
IBM Distributed Computing Environment for AIX,
Version 2.2:

Introduction to DCE

IBM

IBM Distributed Computing Environment for AIX,
Version 2.2:

Introduction to DCE

IBM

Note
Before using this document, read the general information under “Notices” on page 123.

First Edition (February 1998)

This edition applies to Version 2.2 of the IBM Distributed Computing Environment for AIX and to all subsequent
releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. Send your comments to the following address:

International Business Machines Corporation

Department VLXA

11400 Burnet Road

Austin, Texas

78758

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

Copyright © 1995, 1996 Open Software Foundation, Inc.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

Copyright © 1995, 1996 Hitachi, Ltd.

Licensee agrees that it will comply with and will require its Distributors to comply with all then applicable laws, rules
and regulations (i) relating to the export or re-export of technical data when exporting or re-exporting a Licensed
Program or Documentation, and (ii) required to limit a governmental agency’s rights in the Licensed Program,
Documentation or associated technical data by affixing a Restricted Rights notice to the Licensed Program,
Documentation and/or technical data equivalent to or substantially as follows: ″Use, duplication or disclosure by the
U.S. Government is subject to restrictions as set forth in DFARS 52.227-7013(c)(1)(i)-(ii); FAR 52.227-19; and FAR
52.227-14, Alternate III, as applicable or in the equivalent clause of any other applicable Federal government
regulations.″

© Copyright International Business Machines Corporation 1992, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface . vii
Audience. vii
Applicability . vii
Purpose . vii
Document Usage. vii
Related Documents . viii
Typographic and Keying Conventions ix

Chapter 1. Overview of DCE 1
Why Distributed Computing? 1

Why DCE? . 2
Potential Users of DCE . 3

Models of Distributed Computing 4
The Client/Server Model . 4
The Remote Procedure Call Model 7
The Data Sharing Model . 7
The Distributed Object Model 8

Architectural Overview of DCE 9
Overview of DCE Technology Components 10
The DCE Cell . 12
Integration of the DCE Technology Components 13
Relationship of DCE to Network and System Services 13
DCE Internationalization . 14

Chapter 2. DCE Configuration 17
Introduction to DCE Configuration 17
Basic Configuration Components 19
DCE Machine Configuration Examples 21

DCE User Machine Configuration. 21
DCE Administrator Machine Configuration 21
DCE Server Machine Configuration 22

DCE Cell Configuration Examples 22
A Simple DCE Cell . 23
A DCE Cell with DFS . 24
A Connected DCE Cell . 25

Chapter 3. DCE Technology Components 27
DCE Threads . 28

What is DCE Threads? . 28
End User’s Perspective . 29
Programming with DCE Threads 29
DCE Threads Administration 31
Additional Information on DCE Threads 31

DCE Remote Procedure Call 31
What is DCE RPC? . 32
End User’s Perspective . 33
Programming with DCE RPC 33
DCE RPC Administration . 36
How an RPC Call Works . 37
System Independence . 38
Additional Information on DCE RPC 39

DCE Directory Service. 39
DCE Directory Service Architecture 40

© Copyright IBM Corp. 1992, 1998 iii

DCE Cell Directory Service 45
DCE Global Directory Agent. 48
The Directory Service Interfaces 49

DCE Distributed Time Service 50
What is DTS? . 50
End User’s Perspective . 53
Programming with DTS . 53
DTS Administration . 53
Interaction with the Network Time Protocol 54
Additional Information on DTS 54

DCE Security Service . 54
What is the DCE Security Service? 54
How DCE Security Works 56
End User’s Perspective . 57
Programming with DCE Security 57
DCE Security Service Administration 59
DCE Security and Kerberos 60
Secure Remote Utilities . 60
The Generic Security Service API 60
The Public Key Certification API 60
Additional Information on DCE Security 61

DCE Distributed File Service 61
What is DFS? . 61
DFS Configuration . 66
End User’s Perspective . 68
Programming with DFS . 69
DFS Administration . 69
Additional Information on DFS 69

DCE Cross-Component Facilities 69
Host Services . 69
Application Message Service 70
Serviceability . 70
Backing Store Databases. 70

The DCE Control Program . 70
Two DCE Application Examples 71

The greet Application: An Implementation Using DCE RPC 71
The greet Application: An Implementation Using DCE DFS 79

Chapter 4. Integration of DCE Technology Components 83
Integration Matrix. 83
Integration by Technology Component 84
Implications of Mutual Dependencies 85

Overview of DCE Documentation 87
DCE Documentation . 87

Documentation Intended for Multiple Audiences: 87
Documentation Intended for DCE Administrators: 87
Documentation for DFS Administrators: 88
Documentation for Application Developers: 88

List of Acronyms and Abbreviations 89

Glossary . 93

Notices . 123
Trademarks . 123

iv DCE 2.2: Introduction to DCE

Index . 125

Contents v

vi DCE 2.2: Introduction to DCE

Preface

IBM DCE for AIX, Version 2.2: Introduction to DCE provides an introduction to the
IBM* Distributed Computing Environment (DCE) offering. The glossary introduces
terms used in DCE documentation.

Audience

The content and intended audience of this manual change from less technical to
more technical as the manual progresses. “Chapter 1. Overview of DCE” on page 1
is written for anyone interested in an overview of DCE, including managers, system
administrators, and application programmers. “Chapter 2. DCE Configuration” on
page 17 is intended for network managers and administrators. “Chapter 3. DCE
Technology Components” on page 27 and “Chapter 4. Integration of DCE
Technology Components” on page 83 are targeted primarily for administrators and
programmers.

“Overview of DCE Documentation” on page 87 is written for anyone wishing to find
further information on DCE. It suggests reading paths through the DCE
documentation set for various audiences. The “Glossary” on page 93 contains terms
used throughout the DCE documentation. Each term is defined for the audience of
the manual in which it appears. For example, the definition of a term used in the
IBM DCE for AIX, Version 2.2: Administration Guide—Core Components is targeted
for the same audience as the IBM DCE for AIX, Version 2.2: Administration
Guide—Core Components itself.

Applicability

This revision applies to the IBM DCE for AIX Release 2.2 offering and related
updates.

Purpose

After reading this document, a user will

1. Have a high-level understanding of DCE

2. Understand the individual technology components that constitute DCE

3. Understand the interdependencies of the DCE technology components

4. Be able to find further information about DCE in related documents

Document Usage

The manual is organized as follows:

“Chapter 1. Overview of DCE” on page 1
Gives an overview of DCE. It describes distributed computing and its uses,
and presents the client/server model of distributed computing, on which
DCE is based. It gives a summary of the DCE architecture, along with a
brief description of each of the technology components that make up DCE,
and their integration with one another.

© Copyright IBM Corp. 1992, 1998 vii

“Chapter 2. DCE Configuration” on page 17
Gives examples of typical DCE configurations. It explains the concept of a
DCE cell, and describes the DCE software configuration components. It
describes the configuration of different types of DCE machines. It then gives
examples of different cell configurations, including a simple DCE cell, and
cells with various combinations of DCE services.

“Chapter 3. DCE Technology Components” on page 27
Describes each of the technology components that make up DCE. It
includes sections on DCE Threads, Remote Procedure Call, Directory
Service, Distributed Time Service, Security Service, Distributed File Service,
and cross-component facilities, including the DCE control program. Its last
section shows how some of these services are used in a simple distributed
application example.

“Chapter 4. Integration of DCE Technology Components” on page 83
Describes the ways in which each of the DCE components uses the other
technology components of DCE, and what implications their integration has
for porting, testing, configuring, and starting up DCE systems.

“Overview of DCE Documentation” on page 87
Gives an overview of DCE documentation, and suggests reading paths for
different audiences.

“List of Acronyms and Abbreviations” on page 89
Lists the acronyms and abbreviations used in this manual.

“Glossary” on page 93
Defines terms used in this manual and the rest of the DCE documentation
set. Each term is defined for the audience of the manual in which it
appears. In some cases, a given term has a different meaning when used
in the context of different technology components. This is indicated by the
technology’s abbreviation as a prefix to its definition. For example, the term
server has a different meaning when used in conjunction with the RPC,
CDS, DTS, and DFS technology components. The four definitions are listed
in the entry for server in the Glossary. When no prefix is given, the
definition applies to all DCE documentation.

Related Documents

The DCE documentation set comprises the following manuals. See Appendix A for a
description of each of these manuals.

1. IBM DCE for AIX, Version 2.2: Administration Commands Reference

2. IBM DCE for AIX, Version 2.2: Administration Guide—Introduction

3. IBM DCE for AIX, Version 2.2: Administration Guide—Core Components

4. IBM DCE for AIX, Version 2.2: DFS Administration Guide and Reference

5. IBM DCE for AIX, Version 2.2: Application Development Guide—Introduction
and Style Guide

6. IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components

7. IBM DCE for AIX, Version 2.2: Application Development Guide—Directory
Services

8. IBM DCE for AIX, Version 2.2: Application Development Reference

9. IBM DCE for AIX, Version 2.2: Problem Determination Guide

viii DCE 2.2: Introduction to DCE

10. IBM DCE for AIX, Version 2.2: Release Notes

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

dcelocal
The OSF variable dcelocal in this document equates to the AIX variable
/opt/dcelocal .

dceshare
The OSF variable dceshare in this document equates to the AIX variable
/opt/dcelocal .

This guide uses the following keying conventions:

<Ctrl- x> or | x
The notation <Ctrl- x> or | x followed by the name of a key indicates a
control character sequence. For example, <Ctrl-C> means that you hold
down the control key while pressing <C>.

<Return>
The notation <Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Preface ix

x DCE 2.2: Introduction to DCE

Chapter 1. Overview of DCE

Unless otherwise stated, substitute International Business Machines (IBM) for all
occurrences of the Open Software Foundation (OSF) made in this publication.

The IBM Distributed Computing Environment (DCE) provides services and tools
that support the creation, use, and maintenance of distributed applications in a
heterogeneous computing environment. This chapter provides an overview of DCE,
beginning with a section describing distributed computing and its benefits. The next
section describes three distributed computing models—client/server, remote
procedure call (RPC), and data sharing. The final section gives an overview of DCE
itself, describing its technology components, the organization of a DCE
environment, and the relationship between DCE and the underlying computing
system.

Why Distributed Computing?

By “distributed computing” we mean computing that involves the cooperation of two
or more machines communicating over a network (see Figure 1). The machines
participating in the system can range from personal computers to supercomputers;
the network can connect machines in one building or on different continents.

Why is enabling this type of cooperative computing important? One reason is
historical: computing resources that used to operate independently now need to
work together. For example, consider an office that acquired personal workstations
for individual use. After a while, there were many workstations in the office building,
and the users recognized that it would be desirable to share data and resources
among the individual computers. They accomplished this by connecting the
workstations over a network.

A second reason is functional: if there is special-function hardware or software
available over the network, then that functionality does not have to be duplicated on
every computer system (or node) that needs to access the special-purpose

LAN

WAN

WAN

Typesetter
Server

Work-
Station

Personal
Computer

File
Server

Personal
Computer

Work-
Station

Super-
Computer

Work-
Station

Print
Server

LAN

LAN

Figure 1. A Potential DCE Network

© Copyright IBM Corp. 1992, 1998 1

resource. For example, an organization could make a typesetting service available
over the network, allowing users throughout the organization to submit their jobs to
be typeset.

A third reason is economical: it may be more cost effective to have many small
computers working together than one large computer of equivalent power. In
addition, having many units connected to a network is the more flexible
configuration, because if more resources are needed, another unit can be added in
place, rather than bringing the whole system down and replacing it with an
upgraded one.

Finally, a distributed system can be more reliable and available than a centralized
system. This is a result of the ability to replicate both data and functionality. For
example, when a given file is copied on two different machines, then even if one
machine is unavailable, the file can still be accessed on the other machine.
Likewise, if several printers are attached to a network, then even if an administrator
takes one printer offline for maintenance, users can still print their files by using an
alternate printer.

Distributed computing inherently brings with it not only potential advantages, but
also new problems. Examples are keeping multiple copies of data consistent, and
keeping the clocks on different machines in the system synchronized. A system that
provides distributed computing support must address these new issues.

Why DCE?

Given that, for one of the reasons previously mentioned or some other reason, an
organization decides that it wants to acquire distributed computing capability, why is
DCE in particular advantageous? Why would an organization with a network such
as the one in Figure 1 on page 1 benefit from using DCE to enable distributed
computing?

DCE’s benefits can be categorized into its support of distributed applications, the
integration of its components with each other, DCE’s relationship to its platforms, its
support for data sharing, and DCE’s interaction with the world outside of DCE, as
described in the following list.

1. DCE provides tools and services that support distributed applications.

DCE provides a high-level, coherent environment for developing and running
applications on a distributed system. The DCE components fall into two
categories: tools for developing distributed applications, and services for running
distributed applications. The tools, such as DCE RPC and DCE Threads, assist
in the development of an application. The services, such as the DCE Directory
Service, Security Service, and Distributed Time Service, provide the support
required in a distributed system that is analogous to the support an operating
system provides in a centralized system.

It is possible to develop distributed applications with much less assistance than
what DCE offers. Programmers can write applications that cooperate across
machines by explicitly writing the code that performs the network
communications between them, but this requires much time and expertise.
Programmers can also write distributed applications by using a communications
tool, such as remote procedure call, while explicitly using other necessary
technologies, like standalone name and security services. However, DCE
provides a set of components necessary for distributed computing that are
already integrated, and that do as much work as possible automatically for the
application programmer, system administrator, and end user.

2 DCE 2.2: Introduction to DCE

2. DCE’s set of services is integrated and comprehensive.

A second benefit is the integration and comprehensiveness of the DCE
components. Not only does DCE provide all the tools and services needed for
developing and running distributed applications, but the DCE components
themselves are well integrated. They use one another’s services whenever
possible, since many of the DCE components are themselves distributed
applications. In addition to supporting the development of distributed
applications, DCE includes services that address some of the new problems
inherent in the distributed system itself, such as data consistency and clock
synchronization. Finally, DCE includes management tools for administering all of
the DCE services and many aspects of the distributed environment itself.

3. DCE provides interoperability and portability across heterogeneous platforms.

A benefit of DCE is its orientation toward heterogeneous rather than
homogeneous systems. One way to implement a distributed system is to use a
single operating system that runs on all nodes participating in the distributed
network. The DCE architecture, however, allows for different operating systems
and hardware platforms. Using DCE, a process running on one computer can
interoperate with a process on a second computer, even when the two
computers have different hardware or operating systems. DCE can therefore
accommodate a wider range of networks—especially networks needing
distributed computing for the historical reasons previously listed—than a model
that requires the same operating system running on every node. Applications
that are built using DCE are portable to other hardware/operating system
platforms that run DCE.

4. DCE supports data sharing.

Another benefit is DCE’s support of data sharing through its directory service
and distributed file service. A user anywhere in the distributed system can share
data by placing it in the namespace or in a file, whichever is appropriate for the
application. The data is then accessible by authorized users throughout the
system.

5. DCE participates in a global computing environment.

One final benefit of DCE is the way it interacts with the outside world. In
addition to supporting cooperation within and between themselves, DCE
systems can also interoperate with computing environments outside of DCE. In
particular, the DCE Directory Service can interoperate with two standard, global
directory services—X.500 and Domain Name Service (DNS)—allowing users
from within DCE to access information about the outside world. In this way,
DCE participates in a global directory service. One benefit of such participation
can be seen in DCE’s distributed file system: it looks like one global file system,
and users anywhere in the world can address the same file by using the same
global name.

Potential Users of DCE

This section gives some examples of computing environments that can profit from
distributed computing capabilities. In general, any computing organization wishing to
take advantage of the benefits of a distributed computing environment—data and
resource sharing, extensibility, availability, interoperability—can benefit from using
DCE. For example:

1. An office with isolated computing resources can network the computers together
and use DCE for data and resource sharing.

Chapter 1. Overview of DCE 3

2. An organization consisting of multiple computing sites that are already
interconnected by a network can use DCE to tie together and access resources
across the different sites. The different sites can be in different countries, or
even on different continents.

3. Any computing organization comprising, or expecting to comprise in the future,
more cooperating hosts than can be easily administered manually (perhaps over
a dozen nodes) can benefit greatly from the administrative support afforded by a
DCE environment. For example, in DCE the database of computer users and
their associated information (such as passwords) can be administered centrally,
removing the need for an administrator to update information on every single
node in the network each time a new user is added.

4. Organizations that write distributed applications can use DCE as a platform for
their software. Applications that are written on DCE can be readily ported to
other software and hardware platforms that also support DCE.

