from parent cells to child cells. You must set
permissions for each child cell individually.

For example, suppose you just created a new directory named /.:/sales . If you
create an ACL entry of the Object ACL type that grants user Smith read permission
to the /.:/sales directory, Smith can do the following:

v Read the attributes associated with the /.:/sales directory

v Display the names stored in the /.:/sales directory

If you create a second ACL entry of the initial object creation ACL type that grants
user Smith read permission to the /.:/sales directory, Smith can do the following:

v Read the attributes associated with the /.:/sales directory

v Display the names stored in the /.:/sales directory

v Read the attributes associated with all the names that you may later create in the
/.:/sales directory, unless prohibited by explicit ACL modification after their
creation

If you create a third ACL entry of the initial container creation ACL type that also
grants user Smith read permission to the /.:/sales directory, Smith can do the
following:

v Read the attributes associated with the /.:/sales directory

164 OSF® DCE Administration Guide— Core Components

v Display the names stored in the /.:/sales directory

v Read the attributes associated with all the names that you may later create in the
/.:/sales directory

v Perform all of the three preceding operations on all child directories that may
later be created under the /.:/sales directory

(See “Part 6. DCE Security Service” on page 269 of this guide for complete
information on default ACLs.)

ACL Entry Types Used for Principals

You use ACL entry types to specify the category of principal for which the ACL entry
is created. These ACL entry types are described in Table 4.

Table 4. ACL Entry Types Used for CDS Principals

Entry Type Purpose

user Specifies an ACL entry for an individual principal
whose credentials were authenticated within the local
cell.

group Specifies an ACL entry for an authorization group
whose members have been authenticated within the
local cell.

other_obj Specifies an ACL entry for authenticated principals in
the local cell who are not individual users named by
an ACL entry of the type user or members of a
group named by an ACL entry of the type or group .

foreign_user Specifies an ACL entry for an authenticated principal
in a foreign cell.

foreign_group Specifies an ACL entry for an authorization group
whose members were authenticated in a foreign cell.

foreign_other Specifies an ACL entry for authenticated principals in
a foreign cell who are not individual users named by
an ACL entry of the type foreign_user or members
of a group named by an ACL entry of the type
foreign_group .

any_other Specifies an ACL entry for an authenticated principal
who is not otherwise covered by any of the
preceding ACL entry types.

mask_obj Specifies an ACL entry containing a mask that is
substituted for the permissions of any principals,
whose credentials are either authenticated or
unauthenticated.

unauthenticated Specifies an ACL entry for principals who cannot
pass authentication procedures.

user_delegate Specifies an ACL entry for an intermediary that acts
for an authenticated principal in the local cell.

group_delegate Specifies an ACL entry for an intermediary that acts
for the authenticated principals who are members of
an authorization group in the local cell.

Chapter 16. Controlling Access to CDS Names 165

Table 4. ACL Entry Types Used for CDS Principals (continued)

Entry Type Purpose

other_delegate Specifies an ACL entry for an intermediary that acts
for authenticated principals in the local cell who are
not individual users named by an ACL entry of the
type user_delegate or who are not members of a
group named by an ACL entry of the type
group_delegate .

foreign_user_delegate Specifies an ACL entry for an intermediary that acts
for an authenticated principal in a foreign cell.

foreign_group_delegate Specifies an ACL entry for an intermediary that acts
for the members of an authorization group in a
foreign cell.

foreign_other_delegate Specifies an ACL entry for an intermediary that acts
for authenticated principals in a foreign cell who are
not individual users named by an ACL entry of the
type foreign_user_delegate or members of a group
named by an ACL entry of the type
foreign_group_delegate .

any_other_delegate Specifies an ACL entry for an intermediary that acts
for authenticated principals in the local cell or in a
foreign cell who are not named by an ACL entry of
any other type for intermediaries of authenticated
principals or groups.

DCE Permissions Supported by CDS

CDS supports the following DCE permissions: read (r), write (w), insert (i), delete
(d), test (t), control (c), and administer (a). Each permission has a slightly different
meaning, depending on the kind of CDS name with which it is associated. In
general, the permissions are defined as follows:

v Read permission—Allows a principal to look up a name and view the attribute
values that are associated with it.

v Write permission—Allows a principal to change the modifiable attributes that are
associated with a name, except its ACLs.

v Insert permission—Allows a principal to create new names in a directory (for use
with directory entries only).

v Delete permission—Allows a principal to delete a name from the namespace.

v Test permission—Allows a principal to test whether an attribute of a name has a
particular value without being able to actually see any of the values; that is,
without having read permission to the name.

Test permission provides application programs with a more efficient way to verify
a CDS attribute value. Rather than reading an entire set of values, an application
can test for the presence of a particular value.

v Control permission—Allows a principal to modify the ACL entries that are
associated with a name. (Note that read permission is also necessary for
modifying a CDS entry’s ACLs; otherwise, dcecp and acl_edit will not be able to
bind to the entry.) Control permission is automatically granted to the creator of a
CDS entry.

v Administer permission—Allows a principal to issue CDS commands that control
the replication of directories. Administer permission is for use with directory
entries only.

166 OSF® DCE Administration Guide— Core Components

A principal needs some permission to a name before it can try to perform
management operations on the name. Otherwise, CDS does not recognize the
name when the principal tries the management operation and returns an error
stating that the name does not exist. If the principal has some permissions, but not
those required to perform the operation, CDS returns an error explaining that the
principal had insufficient rights to perform the operation.

The creator of a name is automatically granted all permissions that are appropriate
for the type of name that is created. For example, a principal that is creating an
object entry is granted read, write, delete, test, and control permissions to the object
entry. A principal that is creating a directory is granted read, write, insert, delete,
test, control, and administer permissions to the directory.

Note: Unlike the security mechanisms that are enforced by most other file systems,
CDS does not require a principal to have access to all intermediate elements
in the pathname (full name) of a name in order to perform an operation on
the name. For example, consider an object entry object1 stored in the
/.:/sales directory. In CDS, you can grant a principal access to the object
entry /.:/sales/object1 without necessarily granting the principal access to
either the /.:/sales directory or the cell root directory (/.:).

Controlling Access to CDS Clerk and Server Management Operations

CDS authorization allows you to control the use of CDS commands that involve
local management operations on CDS clerks and servers. Principal names for each
clerk and server are stored in the security namespace. An object entry that contains
the binding information for each clerk and server is stored in the CDS namespace
in the /.:/hosts subdirectory. Servers are represented as /.:/hosts/
hostname/cds-server . Clerks are represented as /.:/hosts/ hostname/cds-clerk .

Each clerk and server maintains a separate ACL that contains entries specifying the
principals allowed to perform these operations. Unlike the ACLs that are associated
with names in the namespace, the ACLs that are associated with clerks and servers
exist exclusively to provide local control of the use of these commands.

Whenever a new clerk or server is initialized, an ACL is created on the clerk or
server system. An initial ACL entry is also created, granting the machine principal
and the namespace authorization group (subsys/dce/cds-admin) read, write, and
control permissions to the clerk or server process on that system. All other
principals, both authenticated and unauthenticated, are granted read permission.
The creation of this ACL entry ensures that, immediately after its creation, any user
logged into the system as the machine principal is permitted to execute privileged
clerk or server CDS commands.

Note: Use of the machine principal for this purpose is provided as a convenience
and assumes that the account itself (user name and password) is already
moderately secure. Namespace administrators may prefer to modify this
scheme and grant permission to particular clerks and servers on behalf of
other individual principals or authorization groups.

To edit an ACL that is associated with a CDS clerk or server, you use the dcecp acl
modify command with the -change option. For example, to change the permissions
for the user michaels in the ACL that is associated with the CDS clerk on node
orion , enter the following command:

Chapter 16. Controlling Access to CDS Names 167

dcecp> acl modify /.:/hosts/orion/cds-clerk -change {user michaels rw}
dcecp>

Keep in mind that clerks and servers are also represented by entries in the
namespace. To edit an ACL that is associated with the namespace entry for a CDS
clerk or server, you must include the -entry option, as well as the -change option,
in the acl modify command line. For detailed instructions on how to modify an ACL
on the CDS entry for a DCE resource, see “Editing ACLs on CDS Names” on
page 170.

Control Program Commands and Required Permissions

Table 5 lists all the dcecp commands that operate on CDS objects and the
permissions that a principal must have to execute the commands.

Table 5. DCE Control Program Commands and Required Permissions

Commands Required Permissions

cds disable Delete, write, and create permissions on the
namespace entry of the server.

cds show Read permission on the namespace entry of the
server.

cdsalias catalog Read permission to the cell’s root directory whose
alias you want to list.

cdsalias connect auth_info permission on the the local cell’s root
directory. Also, the CDS server principal on the
machine containing the master replica of the local
cell’s root directory needs insert permission on the
parent cell’s root directory.

cdsalias create auth_info permission on the root directory of the cell.

cdsalias delete auth_info permission on the root directory of the cell.

cdscache create Write permission to the clerk that is to create the
server entry in the local CDS cache.

cdscache delete Write permission to the clerk that will be deleted from
the server entry in the local CDS cache.

cdscache discard Superuser (root) privileges on the clerk system where
the CDS cache resides. No CDS permissions are
required.

cdscache dump Superuser (root) privileges on the clerk system where
the CDS cache resides. No CDS permissions are
required.

cdscache show Read permission to the clerk that is designated to
retrieve either the server (-server option) or
clearinghouse (-clearinghouse option) information
from the CDS cache.

cdsclient disable Delete, write, and create permissions on the
namespace entry of the clerk.

cdsclient show Read permission on the namespace entry.

clearinghouse catalog No special privileges are needed.

168 OSF® DCE Administration Guide— Core Components

Table 5. DCE Control Program Commands and Required Permissions (continued)

Commands Required Permissions

clearinghouse create Write permission to the server on which you intend to
create the clearinghouse, and Admin permission to
the cell root directory. Also, the server principal needs
read, write, and Admin permissions to the cell root
directory.

clearinghouse delete Write and delete permissions to the clearinghouse to
be deleted, and Admin permission to all directories
that store replicas in the clearinghouse. Also, the
server principal needs delete permission to the
associated clearinghouse object entry, and Admin
permission to all directories that store replicas in the
clearinghouse.

clearinghouse disable Write permission to the CDS server on which the
clearinghouse resides.

clearinghouse initiate Write permission on the clearinghouse server and
Admin permission on the cell root directory. The
server principal needs read, write, and Admin
permission on the cell root directory.

clearinghouse repair Write permission to the clearinghouse server and
Admin permission to the cell root directory. The server
principal needs read, write, and Admin permission to
the cell root directory.

clearinghouse show Read permission to the clearinghouse whose
attributes you want to list.

clearinghouse verify Write permission to the clearinghouse server and
Admin permission to the cell root directory. The server
principal needs read, write, and Admin permission to
the cell root directory.

directory add Insert permission to the parent directory where the
child pointer (-member option) is to be placed.

directory create Insert and read permissions to the parent directory,
and write permission to the clearinghouse that stores
the master replica of the new directory. Also, the
server principal needs read and insert permissions to
the parent directory of the new directory.

directory delete Delete permission to the directory and write
permission to the clearinghouse that stores the master
replica of the directory. The server principal (hosts/
hostname/cds-server) needs Admin permission to the
parent directory delete permission to the child pointer
that points to the directory you intend to delete.

directory list Read permission to the directory whose contents you
want to list.

directory merge Read permission to the source and destination
directories, and insert permission to the destination
directory.

directory modify Write permission to the directory for which you want
to add (-add option), change (-change option), or
remove (-remove option) the attribute or attribute
value.

directory remove Delete permission to the child pointer (-member
option) or Admin permission to the parent directory.

Chapter 16. Controlling Access to CDS Names 169

Table 5. DCE Control Program Commands and Required Permissions (continued)

Commands Required Permissions

directory show Read permission to the directory whose attributes you
want to list. For a replica of a directory (-replica
option)—Read permission to the directory of which the
replica is a member. For a child directory (-member
option)—Read permission to the child directory.

directory synchronize Admin, write, insert, and delete permission to the
directory. Also, the server principal needs admin, read,
and write permissions to the directory.

link create Insert permission to the directory in which you intend
to create the link.

link delete Delete permission to the link entry, or Admin
permission to the directory that stores the link entry to
be deleted.

link modify Write permission to the link whose attributes are to be
modified.

link show Read permission to the link whose attributes are to be
listed.

object create Insert permission to the parent directory that is to
store the object entry.

object delete Delete permission to the object entry, or administer
permission to the parent directory that stores the
object entry.

object modify Write permission to the object entry for which you
want to add (-add option), change (-change option),
or remove (-remove option) the attribute or attribute
value.

object show Read permission to the object entry whose attributes
you want to list.

Editing ACLs on CDS Names

To edit an ACL that is associated with an entry in the CDS namespace for a child
directory, clearinghouse, soft link, or some other CDS object, specify the -entry
option to any dcecp acl command. The -entry option is especially useful in case of
an ambiguous pathname. In some cases, a pathname can resolve to a leaf object
in the DCE Directory Service and to an object in some other DCE component that
supports ACLs. In these cases, you must use the -entry option to edit the leaf
object in CDS. You do not need to specify this option to edit ACLs that are
associated with actual clearinghouses or directories.

For example, to edit the permissions in the Object ACL that is associated with a
CDS entry for a clearinghouse named /.:/Paris1_CH , you would enter the following
command:
dcecp> acl modify /.:/Paris1_CH -entry -change {unauthenticated -}
dcecp>

To edit the permissions in the Object ACL that is associated with the /.:/Paris1_CH
clearinghouse itself, you would enter the following command:
dcecp> acl modify /.:/Paris1_CH -change {unauthenticated -}
dcecp>

170 OSF® DCE Administration Guide— Core Components

Another example is the soft link /.../eng_printer . The target of this soft link is
/.../boston.com/print_server . To edit the soft link leaf entry that is in the CDS
namespace, enter the following command:
dcecp> acl modify /.../eng_printer -change -entry \
> {group subsys/dce/cds-admin rwdtc}
dcecp>

How CDS Servers Gain Access to the Namespace

CDS servers require permission to the cell root directory and to lower-level
directories to successfully execute the following CDS commands:

v clearinghouse create

v directory create (For directories and replicas)

v directory delete (For directories and replicas)

v directory synchronize

To automate the process of granting all CDS servers the permissions that they
require, the CDS cell configuration process creates an authorization group for CDS
servers under the fixed name subsys/dce/cds-servers . The principal name of the
initial server in the cell is added to this group as part of the configuration process.
Immediately after the group is created, the configuration process grants full
permissions (r, w, i, d, t, c, a) to the cell root directory of the new namespace on
behalf of the group. ACL entries of the object ACL and initial container creation ACL
types are created by specifying subsys/dce/cds-servers as the principal in each
ACL entry. This ensures that the group has full access to all future directories and
their contents.

Thereafter, whenever a new server is configured in the cell, the server configuration
process automatically adds the principal name of the new server to the group.
Through this process, all CDS servers in the cell receive adequate permissions to
all directories in the namespace.

Setting Up Access Control in a New Namespace

You should plan a consistent access control policy and be ready to implement the
policy as soon as you configure your first CDS server and before you create or
populate any new directories. Among the tasks you can perform are the following:

v Adding members to the namespace authorization group

v Creating additional authorization groups

v Establishing maximum permissions for unauthenticated principals

Adding Members to the Namespace Authorization Group

To facilitate managing and troubleshooting your namespace, the cell configuration
process creates a namespace authorization group under the fixed name
subsys/dce/cds-admin . The configuration process then grants the group full
access to the cell root directory. This access propagates to the entire namespace
as it evolves.

Immediately after its creation, the authorization group contains only the name that
the initial namespace administrator specified during the cell configuration process.
You can use the dcecp group add command to add the principal names of other
individuals in your organization who you want to administer and troubleshoot the

Chapter 16. Controlling Access to CDS Names 171

namespace. Because this group possesses full access to the entire namespace, its
members can intervene, whenever necessary, to solve problems for namespace
users with fewer permissions. By removing a user’s principal name from the group,
the user described by that principal loses the access assigned to the group.

(See “Part 6. DCE Security Service” on page 269 of this guide for complete
information on how to add and delete group members.)

Creating Additional Authorization Groups

Authorization groups can provide a convenient and flexible way to control access to
your namespace. You can combine users according to organization, work type,
security status, and so on, and then grant each group a specific set of permissions
to specific directories or other names in the namespace.

To delegate authority locally, you can create an authorization group for each of the
functional directories that you plan to create in your namespace. For example, you
could create an authorization group named subsys/dce/sales-admin and include,
as members, the individuals who are responsible for managing the /.:/sales
directory. Each local authorization group could have full access to the contents of
the directory for which it is responsible.

Establishing Maximum Permissions for Unauthenticated Principals

If you want to apply a namespace-wide set of maximum permissions for all
unauthenticated principals, you should do so immediately after you configure your
first CDS server and before you create and populate any directories below the cell
root. By creating an unauthenticated ACL entry and an any_other entry for the cell
root by using the object ACL and initial container creation ACL types, you can take
advantage of automatic propagation of the unauthenticated entry to the entire
namespace as it evolves.

172 OSF® DCE Administration Guide— Core Components

Chapter 17. Managing Clerks, Servers, and Clearinghouses

CDS clerks, servers, and clearinghouses are initially created and started as part of
the CDS clerk and server configuration. Thereafter, clerk and server processes are
created and started with a series of commands that are executed either manually or
by the startup scripts on the systems where they are running. These CDS entities
are largely self-regulating and, apart from routine monitoring, require only minor
management intervention.

This chapter explains how to monitor CDS clerks, servers, and clearinghouses and
perform other management tasks, such as backing up namespace information.

Monitoring Clerk, Server, and Clearinghouse Counters

Every clerk, server, and clearinghouse maintains a set of attributes called counters
to keep track of the read, write, and other operations that it performed, or that were
performed on it, since it was last started up. You can monitor these counters to
determine the type and volume of the CDS traffic that is being generated on your
network.

Clerk, server, and clearinghouse counters are fully described in the OSF DCE
Administration Commands Reference.

Displaying Clerk Counters

Use the dcecp cdsclient show command to display current counter values for a
clerk. For example, to display the current values of all attributes that are associated
with a clerk, you enter the following command:
dcecp> cdsclient show /.:/hosts/<hostname>/cds-clerk

Displaying Server Counters

Use the dcecp cds show command to display the current counter values for a
server. For example, to display the current values of all the attributes that are
associated with a server, you enter the following command:
dcecp> cds show

Displaying Clearinghouse Counters

Use the dcecp clearinghouse show command with the -counters option to
display the current counter values for a specified clearinghouse. For example, the
following command displays the current values of all attributes that are associated
with the remote clearinghouse /.:/Paris1_CH :
dcecp> clearinghouse show /.:/Paris1_CH -counters

Monitoring Clerk Communications with Specific Clearinghouses

Every CDS clerk maintains a separate set of clearinghouse counters to keep track
of read, write, and other operations that it directs to each of the clearinghouses with
which it communicates. These records collectively represent the cached
clearinghouse entity for a particular clerk.

173

You can monitor a clerk’s cached clearinghouse counters so that you can look at
the distribution of the clerk’s transactions to each of the clearinghouses that it uses
and find out where a clerk’s requests are most often directed. To do this, you use
the dcecp cdscache show command with the -clearinghouse option. For
example, to display the cached clearinghouse counters that are maintained by the
local clerk for the /.:/NY1_CH clearinghouse, you enter the following command:
dcecp> cdscache show /.:/NY1_CH -clearinghouse

Displaying the Contents of a Clearinghouse

Use the dcecp clearinghouse show command to display the directory names of all
the directories that are stored in a particular clearinghouse. For example, to display
the names of the directories that are stored in the clearinghouse /.:/Chicago2_CH ,
you enter the following command:
dcecp> clearinghouse show /.:/Chicago2_CH

(See “Chapter 19. Viewing the Structure and Contents of a Namespace” on
page 187 for more examples of displaying clearinghouse information.)

Forcing the Clearinghouse to Checkpoint to Disk

Under normal operations, the server will periodically checkpoint the clearinghouse
from memory to disk. However, you can perform this task immediately by having
write permission to the server and entering the dcecp clearinghouse initiate
command with the checkpoint option. For example, to checkpoint the
clearinghouse /.:/Boston3_CH from memory to disk, you enter the following
command:
dcecp> clearinghouse initiate /.:/Boston3_CH -checkpoint

Disabling Clerks and Servers

You may occasionally have to disable the clerk or server that is running on a
particular system when you need to perform diagnostic or troubleshooting work that
requires active clerk or server processes to be suspended. Usually, you can use the
dce_config procedure to start and stop DCE daemons. You can disable CDS clerks
and servers by using the dcecp commands, cdsclient disable and cds disable .

Disabling a Clerk

To disable the clerk that is on the local node, enter the following command:
dcecp> cdsclient disable /.:/hosts/<hostname>/cds-clerk

Disabling a Server

To disable the server that is on the local node, enter the following command:
dcecp> cds disable /.:/hosts/<hostname>/cds-server

174 OSF® DCE Administration Guide— Core Components

Restarting Clerks and Servers

CDS clerk and server processes are created and started automatically by startup
scripts that execute whenever the host system is rebooted. Sometimes, however,
you may need to run these scripts yourself if a clerk or server fails to start
automatically upon reboot, or if you want to restart a clerk or server that you
disabled to perform a backup or do diagnostic work on the host system.

Restarting a Clerk

To restart a clerk, follow these steps:

1. Log into the clerk system as superuser (root).

2. Enter the following command to see if the dced process is already running:
ps -e

3. If the dced process appears on the list of active processes, proceed to step 4. If
the dced process does not appear on the list of active processes, enter the
following command to start the process:
dced

4. Enter the following command to start the cdsadv process:
cdsadv

Restarting a Server

To restart a server, follow these steps:

1. Log into the server system as superuser (root).

2. Enter the following command to see if the dced process is already running:
ps -e

3. If the dced process appears on the list of active processes, proceed to step 4. If
the dced process does not appear on the list of active processes, enter the
following command to start the process:
dced

4. Enter the following command to see if the cdsadv process is already running:
ps -e

5. If the cdsadv process appears on the list of active processes, proceed to step
6. If the cdsadv process does not appear on the list of active processes, enter
the following command to start the process:
cdsadv

6. Enter the following command to restart the server:
cdsd

When the server process starts, it starts all clearinghouses on the system.

Preserving a Clearinghouse Across a Server System Upgrade

If you plan to upgrade the operating system software on a CDS server system, and
you want to preserve the clearinghouse (or clearinghouses) on the system, follow
this procedure:

1. Make sure that you disable the clerk and server.

2. Before you perform the system upgrade, back up the following CDS files:

Chapter 17. Managing Clerks, Servers, and Clearinghouses 175

v cds_attributes

v cds_files

v *_ch.checkpoint nnnnnnnn

v *_ch.tlog nnnnnnnn

v *_ch.version

v cds_cache. nnnnnnnn

v cds_cache.version

v cds_cache.wan

(See the OSF DCE Administration Guide—Introduction and the OSF DCE
Porting and Testing Guide for the full pathnames of all CDS files.)

3. Perform the system upgrade.

4. Restore all the files that you backed up in step 2.

5. Follow the procedure described in “Restarting Clerks and Servers” on page 175
for restarting a server. When the server process starts, it automatically locates
the appropriate restored files and starts all clearinghouses on the system.

Backing Up Namespace Information

Because updates and skulks of directories can occur asynchronously, and because
of the distributed nature of a namespace, you cannot always depend on traditional
backup methods to preserve CDS data.

The rest of this chapter tells when to use the following backup mechanisms:

v Directory replication

v Operating system backups

Using Replication to Back Up Namespace Information

Directory replication is always the most reliable way to back up the information that
is in your namespace. When you create a new replica of a directory at a
clearinghouse, you are not only distributing the information but also creating an
up-to-date, real-time backup of the information. If a replica in one clearinghouse
becomes unavailable, users can look up the information they need in another
replica of the directory in some other clearinghouse. The more replicas of a
directory you create, the more likely users will always be able to find the information
that is contained in the directory somewhere in the namespace.

If an entire clearinghouse is corrupted, you can restore it by creating a new
clearinghouse and then creating new replicas of the directories that were stored
there. (See “Chapter 18. Managing CDS Directories” on page 179 for complete
information on how to create a replica.)

Using Operating System Backups

Because a namespace is a distributed database to which modifications are
synchronized at variable intervals, any traditional backup of a particular server
system always contains old and incomplete information. If you frequently create,
modify, or delete names, restoring an out-of-date backup can cause recently
created names to disappear, recent modifications to be reversed, or recently

176 OSF® DCE Administration Guide— Core Components

deleted names to reappear in the namespace. The degree to which a traditional
backup reflects the current condition of a clearinghouse depends entirely on the
following conditions:

v How recently the backup was created

v What modifications were made since that time

v Whether the backup included the clearinghouse files in the directory
dcelocal/var/directory/cds

If you decide to use operating system backups, you only need to back up the server
systems whose clearinghouses store master replicas of directories. To ensure that
you back up your namespace completely, check for the following:

v The servers on these systems are disabled by using the dcecp cds disable
command.

v The files in the root directory dcelocal/var/directory/cds are included in the
backup.

If your namespace is small enough to be maintained in one clearinghouse, you can
reliably use traditional operating system backups to save and restore the
clearinghouse data. If only one clearinghouse exists, only one replica (the master
replica) of each directory exists. This eliminates the need to account for the
discrepancies that may exist among multiple directory replicas. Remember that the
more frequently you back up clearinghouse data, the more up-to-date that
information will be if you need to restore it.

Chapter 17. Managing Clerks, Servers, and Clearinghouses 177

178 OSF® DCE Administration Guide— Core Components

Chapter 18. Managing CDS Directories

If you manage a namespace in a small, slow-growth network of 25 nodes or less,
you can maintain all your names in the root directory and may not need to create
additional directories. However, if you manage a namespace in a network of more
than 25 nodes, you should consider creating at least one additional level of
directories under the root.

This chapter explains how to create directory hierarchies in the cell namespace and
describes tasks related to managing directories, such as

v Creating and deleting directory replicas

v Skulking a directory

v Modifying a directory’s convergence

Creating Directories

By creating directories, you make it possible to replicate and manage groups of
object entries according to where, how often, or by whom they are used. Grouping
related object entries into separate directories also makes it easier to control access
because it allows you to take advantage of default ACL entry propagation.

CDS cell configuration creates an initial hierarchy of directories under the root so
that DCE components can fix locations within the namespace where they can
create and catalog their object entries. Among the directories created by cell
configuration is the subsys directory, beneath which independent software vendors
(ISVs) can create their own directories to store the object entries that are used by
their distributed applications.

Alternatively, ISVs and other users of the namespace may prefer to create a
hierarchy of directories of their own design under the root to store their information.

(See the OSF DCE Administration Guide—Introduction for more information on the
initial hierarchy that is established by cell configuration.)

Permissions for Creating a Directory

To create a directory, you need the following permissions:

v Insert permission to the parent of the new directory.

v Write permission to the clearinghouse that stores the master replica of the new
directory.

v The server principal for the server system where you enter the DCE control
program’s (dcecp) directory create command must have read and insert
permissions to the parent directory of the new directory.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the
dcecp acl show command on the parent directory to verify that the server
principal has the appropriate permissions. (See the acl(8dce) reference page for
more information on arguments to the acl show command.)

179

Entering the directory create Command

Use the directory create command to create a new directory (master replica) with
the name that you specify. When you use this command, CDS, by default, stores
the master replica of the new directory in the same clearinghouse that stores the
master replica of the new directory’s parent directory.

For example, to create a directory named /.:/sales and store the master replica of
the new directory in the root directory’s initial clearinghouse, you enter the following
command:
dcecp> directory create /.:/sales
dcecp>

Note: For the directory creation to succeed, the master replica of the new
directory’s parent directory must be available when you enter the command.

You can use the directory create command’s -clearinghouse option to store the
master replica of a new directory in a different clearinghouse than the parent
directory’s clearinghouse. For example, to place the new directory created in the
previous example into another clearinghouse (/.:/Chicago1_CH), you would enter
the following command:
dcecp> directory create /.:/sales -clearinghouse /.:/Chicago1_CH
dcecp>

(See the directory(8dce) reference page for complete information on arguments
and options to the directory create command.)

Checking the ACL Entries for a New Directory

After you create a directory, you want to verify that the users and applications for
whom the directory was created have the appropriate permissions. To do this, use
the acl show command on the directory to see the associated ACL entries. For
example:
dcecp> acl show /.:/sales
{unauthenticated r--t-}
{group subsys/dce/cds-admin rwdtc}
{group subsys/dce/cds-server rwdtc}
{any_other r--t-}
dcecp>

(See the acl(8dce) reference page for complete information on the acl show
command.)

If the required permissions were not inherited from the new directory’s parent
directory, use the acl modify command to create the necessary ACL entries. For
example:
dcecp> acl modify /.:/sales -add {user cell_admin rwdtcia}
dcecp>

(See the acl(8dce) reference page for complete information on the arguments and
options for the acl modify command.)

Upgrading the Directory Version on the Cell Root Directory

Upgrading the directory version on the cell root directory has special significance.
This procedure implies that all CDS servers in the cell have been upgraded to the

180 OSF® DCE Administration Guide— Core Components

latest version, given that a cell root directory is replicated in all CDS servers in the
cell. After you have set the CDS_UpgradeTo attribute on the cell root directory, the
server software soon recognizes this and sets the CDS_UpgradeTo attribute on all
directories in the cell. Eventually, the CDS_DirectoryVersion attribute on all the
affected directories in the cell will be upgraded to the new value.

Upgrading the Directory Version on a Directory

To use new features in a given release of CDS, you may need to explicitly update
the directory version of a directory. This typically occurs when the servers
replicating the directory all have been upgraded to the latest version of software, as
older versions will not recognize the new features.

To upgrade the directory version, you need write permission to the directory and
you must use the following commands:
dcecp> directory modify directory-name -add {CDS_UpgradeTo <v.n>} \
> -single
dcecp> directory synchronize directory-name

Eventually, all clearinghouses that contain a replica of this directory will detect the
presence of the CDS_UpgradeTo attribute and upgrade the CDS_ReplicaVersion
attribute on the appropriate replica. You can also use the following command on all
clearinghouses that are replicating the directory:
dcecp> clearinghouse verify clearinghouse-name

This command forces the server background thread to run, thereby freeing you to
perform other tasks until the job finishes. After you have verified all affected
clearinghouses, you will need to perform another skulk of the directory to finally set
the CSA_DirectoryVersion attribute to the appropriate value. The
CDS_DirectoryVersion attribute is not upgraded until all of the
CDS_ReplicaVersion attribute values of all replicas contain the new value.

Creating a Read-Only Replica

From time to time, you will want to create read-only replicas of directories. You
create read-only replicas of a directory for the following purposes:

v To distribute the information that is contained in the directory throughout your
network, and to make the information more accessible to users and applications
at other locations.

v To improve response time, especially in a namespace where users are dispersed
over long distances. You should create read-only replicas in clearinghouses that
are located near the user groups and applications that most frequently use the
information that is contained in the directory.

v To preserve a backup of the information that is contained in the master replica of
the directory. Maintaining multiple replicas ensures that the temporary loss of an
individual replica does not cause an interruption in service and that the loss of a
replica can be easily recovered. Even directories that store information used at
only one particular site should be replicated in at least one other clearinghouse,
preferably on a server at another location, so that a local failure at one site does
not cause both replicas to be unreachable at the same time. (See “Chapter 17.
Managing Clerks, Servers, and Clearinghouses” on page 173 for more
information on using directory replication as a means of backing up CDS
information.)

Chapter 18. Managing CDS Directories 181

Read-only replicas of directories are safe from alteration by users. Users can look
up information in a read-only replica, but they are not permitted to create new
information or modify existing information.

You create read-only replicas with the -replica option of the directory create
command. You should create the replicas in clearinghouses whose users need to
access the directory but do not need, or are not permitted, to update its contents.

Before You Create a Replica

Before you try to create a replica, verify that the clearinghouse containing the
master replica of the directory you intend to replicate is running and reachable. To
verify that this condition is satisfied, follow these steps:

1. For the directory that you intend to replicate, use the directory show command
to display the directories attribute values and look at the CDS_Replicas
attribute. The value of this attribute shows the names of the clearinghouses that
currently store a replica of the directory. For example:
dcecp> directory show /.:/sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1994-08-12-09:52:30.396-04:00I0.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID a37d84d0-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_Replicas
{{CH_UUID ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CH_Name /.../Chicago1/Chicago1_CH}
{Replica_Type Master}
{Tower {ncacn_ip_tcp 130.105.5.16}}
{Tower {ncadg_ip_udp 130.105.5.16}}}}

{CDS_AllUpTo 1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}
{CDS_Convergence medium}
{CDS_ParentPointer
{{Parent_UUID d034bc25-b5db-11cd-8ffe-0000c0f7de56}
{Timeout
{expiration 1994-08-12-09:52:30.396}
{extension +1-00:00:00.000I0.000}}

{myname /.../Chicago1/sales}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}
{CDS_LastUpdate 1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}
{CDS_RingPointer ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CDS_Epoch a3df2a50-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_ReplicaVersion 3.0}
dcecp>

2. With this information, use the directory show command with the
-clearinghouse and -replica options to verify that you can get a response from
the clearinghouse that stores the master replica. For example:
dcecp> directory show /.:/sales -replica -clearinghouse /.:/Chicago1_CH
{RPC_ClassVersion {01 00}}
{CDS_CTS 1994-08-12-09:52:30.396-04:00I0.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID a37d84d0-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_Replicas
{{CH_UUID ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CH_Name /.../Chicago1/Chicago1_CH}
{Replica_Type Master}
{Tower {ncacn_ip_tcp 130.105.5.16}}
{Tower {ncadg_ip_udp 130.105.5.16}}}}

{CDS_AllUpTo 1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}
{CDS_Convergence medium}

182 OSF® DCE Administration Guide— Core Components

{CDS_ParentPointer
{{Parent_UUID d034bc25-b5db-11cd-8ffe-0000c0f7de56}
{Timeout
{expiration 1994-08-12-09:52:30.396}
{extension +1-00:00:00.000I0.000}}

{myname /.../Chicago1/sales}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}
{CDS_LastUpdate 1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}
{CDS_RingPointer ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CDS_Epoch a3df2a50-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_ReplicaVersion 3.0}
dcecp>

The directory show command with the -clearinghouse and -replica options
displays all the attribute values for the directory and its replica role.

Note: If any read-only replicas in the directory’s existing replica set are unavailable,
the replication cannot complete. The normal skulking process completes the
replication as soon as all replicas in the directory’s replica set become
available.

Permissions for Creating Replicas

To create a replica, you need the following permissions:

v Administer permission to the directory that you intend to replicate

v Write permission to the clearinghouse that stores the new replica

v For the replica creation to succeed, the server principal for the server system
where you enter the directory create command with the -replica and
_clearinghouse options must have read, write, and administer permissions to
the directory that you intend to replicate.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the acl
check command to verify that the server principal has the appropriate
permissions. (See the acl(8dce) reference page for complete information on
using the acl check command.)

Entering the directory create Command

Use the directory create command with the -replica and -clearinghouse options
to create a replica of a directory and store it in the clearinghouse that you specify.
For example, the following command creates a replica of the /.:/mfg directory and
stores the replica in a clearinghouse that is named /.:/Paris1_CH :
dcecp> directory create /.:/mfg -replica -clearinghouse /.:/Paris1_CH
dcecp>

Deleting a Read-Only Replica

Sometimes you may need to delete a read-only replica when the information that it
contains is no longer needed by the local users of the clearinghouse in which the
replica is stored. You may also need to delete a read-only replica to prepare for
deleting the directory of which the replica is a member, or before permanently
removing the clearinghouse in which the replica is stored.

Chapter 18. Managing CDS Directories 183

Permissions for Deleting a Replica

To delete a replica, you must have the following permissions:

v Administer permission to the directory whose replica you want to delete

v Write permission to the clearinghouse from which you are deleting the replica

Entering the directory delete Command

Use the directory delete command with the -replica and -clearinghouse options
to delete a replica from the clearinghouse that you specify. For example, the
following command deletes a replica of the /.:/eng directory from the
/.:/Chicago2_CH clearinghouse:
dcecp> directory delete /.:/eng -replica -clearinghouse /.:/Chicago2_CH
dcecp>

Note: You can delete a directory’s master replica only by deleting the directory
itself (by using the directory delete command). (See “Chapter 21.
Restructuring a Namespace” on page 201 for complete information on how to
delete a master replica.)

Skulking a Directory

The skulk operation is a periodic distribution of recent modifications that were made
to the namespace. CDS skulks every directory at regular intervals according to the
value assigned to the directory’s CDS_Convergence attribute. To ensure that
updates are distributed to all replicas of a directory as soon as possible, you can
initiate a skulk of the directory by using the directory synchronize command rather
than waiting for the next scheduled skulk to distribute the new information. You can
use this command to perform the following tasks:

v Distribute crucial updates that were made to a directory’s contents or replica set
when you do not want to wait for the next skulk

v Skulk directories that store replicas on servers that were inoperative for an
extended period and were just brought back online

Permissions for Skulking a Directory

To skulk a directory, you must have the following permissions:

v Administer, write, insert, or delete permission to the directory.

v The server principal for the server system where you enter the directory
synchronize command needs read, write, and administer permissions to the
directory that you intend to skulk.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the acl
show command to verify that the server principal has the appropriate
permissions. (See the acl(8dce) reference page for complete information on the
acl show command arguments.)

Entering the directory synchronize Command

Use the directory synchronize command to initiate an immediate skulk on a
directory.

184 OSF® DCE Administration Guide— Core Components

After you enter the command, dcecp temporarily suspends the dcecp> prompt
while the skulk is in progress. Skulks of directories with large replica sets may take
some time to execute. If the prompt returns with no error messages, the skulk is
successful. If error messages are displayed before the prompt returns, the skulk
failed.

For a skulk to succeed, every replica in the directory’s replica set must be
reachable. Skulks may sometimes fail, especially on directories with large replica
sets, or when the servers that store replicas of the directory are located over great
distances where network connectivity is not always reliable.

Skulk failure does not make CDS unusable. Although the skulking process is unable
to update information in a replica that it cannot contact, it always updates
information in the replicas that it can reach. Temporarily, some replicas contain the
latest information and some do not. When a skulk fails, CDS automatically repeats
the skulking process, at an interval based on the directory’s convergence value,
until all replicas in the set are updated with the latest changes. When all replicas
contain identical information, CDS considers the skulk successful.

If skulks of a particular directory continue to fail, you can determine the cause by
reviewing the log of CDS events on the server that stores the master replica of the
directory. For example, the following command initiates a skulk on the /.:/admin
directory:
dcecp> directory synchronize /.:/admin
dcecp>

Synchronizing CDS Server Clocks

After performing a skulk operation on a directory, you may receive the message
Server clocks are not synchronized

indicating that the server clocks are not synchronized. If so, you should first check
to see whether the system clocks on the server systems are indeed synchronized. If
they are and you still receive the message, then perhaps the system clock on an
individual server was mistakenly set to a future time and subsequently restored.
This causes a problem for CDS because there may be timestamps stored in a
clearinghouse that are invalid (any timestamp greater than 5 minutes in the future
from the current time).

If this is the case, you should adjust the system clock to the current time and then
enter the following command:
dcecp> clearinghouse repair < clearinghouse-name timestamps

This command will disable the clearinghouse, analyze and repair bad timestamps,
checkpoint the clearinghouse to disk, and reenable the clearinghouse. To use the
command, you need write permission to the server on which the clearinghouse
resides. Also, you should execute this command on all clearinghouses that replicate
the directory (and its objects) that needs to be repaired.

After executing the clearinghouse repair command, you should be able to skulk
the directory successfully.

Chapter 18. Managing CDS Directories 185

Modifying a Directory’s Convergence

The value assigned to a directory’s CDS_Convergence attribute determines how
frequently the server that stores the master replica of the directory initiates a skulk
of the directory’s replica set. A directory’s convergence can be set to a value of
high , medium , or low .

A directory that is set to a convergence value of high is skulked at least once every
12 hours. If an update is made to the directory, the server that stores the master
replica immediately attempts to propagate the new information to the entire replica
set. If this update propagation fails, the server schedules a skulk of the directory to
begin within the hour. If this initial skulk fails, additional skulks are initiated at 1-hour
intervals until the skulk succeeds.

A directory that is set to a convergence value of medium is skulked at least once
every 12 hours. If an update is made to the directory, the server that stores the
master replica immediately attempts to propagate the new information to the entire
replica set. If the propagation fails, the server waits for the next skulk to
synchronize the replica set.

A directory that is set to a convergence value of low is skulked at least once every
24 hours. The server on which a low-convergence directory resides makes no
immediate attempt to propagate updates and waits for the next skulk to synchronize
the replica set.

Every newly created directory inherits the convergence value of its parent directory.
When you create a namespace, the root directory is automatically assigned a
convergence value of medium . Unless you change this value, or the convergence
values of any lower-level directories after you create them, all directories that you
create under the root also have a convergence value of medium . For most
directories, you never need to modify this value. However, you may occasionally
find it useful to set a directory’s convergence to high or low .

Before You Modify a Directory’s Convergence

Before you modify a directory’s convergence, you want to verify the current
convergence value of the directory. To do this, use the directory show command to
display the directory’s attribute values and look at the CDS_Convergence attribute
value.

Permissions for Modifying a Directory’s Convergence

To modify a directory’s convergence, you must have write permission to the
directory.

Entering the directory modify Command

Use the directory modify command with the -change option to assign a value of
high , medium , or low to a directory’s CDS_Convergence attribute. For example,
the following command sets the convergence value of the /.:/sales/us directory to
high :
dcecp> directory modify /.:/sales/us -change {CDS_Convergence high}
dcecp>

186 OSF® DCE Administration Guide— Core Components

Chapter 19. Viewing the Structure and Contents of a
Namespace

When you need to view the structure and contents of the cell namespace, you can
use one or more programs provided by CDS. The CDS browser (cdsbrowser)
allows you to display namespace information in a windowing environment, while the
DCE control program (dcecp) displays information through its command line
interface. This chapter explains how to use the CDS browser and dcecp to display
namespace information.

Viewing the Namespace with the CDS Browser

The CDS browser is a tool for viewing the content and structure of a namespace,
which runs on workstations with the OSF/Motif graphical user interface or
compatible software. The program can display an overall directory structure as well
as show the contents of directories, enabling you to monitor growth in the size and
number of directories in a namespace. You also can customize the CDS browser so
that it displays only a specific class of object names.

To start the CDS browser, enter the following command at your system prompt:
$ cdsbrowser

To end a CDS browser session and return to your system prompt, choose Quit from
the File pull-down menu. (See the cdsbrowser(8cds) reference page for a
complete description of the cdsbrowser command.)

Displaying the Default Namespace

The CDS browser lets you view the default namespace for your system. You can
see only the entries in the namespace to which you have read permission.
Directories to which you do not have read permission do not appear. When you use
the CDS browser, it sets the confidence level of clerk calls to low.

When you start the CDS browser, an icon representing the root directory is the first
item to be displayed in the window. Directories, soft links, and object entries all
have distinct icons associated with them. The following table shows the CDS
browser icons and what they represent.

Object entry

Clearinghouse object entry

Directory

Soft link

Icon IconEntry type Entry type

To expand (open) the root directory, double-click on it. Double-click on the
expanded directory to collapse (close) it. When you expand a directory, you see all
of the soft links and object entries that it contains. Object entries can represent
clearinghouses or any resource for which a client application creates entries in the
namespace. Note that object entries representing clearinghouses are shown with a
different icon than are ordinary object entries. All entries, such as object entries, soft
links, and directories, are shown indented from their parent directories.

187

Expanding and Collapsing Selected Directories

By double-clicking on single directories, you can continue expanding a particular
directory pathname one level at a time. Other methods are available to expand all
directories at once or to expand selected groups of directories.

To expand or collapse a group of directories, select them and double-click on them.
Note that, because double-clicking has a toggle effect, you can expand or collapse
groups of directories only one level at a time. If you double-click multiple directory
levels at one time, the result may be the opposite of what you expect.

To expand or collapse selected directories level by level, click on the first directory
that you want to select, then continue selecting directories by shift-clicking (pressing
<Shift> and clicking) on them. When you select the last directory, press <Shift>
and double-click, instead of single-clicking, on it. This selects the last directory and
expands or collapses all of the directories that you selected.

Expanding and Collapsing the Entire Cell Namespace

To expand all directories on all levels at once, choose the Expand All option from
the File menu. Likewise, choose Collapse All from the File menu to close an
expanded namespace.

Note: Use Expand All with care if you have a large namespace. The larger a
namespace, the longer it takes to display its entire contents.

Filtering the Namespace Display

Using the Filters menu, you can selectively display object entries of a particular
class. For example, if you are interested in seeing the entries for clearinghouse
objects only, choose the class CDS_Clearinghouse from the Filters menu. For any
directory that you expand after choosing a filter, you see only names of objects
whose class matches the filter.

Note that soft links are still displayed because they are not object entries and only
object entries can be filtered out. To reset the filter so that you can again view all
object entries, choose the * (asterisk) from the Filters menu.

Navigating the Namespace

Once you begin expanding the namespace, it can exceed the boundaries of your
CDS browser window, even if you enlarge the window. You can use the horizontal
and vertical scroll bars and stepping arrows to scroll through the namespace.

Dragging the slider up and down the vertical scroll bar on the right side of the
display window produces an index window. The index window shows the name
where the slider is currently positioned in the namespace. When the index window
contains the name that you want to view, release the mouse button to position that
name at the top of the CDS browser window.

In displays that are larger than the length of the window, scrolling through directory
levels can produce a reference line toward the top of the window. The line orients
you by showing the full directory pathname from the current name to the root. It
also indicates that you have scrolled past other parts of the namespace that are no
longer displayed.

188 OSF® DCE Administration Guide— Core Components

Listing the Contents of Directories

The DCE control program (dcecp) provides a directory list command that allows
you to display a list of the descendants of a directory within the cell namespace. A
directory’s descendants are all the child pointers, clearinghouses, object entries,
and soft links existing in it.

To use the directory list command, you must have read permission to the CDS
names that you want to display.

For a complete listing of a directory’s contents, you enter the directory list
command with the name of the directory or directories whose contents you wish to
view. For example:
dcecp> directory list /.:/eng
/.../eng_cell.osf.org/hosts/eng/aud-acl \
/.../eng_cell.osf.org/hosts/eng/aud-svc \
/.../eng_cell.osf.org/hosts/eng/cds-clerk \
/.../eng_cell.osf.org/hosts/eng/cds-server \
/.../eng_cell.osf.org/hosts/eng/dts-entity \
/.../eng_cell.osf.org/hosts/eng/profile \
/.../eng_cell.osf.org/hosts/eng/self \
/.../eng_cell.osf.org/hosts/eng/CDS_CTS \
/.../eng_cell.osf.org/hosts/eng/CDS_UTS \
dcecp>

By default, the directory list command displays the full names of the objects (the
object names preceeded by /.../ pathname) contained in the directory. To list only
the RDNs of the objects, enter the directory list command with the -simplename
option.

To display the names of a particular kind of directory descendant only, you include
the appropriate option of the directory list command. For example, you enter the
following command to display the names of all the soft links that are stored in the
/.:/eng directory:
dcecp> directory list /.:/eng/ -links
/.../eng_cell.osf.org/hosts/eng/CDS_CTS \
/.../eng_cell.osf.org/hosts/eng/CDS_UTS
dcecp>

Displaying the Attribute Values of CDS Names

To display any or all of the current values of the attributes associated with the
names in a namespace (except for clerks or servers), use the dcecp show
operation.

The basic syntax of the show operation is as follows:
object-type show object-name

where object-type is the type of CDS object about which you want to display
information, and object-name is a complete directory specification terminating with a
simple name (that is, the full CDS name) of the object you are inquiring about.

To use the show operation, you must have read permission to the name that you
want to display.

In the following example, the show operation displays the current values of the
CDS_CHDirectories attribute associated with the /.:/Chicago2_CH clearinghouse.

Chapter 19. Viewing the Structure and Contents of a Namespace 189

The display returned by the operation shows two values for the attribute, each value
having two parts. The parts of the attribute value are UUID of Directory and Name
of Directory. The show operation displays the values separately. For each value, it
first lists the attribute name on a line ending with a colon, then the parts of the
value.
dcecp> clearinghouse show /.:/Chicago2_CH
{RPC_ClassVersion
{01 00}}

{CDS_CTS 1994-01-24-07:12:51.966-05:00I0.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-02-03-07:17:35.794-05:00I0.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID 0094e40e-bb43-1d43-9e0a-0000c0f7de56}
{CDS_AllUpTo 1994-02-03-09:17:06.393-05:00I0.000/00-00-c0-f7-de-56}
{CDS_DirectoryVersion 3.0}
{CDS_CHName /.../Chicago2/Chicago2_CH}
{CDS_CHLastAddress
{Tower ncacn_ip_tcp:130.105.5.16[]}}

{CDS_CHLastAddress
{Tower ncadg_ip_udp:130.105.5.16[]}}

{CDS_CHState on}
{CDS_CHDirectories
{dir_uuid 00595ca5-bb46-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2}}

{CDS_CHDirectories
{dir_uuid 00888574-bb53-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/subsys}}

{CDS_CHDirectories
{dir_uuid 0069ff14-bb55-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/subsys/dce}}

{CDS_CHDirectories
{dir_uuid 0023cc38-bb56-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/subsys/dce/sec}}

{CDS_CHDirectories
{dir_uuid 0026d57c-bb57-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/hosts}}

{CDS_ReplicaVersion 3.0}
{CDS_NSCellname /.../Chicago2}
dcecp>

In the following example, the show operation displays all of the object entries that
are stored in the /.:/sales directory:
dcecp> object show /.:/sales
{CDS_CTS 1994-06-23-15:56:44.734+00:00I0.000/08-00-2b-0f-59-bf}
{CDS_UTS 1994-08-08-22:23:54.226+00:00I0.000/08-00-2b-0f-59-bf}
{CDS_ClassVersion 1.0}
dcecp>

The following command displays all of the soft links stored in the /.:/mfg directory:
dcecp> link show /.:/mfg
{CDS_CTS 1994-06-23-15:56:44.734+00:00I0.000/08-00-2b-0f-59-bf}
{CDS_UTS 1994-08-08-22:23:54.226+00:00I0.000/08-00-2b-0f-59-bf}
{CDS_LinkTarget = /.../abc/mfg/robotics_controller1}
dcecp>

Displaying Clerk and Server Attribute Information

To show the values of the attributes associated with clerk and server entries in the
cell namespace, use dcecp commands cds and cdsclient . The basic syntax for
each command is:
cds show cds-server-name
cdsclient show cds-client-name

190 OSF® DCE Administration Guide— Core Components

To use these commands, you must have read permission to the CDS name that
you want to display.

You are not permitted to use wildcard characters in the simple names of clerks and
servers on the show operation line.

In the following example, the show operation displays the current values of all
attributes that are associated with the local clerk:
dcecp> cdsclient show /.:/hosts/ hostname/cds-clerk

The returned display is as follows:
{Creation_Time 1996-08-01-15:39:06.052+00:00I-----}
{Protocol_Errors 0}
{Authentication_Failures 0}
{Read_Operations 1088}
{Cache_Hits 928}
{Cache_Bypasses 157}
{Write_Operations 68}
{Miscellaneous_Operations
94}

Chapter 19. Viewing the Structure and Contents of a Namespace 191

192 OSF® DCE Administration Guide— Core Components

Chapter 20. Using the CDS Subtree Commands to Restructure
CDS Directories

Sometimes, because of corporate restructuring or for other reasons, you need to
combine or rearrange various directories or subtrees of directories in your CDS
namespace.

For example, suppose the engineering group in your organization, /.:/eng , is
combined with the research and development group, /.:/rnd , and that the two
groups begin to share a common set of applications and other network resources.
You can reflect this organizational change in your namespace hierarchy by merging
the contents of these directories.

Similarly, if the engineering group becomes subordinate to the research and
development group, you can reflect this change by creating an empty directory
named /.:/rnd/eng and then merging the contents of the /.:/eng directory into
/.:/rnd/eng , effectively appending /.:/eng below /.:/rnd .

Overview of the Merge and Append Procedures

To merge or append CDS directories, you use the DCE control program (dcecp)
directory merge command. The basic steps for both procedures are as follows:

1. At your system prompt, enter dcecp to invoke the DCE control program.

2. Merge or append one existing directory with another existing directory. To do
this, use the directory merge command to combine the directory’s information
about its descendants (object entries, soft links, and child directories) with
another directory’s information or to append the information below an existing
bottom-level directory.

3. Delete the source directory or subtree (and its contents) that you merged in step
2 from its old location in the hierarchy by using the directory delete command.
Replace the deleted directory information with a single soft link of the same
name to redirect lookups of the information at the new location by using the link
create command.

Note: The presence of clearinghouses, duplicate names, or unreachable names in
a merged directory requires special handling. The merge and append
operations described in the following sections assume that no duplicate
names exist in the source and target directory or subtree, and that the
clearinghouses that store the master replicas of affected directories are
enabled and reachable at the time the operations are initiated.

The example merge and append operations described in this section are based on
an example namespace, shown in the following figure.

193

The example namespace consists of two directories under the root: /.:/eng and
/.:/rnd . The source directory (/.:/eng) contains two entries: /.:/eng/obj1 and
/.:/eng/link1 . The target directory (/.:/rnd) also contains two entries: /.:/rnd/obj2
and /.:/rnd/link2 .

Merging CDS Directories

The following procedure merges the source directory /.:/eng into the target directory
/.:/rnd :

1. Perform a skulk on the /.:/eng directory before merging it with the /.:/rnd
directory. This synchronization of the source directory’s replicas can prevent
errors that cause the merge operation to fail.
dcecp> directory synchronize /.:/eng
dcecp>

2. Run the directory merge command to merge the /.:/eng and /.:/rnd directories:
dcecp> directory merge /.:/eng -into /.:/rnd
dcecp>

Note that the directory merge command merges only the immediate contents
of the source directory named in the command-line argument (that is, the object
entries, soft links, and child directories in these directories).

To copy the descendants of any child directories of a directory to a target
location, you must use the -tree option of the command. For example, if the
/.:/eng directory in the previous example included the child directories dev and
qa, and you wanted to merge the contents of these directories into the target
directory /.:/rnd , you would enter the following command line:
dcecp> directory merge /.:/eng -into /.:/rnd
-tree

dcecp>

By default, the directory merge command places all object entries, soft links,
and child directories in the target directory’s master clearinghouse. You can,
however, place child directories in another clearinghouse. To do this, you use
the -clearinghouse option of the command to specify the name of the other
clearinghouse.

Note that you are allowed to specify only one alternate clearinghouse in the
-clearinghouse option. If you wish to place child directories in different alternate
clearinghouses, you must issue separate directory merge commands for each

/.:

/eng

obj1 link1

/rnd

obj2 link2

Figure 19. Example Namespace Hierarchy

194 OSF® DCE Administration Guide— Core Components

clearinghouse, or you must issue a single directory merge command to place
all the child directories in one clearinghouse, then relocate the directories after
the merge operation.

Note: The CDS objects created by the directory merge command retain all of
the writable attribute values and some of the read-only attribute values of
the source objects. However, these objects do not inherit the ACLs of the
source objects. If the merged object is a directory, the directory merge
command gives it the default ACLs of the initial container. If the merged
object is any other CDS object type, the directory merge command
gives it the default ACLs of the initial object.

If the directory merge command encounters problems with the merge
operation, it behaves in one of two ways. If you include the -nocheck option,
the command does not check for errors before performing the operation. It
proceeds immediately to perform the operation, and, if it encounters an error,
stops. If you omit the -nocheck option, the command checks for certain error
conditions before starting the merge. If it finds errors, it displays messages for
the errors and stops; otherwise, it proceeds with the merge.

Error messages returned by the directory merge command identify the CDS
entity causing the problem and provide a brief description of the problem. You
should fix any problems that the command encounters, before running it again.
(See “Handling Errors” on page 198 for more information on the types of errors
that can occur during a merge operation.)

3. After the merge operation, the /.:/eng directory (and its contents) still exists at
the source location. Run the following commands to delete the /.:/eng directory
from its original location and create a soft link named /.:/eng in place of the
deleted directory. The soft link will redirect lookups of the obj1 and link1 object
entries to their new locations in the /.:/rnd directory.

It is recommended that you perform a skulk on a source directory before
deleting it. This synchronization of the directory’s replicas can prevent errors
that cause the delete operation to fail.

The sequence of commands to synchronize and delete the /.:/eng directory and
then create soft links for the former contents are as follows:
dcecp> directory synchronize /.:/eng
dcecp> directory delete /.:/eng -tree
dcecp> link create /.:/eng -to /.:/rnd
dcecp>

The directory delete command invoked with the -tree option deletes a directory
and all the object entries, soft links, and child directories beneath that directory.
If you use the the directory delete command without the -tree option, all of the
directories to be deleted must be empty, or errors will occur.

Figure 20 on page 196 shows the structure of the example namespace before
and after the merge operation in our example.

Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories 195

Appending CDS Directories

The following procedure appends the source directory /.:/eng to the /.:/rnd directory
(that is, copies the /.:/eng directory into the empty target directory /eng under the
/.:/rnd directory):

1. Run the directory create command to create a new empty directory named
/.:/rnd/eng into which the contents of the source directory /.:/eng can be placed:
dcecp> directory
create /.:/rnd/eng
dcecp>

By default, the directory create command creates new directories in the same
clearinghouse as the parent directory. If you wish to create a directory in
another clearinghouse, you must use the -clearinghouse option of the
command to specify the other clearinghouse.

2. Perform a skulk on the /.:/eng directory before appending it to the /.:/rnd
directory. This synchronization of the source directory’s replicas can prevent
errors that cause the append operation to fail:
dcecp> directory synchronize /.:/eng
dcecp>

3. Run the directory merge command to append the source directory /.:/eng to
the /.:/rnd directory (or merge it into the new /.:/rnd/eng directory):
dcecp> directory merge /.:/eng -into /.:/rnd/eng
dcecp>

If the source directory contains any child directories whose contents you want to
copy over, you must specify the -tree option in the directory merge command
line. Additionally, you need to specify the -clearinghouse option if you wish to
place the child directory and its contents in a different clearinghouse from the
/.:/rnd/eng directory.

If the merge operation is not successful, you can delete any partially merged
information at the target location and run the command again. Be sure, though,
to delete any duplicate names and to make certain that connectivity to the
affected clearinghouses can be maintained.

Note: The CDS objects created by the directory merge command retain all of
the writable attribute values and some of the read-only attribute values of
the source objects. However, these objects do not inherit the ACLs of the

/.:

/eng

obj1 link1

/rnd

obj2 link2

Before Merge

/.:

/eng

obj1 link1

/rnd

obj2 link2

After Merge

obj1 link1

Figure 20. Example Namespace Before and After the Merge Operation

196 OSF® DCE Administration Guide— Core Components

source objects. The ACLs on the target objects are either those that are
inherited from the initial container (the parent directory into which the
objects are merged) or the initial object.

4. After the append operation, the /.:/eng directory (and its contents) still exists at
the source location. You need to delete the /.:/eng directory from its original
location and create a soft link named /.:/eng in place of the deleted directory.
The soft link will redirect lookups of the obj1 and link1 object entries to their
new locations in the /.:/rnd/eng directory.

It is recommended that you perform a skulk on a source directory before
deleting it. This synchronization of the directory’s replicas can prevent errors
that cause the delete operation to fail.

The sequence of dcecp commands for removing the /.:/eng directory from the
source location is the following:
dcecp> directory synchronize /.:/eng
dcecp> directory delete /.:/eng
dcecp> link create /.:/eng -to /.:/rnd/eng
dcecp>

Figure 21 shows the structure of our example namespace before and after the
append operation.

Modifying ACLs at the Target Location

To preserve the access by principals to the merged information in the target
directories, the ACLs on the newly created objects at the target location need to
match those of the objects in the source directories. Because the directory merge
command does not recreate the source ACLs on the CDS objects at the new
location, you may need to modify the target ACLs after the merge operation. To
modify these ACLs, use the dcecp acl replace or acl modify command, depending
on whether you want to replace an entire ACL or just modify ACL entries.

/.:

/eng

obj1 link1

/rnd

obj2 link2

Before Append

/.:

obj1 link1 obj2 link2

After Append

obj1 link1

/eng

/eng /rnd

Figure 21. Example Namespace Before and After the Append Operation

Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories 197

Handling Errors

Most of the errors that the directory merge command encounters during its
operations are caused by the following:

v Duplicate names that are detected during the merge

v Names in the source subtree whose master clearinghouses were not reachable
when the command was executing

v Entries not created in the target location due to insufficient permissions

The following subsections explain how to recover from these errors.

Duplicate Names

If the full name of a CDS object entry or soft link is identical to a full name of an
object entry or soft link at the target location, the directory merge command lists
these duplicate names and stops. Duplicate names are not merged to avoid
overwriting and destroying the identical names in the target directory.

If duplicate names exist, you need to decide which names you want to preserve:
the names in the source subtree or the names in the target subtree. Once you have
made your decision, proceed in the following manner:

1. Use the dcecp create operations to recreate (under a new name) any duplicate
object entry or soft link as a new object entry or soft link in the source or target
subtree. Then delete the duplicate name.

2. When you are certain that connectivity to the affected clearinghouses can be
maintained, rerun the directory merge command to merge the contents of the
source and target directories.

Unreachable Name Failures

Sometimes, the clearinghouse that stores the master replica of a directory you are
trying to merge is disabled or unreachable when you enter the directory merge
command. When this happens, the command cannot create the directory and the
entries it contains at the new target location.

When unable to merge a name for this reason, the directory merge command
displays an error message specifying the name that could not be created and
terminates.

Insufficient Permissions

The directory merge command cannot create CDS objects at a target location if it
lacks the appropriate permissions. If the command returns error messages
indicating insufficient permissions, you need to examine the ACLs for the target
clearinghouse, directories, and object entries to see the current permissions and
change the inappropriate ones.

Table 6 shows the permissions required to create directories and other CDS object
entries at the target.

Table 6. Permissions Required To Create Target Objects

Objects Required Permissions

198 OSF® DCE Administration Guide— Core Components

Table 6. Permissions Required To Create Target Objects (continued)

directory Write permission to the clearinghouse that is to store the master replica
of the new directory. Insert and read permissions to the parent of the
new directory. Insert and read permissions to the initial container for the
new directory. The server principal also needs read and insert
permissions to the parent directory of the new directory.

other CDS object Insert and read permissions to the directory where it is to be created.
Insert and read permissions to the initial object for its object type.

Merging CDS Directories into a Foreign Cell

You can also use the directory merge command to merge CDS directories into the
namespace of a foreign cell. In general, the procedure you follow is the same as
the procedure you use to merge directories or subtrees in the same namespace.
There are, however, some additional considerations to keep in mind:

v You need to establish cross-cell authentication in advance.

v You need to merge the entire directory hierarchy in the source and target cells.

Also, you need to modify the ACLs of the newly created target objects as when you
merge directories in the same namespace.

Establishing Cross-Cell Authentication

If you want users and applications in the source cell to be able to continue
accessing their merged information in the target cell conveniently, make sure that
an agreement of cross-cell authentication exists between the source cell and foreign
(target) cell. Otherwise, principals from the source cell requesting newly merged
information will not be permitted to communicate with the target cell. See “Part 6.
DCE Security Service” on page 269 for complete information on how to set up
cross-cell authentication.

Performing a Merge Operation into a Foreign Cell

To merge CDS data into the namespace of a foreign cell, follow these steps:

1. While logged into a privileged account (cell_admin or a member of cds-admin
group) on the target machine in the foreign cell, run the directory merge
command to merge the contents of the source cell’s directory with an existing
directory.

2. If you intend to continue accessing the merged information from the source cell,
delete the uppermost directory in the source subtree and replace the deleted
information with a single soft link of the same name as that directory. This
redirects lookups of the information to its new location in the foreign cell.

Restoring Merged CDS Directories

You can use the dcecp link delete and directory merge commands to restore
deleted directories and their contents to your namespace.

First run the link delete command to remove the soft links in the former source
location, then use the directory merge command to append the copy of the
directory back under its former parent directory.

Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories 199

If the directory has slave replicas, use the directory create command to create a
new replica of the directory in each of the clearinghouses from which the directory
was deleted.

Remember that the directory merge command affects only directories and their
contents. It does not copy clearinghouses or their associated clearinghouse object
entries and therefore cannot be used to restore clearinghouses or to account for
discrepancies in information among individual replicas resident on different
clearinghouses. Furthermore, the directory information in a particular location may
have changed since the time of the original merge operation.

200 OSF® DCE Administration Guide— Core Components

Chapter 21. Restructuring a Namespace

Over time, you may need to restructure or rename certain elements of your
namespace. For example, you may want to create soft links to provide users with
one or more alternate names for an existing namespace entry. You may need to
reconfigure a directory’s replica set to modify the locations and replica types of
particular replicas, or exclude a replica from the set. Occasionally, you may want to
delete certain directories when the information that they contain is no longer needed
by users. You may also need to relocate a clearinghouse or delete a clearinghouse
from a server system to perform diagnostic or troubleshooting work on the system,
or to prepare for removing the system from your network. Finally, you may want to
create a hierarchy of cells, add a cell to an existing hierarchy, or change the
structure of a cell hierarchy.

This chapter explains how to perform the following namespace restructuring tasks:

v Managing soft links

v Modifying a directory’s replica set

v Deleting a directory

v Relocating a clearinghouse

v Deleting a clearinghouse

v Creating and managing a hierarchy of cells

Managing Soft Links

A soft link is an alternate name, or alias, with which you can refer to another
existing name in a namespace. Soft links allow users and client applications to refer
to a particular directory, object entry, or soft link by more than one name.

In general, you should create soft links to assign alternate names to particular
network resources, or to make minor changes to the original names of directories in
your namespace hierarchy. You should avoid using soft links to completely redesign
your namespace.

Creating a Soft Link

Use the DCE control program (dcecp) link create command to create a soft link. In
addition to the name for the new soft link, you must specify the soft link’s
destination name, or existing name to which the new soft link points, with the -to
option. You can specify any name in the local cell namespace or in any foreign cell
namespace, as the destination name, including another soft link.

To create a soft link, you must have insert permission to the directory in which you
intend to create the soft link.

Note: If you create a soft link that points to another soft link, make sure you do not
create a soft link loop. A soft link loop occurs when you specify a destination
name that eventually points back to the new soft link’s own link name. The
clerk detects this error.

All soft links that you create with the link create command are permanent and
never expire unless you use the command’s -timeout option to specify an
expiration date and time value for the CDS_LinkTimeout attribute of the soft link.

201

Enter the expiration date and time value in the format
yyyy-mm-dd-hh:mm:ss

For example, the following value indicates that, if the soft link still exists (that is, has
not been deleted manually) on August 25, 1994, at 4:00 p.m., CDS will
automatically delete it the next time the directory in which it is stored is skulked:
CDS_LinkTimeout=(1994-08-25-16:00:00)

If you use the -timeout option to specify an expiration value for a soft link’s
CDS_LinkTimeout attribute, you can also specify an extension value, which is a
period of time to be added to the expiration date and time that are already
assigned. Enter the extension value in the format ddd-hh:mm:ss. For example, a
value of 030-00:00:00 indicates that, if the destination name of the soft link still
exists when the assigned expiration date and time are reached, CDS allows another
30 days to pass before it again checks, during a skulk, for the existence of the
destination name. If, at that time, the destination name cannot be found, CDS
deletes the soft link.

The following command creates a permanent soft link named /.:/sales/asia that
points to a directory named /.:/sales/eur :
dcecp> link create /.:/sales/asia -to /.:/sales/eur
dcecp>

The following command creates a soft link named /.:/mfg/robo1 that points to an
object entry named /.:/mfg/robotics_controller01 and sets its expiration date and
time:
dcecp> link create /.:/mfg/robo1 -to /.:/mfg/robotics_controller01 \
> -timeout 1994-12-12-09:00:00
dcecp>

In the preceding command, the expiration date and time placed in the
CDS_LinkTimeout attribute value indicates that CDS will delete the soft link
/.:/mfg/robo1 on the next skulk after December 12, 1994, at 9:00 a.m.

The following command creates a soft link that is named /.:/admin/linka that points
to an object entry named /.:/sales/discount_stats :
dcecp> link create /.:/admin/linka -to /.:/sales/discount_stats -timeout \
> {1994-01-11-12:00:00 090-00:00:00}
dcecp>

In the preceding command, the expiration time placed in the CDS_LinkTimeout
attribute value indicates that CDS will check that the destination name
/.:/sales/discount_stats still exists on the next skulk after January 11, 1994, at
12:00 p.m. If the destination name does not exist, CDS deletes the soft link. If the
destination name still exists, the soft link remains in effect for another 90 days, as
specified by the extension time specified for the CDS_LinkTimeout attribute value
090-00:00:00 . When the 90-day extension period expires, CDS repeats the check
at 90-day intervals until the destination name is deleted.

Changing a Soft Link’s Destination Name

Use the dcecp link modify command to specify a new value for a soft link’s
CDS_LinkTarget attribute and redirect the soft link from its current destination
name to some other name in the namespace.

202 OSF® DCE Administration Guide— Core Components

To change a soft link’s destination name, you must have write permission to the soft
link. For example, the following command redirects a soft link that is named
/.:/admin/work_disk from its current destination name to the new destination name
/.:/admin/work_disk03:
dcecp> link modify /.:/admin/work_disk -change {CDS_LinkTarget \
> /.:/admin/work_disk03}
dcecp>

Changing a Soft Link’s Expiration or Extension Value

Use the dcecp link modify command to specify a new value for the expiration and
extension values that are stored in a soft link’s CDS_LinkTimeout attribute. Even if
you want to modify only one of the values, you must specify values for both
expiration and extension in your command. You specify a new value in the same
format that you used to establish the original value. The expiration value has the
format yyyy-mm-dd-hh:mm:ss, and an extension value has the format
ddd-hh:mm:ss.

To change a soft link’s expiration or extension value, you must have write
permission to the soft link.