5. Organizations wishing to use applications that run on DCE platforms.

6. Organizations that wish to participate in networked computing on a global basis.
Since DCE supports standard directory services that will be used throughout the
world, a site that participates in DCE will be able to plug into that worldwide
directory service database, allowing it to both ′′see’’ and access information
about other sites and organizations around the world. In turn, it will be able to
add itself to the directory service, allowing itself to be ′′seen’’ and accessed, if
desired, by other sites worldwide.

7. System vendors whose customers are in any of the preceding categories.

8. Organizations that would like to make a service available over the network on
one system (for example, a system running a non-UNIX operating system), and
have it accessible from other kinds of systems (for example, workstations
running UNIX).

Models of Distributed Computing

DCE is based on three distributed computing models—client/server, remote
procedure call, and data sharing. The client/server model is a way of organizing a
distributed application. The remote procedure call model is a way of communicating
between parts of a distributed application. The data sharing model is a way of
handling data in a distributed system.

DCE also supports a distributed object model, which is a way of distributing data
and functionality together in neat application packages known as distributed objects.

The following subsections briefly describe each model.

The Client/Server Model

A useful model for implementing distributed applications is the client/server model.
In this model, the distributed application is divided into two parts, one part residing
on each of the two computers that will be communicating during the distributed
computation (see Figure 2 on page 5).

4 DCE 2.2: Introduction to DCE

The client side of the application is the part that resides on the node that initiates
the distributed request and receives the benefit of the service (for example, a
workstation that requests that a file be printed). The server side of the application is
the part that resides on the node that receives and executes the distributed request
(for example, the node with the printer). In this model, two different sets of code are
produced—one that runs as a client, the other as a server.

Figure 3 shows a workstation running the client side of a distributed print program,
and a print server running the server side of the distributed program.

Note that the terms client and server can be seen as relative roles rather than as
absolutes. For example, in executing the print request, the print server may in turn
become a client in a distributed communication; that is, it may ask the file server to
send it a copy of the file to be printed (see Figure 4).

The terms client and server are also used to refer to specific nodes. This can be
confusing since a given node, or even a given process, can be acting in both the
client and server role. Nevertheless, it is often convenient to use the term file server
when referring to the node on which the server side of a distributed file system is
running—probably a machine that contains a lot of disk storage. Likewise, the
directory server is a node that contains a database with names in it, and answers
requests for access to those names. When clarification is needed, we use the term
machine to indicate the node rather than the role. For example, in Figure 4, the
print server, which runs on the print server machine, is acting as a client to the file
server.

Client Server

Request

Response

Figure 2. The Client/Server Model

Print
Client

Print
Server

Workstation Print Server
Print

Request

Print
Response

Figure 3. Communication Between the Print Client and Print Server

Print
Request

File
Request

Print
Response

File
Response

Print
Client

File
Server

Workstation Print Server File Server

File
Client

Print
Server

Figure 4. The Print Server Acting as a Client of the File Server

Chapter 1. Overview of DCE 5

Note that it is possible for more than one server to run on a given node. For
example, both a security server and a time server can run on the same machine. In
this case, the given node is both the security server machine and the time server
machine (see Figure 5).

In general, when referring to clients and servers as nodes, the server nodes are
specialized—they require software that is found only on that particular server (for
example, the directory server); whereas client nodes are generalized—client
machines are typically configured with the capability to be many types of client (for
example, a directory, file, and security service client). See Figure 6.

The reason client nodes are generalized is that the client code is usually relatively
small compared to the code that implements a server, and typically many nodes
need to be able to run the client side of an application; whereas only one or two
nodes may be equipped to run the server side of an application.

One final distinction between client and server is that the server is typically
implemented as a continuous process (daemon); whereas the client is usually
implemented as a library. In other words, the client side of an application consists of
a call to a routine that executes (sending the request over the network and
receiving the result) and then returns and goes on with whatever else it was doing;
whereas the server side of an application is a dedicated process that runs
continuously—waiting for a request, executing it and returning the answer, then

Time
Server

Security
Server

Time and Security Servers
Time

Request
Security
Request

Time
Response

Security
Response

Figure 5. Two Servers Running on One Node

Directory
Server

Security
Server

File
Server

Client

Figure 6. A Client is General; Servers are Specialized

6 DCE 2.2: Introduction to DCE

waiting for the next request, and so on. Figure 7 illustrates this distinction.

DCE is based on the client/server model. The DCE services are themselves
examples of distributed programs with a client and server side. The basic
communications mechanism used in DCE, remote procedure call, assumes the
presence of a client and a server. Since DCE applications are built using remote
procedure call, they are also based on the client/server model of distributed
computation.

The Remote Procedure Call Model

One way of implementing communications between the client and server sides of a
distributed application is to use the procedure call model. In this model, the client
makes what looks like a procedure call. The procedure call is translated into
network communications by the underlying RPC mechanism. The server receives a
request and executes the procedure, returning the results to the client. One of the
DCE technology components, DCE RPC, is an implementation of this model. It is
used by most of the other DCE technology components for their network
communications. (See “DCE Remote Procedure Call” on page 31 of this manual for
more information on remote procedure calls and DCE RPC.)

The Data Sharing Model

Some of the DCE services are based on the data sharing model, in which data is
shared by distributing it throughout the system. Like RPC, data sharing assumes
the existence of clients and servers. Data sharing, however, focuses on distributed
data rather than distributed execution. In RPC, the client’s procedure is executed on
the server. In data sharing, the server’s data is sent to the client. For example, if a
client wants to access a file, a copy of the file is sent from the server to the client.
The client then proceeds to access the file locally. Data sharing can be built on top
of RPC, using RPC as the communications mechanism between the client and
server, and as the means of transferring data.

Data sharing usually entails having multiple copies of the same data; for example, a
master copy of a file on a file server, and a copy of the file on one or more client
machines. As a result, copies of data may diverge; that is, a client may make
changes to its copy that make the client’s copy inconsistent with the copy on the
server. Therefore, distributed services based on the data sharing model usually
include mechanisms for keeping copies of data consistent.

In addition, services that implement data sharing must be able to synchronize
multiple access to data. For example, two clients may each want to modify a given
record in a database. The server that manages the database must either prevent
them from making conflicting modifications or decide which modification takes
precedence.

Server
DaemonClient

Library

Application

Figure 7. Client as a Library; Server as a Continuous Process

Chapter 1. Overview of DCE 7

Two DCE services are based on the data sharing model. The first is the directory
service. Both DCE directory services, CDS and GDS, maintain caches on the client.
The caches contain copies of data that users on the client have recently accessed.
Subsequent access to the data can be made locally to the cache, rather than over
the network to the server.

The DCE Distributed File Service (DFS) is also based on the data sharing model. A
DFS client maintains a cache of files that have recently been accessed by a user
on the system. DFS servers distribute and revoke tokens, which represent a client’s
capability to perform operations on files. Through careful token management, the
DFS server can ensure that its clients do not perform conflicting operations on
shared files, and that they do not see inconsistent copies of the same file.

Data sharing, like RPC, enables users and programmers to communicate
transparently in a distributed system.

The Distributed Object Model

DCE allows for a distributed object model in conjunction with the other DCE models
to give a flexible way to distribute functionality and data for client/server
applications. In addition, a distributed object model combines appropriate
functionality with data, by way of distributed objects, in a way that also hides how
parts of the distributed application communicates.

Objects are used to model the behavior of all sorts of application entities. In
object-oriented terminology, an object is simply an instance of its class. Each object
contains member functions (methods) that are only specified in the class as
operations. In the distributed object model, a DCE interface is a public set of
operations, but the methods of implementation are separate and application
specific. (Data types are usually application specific but the interface can specify
them as well.) A DCE interface specifies what is known as an abstract base class
because the class has a public interface and a hidden implementation.

Object-oriented applications make it easy to hide data and implementation details
by using hierarchies of classes and other object-oriented features. Thus
object-oriented applications can help minimize the exposure of network details and
the special DCE mechanisms of distributed computing. In DCE, the IDL compiler
generates a class hierarchy for applications. This hierarchy contains an interface
class derived from a DCE RPC base class. The interface class becomes part of an
application in such a way that the network details, mechanisms of data transfer, and
object location are hidden (encapsulated) in the base class.

DCE interfaces have code generated in C++ to help implement a distributed object
model. This means that developers can write object-oriented applications in a more
natural way using C++ directly without relying on inadequate or cumbersome
C-to-C++ wrapper routines for DCE interfaces.

It has already been stated that the terms client and server are relative roles that an
application plays, and not absolute conditions of any particular part of a distributed
application. This is also true in the distributed object model.

8 DCE 2.2: Introduction to DCE

Architectural Overview of DCE

IBM”s Distributed Computing Environment is a layer between the operating system
and network on the one hand, and the distributed application on the other. DCE
provides the services that allow a distributed application to interact with a collection
of possibly heterogeneous computers, operating systems, and networks as if they
were a single system. Figure 8 shows DCE in relation to operating systems,
network communications software, and applications software.

Several technology components work together to implement the DCE layer. Many of
these components provide in a distributed environment what an operating system
provides in a centralized (single-node) environment.

Figure 9 on page 10 shows the DCE architecture and its technology components,
along with their relationship to applications, underlying system support, and
placeholders for future technologies.

Distributed Applications

DCE

OS and Network Services

Figure 8. Layering of DCE and Related Software

Chapter 1. Overview of DCE 9

Overview of DCE Technology Components

This section gives a short description of each of the DCE technology components. A
more in-depth description of each of these components is given in “Chapter 3. DCE
Technology Components” on page 27.

DCE Threads supports the creation, management, and synchronization of multiple
threads of control within a single process. This component is conceptually a part of
the operating system layer, the layer below DCE. DCE threads are used by other
DCE components and are also available for applications to use. Currently IBM DCE
threads support POSIX 1003.a, draft 4.

The DCE Remote Procedure Call facility consists of both a development tool and a
runtime service. The development tool consists of a language (and its compiler) that
supports the development of distributed applications following the client/server
model. It automatically generates code that transforms procedure calls into network
messages. The runtime service implements the network protocols by which the
client and server sides of an application communicate. DCE RPC also includes
software for generating unique identifiers, which are useful in identifying service
interfaces and other resources.

The DCE Directory Service is a central repository for information about resources in
the distributed system. Typical resources are users, machines, and RPC-based

DCE
Distributed

Time Service

Applications

DCE

S
e
c
u
r
i
t
y

S
e
r
v
i
c
e

M
a
n
a
g
e
m
e
n
t

DCE Distributed File Service

DCE Remote Procedure Call

DCE Threads

Operating System and Transport Services

Other Distributed
Services (Future)

DCE
Directory
Service

Other Basic
Services
(Future)

Figure 9. DCE Architecture

10 DCE 2.2: Introduction to DCE

services. The information consists of the name of the resource and its associated
attributes. Typical attributes could include a user’s home directory, or the location of
an RPC-based server.

The DCE Directory Service comprises several parts: the Cell Directory Service
(CDS), the Global Directory Service (GDS), the Global Directory Agent (GDA), and
a directory service programming interface. CDS manages a database of information
about the resources in a group of machines called a DCE cell. (Cells are described
in the next section.) GDS implements an international standard directory service
and provides a global namespace that connects the local DCE cells into one
worldwide hierarchy. GDA acts as a go-between for cell and global directory
services. Both CDS and GDS are accessed using a single directory service
application programming interface, the X/Open Directory Service (XDS) Advanced
Programming Interface (API).

The DCE Distributed Time Service (DTS) provides synchronized time on the
computers participating in a Distributed Computing Environment. DTS synchronizes
a DCE host’s time with Coordinated Universal Time (UTC), an international time
standard.

The DCE Security Service provides secure communications and controlled access
to resources in the distributed system. There are four aspects to DCE security:
authentication, secure communications, authorization, and auditing. These aspects
are implemented by several services and facilities that together constitute the DCE
Security Service, including the registry service, the authentication service, the
privilege service, the access control list (ACL) facility, the login facility, and the audit
service.

The identity of a DCE user or service is verified, or authenticated, by the
authentication service. Communications are protected by the integration of DCE
RPC with the security service so that communication over the network can be
checked for tampering or encrypted for privacy. Access to resources is controlled by
comparing the credentials conferred to a user by the privilege service with the rights
to the resource, which are specified in the resource’s ACL. The login facility
initializes a user’s security environment, and the registry service manages the
information (such as user accounts) in the DCE security database. Security-relevant
events can be monitored through the audit service. Code points can be set in DCE
servers to record events that are deemed to be important to the integrity of the
system. For example, the login facility uses the audit service to record logins by
DCE users and services.

The DCE Distributed File Service allows users to access and share files stored on a
file server anywhere on the network, without having to know the physical location of
the file. Files are part of a single, global namespace, so no matter where in the
network a user is, the file can be found by using the same name. DFS achieves
high performance, particularly through caching of file system data, so that many
users can access files that are located on a given file server without prohibitive
amounts of network traffic and resulting delays.

DCE DFS includes a physical file system, the DCE Local File System (LFS), which
supports special features that are useful in a distributed environment. They include
the ability to replicate data; log file system data, enabling quick recovery after a
crash; simplify administration by dividing the file system into easily managed units
called filesets; and associate ACLs with files and directories.

Chapter 1. Overview of DCE 11

DCE/File-Access allows users of personal computers running in a Novell NetWare
network environment to read and write directories and files on a DCE DFS file
server. Users and DCE/File-Access software have DCE identities so DFS file usage
is subject to the DCE Security Service’s authentication and authorization controls.

The Management block shown in Figure 9 on page 10 is actually not a single
component but a cross section of the other components. Each DCE service
contains an administrative component so it can be managed over the network. In
addition, some of the DCE services themselves provide for management of the
distributed system as a whole. For example, users are registered in the security
service, and servers’ network addresses are registered in the directory service.

The DCE Cell

A DCE cell is a collection of machines, users, and resources managed as a group.
For example, imagine an organization made up of several departments, each in a
different building and operating on its own budget. Each department in such an
organization could have its own DCE cell.

A cell has its own security service, CDS, and optionally, DFS; these services are
available cell-wide. The security service for a cell manages the cell’s registry, where
user account information is kept. Each cell has its own namespace; the cell’s CDS
manages that namespace and its hierarchy. If DFS is present in the cell, DFS
allows remote access to files from anywhere in the cell. Each cell also has its own
DTS, which keeps the clocks on all of the machines in the cell synchronized.

A cell provides a single security domain. Users log into accounts in a cell. ACLs
identify users and groups in the cell (they can also refer to users and groups in
other cells). A cell also provides a single naming domain. Each cell has a name,
and all objects in the cell share that name.

DCE cells can be connected so that they can communicate with each other. Going
back to the example, if the different departments’ cells are connected, then a user
in one department’s cell may be able to access resources in another department’s
cell, although this access would typically be less frequent and more restricted than
access to resources within the user’s own cell.

Cells connect to each other by means of a global directory service. A cell’s name is
registered in a global directory service, and the cell is then able to contact other
cells registered in that global service. Note that communication between DCE cells
is not automatic. Cells that wish to communicate with each other must first establish
a trust relationship between their cells’ security services; this process is called
cross-cell authentication and is described in more detail in “Chapter 2. DCE
Configuration” on page 17.

A cell can have more than one name. In this case, one of the cell’s names is
designated its primary name while the other names are the cell’s alias names. The
cell’s primary name is the default name for the cell; that is, it is the name that DCE
services return. Cell name aliasing permits a cell to be registered in more than one
global namespace. It also provides a way to change a cell’s name if the need
arises; for example, to respond to organizational changes within the company. For
more information on how to create cell name aliases for a cell, see the IBM DCE for
AIX, Version 2.2: Administration Guide—Introduction and the IBM DCE for AIX,
Version 2.2: Administration Guide—Core Components.

12 DCE 2.2: Introduction to DCE

A DCE cell can be configured in many ways, depending on its users’ requirements.
A cell consists of a network connecting three kinds of nodes: DCE user machines,
DCE administrator machines, and DCE server machines. DCE user machines are
general-purpose DCE machines. They contain software that enables them to act as
clients to all of the DCE services. DCE administrator machines contain software that
enables a DCE administrator to manage DCE system services remotely.

The DCE server machines are equipped with special software enabling them to
provide one or more of the DCE services. Every cell must have at least one each of
the following servers in order to function:

1. Cell directory server

2. Security server

3. Distributed time server

Other DCE servers may be present in a given DCE cell to provide additional
functionality. A GDA may be present to enable the cell’s directory server to
communicate with other cells’ directory servers; a global directory server may be
present to provide X.500 directory service; and distributed file servers may be
present to provide storage of files and the special functions of DCE LFS. (See
“Chapter 2. DCE Configuration” on page 17 for more detailed information on DCE
cell configuration.)