The following command sets the expiration value of a soft link that is named
/.:/eng/link01 to December 31, 1994, at 12:00 p.m. In this example, no extension is
currently assigned to the soft link.
dcecp> link modify /.:/eng/link01 -change {CDS_LinkTimeout \
> (1994-12-31-12:00:00 000-00:00:00}
dcecp>

The following command changes the expiration value of a soft link that is named
/.:/eng/link01 to December 31, 1994, at 12:00 p.m. and sets the soft link’s
extension value to 90 days:
dcecp> link modify /.:/eng/link01 -change {CDS_LinkTimeout \
> 1994-12-31-12:00:00 090-00:00:00}
dcecp>

Deleting a Soft Link

If you find that a permanent soft link has outlasted its original purpose, or if you
prefer not to wait until a soft link’s assigned expiration and extension times have
been reached, you can delete the soft link from the namespace yourself.

Use the link delete command to delete the soft link of the name that you specify.

To delete a soft link, you must have delete permission to the soft link, or administer
permission to the directory that stores the soft link.

For example, the following command deletes a soft link that is named
/.:/dist/pointer_1 :
dcecp> link delete /.:/dist/pointer_1
dcecp>

Chapter 21. Restructuring a Namespace 203

Modifying a Directory’s Replica Set

A directory’s replica set always contains a master replica; it can also contain other
read-only replicas. The values that are stored in the CDS_Replicas attribute that is
associated with a directory contain information that describes the directory’s replica
set, including how many replicas exist, their replica types, and the name of the
clearinghouse where each of the replicas is stored. You can use the dcescp
directory modify command to overwrite the current values that are stored in the
directory’s CDS_Replicas attribute and to perform either or both of the following
tasks in a single command:

v Designate a new master replica in a directory’s replica set.

v Exclude a replica from a directory’s replica set.

Note: As part of the directory modify command, CDS initiates an immediate skulk
on the directory to distribute modifications to all members of the replica set
as soon as possible.

Before You Modify a Replica Set

Before you modify a directory’s replica set, you need to know how many replicas
exist, their replica types, and the name of the clearinghouse where each of the
replicas is stored. The command that you use to modify a directory’s replica set
does not allow you to accidentally leave a replica out of the new set. You must
explicitly list all existing replicas that are in the set. You can include or exclude any
replica from the new set, but you must account for all replicas. Only one of the
replicas that you include in the new set can be designated as the master replica.

To display the names of all of a directory’s replicas, use the dcecp directory show
command. This command queries the directory’s CDS_Replicas attribute to gather
this information. (See “Chapter 18. Managing CDS Directories” on page 179 for
information on how to use the dcecp directory show command.)

Permissions Required for Modifying a Replica Set

The permissions for modifying a directory’s replica set are as follows:

v You must have administer permission to the directory. Also, the server principal
needs administer, read, and write permissions to the directory.

v When designating a new master replica, you also need write permission to the
clearinghouse that stores the current master replica. The server principal needs
write permission to the clearinghouse that stores the read-only replica that you
intend to designate as the new master replica.

The server principal on the server where the new master replica will be located
needs administer, read, and write permissions to the directory.

When you know which replicas to include and exclude and have changed
permissions that need to be changed, issue the directory modify command to
modify a directory’s replica set. Instructions for your two options—designating a new
master replica, and excluding an existing read-only replica—are given in the
sections that follow.

204 OSF® DCE Administration Guide— Core Components

Designating a New Master Replica

Sometimes, for configuration management reasons, you may want to designate a
different replica as a directory’s master replica.

For example, you can specify a new master replica when

v A server system whose clearinghouse contains one or more master replicas will
be down for an extended period of time or removed permanently from the
network.

v A clearinghouse that stores one or more master replicas will be deleted from the
namespace.

v You want to locate a master replica closer to where the majority of updates to the
directory originate.

To designate a new master replica, use the dcecp directory modify command.

Figure 22 illustrates an example replica set. This replica set of the /.:/eng directory
consists of three replicas: the master replica, which is stored in clearinghouse
/.:/NY1_CH, a read-only replica stored in clearinghouse /.:/NY2_CH, and a
read-only replica stored in clearinghouse /.:/Chicago1_CH .

The following command designates the read-only replica that is stored in
clearinghouse /.:/Chicago1_CH as the directory’s new master replica, designates
the former master replica (stored in clearinghouse /.:/NY1_CH) as a read-only
replica, and leaves the read-only replica stored in clearinghouse /.:/NY2_CH as it is:
dcecp> directory modify /.:/eng -master /.:/Chicago_1_CH \
> -readonly {/.:/NY1_CH /.:/NY2_CH}
dcecp>

Figure 23 shows the result of the preceding command.

Master Read-only Read-only

/.:/NY1_CH /.:/NY2_CH /.:/Chicago1_CH

Figure 22. Example Replica Set

MasterRead-onlyRead-only

/.:/NY1_CH /.:/NY2_CH /.:/Chicago1_CH

Figure 23. Example Replica Set After Master Redesignation

Chapter 21. Restructuring a Namespace 205

Excluding a Replica from a Replica Set

You can temporarily exclude a replica from its replica set when the clearinghouse in
which the replica is stored unexpectedly becomes unavailable. This makes it
possible for CDS to complete skulks of the directory during the time the excluded
replica is unavailable.

To exclude a replica from a replica set, you use the dcecp directory modify
command with the exclude argument to rebuild a directory’s replica set, excluding
the replica that you specify. Remember that you must account for all existing
replicas in the command.

In the following example, the replica set of the /.:/eng directory consists of three
replicas: the master replica, which is stored in clearinghouse /.:/Chicago1_CH , and
the read-only replicas that are stored in clearinghouses /.:/NY1_CH and
/.:/NY2_CH.

In this case, the /.:/NY1_CH clearinghouse is cut off from the network because of
accidental damage to the network transmission lines. Connectivity to the
clearinghouse will not be restored for several days. During this period, skulks of the
/.:/eng directory will fail unless you temporarily exclude the read-only replica that is
stored in clearinghouse /.:/NY1_CH.

To make it possible for skulks of the /.:/eng directory to succeed during the repair
period, enter the following command to overwrite the current values of the /.:/eng
directory’s CDS_Replicas attribute with new values that include only the replicas
that are stored in the /.:/NY2_CH and /.:/Chicago1_CH clearinghouses:
dcecp> directory modify/.:/eng -master /.:/Chicago1_CH \
> -readonly /.:/NY2_CH -exclude /.:/NY1_CH
dcecp>

Figure 24 shows the result of the preceding command.

When connectivity with the /.:/NY1_CH clearinghouse is reestablished, enter the
following command to reintroduce the read-only replica that is stored in
clearinghouse /.:/NY1_CH to the replica set:
dcecp> directory modify /.:/eng -master /.:/Chicago1_CH \
> -readonly {/.:/NY1_CH /.:/NY2_CH}
dcecp>

Note: Always reintroduce excluded replicas to their replica sets as soon as
possible after the clearinghouse in which they reside again becomes
available.

MasterRead-onlyRead-only
excluded

/.:/NY1_CH /.:/NY2_CH /.:/Chicago1_CH

Figure 24. Example Replica Set After Replica Exclusion

206 OSF® DCE Administration Guide— Core Components

Deleting Directories

You may sometimes want to delete a directory from your namespace when the
information that it contains is no longer needed by users. You must take two
considerations into account when deleting a directory:

v Does the directory contain child directories or the entries for any other CDS
object? Before a directory can be deleted, it must be empty.

v Are there any replicas of the directory? They must each be deleted separately.

Both of these considerations are discussed in following sections.

To delete a directory, you must have the following permissions:

v Delete permission to the directory.

v Write permission to the clearinghouse that stores the master replica of the
directory.

v The server principal for the server from which you enter the directory delete
command needs administer permission to the parent directory or delete
permission to the child pointer that points to the directory you intend to delete.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the acl
show of the dcecp utility and verify that the server principal has the appropriate
permissions. (See the acl(8dce) reference page for complete information on the
acl show command.)

Deleting a Nonreplicated Directory

To delete a directory that has no replicas, use the dcecp directory delete
command. For example, to delete the directory /.:/sales , all of its immediate
contents, and the contents of any of its child directories, you would enter the
following:
dcecp> directory delete /.:/sales -tree
dcecp>

Note: Be careful when using the -tree option of the directory delete command.
The command does not ask you to confirm that you want to delete the
directory that you specify in the command line; it proceeds immediately with
the delete operation. This can result in the loss of directories that you want
to keep.

Remember that you can change the behavior of dcecp commands through
scripts. In the case of the directory delete command, you could write a
script that prompted for a confirmation of the delete operation whenever the
command was run with its -tree option. See “Part 1. The DCE Control
Program” on page 1 of this guide for a discussion of writing scripts.

A way to guard against the inadvertent deletion of directories and their entries is to
view the contents before you run the directory delete command. To display the
contents of a CDS directory by entry type, use the directory list command with the
-object , -link , and -directory options.

The following is an example in which a directory named /.:/sales is deleted. The
directory has one object entry and one soft link:

Chapter 21. Restructuring a Namespace 207

dcecp> directory list /.:/sales -simplename
work_disk link1
dcecp> directory list /.:/sales -simplename -object
work_disk
dcecp> directory list /.:/sales -simplename -link
link1
dcecp> directory delete /.:/sales -tree
dcecp> directory show /.:/sales
Error: Requested entry does not exist
dcecp>

If a directory to be deleted is not empty, the directory delete command will fail. To
recover from this kind of failure, you must remove all the entries in the directory and
its child directories, then run the directory delete command again. Use the link
delete and object delete commands to delete the soft links and object entries in
any directories. Then run the directory delete command to delete the directories.

Deleting a Directory Replica

If a directory is replicated, all the replicas have to be deleted individually. Then the
directory can be deleted using the commands described in the previous section.

To display a list of all replicas of a directory, use the dcecp directory show
command. Look at the CDS_Replicas attribute of the directory in the list. Each
replica’s CDS_Replicas attribute has several subattributes. Look at the CH_Name
subattribute for each replica to get the name of the clearinghouse where it is
located. For example:
dcecp> directory show /.:/sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1994-05-06-11:41:05.314-05:00I0.000/08-00-09-25-13-52}
{CDS_UTS 1994-06-21-03:06:08.842-05:00I0.000/08-00-09-25-13-52}
{CDS_ObjectUUID 5f97a584-bf9b-11cd-9362-080009251352}
{CDS_Replicas
{{CH_UUID de3401e6-bb98-11cd-aac5-080009251352}
{CH_Name /.../absolut_cell/absolut_ch}
{Replica_Type Master}
{Tower {ncacn_ip_tcp 130.105.5.93}}
{Tower {ncadg_ip_udp 130.105.5.93}}}}

{CDS_AllUpTo 23854-01-29-19:45:44.841-05:00I0.000/08-00-09-25-13-52}
{CDS_Convergence medium}
{CDS_ParentPointer
{{Parent_UUID df13b228-bb98-11cd-aac5-080009251352}
{Timeout
{expiration 1994-08-24-19:30:30.827}
{extension +1-00:00:00.000I0.000}}

{myname /.../absolut_cell/sales}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-01-29-19:45:44.841-05:00I0.000/08-00-09-25-13-52}
{CDS_LastUpdate 1994-06-21-03:06:08.842-05:00I0.000/08-00-09-25-13-52}
{CDS_Epoch 60ac0730-bf9b-11cd-9362-080009251352}
{CDS_ReplicaVersion 3.0}
dcecp>

The name of the directory and the name of the clearinghouse can be used to
uniquely identify each replica. Use these names in a series of directory delete
commands to remove the replicas. The name of each replica is the argument to the
command, and the name of the clearinghouse should be used as the value of the

208 OSF® DCE Administration Guide— Core Components

-clearinghouse option. The -replica option should also appear in the command line
to indicate that the directory to be deleted is a replica. A sample command line is
the following:
dcecp> directory delete /.:/sales -replica -clearinghouse /.:/NY1_CH
dcecp>

Note: The directory delete command does not require that directory replicas are
empty in order to operate on them. It will delete the replicas, all their
contents, and their child directories immediately, without prompting for
confirmation of the operation.

You may want to write a dcecp script that looks at the CDS_Replicas attribute,
finds all the replicas and deletes them with one command. See “Part 1. The DCE
Control Program” on page 1 of this guide for a discussion of writing scripts.

Relocating a Clearinghouse

Note: This section describes the procedure that you use to temporarily relocate a
clearinghouse from one CDS server system to another. Note that the
procedure cannot be used to configure additional CDS server systems. (See
the OSF DCE Administration Guide—Introductionfor information on how to
configure CDS servers and CDS clerks.)

Occasionally, you may need to relocate a clearinghouse from the server system
where it currently resides to another server system. For example, you may want to
move a clearinghouse when

v You need to temporarily disconnect the host server system from the network for
repair or for other reasons.

v You no longer want the current host system to function as a CDS server.

v You want to move the clearinghouse to a server system that is physically closer
on the network to the user groups and applications that use the information
contained in the clearinghouse.

To relocate a clearinghouse, follow these steps:

1. Disassociate the clearinghouse from the server where it is currently running.

2. Copy the clearinghouse database files from their current location (source server
system) to their new location (target server system).

3. Create a new clearinghouse on the target server system by using the same
name that was used on the source server system from which you copied the
database files.

Dissociating a Clearinghouse from Its Host Server System

Whenever a CDS server starts, one of the tasks the server software performs is to
start its clearinghouse (or clearinghouses). The server performs this task
automatically by examining a list of the clearinghouses that are resident on the
system. Before you relocate a clearinghouse, use the dcecp clearinghouse
disable command to update the clearinghouse files and ensure that the files are
consistent before you copy them to the target server.

Chapter 21. Restructuring a Namespace 209

The clearinghouse disable command also removes, from the source server’s
internal memory, knowledge of the clearinghouse that you specify. This ensures that
the relocated clearinghouse is not automatically started at the source server during
server restarts.

To use the clearinghouse disable command, you must have write permission to
the server on which the clearinghouse resides.

The following example command removes knowledge of clearinghouse
/.:/Chicago2_CH from the memory of its host server:
dcecp> clearinghouse disable /.:/Chicago2_CH
dcecp>

Copying the Clearinghouse Database Files to the Target Server System

After you disable the clearinghouse and remove knowledge of the clearinghouse
from the host server, you must copy the clearinghouse database files to a specific
location on the new host server system.

A clearinghouse database consists of the following three files:

v clearinghouse-name.checkpoint nnnnnnnn

v clearinghouse-name.tlog nnnnnnnn

v clearinghouse-name.version

where nnnnnnnn represents an 8-digit number.

You should verify the existence of these files before you attempt to copy them to
the new host system. (See the OSF DCE Administration Guide—Introduction and
the OSF DCE Porting and Testing Guide for the full pathnames of all CDS files.)

Note: You may sometimes find two .checkpoint nnnnnnnn files in the directory.
This can happen as a result of a system crash or other interruption during
the clearinghouse’s most recent checkpoint operation. If you do find two files,
copy both of them to the target server system. The server software that is on
that system automatically reconciles any problem that may exist as soon as
the clearinghouse is enabled at the target server.

To move the database files to the new CDS server, use the ftp utility or a similar
network file transfer utility. Copy the three database files from the existing server
host to the new CDS server host. The directory where the files reside on the old
and new CDS server is dcelocal/var/directory/cds .

Starting the Clearinghouse on the Target Server

After copying the clearinghouse database files to the appropriate location on the
target server system, use the clearinghouse create command to start the
clearinghouse at the new location. Make sure that you specify the same
clearinghouse name that was used at its original (source) location. After you enter
the command, the server detects the clearinghouse files, adds knowledge of them
to its memory, then starts the clearinghouse.

To use the clearinghouse create command for the purpose of relocating a
clearinghouse, you must have write permission to the server on which you intend to
relocate the clearinghouse.

210 OSF® DCE Administration Guide— Core Components

In the preceding example, the database files for clearinghouse /.:/Chicago2_CH
were successfully copied to a server system named orion . The following command,
which is issued on orion , relocates the clearinghouse named /.:/Chicago2_CH on
that server:
dcecp> clearinghouse create /.:/Chicago2_CH
dcecp>

Deleting a Clearinghouse

You may need to delete a clearinghouse from the server system on which it resides
when

v The system is scheduled for reallocation or removal from your network.

v You no longer want the system to function as a CDS server.

Before You Delete a Clearinghouse

Before you attempt to delete a clearinghouse, make sure of the following:

v The clearinghouse is known to the server.

v The clearinghouse does not store a master replica.

When you clear a clearinghouse, the server on which the clearinghouse was
running no longer has information about the clearinghouse in its internal memory. If
you subsequently try to delete the clearinghouse, CDS will not find it and will return
a message that it does not exist. Before you can delete a cleared clearinghouse,
you must recreate it using the clearinghouse create command.

CDS does not allow you to delete a clearinghouse that contains a directory’s master
replica. Before you delete such a clearinghouse, you must designate another replica
in that directory’s replica set as the master replica. If no other replicas of the
directory exist, create a read-only replica at another clearinghouse and then
designate it as the directory’s new master replica before you delete the original
master replica from the clearinghouse. (See “Modifying a Directory’s Replica Set” on
page 204 for instructions on modifying a directory’s replica set.)

Permissions for Deleting a Clearinghouse

The following permissions are required for deleting a clearinghouse:

v You need write and delete permissions to the clearinghouse, and administer
permission to all of the directories that store replicas in the clearinghouse.

v The server principal needs delete permission to the associated clearinghouse
object entry, and administer permission to all directories that store replicas in the
clearinghouse.

Deleting a Clearinghouse

Use the clearinghouse delete command to delete a clearinghouse. The command
also deletes the clearinghouse’s associated clearinghouse object entry, and all
read-only replicas from the clearinghouse.

Clearinghouse deletion can take some time to complete. CDS deletes a
clearinghouse only after successfully completing a skulk of all directories that stored
read-only replicas in the clearinghouse.

Chapter 21. Restructuring a Namespace 211

The following example command deletes the /.:/Paris2_CH clearinghouse:
dcecp> clearinghouse delete /.:/Paris2_CH
dcecp>

Creating and Managing Hierarchical Cells

You can use CDS to connect independent cells into a hierarchical cell configuration.
In this configuration, one cell’s CDS acts as a higher-level directory service to
connect other independent cells. The cell whose CDS acts as the higher-level
directory service is known as a parent cell, while the cells connected through the
parent’s CDS are known as child cells. The cell at the top of the hierarchy must be
registered in a global directory service, such as GDS or DNS, but the cells
underneath it do not need to be in order to communicate with each other.

The next sections describe how to create a cell hierarchy, how to add cells to an
existing hierarchy, and the implications of changing a cell’s primary name when it is
part of a hierarchical cell configuration.

Note: In order to create hierarchical cells or cell name aliases, you need to use
CDS 4.0 directories.

Creating a Cell Hierarchy

The top-level cell in a hierarchical cell configuration must be registered in a global
directory service, either GDS or DNS. If you are creating a hierarchical cell
configuration, you need to have one cell registered in a global namespace and use
it as the topmost cell in the hierarchy. All cells underneath this cell in the hierarchy
will share this cell’s GDS or DNS name.

To register a cell in a global directory service, perform the following steps:

1. Establish a GDS or DNS name for the cell, as described in the OSF DCE
Administration Guide—Introduction.

2. Run the DCE configuration program to configure the cell, as described in the
OSF DCE Administration Guide—Introduction.

3. Define the cell in the GDS or DNS namespace, as described in “Chapter 22.
Managing Intercell Naming” on page 213 of this guide.

Once you have established one cell in a global namespace, you can add one or
more child cells to the CDS namespace of this cell, then add one or more cells to
those children’s CDS namespaces, and so on, depending upon how many levels
you plan for your hierarchy. The following sections describe how to add an existing
(already configured) cell to a hierarchy.

212 OSF® DCE Administration Guide— Core Components

Chapter 22. Managing Intercell Naming

To find names outside of the local cell, CDS clerks must have a way to locate
directory servers in other cells. The Global Directory Agent (GDA) enables intercell
communications by serving as a connection to other cells through the global naming
environment. This chapter describes how the GDA works and how to manage it.
The chapter also describes how to define the local cell in either of the global
naming environments (GDS or DNS), which is a step that is necessary to make the
local cell accessible to other cells.

How the Global Directory Agent Works

The GDA is an intermediary between CDS clerks in the local cell and CDS servers
in other cells. A CDS clerk treats the GDA like any other name server, passing it
name lookup requests. However, the GDA provides the clerk with only one specific
service; it looks up a cell name in the GDS or DNS namespace and returns the
results to the clerk. The clerk then uses those results to contact a CDS server in
the foreign cell.

A GDA must exist inside any cell that wants to communicate with other cells. It can
be on the same system as a CDS server, or it can exist independently on another
system. You can configure more than one GDA in a cell for increased availability
and reliability. Like a CDS server, a GDA is a principal and must authenticate itself
to clerks.

CDS finds a GDA by reading address information that is stored in the
CDS_GDAPointers attribute associated with the cell root directory. Whenever a
GDA process starts, it creates a new entry or updates an existing entry in the
CDS_GDAPointers attribute. The entry contains the address of the host on which
the GDA is currently running. If multiple GDAs exist in a cell, they each create and
maintain their own address information in the CDS_GDAPointers attribute.

When a CDS server receives a request for a name that is not in the local cell, the
server examines the CDS_GDAPointers attribute of the cell root directory to find
the location of one or more GDAs. Figure 25 on page 214 shows how a CDS clerk
and CDS server interact to find a GDA.

213

The following steps summarize the GDA search that is illustrated in the preceding
figure:

1. On Node A, a client application passes a global name, beginning with the /...
prefix, to the CDS clerk.

2. The clerk passes the lookup request to a CDS server that it knows about on
Node B.

3. The server’s clearinghouse contains a replica of the cell root directory, so the
server reads the CDS_GDAPointers attribute and returns the address of Node
C, where a GDA is running.

4. The clerk passes the lookup request to the GDA.

Figure 26 on page 215 shows how CDS and a GDA interact to find a name in a
foreign cell that is defined in DNS. Suppose the name is /.../widget.com/printsrv1 ,
which represents a print server in the foreign cell.

Client

CDS Clerk

1
2

3

4

?

?

GDA
is at
Node C

Node B

Node A

Node C

CDS server

GDA

= Request path
= Response path

Legend:

Figure 25. How the CDS Clerk Finds a GDA

214 OSF® DCE Administration Guide— Core Components

The following steps summarize the name search that is illustrated in the preceding
figure:

1. The client application passes the name /.../widget.com/printsrv1 to the CDS
clerk.

2. The clerk passes a lookup request to a CDS server that it knows about on
Node B.

3. The server’s clearinghouse contains a replica of the cell root directory, so the
server looks up the CDS_GDAPointers attribute and returns the address of
Node C, where a GDA is running.

4. The clerk passes the lookup request to the GDA.

5. The GDA recognizes that the name is a DNS-style name, so it assumes that
the second component is a cell name that is defined in DNS. It passes that
portion of the name (widget.com) to DNS. For simplicity, the figure shows only
one DNS server; more than one DNS server can actually be involved in
resolving a global cell name.

Note: Although this example concerns the lookup of a DNS-style name, the
sequence and execution of operations is nearly identical for a GDS
name or a hierarchical cell name. If the GDA recognizes that a name is
a GDS-style name, it passes the name to a GDS server, rather than to
a DNS server. If the GDA recognizes that a name is a hierarchical cell
name, it passes it to the CDS server of the topmost cell in the
hierarchy, which is registered in one of the global namespaces. The
CDS server in this cell walks down the cell hierarchy to locate the
name.

6. DNS looks up and returns to the GDA information that is associated with the
widget.com cell entry. The information includes the addresses of servers that
maintain replicas of the root directory of the /.../widget.com cell namespace.

7. The GDA passes the information about the foreign cell to the clerk.

8. The clerk contacts the CDS server on Node E in the foreign cell, passing it a
lookup request.

Client

CDS Clerk

110
2

3

4

7

8

9

5

6

?

?

?

GDA
is at
Node C

Node B

Node E

Node A

Node C Node D

CDS server

CDS server

GDA DNS Server

= Request path
= Response path

Legend:

widget.com
cell root is
at Node E

Success!

Figure 26. How the GDA Helps CDS Find a Name

Chapter 22. Managing Intercell Naming 215

9. The Node E server’s clearinghouse contains a replica of the root directory, so
the server looks up the entry for printsrv1 in the root and passes the
requested information to the clerk on Node A. For simplicity, this example
shows the clerk contacting only one server in the foreign cell. While resolving a
full name, the clerk may actually receive referrals to several servers in the
foreign cell.

10. The clerk passes the information to the client application that requested it.

Note that both of the previous examples (Figure 25 on page 214 and Figure 26 on
page 215) represent initial lookups. The CDS clerk caches the locations of GDAs
once it discovers them. The clerk also caches the addresses of servers in foreign
cells that it learns about, enabling it to contact the foreign servers directly on
subsequent requests for names in the same cell.

Note also that a GDA knows its own cell name and can therefore avoid contacting a
global directory service to look up names in its own cell. Furthermore, the GDA can
recognize whether a cell name conforms to the GDS or DNS naming syntax, and it
uses that knowledge to route a lookup request to the appropriate global directory
service.

Managing the Global Directory Agent

Use the DCE configuration program to configure the GDA; the GDA requires little
management once it is configured. (See the OSF DCE Administration
Guide—Introductionfor details on configuring the GDA.)

The GDA is typically started and stopped automatically by scripts that execute as
part of normal system startup and shutdown procedures. Sometimes, however, you
may want to use commands to stop and restart a GDA. Once you have configured
GDA with the DCE configuration program, you can use these steps to start and stop
GDA.

The GDA runs as a process called gdad . To start the gdad process, follow these
steps:

1. Make sure that a CDS server is already running somewhere within the cell.

2. Log into the system as superuser (root).

3. Enter the following command to see if the dced process is already running:
ps

If the dced process appears on the list of active processes, proceed to step 5. If
the dced process does not appear on the list of active processes, enter the
following command to start the process:
dced

4. Enter the following command to start the cdsadv process:
cdsadv

5. Enter the following command to start the gdad process:
gdad

To stop the GDA, enter the following command, where pid is the process identifier
of the gdad process:
kill pid

216 OSF® DCE Administration Guide— Core Components

Enabling Other Cells to Find Your Cell

The GDA is the mechanism that allows CDS clerks in your local cell to find other
cells. To make your cell accessible to others, you must create an entry for it in one
of the currently supported global naming environments. Before you do this, obtain a
unique cell name from the appropriate naming authority. (See the OSF DCE
Administration Guide—Introduction for details.)

After you configure a cell, name it, and initialize the cell namespace, you can use
the dcecp directory show command to obtain the data you need to create or
modify the cell entry in DNS or GDS. The data in a cell entry is what the GDA
passes to CDS after looking up a cell name. CDS, in turn, uses the information to
contact servers in the cell. The following subsections describe how to define and
maintain a cell entry in DNS or GDS. These sections assume a basic familiarity with
DNS and GDS; for details, see the appropriate documentation for each global name
service.

You can also define and maintain a cell entry in the CDS namespace of another
cell; this type of definition exists in a hierarchical cell configuration. “Creating and
Managing Hierarchical Cells” on page 212 in this guide describes how to define a
cell in the CDS namespace of another cell.

Defining a Cell in the Domain Name System

Names in DNS are associated with one or more data structures called resource
records. The resource records are stored in a data file whose name and location
are implementation specific. To create a cell entry, you must edit the data file and
create two resource records for each CDS server that maintains a replica of the cell
namespace root.

The first resource record, whose type can be AFSDB or MX, contains the host
name of the system where the CDS server resides. You can use MX as an
alternative to using AFSDB. The second record, of type TXT, contains the following
information about the replica of the root directory that the server maintains:

v The UUID of the cell namespace, in hexadecimal notation

v The type of the replica (master or read-only)

v The global CDS name of the clearinghouse where the replica resides

v The UUID of the clearinghouse, in hexadecimal notation

v The DNS name of the host where the clearinghouse resides

The following example shows a set of AFSDB resource records for a cell that is
named cs.tech.edu , in which two replicas of the root directory exist. Note that only
the first resource record contains the cell name; the second, third, and fourth
records are assumed to be associated with the same cell because they do not
contain a cell name. The TTL heading stands for time-to-live, which is a value, in
seconds, after which the data is no longer considered valid in a DNS cache. (The
value shown specifies a default value of 1 week.) The IN class indicates that the
protocol is Internet, and the subtype of 2 indicates that a name server exists on the
host named in the record.
;First Replica:
;Name TTL Class Type Subtype Host
cs.tech.edu 604800 IN AFSDB 2 fox.cs.tech.edu
;Name TTL Class Type Rdata

604800 IN TXT (1 ;version

Chapter 22. Managing Intercell Naming 217

fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Master ;Replica1 type
/.../cs.tech.edu/cs1_ch ;ch name
fd3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid
fox.cs.tech.edu) ;host

;Second Replica:
604800 IN AFSDB 2 rox.cs.tech.edu
604800 IN TXT (1 ;version
fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Read-only ;Replica2 type
/.../cs.tech.edu/cs2_ch ;ch name
fd3429c4-2a4b-11ca-af87-09002b1c89bb ;ch uuid
rox.cs.tech.edu)

;host

You can use MX as an alternative to using AFSDB. The following example shows a
set of MX resource records for the same cell, cs.tech.edu , in which two replicas of
the root directory exist.
;First Replica:
;Name TTL Class Type Preference Exchange
cs.tech.edu. 604800 IN MX 1
fox.cs.tech.edu.
;Name TTL Class Type Rdata

604800 IN TXT (1 ;version
fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Master ;Replica1 type
/.../cs.tech.edu/cs1_ch ;ch name
fd3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid
fox.cs.tech.edu) ;host

;Second Replica:
604800 IN MX 2

rox.cs.tech.edu.
604800 IN TXT (1 ;version
fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Read-only ;Replica2 type
/.../cs.tech.edu/cs2_ch ;ch name
fd3429c4-2a4b-11ca-af87-09002b1c89bb ;ch uuid
rox.cs.tech.edu)

;host

After you configure a cell, you can use the dcecp directory show command to
display the information that is required to construct resource records like those
shown in the previous example. The following is an example directory show
command that displays output for a cell named /.../cs.tech.edu .
dcecp> directory show /.../cs.tech.edu

To create a new resource record in the DNS namespace, use the information from
the directory show command and place the properly-formatted data into the DNS
data file.

Defining a Cell in the Global Directory Service

In GDS, cell information is contained in two attributes: CDS-Cell and CDS-Replica .
You can cause an existing GDS name to become a cell entry by adding these two
attributes to the name. If the name you want to use for the cell does not yet exist,
you must create it and then add the attributes. The GDS administration program
uses numbered screens called masks to accept user input. Use the object
administration masks to create a cell entry. (See the OSF DCE GDS Administration
Guide and Reference for details.)

218 OSF® DCE Administration Guide— Core Components

After you configure a cell, you can use the dcecp directory show command to
obtain the data that you need to supply when you are creating the CDS-Cell and
CDS-Replica attributes. The following is an example directory show command
and the resulting GDS-formatted output for a cell that is named
/.../C=US/O=ABC/OU=Sales :
dcecp> directory show /.../C=US/O=ABC/OU=Sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1996-04-18-20:11:02.385764100/08-00-09-85-01-22}
{CDS_UTS 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}
{CDS_ObjectUUID 68f0755c-9956-11cf-9da3-080009850122}
{CDS_Replicas
{{CH_UUID 59eb61fc-9956-11cf-9da3-080009850122}
{CH_Name /.../c=us/o=abc/ou=sales/dcegecko_ch}
{Replica_Type Master}
{Tower {ncadg_ip_udp 15.22.50.148}}
{Tower {ncacn_ip_tcp 15.22.50.148}}}}

{CDS_AllUpTo 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}
{CDS_Convergence medium}
{CDS_ParentPointer
{{Parent_UUID 5a824f54-9956-11cf-9da3-080009850122}
{Timeout
{expiration 1996-08-02-14:01:36.251}
{extension +1-00:00:00.000I0.000}}

{myname /.../c=us/o=abc/subsys}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}
{CDS_LastUpdate 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}
{CDS_Epoch 68fdf042-9956-11cf-9da3-080009850122}
{CDS_ReplicaVersion 3.0}
dcecp>

To create a new resource record in GDS, use the information from the directory
show command to fill in the fields of Mask 21 (CDS-Cell) and Mask 22
(CDS-Replica) in the GDS administration program.

Chapter 22. Managing Intercell Naming 219

220 OSF® DCE Administration Guide— Core Components

Part 5. DCE Distributed Time Service

221

222 OSF® DCE Administration Guide— Core Components

Chapter 23. Introduction to DCE Distributed Time Service

This chapter gives a conceptual overview of the DCE Distributed Time Service
(DTS). Some basic time and clock concepts, DTS time representation, and basic
DTS operation are also presented.

DTS is a software-based service that provides precise, fault-tolerant clock
synchronization for systems in local area networks (LANs) and wide area networks
(WANs). The clock synchronization that is provided by DTS enables distributed
computing applications to determine event sequencing, duration, and scheduling.

DTS consists of software components on a group of cooperating systems; it
conforms to the client/server model that is used in DCE. In the DTS implementation,
each server supplies the time to many client systems and applications through
intermediaries called clerks. Clerks reside on their client systems. (Note that,
throughout this part of this guide, the term entity is used to refer to either the server
process or the clerk process when they have the same functions.)

Most DCE nodes have a DTS clerk that adjusts the clock on its client system;
clerks use remote procedure calls (RPCs) to obtain time values from one or several
servers in the network. The nodes that do not have DTS clerks have DTS servers;
in addition to providing time values to clerks, servers also adjust the system clocks
on their host systems. Servers are also able to obtain reference time values from
sources of standardized time that are outside of the network.

Because no device can measure the exact time at a particular instant, DTS
expresses the time as an interval that contains the correct time. In the DTS model,
clerks obtain time intervals from several servers and compute the intersection
where the intervals overlap. Clerks then adjust the system clocks of their client
systems to the midpoint of the computed intersection. When clerks receive a time
interval that does not intersect with the majority, the clerks declare the
nonintersecting value to be faulty. Clerks ignore faulty values when computing new
times, thereby ensuring that defective server clocks do not affect clients.

DTS also permits the importation of time values from outside sources, such as the
U.S. National Institute for Standards and Technology (NIST). DTS uses the UTC
(Coordinated Universal Time) standard that has largely replaced Greenwich Mean
Time (GMT) as a reference. Many standards bodies disseminate UTC by radio,
telephone, and satellite; commercial devices (time-providers) are available to
receive and interpret these signals. DTS offers a Time-Provider Interface (TPI) that
describes how a time-provider process can pass UTC time values to a DTS server
and propagate them in the network. The TPI also permits other distributed time
services to interoperate with DTS.

DTS provides many other valuable services for computer networks that run
distributed applications. The major features and benefits of DTS are the following:

v Correctness—DTS maximizes the probability that a client will receive the correct
time. DTS uses UTC as a base reference and defines any time interval
containing UTC as correct.

v Quantitative Time Measurement—DTS uses specific measurement and
manufacturer’s specifications to determine the quality of the times that are
reported by servers.

v Fault Tolerance—DTS reports faulty servers and does not use their time values
during clock synchronizations.

223

v Management Capability—The DCE control program (dcecp) enables you to
control and monitor the software.

v Application Programming Interface (API)—DTS provides an interface that allows
applications to obtain, compare, and calculate UTC time values.

v Local Time Translation—When displaying time values, DTS translates the UTC
times that it uses internally into local time values.

v Monotonicity—DTS normally provides unidirectional clock adjustment. You can
use the DCE control program, though, for nonmonotonic clock adjustment.

v Automatic Configuration—DTS entities use RPC profiles (search tables) to obtain
the locations of servers in a local area or cell.

v Efficiency—Complexity is placed in the servers; network overhead is minimal.

DTS Advantages

DTS offers all the features that are normally provided by a time service, but it also
has several features that enhance network performance. The following subsections
describe these DTS features:

v Applications support

v External time-provider support

v Manageability

v Quantitative inaccuracy measurement

Applications Support

Operating systems and distributed applications require synchronized time
measurements to coordinate their processes. DTS synchronizes the system clocks
in a network with each other and, in the presence of an external time-provider, to
the UTC time standard. Any distributed application that reads the system clock,
which is the majority of applications, needs DTS. As the number of distributed
applications and systems in a network increases, DTS becomes increasingly vital to
process coordination.

There are several types of existing applications that use the synchronized time DTS
provides to system clocks. These applications must reference synchronized system
clocks in order to coordinate the events that occur throughout the network.
Applications use synchronized clocks for the following functions:

v Event Measurement—Applications can read the system clock to start and stop
timers and to measure the elapsed time between events.

v Event Reporting—Applications can read the clock when an event occurs and
append a timestamp to the event report.

v Event Scheduling—Applications can read the system clock and add a relative
time to determine the occurrence of a future event.

v Event Sequencing—Applications can determine the order of events by reading
the event report timestamps that are derived from the synchronized system clock.

For new applications, DTS provides an API. This API provides routines that new
applications can use to obtain and manipulate binary timestamps. The DTS API
supports ANSI C language constructs. (See the OSF DCE Application Development
Guide—Core Components for further information on the DTS API.)

224 OSF® DCE Administration Guide— Core Components

External Time-Provider Support

For most networks, it is desirable to synchronize the system clocks with the UTC
time standard. Many commercial devices are available for obtaining the UTC time
that is provided by standards organizations; these devices receive signals by
short-wave radio, satellite, and telephone. If your network or cell is larger than a
single LAN, it is recommended that you use at least one external time-provider in
combination with the DTS software. (See “Appendix C. Time-Providers and Time
Services” on page 481 for a list of suppliers of time-provider hardware. Sample
time-provider programs are available online in dcelocal/usr/examples/dts .)

DTS servers can synchronize with time-providers by means of the TPI, which is
described in the OSF DCE Application Development Guide—Core Components.
The TPI specifies the communications between the DTS server process and the
time-provider process.

When a DTS server attempts to synchronize, it uses the TPI to check for a
time-provider process. If one is available, the server synchronizes only with the
time-provider. If no time-provider is present, the server synchronizes with other
servers in the network.

By using a time-provider with a DTS server, you can ensure that the server is
closely synchronized with UTC. When other servers request a time from the server
with the time-provider (the TP server), the TP server’s precise time is propagated
throughout the network. (See “Basic DTS Concepts” on page 226 for further
information about time-providers and the server synchronization process.)

Manageability

The DTS synchronization functions run as background processes; little or no input
is required from system managers to synchronize system clocks after DTS is
initially configured. DTS is also fault tolerant. It prevents malfunctioning clocks from
providing the wrong time to other clocks in the network. Occasionally, however,
system managers may need to perform the following functions:

v Identify system clock problems

v Adjust system clocks

v Change DTS attributes due to varying network conditions

v Modify system configurations when the network topology changes

DTS provides a full-featured management interface that allows system managers to
adjust system clocks, change the values of the DTS management parameters, and
add or subtract servers from the network.

To aid in solving problems with system clocks, DTS provides event reporting that
notifies system operators and managers in the rare event that a system clock is
inaccurate or fails to synchronize.

Quantitative Inaccuracy Measurement

Unlike other network time services, DTS uses manufacturers’ specifications and
direct observation to determine the inaccuracy of system clocks relative to UTC.
DTS appends an inaccuracy measurement to each time value that it uses internally.
This measurement takes into account cumulative clock error, communications
delays, and processing delays. DTS uses combined time and inaccuracy

Chapter 23. Introduction to DCE Distributed Time Service 225

measurements from one or several sources to calculate the most accurate new
clock settings for client systems. (See “Synchronizing System Clocks” on page 228
for further information about the DTS synchronization process.)

Basic DTS Concepts

The following subsections describe system clock and network characteristics, DTS
synchronization concepts, DTS clock adjustment, and DTS time representations.
System managers need to read these subsections to gain a basic understanding of
DTS concepts before progressing to “Chapter 25. Managing the DCE DTS” on
page 243.

Time Measurement Factors

The following subsections describe the factors that affect time measurement and
explain how DTS handles them.

Clock Error

All system clocks have common properties that contribute to clock error and
interfere with the synchronization process. System clock error tends to increase
over time; the rate of change of error is known as drift. If each system clock in a
network started at the same time and ran at the same rate, the clocks would remain
synchronized. Because each system clock drifts at a different rate, however, the
system clocks throughout a network become desynchronized.

The difference between any two clock readings is known as the skew between the
clocks. The clocks that are used in many computer systems have a specified
maximum drift of a few seconds per day. If uncorrected for several days, the skew
between networked system clocks can inhibit the performance of distributed
applications.

The DTS server or clerk on each node tracks the drift of its client’s system clock
and periodically synchronizes with other DTS nodes to reduce the skew between its
client’s time value and those of the other DTS nodes. The DTS server or clerk
adjusts the system clock on its client node as the final step in this repeating
synchronization process.

Communications and Processing Uncertainties

Communications delays also inhibit the synchronization process, especially when
two systems communicate over a WAN or low-speed link. DTS can adjust for the
known processing delays that are required to send and receive messages between
systems. Due to the varying quality of communications links, however, the time that
is required to send, receive, and acknowledge messages varies from one message
to the next. These delays cannot be known exactly because transit over the
network and the time required to read an incoming timestamp both vary.

Rather than using estimates of communications and processing delays, DTS
records all known error factors that accompany a time measurement sent over the
network. This measurement enables DTS to determine the relative quality of a time
source regardless of its geographic location or changing conditions on
communications links.

226 OSF® DCE Administration Guide— Core Components

Inaccuracy Values

In order to synchronize system clocks to the most accurate settings, DTS needs a
way to determine the accuracy of time sources relative to each other and to UTC.
This section describes how DTS determines the relative accuracy of any time
source that is available in the network.

DTS uses an inaccuracy value, or tolerance, to determine the relative precision of
time values that it obtains from system clocks and external time-providers. This
DTS feature effectively transforms each time value into an interval, or range, rather
than a point on a continuum.

Inaccuracy values are determined by the following three factors:

v Drift—When reading a clock, DTS calculates the amount of time that the clock
may have drifted since DTS previously read the clock. Drift is the largest
component of most inaccuracy values.

v Communications Delay—The inaccuracy also contains the uncertain portions of
the communications delays between systems. Although DTS compensates for
processing delays, it cannot predict or directly measure the varying delays that
occur on network links. The inaccuracy values that a clerk or server obtains from
co-located systems on a LAN tend to be much lower than those obtained from
servers outside the LAN.

v Leap Seconds—UTC time is measured by atomic clocks, which are extremely
stable. The standard, however, keeps time based on the earth’s position. Due to
the slowing of the earth’s rotation, it occasionally becomes necessary to advance
UTC time by 1 second. These events are known as leap seconds. Leap seconds
may occur in the final second of any month, and normally occur about once
every 18 months. At the end of each month, DTS accounts for leap seconds by
increasing all inaccuracy measurements by 1 second. DTS later adjusts the
clocks to remove the extra second of inaccuracy if an external time-provider
determines that a leap second did not actually occur.

Without DTS to correct it, a system clock’s inaccuracy is always increasing. For
example, suppose that a clock starts with a UTC time of 0:00:00.00 (midnight) and
zero inaccuracy. Due to drift, when the clock next shows a time of 0:00:00.00, the
inaccuracy is 8 seconds. UTC time may be 23:59:52.00 or 0:00:08.00, but is
probably somewhere in between. Therefore, the system time is an interval that
contains UTC time and is bounded by the inaccuracy, as shown in Figure 27 on
page 228. Using the DTS format for displaying time, the combined time and
inaccuracy interval is expressed as follows:
1993-08-03-00:00:00.000I08.000.

Chapter 23. Introduction to DCE Distributed Time Service 227

Synchronizing System Clocks

To maintain uniform system times, DTS servers and clerks periodically synchronize
the clocks in all network systems. The DTS entity that is on each system performs
these synchronizations by requesting that servers send their combined clock and
inaccuracy values (time intervals) to the originating system. The entity then uses the
values that are sent by the servers to compute a new system time.

DTS servers and clerks have slightly different synchronization procedures. Before
attempting to synchronize with other systems, DTS servers always check that an
external time-provider is present on the server system. A given server requests
times from other servers if no time-provider is available. When no time-provider is
available and a server synchronizes with its peer servers, the server uses its own
system time as one of the input values when it computes a new system time.

Most network systems run the DTS clerk process. Clerks cannot have
time-providers, and they do not use the system time of their client systems to
compute new times. When a clerk is synchronizing its client system’s clock, the
clerk uses only the time values that it obtains from servers to compute a new
system time.

When a DTS clerk requests time intervals from several servers, it uses them to
calculate a new time that is correct (that is, contains UTC) and that minimizes
inaccuracy. When the servers respond and the DTS clerk calculates network
communications uncertainties and drift for each of the time values, the clerk has a
set of intervals (t1 through t4 in Figure 28 on page 229). Since each interval
contains UTC, the intersection is the smallest interval the clerk can choose that also
contains UTC. This intersection is the computed time. The DTS entity uses the
computed time interval to adjust the clock on the system that receives the server
values.

In addition to eliminating large inaccuracy values during synchronization, DTS also
discards intervals that are received from faulty clocks (t2 in the figure). DTS detects
and rejects clock intervals that do not intersect with the majority of the intervals.
When DTS detects a faulty interval, it notifies the system manager by displaying an
event message, identifying the server that sent the faulty value.

A server that has a high-drift clock or is far away in the network submits its time to
the DTS entity (t1 in the figure), but the large time interval is ignored since more

00:00:00.00

00:00

-8 +8

(Midnight)

Hardware
clock time

Boundary of
inaccuracy

Boundary of
inaccuracy

30 35 40 45 50 55 5 10 15 20 25 30

Key:

= Coordinated Universal Time (UTC)

Figure 27. Time and Inaccuracy

228 OSF® DCE Administration Guide— Core Components

accurate times are available. Note that, in Figure 28, the endpoints of correct time
(t1) are further from the computed time midpoint than those of the interval that is
declared faulty (t2).

During the synchronization process, servers with the greatest accuracy have the
most influence in determining new system times throughout the network. In the
previous figure, the server that submitted time value t3 has the smallest correct
interval and is therefore the closest to the computed time. Server systems with
external time-providers are usually the servers with the most accurate times.
Beyond TP servers, those servers with the highest quality clocks and best
communications links tend to influence the time on other systems to the greatest
degree.

The synchronization process also reduces the skew between systems. The
computed time interval is often smaller than the interval that is supplied by any
single clock. Note that the computed time in the previous figure is a smaller interval
than any of the source intervals. As the synchronization procedure is constantly
repeated on each network system, the skew between systems is reduced and they
are more closely synchronized. However, if a time-provider is absent from the
network, the clocks may collectively drift away from UTC.

How DTS Adjusts System Clocks

Many system clocks are based on an oscillator and operate with a combination of
hardware and software. The hardware for each clock contains a timer that sends
interrupts to the operating system at fixed intervals; each interrupt is a single tick. A
software register that contains the current value of the time is incremented by a
fixed amount (for example, 10 milliseconds) at each tick. DTS adjusts the rate of

Intersection of
correct intervals
(computed time)

UTC

t4

t3

t2

CT

t1

Time

Figure 28. Computed Time

Chapter 23. Introduction to DCE Distributed Time Service 229

the clock by changing only the incremental value that is added to the software
register. It does not directly affect the ticks of the hardware clock.

DTS adjusts system clocks at the rate of 100 to 1; that is, it requires 100 time units
to adjust 1 time unit of error. For example, it takes 1 minute and 40 seconds to
correct a 1-second error. This rate of adjustment exceeds the normal rate of drift so
that synchronization is carried out without further significant interference from the
clock.

Figure 29 illustrates how DTS changes the increment to the software register. The
top line represents a 10-millisecond increment to the normal clock at every
10-millisecond tick. The middle line illustrates the adjustment to a fast clock; DTS
slows the clock by incrementing the register by 9.9 milliseconds instead of 10
milliseconds at each tick. The bottom line illustrates the adjustment to a slow clock;
DTS speeds it up by incrementing the register by 10.1 milliseconds instead of the
usual 10 milliseconds at each tick.

It is occasionally preferable to set the system clock immediately, rather than
adjusting it gradually. DTS provides this option for the following situations:

v During system startup when you want to set the initial system time

v If it has been a long time since the last synchronization, and you decide that the
skews between system clocks are too large to wait for a gradual adjustment

v When a network has had catastrophic hardware problems, causing a large
number of the clocks to become faulty

v When the time interval for a given clock does not intersect with the intervals of
other clocks, and the error exceeds a predetermined tolerance

DTS Time Representation

UTC is the international time standard that has largely replaced GMT. The standard
is administrated by the International Time Bureau (BIH) and is in widespread use.
For all its internal processes, DTS uses opaque binary timestamps that represent
UTC. You cannot read or disassemble a DTS binary timestamp. The DTS API
allows other applications to convert or manipulate the timestamps, but they cannot
be displayed. DTS also translates the binary timestamps into ASCII text for display
on a client system.

Absolute Time

An absolute time is a point on a time scale. For DTS, absolute times reference the
UTC time scale. Absolute time measurements are derived from system clocks or
external time-providers. When DTS reads a system clock time, the time is recorded
in an opaque binary timestamp that also includes the inaccuracy and other

10

T

T T T T T T T T

T T T T T T T T

T T T T T T T T

20 30 40 50 60 70 80

10.5 20.4 30.3 40.2 50.1 60 70 80

9.5 19.6 29.7 39.8 49.9 60 70 80

NORMAL CLOCK

ADJUSTMENT TO A
FAST CLOCK

ADJUSTMENT TO A
SLOW CLOCK

= Hardware tick

Figure 29. Adjustment of the Clock

230 OSF® DCE Administration Guide— Core Components

information. When you use the DCE control program (dcecp) clock show
command to display an absolute time, it is converted to ASCII text, as shown in the
following display:
1993-11-21-13:30:25.78523-04:00I010.0825

DTS displays all times in an ISO-compliant format. The International Organization
for Standardization (ISO) format that generated the previous display example is
detailed as shown in Figure 30.

In the format example shown in the preceding figure, the relative time preceded by
the + (plus sign) or − (minus sign) indicates the hours and minutes that the
calendar date and inaccuracy are offset from UTC. The presence of one of these
characters in the string also indicates that the calendar date and time are the local
time of the system, not UTC. The delineator I indicates the beginning of the
inaccuracy component that is associated with the time. You can express the DTS
time that you want to display in several ways. The DTS time in BNF format is
defined in “Appendix D. DTS Extended BNF” on page 485.

Although the dcecp clock show command displays all times in the previous format
(see Figure 30), the interface also accepts the following variations to the ISO format
on input, as shown in Figure 31 on page 232.

CCYY-MM-DD-hh:mm:ss.fff [+ l -]hh:mm sss.fffI

Inaccuracy
designator

hours

minutes

+ l - TDF

TDF
component

Inaccuracy
component

Calendar date and time
component

fractions

secondsYear

Century

Day

Month

minute

hour

fraction

second

Figure 30. ISO-Compliant Time Format

Chapter 23. Introduction to DCE Distributed Time Service 231

In the preceding example, the delineator T separates the calendar date from the
time, a , (comma) separates seconds from fractional seconds, and the ± (plus or
minus sign) indicates the beginning of the inaccuracy component.

DTS offers a translation feature that changes UTC-based absolute times to your
local time whenever the time is displayed. The local time displayed is derived from
UTC plus a Time Differential Factor (TDF), which can have a positive or negative
value. In the previous example, the string [+/−] hh: mm denotes the TDF. When
installing a system, you select a time-zone rule for the system, which determines
the TDF and any seasonal changes to the TDF. After the initial startup, all
subsequent output times reflect the local time. If an absolute time is displayed by
your system, and it does not contain TDF information, it is a UTC time.

The following section describes relative time, which is derived from absolute time.

Relative Time

A relative time is a discrete time interval that is usually added to or subtracted from
another time. The TDF that is associated with absolute times is an example of a
relative time. Relative times are normally used as input for commands or system
routines.

Figure 32 on page 233 shows the format for relative time.

CCYY-MM-DDThh:mm:ss.fff [+ l -]hh:mm sss.fffI

Inaccuracy
designator

Time
designator hours

minutes

+ l - TDF

TDF
component

Inaccuracy
component

Calendar date and time
component

fractions

secondsYear

Century

Day

Month

minute

hour

fraction

second

Figure 31. ISO-Compliant Time Format Variation

232 OSF® DCE Administration Guide— Core Components

The simple relative times that you specify with DTS-related dcecp commands do
not use the calendar date nor inaccuracy fields because these fields are associated
with absolute times. Positive relative times are not signed, but negative relative
times are preceded with a − (minus sign).

The following example shows a relative time used in a typical DTS-related dcecp
command:
21-08:30:25.000

Simple relative times are often subtracted from or added to other relative or
absolute times. For example, if you say, ′′I will meet you in an hour,’’ you add a
relative time of +01:00 to the present absolute time. In the case where you add or
subtract a relative time and an absolute time, note that the inaccuracy of the input
absolute time is carried over to the resulting absolute time. For example,
1993-11-30-00:30:25.000I00.030 minus 00-00:15:25.000 equals
1993-11-30-00:15:00.000I00.030.

How DTS Works

DTS has two major software components:

v Clerks

v Servers

The following subsections describe each of these components and tell you how
they interact to provide time to client applications and to synchronize system clocks.

Clerks

Any system that is not a DTS server is a DTS clerk. Most network systems run
clerk software. Clerks maintain server lists and perform the synchronization
functions for DTS client systems.

In order to build server lists and synchronize with the servers on the list, clerks
need to be able to locate servers automatically. They discover servers by using
remote procedure call (RPC) profiles. Recall that profiles are search tables that
contain the following types of entries:

v Server Entries—The CDS names of individual resource providers.

v Service Group Entries—A group of resource providers identified by a single CDS
name.

DD-hh:mm:ss.fff ss.fffI

Days

minutes

hours

fractions

seconds

Inaccuracy
designator

Inaccuracy
component

Relative date and
time component

fractions

seconds

Figure 32. Relative Time Format

Chapter 23. Introduction to DCE Distributed Time Service 233

v Profile Entries—The names of other configuration profiles. These entries allow
hierarchical nesting of profiles.

Each DTS clerk node contains up to three profiles. When it attempts to locate
servers, a clerk first performs an RPC lookup of the entries in a base profile called
the node initial profile. The clerk then looks for the LAN profile entry. If the LAN
profile entry is not found, the clerk searches for the default profile entry; the default
profile may contain the LAN profile entry. When the clerk locates the LAN profile, it
reads the server entries to build a list of local servers. This process is repeated at
set intervals.

If a clerk does not obtain enough server entries as dictated by the DTS
management attribute minservers , it attempts to locate additional servers, usually
those outside the LAN. To locate these servers, a clerk locates the cell profile,
which has a well-known CDS name. The cell profile contains global server entries;
that is, servers that are normally found outside the LAN. (See “Servers” for further
information on servers.)

After building a server list with enough entries, a clerk can directly request time
values from several of the servers on the list. The clerk then receives these time
values and uses them to compute a new system time for its client system.

Servers

Servers provide many of the communications and synchronization functions for
DTS. Like clerks, they import information about other servers from LAN and cell
profiles. Servers, however, also export bindings to their own CDS namespace
entries and export their names to the LAN and cell profiles. (See the following
subsections on the server subtypes for further information on how servers are
configured and located.)

External time-providers can be connected to servers, which propagate the precise
time intervals they obtain from the time-providers throughout the network.

Before one server can obtain time values from another, the servers must have the
same epoch number. Epochs divide the DTS implementation into logically separate
areas. Servers only synchronize with other servers that have the same epoch
number. All servers have the same epoch number when they are created.
Infrequently, you may wish to change a server’s epoch number, using the
management interface, to isolate it from the network in order to correct a problem.

The Local Server Set

Local servers reside on the same LAN and maintain their clocks by synchronizing
with each other. Due to the high throughput on this type of network, the skews
between the local servers on a LAN are normally maintained at under 200
milliseconds. If at least one of the servers in the local set synchronizes with an
accurate time-provider, inaccuracies at each server may be less.

When a server is first initialized, it exports its binding to its entry in the namespace
and adds its name entry to the LAN profile. Every server is automatically entered in
the LAN profile for the related portion of the network. Local servers also import
bindings from the LAN profile to build lists of servers with which they can
synchronize.

234 OSF® DCE Administration Guide— Core Components

Local servers perform time interval computations, adjust their clocks, and provide
time values to each other for synchronization purposes. Each server attempts to
synchronize with every other server in the local set at periodic intervals. At longer
intervals, clerks request time values from the local servers. Clerks, however, need
only to request intervals from the number of servers determined by the minservers
attribute, which is usually a subset of all the local servers.

The Global Server Set

Local servers are available only to the servers and clerks that are in a single LAN,
but global servers are available throughout a cell. Any server can be configured as
either a local or a global server (See the DCE control program dts configure
command). The number of global servers is usually small, but global servers have
several important functions that enable DTS to synchronize every node in the
network. Global servers are necessary in the following situations:

v When a network has multiple LANs or an extended LAN

v When systems that are not on LANs have access to LANs through point-to-point
links

v When clerks or local servers cannot access the required number of local servers
determined by the minservers attribute

You can reconfigure a local server as a global server by using the dcecp dts
configure command with the -global option. Configuring a server as a global
server causes the server to export its binding to its entry in the namespace and its
name to the cell profile.

Local servers and clerks request time values from global servers when they cannot
obtain the number of local server responses that are mandated by the minservers
attribute. Certain local servers also regularly request the time from global servers.
See the following subsection.

Couriers

Local servers called couriers request time values from one randomly selected global
server at every synchronization. When DTS starts up, it automatically sets the
server’s courierrole attribute value to backup . You can change the server’s courier
role by manually changing this attribute value. To do this, you use the dcecp dts
modify command with the -change option. If a server is connected to an external
time-provider, you want to reconfigure it as a courier.

Couriers maintain lists of global servers whose bindings they import from the cell
profile. At every synchronization, couriers use the responses of all local servers and
one global server when synchronizing their own clocks. Couriers provide
network-wide synchronization through the following procedure:

1. Couriers request time values from at least one global server in a remote area
and request the balance of values from local servers up to the number
determined by the minservers attribute.

2. Couriers use the global server times and local server times to synchronize the
clocks that are in their respective systems.

3. Couriers relay newly computed clock times to other servers and clerks on the
LAN during future synchronizations.

Chapter 23. Introduction to DCE Distributed Time Service 235

For a network containing multiple LANs or point-to-point links, one server on each
LAN or segment needs to be configured as a courier. This configuration ensures
that various portions of the network remain synchronized and are not isolated from
each other.

Using the management interface, you can also designate one or more servers to be
backup couriers. These local servers temporarily assume courier functions in the
event that no courier servers are available on the LAN. In such a case, the backup
courier with the lowest ordered Universal Unique Identifier (UUID) regularly
synchronizes with global servers until a courier is again available.

If a courier cannot find any global server, then it uses local servers and increments
its no global server detected count.

236 OSF® DCE Administration Guide— Core Components

Chapter 24. Planning Your DTS Implementation

This chapter describes how to plan your DCE DTS implementation, including
personnel selection for the planning process and planning for DTS on a LAN, an
extended LAN, or a WAN. DTS installation is described in the OSF DCE
Administration Guide—Introduction, so installation considerations are only included
in this chapter by reference. It is important to note, however, that many of the
planning considerations for DTS are tied to the overall planning of DCE, especially
the CDS and Security components. (See the OSF DCE Administration
Guide—Introduction for background information on the interdependencies among
the DCE components.)

The DTS Planning Team

Two main categories of personnel interact with the DTS software: system managers
and applications programmers. Programmers do not usually need to be involved in
the planning stages of the DTS implementation. If you are writing a program to
import a source of UTC time into the service, however, you may wish to locate the
time-provider at the server that is closest to the programmer. Close proximity to the
time-provider helps the programmer when testing the software application with the
time-provider hardware.

System managers or network architects usually plan the DTS implementation. They
decide which nodes are servers and which are clerks, and they decide how the
DTS implementation grows with the network. DTS is scalable for large networks so
that expanding an implementation to include new nodes is relatively simple.

System managers also install the software and maintain DTS. As the network
grows, system managers ensure that the service is running with acceptable
accuracy and install new servers, time-providers, and clerks.

General Planning Guidelines

Consider the following questions as you plan your DTS implementation:

v Is your cell a single LAN, an extended LAN, a WAN, or a combination of LANs
and WANs?

v What is the current or proposed network topology (component placement)?

v How many servers will be required? Where will they be located?

v Will global servers be required? Where will they be located?

v Will you need to configure any couriers if you are using global servers?

v Will you use an external time-provider to obtain UTC?

The following sections will help you answer these questions.

Although there are many network configurations that affect DTS planning, several
general rules apply regardless of your network configuration or the number of nodes
in the network. These guidelines are summarized as follows:

v DTS must be installed with the other DCE components.

v Locate DTS servers on the same nodes as the servers for the other DCE
components wherever possible.

237

v Each cell should have a minimum of three DTS servers; preferably four servers
to provide redundancy.

v Each LAN should have at least one server.

v Locate the servers at the sites with the greatest number of nodes.

Although other factors must be considered when you plan your network, these
factors depend on network topology and configuration. The following sections
present some typical cell arrangements to aid you in implementing DTS on your
own network.

Configuring DTS for a LAN

If your nodes are in a single LAN, regardless of the number of nodes, planning your
DTS implementation is relatively simple. To detect faulty time servers, configure at
least three systems as servers. If you want to provide redundancy for your DTS
implementation, plan to install four or more servers in the network. That way, if one
of the servers fails, DTS can still synchronize with reliable results.

To ensure the reliability of your DTS implementation, make sure that the network
connections between server nodes are stable. If you plan to add WAN links to your
LAN, do not move the servers to the remote nodes, since WAN links are usually
less reliable than the LAN.

If you have a single LAN, the location of the servers on the LAN is not critical. You
can locate one of the servers on a readily accessible node to aid in troubleshooting,
but there are no other recommended server locations. Neither global servers nor
couriers are required.

If you are planning to use one or more time-providers, locate them at easily
accessible systems to ease startup and maintenance. If your network only requires
synchronized clocks, but does not need to closely follow a time standard such as
UTC, you may not require a time-provider. If you do not use a time-provider, we
recommend that you use the DCE control program (dcecp) clock set command to
manually set the time approximately once each week.

Figure 33 shows a simplified LAN configuration. Your LAN may be much larger, but
the figure should resemble a portion of your network.

Clerk Server Clerk Clerk Clerk

Server Clerk ClerkServer

(Time-Provider)TP

Figure 33. DTS Configuration—LAN

238 OSF® DCE Administration Guide— Core Components

Configuring DTS for an Extended LAN

If your network consists of several LAN segments that are connected by bridges,
your network is considered to be an extended LAN. Planning for extended LANs is
similar to planning for a single LAN; treat each segment of the extended LAN as
though it were a separate LAN. The following guidelines are recommended:

v Create three servers in each segment.

v Use the dts configure command to configure one server on each segment as a
global server.

v Use the dts modify command to configure one server on each segment as a
courier.

v If you are using time-providers, connect them to the global servers.

Configuring DTS for WANs and WAN Links

Because there are many variations of WAN configurations, especially in
combination with LANs and extended LANs, it is impossible to describe every case
where a WAN link can be used to disseminate time. This section does not give
recommendations for every case involving a WAN link, but it describes how you can
set up your DTS implementation by using several generic configurations as
examples.

Due to the variable delay inherent in any WAN link, it is difficult to maintain a
consistent skew between clocks on opposite sides of the link. DTS synchronizes
clocks across WAN interfaces, but larger inaccuracies occur between the clocks to
account for the worst case transmission delay during each synchronization.

A reliable and robust DTS installation is important any time WAN links are part of a
cell. Because WANs are less reliable than LANs, plan for some redundancy in any
DTS installation that involves WAN links. Try to place servers so that there will
always be three or more available, even if one of the WAN links goes down.

The following subsections give recommendations for three basic WAN
configurations:

v A LAN or extended LAN with WAN links to remote nodes

v LANs that are connected by WAN links

v An all-WAN cell with a central host or cluster

Your cell may not exactly match any of the configurations, but you can plan your
cell by following the recommendations for each example.

LANs with WAN Links to Remote Sites

Figure 34 on page 240 shows a LAN that incorporates several remote nodes by
using WAN links.

Chapter 24. Planning Your DTS Implementation 239

In this configuration, follow the basic recommendations for a single LAN, but also
adhere to these rules:

v Configure servers at remote sites as global and courier servers.

v The LAN should have a minimum of three servers.

v If you are using a single time-provider, locate it at one of the global servers on
the LAN, rather than at a remote server.

The network configuration that results from the preceding rules concentrates the
servers on the LAN, so clock skews are kept to a minimum and the service is not
dependent on remote nodes that may be physically inaccessible to the system
manager. Each remote clerk node synchronizes with the global servers to satisfy
the minservers attribute setting.

LANs Connected by WAN Links

The rules outlined for extended LANs that use bridges also apply to LANs that are
connected by WAN links. Each LAN in such a network is a separate entity, so
several DTS servers must be configured on all of the LANs. Configure each LAN
according to the following guidelines:

v Configure at least three DTS servers on each LAN.

v Configure at least one server on each LAN as a courier.

v Configure at least one global server on each LAN.

v If you are using time-providers, install them at the global servers.

These recommendations lead to higher DTS efficiency and availability despite the
irregular delays that are associated with WAN links.

WAN Cells

Figure 35 on page 241 shows a geographically distributed cell that does not have
any LANs. DTS delivers higher clock skews in an all-WAN environment than in an
all-LAN environment, but it still provides synchronization that is adequate for most

Server Clerk

Clerk

Clerk

Global/
Courier
Server

Global/
Courier
Server

Clerk Clerk

(Time-Provider)TP

Modem

Modem Modem

Modem

Server

Figure 34. DTS Configuration—LAN with WAN Links

240 OSF® DCE Administration Guide— Core Components

distributed applications. In such a network, clock skews are typically less than 5
seconds, but they may be as much as 30 seconds if satellite links are used.

Many of the same recommendations for a LAN with WAN links also apply to the
network that does not have any LANs. Keep the following considerations in mind
when planning your all-WAN network:

v The network should have at least three servers, preferably four or more.

v Every server should be configured as a global server.

v Couriers are not required; however, you can configure any or all of the servers as
couriers. The minservers attribute will force each global server to synchronize
with at least two others.

v You can place the servers anywhere in the network, but place at least one at the
central site; choose the most active remote nodes that are connected by the
most reliable links for the rest of the servers.

v If you are using time-providers, which are recommended for this type of network,
connect one to a global server node at the central site.

In a geographically distributed WAN network, also consider ease of access to the
nodes by system managers or service personnel. If you locate a server at one of
two nodes where traffic patterns and link reliability are equal, locate the server at
the node that is convenient to your central site or management facility.

Planning for External Time-Providers

To closely synchronize your systems with UTC, you can place one or more
time-providers in your network. Time-providers have many forms; they can be radio
receivers, software/modem combinations, or satellite receivers. (See the OSF DCE
Application Development Guide—Core Components for additional information about

Clerk

Clerk

Clerk

Global
Server

Global/
Courier
Server

Global
Server

Clerk

(Time-Provider)TP

Modem

Modem Modem

Modem

M
U
X

M
U
X

Site 4

Site 3

Site 2

Site 1

Figure 35. DTS Configuration—WAN Networks

Chapter 24. Planning Your DTS Implementation 241

the Time-Provider Interface that you can use to integrate these devices in your
network. See “Appendix C. Time-Providers and Time Services” on page 481 of this
guide for a list of time sources.)

If you plan to use time-providers in your network, you can use one of the sample
time-provider programs that are supplied with the DTS software in
dcelocal/usr/examples/dts . If you plan to use a time-provider that does not have a
sample program available, or you have special requirements, you can write a
time-provider program to match the time-provider interface. After you select your
time-provider device and program, plan where to install the device in your network.

It is relatively simple to locate time-providers to your best advantage. To do so,
observe the following guidelines:

v Always locate a time-provider at a server; if possible, locate the time-provider at
a server that is routinely accessed by the majority of servers in your network.

v Regardless of your network configuration, place the time-providers where they
will have the highest availability and use.

v If you have several segments to your network, and if you are using global
servers to maintain synchronization across the network, locate the time-providers
on the global server systems.

Note: You cannot configure a server connected to a time-provider as a courier. A
server connected to a time-provider never assumes the courier role because
the server process only solicits time values from the time-provider. (See
“Chapter 23. Introduction to DCE Distributed Time Service” on page 223 for
additional information about courier servers.)

242 OSF® DCE Administration Guide— Core Components

Chapter 25. Managing the DCE DTS

This chapter describes management tasks that you perform for the DCE DTS. The
DCE control program (dcecp) has commands that you can use for performing these
tasks. The chapter contains brief descriptions of these commands. Detailed
descriptions of the commands appear in the OSF DCE Administration Commands
Reference.

Prior to the creation of dcecp , the DTS control program (dtscp) was used to
manage DTS. You can still use this control program, but all of its operations have
been incorporated into dcecp . Again, you can refer to the OSF DCE Administration
Commands Reference for detailed descriptions of dtscp commands for manging
DTS.

Using the DCE Control Program

Since detailed information about dcecp and its command syntax appears in
“Chapter 1. DCE Control Program Introduction” on page 3 of this guide, this chapter
does not repeat the information. It describes only the commands that dcecp
provides specifically for managing DTS.

The dcecp commands for DTS perform various operations on objects representing
components of the service. For example, the dts stop command stops the server
or clerk on the local node. The following subsections describe the DTS objects that
dcecp operates on and the types of operations that the control program can
perform on these objects.

DTS Objects

The DCE control program has functions that operate on the following DTS objects:

v dts

This object represents either of the following:

– A local or global server that supplies the time to client applications and
systems in a distributed computing environment.

– An intermediary program that plays the role of a clerk on a client system. DTS
clerks obtain the time from a DTS server and adjust the clock.

v clock

This object represents the local system’s clock and the time that the clock tells.

dcecp Operations for DTS

Table 7 summarizes the operations performed by dcecp commands on DTS
objects.

Table 7. dcecp Operations for DTS

Operation Description

activate Changes the state of the clerk or server process from inactive
to active and causes the object to synchronize its time.

catalog Returns a list of DTS servers in the specified cell.

compare Compares the time reported by the local clerk with that of a
specified server.