Integration of the DCE Technology Components

One of the benefits of OSF’s DCE is its coherence. Although the components
themselves are modular with well-defined interfaces, they are also well integrated;
the various DCE components each make use of the services of the other
components wherever possible. For example, the RPC facility uses the directory
service to advertise and look up RPC-based servers and their characteristics, it
uses the security service to ensure message integrity and privacy, and it uses DCE
Threads to handle concurrent execution of multiple RPCs. DFS uses threads, RPC,
the directory service, DTS, and the security service in providing its file service.

In general, the DCE components shown higher in the DCE architecture (see
Figure 9 on page 10) make use of the components shown lower in the architecture.
For example, DCE Threads is used by most other DCE components, but it does not
itself use other components. This ordering is not strictly hierarchical; often two
services each depend on the other. For example, the directory service uses the
security service, which in turn uses the directory service. The interdependence of
DCE components is explained in more detail in “Chapter 4. Integration of DCE
Technology Components” on page 83.

Relationship of DCE to Network and System Services

As shown in Figure 8 on page 9, DCE is layered on top of local operating system
and networking software. DCE makes certain assumptions about the services
provided by the underlying network and operating systems. DCE’s requirements for
these services are described in the following subsections.

Network Services

In general, DCE is layered over a transport level service, such as User Datagram
Protocol (UDP), Transmission Control Protocol (TCP), or ISO TP0-TP4 transport
protocols, which is accessed through a transport interface, such as sockets or

Chapter 1. Overview of DCE 13

X/Open Transport Interface (XTI). DCE assumes that all nodes participating in the
DCE environment are physically connected by a highly available network. The
network can be a Local Area Network (LAN), a Wide Area Network (WAN), or a
combination of both.

The DCE architecture supports different types of network protocol families. For
example, DCE could be ported to run over Open Systems Interconnection (OSI)
protocols. (The IBM DCE reference implementation runs over the Internet Protocol
(IP) family.) However, in order for DCE systems to communicate with one another,
they must have at least one set of network protocols in common. For example, DCE
is not designed to enable a node running only IP protocols to communicate with a
node running only OSI protocols.

Finally, DCE assumes the ability to identify a node with a unique network address,
and the ability to identify a process with a network endpoint address (for example, a
port or T-selector).

Operating System Services

DCE assumes that certain services are available through the underlying operating
system, namely the following:

1. Multitasking

2. Timers

3. Local interprocess communications

4. Basic file system operations (VFS layer)

5. Memory management

6. Local security mechanisms (if appropriate)

7. Threads (or the ability to use DCE Threads)

8. General system utility functions

DCE Reference Implementation Dependencies

The previous two subsections listed assumptions made by the DCE architecture.
The IBM DCE reference implementation contains additional dependencies on the
operating system and network, which are specific to the implementation. These
include the use of IP and socket networking services, and UNIX operating system
facilities.

DCE Internationalization

DCE internationalization has several aspects:

1. Ensuring character and code set interoperability

2. Preserving character data integrity

3. Ensuring that user-visible messages are easily localized

The next sections discuss these aspects in greater detail.

Ensuring Character and Code Set Interoperability

A character set is a group of characters, such as the English alphabet, Japanese
Kanji, or the European character set. To enable world-wide connectivity, DCE
guarantees that a minimum group of characters is supported in the DCE. The DCE
RPC communications protocol ensures this guarantee by requiring that all DCE

14 DCE 2.2: Introduction to DCE

RPC clients and servers support the DCE Portable Character Set (PCS). The set of
DCE PCS characters consists of the following:

1. 0 1 2 3 4 5 6 7 8 9

2. : ; < = > ? @ [] | _ ′ ’ x { | } ! ″ # $ % & () * + – . / <space>

3. a b c d e f g h i j k l m n o p q r s t u v w x y z

4. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A code set is a mapping of the members of a character set to specific numeric code
values. Examples of code sets include ASCII, EBCDIC, JIS X0208 (Japanese
Kanji), and ISO 8859-1 (also known as Latin-1.) The DCE RPC communications
protocol automatically converts DCE PCS characters between the ASCII and
EBCDIC code sets, if necessary. DCE RPC also provides constructs and routines
for character and code set interoperability between non-PCS, or international
characters. These features permit programmers to write DCE RPC applications that
guarantee character and code set interoperability between clients and servers in a
DCE that supports a variety of languages and encodings for those languages.

Preserving Character Data Integrity

The DCE components preserve character data integrity because they do not use, or
′′mask off,’’ the eighth bit of a character for any purpose. In addition, DCE RPC
does not modify user data in any way when it is passed as idl_byte context, unless
the application is using the DCE RPC features for automatic code set conversion of
non-PCS characters.

Ensuring Easy Localization of User-Visible Messages

The DCE components isolate all user-visible messages into separate message
catalogs. Separating DCE messages into distinct message catalogues makes it
easier for DCE licensees to localize DCE messages so that DCE users and
administrators can view DCE error messages and prompts in their native
language.The DCE Messaging API can also be used by DCE application
developers to separate and localize their own application messages.

Chapter 1. Overview of DCE 15

16 DCE 2.2: Introduction to DCE

Chapter 2. DCE Configuration

“Chapter 1. Overview of DCE” on page 1 gave some examples of organizations that
could benefit from a distributed computing environment. The examples showed that
OSF DCE could be useful to organizations for widely varying reasons. Similarly, one
organization using DCE could require a DCE configuration that is quite different
from the DCE configuration that another organization develops.

This chapter gives an overview of DCE configuration. It describes the basic DCE
software configuration components and how they are organized on different types of
DCE machines. It then describes some typical DCE cell configurations.

The DCE configuration description in this chapter is based on technical
configuration considerations. The packaging of DCE software by OSF and other
vendors will involve somewhat different configurations since the packaging is
influenced by additional considerations.

Introduction to DCE Configuration

A distributed computing environment consists of machines that communicate over a
network and run DCE software. The machines in a DCE environment serve different
functions and can therefore run different configurations of DCE software. There are
three basic types of machines in a DCE environment:

1. DCE user machine

Contains DCE software that enables the machine to participate as a client in the
DCE environment. A typical example is a user’s workstation.

2. DCE administrator machine

Contains DCE software that enables an administrator to control servers running
in the environment. A typical example is the DCE system administrator’s
workstation.

3. DCE server machine

Runs software that implements one or more of the DCE services. There can be
different kinds of DCE server machines. Some examples are a DCE file server
machine and a DCE security server machine.

Note: If the machines to be used are of different speeds, it is advisable to
configure the primary CDS server on a machine that is as fast or faster than
the clients. If both a primary CDS server and a secondary CDS server are
used, the primary CDS server should be as fast as or faster than the
secondary CDS server and all other CDS clients.

Figure 10 on page 18 shows an example of a DCE cell containing the three different
kinds of DCE machines.

© Copyright IBM Corp. 1992, 1998 17

The different types of DCE machines run different parts of the DCE software. The
basic software necessary for any machine to participate in a DCE environment is
the DCE user software. The DCE user runs on all three types of DCE machines.
The software necessary for an administrator to control DCE servers remotely is the
DCE administrator software. The DCE administrator runs on DCE administration
machines, along with DCE user software.

Finally, some of the DCE software implements a particular DCE service and is
intended to run only on a machine acting as that particular server. For example, the
DCE security server software only runs on a machine designated as a DCE security
server machine. There are different kinds of DCE server machines. They run their
server-specific software, plus the DCE user software. Figure 11 on page 19
summarizes the DCE software that runs on different kinds of DCE machines.

User

User

User

User

Administrator Network

XX Server

YY Server

ZZ Server

Figure 10. Types of DCE Machines

18 DCE 2.2: Introduction to DCE

The following sections describe the DCE software configuration components,
machine configuration, and cell configuration in more detail.

Basic Configuration Components

DCE software can be divided into several configuration components; that is, parts of
the DCE software that are installed in various combinations on DCE machines.
Different configuration components are installed on different machines in a DCE
environment, depending on what the machine’s intended use is. For example, a
user’s workstation that acts mainly as a client in the DCE environment requires a
different set of DCE software from a machine that acts as a DFS file server.

The following description is a model for dividing DCE services into configuration
components. The way a service’s implementation maps to this model varies from
service to service.

First, each DCE service can be divided into two general categories of functionality:
user and administration. The user functionality is the service provided to its users;
for example, reading a file or searching a database. The administration functionality
allows administrators to manage the server; for example, stopping and starting
server programs or backing up data.

Since the DCE services are based on the client/server model, both the user and
administration functions are divided into two parts: the client and server sides. In
total, each DCE technology component can be conceptually divided into four
configuration components:

1. User client

2. User server

3. Administration client

DCE Administrator Machine

DCE User

DCE
Administrator

DCE User Machine

DCE User

DCE XX Server Machine

DCE XX Server

DCE User

DCE YY Server Machine

DCE User

DCE YY Server

DCE User

DCE ZZ Server

DCE ZZ Server Machine

Figure 11. DCE Machines and Software

Chapter 2. DCE Configuration 19

4. Administration server

As shown in Figure 12, the user client communicates over the network with the user
server, and the administration client communicates over the network with the
administration server.

The user client component is typically installed on DCE users’ workstations. The
administration client might run only on the workstation used by the administrator of
the service. Both the user server and the administration server run on the server
machine, since they require access to the resource (such as a database) that the
server manages. The user server and administration server may actually run in the
same process or be implemented by several processes.

As an example, consider the DCE Security Service. One part of the security service
software is the login facility, which sets up a user’s security environment. This is an
example of a user client. It communicates over the network with the privilege server,
which runs on the security server machine. The privilege server is an example of a
user server. An example of an administration client in the security service is the
rgy_edit program, which administrators use to modify data in the security
database. It communicates over the network with the registry server, which runs on
the security server machine. The registry server is an example of an administration
server.

The software for each of the DCE services, namely the directory service, DTS, the
security service, and DFS, can all be divided roughly into these four configuration
components.

Because DCE Threads and DCE RPC help to implement the communications
between machines, they must be present on every DCE machine whether the
machine acts as a client or a server. For this reason, they are always installed and
automatically configured when another component (such as Directory client) is
selected.

“DCE Machine Configuration Examples” on page 21 describes how machines
participating in a DCE environment are configured by using various combinations of

Distributed Service

Server Machine

Resource

Admin Client

User Client

Admin Server

User Server

Figure 12. Distributed Service Configuration Components

20 DCE 2.2: Introduction to DCE

configuration components. “DCE Cell Configuration Examples” on page 22
describes how DCE cells are configured by using various combinations of DCE

machines.

DCE Machine Configuration Examples

DCE machine configurations fall into three general categories: user machines,
administrator machines, and server machines.

DCE User Machine Configuration

An example of a DCE user machine is a user’s workstation. This machine acts as a
client to any of the DCE servers, but it does not act as a server itself (with one
possible exception noted in the next paragraph). A DCE user machine contains
DCE Threads and DCE RPC software so it can communicate with other machines
in the DCE environment. In addition, it contains the user client configuration
components of all the DCE services (see Figure 13). Part of this software may be
present in the form of libraries linked with DCE application software.

A DCE user machine may also contain DFS server software, although this is not
required. This enables the machine not only to access remote files through its DFS
client software, but also to export its own file system to other machines through its
DFS server software.

We call the software configuration of a typical DCE user machine the DCE user
software. In summary, the DCE user contains the following:

1. DCE Threads and DCE RPC

2. User client configuration components of each DCE service

3. DFS server software (optional)

DCE Administrator Machine Configuration

A DCE administrator’s workstation is configured with the client sides of DCE
administration programs to enable the administrator to control servers remotely. This
configuration contains the administration client software for each of the DCE
services. It also contains the DCE user software, since the administrator machines
act as user clients as well as administration clients (see Figure 14 on page 22).

(DFS Server)
DFS Client

Security Service Client
DTS Client

Directory Service Client

DCE Threads
DCE RPC

Figure 13. DCE User Machine Configuration

Chapter 2. DCE Configuration 21

DCE Server Machine Configuration

Some machines in the DCE environment contain special-purpose server software.
These are called DCE server machines.

A DCE server machine is configured with the user server and administration server
components of a DCE service. It also contains the DCE user software, since a
server machine can act as a client to other servers. For example, a DTS server
machine contains the DCE user plus the DTS user server and DTS administration
server configuration components. It is not necessary to run one server per machine;
two or more types of servers can run on a single machine. Figure 15 shows the
configuration of a DTS server machine and the configuration of a second machine
acting as both a CDS server and a security server.

From now on, we will use the term server to mean both the user server and
administration server software combined; for example, the term security server
means the security user server and the security administration server together.

DCE Cell Configuration Examples

DCE cells are composed of various combinations of DCE machines connected by a
network. In order for DCE applications and the DCE services themselves to run,
there must be at least one each of the cell directory, security, and distributed time
servers in every DCE cell. In addition, a DCE cell can contain any combination of
the remaining DCE servers (GDS and DFS) depending on the needs of the DCE
users.

DFS Admin Client
Security Service Admin Client

DTS Admin Client
Directory Service Admin Client

DCE User

Figure 14. DCE Administrator Machine Configuration

DTS User Server
DTS Admin Server

DCE User

CDS User Server
CDS Admin Server

Security User Server
Security Admin Server

DCE User

Distributed Time Server Machine CDS and Security Server Machine

Figure 15. DCE Server Machine Configuration Examples

22 DCE 2.2: Introduction to DCE

The following subsections describe these typical DCE cell configurations:

1. Simple DCE cell

2. DCE cell with DFS file server machine

3. Connected DCE cell

A Simple DCE Cell

Figure 16 shows an example of a simple DCE cell. The cell contains seven nodes,
each of them running the DCE user software. Four of the nodes are typical
workstations; they are running only the DCE user software. One is an
administrator’s workstation; it runs the DCE administrator software in addition to the
DCE user software. The other two nodes are DCE server machines. One of the
server machines is running a security server. The other server machine is running
both a cell directory server and a distributed time server. This configuration is a
complete, basic DCE cell.

Figure 17 on page 24 shows the same simple DCE cell, this time with a DCE
application running in it. Node C is offering the Bank service, and Nodes A and B
have the client code for accessing the Bank service. The Bank server has
registered itself with CDS so the Bank clients are able to locate it.

DCE User

DCE User

DCE User

DCE User

Network

DCE
Administrator

DCE User

DCE User

CDS Server
DTS Server

DCE User

Security Server

Time Provider

Figure 16. Simple DCE Cell Configuration

Chapter 2. DCE Configuration 23

A DCE Cell with DFS

In order to have full DFS support, including DCE LFS, a DCE cell can contain one
or more DFS file server machines (see Figure 18). As mentioned in Section 2.3.1,
the DCE user is equipped to act as a DFS client and can also export the client’s
local file system to other machines on the network, using the DFS server software.
The DFS file server machine, however, is specially equipped with DCE LFS, a
physical file system that supports distributed file system features such as file
replication, online backup, and other advanced administrative support.

DCE User

Node A

Node B

Node C

Network

DCE
Administrator

DCE User

DCE User

CDS Server
DTS Server

DCE User

Security Server

DCE User

Bank Client

Bank: location=Node C

DCE User

Bank Client

DCE User

Bank Server

Figure 17. DCE Application in Simple Cell

DCE User

DCE User

DCE User

DCE User

Network

DCE
Administrator

DCE User

DCE User

CDS Server
DTS Server

DCE User

Security Server

DCE User

DFS File Server
(& LFS)

Figure 18. Simple Cell Plus Distributed File Server

24 DCE 2.2: Introduction to DCE

A Connected DCE Cell

An organization may wish its DCE cell to communicate with other DCE cells, or with
systems outside of DCE. One way to accomplish this is through one of the global
directory services that DCE supports:

1. DCE GDS, which is an implementation of the X.500 directory service standard
provided as a DCE component

Note: GDS is not provided in this product. However, you can use GDS with this
release if you obtain it from another vendor or if you use the version of
GDS provided in DCE 1.3 for AIX.

2. DNS, which is a global directory service that DCE supports but does not provide
as a DCE component

A DCE cell is connected to a global directory service when its name is registered in
the global directory service’s namespace. The cell then establishes a trust
relationship between its authentication service and the authentication services of
cells that it wants to contact (this step is not necessary for contacting systems
without DCE security); this process is called cross-cell authentication. The trust
relationship established through cross-cell authentication gives DCE users (and
other principals) in the trusted foreign cell authenticated access to resources in the
local cell, and vice-versa.

A cell’s CDS communicates with CDS servers in foreign cells with the help of an
intermediary, GDA. When a GDA machine is added to a DCE cell, the machines in
the cell will be able to contact DCE cells and other systems by using X.500 or DNS.
Figure 19 shows the simple DCE cell with a GDA added to it.

If a cell contains a global directory server, not only can it access the X.500
namespace through the GDA, but it can also own and administer a portion of that

DCE User

DCE User

DCE User

Network

DCE
Administrator

DCE User

DCE User

CDS Server
DTS Server

DCE User

Security Server

DCE User

GDA

X.500 DNS

Figure 19. Cell Connected via Global Directory Agent

Chapter 2. DCE Configuration 25

namespace in GDS. For more information on CDS, see “Chapter 3. DCE
Technology Components” on page 27 of this manual.

26 DCE 2.2: Introduction to DCE

Chapter 3. DCE Technology Components

OSF DCE comprises several technology components:

1. “DCE Threads” on page 28

2. “DCE Remote Procedure Call” on page 31

3. “DCE Directory Service” on page 39

4. “DCE Distributed Time Service” on page 50

5. “DCE Security Service” on page 54

6. “DCE Distributed File Service” on page 61

The DCE components fall into two general categories: distributed programming
facilities and distributed services. The DCE Threads and RPC components are
distributed programming facilities, which include libraries that implement APIs and
program development tools.

The remaining DCE components are distributed services. These components
consist in part of a daemon, or server process, that runs continuously on a machine
and responds to requests sent over the network. They are equipped with
administrative subcomponents to manage the service. They also have APIs through
which a programmer can access the server.

In general, application programmers deal mostly with the distributed programming
facilities: DCE Threads and RPC. Although the distributed services also have APIs
for accessing them, the programmer often uses distributed services only indirectly
through the RPC facility, which in turn uses the distributed services’ APIs. System
administrators, on the other hand, deal mostly with the distributed services since
they have significant management requirements.

There are also facilities that do not fall under a specific component, but perform
services common to multiple components. Among these facilities are the following:

1. Host services

2. Application message service

3. Serviceability

4. Backing store databases

5. DCE control program

This chapter contains sections devoted to each of the technology components.
Each of these sections starts with an overview of its technology, along with a
description of the pieces that constitute the technology. The sections then describe
their technologies from the perspective of different types of users such as the end
user’s viewpoint, how the programmer develops an application with the technology,
and how the administrator manages the technology. Finally, the sections each
explain how their technology works, and they describe important benefits or
features of the particular technology.

“DCE Cross-Component Facilities” on page 69 gives an overview of the
cross-technology facilities. “The DCE Control Program” on page 70 describes the
DCE control program (dcecp).

© Copyright IBM Corp. 1992, 1998 27

The last section of this chapter, “Two DCE Application Examples” on page 71, gives
an example of a very simple distributed application, describing the process for
developing, installing, and running it.

DCE Threads

In a traditional computer program, there is only one thread of control. Execution of
the program proceeds sequentially, and, at any given time, there is only one point in
the program that is currently executing. It is sometimes useful, however, to write a
program that contains multiple threads of control. For example, some programs lend
themselves to being structured as multiple flows of control, some programs show
better performance when they are multithreaded, and multiple threads can be
mapped to multiple processors when they are available.

A distributed computing environment based on the client/server model and remote
procedure call can make good use of the capability for multiple threads of control.
For example, when a client makes an RPC call, it blocks until a response is
returned from the server. If there are multiple threads of control in the client, then
work can continue in another thread while the thread waiting for the RPC response
is blocked. On the server side, this same situation applies since a server may itself
issue an RPC. In addition, servers often handle the requests of multiple clients. It is
sometimes easier to write a well-structured program when each request can be
handled by a separate thread of control. Often servers manage information,
requiring input/output operations to a storage device. While one server thread is
waiting for its input or output operation to finish, another server thread can continue
working, improving overall performance.

Using multiple threads puts new requirements on programmers: they must manage
the threads, synchronize threads’ access to global resources, and make choices
about thread scheduling and priorities. A threads implementation must provide
facilities for programmers to perform these tasks.

Threads can be provided by a programming language, an operating system kernel,
or a user-space library. DCE Threads is provided as a user-space library; this has
implications for its interaction with other software on the system, such as an
operating system that delivers signals to or blocks a whole process, rather than just
a thread, and preexisting library calls that were not originally written for a
multithreaded environment.

The following subsections give an overview of the DCE Threads technology
component. They describe the different kinds of functions provided by the
technology and how DCE Threads is seen from the end user’s, programmer’s, and
administrator’s perspective, focusing particularly on programming with DCE Threads
since the application programmer is the main consumer of this technology.

What is DCE Threads?

DCE Threads is a user-level (nonkernel) threads library based on the pthreads
interface specified by POSIX in the 1003.4a standard (Draft 4). It consists of an API
that gives programmers the ability to create and manipulate threads, as described
in “DCE Threads”. The other technology components of OSF DCE assume the
availability of threads support. DCE Threads is provided for use on operating
systems that do not provide threads already; if a threads package is already
available, then DCE Threads may not be needed. DCE Threads can be used as

28 DCE 2.2: Introduction to DCE

is—as a user-level threading facility—or it can be mapped to an existing threads
facility provided by the host operating system.

End User’s Perspective

An end user is not aware whether or not threads are being used in an application,
except for a possible difference in performance. An application written with threads
may run faster than a single-threaded version of the same application.

Programming with DCE Threads

The distributed application programmer can use threads to help structure a
program. However, having multiple threads of control can introduce a higher level of
complexity than programming with a single thread of control. Threads must be
managed, scheduled, and allowed to communicate with one another in a controlled
manner.

Threads Management

In a traditional process, there is only one thread of control, and it is started and
terminated implicitly. However, when it is possible to have more than one thread of
control, the threads must be created and destroyed explicitly. DCE Threads
provides the facilities for doing this.

Threads Scheduling

In the traditional process model, no scheduling is needed since there is only one
thread of control, and, whenever the process runs, that thread runs. However, with
multiple threads, if there are fewer available processors than the number of threads
to be run, some decision must be made as to which thread runs first. This is
analogous to the scheduling of processes by the operating system on a timesharing
system, except that the threads scheduling is visible to and controllable by the
application programmer. (Note that POSIX specifies that scheduling is optional, so
systems using their own threads implementations may not include the functionality
provided by DCE Threads that is described in this section.)

DCE Threads scheduling is built on two basic, interacting mechanisms:

1. Scheduling priorities

2. Scheduling policies

Each thread has a scheduling priority associated with it. Threads with a higher
priority have precedence over threads with a lower priority when scheduling
decisions are made. The exact treatment of threads of different priorities depends
on the scheduling policy under which they are running.

DCE Threads offers three scheduling policies, the first two of which can be set only
by a user with root authority:

1. First-In, First-Out (FIFO)

The thread in the highest priority category that has been waiting the longest to
run is scheduled first. It runs until it blocks, then again the thread that has been
waiting the longest runs, and so on. Threads in the highest priority level are run
in this first-in, first-out manner, then the threads in the next highest priority level
are run FIFO, and so on.You must have root authority to use this scheduling
policy.

2. Round-Robin (RR)

Chapter 3. DCE Technology Components 29

All of the threads at the highest priority level are given turns running by
timeslicing. That is, one thread runs for a period of time, then it is interrupted
and another thread runs for a period of time, and so on, until all threads have
had a chance. The process is repeated until all threads in that priority are
finished or blocked. Then the threads in the next highest priority level are also
run RR until they are all finished or blocked, and so on.You must have root
authority to use this scheduling policy.

3. Default

Each thread is given turns running by timeslicing. Higher priority threads are
given longer periods of time to run, but even the lowest priority thread
eventually has a chance to run. This is in contrast to FIFO and RR scheduling,
in which it is possible for higher priority threads to prevent lower priority threads
from running at all.

Thread Communication and Synchronization

Threads communicate through shared variables; that is, one thread sets a variable
that another thread later reads. However, if multiple threads are accessing the same
variable, incorrect results can occur due to scheduling of threads and race
conditions. To resolve this problem, access to shared variables must be
synchronized. DCE Threads provides three facilities for synchronizing threads within
a process:

1. Mutual exclusion objects (mutexes)

2. Condition variables

3. The join routine

The mutex object is used to synchronize access to a given resource, such as a
shared variable, by multiple threads. Mutexes ensure that only one thread accesses
the resource associated with the mutex at a time, thus the name mutual exclusion
or mutex.

The mutex works as follows. One mutex object is associated with each shared
resource; for example, a shared variable. Before reading or writing the variable, a
thread attempts to lock the variable’s mutex. If it succeeds in locking the mutex, the
thread proceeds to access the variable, and then it unlocks the mutex.

If a second thread tries to access the object while the first thread is accessing it
(the condition that can cause indeterminate results if the shared variable is not
protected), the second thread is blocked when it tries to lock the mutex. When the
first thread finishes with the variable and unlocks the mutex, the second thread is
unblocked and gains the lock for the mutex. It can then proceed to access the
shared variable.

The mutex is a facility by which threads can ensure that their access to shared
resources is synchronized. The threads may or may not be communicating through
the shared data. The second method of thread synchronization, the condition
variable, is used for explicit communications among threads. This is done through
the use of a shared resource—the condition variable—and as a result requires the
use of a mutex.

For example, using a condition variable, Thread A can wait for Thread B to
accomplish some task. To do this, Thread A waits on the condition variable until
Thread B signals the condition variable, indicating that the particular task has been
accomplished.

30 DCE 2.2: Introduction to DCE

Note that, although the condition variable is used for explicit communications
among threads, the communications are anonymous. For example, Thread B does
not necessarily know that Thread A is waiting on the condition variable that Thread
B signals, and Thread A does not know that it was Thread B that woke it up from its
wait on the condition variable.

There is another synchronization method that is not anonymous—the join routine.
This allows a thread to wait for another, specific thread to complete its execution.
When the second thread has finished, the first thread unblocks and continues its
execution. Unlike mutexes and condition variables, the join routine is not
associated with any particular shared data.

DCE Threads Exceptions

DCE Threads provides two ways to obtain information about the results of a threads
call. One way, specified by the POSIX P1003.4a (pthreads) draft standard, is that
status values are returned to the thread. DCE Threads also gives the programmer
an alternative to status values. This is provided by the exception-returning interface,
which is an extension to the basic POSIX functionality. Exceptions enable routines
to ignore status returns when other parts of the program are handling errors.

DCE Threads Administration

There are no administrative tasks associated with the DCE Threads component.

Additional Information on DCE Threads

For additional information on DCE Threads, see the following:

1. The DCE Threads chapters of the IBM DCE for AIX, Version 2.2: Application
Development Guide

2. The (3thr) reference pages of the IBM DCE for AIX, Version 2.2: Application
Development Reference

3. The POSIX P1003.4a/Draft 4 Threads Extension for Portable Operation
Systems Specification

4. The Implementation-Specific Addendum to the POSIX P1003.4a/Draft 4
Specification

DCE Remote Procedure Call

A distributed application based on the client/server model consists of two parts: the
client side of the application, which runs on one machine and makes a request for
service on behalf of a user, and the server side of the application, which runs on
another machine on the network and fulfills the service request. The two pieces of
code on two different machines need to be able to communicate across the
network. One model for implementing communications between the client and
server of an application is the RPC facility.

RPC gives programmers the ability to express an interaction between the client and
server of a distributed application as if it were a procedure call; the programmer
defines a calling interface and a procedure that implements it, makes a call to the
procedure along with any arguments, and receives a return value through the
argument list or as the procedure result.

Chapter 3. DCE Technology Components 31

In RPC, as in a traditional local procedure call, control is passed from one code
segment to another, and then returns to the original segment. However, in a local
procedure call, the code segments are in the same address space on the same
machine; whereas, in a remote procedure call, the called procedure runs in a
different address space, usually on a different machine than the calling procedure.
As a result, arguments and results are passed differently for local and remote
procedure calls. In local procedure calls, arguments and return values can be
passed on the process’s stack. In remote procedure calls, arguments and return
values must be packed up into messages and sent to the peer machine over the
network. The underlying RPC mechanism makes this look like a procedure call to
the programmer.

An RPC facility shields the application programmer from the details of network
communications between client and server nodes, such as the following:

1. Fragmentation and reassembly of messages

2. Handling different data formats (such as byte ordering) between different
machines

3. Using a directory service to find message recipients

4. Using security services to ensure secure communications

Programmers using RPC do not need to rewrite applications in order to port them to
different architectures, operating systems, communications protocols, or languages.
RPC provides a high-level programming model to the distributed application
programmer, hiding communications details, and removing nonportable system and
hardware dependencies.

The following subsections give an overview of the DCE RPC technology
component. They describe the components that constitute the technology, and how
DCE RPC is seen from the end user’s, programmer’s, and administrator’s
perspectives, focusing primarily on programming with RPC since the application
programmer is the main consumer of this technology. The subsections also describe
the steps involved in the execution of a remote procedure call. They describe the
ways in which DCE RPC frees the programmer from system software and hardware
dependencies, and then list additional sources of information on DCE RPC.

What is DCE RPC?

DCE RPC is a facility for calling a procedure on a remote machine as if it were a
local procedure call. To the application programmer, a remote call looks (almost)
like a local call, but there are several RPC components that work together to
implement this facility, including the Interface Definition Language (IDL) and its
compiler, a Universal Unique Identifier (UUID) generator, and the RPC runtime,
which supports two RPC protocol implementations. One RPC protocol operates
over connection-oriented transports such as the Transmission Control
Protocol/Internet Protocol (TCP/IP), and the other RPC protocol operates over
connectionless transports such as the User Datagram Protocol/Internet Protocol
(UDP/IP).

An end user does not see RPC at all, and the minimal amount of administration
involved in RPC can usually be handled by the server-side application code, such
as advertising an application server in the DCE Directory Service. It is the
application programmer who most comes into contact with the RPC component.
Since many of the DCE components are themselves client/server applications, they
use RPC as their basis for distributed communications.

32 DCE 2.2: Introduction to DCE

The components that constitute the DCE RPC are as follows:

1. IDL and the IDL compiler

An RPC interface is described in DCE IDL. The IDL file is compiled into object
code via the IDL compiler. The object code is in two main parts: one for the
client side of the application, and one for the server side.

2. The RPC runtime library

This library consists of a set of routines, linked with both the client and server
sides of an application, which implement the communications between them.
This involves the client finding the server in the distributed system, getting
messages back and forth, managing any state that exists between requests,
and processing any errors that occur.

3. Authenticated RPC

DCE RPC is integrated with the DCE Security Service component to provide
secure communications. Levels of security can be controlled by the RPC
application programmer through the authenticated RPC API. (See “Programming
with DCE Security” on page 57 for more information on authenticated RPC.)

4. Name Service Independent (NSI) API

DCE RPC is integrated with the DCE Directory Service component to facilitate
the location of RPC-based servers by their clients. The NSI routines allow a
programmer to control the association, or binding, of a client to a server during
RPC.

5. DCE host daemon

The dced program runs on every DCE machine. It includes (among other things)
an RPC-specific name server called the endpoint mapper service, which
manages a database that maps RPC servers to the transport endpoints (in IP,
the ports) that the server is listening for requests on.

6. DCE control program

dcecp is a tool for administering DCE.

7. UUID facilities

These are ancillary commands and routines for generating UUIDs, which
uniquely identify an RPC interface or any other resource. The uuidgen program
can optionally generate an IDL template for a service interface, along with a
unique identifier for the interface.

End User’s Perspective

The end user does not come in direct contact with DCE RPC, but does see the end
result in the form of

1. The availability of distributed applications built using RPC

2. The ability to use remote resources accessed via RPC

An end user who is browsing through the namespace may also notice the names of
RPC-based servers, since these servers advertise themselves to their clients
through the DCE Directory Service.

Programming with DCE RPC

This section provides a brief overview of the process a programmer goes through in
using DCE RPC to write an application. For an example of how this process applies
to a simple application, see “Two DCE Application Examples” on page 71 of this

Chapter 3. DCE Technology Components 33

manual. For a more detailed description of the DCE RPC programming process,
see the IBM DCE for AIX, Version 2.2: Application Development Guide.

Figure 20 shows an overview of the DCE RPC application development process.
The dashed boxes indicate application code written by the DCE programmer. The
other boxes indicate compiled code or code generated automatically for the
programmer by DCE RPC.