243

Table 7. dcecp Operations for DTS (continued)

Operation Description

configure Configures a server as a global or local server.

deactivate Changes the state of a clerk or server process from active to
inactive and causes the object to stop synchronizing its time.

help Displays a list of operations that can be performed on the
clerk, server, or clock, or a verbose description of the
specified object.

modify Modifies the attribute information for a clerk or server.

operations Displays a short list of the operations that can be performed
on the clerk, server, or clock.

set Sets the clock gradually or immediately to the time specified
by the argument (in DTS-style timestamp format).

show For a clerk or server, displays information about attributes or
counters. For a clock, displays the clock’s time in the
DTS-style timestamp format.

stop Stops the clerk or server process.

synchronize Tells dtsd to gradually or immediately synchronize (the
-abruptly option) with the DTS servers.

DTS Object Attributes and Counters

DTS clerk and server objects have attributes and counters, which are pieces or sets
of data that reflect or affect their operational behavior. Some DTS clerk and server
attributes are used internally by the DTS daemon and you are allowed only to view
the values (with the dcecp dts show command). Others contain values that you
can reset according to the needs of your environment (with the dcecp dts modify
command). Counters are used internally by the DTS daemon and contain values
that you can only view.

Table 8 lists the server and clerk attributes that you can set. Table 9 on page 245
lists the server and clerk attributes that you cannot set.

For detailed descriptions of both the DTS server and clerk attributes and counters,
see the dts_intro(8dts) reference page.

Table 8. Settable DTS Object Attributes

Servers Clerks

checkinterval —

courierrole —

epoch —

globaltimeout globaltimeout

localtimeout localtimeout

maxinaccuracy maxinaccuracy

minservers minservers

queryattempts queryattempts

serverentry —

servergroup —

serverprincipal —

244 OSF® DCE Administration Guide— Core Components

Table 8. Settable DTS Object Attributes (continued)

Servers Clerks

syncinterval syncinterval

tolerance tolerance

Table 9. Unsettable DTS Object Attributes

Servers Clerks

actcourierrole —

autotdfchange autotdfchange

clockadjrate clockadjrate

clockresolution clockresolution

globalservers globalservers

lastsync —

localservers localservers

maxdriftrate maxdriftrate

nexttdfchange nexttdfchange

provider —

status —

tdf tdf

timerep timerep

type type

uuid uuid

version version

DTS Timestamp Format

All responses to dcecp commands contain a timestamp that conforms to the input
and output format shown in Figure 36.

The following example shows a typical DTS time display:
1994-03-16-14:29:47.52000-05:00I000.003

CCYY-MM-DD-hh:mm:ss.fff [+ l -]hh:mm sss.fffI

Inaccuracy
designator

hours

minutes

+ l - TDF

TDF
component

Inaccuracy
component

Calendar date and time
component

fractions

secondsYear

Century

Day

Month

minute

hour

fraction

second

Figure 36. DTS Timestamp Format

Chapter 25. Managing the DCE DTS 245

The timestamp uses the DTS format that is explained in “Chapter 23. Introduction to
DCE Distributed Time Service” on page 223. In this example, the year is 1994, the
day is March 16, and the time is 14 hours, 29 minutes, and 47.52 seconds. A
negative TDF of 5 hours and an inaccuracy of 3 milliseconds are included in the
timestamp.

Reconfiguring DTS on Nodes

DTS is initially configured during the overall DCE configuration procedure for a node
(see the OSF DCE Administration Guide—Introduction). The DCE configuration
procedure automatically creates and activates DTS servers and DTS clerks on
designated nodes. You can, however, reconfigure DTS on a node at any time. If you
choose to do this, you must perform the following steps:

1. Stop the clerk or server process (DTS daemon) that is currently executing on
the node.

2. Run the dce_config script to restart the DTS daemon on the node as a clerk or
server.

3. Set any clerk or server attribute values as needed.

The following subsections provide detailed instructions for performing each of the
reconfiguration steps just listed.

Stopping an Existing Clerk or Server

To stop the existing DTS clerk or DTS server on a node, use the dcecp dts stop
command. Execution of this command first deactivates the clerk or server (that is,
disables the function by which the clerk or server synchronizes the system clock),
then stops the process. You enter the dts stop command as follows:
dcecp> dts stop
dcecp>

The dts stop command calls the dcecp dts deactivate command to deactivate the
clerk or server process. This is the command that you should use whenever you
want to deactivate a clerk or server process, but not stop it. You enter the dts
deactivate command as follows:
dcecp> dts deactivate
dcecp>

Creating a New Clerk or Server

To create a new clerk or server on the node, use the functions of the dce_config
script that configure additional DTS clerks and servers (see the OSF DCE
Administration Guide—Introduction). The dce_config functions for configuring
additional clerks and servers restart the DCE daemon (dtsd) as either a clerk or
server.

Just as during initial DTS configuration, if you are creating a server, you must tell
the dce_config script the type of server that it is to create: global or local. Before
you choose the server type, you should consider the role that the server will play in
propagating the network time.

Local servers can have a noncourier role (the value of the courierrole attribute is
set to noncourier). A noncourier server does not participate in time propagation.

246 OSF® DCE Administration Guide— Core Components

Local servers can also have a courier role (the value of the courierrole attribute is
set to courier) or a backup courier role (the value of the courierrole attribute is set
to backup). Courier servers have primary responsibility for synchronizing the clocks
between the nodes in a segment of the network. Backup couriers are secondary
links, which propagate the time when no courier server is available. When you
create a local server, the courier role is automatically set to backup .

Global servers must play the noncourier role. They cannot be designated as
couriers or backup couriers.

“Designating Global and Courier Servers” on page 256 provides more information
about server courier roles and instructions for changing the courier role after you
create a server.

Setting Clerk and Server Attribute Values

Once you have created a new clerk or server on a node, you will want to set certain
of the entity’s attribute values.

If you reconfigure a node to be a server, you need to match the epoch (the epoch
attribute value) of the newly created server to the epoch that is shared by the
preexisting servers in the network segment. You want to do this so that the new
server can synchronize immediately with these servers. Instructions for changing
server epoch numbers are given in “Advertising Global Servers” on page 256.

You may also want to check the rest of the attributes that apply only to servers to
see that they complement the value settings of the attributes for preexisting servers.
For instance, if the server has an external time-provider, you may want to check the
checkinterval attribute. This attribute specifies the amount of time that the server
waits before synchronizing with the other servers on the LAN.

If you have changed your mind about a server’s courier role since you created the
server, you can modify the courierrole attribute value.

If you created a clerk, you may want to check the new clerk’s attribute values
against those of the preexisting clerks and servers in the network.

General instructions for modifying the attributes of DTS clerks and DTS servers are
covered in “Changing the System Time” on page 259.

Temporarily Reconfiguring DTS

From time to time, a situation or problem may arise in your network that requires
you to temporarily reconfigure DTS on one or more nodes. Perhaps a node in the
LAN is having problems and you need to have another node take over the clerk or
server role of the problem node. Rather than adding an unnecessary server or clerk
to the network, you can convert the clerk or server so that it plays the needed role.

If you convert a clerk or server, the change is only temporary. When DCE is
stopped and restarted on a node, the node will revert to its initial DTS configuration.
A node that was initially configured as a DTS server will become a server; a node
that was initially configured as a DTS clerk will become a clerk. In order to
permanently change the DTS configuration on a node, you must run the
dce_config script as discussed in “Reconfiguring DTS on Nodes” on page 246.

Chapter 25. Managing the DCE DTS 247

To temporarily convert a clerk to a server, or vice versa, perform these steps:

1. Stop the clerk or server process that is currently executing on the node by using
the dcecp dts stop command:
dcecp> dts stop
dcecp>

After you stop the clerk or server, quit dcecp .

2. Restart the DTS daemon on the node as a clerk or server by executing the
dtsd command with the appropriate option (the -c option for a clerk or the -s
option for a server). For example, to create a local server, enter the following
command:
dtsd -s

The example command creates a local server that is a backup courier (the
server’s courierrole attribute value is set to backup by default). If desired, you
can designate another courier role for the server in the dtsd command line by
using the command’s -k option. Other than a backup courier, the local server
created in the example can be a courier (courier) or cannot have any courier
role (noncourier).

In the following example, the local server is given the role of a courier:
dtsd -s -k courier

To create a global server, you enter the dtsd command with the -g option:
dtsd -s -g

Note: If you are reconfiguring a node that previously ran a DTS clerk so that it
runs a DTS server, you need to perform extra steps. You must create a
principal account for the new server in the DCE Security Service registry,
and you must add the server’s name to the existing DTS server group
(dts-entity). Otherwise, DTS clerks will not be able to find the newly
created server. For instructions on creating a principal account, see
“Chapter 31. Creating and Maintaining Accounts” on page 325 of this
guide. For instructions on adding a principal name to a group, refer to
“Chapter 30. Creating and Maintaining Principals, Groups, and
Organizations” on page 305.

3. Set any clerk or server attribute values as needed by using the DCE control
program’s dts modify command. The following section provides instructions for
modifying DTS clerk and server attributes.

Modifying Clerk and Server Attributes

Many management tasks involve modifying the attributes of DTS clerks and DTS
servers. The DCE control program has several commands for displaying and
changing the attributes of these entities.

To display the attribute values of a DTS clerk or DTS server, you use the dts show
command. (The dts show command can also be used to view the values of DTS
entity counters; however, you cannot modify counter values.

For example, to display the attributes values for all the clients and servers on the
local node, enter the following command:

248 OSF® DCE Administration Guide— Core Components

dcecp> dts show
{checkinterval +0-01:30:00.000I-----}
{epoch 0}
{tolerance +0-00:10:00.000I-----}
{tdf -0-05:00:00.000I-----}
{maxinaccuracy +0-00:00:00.100I-----}
{minservers 3}
{queryattempts 3}
{localtimeout +0-00:00:05.000I-----}
{globaltimeout +0-00:00:15.000I-----}
{syncinterval +0-00:02:00.000I-----}
{type server}
{courierrole backup}
{actcourierrole courier}
{clockadjrate 10000000 nsec/sec}
{maxdriftrate 1000000 nsec/sec}
{clockresolution 10000000 nsec}
{version V1.0.1}
{timerep V1.0.0}
{provider no}
{autotdfchange no}
{nexttdfchange 1994-10-30-06:00:00.000+00:00I0.000}
{serverprincipal hosts/gumby/self}
{serverentry hosts/gumby/dts-entity}
{servergroup subsys/dce/dts-servers}
{status enabled}
{uuid 000013ed-000b-0000-b8ef-03a4fcdf00a4}
dcecp>

The example display shows the attribute values for the single server located on the
local node. The attributes that the dts show command displays for a clerk are
different. Also, there will be more attributes displayed for a server (see Table 8 on
page 244 and Table 9 on page 245).

If you wish to modify the attributes for a DTS clerk or server, you can use the
dcecp dts modify command. Several examples of this command appear in the
following subsections, which describe the settable attributes for clerks and servers.
These subsections also offer suggestions for various attribute settings, depending
on your network configuration.

The minservers Attribute

The minservers attribute specifies how many servers must supply time values to
the system before DTS can synchronize the local clock.

The default and minimum recommended value for the minservers attribute is 3;
your system requires values from three servers in order to compute a reliable new
time. Depending on whether it is a server or clerk, the system has different
requirements of the other systems in the network:

v A clerk requires values from three servers.

v A server requires values from two other servers. Each server uses its own clock
value when computing a new time.

To reset the minservers attribute value, enter the dts modify command with the
-change option to set the desired value. The command accepts values from 1 to
10. For example, to increase the required number of servers to 4, issue the
following command:
dcecp> dts modify -change {minservers 4}
dcecp>

Chapter 25. Managing the DCE DTS 249

Although no direct relationship exists between the localservers attribute, which
specifies the number of local servers in a LAN, and the minservers attribute, the
minservers attribute value is usually a subset of all the local servers. To see the
current values of both or either of these attributes, you can use the dts show
command. Wait until the DTS nodes on your LAN are running for at least 10
minutes before you issue the command. That way, the dts show command is sure
to show all of the local servers in your node’s synchronization list. The dts show
command can be entered either with options (-attributes or -all) or without them,
as follows:
dcecp> dts show
{checkinterval +0-01:30:00.000I-----}
{epoch 0}
{tolerance +0-00:10:00.000I-----}
{tdf -0-05:00:00.000I-----}
{maxinaccuracy +0-00:00:00.100I-----}
{minservers 4}
{queryattempts 3}
{localtimeout +0-00:00:05.000I-----}
{globaltimeout +0-00:00:15.000I-----}
{syncinterval +0-00:02:00.000I-----}
{type server}
{courierrole backup}
{actcourierrole courier}
{clockadjrate 10000000 nsec/sec}
{maxdriftrate 1000000 nsec/sec}
{clockresolution 10000000 nsec}
{version V1.0.1}
{timerep V1.0.0}
{provider no}
{autotdfchange no}
{nexttdfchange 1994-10-30-06:00:00.000+00:00I0.000}
{serverprincipal hosts/gumby/self}
{serverentry hosts/gumby/dts-entity}
{servergroup subsys/dce/dts-servers}
{status enabled}
{uuid 000013ed-000b-0000-b8ef-03a4fcdf00a4}
dcecp>

In the previous example, the minservers attribute value is set to 4. This setting
provides redundancy; in the case where there are no global servers in the network,
the system synchronizes even if a local server becomes unavailable.

Whenever the system cannot contact the number of servers specified by the
minservers attribute setting, the system increments the toofewservers counter,
logs the event, and displays the event message Too Few Servers Detected .
Information included in the event message shows the number of servers that are
currently available and the number required. If you see this event message
displayed, check whether any of the servers have failed, test the communications
links to ensure that the system has not been isolated from the servers, or add
servers to the network.

You can use the minservers attribute in other ways, depending on your network
configuration. Consider the following cases:

v If you have only a few systems in your network and you want to synchronize the
nodes regardless of server drift, lower the minservers attribute value to 1 or 2.
Although the resulting synchronized time is a less reliable measure of UTC, you
increase the likelihood that the systems will synchronize. If the setting is less
than 3, however, the system cannot identify faulty servers. Subsequent server
clock drift causes divergence from UTC.

250 OSF® DCE Administration Guide— Core Components

v To increase fault tolerance and ensure that the systems compute reliable times,
set the minservers attribute value to 3 (the default setting) or higher. The
systems can then identify faulty servers and compute the narrowest overlapping
interval for the time values that they receive. Remember, however, that your
system will not synchronize until there are at least three servers available.

The number of nodes in your network and the types of applications that you use
determine whether guaranteed synchronization or reliable times and fault tolerance
are more important.

Use of minservers Attribute with Global Servers

If your network consists of more than a single LAN, it should have a set of global
servers. You can create global servers by advertising local servers to the cell
profile. (See “Advertising Global Servers” on page 256 for further information.)

The presence of global servers in your network can influence the value that you
choose for the minservers attribute. If the number of local servers available to a
clerk or server is less than the minservers attribute setting, the clerk or server
automatically searches the cell profile for a global server name. The clerk or server
then requests time values from the global and local servers.

You can check to see whether global servers exist by entering the dts show
command and viewing the globalservers attribute value. The dts show command
can be entered with options (-attributes or -all) or without any options, as follows:
dcecp> dts show
{checkinterval +0-01:30:00.000I-----}
{epoch 0}
{tolerance +0-00:10:00.000I-----}
{tdf -0-05:00:00.000I-----}
{maxinaccuracy +0-00:00:00.100I-----}
{minservers 3}
{queryattempts 3}
{localtimeout +0-00:00:05.000I-----}
{globaltimeout +0-00:00:15.000I-----}
{syncinterval +0-00:02:00.000I-----}
{type server}
{courierrole backup}
{actcourierrole courier}
{clockadjrate 10000000 nsec/sec}
{maxdriftrate 1000000 nsec/sec}
{clockresolution 10000000 nsec}
{version V1.0.1}
{timerep V1.0.0}
{provider no}
{autotdfchange no}
{nexttdfchange 1994-10-30-06:00:00.000+00:00I0.000}
{serverprincipal hosts/gumby/self}
{serverentry hosts/gumby/dts-entity}
{servergroup subsys/dce/dts-servers}
{status enabled}
{uuid 000013ed-000b-0000-b8ef-03a4fcdf00a4}
dcecp>

The dts show displays the name, node ID, and node name for all of the global
servers known by the local node.

Chapter 25. Managing the DCE DTS 251

Use of minservers Attribute with Systems on Point-to-Point Lines

If you are using DTS on a system that connects to a LAN through a point-to-point
WAN link, the solitary system never has more than one local server available. The
recommended minservers attribute setting for such a system is 3. If the system is
configured as a clerk, it does not have any local servers and must query three
global servers to synchronize. If the system is configured as a server, it must query
two global servers to synchronize.

The maxinaccuracy Attribute

The maxinaccuracy attribute specifies the greatest allowable bound on your
system’s inaccuracy before DTS causes the system to synchronize. When the
system exceeds the bound determined by the maxinaccuracy attribute setting,
DTS forces the system to synchronize until the inaccuracy is reduced to a level that
is at or below the setting. Use the maxinaccuracy attribute setting as a trigger for
synchronization. You can vary the setting to vary the tolerance of intersystem
synchronizations, but be aware that, as the setting becomes lower, network
overhead rises. The default setting is 0.10 seconds (100 milliseconds).

The effects of the maxinaccuracy attribute setting on the system’s synchronization
behavior are the following:

1. The system’s clock value accumulates more inaccuracy than the
maxinaccuracy attribute value and DTS initiates a synchronization.

2. DTS computes a new time value.

3. DTS adjusts the system clock.

4. If the new clock setting still exceeds the maxinaccuracy attribute value, or if
clock drift later causes the inaccuracy to reach the value, the cycle is repeated.

Note that, if synchronization repeatedly fails to achieve an inaccuracy that is less
than the maxinaccuracy attribute value, the system can be continuously
synchronizing. (See “The syncinterval Attribute” for information on how the
syncinterval attribute prevents this loop.)

The default maxinaccuracy attribute value is designed to keep the system accurate
enough for most applications without being intrusive to network communications or
system processing. If your network includes one or more time-providers that ensure
extremely low inaccuracy, you can lower the maxinaccuracy attribute value. Raise
the value in the following cases:

v If a time-provider is not used in the network

v If a system is part of a WAN-only network configuration

v If the applications that call DTS do not require the level of precision achieved by
the default setting

The following example shows how to change the maxinaccuracy attribute value to
0.2 seconds:
dcecp> dts modify -change {maxinaccuracy 00-00:00:00.200}
dcecp>

The syncinterval Attribute

The syncinterval attribute prevents your system from synchronizing more often
than the specified interval. This attribute prevents the maxinaccuracy attribute from

252 OSF® DCE Administration Guide— Core Components

causing continuous synchronizations. As mentioned in “The maxinaccuracy
Attribute” on page 252, the maxinaccuracy attribute triggers system
synchronization as long as the system’s inaccuracy is above a specified value. The
syncinterval attribute prevents synchronization from occurring more frequently than
the specified interval value. (The syncinterval attribute value is randomized to
prevent several systems from synchronizing simultaneously and is an average
rather than an exact value.)

The maxinaccuracy and syncinterval attributes are interdependent; system
synchronization occurs automatically when both of the following conditions are met:

v The inaccuracy of its clock equals or exceeds the maxinaccuracy attribute
value.

v The time since the last synchronization equals or exceeds the syncinterval
attribute value (slightly randomized).

Note that, if the system reaches the syncinterval attribute setting but has not yet
reached the maxinaccuracy attribute setting, the system does not synchronize.

The default syncinterval attribute value is 2 minutes for servers and 10 minutes for
clerks. If you are trying to minimize the skew between systems, you can lower the
syncinterval attribute value. For example, if you want a clerk to synchronize every
5 minutes if its inaccuracy reaches 100 milliseconds, enter the following command:
dcecp> dts modify -change {syncinterval 00-00:05:00.0000}
dcecp>

The syncinterval attribute does not prevent the clock synchronize command from
working. You can synchronize a system at any time by entering this command. The
syncinterval attribute only affects automatic synchronizations triggered by the
maxinaccuracy attribute. (See the clock(8dce) reference page for more
information.)

The tolerance Attribute

The tolerance attribute determines how DTS reacts if the system clock becomes
faulty. A faulty clock is a rare condition, but some causes of faulty clocks include the
following:

v Defects in the clock hardware, including clock drift that is greater than the
manufacturer’s specifications.

v Malfunctioning time-providers.

v Hardware clock ticks are lost by the operating system.

v The system memory containing the clock value is corrupted.

During the synchronization process, DTS detects that a system’s clock is faulty if
the clock value and its inaccuracy fail to intersect with those of the servers used for
synchronization. This process is shown in Figure 37 on page 254, where value t2 is
faulty.

Chapter 25. Managing the DCE DTS 253

If DTS detects a faulty system clock during synchronization, the severity of the fault
and the system’s tolerance attribute setting determine how DTS reacts. When the
fault is detected, DTS performs one of the following operations:

v If the faulty time interval that is supplied by the clock is within the bounds of the
error tolerance, DTS increases the inaccuracy of the value supplied by the clock
and adjusts the clock gradually.

v If the faulty time interval that is supplied by the clock is outside the bounds of the
error tolerance, DTS immediately sets the clock to the new computed time.

Before you change the default tolerance setting (5 minutes), determine the
requirements of the applications that use the system time. Some distributed
applications, such as the CDS server, require that systems have no more than 5
minutes of inaccuracy. Larger error tolerances may prevent such applications from
properly sequencing CDS namespace entries. For these applications, you will want
to set the tolerance attribute value to 5 minutes or less.

Some applications may require DTS to adjust the system clock gradually and
monotonically (forward). You can increase the tolerance attribute setting for these
applications to ensure that the clock is abruptly set only in the event of a
catastrophic error. If you could set the tolerance attribute value to infinity, you could
guarantee that the clock is never set abruptly. This setting is not available, but you
can enter any setting less than 10675199-00:00:00.000 (approximately 29,227.5
years).

The following example shows how to set the tolerance attribute value to 3 minutes:
dcecp> dts modify -change {tolerance 00-00:03:00.000}
dcecp>

Intersection of
correct intervals
(computed time)

UTC

t4

t3

t2

CT

t1

Time

Figure 37. Local Fault

254 OSF® DCE Administration Guide— Core Components

The localtimeout, globaltimeout, and queryattempts Attributes

When a system queries a server, it waits for a response for the period that is
specified by the localtimeout or globaltimeout attribute. The localtimeout
attribute setting applies when the system attempts to contact a local server; the
globaltimeout attribute setting applies when the system attempts to contact a
global server.

The queryattempts attribute determines how many times DTS resets the timeout
timer before the system quits trying to contact a given server. Once the timeout
setting has elapsed the number of times that is determined by the queryattempts
attribute, the system quits querying the server. If the system is querying a global
server, DTS then generates a Server Not Responding event report and removes
the server from the system’s list of global servers. If a response from the global or
local server is required in order to meet the minservers attribute setting, DTS
generates a Too Few Servers event report, and the system does not synchronize.

The default setting for the queryattempts attribute is 3. The following example
shows how to set the queryattempts attribute value to 4:
dcecp> dts modify -change {queryattempts 4}
dcecp>

The default setting for the localtimeout attribute is 5 seconds, and the default
setting for the globaltimeout attribute is 15 seconds. The global setting is larger to
account for the communications delay on WAN links that are often used to access
the global set. It is unlikely that you will have to change the localtimeout attribute
setting. The globaltimeout attribute setting, however, may need to be changed due
to the variations in WAN topologies and transmission quality. In the following
example, the globaltimeout setting is changed to 20 seconds:
dcecp> dts modify -change {globaltimeout 00-00:00:20.000}
dcecp>

If you continually receive Server Not Responding event reports for a global server,
increase the globaltimeout setting. If you increase the setting and the event
reports continue, there may be a problem with the communications link to the
server.

The serverentry and serverprincipal Attributes

During the initial configuration of DCE and DTS, one DTS entry name is created for
use with CDS, and one DTS name is created for use with the registry service. If
you subsequently wish to change the name of a server, you can do this by
changing two of the server’s attributes: the serverentry attribute and
serverprincipal attribute. The default settings for these dcecp attributes are the
same as the default settings for the names that are created during the initial DCE
configuration; they are the recommended settings. This section describes additional
considerations for the settings of these attributes. If you decide to change the
settings of the serverentry and serverprincipal attribute values, be sure that the
new values are appropriate. If not, you will experience trouble with DTS.

The serverentry attribute specifies the CDS entry name where bindings for the
server are exported. If you change the setting of this attribute, the entry is also
modified in the namespace. The following is an example command that sets the
serverentry attribute value:

Chapter 25. Managing the DCE DTS 255

dcecp> dts modify -change {serverentry /.:/hosts/cyclops/dts_ref_node}
dcecp>

The serverprincipal attribute specifies the principal name of the server that is used
for authentication. If you change the name by using dcecp , you must create a
matching principal name and account in the security service registry. When you do
this, you must add the new principal name to the existing DTS server group
(dts-servers). The machine principal must be a member of this authorization group.
See “Chapter 31. Creating and Maintaining Accounts” on page 325 of this guide for
further information on creating a new principal account and “Chapter 30. Creating
and Maintaining Principals, Groups, and Organizations” on page 305 for information
on adding a principal name to an existing server group.

The following example command sets the serverprincipal attribute:
dcecp> dts modify -change {serverprincipal /.:/hosts/ajax/dts_machine}
dcecp>

Management Tasks Specific to Servers

Managing DTS servers involves some special tasks. These tasks include the
following:

v Setting a server’s epoch

v Assigning the courier role to a server

v Designating a server as a global server

v Setting the attributes for a connection to a time-provider

The following subsections describe these server-specific tasks.

Designating Global and Courier Servers

If your network has WAN links or is an extended LAN, you may need to use global
and courier servers to synchronize the nodes in separate network segments. To
synchronize nodes across a network, you assign global roles to some servers and
courier roles to selected local servers. (See “Chapter 23. Introduction to DCE
Distributed Time Service” on page 223 for advice on planning the location of global
and local courier servers.) To assign server roles, follow the instructions in the
following subsections.

Advertising Global Servers

To assign a server to the global set of servers, you must advertise the server with
the dcecp dts configure command. Advertising the server simultaneously adds
binding information to the server’s CDS name and also adds the server’s entry to
the cell profile. Since CDS and the cell profile are available to every node in your
network, DTS can perform a lookup in the cell profile to obtain the locations of
nodes that it cannot reach on the LAN.

The following command example shows how to advertise a server as a global
server, thereby registering it with CDS and entering it in the cell profile:
dcecp> dts configure -global
dcecp>

256 OSF® DCE Administration Guide— Core Components

The -global option designates that a server should be configured as a global server
rather than as a local server.

To remove a server’s designation as a global server, use the dts configure
command, as follows:
dcecp> dts configure -notglobal
dcecp>

This command unadvertises the global server, removing its entry from the cell
profile and its binding information from its CDS name.

Assigning the Courier Role to Servers

Courier servers play an important role in maintaining synchronization between the
systems in separate parts of your network. A courier server requests a time value
from at least one global server at every synchronization. This procedure enables a
courier server to propagate times from remote systems to a LAN or local area,
thereby keeping the LAN in synchronization with all the other parts of the network.

There are three courier roles that you can assign to a server (the courierrole
attribute), as follows:

v backup

v courier

v noncourier

The default courier role for a global or local server at its creation is backup .

Use the courier setting for the courierrole attribute to designate a server as the
primary link to other portions of your network. Use the backup setting to designate
a server as a secondary link to other areas of the network. A backup courier is only
effective if no other courier is available on the LAN.

Note that there are no significant processing or overhead penalties associated with
the backup courier role; you can designate one of the servers on a LAN as a
courier, and designate all the other servers on the LAN as backup couriers. If you
have configured several servers as backup couriers and the courier becomes
unavailable, the backup courier with the lowest-ordered UUID becomes the effective
courier.

To assign the courier role to a server, enter the following dcecp command:
dcecp> dts modify -change {courierrole courier}
dcecp>

To assign the backup courier role to a server, enter the following command:
dcecp> dts modify -change {courierrole backup}
dcecp>

Matching Server Epochs

At startup, a server’s epoch number must match those of the other servers with
which it synchronizes. When synchronizing, a server disregards clock values that
are from servers whose epoch numbers do not match its own.

When DTS servers are initially enabled, the epoch number for each server is 0, so
you need not change the epoch numbers at initial installation. Later, if you add a

Chapter 25. Managing the DCE DTS 257

server to an existing network, or change a clerk to a server, ensure that the new
server and the preexisting servers have matching epoch numbers. Enter the DCE
control program’s dts show command to find out the epoch number of the server.
For example:
dts show /.:/hosts/orion/dts-server

Examine the attributes list that the command returns for the server’s epoch attribute
value. If the epoch of the server that you just created matches those of the other
servers, the new server can synchronize immediately. If the epochs do not match,
however, and you do not change the epoch of the new server, the new server
ignores the preexisting servers. The following example shows how to change a
server’s epoch number after you enable the server:
dcecp> clock set -abruptly -epoch 0
dcecp>

Once you know that a server is starting up with the proper epoch number, do not
change the epoch unless serious system or network problems corrupt all of the
server clock values. In the unlikely event that the majority of the server clocks
become faulty, use the dts show and clock set commands to isolate problem
servers so that you can perform troubleshooting and maintenance without affecting
the rest of the DTS application.

Setting the checkinterval Attribute for Connection to a Time-Provider

If a server is connected to a time-provider, set its checkinterval attribute. DTS uses
the checkinterval attribute to periodically check all the servers on a LAN to make
sure that they remain synchronized with the time-provider. When the amount of time
specified by the checkinterval attribute setting has elapsed, the server with the
time-provider (the TP server) performs the following procedure:

1. The TP server requests time values from all the other servers on the LAN.

2. The TP server starts the synchronization process.

3. The TP server identifies the server time intervals that do not intersect with its
own.

4. The TP server issues event messages for each faulty server it detects.

In the previous sequence, note that the TP server does not actually set the system
clock after it starts the synchronization process. The TP server merely runs the
process to detect faulty servers. The DTS software assumes that the time value at
the TP server is the most accurate available, so the TP server does not use the
values it collects from other servers to change its clock. Instead, the TP server
functions as a reference timekeeper for the other servers.

You can set the check interval to a lower value for a more rapid notification of faulty
servers, but be aware that lower settings can increase the load on network
resources. The following example shows how to set the checkinterval attribute
value:
dcecp> dts modify /.:/hosts -change {checkinterval 00-00:00:30.0000]
dcecp>

258 OSF® DCE Administration Guide— Core Components

Changing the System Time

There are three ways you can change the system’s time by using dcecp
commands. The following subsections describe reasons for changing the system
time, and then show examples of the commands that you can use to modify the
time and change the system clock.

Updating the Time Monotonically

If your network does not use time-providers, and the network systems have been
running for some time, you may want to update the time on several systems to
match UTC or another external reference. When time-providers are absent from
your network, the systems remain closely synchronized, but their clocks may drift
away from accepted time standards such as UTC.

Use the dcecp clock set command when you want to modify the time on a server
system to make it more accurate. The DTS synchronization process ensures that
the new time you supply with the command is propagated to the other network
systems. In order to update the system clock to a new time, the new time and
inaccuracy you specify for a system must form a smaller interval than the current
system interval.

In order to use the clock set command effectively, you must have temporary
access to a trusted time reference. Such references can include the time signals
that many standards organizations disseminate by radio or telephone. You can also
use a clock that you have recently verified as accurate. (See “Appendix C.
Time-Providers and Time Services” on page 481 for suppliers of UTC time.)

Because it is a manually entered command that is used to modify an absolute time,
the clock set command is not useful for small inaccuracy settings. The minimum
reliable inaccuracy that you can achieve with the command is approximately 1
second. Human error and processing delays combine to make lower settings
unreliable. For example, you enter the command and new time and then begin
monitoring the reference. When you perceive that the reference has reached the
desired time, you press <Return> to initiate the command. Your perception of the
reference mark and your pressing of <Return> do not exactly coincide.
Furthermore, once the command is initiated, DTS takes time to interpret and
execute the command.

The following example shows how to monotonically update the time on a server
system; that is, how to reset the clock and eventually propagate the adjustment
throughout the network:
dcecp> clock set 1994-10-07-09:30:15.00I01.00
dcecp>

If your systems require synchronization that is closer than 1 second to a standard
such as UTC, consider purchasing one of the time-providers listed in “Appendix C.
Time-Providers and Time Services” on page 481. All of the time-providers that are
described in the listing compensate for transmission and processing delays, and
can provide time references that are accurate to the millisecond level.

Chapter 25. Managing the DCE DTS 259

Updating the Time Nonmonotonically

Use the clock set command with the -abruptly option when you want to abruptly
set the time for a server system. The clock set command with the -abruptly option
immediately (nonmonotonically) changes the system clock setting to the specified
time, rather than gradually (monotonically) adjusting the time.

Note: Exercise caution when changing the system time abruptly. The abrupt
adjustment of the time is appropriate at system startup or when the system
clock is faulty and you identify and correct the problem. Changing the system
time to a setting that falls outside the time intervals of the system’s known
servers causes DTS to declare the system faulty at the next synchronization.

Because the clock set command is usually used to correct gross clock errors, it is
likely that the time you specify for a given system will appear faulty to the system’s
known servers if the system and servers have the same epoch number. You can
prevent the systems whose times you are changing from being declared faulty. Use
the clock set command’s -epoch option along with the -abruptly option to set the
new time to isolate it from the other systems. You can then change the time and
epoch for the other systems until all the systems once again share the same epoch.
This process is useful in the rare case when the majority of servers in the network
are faulty.

In order to use the clock set command effectively, you must have temporary
access to an accurate time reference. Such references can include the time signals
that many standards organizations disseminate by radio or telephone. You can also
use a clock that you have recently verified as accurate. (See “Appendix C.
Time-Providers and Time Services” on page 481 for a list of time reference
sources.)

Because it is a manually entered command that is used to modify an absolute time,
the clock set command is not useful for small inaccuracy settings. The minimum
reliable inaccuracy that you can achieve with the command is approximately 1
second. Human error and processing delays combine to make lower settings
unreliable. For example, you enter the command and new time and then begin
monitoring the reference. When you perceive that the reference has reached the
desired time, you press <Return> to initiate the command. Your perception of the
reference mark and your pressing of <Return> do not exactly coincide.
Furthermore, once the command is initiated, DTS takes time to interpret and
execute the command.

The following example shows how to change both the time and epoch for a system:
dcecp> clock set 1993-10-07-09:30:15.0000I01.0000 -abruptly -epoch 1
dcecp>

Forcing System Synchronization

Once you create and enable DTS on all the systems that are in your network, they
synchronize without any further intervention. There are situations, however, when
you may want to force a system to synchronize immediately rather than waiting for
the amount of time that is specified by the syncinterval and maxinaccuracy
attributes. As an example, you may want to synchronize a system with a TP server
that you have just added to the network.

260 OSF® DCE Administration Guide— Core Components

To forcibly synchronize the clock on a system, you use the dts synchronize
command. If you enter the dts synchronize command without the -abruptly option,
the time is adjusted gradually. If you enter the dts synchronize command with the
-abruptly option, the time is immediately adjusted. In the situation posed by our
example, you might want to use the command with the -abruptly option to have the
narrow time interval contributed by the time-provider quickly propagated throughout
the network:
dcecp> dts synchronize -abruptly
dcecp>

Controlling Access to DTS

You can assign privileges that control access to DTS objects by using DCE
Authorization Service access control lists (ACLs).

The DTS principal that represents the server on a given system is the primary
access control object for DTS. This principal has controlled access by human users
and clerk or server processes. The default name that you can use for the DTS
object in any dcecp command is /.:hosts/ hostname/dts-entity .

The ACL for the DTS server can contain any type of ACL entry that is valid for a
principal (human or process) or authorization group to which this principal belongs.
See “Chapter 28. Using Access Control Lists” on page 281 of this guide for a
discussion of the DCE ACLs facility and descriptions of ACL types and their entries.

To display the ACL entries in the DTS server principal’s ACL, you can use the
dcecp acl show command. For example:
dcecp> acl show /.:/hosts/Detroit2/dts-entity
{unauthenticated r--}
{user hosts/Detroit2/self rwc}
{group subsys/dce/dts-admin rwc}
{any_other r--}
dcecp>

To modify any of the entries in the DTS server principal’s ACL, you can use the acl
modify command. Instructions for using this command appear in “Chapter 28.
Using Access Control Lists” on page 281.

Chapter 25. Managing the DCE DTS 261

262 OSF® DCE Administration Guide— Core Components

Chapter 26. Interoperation with Network Time Protocol

Network Time Protocol (NTP) is an Internet-recommended standard. The NTP
synchronization subnetwork is represented by a tree-structured graph with nodes
representing time servers and edges representing the transmission paths between
them. The root nodes of the tree are designated primary servers that synchronize to
a radio broadcast or calibrated atomic clock. Remaining nodes are designated
secondary servers that synchronize to other servers (primary and secondary).

The number of subnetwork hops between a particular server and a primary server
determines the stratum of that server; that is, the smaller the number of hops, the
lower the stratum. A lower-stratum server always has a higher accuracy than a
higher-stratum server. All servers have identical functionality and can operate
simultaneously as clients of the next lower stratum and servers for the next higher
stratum.

Servers, both primary and secondary, typically run NTP with several other servers
at the same or lower stratum. A selection algorithm attempts to select the most
accurate and reliable server or set of servers from which to actually synchronize the
local clock.

NTP and DTS both can be used in large computer networks that have embedded
local nets (that is, those connected by routers, gateways, and bridges) and use both
broadcast and point-to-point transmission media. DTS and NTP can run
simultaneously on the same LAN.

The following sections describe how to give time to and get time from local and
remote NTP time sources, and how to prevent loops.

Getting the Time from NTP Time Sources

DTS provides two sample time-provider programs:

v dts_ntp_provider.c —Takes the time from an NTP server as it would from a
radio receiver. The user specifies the name of the NTP server and the
inaccuracy.

v dts_null_provider.c —Used on a DTS server whose clock is already
synchronized by an external agent, such as NTP. It sets the inaccuracy, but it
prevents DTS from setting the time. The user sets the inaccuracy based on local
experience with NTP. The null provider may be useful for sites that already have
a radio clock that is managed by NTP. Make the node with the radio clock a DTS
server and use the null time-provider.

Getting the Time from Local NTP Time Sources

Run the DTS server on a node that is running an NTP clock driver with a clock and
the null time-provider. Specify the inaccuracy in a manner that is consistent with the
time source; for instance, a radio clock. Other DTS servers will take the time from
this source. In this case, since the system is connected to a time source, it is an
NTP Stratum 1 server.

Observe the rules and advisories that follow:

263

v Rule—If this is the only local time source (radio clock) in the subnetwork, ensure
that no other DTS node gives the time to NTP. If, however, there are other local
time sources, this restriction does not apply.

v Rule—Do not run the null time-provider if there is no local time source.

v Advisory—Use a very small poll rate, about 1 second.

v Advisory—Since NTP makes the adjtime() system call, be aware that the local
node will occasionally have an unspecified inaccuracy.

Figure 38 shows how a DTS server/client with a local time source takes time from
an NTP Stratum 1 server.

Getting the Time from Remote NTP Time Sources

Run the DTS server with the NTP time-provider (dts_ntp_provider.c) on a node
with access to an NTP server. Specify the inaccuracy in a manner that is consistent
with local NTP experience.

Observe the following advisories:

v Advisory—If links to remote sources are distant, consider having one of the
subnetwork nodes run the NTP locally.

v Advisory—Note that the NTP time-provider does not accept time from an NTP
node at Stratum 8 or higher.

v Advisory—The NTP node needs to be as close to Stratum 1 as possible.

Figure 39 on page 265 and Figure 40 on page 265 both show a DTS server getting
the time from a remote NTP time source, which is a Stratum 3 server. However, in
Figure 39 on page 265 (Scenario 1), all of the advisories in this section are
followed; in Figure 40 on page 265 (Scenario 2), the first advisory, running NTP
locally on one of the subnetwork nodes if the link to a remote source is distant, is
ignored.

DTS
server

NTP
client

DTS
client

DTS
server

NTP
server

NTP
server

dts_null_provider.c

stratum 1

stratum 3 stratum 2

Figure 38. Local Time Source

264 OSF® DCE Administration Guide— Core Components

Giving the Time to NTP Nodes

Any DTS server or clerk that runs the ntpd daemon or the xntpd daemon with the
-s option and a special configuration file (ntp.conf) can be configured as an NTP
server.

DTS
server

remote
NTP server

DTS
client

DTS
server

local
NTP server

stratum 3

stratum 4

dts_ntp_provider.c

Figure 39. Getting the Time from a Remote NTP Time Source (Scenario 1)

remote
NTP server

DTS
client

dts_ntp_provider.c

stratum 2

DTS
server

DTS
server

Figure 40. Getting the Time from a Remote NTP Time Source (Scenario 2)

Chapter 26. Interoperation with Network Time Protocol 265

For systems running the ntpd daemon, the ntp.conf configuration file must contain
the following line:
peer /dev/null DTSS 8 -5 local

In addition, add -s to the ntpd entry in the file /sbin/init.d/ntpd or, for systems with
rc.local , modify the line that starts ntpd accordingly.

For systems running the xntpd daemon, the ntp.conf configuration file must
contain the following line:
peer 127.127.1.8

In addition, add -s to the xntpd entry in the file /sbin/init.d/xntpd or, for systems
with rc.local , modify the line that starts xntpd accordingly.

In this configuration, NTP never sets the clock. NTP can, however, give the time to
other NTP clients. Do not allow loops between DTS and NTP to form. If NTP gives
the time to DTS, then DTS gives the time back to the same set of NTP servers,
unexpected results can occur.

The NTP configuration file is set up to ensure that an NTP server that obtains the
time from DTS is a Stratum 8 node. In addition, dts_ntp_provider is prohibited
from accepting time from a node at Stratum 8 or higher.

A DTS (server) node can give time to an NTP node if the following rules and
advisories are observed:

v Rule—The ntp.conf file must declare this node at Stratum 8.

v Advisory—Multiple nodes in the set can be running ntpd -s or xntpd -s .

v Advisory—If any DTS-managed system has a local time source, that system
should be used as an NTP -s server.

v Advisory—Although this operation can occur on either a DTS server or a DTS
client node, a DTS server is preferred.

Note: If null providers are used, the rules in “Getting the Time from Local NTP
Time Sources” on page 263 must also be followed, since null providers
running on NTP nodes can bypass the stratum check.

Figure 41 on page 267 shows two DTS server nodes running ntpd -s and providing
time to an NTP subnetwork. The ntp.conf file defines these servers at Stratum 8.

266 OSF® DCE Administration Guide— Core Components

Preventing Loops

Do not allow loops, such as NTP → DTS → NTP, to form.

Run the null time-provider (dts_null_provider.c) only if you have a local time
source. If you do not have a local time source, you can run the null time-provider,
but do not disseminate NTP time anywhere in the local set.

Figure 42 shows a configuration that is not recommended. This configuration works
only as long as the remote NTP Stratum 2 node does not fail.

If the remote NTP Stratum 2 node fails, the Stratum 3 node starts accepting time
from the Stratum 8 node. Once this occurs, the Stratum 3 node drops to Stratum 9
and the Stratum 4 node drops to Stratum 10, as shown in Figure 43 on page 268.

DTS
server

DTS
server

NTP -s
server

NTP -s
server

DTS
client

NTP
Client

stratum 9stratum 8 stratum 8

stratum 10

NTP
server

Figure 41. Giving the Time to NTP

remote
NTP server

DTS
client

dts_ntp_provider.c

stratum 2

stratum 3
DTS

server
ntpd-s

stratum 8

stratum 4

DTS
server

NTP server
or client

Figure 42. Configuration Before Stratum 2 Node Fails

Chapter 26. Interoperation with Network Time Protocol 267

The scenario in Figure 43 shows the creation of a loop:

1. From the node that is labeled Stratum 8, proceed to the NTP node that is
labeled Stratum 9.

2. From the NTP node that is labeled Stratum 9, continue to the node that is
labeled Stratum 10.

3. DTS then feeds the time back to the node that is labeled Stratum 8, creating a
loop.

If this occurs, time in the NTP and DTS subnetwork can drift from UTC.

NTP
client

server

stratum 8

server
NTP −s

client

server

stratum 9

NTP
server

stratum 8

server
NTP −s

stratum 10

DTS DTS

DTS

Figure 43. Configuration After Stratum 2 Node Fails

268 OSF® DCE Administration Guide— Core Components

Part 6. DCE Security Service

269

270 OSF® DCE Administration Guide— Core Components

Chapter 27. Overview of DCE Security

This chapter provides a brief introduction to the DCE Security Service. The DCE
Security Service consists of the following services:

v

Registry service—Maintains the registry database, which is a replicated database
of principals, groups, organizations, accounts, and administrative policies.

v

Authentication service—Handles user authentication or the process of verifying
that principals are correctly identified. The authentication service also issues
tickets that a principal uses to access remote services. The ticket contains data
that is presented by the principal requesting the service to the principal providing
the service.

v

Privilege service—Supplies the user’s privilege attributes, which are used to
ensure that a principal has the rights to perform requested operations.

In addition, the DCE Security Service provides the following:

v

Access control list (ACL) facility—Establishes and grants access rights to an
object based on the object’s access permissions.

v

Extended registry attribute (ERA) facility—Provides tools to extend the registry
database schema to define additional attributes and tools to attach those
attributes to registry objects.

The DCE host daemon (dced) acts as the security client.

The DCE Registry, Authentication, and Privilege Services are implemented as a
single daemon: the security server (secd).

DCE Authentication Service Servers and Clients

The authentication service consists of the registry database, security servers, and
security clients. A security client communicates with a security server (
dcelocal/bin/secd) to request information and operations. The security servers
access the registry database to perform queries and updates and to validate user
logins. To gain access to the registry database, the authentication service must talk
to the registry service. Figure 44 on page 272 is a simplified representation of the
relationship between security clients, servers, and the registry database.

271

The Registry Database

The registry database contains the following information:

v Principals—Principals are the users of the system. Principals can be interactive
principals (human users) or noninteractive (servers, machines, and cells).
Principals can be associated with access permissions.

v Groups—Groups are collections of principals that are identified by a group name.
Groups can be associated with access permissions.

v Organizations—Organizations are collections of principals; these principals are
identified by an organization name. Organizations define the policies associated
with the principals in the registry. Organizations cannot be associated with
access permissions.

v Accounts—Accounts contain the passwords and accounting information that
allow principals authenticated access to objects within the cell. (Authenticated
access can also occur between principals in different cells, as described in the
following text.)

v Policies and Properties—Policies and properties regulate such things as
password length and format and certain authentication requirements.

v The replist object—This object is used to manage replicas of the registry
database.

v The xattrschema object—This object is the extended registry schema created
with the ERA facility.

(See “Chapter 41. Accessing Registry Objects” on page 421 for a detailed
description of the structure of the registry database and the types of information it
contains.)

The collection of objects controlled by a registry database is an entity known as a
cell. Authenticated communications are possible between cells only if those cells
have special accounts in the registry database at the cell they wish to communicate

Registry
Database

dcelocal/bin/secd

machine running
a security client

machine running
a security client

Security Service Clients
Request Database Operations

The Server Accesses
the Database

Figure 44. Machines, Servers, and the Database

272 OSF® DCE Administration Guide— Core Components

with. These special accounts set up cross-cell authentication, which gives principals
from one cell authenticated access to another cell. (See “Chapter 33. Administering
a Multicell Environment” on page 355 for information about establishing accounts for
cross-cell authentication.)

Physical Security of the Database

The DCE Security Service provides safeguards for network security, protecting
information that is transmitted across the network by guaranteeing the identities of
principals who engage in cross-machine communications. The security server and
the database that it serves, however, reside on a local machine. The registry
database is only as secure as the security provided by the machine on which it
resides. In addition to ensuring that sensitive data can be accessed on the local
machine only by root, you need to provide physical security for the machine on
which the security server resides. This can include situating the machine in a locked
room, keeping a log of when and by whom the machine is accessed, and any other
methods that may be appropriate to your needs.

(See the OSF DCE Application Development Guide—Core Components for a more
detailed discussion of authentication.)

How the Registry Database is Stored

Each security server maintains a working copy of the registry database in virtual
memory and a permanent copy on disk. All reads and updates operate on the copy
that is in virtual memory. The servers use the copy that is on disk to initialize the
copy in virtual memory when they start up. An atomic update log is used to
guarantee the database state in the event of server failure.

Figure 45 on page 274 shows the server and the disk and virtual memory copies of
the registry database.

Chapter 27. Overview of DCE Security 273

Each security server periodically saves its entire database from virtual memory to
disk. The database is stored in dcelocal/var/security/rgy_data .

Replicated Databases

The registry database can be replicated within its cell. Each instance of a security
server in a cell maintains a working copy of the database. Throughout this guide,
the combination of a security server and its data (the registry database) is referred
to as a replica. Typically, you create several replicas in a cell to enhance
performance and reliability.

The task of keeping the cell’s replicas consistent is handled automatically by the
security servers. Any changes that you make are automatically reflected in all
replicas, as described in the following section.

How Updates Are Handled

Updates are made to only one database, and the changes are propagated to all
others. While propagations are pending, all replicas are accessible even if they are
not completely up-to-date. In other words, even replicas to which the changes were
not yet applied are available. This replication mechanism ensures that all replicas
remain available for login validation and for read operations even when changes are
in the process of being propagated.

Master and Slave Replicas

Only one replica in a cell, the master replica, accepts updates to its database from
clients. Other replicas, called slave replicas, accept only reads from clients. The
master replica propagates any updates to the slave replicas. For example, either a

Registry
Database

Virtual Memory

Disk Storage

Security
Server

Registry
Database

Figure 45. Disk Memory and Virtual Memory Copies of the Registry Database

274 OSF® DCE Administration Guide— Core Components

master or a slave replica can provide account information to a client program such
as /bin/login . However, if you are adding an account or changing password
information, those updates can be handled only by the master replica.

The process of updating the database differs slightly between the master replica
and slave replicas. Figure 46 and Figure 47 on page 276 illustrate the master and
slave update processes. The processes are described in the sections that follow the
figures.

Disk Memory

Master
Security
Server

The server applies the
update to the database
in virtual memory and
to its propagation
queue. Periodically, the
server writes the data-
base in virtual memory
to disk.

Registry Database

Log File

Replica List

Log File
Update 1
Update 2

..
.

The server stores a copy of
each update in the log file.
This file is used in the event of
a server restart to apply all out-
standing updates to the disk
copy of the database and to re-
create the propagation queue.

..
.

Propagation
Queue

Update 1,
1/17/92, 8:45

Update 2,
1/17/92, 9:30

The master replica uses its
propagation queue to propa-
gate updates to slave replicas.
When the master replica re-
starts, it restores the propaga-
tion queue from the log file.

..
.

Replica List

machine A update 1
machine B update 1

For each replica in the cell,
the replica list contains the
replica's network address
and ID, cell-relative name,
and the sequence number
of the replica's last update.

Database Update

Registry
Database

Figure 46. The Master Replica Update Process

Chapter 27. Overview of DCE Security 275

Handling Database Updates

When a master or slave replica receives updates, it applies the updates to its
database in virtual memory, and saves a copy of each update in a log file that is
stored on disk. Updates accumulate in the log file in sequenced numerical order. If
a server restarts unexpectedly, the log file ensures that no updates are lost.

Periodically, the replica writes the database in virtual memory to disk, thus bringing
the disk copy up-to-date. Then, if the replica is a slave, it clears the log file of all
updates. If the replica is the master, it clears the log file of all updates that have
been propagated to the slave replicas. Updates that have not been propagated to
the slaves are retained and used to reconstruct the propagation queue, if
necessary.

Only the master replica maintains a propagation queue, which is used to hold
changes to be propagated to the slave replicas, as described in “Propagating
Database Changes” on page 277. When the master replica receives an update, it
adds it to the propagation queue in addition to its virtual memory database and its

Disk Memory

Registry
Database

Log File

Replica List

Database Update

Secondary
Security
Server

Log File

Update 1
Update 2
l

l

l

Replica List

machine A update 1
machine B update 1
l

l

l

For each replica in the cell,
the replica list contains the
replica's network address
network ID, and cell-relative
name.

The server stores a copy of each
update in the log file. This file is
used in the event of a server
restart to apply all out-standing
updates to the disk copy of the
database.

The server applies the
update to virtual
memory. Periodically, the
server writes the
database in virtual
memory to disk.

Registry
Database

Figure 47. Slave Replica Update Process

276 OSF® DCE Administration Guide— Core Components

log file. Each update in a propagation queue is identified by a sequence number
and a timestamp. The sequence number is used internally to track the propagation
of updates to slave replicas. The timestamp is provided to show users the date and
time of updates.

When a master or slave replica restarts, it initializes its database in virtual memory
and then applies any outstanding updates in the log file to its database. If the
replica is the master replica, it also recreates the propagation queue from the log
file so that any outstanding slave updates can be propagated. This mechanism
ensures that no updates are lost when a server is shut down.

Propagating Database Changes

To propagate updates to the slave replicas, the master replica first updates its copy
of the database by using the process described in “Handling Database Updates” on
page 276. Then, the master replica attempts to propagate the update to each slave
replica on its replica list. The replica list contains each slave replica’s ID and
network address. It also contains the sequence number of the last update that was
made to the slave. The master replica always propagates in sequenced numerical
order. By examining the sequence number that is associated with a replica in its
replica list, and the sequence numbers of the updates that are in its propagation
queue, the master can determine which of the updates on its propagation queue
must be propagated to which slave. This mechanism helps ensure that the
unavailability of a single slave replica does not interfere with updates to the rest of
the slave replicas.

If the propagation of an update does not succeed on the first attempt, the master
replica tries periodically until it succeeds. When the update succeeds, the master
updates the sequence number that is associated with the updated replica on its
replica list. When an update is propagated to all the slave replicas, the master
removes the update from its propagation queue.

Master/Slave Authentication

Like all DCE objects, the master and slave replicas must authenticate to each other.
To do this, the master carries the identity of dce-rgy , one of the principals that is
created when the database is created. Slaves carry the identity of the host machine
on which they exist. Note that this identity must have the rights to the /.:/sec/replist
object described in “Chapter 41. Accessing Registry Objects” on page 421.

The /etc/passwd and /etc/group Files and the Registry

You should maintain standard versions of the /etc/passwd and /etc/group files on
local machines to ensure compatibility with UNIX programs. To keep the
/etc/passwd and /etc/group files consistent with the registry database, use the
passwd_export command. It is advisable to run passwd_export on a regular basis,
preferably using cron . (See “Chapter 36. Performing Routine Maintenance” on
page 381 for details on passwd_export .)

Note: Unlike standard UNIX behavior, the /etc/passwd and /etc/group files are not
used for local login if a security server is unavailable. Instead, the local

Chapter 27. Overview of DCE Security 277

registry (described in the following section) is used. The /etc/passwd and
/etc/group file are maintained only for compatibility with UNIX programs that
require their existence.

The Local Registry

The local registry, which resides in the dcelocal/var/security directory on each local
machine, contains information about the machine’s most recent users and the date
and time that they last logged in. If a security server is not available for network
login, the authentication service attempts to obtain the information that is required
for a local login from the local registry.

When a security server is running on the network, the authentication service
automatically creates a local registry the first time anyone logs into DCE from the
machine. Thereafter, it updates the local registry each time anyone logs into DCE
from the machine. You can edit the local registry by using the rgy_edit command
with the -l flag. Note that dcecp does not access the local registry.

Names for Security Objects

Because the security namespace is rooted in the Cell Directory Service (CDS)
namespace, security objects have CDS pathnames, which take the following form:

/.../ cellname/ mount_point/ object_name

where:

cellname
Is the name of the cell in which the object resides.

mount_point
Is the name under which the DCE Security Service is registered in CDS.

object_name
Is the name of the registry object assigned when the object is created. If
the object resides in a directory, object_name consists of the names of the
object itself and any directories that must be traversed to access the object.
Note that registry objects generally reside in the principal, group, or
organization directory in the registry database. See “Chapter 41. Accessing
Registry Objects” on page 421 for a more complete description of the
registry database structure.

For example, the full pathname for the principal bach , which resides in the cell
dresden.com , uses the sec (security) mount point and is in the principal directory
as follows:

/.../dresden.com/sec/principal/bach

As another example, assume the group east-west resides in sales , which is a
subdirectory of the group directory in the registry database in the dresden.com
cell. The full pathname for east-west is as follows:

/.../dresden.com/sec/group/sales/east-west

278 OSF® DCE Administration Guide— Core Components

Using Names with dcecp Security Commands

For all the dcecp commands that are used to manage the DCE Security Service,
except dcecp acl , you supply only an object name to identify the object you want to
manipulate. The object names are stored in the registry database. You are not
required to enter a cell name (the local cell is assumed) or mount point (the name
registered for the DCE Security Service is assumed).

Using Names with the dcecp acl Command

Unlike other dcecp security commands, the dcecp acl command works with ACLs
that can be maintained by DCE services other than security. Like any generic tool
that operates on objects that can exist in different namespaces, dcecp acl requires
the object’s fully qualified CDS pathname instead of just object_name.

For example, to use the dcecp acl command to change the ACL that is associated
with principal bach ’s registry account, you must enter the following fully qualified
name:

/.../dresden.com/sec/principal/bach

or

/.:/sec/principal/bach

Note also that, to use dcecp acl to manipulate the ACL that is on the principal
directory of the registry database, and thus control who can add or delete
principals, you must enter the following fully qualified name:

/.../dresden.com/sec/principal

In a hierarchical cell, one name can represent a directory and a principal. For
example assume that a principal name is stored in Cell A’s registry to represent a
cell with which Cell A engages in cross-cell authentication. The name for the cell in
the registry is

/.:/sec/principal/vienna.com

This cell name can also represent the name of a directory, such as

/.:/sec/principal/vienna.com/violinists_cell

For these cases, the dcecp acl command provides an option that identifies whether
you are entering a directory name or a principal name.

Chapter 27. Overview of DCE Security 279

280 OSF® DCE Administration Guide— Core Components

Chapter 28. Using Access Control Lists

You can control access to DCE objects by using the ACL authorization mechanism.
ACLs are associated with files, directories, CDS entries, and registry objects. They
can be implemented also by arbitrary applications to control access to their internal
data objects. Each ACL consists of multiple ACL entries that define who is
authorized to do what to the object, specifically

v Who can access the object

v What kinds of access those principals or groups have to the object

v What kind of access is allowed to unauthenticated users

This chapter

v Provides an overview of ACLs.

v Describes the form and purpose of ACL entries and masks, including the
sequence in which entries are checked to derive permissions.

v Describes how to use the DCE control program (dcecp) to display, create,
modify, and delete ACL entries; to use masks; to copy ACLs; and to edit different
types of ACLs.

For detailed information on how a specific DCE component implements the ACL
authorization mechanism, see the appropriate part of this guide.

Note: In the discussions of DCE authorization in this chapter and the chapters that
follow, the term user is analogous to principal. A principal can be a human
user, server, or a machine.

Authorization Overview

An ACL contains a list of entries that specify the principals who can access an
object and the operations that those principals can perform. The principals can be
named explicitly or be members of a group that is identified in the ACL entry. The
ACL is associated with the object it protects. The operations a principal can perform
are specified by permissions.

DCE permissions can be set for the following:

v Owner, group, and other

v Specific individual principals in the local cell and in foreign cells

v Specific individual groups in the local cell and in foreign cells

v Any other principals in a specific foreign cell for whom individual permissions
have not been set

v Any principals in any cell who have been authenticated by the DCE
Authentication Service

v Delegate users, servers, or groups, in local or foreign cells

v Unauthorized users

ACLs also provide a masking capability and a method for integrating protections
from DCE versions that are different from the current version.

File systems are frequently designed to provide access permissions for file system
objects, such as files and directories. ACLs in DCE are more extensive. In DCE,
many objects can have ACLs and be assigned permissions. DCE ACLs control

281

access to objects managed by DCE components, like the Distributed File Service,
the DCE Security Service, and the DCE Directory Service.

ACLs for the security service (the component that controls accounts) can, for
example, authorize certain principals to change all of the information associated
with an account, authorize other principals to change only a subset of the
information associated with accounts, and restrict other principals from changing
any of the information associated with accounts.

DCE can support particular sets of permissions that correspond to particular types
of objects. For example, for containers there can be an insert permission that other
objects, such as principals, do not need. This extensive usage of ACLs is in
contrast to that of POSIX systems, for example, where only file system objects are
protected by permission bits, with a standard set of permissions (read, write, and
execute) being used. The DCE control program has a command, acl permissions ,
that shows the permissions specific to the ACL associated with the named object.

ACL Managers

An ACL manager is that portion of a server that handles ACLs. One ACL manager
can support several different types of ACLs. From a more abstract point of view,
each ACL type is supported by a corresponding ACL manager type. Informally, ACL
manager types are sometimes called ACL managers. Figure 48 shows ACL
managers in servers.

The client side allows you to connect to any server exporting the ACL interface so
that one program can manipulate all ACLs. The DCE control program uses this
feature.

In addition to the standard DCE components, ACLs can control access to any
object for which an ACL manager has been implemented. ACLs can be associated

dcecp

Generic
ACL Client

Server

Server

ACL
Library

ACL
Protocol

ACL
Protocol

ACL
Manager

ACL
Manager

Server
data

Server
data

ACL
data

ACL
data

Figure 48. ACL Managers in Servers

282 OSF® DCE Administration Guide— Core Components

with user-written applications to protect access to the use of the application itself,
the files in the application, and even fields in those files.

All of the elements of ACLs described in this chapter are available to ACL
managers; however, each manager may implement all or only a subset of the
elements. For information on how ACLs are used by specific DCE components,
consult the appropriate section in this guide.

ACL Interpretation

Part of the information associated with an account is a principal and a set of
groups. (The groups are called a project list in this context, in honor of its Multics
origin.) Together, the principal and project list are called the privilege attributes (or
client-side access control information) associated with the account.

The principal and each of the groups is represented by both a string name and a
UUID. The privilege attribute UUIDs are contained in the credentials that are used
in authenticated remote procedure calls (RPCs). Servers grant access based upon
the contents of credentials received in RPCs. Although servers typically reject
unauthenticated RPCs, any server can support a policy of accepting them. In that
case, the server’s ACL manager must support the unauthenticated mask ACL
entry type so that the server can further restrict the access granted to such
unauthenticated clients.

When a principal requests access to a DCE object associated with an ACL, the
object’s ACL manager compares the UUIDs of the principal and any groups of
which the principal is a member (the principal’s privilege attributes) with the UUIDs
of the principals and groups listed in the ACL entry. It does this simply by reading
through the list of ACL entries. The manager grants the access permissions in the
first ACL entry (or entries in the case of groups) it finds that match any of the
principal’s privilege attributes. If the permissions in the matching entry allow the
requested mode of access, the principal gains access; if not, access is denied.

Credentials Inherited by Processes

Processes created or spawned by a principal inherit the principal’s credentials. For
example, if you log in, are authenticated, and start an application, the application
you start inherits your authenticated credentials and runs as though it were you.
The application’s permissions for any given object are the same as your
permissions. Processes spawned by the application carry your identity and pass it
down to processes they start.

Note: Changing the setuid permission bit changes only the local operating system
identity under which an executable file runs, not the network identity.

Some servers are written to run as separate authenticated principals. For these
servers, the system administrator creates an account in the registry database. After
you start these servers, the server process authenticates with the registry, receives
its credentials, and runs under its own identity, not yours.

ACL Entries and Masks

ACL entries are of several different ACL entry types, each type being for a
particular purpose. All ACL entries are represented in a uniform list syntax.

Chapter 28. Using Access Control Lists 283

ACL Syntax

The DCE control program uses the command syntax that is supported by the Tcl
language. Within Tcl, the list that represents an ACL entry contains either two or
three elements, depending on the ACL entry type, and is in the following form:

{ type [key] permissions}

The three sample ACL entries in Figure 49 are in the format that Tcl accepts for
input.

The first sample ACL entry sets permissions for a principal in the local cell, named
bach . The ACL entry type is user , the key is bach, and the permissions are rwxid .
The entry components are separated by the space character.

The second sample ACL entry sets permissions for a group in the local cell, named
composers . The ACL entry type is group , the key is composers, and the
permissions are rwxid .

The third sample ACL entry sets permissions for all other principals in the local cell
or foreign cells (unless they match a more specific entry). The ACL entry type is
any-other , there is no key, and the permissions are r-xid . Not all types of ACL
entries require a key.

On output, the Tcl format for ACL permissions contains either a permission
character or a - (dash) for each possible permission. Two examples are
{user mozart crwx---}
{user brahms -------}

For input, the output format is acceptable, or you can use a relaxed form that omits
the dashes. For input, the same examples can be shortened to
{user mozart crwx}
{user brahms -}

The single dash is retained to show that user brahms is denied all permissions.

ACL Entry Types for Principals and Groups

ACL entry types let you define entries for the following:

v Principals and groups

– Principals and groups in the local cell

– Principals and groups in foreign cells

{ user bach rwxid } { group composers rwxid } { any-other r-xid }

ACL
Entry
Type

ACL
Entry
Type

ACL
Entry
Type

Permissions Permissions Permissions

Key
identifying the
specific group

Key
identifying the

specific principal

Figure 49. Sample ACL Entries

284 OSF® DCE Administration Guide— Core Components

– Delegate entries

– All principals in the local cell for whom individual ACL entries have not been
created.

– All principals in the local and all foreign cells whose privilege attributes do not
match any of the other ACL entries

v Masks used for authenticated and unauthenticated users

v As-yet-undefined entry types that can be copied and displayed (if not interpreted)
by dissimilar DCE releases

If any principal or group is not authenticated, the permissions in the entry are
further constrained by the unauthenticated mask (described later in this chapter).
All entries for authenticated principals, except user_obj and other_obj entries, are
further constrained by the mask_obj mask (also described later in this chapter).

The following list shows the entry types for principals and groups, their meaning,
and their entry format. All ACLs have a default cell defined in them, as referred to in
the table. It is changeable, and serves to define the cell for various data types.

This list uses the following syntax variables:

principal_name
The name of a principal in the registry database

group_name
The name of a group defined in the registry database

cell The global pathname of a cell in the format /.../name.

permissions
The permissions made available by the object’s ACL manager.

The principal and group ACL entry types are as follows:

user_obj
Establishes permissions for the object’s real or effective user. An example is
the owner of a file. The entry format is
{user_obj permissions}

group_obj
Establishes permissions for members of the object’s real or effective group.
An example is the group of a file. The entry format is
{group_obj permissions}

other_obj
Establishes permissions for all other principals in the default cell, unless
they are specifically named in ACLs of entry type user , are members of a
group named in an ACL with an entry type of group , or match the principal
indicated by the user_obj or group_obj entry. The entry format is
{other_obj permissions}

user Establishes permissions for a specific principal in the default cell of the
ACL. This ACL entry type requires a key that is a principal name. The entry
format is
{user principal_name permissions}

group Establishes permissions for members of a specific group in the default cell.
This ACL entry type requires a key that is a group name. The entry format
is
{group group_name permissions}

Chapter 28. Using Access Control Lists 285

foreign_user
Establishes permissions for a specific principal in a foreign cell, one other
than the default cell of the ACL. You must identify the principal by supplying
a principal name and cell name as a key. The entry format is
{foreign_user cell_name/principal_name \

permissions}

foreign_group
Establishes permissions for a specific group in a foreign cell, one other than
the default cell of the ACL. You must identify the group by supplying a
group name and a cell name as a key. The entry format is
{foreign_group cell_name/group_name permissions}

foreign_other
Establishes permissions for other principals in a specific foreign cell, one
other than the default cell of the ACL, that are not specifically named in ACL
entries of entry type foreign_user or are members of a group named in an
ACL entry of type foreign_group . You must identify the foreign cell by
supplying a cell name as a key. The entry format is
{foreign_other cell_name permissions}

any_other
Establishes permissions for all other principals in local or foreign cells
unless they match a more specific entry in the ACL. The entry format is
{any_other permissions}

user_obj_delegate
Establishes permissions for an intermediary acting for the object’s real or
effective user. The entry format is
{user_obj_delegate permissions}

group_obj_delegate
Establishes permissions for an intermediary acting for members of the
object’s real or effective group. The entry format is
{group_obj_delegate permissions}

other_obj_delegate
Establishes permissions for an intermediary acting for all other principals in
the default cell, unless they are specifically named in ACLs of entry type
user , are members of a group named in an ACL with an entry type of
group , or match the principal indicated by the user_obj or group_obj
entry. The entry format is
{other_obj_delegate permissions}

user_delegate
Establishes permissions for an intermediary acting for a specific principal in
the default cell of the ACL. This ACL entry type requires a key that is a
principal name. The entry format is
{user_delegate principal_name permissions}

group_delegate
Establishes permissions for an intermediary acting for members of a
specific group in the default cell. This ACL entry type requires a key that is
a group name. The entry format is
{group_delegate group_name permissions}

foreign_user_delegate
Establishes permissions for an intermediary acting for a specific principal in

286 OSF® DCE Administration Guide— Core Components

a foreign cell, one other than the default cell of the ACL. You must identify
the principal by supplying a principal name and cell name as a key. The
entry format is
{foreign_user_delegate cell_name/principal_name \

permissions}

foreign_group_delegate
Establishes permissions for an intermediary acting for a specific group in a
foreign cell, one other than the default cell of the ACL. You must identify the
group by supplying a group name and a cell name as a key. The entry
format is
{foreign_group_delegate cell_name/group_name \

permissions}

foreign_other_delegate
Establishes permissions for an intermediary acting for other principals in a
specific foreign cell, one other than the default cell of the ACL, that are not
specifically named in ACL entries of entry type foreign_user or are
members of a group named in an ACL entry of type foreign_group . You
must identify the foreign cell by supplying a cell name as a key. The entry
format is
{foreign_other_delegate cell_name permissions}

any_other_delegate
Establishes permissions for an intermediary acting for all other principals in
local or foreign cells unless they match a more specific entry in the ACL.
The entry format is
{any_other_delegate permissions}

Group Permissions and Project Lists

Principals accrue group permissions from their project list, a list of all the groups of
which a principal or alias is a member. When a principal tries to access an object,
the principal has the access rights that accrue from the logical OR of permissions
granted to every group with an entry in the ACL and in which the principal is a
member. Note that the principal accrues rights only from the name or alias with
which the principal logged in, not both names and aliases. (See “Chapter 30.
Creating and Maintaining Principals, Groups, and Organizations” on page 305 for
more information on aliases and project lists.)