The IDL File

First, the application programmer defines the RPC interface, and associated data
types, using IDL. An interface is a group of operations that a server can perform.
This grouping is similar to a module or library in a conventional programming
language; that is, a group of operations defined in a single file or unit. For example,
a Bank service might perform operations to debit, credit, or read the balance of an
account. Each of those operations and their parameters must be defined in the IDL
file. The collection of Bank service operations—debit, credit, read balance—together
form the Bank service interface.

IDL File

Client Stub

RPC Runtime Client Appl.

Install on
Client

Install on
Server

Server Appl. RPC Runtime

Server Stub

Define Interface in DCE IDL:

Run IDL Compiler:

LinkLink

#typedef account
debit()
credit()
get_balance()

Bank Client Bank Server

Header File

idl

Figure 20. DCE RPC Programming Process

34 DCE 2.2: Introduction to DCE

The process of defining RPC operations is similar to defining the input and output of
a local procedure call, except that in IDL only the calling interface is defined, not the
implementation of the procedure. (An IDL interface definition is similar to an ANSI C
prototype definition.)

Next, the programmer compiles the IDL file with the IDL compiler. The compiler
produces output in a conventional programming language, which is the C language
in the DCE offering and then calls the appropriate compiler to produce object code.
The output of the compilation consists of a client stub, a server stub, and a header
file. The client and server stubs are routines that make the remoteness of the
operation transparent to the caller or callee of the operation.

The Client Side

For the client side of the application, the programmer writes application code that
makes calls to the operations in the IDL file. The client stub code is linked with this
application code and (along with the RPC runtime code) performs the tasks that
turn what looks like a procedure call into network communications with the server
side of the application. Usually the client side of the application contains a relatively
small amount of RPC code.

The Server Side

For the server side, the programmer writes application routines that implement the
operations defined in the IDL file. For example, in the banking application, a
database lookup might implement the operation to read an account balance. The
server stub, generated by the IDL compiler, is linked with the server application
code. The server stub unpacks the arguments and makes the call to the application
routine as if the client program had called it directly. The server side of the
application contains the bulk of the RPC code that needs to be written by the
distributed application programmer.

Binding

In order for the client to send an RPC to the server, it must be able to find the
server. This process is called binding. A client may have some direct way of
knowing what server it needs to communicate with; for example, it may get this
information from a file, a value hardcoded into its program, an environment variable,
or a user. A more flexible way for a client to find a server is to take advantage of
DCE RPC’s use of the DCE Directory Service.

A client can find a server by asking the directory service for the location of a server
that handles the interface that the client is interested in (in our example, a Bank
server). In order for the directory service to be able to give the client this
information, a server must first advertise itself in the directory service. The server
adds itself to the namespace, along with information about what interfaces it
implements, what protocols it uses to communicate with, and where it is located.
This way, a server can move, or there can be multiple servers implementing a given
interface, without affecting the client. The client can still go to the directory service,
a well-known central source of information, and find out where the server is located.

The DCE programmer does not make calls directly to CDS; binding is supported by
the NSI API, an RPC-specific name service layer. Calls to this library are made by
the client side of an application in order to look up binding information for a server
based on various criteria, such as the type of service, the objects it manages, and
the interfaces it supports. The server side of an application calls this library to
advertise information about itself to the namespace where clients can find it.

Chapter 3. DCE Technology Components 35

The Endpoint Mapper Service of the DCE Host Daemon

There are two parts to a server’s location: the network address of the machine it
resides on and the transport-specific address of the process—the network endpoint
(for example, a UNIX port). The machine location is fairly stable, so its address can
reasonably be entered into CDS. The network endpoint, however, can change each
time the server process is started. Instead of making frequent changes to CDS to
update a server’s endpoint address, DCE RPC uses a specialized type of directory
service, the endpoint mapper service, a service of dced. When a server starts, it
registers its endpoint(s) with dced. Most servers will register an endpoint for each
transport protocol supported on the host (for example, TCP and UDP).

Every machine that runs an RPC server also runs dced. The dced process always
uses the same network endpoint, so its process address is well known. Therefore,
once a client knows what machine a server is running on, it can find the endpoint
mapper running on that same machine. It can then ask the endpoint mapper for the
network endpoint of the server process. This process is shown in Figure 21 (read
the messages, shown in quotes, in clockwise order).

DCE RPC Administration

A few administrative tasks must be performed when running a distributed
application using RPC. The application server executes most of these tasks when it
first starts. As described in the previous section, the server registers its (dynamically
assigned) listening endpoint with dced. The server also advertises information about
itself and the interfaces it supports in the DCE Directory Service.

Nonautomated RPC administration is minimal. The administrator must ensure that
each DCE machine has a DCE host daemon running on it. An administrator may be
involved in registering servers in the namespace, but this can also be done from
server code upon initialization as just described. Usually, an administrator will be
needed to change the ACL on the directory where the server will register so that the
server has write permission. The DCE control program, dcecp, allows an
administrator to (among many things) control the dced and administer RPC
information in the namespace.

"Bank?"

"Bank?"

"Node A"

Node A

Server
@ Port X

Client CDS

dced

"Port X"

Figure 21. Client Finds Server via CDS and dced

36 DCE 2.2: Introduction to DCE

An administrator may be involved in installing a new RPC-based application. In
particular, the server side of the application must be started before it can begin
receiving and servicing requests. The administrator may arrange for the server
process to be started each time the machine is booted, for example.

How an RPC Call Works

A short ′′walk-through’’ of what happens during an RPC call may help clarify the
RPC concept and how it works. This section describes the RPC call shown in
Figure 22. (This description is somewhat simplified. The use of dced is not shown.)

On the server side, the Bank server process is started up. Before it begins its
continuous cycle of receiving and servicing requests, the server process advertises
its location in CDS (see Step 1 in Figure 22). In this way, when a client queries the
directory service for a bank server, it will be able to find it. After initialization, the
server listens for a request to come in from a client over the network. This call to
wait for client requests is a call to the RPC runtime, since the runtime handles
network communications.

Eventually, a user on the Bank client machine invokes the bank application. The
Bank client initialization code calls the RPC runtime to find a server offering the
Bank service (see Point 2). The Bank client application code makes a call to a
remote procedure; for example, a call to a procedure that credits a bank account
(3). This results in a call to the client stub code. The stub transforms the arguments
of the call into a network message (4). It then calls the client’s RPC runtime library,
which sends the message to the server (5).

"Bank?"

BANK CLIENT BANK SERVER

"Node B"

credit(acct)

CDS2. Find Server

3. credit(acct)

4. Package
Arguments

5. Make RPC

Client
Appl

Client
Stub

Client
Runtime

Client
Init

8. credit(acct)

1. Advertise

6. Receive RPC

7. Unpack
Arguments

Server
Init

Server
Runtime

Server
Stub

Server
Appl

"Bank@Node B"

Figure 22. RPC Runtime Process

Chapter 3. DCE Technology Components 37

Back on the server side, the RPC request is received by the RPC runtime, which
has been waiting for a client request (6). The runtime passes control, and the
received packet, to the server stub. The stub unpacks the arguments sent by the
client (7) and passes them to the appropriate operation by making a procedure call
to it. At this point, the server application code that implements the requested
operation is called. The operation is performed; that is, the account is credited (8).

The RPC reply (not shown in the figure) returns in the reverse direction. The Bank
server application procedure returns the results of the credit operation to the stub.
The stub packs up the return parameters and passes the resulting message to the
RPC runtime to send off to the client over the network. The server then waits for the
next client request to come in.

The client’s runtime receives the server’s reply. The client stub then unpacks the
received network message, arranging returned parameters such that, when the
client application call to RPC returns, it looks like it has just performed a local
procedure call.

The mechanisms in both the client and server stubs and the runtime library are
transparent to the application programmer. The programmer writes the application
calls to the RPC operations on the client side, and provides implementations for
those operations on the server side, but the network communications code is
generated automatically.

System Independence

There are several ways in which using DCE RPC frees a programmer from
dependence on other parts of a system. It provides portability across programming
languages, data transfer syntax mechanisms, transport and network protocols, and
operating system and architecture platforms.

1. Language independence

DCE RPC is language independent in the sense that the stubs generated by the
IDL compiler can be called by programs written in any traditional programming
language, provided that the language follows the calling conventions that the
stub expects. The DCE IDL compiler generates stubs that use the C language
calling conventions. A client written in FORTRAN, for example, can call an IDL
stub in the same way that it calls any local C procedure. It can then make a
remote call to a server (possibly written in another language) that contains the
server stub generated from the same IDL file as the client stub was generated
from.

2. Data representation independence

The default data representation format is the DCE Transfer Syntax, which is
currently the Network Data Representation (NDR). It allows various
representations for different types of data, including multiple encodings for
characters, integers, and floating-point numbers. It is multicanonical; that is,
there are several canonical formats that can be used. The sender chooses one
of these formats (in most cases, it will be the sender’s native data
representation), with information about what representation it has chosen. The
receiver transforms data into its own format, if it is different from the format the
data was sent in. This model optimizes for the case when both sender and
receiver use the same data representation, a frequent occurrence. (Note that
this data transfer is handled by the RPC software and is not visible to the
application programmer.)

38 DCE 2.2: Introduction to DCE

The DCE RPC architecture allows the use of transfer syntaxes other than DCE
Transfer Syntax (although the only transfer syntax currently provided in the OSF
implementation is DCE Transfer Syntax). For example, data could be formatted
according to the ISO ASN.1/BER specification and sent over the wire in that
way.

3. Protocol independence

Independence of RPC, transport, and network protocols is achieved as follows.
The DCE RPC offering includes two different RPC protocols. The first runs over
connection-oriented transport protocols; the second runs over connectionless
(datagram) transport protocols. The programmer can specify the underlying
RPC protocol, but the semantics of RPC calls are the same whether the RPC is
running over a connectionless or connection-oriented transport. Another RPC
protocol could be used in place of these two DCE RPC protocols; for example,
when ISO defines an RPC standard, it could be used transparently as a third
RPC protocol under the DCE RPC interfaces.

Servers identify themselves to the directory service according to the interface
they support and the protocols they use. In this way, a client can look up a
server that uses network protocols that are compatible with those that the client
supports.

4. Machine independence

Because DCE RPC uses the DCE transfer syntax, distributed applications are
machine independent. DCE transfer syntax allows machines to transfer data
even when their native data representations are not the same.

5. Operating system independence

Finally, DCE RPC offers independence from the local operating system. The
application programmer is not directly using the networking system calls
provided by the local operating system. By being one level of abstraction up
from this layer, the programmer is insulated from networking system calls that
are operating system specific.

Additional Information on DCE RPC

For additional information on DCE RPC, see the following:

1. The RPC chapters of the IBM DCE for AIX, Version 2.2: Application
Development Guide and the IBM DCE for AIX, Version 2.2: Administration
Guide

2. The (3rpc) reference pages of the IBM DCE for AIX, Version 2.2: Application
Development Reference

3. The (1rpc) and (8rpc) reference pages of the IBM DCE for AIX, Version 2.2:
Administration Commands Reference

4. The RPC-related error messages in the IBM DCE for AIX, Version 2.2: Problem
Determination Guide

DCE Directory Service

A distributed system may contain many users, machines, and other resources,
along with large amounts of data, all geographically dispersed. The distributed
system’s attributes, such as the number of users, location of servers, and contents
of data, are continuously changing. It is difficult to keep track of this potentially
large, geographically distributed, rapidly changing system.

Chapter 3. DCE Technology Components 39

A directory service can help solve this problem. When a directory service is
available, it is no longer necessary to maintain local copies of information, such as
databases of users, hosts, and server locations, on each system. Instead, an
application queries the directory service when it needs information. In a sense, the
directory service is the most basic of all distributed system services since it is used
to find the information needed for accessing other services.

The next section gives an overview of the DCE Directory Service architecture. “DCE
Cell Directory Service” on page 45 and “DCE Global Directory Agent” on page 48
describe the DCE Directory Service components—CDS and GDA. “The Directory

Service Interfaces” on page 49 describes the directory service application
programming interface.

DCE Directory Service Architecture

The DCE Directory Service is a distributed, replicated database service. It is
distributed because the information that forms the database is stored in different
places; for example, information about one group of users and resources might be
stored in one directory server, while information about a second group of users and
resources is stored in a different directory server. The directory service is replicated
because information about a given name or group of names can be stored in more
than one location, for higher availability.

Note: If the machines to be used are of different speeds, it is advisable to
configure the primary CDS server on a machine that is as fast or faster than
the clients. If both a primary CDS server and a secondary CDS server are
used, the primary CDS server should be as fast as or faster than the
secondary CDS server and all other CDS clients.

The directory service database consists of a hierarchical set of names, the
namespace, which have associated attributes. Given a name, its associated
attributes can be looked up in the directory service. For example, given the name of
a print server, the directory service can return the printer’s location. The directory
service gives distributed system users a well-known, central place to store
information, which can then be retrieved from anywhere in the distributed system.

Overview of Directory Service Components

There are two components that together make up the DCE Directory Service:

1. DCE Cell Directory Service (CDS)

2. DCE Global Directory Agent (GDA)

The X/Open Directory Service (XDS) application programming interface is used to
access the directory service components. A brief overview of the directory service
components and interface is given in this section; subsequent sections in this
chapter describe them in more detail.

DCE Cell Directory Service: CDS stores names and attributes of resources
located in a DCE cell. It is optimized for local access since most directory service
queries are for information about resources within the same cell as the originator of
the query. CDS is replicated; this is important for a local directory service since the
directory service must be highly available. There must be at least one CDS server
in each DCE cell. Figure 23 on page 41 shows three organizations, each with its
own DCE cell.

40 DCE 2.2: Introduction to DCE

DCE Global Directory Service: GDS is a distributed, replicated directory service
based on the CCITT X.500/ISO 9594 international standard. GDS interworks with
other X.500 implementations and can therefore participate in the worldwide X.500
directory service.

DCE supports the use of a second standard directory service, the DNS, which is
widely used in the Internet community.

DCE Global Directory Agent: GDA is the intermediary between a cell’s CDS and
the rest of the world. It takes a name that cannot be found in the local cell and finds
the foreign cell in which the name resides, using GDS, DNS, or CDS, depending on
where the foreign cell is registered.Figure 24 gives a functional picture, including
the use of GDAs.

DCE Directory Service Application Programming Interface: DCE programmers
use the XDS API to make all directory service calls. The XDS library knows, based
on the format of the name to be looked up, whether to direct the calls it receives to
GDS or to CDS (see Figure 25 on page 42). In this release, it only directs calls to
RPC unless you have GDS from another vendor or are using IBM DCE release
1.0.3. XDS uses the X/Open Object Management (XOM) API to define and manage
its information.

Organization A

Cell A

Organization B

Cell B

Organization C

Cell C

Figure 23. Three One-Celled Organizations

Organization A

Cell A

CDS GDA

Organization B

Cell B

CDS GDA

Organization C

Cell C

CDS GDA

GDS
(X.500)

DNS

Figure 24. Use of Global Directory Agents

Chapter 3. DCE Technology Components 41

The DCE Namespace

The DCE namespace is the set of names used by the DCE Directory Service. It is
hierarchical, similar to the structure of a UNIX file system. Names can be typed or
untyped, reflecting the different name formats supported by the two global directory
services: GDS and DNS. GDS names are typed; that is, they consist of a type and
a value separated by an = (equal sign). A name such as /C=US/O=ABCcompany,
names an object that exists in GDS. An untyped name consists only of values such
as abc.com; DNS names use this format.

Figure 26 shows the root of the DCE namespace, indicated by the /... prefix, and
four cell entries below it.

The two cells on the left, /.../C=US/O=OSF/OU=DCE and /.../C=CA/O=B-
College/OU=EE-Department, are in the X.500 namespace, while the two cells on the
right, /.../company_b.com and /.../cs.univ.edu, are in the DNS namespace.

/.../C=US/O=IBM/OU=DCE/CN=SIG-DCE /.../cs.univ.edu/hosts/machine-b

CDSGDS

Application

XDS Interface

Figure 25. XDS: Interface to GDS and CDS

Global Root:

C = US

O = IBM

OU = DCE

C = CA company_b.com cs.univ.edu

O = B-College

OU = EE-Department

/...

Figure 26. Four Cells in DCE Global Namespace

42 DCE 2.2: Introduction to DCE

Figure 27 shows the top of a typical DCE cell namespace. It contains an entry for
security information, an entry for the cell’s DFS file system, an entry for subsystems
such as DCE services, an RPC profile entry, and an entry for host names. (See the
IBM DCE for AIX, Version 2.2: Administration Guide—Introduction for more
information on the cell namespace.)

The following is a list of examples of typed and untyped names:

The /... prefix indicates that the name is a global name. The first two names are
typed names using X.500 syntax, and the second two names are untyped names
using DNS syntax. The first name in each set indicates the name of a user in an
authentication database; the second name in each set is the user’s home directory
in a file system.

In each of the name examples, there is a global component and a local component.
The global component consists of a cell name, which is registered in a global
directory service. In one case, the cell is an entry in the X.500 namespace:
/.../C=US/O=OSF/OU=DCE. In the other case, the cell is an entry in the DNS
namespace /.../cs.univ.edu. The remainder of the name is an entry in the cell’s
namespace; for example, /fs/usr/snowpaws.

The names listed here reside in the DCE cell namespace, but it is also possible to
maintain names in the X.500 namespace by using GDS. An example of this kind of
name is /.../C=US/O=OSF/OU=DCE/CN=SIG-DCE. This name could be used, for
example, for an electronic mail list.

Viewpoints on the Directory Service

The DCE Directory Service looks very different to the end user, programmer, and
administrator. This section takes a brief look at the directory service from each of
these three perspectives.

Global Root:

Cell Root:

sec fs subsys cell-profile hosts

cs.univ.edu

/...

Figure 27. Top of a Typical DCE Cell Namespace

/.../C=US/O=OSF/OU=DCE/sec/principals/snowpaws
/.../C=US/O=OSF/OU=DCE/fs/usr/snowpaws
/.../cs.univ.edu/sec/principals/ziggy
/.../cs.univ.edu/fs/usr/ziggy

Chapter 3. DCE Technology Components 43

End User’s Perspective: The DCE Directory Service is one of the few DCE
technologies that is visible to the end user. An end user can use the CDS browser
to look through the cell’s namespace. A frequent use of the namespace is in
referencing the file system. The pathname for a file in a foreign cell is partially a
pathname in the directory service, as in the example
/.../cs.univ.edu/fs/usr/ziggy given previously.

Application Programmer’s Perspective: DCE application programmers do not
necessarily need to interface directly with the directory service, since a frequent use
of the directory service—to look up the location of a server—can be done
automatically by DCE RPC. Programmers who do use the directory service interact
with it through the X/Open directory service interface. XDS provides facilities for
adding, deleting, modifying, and looking up names and their attributes.

Programmers use XDS for accessing both DCE directory services—CDS and GDS.
However, the programmer needs to understand the different types of names used
for different namespaces, and be aware of some XDS calls that are not available
when CDS is being used. An example is the search query, which is possible in
GDS, but not in CDS.

Administrator’s Perspective: Two Directory Services and an Intermediary:
Unlike the end user and application programmer, the directory service administrator
is aware of the cell’s directory service configuration, since the two directory services
are administered separately. The administrator manages the CDS server, GDA, and
the GDS server, if the cell has one.

Related Services: Registration and Lookup Path

There are two services in DCE that are distinct from, but related to, the DCE
Directory Service. The first is registration. In naming an object in a distributed
system, it is useful to have a unique name for the object. DCE provides a facility for
generating UUIDs, which are used to name DCE objects such as RPC interfaces,
users, and computing resources. More information on UUIDs is contained in the
RPC chapters of the IBM DCE for AIX, Version 2.2: Application Development Guide.

A second service that is related to directory service is the ability to specify a path
through the directory service for looking up names. In DCE, this capability is
provided by RPC profiles. Profiles can be used, for example, to look up names
relative to a certain location. If a user wants to look up a printer based on the
printer’s proximity to the user, for example, a profile may specify that a directory
service lookup for a printer begin in the local cell, and then, if a printer is not found,
look in the two neighboring cells, and so on. For more information on RPC profiles,
see the RPC chapters of the IBM DCE for AIX, Version 2.2: Application
Development Guide.

Specialized Naming Services

The DCE namespace is not contained entirely in the DCE Directory Service. Other
system services contain parts of the namespace and some of them require their
own specialized naming services, which supplement the DCE Directory Service.
These include

1. DCE host daemon (dced)

Maintains a database of local data that is essential for operating in a DCE
environment, such as the host’s cell name. It also keeps a database of server
configuration information that it uses to manage DCE server operation on a
host; for example, starting or stopping a DCE server. An example of a name in

44 DCE 2.2: Introduction to DCE

the DCE host daemon part of the namespace is as follows, where video_clip is
the name of a DCE application server:

2. DCE Security Service database

Keeps a database of DCE principals (users and servers) and information related
to them such as their passwords. An example of a name in the security part of
the DCE namespace is /.../cs.univ.edu/sec/principal/ziggy.

3. DFS Fileset Location server database

Maintains a database that maps DFS filesets to the DFS file server machines
they are kept on. An example of a name in the DFS part of the DCE
namespace is /.../cs.univ.edu/fs/usr/ziggy.

DCE Cell Directory Service

One of the two directory services underlying the XDS API is DCE CDS. The
following subsections describe CDS in terms of the data elements that it deals with
and the components that implement it. They then describe how CDS handles
replication, caching, and data consistency. Finally, they describe CDS from the
end-user, programmer, and administrator perspectives.

What is CDS?

DCE CDS is made up of several components, including the CDS server, CDS clerk,
and CDS administration programs.

1. CDS server

Runs on a node containing a database of directory information. It responds to
queries from clients by accessing the database. (A CDS database is called a
clearinghouse.)

2. CDS clerk

Runs on the client node and serves as an intermediary between client
applications and CDS servers. One of the clerk’s most important functions is to
maintain a cache of information acquired through directory queries. The clerk
stores the response to a query in its cache so that the next time a related query
is made, the information is already available on the client node, and no network
communications with the CDS server are necessary. The cache is written to disk
periodically, so it persists even if the clerk process dies or the client node
crashes.

3. CDS administration programs

Carry out CDS administrative tasks. Administrators can use the DCE control
program, dcecp, for the majority of CDS administrative tasks. There are also two
administrative programs included in the CDS technology—the CDS browser and
the CDS control program. The CDS browser, which end users as well as CDS
administrators can use, is a CDS client application that allows you to inspect the
cell’s namespace. The CDS control program, cdscp, enables administrators to
control CDS servers and data.

Figure 28 on page 46 shows a client application that sends a request to the CDS
clerk, which in turn communicates with the CDS server. The server performs a
database lookup or update, depending on the request. The response is then sent
back to the client application.

/.../cs.univ.edu/hosts/gunther/config/srvrconf/video_clip

Chapter 3. DCE Technology Components 45

The CDS Database

CDS information is contained in three types of data elements:

1. Directory entries

A directory entry consists of a name and its attributes. One example is the
name of an application server, whose attributes include the interface it exports
and its location on the network.

2. Directories

A CDS directory is a logical grouping of CDS information; it is a collection of
directory entries. The directory is the administrative unit for replication. There
can be one or more copies, or replicas, of a given directory. CDS directories are
in a hierarchical relationship to one another; each directory has a parent
directory and can also have child directories.

3. Clearinghouses

A clearinghouse is a physical CDS database; it is a collection of directory
replicas. The clearinghouse is the database on a CDS server machine that the
CDS server accesses in order to respond to its requests.

As an example of how the different types of CDS data elements relate to one
another, imagine a directory P, which contains all the information about the printers
in a given cell. This directory contains one directory entry per printer. The
administrator of the cell may decide that the information contained in the P directory
is important enough that it needs to be replicated on more than one CDS server,
so, if one server goes down, the P information can still be found on the other
server. To that end, replicas of the P directory might be kept in two clearinghouses:
one replica in Clearinghouse A, and the other in Clearinghouse B.

Replication and Data Consistency in CDS

A directory service must be highly available since other services depend on it. It
must also be fast. CDS achieves these two goals through the replication of
directories and caching of directory entries. It also provides mechanisms for keeping
various degrees of consistency among copies of data.

There are two types of directory replicas in CDS:

1. Master replica

2. Read-only replica

There is exactly one master replica of a given directory, and any kind of operation
can be performed on it. The only operations that can be performed on a read-only

machine 1 machine 2

Client
Application

CDS
Clerk

CDS
Server

Clearinghouse

Figure 28. CDS Client and Server Machines

46 DCE 2.2: Introduction to DCE

replica are those limited to read access to the directory; no updates can be made to
this type of directory replica. There can be zero or more read-only replicas.

CDS provides two methods for maintaining data consistency among replicas of a
directory:

1. Immediate propagation

2. Skulking

With immediate propagation, a change made to one copy is immediately made to
other copies of the same data. Immediate propagation is used when it is important
for all copies of a directory to be consistent at all times.

In some cases, it is not necessary for copies to be updated immediately.
Sometimes it is not even possible since a server holding a copy may be unavailable
to receive updates. In these cases, the other consistency mechanism, skulking, can
be used. A skulk happens periodically (for example, every 24 hours), and is done
on a per-directory basis. All changes made to the given directory are collected and
propagated in bulk to all clearinghouses that contain replicas of the directory. If a
skulk cannot complete (that is, if one or more of the nodes containing a replica to
be updated is down), then an administrator is notified and the skulk is attempted
again later.

Caching is also a form of replication and therefore leads to the problem of keeping
multiple copies of information consistent (or in this case, dealing with the fact that
cached information may be out of date). As mentioned previously, the CDS clerk
caches directory information so that information will be available on the local node
rather than having to repeatedly query directory servers. CDS allows the client
application to bypass the clerk’s cache and go directly to the CDS server for
information, when the application wants to make sure it has the latest information.

End User’s Perspective

An end user may be interested in perusing the cell namespace to look for
information contained in CDS. This can be done using the CDS browser.

Programming with CDS

Programmers can access CDS through XDS. They also use CDS indirectly when
they use the name service routines of the RPC API.

CDS Administration

In general, CDS administrators use dcecp to administer CDS; They can also use
cdscp in the few cases where dcecp does not provide the necessary administrative
function. Administrators can use the CDS browser to inspect CDS data. CDS
administrative tasks include monitoring CDS servers, managing access control on
CDS directories, and specifying replication and update of CDS data.

Additional Information on CDS

For additional information on CDS, see the following:

1. The dcecp and CDS chapters of the IBM DCE for AIX, Version 2.2:
Administration Guide—Core Components.

2. The (8dce) and (8cds) reference pages of the IBM DCE for AIX, Version 2.2:
Administration Commands Reference.

Chapter 3. DCE Technology Components 47

DCE Global Directory Agent

DCE GDA is the third major component of the DCE Directory Service. It acts as an
intermediary between the local cell’s directory service and the global directory
services. In particular, the GDA handles CDS calls that are directed to foreign cells.
The foreign cells must be registered with one of the two global directory services
that DCE supports; the X.500 directory service or the Domain Name Service (DNS).

What is GDA?

DCE GDA is a process that interfaces between CDS and GDS or DNS. The GDA is
not visible to the end user. Programmers access the GDA indirectly through the
XDS API. GDA administration consists simply of starting and stopping the GDA
process.

At least one GDA must be present in a DCE cell in order for that cell to acquire
directory service information from other DCE cells.

GDA and Other Directory Service Components

Figure 29 shows how the GDA relates to other directory service components.

The application uses XDS to make a directory service call. If a typed name such as
/.../C=US/O=OSF/OU=DCE/CN=SIG-DCE is to be accessed, then the query is passed to
GDS. If the name to be accessed is an untyped name, such as
/.../cs.univ.edu/fs/usr/ziggy, or a partially typed name, such as
/.../C=US/O=OSF/OU=DCE/fs/usr/snowpaws, then the query is passed to CDS. If the

Typed Name Untyped or Mixed Name

Foreign Cell Name

Untyped Cell Name
Typed Cell Name

Appl

XDS API

CDS

GDA

DNS

GDS
(X.500)

Figure 29. GDA and Other Directory Service Components

48 DCE 2.2: Introduction to DCE

name is a local name, contained in the local CDS, then the query is handled by the
local CDS server. If it is a name that resides in a foreign cell, it is passed to the
GDA.

The GDA determines whether the foreign cell is registered in X.500 or DNS, based
on the format of the name. It then contacts a GDS server or DNS server to find the
foreign cell. Once the foreign cell is found, information about that cell is cached so
that subsequent lookups of names in that cell do not require the involvement of a
global directory server. Finally, the CDS server in the foreign cell is contacted to
handle the query about the name.

Additional Information on DCE GDA

For additional information on DCE GDA, see the GDA sections of the IBM DCE for
AIX, Version 2.2: Administration Guide.

The Directory Service Interfaces

The XDS and XOM APIs provided by the DCE Directory Service are based on
X/Open specifications. APIs are not really separate components (every DCE
component includes APIs to access it), but we call them out separately in this case
because programmers use the directory service APIs to access both DCE directory
services (CDS and GDS).

The XOM Application Programming Interface

XOM is an interface for creating, deleting, and accessing objects containing
information. It is an object-oriented architecture in that each object belongs to a
particular class, and classes can be derived from other classes, inheriting the
characteristics of the original class. The representation of the object is transparent
to the programmer; the object can only be manipulated through the XOM interface,
not directly. XOM is used to create the objects that make up the directory service.

XOM defines basic data types, such as Boolean, string, object, and so on. It defines
an information architecture, including concepts such as objects, their attributes, and
their classes. It also provides definitions of routines for manipulating objects.

The XDS Interface

The XDS API is used by DCE programmers for accessing information in the DCE
Directory Service, whether the information is managed by CDS or GDS. It uses the
XOM interface for defining and handling the information objects that compose the
directory. These objects are passed as parameters and as return values to the XDS
routines. The XDS API contains routines for managing connections with a directory
server; reading, comparing, adding, removing, and modifying entries; listing
directories; and searching for entries. Some extensions to the X/Open standard that
the DCE XDS API provides include provisions for security and cache management.

Additional Information on XDS and XOM

For additional information on the XDS and XOM interfaces, see the following:

1. The XDS and XOM chapters of the IBM DCE for AIX, Version 2.2: Application
Development Guide

2. The (3xds), (4xds), (3xom), and (4xom) reference pages of the IBM DCE for
AIX, Version 2.2: Application Development Reference

Chapter 3. DCE Technology Components 49

3. X/Open CAE Draft 1 (May 1991) Specification, API to OSI Object Management
(XOM)

4. X/Open CAE Draft 1 (May 1991) Specification, API to Directory Services (XDS)

DCE Distributed Time Service

A distributed computing system has many advantages but also brings with it new
problems. One of them is keeping the clocks on different nodes synchronized. In a
single system, there is one clock that provides the time of day to all applications.
Computer hardware clocks are not completely accurate, but there is always one
consistent idea of what time it is for all processes running on the system.

In a distributed system, however, each node has its own clock. Even if it were
possible to set all of the clocks in the distributed system to one consistent time at
some point, those clocks would drift away from that time at different rates. As a
result, the different nodes of a distributed system have different ideas of what time it
is. This is a problem, for example, for distributed applications that care about the
ordering of events. It is difficult to determine whether Event A on Node X occurred
before Event B on Node Y because different nodes have different notions of the
current time.

DCE DTS addresses this problem in two ways:

1. DTS provides a way to periodically synchronize the clocks on the different hosts
in a distributed system.

2. DTS also provides a way of keeping that synchronized notion of time
reasonably close to the correct time. (In DTS, correct time is considered to be
UTC, an international standard.)

These services together allow cooperating nodes to have the same notion of what
time it is, and to also have that time be meaningful in the rest of the world.

Distributed time is inherently more complex than time originating from a single
source since clocks cannot be continuously synchronizing, there is always some
discrepancy in their ideas of the current time as they drift between synchronizations.
In addition, indeterminacy is introduced in the communications necessary for
synchronization since clocks synchronize by sending messages about the time back
and forth, but that message passing itself takes a certain (unpredictable) amount of
time. So in addition to being able to express the time of day, a distributed notion of
time must also include an inaccuracy factor; that is, how close the timestamp is to
the real time. As a result, keeping time in a distributed environment requires not
only new synchronization mechanisms, but also a new form of expression of
time—one that includes the inaccuracy of the given time. In DTS, distributed time is
therefore expressed as a range, or interval, rather than as a single point.

What is DTS?

There are several different components that constitute DCE DTS:

1. Time clerk

2. Time servers

a. Local time server

b. Global time server

c. Courier time server

d. Backup courier time server

50 DCE 2.2: Introduction to DCE

3. DTS API

4. Time-Provider Interface (TPI)

5. Time format, which includes inaccuracy

The active components are the time clerk and different kinds of time servers. There
are two interfaces: a programming interface (DTS API) and an interface (TPI) to an
external time-provider. Finally, DTS defines a new format for expressing time.

Time Clerk

The time clerk is the client side of DTS. It runs on a client machine, such as a
workstation, and keeps the machine’s local time synchronized by asking time
servers for the correct time and adjusting the local time accordingly.