For example, suppose an ACL contains the following entries:
{user_obj crwxid-}
{group_obj crwx---}
{other_obj -r-----}
{group composers crwx---}
{user bach crwx---}
{user mozart crwx---}
{group performers --w-idt}

User cole is a member of the group composers and the group performers .
Because cole accrues permissions from both groups, his access permissions are
crwxidt . (The security service provides a method to prevent a group from being
included in a project list, thus preventing the group’s permissions from being
accrued as part of the project list. See “Chapter 30. Creating and Maintaining
Principals, Groups, and Organizations” on page 305 for more information.)

Chapter 28. Using Access Control Lists 287

Using Principal and Group ACL Entries

When a security mechanism applies ACLs, the ACL entries are chosen in a
particular order. The most specific ones are chosen before the less specific.

In using the ACL entry types for principals and groups, think of the user_obj ,
group_obj , and other_obj types as being similar to the POSIX file permissions of
user , group and other . Use the user and group types to specify permissions for a
specific principal or group.

The user_obj , group_obj , other_obj,user , and group entry types apply to
principals and groups in the default cell of the ACL. To set permissions for specific
principals and groups in a foreign cell, use the foreign_user and foreign_group
entries. These entries set permissions in a foreign cell in the same way that user
and group entries do in the default cell. Use foreign_other to set permissions for
others in the foreign cell, in the same way that other_obj does for others in the
default cell.

The any_other entry type sets permissions for all local and foreign principals to
which the other entry types do not apply. If any of the other types of entries are set
for a local or foreign principal either explicitly or implicitly, the any_other entry will
not be applied. This is because once the manager finds a match between a
principal and an entry, it stops examining the ACL list and applies the found entry
(or in the case of groups, entries). All other ACL entry types, except for mask types
(described below), are examined by the ACL manager to see if a match exists
before the ACL manager examines the any_other entry type. See “The Checking
Sequence for ACL Entries” on page 289 for details of the order of ACL checking.

ACL Entry Types for Masks

Masks in ACL entries establish maximum permissions that can be granted to a
principal. There are two masks: the mask_obj mask and the unauthenticated
mask . Only permissions given in an ACL entry and the mask are granted. For
example, if the ACL entry specifies rwx permissions and the mask specifies only
the x permission, the permissions are ANDed with the mask, and only the x
permission is granted.

The mask_obj mask, if it exists, applies to all entry types except user_obj and
other_obj . The unauthenticated mask is applied to all unauthenticated principals.
As the ACL manager derives the permissions from the ACL entries, it filters each
one through the mask_obj mask (if one exists), and finally through the
unauthenticated mask. The manager grants only those permissions that are in the
first matching entry, the mask_obj mask, and the unauthenticated mask.

Note: If you do not create an unauthenticated mask, unauthenticated principals
are denied all access to objects. If a user is unauthenticated because that
user has no DCE credentials, then the only entry that the user matches is
the any_other entry type, which is then masked by the unauthenticated
mask. This means that, for such unauthenticated users to have any access
to an object, the object’s ACL must contain an any_other type entry and an
unauthenticated mask entry.

An example of mask usage follows. For a particular object, there are a great
number of ACL entries specifying rw access to that object. You need to restrict the

288 OSF® DCE Administration Guide— Core Components

access to read-only, temporarily, but do not want to change all the ACL entries.
Simply creating a mask_obj mask of r, and then removing it when you are done,
provides the temporary restriction.

ACL Entry Types for Dissimilar DCE Releases

The extended entry type provides a generic format for ACL entries that allows
future DCE releases to implement new ACL entry types. Because the new types are
packaged in the generic format of the extended entry, earlier DCE releases can
copy, display, and print the new entry types even if they cannot interpret their
meaning.

“Copying ACLs” on page 293 tells how to copy extended entries. Note that extended
entries cannot be modified; however, they can be deleted.

An extended ACL entry has the following form:
{extended uuid.ndr.ndr.ndr.ndr.number_of_bytes.data permissions}

where:

uuid A UUID that identifies the entry type of the extended ACL entry. (This UUID
can identify one of the ACL entry types described in this document or an
as-yet-undefined ACL entry type.)

ndr.ndr.ndr.ndr
A network data representation (NDR) format label (in hexadecimal format
and separated by dots) that identifies the encoding of data.

number_of_bytes
A decimal number that specifies the total number of bytes in data. It is
followed by a dot.

data The ACL data in hexadecimal format. (Each byte of ACL data is two
hexadecimal digits.) The ACL data includes all of the ACL entry specification
except the permissions. The ACL data is not interpreted; it is assumed that
the ACL manager to which the data is being passed can understand that
data.

permissions
The permissions to be granted by the entry.

The Checking Sequence for ACL Entries

An ACL manager reads through a list of ACL entries to find the particular entry that
applies to an individual who is trying to perform a particular operation. The ACL
manager first looks for a match between the privilege attributes of the principal or
process desiring access and the privilege attributes listed in the ACL. When the
ACL manager finds a match, it examines the permissions in the matching ACL entry
and applies the mask_obj mask to it (unless it is an entry of type user_obj or
other_obj) if a mask_obj mask exists. Finally, the ACL manager applies the
unauthenticated mask (if it exists) if the principal is not authenticated. If the
permissions that result grant the requested access, the manager grants it to the
principal. If not, access is denied.

Because an ACL manager stops checking the ACL entries when it finds a match, it
is important to understand the order in which the ACLs are checked. Figure 50 on
page 291 shows the order of checking and the masks applied. ACL managers

Chapter 28. Using Access Control Lists 289

check entries in the following order, with the exception that the initiator principal is
not checked against ..._delegate entries. Delegate principals are checked against
all entries.

1. First, the ACL manager checks the user ACL entries, in the following order:

v user_obj

v user_obj_delegate

v user

v user_delegate

v foreign_user

v foreign_user_delegate

The ACL manager stops all entry checking at the first matching user entry it
finds and applies the permissions in the entry. The user entries are checked in
order as shown in the previous list from most specific to least specific.

2. If the ACL manager does not find a match in the user entries, it checks all of the
following group entries:

v group_obj

v group_obj_delegate

v group

v group_delegate

v foreign_group

v foreign_group_delegate

If any group ACL entries match the principal’s project list, and the logical OR of
permissions from these entries grants access, then access is granted and no
further checking is performed.

Because principals accrue permissions from all groups listed in the ACL of
which they are a member (and for which they are in the project list), all the
groups are checked and all the principal’s group permissions are logically
ORed. The order of group entry checking is not important. See “Group
Permissions and Project Lists” on page 287 for more information on project lists.

3. If the ACL manager does not find a match between the principal requesting
permission and a member of a group in the group entries, it checks the
other_obj and other_obj_delegate entries. If the ACL manager finds a match,
it stops checking ACL entries.

4. If the ACL manager does not find a match between the principal requesting
permission and the other_obj or other_obj_delegate entries, it checks the
foreign_other and foreign_other_delegate entries. If the ACL manager finds a
match, it stops checking ACL entries.

5. If the ACL manager does not find a match between the principal requesting
permission and the foreign_other or foreign_other_delegate entries, it checks
the any_other and any_other_delegate entries. If it does not find a match in
the any_other or any_other_delegate entries, it denies all access to the object.

The final permission is the intersection of the permission of the initiator principal
and of each delegate.

290 OSF® DCE Administration Guide— Core Components

Figure 50 shows these steps as they apply to the ACL entries. The two columns
distinguish between ACL entries that are not masked by mask_obj and those that
are masked by it.

The mask_obj Mask and ACL Checking

Before the ACL manager grants any permissions derived from checking the ACL
entries, it filters the entry permissions through the mask_obj mask. Only those
permissions named in the ACL entry and in the mask are granted. For example, if
an ACL entry grants rwx permissions and the mask_obj entry specifies only r and
w permission, only r and w are granted. The x permission named in the ACL entry
is ignored.

The Unauthenticated Mask and ACL Checking

If an ACL manager receives an access request from an unauthenticated principal, it
checks the ACL entries and applies the mask_obj mask, if available, as described
previously. It then filters the resulting permissions through the mask for
unauthenticated principals (entry type of unauthenticated). Only those permissions
specified in the unauthenticated mask, in the ACL entry, and in the mask_obj
mask (if it exists) are granted.

Not masked through
mask_obj Masked through mask_obj

user_obj
user_obj_delegate

other_obj
other_obj_delegate

user
user_delegate
foreign_user
foreign_user_delegate

foreign_other
foreign_other_delegate
any_other
any_other_delegate

mask_obj

unauthenticated

group_obj
group_obj_delegate
group
group_delegate
foreign_group
foreign_group_delegate

Step 1:
Match credentials against
Access ACL Entries. If a
match is found, then stop
checking immediately, and
apply the masks

Step 2:
If no match was found in
step 1, check all the group
entries, logically 0Ring
the acquired permissions.
If a match is found in the
group entries, then ignore
steps 3 through 5 and apply
the masks.

Steps 3 through 5:
Match credentials against
Access ACL Entries. If a
match is found, then stop
checking immediately, and
apply the masks

Masks:
mask_obj

unauthenticated

Apply to the
permissions gained from
entries in the right column.
Apply
mask to all permissions.

Figure 50. Order of Checking ACLs and Applying Masks

Chapter 28. Using Access Control Lists 291

The Effect of the Checking Order on Granting Permissions

You can think of the order in which the ACL entries are checked as going from most
specific to least specific. For example, assume an ACL contains the following
entries:
{user mahler r}
{group composers rwx}

If the principal named mahler , who is a member of the group composers , requests
execute (x) access, it is denied. This happens because the order of checking
specifies that all user entries (user_obj , user , and foreign_user) are checked
before all group (group_obj , group , and foreign_group) entries. Therefore, the
first match found by the ACL manager is the match between user mahler and the
ACL entry for user mahler . Once a matching user entry is found, checking stops
and the found permissions are applied. In this case, checking stops before the
group entry, the entry with the more liberal permissions.

Denying Access

When you create an ACL entry for a principal or group, you grant only the
permissions you specify in the ACL entry. To deny a principal all access to an
object, create an ACL entry that contains a dash in place of the permissions. For
example, to deny all access to user mozart , the entry would be
{user mozart -}

If you choose to deny access to a specific principal or group, select the most
specific entry type available. Generally for principals this is an entry type of user or
foreign_user ; for groups, it is an entry type of group or foreign_group . Note that,
if the principal is the object’s owner or a member of the object’s group, you must
use the user_obj or group_obj entry types to ensure that access is denied.

To deny access to all unauthenticated users, do not create the unauthenticated
mask. If this mask is not created (ACL entry type of unauthenticated), only
authenticated principals can access the object. The same behavior is achieved by
creating an unauthenticated mask with no permissions (or a dash in place of the
permissions). This method also has the additional advantage of illustrating
graphically that unauthenticated users have no access rights.

ACL Management Tasks

ACL management involves creating, modifying, and deleting the entries for the
ACLs on DCE entities. You can use the DCE control program to do all of these
tasks. The control program’s acl command perform the following operations on
ACLs:

v Create and modify ACL entries for DCE objects in the local cell and foreign cells.
(Note that when objects are created they are associated with initial ACL entries.
See “Generating ACLs from Files” on page 293 for more information.)

v Display the permissions implemented for an object by the object’s ACL manager.

v Create and modify masks used to restrict allowable permissions.

Note: Standard UNIX tools that display and manipulate UNIX modes have an effect
only on the ACLs established for the file system.

292 OSF® DCE Administration Guide— Core Components

For a detailed description of the DCE control program’s acl command, see the
acl(8dce) reference page.

Copying ACLs

To copy an ACL from one DCE object to another, use the DCE control program acl
replace command with the -acl option as shown here:
dcecp> acl replace /.:/hosts/hermes -acl [acl show /.:/hosts/cyclops]
dcecp>

The example command replaces the ACL for the host hermes with the ACL for the
host cyclops whose name is specified in the acl show command invoked by the
-acl option. Note how the -acl show command in the -acl option is enclosed in []
(brackets). This is required when the -acl option value is a command invocation.

If you are copying between cells, use the acl replace command’s -cell option, as
well as its -acl option. For example:
dcecp> acl replace /.:/hosts/hermes -acl [acl show /.:/hosts/cyclops] \
> -cell [acl show /.:/hosts/cyclops -cell]
dcecp>

To copy an extended entry type from the domain of one ACL manager to the
domain of another ACL manager, use the output of the dcecp acl show command
as the input to an acl replace command. To copy extended entries this way, both
ACL managers must support the extended entry type.

Generating ACLs from Files

A convenient way to create an ACL is to create and edit a text file so that it contains
the desired ACL entries, and then generate the ACL from it by using an acl replace
command.

For example, assume the file std_acl contains the following entries:
mask_obj:crwxid-
user_obj:crwxid-
group_obj:crwx---
other_obj:-r-----
user:lizt:crwx---
group:composers:-r-----
user:bach:crwx---
user:mozart:crwx---

The following acl replace command adds the entries in std_acl to an ACL named
/.../dresden.com/my_filesystem/opus :
dcecp> acl replace /.../dresden.com/my_filesystem/opus -acl [cat std_acl]
dcecp>

The acl replace command overwrites all ACL entries with the ones from the file
std_acl . Regardless of what they were before, the ACLs for opus now look like
this:
mask_obj:crwxid-
user_obj:crwxid-
user:lizt:crwx---
user:bach:crwx---

Chapter 28. Using Access Control Lists 293

user:mozart:crwx---
group_obj:crwx---
group:composers:-r-----
other_obj:-r-----

Container ACLs

The object ACL controls access to the object itself. A container object has, in
addition to its object ACL, an initial container ACL and an initial object ACL. These
two ACLs are not used for access control as such, but instead for cloning initial
ACLs for objects or containers created within the initial container. The initial
container ACLs and the initial object ACLs can be edited in the same way as the
usual ACL by using the -ic and -io options to the dcecp acl command.

Objects and Containers

The type of ACL used for an object depends on whether the object is a simple
object or a container. Containers are objects that hold other objects. The objects
they hold can themselves be either simple objects or container objects. Simple
objects do not hold other objects. Although any DCE component can have objects
and containers, the simplest and most common illustration is the file system. In the
file system, there are files and directories. The files are simple objects, and the
directories are containers. The directories can hold simple objects (files) and other
containers (subdirectories).

The object ACL is associated with simple and container objects. The initial container
and initial object ACLs are associated only with container objects.

Initial ACLs for Objects and Containers

Initial ACL entries and the ACL that contains them are applied automatically when
an object is created. The entries can be modified at any time with the DCE control
program. The types of DCE ACLs used as Initial ACLs for containers and objects
are as follows:

v The initial container ACL determines the default ACL for containers created within
a container. For example, the file system Initial Container ACL for a directory
specifies the default ACL for subdirectories created within that directory.

v The initial object ACL determines the default for objects created within a
container. For example, the file system initial object ACL for a directory specifies
the default ACL for files created within that directory.

Default ACLs for Objects

When a simple object is created in a container, it inherits the container’s initial
object ACL as its object ACL. Figure 51 on page 295 illustrates how the default ACL
is assigned to simple objects created in containers.

294 OSF® DCE Administration Guide— Core Components

Default ACLs for Containers

When a container is created within a container (a subdirectory within a directory, for
example), it inherits the parent container’s

v Initial container ACL as its object ACL and as its Initial Container ACL

v Initial object ACL as its initial object ACL

For example, if you create a file named report in the directory marketing , the
system assigns report the initial object ACL of the directory marketing . If you
create a subdirectory in marketing , the system assigns the new subdirectory the
Initial Container ACL of marketing . New subdirectories also receive a set of initial
ACLs that match the parent directory’s initial ACLs. In this example, the new
subdirectory also receives marketing ’s initial ACLs as its own ACLs. Figure 52 on
page 296 illustrates how the default ACLs are assigned to objects created in
containers.

Initial Container
ACL

Initial Object
ACL

Object ACL

Object ACL

Container A

Object Created
in Container A

An object created
in Container A
receives
Container A's
Initial Object ACL
as its Object ACL.

Figure 51. Initial ACLs for Objects Created in Containers

Chapter 28. Using Access Control Lists 295

Default Container ACL Example

The following example shows how ACLs are initially assigned to containers created
within containers.

Assume Container A has the following ACLs:

Object ACL
{user_obj crwxid}
{group_obj crwxid}
{other_obj r}

Initial container ACL
{user_obj crwxid}
{group_obj rw}
{other_obj r}

Initial object ACL
{user_obj crwxid}
{group_obj r}
{other_obj r}

When Container B is created in Container A, it has the following default ACLs:

Object ACL (container A’s Initial Container ACL)
{user_obj crwxid}
{group_obj rw}
{other_obj r}

Initial container ACL (container A’s initial container ACL)

Initial Container
ACL

Initial Container
ACL

Initial Object
ACL

Initial Object
ACL

Object ACL

Object ACL

Container A

Object Created
in Container A

An container created
in Container A receives
Container A's Initial
Container ACL as its
Object ACL and its
Initial Container ACL.

A container created in
Container A receives
Container A's Initial
Object ACL as its
Initial Object ACL.

Figure 52. Initial ACLs for Containers Created in Containers

296 OSF® DCE Administration Guide— Core Components

{user_obj crwxid}
{group_obj rw}
{other_obj r}

Initial object ACL (container A’s initial object ACL)
{user_obj crwxid}
{group_obj r}
{other_obj r}

Effect of Masks When Editing ACLs

If the user specifies a new mask_obj ACL entry, then acl modify uses it.
Otherwise, the acl modify command recalculates the mask, using the algorithm
shown in the following paragraph, unless the user has specified one of the -mask
calc , -mask nocalc , or -purge options. Therefore the mask can change, granting
more or fewer permissions, on every acl modify command.

Here is the algorithm that the acl modify command uses when calculating the
mask:

1. Retrieve the existing ACL of the file.

2. Perform all requests to remove entries and to reduce the permissions of existing
entries.

3. Calculate the union of the actual permissions of all remaining entries.

4. Determine which permissions differ between the actual and effective rights.
(This is the logical XOR of the results of steps 3 and 4.)

5. Perform all requests to add new entries to the ACL and all requests to increase
the permissions of existing entries.

6. Calculate the union of these newly granted permissions and the old effective
permissions (from step 4). This is the candidate new mask value.

7. If there are any permissions in the candidate new mask that are also in the
permissions that differ between the original actual and effective rights (from step
5), applying the candidate new mask would unexpectedly grant some new right
that the user did not intend. Unless the user specified one of the options -mask
calc , -mask nocalc , or -purge , this condition is an error, and the ACL is not
modified. Otherwise, the candidate new mask is applied as the new mask.

For the vast majority of ACL operations, such automatic recalculation is safe. In
certain rare cases, the recalculation of the mask can grant additional rights that the
user did not expect; for instance, a permission granted to an entry that the user did
not specify and that was not among the entry’s previous effective rights.

The following example shows the way mask recalculation works, as well as the
effect of the options.

Observe that the ACL contains an entry granting rwx permission to some user, but
the mask allows an effective permission of r-x . Adding a new rwx ACL entry and
recalculating the mask (according to step 6) to rwx is unsafe because the first
user’s effective access rights are unexpectedly changed from r-x to rwx . If the acl
modify command detects such an unsafe condition, its default action is to issue an
error message and not change the ACL.

The initial state, showing the permissions and the effective permissions, is

Chapter 28. Using Access Control Lists 297

dcecp> acl show /.:/concertos
{user vivaldi rwx effective r-x}
{mask_obj r-x}
dcecp>

Adding a user as shown results in an error because the mask recalculation would
give vivaldi an effective permission of rwx :
dcecp> acl modify /.:/concertos -add {user telemann rwx}
Error: Unintended permissions not granted.
dcecp>

Explicit use of the -mask calc option allows the recalculated mask to be applied in
spite of the new permission granted to vivaldi . The mask is set to the union of the
permissions granted to the file group class entries on the ACL. This option can
result in the inadvertent granting of extra permissions.
dcecp> acl modify /.:/concertos -add {user telemann rwx} -mask calc
dcecp> acl show /.:/concertos
{user vivaldi rwx effective rwx}
{user telemann rwx effective rwx}
{mask_obj rwx}
dcecp>

Using the -mask nocalc option explicitly retains the r-x mask, resulting in reduced
effective permissions for telemann . The ACL is modified exactly as specified by the
user, and no mask calculation or purging of permissions occurs.
dcecp> acl modify /.:/concertos -add {user telemann rwx} -mask nocalc
dcecp> acl show /.:/concertos
{user vivaldi rwx effective r-x}
{user telemann rwx effective r-x}
{mask_obj r-x}
dcecp>

Using the -purge option replaces the actual permissions with the effective
permissions in all entries. More precisely, if the command detects an unsafe
condition, then the condition intersects the current value of the mask with all of the
existing, unmodified entries in the file group class, replacing all ACL entries (except
user_obj , other_obj , mask_obj and unauthenticated) with their effective
permissions.
dcecp> acl modify /.:/concertos -add {user telemann rwx} -purge
dcecp> acl show /.:/concertos
{user vivaldi rwx effective r-x}
{user telemann rwx effective rwx}
{mask_obj rwx}
dcecp>

298 OSF® DCE Administration Guide— Core Components

Chapter 29. Control Programs for Managing the DCE Security
Service

You can perform most of the management tasks for the DCE Security Service by
using the DCE control program (dcecp). However, some of the components of this
service require you to use other control programs provided in DCE.

This chapter provides information about the commands that the DCE control
program offers for DCE Security Service management. The chapter also describes
the commands that the registry editor program (rgy_edit) provides for maintaining
local registries.

Control programs that you use for security-related management tasks from time to
time, such as password_export and sec_create_db , are not covered in this
chapter. These programs are described in subsequent chapters of this guide along
with the instructions for performing the tasks.

Using the DCE Control Program

Since detailed information about the DCE control program and its command syntax
appears in “Part 1. The DCE Control Program” on page 1 of this guide, this chapter
does not repeat the information. It describes only the commands that the DCE
control program provides specifically for managing the DCE Security Service.

The DCE control program creates and maintains principals, groups, organizations,
and accounts for the DCE Security Service’s network-wide registry (registry service
component). The control program also operates on the keytab files that protect the
passwords for security servers on the local node (authentication service
component). Additionally, it maintains the ACLs that protect DCE resources
(privilege service component). The DCE control program commands for managing
the DCE Security Service operate on these security and DCE-wide resources
through various objects that it defines. For example, the control program’s acl
check command displays the permissions that the ACL for a DCE Security Service
object grants to the invoking principal.

The following subsections describe the DCE Security Service objects that the DCE
control program operates on and the types of operations that the control program
can perform on these objects.

Security Service Objects

The DCE control program has functions that operate on the following security
service components:

principal
This object represents registry principals. These principals can be human
users of the network, servers on the network, machines on the network, or
cells with which the local cell will engage in cross-cell authentication.

group This object represents registry groups. Groups are collections of principals
for which you can assign access rights to objects.

299

organization
This object represents registry organizations. Organizations are collections
of principals to whom you can assign policies that expand your areas of
administrative control.

account
This object represents the accounts that are established in the registry for
principals.

registry
This object represents the registry, or the DCE Security Service’s database
of account information, in a DCE cell. The registry copy operated on can be
either the master replica or a slave replica.

xattrschema
This object operates on the schemas, or the definitions, for extended
registry attributes (ERAs) that you specify for DCE Security Service
components and data maintained by the host daemon (dced) on the local
host.

acl This object represents the ACLs for all of the DCE entities that can be
protected by the ACL facility of the DCE Security Service.

keytab
This object represents the files that store the keys, or passwords, for
authenticated server principals in the DCE Security Service.

DCE Control Program Operations for the DCE Security Service

Table 10 lists the operations that dcecp performs on DCE Security Service objects.

Specific instructions for using DCE control program commands to create and
maintain principals, groups, organizations, and accounts are given in “Chapter 30.
Creating and Maintaining Principals, Groups, and Organizations” on page 305 and
“Chapter 31. Creating and Maintaining Accounts” on page 325 of this guide.

Table 10. DCE Control Program Operations for the DCE Security Service

Operation Description

add Adds a principal to a group or organization to a registry replica.

catalog Displays the names of all the principals, groups, and
organizations in a registry replica. For the registry itself, displays
the master and slave replicas existing in a DCE cell.

check Displays the permissions that a DCE ACL currently grants to a
security principal.

checkpoint Resets the registry checkpoint interval.

create Creates a new principal, group, organization, or account in a
registry replica. Also, creates a new entry for an ERA schema.

delete Deletes a principal, group, organization, or account from a registry
replica. For the registry itself, deletes a slave replica. For an ERA
schema, deletes entries. For a DCE ACL, removes ACL entries.

designate Changes which registry replica is the master.

destroy Destroys the specified replica and its copy of the registry
database.

disable Disables the master replica of the registry for updates.

300 OSF® DCE Administration Guide— Core Components

Table 10. DCE Control Program Operations for the DCE Security Service (continued)

Operation Description

dump Displays information on each replica of the registry existing in a
cell.

enable Enables the master replica of the registry for updates.

generate Generates a random password for an existing registry account.

help Displays help information about a principal, group, organization,
account, ERA schema, or DCE ACL in a registry replica, or about
the registry replica itself.

list Displays the names of the principals belonging to a group or
organization in a registry replica.

modify Modifies the attribute information in a registry replica for a
principal, group, account, ERA schema entry, DCE ACL entry, or
for the registry itself. For an organization, also modifies the policy
information.

operations Displays the operations that can be performed by or on a
principal, group, organization, account, ERA schema, DCE ACL,
or registry replica.

permissions Displays the permissions granted by a ACL on a protected DCE
component.

remove Removes one or more principals from a group or organization in a
registry replica.

rename Changes the name of a principal, group, organization, or ERA
schema in a registry replica.

replace Replaces the entire ACL on a DCE component or the address of
a registry replica.

show Displays information about the attributes of a principal, group,
ERA schema entries, or DCE ACL entries. Also displays
information about the policies for an organization, account, or
registry replica.

stop Stops a security server process.

synchronize Instructs the slave replica of the registry to update its contents
from the master replica.

verify Checks if all of the registry’s replicas are up-to-date.

Using the Registry Editor

Although you can use the DCE control program to maintain the network-wide
registry, you can only use the registry editor to maintain the local registries located
on the hosts in a cell.

The following subsections explain how to start, stop, and get help for the registry
editor and describe the commands to use for local registry maintenance. Specific
instructions for using the registry editor to maintain the local registry are given in
“Chapter 30. Creating and Maintaining Principals, Groups, and Organizations” on
page 305 and “Chapter 31. Creating and Maintaining Accounts” on page 325.

For detailed descriptions of all of the registry editor commands, see the
rgy_edit(8sec) reference page.

Chapter 29. Control Programs for Managing the DCE Security Service 301

Starting, Stopping, and Getting Help

The registry editor runs in two modes: interactive and command line. In interactive
mode, the control program prompts you for the information that it needs. In
command-line mode, you enter all of the information that the control program needs
on the command line. In command-line mode, you can perform only one operation
at a time; however, you may find command-line mode useful for creating shell
scripts that execute a sequence of registry editor commands. Most of the examples
in this guide are in interactive mode. (See the rgy_edit(8sec) reference page for
information on how to invoke and use the registry editor in command-line mode.)

To start the registry editor in interactive mode, enter the following command:
$ dceshared/bin/rgy_edit

The registry editor responds by displaying the name of the current registry site and
the rgy_edit=> prompt, as follows:
Current site is:
registry server at /.../bayre.com/subsys/dce/sec/oddball
rgy_edit=>

If the name service is unable to provide the name, the output is shortened. For
example, instead of
registry server at
/.../bayre.com/subsys/dce/sec/oddball

the display would be
registry server at /.../bayre.com

To exit from a rgy_edit command, press Return at the command prompt. For
example, to exit from the add command to add principals, press Return at the Add
Principal=> Enter name: prompt.

To exit from the registry editor, enter the q[uit] command at the rgy_edit prompt:
rgy_edit=> q
$

The rgy_edit help command displays help information. If you enter help or h, the
registry editor displays a list of all commands and available topics. For example:
rgy_edit=> help

rgy_edit Commands for Local Registry Maintenance

To view or to perform any maintenance tasks on the local registry, you must first
access it. To access the local registry, invoke the registry editor with the -l option:
$ rgy_edit -l
rgy_edit=>

At the rgy_edit prompt, enter the name of the command for the particular operation
you wish to perform. Table 11 lists the available commands.

Table 11. rgy_edit Commands for Maintaining the Local Registry

Command Function

del [ete] Deletes the entries for principals, groups, or organizations.

prop [erties] Displays or changes local registry properties.

302 OSF® DCE Administration Guide— Core Components

Table 11. rgy_edit Commands for Maintaining the Local Registry (continued)

Command Function

p[urge] Deletes expired entries for principals, groups, or organizations.

v[iew] Displays the entries for principals, groups, or organizations.

For detailed descriptions of all of the registry editor commands, see the
rgy_edit(8sec) reference page.

Chapter 29. Control Programs for Managing the DCE Security Service 303

304 OSF® DCE Administration Guide— Core Components

Chapter 30. Creating and Maintaining Principals, Groups, and
Organizations

This chapter explains how to use dcecp to create and maintain principals, groups,
and organizations. It begins with a discussion of the names that are assigned to
principals, groups, and organizations and of the Universal Unique Identifiers
(UUIDs) used internally by the DCE Security Service to identify registry objects.

Principal, Group, and Organization Names

You must assign a name to each principal, group, and organization in the registry.
Although a principal, a group, and an organization can have the same name, no
two principals, groups, or organizations can have the same name. For example, two
principals cannot be named smith , but a principal can be named smith , a group
can be named smith , and an organization can be named smith .

You can assign up to three types of names: primary, full, and aliases.

Primary Names

Primary names are assigned to principals, groups, and organizations. A registry
object’s primary name is the name that is used by most system utilities when a
human-readable string is needed. When you add a principal, group, or organization
to the registry database, you must supply a primary name. The primary name is a
key field that you can use as input to the principal show command to query the
registry database.

Full Names

Full names can be assigned optionally to principals, groups, and organizations. An
object’s full name is for information purposes. It typically describes or expands a
primary name to allow easy recognition by users. For example, a principal could
have a primary name of jsbach and a full name of Johann S. Bach . An
organization could have the primary name moco and the full name Motet
Composers.

A full name is a data field only. You cannot use it to query the registry database.
You can create the principal’s, group’s, or organization’s full name when you create
the principal, group, and organization itself.

Aliases

An alias is an optional alternate name for a primary name. Aliases can be assigned
to principals and groups, but not to organizations. Aliases and the primary name for
which they are an alternate share the same UUID and UNIX ID. (UUIDs and UNIX
IDs are described in “Universal Unique Identifiers and UNIX IDs” on page 307.) An
alias is a key field that you can use to query the registry database.

Because you can create one account for each primary name and each alias,
aliases give you the flexibility to establish several accounts for the same principal.
For example, assume that for the primary name mahler you create three aliases:
gustav , gus , and gm . You can then create four accounts for the principal mahler :

305

one for the primary name and one for each of the name’s aliases. The accounts
can use different home directories and passwords and can be associated with
different groups and organizations.

Because principals accrue only the rights that are associated with the primary name
or the alias that they log in with, these multiple accounts for the same person
accommodate different access patterns. For example, mahler may be a member of
the composers group and gustav can be a member of the music_admin group,
which is a group of system administrators. The principal mahler logs in as mahler
to perform day-to-day tasks and as gustav to perform administrative duties. To help
prevent accidental damage to the system, it is a good idea to set up accounts so
that users can log into an account with the least privileges necessary to perform
their tasks.

For groups, aliases are useful if you want to associate two group names with the
same UNIX number.

See “Creating and Maintaining Aliases for Principals or Groups” on page 322 for
information on creating aliases.

Name Formats

Names in the registry can contain any characters or digits, except the @ (at sign)
and the : (colon) character. Avoid using spaces, {} (curly braces), or ″″ (quotes) in a
name, dcecp might not parse the name correctly.

The maximum number of characters allowed in a name is 1024.

Reserved Principals and Accounts

Some principals and accounts are reserved for use by various system operations.
You cannot delete reserved principals. You can modify, but not directly delete
reserved accounts. Note, however, that you may delete reserved accounts indirectly
by deleting the group or organization that is specified in the account. (See
“Chapter 31. Creating and Maintaining Accounts” on page 325 for details.)

A list of reserved principals and accounts follows. In the list cell_name is the name
of your cell.

v Reserved Principals:

– dce-ptgt

– krbtgt/ cell_name

– dce-rgy

v Reserved Accounts:

– dce-ptgt none none

– krbtgt/ cell_name none none

– dce-rgy none none

306 OSF® DCE Administration Guide— Core Components

Object Creation Quotas

You can assign an object creation quota to each principal. This assignment allows
you to control the number of registry objects that can be created by the principal. If
you allow users to create their own groups, for example, you can use this quota to
limit the total number of groups they can create. The default for the object creation
quota is unlimited , meaning that no limits are placed on the number of objects the
principal can create. A value of 0 (zero) prohibits the principal from creating any
registry objects.

Each time a principal creates a registry object, the principal’s object creation quota
is decremented by 1. When the object creation quota reaches 0, the principal is
prohibited from creating registry objects unless you reset the object creation quota
to a number other than 0 by using the dcecp principal modify command. Note
that, when an object that is created by a principal is deleted, the principal’s object
creation quota is not incremented.

Use the dcecp principal show command to view principals’ current object creation
quotas. This command displays the total number of objects that the principal is
allowed to create at the current time; that is, the original quota minus the number of
objects created by the principal.

Universal Unique Identifiers and UNIX IDs

The DCE Security Service automatically associates a principal’s, group’s, or
organization’s primary name with a UUID. UUIDs identify objects, which is a
function performed by UNIX numbers (UNIX IDs) in UNIX systems. (The registry
database also contains UNIX numbers, but they are used solely for compatibility
with UNIX programs.)

Normally, you do not have to be aware of UUIDs. They are created and maintained
automatically. However, be aware that, although the DCE Security Service prints
names and you can access objects by name, it identifies all objects internally by
UUID. If you delete a principal from the registry, you also delete the principal’s
UUID. Any objects (files, programs) that are owned by the principal are associated
with an orphaned UUID; that is, a UUID with no corresponding name. This means
that the object is now owned by a deleted principal. If no other principals were
previously given access to the object, the object cannot be accessed.

To solve this problem, use the dcecp principal create command with the -uuid
option to associate the UUID with a name and thus adopt the orphaned object.
UUIDs are assigned automatically when the object is created by using the DCE
control program’s principal create command. Therefore, you cannot simply add a
new user and acquire a previously used UUID. You must execute the dcecp
principal create command with the -uuid option for this purpose.

UNIX numbers in the registry must fall within the range of numbers you set as a
registry property. When you supply a UNIX number in the command line for creating
or modifying an account, you should avoid numbers under 100 since these are
generally reserved for system accounts.

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 307

Adding and Maintaining Principals

Use the dcecp principal create command to create principals. A principal must
exist before you can create an account for the principal. When you use the dcecp
principal create command, you must supply the principal’s primary name as an
argument. In addition, you can supply the attribute options summarized in Table 12.

Table 12. Attribute Options to Create Principals

Option Meaning

-fullname namestring An optional name that is used to more fully describe a
primary name. To include spaces, enclose the full name in
braces. The default is blank.

-uid integer The required UNIX ID that is associated with the principal.
You can enter this number explicitly or allow it to be
generated automatically. If you enter it, the number you
enter cannot exceed the maximum allowable UNIX number
(the maxuid attribute) set with the registry modify
command; however, you can enter a number lower than the
low UNIX number (the minuid attribute) set for principals
with the registry modify command. If you allow the number
to be assigned automatically, it falls in the range defined by
the low UNIX number and maximum UNIX number.

-quota quota The number of registry objects that can be created by the
principal, known as the principal’s object creation quota. To
allow a principal to create an unlimited number of registry
objects, enter the text string unlimited to set no quota. To
prevent a principal from creating any registry objects, enter
a 0. The quota argument defaults to unlimited .

Note: In addition to these standard principal attributes, you can also attach ERA
instances to principals to control such aspects of DCE security as
preauthentication, password strength and password generation, and handling
of invalid logins. See “Extended Security Attributes for Principals” on
page 310 for information on these well-known ERAs. See “Chapter 32.
Creating and Using Extended Registry Attributes” on page 343 for
information on ERAs in general.

Adding Principals

To add principals to the registry, use the principal create command. For example,
the following sample command creates a principal with a primary name of mahler
and a full name of gustav mahler :
dcecp> principal create mahler -fullname {gustav mahler} -quota 5
dcecp>

In the example, the UNIX number defaults to one that is generated automatically.
Notice that, because the full name (gustav mahler) assigned to the principal
contains a space, it is enclosed in braces.

Note that you can create multiple principals with one principal create command. To
do so, enclose the principal names in braces, separated by spaces. For example, to
create the principals bach , britten , mahler , and satie , you could enter the
following:
dcecp> principal create {bach britten mahler satie}
dcecp>

308 OSF® DCE Administration Guide— Core Components

If you create multiple principals, you must allow the principal’s UNIX ID to default to
the system assigned ID. This is because, if you include an attribute option in the
command line, that attribute value is assigned to each principal. For example, the
following sample command creates the principals bach , britten , mahler and
assigns each an object creation quota of 5.
dcecp> principal create {bach britten mahler satie} -quota 5
dcecp>

Changing Principals

You can change a principal’s primary name and other information related to the
principal. Additionally, you can change a primary name to an alias and an alias to a
primary name. If you change a primary name to an alias and do not make an alias
the primary name, operations that return names choose one of the aliases at
random.

Changing Primary Names

Use the dcecp principal rename command to change a primary name. Enter the
command in the following form:

principal rename old_name -to new_name

where:

old_name
Is the primary name of the principal to be changed.

new_name
Is the new primary name of the principal.

The following example shows the principal rename command used to change a
full name from mahlar to mahler :
dcecp> principal rename mahlar -to mahler
dcecp>

Note that, if you change a primary name, that change is reflected in the
membership lists of all the groups and organizations in which the principal is a
member.

In the unusual case where you are changing a host’s principal name while the host
is logged into a DCE cell, the existing host credentials will become invalid unless
you perform extra steps to update the host credentials with the new principal name.

Host credentials are managed by the secval process, which performs security client
functions on a DCE host. Normally, just after the host starts, the secval process
logs the host into the DCE cell, getting the host credentials and storing them on the
host. Deactivate and reactivate the secval process to update these credentials after
changing the principal name. The following illustrates these operations on remote
host persephone :
dcecp> secval deactivate /.:/hosts/persephone/config/secval
dcecp> secval activate /.:/hosts/persephone/config/secval
dcecp>

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 309

Changing Principal Information

Use the dcecp principal modify command to change any principal information
except the UNIX ID and user ID. The following example shows the principal
modify command used to change principal mahler ’s object creation quota to 10.
dcecp> principal modify mahlar -quota 10
dcecp>

Deleting Principals and Aliases

If you delete a principal or an alias, the system automatically deletes any accounts
for that principal or alias. For example, if you delete the principal mahler , the
mahler composers classic account is also deleted. If you delete the principal alias
gustav , you also delete the gustav music_admin classic account. If you delete
the group alias music_admin , you also delete the gustav music_admin classic
account. Be aware that deleting a principal or a principal’s alias could orphan the
objects that are owned by the principal/UUID.

The following example shows the principal delete command used to delete the
principal named mahler :
dcecp> principal delete mahler
dcecp>

You can delete multiple principals or aliases with one principal delete command.
To do so, enclose the principal names in braces, separated by spaces. For
example, to delete the principals bach , britten , and mahler , you would enter the
following:
dcecp> principal delete {bach britten mahler}
dcecp>

Extended Security Attributes for Principals

You can attach ERA instances to principals to manage several aspects of DCE login
and password security. ERAs are available to control

v The level of authentication security required for principal login requests

v Handling of invalid logins

v Strength of principals’ passwords as well as generation of passwords for
principals

v Handling of login attempts by principals with expired passwords

These ERAs are introduced and explained in the following sections. See
“Chapter 32. Creating and Using Extended Registry Attributes” on page 343 for
information on how to use dcecp to attach these ERAs to principals.

DCE Authentication

Authentication addresses certain security deficiencies in the Kerberos V5
authentication protocols, used as the basis for the DCE authentication protocol in
versions previous to DCE Version 1.1. These deficiencies result from

v The security server responding to client login requests without verifying that the
user knows the password

v The use of user passwords, which are notoriously weak, to encrypt plaintext data
that is then sent across the network

310 OSF® DCE Administration Guide— Core Components

These practices are subject to attacks in which the attacker obtains network
transmissions and proceeds to attack them offline to elicit user’s passwords. These
kinds of attacks, if successful, can compromise the security of a DCE cell (and of all
other cells in a trust relationship with that cell).

DCE authentication reduces the likelihood of such attacks succeeding by providing
for

v Preauthentication of principals making login requests (that is, by having the DCE
Security Service verify the identity of the requestor before responding to the
request)

v The use of strong keys to encrypt all network transmissions involving validation
between security clients and servers

Four levels of authentication are available, ranging from most to least secure, and
representing decreasingly strict preauthentication protocols. By attaching an
instance of the pre_auth_req ERA (described in the following section) to the
principal, administrators can control the minimum level of preauthentication that the
security server will accept when authenticating the principal.

The preauthentication protocols are

v The public key protocol, which provides the highest level of security. A principal
that does not have this level of security at login may not be able to use certain
applications that do use public key authentication.

By default, public key login is disabled. To enable public key authentication, see
the next section of this chapter.

v The third-party protocol, which provides a high level of security. No lesser level of
preauthentication should be specified for any principal unless a reason is
compelling enough to do so. (See the comment on cell_admin in the next
bulleted item.) DCE Version 1.1 clients always construct authentication requests
with this protocol, except in cases where they are unable to because the
machine session key, which is required to construct third-party requests, is
unavailable (for example, at cell startup or when the secval process is down).

v The timestamps protocol, which provides an intermediate level of security.
Timestamps preauthentication should be specified only for principals (such as cell
administrators and noninteractive principals) who must be able to operate when
the client is unable to construct a third-party authentication request as previously
described.

In these cases, the client constructs and forwards a timestamps login request.

In particular, the cell administrator must have timestamps login capability, since
cell_admin must be able to log in to set up the initial machine key during initial
configuration of the cell.

v The DCE Version 1.0 (Kerberos V5) protocol, which is used to authenticate
pre-DCE Version 1.1 clients only, and provides no preauthentication security.

Enabling the Public Key Authentication Protocol

By default, the public key login authentication is disabled. To enable it and to
configure it for users, follow these steps:

1. Make sure the public key software is installed on the master DCE Security
server and on the replica servers. Public key software is available for DCE
Versions 1.2.2 and later.

2. Initialize the cell’s public key environment. If the cell is migrating from DCE 1.1
to DCE 1.2.2, follow steps a and b. Otherwise, follow step b.

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 311

a. Enable the public key on the master:
dcecp> registry modify -version secd.dce.1.2.2
dcecp>

The master will propagate the version information to each replica that has
the public key software installed. Any replica that does not have the public
key software installed will be shut down automatically.

b. As the cell_admin , request that an initial key-pair (public and private keys)
be generated for the account of the local cell’s krbtgt principal:
dcecp> account modify krbtgt/ cell-name pkgenprivkey value \
> mypwd pwd
dcecp>

The registry will generate a key-pair and store them. The public key portion
of the pair will be stored in the DCEPKAuthentication ERA attached to the
krbtgt principal for the cell. The private key portion will be stored in the
registry under existing password-protection encryption.

Note that you can also use this command to modify an existing key-pair of
the local cell’s krbtgt principal.

3. On the cell administrator workstation, configure the user’s public key account:
dcecp> account create name \> -group none \
> mypwd cell-admin-password
> -organization none \
> password user-password \
> -pkmechanism file \
> -pkkeycipherusage {{generatekey default} {newpassphrase string}} \
> -pksignatureusage {{generatekey default} {newpassphrase string}}

The command does the following to the public key account:

v Indicates that the private key information should be stored in a file.

v Randomly generates a new public key-pair, which has an attached new
password phrase that you supply for encryption purposes. The public key
portion of the key-pair is stored in the ERA, and the private key portion is
stored in a file.

v Randomly generates a new signed key-pair, which has an attached new
password phrase that you supply. Again, the public key portion is stored in
the ERA and the private key is stored in a file.

4. Move the public key mechanism file from the cell administrator workstation to
the user’s workstation and change the ownership to the user. Provide the new
password phrase to the user but strongly encourage the user to change the
password phrase so no one else knows it. To change a password phrase, the
user can invoke the dcecp account modify command.

By default, only the cell administrator can create or modify a public key account.
However, a cell administrator can modify the ACL managers for the public key
ERAs, thereby allowing users to change their own key-pairs. To modify the ACL
managers:
dcecp> xattrschema modify /.:/sec/xattrschema/DCEPKAuthentication \
> -aclmgr {principal {query r} {update u} {test r} {delete m}}
dcecp> xattrschema modify /.:/sec/xattrschema/DCEPKKeyEncipherment \
> -aclmgr {principal {query r} {update u} {test r} {delete m}}

312 OSF® DCE Administration Guide— Core Components

Managing User Authentication

You manage preauthentication for a given principal by attaching an instance of the
pre_auth_req ERA to the principal and specifying a value to indicate the lowest
level protocol the DCE Security Service should accept for the principal, as follows:

0 (NONE) Specifies that the DCE Security Service should accept, from this
principal, login requests that use any of the four protocols (including the
pre-DCE Version 1.1 protocol.) This is the least secure level and is provided
only to enable DCE Version 1.1 servers to accept login requests from
pre-DCE Version 1.1 clients. It is most vulnerable to the type of attack
previously described.

Warning: Failing to attach an instance of the pre_auth_req ERA to a
principal is equivalent to specifying 0 (NONE).

1 (PADATA-ENC-TIMESTAMPS) Specifies that the DCE Security Service
should accept, from this principal, login requests using the timestamp,
third-party, or public key protocol. The timestamp protocol protects against
attackers masquerading as security clients and attacking replies from the
DCE Authentication Service. The protocol is still vulnerable to attacks by
processes capable of monitoring the network.

2 (PADATA-ENC-THIRD-PARTY) Specifies that the only login requests the
DCE Security Service will accept from this principal are those using the
third-party or public key protocol. This protocol offers a high level of DCE
preauthentication and provides protection against the attacks previously
described. With third-party preauthentication, all authentication data sent
over the network is encrypted with a strong random key known only to the
local machine principal and the DCE Security Service.

3 (PADATA-ENC-PUBLIC-KEY) Specifies that the only login requests the
DCE Security Service will accept from this principal are those using the
public key protocol. This is the highest level of DCE preauthentication.

When the authentication service receives a login request for a principal, it always
attempts to respond using the same protocol as the request, unless the
pre_auth_req ERA value for that principal forbids it to do so. Table 13 on page 314
provides a matrix describing the actions taken by the authentication service under
the various combinations of login (authentication) request type and pre_auth_req
ERA value.

For complete information on the details of DCE authentication (including the
operation of the preauthentication protocols), see the OSF DCE Application
Development Guide—Core Components.

The following is an example of a dcecp command to modify a principal and attach
a pre_auth_req ERA specifying third-party preauthentication:
dcecp> principal modify smitty -attribute {pre_auth_req 2}
dcecp>

For further information on how to use dcecp to attach ERAs to principals, see
“Chapter 32. Creating and Using Extended Registry Attributes” on page 343.

Public Key Interoperability Between DCE Versions

Table 13 on page 314 describes how login requests are handled between different
versions of DCE that are in a single cell.

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 313

Table 13. DCE Version 1.1/Pre-DCE Version 1.1 Authentication Interoperation

Login Request
Type

Pre-1.1 Server
Response

Versions 1.1 and 1.2 Server Response

DCE Version 1.0

From any client. No preauthentication.
Returns DCE Version 1.0
(unpreauthenticated)
response.

Preauthentication. Checks for
pre_auth_req ERA instance: If no ERA
exists, or existing ERA has value=0
(NONE), returns DCE Version 1.0
(unpreauthenticated) response. Otherwise,
rejects login request.

TIMESTAMPS

From DCE Version
1.1 and greater
clients.

No preauthentication.
Ignores preauthentication
data in request and
returns pre-DCE Version
1.1 (unpreauthenticated)
response.

Preauthentication. Checks for
pre_auth_req ERA instance: If no ERA
exists, or existing ERA has value=0
(NONE) or value=1 (PADATA-ENC-
TIMESTAMPS), returns DCE Version 1.1
TIMESTAMPS response. If existing ERA
has value=2 (PADATA-ENC-THIRD-
PARTY), rejects login request.

THIRD-PARTY

From DCE Version
1.1 and greater
clients.

No preauthentication.
Ignores preauthentication
data in request and
returns pre-DCE Version
1.1 (unpreauthenticated)
response.

Preauthentication. Returns DCE Version
1.1 THIRD-PARTY response.

PUBLIC KEY

From DCE Version
1.2 clients.

No preauthentication.
Ignores preauthentication
data in request and
returns pre-DCE Version
1.1 (unpreauthenticated)
response.

1.1 Server Response: No
preauthentication. Ignores
preauthentication data in request and
returns pre-DCE Version 1.1
(unpreauthenticated) response. 1.2 Server
Response: Preauthentication. Returns
DCE Version 1.2 PUBLIC-KEY response.

Managing Invalid Login Handling

When you specify a preauthentication level of 2 (PADATA-ENC-THIRD-PARTY) for
a principal, the security server is able to detect and track invalid login attempts for
that principal. This makes it possible for administrators to limit the possible impact
of password guessing attacks by

v Setting a limit to the number of successive invalid login attempts before the
principal’s account is disabled. (A successful login resets the counter.)

v Specifying the period of time the principal’s account will be disabled once that
limit is reached.

You do this by attaching instances of two ERAs (max_invalid_attempts and
disable_time_interval) to the principal. Specify values for these ERAs as follows:

max_invalid_attempts
Specifies an integer indicating the number of successive invalid login
attempts the security server should accept before marking the principal’s
account as disabled.

314 OSF® DCE Administration Guide— Core Components

disable_time_interval
Specifies an integer indicating the number of seconds the principal’s
account should be disabled from login attempts.

The following is an example of a dcecp command to create a principal and attach
max_invalid_attempts and disable_time_interval ERAs:
dcecp> principal create smitty -attribute {{max_invalid_attempts 7} \
> {disable_time_interval 60}}
dcecp>

Note: At DCE Version 1.1, the invalid login handling functionality accurately tracks
login activity in a cell with one master and no replicas, but does not keep
accurate counts in replicated cells. This is because

v Login attempts in a replicated cell are randomly assigned to either a
master or replica.

v There is at present no mechanism for replicas to communicate to the the
master and, therefore, no way for the master to maintain an accurate
count.

For further information on how to use dcecp to attach ERAs to principals, see
“Chapter 32. Creating and Using Extended Registry Attributes” on page 343.

Managing Password Strength and Password Generation

The DCE password format policy described in “Chapter 35. Maintaining Policies and
Properties” on page 373 enables you to control the following characteristics of user
passwords:

v Minimum password length

v Whether a password can be all spaces

v Whether a password can consist of alphanumeric characters only

You can extend these password strength policies in your cell by creating a
password management server to perform customized password checking and
generation. DCE provides an example password validation/generation server,
pwd_strengthd(8sec) , which you can use as the basis for a password
management server that suits your cell’s requirements. DCE also provides a
Password Management API that application developers can use to acquire
information about the principal’s password management policy, and to request
generated passwords from the password management server. See the OSF DCE
Application Development Guide—Core Components for information on the
Password Management API.

Having created this server, you can then constrain a principal’s password to be
validated by this server when it is created and whenever it is changed. You do this
by attaching instances of the pwd_val_type and pwd_mgmt_binding ERAs to the
principal as follows:

pwd_val_type
Specifies password creation options for the principal as follows:

0 (NONE) Specifies that the principal’s password is subject only to
DCE standard policy. (See “Chapter 35. Maintaining Policies and
Properties” on page 373 for a description of DCE standard policy.)
Specifying 0 (NONE) is equivalent to not attaching an ERA instance
to the principal.

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 315

1 (USER_SELECT) Specifies that the principal must supply password
text as input to the password management server specified in the
pwd_mgmt_binding ERA.

2 (USER_CAN_SELECT) Specifies that the principal can either
supply password text or specify that the password management
server specified in the pwd_mgmt_binding ERA generate a
password.

3 (GENERATION_REQUIRED) Specifies that the password
management server specified in the pwd_mgmt_binding ERA
should generate a password for the principal.

pwd_mgmt_binding
Specifies a binding to your cell’s password management server.

The following is an example of a dcecp command to create a principal and attach
pwd_val_type and pwd_mgmt_binding ERAs:
dcecp> principal create smitty -attribute {{pwd_val_type 2} \
> {pwd_mgmt_binding \
> {dce /.:/pwd_strength pktprivacy secret name} \
> {/.:/pwd_mgmt/pwd_strength}}}
dcecp>

For further information on how to use dcecp to attach ERAs to principals, see
“Chapter 32. Creating and Using Extended Registry Attributes” on page 343. For
information on requesting generated passwords when changing a password, see
“Generating Passwords by Using dcecp” on page 317.

For information on configuring a password management server, see the following
section and the OSF DCE Administration Guide—Introduction.

Managing a Password Management Server

“Part 2. DCE Administration Tasks” on page 59 of the OSF DCE Administration
Guide—Introduction explains how to use dce_config to configure a password
management server. This section provides additional notes on password
management server management.

v To protect password security, and to optimize performance, the password
management server should run on the same machine as the master DCE
security server.

v The default pathname for the password management server is
$DCELOCAL/bin/pwd_strengthd . You can change this pathname by using the
PWD_MGMT_SVR environment variable in config.env .

v While dce_config supports configuration of only one password management
server in a cell, it is possible to manually configure additional servers. Principal
pwd_mgmt_binding ERAs can then be set to point to the appropriate server for
each principal.

v To replace the sample password management server with another version, follow
this procedure:

1. Kill pwd_strengthd .

2. Rename $DCELOCAL/bin/pwd_strengthd .

3. Copy the new server into $DCELOCAL/bin/pwd_strengthd .

4. Start pwd_strengthd .

316 OSF® DCE Administration Guide— Core Components

Do not unconfigure and reconfigure pwd_strengthd . If you do so, secd will be
unable to communicate with it until secd is restarted or the previous server’s
keys expire.

v The log file for the sample password management server resides in
$DCELOCAL/var/security/pwd_strengthd.log . This location is built into the
server code and is not configurable.

Generating Passwords by Using dcecp

If a pwd_val_type ERA having the values 2 (USER_CAN_SELECT) or 3
(GENERATION_REQUIRED) exists for a principal, that principal can (or will be
required to) request a generated password when he changes passwords. If you are
the principal smitty , the following sequence of dcecp commands can be used to do
this:
dcecp> set p [account generate smitty]
newgenpwd
dcecp>

This command requests a generated password from the password management
server, places the new password in the p variable, and prints it to the screen (
newgenpwd). (Be sure to remember the new password.) Next, pass the value
stored in p as the value of new password in an account modify or account create
command:
dcecp> account modify smitty -password $p -mypwd -dce-
dcecp>

Warning: Never execute the following dcecp command, since the password will
be changed in the account, but the user will not see the new password:
dcecp> account modify smitty -password [account gen smitty] \
> -mypwd -dce-
dcecp>

Managing Password Expiration

By default, the DCE Security Service disables logins for principals whose
passwords have expired. There may be cases where you would prefer this not to
happen; for instance, you probably don’t want cell_admin to be locked out of the
cell because of an expired password.

You can manage password expiration checking for a given principal by attaching an
instance of the passwd_override ERA to the principal and specifying one of the
following values:

0 (NONE) Specifies that password expiration checking for the principal should
not be overridden (that is, the principal should not be permitted to log in
with an expired password.) Specifying 0 (NONE) is equivalent to not
attaching an ERA instance to the principal.

1 (OVERRIDE) Specifies that password expiration checking for the principal
should be overridden (that is, the principal should be permitted to log in with
an expired password.)

The following is an example of a dcecp command to create a principal and attach
the passwd_override ERA:
dcecp> principal create smitty -attribute {passwd_override 1}
dcecp>

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 317

For further information on how to use dcecp to attach ERAs to principals, see
“Chapter 32. Creating and Using Extended Registry Attributes” on page 343.

Adding and Maintaining Groups and Organizations

A group or organization must have been added to the registry before it can be used
in an account. When you add groups by using the dcecp group create command,
you can set a project list inclusion property that controls whether individual groups
are included in project lists. (Project lists do not apply to organizations.)

Project Lists

A principal’s project list is a list of all the groups in which a principal or alias is a
member. When a principal tries to access an object, the principal has the access
rights that accrue from membership in every group that is named in the object’s
ACL. (See “Chapter 28. Using Access Control Lists” on page 281 for a description
of ACLs.) For example, assume the ACL for file X contains two entries: one permits
group A write access and one permits group B read access. Then, any principal
who is a member of both groups A and B can read and write to file X.

Project Lists and Rights

Principals accrue project list access rights only from the groups that are associated
with the name or alias with which they log in. They do not accrue rights from their
names and all of their aliases. For example, assume that a principal named gustav
is a member of groups A and B. Under the alias gus , gustav is also a member of
groups C and D. When the principal logs in as gustav , the principal accrues access
rights from groups A and B only. When the principal logs in with the alias gus , the
principal accrues access rights from groups C and D only.

To display the groups in which a principal (or its alias) is a member, use the
principal show command described in “Chapter 34. Viewing Registry Information”
on page 365.

Prohibiting Inclusion on Project Lists

If a group is prohibited from inclusion in a project list, its rights are not accrued. For
example, assume again that file X’s ACL includes two entries: one that permits
group A read access to file X and one that permits group B write access to file X.
Assume that the project list inclusion property is set to disallow group B from project
lists. A principal who is a member of both groups A and B who tries to access file X
is allowed only read permissions, not write permissions. If the project list inclusion
property allows group B to be on project lists, a member of groups A and B receives
both read and write access.

You may decide to prohibit some groups from inclusion on the list. You may, for
example, want to prohibit any reserved groups with access rights similar to root
from inclusion on any project lists.

Adding Groups and Organizations

Use the dcecp group create command to add groups and the dcecp organization
create command to add organizations. When you add a group or organization, you

318 OSF® DCE Administration Guide— Core Components

must specify the group’s or organization’s primary name. In addition, you can
supply the attribute options listed in Table 14.

Note that, when you use the dcecp group create command and dcecp
organization create command, you can create multiple groups or organizations
with one command in the same way that you can create multiple principals. See
“Adding Principals” on page 308 for details.

Table 14. Attribute Options to Create Groups and Organizations

Information Meaning

-gid The required UNIX ID that is associated with the group or
organization. You can enter this number explicitly or allow it to
be generated automatically. The number that is entered cannot
exceed the maximum allowable UNIX number (the maxuid
attribute) set with the dcecp registry modify command;
however, you can enter a number lower than the low UNIX
number (the minuid attribute) set for groups or organizations
with the registry modify command. If you allow the number to
be assigned automatically, it falls in the range defined by the low
UNIX number and the maximum UNIX number.

-fullname string An optional name that is used to more fully describe a primary
name. To include spaces, enclose the full name in braces. The
default is blank.

-inprojlist value For groups only, whether the group can be on project lists. The
default is yes .

Adding a Group

The following example shows how to add a group named symphonists to the
registry :
dcecp> group create symphonists
dcecp>

In the example, the group UNIX ID is generated automatically, no full name is
supplied, and the group is included on project lists.

Adding an Organization

The following example shows how to add an organization named classic to the
registry:
dcecp> organization create classic
dcecp>

In the example, the organization UNIX ID is generated automatically and no full
name is supplied.

Changing Groups and Organizations

For groups and organizations, you can change the primary name and full name. In
addition, for groups you can change whether or not the group can appear in project
lists, and for organizations you can change policy. (See “Chapter 35. Maintaining
Policies and Properties” on page 373 for details on changing organization policy.)

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 319

Use the dcecp group modify command to modify change groups. The following
example shows the use of this command with the -inprojlist option to change the
group symphonist ’s project list inclusion property from yes (include on project lists)
to no (prohibit from project lists).
dcecp> group modify symphonists -inprojlist no
dcecp>

Use the dcecp group rename command to change a group’s primary name or the
dcecp organization rename command to change an organization’s primary name.
These commands have the following form:
group rename old_name to new_name organization
rename old_name \
to new_name

where:

old_name
Is the primary name of the group or organization to be changed.

new_name
Is the new primary name of the group or organization.

The following example shows the group rename command used to change a
primary name from symphonists to symphonists7 :
dcecp> group rename symphonists -to symphonists7
dcecp>

Note that, if you change a primary name, that change is reflected in the
membership lists of all the groups and organizations in which the group or
organization is listed as a member.

Deleting Groups and Organizations

If you delete a group or organization, you also automatically delete any accounts
that use the group or organization. For example, if you delete the group
symphonists , you also automatically delete the accounts vivaldi symphonists
baroque and mozart symphonists classic .

Use the dcecp group delete to delete groups and the dcecp organization delete
command to delete organizations. The following example shows the group delete
command being used to delete the group symphonists :
dcecp> group delete symphonists
dcecp>

The next example shows the organization delete command being used to delete
the organization classic :
dcecp> organization delete classic
dcecp>

Note that you can delete multiple groups or organizations with a single group
delete or organization delete command by including the names to delete in braces
and separated by spaces just as you would to delete multiple principals.

320 OSF® DCE Administration Guide— Core Components

Maintaining Membership Lists

Each group or organization has a membership list, which lists the principals that are
members of the group or organization. Members of a group can be principals from
the local or foreign cells. Members of an organization must be from the local cell
only. Use the dcecp group add command to add members to the membership list
and the dcecp group remove command to remove members from the list.

If you delete a member from a group or organization, any accounts for the deleted
member that are associated with the group or organization are also deleted. For
example, if you delete the principal mahler from the group symphonists , the
account mahler symphonists classic is also deleted.

Note that the deleting of a principal from a group or organization can affect the
principal’s rights to objects. This change takes effect only when the principal’s
ticket-granting ticket is renewed. See “Chapter 31. Creating and Maintaining
Accounts” on page 325 for more information on ticket renewals.

Effects of Account Creation on Membership Lists

When you create accounts, the principal for whom the account is created must be a
member of the group or organization that is named in the account. For example, if
you create the account mahler symphonists classic , the principal mahler must be
a member of the symphonists group and the classic organization.

Adding and Deleting Group Members

The following example shows the use of the dcecp group add command with the
-member option to add mahler to the group symphonists and delete strauss from
the group symphonists :
dcecp> group add symphonists -member mahler
dcecp> group remove symphonists -member strauss
dcecp>

Note that you can add a member of a foreign cell to a local group by supplying the
principal’s fully qualified name. Members of an organization must be from the local
cell only.

You can add and remove mutiple members with one group add or group remove
command. To do so, enclose the member names in quotes, separated by spaces.
For example, to add the principals bach , britten , and mahler to the group
symphonists , you would enter the following:
dcecp> group add symphonists -member {bach britten mahler}
dcecp>

In the unusual case where you are changing a host’s group name information while
the host is logged into a DCE cell, the existing host credentials will become invalid
unless you perform extra steps to update the host credentials with the new group
name information.

Host credentials are managed by the secval process, which performs security client
functions on a DCE host. Normally, just after the host starts, the secval process
logs the host into the DCE cell, getting the host credentials and storing them on the

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 321

host. Deactivate and reactivate the secval process to update these credentials after
changing the group name information. The following example illustrates these
operations on remote host persephone :
dcecp> secval deactivate /.:/hosts/persephone/config/secval
dcecp> secval activate /.:/hosts/persephone/config/secval
dcecp>

Creating and Maintaining Aliases for Principals or Groups

Use the dcecp principal create command to create an maintain aliases for
principals and groups. Organizations cannot be given aliases.

Creating Aliases

To create an alias for a principal, enter the dcecp principal create command in the
following form:

principal create name -uid unix_ID -alias yes

where:

name Is the alias name for the principal or group.

unix_ID
Is the UNIX ID that is associated with the principal for which you are
creating the alias.

-alias Indicates that name is an alias.

To create an alias for a group, enter the dcecp group create command in the
following form:

group create name -gid group_ID -alias yes

where:

name Is the alias name for the principal or group.

group_ID
Is the UNIX ID that is associated with the group for which you are creating
the alias.

-alias Indicates that name is an alias.

Changing Primary Names to Aliases and Vice Versa

To change an alias to a primary name or a primary name to an alias, use the
dcecp principal modify command for a principal or the dcecp group modify
command for a group. These commands have the following form:

principal modify name -alias {yes|no}

group modify name -alias {yes|no}

where:

name Is the primary name to be changed to an alias or the alias to be changed to
a primary name.

322 OSF® DCE Administration Guide— Core Components

-alias Specifying -alias yes changes the primary name identified by name to an
alias; specifying -alias no changes the alias identified by name to the
primary name.

A principal or group can have only one primary name at a time. Before you change
an alias to a primary name, first change the primary name to an alias.

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations 323

324 OSF® DCE Administration Guide— Core Components

Chapter 31. Creating and Maintaining Accounts

All principals have two identities: a network identity that provides the ability to
access DCE objects on machines across the network, and a local identity that
provides the ability to access objects on the local machine. The two identities exist
in tandem, but independently of each other. A principal’s network identity is defined
by an account in the network registry. A principal’s local identity is defined by local
data, such as entries in the /etc/passwd and /etc/group files that are stored on the
local machine. If the passwd_export command is used to update the /etc/passwd
and /etc/group files with data that is stored in the local registry, local identity data is
derived from information that is stored in the network registry.

Registry accounts define a network identity by associating a principal with a group,
an organization, and related account information, such as the password that is used
to authenticate a principal’s identity. You must create a registry account for any
principal that engages in communications across the network, regardless of whether
the communications are authenticated. The principals for which you must create
registry accounts are as follows:

v Each human user who accesses objects across the network; this probably
includes all human users unless you are specifically restricting a user to the local
machine.

v Each server that accesses objects across the network and runs under its own
identity, not the identity of the principal who started it.

v Each machine in the network.

v Any cell with which you engage in authenticated cross-cell communications.
(Accounts for cross-cell authentication are special types of accounts that are
described in “Chapter 33. Administering a Multicell Environment” on page 355.

This chapter describes

v Each type of account and how to create and maintain it

v How accounts are authenticated and how to display privilege attributes and
tickets

v How to create and maintain the keytab file that stores keys for server principals

v How to maintain the local registry

User Accounts

User accounts are associated with the user’s password and information that is used
when the user logs into DCE. Account information includes such things as the
principal’s home directory and login shell, and authentication policy, which defines
parameters that help control a principal’s access to DCE. Use the dcecp account
create command to create accounts for human users, the dcecp account modify
command to modify them, and the dcecp account delete command to delete them.

325

Server Accounts

Servers, which can also be called applications, that engage in communications
across the network can run under their own network identity or the network identity
of the principal who started them. To run under their own identity, servers must be
programmed to perform a login and authenticate that identity. Therefore, you must
use the dcecp account create command to create registry accounts for these
servers.

Passwords for Server Accounts

During login, all principals (human, server, and machine) must pass their password
to the DCE Authentication Service, which uses these passwords to generate
authentication keys. The most common method for human users is to simply enter
their password. A different method must be provided for server principals. The
recommended method, which is based on APIs that are supplied with DCE, is to
store server keys in a locally protected key table. The default implementation of the
DCE-supplied API stores the key table in a keytab file on the server’s local machine
and protects the file so that only a principal’s local identity can read or write the file.

You can access the keytab files remotely. On the local machine, store the keytab
files in a partition of the machine’s disk that is not exported by any file system.

Except for servers running as root or under the identity of the local machine, a
separate keytab file needs to be used for each server. During login, the server can
access this file to obtain its key, pass its key to the authentication service, log in,
and be authenticated.

Use the dcecp keytab add command to add keys for servers to the keytab file and
the dcecp keytab remove command to delete server keys.

Steps for Creating Server Accounts

To create an account for a server, first run the dcecp account create command to
create the account and then run the dcecp keytab add command to add an entry
to the keytab file. The server’s password in the registry and the server’s key in the
keytab file must match. You can ensure that these passwords are the same by
manually entering the same passwords in both commands, or you can specify that
the keytab add command should reset the server’s registry password at the same
time that it sets the server’s password in the keytab file.

Machine Accounts

All machines must also have accounts in the registry. Machine accounts, like server
accounts, are created by first running the account create command to create the
account and then running the keytab add command to add the server’s password
to the keytab file. Like server accounts, the password for a machine account in the
registry and in the keytab file must match. Principal names in machine accounts
must be the same as the machine’s name in the cell namespace. (See the OSF
DCE Administration Guide—Introductionfor more information on names in the cell
namespace.)

326 OSF® DCE Administration Guide— Core Components

How Identities Represented by Accounts Are Authenticated

When principals log into the DCE, the security client uses the password they supply
(or that is supplied for them in the case of a server or machine principal) to derive
the principal’s authentication key. A copy of the principal’s authentication key exists
also in the registry database, having been stored there when the principal’s account
was created (or when the password was changed.) It is thus available to the
authentication service.

This key is used by the authentication service to authenticate the principal (that is,
to guarantee the principal’s identity) as follows:

1. The security client does the following:

a. Queries the user for the password and uses it to derive the principal’s
authentication key

b. Prepares a login request, part of which is encrypted using the authentication
key

c. Forwards the request to the authentication service

2. The authentication service does the following:

a. Receives the login request

b. Obtains the registry’s copy of the principal’s authentication key

c. Attempts to decrypt the login request with this key

If the decryption succeeds, the keys are the same; the principal is therefore
authenticated and the login is successful.

If the decryption fails, then the password supplied by the principal and used by the
security client to derive its version of the principal’s authentication key is invalid
(that is, different from the password used to derive the registry’s copy of the
principal’s authentication key), and login is denied.