The time clerk is configured to know the limit of the local system’s hardware clock.
When enough time has passed that the system’s time is above a certain inaccuracy
threshold (that is, the clock may have drifted far enough away from the correct
time), the time clerk issues a synchronization. It queries various time servers for
their opinion of the correct time of day, calculates the probable correct time and its
inaccuracy based on the answers it receives, and updates the local system’s time.

The update can be gradual or abrupt. If an abrupt update is made, the software
register holding the current time is modified to reflect the new time. Usually,
however, it is desirable to update the clock gradually and, in this case, the tick
increment is modified until the correct time is reached. In other words, if a clock is
normally incremented 10 milliseconds at each clock interrupt, and the clock is
behind, then the clock register will instead be incremented 11 milliseconds at each
clock tick until it catches up.

Figure 30 shows a LAN with two time clerks (C) and three time servers (S). Each of
the time clerks queries two of the time servers when synchronizing. The time
servers all query each other.

Time Servers

A time server is a node that is designated to answer queries about the time. The
number of time servers in a DCE cell is configurable; three per LAN is a typical
number. time clerks query these time servers for the time, and the time servers
query one another, computing the new system time and adjusting their own clocks

S S

S

C C

Figure 30. DTS Time Clerks and Servers

Chapter 3. DCE Technology Components 51

as appropriate. One or more of the time servers can be attached to an external
time-provider (described later in this section).

A distinction is made between local time servers (time servers on a given LAN) and
global time servers. This is because they are located differently by their clients. A
client may need to contact a global time server if, for example, the client wants to
get time from three servers, but only two servers are available on the LAN. In
addition, it may be desirable to configure a DTS system to have two LAN servers
and one global time server synchronizing with each other, rather than just having
time servers within the LAN synchronizing with each other. This is where couriers
are needed.

A courier time server is a time server that synchronizes with a global time server;
that is, a time server outside the courier’s LAN. It thus imports an outside time to
the LAN by synchronizing with the outside time server. Other time servers in the
LAN can be designated as backup courier time servers. If the courier is not
available, then one of the backup couriers serves in its place.

Figure 31 shows two LANs (LAN A and LAN B) and their time servers (S). In each
LAN, one of the time servers acts as a courier time server (Co) by querying a
global time server (G) for the current time.

DTS Application Programming Interface

DTS provides an API library that allows programmers to manipulate timestamps.
For example, programmers can obtain a timestamp representing the current time,
translate timestamps to different formats, and compare two timestamps.

Time-Provider Interface

So far, all the components described are those supporting the synchronization of a
distributed system’s clocks. There must also be a way to ensure they are
synchronized to the correct time. The notion of the correct time must come from an
outside source, which is the external time-provider. This may be a hardware device
such as one that receives time from radio or telephone sources. This external time
is given to a time server, which then communicates it to other servers. Such an
external time-provider can be very accurate. If no such device is available, the
external time source can be the system administrator, who consults a trustworthy
time source and enters it into the system. This cannot, of course, be as accurate as
an automatic time source, but it may be sufficient in some cases.

S G

Co

G

Co

LAN A LAN B

S

Figure 31. Local, Courier, and Global Time Servers

52 DCE 2.2: Introduction to DCE

DTS supports the ability to interface with an external time-provider through the
time-provider interface. The external time-provider itself, however, is a hardware
device (or a person), and is therefore outside the scope of DCE.

DTS Time Format

The time format used in DTS is a standard one: UTC, which notes the time since
October 15, 1582, the beginning of the Gregorian calendar. This time is interpreted
using the Time Differential Factor (TDF) for use in different time zones. For
example, the TDF in New York City is -5 hours. The TDF for Greenwich, England is
0.

End User’s Perspective

From a user’s point of view, the advantage of having a distributed time service is
that more applications work as expected in a distributed environment. For example,
the UNIX make program compiles new binary files if it discovers that the source file
has been changed since the last time the binary was compiled. In a distributed
system, this may not work properly if the source is on one machine and the binary
is on another, and the two machines have different ideas of what time it is (and of
what time it was when their files were updated). Having DTS means that the nodes
have roughly the same notion of time, and the make program works as expected.

Programming with DTS

There are two ways a programmer can be affected by the presence of DTS in a
system. It is possible for an application to retrieve the time from the system in the
same way as before DTS was introduced. But with DTS, the system’s time is more
correct and is synchronized with other nodes’ clocks in the distributed system.

It is also possible for the programmer to use the DTS API to directly deal with
distributed time. Since DTS time is represented differently than single-node time—it
includes inaccuracy—new routines are provided for comparing times and for
converting from DTS time format to the native system’s time format. The API also
includes routines for retrieving the current time, performing calculations on times,
and handling time zone information.

If programmers choose to use DTS directly, they must handle a new contingency
when comparing times. When asking the question ′′Which time is earlier, Time A or
Time B?’’ it is possible to get the answer ′′We do not know.’’ When the two time
intervals overlap, there is no way of determining which occurred first. Programmers
can handle this in two ways: they can ignore the inaccuracy and compare the two
median times, or (the safer alternative) they can acknowledge that either time could
have been first and take the more conservative action. For example, if it cannot be
determined when running the make program, whether the source or the executable
was modified last, the compilation can be rerun just in case the source was
modified after the executable was generated.

DTS Administration

Administering a distributed time service is more involved than administering the time
in a single node. In a single node, time administration typically consists of setting
the time and date when a system is first started up and then updating the time
occasionally to compensate for clock drift.

Chapter 3. DCE Technology Components 53

DTS requires more set-up and configuration work for the administrator, although,
once it is up and running, the administrative maintenance tasks are infrequent.

Interaction with the Network Time Protocol

The Network Time Protocol (NTP), an Internet recommended standard that is widely
used in the Internet, is another method of synchronizing time in a distributed
environment. It is possible for NTP servers to provide time to a DTS system, and
for DTS servers to provide time to an NTP system. See the chapter on NTP in the
IBM DCE for AIX, Version 2.2: Administration Guidefor additional information.

Additional Information on DTS

For additional information on DCE DTS, see the following:

1. The DTS chapters of the IBM DCE for AIX, Version 2.2: Application
Development Guideand the IBM DCE for AIX, Version 2.2: Administration Guide

2. The (3dts) reference pages of the IBM DCE for AIX, Version 2.2: Application
Development Reference

3. The (8dts) reference pages of the IBM DCE for AIX, Version 2.2: Administration
Commands Reference

DCE Security Service

A distributed computing environment brings with it new security requirements
beyond those found in a nondistributed system. In a nondistributed system, the
operating system can be trusted to protect resources from unauthorized access.
This is not the case in open distributed systems, however. Communications take
place over an accessible network, where messages between machines can be
observed or forged. A new security system is required in order to control access to
resources in a distributed environment. In DCE, resource protection is provided by
the DCE Security Service or, alternatively, the Generic Security Service (GSS).

What is the DCE Security Service?

The DCE Security Service comprises several parts, including the authentication
service, the privilege service, the registry service, the ACL facility, the login facility,
the password strength service, and the audit service.

1. Authentication service

This service enables two processes on different machines to be certain of one
another’s identity, or authenticated. On a timesharing system, this functionality is
provided in part by the operating system kernel. However, since a local host’s
operating system cannot necessarily be trusted in a distributed system, an
authentication service is necessary in a distributed computing environment.

2. Privilege service

Once a server has verified the identity of the user who is making a request, it
still needs to determine whether the user should be authorized, or granted the
requested access to a resource that the server controls. This functionality is
provided by the DCE authorization service called the privilege service. It
forwards in a secure way the information that a server needs to know in order to
determine what permissions it should grant to the user.

54 DCE 2.2: Introduction to DCE

Both the authentication service and the privilege service are used in conjunction
with DCE RPC and the login facility, so the typical application programmer does
not interact with them directly, but instead uses authenticated RPC.

3. Registry service

The registry service is a replicated service that manages the cell’s security
database. The security database contains entries for security entities, which are
called principals. A principal can be a user or a server, for example. The
database also contains information associated with each principal; for example,
encryption keys, which are used in authentication, authorization, and encryption
of messages. The registry service enables administrators to access and modify
the database of DCE users.

The extended registry attribute (ERA) interface allows the registry schema to be
modified so that user-defined attributes can be associated with registry objects.

4. ACL facility

DCE ACLs are lists of users who are authorized to access a given resource. For
example, a user can put a colleague on an ACL for a certain file, thereby
granting the colleague permission to read and write the file. DCE ACLs are
associated with many DCE resources: files, entries in the directory service, and
entries in the security service. DCE ACLs are based on the POSIX 1003.6/Draft
3 specification. An ACL API allows programmers to manipulate ACLs, and dcecp
allows users to modify ACLs associated with resources they own.

5. Login facility

The DCE login facility initializes a user’s DCE security environment. It
authenticates the user to the security service by means of the user’s password.
The security service returns security credentials, which are then used to
authenticate the user to distributed services that are accessed during the user’s
session, such as DFS or other applications. The login facility permits log in
using the following authentication protocols:

a. The public key protocol, which provides the highest level of security

b. The third-party protocol, which is less secure than public key protocol

c. The timestamps protocol, which is less secure than the third-party protocol

d. The DCE Version 1.0 protocol, which is the least secure protocol. This is
provided solely for compatibility with DCE Version 1.0 clients.

6. Password Strength service

The password strength server checks password-change requests to determine
whether the requests can be accepted. When a password-strength server is
configured for an account, the password-strength server enforces the password
composition rules defined by the parameters used to start this serverinstead of
the rules specified in the Settings notebook of the registry or policy group.

7. Audit service

The audit service detects and records the execution of DCE server operations
that are relevant to the maintenance of a secure distributed computing
environment. The audit service records the event in a log file called an audit trail
file. DCE application programmers build auditing into their DCE servers by
designating security-relevant operations as code points for which auditing is
required, and using an audit API to establish auditing of those operations. The
DCE Security Service and DCE DTS also use the audit service to track and
record the use of their security-critical operations. Administrators can use the
audit service event class and filter mechanisms to organize and tailor the
recording of events into audit trail files. In addition these audit events can be
routed to the DCE Event Management Service (EMS). For more information

Chapter 3. DCE Technology Components 55

about the Event Management Service see the IBM DCE for AIX, Version 2.2:
Application Development Guide—Core Components .

How DCE Security Works

This section gives an overview of how the DCE security services and facilities
interact to provide a secure distributed computing environment. Figure 32 shows
this process. The presentation in this section is a simplified view of the transactions
that actually take place.

When a DCE cell is first created, the DCE security administrator runs a program to
create an initial DCE security database. The administrator then starts up a DCE
security server, called secd, on the same machine as the database. Using dcecp,
the administrator creates user accounts in the security database.

After the administrator has created an account for a user, the user can participate in
a secure DCE system. Typically a user logs into the account at the beginning of a
session. The login facility interacts with both the authentication server and the
privilege server. It sends a request for authentication credentials to the
authentication server. The authentication server sends back the authentication
credentials, called a ticket. The authentication server’s reply is encrypted using the
user’s password; so, if the user can supply the right password, the reply can be
decrypted and the ticket can be accessed. Tickets are used by clients to
authenticate themselves to servers; that is, to prove that clients are really who they
say they are.

Create User

Log Me In

Ticket

Authorize Me
(with Ticket)

EPAC

Authenticated RPC
(with EPAC)

Administrator

dcecp

login

Application
Client

User

Application
Server

Authentication
Server

Privilege
Server

Registry
Server

Security
Server
(secd)

Security
DB

ACL

Figure 32. DCE Security Interactions

56 DCE 2.2: Introduction to DCE

Next, the login facility sends the ticket to the privilege server. The privilege server
returns authorization credentials, called an extended privilege attribute certificate
(EPAC). The EPAC contains authorization information specific to the user, such as
which groups the user belongs to. EPACs are used to authorize users; that is, to
help a server decide whether users should be granted access to resources that the
server manages. When the login facility has finished running, the user has a
security environment and can communicate in a secure way with application
servers.

For example, if the user runs an application client, the application client can use
authenticated RPC to communicate with the application server. The application
server receives the RPC-based request, which includes the user’s EPAC. The
server inspects the user’s authorization credentials and the ACL associated with the
resource the user wants to access. If, for example, the ACL says that any user in
the group friends can access the resource, and the user’s EPAC shows that the
user is in the friends group, then the server will give the user access to the
resource.

The authentication and authorization information that is sent over the network is all
encrypted so that only the intended recipients are able to decrypt and read the
messages. If desired, the application data can be encrypted as well. This prevents
any unauthorized user from being able to read data that is sent over the network.

The encryption used in DCE is secret key encryption, in which two parties share a
secret—the encryption key. Using that key, they can encrypt and decrypt each
other’s messages. (For information on the generation, transfer, and use of
encryption keys in DCE security, see the security chapters of the IBM DCE for AIX,
Version 2.2: Application Development Guide—Introduction and Style Guide and IBM
DCE for AIX, Version 2.2: Application Development Guide—Core Components.

Finally, although it is not shown in Figure 32 on page 56, all of the security service
events just discussed (creating a user, logging in, obtaining a ticket, and so on) are
recorded and logged in an audit trail file by the audit service daemon, auditd. In
addition, if the application server has been designed to use the audit service, and
the operation that the application client is requesting has been designated an audit
code point, then the audit service logs the execution of the server operation on
behalf of the requesting client.

End User’s Perspective

Much of the DCE security mechanism occurs without the knowledge of users; for
example, secure communications take place without the user’s intervention. There
are several ways, however, in which users do come in contact with DCE security.
One instance is when users type in their passwords to authenticate themselves to
DCE, usually at login time. Another case is when they change access to resources
they own, using dcecp. Finally, a user notices the security service in action when he
or she is denied unauthorized access to resources.

Programming with DCE Security

Typically, a DCE programmer uses DCE RPC to implement a distributed
application. DCE security is integrated with RPC, so in some cases the programmer
does not need to access security services directly. However, programming
interfaces to the security service are available to the programmer who needs them.
They include the ACL, audit, login, extended registry attribute, security credentials,

Chapter 3. DCE Technology Components 57

and registry APIs, along with the API for authenticated RPC. This section gives an
overview of programming with authenticated RPC and DCE ACLs.

Authenticated RPC

DCE RPC and DCE security cooperate to provide authentication, authorization, and
secure communications. In order to use authenticated RPC, the client must already
have a security environment, such as that set up by the login facility. The server
side of the application registers its name and the type of authentication service it
supports. In DCE, two types of authentication service are supported: secret key
authentication, which is based on Kerberos (see “DCE Security and Kerberos” on
page 60), or no authentication.

The client makes a call to indicate which authentication service, protection level,
and authorization service it wants to use for RPC communications with a given
server. The authentication service can be either secret key authentication or no
authentication. The protection level ranges from authentication at the beginning of
an RPC session, to authenticating each message or packet, to ensuring that a
packet has not been modified in transit, to encrypting all user data. In general, the
more secure the protection level, the higher the price paid in terms of performance
since the security mechanisms involve encrypting and decrypting data, which take
up CPU time.

The authorization service chosen by the client can be either uncertified or certified.
In uncertified authorization, the authorization information sent to a server consists
only of the client’s name. In certified authorization, the authorization information
consists of the UUIDs of the client’s name and groups. The certified authorization
information is in the form of an EPAC, which is produced by the privilege service. In
both the certified and uncertified authorization service, the authorization information
is sent securely.

The authentication and authorization information about the client are used by the
server to determine whether the client should be granted the access to the resource
that it has requested. The server knows for certain the identity of the client and
what authorization groups the client belongs to. The server can therefore compare
the client’s credentials against information in ACLs and determine whether a client
should be given the access it is requesting.

ACLs

If a distributed application uses ACLs to control access to its resources, then the
distributed application programmer needs to write an ACL manager to handle
access to the resources. The ACL manager is part of the server side of the
application. Typically, there is one ACL associated with each resource that the
server manages. The ACL contains one or more entries specifying a user or group
and what operations the user or group is permitted to perform on the resource (for
example, read, write, or execute permission). The ACL manager takes the
authorization information supplied by the application client during an RPC and
compares it to the ACL for the requested resource. The ACL manager indicates
whether the client is or is not allowed the requested access to the resource.

Figure 33 on page 59 shows a simple DCE ACL. Every DCE ACL contains a field
indicating what type of ACL it is. The ACL type in this case is sp_data_acl. Each
DCE ACL also contains a field indicating what the default cell is for the entries in

58 DCE 2.2: Introduction to DCE

the ACL. In the example, the default cell is /.../C=US/O=OSF/OU=DCE. The rest of the
ACL consists of ACL entries.