This is a very general introductory description; see the OSF DCE Application
Development Guide—Core Components for a detailed discussion of principal
authentication.

Privilege Attributes

After a principal is authenticated, the DCE Security Service helps obtain the
principal’s privilege attributes. Privilege attributes consist of UUIDs that represent
the principal’s network identity, the groups in which the principal is a member, and
any extended attributes associated with the principal. They are used when
principals request access to objects to determine their rights to those objects.
Privilege attributes that are provided by the DCE Security Service are authenticated.
Authenticated privileges are accepted by network services. Unauthenticated
privilege attributes may not be accepted. This means that the kinds of access to
DCE objects that principals are allowed can differ, depending on whether or not a
principal’s privilege attributes are authenticated. (DCE ACLs, which are used to
control access to DCE objects based on a principal’s privilege attributes, are
described in “Chapter 28. Using Access Control Lists” on page 281.)

Chapter 31. Creating and Maintaining Accounts 327

Ticket-Granting Tickets and Tickets to Services

A ticket-granting ticket allows a principal to request and receive tickets to DCE
services, such as to a Distributed File System server, to read a file. The tickets that
let principals access DCE services are called service tickets.

Both ticket-granting tickets and service tickets have lifetimes that are determined by
the settings for individual accounts and registry policies and properties. When a
principal’s ticket-granting ticket expires, the principal is no longer considered an
authenticated user. An unauthenticated principal’s access to objects other than
those on the local machine is severely curtailed, and the principal’s ability to use
DCE services becomes extremely limited. To remedy this, the principal must
reauthenticate by running the kinit command (see the kinit(8sec) reference page)
or by logging out and logging in again to DCE.

The principal’s service tickets are renewed automatically by the authentication
service, requiring no action on the principal’s part. Note, however, that the lifetime
allocated to a service ticket can never exceed the time remaining on the principal’s
ticket-granting ticket (TGT).

Displaying Privilege Attributes and Tickets

DCE cell administrators can use the klist command to display a principal’s current
tickets and privilege attributes. The klist command displays three types of
information: privilege attributes, expiration information, and service ticket
information. DCE users can also run klist to display their current and expired
tickets. The klist command is described on the klist(8sec) reference page.

The First Part of the klist Display—Privilege Attributes

The klist command displays a principal’s privilege attributes. This display first lists
the fully qualified principal name, followed by the UUIDs and names of the cell, the
principal name (without the cell name and DCE global identifier), and all the groups
of which the principals is a member. A sample of this section of the klist display
follows:
DCE Identity Information:

Global Principal: /.../dresden.com/music/mozart
Cell: 5ad96550-80c4-11ca-b26c-08001e039431 /.../dresden.com
Principal: 00000066-80c5-11ca-b600-08001e039431 music/mozart
Group: 00000003-80c4-11ca-b201-08001e039431 composers

The Second Part of the klist Display—Expiration Dates and
Times

The second part of the klist display shows the dates and time that the principal’s
ticket-granting ticket, account, and password expire:

v The first line shows the date and time the ticket-granting ticket expires. Before
this happens, the principal should reinitialize it by running kinit or logging in
again to DCE.

v The second line shows when the principal’s account expires. If the account
expires, the principal will be unable to log into DCE. To remedy this, DCE
administrators must change the principal’s account expiration date in the registry.

v The third line shows the date the principal’s password expires. Before this
happens, the principal should change the password by using dcecp . If the
password expires, the principal will be unable to log into DCE. To remedy this,
DCE administrators must change the principal’s password in the registry.

328 OSF® DCE Administration Guide— Core Components

A sample of the second part of the klist display follows:
Identity Info Expires: 91/10/03:12:07:18
Account Expires: 91/12/31:12:00:00
Passwd Expires: 91/10/31:12:00:00

The Third Part of the klist Display—Tickets

The third and final part of the klist display shows the principal’s ticket information
and the name of the principal’s ticket cache. The first three tickets labeled Server in
the following display are the tickets used after the principal logged in and obtained
privilege attributes. The display for all principals has these entries.

The remaining tickets labeled Client show the principal’s ticket-granting ticket and
service tickets. In the listing for each ticket after the word Client , the display shows
the name of the privilege server, a server that grants privilege attributes after the
principal’s identity has been authenticated by the DCE Security Service. The name
of the server to which the principal has tickets is shown after the Server entry, and
the dates and times these tickets are valid are shown on the following line. For
example, in the following sample display, the last line shows that the principal has a
ticket to the server named file_server . The lifetime of this ticket is from 1:24 and 2
seconds p.m. on 10/2/91 to 12:07 and 18 seconds p.m. on 10/3/91. (The time is
shown in 24-hour format.)
Kerberos Ticket Information:
Ticket cache: /tmp/dcecred_17a80000
Default principal: music/mozart@dresden.com
Server: krbtgt/dresden@dresden.com

valid 91/10/02:12:07:18 to 91/10/03:12:07:18
Server:dce/rgy@dresden.com

valid 91/10/02:12:07:20 to 91/10/03:12:07:18
Server:dce/ptgt@dresden.com

valid 91/10/02:12:07:49 to 91/10/03:12:07:18
Client:dce/ptgt@dresden Server:krbtgt/dresden@dresden.com

valid 91/10/02:12:07:50 to 91/10/03:12:07:18
Client:dce/ptgt@dresden.com Server:dce/rgy@dresden.com

valid 91/10/02:12:07:53 to 91/10/03:12:07:18
Client:dce/ptgt@dresden.com Server:file_server@dresden.com

valid 91/10/02:13:24:02 to 91/10/03:12:07:18

Destroying a Principal’s Tickets

Use the kdestroy command to invalidate the tickets that a principal has acquired.
When the principal logs out, the principal’s tickets are not destroyed; they remain
valid until they expire. DCE users may want to use kdestroy just before they log
out to ensure that no valid tickets remain. However, if the principal has the
kernel-resident ticket cache, the principal’s tickets are destroyed when the
principal’s last process terminates. This means that it is generally not necessary to
run kdestroy at logout.

The kdestroy command is described on the kdestroy(8sec) reference page.

Adding Accounts

Use the dcecp account create command to add accounts to the registry.
Information that is associated with accounts falls roughly into the following two
categories:

v User information similar to that typically found in the /etc/passwd file.

Chapter 31. Creating and Maintaining Accounts 329

v Authentication policy that lets you control the account’s access to the network.
Authentication policy establishes account and password validity, account
expiration policy, and ticket expiration policy. The tighter you control
authentication policy, the more secure your cell is, but the more processing
overhead you can accrue.

Both types of information are supplied as attributes in standard dcecp attribute lists
or as attribute options.

Note that authentication policy can also be set for the registry. If the registry policy
differs from the policy that you enter for an account, the stricter policy applies. (See
“Chapter 35. Maintaining Policies and Properties” on page 373 for more information
on contradictory policy.)

Table 15 lists the attribute options used to create accounts. Note that the options
described in this table can also be supplied without the dashes in attribute lists.

Table 15. Attribute Options to Create Accounts

Option Meaning

-acctvalid {yes|no} A flag that determines account validity. If you set this
flag to no , the account is invalid and the account
principal cannot log into the account. The default is
yes .

-client {yes|no} A flag that indicates whether or not the account is for
a principal that can act as a client. If you set this flag
to yes , the principal is able to log into the account
and acquire tickets for authentication. The default is
yes .

-description string A text string in portable character set (PCS) format
that is typically used to describe the use of the
account. No default.

-dupkey {yes|no} A flag that determines if tickets issued to the
account’s principal can have duplicate keys. The
default is no .

-expdate The date (in ISO timestamp format
YY-MM-DD-hh:mm:ss) on which the account expires.
To renew a account after it expires, change the date.
The default is none , meaning the account never
expires.

-forwardabletkt {yes|no} A flag determining whether a new ticket-granting ticket
with a network address that differs from the present
TGT’s network address can be issued to the
account’s principal. (The -proxiabletkt attribute
performs the same function for service tickets.) The
default is yes .

330 OSF® DCE Administration Guide— Core Components

Table 15. Attribute Options to Create Accounts (continued)

Option Meaning

-goodsince date The date and time (in ISO timestamp format
YY-MM-DD-hh:mm:ss) that the account was last
known to be in an uncompromised state. Any tickets
granted before this date are invalid. Control over this
date is especially useful if you know that an account’s
password was compromised. Changing the password
can prevent the unauthorized principal from accessing
the system again by using that password, but does
not prevent the principal from accessing the system
components for which tickets were obtained
fraudulently before the password was changed. To
eliminate the principal’s access to the system, the
tickets must be canceled. Set the -goodsince
attribute to the date and time the compromised
password was changed to invalidate all tickets issued
before that time and eliminate the unauthorized
principal’s system access. When the account is
created, the -goodsince attribute is set to the current
date.

-group group_name The name of the group that is associated with the
account. This attribute must be supplied to create an
account; there is no default.

-home dir_name The directory in which the principal is placed at login.
No default.

-organization org_name The name of the organization that is associated with
the account. This attribute must be supplied to create
an account; there is no default.

-password password The required password for the account in plaintext.
The system encrypts the password you supply. No
default.

-postdatedtkt {yes|no} A flag that determines whether or not tickets with a
start time in the future can be issued to the account’s
principal. The default is no .

-proxiabletkt {yes|no} A flag determines whether or not a new ticket with a
different network address than the present ticket can
be issued to the account’s principal. (The
-forwardabletkt attribute option performs the same
function for ticket-granting tickets.) The default is no .

-pwdvalid {yes|no} A flag that determines whether the current password
is valid. If this flag is set to no , the account password
has expired and the principal will be prompted to
change it the next time that the principal logs into the
account. The default is yes .

-renewabletkt {yes|no} The Kerberos V5 renewable ticket feature is not
currently used by DCE; any use of the renewable
ticket attribute is unsupported at the present time.

-server {yes|no} A flag that indicates whether or not the account is for
a principal that can act as a server. If the account is
for a server that engages in authenticated
communications, set this flag to yes . The default is
yes .

-shell path_to_shell The shell that is executed when a principal logs in.

Chapter 31. Creating and Maintaining Accounts 331

Table 15. Attribute Options to Create Accounts (continued)

Option Meaning

-stdtgtauth {yes|no} A flag that determines whether or not tickets issued to
the account’s principal can use the
ticket-granting-ticket authentication mechanism. The
default is yes .

-usertouser {yes|no} For server principals, a flag that determines whether
or not the server must use user-to-user authentication.
The value is either yes (must use authentication
based on user-to-user protocol) or no (uses
authentication based on server-key ticket protocol).
The default is no .

-maxtktlife hours The maximum ticket lifetime. This is the maximum
amount of time in hours that a ticket can be valid.
When a client requests a ticket to a server, the
lifetime granted to the ticket takes into account the
maxtktlife attribute value for both the server and the
client. In other words, the lifetime cannot exceed the
shorter of the server’s or client’s maximum ticket
lifetime.

If you do not specify a maxtktlifetime attribute value
for an account, the maxtktlifetime attribute value
defined for the registry authorization policy is used.
(See “Chapter 35. Maintaining Policies and Properties”
on page 373.)

-maxtktrenew hours The maximum ticket renewable. This is the amount of
time in hours before a principal’s ticket-granting ticket
expires and that principal must log into the system
again to reauthenticate and obtain another
ticket-granting ticket.

The lifetime of the principal’s service tickets can never
exceed the lifetime of the principal’s ticket-granting
ticket. The shorter you make maximum certificate
renewable, the greater the security of the system.
However, since principals must log in again to renew
their ticket-granting ticket, the time should take into
consideration user convenience and the level of
security required.

If you do not specify a maxtktrenew attribute value
for an account, the maxtktrenew attribute value
defined for the registry authorization policy is used.
(See “Chapter 35. Maintaining Policies and Properties”
on page 373.) Renewable ticket functionality is not
currently used by DCE RPC when refreshing service
tickets. However, it is supported by the DCE Security
Server and is useful for Kerberos V5 applications that
use the DCE Security Server as a KDC.

Note: The maximum ticket lifetime and maximum ticket renewable can be set as
registry properties for the registry as a whole with the dcecp registry
modify command. When they are set with the dcecp account create or
account modify commands, they apply only to a specific account.

332 OSF® DCE Administration Guide— Core Components

Setting Ticket Lifetimes

You should be aware of two other options set by the dcecp registry modify
command: default ticket lifetimes and minimum ticket lifetime.

v Minimum Ticket Lifetime—The shortest possible lifetime that can be assigned to
a ticket. Note that the actual effective value of minimum ticket lifetime is affected
by default certificate lifetime.

v Default Ticket Lifetime—The lifetime granted for tickets, unless the principal
specifically requests a different lifetime. Although a principal can request a
specific lifetime for a ticket, the majority accept the default lifetime. (If a principal
requests a ticket lifetime of 0 (zero), the default lifetime is assigned to the ticket.)

Note that the actual effective value of the default ticket lifetime is affected by the
maximum certificate lifetime.

The actual lifetimes assigned to tickets depends on rules enforced by the DCE
Security Service regarding the settings of the maximum ticket lifetime, default ticket
lifetime, and minimum ticket lifetime. These rules are as follows:

v The maximum ticket lifetime can never be larger than the renewable ticket
lifetime (in other words, max_life = min (max_life, renewable_life)) or less than
60 seconds. If the maximum ticket lifetime is larger than the renewable ticket
lifetime, then the renewable ticket lifetime is used as the maximum ticket lifetime.
For example, suppose an account is set to 15 hours. If you set the renewable
ticket lifetime to 20 hours, the effective maximum ticket lifetime is not 20, but 15
hours.

v The default ticket lifetime can never be larger than the maximum ticket lifetime (in
other words, default_life = min (default_life, max_life)) or less than 60
seconds. If the default ticket lifetime is larger than the maximum ticket lifetime,
then the maximum ticket lifetime is used as the default ticket lifetime. For
example, suppose registry policy specifies a default ticket lifetime of 25 hours. If
you set the registry’s maximum ticket lifetime to 15 hours, the registry’s effective
default certificate lifetime is not 25, but 15 hours.

v The minimum ticket lifetime can never be larger than the default certificate
lifetime (in other words, min_life = min (min_life, default_life)) or less than 60
seconds. If the minimum ticket lifetime is larger than the default certificate
lifetime, then the default ticket lifetime is used as the minimum ticket lifetime. For
example, suppose registry policy specifies a default ticket lifetime of 10 hours. If
you set an account’s minimum ticket lifetime to 15 hours, the account’s effective
minimum ticket lifetime is not 15, but 10 hours.

Although dcecp lets you enter values contrary to the rules and displays these
values when you view the account’s policies (with the account show command),
the values used are the ones described in the rules, not the ones you entered.

Note: To be exact, clocks in the network must be synchronized for the times that
are associated with registry data.

Ticket-Granting Ticket Lifetimes and Service Ticket Lifetimes

The authentication service never grants a principal a service ticket with a lifetime
that exceeds the time remaining in the principal’s ticket-granting ticket lifetime. For
example, if 2 hours remain in the life of a principal’s ticket-granting ticket and the
principal requests or accepts a default of 4 hours for a service ticket’s lifetime, only
the 2-hour lifetime is granted.

Chapter 31. Creating and Maintaining Accounts 333

If the renewable ticket flag (the renewabletkt attribute) is set on for a principal’s
account, the lifetime of the principal’s ticket-granting ticket also affects the renewal
of service tickets. No service ticket is renewed with a lifetime that exceeds the
remaining lifetime of the principal’s ticket-granting ticket. Service tickets are
normally renewed for the lifetime that is allocated to the original ticket. If the original
time exceeds the lifetime of the ticket-granting ticket, the ticket is renewed only for
the time remaining to the ticket-granting ticket.

Adding Accounts Example

Use the dcecp account create command to create accounts. When you use the
account create command, you must supply the name of the principal for which the
account is being created and the group and organization with which the account is
associated. In addition, you must supply your password with the -mypwd option to
verify your identity. If you do not enter your password, dcecp will prompt you. All
other attributes can be allowed to default. Note that if you are prompted for the
password, the password you type is not displayed on the screen.

Because you are required to enter your password, you must run the account
create command in interactive mode. You cannot run it in command-line mode
where your password cannot be prevented from displaying on the screen.

The following example shows the dcecp account create command used to create
an account for the principal mahler , which is associated with the group
symphonists and the organization classic . All other account attributes are allowed
to default.
dcecp> account create mahler -group symphonists -organization classic \
> -password passwd -mypwd cellpwd
dcecp>

Note that you may create multiple accounts with one account create command. To
do so, enclose the names of the principals for whom the accounts are being
created in braces, separated by spaces. For example, to create accounts for the
principals bach , britten , and mahler , you could enter the following:
dcecp> account create {bach britten mahler} -group symphonists \
> -organization classic -password music -mypwd cellpwd
dcecp>

When you create multiple accounts each account is assigned the same attributes.
This means that, in the example, the accounts for bach , britten , and mahler are all
associated with the symphonists group and classic organization, and they are all
assigned the password music . You may find it useful to create multiple accounts
this way for principals that all belong to the same group and organization. Notify
users whose accounts were created this way to change their passwords
immediately.

Modifying Accounts

The dcecp account modify command with the allows you to modify accounts. You
can modify any of the account attributes.

When you modify accounts, you must supply your password with the -mypwd
option to verify your identity. Note that if prompted for the password, the password
you type is not displayed on the screen. If you do not enter a password, you are
prompted for it. Because you are required to enter your password, you must run the

334 OSF® DCE Administration Guide— Core Components

account modify command in interactive mode. You cannot run it in command-line
mode where your password cannot be prevented from displaying on the screen.

The following example shows how to use the account modify command to specify
a new home directory for mahler ’s account:
dcecp> account modify mahler -home /.../music/fs/users/mahler/concert \
> -mypwd cellpwd
dcecp>

Note that you can also use the -change option with account modify to supply the
changes in an attribute list. The -add and -remove options are not supported with
the account modify command because each account attribute must be present
and must have a value.

Deleting Accounts

The following example illustrates the use of the dcecp account delete command to
delete the account for the principal mahler :
dcecp> account delete mahler
dcecp>

If you delete a group or organization, you will also automatically delete any
accounts that are associated with that group or organization.

You can delete multiple accounts with one account delete command. To do so
enclose the names of the account principals in braces, separated by spaces. For
example, to delete accounts for bach , britten , and mahler , you would enter
dcecp> account delete {bach britten mahler}
dcecp>

Creating, Maintaining, and Deleting Keytab Files

The following dcecp commands allow you to create, maintain, and delete keytab
files:

keytab create
Creates keytab files and all their key entries.

keytab delete
Deletes keytab files and all their key entries.

keytab add
Adds key entries to keytab files.

keytab remove
Removes key entries from keytab files.

The following subsections describe how to manage keytab files.

The Keytab File

Keytab files are stored on the same machine as the servers whose keys they
contain. You can access them remotely and locally using dcecp . For remote
access, dcecp uses dced interfaces. The -local option to the dcecp keytab
command allows you to access the local keytab files without using dced .

Chapter 31. Creating and Maintaining Accounts 335

Because dced provides remote access to the keytab files, the files are defined as
dced objects, and those objects are stored in the dced -controlled portion of the
namespace under the keytab directory. The dced keytab object consists of a UUID
to identify the object, an optional annotation, and the name of the file that actually
stores the server keys on the local machine. This object is usually a file.

Note that actual server keys are not stored in the keytab object, but in the file
stored on the local machine.

The pathname of the dced keytab object is
/.:/hosts/hostname/config/keytab/keytab_name

where:

hostname
Is the name of the host on which the dced process resides.

keytab_name
Is the name of the keytab file.

The pathname to the local keytab file is
/opt/dcelocal/keytab_path_name

where:

keytab_path_name
Is the path name to the keytab file on the local node.

Protecting Keytab Files

The local keytab files must be adequately protected, and they must not be available
on the network. As they are used in the default DCE implementation, the keytab
files contain principal keys, which are the basis of DCE security. If these keys are
compromised, network security can also be compromised. The calls that access the
keytab file use rpc_c_protect_level_pkt_privacy . This protection level performs a
Data Encryption Standard (DES) encryption on the data being passed. The dcecp
keytab -noprivacy option allows you to specify that your site’s default protection
level should be used instead.

Create a separate individual keytab file for each server principal that runs on each
local node. Servers that share the same keytab file can access each other’s keys
and thus impersonate each other. Protect the keytab files so that they are readable
only by root. If you do this, the servers must be started by root in order to read their
keytab files and obtain their key during login.

When you create or change server keys, you can name a different keytab file for
each server that runs on the local node. Protect the file so that it is readable only
by the server whose key it contains. Then set the setuid bit for the server file to the
server’s identity so that the server can access the keytab file and obtain its key.

Server and Machine Key Version Numbers

When keys are added to the keytab file, each is assigned a version number that
ranges from 1 to 255. Whenever server or machine keys change (automatically or
explicitly), the key’s version number is incremented. Version numbers allow two or
more keys to exist for any given server or machine. When keys are changed, any
servers or machines that are still using tickets granted under the older unchanged

336 OSF® DCE Administration Guide— Core Components

version of the key run without interruption until the ticket expires naturally. When the
ticket expires, the server or machine reauthenticates and obtains the new key.

If you use the -registry option to the keytab add command, old keys are
automatically deleted, if possible. If you do not use this option, you should
occasionally list the contents of the keytab file by using the keytab list command,
and use the keytab delete command to delete any old versions that are obsolete.

Note: Take care when you are deleting keys from the keytab file. When principal
keys are changed, tickets can exist that are based on the key that you
deleted. If you delete a key from the keytab file, any active tickets that are
based on the deleted key will not be accepted by servers, and clients holding
those tickets will get authentication failures.

Creating and Maintaining Keys and Keytab Files

Two commands allow you to create key entries:

keytab create
Creates keytab files, the keytab file entries, and the dced keytab object.

keytab add
Adds key entries to existing keytab files.

When you run both commands, you supply the name of the keytab file to either
create or modify.

Table 16 lists the other options you can supply to the keytab create and add
commands.

Table 16. The keytab create and keytab add Options

Option Meaning

-local Accesses the keytab file without using dced .

-entry Creates only the dced configuration information, not the
actual key table.

-noprivacy Specifies that the protection level used should be the default
protection level for your site instead of
rpc_c_protect_level_pkt_privacy .

-member name The name of the principal (server or machine) whose key you
are creating or changing. You can supply multiple names in a
list. If you supply a list, all principals named in the list are
assigned the same key.

-key key The plain text key to the account. This option cannot be used
with the -random option.

-random Generates a random key. If you use this option, you must
also use the -registry option to add the randomly generated
key to the server’s or machine’s account in the registry. This
option cannot be used with the -key option.

-registry Updates the principal’s key in the registry to match the key
you enter (or generate automatically) for the key in the
keytab file. Use it to ensure that the principal’s key in the
registry and the keytab file are synchronized when you
change a principal’s key in the keytab file.

Chapter 31. Creating and Maintaining Accounts 337

Table 16. The keytab create and keytab add Options (continued)

Option Meaning

This option is required when you use the -random option.
Using this option may require you to run the dcecp login
command to ensure your network identity is appropriate for
modifying the registry database.

-version number Specifies a version number for the key. It is required if you do
not use the -registry option.

-storage local_file_name The pathname of the local file to be created. This option is
used only for the keytab create command. When you add
entries to an existing keytab file, you identify the file by its
dced object name.

-data keys The server principal name and keys in the format
principal_name key_type { version} {key_value}

Creating a Keytab File

Use the keytab create command to create keytab files, entries in the files, and the
corresponding dced object. When you use this command, you must supply the
pathname of the dced object to be created as an argument, the storage option to
specify the keytab’s local, the data option to specify the name of the server
principal and the keys, and any of the appropriate options listed in Table 16 on
page 337.

This data option is in the form
principal_name key_type {version} {key_value}

where:

principal_name
Is the name of the server principal for which the keytab file is being created.

key_type
Is a code that specifies whether the key is stored in plain text or in DES
encrypted format:

v des indicates DES encryption.

v plain indicates plain text.

version
Is the key’s version number. If you supply no version number, the key is
assigned a number of 1.

key_value
Unless you specified the -random option to randomly generate keys, you
must supply a key value. If key_type is plain , you supply the key in plain
text. If key_type is des , you must supply a DES encrypted key.

The following sample command performs these tasks:

v Creates the dced keytab object /.:/hosts/music/config/keytab/svr4_key

v Creates the keytab file named /opt/dcelocal/keys/svr4_key in the keys directory
on the local machine named music

v Creates an plain text key entry in the file for principal mahler and assigns it a
version number of 3.

338 OSF® DCE Administration Guide— Core Components

dcecp> keytab create /.:/hosts/music/config/keytab/svr4_key -attr \
> {{storage /opt/dcelocal/keys/svr4_key} \
> {data {mahler plain 3 mon#Repos}}}
dcecp>

Adding Entries to a Keytab File

Use the keytab add command to add entries to an existing keytab file. When you
use this command, you must supply the name of the keytab file’s dced object and
any of the options described in Table 16 on page 337.

The following command adds a key to the keytab file named kfile_3 for the server
principal svr_3 . The key is generated automatically, and the registry is updated to
be synchronized with the keytab file.
dcecp> keytab add /.:/hosts/foo/config/keytab/kfile_3 \
> -member svr_3 -random -registry
dcecp>

Removing Entries from Keytab Files

You can remove entries from a keytab file by using the dcecp keytab remove
command. When you use this command, you must supply the name of the keytab
file’s dced object.

When you use the keytab remove command, you must supply the name of the
keytab file and the name of the principal (or a list of principals) for which to delete
keys.

You can also supply the -version option to specify the version number of the key or
keys to be deleted and the -type option to specify the type of keys to be deleted
(plain for plain text keys or des for DES encrypted keys). If you use the -version or
-type options, only keys of the specified version or type will be deleted.

The following command removes all DES keys for the principal svr_2 in the keytab
file /.:/hosts/foo/config/keytab/kfile_3 :
dcecp> keytab remove /.:/hosts/foo/config/keytab/kfile_3 \
> -members svr_2 -type des
dcecp>

Removing Keytab Files

You can remove local and keytab files and their associated dced objects by using
the dcecp keytab delete command.

To delete the local keytab file and the dced object, supply the local filename to the
command. You can delete multiple keytab files with one command by enclosing the
names in braces and separating them with spaces. For example, the following
deletes the keytab files and the dced objects /.:/hosts/foo/config/keytab/kfile_2
and /.:/hosts/foo/config/keytab/kfile_3 .
dcecp> keytab delete {/.:/hosts/foo/config/keytab/kfile_2 \
> /.:/hosts/foo/config/keytab/kfile_3}
dcecp>

To delete only the dced object, use the -entry option.

Chapter 31. Creating and Maintaining Accounts 339

For example, the following command removes the dced object named
/.:/hosts/foo/config/keytab/kfile_3 , but leaves the local file /opt/
dcelocal/keys/kfile_3 untouched.
dcecp> keytab delete -entry /.:/hosts/foo/config/keytab/kfile_3
dcecp>

Changing Server and Machine Passwords in the Keytab File

Passwords for all principals must be changed when they expire. Human principals
can use their platform’s chpass command to change their password. The dced
security validation service automatically changes the machine’s password as
necessary by assigning a randomly generated password. This daemon is supplied
with DCE and runs on each local machine that engages in network access.
Generally, you can assume that servers or applications created by other vendors
also automatically change their password as required by randomly generating
passwords. However, if a server that runs under its own identity does not
automatically update its password, you must do it manually by using the dcecp
keytab add command, as described in “Adding Entries to a Keytab File” on
page 339.

Note: Servers that run under the identity of a human principal should not
automatically update their own passwords. When such a server updates its
password, it also updates the password of the human principal under whose
identity it runs. The human principal must then supply this randomly
generated password to log into the system and to reauthenticate. Since the
human principal can never know the randomly generated password, the
principal cannot log into the system and cannot reauthenticate.

Handling Compromised Server or Machine Passwords in the Keytab
File

If a server’s or machine’s password is compromised, you must change it in the
registry and in the server’s local keytab file by performing the following steps:

1. Use the keytab remove command to delete the compromised password.

2. Use the keytab add command to create a new password for the server or
machine.

3. If you do not use the registry option of the keytab add command to update the
server’s or machine’s registry account simultaneously with the server’s or
machine’s keytab file, run the account modify command to change the server’s
or machine’s password in the registry to the match the one in the keytab file.

Maintaining the Local Registry

The local registry allows login from that machine if a network registry is not
available. The local registry is created automatically the first time that a human or
nonhuman user performs a DCE login from the local machine if the network registry
server is running. As users log into the machine, their account information is
automatically added to the local registry.

The following files make up the local registry database:

dcelocal/var/security/lrgy_data
Contains account information entries.

340 OSF® DCE Administration Guide— Core Components

dcelocal/var/security/lrgy_tgts
Contains ticket-granting ticket entries.

dcelocal/var/security/lrgy_lock
Used by the security server to lock the registry for read/write operations.

You must use the security command rgy_edit to maintain the local registry. The
following subcommands are available:

view To view all entries in the local registry.

delete principal_name
To delete the principal specified by principal_name from the registry.

properties
To set and view properties for the local registry.

help To obtain help information on the local registry.

In addition to the subcommands in the preceding list, the rgy_edit command
provides one additional subcommand, purge , and an additional registry property,
called the registry capacity, to restrict the number of entries that are in the local
registry.

The remainder of this section describes the purge subcommand and the registry
capacity property. See the rgy_edit(8sec) reference page information on the use of
the other subcommands.

The Registry Capacity Property

The rgy_edit properties command lets you set a limit on the number of entries that
the local registry can contain. For example, assume that the registry capacity is set
to 10 and that the registry contains 10 entries. If a new user logs in from the local
machine, an entry is created for that user. This new entry overwrites the oldest of
the original 10 entries. As users log in from the machine for the first time, their
newly created registry entry overwrites the oldest entry.

Setting the Capacity and Lifespan Properties

You can set a limit on the number of entries that the local registry can contain. This
limit is defined by the Capacity attribute of the local registry object. Setting the
value of this attribute to a moderate number of entries can keep the local registry
from growing too large.

For example, assume that the Capacity attribute value for the local registry on a
machine is set to 10 and that the local registry contains 10 entries. If a new user
logs in from the local machine, an entry is created for that user. This new entry
overwrites the oldest of the 10 entries currently existing in the local registry. As
users log in from the machine for the first time, their newly created registry entry
overwrites the oldest entry.

To set the Capacity attribute value for the local registry, use the rgy_edt
properties command.

Note that, when you first enter the command, it displays the current registry
capacity and lifespan. In addition, it shows the number of account entries that are in
the local registry and the number of TGT entries. There is one TGT entry, which
contains the account’s credentials, for each account entry.

Chapter 31. Creating and Maintaining Accounts 341

$
rgy_edit -l
rgy_edit=> properties
Local Registry Properties:
Capacity: 25 entries
Contains: 6 account entries
Contains: 6 tgt entries
Lifespan: 3w

Do you wish to make changes [y/n]? (n) y
Enter local registry capacity: (25) 50
Enter acct lifespan in days or 'forever': (3w) 12w

In the preceding example, 12w specifies a 12-week lifespan. When you enter the
lifespan, you can enter:

v forever —To designate that the entry will never expire. The entry can be
overwritten if it exceeds the registry capacity, however. Entering 0 (zero) at the
Enter acct lifespan in days or ’forever’: (3w) prompt has the same effect as
entering forever .

v a decimal number—To specify the number of measurement units (weeks, days,
hours, minutes, seconds). This number is generally accompanied by a
measurement unit, as described next. If you enter only a number without an
accompanying measurement unit, the measurement unit defaults to days.

v w, d, h, m, or s —To specify the measurement units:

– w for weeks

– d for days

– h for hours

– m for minutes

– s for seconds

You can use any combination of the measurement units with their accompanying
numbers. For example, to set the lifespan to 12 weeks, 8 hours, and 30 seconds,
enter the following command:
Enter acct lifespan in days or 'forever': (3w) 12w8h30s

If you end a string of numbers and measurement units with a number only, the
number with no measurement unit defaults to seconds. For example, if you enter
the following, the lifespan is assumed to be 12 weeks and 30 seconds:
Enter acct lifespan in days or 'forever': (3w) 12w30

Purging Expired Entries

The rgy_edit purge subcommand deletes expired entries from the local registry.
When the rgy_edt purge command is run, the command deletes all entries whose
lifespan attribute value indicates are are expired.

In the preceding example, we reset the local registry’s lifespan attribute value to
12w. With the lifespan set to 12w, the following rgy_edt purge command deletes
all local registry entries (account and TGT) that are older than 12 weeks.
rgy_edit=> purge
1 account entries purged
1 TGT entries purged

342 OSF® DCE Administration Guide— Core Components

Chapter 32. Creating and Using Extended Registry Attributes

The registry stores specific information about principals, groups, organizations, and
accounts. This is the information that you create when you use dcecp commands
to create principals, groups, organizations, and accounts. The kind of information
that can be stored in the registry database is defined in the registry schema, which
is essentially a catalog of the kinds of data stored in the database. There is a
schema entry definition for each type of attribute that can be associated or attached
to a registry object. For example, a schema entry defines principal names as a
printable character string in DCE PCS format. When you create a principal, you
enter a text string that is stored in PCS format.

Using the extended registry attribute (ERA) facility, you can add schema entries that
define attribute types of your choosing. These attributes are called extended
attributes because they extend the registry schema. Once the extended attribute
types are defined, you can attach them to a security object with the dcecp create
or modify operations. The extended attribute types you create are used by custom
applications that run in conjunction with DCE and are passed to those applications
for processing. For example, if you work with an MVS application that requires a
user’s MVS name, you could establish an MVS name extended attribute that is
stored in the registry. The MVS name can then be passed to the MVS application
for appropriate processing.

If a principal has extended attributes, these attributes are carried with the extended
privilege attribute certificate (EPAC) obtained when the principal is authenticated.

In this manual, attribute type refers to the schema entry that defines an extended
attribute type. Attribute instance refers to an attribute that is attached to a registry
object and has a value.

This chapter describes how to create and maintain attribute types and attribute
instances. It begins first with a discussion of the xattrschema object; then it
describes how to define attribute types and attach attributes to objects.

The xattrschema Object

Extended attribute types are stored in the object named xattrschema under the
security junction point (usually /.:/sec) in the CDS namespace. Access to
xattrschema and the attribute type definitions it contains is controlled by an ACL on
the xattrschema object. The xattrschema object is propagated from the master
security server to replicas, like other registry data.

Creating and Maintaining Attribute Types

Use the dcecp xattrschema command to create and maintain attribute types. As
part of the command, you must supply the attribute type’s fully qualified name (for
example, /.:/sec/xattrschema/ name) as an argument.

Creating Attribute Types

Use the dcecp xattrschema create command to create attribute types. Attribute
options you can supply with this command are summarized in Table 17 on
page 344. Note that the options described in this table can also be supplied without

343

the dashes in attribute lists.

Table 17. Options to Create Extended Attributes

Option Meaning

-aclmgr description A required list of the ACL manager types that support
the objects to which this attribute type can be
attached and the permissions supported by those
managers. No default. Attribute type ACL managers
are described fully in “Defining the ACL Managers for
Attributes” on page 346.

-annotation string A PCS text string that annotates the attribute type. If
the string contains spaces, enclose it in braces or
quotes. The default is blank.

-applydefs This option is not currently implemented.

-encoding type The format of the attribute type instance value.
Attribute encoding is described more fully in “Defining
Attribute Type Encoding” on page 348.

-intercell This option is not currently implemented.

-multivalued {yes | no} An indication of whether or not the attribute is
multivalued (yes=multivalued; no=not multivalued). If
an attribute is multivalued, multiple instances of the
same attribute type can be attached to a single
registry object. For example, if attribute A is coded as
multivalued, a single principal can have multiple
instances of attribute A. If it is not coded as
multivalued, a single principal can have only one
instance of attribute A. The default is no .

-reserved {yes | no} An indication of whether or not the attribute is
reserved (yes=reserved; no=not reserved). Reserved
attribute types cannot be deleted unless the reserved
restriction is removed. The default is no .

-scope name Not implemented in the current release.

-trigtype type Identifies whether or not a trigger server is associated
with the attribute type and, if a trigger server is
associated, the type of trigger. Possible values are the
following: none —A trigger server is not associated
with the attribute type. query —A query trigger server
is associated with the attribute type. update —An
update trigger server is associated with the attribute
type. If the -trigtype option is set to query or update ,
you must supply the -trigbind option to specify the
trigger server’s binding. See “Defining Attribute Trigger
Servers” on page 349 for more information.

-trigbind binding If a trigger server is associated with the attribute type,
this option specifies the trigger serving binding.

-unique {yes | no} An indication of whether or not each instance of the
attribute type must be unique within the cell
(yes=unique; no=not unique). For example, assume
that an instance of attribute type A is attached to 25
principals in the cell. If attribute type A is coded as
unique, the value of the A attribute for each of those
25 principals must be different. If it is not coded as
unique, all 25 principals can be assigned the same
value for attribute A. The default is no .

344 OSF® DCE Administration Guide— Core Components

Table 17. Options to Create Extended Attributes (continued)

Option Meaning

-uuid uuid A UUID that identifies the attribute type internally.
Note that the name supplied as an argument to the
dcecp xattrschema create command is used to
access the attribute type. If you do not supply a UUID,
the system will generate one.

The syntax of the dcecp xattrschema create command is as follows:
xattrschema create attr_name {attr_options}

where:

attr_name
Is the fully qualified name of the attribute type to create.

attr_option
Is one or more of the options described in Table 17 on page 344.

The following sample command creates the extended attribute type named
employee_num and assigns it an ACL manager of principal and an encoding type
of integer :
dcecp> xattrschema create /.:/sec/xattrschema/employee_num \
> -aclmgr {principal r r r r} -encoding integer
dcecp>

Although this sample uses options to supply information, you can use standard
dcecp attribute lists.

Note that you can supply a list of names to create multiple schema entries with one
operation. However, you should be aware that, if the command argument contains
more than one schema name, you cannot specify a UUID attribute and the
attributes you specify are applied to all entries created.

Modifying Attribute Types

Use the dcecp modify command with the -change option to modify attribute types.
Only the aclmgr , applydefs , intercell , trigbind , annotation , and reserved schema
type attributes can be modified.

The syntax of the xattrschema modify command is as follows:
xattrschema modify attr_name change new_option

where:

attr_name
Is the fully qualified name of the attribute type to change.

new_option
Is the option that specifies the changes.

The following sample command modifies the MVSname attribute to change its
annotation. Note that the fully qualified attribute type name must be supplied to the
command.
dcecp> xattrschema modify /.:/sec/xattrschema/MVSname -change \
> {annotation {Use with version 2.3}}
dcecp>

Chapter 32. Creating and Using Extended Registry Attributes 345

Renaming Attribute Types

Use the dcecp xattrschema rename command to change the name of an
extended attribute. Enter the command in the following form:
xattrschema rename old_name to new_name

where:

old_name
Is the fully qualified extended attribute name to be changed.

new_name
Is the new simple extended attribute name.

The following example shows the xattrschema rename command used to change
an attribute name from log_name to MVSname .
dcecp> xattrschema rename /.:/sec/xattrschema/log_name -to MVSname
dcecp>

Deleting Attribute Types

Use the dcecp xattrschema delete command to delete an extended attribute. Be
aware that when you delete an attribute type you also delete all instances of that
attribute type. For example, assume that an instance of the MVSname attribute is
attached to a principal named delores . If you delete the MVSname attribute, you
also delete the instance of that attribute attached to delores .

To delete attribute types enter the command in the following form:
xattrschema delete attribute_name

where attribute_name is the fully qualified name of the attribute to be deleted.

For example, to delete the extended attribute named MVSname , the command
would be as follows:
dcecp> xattrschema delete /.:/xattrschema/MVSname
dcecp>

Defining the ACL Managers for Attributes

When you define an extended attribute type, you must define the objects to which
the attribute can be attached and the permissions to access the attribute. To do
this, you associate an attribute type with one or more ACL managers, and you
supply the permission sets that control access to attribute instances of that type.
The attribute can be attached only to the objects that are supported by the ACL
manager types named in its ACL manager set. And, only the permissions named in
the ACL manager set are valid for accessing the attribute instance. (Note that these
permissions are in addition to the permissions already established by the ACL
manager for the object it controls.) For example, suppose an ACL manager set for
an attribute type named MVSname lists only the ACL manager type for principals.
Then, instances of the attribute type named MVSname can be attached only to
principals and not any other registry objects. The ACL manager set for the
MVSname attribute also contains the permissions that control access to the
MVSname attribute.

Use the dcecp xattrschema -aclmgr option to specify an attribute’s ACL manager
set. This option has the following form:

346 OSF® DCE Administration Guide— Core Components

{ mgr_uuid queryset
updateset testset deleteset }

where:

mgr_uuid
Is the UUID that identifies the ACL manager to be associated with the
attribute type. You can supply either the UUID or one of the following
shorthand names (which are converted internally to a UUID) to access the
ACL manager types provided by DCE:

policy To access the ACL manager for the policy object.

principal
To access the ACL manager for principals.

group To access the ACL manager for groups.

organization
To access the ACL manager for organizations.

secdirectory
To access the ACL manager for directories in the registry database.

replist To access the ACL manager for the replica list.

xattrschema
To access the ACL manager for the registry schema.

srvrconf
To access the ACL manager for the dced object.

queryset
Is the permission set to query instances of the attribute.

updateset
Is the permission set to modify instances of the attribute.

testset Is the permission set to test instances of the attribute.

deleteset
Is the permission to delete instances of the attribute.

To enter a permission set with more than one permission, concatenate the
permissions; for example, to enter the permissions t, M, and d, enter tMd .

Enclose each ACL manger type’s information in braces and leave a space between
each item (except, of course, between items in the concatenated permission sets).

For example, consider the following command to define an addition ACL Manager
for the MVS_name attribute:
dcecp> xattrschema modify /.:/sec/xattrschema/MVS_name \
> -aclmgr {18dbdad2-23df-11cd-82d4-080009251352 r w t mD}
dcecp>

The command adds an ACL manager identified by the UUID 18dbdad2-23df-11cd-
82d4-08000925135 to the MVS_name attribute. The permissions sets for the ACL
manager are as follows:

v r is the query permission set

v w is the update permission set

v t is the test permission set

v mD is the delete permission set

Chapter 32. Creating and Using Extended Registry Attributes 347

Note that you cannot modify or delete an attribute type’s ACL manager set.
However, you can add additional manager types to it.

Defining Attribute Type Encoding

You must define the format of values that can be supplied for an attribute type in
the attribute type’s encoding. An attribute can be assigned only those values that
are in the format defined in the encoding. For example, the encoding can specify
that instances of this attribute type contain values only in the form of UUIDs.

Each attribute type can have only one encoding and that encoding cannot be
modified. In addition, a special encoding type lets you create attribute sets.

Use the dcecp xattrschema -encoding option to specify an attribute’s encoding.
This option has the following form:
-encoding type

The type parameter is one of the encoding types described in Table 18.

Table 18. Encoding Types

Encoding Type Meaning

any The attribute value can take on any encoding. This
encoding type is only legal for the definition of an ERA
in a schema entry. All instances of an ERA must have
an encoding of some other value.

attrset The attribute value must be a list of attribute type
UUIDs enclosed in braces. This encoding type defines
an attribute set. Attribute sets allow for easier attribute
search and retrieval. For instance, a query on an
attribute set returns all instances of attributes that are
members of the set.

binding The attribute value must consist of authentication,
authorization, and binding information suitable for
communicating with a DCE server. Use this encoding
if you want to store a name or server binding as an
object’s attribute. See “Specifying the Binding
Information” on page 351 for more information.

byte The attribute value must be a string of bytes. The byte
string is assumed to be a pickle or is otherwise a
self-describing type. Note that this encoding type
allows entry of binary data. See the
xattrschema(8dce) reference page for more
information on entering binary data.

confidential Not implemented in this release of DCE.

i18ndata The attribute value must be an internationalized string
of bytes with a tag identifying the OSF registered
codeset used to encode the data. Note that this
encoding type allows entry of binary data. See the
xattrschema(8dce) reference page for more
information on how to enter binary data.

integer The attribute value must be a signed 32-bit integer.

printstring The attribute instance value must be a character
string printable by the PCS.

348 OSF® DCE Administration Guide— Core Components

Table 18. Encoding Types (continued)

Encoding Type Meaning

stringarray The attribute value must be an array of one of more
printstrings. Note that the printstring can be a null.

uuid The attribute value must be a DCE UUID.

void The attribute has no value. It is simply a marker that
is either present or absent.

Defining Attribute Trigger Servers

Some attribute types require the support of an outside server either to verify input
attribute values or to supply output attribute values when those values are stored in
an external database. Such a server could, for example, connect a legacy registry
system to the DCE registry. The attribute trigger facility provides for automatic calls
to outside DCE servers, known as attribute triggers.

Trigger servers are invoked automatically when an attribute associated with a
trigger server is queried or updated. Note that access to information maintained by
a trigger server is controlled entirely by that server.

Note: Update trigger servers are not supported in this release.

To associate an attribute type with a trigger server, use the -trigtype and -trigbind
dcecp xattrschema options.

The -trigtype Option

The -trigtype options defines whether the attribute type is associated with a trigger
server and, if it is, which kind of server. This option has the following form:
-trigtype [none | query | update]

where:

none Indicates the attribute is not associated with a trigger server. (This is the
default.)

query Indicates that the attribute is associated with a query trigger. Query trigger
servers can perform only queries.

update
Indicates the attribute is associated with an update trigger. Update trigger
servers can perform queries and updates.

Note: Update trigger servers are not supported in this release.

Once set the -trigtype option cannot be modified.

The -trigbind Option

The -trigbind option defines authentication information for the trigger server and
the trigger binding itself.

The -trigbind option has the following format.
-trigbind {{ auth_info}{ binding_info}}

Chapter 32. Creating and Using Extended Registry Attributes 349

The following sections describe how to specify the authentication type and the
binding.

Specifying the Authentication Type

The auth_info parameter has the following syntax:
{ auth_serv_type name prot_level authentication_service authorization_service}

where:

auth_serv_type
Specifies the authentication type, which can be

v none —No authentication is performed.

v dce—Standard DCE authentication is performed.

If you are using no authentication, no other information except the binding
itself is required. If you are using the standard DCE authentication type, you
must specify all the remaining parameters.

name Specifies the principal name of the trigger server.

prot_level
Specifies the protection level that determines the degree to which
authenticated communications between the client and the server are
protected by the authentication service. The possible protection levels are

v default —Uses the default protection level of pkt .

v none —Performs no authentication: tickets are not exchanged, session
keys are not established, client EPACs or names are not certified, and
transmissions are in the clear. Note that although uncertified EPACs
should not be trusted, they may be useful for debugging, tracing, and
measurement purposes.

v connect —Authenticates only when the client establishes a relationship
with the server.

v call —Authenticates only at the beginning of each remote procedure call
when the server receives the request.

This level does not apply to remote procedure calls made over a
connection-based protocol sequence (that is, ncacn_ip_tcp). If this level
is specified and the binding handle uses a connection-based protocol
sequence, the routine uses the pkt protection level instead.

v pkt —Ensures that all data received is from the expected client.

v pktinteg —Ensures and verifies that none of the data transferred
between client and server has been modified. This is the highest
protection level that is guaranteed to be present in the RPC runtime.

v pktprivacy —Authenticates as specified by all of the previous levels and
also encrypts each RPC argument value. This is the highest protection
level, but it is not guaranteed to be present in the RPC runtime.

authentication_service
Specifies the authentication service. The exact level of protection provided
by the authentication service is specified by the protection level. The
supported authentication services are as follows:

v default —DCE shared-secret key.

v none —No authentication: no tickets are exchanged, no session keys
established, client EPACs or names are not transmitted, and

350 OSF® DCE Administration Guide— Core Components

transmissions are in the clear. Specify none to turn authentication off for
remote procedure calls made using this binding.

v secret —DCE shared-secret key authentication.

authorization_service
Specifies the authorization service. The validity and trustworthiness of
authorization data, like any application data, is dependent on the
authentication service and protection level specified. The supported
authorization services are as follows:

v none —Server performs no authorization. This is valid only if the
authorization service is set to none , specifying that no authentication is
being performed.

v name—Server performs authorization based on the client principal name.
This value cannot be used if the authorization service is none .

v dce—Server performs authorization by using the client’s DCE EPAC sent
to the server with each remote procedure call made with this binding.
Generally, access is checked against DCE ACLs.

Specifying the Binding Information

The binding_info parameter specifies the binding, which can be a string binding, a
server entry name, or a list containing one or more string bindings or server entry
names. The following example shows a server entry name binding:

./.:/hosts/host_name/dce_entity_name

The following example shows a string binding in standard syntax:

ncadg_udp_ip:130.105.96.3[1234]

The following example shows a string binding in TCL syntax:

ncarn_ip_tcp 10-29.58.00 2001

Sample Value for the -trigbind Option

The following sample shows the value for a -trigbind option. In the sample, the
binding has the principal name MVS_server , is authenticated with packet-privacy
protection level, uses a shared secret key and an authorization service of DCE. The
binding is supplied as a server entry name.
-trigbind {{dce MVS_server pktprivacy secret dce} \

{/.:/hosts/host_name/dce_entity_name}}

Creating and Maintaining Attribute Instances

Using dcecp , you can attach extended registry attributes to objects, modify the
values assigned to those attributes, and delete the attachement just as you would
any attribute attached to an object.

You can attach extended registry attributes to any of the following registry objects
using the dcecp create and modify operations:

v principal

v group

v organization

Chapter 32. Creating and Using Extended Registry Attributes 351

v policy

Note: In DCE Version 1.2.1, you cannot attach attributes to the policy object.

v directory

v replist

v xattrschema

Attaching Attribute Instances to Objects

You can attach attributes to object when you create the objects with the dcecp
principal -attribute operation, or you can attach attributes to existing objects with
the dcecp modify -add operation.

For example, to create the principal delores and at the same time attach the
MVSname attribute with a value of admin , use the following principal create
command:
dcecp> principal create delores -attribute {MVSname admin}
dcecp>

To attach the MVSname attribute with a value of admin to the principal named
delores , use the following principal modify command:
dcecp> principal modify delores -add {MVSname admin}
dcecp>

To add instances of a multivalued extended attribute, include each value, separated
by a space after the attribute name. For example, to attach the multi_name
attribute with values of value1 , value2 , value3 , and value4 to the principal named
delores , use the following command:
dcecp> principal modify delores -add {multi_name value1 value2 value3 value4}
dcecp>

Modifying Attribute Instances

Use the dcecp modify -change operation to change the values of attribute
instances. Whether an attribute is modifiable is determined by the application that
uses the attribute. For example, the following command changes the value
assigned to the MVSname from admin to cell_admin for the principal named
delores .
dcecp> principal modify delores -change {MVSname cell_admin}
dcecp>

If you use the dcecp modify -change command as shown in the previous
paragraphs to change the value of a multivalued attribute, all instances of the
multivalued attribute are deleted and replaced by the new values specified in the
command. For example, to change only a specific value, you must enter all the
values. For example, assume that the multi_name attribute has the following four
values: value1 , value2 , value3 , and value4 . To change value4 to value5 you must
enter the following command:
dcecp> principal modify delores -change {multi_name {value1 value2 value3 value5}}
dcecp>

However, you can add and remove individual values from a multivalued attribute.
Use the -add option to add values. For example, assume that the multi_name
attribute has values of value1 , value2 , value3 , and value5 . The following sample
command adds value6 to the multi_name attribute.

352 OSF® DCE Administration Guide— Core Components

dcecp> principal modify delores -add {multi_name value6}
dcecp>

(Use the remove option described in the following subsection to delete specific
values in a multivalued attribute.)

Note that the following command replaces all instances of the attribute named
multi_name attached to the principal named delores with a single instance with a
value of value1 :
dcecp> principal modify delores -change {multi_name value1}
dcecp>

For example, if the multi_name attribute had the following values:
{multi_name value1 value2 value3}

then the previous command would change the values as follows:
{multi_name value1}

Deleting Attribute Instances

Use the dcecp modify command with the -remove option to delete attribute
instances attached to an object. To delete all instances of an attribute from an
object, supply the attribute name to the -remove option. For example, the following
command deletes all instances of the MVSname attribute from the principal named
delores :
dcecp> principal modify delores -remove MVSname
dcecp>

To remove a single instance of a multivalued attribute, supply the attribute name
and the attribute value. For example, the following command deletes only the
instance value5 from the multivalued attribute named multi-value . All other values
and the attribute itself remain intact.
dcecp> principal modify delores -remove {multi-value value5}
dcecp>

However, if you delete the last instance of a multivalued attribute, dcecp will also
delete the attribute from the object because an attribute without a value cannot be
attached to an object. Note that you cannot combine deleting multivalued attributes
and values from multivalued attributes with the same command.

To delete more than one attribute from an object, you must use the -types option.
This option tells dcecp that all the values supplied are the names of attribute types,
not attribute values. For example, the following sample command uses the -types
option to delete the attributes named MVSname and MVSinteger from the principal
delores :
dcecp> principal modify delores -remove {MVSname MVSinteger} -types
dcecp>

Without the -types option, dcecp will assume that MVSinteger is the value for the
MVSname attribute and, because no such value exists, the command will fail.

Using Attribute Sets

An attribute set is a collection of attribute UUIDs that identify the attribute instances
that are members of the set. Attribute sets let you group related attributes instances

Chapter 32. Creating and Using Extended Registry Attributes 353

on an object for easier access. For example, if you use the dcecp show operation
to display an attribute set, the display expands the attribute set and includes all
members of the set in the display output. This attribute expansion works only for
dcecp commands that display information. The commands to create and modify
attribute instances work only on the specific attribute named in the command. Since
the attributes that are set members exist independently of the attribute set, they can
be manipulated directly like any other attribute.

Each attribute set is attached to an object and, although the system does not
enforce it, each attribute that is a member of a set should also be attached to the
same object. Attribute sets cannot be nested; a member of an attribute set cannot
itself be an attribute set.

To create, modify, and delete members in an attribute set, follow the instructions to
create, modify, and delete mutli-valued attributes. The attribute instances that are
members of the set are identified by UUIDs.

354 OSF® DCE Administration Guide— Core Components

Chapter 33. Administering a Multicell Environment

Previous chapters in this guide described the DCE administration tasks that are
performed within individual cells. The administration of a multicell environment,
which is one in which principals from foreign cells access objects in the local cell,
has additional tasks and considerations that arise from the interaction of principals
across different cells.

In fact, you can have two types of system administrators: one for local cell
administration and one for intercell administration of the multicell environment. If
you set up groups for the two types of administrators, you can set the ACL for the
krbtgt directory, which contains cell principals, in the registry database to allow
updating only by the group of intercell administrators. Be sure, however, to allow all
other users read access to the krbtgt directory or intercell access will be denied to
those users. Note that, if you protect the krbtgt directory in this way, ensure that all
directories below the krbtgt directory also have the proper ACLs. The easiest way
to accomplish this is to change the Object ACL and the Initial Creation ACLs on the
krbtgt directory after the registry is created.

This chapter describes the trust relationships between cells that allow principals
from foreign cells access to objects in your cell and vice versa.

Trust Relationships

Note: The DCE Version 1.2.2 code does not provide support for the transitive trust
relationships discussed in this section.

To give explicit permission for principals in other cells to engage in authenticated
access to objects in your cell, you must establish a trust relationship with that cell.
You do this using the dcecp registry connect command to create two special
accounts: one in your cell’s registry to represent the foreign cell and one in the
foreign cell’s registry to represent your cell. Establishing these accounts indicates
that you trust the foreign cell’s authentication service to correctly authenticate
foreign users, and, therefore, you consider all users from this cell to be
authenticated if they are marked as authenticated by the foreign cell’s
authentication service.

Once the trust relationship is established, you can control foreign principals’ access
to specific objects with ACL entries, just as you do for principals in the local cell.
The trust relationship also allows users in the foreign cell to log into accounts in the
local cell and vice versa.

Two kinds of trust relationships allow principals in other cells to engage in
authenticated access to objects in your cell. These relationships are direct trust
relationships and hierarchical transitive trust relationships. Throughout this chapter
the term transitive trust relationship is used to indicate the DCE implementation of
hierarchical transitive trust relationships.

Direct Trust Relationships

In a direct trust relationship, two cells’ authentication service share authentication
keys and trust each other to authenticate principals from their respective cells.
Therefore, both cells consider all users from each cell to be authenticated if they
are marked as authenticated by their respective authentication services. The shared

355

authentication keys are derived from a single password (one for each cell) that is
used by all principals from one cell to be authenticated to the other cell. A direct
trust relationship involves only two cells.

Transitive Trust Relationships

A transitive trust relationship comes about as a result of a direct trust relationship.
In this relationship, cells in a direct trust relationship trust (with some constraints)
each other’s authentication service to authenticate principals not only from their
respective cells but also from the cells with which they have direct trust
relationships. A transitive trust relationship can involve three or more cells. A
transitive trust relationship is illustrated in Figure 53.

In this figure, cell A trusts peer cell B (the cell with which it has a direct trust
relationship) to authenticate the principals in cell B and to guarantee the
authentication of the principals in cell B/C (the cell with which it has a transitive trust
relationship).

Because cell A trusts cell B’s authentication service, it allows authenticated access
to all principals whose authentication is guaranteed by cell B’s authentication
service. These authenticated principals include principals from cell B and principals
from cell B/C.

Establishing Trust Relationships

Use the registry connect command to establish direct trust and transitive trust
relationships. Note that, although you can create a direct trust relationship between
any two cells, you can create a transitive trust relationship only for those cells
connected by a transitive trust path.

This command creates two special accounts: one in your cell’s registry to represent
the foreign cell, another in the foreign cell’s registry to represent your cell. The
command creates the accounts’ principals at the same time. Once the trust
relationship is established, users in the foreign cell can log into accounts in the local
cell and vice versa. You control foreign principals’ access to specific objects with
ACL entries, just as you do for principals in the local cell.

When the accounts are created, the registry connect command performs two
tasks that you should be aware of. First, it automatically generates one password
that is shared by both accounts. This means that users who log into a cell with
which their cell has a trust relationship are seen as the same principal and share

A B

C

direct trust

direct trust

transitive trust

Figure 53. Transitive Trust Relationships

356 OSF® DCE Administration Guide— Core Components

the same password. Second, the registry modify command generates a UNIX
number that is shared by all principals that are in a given foreign cell. This shared
UNIX number helps prevent collision between the UNIX numbers of local and
foreign principals when objects on a local machine are accessed.

Within the registry and for the purposes of network access, principals are identified
by a UUID that represents their fully qualified names; for example,
/.../dresden.com/dce/users/mahler for the principal mahler . However, the local
operating system on a local machine identifies principals by UNIX number. Because
UNIX numbers are not required to be unique across cells, it is possible for two
principals from different cells to have the same UNIX number. Thus, a foreign
principal that is accessing files in the local cell could have the same UNIX number
as the local principal and be seen by the local system as the owner of the local
user’s files on the local machine.

Creating a UNIX number that is applied to every principal from a given cell that
accesses the local cell prevents this from occurring. However, you need to be
aware that, because the foreign users all have the same UNIX number, the very
feature that prevents them from accessing the local user’s files allows them to
access each other’s files. Because each user from the same foreign cell is seen as
the same user, every file on the local machine that is owned by a foreign user can
be accessed by every other foreign user from the same foreign cell.

Constraints on Transitive Trust Relationships

To prevent the widespread proliferation of trust relationships that could result in
unwieldy administrative burdens and weakened security, the DCE Security Service
imposes the following three rules on transitive trust relationships:

1. Any number of descendent cells can be traversed by a transitive trust
relationship, and any number of ancestor cells can be traversed by a transitive
trust relationship.

2. No more than one direct trust peer relationship can be traversed by a transitive
trust relationship. (A direct trust peer relationship is a direct trust relationship
between cells that are neither ancestors nor descendants of each other in the
naming hierarchy.)

3. Once a hierarchical trust relationship traverses a direct trust ancestor and an
optional direct trust peer, it cannot traverse to an ancestor of the peer cell. In
other words, once a transitive trust path goes up and across, it cannot go up.

The ramifications of these rules are explained in the following paragraphs.

Rule 1:

Any number of descendent cells can be traversed in a hierarchical trust
relationship, and any number of ancestor cells can be traversed by a
transitive trust relationship.

For example, in Figure 54 on page 358, peer Cells A and B have a direct trust
relationship. Cell A has a transitive trust relationship with cells B/C and B/C/D.

Chapter 33. Administering a Multicell Environment 357

The previous configuration also makes possible the transitive trust relationship
between B and cell B/C/D shown in Figure 55.

Rule 2:

No more than one direct trust peer relationship can be traversed by a
transitive trust relationship.

For example, in Figure 56 on page 359, cells A, B, and C are peer cells. Cell A has
a direct trust peer relationship with cell B, and cell B has a direct trust peer
relationship with cell C. Cell A does not have a transitive trust relationship with cell
C because to do so would traverse more than one direct trust peer relationship (A
to B and B to C).

D

direct trust

A B

C

direct trust

direct trust

Transitive trust relationships between
cell A and cells B/C and B/C/D

Figure 54. Direct and Transitive Trust Relationships

D

B

C Transitive trust relationship
between cell B and cell B/C/D

B
and

D

Figure 55. Cell Traversal in Transitive Trust Relationships

358 OSF® DCE Administration Guide— Core Components

Note that it is not required to traverse a direct trust peer relationship to have a
transitive trust relationship. In Figure 57, no direct trust peer relationships are
traversed. In the figure, a transitive trust relationship exists between the following:

v B_Division and C_Division and C_organization

v C_Division and B_Division and B_organization

Rule 3:

Once a hierarchical trust relationship traverses a direct trust ancestor and a
direct trust peer, it cannot traverse to an ancestor of the cell.

For example, consider Figure 58 on page 360. The A_Conglomerate cell hierarchy
and the B_Conglomerate cell are connected by direct trust relationships.
Additionally, there is a direct trust relationship between A_product in the
A_Conglomerate hierarchy and B_product in the B_Conglomerate hierarchy. In this
configuration, no transitive trust relationships are possible because they cannot
traverse to an ancestor after traversing a direct trust peer.

BA C

No transitive trust relationship is possible between
cell A and cell C because that relationship must
traverse more than one direct trust link.

direct direct

Figure 56. Limited Direct Trust Peer Traversal in Transitive Trust

A_Conglomerate

direct trust direct trust

B_Division C_Division

B_organization C_organization

transitive trust

Figure 57. Transitive Trust Without Direct Trust Peer Traversal

Chapter 33. Administering a Multicell Environment 359

The type of trust relationship shown in this figure might be used by two companies
that have a very limited agreement to cooperate on product development.

Figure 59 on page 361 shows another transitive trust path.

A_Conglomerate

INVALID PATH

B_Conglomerate

A_Company B_Company

A_engineering B_engineering

A_product B_product

Figure 58. Limited Trust Traversal to Cell Ancestors

360 OSF® DCE Administration Guide— Core Components

In the path, the B_product cell has a transitive trust path up to its ancestor,
B_Company, and from B_Company to A_Company. But from A_company, the
transitive trust path cannot continue up to A_Company’s ancestor, although it can
continue down to A_Company’s descendants. Because this transitive trust
relationship has traversed up to a trust ancestor (B_Company) and across to a trust
peer (A_Company), it cannot then continue by going up to A_Company’s ancestor
(A_Conglomerate). This type of relationship might be used by two companies that
have decided to combine operations at a very high level.

Note that a principal accessing a foreign cell through transitive trust relationships is
not authenticated by each cell transited in the trust path, but only by the target cell
itself. The authentication service in a transited cell simply gives the principal a ticket
to the next cell in the path, stamping the ticket with the hierarchical name of the
transited cell, until the principal acquires a ticket to the target cell.

To determine whether or not to give a principal a ticket to the next cell in a transitive
trust path, the authentication service in each transited cell examines the ticket and
compares the last cell transited to the next cell in the path and applies the rules of
transitive trust described in this section. If the next cell to be transited is consistent
with a valid transitive trust path, then the authentication service gives the principal a
ticket to the next cell; otherwise, the authentication service refuses to issue a ticket.

Creating Trust Relationships

To create peer-to-peer relationships, follow these steps:

A_Conglomerate

INVALID PATH

B_Conglomerate

A_Company B_Company

A_engineering B_engineering

A_product B_product

Figure 59. Alternate Trust Traversal to Cell Ancestors

Chapter 33. Administering a Multicell Environment 361

1. Run the registry connect command to create cross-cell authentication
accounts (an account in your cell’s registry and another account in the foreign
cell’s registry).

2. Optionally, use the account modify command to fine tune the attributes of the
account, which were assigned by default when the account was created. For
example, the account’s expiration date (expdate attribute) defaults to none . You
may want to enter a date to ensure that the account will be actively renewed
after a period of time.

3. Ensure that the system administrator in the foreign cell changes the acctvalid
flag of the account that represents your cell to yes in order to indicate that the
account is valid. If one or both accounts are invalid, no cross-cell
communications can take place.

Command Options for the registry connect Command

When you use the registry connect command, you must supply the fully qualified
name of the foreign cell with which you will establish a peer-to-peer relationship.
This name is stripped of the full pathname, prefixed with krbtgt , and used as the
primary name of the account’s principal. For example, if you enter a cell name of
/.../dresden.com , the principal name is krbtgt/dresden.com . The unchanged cell
name is stored as the principal’s full name.

Note that registry connect uses your local cell name for the primary name of the
local cell’s account principal. This name is stripped of the full pathname and
prefixed with krbtgt , just as the foreign cell name is.

You can supply the following options to the registry connect command:

-acctvalid , -facctvalid
The setting that marks an account as being valid. A valid local account
(-acctvalid) allows users from the foreign cell to log in to nodes in the local
cell. A valid foreign account (-facctvalid) allows users from the local cell to
log in to nodes in the foreign cell. The default is invalid for each option.

-expdate
The time and date that both the local and the foreign cell’s account expires,
and the peer-to-peer relationship is ended, prohibiting any further
authenticated communications between principals in the two cells. To renew
the account, change the date in this field. The default is none .

-facct , -facctpw
The system administrator in the foreign cell must provide you with the name
and password of an account in the foreign cell. The foreign account must
have the permissions that are required to create principals and accounts.
You need the account to access the foreign registry in order to create the
account that represents your cell in the foreign account’s registry. The
lifetime and creation quota of this account should be limited to only that
necessary to complete the task.

-group , -fgroup
The group name to be associated with the account in the local cell
(-group) and the foreign cell (-fgroup). These groups have no meaning for
the accounts and are not associated with any users in the foreign or local
cell. You must enter them because it is a requirement of the registry that all
accounts be associated with groups. If the group does not exist, it will be
created.

362 OSF® DCE Administration Guide— Core Components

-mypwd
The registry connect command does not prompt you for a password for
the accounts that you are creating; it generates this password randomly.
However, you must supply your password with the mypw option as to
validate your identity.

-org , -forg
The organization name to be associated with the account in the local cell
(-org) and the foreign cell (-forg). These organizations have no meaning for
the accounts and are not associated with any users in the foreign or local
cell. You must enter them because it is a requirement of the registry that all
accounts be associated with organizations. If the organization does not
exist, it will be created.

Creating Cross-Cell Authentication Accounts Example

The following sample registry connect command is used to create an account for
the foreign cell identified by /.../dresden.com . The local account is associated with
the group named cell_group_local , the organization named cell_group_dres , and
the organization named cell_org_dres . The expiration date for the accounts is
allowed to default to none .
dcecp> registry connect /.../dresden.com -facct cell_log -facctpw music \
> -group cell_group_local -fgroup cell_group_dres \
> -org cell_org_local -forg cell_org_dres -mypwd cell_admin
dcecp>

The Accounts Created by the registry connect Command

The accounts and principals that are created by the registry connect command
are given default attribute values listed in Table 19. These attributes apply to all
foreign principals when they access objects in your cell. Likewise, the attributes of
the account created for your cell in the foreign cell apply to all principals in your cell
when they access objects in the foreign cell.

Table 19. Default Attribute Values of Cross-Cell Authorization Principals and Accounts

Information Meaning

Account Principal Name The local cell name for the local cell’s account, or
foreign cell name for the foreign cell’s account
stripped of its full pathname and prefixed with krbtgt .

fullname The cell’s pathname.

quota Set to none . This quota applies to all principals who
use the cross-cell authentication accounts to access
objects in foreign cells. For example, if you change
the object creation quota to 10, the total number of
objects that can be created in your cell’s registry by
all foreign users who use the account to access your
cell cannot exceed 10. It is not 10 per foreign
principal. The object creation quota that is set for
your cell’s account in the foreign cell places the
same restriction on the number of objects that your
cell’s principals can create in the foreign cell’s
registry.

description , home , shell Set to blank.

server Set to yes ; that is, the account is a server that can
engage in authenticated communications.

Chapter 33. Administering a Multicell Environment 363

Table 19. Default Attribute Values of Cross-Cell Authorization Principals and
Accounts (continued)

Information Meaning

client Set to no .

pwdvalid Set to yes (valid).

acctvalid Set to no (not valid) unless the -acctvalid and
-facctvalid options are used.

postdatedtkt Set to yes ; that is, the account can be issued tickets
with a start time in the future.

forwardabletkt Set to yes ; that is, the account can be issued a new
ticket-granting ticket with a network address that is
different than the present ticket-granting ticket.

renewabletkt Set to yes ; that is, the account’s tickets can be
renewed.

proxiabletkt Set to yes ; that is, the account can be issued tickets
with a different network address than the present
tickets.

dupkey Set to yes ; that is, the account’s ticket can have
duplicate keys.

goodsince Set to the date that the account was created.

maxtktlife Set to the registry policy.

maxtktrenew Set to the registry policy. The maxtktrenew attribute
is not currently used by the DCE; any use of this
option is unsupported at the present time.

Modifying Cross-Cell Authentication Accounts

You can change the account that is created by the registry connect command at
any time using the standard dcecp account operations. However, you should be
aware of the following cautions.

Never set the account’s pwdvalid attribute to no (invalid). For standard accounts,
setting the attribute to no causes the user to be prompted to change their
passwords at the next login. Passwords for cross-cell authentication accounts,
however, are shared by the authentication services in two cells. If you change one,
this synchronization is destroyed and cross-cell communications end. If you want to
change the passwords that are shared by the authentication services, you must
rerun the registry connect command to recreate the accounts and create the
properly synchronized passwords.

Generally, do not delete the accounts or the account’s principals unless you are
breaking the peer-to-peer relationship with the cell. If one of the accounts is
deleted, you must run the registry connect command to recreate both accounts
and restore the peer-to-peer relationship.

364 OSF® DCE Administration Guide— Core Components

Chapter 34. Viewing Registry Information

Using dcecp , you can display information about the following security objects:

v Principals

v Groups

v Organizations

v Accounts

v The registry

v The xattrschema object

v ACLs

v Keytab files

The following dcecp operations provide these displays:

v The catalog command displays the names of all the specified objects.

v The list command displays the names of the members of the specified groups or
organizations or of the specified key table.

v The show command displays information about a specific instance of an object.

This chapter describes how to display operation available for all security objects
except the registry object, which is described in “Chapter 36. Performing Routine
Maintenance” on page 381.

Displaying Account Information

Use the dcecp account catalog and account show commands to display
information about accounts. When you use the account show command, you must
supply the name of the account’s principal to specify the account to display. You
can supply multiple principal names by enclosing them in braces and separating
them with spaces.

To display all accounts in the registry database in alphabetic order with names
prefixed by the cell name, enter
account catalog

To display all accounts in the registry database in alphabetic order with names not
prefixed by the cell name, enter
account catalog -simplename

To display all attributes for a named principal’s account, enter
account show principal_name

To display all policies for a named principal’s account, enter
account show acct_name -policy

To display all attributes and all policies for a named principal’s account, enter
account show acct_name -all

The following example shows the account catalog command used without the
-simplename option:

365

dcecp> account catalog
/.../dresden.com/bach
/.../dresden.com/bin
/.../dresden.com/brahms
/.../dresden.com/britten
/.../dresden.com/cell_admin
/.../dresden.com/daemon
/.../dresden.com/dce-ptgt
/.../dresden.com/dce-rgy
/.../dresden.com/mahler
/.../dresden.com/nobody
/.../dresden.com/root
/.../dresden.com/uucp
/.../dresden.com/hosts/pmin17/cds-server
/.../dresden.com/hosts/pmin17/gda
/.../dresden.com/hosts/pmin17/self
/.../dresden.com/krbtgt/dresden.com
dcecp>

The following example shows the account show command used to display the
attributes and associated with the account for mahler :
dcecp> account show mahler
{acctvalid yes}
{client yes}
{created /.../dresden.com/cell_admin 1994-06-15-18:31:08.000+00:00I-----}
{description {}}
{dupkey no}
{expdate 1995-06-16-00:00:00.000+00:00I-----}
{forwardabletkt yes}
{goodsince 1994-06-15-18:31:05.000+00:00I-----}
{group users}
{home /}
{lastchange /.../dresden.com/cell_admin 1994-06-16-12:21:07.000+00:00I-----}
{organization users}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}
dcecp>

Note that, if the policy defined for the account is not actually in effect because it is
overridden by the registry policy, the policy is followed by the effective tag and the
actual value in effect.

Displaying Group and Organization Information

Use the dcecp group catalog , group show , and group list commands to display
information about groups and the dcecp organization catalog , organization
show , and organization list commands to display information about organizations.
When you use the group list , group show , organization list , and organization
show commands, you must supply the name of the group or organization to display.
You can supply multiple names by enclosing them in braces and separating them
with spaces.

To display all groups or organizations in the registry database in alphabetic order
with names prefixed by the cell name, enter
group catalog

366 OSF® DCE Administration Guide— Core Components

or
organization catalog

To display all groups or organizations in the registry database in alphabetic order
with names not prefixed by the cell name, enter
group catalog -simplename

or
organization catalog -simplename

To display all members of a specified group or organization in alphabetical order
with names prefixed by the cell name, enter
group list group_name

or
organization list organization_name

To display all members of a specified group or organization in alphabetical order
with names not prefixed by the cell name, enter
group list group_name -simplename

or
organization list organization_name -simplename

To display all attributes for a group or organization, enter
group show group_name

or
organization show organization_name

To display all extended attribute instances attached to a group or organization, enter
group show group_name -xattrs

or
organization show organization_name -xattrs

To display all regular attributes and all extended attributes for a group or
organization, enter
group show group_name -all

or
organization show organization_name -all

The following example shows the group catalog command used without the
-simplename option:
dcecp> group cat
/.../dresden.com/nogroup
/.../dresden.com/system
/.../dresden.com/daemon
/.../dresden.com/uucp
/.../dresden.com/bin
/.../dresden.com/kmem
/.../dresden.com/mail
/.../dresden.com/tty
/.../dresden.com/none

Chapter 34. Viewing Registry Information 367

/.../dresden.com/tcb
/.../dresden.com/acct-admin
/.../dresden.com/subsys/dce/sec-admin
/.../dresden.com/subsys/dce/cds-admin
/.../dresden.com/subsys/dce/dts-admin
/.../dresden.com/subsys/dce/cds-server
/.../dresden.com/subsys/dce/dts-servers
/.../dresden.com/users
dcecp>

The following example shows the attributes of the group named users_temporary :
dcecp> group show users_temporary
{alias no}
{gid 5211}
{uuid 0000145b-9362-21cd-a601-0000c08adf56}
{inprojlist no}
{fullname {temporary users}}
dcecp>

Note, in the preceding example, the line that says {alias no} . This indicates that the
name users_temporary is the primary name, not an alias name. For an alias, this
line would read {alias yes} .

The following group list command displays the members of the group
symphonists :
dcecp> group list symphonists
/.../dresden.com/bach
/.../dresden.com/britten
/.../dresden.com/mahler
dcecp>

Displaying Principal Information

Use the dcecp principal catalog and principal show commands to display
information about principals. When you use the principal show command, you
must supply the name of the principal to display. You can supply multiple principal
names by enclosing them in braces and separating them with spaces.

To display all principals in the registry database in alphabetic order with names
prefixed by the cell name, enter
principal catalog

To display all principals in the registry database in alphabetic order with names not
prefixed by the cell name, enter
principal catalog -simplename

To display all attributes for a named principal, enter
principal show principal_name

To display all extended attribute instances attached to a principal, enter
principal show principal_name -xattrs

To display all regular attributes and all extended attributes for a principal, enter
principal show principal_name -all

The following example shows the principal catalog used with the -simplename
option:

368 OSF® DCE Administration Guide— Core Components

dcecp> principal catalog -simplename
bach
bin
brahms
britten
cell_admin
daemon
dce-ptgt
dce-rgy
mahler
nobody
root
uucp
cds-server
dcecp>

The following example shows the principal show command used to display
information about the principal mahler :
dcecp> principal show /.:/mahler
{fullname {Gustav Mahler}}
{uid 30014}
{uuid 0000753e-f51f-2e0e-b000-0000c08adf56}
{alias no}
{quota unlimited}
{groups {symphonists composers}}
dcecp>

All the information listed by the principal show command is information created
when the principal was added to the registry, except the line for groups. This line
lists the groups in which the principal is a member.

Displaying xattrschema Information

Use the dcecp xattrschema catalog and xattrschema show commands to display
information about the extended attribute types. Note that, to see instances of an
extended attribute attached to a principal, use the -xattr option with the principal ,
group , or organization show commands.

The xattrschema catalog command displays the names of the extended attribute
objects defined in a named schema. When you use this command, you must
specify the name of the schema for which to display extended attributes. For the
registry database, this name is /.:/sec/xattrschema . Your site must supply you with
the name of the schema.

The xattrschema show command displays the attributes of named schemas in
either the registry schema or a schema in use at your site. When you use this
command , you must specify the name of the extended attribute type for which to
display information. You can supply multiple names by enclosing them in braces
and separating them with spaces.

To display the names of all attribute types in the registry database in alphabetic
order with names prefixed by the cell name, enter
xattrschema catalog /.:/sec/xattrschema

To display all attribute types in the registry database in alphabetic order not prefixed
by the cell name, enter
xattrschema catalog /.:/sec/xattrschema -simplename

Chapter 34. Viewing Registry Information 369

To display attributes in a schema other than the registry, replace
/.:/sec/xattrschema with the fully specified name of the other schema.

To display the attributes of a named extended attribute type, enter
xattrschema show attr_name

The following example, lists the names of all extended attributes in the registry
prefixed by the cell name:
dcecp> xattrschema catalog /.:/sec/xattrschema
dcecp>
/.../dresden/sec/xattrschema/pre_auth_req
/.../dresden/sec/xattrschema/pwd_val_type
/.../dresden/sec/xattrschema/pwd_mgmt_binding
/.../dresden/sec/xattrschema/X500_DN
/.../dresden/sec/xattrschema/X500_DSA_Admin
/.../dresden/sec/xattrschema/disable_time_interval
/.../dresden/sec/xattrschema/max_invalid_attempts
/.../dresden/sec/xattrschema/passwd_override
/.../dresden/sec/xattrschema/test_integer
dcecp>

The following example, list the attributes of the extended registry attribute named
test_integer :
dcecp> xattrschema show /.:/sec/xattrschema/test_integer
{aclmgr {principal {{query r} {update r} {test r} {delete r}}}}
{annotation {test_integer: encoding type integer}}
{applydefs yes}
{encoding integer}
{intercell reject}
{multivalued yes}
{reserved no}
{scope {}}
{trigbind {none {}}}
{trigtype none}
{unique no}
{uuid 5f439154-2af1-11cd-8ec3-080009353559}
dcecp>

Displaying ACL Information

Use the dcecp acl show commands to display ACL entries for a named object.
When you use this command, you must specify the name of the object for which to
display ACL entries. You can supply multiple names by enclosing them in braces
and separating them with spaces.

If this command is not able to determine the name of the object, it will display the
object’s UUID.

To display the ACL entries for a specified object, enter
acl show object_name

To display the ACL’s default cell, enter
acl show object_name -cell

To display the ACL managers supported by an object, enter
acl show object_name -managers

The following example displays ACL entries for the object named hosts :

370 OSF® DCE Administration Guide— Core Components

dcecp> acl show /.:/hosts
{unauthenticated r--t---}
{user cell_admin rwdtcia}
{user hosts/absolut/cds-server1 rwdtcia}
{user root rwdtcia}
{group subsys/dce/cds-admin rwdtcia}
{group subsys/dce/cds-server rwdtcia}
{any_other r--t---}
dcecp>

Displaying keytab Information

Use the dcecp keytab catalog , keytab list , and keytab show commands to
display information about accounts. When you use the keytab catalog command,
you must supply the name of the host for which to display keytab files. When you
use the keytab list or keytab show command, you must supply the name of the
dced object for which to display keytab information. You can supply multiple names
to either command by enclosing them in braces and separating them with spaces.

To display the names of all keytab files on a specified host with names prefixed by
the cell name, enter
keytab catalog host_name

If you do not supply host_name, the display lists keytab files on the current host.

To display the names of all keytab files on a specified host with names not prefixed
by the cell name, enter
keytab catalog host_name -simplename

To display a list of all principals for which there are entries in a specified keytab file,
enter
keytab list file_name

To display all principals for which there are entries in a named keytab file, enter
keytab show file_name

The information displayed includes only the principal name.

To display the local names of a specified key file, enter
keytab show dced_object_name -entry

To display all entries in a key file, including the keys, enter
keytab show dced_object_name -members

The following example shows the entries in the keytab file named svr_3 :
dcecp> keytab show /.:/hosts/music/config/keytab/svr_3 -members
{brahms des 1}
{britten plain 3}
{mahler des 2}
dcecp>

Chapter 34. Viewing Registry Information 371

372 OSF® DCE Administration Guide— Core Components

Chapter 35. Maintaining Policies and Properties

Registry policies are attributes that can be set registry wide. To provide a finer lever
of control, policies can also be set for individual organizations and accounts. An
organization’s or account’s policies can override the registry default policies if the
organization’s or account’s policies are more restrictive.

Registry properties are attributes that apply to the principals, groups, and
organizations created in the registry. They cannot be set for individual organizations
or accounts. Properties regulate such things as the range of numbers that can be
used for UNIX IDs and whether encrypted passwords are displayed.

You can set both polices and properties with the dcecp registry modify command.
In addition, you can set policies for an individual organization or account with the
dcecp organization modify and dcecp account modify commands. In all
commands, policies and properties to be set are supplied as attributes in standard
dcecp attribute lists with the -change option or as attribute options.

This chapter first describes policies and then properties.

Policies

You can set policies for the following:

v The registry as a whole with the dcecp registry modify command. The policies
thus apply to all principals, groups, and organizations unless a stricter policy is
set for specific organizations or accounts.

v Specific organizations with the dcecp organization modify command.

v Specific accounts with the dcecp account modify command.

There are two types of policies: standard policy and authentication policy.

Standard Policy

Standard policy regulates such things as account and password lifetimes and
password format. It can be set for the registry and for specific organizations. The
standard policies you can set are described in the following subsections.

Note: In addition to defining the password policies described in this section, you
can exert additional control in such areas as password formats, password
generation, invalid login handling, and expired password handling by
attaching ERAs to principals. See “Chapter 30. Creating and Maintaining
Principals, Groups, and Organizations” on page 305 for more information.

Account Lifespan

The account lifespan that you set determines the period during which the accounts
for a specific organization or the registry as a whole are valid. After the period of
time passes, the accounts become invalid and must be recreated.

You define the account lifespan as the dcecp acctlife attribute in the following form:
acctlife { time | unlimited}

373

where time is a number that indicates the number of days the account is valid, and
unlimited specifies an unlimited lifespan.

An account’s lifespan is also controlled by the account expiration date (expdate
attribute) that you set when you use the dcecp account create or account modify
command to create or change an account. If you set an account expiration date that
is in conflict with the account lifespan policy, the stricter setting applies. For
example, if you set the standard policy account lifespan to 40 days, and then you
set an account expiration date to the next day, the account expires on the next day
because that is the stricter setting.

Note: You can control the validity of accounts at a more immediate level by using
the dcecp account modify command to mark the accounts as invalid
(acctvalid attribute).

Password Lifespan

The password lifespan specifies the period of time before account passwords for a
specific organization or the registry as a whole expire.

Generally, DCE security disables login for users whose passwords have expired. It
is possible, however, to override this policy for a user such as cell_admin , in order
to prevent the cell administrator from being locked out of the system by an expired
password. You do this by attaching an instance of the passwd_override ERA to the
principal. See “Chapter 30. Creating and Maintaining Principals, Groups, and
Organizations” on page 305 for information on how to do this.

You define the password lifespan as the dcecp pwdlife attribute in the following
form:
pwdlife { time | unlimited}

where time is a number that indicates the number of days the password is valid,
and unlimited specifies an unlimited lifespan.

You can also set the exact date passwords expire by using the password expiration
date policy (pwdexpdate attribute).

Password Expiration Date

The password expiration date sets the exact date on which account passwords for
a specific organization or for the registry as a whole expire.

Generally, DCE security disables login for users whose passwords have expired. It
is possible, however, to override this policy for a user such as cell_admin in order
to prevent the cell administrator from being locked out of the system by an expired
password. You do this by attaching an instance of the passwd_override ERA to the
principal. See “Chapter 30. Creating and Maintaining Principals, Groups, and
Organizations” on page 305 for information on how to do this.

You define the password expiration date as the dcecp pwdexpdate attribute in the
following form:
pwdexpdate {date | none}

where date is the date the password expires in yyyy-mm-dd format, and none
specifies that the password has no expiration date.

374 OSF® DCE Administration Guide— Core Components

You can also set a period of time after which a password expires with the password
lifespan policy (pwdlife attribute).

Password Format

The password format policies apply to a specific organization or the registry as a
whole. They determine the following:

v The minimum length of passwords, defined by the dcecp registry modify
pwdminlen attribute in the form
pwdminlen integer

Passwords cannot consist of fewer characters than the number you enter for
integer. If you specify 0 (zero), no minimum length is in effect.

v Whether or not passwords can consist entirely of spaces, defined by the dcecp
pwdspaces attribute in the form
pwdspaces {yes | no}

If you specify no , passwords cannot consist of all spaces.

v Whether or not a password can consist entirely of alphanumeric characters,
defined by the dcecp pwdalpha attribute in the form
pwdalpha {yes | no}

If you specify no , passwords must contain at least one non-alphanumeric
character.

Note: You can exert additional control over password formats by attaching ERAs to
principals. For information on how to do this, see “Chapter 30. Creating and
Maintaining Principals, Groups, and Organizations” on page 305.

Authentication Policy

Authentication policy regulates ticket lifetimes. You can set authentication policy for
the registry as a whole, using the dcecp registry modify command, and for
individual accounts by using the dcecp account modify command. The
authentication policies you can set are described in the following subsections.

Note: Be aware that, in addition to the authentication policies described in this
section, you can also control preauthentication policy for a principal by
attaching an instance of the pre_auth_req ERA to the principal. See
“Chapter 30. Creating and Maintaining Principals, Groups, and
Organizations” on page 305 for a general discussion of preauthentication and
information on preauthentication administration.

Maximum Ticket Renewable Time

Note: Renewable ticket functionality is not currently used by DCE RPC when
refreshing service tickets. However, it is supported by the DCE Security
Server and is useful for Kerberos V5 applications that use the DCE Security
Server as a KDC.

The maximum ticket renewable time (maxtktrenew attribute) that you set
determines the maximum amount of time in hours before a principal’s ticket-granting
ticket expires and the time the principal must log in again to reauthenticate and
obtain another ticket-granting ticket. The shorter you make the maximum ticket

Chapter 35. Maintaining Policies and Properties 375

renewable time, the greater the security of the system. However, since users must
log in again to renew their ticket-granting ticket, the time needs to take into
consideration user convenience and the level of security that your cell requires.

You define maximum ticket renewable time with the dcecp maxtktrenew attribute in
the following form:
maxtktrenew hours

where hours is a number that indicates the number of hours before a principal’s
ticket-granting ticket expires.

Note that you can set this time for individual accounts by using the account modify
command.

Maximum Ticket Lifetime

The maximum ticket lifetime (maxtktlife attribute) is the maximum amount of time in
hours that a ticket issued to a principal is valid. When a client requests a ticket to a
server, the lifetime that is granted to the ticket takes into account the maximum
ticket lifetime that is set for both the server and the client. The lifetime that is
granted will not exceed the shorter of the server’s and client’s maximum ticket
lifetime.

You define maximum ticket lifetime with the dcecp maxtktlife attribute in the
following form:
maxtktlife hours

where hours is a number that indicates the number of hours that a ticket issued to a
principal is valid.

The shorter you make the maximum ticket lifetime, the greater the security of the
system. However, extremely frequent renewal can cause processing overhead. The
maximum ticket lifetime that you set needs to take into consideration system
performance and the level of security that you require.

Note that you can set this time for individual accounts by using the account modify
command.

Handling Conflicting Policies

Different standard and authentication policies can be in effect for the registry as a
whole and for individual organizations (for standard policy) and accounts (for
authentication policy). If the policy that is set for the registry as a whole differs from
the policy that is set for an individual organization or account, the stricter policy
applies. For example, suppose registry policy specifies a minimum password length
of six characters and policy for the organization named classic specifies eight
characters. If you create the account bach cantata classic, the stricter policy (in
this case, the organization policy) applies, and the account password must be at
least eight characters long. Table 20 lists the stricter policy for each policy type.

Table 20. Stricter Standard Policies

For This Type of Policy... This Is the Stricter Policy...

Password expiration date The shorter expiration period.

Password lifespan The shorter lifespan.

376 OSF® DCE Administration Guide— Core Components

Table 20. Stricter Standard Policies (continued)

For This Type of Policy... This Is the Stricter Policy...

Account lifespan The shorter lifespan.

Password length The greater length.

Password consisting of all spaces The password cannot consist of all spaces; it
must include some characters

Password consisting of all alphanumerics The password cannot consist of all
alphanumerics; it must include some
nonalphanumeric characters

Maximum ticket renewable The shorter time (Note: Renewable ticket
functionality is not currently used by DCE
RPC when refreshing service tickets.
However, it is supported by the DCE Security
Server and is useful for Kerberos V5
applications that use the DCE Security
Server as a KDC.)

Maximum ticket lifetime The shorter time.

When the registry is created, standard policies are by default at their most
permissive state; that is, the password expiration date is none , password and
account lifespans are unlimited , the minimum password length is 0, and passwords
can consist of all spaces and all alphanumerics. The maximum ticket lifetime is set
to 10 hours. (Maximum ticket renewable is not currently used.) To implement stricter
policies, you must use the registry modify command.

The Effects of Changes on Existing Policies

Except for the password format policies described in “Password Format” on
page 375, policy changes affect all existing accounts and all accounts that you
create after the change.

Changes to password format policies, such as password length, whether passwords
can consist of all spaces, and whether passwords can consist of all alphanumeric
characters, affect only passwords for those accounts that are created after the
policy is changed. The changes have no effect on existing passwords. For example,
if you change the minimum password length policy to enforce a longer length
password, existing passwords that are shorter than the length specified by the new
policy are unaffected. They do not need to be changed, but any new passwords
that are created must adhere to the new policy. However, the next time you change
an existing password, the longer length policy is enforced.

Displaying and Setting Standard and Authentication Policies

To display policy:

v For the registry as a whole, use the dcecp registry show command with the
-policies option.

v For an individual organization or account, use the dcecp organization show
command with the -policies option (for standard policies) or the dcecp account
show command with the -policies option (for authentication policies).

To set policy:

Chapter 35. Maintaining Policies and Properties 377

v For the registry as a whole, use the dcecp registry modify command. The
following sample command uses the pwdlife option to set the password lifespan
policy for the registry as a whole to 180 days:
dcecp> registry modify -pwdlife 180
dcecp>

v For an individual organization or account, use the dcecp organization modify
command for standard policies or the dcecp account modify command for
authentication policies. The following sample command uses the -pwdlife
attribute option to set the password lifespan policy for the organization classic to
unlimited :
dcecp> organization modify classic -pwdlife unlimited
dcecp>

Note that the previous examples all use attribute options. You can also set policy by
using the dcecp registry modify , dcecp account modify , and dcecp
organization modify commands with the -change option and attribute lists. For
example, to use an attribute list to set the password lifespan policy for the
organization classic to unlimited , the command would be as follows:
dcecp> organization modify classic -change {pwdlife unlimited}
dcecp>

Properties

The dcecp registry modify command sets properties for the registry as a whole.
The properties that you can set are described in the following subsections.

Default Ticket Lifetime Property

The default ticket lifetime is the default lifetime in hours for tickets that are issued to
principals in the registry.

You set default ticket lifetimes with the dcecp deftktlife attribute in the following
form:
deftktlife hours

where hours a number indicating the number of hours in the lifetime.

Hidden Password Property

The hidden password property determines whether encrypted passwords are
displayed or not. You set the hidden password property with the dcecp hidepwd
attribute in the following form:
hidepwd {yes | no}

where yes displays an * (asterisk) in place of the encrypted password in command
output and in files where passwords are displayed, and no displays the hidden
password.

Minimum Group ID Property

The minimum group ID property is the starting point for group IDs that are
automatically generated by the DCE Security Service when a group’s account is
added to the registry. (You can explicitly enter a lower group ID than this number; it
applies only to automatically generated numbers.)

378 OSF® DCE Administration Guide— Core Components

You set the minimum group ID property with the dcecp mingid attribute in the
following form:
mingid integer

integer is the starting ID number.

Minimum Organization ID Property

The minimum organization ID property is the starting point for organization IDs that
are automatically generated by the security service when an organization’s account
is added to the registry. (You can explicitly enter a lower organization ID than this
number; it applies only to automatically generated numbers.)

You set the minimum organization ID property with the dcecp minorgid attribute in
the following form:
minorgid integer

where integer is the starting ID number.

Minimum UNIX ID Property

The minimum UNIX ID property is the starting point for UNIX IDs that are
automatically generated by the security service when a principal’s account is added
to the registry. (You can explicitly enter a lower UNIX ID than this number; it applies
only to automatically generated numbers.)

You set the minimum organization ID property with the dcecp minuid attribute in
the following form:
minuid integer

where integer is the starting ID number.

Maximum UNIX ID Property

The maximum UNIX ID property (maxuid attribute) lets you set the highest number
that can be supplied as a UNIX ID when the accounts for principals are created.
This maximum applies to both the system-generated and user-entered UNIX IDs.

You set the maximum UNIX ID property with the dcecp maxuid attribute in the
following form:
maxuid integer

where integer is the starting UNIX ID.

Minimum Ticket Lifetime Property

The minimum ticket lifetime is the minimum amount of time in minutes before the
principal’s ticket must be renewed. This renewal is performed automatically with no
intervention on the part of the user. The shorter you make the minimum ticket
lifetime, the greater the security of the system. However, extremely frequent
renewal can degrade system performance. The minimum ticket lifetime that you set
needs to take into consideration system performance and the level of security that
your cell requires.

Chapter 35. Maintaining Policies and Properties 379

You set the minimum ticket lifetime with the dcecp mintktlife attribute in the
following form:
mintktlife integer

where integer is a number that indicates the number of minutes in the minimum
ticket lifetime.

The minimum ticket lifetime can be set only as a registry property. It cannot be set
for individual accounts. (Contrast this with the maximum ticket lifetime property,
which is set with the dcecp registry modify or account modify commands.)

Displaying and Setting Properties

To display registry properties, use the dcecp registry show command.

To set registry properties, use the dcecp registry modify command. The following
sample command uses the maxuid option to change the the maximum UNIX ID
property to 67899:
dcecp> registry modify -maxuid 67899
dcecp>

Note that the previous example uses an attribute option. You can also set properties
by using the dcecp registry modify command with the -change option and
attribute lists. For example, to use an attribute list to set the maximum UNIX ID
property to 67899, the command would be
dcecp> registry modify -change {maxuid 67899}
dcecp>

380 OSF® DCE Administration Guide— Core Components

Chapter 36. Performing Routine Maintenance

This chapter describes security maintenance procedures that should be performed
on a regular basis, such as

v Adding new users to the registry

v Creating overrides for individual machines

v Changing the master key

v Backing up and restoring the database

v Updating the /etc/passwd and /etc/group files so that they are consistent with
the registry

Adding Accounts

To add new user accounts to the registry, you must have the appropriate
permissions to the registry (see “Chapter 41. Accessing Registry Objects” on
page 421). Once you have the appropriate permissions, you can proceed as follows
to add accounts:

1. If the principal to be used in the account does not already exist, execute the
principal create command to add the principal.

2. Execute the group create command to add the group to be used in the account
if this group does not already exist.

3. Execute the organization create command to add the organization to be used
in the account if this organization does not already exist.

4. Finally, execute the account create command to add the account.

Overriding Entries in the Local Registry

You can override registry entries for local machines. By using overrides, you can,
for example, prevent individuals and groups from logging into a particular machine,
establish local root passwords, and tailor local user environments. The override
information is in effect for the local machine only and has no effect on the account
information that is stored in the registry.

The override mechanism provides a high level of local autonomy and allows
individual users to control their own machines. For example, an administrator who is
responsible for a group of machines can use the override facility to restrict access
to those machines. The administrator can allow access to specific groups, or the
administrator can allow access to everyone except specific groups or principals.

How Overrides Work

The passwd_override administrative file that is stored in the local machine’s
dcelocal/etc/security directory contains override information. By using this file, you
can enter overrides for the following:

v Passwords

v GECOS information

v Home directories

v Login shells

v Group memberships

381

v UNIX IDs for principals

The override information that you enter is in effect only for the local machine, which
is the machine on which the passwd_override file is stored. When a user logs into
a machine with an override file, any information for the user’s account in the
override file replaces the pertinent information obtained from the registry.

For example, assume that the registry account for bach specifies a Korn shell at
login. Since bach normally logs into a machine that can run a Korn shell, this is fine
for a majority of situations. However, bach occasionally works for another
department and logs into a machine that cannot run a Korn shell. To accommodate
bach ’s needs, you can create an override file on the machine that cannot run the
Korn shell. The override can specify a Bourne login shell. Then, if bach logs into
the machine that can run a Korn shell, registry data is used and a Korn shell is
invoked. When bach logs into the machine that cannot run a Korn shell, override
data is used and a Bourne shell is invoked.

The passwd_override File Format

Entries in the passwd_override file have the following format:
principal_name:passwd:principal_uid:group_uid:GECOS:home_dir:shell

where:

principal_name
A keyfield that contains a principal name that identifies the principal to
whose account the override applies. Enter principal_name to apply the
override only to the account for the principal’s primary name and not to any
accounts for the principal’s aliases.

You must enter one of the keyfields (principal_name, principal_uid, or
group_uid) to identify the account(s) to which the override applies.

passwd
The encrypted password. If you specify an override, the password that you
enter here is in effect for this local machine only.

You can also specify OMIT in the passwd field to disallow login on the local
machine. The use of OMIT in conjunction with an option to the
passwd_export command prevents the inclusion of the user in the
password file created by passwd_export . (See “Omitting Users from the
Local Password Files” on page 386.)

principal_uid
The principal_uid field, which contains a UNIX ID that specifies the local
identity of a principal, can function as a keyfield when the principal_name
keyfield is not entered, or as a field containing an override when entered in
conjunction with principal_name.

Enter principal_uid and not principal_name when you want to apply the
overrides to all of a principal’s accounts, including any accounts for the
principal’s aliases. The principal_uid keyfield is especially useful for
overrides to root . For example, if root has an alias of virtuoso , an override
that is keyed by principal name applies only when root logs in as root . An
override that is keyed by root’s principal_uid applies when root logs in as
root , as virtuoso , and under any other alias.

Enter principal_uid and principal_name to override the UNIX ID of the
named principal.

382 OSF® DCE Administration Guide— Core Components

group_uid
The group_uid field, which contains a group UNIX ID, can function as a
keyfield when no other keyfields are entered, or as a field containing an
override when entered in conjunction with principal_name or principal_uid.

Enter group_uid and no other keyfield (principal_name or principal_uid) to
apply the override to all members of the group that is identified by
group_uid. In this instance, the group_uid field functions as a keyfield,
identifying the accounts to which to apply the overrides; that is, accounts
whose principal is a member of the specified group.

Enter group_uid and principal_name to change the group of the principal
that is identified by principal_name to the group that is identified by
group_uid. The change applies only to the account for the principal’s
primary name, not to any accounts for the principal’s aliases. Enter
group_uid and principal_uid to apply the group override to all of the
principal’s accounts, including any for the principal’s aliases. In these
instances, the group_uid field functions as a field that supplies override
information, not as a keyfield.

GECOS
The account’s GECOS field. If you specify an override, it is reflected in the
information that is displayed by the UNIX finger command.

home_dir
The account’s home directory. If you specify an override, the directory that
you specify is the account’s home directory on this machine only.

shell The shell that is invoked when the account logs in. If you specify an
override, the shell that you specify is invoked at login to this machine.

The group_override File Format

This section explains the group_override file.

Description

The /opt/ dcelocal/etc/group_override administrative file lets you override the
UNIX group ID for a group similar to the way in which the passwd_override file
permits overriding information in the network registry database.

The group_override file is stored on each machine. Any changes you make to it
are in effect for the local machine only; they have no effect on the centralized
registry. You might find working with file group_override especially useful in
overriding the default group definitions supplied with the registry if they do not
match your local UNIX system.

File Format

The format of the entries in file group_override is similar to the format of the
entries in the UNIX group file. This format is
group_name:passwd:group_uid:members

In this entry, group_name and group_uid are keyfields. You must enter one to
identify the group to which the override applies. The keyfield is used to perform a
lookup in the override file when you use the passwd_export command. The lookup
is performed in order as the entries are specified in an override file: first by group

Chapter 36. Performing Routine Maintenance 383

name, then by group UNIX ID. If you specify both keyfields in an override entry, the
group name is used as the lookup key; subsequent fields are used as overrides.

Field Descriptions

The following list describes each entry in the file group_override :

group_name
A keyfield that contains the name that identifies the group to which the
override applies.

passwd
This field specifies the encrypted password. If you specify an override in
this field, the password you enter is in effect for this local machine only.

The use of OMIT along with an option to the passwd_export command
prevents the inclusion of this group in the group file created by the
passwd_export command. This effectively disallows newgrp commands to
this group on the local machine. (See “Leaving Fields Blank” for details.)

group_uid
A UNIX group ID. This field can function as a keyfield when no other
keyfields are entered. It can also function as a field containing an override
when entered along with group_name. The group_uid value specifies the
local override of the group ID supplied by the network registry server.

members
This field specifies a comma-separated list of members of the group. The
contents of this field will override information in the registry when the
passwd_export command creates an /etc/group file. Note that, to specify
a null membership, as opposed to indicating that no override is required,
use an * (asterisk) for this field.

Leaving Fields Blank

If you do not want to override an item, leave its field blank, separating each blank
field with a : (colon). Note that, to override a group with a null membership list,
enter an asterisk for the members field.

Using OMIT

If you specify OMIT and issue a passwd_export command with the -x option, then
the named group will not appear in the /etc/group file produced by the
passwd_export command. Subsequent to this, users will not be able to issue a
newgrp command to this group on the local machine.

The ls command is likewise affected. For example, the following command
accesses the group file to obtain additional information about a group:
ls -lg

If the group is omitted, no group entry will exist and no information will be available.
For this reason, you should use OMIT to omit groups from file /etc/group only if
your user community is very large and either of the following conditions occur:

v The group file is taking up too much space.

v Group ID-to-name mapping is too slow (during an ls -lg command, for example).

384 OSF® DCE Administration Guide— Core Components

Examples

To override the group ID of group kmem to be 3, use the following entry:
kmem::3:

To override the group password and membership for group system to the single
account root , use the following entry:
system:*::root

Creating Override File Entries

To create override file entries, edit the passwd_override file and supply the
override entries. The entry must identify the account (or accounts) to which the
override applies by specifying one of the following keyfields:

principal_name
The name of the specific principal to which to apply the overrides. The
override applies only to the account for the principal’s primary name. For
example, if you specify mahler as the principal name in an override entry,
the overrides apply only to principal mahler ’s account, and not to any
accounts for mahler ’s aliases.

principal_uid
A UNIX ID that identifies the accounts to which to apply the override if
principal_name is not specified. The override is applied to all accounts for
the principal that is identified by principal_uid, including any accounts for
the principal’s aliases. For example, suppose that principal mahler has a
UNIX ID of 2195. If you specify 2195 as the key of the entry, the overrides
apply to all accounts that are associated with that UNIX ID. Because a
principal’s primary name and aliases carry the same UNIX ID, this means
that the overrides apply to accounts for the principal’s primary name and all
aliases.

group_uid
A UNIX ID that identifies the group to which to apply the overrides if neither
principal_name nor principal_uid are specified. The overrides are applied to
all accounts for all principals that are members of the identified group.

The principal_name field always acts as the keyfield and cannot be overridden. If
you enter principal_name, it identifies the specific account to be overridden. The
principal_uid or the group_uid field can act as the keyfield or they can act as
override fields. Only one of the possible keyfields is used as a key for any one
entry; the others (if entered) are used as override fields. The principal_name field
takes precedence, followed by principal_uid, and finally group_uid.

For example, if you enter principal_uid and do not enter principal_name,
principal_uid is used as the keyfield. If you enter principal_uid and principal_name,
principal_name is used as the keyfield and principal_uid is used as an override
field.

If you enter the group_uid field and do not enter any other keyfields (
principal_name or principal_uid), group_uid is used as the keyfield, and the
overrides apply to the accounts of all members of the group. If you enter
principal_name and group_uid, principal_name is used as the keyfield, and the
group affiliation of the named principal is overridden by the group that is identified
by the group UNIX ID.

Chapter 36. Performing Routine Maintenance 385

Leaving passwd_override File Fields Blank

If you do not want to override an item in the passwd_override file, leave its field
blank, separating each blank field with a : (colon). You must enter one of the
keyfields, however, to identify the principal or group for which you are creating
overrides. For example, an entry to override the home directory for the account
identified by mozart looks like this:
mozart:::::/aria/wolfgang:

You must enter the colons that are associated with any blank trailing fields. In the
preceding example, a colon is required for the shell field, which is the remaining
field after the home directory field.

Specifying Passwords for a Specific Machine

Manually edit the password entry in the passwd_override file on the local machine
to create an entry in the override file to override passwords on the local machine.
The password that you enter must be encrypted, but you can copy the encrypted
password from the /etc/passwd file or you can write a program that generates
encrypted passwords.

When you override a principal’s password, only the principal’s local credentials are
obtained at login, not the principal’s network credentials. Without network
credentials, the principal cannot access the network registry and obtain the
information that is normally provided at network login. Therefore, you must supply
all of this information in the password_override file entry. For overrides to
passwords, you must enter all of the fields in the override entry, including all
keyfields.

The following example shows a passwd_override file entry that changes a specific
machine’s password for user mozart ’s account:
mozart:sq1Rc1Urrb1L6:678:893:Wolfgang A. Mozart:/aria/wolfgang:/bin/csh

Note: If your password is overridden and you then use rlogin or rsh to log in
remotely to the machine with the overrides, you are prompted for a
password, regardless of what is in either the /etc/hosts.equiv or .rhosts file.

Preventing Login to a Machine

To prevent users from logging into a machine, create an override entry with an
invalid string in the passwd field. Because the passwd field contains an encrypted
password, any character string that is not exactly 13 characters in length can be
used as an invalid password. For example, the following entry in the
passwd_override file supplies exclude as a password. This string of less than 13
characters prevents members of the group that is identified by a UNIX ID of 25 from
logging in.
:exclude::25:::

Omitting Users from the Local Password Files

An invalid password entry in the passwd_override file prohibits users from logging
into the machine on which the file exists. However, the invalid entry OMIT has a
special meaning. Just as with any other invalid password, if you enter OMIT, the
user cannot log in. Additionally, however, if you maintain the standard /etc/passwd

386 OSF® DCE Administration Guide— Core Components

and /etc/group files and used the passwd_export command to keep these files
consistent with the registry database, you can specify that users with a password of
OMIT be excluded from the /etc/passwd file. (See “Ensuring Consistent Local
Files” on page 391 for more information on the passwd_export command.)

Also, be aware that, if you have omitted users from the /etc/passwd file,
information about those users is not available to any programs that use the
password file. For example, the ls -l and the finger commands both access the
password file to obtain further information about a user identified by a UNIX ID. If
the user is omitted, no password entry exists and no information is available on that
user.

Specifying a Home Directory and Login Shell for a Machine

To change an account’s home directory and login shell for a specific machine,
create an override entry with a home directory name and a login shell name. For
example, the following entry changes the home directory and login shell for user
mozart ’s account:
mozart:::::rondo/mozart:/bin/ksh

Overriding a Principal’s Group Affiliation

To override a principal’s group affiliation, create an override entry that contains the
principal’s name or UNIX ID as a key and the UNIX ID of the group that is to be
used as the override. Use the principal’s name as a key to apply the overrides only
to the account for the principal’s primary name. Use the principal’s UNIX ID as a
key to apply the overrides to all of the principal’s accounts, including any accounts
for the principal’s aliases. For example, the following entry overrides the group that
is normally associated with the account for principal mozart :
mozart:::356:::

This override does not apply to any accounts for any of mozart ’s aliases. To apply
the overrides to those accounts, the entry must be keyed by mozart ’s UNIX ID
(567), as follows:
::567:356:::

Applying Overrides to All Members of a Group

To apply overrides to all members of a specific group, create an override entry that
contains the group’s UNIX ID as a key and the items to override. For groups, you
can override passwords, GECOS information, home directories, and shells. For
example, the following entry makes /sonata/piano the home directory for all
members of the group that is identified by UNIX ID 356:
:::356::/sonata/piano:

Be sure not to include the principal_name or principal_uid keyfields. If you do, the
principal name or UNIX ID that you supply will be used as a keyfield, and the group
UNIX ID will be used to override that principal’s group affiliations.

Chapter 36. Performing Routine Maintenance 387

How passwd_override Handles Multiple Override Entries

When more than one override entry applies to an account, the entry with the most
specific account identifier (that is, either a principal UNIX ID, a group UNIX ID, or a
principal name) is selected. Principal names are the most specific, followed by the
principal UNIX ID and group UNIX ID.

For example, assume that the override file contains the following two entries that
override the login shells:
mozart::::::/bin/ksh
:::25:::/bin/csh

If a principal logs in as mozart , the override that is keyed by mozart is in effect. In
this case, the principal (mozart) is more specific than the group (25).

Changing the Registry’s Master Key

All passwords stored in a registry are encrypted by a master key. Note that the
master key is created when you create the registry database during system
configuration.

You can use the dcecp registry modify command with the -key option to change
the registry’s master key and to reencrypt all passwords with the new master key.
Each replica (master and slave) maintains its own master key to access the data in
its copy of the registry.

You should change each replica’s master key on a regular basis. Before you run
either program to do this, ensure that you are logged into an administrative account.

The following command line changes the master key and reencrypts all the
passwords for the replica art_server_1 :
dcecp> registry modify /.../giverny.com/subsys/dce/sec/art_server_1 -key
dcecp>

Validating the Authenticity of the DCE Security Service

The secval process within the DCE daemon can confirm that the DCE security
server is an authentic server. An illegitimate DCE security server could give a
malicious user root access on a machine by returning a counterfeit local system
identity. A secval ping operation confirms the authenticity of the DCE security
server by performing an authenticated RPC to the secval process. A successful
return (1) indicates that the security server used all of the correct passwords
needed for the authenticated RPC to succeed.

You can perform a secval ping operation on the local host or you can supply an
argument to operate on a remote host. Because remote hosts might use different
security servers, performing secval ping operations on remote hosts provides a
way to test the authenticity of other security servers operating in a cell.

The following example illustrates a secval ping operation to the secval process on
remote host charon :
dcecp> secval ping /.:/hosts/charon/config/secval1
dcecp>

388 OSF® DCE Administration Guide— Core Components

Backing Up and Restoring the Registry Database

Use the exact procedures that are described here to back up the registry database
to prevent backups from arriving at the master during the backup.

Only the master replica database and its master key file need to be backed up. Use
the procedures that are described in the following subsections when you back up
the entire disk on which the master replica and its master key are stored, and when
you back up only the master’s database files and its master key file.

Procedures for Backing Up the Registry Database

To run the backup procedures, ensure that you are logged into DCE via an
administrative account. Then, run the DCE control program to do the backup. The
backup steps are as follows:

1. Enter the registry disable command to set the master replica to the
maintenance state. The following command sets the master registry in the cell
giverny.com to maintenance state:
dcecp> registry disable /.../giverny.com/subsys/dce/sec/oddball
dcecp>

Setting the master replica to the maintenance state causes the master to save
its database to disk and refuse all updates.

2. Back up the master registry by backing up either the entire volume or the
dcelocal/var/security/rgy_data tree (the registry) and the
dcelocal/var/security/.mkey file, which is the file that contains the master key
used to encrypt all keys in the registry. Note that, because the
dcelocal/var/security/.mkey file contains the master key, restoring a backup of
the registry database is useless unless the dcelocal/var/security/.mkey file is
also restored.

The exact commands that are used for the backup are a matter of personal
preference. However, if you write both the database and the master key file to
the same tape, store the tape in a locked area with restricted access.
Alternatively, you can write the database and the key file to separate tapes and
store each tape in a different location.

3. When the backup completes, take the master replica out of maintenance state,
as follows:
dcecp> registry enable /.../giverny.com/subsys/dce/sec/oddball
dcecp>

The security server resumes accepting updates.

Note that the previous examples supplied the name of the registry master site to
the registry enable and registry disable commands. If you do not supply a
registry site name, the commands use the site named in the _s(sec) variable. If this
variable is not set, the commands use the master registry of the machine’s default
cell. See “Setting the _s(sec) Variable” on page 390 for more information.

Procedure for Restoring the Registry Database

This section provides instructions for restoring the master replica’s database files
and master key file. The procedure assumes that the database is being restored to
the same machine from which it was backed up, and that you are using the DCE

Chapter 36. Performing Routine Maintenance 389

control program. If you are moving the database to a different machine, follow the
instructions in “Chapter 37. Handling Network Reconfigurations” on page 393.

To restore the registry database to a machine, perform the following steps:

1. Log in as root at the master registry site.

2. If secd is running, stop it by issuing the registry stop command. When you use
this command, you must supply the fully qualified name of a specific replica as
an argument. The following sample command stops the secd named master :
dcecp> registry stop /.../giverny.com/subsys/dce/sec/oddball
dcecp>

3. Copy the backup files from the backup media to the machine. If you have
backed up only the registry data files and the master key files, be sure to copy
the registry database to dcelocal/var/security/rgy_data and the master key file
to dcelocal/var/security/.mkey . Note that, because the
dcelocal/var/security/.mkey file contains the master key, restoring a backup of
the registry database is useless unless the dcelocal/var/security/.mkey file is
also restored.

4. Restart the server by invoking secd with the -restore_master option, as
follows:
dcelocal/bin/secd -restore_master &

This command starts secd and causes the master to mark all slaves to be
reinitialized.

5. Verify that secd starts automatically at system startup.

Note: If you are restoring only a master key file and have not changed the master
key, you can simply copy the master key file from the backup media without
performing all of the other steps that are in the restore procedures.

Setting the _s(sec) Variable

You can supply the name of the registry site to bind to as an argument to the
dcecp commands that operate on the registry. If you do not supply a name, the
command binds to the replica named in the _s(sec) variable. If this variable is not
set, the command binds to the cell’s master replica. You can set the _s(sec)
variable and then use that replica as the default replica for dcecp registry
commands. To do so, use the set command as shown in the following sample that
sets the default replica to the master replica (named slave_3) in the cell
giverny.com :
dcecp> set _s(sec) /.../giverny.com/subsys/dce/sec/slave_3
dcecp>

The name of the new default replica that you supply as an argument to the set
command can be in any of the following forms:

v A cell name (for example, /.../dresden.com)

If you enter a cell name, the named cell becomes the default cell. The DCE
control program randomly chooses a replica to bind to in the named cell, and that
replica becomes the default replica.

v The global name given to the replica when it was created (for example,
/.../dresden.com/subsys/dce/sec/rs_server_250_2)

A global name identifies a specific replica in a specific cell. That cell becomes the
default cell, and that replica becomes the default replica.

390 OSF® DCE Administration Guide— Core Components

v The replica’s name as it appears on the replica list of the current default replica
(that is, its cell-relative name; for example, subsys/dce/sec/rs_server_250_2)

That replica becomes the default replica, and the cell in which the replica exists
becomes the default cell.

v The network address of the host on which the replica is running (for example,
ncadg_ip_udp:15.22.144.248)

The replica on that host becomes the default replica, and the cell in which the
host exists becomes the default cell.

Some of the dcecp commands can act only on the master replica and thus require
binding to the master. If you execute a command that acts only on the master and
the master is not the default replica, in most cases dcecp automatically attempts to
bind to the master replica in the current default cell. In other cases, dcecp displays
an error message, and the command fails.

Ensuring Consistent Local Files

The passwd_export command makes the standard /etc/passwd and /etc/group
files on the local machine consistent with the registry database. Run the
passwd_export command on a regular, but staggered, basis preferably as part of
cron processing. If passwd_export succeeds in creating the new password and
group files, it saves the current files as backups that are named passwd.bak and
group.bak . If it fails, it leaves the current files as is.

The passwd_export command has the following syntax:
passwd_export [-n][-d directory_name] [-x] [-m max_entries] [-s] | [-h [elp] [-v]

where:

-n Specifies that passwd_override and group_override file entries should be
ignored. Without this flag, passwd_export applies the override entries from
both files to the local password and group files that it creates.

-d directory_name
Specifies the name of a directory in which to store the local password and
group files that are created by passwd_export . If you do not enter this
option, the files are stored by default in the /etc directory on the local node.

For example, to store the files in the directory that is called /etc/locals ,
enter the command in the following form:
dceshared/bin/passwd_export -d/etc/locals

-x Prohibits the creation of entries for users with password or group overrides
(on the local machine) that specify OMIT as their encrypted password. Use
the -x option to exclude omitted users or groups from the password and
group files that are created by passwd_export . To omit a user, you must
create an override entry for the user and enter the word OMIT as the user’s
password field entry. Omitted users are unable to log into the local machine.
(See “Omitting Users from the Local Password Files” on page 386.) To omit
a group, create an override entry for the group and enter the word OMIT as
the group’s password field entry.

-m max_entries
Sets the maximum number of registry entries that are put in the
/etc/passwd and /etc/group files.

Chapter 36. Performing Routine Maintenance 391

-s Sorts the entries in the /etc/passwd and /etc/group files by UNIX number.
If this option is not specified, the entries are in the random order in which
they are retrieved from the registry.

-h[elp]
Displays help information.

-v Runs in verbose mode.

392 OSF® DCE Administration Guide— Core Components

Chapter 37. Handling Network Reconfigurations

This chapter describes the procedures to handle network reconfigurations that
change the locations of registry replicas. Specifically, this chapter covers the
following:

v Changing the master registry site

v Removing a node from the network

v Handling network address changes

To perform the procedures in this chapter, you must be logged into the network
registry account via an administrative account.

Changing the Master Replica Site

The machine that runs the master replica server must be available at all times. If
you are planning to remove this machine from your network or to shut it down for
an extended period, you need to change the site of the master replica.

The preferred method for changing the master registry site is to use the dcecp
registry designate command to reverse the roles of the master server and a slave
server. In other words, make the master the slave and the slave the master.

When you invoke the dcecp registry designate command, the following occurs:

1. The current master sends all pending updates and its propagation queue to the
replica designated as the new master.

2. The designated new master reads the current master’s replica list to obtain
information required for it to manage propagation to the slaves.

3. When the designated new master has obtained all necessary information from
the current master, it becomes the new master, and the current master becomes
a slave.

Because this orderly and complete transfer of information ensures that no data is
lost, the dcecp registry designate command is the preferred method to move the
master registry to another machine when the registry servers at the master and
slave sites are operating normally. Note that the dcecp registry designate -master
command is also available to change a replica from a slave to the master. However,
because the dcecp registry designate -master command can cause data to be
lost, use it only when the current master has been destroyed. It is not
recommended in instances when the master is unreachable because of a network
failure or because the master has gone down temporarily.

Follow these steps to change the site of a master replica:

1. Choose the new master site. A slave replica must exist at this site. If necessary,
use the dce_config command or your platform’s equivalent to configure a slave
machine.

2. Issue the Tcl set command to set the default replica to the current master
replica. In the following example, the master replica is set to the replica named
oddball in the cell giverny.com :
dcecp> set _s(sec) /.../giverny.com/subsys/dce/sec/oddball
dcecp>

3. Issue the registry designate command to reverse the roles of the master and
slave. This command takes the name of the replica to be made the new master

393

as an argument. The following example makes the replica named
/.../giverny.com/subsys/dce/sec/music the new master:
dcecp> registry designate /.../giverny.com/subsys/dce/sec/music
dcecp>

4. Verify that the master site changed. Do this by issuing the registry show
-replica command.

Removing a Server Machine from the Network

If you are planning to remove a machine that runs a slave replica from the network
or to shut the machine down for an extended period, delete the replica at that site.

If you are removing a node running the master server, you must change the master
server site as described previously before you remove the node.

Use the dcecp registry delete command to delete a slave replica. When execute
this command, the master performs the following actions:

1. Marks the replica as deleted.

2. Propagates the deletion to all replicas on its replica list.

3. Delivers the delete request to the replica.

4. Removes the replica from its replica list.

The following sample command deletes the slave replica named
/.../giverny.com/subsys/dce/sec/art_1 :
dcecp> registry delete /.../giverny.com/subsys/dce/sec/art_1
dcecp>

When you issue this command, dcecp binds to the master replica that is in the
current cell, if necessary; then the master replica instructs the slave replica to
delete itself.

To verify that the slave is deleted, issue the dcecp registry catalog command.
When the master has received the request to delete the slave, the slave appears
on the replica list as marked for deletion. When the replica has actually been
deleted, it no longer appears on the list.

Handling Network Address Changes

When secd starts, master and slave replicas can detect address changes and can
perform the necessary updates to the master’s replica list and to the cell
namespace. Generally, all that is required on your part to handle network address
changes is to update the pe_site file. However, if the network address of the
master and a slave replica change simultaneously, your intervention is required.
This subsection describes how to update the pe_site file and how to handle
simultaneous address changes.

Updating the pe_site File

Whenever the master’s or a slave’s network address changes, you must update the
/opt/ dcelocal/etc/security/pe_site file on that host before restarting secd . This file,
which exists on each machine in the cell, is required for binding by the DCE
Security Service to itself. For the master replica, the file contains the cell name and

394 OSF® DCE Administration Guide— Core Components

the name of the master. For slave replicas, the file contains the cell name, the
name of the master replica, and the name of the replica itself.

If the master replica address changes, update the pe_site file on every node in the
cell that runs a security server (including the master) with the new address for the
master. If a slave address changes, update only that slave’s pe_site file to reflect
its changed address.

Handling Simultaneous Address Changes

If an address change occurs simultaneously for the master replica and a slave
replica, the master and slave will not be able to reach each other while both are
trying to notify the other of the changed address. To avoid this problem, make sure
the address change of one replica (either master or slave) is propagated to all
replicas before the other address is changed. Make one address change. Then, use
the dcecp registry show -replica command to view the replica list at both the
master site and the slave replica site. When the new address is displayed, on both
replica lists, it is safe to proceed with the next network address change.

If you are unable to prevent simultaneous network address changes for the master
and a slave, the only way to restore communication between the master and slave
is to delete the slave, then recreate it. Delete the slave by using one of the
following methods, depending on your circumstances:

v If you anticipate a simultaneous address change, while the master and slave are
still communicating, use the set command to bind to the master and then the
dcecp registry delete command to delete the slave replica.

v If secd is running at the master and slave sites, but the master and slave are not
communicating, first use the set command to bind to the slave and then the
registry destroy command to destroy the slave. Then use set to bind to the
master and the registry delete -force command to remove the replica list entry
for the slave.

v If secd is not running at the slave site or if you are unable to bind to the slave
site, use the procedure for recreating a replica described in “Chapter 40.
Troubleshooting Procedures” on page 413.

Chapter 37. Handling Network Reconfigurations 395

396 OSF® DCE Administration Guide— Core Components

Chapter 38. Setting Up the Registry

This chapter describes the steps that you take to set up the registry in the DCE
Security Service. Some of these steps are automatically handled by the dce_config
script during DCE installation and configuration; others are performed by you, using
the DCE utilities and control programs. The steps for setting up the registry are as
follows:

1. Plan where the security service components are to be located in your network.

2. Create the master registry database (performed by the dce_config script during
system configuration).

3. Start the master replica (performed by the dce_config script during system
configuration).

4. Populate the registry database (performed by you using the dcecp rgy_edit
command).

v Set policies and properties.

v Add names and accounts.

5. Create a slave database and start the slave replica (performed by the
dce_config script during system configuration).

6. Set up cron to run passwd_export on all of the DCE-based machines to
ensure that the local password and group files are kept consistent with the
registry (performed by you using standard UNIX commands). The
passwd_export command is described in “Chapter 36. Performing Routine
Maintenance” on page 381.

Because the registry uses the Cell Directory Service (CDS) to obtain information
about network resources, this chapter assumes that your network is configured
properly for CDS operation.

Planning Sites for DCE Security Service Components

The first thing that you do to configure the security service in your network is
choose the sites for the master replica and any slave replicas of the registry. These
sites will run secd , the security server. Machines running secd must be up and
available at all times. It is especially important that the machine where the master
replica runs be available throughout the network.

The machine size that is required to run secd depends on the platform and
operating system. As a very general rule, choose machines large enough to
accommodate future growth of the registry database. The machines must have
enough disk space for the registry database and enough backing store so that
processes do not thrash.

When you run the dce_config script, it will configure the master replica site to run
the DCE host daemon (dced), which provides the endpoint mapper service for the
local host, and any required CDS servers.

397

Creating the Master Registry Database

When you initially configure your cell’s security server, the dce_config script
invokes the dcelocal/bin/sec_create_db command to create the master replica.
When sec_create_db creates a new master replica, it initializes its database with
names and accounts. Note that you must be root to run sec_create_db .

The sec_create_db command also creates a registry configuration file, which is
named dcelocal/etc/security/pe_site , that contains the cell name and network
address of the master replica. This file supplies the binding address of the secd
server to clients running on that machine, if the CDS is unavailable.

In the event that you ever need to create a new master registry database, you can
invoke sec_create_db directly. Note that you must be root to run sec_create_db .
Note also that it is highly unusual to recreate a master database, but you may need
to recreate a slave database if the slave is destroyed. The following subsections
describe how to use the sec_create_db command.

The sec_create_db Command Format

The sec_create_db command has the following format:
sec_create_db {-master | -slave} -my[name] my_server_name \
[-k[eyseed] keyseed] [-cr[eator] creator_name] \
[-cu[nix_id] creator_unix_id] [-u[uid] cell_uuid] \
[-p[erson_low_unix_id] unix_id][-g[roup_low_unix-id] unix_id] \
[-o[rg_low_unix-id] unix_id] [-ma[x_unix_id] unix_id] \
[-pa[ssword] default_password][-v[erbose]

where:

-master
Specifies that the master replica’s database should be created. All other
sec_create_db options can be used with the -master option.

-slave Specifies that a slave replica’s database should be created. Only the
-myname , -keyseed , and -verbose options can be used with the -slave
option.

-my [name] my_server_name
This is a name that you assign to the security server (secd) on this
machine. It is used by the name service to locate this cell’s security server.

-k [eyseed] keyseed
This is a character string that you enter to seed the random key generator
in order to create the master key for the database that you are creating. It
should be a string that cannot be easily guessed. The master key is used to
encrypt all account passwords. Each instance of a replica (master or slave)
has its own master key. You can change the master key by using the
dcecp registry modify command or sec_admin master_key command.
(See “Chapter 36. Performing Routine Maintenance” on page 381 for
information on the use of the dcecp registry modify command for
modifying the master key.) If you do not enter this option, sec_create_db
prompts you for it.

-cr [eator] creator_name
This is the name of the registry creator. The registry creator is the initial
privileged user of the registry database. Note that you can give equivalent
privileges to another user at any time by using the dcecp acl modify

398 OSF® DCE Administration Guide— Core Components

command or acl_edit modify command to change the registry database
ACL. When the registry is created, default ACL entries for registry objects
are also created. These entries give the most privileged permissions to the
principal that is named in the -cr option. If the principal that is named as the
registry creator is not one of the reserved names, sec_create_db adds the
principal and an account for that principal. If you do not enter this option,
the initial privileged user of the registry database is root .

-cu [nix_id] creator_unix_id
This is a UNIX number that you specify to be assigned to the registry
creator. If you do not enter this option, the registry creator’s UNIX number is
assigned dynamically.

-u [uid] cell_uuid
This is the cell’s UUID. If you do not enter this UUID, it is assigned
dynamically.

-p [erson_low_unix_id] unix_id
This is the starting point for UNIX IDs that are automatically generated
when a principal is added by using the dcecp registry modify command or
rgy_edit properties command. Note that you can explicitly assign a lower
UNIX ID than this number; this lower limit applies only to automatically
generated UNIX IDs.

-g [roup_low_unix_id] unix_id
This is the starting point for UNIX IDs that are automatically generated
when a group is added by using the dcecp registry modify command or
rgy_edit properties command. Note that you can explicitly enter a lower
UNIX ID than this number; this lower limit applies only to automatically
generated UNIX IDs.

-o [rg_low_unix_id] unix_id
This is the starting point for UNIX IDs that are automatically generated by
the security service when an organization is added by using the dcecp
registry modify command or rgy_edit properties command. Note that you
can explicitly enter a lower UNIX ID than this number; this lower limit
applies only to automatically generated UNIX IDs.

-ma [x_unix_id] unix_id
This is the highest number that can be assigned as a UNIX ID when a
principal, group, or organization is added. No UNIX IDs higher than this
number are assigned automatically, and you cannot specifically enter
numbers higher than this number. The maximum UNIX ID stays in place
until you change it with the dcecp registry modify command or rgy_edit
properties command.

-pa [ssword] default_password
This is the default password that is assigned to the accounts created by
sec_create_db . If you do not specify a default password, -dce- is used.
Note the accounts hosts/ local_host_name/principal_namenone none ,
krbtgt /cell_namenone , and nobody none none are not assigned the
default password, but instead a randomly generated password.

-v [erbose]
Runs in verbose mode and generates a verbose transcript of all activity.

Chapter 38. Setting Up the Registry 399

An sec_create_db Run Example

The following example shows the sec_create_db command that is run to create the
master database and the information that sec_create_db displays as it runs. Note
that, because the -k option is not entered, sec_create_db prompts you for the
master key seed string. This string is not displayed as it is entered.
/work/krb/sec_create_db -v -myname /.../dresden.com/subsys/dce/sec/master
-master
Enter keyseed for initial database master key: <enter up to
1024 characters>

SECD Checkpoint on Tue Sep 27 11:44:12 1994
.... saving rgy
.... saving acct
.... saving person
.... saving group
.... saving org
.... saving replicas
.... saving acl
End SECD Checkpoint on Tue Sep 27 11:44:13 1994
SECD Checkpoint on Tue Sep 27 11:44:15 1994
.... saving rgy
.... saving acct
.... saving person
.... saving group
.... saving org
.... saving acl
End SECD Checkpoint on Tue Sep 27 11:44:17 1994

The Results of sec_create_db

The master registry database that is created by sec_create_db contains the
principals, groups, and organizations listed in Table 21.

Table 21. Initial Persons, Groups, and Organizations

Principal Group Organization

bin bin none

daemon daemon —

dce-ptgt kmem —

dce-rgy mail —

krbtgt/ local_cell_name nogroup —

hosts/ local_host/self none —

mail system —

nobody tcb —

root tty —

sys uucp —

tcb — —

uucp — —

who — —

The accounts that sec_create_db command creates are:

v bin bin none

v daemon daemon none

400 OSF® DCE Administration Guide— Core Components

v dce-ptgt none none

v dce-rgy none none

v hosts/ local_host/self none none

v krbtgt/ cell_name none none

v nobody nogroup none

v root system none

v uucp uucp none

Some of the objects that were initially created by sec_create_db are reserved and
cannot be deleted. These are indicated in the following list.

v The reserved principals are:

– dce-ptgt

– krbtgt/ cell_name

– dce-rgy

v The reserved accounts are:

– dce-ptgt none none

– krbtgt/ cell_name none none

– dce-rgy none none

When you run the sec_create_db command to create the master registry database,
you can name the principal who has the most privileged access to the registry. This
person is known as the registry creator. If the registry creator you name is not one
of the default principals, sec_create_db adds the account rgy_creator none none ,
where rgy_creator is the principal you named as the registry creator. If you do not
name a registry creator, sec_create_db assigns the most privileged registry access
to the root system none account.

With one exception, all of the accounts created by the sec_create_db command
are assigned randomly generated passwords and are marked as invalid. Before
these principals can log into these accounts, you must change the account
passwords and mark the accounts as valid. You can do this by using the dcecp
account modify command. “Chapter 31. Creating and Maintaining Accounts” on
page 325 provides instructions for using the dcecp account modify command to
change all of the attributes for a principal’s account in the registry, including the
principal’s password. Also, dcecp has options to randomly generate new
passwords.

However, the exception is that the account created for the registry creator is valid
and is assigned the DCE default password (-dce-). Change the default password to
ensure the security of the registry creator account.

In addition to the group memberships implied by the accounts that are created by
sec_create_db , the principals are also made members of the groups listed in
Table 22.

Table 22. Group Memberships Created by sec_create_db

The principal... Is a member of the group...

who bin

root system

kmen

tty

Chapter 38. Setting Up the Registry 401

Table 22. Group Memberships Created by sec_create_db (continued)

The principal... Is a member of the group...

sys kmem

mail mail

tcb tcb

“Chapter 30. Creating and Maintaining Principals, Groups, and Organizations” on
page 305 provides instructions for adding principals to groups.

Starting the Master Replica

After dce_config creates the master replica, it starts the master replica. To start the
master replica (secd) explicitly, use the following steps:

1. Log in as root on the machine that will run the master replica.

2. Use ps to ensure that a dced is running on the machine. If one is not, start
one. To do so, ensure you are root and enter
dceshared/bin/dced

3. Start the master replica by entering
dcelocal/bin/secd

Set up secd so that it starts automatically when the machine is rebooted.

Populating the New Registry Database

Once the master replica has been created and started, you must populate the
database by setting policies and procedures and adding accounts.

Setting Policies and Properties

Use the dcecp registry show and dcecp registry modify commands to view
policies and properties and to change them as desired.

Adding Accounts

After a new registry database is created, it contains only the principals, groups,
organizations, and accounts that were added as initial information by
sec_create_db . Use the dcecp account create command to add any other names
and accounts that your site requires. You can do this now or at any time later. See
“Chapter 31. Creating and Maintaining Accounts” on page 325 for information about
adding accounts by using dcecp .

Creating Slave Replicas

After the master replica database has been created and started and its database
has been populated, you run dce_config at the slave sites to create the slave
replicas and start them. To create and start a slave replica, dce_config first
ensures that the sites are running dced , and the appropriate CDS servers. It then
executes the following sec_create_db command:
dcelocal/bin/sec_create_db -slave -myname my_server_name

402 OSF® DCE Administration Guide— Core Components

First, the command creates a database for the new slave replica. The database
consists of only stub files. The command then locates the master replica and adds
the new slave to the master’s replica list. The master marks the new replica for
initialization. Finally, the dce_config script starts secd and ensures that it starts
automatically each time the machine reboots.

You must run dce_config to configure a slave replica at each machine where you
want to run a slave replica.

Verifying that the Replicas Are Running

After the master and slave replicas are in place and started, perform the following
steps to ensure that they are running:

1. Get a list of names of security servers running in the cell:
dcecp> registry catalog
/.../dc.cell.ch.hp.com/subsys/dce/sec/dce6
/.../dc.cell.ch.hp.com/subsys/dce/sec/dce5
dcecp>

2. Look at the propagation information kept by the replica:
dcecp> registry show /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6
-replica
{name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6}
{type slave}
{cell /.../dc.cell.ch.hp.com}
{uuid 07f5c1dc-80ef-11cf-b60c-0800095f6636}
{status enabled}
{lastupdtime 1996-09-17-13:06:53.000-04:00I-----}
{lastupdseq 0.33826}
{addresses
{ncadg_ip_udp 15.22.51.49}
{ncadn_ip_tcp 15.22.51.49}}

{masteraddrs
{ncadg_ip_udp 15.22.48.183}
{ncadn_ip_tcp 15.22.48.183}}

{masterseqnum 0.15724}
{masteruuid 90067612-d3f6-11ce-b773-0800095a49d8}
{supportedversion
secd.dce.1.0.2
secd.dce.1.1}

dcecp>

3. Look at the propagation information that is kept by the master for each slave:
dcecp> registry show /.../dc.cell.ch.hp.com/subsys/dce/sec/dce5 -master
{name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6}
{uuid 07f5c1dc-80ef-11cf-b60c-0800095f6636}
{type slave}
{addresses
{ncadg_ip_udp 15.22.51.49}
{ncadn_ip_tcp 15.22.51.49}}

{propstatus update}
{lastupdtime 1996-09-17-13:06:53.000-04:00I-----}
{lastupdseq 0.33826}
{numupdtogo 0}
{commstate ok}
{lastcommstatus {Successful completion}}

{name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce5}
{uuid 90067612-d3f6-11ce-b773-0800095a49d8}
{type master}

Chapter 38. Setting Up the Registry 403

{addresses
{ncadg_ip_udp 15.22.48.183}
{ncadn_ip_tcp 15.22.48.183}}

dcecp>

404 OSF® DCE Administration Guide— Core Components

Chapter 39. Importing UNIX Accounts to DCE

The passwd_import command creates entries in the registry that are based on
information in the /etc/passwd and/etc/group files. It provides a method of
ensuring account consistency between machines that use the DCE Security Service
and those that do not, and a means of adding an existing UNIX user base to the
registry.

How passwd_import Works

When passwd_import processes entries, it compares group and password file
entries to registry entries. It can find two types of conflicts:

Name Conflicts
These conflicts arise when the same name string is defined in the registry
and the group or password files. The names joe 102 and joe 555 exemplify
such a conflict. The duplicate name can represent the same user or two
different users.

UNIX ID Conflicts
These conflicts arise when the same UNIX ID is defined in the registry and
the group or password files for users with different names. The names joe
102and ann 102 exemplify such a conflict.

These conflicts can be found separately, as in the preceding examples, or together.
For example, a registry entry of joe 102 and a UNIX entry of joe 102 are in conflict.
When a conflict is found, you must either supply the information that is used to
change the password and group file entries or inform passwd_import not to import
that entry. The passwd_import command makes no changes to existing registry
principals, groups, or accounts; but, if you so specify, it will create new principals,
groups, and accounts in the registry that are based on the group and password
files.

The passwd_import Processing Steps

As passwd_import processes entries, it performs the following steps in sequence:

1. It opens the group and password files and establishes a connection to the
registry.

2. It compares the group file entries to groups in the registry. If there are no
conflicts, it creates groups in the registry that correspond to the groups in the
group file.

3. It compares the entries in the password file to principals in the registry. Again, if
there are no conflicts, it

v Creates principals in the registry that correspond to the entries in the
password file.

v Adds the newly created principals to the appropriate groups.

v Creates accounts for the newly created principals.

4. It reexamines the group file and adds the principals as members of any
additional groups that it finds there.

405

The changes to the registry are made individually as each step is processed. If you
specify the -o option, passwd_import adds all newly created registry principals to
the specified organization. If you do not specify the organization, the principals are
added to the organization none .

Registry Entries Created by passwd_import

If an entry exists in the password or group file but does not exist in the registry,
passwd_import creates a new registry entry. For additional registry information,
passwd_import takes the following values:

v For Principal and Group Entries:

– Alias/Primary Name = If the password file contains two entries with the same
UNIX number, passwd_import creates a primary name entry for the first
UNIX number it finds and an alias for each occurrence of the same UNIX
number.

– Full Name = A blank string; no full name is added for the entry.

– Membership List = For new groups only, all principals that are listed in the
group file and all principals with registry accounts that are associated with that
group.

– Project List = Yes (for groups only).

v For Account Entries:

– Account Expiration Date = None.

– Account-Valid Flag = No. Use the dcecp account modify command to
change this flag to y after the password is set.

– Client Flag = Yes.

– Duplicate Certificate Flag = No.

– Forwardable Certificate Flag = Yes.

– GECOS = The same value as the entry in the principal’s GECOS field in the
etc/passwd file.

– Good Since Date = Time of the account creation.

– Home Directory = The same value as the principal’s home directory entry in
the /etc/passwd file.

– Login Shell = The same value as the principal’s login shell entry in the
/etc/passwd file.

– Maximum Certificate Lifetime = Set to the registry authentication policy.

– Maximum Certificate Renewable = Set to the registry authentication policy.

– Password = Randomly generated. Note that you must modify or reset
randomly generated passwords before user authentication is possible.

– Password Date and Time Modified = Set to the date and time
passwd_import was run.

– Password-Valid Flag = No.

– Postdated Certificate Flag = No.

– Proxiable Certificate Flag = No.

– Renewable Certificate Flag = Yes.

– Server Flag = Yes.

– TGT Authentication Flag = Yes.

406 OSF® DCE Administration Guide— Core Components

Note that passwd_import does not set usable passwords for the accounts it
creates. You must use the dcecp account modify command to set passwords
before authentication is possible.

The passwd_import Command Syntax

The passwd_import command has the following syntax:
dceshared/bin/passwd_import [-h][-c] -d pathname [-i] [-o org] \

[-p password] [-u username] [-v]

where:

-h Displays usage information.

-c Runs in check mode; processes the command showing conflicts, but makes
no changes to the registry.

-d pathname
The path to the directory containing the password and group files to be
imported.

-i Specifies that identical name strings are not in conflict, but represent the
same identity.

-o org The name of the organization to be assigned to all principals that are added
to the registry. The default is the organization named none .

-p password
The password for the account with whose privileges
passwd_import will run. If you do not use the -i option, passwd_import
prompts you to resolve the name conflict.

-u username
The principal name of the account with whose privileges passwd_import
will run. This account must have the privileges to access the registry and
add principals, groups, accounts and organizations, and members to groups
and organizations. The principal name and password are used to obtain
network authentication. If you do not supply them, passwd_import prompts
you for them, even if you have already performed a network login.

-v Runs in verbose mode, generating a verbose transcript of all activity.

Using passwd_import

To use passwd_import , the security server must be running. The following
subsections describe how to use the passwd_import command and its options.

Using the Identical User Option

The -i option lets you specify that duplicate names are not in conflict but, instead,
represent the same identity. When passwd_import finds duplicate name entries, it
processes them as though they are the same user and skips to the next entry.

Using Check Mode

Run passwd_import first in check mode by using the -c option. In this mode,
passwd_import attempts to simulate the results of a processing run, showing the
conflicts that are encountered when passwd_import is run without the -c option.

Chapter 39. Importing UNIX Accounts to DCE 407

Check mode gives you a good idea of the quantity and complexity of the potential
conflicts. However, check mode does not make any changes to the registry. When
you run passwd_import without the -c option and make changes to resolve
conflicts, these changes can in turn create further conflicts not readily apparent in
check mode.

If you encounter numerous conflicts in check mode, it is more efficient to manually
edit either the registry or the UNIX group and password files to resolve some
obvious conflicts before you run passwd_import .

Resolving Conflicts

The passwd_import command prompts you for instructions on how to resolve the
conflicts it finds. You have the following choices:

v You can create an alias to resolve a UNIX ID conflict. This action creates an alias
for the registry object that is in conflict. This alias is assigned the same name as
the conflicting entry in the group or password file. For example, if the entry joe
555 exists in the registry and the entry tim 555 exists in the password file, this
option creates the alias tim for joe 555 .

v You can generate a new UNIX ID automatically or enter a new one explicitly to
resolve a UNIX ID conflict. For example, if there is a conflict between the entry
joe 555 in the registry and tim 555 in the password file, you can generate a new
UNIX ID for tim .

v You can enter a new name to resolve a name conflict. For example, if there is a
conflict between the entry joe 555 in the registry and joe 383 in the password
file, you can generate a new name for joe 383 . This new name will be added to
the registry.

In addition, you are given the option of ignoring the conflict and skipping the entry.

Answering Prompts

When you run passwd_import , you can be prompted for names and numbers
(UNIX IDs). Names can contain any characters or digits except the @ (at sign) and
: (colon) characters, and they must not exceed 1024 characters in length.

If you enter a name or number in an incorrect format, passwd_import ignores your
entry and prompts you again.

Sample passwd_import Session

This section shows a simplified passwd_import session. The sample session uses
the following registry group and password entries and the UNIX group file and
password file entries. For convenience, the registry entries are shown in the
password and group file format, although they are not stored that way in the registry
database.

Registry Group and Password Entries

v Group Entries
wheel::0:
daemon::1:
none::2:
backup::3:user
locksmith::4:

408 OSF® DCE Administration Guide— Core Components

login::5:
mail::6:bin
bin::7:root
server::8:
sys::9:root
staff::10:
sys_admin::11:user
sys_proj::12:
tgroup::35:

v Password Entries
root:sq1RclUrrb1L6:0:10::/:
daemon:sq1RclUrrb1L6:1:2::/:
none:sq1RclUrrb1L6:2:2::/:
user:sq1RclUrrb1L6:3:2::/:
lp:sq1RclUrrb1L6:4:7::/:
sys_person:sq1RclUrrb1L6:5:2::/:
admin:sq1RclUrrb1L6:6:2::/:
uucp:sq1RclUrrb1L6:7:2::/usr/spool/uucppublic:
bin:sq1RclUrrb1L6:8:7::/:

UNIX Group and Password File Entries

v Group File Entries
system::0:root
other::1:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
adm::4:root,adm,daemon
mail::6:root
rje::8:rje,shqer
daemon::12:root,daemon
tgroup::35:
diags::48:brown,smith,jones
cheetah::50:root,daemon
mkt_dev::52:roberts,anderson,hill

v Password File Entries
root::0:1:0000-Admin(0000):/:
daemon::1:1:0000-Admin(0000):/:
bin::2:2:0000-Admin(0000):/bin:
sys::3:3:0000-Admin(0000):/usr/src:
adm::4:4:0000-Admin(0000):/usr/adm:
uucp::5:5:0000-uucp(0000):/usr/lib/uucp:
rje::18:18:0000-rje(0000):/usr/rje:
trouble::70:1:trouble(0000):/usr/lib/trouble:
lp::71:2:0000-lp(0000):/usr/spool/lp:
setup::0:0:general system administration:/usr/admin:/bin/rsh
powerdown::0:0:general system administration:/usr/admin:/bin/rsh
sysadm::0:0:general system administration:/usr/admin:/bin/rsh
checkfsys::0:0:check diskette file system:/usr/admin:/bin/rsh
makefsys::0:0:make diskette file system:/usr/admin:/bin/rsh
mountfsys::0:0:mount diskette file system:/usr/admin:/bin/rsh
umountfsys::0:0:unmount diskette file system:/usr/admin:/bin/rsh

Invoking passwd_import

In the sample session, the following passwd_import command is entered at the
shell prompt:
passwd_import -d sys5.3_tapes/adm -i -v -u cell_admin

This command specifies that

v Identical names represent the same identity (-i).

v The UNIX group and password files are in the sys5.3_tapes/adm directory.

Chapter 39. Importing UNIX Accounts to DCE 409

v The command will not run in check mode (-c is not specified).

v The command will run in verbose mode (-v is specified).

v The principal whose account should be used for authentication is cell_admin .

v The command prompts you for the cell_admin account’s password because the
-p option is not used.

After the command is invoked, the system prepares for passwd_import processing
by displaying the following:
Preparing import files. (dce / sad)
Setting up registry information. (dce / sad)
Verifying that the necessary Organization exists. (dce / sad)
Creating group objects from group file. (dce / sad)

As passwd_import reads the UNIX group and password files, it informs you of any
conflicts and prompts for their resolution.

Examining the Group File

The passwd_import command first checks the group file for name and then UNIX
ID conflicts. When you resolve the conflict by answering the prompt,
passwd_import creates the groups in the registry if it is so directed.

The following steps show how UNIX ID group conflicts are handled:

1. The passwd_import command first finds a conflict between UNIX IDs, as
shown in the preceding sections. The name wheel in the group file and the
name system in the registry both have UNIX IDs of 0. The passwd_import
command prompts you for how to resolve the conflict, as follows:
CONFLICT: (wheel 0) - Import Group's UNIX id exists in registry.
(dce / sad)

(system 0) is the conflicting entry from the registry.
Do you wish to resolve the conflict (y) or skip this entry (n):

2. If you enter an n to skip the entry, passwd_import continues processing. If you
enter a y to resolve the conflict, passwd_import prompts you for how to
resolve the conflict. In the following example, the conflict is resolved by creating
an alias of wheel for the system entry in the registry:
Do you wish to resolve the conflict (y) or skip this entry (n): y
Select one of: (a)lias, (g)enerate, (e)nter, (s)kip entry, (h)elp: a
>> Adding Group entry for: wheel 0

Because it is running in verbose mode, passwd_import describes the actions it
is taking. Each action description is prefaced with the >> (redirection symbols).

If you are running passwd_import in check mode, you are not prompted to
resolve the conflict. Instead, you are informed of the conflict and processing
continues. The message looks like the following display:
CONFLICT: (wheel 0) - Import Group's UNIX id exists in registry.
(dce / sad)

(system 0) is the conflicting entry from the registry.
Would need new UNIX id to resolve conflict. (dce / sad)

3. If passwd_import does not find conflicts that you must resolve, it displays the
group entries as it processes them and, because it is running in verbose mode,
the actions it is taking. In the following example, you are not prompted to
resolve the name conflict because passwd_import was invoked with the -i
option.

410 OSF® DCE Administration Guide— Core Components

CONFLICT: (tgroup 35)
- Group name exists in registry and UNIX ids match.
(dce / sad)

>> Import Group: - Ignoring name conflict, as instructed
(dce / sad)

>> Adding Group entry for: diags 48
>> Adding Group entry for: cheetah 50
>> Adding Group entry for: mkt_dev 52

As passwd_import continues through the UNIX group file, it finds two other
UNIX ID conflicts: UNIX entries adm 4 and rje 8 , which are in conflict with
registry entries locksmith 4 and server 8 , respectively.

Examining the Password File

The passwd_import command then proceeds to examine the password file for
conflicts. As it begins, it displays the following:
Creating principal entries and accounts from password file.
(dce / sad)

When an entry is processed with no conflicts, passwd_import creates the principal
in the registry, adds the principal to the appropriate group and organization, and
creates an account for the principal. As it does this, it displays the following:
>> Adding Principal entry for: rje
>> Adding account for rje none.

The following example shows the warning message that is displayed when
passwd_import finds a conflict:
CONFLICT: (bin 2)
- Principal name exists in registry and UNIX ids match.
(dce / sad)

>> Import Principal: - Ignoring name conflict, as instructed
(dce / sad)

This message notifies you that the account for bin exists in the registry. Both
accounts remain unchanged even though the UNIX password file entry contains
information that differs from the registry account.

Because the -i option is specified in the command used in the sample session,
name conflicts are ignored. The following example shows the prompt from a name
conflict that was found when passwd_import was run without the -i option:
CONFLICT: (daemon 1)
- Principal name exists in registry and UNIX ids match.
(dce / sad)

Do you wish to resolve the conflict (y) or skip this entry (n):

If you enter an n, the entry is skipped and processing continues. If you enter a y,
passwd_import prompts you for the new name for the foreign principal, as follows:
Enter new name for principal "daemon" "1":

Adding Members to Groups

When passwd_import completes the processing of the UNIX password file, it
reexamines the group file and adds the newly created principals to any additional
groups that it finds there. As it does, it displays the following:

Chapter 39. Importing UNIX Accounts to DCE 411

Add memberships from imported group file. (dce / sad)
>> Add root as member of group with UNIX id: 0
>> Add root as member of group with UNIX id: 2
>> Add daemon as member of group with UNIX id: 2

Completing Processing

When passwd_import completes processing, it displays the following:
Closing import files. (dce / sad)
Closing connection to registry. (dce / sad)

412 OSF® DCE Administration Guide— Core Components

Chapter 40. Troubleshooting Procedures

This chapter contains procedures for troubleshooting the security servers. Use
these procedures only when network or hardware failures disrupt operation of the
registry, or when you encounter problems that can be remedied in no other way.
These procedures tell you how to

v Restart a security server

v Restart a security server in locksmith mode

v Restore replicas from a backup

v Forcibly delete a slave replica

v Adopt a registry object that was orphaned because its owner was deleted

Before you run the procedures, ensure that you are logged in via an administrative
account.

Restarting Security Servers

To restart a security server (master or slave), enter the following command:
dcelocal/bin/secd &

For convenience, set up the server to start automatically whenever the machine
reboots.

Restarting the Master Server in Locksmith Mode

The secd -locksmith option starts secd in locksmith mode. This option can be
used only on the master replica. In locksmith mode, the principal name that you
specify to secd becomes the locksmith principal. As the locksmith principal, you can
repair malicious or accidental changes that prevent you from logging in with full
registry access privileges.

When you bring up a security server in locksmith mode, secd automatically creates
a locksmith account or, if the locksmith account exists, it lets you supply a new
password for that account. Once the security server is running, you can log into the
locksmith account by using the newly changed password, if you changed it, and
access the registry to change the account or policy information that may have
prevented you from accessing the registry by using your normal credentials.

In locksmith mode, all principals with valid accounts can log in and operate on the
registry with normal access checking. The locksmith principal, however, is granted
special access to the registry: no access checking is performed for the
authenticated locksmith principal. This means that, as the locksmith principal, you
can operate on the registry with full access.

Automatic Changes to the Locksmith Account

If the locksmith account exists when you start the security server in locksmith mode,
the security server checks certain account and registry policy information and
makes the changes shown in Table 23 on page 414 and Table 24 on page 414.
These changes ensure that, even if account or registry policy was tampered with,
you will now be able to log into the locksmith account. For example, if an intruder
changes the account lifespan registry policy to 1 minute, the locksmith account will

413

never be valid long enough to be used. Therefore, if the security server finds that
the account lifespan registry policy is set to less than what is required for the
locksmith account to be valid for at least 1 hour, it changes the account lifespan
policy to be the time difference between the creation time of the locksmith account
and the time 1 hour from the current time.

Table 23. Locksmith Account Changes Made by the Security Server

If the security server finds the... It changes the....

Password-Valid Flag is set to no Password-Valid Flag to yes

Account Expiration Date is set to less than
the current time plus 1 hour

Account Expiration Date to the current time
plus 1 hour

Client Flag is set to no Client Flag to yes

Account-Valid Flag is set to no Account-Valid Flag to yes

Good Since Date is set to greater than the
current time

Good Since Date to the current time

Password Expiration Date is set to less than
the current time plus 1 hour

Password Expiration Date to the current time
plus 1 hour

Table 24. Registry Policy Changes Made by the Security Server

If the security server finds the... It changes the....

Account Lifespan is set to less than the
difference between the locksmith account
creation date and the current time plus 1
hour

Account Lifespan to the current time plus 1
hour minus the locksmith account creation
date

Password Expiration Date is set to greater
than the time the password was last changed
but less than the current time plus 1 hour

Password Expiration Date to the current time
plus 1 hour

Starting a Security Server in Locksmith Mode

Use the following form of the secd command to start a security server in locksmith
mode:
dcelocal/bin/secd [-locksm[ith] pname [-lockpw] [-rem[ote]]]

where:

-locksm [ith]
Starts a security server in locksmith mode.

pname
Specifies the name of the locksmith principal. If no registry account exists
for this principal, secd creates one.

-lockpw
Prompts for a new locksmith password. This option allows you to specify a
new password for the locksmith account when the old one is unknown.

-rem [ote]
Allows the locksmith principal to log in remotely. If this option is not used,
the principal must log in from the local machine on which secd will be
started.

414 OSF® DCE Administration Guide— Core Components

Restarting a Security Server in Locksmith Mode

To restart a security server in locksmith mode, perform the following steps on the
node on which the master replica is running. You must have root access to this
node.

1. Shut down the security server.

v If you cannot log in with administrative privileges and access dcecp to shut
down the server, log in as root on the machine on which the server is
running and kill the security server process.

v If you are able to log in with administrative privileges, use the dcecp registry
stop command to shut down the security server. When you use this
command, you must supply the fully qualified name of the replica to stop as
an argument. The following sample command stops the replica named
slave_3 :
dcecp> registry stop /.../giverny.com/subsys/dce/sec/slave_3
dcecp>

2. Start the security server in locksmith mode. The following example shows the
security server started with the locksmith account that was created for the
principal named master_admin . The -remote option is also supplied to allow
master_admin to log in from a remote node; otherwise, master_admin must
log in from the node on which the security server was started.
dcelocal/bin/secd -locksmith master_admin -remote

If the locksmith account exists but you have lost its password, use the -lockpw
option to cause secd to prompt you for a new locksmith password and replace
the existing password with the one you enter.

The security server normally runs in the background. When you start a security
server in locksmith mode, it runs in the foreground so that you can answer prompts.

Once the security server is started in locksmith mode, you can use the dcecp
registry modify command to change the registry so that the standard privileged
account can access it. After these changes are made, you should do the following:

1. Shut down the security server that is running in locksmith mode.

2. Restart a security server according to your standard procedures.

Recovering the Master Replica

To recover a master replica because the master’s database is damaged, you can
use either of the following methods:

v Use the dcecp registry designate command to make a slave replica the master
replica and create a slave replica on the host of the former master. This method
is described in the following subsection.

v Restore the master from a backup. This method is described in “Chapter 36.
Performing Routine Maintenance” on page 381.

The method you choose depends on whether the master replica’s backup database
or the slave replica’s database is more current.

Chapter 40. Troubleshooting Procedures 415

Determining the Most Current Database

To determine whether the backup of the master replica’s database or a slave
replica’s database is more current, run the dcecp registry show -replica command
for the replica. The output of this command lists the last update sequence number
and the update date and time. Compare the replica’s last update sequence number
and the update date and time with the sequence number and date and time of the
master’s backup. If the replica is more current, make the replica the new master as
described in the following section. If the master’s backup is more current, restore
the master from the backup as described in “Chapter 36. Performing Routine
Maintenance” on page 381.

Converting a Slave to a Master

This subsection describes how to use the dcecp registry designate command to
convert a slave to a master. Be aware that, because the registry designate
-master command can cause data to be lost, the registry designate command
without the -master option is the preferred means of designating a different master
replica. Use the registry designate -master command only if the master replica is
irrevocably damaged and you are unable to use the registry designate command
without the -master option.

Follow these steps to convert a master replica to a slave replica:

1. Choose the slave replica that will become the new master.

2. Issue the following registry designate -master command to change the default
host to the master registry:
dcecp> registry designate /.../musee.com/subsys/dce/sec/art -master
dcecp>

3. Use the registry show -replica command to verify the change.

4. Use standard UNIX commands to delete the old master replica’s database and
.mkey file by deleting the directory dcelocal/var/security/rgy_data and the file
dcelocal/var/.mkey .

5. Use the registry delete command with the -force option to remove the old
master from the replica list. The following example deletes the old master
named history from the replica list:
dcecp> registry delete /.../musee.com/subsys/dce/sec/history -force
dcecp>

Recovering Slave Replicas

Because slave replicas are not backed up, you must recreate a replica to restore a
replica that is corrupted. To do so, use the following procedure:

1. Use standard UNIX commands to manually delete the replica’s database files
and master key file. To do this, delete all the files in in the following locations:

v /opt/ dcelocal/var/security/rgy_data

v /opt/ dcelocal/var/security/.mkey

2. Use the set _s(sec) command to bind to the master and then the dcecp
registry delete -force command to delete the replica from the master’s replica
list. The next two commands show how to bind to the master and then delete
the replica.

416 OSF® DCE Administration Guide— Core Components

dcecp> set _s(sec) /.../musee.com/subsys/dce/sec/master
dcecp> registry delete /.../musee.com/subsys/dce/sec/art -force
dcecp>

3. Use standard UNIX commands to copy the file
/opt/dcelocal/etc/security/pe_site from the machine running the master to the
machine that will run the replica.

4. Use /etc/dce_config (or your provider’s equivalent) on the replica machine to
do the following:

a. Stop DCE daemons.

b. Start DCE daemons.

c. Configure a security server replica. This configuration creates the replica’s
database and starts secd .

5. When you configure the replica in the previous step, you assign it a name. If
you did not give this replica the same name that it previously had, the old name
must be deleted from CDS by performing the following steps:

a. Deleting the replica’s server entry name from /.:/subsys/dce/sec

b. Deleting the replica’s name from the CDS group /.:/sec

Converting a Master to a Slave

Use the following procedure to convert a master replica to a slave. Use this
procedure only if you have more than one master running on your network or on
the Internet, which is a highly unusual condition.

1. Choose the master replica that will become a slave.

2. Issue the following registry designate -slave command to change the chosen
master to a slave:
dcecp> registry designate /.../dublin.com/subsys/dce/sec/lit -slave
dcecp>

3. Use the registry show -replica command to verify the change.

Forcibly Deleting a Slave Replica

The procedure described in this section explains how to forcibly delete a slave
replica. Use this drastic method only when the ordinary method of deletion
described in “Chapter 37. Handling Network Reconfigurations” on page 393 fails.

To forcibly delete a slave replica, use the dcecp registry delete -force command.
This command deletes the slave replica from the master’s replica list. The master
then propagates the delete request to the other replicas. Since this operation never
communicates with the deleted replica, use the -force option only when the replica
dies and cannot be restarted. If a forcibly deleted replica continues operation, use
the registry destroy command to stop the server and delete its database. You can
also simply stop secd (by using the dcecp registry stop command) and delete or
rename its database.

To forcibly delete a registry replica, issue the registry delete command with the
-force option, supplying the name of the registry to delete as an argument. The
following sample deletes the replica at
/.../giverny.com/subsys/dce/sec/lit_server_2 :
dcecp> registry delete /.../giverny.com/subsys/dce/sec/lit_server_2 -force
dcecp>

Chapter 40. Troubleshooting Procedures 417

If the default replica is not the master, dcecp automatically binds to the master.

If a forcibly deleted replica continues operation, use the registry destroy command
to stop the server and delete its database. When you use the registry destroy
command, you must enter the name of the replica that you want to stop. The
following example shows the registry destroy command used to delete the replica
at /.../giverny.com/subsys/dce/sec/lit_server_2 :
dcecp> registry destroy /.../giverny.com/subsys/dce/sec/lit_server_2
dcecp>

Alternatively, you can simply stop secd (by using the dcecp registry stop
command) and destroy the replica by deleting or renaming its database.

Restoring a Duplicate Master

This section describes how to recover from a very unusual problem. Do not use the
methods described here to resolve the problem unless it is absolutely necessary.

Occasionally the replica that you want to be the master will have a master
sequence number that is lower than (or equal to) another master sequence number
in the system. When the master detects that its master sequence number is lower
than another one in the system, it marks itself as a duplicate master and its process
exits. Each time you start the master replica, it will notice that it has been deemed a
duplicate master, and its process will again exit.

To force this duplicate master to become the master and not exit, restart its secd
process with the -master_seqno option in the following format:
secd -master_seqno new_master_seqno

where new_master_seqno is a new master sequence number to assign to the
replica. Make this number one digit higher than the highest master sequence
number in the system.

Use the dcecp registry dump command to find the highest master sequence
number.

Adopting Registry Orphans

Although dcecp displays object names and you identify registry objects by name,
the DCE Security Service uses UUIDs to identify objects internally. When you
create a registry object, the DCE Security Service automatically sets up an
association between the object name and a UUID that it uses to identify the object.
When you delete registry objects, you delete the association between the registry
object and the UUID that identifies the object.

Orphans are objects owned by UUIDs that are not associated with a principal or
group because the principal or group has been deleted. For example, if you delete
a principal from the registry, you also delete the association between the name
used to identify the principal externally and the UUID used to identify the principal
internally. Any objects (files, programs) owned by the deleted principal are now
owned internally by a UUID no longer associated with a principal. If no other
principal, group, or organization has access rights to the object, the object cannot
be accessed at all and is now an orphan.

418 OSF® DCE Administration Guide— Core Components

To solve this problem, you can use the dcecp principal create , group create , and
org create commands with the -uuid option to create a principal, group, or
organization with the same UUID as the UUID that owns the orphaned object and
thus adopt the orphaned object.

Note: When you create a new registry object, you have no way of specifying the
UUID associated with the object; therefore, you cannot simply add a new
registry object of the same name to adopt the orphan.

The -uuid option creates a principal, group, or organization and lets you specify the
UUID with which it should be associated instead of assigning it automatically.
Except for the manner in which it is created, a principal, group, or organization
created by these commands is no different from any other principal, group, or
organization. The following examples show how to use this option to create a
principal, group, or organization to adopt an orphaned registry object.

To create a principal associated with the UUID that owns the orphaned object, use
the following command:
principal create name -uuid uuid [-fullname fullname] \

[-quota object_creation_quota] [-uid UNIX_number]

To create a group associated with the UUID that owns the orphaned object, use the
following command:
group create name -uuid uuid [-fullname string] \

[-inprojlist [yes | no]] [-gid UNIX_number]

To create an organization associated with the UUID that owns the orphaned object,
use the following command:
organization create name -uuid uuid \
[-fullname string] [-orgid UNIX_number]

where:

name The principal’s, group’s, or organization’s primary name.

uuid The UUID number to be assigned to the principal, group, or organization.
This UUID should be the one that owns the orphaned object (that is, the
one that was associated with the deleted registry object). The UUID is
specified in RPC print string format as 8 hexadecimal digits, a hyphen; 4
hexadecimal digits, a hyphen; 4 hexadecimal digits, a hyphen; 4
hexadecimal digits, a hyphen; and 12 hexadecimal digits. The format is as
follows:
nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn

string The principal’s, group’s, or organization’s full name.

UNIX_number
For cell principals only, the UNIX number to be associated with the name. If
you do not enter this option, the next sequential UNIX number is supplied.
For all principals other than cells, the UNIX number is extracted from
information that is embedded in the principal’s UUID and cannot be
specified here.

object_creation_quota
For principals only, the principal’s object creation quota. If you do not enter
this option, the default is unlimited .

Chapter 40. Troubleshooting Procedures 419

-inprojlist
For groups only, yes turns off the project list inclusion so that groups are
not included in project lists. If you enter no , the group is included in project
lists.

Note: In the current implementation of DCE, UNIX numbers are embedded in
UUIDs. If you try to create a group or organization to adopt an orphaned
object and fail, it could be because the embedded UNIX number is invalid
because it does not fall within the range of valid UNIX numbers set for the
cell as a registry property. If this is the case, you must reset the range of
valid UNIX number to include the UNIX number embedded in the UUID and
then try again to adopt the object. See “Chapter 35. Maintaining Policies and
Properties” on page 373 for information on setting the valid range of UNIX
numbers.

420 OSF® DCE Administration Guide— Core Components

Chapter 41. Accessing Registry Objects

This chapter describes the permissions that apply to objects in the registry.
Because the permissions that are granted are based on the way the registry
database is structured, this chapter first briefly describes the structure of the registry
database. It then describes the permissions for each object in the registry database,
the registry ACL managers, and the initial registry ACLs.

Both dcecp and the acl_edit command have functions for creating, modifying, and
deleting ACL entries for registry objects. See each command’s reference page in
the OSF DCE Administration Commands Reference for a description of the
operations it performs on ACL entries.

The Registry Database

The registry is structured into the following main directories:

v The principal directory—Contains information about principals

v The group directory—Contains information about groups

v The org directory—Contains information about organizations

In addition to the directories, the registry contains the policy object, the replist
object, and the xattrschema object, all of which are created when the registry is
created during machine configuration. The policy object contains information that
applies to registry properties and policies and organization policies; the replist
object contains information about the replicas in the DCE cell; and the xattrschema
object contains information about extended registry attributes (ERAs). You can
modify policy and replica information at any time by using the dcecp registry
commands. The xattrschema object is modified by using the dcecp xattrschema
commands.

When you create simple objects in the principal , group , or org directory,
subdirectories are created as needed. For example, if you add a principal such as
preludes/villa/lobos , the subdirectories preludes and villa are created. You can
use these subdirectories to help organize your data. When you delete all objects in
a subdirectory, the subdirectory itself is deleted. (You cannot delete the principal ,
group , or org directory.)

The permissions that are granted to objects in the registry depend on where the
object fits in the structure of the registry database. Figure 60 on page 422 illustrates
the registry database. The boxes represent container objects (directories). The
ovals represent simple objects. Figure 60 on page 422 shows only the top level
principal , group , and org directories. Your registry can have subdirectories if you
create them.

421

Registry Permissions

Table 25 lists the permissions that can be granted for the object types found in the
registry.

Table 25. Permissions for Registry Objects

Permission Meaning

A Executes commands that act on replicas (sec_admin).

a Modifies authentication information.

c Modifies ACLs on objects. All registry ACLs must have one entry that
specifies c (control) permission.

d Deletes from an object’s contents.

D Deletes an object from the registry.

f Modifies a principal’s, group’s, or organization’s full name.

g Adds a principal to a group.

i Adds to a object’s contents.

m Modifies management information.

M Adds and deletes members from this group or organization. To add a
member to a group, you must also have g permission for the principal
to be added.

n Modifies the name of a directory, a principal, a group, or an
organization.

u Modifies user information.

r Views management, authentication, and user information.

t Tests the group or organization membership of a named principal.

Management, Authentication, and User Information

The registry contains three different kinds of information about the objects in it:
management information, authentication information, and user information. The
specific items of information that are kept for each object type are summarized in
the following subsections.

Group

mahler conductors cantatasbach composers classics

Principal Org

Registry Database

xattrschemaReplist Policy

Figure 60. The Registry Database Structure

422 OSF® DCE Administration Guide— Core Components

Management Information

Management information includes the following categories:

v For registry policies and properties

– The account lifespan

– The password minimum length

– The password lifespan

– Whether or not passwords can contain spaces

– Whether or not passwords can consist of all nonalphanumeric characters

– The password expiration date

– The minimum ticket lifetime

– The default ticket lifetime

– A number that defines the lowest UNIX ID that is supplied automatically when
principals, groups, or organizations are created

– A number that defines the highest number that can be supplied (either
automatically or manually) as a UNIX ID when principals, groups, or
organizations are created

– Whether or not encrypted passwords are displayed (the shadow password
property)

v For principals

– The account, group, and organization names

– Text string showing the full name of the principal

– Object creation quota for the principal

– Whether the principal can change primary names to aliases and aliases to
primary names

– User identifier (UID) of the principal

– Unique user identifier (UUID) of the principal

– The expiration date for the principal’s account

– The Account-Valid Flag for the principal’s account

– Flags that indicate whether the account is for a principal that can act as a
client or as a server

v For groups

– Primary name of the group

– Text string showing the full name of the group

– Whether the group’s primary name can be changed to an alias and its aliases
to its primary name

– Group Identifier (GID) for the group

– The project list inclusion property

– UUID of the group

v For organizations

– Primary name of the organization

– Whether the organization’s primary name can be changed to an alias and its
aliases to its primary name

– Text string showing the full name of the organization

– Organization Identifier (ORGID) for the organization

– UUID of the organization

– The account lifespan

Chapter 41. Accessing Registry Objects 423

– The password minimum length

– The password lifespan

– The password expiration date

– Whether or not passwords can contain spaces

– Whether or not passwords can consist of all nonalphanumeric characters

v For the xattrschema object

– Whether or not the xattrschema can be modified

Authentication Information

Authentication information includes the following categories:

v For registry policies and properties

– The maximum ticket lifetime

– The maximum time for which tickets can be renewed

v For principals

– The maximum ticket lifetime for the principal’s account

– The maximum time for which tickets that are issued to the principal’s account
can be renewed

– The date and time that the principal’s account was last changed (Good Since
Date)

– The date and time that the principal’s account was enabled (Last Changed
Date)

– The creator of the principal’s account and account creation date

– Description of the account’s use

– Whether the principal’s account can be issued postdated tickets, forwardable
tickets, renewable tickets, or proxiable tickets

– Whether the DCE Authentication Service can issue tickets to the principal’s
account based on ticket-granting ticket authorization or whether principals
must obtain tickets directly for the service

– Whether the principal’s account can be issued duplicate session keys

User Information

User information includes the following information pertaining to a principal’s
account:

v Password

v Home directory

v Miscellaneous information (GECOS information)

v Login shell

v Password-Valid Flag

Permission Required to Create Principals, Groups, or Organizations

Figure 61 on page 425 shows the permission that is required to create principals,
groups, or organizations.

424 OSF® DCE Administration Guide— Core Components

To create a principal, group, or organization, you must have i permission on the
directory in which you create the principal, group, or organization. For example, to
create the principal preludes/villa/lobos , you must have i on villa .

Permissions Required to Delete Principals, Group, or Organizations

Figure 62 shows the permissions that are required to delete principals, groups, or
organizations.

To delete principals, groups, or organizations, you must have the following
permissions:

v The d permission on the directory in which the principal to be deleted exists

v The rD permission on the principal, group, or organization to be deleted

For example, to delete the principal preludes/villa/lobos , you must have the d
permission for the preludes/villa directory, and rD permissions for the principal
preludes/villa/lobos .

Permissions Required to Add Accounts

When you add accounts, by using the user create command, dcecp adds the
principal to the group or organization that is named in the account, if the principal is
not already a member of the group and/or organization. For this reason, the
permissions that are required to add an account may include the permissions that
are required to add a member to a group or organization. The following topics are
covered in the discussion of the permissions required to add accounts:

v The permissions that are required to add an account and at the same time add
the principal as a member of the group and organization that is named in the
account. (See “Adding an Account and the Account Principal to the Group and
Organization” on page 426.)

Parent Directory i permission

Figure 61. Permission Required to Create Principals, Groups, or Organizations

Parent Directory d permission

D permission
principal, group,
or organization

Figure 62. Permissions Required to Delete Principals, Groups, or Organizations

Chapter 41. Accessing Registry Objects 425

v The permissions that are required to add an account for which the principal is
already a member of the named group and organization. (See “Adding an
Account for Which the Principal is Already a Member of the Group and
Organization” on page 427.)

v The permissions that are required to add an account and add the principal only
to the group that is named in the account (because the principal is already a
member of the organization). (See “Adding an Account and the Principal to the
Group Only” on page 427.)

v The permissions that are required to add an account and add the principal only
to the organization that is named in the account (because the principal is already
a member of the group). (See “Adding an Account and the Principal to the
Organization Only” on page 428.)

Adding an Account and the Account Principal to the Group and
Organization

Figure 63 shows the permissions required to add an account and the account
principals to the group or organization.

To add an account and add the account’s principal to the group and the
organization named in the account automatically, you must have the following
permissions:

v The maug permissions on the account’s principal

v The tM permissions on the group that is named in the account

v The rtM permissions on the organization that is named in the account

v The r permission on the registry policy object

For example, to create an account for the principal preludes/villa/lobos associated
with the group composers and the organization pianists , you must have the
following permissions:

v The maug permissions on preludes/villa/lobos

v The tM permissions on the group composers

v The rtM permissions on the organization pianists

v The r permission on the registry policy object

maug permissionprincipal named in
the account

rtM permission
organization
named in the

account

r permissionPolicy ObjecttM permissiongroup named in
the account

Figure 63. Permissions Required to Add an Account and the Account Principal to the Group
and Organization

426 OSF® DCE Administration Guide— Core Components

Adding an Account for Which the Principal is Already a Member
of the Group and Organization

Figure 64 shows the permissions that are required to add an account for which the
principal is already a member of the group or organization.

To add an account that does not require adding the account’s principal to the group
and the organization named in the account, you must have the following
permissions:

v The mau permissions on the account principal

v At least one permission of any kind on the group that is named in the account

v The r permission on the organization that is named in the account

v The r permission on the registry policy object

For example, to create an account for the principal preludes/villa/lobos associated
with the group composers and the organization pianists , you must have the
following permissions:

v The mau permissions on preludes/villa/lobos

v At least one permission of any kind on the group composers

v The r permission on the organization pianists

v The r permission on the registry policy object

Adding an Account and the Principal to the Group Only

Figure 65 on page 428 shows the permissions that are required to add an account
and the principal to the group only.

mau permissionprincipal named
in the account

r permission
organization
named in the

account

r permissionPolicy Objectany permissiongroup named
in the account

Figure 64. Adding an Account For Which the Principal Is Already a Member of the Group and
Organization

Chapter 41. Accessing Registry Objects 427

To add an account and add the account’s principal to the group (the principal is
already a member of the organization named in the account), you must have the
following permissions:

v The maug permissions on the account’s principal

v The tM permissions on the group that is named in the account

v The r permission on the organization that is named in the account

v The r permission on the registry policy object

Adding an Account and the Principal to the Organization Only

Figure 66 shows the permissions that are required to add an account and the
principal to the organization only.

To add an account and add the account’s principal to the organization (the principal
is already a member of the group named in the account), you must have the
following permissions:

v The mau permissions on the account’s principal

v At least one permission of any type on the group that is named in the account

v The rtM permissions on the organization that is named in the account

v The r permission on the registry policy object

Permissions Required to Delete Accounts

Figure 67 on page 429 shows the permissions that are required to delete accounts.

maug permissionprincipal named
in the account

r permission
organization
named in the

account

r permissionPolicy ObjecttM permissiongroup named
in the account

Figure 65. Permissions to Add an Account and the Principal to the Group Only

mau permissionprincipal named
in the account

rtM permission
organization
named in the

account

r permissionPolicy Objectany permissiongroup named
in the account

Figure 66. Permissions to Add an Account and the Principal to the Organization Only

428 OSF® DCE Administration Guide— Core Components

To delete accounts, you must have the rmau permissions for the principal that is
named in the account. For example, to add or delete the account for the principal
named preludes/villa/lobos , you must have the rmau permissions for
preludes/villa/lobos .

Permissions Required to Add Members to Groups

Figure 68 shows the permissions that are required to add members to groups.

To add members to groups, you must have the following permissions:

v The rM permissions on the group to which the principal is being added

v The rg permissions on the principal to be added

For example, to add the principal preludes/villa/lobos to the group composers ,
you must have the following permissions:

v The rM permissions on the group composers

v The rg permissions on the principal lobos

Permissions Required to Add Members to Organizations

Figure 69 shows the permissions that are required to add members to
organizations.

To add members to organizations, you must have the following permissions:

v The rM permissions on the organization to which the principal is being added

v The r permissions on the principal to be added

For example, to add the principal preludes/villa/lobos to the organization pianists ,
you must have the following permissions:

rmau permissionprincipal named
in the account

Figure 67. Permissions Required to Delete Accounts

rg permissionprincipal to be
added to the group

rM permission
group to which

the principal is to
be added

Figure 68. Permissions Required to Add Members to Groups

r permission
principal to

be added to the
organization

rM permission
organization to

which the principal
is to be added

Figure 69. Permissions Required to Add Members to Organizations

Chapter 41. Accessing Registry Objects 429

v The rM permissions on the organization pianists

v The r permission on the principal lobos

Permissions to Delete Members from Groups or Organizations

Figure 70 shows the permissions that are required to delete members from groups
or organizations.

To delete members from a group or organization, you need the rM permissions on
the group or organization from which the principal is being deleted and the r
permission on the principal being deleted.

For example, to delete the principal preludes/villa/lobos from the group
composers , you must have the following permissions:

v The rMpermissions on the group composers

v The rpermission on the principal lobos

Permissions Required to Change a Principal’s, Group’s, or
Organization’s Full Name

Figure 71 shows the permissions that are required to change a principal’s, a
group’s, or an organization’s full name.

To change a principal’s, group’s, or organization’s full name, you must have the rf
permissions for the principal, group, or organization for which you are making the
change.

Permissions Required to Change Management Information for
Principals, Groups, or Organizations

Figure 72 on page 431 shows the permissions that are required to change
management information for principals, groups, or organizations.

r permission
principal to be

deleted from the group
or organization

rM permission
group or organization

from which the principal
is to be deleted

Figure 70. Permissions to Delete Members From Groups or Organizations

rf permissionprincipal, group,
or organization

Figure 71. Permissions Required to Change a Principal’s, Group’s, or Organization’s Full
Name

430 OSF® DCE Administration Guide— Core Components

To change management information for a principal, a group, or an organization, you
must have the rm permissions for the object for which you are changing
management information.

Permissions Required to Change Management, Authentication, and
User Information (Except Passwords) for Accounts

Figure 73 shows the permissions that are required to change management,
authentication, and user information (except passwords) for accounts.

To change all management, authentication, and user information (except
passwords) for accounts, you must have the following permissions for the principal
that is named in the account:

v The ra permission to change authentication information

v The rm permission to change management information

v The ru permission to change user information

Permissions Required to Change Passwords for Accounts

Figure 74 shows the permissions that are required to change passwords for
accounts.

To change passwords for accounts, you must have the following permissions for the
principal that is named in the account:

v The ru permissions on the account’s principal

v The r permission on the registry policy object

rm permissionprincipal, group,
or organization

Figure 72. Permissions Required to Change Management Information For Principals, Groups,
or Organizations

ra
rm
ru

permission (authentication)
permission (management)

permission (user)
principal named

in the account

Figure 73. Permissions Required to Change Management, Authentication, and User
Information (Except Passwords) For Accounts

ru permissionprincipal named
in the account

r permissionPolicy Object

Figure 74. Permissions Required to Change Passwords For Accounts

Chapter 41. Accessing Registry Objects 431

Permissions Required to Change Authentication and Management
Information for Registry Policies and Properties

Figure 75 shows the permissions that are required to change authentication and
management information for registry policies and properties.

To change management or authentication information for the registry by using the
dcecp registry modify command, you must have the ra permissions to change
authentication information or the rm permissions to change management
information for the registry policy object.

Permissions Required to Execute Commands That Act on Replicas

Figure 76 shows the permissions that are required to execute commands that act
on replicas.

To execute any of the commands that act on replicas, you must have the following
permissions on the replist object:

v The A permission to execute all commands except for those that display replica
information, which require no permissions on the replist object.

v The d permission to execute the commands that delete replicas.

Permissions Required to Create Extended Registry Attribute Types

Figure 77 shows the permission that is required to create ERA types.

To create an ERA type in the registry schema, you must have i permission on the
xattrschema object.

ra
rm

permission (authentication)
permission (management)Policy Object

Figure 75. Permissions Required to Change Authentication and Management Information For
Registry Policies and Properties

A
d

permission
permission (to delete replicas)Replist Object

Figure 76. Permissions Required to Execute Commands That Act on
Replicas

i permissionxattrschema object

Figure 77. Permissions Required to Create Extended Registry Attribute Types

432 OSF® DCE Administration Guide— Core Components

Permissions Required to Delete Extended Registry Attribute Types

Figure 78 shows the permissions that are required to delete ERA types.

To delete ERA types, you must have d permission on the xattrschema object.

Permissions Required to View Extended Registry Attribute Types

Figure 79 shows the permission that is required to view one or more ERAs in the
registry’s schema database (with the dcecp xattrschema show command).

To view ERA types, you must have r permission on the xattrschema object.

Permissions Required to Modify Extended Registry Attribute Types

Figure 80 shows the permission that is required to modify ERA types.

To modify ERA types, you must have m permission on the xattrschema object.

Permission Required to Change ACLs on Registry Objects

Figure 81 on page 434 shows the permissions that are required to change ACLs on
registry objects.

d permissionxattrschema object

Figure 78. Permissions Required to Delete Extended Registry Attribute Types

r permissionxattrschema object

Figure 79. Permissions Required to View Extended Registry Attributes

m permissionxattrschema object

Figure 80. Permissions Required to Modify Extended Registry Attribute Types

Chapter 41. Accessing Registry Objects 433

To modify ACLs on registry objects, you must have the c permission on the object
whose ACL you are changing. The registry object can be the policy object or a
principal, group, or organization.

Permissions Required by Slave Replicas

In order to initialize and function properly, slave replicas must have the i, m, and I
permissions for the replist object (/.:/sec/replist). A slave server runs under the
indentity of the machine on which it runs. A machine name is the local host principal
name in the following form:
host/hostname/self

The required ACL entry is added when the dce_config tool initially configures the
DCE cell’s security server and when you use the tool to create new slave replicas.
The entry has the following form:
user:host/hostname/self:imI

Registry ACL Manager

The registry ACL manager consists of five manager types, which are used to handle
different ACL semantics that are required by the five types of objects in the registry.
For example, the principal ACL manager type controls the ACLs on all principal
objects in the registry. Because group objects require a set of permissions that are
different than those of a principal object, there is a separate group ACL manager
type that controls the ACLs on group objects.

Not all permissions nor all ACL entry types are valid for each ACL manager.
Table 26 summarizes the valid and invalid permissions and the invalid ACL entry
types for each ACL manager.

Table 26. ACL managers and Valid Permissions and ACL Entry Types

Manager Type Controls Valid Permissions Invalid ACL Entry
Types

dir directory objects rcidDn user_obj, group_obj

policy the policy object rcma user_obj, group_obj

principal principal objects rcDnfmaug group_obj

group group objects rctDnfmM user_obj

org org objects rctDnfmM user_obj, group_obj

replist replica lists cidmIA user_obj, group_obj

xattrschema ERA types rcidm user_obj, group_obj

c permissionobject whose ACL
is being changed

Figure 81. Permission Required to Change ACLs on Registry Objects

434 OSF® DCE Administration Guide— Core Components

Initial Registry ACLs

When the registry database is created, the principal , group , and org directories
and the policy , replist , and xattrschema objects are given initial ACLs. As new
objects are created in the registry, they inherit their ACLs from the principal ,
group , and org directory ACLs. The ACL entry key for those initial ACL entries that
require a key is the name of the principal that creates the registry database
(supplied to the sec_create_db command as the registry creator), or root if no
name is supplied. (See “Chapter 38. Setting Up the Registry” on page 397 for more
information on sec_create_db and the registry creator.)

The initial ACLs that are created when the registry database is created are
described in the following list. In the list, rgy_creator signifies the principal that is
named as the registry creator.

Note: You platform’s configuration tool may update these initial ACLs.

v For principal objects
unauthenticated:r--------
user_obj:r---f--ug
user:
rgy_creator:rcDnFmaug
other_obj:r-------g
any_other:r--------

v For group objects
unauthenticated:r-t-----
user:rgy_creator:rctDnfmM
group_obj:r-t-----
other_obj:r-t-----
any_other:r-t-----

v For org objects
unauthenticated:r-t-----
user:rgy_creator:rctDnfmM
other_obj:r-t-----
any_other:r-t-----

v For the policy object
unauthenticated:r----
user:rgy_creator:rcma
other_obj:r----
any_other:r----

v For directory objects
unauthenticated:r-----
user:rgy_creator:rcidDn
other_obj:r-----
any_other:r-----

v For the replist object
user:cell_admin:cidmA-

v For the xattrschema object
unauthenticated:r-----
user:cell_admin:rcidm
other_obj:r-----
any_other:r-----

Chapter 41. Accessing Registry Objects 435

436 OSF® DCE Administration Guide— Core Components

Chapter 42. DCE Audit Service

Auditing plays a critical role in distributed systems. Adequate audit facilities are
necessary for detecting and recording critical events in distributed applications.

Auditing, a key component of DCE, is provided by the DCE Audit Service. This
chapter provides an introduction to the DCE Audit Service.

Features of the DCE Audit Service

The DCE Audit Service has the following features:

v An audit daemon (auditd) performs the logging of audit records based on
specified criteria.

v Application programming interfaces (APIs) can be used as part of application
server programs to record audit events. These APIs can also be used to create
tools that can analyze the audit records.

v An administrative command interface to the audit daemon directs the daemon in
selecting the events that are going to be recorded based on certain criteria. This
interface is accessed through the DCE control program (dcecp).

v An event classification mechanism allows the logical grouping of a set of events
for ease of administration.

v Audit records can be directed to logs or to the console.

Components of the DCE Audit Service

The DCE Audit Service has three basic components:

v Application programming interfaces (APIs)

Provide the functions that are used to detect and record critical events when the
application server services a client. The application programmer uses these
functions at certain code points in the application server program to actuate the
recording of audit events. Other APIs can be used to create tools that examine
and analyze the audit event records.

v Audit daemon

The audit daemon provides the following services:

– Maintains the filters and the central audit trail file.

– Exports an RPC interface with which it can be controlled by the DCE control
program (dcecp).

v DCE control program

The DCE Audit Service’s management interface to the audit daemon. As an
administrator, you can use it to specify how the audit daemon will filter the
recording of audit events.

DCE Audit Service Concepts

This section describes some of the concepts that are relevant to the administration
of the DCE Audit Service.

437

Audit Clients

All RPC-based servers are potential audit clients; DCE servers and user-written
application servers. The DCE Security Service and the Distributed Time Service are
auditable. That is, code points (discussed in the next section) are already in place
in these services.

The audit daemon can also audit itself.

Audit clients should have the log permission to the audit daemon object to be able
to use the central audit trail file. Permissions to the audit daemon are discussed in
“Chapter 43. DCE Audit Service Administrative Tasks” on page 449.

Code Points

A code point is a location in the application server program where DCE audit APIs
are used. Code points generally correspond to operations or functions offered by
the application server that requires audit. For example, if a bank server offers the
cash withdrawal function acct_withdraw() , this function may be deemed to be an
auditable event and be designated as a code point.

Code points are already in place in the DCE Security Service, Distributed Time
Service, and Audit Service code. Code points and their associated events for the
DCE Security Service are documented in the sec_audit_events(5sec) reference
page. Code points and their associated events for the DCE Distributed Time
Service are documented in the dts_audit_events(5sec) reference page. Code
points and their associated events for the DCE Audit Service are documented in the
aud_audit_events(5sec) reference page.

Audit Events

An audit event is any event that an audit client wishes to record. Generally, audit
events involve the integrity of the system. For example, when a client withdraws
cash from his bank account, this can be an audit event because it can involve a
possible security violation on the bank account.

An audit event is associated with a code point in the application server code.

Event Numbers

Every audit event is assigned an event number by the application programmer. The
event number is a 32-bit integer, such as 0xC0000000. Event numbers are
discussed in more detail in the OSF DCE Application Development Guide—Core
Components.

Event Classes

Audit events can be logically grouped together into an event class. Event classes
provide an efficient mechanism by which sets of events can be specified by a single
value. Generally, an event class consists of audit events with some commonality.
For example, in a bank server program, the cash transactions (deposit, withdrawal,
and transfer) may be grouped into an event class. Event classes are also discussed
in “Chapter 43. DCE Audit Service Administrative Tasks” on page 449.

438 OSF® DCE Administration Guide— Core Components

Event Class Files

Event classes are defined in event class files. All event class files must be created
in the dcelocal/etc/audit/ec directory.

Default event class files are provided to classify auditable events from the DCE
Security Service, Time Service, and Audit Service. They are installed on the host
system when any of these services is installed.

The name of an event class is the same as its filename. Each event class is
defined within an event class file.

You can define new event classes by removing or adding event numbers in the
event class files, or by creating new event class files.

Event Class Names

Each event class has a symbolic name assigned to it. Following is the suggested
name format of event classes that vendors should follow:
ec_org_product_class

where:

org Is the name of the organization or company that defines the event class.

product
Is the name of the product for which the event class is defined.

class Is the characterization of the event class.

The following are two examples of event class names:

v ec_osf_dce_authentication —Defines an authentication event class for OSF’s
DCE core components.

v ec_transarc_encina_update —Defines an update event class for Transarc’s
Encina.

You can also define event classes to meet your own auditing needs. The following
is the suggested name format for these event classes:
dce_server-name_class

where class is a characterization of the event class.

Event Class Numbers

If you define your own event classes, you must associate it with an event class
number. Event class numbers are 32-bit integers. Each event class number is a
tuple made up of a set ID and the class event ID. The set ID corresponds to a set
of event classes and is assigned by OSF to an organization or vendor. The class
event ID identifies an event class within the set of event classes. The organization
or vendor manages the issuance of the class event ID numbers to generate an
event class number.

The structure and administration of event class numbers can be likened to the
structure and administration of IP addresses. Recall that an IP address is a tuple of
a network ID (analogous to the set ID) and a host ID (analogous to the class event
ID).

Chapter 42. DCE Audit Service 439

Event Class Number Formats

Event class numbers follow one of five formats (A to E), depending on the number
of event classes in the organization. The format of an event class number can be
determined from its four high-order bits.

Format A can be used by large organizations (such as OSF or major DCE vendors)
that need more than 16 bits for the class event ID. This format allocates 7 bits to
the set ID and 24 bits to the class event ID. Format A event class numbers with
zero (0) as its set ID are assigned to OSF. That is, all event class numbers used by
OSF have a zero in the most significant byte.

Format B can be used by intermediate-sized organizations that need 8 to 16 bits for
the class event ID.

Format C can be used by small organizations that need less than 8 bits for the
class event ID.

Format D is not administered by OSF and can be used freely within the cell. These
event class numbers cannot be unique across cells and should not be used by
application servers that are installed in more than one cell.

Format E is reserved for future use.

The numbers with 110 in the most significant bits (that is, 0xC0000000 to
0xDFFFFFFF) are reserved to be used locally within a cell.

The event class number formats are illustrated in Figure 82 (class event IDs are
labeled ′′event-id’’).

The cell administrator is responsible for administering and assigning local event
class numbers and their names.

Filters

Once the code points are identified and placed in the application server, all audit
events corresponding to the code points will be logged in the audit trail file,
irrespective of the outcome of these audit events. However, recording all audit
events under all conditions may neither be practical nor necessary. Filters provide a
means by which audit records are logged only when certain conditions are satisfied.
The administrator defines filters using the DCE control program.

A filter is composed of filter guides that specify these conditions. Filter guides also
specify what action to take if the condition (outcome) is met.

Format A
Format B
Format C
Format D
Format E

0
1 0
1 1 0
1 1 1 0
1 1 1 1

0 1 2 3 4
set-id

set-id
set-id

event-id
event-id

event-id
event-id

reserved

8 16 24 31

Figure 82. Event Class Number Formats

440 OSF® DCE Administration Guide— Core Components

A filter answers the following questions:

v Who will be audited?

v What events will be audited?

v What should be the outcome of these events before an audit record is written?

v Will the audit record be logged in the audit trail file, or displayed on the system
console, or both?

For example, for the bank server program, you can impose the following conditions
before an audit record is written:

′′Log audit records on all withdrawal transactions (the audit events) that fail because
of access denial (outcome of the event) that are performed by all customers in the
DCE cell (who to audit).’’

Filter Subject Identity

A filter is associated with one filter subject, which denotes to whom the filter applies.
The filter subject is the client of the distributed application who caused the event to
happen. The filter subject has two parts: the filter type and the key.

There are eight filter types:

v principal —DCE principal in the local cell.

v foreign_principal —DCE principal in a foreign cell.

v group —DCE group in the local cell.

v foreign_group —DCE group in a foreign cell.

v cell —DCE cell in the network.

v cell_overridable —DCE cell in the network. This type can be overriden by a
more specific filter type.

v world —All clients of the distributed application.

v world_overridable —All clients of the distributed application. This type can be
overriden by a more specific filter type.

The key is the specific name of the principal , foreign_principal , group ,
foreign_group , cell , and cell_overridable filter types. The world and
world_overridable filter types have no keys.

Filter Guides

A filter contains one or more guides. A filter guide contains three elements: audit
condition, audit action, and event class.

An audit condition specifies the required outcome (or outcomes) of the event before
an audit record is written to the audit trail. These outcomes are not mutually
exclusive. The audit conditions are

v success —Records only if event succeeds.

v failure —Records only if event fails.

v denial —Records only if event failed because of access denial.

An audit action specifies where the audit record is written. The audit actions are

v alarm —Displays the audit record on system console.

v log —Logs the audit record through an audit daemon or directly to an audit trail
file.

Chapter 42. DCE Audit Service 441

The audit actions are not mutually exclusive; you can specify both.

The third element of the filter guide specifies the event class or event classes to
which the filter will apply (for the specific filter subject identity).

Example of Filter Guides

The following is an example of a filter with two guides:
filter type: foreign_principal
key: /.../cell_x/foo
guide 1:
audit conditions - denial
audit actions - log
event classes - Confidential
guide 2:
audit conditions - denial
audit actions - alarm, log
event classes - Restricted

Guide 1 specifies that an audit record will be logged for any event in event class
Confidential if the user is the foreign principal /.../cell_x/foo and the event failed
because of access denial. Guide 2 specifies that an audit record will not only be
logged but also be displayed on the system console for any event in event class
Restricted , for the same user and event outcome.

Filter Rules

Filter rules are used to resolve overlapping guides from different filters. There are
two filter rules: the override and the high-water-mark.

Under the override rule, filters that are overridable (that is, cell_overridable and
world_overridable types) are nullified by more specific filters. The override rule
serves as a mechanism that allows for complementary filters. A filter for a principal
or a group is more specific than a filter for a cell or for the world.

The high-water-mark rule is applied after the override rule. If multiple filters are
applicable to a client, the union of the actions (log or alarm) specified by these
filters is applied.

A filter is applicable to a client if its principal, groups, or cell identity matches the
key of the filter. The world and world_overridable filters have no keys and are
applicable to all clients. If there are multiple filters that are applicable to a client,
then the union of the actions (log or alarm) specified by these filters is taken.

Example of Using Filter Rules

The use of overridable filters is described in the following scenario:

Alice in Company (cell) X is responsible for activating some operations (event class
critical_transactions). Other principals in the company are also authorized to
activate the same operations, but only under certain conditions; for example, when
Alice is not available. The system administrator wants to log an audit record
regardless of the event outcome (that is, audit conditions = all) or who activates
these operations. The administrator also wants to generate an alarm if the activator
is not Alice. This specification is implemented by the following two filters:
Filter 1:

filter type: principal

442 OSF® DCE Administration Guide— Core Components

key: Alice
guide 1:
audit conditions - all
audit actions - log
event classes - critical_transactions

Filter 2:

filter type: cell_overridable
key: X
guide 1:
audit conditions - all
audit actions - log, alarm
event classes - critical_transactions

When Alice invokes events in the critical_transactions event class, the principal
filter (filter 1) is applicable because its key matches Alice’s identity. The principal
filter is more specific than the cell filter. Although the cell filter (filter 2) is also
applicable to Alice (Alice belongs to cell X), it is overridden by the principal filter
because the cell filter is overridable. For other principals in Company (cell) X, the
only applicable filter is the cell filter (filter 2). Thus, these same events will cause an
audit record to be logged and also raise an alarm.

Nonoverridable world and cell filters are also useful. Without them, an administrator,
for example, would have to delete all filters for groups and principals of a cell in
order to make a cell-wide filter effective to the whole cell. (System administrators
may want to introduce a temporary nonoverridable cell filter when a cell is
suspected to be the source of a security problem.)

The following figure illustrates the override relations between different types of
filters. An arrow from filter type X to filter type Y means that X overrides Y.

DCE groups are generally defined for the purpose of granting access permissions.
A group filter specifies auditing the intent to use the group’s privileges, instead of
specifying auditing the principals that belong to the group. That is, a group filter
would not have auditing effects on a member principal of the group unless the
principal has the intent to use the group’s privileges (by including the group in the
PAC). Because group filters are defined to audit the intention of using a group’s
privileges, they are independent of other filters and are not overridable.

Audit Trail File

The audit trail file contains all the audit records that are written by the audit
daemon. You can specify either a central audit trail file or a vocal audit trail file.

principal foreign_principal group foreign_group cell

cell_overridable

overrides
world_overridable

world

Figure 83. Override Relations Between Filter Types

Chapter 42. DCE Audit Service 443

The central audit trail file is created by the audit daemon when it is started. By
default, if the dce_aud_open() function does not specify a name for an audit trail
file, all audit records are sent to the audit daemon, which stores them in the central
audit trail file.

If the dce_aud_open() function is invoked with a name for the trail file, this name
becomes the pathname to the local audit trail file and all audit records are sent to
that file.

Administration and Programming in DCE Audit

Many of the DCE Audit Service administrative tasks are related to the tasks
performed by the application programmer. To understand these administrative tasks,
you should be familiar with some programming aspects of the DCE Audit Service.
This section describes a typical DCE Audit Service programming and administrative
scenario and their tasks.

A banking server example illustrates this scenario.

Programmer Tasks

The application programmer uses the DCE audit APIs to enable auditing in the
application server program. Specifically, the programmer performs the following
tasks:

1. Identifies the code points corresponding to the audit events in the application
server program.

For example, a banking server program can have these functions:
acct_open() , acct_close() , acct_withdraw() , acct_deposit() , and
acct_transfer() . Each of these functions can be designated as a code point,
meaning that these are possible audit events that can be recorded (depending
on the filter):
acct_open() /* first code point*/
acct_close() /* second code point */
acct_withdraw() /* third code point */
acct_deposit() /* fourth code point */
acct_transfer() /* fifth code point */

2. Assigns an event number to each code point. The event numbers are used as
parameters by the dce_aud_open() API, which opens an audit trail, and the
dce_aud_start() API, which initializes the audit record for the code point. The
programmer may want to define these event numbers in the server’s header file.

For example:
/* event number for the first code point,acct_open() */
#define evt_vn_bank_server_acct_open 0x01000000

/* event number for the second code point, acct_close() */
#define evt_vn_bank_server_acct_close 0x01000001

/* event number for the third code point, acct_withdraw() */
#define evt_vn_bank_server_acct_withdraw 0x01000002

/* event number for the fourth code point, acct_deposit() */
#define evt_vn_bank_server_acct_deposit 0x01000003

/* event number for the fifth code point, acct_transfer() */
#define evt_vn_bank_server_acct_transfer 0x01000004

444 OSF® DCE Administration Guide— Core Components

3. Adds a call to the dce_aud_open() API to the application server’s initialization
routines. This opens the audit trail file. This function uses the event number of
the lowest numbered event, (in this case acct_open()) as one of its
parameters. For example:
main()
/* evt_vn_bank_server_acct_open is the lowest event number */
dce_aud_open(aud_c_trl_open_write, description,

evt_vn_bank_server_acct_open,
5, &audit_trail, &status);

4. Adds Audit event logging functions to every code point in the application server
code. These functions perform the following at each code point:

v Initializes an audit record by using the dce_aud_start() API. This function
assigns the event number to the code point representing an event. Thus, this
function uses the event number as one of its parameters.

v Adds event-specific information to the audit record by using the
dce_aud_put_ev_info() API.

v Commits the audit record using the dce_aud_commit() API. This function
writes the audit record to the audit trail file.

Following is an example of how these APIs are used on the code points of the
bank server program:
acct_open() /* first code point */
/* Uses the event number for acct_open(), */
/* evt_vn_bank_server_acct_open */

dce_aud_start(evt_vn_bank_server_acct_open,
binding,options,outcome,&ard, &status);

if (ard) /* If events need to be logged */
dce_aud_put_ev_info(ard,info,&status);

if (ard) /* If events were logged */
dce_aud_commit(at,ard,options,format,&outcome,&status);

acct_close() /* second code point */
/* Uses the event number for acct_close(), */
/* evt_vn_bank_server_acct_close */

dce_aud_start(evt_vn_bank_server_acct_close,
binding,options,outcome,&ard, &status);

if (ard) /* If events need to be logged */
dce_aud_put_ev_info(ard,info,&status);

if (ard) /* If events were logged */
dce_aud_commit(at,ard,options,format,&outcome,&status);

5. Closes the audit trail file when the server shuts down, using the
dce_aud_close() API in the main server routine. For example:
dce_aud_close(audit_trail, &status);

Administrator Tasks

The administrator uses the event numbers representing the different code points in
the audit client application server program to create event class files and filter
guides in the following manner:

1. The administrator obtains the event numbers of the code points (representing
each audit event) from the application server programmer. In our example,
these code points were assigned the following event numbers:

acct_open()
0x01000000

Chapter 42. DCE Audit Service 445

acct_close()
0x01000001

acct_withdraw()
0x01000002

acct_deposit()
0x01000003

acct_transfer()
0x01000004

(Note that event numbers should be entirely sequential. That is, no missing
members of the sequence are allowed.)

2. The administrator decides to create two event classes: the
account_creation_operations class comprised of acct_open() and
acct_close() , and the account_balance_operations class comprised of
acct_withdraw() , acct_deposit() , and acct_transfer() . The administrator
assigns the event class account_creation_operations the event class number
0xC0000006. Event class account_balance_operations is assigned the event
class number 0xC0000007.

To create the event classes, the administrator creates and edits two files, one
for each event class. The name of each of these files will be the same as the
event class that each represents. Each file will contain the numbers of the
events in each event class.

The file with the name account_creation_operations is edited as follows (lines
that begin with # (number sign) are comment lines):
Event class number of account_creation_operations
ECN = 0xC0000006

Event number of acct_open()
0xC1000000

Event number of acct_close()
0xC1000001

The file with the name account_balance_operations is edited as follows:
Event class number of account_balance_operations
ECN = 0xC0000007

Event number of acct_withdraw()
0xC1000002

Event number of acct_deposit()
0xC1000003

Event number of acct_transfer()
0xC1000004

The administrator stores both files in the dcelocal/etc/audit/ec directory.

3. The administrator decides to create two filters: one for all users within the cell
(for the cell /.:/torolabcell), and the other for all other users.

The filter for all users within the cell has the following guides:

v Audit the events in the event class account_balance_operations only,
subject to the next condition.

v Write an audit record only if an operation in that event class failed because of
access denial.

v If the first condition is fulfilled, write the audit record in an audit trail file only.

446 OSF® DCE Administration Guide— Core Components

v The administrator then uses the DCE control program’s audfilter create
command to create this filter:
dcecp> audfilter create {cell /.../torolabcell} -attribute \
> {account_balance_operations denial log}
dcecp>

The filter for all other users has the following guides:

v Audit the events in both event classes, subject to the next condition.

v Write an audit record if an operation in that event class succeeded, failed, or
failed because of access denial.

v Write the audit record both in an audit trail file and the console.

Following is the dcecp session for creating this filter:
dcecp> audfilter create world -attribute \
> {account_balance_operations,account_creation_operations alarm,log all}
dcecp>

“Chapter 43. DCE Audit Service Administrative Tasks” on page 449 provides
detailed information about the DCE control program’s audfilter create
command.

Chapter 42. DCE Audit Service 447

448 OSF® DCE Administration Guide— Core Components

Chapter 43. DCE Audit Service Administrative Tasks

This chapter describes the following administrative tasks that are performed for the
DCE Audit Service:

v Setting the DCE audit environment variables.

v Starting (and stopping) the DCE audit daemon.

v Controlling access to the DCE audit daemon.

v Creating and maintaining event classes to logically group a set of audit events.
Event classes are created by editing event class files.

v Creating and maintaining filters that set the criteria for recording audit events in
an audit trail file.

v Enabling and disabling the audit logging service of the DCE audit daemon.

v Modifying and querying the attributes of the DCE audit daemon.

v Controlling and displaying the audit trail file.

v Using the DCE serviceability routing file.

All of the examples that the chapter gives for audit tasks use the DCE control
program (dcecp).

Setting DCE Audit Environment Variables

There are three environment variables that are related to the operation of the DCE
Audit Service. The DCE audit environment variables should be set before running
the application server (that is, the DCE audit client). The environment variables are
as follows:

v DCEAUDITOFF—If this variable is declared at the time the application is started,
auditing is turned off. By default, this variable is not declared.

v DCEAUDITFILTERON—If this variable is declared at the time the application is
started, filtering is enabled. By default, this variable is not declared; that is, there
is no filtering and all audit events are recorded.

v DCEAUDITTRAILSIZE —Sets the maximum size of the audit trail.

Starting the Audit Daemon

The DCE Audit Service is not a distributed application. The audit daemon (auditd)
does not need to run on all DCE hosts even if a client application is making use of
the audit service. The audit daemon only needs to run on a host if the audit logs
are to go to the central trail file or if filters are to be installed on the host. This is
because the audit daemon controls access to the central trail file and also manages
the audit filters. However, since the DTS daemon and the security server daemon
are audit clients, you may want to consider running the audit daemon on all hosts in
the cell.

You must be root to be able to start the audit daemon.

Use the following command to start the audit daemon:
auditd

This command uses flags that influence the behavior of the daemon. For more
details on these flags, see the auditd(8sec) reference page.

449

Controlling Access to the Audit Daemon

You must control access to the audit daemon to prevent unauthorized application
servers (the audit clients) from using it. If an unauthorized server is able to log its
audit records, the audit storage space would be exhausted.

You control access to the audit daemon by editing the ACL of the audit daemon
object, /.:/hosts/ hostname/audit-server , using dcecp .

DCE Permissions Supported by the DCE Audit Service

The DCE Audit Service supports the following DCE permissions that can be used to
define the ACL of the audit daemon:

r Read permission. Allows a principal to read the filters.

w Write permission. Allows a principal to modify the filters.

c Control permission. Allows a principal to control the audit daemon. This
includes the ability to enable or disable the logging service, and to modify
the ACL of the audit daemon.

l Log permission. Allows a principal to write audit records in the audit trail file.

Initial ACL of the Audit Daemon

The initial ACL of a host’s audit daemon contains the following entries:
{unauthenticated -r--}
{user hosts/nodoz/self crwl}
{group subsys/dce/audit-admin crwl}
{any_other -r--}

The first entry allows any unauthenticated user only read access to the filters. The
second entry allows the host principal (hosts/ <hostname>/self) to query and
modify the filters, control the audit daemon, and to write to the audit trail file. The
third entry allows the members of the group subsys/dce/audit-admin the same
access rights as the host principal. The last entry allows all other principals only
read access to the filters. You can modify this ACL to suit your security
requirements by using dcecp .

Giving Permissions to Audit Clients and Administrators

Using dcecp , you can add entries to the ACL of the audit daemon that will grant
audit clients the log permission to the audit trail file. You can create a DCE security
group that consists of the servers on the host that are authorized to generate audit
records. For example:
group/hosts/<hostname>/audit-clients

Give this group the log permission to the audit daemon. For example:
dcecp> acl modify /.:/hosts/machine1/audit-server \
> -add {group hosts/machine1/audit-clients l}
dcecp>

All audit clients can then be made members of this group and inherit its permissions
to the audit daemon.

450 OSF® DCE Administration Guide— Core Components

ACL entries must also be added to grant designated administrators the read, query,
and control permissions to the audit daemon. For example, for the administrator’s
group group/hosts/machine1/audit-admin :
dcecp> acl modify /.:/hosts/machine1/audit-server \
> -add {group hosts/machine1/audit-admin rwc}
dcecp>

Defining Event Classes

Individual audit events can be grouped together to form event classes. The event
class provides an efficient mechanism by which sets of events can be logically
grouped and selected using a single value.

DCE audit event classes are configurable. You can add or remove events of an
existing event class or define new event classes.

The ability to define local event classes is useful in simplifying the management of
audit services in multiple DCE applications. Administrators can design their own
audit event classes reflecting their security requirements and trail storage resource
constraints.

Temporary event classes can also be created to track down security violations.

Steps in Defining an Event Class

To define an event class, follow these steps:

1. Obtain an event class number for the event class from your cell administrator. A
range of event class numbers should have been allocated to your organization
by OSF. If not, contact OSF.

2. Create an event class file in the dcelocal/etc/audit/ec directory. Edit the file as
follows:

a. Declare the event class number (ECN) by adding a line with the following
format:
ECN= _event_class_number

b. Optionally, you can add a server event prefix (SEP) line in the file. The SEP
line contains the event number prefixes of each server. The event number
prefix is the lowest event number in each server. The SEP line has the
following format:
SEP= _event_number1 event_number2 event_number3 ...

You can put the SEP line anywhere in the file. The SEP line speeds up the
scanning of audit clients by skipping irrelevant event class files.

c. From the application, obtain the event numbers for the code points that you
want to include in the event class.

d. Add the event numbers corresponding to the events that you want to include
in the event class, one number per line.

In the event class file, empty lines are ignored and comments are designated by a
(number sign) preceding the comment text.

Example Event Class File

Following is a sample event class file named ec_local_cell_critical_events :

Chapter 43. DCE Audit Service Administrative Tasks 451

ECN = 0xC0000005

Server Event Number Prefixes
0x000001 Security Service Events
0x000002 Time Service Events
0x000003 Audit Service Events

SEP = 0x00000100 0x00000200 0x00000300

Security Service Critical Events
evt_osf_dce_rs_properties_set_info (sets registry properties)
0x0000011f
evt_osf_dce_rs_policy_set_info (sets registry policy)
0x00000121
evt_osf_dce_rs_rep_admin_stop (stops the registry service)
0x00000127
evet_osf_dce_rs_rep_admin_mkey (changes master key)
0x00000129

Time Service Critical Events
evt_osf_dce_dts_create (creates a server or a clerk)
0x00000201
evt_osf_dce_dts_delete (deletes a server or a clerk)
0x00000202
evt_osf_dce_dts_enable (enables the time service)
0x00000203
evt_osf_dce_dts_disable (disables the time service)
0x00000204

Audit Service Critical Events
evt_osf_dce_aud_enable (enables audit-record logging service)
0x00000301
evt_osf_dce_aud_disable (disables audit-record logging service)
0x00000302
evt_osf_dce_aud_stop (terminates the execution of the audit daemon)
0x00000303

Creating and Maintaining Filters

After starting the audit daemon and creating the event class file, you can run dcecp
to create, modify, or display the filters maintained by the audit daemon. Use the
audfilter create , audfilter modify , and audfilter delete commands to create,
modify, and delete the filters. Use the audfilter catalog and audfilter show
commands to display the existing filters.

Creating Filters

The following is an example audfilter create command for creating a filter:
dcecp> audfilter create {group trust} \
> -attribute {ec_local_bank_audit denial log}
dcecp>

The example command specifies that a filter type group be created for the DCE
group named trust in the local cell.

The -attribute option is required. The argument to the option is a filter guide or list
of guides. Each filter guide is made up of three elements: an event class name or
list of names, an audit condition or list of conditions, and an audit action or list of
actions.

452 OSF® DCE Administration Guide— Core Components

The event class name corresponds to the name of the event class file for which
your are creating a filter.

The audit condition is the condition required for the event to be audited. Valid
conditions are success , denial , failure , pending , and all .

The audit action is the action to take if the event being generated matches the audit
condition specified. Valid actions are log , alarm , and all .

Modifying Filters

You can modify an existing audit filter by adding or deleting one or more of the
filter’s guides. The following is a sample dcecp command for modifying an existing
filter:
dcecp> audfilter modify world -add {Monetary_Transfers denial log}
dcecp>

The example command adds a guide with an event class of Monetary_Transfers ,
an audit condition of denial , and an audit action of log to the existing filter type
world . Note that the filter type world does not take a key.

The DCE control program does not use commas. Multiple guides and multiple filters
are specified in the standard dcecp list format: {x y} for single arguments or {{x y}
{a b}} for multiple arguments.

In order to execute the audfilter modify command, you must have write (w)
permission to the audit daemon’s ACL.

Deleting Filters

You can delete one or more of the audit filters for a DCE client by using the
audfilter delete command. The following is an example audfilter delete command:
dcecp> audfilter delete {foreign_principal /.../foreign_cell_name/jedwards}
dcecp>

The example command deletes the audit filter for the DCE principal jedwards in the
foreign cell /.../foreign_cell_name .

You can specify more than one filter to be operated on in the audfilter delete
command. As with the previous example of modifying filters, when deleting multiple
filter, you must use the standard dcecp syntax.

In order to execute this command, you must have write (w) permission to the audit
daemon’s ACL.

Default Filters

During the configuration of the host (using dce_config), the following audfilter
create commands (using dcecp) are executed to create filters for the security
daemon, the DTS daemon, and the audit daemon:
audfilter create world -at {dce_sec_modify success log}

audfilter create world -at {dce_sec_modify {failure denial} all}

audfilter create world -at {dce_sec_server success log}

Chapter 43. DCE Audit Service Administrative Tasks 453

audfilter create world -at {dce_sec_server {failure denial} all}

audfilter create world -at {dce_sec_authent {failure denial} all}

audfilter create world -at {dce_sec_query denial all}

audfilter create world -at {dce_dts_mgt_modify success log}

audfilter create world -at {dce_dts_mgt_modify {failure denial} all}

audfilter create world -at {dce_dts_mgt_query {failure denial} all}

audfilter create world -at {dce_audit_admin_modify success log}

audfilter create world -at {dce_audit_admin_modify {failure denial} all}

audfilter create world -at {dce_audit_filter_modify success log}

audfilter create world -at {dce_audit_filter_modify {failure denial} all}

audfilter create world -at {dce_audit_admin_query {failure denial} all}

audfilter create world -at {dce_audit_filter_query {failure denial} all}

Enabling Audit Filters

If you want to enable the audit filters, you must first set the DCEAUDITFILTERON
environment variable. You must set this variable before starting the server (that is,
the audit client).

Removing the Update Binding File

If a server (audit client) is running with filters enabled (that is,
DCEAUDITFILTERON was set), libaudit (which is linked to the server) obtains the
server’s binding information and stores it in the following:

/opt/dcelocal/var/audit/client/ pid-of-server/update_binding_file

where pid-of-server is the process ID of the server.

If the server ends abnormally, this file must be removed manually. If this is not
removed, you will receive an error message the next time you restart the server
with DCEAUDITFILTERON . The message indicates that the audit daemon is unable
to inform the audit client of filter updates:
unable to inform process
/opt/dcelocal/var/audit/client/pid-of-server/update_binding_file
about esl update.

You can also check for stale update binding files by checking what servers are
running (for example, using ps -e) and comparing their process IDs with the
pathnames of the update binding files. Because the pathname of these files contain
a pid-of-server component, you can determine what files correspond to nonexistent
servers.

Both the binding information file and the directory containing it (pid-of-server) must
be removed.

454 OSF® DCE Administration Guide— Core Components

Buffering of the Audit Trail

The operating system buffers the audit trail data while it is written before writing it to
disk. For this reason, the growth of the audit trail file will not become apparent until
the data is flushed to disk.

Enabling and Disabling the Audit Logging Service

Use dcecp to enable or disable the audit record logging service of the audit
daemon. The aud enable command enables the logging service, and the aud
disable command disables it.

You may want to disable the logging service when the audit trail file becomes too
large, and then enable it again after the audit trail has been backed up and
rewound (using the aud rewind command).

Using the enable or disable commands enable or disable audit record logging to the
central audit trail file. Applications such as the security server and the time server
use their own audit trail files and are not affected by use of enable or disable.

The aud stop command stops the audit daemon.

Modifying and Querying Audit Daemon Attributes

The DCE audit daemon has two attributes that relate to the audit trail file:

v stostrategy —Specifies the storage strategy when the size of the audit trail file
has reached its limit. You can specify either of the following storage strategies:

save If the specified trail size limit is reached, the audit daemon saves the
current trail file to a new file (renaming it to its original name with a
timestamp appended at the end of the name). The audit daemon then
deletes the contents of the original trail file and continues auditing from
the beginning of this file. This is the default value for stostrategy .

wrap The audit daemon will overwrite the old audit trails.

v state —Indicates whether the audit daemon is servicing audit record logging
requests from audit clients. The possible values for this attribute are enabled
(default value) or disabled .

You can use dcecp to see the value of these settings, as follows:
dcecp> aud show
{state enabled}
{stostrategy save}
dcecp>

Use the aud modify command to change these attributes.

Controlling and Displaying Audit Trails

Audit daemons log audit records sent from audit clients into an audit trail file. If the
audit daemon is started without any argument, then the default audit trail file used is
dcelocal/var/audit/adm/central_trail . You can also direct the audit trail to another
file by using the -t option of the auditd command when starting daemon; the trail
argument to the -t option specifies the pathname of the file to which the logs should
be written.

Chapter 43. DCE Audit Service Administrative Tasks 455

Displaying Audit Trail Files

Use the dcecp auditrail show command to examine the contents of an audit trail
file. You can display the contents of either the central or local audit trail file.

For example, you can use the following command to see the contents of the audit
trail file central_trail :
dcecp> audtrail show /opt/dcelocal/var/audit/adm/central_trail

--- Start of an event record --- Event Number: 275
Event Name: LOGIN_getinfo
Event Outcome: success
Server: /.../stp.gburg.ibm.com/hosts/dceos2
Client: /.../stp.gburg.ibm.com/hosts/drinkernisti/self
Number of groups: 0
Authorization Status: Authorized with a pac
Date and Time recorded: 1994-12-19-19:02:27.037-05:00I-----
1 Event(s) specific:

- item number 1 hosts/drinkernisti/self
--- End of an event record ---

--- Start of an event record --- Event Number: 275
Event Name: LOGIN_getinfo
Event Outcome: success
Server: /.../stp.gburg.ibm.com/hosts/dceos2
Client: Unknown client and cell uuids
Number of groups: 0
Authorization Status: Authorized with a pac
Date and Time recorded: 1994-12-19-19:02:28.819-05:00I-----
1 Event(s) specific:

- item number 1 dce-rgy
--- End of an event record ---

If you prefer to have the audit trail data put into a file instead of displayed on your
screen, include the -to option in the audtrail show command line. This option prints
the audit trail file’s contents to a specified filename. Using this option is strongly
recommended for large trail files.

Controlling the Audit Trail Size

By default, audit trail files are limited to a size of 2 MB. When the audit service
detects that the trail file will grow larger than this value, it closes the file, creates a
new unique name for the file by using timestamp information, and then opens a
new trail file with the original name. It then proceeds to write new audit logs to this
file. When this file grows too large, this process is repeated.

If you wish to change the size of the audit trail file, you must set the environment
variable DCEAUDITTRAILSIZE to the size you require before starting the
application that is using the audit service. Setting this environment variable
overrides the default 2 MB size limit.

For example, if you wish to use a trail file size of 5 MB, the value of
DCEAUDITTRAILSIZE should be as follows:
DCEAUDITTRAILSIZE 5000000

You can also allow the audit daemon to wrap around the central trail file when its
limit (the default 2 MB or set by DCEAUDITTRAILSIZE) is reached. To do this, you
should start the audit daemon with the -wrap option:
auditd -wrap

456 OSF® DCE Administration Guide— Core Components

You may also want to use this option if old audit records have little or no value and
you want to keep only relatively recent records.

A trail size limit can also be set using the -s option of the auditd command. The
limit set using this method overrides the default 2 MB limit.

If for any reason you desire to take a snapshot of the audit trail before it reaches
the limit, you can use the dcecp aud disable command to disable logging and then
copy the file. You can then use the dcecp aud rewind command to rewind the
central audit trail file. (Note that, if required, you can back up this audit file at this
time. But, if backup is desired, it is best to let the audit service automatically create
new trail files and back these up.) Then use the aud enable command to enable
the audit daemon’s logging service again.

Changing the Audit Trail File Storage Option

The storage strategy option can be changed while the audit daemon is running.
This can only be performed on the central audit trail file.

The following example shows how the aud modify command is used to cause the
audit trail to wrap when it reaches the limit of the file:
dcecp> aud modify -stostrategy wrap
dcecp>

This example command changes the value of the audit daemon’s storage strategy
attribute to wrap .

Chapter 43. DCE Audit Service Administrative Tasks 457

458 OSF® DCE Administration Guide— Core Components

Chapter 44. Kerberos Interoperability with DCE and Secure
Remote Utilities

The authentication portion of the DCE Security Service is primarily based on
Version 5 of the Kerberos network authentication system, which is described in
Internet Engineering Task Force (IETF) RFC 1510. For the most part, this basis has
allowed the DCE Security Server to operate as a Kerberos Key Distribution Center
(KDC) for Kerberos V5 clients. In prior releases of DCE (Versions 1.2.1 and earlier),
this interoperability was not officially supported or documented.

This chapter explains interoperability features and configuration of DCE and
Kerberos V5. The following main features are provided with the current release of
DCE:

v Berkeley Software Distribution (BSD) remote utility interoperability: Secure
versions of the BSD 4.4-Lite remote utilities are provided. These use Kerberos
V5 authentication.

v KDC interoperability: The DCE Security Service can be used as a Kerberos KDC
for Kerberos V5 clients.

v Credential cache and keytab file compatibility: DCE and Kerberos V5 applications
are able to share credential cache and keytab files without losing data.

The Secure Remote Utilities

The current release of DCE provides secure versions of the following utilities, based
on the BSD 4.4-Lite versions:

v rlogin/rlogind

v rsh/rshd

When a client uses a secure remote Kerberos V5 utility such as rsh or rlogin to
connect to the server daemon, the server daemon requests authentication. The
remote utilities authenticate the identity of the client and server to each other in a
secure way. The secure remote utilities also authorize users to access an account
on a remote system. This is done through the transmission of encrypted tickets
rather than through the traditional password mechanism. The traditional password
mechanism, used with nonsecure remote utilities, sends the password in a readable
form (unencrypted) over the network. This creates a security risk from intruders who
may be listening over the network. The main benefit of running the secure remote
utilities is that user authorization no longer requires transmitting a password in a
readable form over the network.

For the secure rlogin utility and rlogind server, Kerberos V5 authentication involves
sending encrypted tickets instead of a readable password over the network to verify
and identify the user. The secure rsh utility, when used with a command, and the
rshd server ensure that the user is authorized to access the remote account. If rsh
is used without a specified command, rlogin and rlogind are invoked.

If any secure remote utility is installed in an environment in which some of the
remote systems are not secure, the clients will try accessing those remote systems
without using Kerberos authentication.

459

Related Kerberos Terms and Concepts

Although realms, cells, principals, and authorization are discussed in the
Authentication chapter of the OSF DCE Application Development Guide, they are
described here briefly as they relate to the secure remote utilities.

Realms and Cells

In Kerberos, a realm defines an administrative boundary and has a unique name. A
realm consists of the KDC and all the security clients (application servers and
application clients) registered to that KDC.

When using the DCE Security Server as a KDC, the term cell is used. A cell is
roughly equivalent to a realm.

By convention, Kerberos uses uppercase realm names, which appear as suffixes in
principal names such as david@MYREALM.COM .

A DCE cell name must be lowercase and have a prefix of leading /.../ in a principal
name, such as /.../my_kdc_cell.com/david .

Principals

Each principal that participates in Kerberos V5 authentication and authorization
must be in the KDC database, which is the security registry database for DCE. The
KDC database does not distinguish between types of principal names. However,
distinguishing between two kinds of principal names — user principal names and
service principal names — is useful.

A user principal name is associated with a specific user of the secure remote
utilities. A user principal name consists of a user ID and a realm (or cell) name.
Each user must have a user principal name in the KDC database. An example of a
Kerberos user principal name is susan@MYREALM.COM . An example of a DCE
user principal name is /.../my_kdc_cell/susan .

A service principal name is one that authorizes a client to use a particular service,
including the specific application server machine that the service will access, and
the realm name. For rlogin and rsh , the service principal name is host . An
example of a Kerberos service principal name for rlogin is
host/abc_system.com@REALM_A.COM . An example of a DCE service principal
name for rlogin is /.../cell_a.com/host/abc_system.com .

Authorization

Kerberos V5 authorization is the process by which users verify that they may
access remote accounts on specified servers. Authorization depends on successful
user principal validation through the Kerberos V5 authentication protocol.

For Kerberos V5 authorization to succeed, a mapping must exist on the application
server that authorizes the user principal to operate as the login user. The term login
user refers to the user whose account is being accessed on the remote host. This
is not necessarily the same user who originally issued the kinit or dce_login
command.

Assume David has already issued the kinit command. In this example, David
enters the following command, in which Susan is the login user:

460 OSF® DCE Administration Guide— Core Components

$ rlogin -l susan hostA

Authorization is successful if both of the following requirements are met:

v The login user must have an entry in the /etc/passwd file on the application
server (remote host).

v One of the following conditions must be true:

– A $HOME/.k5login file must exist in the login user’s home directory on the
application server and contain an entry for the authenticated user principal.
This file must be owned by the login user, and only the login user can have
write permission.

– A Kerberos V5 authorization name database file called /krb5/aname must
exist on the application server and contain a mapping of the user principal to
the login user. This condition requires additional tools only available in a full
Kerberos environment.

– The user name in the user principal must be the same as the login user
name, and the client and server systems must be in the same realm.

Components of the Secure Environment

The security server, which is the trusted host to which security clients authenticate
themselves, is referred to as the Key Distribution Center (KDC). The DCE Security
Service fulfills the role of the KDC.

Security clients are hosts that run the secure remote utility clients and daemons.
Security clients communicate with the security server for authentication. The two
types of security clients are application clients and application servers.

Application clients can run the secure remote utilities rcp , rlogin , and rsh . The
Kerberos utilities kinit , klist , and kdestroy also run on the application client. In
some cases, an application client is referred to as a local host.

Application servers can run the secure remote utility daemons rlogind and rshd . In
some cases, an application server is referred to as a remote host.

The secure remote utility takes the following steps to be authenticated by the KDC:

1. The user first issues the kinit or dce_login command to the KDC and obtains a
ticket-granting ticket (TGT) from the authentication server (AS) portion of the
KDC.

2. When the user invokes one of the secure remote utilities, the client requests a
service ticket from the ticket granting server (TGS) portion of the KDC. As part
of the request, the client sends to the TGS the acquired TGT, the name of the
application server (remote host), and an encrypted authenticator.

The same TGT can be used to acquire multiple service tickets.

3. The TGS generates new credentials that both the server and client use to
authenticate each other. Included in the TGS credentials is a subsession key,
which is a new key that is an encrypted form of the old session key that the
client sent to the TGS. Also, the TGS sends the requested service ticket to the
client. This ticket holds a copy of the subsession key and an encrypted form of
the target server’s secret key.

4. The client sends to the application server the service ticket and a new
authenticator that is encrypted with the subsession key. The application server

Chapter 44. Kerberos Interoperability with DCE and Secure Remote Utilities 461

decrypts the service ticket with its own secret key and extracts the subsession
key. This subsession key is now a shared secret between the client and the
application server.

5. At the client’s request, the application server can also return to the client
credentials encrypted in the subsession key. This implies a mutual
authentication between the client and the application server. This optional
Kerberos V5 mutual authentication step is performed in each of the secure
remote utilities.

Forwarding Tickets

Service ticket credentials that a user obtains are for accessing a remote system.
What if, however, the user wants to use a secure service to access a remote
system and then run a secure service from that remote system to a second remote
system? This can be risky because it would require possession of a valid TGT for
the first remote system. Therefore, running kinit on the first remote system to
obtain a TGT would cause the user’s password to be transmitted in a readable form
over the network.

To avoid this problem and provide more security, Kerberos offers the option to
create TGTs that have special attributes allowing the TGTs to be forwarded to
remote systems within the realm.

The rlogin and rsh utilities offer TGT forwarding options -f and -F . Before the
forwarding options can be recognized, two prerequisite flags must be enabled.

v First, the KDC’s forwardable ticket option must be enabled. For the DCE Security
Server, use the dcecp account modify command to set the forwardabletkt
account attribute.

v Second, kinit must be invoked with the forwardable flag (-f) enabled. If the -f
option is selected when kinit is run, the TGT for the local system can be
forwarded to the remote system and clients will not need to reauthenticate
themselves from the remote system to the KDC.

DCE clients must use kinit -f to enable forwarding because the dce_login utility
does not have options for ticket attributes.

Provided these two flags are enabled, the forwarding options of rlogin and rsh can
take effect. When the rlogin or rsh client invokes the -f option, forwarding of the
TGT occurs to only one remote system (one free hop). When the rlogin or rsh
client invokes the -F option, forwarding the TGT can continue to more than one
system (potentially unlimited free hops).

Multiple free hops are possible because using the -F option leaves the forwardable
attribute enabled in the forwarded TGT ticket, whereas using the -f option does not.
Thus, the client can forward the TGT to an unlimited number of remote systems if
the -F option is used every time. Once the -f option is used, the forwarding chain
stops at the next node.

If the Kerberos V5 credentials are forwarded to a DCE client, they will be promoted
to DCE credentials, allowing the user to run DCE applications on that remote host.
The k5dcelogin utility, which is invoked by rlogind on the remote host, converts
the Kerberos V5 credentials to DCE credentials without prompting for a password.
See the k5dcelogin reference page for syntax information.

462 OSF® DCE Administration Guide— Core Components

Remote Utility Interoperability

The DCE 1.2.2 versions of rlogin , rlogind , rsh , and rshd are fully interoperable
with remote utilities based on the MIT source. Using a DCE KDC, rlogin and rsh
interoperate with Kerberos V5 rlogind and rshd . In addition, the Kerberos Version
5 of rlogin and rsh work with DCE versions of rlogind and rshd .

Encrypted Sessions

A user may be transmitting sensitive or private data during the remote session. By
specifying the -x option to rlogin*O,rsh , all session data transmitted between the
remote hosts will be encrypted with the shared session key. This option is subject to
export control and may not be available outside the United States and Canada.

KDC Interoperability

IETF RFC 1510 defines the mandatory interoperability requirements of a Kerberos
V5 implementation. Although the DCE Security Server can be used as a DCE KDC
for Kerberos V5 clients, the following restrictions still apply:

v Algorithms not supported by the DCE KDC are the following:

– DES-CBC-MD5 encryption

– CRC-32 checksum

– DES-MAC checksum

– DES-MAC-K checksum

– DES-MD5 checksum

v Interrealm communication, including transitive trust between a DCE cell and a
Kerberos V5 realm, is not supported.

v Kerberos V5 does not support DCE third-party preauthentication. Therefore, a
principal is unable to retrieve a TGT from a DCE KDC if the pre_auth_req ERA
attached to a principal has a value of 2 (PA-ENC-THIRD-PARTY).

Configuration

The dce_config utility has been enhanced to facilitate the interoperability of
Kerberos V5 clients with a DCE Security server. The additions allow Kerberos V5
clients to interoperate with a DCE KDC without any further configuration steps.
When a host is configured as a DCE Security server or client, the following steps
are performed for Kerberos V5 interoperability:

1. Service entries for the secure remote utilities are added to the /etc/services file
(klogin , kshell , ekshell , eklogin).

2. Entries for the secure remote utilities are added to the /etc/inetd.conf file. The
inetd command is then restarted to read the new entries.

3. The host principal key and account required by the secure remote utilities are
created.

4. The /krb5/krb.realms file, which describes where to find the KDC, is created
and the default realm is added.

5. The /etc/krb5.conf file, which contains necessary configuration information, is
created.

6. The /etc/v5srvtab file, which is the default keytab used by Kerberos V5 clients,
is linked to the /krb5/srvtab file, which is the default keytab used by DCE
clients.

Chapter 44. Kerberos Interoperability with DCE and Secure Remote Utilities 463

Credential Cache and Keytab File Compatibility

In order for a DCE client and a Kerberos V5 client to coexist on the same host, they
may need to be able to share credentials and keys. DCE Version 1.2.2 provides
compatible credential and keytab file formats to allow for this coexistence.

As of the fifth beta release of Kerberos V5, three versions of formats for the
credential cache file and two for the keytab file exist.

Not all of the file formats are compatible with one another. For example, an older
Kerberos V5 client that writes credential cache files in the Version 1 format will not
be able to read credential caches in a Version 2 or 3 format. Table 27 and Table 28
describe the compatibility of credential cache and keytab files.

Table 27. Credential Cache Files

Release Kerberos V5
(Version 1)

Kerberos V5
(Version 2)

Kerberos V5
(Version 3)

DCE 1.0 or Kerberos V5 beta 1 yes no no

Kerberos V5 beta 2-3 no yes no

DCE 1.1-1.2.1 or Kerberos V5 beta
4

yes yes no

DCE 1.2.2 or Kerberos V5 beta 5-7 yes yes yes

A defect in the Beta 2 and Beta 3 releases of Kerberos V5 prevented compatibility
with files created in the Version 1 format, which was fixed in Beta 4.

Table 28. Keytab Files

Release Kerberos V5
(Version 1)

Kerberos V5
(Version 2)

DCE 1.0 or Kerberos V5 beta 1 yes no

Kerberos V5 beta 2-3 no yes

DCE 1.1-1.2.2 or Kerberos V5 beta 4-7 yes yes

The credential cache and keytab file format that DCE clients use can be set with
the dcecp hostvar set command. The default format for both files is Version 1. You
may change this on a per-host basis to allow Kerberos V5 applications to run on
your DCE client and to share keytab and credential files.

For example, use the following dcecp command to set the version number format
of the Kerberos V5 credential cache file to 3:
dcecp> hostvar set -krbccachevno 3
dcecp>

To set the version number format of the Kerberos V5 keytab file to 2:
dcecp> hostvar set -krbktvno 2
dcecp>

To display the current settings:
dcecp> hostvar show -krbccachevno -krbktvno
dcecp>

464 OSF® DCE Administration Guide— Core Components

See the dcecp reference page for more information. For the changes to take effect,
stop and restart the DCE daemons on the host.

Chapter 44. Kerberos Interoperability with DCE and Secure Remote Utilities 465

466 OSF® DCE Administration Guide— Core Components

Part 7. Appendixes

467

468 OSF® DCE Administration Guide— Core Components

Appendix A. Valid Characters and Naming Rules for CDS

This appendix discusses the valid character sets for the DCE Directory Service
names as used by CDS interfaces. It also explains some characters that have
special meaning and describes some restrictions and rules regarding case
matching, syntax, and size limits. It is not a comprehensive reference for CDS,
GDS, and DNS, but instead gives an overview of some key points to remember
about each service. For specific information on valid characters in GDS and DNS
names, see the documentation for each technology.

The use of names in DCE often involves more than one directory service. For
example, CDS interacts with either GDS or DNS to find names outside the local
cell.

Note: Because CDS, GDS, and DNS all have their own valid character sets and
syntax rules, the best way to avoid problems is to keep names short and
simple, consisting of a minimal set of characters common to all three
services. The recommended set is the letters A to Z, a to z, and the digits 0
to 9. In addition to making directory service interoperations easier, use of this
subset decreases the probability that users in a heterogeneous hardware
and software environment will encounter problems in creating and using
names.

Figure 84 on page 470 details the valid characters in CDS names, and the valid
characters in GDS and DNS names as used by CDS interfaces:

v Characters in white boxes are valid in all three kinds of names.

v Characters in light shaded boxes are valid only in CDS and GDS names.

v Characters in dark shaded boxes are valid only in CDS names.

469

Although spaces are valid in both CDS and GDS names, a CDS simple name
containing a space must be enclosed in ″ ″ (quotes) when you enter it through the
CDS control program. Additional interface-specific rules are documented where they
apply.

Key: Valid in CDS, GDS, and DNS names
Valid only in CDS and GDS names
Valid only in CDS names

SP

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Figure 84. Valid Characters in CDS, GDS, and DNS Names

470 OSF® DCE Administration Guide— Core Components

Metacharacters

Certain characters have special meaning to the directory service; these are known
as metacharacters. Table 29 lists and explains the CDS, GDS, and DNS
metacharacters.

Table 29. Metacharacters and Their Meanings

Directory Service Character Meaning

CDS / Separates elements of a name (simple names).

\ Used where necessary in front of a \ (backslash)
to escape the character; indicates that the
following character is not a metacharacter.

GDS / Separates relative distinguished names (RDNs).

, Separates multiple attribute type/value pairs
(attribute value assertions) within an RDN.

\= Separates an attribute type and value in an
attribute value assertion.

\ Used in front of a / (slash), a , (comma), or an =
(equal sign) to escape the character; indicates
that the following character is not a
metacharacter.

DNS . Separates elements of a name.

Some metacharacters are not permitted as normal characters within a name. For
example, a \ (backslash) cannot be used as anything but an escape character in
GDS. You can use other metacharacters as normal characters in a name, provided
that you escape them with the backslash metacharacter.

Additional Rules

Table 30 summarizes major points to remember about CDS, GDS, and DNS
character sets, metacharacters, restrictions, case-matching rules, internal storage of
data, and ordering of elements in a name. For additional details, see the
documentation for each technology.

Table 30. Summary of CDS, GDS, and DNS Characteristics

Characteristic CDS GDS DNS

Character Set a to z, A to Z, 0 to 9
plus space and
special characters
shown in Figure 84 on
page 470

a to z, A to Z, 0 to 9
plus . : , ’ + − = () ? /
and space

a to z, A to Z, 0 to 9
plus . -

Metacharacters / * ? \ / , = \ .

Appendix A. Valid Characters and Naming Rules for CDS 471

Table 30. Summary of CDS, GDS, and DNS Characteristics (continued)

Characteristic CDS GDS DNS

Restrictions Simple names cannot
begin or end with a /
(slash). The first
simple name following
the global cell name
(or /.: prefix) cannot
contain an = (equal
sign).

Relative distinguished
names cannot begin
or end with a / (slash).
Attribute types must
begin with an
alphabetic character,
can contain only
alphanumerics, and
cannot contain
spaces. An alternate
method of specifying
attribute types is by
object identifier, a
sequence of digits
separated by . (dots).
You must use a \
(backslash) to escape
a / (slash), a ,
(comma), and an =
(equal sign) when
using them as
anything other than
metacharacters.

Multiple consecutive
unescaped
occurrences of /
(slash), , (comma), =
(equal sign) and \
(backslash) are not
allowed.

Each attribute value
assertion contains
exactly one
unescaped = (equal
sign).

The first character
must be alphabetic.
The first and last
characters cannot be
a . (dot) or a - (dash).
Cell names in DNS
must contain at least
one . (dot); they must
be more than one
level deep.

Case-Matching
Rules

Case exact. Attribute types are
matched case
insensitive. The
case-matching rule for
an attribute value can
be case exact or case
insensitive, depending
on the rule defined for
its type at the DSA.

Case insensitive.

472 OSF® DCE Administration Guide— Core Components

Table 30. Summary of CDS, GDS, and DNS Characteristics (continued)

Characteristic CDS GDS DNS

Internal
Representation

Case exact. Depends on the
case-matching rule
defined at DSA. If the
rule says case
insensitive, alphabetic
characters are
converted to all
lowercase characters.
Spaces are removed
regardless of the
case-matching rule.

Alphabetic characters
are converted to all
lowercase characters.

Ordering of Name
Elements

Big endian (left to right
from root to
lower-level names).

Big endian (left to right
from root to
lower-level names).

Little endian (right to
left from root to
lower-level names).

Maximum Name Sizes

Table 31 lists the maximum sizes for directory service names. Note that the limits
are implementation specific, not architectural.

Table 31. Maximum Sizes of Directory Service Names

Name Type MaximumSize(characters)

CDS simple name (character string between two
slashes)

254

CDS full name (including global or local prefix, cell
name, and slashes separating simple names)

1023

GDS relative distinguished name 64

GDS distinguished name 1024

DNS relative name (character string between two
dots)

64

DNS fully qualified name (sum of all relative names) 255

Appendix A. Valid Characters and Naming Rules for CDS 473

474 OSF® DCE Administration Guide— Core Components

Appendix B. Object Identifier Files

The X/Open Directory Service (XDS) interface offers client application programmers
the ability to create and maintain names in either CDS or GDS. Programmers can
also create new CDS attribute names or GDS attribute type labels. In the DCE
Version 1.1 Directory Service, every CDS attribute name and GDS attribute type
label has a corresponding unique number called an object identifier (OID).

CDS provides a method for translating between object identifiers and
human-readable names. This translation capability enables users to enter names
instead of object identifiers at the DCE control program (dcecp) interface. Also,
dcecp displays the names rather than object identifiers in command output. CDS
attribute names and their corresponding identifiers are stored in a file called
cds_attributes . GDS attribute type labels and their corresponding identifiers are
stored in a file called cds_globalnames . (See the OSF DCE Administration
Guide—Introduction and the OSF DCE Porting and Testing Guide for the full
pathnames of all CDS files.)

This appendix describes the contents and usage of both the cds_attributes and
cds_globalnames files and explains how application developers or directory
service managers can update the files with the object identifiers of new attributes.

Origin of Object Identifiers

The purpose of object identifiers is to ensure uniqueness among the attribute types
that many different applications generate and use. Object identifiers are typically
obtained from a hierarchy of allocation authorities, the highest being the
International Organization for Standardization (ISO) and the International Telegraph
and Telephone Consultative Committee (CCITT). Individual application developers
do not usually have to contact ISO or CCITT directly to obtain unique numbers.
Application developers are more likely to request object identifiers from a person
within their company who is in charge of allocating them. The company authority
would in turn contact a higher authority to obtain a unique company prefix.

The hierarchy of allocation authorities is indicated by dots that separate portions of
an object identifier. Each string of numbers delineated by dots represents a level of
the allocation hierarchy, going left to right from the highest authority down. For
example, the object identifier 1.3.22.1.1.2 consists of the following levels:

1 ISO

3 Identified organization

22 Open Software Foundation

1 Distributed Computing Environment

1 Remote procedure call

2 RPC object UUIDs

The cds_attributes File

The cds_attributes file contains object identifiers for CDS attributes and object
classes. The following is a sample portion of the default contents of the file:

475

OID LABEL SYNTAX
#
1.3.22.1.3.10 CDS_Members GroupMember
1.3.22.1.3.11 CDS_GroupRevoke Timeout
1.3.22.1.3.12 CDS_CTS Timestamp
1.3.22.1.3.13 CDS_UTS Timestamp
1.3.22.1.3.15 CDS_Class byte
1.3.22.1.3.16 CDS_ClassVersion Version
1.3.22.1.3.17 CDS_ObjectUUID uuid
1.3.22.1.3.19 CDS_Replicas ReplicaPointer
1.3.22.1.3.20 CDS_AllUpTo Timestamp
1.3.22.1.3.21 CDS_Convergence small
1.3.22.1.3.22 CDS_InCHName small
1.3.22.1.3.23 CDS_ParentPointer ParentPointer
1.3.22.1.3.24 CDS_DirectoryVersion Version
1.3.22.1.3.25 CDS_UpgradeTo Version
1.3.22.1.3.27 CDS_LinkTarget FullName
1.3.22.1.3.28 CDS_LinkTimeout Timeout
1.3.22.1.3.30 CDS_Towers byte
1.3.22.1.3.32 CDS_CHName FullName
1.3.22.1.3.34 CDS_CHLastAddress byte
1.3.22.1.3.36 CDS_CHState small
1.3.22.1.3.37 CDS_CHDirectories CHDirectory
1.3.22.1.3.40 CDS_ReplicaState small
1.3.22.1.3.41 CDS_ReplicaType small
1.3.22.1.3.42 CDS_LastSkulk Timestamp
1.3.22.1.3.43 CDS_LastUpdate Timestamp
1.3.22.1.3.44 CDS_RingPointer uuid
1.3.22.1.3.45 CDS_Epoch uuid
1.3.22.1.3.46 CDS_ReplicaVersion Version
1.3.22.1.3.48 CDS_NSCellname char
1.3.22.1.3.52 CDS_GDAPointers gdaPointer
1.3.22.1.3.53 CDS_CellAliases GroupMember
1.3.22.1.3.54 CDS_ParentCellPointers ReplicaPointer
1.3.22.1.1.1 RPC_ClassVersion byte
1.3.22.1.1.2 RPC_ObjectUUIDs byte
1.3.22.1.1.3 RPC_Group byte
1.3.22.1.1.4 RPC_Profile byte
1.3.22.1.1.5 RPC_Codesets byte
1.3.22.1.5.1 SEC_RepUUID byte

The first column contains the OID, the second column contains a label (the name to
which the identifier is mapped), and the third column indicates the data type.
Descriptions of the CDS data types are in the cdsclerk.h header file. (See the OSF
DCE Administration Guide—Introduction and the OSF DCE Porting and Testing
Guide for the full pathnames of all CDS files.)

Application programmers should never need to modify, except for the purpose of
foreign language translation, the CDS labels associated with the unique OIDs in the
cds_attributes file. However, programmers can obtain new OIDs from the
appropriate allocation authority, create new attributes for their own object entries,
and then append them to the existing list.

The cds_globalnames File

The cds_globalnames file contains a copy of data that is stored in a directory
service agent (DSA) schema for use by GDS. CDS uses this file to interpret the
GDS portion of global names that it handles. The file contains only naming
attributes; that is, attributes that constitute a distinguished name. The following is a
sample portion of the cds_globalnames file:

476 OSF® DCE Administration Guide— Core Components

OID LABEL ASN.1-IDENTIFIER SYNTAX
MATCHING
#
Reference: X.520 (Selected Attribute Types for the Directory)
2.5.4.0 OC objectClass - -
2.5.4.1 AO aliasedObjectName - -
2.5.4.2 KI knowledgeInformation CIS CIM
2.5.4.3 CN commonName CIS CIM
2.5.4.4 S surname CIS CIM
2.5.4.5 SN serialNumber PS PM
2.5.4.6 C countryName PS CIM
2.5.4.7 L localityName CIS CIM
2.5.4.8 SP stateOrProvinceName CIS CIM
2.5.4.9 SADR streetAddress CIS CIM
2.5.4.10 O organizationName CIS CIM
2.5.4.11 OU organizationalUnitName CIS CIM
2.5.4.12 T title CIS CIM
2.5.4.13 D description CIS CIM
#2.5.4.14 SG searchGuide Guide -
2.5.4.15 BC businessCategory CIS CIM
#2.5.4.16 POST postalAddress PostalAddress
2.5.4.17 PC postalCode CIS CIM
2.5.4.18 POB postOfficeBox CIS
CIM

The first column contains the object identifier, and the second column contains the
string name to which it is mapped. The third column is the ASN.1 identifier for the
attribute type, as defined in the appropriate CCITT recommendation (X.500 or
X.400). The fourth column is the ASN.1 label for the syntax of the attribute type.
The fifth column contains the ASN.1 identifier of the matching rule to be applied to
the attribute type. Possible syntax abbreviations are as follows:

CES Case Exact String

CIS Case Ignore String

PS Printable String

NS Numeric String

— Unspecified

Matching rules are defined as follows:

CEM Case Exact String Matching—Leading and trailing spaces are ignored and
multiple consecutive internal spaces are reduced to one; otherwise, the
strings must be the same length and corresponding characters must be
identical.

CIM Case Ignore String Matching—Same as CEM, except that characters
differing only in case are considered to match.

PM Printable String Matching—Same as CEM.

NM Numeric String Matching—Same as CEM, except that all spaces are
ignored.

— Unspecified.

The cds_globalnames file contains additional comments and descriptive
information about attribute types and case-matching rules. (See the X.500
recommendation for details on the ASN.1 identifiers and their meaning.)

Appendix B. Object Identifier Files 477

Modifying the Files

When a programmer develops an application that uses the directory service, the
directory service manager or the application developer needs to obtain unique
identifiers for any new CDS attribute names or GDS attribute types that the new
application uses and then update the appropriate file.

If the application stores names in CDS, edit the cds_attributes file. (Refer to the
cdsclerk.h file for the list of appropriate data type descriptors.) If the application
stores names in GDS, edit the cds_globalnames file and use the appropriate
ASN.1 identifiers to describe the data type, syntax, and case-matching rules for the
name.

Note: If you modify the OID values for standard attributes in the cds_attributes
and cds_globalnames files, you may encounter problems interoperating
with other directory service implementations.

Modifying a CDS Entity’s Attributes

Every CDS entity has attributes, which are pieces or sets of data that are
associated with that entity. Attributes can reflect or affect the operational behavior of
an entity, record the number of times a particular event or problem occurred since
the entity was last enabled, and uniquely distinguish an entity for any other entity.

CDS attributes are identified by ISO OIDs. Every CDS attribute name maps to an
OID and a corresponding data type. Usually, client applications define the name of
an attribute and its data type. Application programmers should never need to modify
(except for the purpose of foreign language translation) the existing CDS labels
associated with the unique OIDs in the cds_attributes file. However, programmers
can obtain new OIDs from the appropriate authority, create new attributes for their
own object entries, and then append them to the existing list. The OID and data
type of each attribute are stored in the file cds_attributes . Descriptions of the CDS
data types that applications can use are in the cdsclerk.h file.

Adding a New Attribute

Use the dcecp modify operation with the -add option to add a new attribute to an
object entity.

To add a new attribute, you must have previously added the new attribute to the
cds_attributes file on each host in the cell. You must also have write permission to
the entity to which you are adding new attributes.

For example, the following command adds the single-valued attribute (owner) to a
directory (/.:/admin) and assigns a value of Leland to the new attribute:
dcecp> directory modify /.:/admin -add {owner Leland}
dcecp>

The following command adds a new multivalued attribute (vegetables) to an object
(/.:/admin/garden) and assigns values of carrots and lettuce to the new attribute:
dcecp> object modify /.:/admin/garden -add {vegetables {carrots} {lettuce}}
dcecp>

478 OSF® DCE Administration Guide— Core Components

Modifying the Value of an Existing Attribute

Use the dcecp modify operation with the -change option to modify the value of an
existing attribute.

To modify the value of an attribute, you must have write permission to the name
whose attributes you are modifying.

For example, the following command changes the value of the owner attribute of
the /.:/admin directory from Leland to Peters :
dcecp> directory modify /.:/admin -change {owner Peters}
dcecp>

Removing an Attribute

Use the dcecp modify operation with the -remove option to remove an attribute
from an object entity.

To remove an attribute, you must have write permission to the name whose
attribute you are removing.

To remove an attribute, use the modify command with the -remove and -types
options. For example, the following command removes the owner attribute from the
/.:/admin directory:
dcecp> directory modify /.:/admin -remove owner -types
dcecp>

To remove a single value from a multivalued attribute, use the -remove option and
specify the value to be removed. For example, the following command removes the
carrots value of the vegetables attribute from the /.:/admin/garden object:
dcecp> object modify /.:/admin/garden -remove {vegetables carrots}
dcecp>

Appendix B. Object Identifier Files 479

480 OSF® DCE Administration Guide— Core Components

Appendix C. Time-Providers and Time Services

This appendix explains the criteria to use when selecting a time-provider, and
describes time dissemination services, time-providers (hardware and software) and
their interaction with DTS. The appendix also contains a world time zone map.

Criteria for Selecting a Time Source

Before you select a time source for your network, ask the following questions:

v How accurate is the time that is provided?

Accuracy is affected by the time source itself, as well as the transmission media.
As long as the inaccuracy is known, it can be compensated for.

v How reliable is the time source?

The time source must be available. If it is not , the server connected to the
time-provider uses times from other servers and compensates for any time
difference when the source again becomes available.

v What is the extent of coverage?

The time source must be available in the geographical area where the
time-provider server is located.

v What is the level of known inaccuracy?

If this is known, DTS can compensate for it. Most sources have known
inaccuracy levels.

v What is the cost?

v Does the source conform to the operating environment?

The available power supply and physical conditions must be compatible with the
source; consult the supplier for the specifications.

Table 32 summarizes the selection criteria for each type of time source.

Table 32. Time-Provider Selection Criteria

Type Coverage Inaccuracy Cost

Telephone

NIST Regional 10 msec. Variable fee per call

Radio

MSF Europe 10 msec. $1K to 2K

WWV North America 100 msec. $1K to 2K

WWVB North America &
Europe

10 msec. $1K to 2K

WWVH Eastern & Central
North Pacific

100 msec. $1K to 2K

Satellite

GOES Worldwide 1 msec. corrected $2K to $20K

GPS Worldwide < 100 nsec. $15K to $20K

481

Sources of Coordinated Universal Time

There are several sources of UTC time, including telephone, radio, and satellite, as
described in the following subsections.

Telephone Services

Telephone time-provider services require the time-provider to dial a centralized UTC
time source through a modem. Modem speeds and line delays can affect the
accuracy of the time returned.

Telephone services are usually provided by standards agencies. For example, in the
United States this service is offered by the National Institute of Standards and
Technology (NIST). There is a per-call fee for the service in addition to the cost of
the modem software.

Radio Transmissions

DTS can obtain time from a radio time source. Commercial receivers that monitor
time and frequency broadcasts can return time values through the Time-Provider
Interface (TPI) to the DTS server. The NIST operates the following U.S. time and
frequency stations:

v WWV

Transmits at 2.5, 5.0, 10.0, 15.0 MHz to North America and South America.

v WWVB

Transmits at 60 kHz primarily to the United States, providing high-quality
frequency information because atmospheric propagation effects are relatively
minor.

v WWVH

Transmits at 2.5, 5.0, 10.0, 15.0 MHz to Alaska, Hawaii, Australia, New Zealand,
Japan, and Southeast Asia.

The following stations are available in Europe:

v MSF

Broadcasts from England at 60 kHz.

v DCF77

Broadcasts from Germany at 77.5 kHz.

In addition to the stations previously listed, more than 30 radio stations worldwide
provide UTC time. Consult the national standards organization in your country for
further information.

Network Time Protocol

Nodes that have Internet access can use the Network Time Protocol (NTP) as a
source of UTC time for DTS. (See “Chapter 26. Interoperation with Network Time
Protocol” on page 263 for an explanation of how to use NTP as a time-provider.)

482 OSF® DCE Administration Guide— Core Components

Satellite

Satellites have worldwide availability; they can provide relatively precise times if
their delays are known and compensated for. See the following list for satellite
sources of UTC:

v GOES

Geostationary Operational Environment Satellite

v TRANSIT

A U.S. Navy satellite system consisting of four tracking systems and two ground
satellite communications sites

v GPS

Global Positioning System, a satellite receiver

World Time Zone Map

Figure 85 on page 484 shows a map of the world time zones, including the
following:

v UTC reference zone

v Odd-numbered and even-numbered zones

v Half-hour zones

v Countries and areas that have not adopted the zone system or where time differs
other than a half hour from the neighboring zone

Appendix C. Time-Providers and Time Services 483

 ASIA

 AUSTRALIA

 SOUTH AMERICA

−1 DAY
+1 DAY

+9

+7 +8

+7h 30m

 +5h 30m

+6h 30m

F G H I

+9h 30m

K L MY X W V U T S R

 +6 +7 +8 +9 +10 +11 +12− −11 −10 −9

 −3

 −3h 30m

 −4

 −3h 45m
−3h 30m

 −3

 −44m

 AFRICA

EUROPE

 ARCTIC OCEAN

 NORTH AMERICA

 NORTH ATLANTIC OCEAN

 SOUTH ATLANTIC OCEAN

ARCTIC OCEAN

INDIAN OCEAN

ASIA

 NORTH PACIFIC OCEAN

 105°

PM PM PM PM MIDNIGHT AMPM AM AM NOON PM PM PM PM PM

 90° 105° 120° 135° 180° 165° 150° 135° 120° 105° 90° 150° 165° 75° 60° 45°

 80°

 60°

 40°

 20°

 0°

 20°

 40°

 60°

 80°

+6h 30m

P O N Z A B C D E FQ

0 +1 +2 +3 +4 +5 +6

Half hour zone Countries and areas which have not adopted
zone system, or where time differs other than
half hour from neighboring zones.

ZK−2455A−GE

SOUTH PACIFIC OCEAN

 120° 135° 150° 165° 180° 90° 165° 150° 135° 120° 105° 75° 45° 60° 30° 15° 0° 15° 30° 45° 60° 75° 75°

 60°

 40°

 20°

 0°

 20°

 40°

 60°

 30° 15° 0° 15° 30° 45° 60° 75° 90°

Even numbered zones Odd numbered zones

 −8 −7 −6 −5 −5

AM

−4 −3 −2 −1

AM AM AM AM AM AMAM

Figure 85. World Time Zone Map

484 OSF® DCE Administration Guide— Core Components

Appendix D. DTS Extended BNF

This appendix defines the Distributed Time Service (DTS) syntax in extended
Backus Naur Format (BNF) notation.

The BNF for DTS time conversion has four parts: year, day, tdf, and inaccuracy.
For any part whose value is not explicitly expressed, the conversion default value is
taken as that of the current day. The BNF for the DTS time conversion is as follows:
dts_time : year_part day_part tdf_part inacc_part
| year_part day_part tdf_part
| year_part day_part
| year_part day_part inacc_part
| year_part inacc_part
| year_part
| day_part tdf_part inacc_part
| day_part tdf_part
| day_part inacc_part
| day_part
| year_part Z
| year_part Z inacc_part
| year_part day_part Z inacc_part
| day_part Z inacc_part
| day_part Z
;

year_part : number - number - number -
| number - number - number T
| number - number T
| number T
;

day_part : partial : partial : partial
| partial : partial
| partial
;

tdf_part : sign number : number
| sign number
;

sign : -
| +
;

partial : number
| number frac
| number frac number
| frac number
;

frac : .
| ,
;

inacc_part : I
| I partial
| I infinity
;

infinity : 'i''n''f'
| - -
| - - - - -
;

485

number : DIGIT
| number DIGIT
;

486 OSF® DCE Administration Guide— Core Components

Index

Special Characters
.dcecprc

example of 17
use of 16

/.: prefix 133
/: prefix 134
/etc/group file 277, 391
/etc/passwd file 277, 391
dts_ntp_provider.c 263
dts_null_provider.c 263
gdad command 216
gdad process 216
init.dcecp

use of 16
init.tcl

use of 16
krbtgt directory

in multicell environment 355
passwd_override file

format 382
scope 381

A
abbreviations 7, 13
absolute time 230
access control list 163
accounts

about 272, 325
changing 334
changing passwords 431
changing registry information 431
creating 329, 425
deleting 335, 428
displaying registry information 365
expiration information 328
for foreign cells 355, 364
importing 405
lifespan 373
machine 326, 335
membership lists 321
reserved 306, 401
server 326, 335
user 325

ACL entry types 285
compared to ACL types 294
in future DCE releases 289

ACL facility 271
ACL manager

for registry database 434
role in checking sequence 289
role in granting access 282
scope of support 282
support for entry types 289

ACLs
checking sequence 289
components and scope of entries 284

ACLs (continued)
control programs for managing 289
copying to other objects 293
default 294
denying access 292
displaying 370
entry types 165
for local names (CDS) 163
function 281
in DTS 261
inheritance 180
keys 284
permissions for krbtgt directory 355
registry objects 433
scope 281
scope compared to UNIX permission bits 282
types 163
types of, editing 294

administration objects 4
adding new objects 18

alias cell names 132
aliases

changing 322
creating 322
deleting 310
on project lists 318
rights accrued 305

any_other entry type 286, 287
applications

using DTS 224
arithmetic functions in dcecp 30
attribute 144
attribute schema

defined 343
attribute types

access control 343
Attribute Value Assertions 136
attributes

identifier file 475
in CDS and GDS names 137

audit 437
clients 438
code point 438
daemon 449, 450, 455
event 438
event class 438, 451
event class file 439, 451
event class name 439
event class number 439, 440
event number 438
filter 440, 441, 452
filter rules 442
service 437, 444, 445, 449, 450
trail file 443, 456, 457

authentication
managing 313
preauthentication 310
public key protocol 310

487

authentication (continued)
third-party protocol 313
timestamps protocol 310

authentication policies 328, 424
authentication service 271

about 271
how it works 327
shared authentication keys 356

authorization groups
adding members 171
creating 172

AVA 136

B
background skulk time 158
backup couriers 257
Backus Naur format (BNF) notation 485
BIND namespace

structure 138
browser

about 147

C
CDS 397

about 129
appending directories 196
attribute 478, 479
browser 187
clerk 141
clerks 153, 173, 174, 175, 213
components 141
concepts 141
configuration (figure) 142
control programs for managing 159
controlling local management operations 167
dcecp operations on objects 160
deleting nonreplicated directories 207
deleting replicas 208
displaying attribute values 189
how it works 142
listing contents of directories 189
managing directories 179
merging directories 194
monitoring network traffic 173
object attributes 160
object types 159
restoring merged directories 199
security 146
servers 134, 141, 145, 170, 173, 174, 175
user interfaces 147
viewing the namespace 187

cds_attributes file 478
cdsclerk.h file 478
cell aliases 132

extending the cellalias task object 67
managing with the cellalias task object 67

Cell Directory Service 129
cell names

about 131
managing 67

cell names (continued)
multiple names for 131

cell object
extending 66

cell-relative names
about 133

cellalias object
extending 67

cells
about 272
access between 355, 364
backing up servers 65
contacting foreign 217
creating hierarchical 212
extending the cell task object 66
managing the names of 67
managing with cell task object 63
naming environments 130
testing operation of 64

child
cells 131, 145
pointers 145, 152

clearinghouses
about 142, 143
communications with CDS clerks 173
deleting 211
object entries 144, 150
preserving after server upgrades 175
relocating 209
viewing contents 174
viewing counters 173

clients
showing in a cell 63

clock set command 259, 260
clocks

adjusting 259
adjustment mechanism 229
correcting malfunctions 253
errors 226
forcing synchronization 260
restricting synchronization cycles 252
synchronizing 228

code point 438
command-line editing 10
command substitution

used in dcecp 21
commands

dcecp 170, 243
comments

in dcecp scripts 24
computed time 228
configuration

of public key authentication 311
password management server 316

configuring public key authentication 311
containers

definition of 294
control programs 292
convenience variables

CDS confidence level 30
current cell name 25

488 OSF® DCE Administration Guide— Core Components

convenience variables (continued)
current host name 30
current principal name 25
DCE server names 28
in dcecp scripts 24
last security server used 29
most recent argument 26
most recent error code 29
most recent object name 27
most recent return value 27
parent of last argument 26

Coordinated Universal Time 223
couriers

about 235
designating 257

Creation Timestamp (CTS) 158
credentials 283
customizing the DCE control program 16

D
DCE control program 3

abbreviations 7
adding new objects 18
administration objects 4
benefits of 3
command-line editing 10
command-line operations 6
commands for managing ACLs 292
commands for managing DTS 243
creating audit filters 452
customizing 16
description of 3
enabling and disabling audit logging 455
extending 47
history 13
initialization files 16
invoking operations 6, 7
its use of Tcl 3
language 19
modifying and querying audit daemon

attributes 455
modifying filters 453
multiple operations 6
starting and stopping 5
uses of 7

DCE control program language
19

command substitution 21
comments 24
conditional if statements 32
controlling scripts 32
convenience variables 24
creating procedures 37
error handling 41
error information 42
evaluating commands 36
expressions 30
extending 47
files 44, 45
grouping elements 21
lists 31, 38

DCE control program language (continued)
loops 19, 34
mathematic functions 30
pattern matching 35
reading other files 36
reissuing errors in 43
strings 39, 40
subprocesses 46
trapping errors in 42
variables 20, 37, 38
writing scripts 47

DCE daemon 81
starting and stopping 82

dcecp
commands for managing CDS 159
DCE control program 243
description 159
permissions for using security commands 432
use with CDS 147

dcecp CDS commands
show 190

dcecp commands
account catalog 365
account create 334
account delete 335
account modify 334, 376
cdsclient show 190
clearinghouse create 210
clearinghouse delete 211
clearinghouse disable 209
directory delete 207
directory modify 204
directory show 218
group create -uuid 419
group list 368
keytab delete 339
keytab remove 339
link create 201
link modify 202, 203
list 189
modify 478, 479
org create -uuid 419
principal catalog 368
principal create 308, 309
principal create -uuid 419
principal modify 309
properties 380
registry modify 373, 377
registry show 377
remove 479
required permissions 168
show 189

default filters 453
DFS

interaction with directory service 127
DIB

about 135
direct trust relationships 356
directories

about 134
access control (CDS) 164

Index 489

directories (continued)
appending errors 134
cell root 134
checking the ACLs for 180
child 134
child pointers (CDS) 145, 152
controlling access to 281
convergence (CDS) 186
creating 180
creating (CDS) 179
merging 193, 198
merging errors 198
merging into foreign cells 199
overriding default 387
parent 134
permissions needed to create 179
updating (CDS) 184
upgrading the cell root directory version 180
upgrading the directory version 181

Directory Information Base 135
Directory Information Tree 135
directory service

cell environment 129, 130
how used 128
names outside 138

Directory System Agent 135
disable_time_interval ERA 314
Distinguished Names 135
distinguished value 136
Distributed File Service 127
Distributed Time Service 128
DIT 135
DN

about 135
structure (figure) 137

DNS
about 129, 137
defining cell names 217

Domain Name System 129
drift 226, 227
DSA

about 135
DTS

access control 261
BNF notation 485
clerks 223, 228, 233, 247
configuring 237
creating a new clerk or server 246
dcecp operations for managing 243
how it works 233
interaction with directory service 128
interoperation with NTP 263
managing 225, 243
reconfiguring on nodes 246
servers 223, 228, 234, 247, 249, 255, 256, 257,

258
temporary reconfiguration on a node 247

dtscp commands
clock set 259, 260

E
editing

command lines 14
DCE control program 10
using the history facility 13

enabling public key authentication 311
endpoint maps

about 107
endpoints

purging obsolete 107
entities

about 147
in DTS 223

epochs
about 234
matching 257

ERA 343
deleting 433
disable_time_interval 314
facility 271
invalid login handling 310
max_invalid_attempts 314
modifying 433
passwd_override 317
password management 310
permissions to create 432
pre_auth_req 313
preauthentication 310
public key protocol 310
pwd_mgmt_binding 315
pwd_val_type 315
security 310
third-party protocol 310
timestamps protocol 310
viewing 433

ERAs
viewing 433

errors
handling in dcecp 41
reissuing in dcecp 43
trapping in dcecp 42

evaluating commands in dcecp 36
event class 438

defining 451
file 439
name 439
number 439

event number 438
exceptions

handling in dcecp 41
reissuing in dcecp 43
trapping in dcecp 42

extended ACL entry type
form and function 289

extended registry attribute 343
extending

cell task object 66
dcecp 47
the cellalias task object 67
the host task object 73
the user task object 78

490 OSF® DCE Administration Guide— Core Components

F
files

controlling access to 281
reading and writing in dcecp 45
specifying in dcecp 44
working with in dcecp 44

filter 440
creating and maintaining 452
default 453
guides 441
subject identity 441

foreign_group entry type 286, 287
foreign_other entry type 286, 287
foreign_user entry type 286, 287
full names 135, 137, 305

G
GDA

about 129
how it works 213
managing 216

GDS
about 129
defining cell names 218
searching via attributes 137

GECOS information
overriding 381

Global Directory Agent 129
Global Directory Service 129
global names

about 130, 131
attributes 137
GDS format 135
identifier file 476
outside directory service 139

global servers 235
advertising 256
changing required 251

globaltimeout attribute 255
group entry type 285, 286
group IDs

setting in registry 378
group_obj entry type 285, 286
group_override file

format 383
grouping dcecp elements 21
groups

about 272
accrual of permissions 287
ACL entry types 285
adding members 411, 429
adding to organization 318
adding to registry 424
aliases 305
changing full names 430
changing management information 430
changing registry information 319
default memberships (table) 401
deleting 320, 425
deleting members 430

groups (continued)
displaying registry information 272
excluding from project lists 287
management information 423
membership lists 321
naming restrictions 305
overriding memberships 387
project lists 318, 319

H
help

accessing reference pages 15
hierarchical cells

creating 212
naming conventions 131

history
DCE control program 13

host object
extending 73

host services 81
starting and stopping 82

hosts
configuring 71
extending the host task object 73
listing in a cell 69
managing with the host task object 69
removing from a cell 72
showing in a cell 63
showing servers configured on 70
starting processes on 71
stopping processes on 71
testing availability of 70

I
if statements in dcecp 32
inaccuracy values

determining 227
example 245

Initial Container ACL 164, 294
Initial Object ACL 164, 294
initialization files

example in dcecp 17
use of in dcecp 16

interface
RPC identifier 117

interim file 193
interval 223

J
junctions 138

K
kdestroy command 329
Key Distribution Center 461
key entries

deleting from keytab file 339
key tables

displaying registry information 371

Index 491

keys
deleting from keytab file 337
machine and server accounts 340
version numbers 336

keytab file
adding keys 337
dced object 335
deleting 339
protecting 336

klist command 328

L
LAN 238
leap seconds

inaccuracy values 227
lists in dcecp 31

nested 38
local

identity 325
names 136, 137, 149, 163, 469
registry 340, 341, 342
servers 234

localtimeout attribute 255
locksmith account 413
locksmith mode 413
login 310

changing defaults 387
invalid 314
preventing 386
remote 459

login shells
overriding 387

lookups
between cells 213
how they work 142, 149

loops in dcecp 33
for 34
foreach 33
terminating 34
while 33

M
mask_obj entry type

effect on ACL checking 291
masks

types and use of 288
master keys

backing up 389
changing 388
restoring 389

mathmatical functions in dcecp 30
max_invalid_attempts ERA 314
maxinaccuracy attribute 252
membership lists 321
merging

overview of procedure 193
merging CDS directories

overview 193
minimum ticket lifetime

setting in registry 379

minservers attribute
changing 249

N
namespace

about 134
access by CDS servers 171
access control 171
backing up 176
compared to GDS hierarchy 135
files for backup 177
logical and physical structure (figure) 149
maintenance operations 158
restructuring 201
updating 157
viewing 147

network identity 325
Network Time Protocol 263
NTP

getting time from 263
giving time to 265
interoperation with DTS 263
preventing loops 267

number formats in registry 307

O
Object ACL 164, 294
object identifier 478

files 475
objects

about 144
controlling access to 281
creating 49
dcecp administration 4
entries 144
quotas for creating 307, 363
types of 294

OID 478
OMIT entry

in passwd_override file 386
operating system commands

executing from dcecp 46
operations

invoking 6
invoking within dcecp 7

organization IDs
setting in registry 379

organization name 331
organizations

about 272
adding members 429
adding to registry 318, 424
changing full names 430
changing management information 430
changing registry information 319
deleting 320, 425
deleting members 430
displaying registry information 366
management information 423
membership lists 321

492 OSF® DCE Administration Guide— Core Components

organizations (continued)
naming restrictions 272
policies 378

orphans
adopting 307, 418

other_obj entry type 285, 286
overrides 381

P
parent cells

and child pointers 145
parsing

arguments in dcecp scripts 55
strings in dcecp 40

passwd_override ERA 317
password 310

changing 431
changing in cross-cell authorization accounts 364
default 401
effects of policy changes 377
encrypting 378
expiration date 374
expiration information 328
format 375
lifespan 374
management server 316
managing expiration of 317
managing generation of 315
managing strength of 315
overriding 385
permissions 431

pathnames
for registry objects 278
for security objects 278
in commands 278

pattern matching in dcecp 35
permissions

accrual 287, 318
accrual, effect on ACL checking 291
ACL entry syntax 285
CDS objects 147, 166
checking sequence 289
dcecp for CDS 168
denying 292
granting, effect on ACL checking sequence 292
inheriting 283
principals and groups 285
propagation 164
registry objects 422
restricting 288
scope of UNIX permission bits 282
setting default 294
setuid bit 283
use of 281

policies
authentication 375
authentication information 424
changing 432
handling conflicting 376
standard 373

POSIX
scope of permissions and DCE ACLs 282

pre_auth_req ERA 313
preauthentication 310

interoperability 313
pre_auth_req ERA 313
public key 310
third-party 310
timestamps 310

primary names
about 305, 322
changing 322
conflicting 405, 407
format 306

principals 75
about 272
accounts for foreign 355, 364
accrual of group permissions 287
ACL entry types 285
add from foreign cells 321
adding to registry 308, 424
authenticating 327
authentication information 424
changing full names 430
changing management information 430
changing registry information 309
deleting 307, 310, 425
displaying registry information 368
group memberships (table) 401
locksmith 413
logical identity 279
management information 423
name format 306
naming restrictions 305
network and local identities 325
object creation quotas 307
overriding group memberships 387
overriding UNIX IDs 381
permissions 172
registry creator 401
reserved 306
unauthenticated 172

privilege attributes
about 327
viewing 328

privilege service 271
procedures, controlling the context of 38
procedures, creating in dcecp 37
profiles

role in lookups 233
programming

CDS object identifier files 475
project lists

about 318
definition 287
excluding groups from 287
in ACL checking sequence 290

propagation queues 276
properties

authentication information 424
changing 432
setting 378

Index 493

public key authentication
enabling and configuring 311

public key authentication protocol 310
pwd_mgmt_binding ERA 315
pwd_val_type ERA 315

Q
queryattempts attribute 255
quotas

for creating registry objects 307, 363

R
RDN

about 136
reference pages

within dcecp 15
registry

accessing objects 421
account lifespan 373
authentication policies 375
changing the master replica site 393
database 272, 273, 274, 307, 365, 381, 388, 389,

397, 398, 401, 402, 421
default ticket lifetime property 378
deleting when machines are removed 394
displaying and setting policies 377
extending 343
hidden password property 378
Initial Object ACLs 435
local 278, 340
local overrides 381
maintaining local 340
maintaining policies and properties 373
maximum ticket lifetime 376
maximum ticket renewable time 375
maximum UNIX ID property 379
minimum group ID property 378
minimum organization ID property 379
minimum ticket lifetime property 379
minimum UNIX ID property 379
objects 278, 307, 422
password expiration date 374
password format 375
password lifespan 374
planning the sites of replicas 397
policies 373
registry-wide, policies 378
service 271
table of access permissions to objects 422

registry connect command 356
Relative Distinguished Names 136
relative time 232
remote login 459
remote procedure call 127
remote utilities 459
replica

about (CDS) 143
about (security) 274
checking status (security) 403
creating (CDS) 181

replica (continued)
creating slaves (security) 143
deleting (CDS) 183
deleting slaves (security) 394, 417
designating new master (CDS) 205
lists 277
restarting master (security) 277
sets 204, 206
slave permissions (security 434
starting master (security) 402
updating (CDS) 157
updating (security) 277

replication
namespace backup mechanism 176

reserved accounts 401
resource records 217
rgy_edit

commands 301, 341, 342
rlogin/rlogind 459
RPC

interaction with directory service 127
interface 117

rsh/rshd 459

S
schema 343

about 135
entries 369

scripts 47
formal 49, 50
informal 47, 48
invoking 7
making available 57
parsing arguments in 55
writing dcecp 47

security
commands 278, 328, 329, 391, 405, 414
dcecp operations for objects 300
ERAs 310
passwords 310
planning the sites of components 397
servers 413
service 127

server
password management 316

server machines
removing from network (security) 393

serverentry attribute 255
serverprincipal attribute 255
servers

showing in a cell 63
set directory to new epoch command 205
simple names 135
skew 226, 229
skulk

explained 157
skulking 158, 184
soft links

about 145
changing destination names 202
creating 201

494 OSF® DCE Administration Guide— Core Components

soft links (continued)
deleting 145
expiration and extension values 203
how they work 151
managing 201

starting
DCE host processes 71
host services 82

stopping
DCE host processes 71
host services 82

strings in dcecp 39
constructing 40
manipulating 40
parsing 40

subprocesses
creating in dcecp 46

substitutions 14
subtrees

merging 193
synchronization

about 223
how it works 226

synchronizing CDS server clocks 185
syncinterval attribute 252
system time

changing 259
updating nonmonotonically 260

T
task objects

about 61
cell 63, 66, 67
cell_alias 67
creating 49
host 69
listed 62
user 75, 78

Tcl 3
TGT

forwarding 462
third-party authentication protocol 310
tick 229
ticket cache name 329
tickets

about 328
deleted passwords 337
destroying 329
expiration and renewal 328
setting lifetimes 333, 379
status when process halts 329
ticket-granting ticket validity 375
ticket lifetime 376
viewing information 329

time
display formats 230
inaccuracy values 252
setting abruptly 260
setting gradually 259
standards 223

time (continued)
translating UTC to local 230

time-provider
checking server synchronization 258
determining accuracy 227
in DTS configuration 241
selection criteria 481
support 225

timestamps
format 245
manipulating 230
use by CDS 158

timestamps authentication protocol 310
timezones

world map 483
tolerance attribute 253
Tool Command Language

its use in dcecp 3, 19
trail file 443
transitive trust relationships 356
trust relationships 355, 356

U
unauthenticated mask

effect on ACL checking 291
inappropriate use of 292

unique universal identifiers 307
UNIX accounts

importing 405
UNIX IDs

conflicting 405
for foreign users 357
importing 407
overriding 381
setting in registry 379

update propagation 157
Update Timestamp (UTS) 158
user entry type 285, 286
user information 424
user_obj entry type 285, 286
user object

extending 78
users

creating 75
extending the user task object 78
managing with the user task object 75
removing from a cell 77
showing information about 76

UTC
about 230
and local time 232
commercial providers 482

UUID
and deleted principals 307

V
variables

convenience, in dcecp scripts 24
error information in dcecp 41
global, in dcecp 38

Index 495

variables (continued)
global error information in dcecp 24
importing, in dcecp 38
local, in dcecp 37
used in dcecp 20

W
WAN 239
wide area network 239

X
X.500

DCE implementation 135, 137
xattrschema

displaying registry information 369
xattrschema object 343

496 OSF® DCE Administration Guide— Core Components