ACL entries can be of several types. The preceding example shows three types of
ACL entries: user, group, and foreign_user. The cell to which the user and group
entries belongs is the default cell listed in the ACL. The cell to which the
foreign_user entry belongs is specified in the entry.

Each entry includes a list of permissions. The different possible permissions are
determined by the ACL type (in this example, sp_data_acl). There are two types of
permissions in the preceding ACL example: r for read permission, and w for write
permission.

Based on this ACL, the sp_data_acl ACL manager will give the principal snowpaws
in the cell /.../C=US/O=OSF/OU=DCE read and write permission to the object, the
members of the friends group in the /.../C=US/O=OSF/OU=DCE cell read permission
to the object, and the principal zig in the foreign cell /.../cs.univ.edu read
permission.

DCE Security Service Administration

There are two types of DCE security administration: local and cellwide. The
administrator of a DCE machine controls the local passwd_override file. This file
determines some security aspects that are specific to the local machine, such as
which principals may use the machine, the password for a local account (such as
root), and so forth. The local security administrator also controls the local file that
contains user and password information, if it exists. (This file may contain a copy of
information from the security database to be used in case the security server
cannot be reached, or for already existing applications that expect such a local file.)
If the machine runs DCE servers that use the audit service (application servers, the
DTS server, or the security server) the local security administrator also manages
the audit daemon (auditd).

The cell-wide security administrator manages the cell’s security server(s). This
includes managing the secd process, which provides security services on the
security server machine, creating and editing the security database using dcecp,
and controlling replication of security data. The cell-wide security administrator can
also carry out remote administration of the audit daemons running on hosts in the
cell. The cell-wide security administrator is also responsible for administering audit
service event numbers and event class numbers to ensure that unique numbers are
being issued.

sp_data_acl

/.../C=US/O=OSF/OU=DCE

user:snowpaws:rw

group:friends:r

foreign_user:ziggy@/.../cs.univ.edu:r

ACL Type

Default Cell

ACL Entry

ACL Entry

ACL Entry

Figure 33. DCE ACL Example

Chapter 3. DCE Technology Components 59

The cell-wide security administrator is also involved in cross-cell authentication. It is
possible for clients in one cell to communicate securely with servers in another cell.
In order for this to happen, the security administrators in the two cells must register
each other’s authentication service in their registry. This enables clients in one cell
to authenticate to servers in another cell. In this way, it is possible for authorized
clients in one cell to access services in a foreign cell.

DCE Security and Kerberos

This section contains a note on the relationship between the DCE Security Service
and Kerberos, for those who are already familiar with Kerberos. The DCE
authentication service is based on MIT Project Athena’s Kerberos Network
Authentication Service, Version 5. The Kerberos Key Distribution Center (KDC)
server is a part of the DCE security server, secd. The authorization information that
is created by the DCE privilege server is passed in the Kerberos Version 5 ticket’s
authorization data field.

The Kerberos user commands kinit, klist, and kdestroy are used in DCE
security. The Kerberos API is used internally by DCE security but is not exposed for
use by the application programmer. Instead, DCE application programmers use the
authenticated RPC API.

Secure Remote Utilities

Two secure remote utilities provided by DCE are rlogin and rsh. The rlogin utility
starts a terminal session on a remote host. The rsh utility executes a command on
a remote host. Both utilities use the Kerberos V5 authentication protocol.

The Generic Security Service API

The Generic Security Service (GSS) provides an alternate way of securing
distributed applications that handle network communications by themselves. With
the Generic Security Service API (GSSAPI), applications that establish the secure
connection are like a DCE RPC client. Applications that accept the secure
connection are like a DCE RPC server.

The GSS available with DCE includes the standard GSSAPI routines (defined in the
Internet RFC 1509), as well as OSF DCE extensions to the GSSAPI routines.
These extensions are additional routines that enable an application to use DCE
security services.

The GSSAPI combines authentication and authorization under a single security
mechanism type. The security mechanism provides applications a choice of either
authenticated Kerberos security or authenticated PAC authorization under DCE
security.

Although an application that uses GSSAPI may not make explicit calls to RPC
routines, the GSSAPI implementation itself uses DCE RPC to communicate with the
DCE registry.

The Public Key Certification API

The DCE Certification Service application programming interface can be used to
store and retrieve public keys on behalf of users and applications. DCE permits the
use of public keys as part of the public key authentication protocol that works via

60 DCE 2.2: Introduction to DCE

public and private key pairs. Messages encrypted under one of the keys can be
decrypted using the other (and vice versa); but messages cannot be encrypted and
decrypted by using the same key. The certification service is used by a certifying
authority to certify the authenticity of distributed public keys. Two policy modules are
provided with DCE release 2.2 that can be used by developers to implement a
certification authority.

Additional Information on DCE Security

For additional information on the DCE Security Service and the GSSAPI, see the
following:

1. The security chapters of the IBM DCE for AIX, Version 2.2: Application
Development Guide—Core Components and the IBM DCE for AIX, Version 2.2:
Administration Guide—Core Components (DCE Security Service only)

2. The (3sec) reference pages of the IBM DCE for AIX, Version 2.2: Application
Development Reference

3. The (8sec and 5sec) reference pages of the IBM DCE for AIX, Version 2.2:
Administration Commands Reference

DCE Distributed File Service

Distributed systems can provide many advantages over centralized systems, such
as higher availability of data and resources, the ability to share information
throughout a very large (even worldwide) system, and efficient use of special
computing functionality.

A distributed file system is an example of an application that can take advantage of
all of these aspects of a distributed system. It can make files highly available
through replication, making it possible to access a copy of a file even if one of the
machines on which the file is stored goes down. A distributed file system can
provide access to files from anywhere in the world, allowing cooperation among
geographically dispersed users. A distributed file system can also give users on
machines with very little storage space the ability to access and store data on
machines with much more disk space available.

DCE DFS is a distributed client/server application built on the underlying DCE
services. It takes full advantage of the lower-level DCE components (such as RPC,
the security service, and the directory service). The following subsections describe
DFS and the configuration of its components, and they provide various user
perspectives on DFS.

What is DFS?

DFS is a distributed application that manages information in the form of a file
system. This section describes the units into which DFS data is organized, the
active components that manage that data, and the benefits of DFS.

DFS Data Organization

DFS data is organized at three levels. (See Figure 34 on page 62.) The three levels
of DFS data are as follows, from smallest to largest:

1. Files and directories

Chapter 3. DCE Technology Components 61

The unit of user data. Directories organize files (and other directories) into a
hierarchical tree structure.

2. Filesets

The unit of administration. A fileset is a subtree of files and directories that is no
larger than a disk or partition (or logical volume, if supported). The fileset is a
convenient grouping of files for administrative purposes; for example, the
subtree of files pertaining to a particular project can be grouped in the same
fileset.

3. Aggregates

The unit of disk storage, similar to a disk partition. It is also the unit of fileset
exporting, which makes the data in filesets available to users of DFS. It can
contain one or more filesets.

DFS Components

DFS consists of several components. This section briefly describes each of these
components, discussing the software that runs on DCE client machines (the cache
manager), then the software that runs on DCE file server machines (the file
exporter, token manager, and DCE Local File System), and finally the administrative
server processes, which typically run on DFS file server machines (the fileset
server, basic overseer server, replication server, update server, fileset location
server, and backup server). It also briefly describes the administrative tools used to

Aggregate Fileset

File
File

File
Directory

Directory

Fileset

Fileset

...

Aggregate

Aggregate

Disk

Figure 34. Files, Directories, Filesets, and Aggregates

62 DCE 2.2: Introduction to DCE

monitor DFS use and activity (Scout and the dfstrace utility), and it describes the
DFS/NFS secure gateway, which provides authenticated access to DFS from NFS
clients.

Cache Manager: The cache manager is the client side of DFS. The cache
manager runs on any machine that is acting as a DFS client. It takes a user’s file
system request and looks in a local cache to see if a copy of the data is already on
the local system. If it does not find the data in the local cache, the cache manager
sends a request for the data to the file server machine and caches the data locally,
either on disk or in memory.

Because files are cached on the client, a local copy of a cached file can
subsequently be accessed instead of the remote copy on the file server machine.
As a result, network traffic to the file server machine, as well as file server machine
load, is much lighter than if the client had to go to the server each time it needed to
access a file.

File Exporter: The file exporter is the server side of DFS. The file exporter runs
on a DFS file server machine, where it handles requests from clients for the files
that it manages. The file exporter receives an RPC call and accesses its own local
file system, which can be the DCE Local File System (DCE LFS) or another file
system such as a UNIX File System (UFS), to service the request. Using the token
manager, it handles the synchronization of different clients concurrently accessing
the same file and returns the requested information to the client.

Token Manager: The token manager runs on a file server machine to synchronize
access to files by multiple clients. It does this by issuing tokens, which represent
the ability to perform operations. The tokens that a token manager issues to DFS
clients carry various access rights, usually read or write. There are four different
kinds of tokens: data tokens for access to file and directory data, status tokens for
access to file and directory status, lock tokens for locking a portion of a file, and
open tokens for opening a file.

The token manager on the server side cooperates with the token management layer
in the cache manager (on the client side) to manage tokens. If a client requests an
operation that conflicts with a token that another client holds, the token manager
must revoke the existing token and grant a new token before the requested
operation can proceed.

DCE Local File System: DCE LFS is the physical file system provided with DCE.
It manages the storage of files on a disk. The scope of DCE LFS is a single
computer. LFS is analogous to a UFS. However, DCE LFS is more powerful than
most local UFSs since it includes features that result in greater capabilities than a
distributed file service based on a traditional UFS. These capabilities include the
ability to use more flexible data protection in the form of DCE ACLs; the ability to
replicate, back up, and even move different parts of the file system without
interruption to service; and the use of logging for fast recovery after a crash (in
contrast to UFSs, which must execute the time-consuming fsck command). DCE
LFS also includes support for DCE cells; for example, the owner of a file or the
name in an entry on an ACL can be a name from a foreign cell.

A UFS can be used as a file server machine’s physical file system as an alternative
or complement to DCE LFS. DFS can export a UFS, issue synchronization tokens
for files in a UFS, and perform fileset operations such as dump and restore on a
UFS. However, there is only one fileset per UFS partition, which results in large
filesets; and, unlike DCE LFS filesets, UFS filesets cannot be replicated or moved.

Chapter 3. DCE Technology Components 63

Although UFS systems are supported in DFS, a file server machine that uses DCE
LFS has more functionality than a file server machine that uses only UFS.

Fileset Server: The fileset server allows administrators to create, delete, move,
and perform other operations on filesets. For example, the fileset server enables an
administrator to move a fileset from one file server machine to another for load
balancing. (If DCE LFS is not being used as the physical file system, an entire
partition is treated as a single fileset; in this case, some fileset operations may not
be supported.)

Basic Overseer Server: The basic overseer server, or BOS server, monitors the
DFS processes that run on a server and restarts them when needed. The BOS
server maintains information about the processes and responds to administrative
requests for that information.

Replication Server: The replication server is an administrative server that handles
replication of filesets. For example, an administrator can create read-only copies of
a fileset on multiple file server machines. The replication server updates the replicas
either manually, at the request of an administrator, or automatically, as data in the
fileset changes. With replication, even if a file server machine that houses one copy
of a fileset goes down, another copy of the fileset is still available on another file
server machine.

Update Server: The update server provides the ability to distribute binary files or
administrative information to machines configured as DFS servers. The update
server consists of the upclient and upserver processes. The upclient software
runs on a machine that needs to receive new versions of the binary files or
administrative information. The upserver software runs on a master machine and on
request propagates any changes to binaries or administrative information to the
machines running the upclient software.

Fileset Location Server: The fileset location server, or FL server, provides a
replicated directory service that keeps track of the site (file server machine and
aggregate) at which each fileset resides. The FL server provides a lookup service
analogous to the service CDS provides, with the exception that the FL server is
specialized for DFS. It provides fileset location transparency; that is, users can
access a fileset simply by knowing its name; they do not need to know the fileset’s
location. As a result, a fileset can be moved without users and applications being
aware of the move. DFS automatically updates the fileset’s location in the fileset
location database (FLDB).

Backup Server: The backup server is a facility for backing up data on file server
machines. The backup server maintains backup records in the replicated backup
database. It maintains a schedule for the backing up of file system data, and it has
the ability to perform both full and incremental dumps. The unit of backup is the
fileset.

Scout: The Scout administrative tool collects and displays information about the
file exporters running on file server machines, enabling a system administrator to
monitor the use of DFS.

The dfstrace Utility: The dfstrace utility allows sophisticated administrators and
system developers to trace DFS processes that run in either the user-space or the
kernel. The utility consists of a suite of commands that provide low-level diagnostic
and debugging information.

64 DCE 2.2: Introduction to DCE

NFS/DFS Authenticating Gateway: The NFS/DFS Authenticating Gateway
provides authenticated access to DFS from NFS clients. Users who have DCE
accounts can authenticate to DCE via a DFS client configured as a gateway server
and access DFS data according to their DCE identities. Administrators can allow
NFS client users to establish authentication mappings between their NFS client
identities and DCE identities.

Some DFS components run in the host machine’s kernel. These are the cache
manager and token management layer on DFS client machines; and the file
exporter, token manager, and DCE LFS on file server machines.

Features of DCE DFS

DCE DFS has the following features:

1. Uniform file access

DFS is based on a global namespace. A DFS file is accessed by the same
name no matter where in the distributed system it is accessed from. Users do
not need to know the network address or name of the file server machine on
which the file is located to name and access the file. For example, the file
/.../cs.univ.edu/fs/usr/ziggy/thesis can be addressed by that name from
anywhere in DCE, including from foreign cells.

2. Intracell location transparency

Data can move from one location to another within a cell without a user or
programmer being affected by the move. Because of this transparency, an
administrator can move a fileset from one file server machine to another for load
balancing, for example, without disturbing users.

3. Performance

DFS is a high-performance file service. Fast response is achieved in part
through the caching of file and directory data on the DFS client machine. This
reduces the time it takes for a user to access a file, and it also reduces the
traffic on the network and the load on the file server machine. The first time a
user on a machine accesses a file, the cache manager gets a copy of the file
from the file server machine and caches it on the client machine. Subsequent
access to the file can then be made to the copy on the client machine rather
than to the copy on the file server machine.

4. Availability

DFS makes its services and data highly available in several ways. One way is
through replication, in which a read-only copy of a file can be stored on more
than one file server machine. This way, if the file server machine that houses
one copy of the file is down, another copy of the file may still be available on
another file server machine. DFS replication is especially useful for files that are
accessed by many users but change infrequently (for example, binary files).

Another way DFS achieves high availability is through caching. Copies of files
are cached on DFS clients. Even if a client is temporarily disconnected from the
network, users of the client may be able to access copies of files that reside in
the local cache.

DFS administration can occur while users continue to access DFS files, which is
another means of providing high availability. Both backups and relocation of
DFS filesets can be done without making the data in the filesets unavailable to
users.

The physical file system portion of DFS, DCE LFS, is designed for fast recovery
(yielding high availability) after failures. DCE LFS is a log-based file system; that

Chapter 3. DCE Technology Components 65

is, DCE LFS keeps a record of actions taken that affect the file system structure
so that, in the case of a system crash, the record can be replayed to bring the
file system to a consistent state.

5. Support for distributed application programming

DFS is itself a distributed application, but it in turn supports the development of
other distributed applications. Programmers can use DFS to share data or to
communicate in a distributed application. DFS takes care of network
communications and the movement, synchronization, and storage of shared
data.

6. Ease of administration and scalability

DFS files are grouped into units called filesets, which are convenient to
administer. The processes that implement DFS, such as the FL server and the
backup server, are monitored and maintained automatically by the BOS server,
resulting in less work and a more scalable system for a DFS administrator.
Because of the high performance mentioned previously, DFS has a high
client-to-server ratio. This leads to a scalable system in which clients can be
added with low impact on other clients and the rest of the system. Finally, DFS
includes tools such as the update server to automate time-consuming
administrative tasks.

7. Integration

DFS is fully integrated with other DCE components, including RPC, the security
service, the directory service, and threads.

8. Interoperation

DFS interoperates with other file systems; for example, a UFS can be exported
to users of DFS.

9. Standards

DFS maintains POSIX single-site read/write semantics. DCE LFS adheres to
POSIX 1003.1.

DFS Configuration

This section describes which of the DFS components run on the different types of
DFS machines: DFS client machines, DFS file server machines, and other DFS
server machines.

The cache manager runs on every machine that acts as a DFS client. It
communicates with file server machines to provide DFS service. (See Figure 35 on
page 67 .)

66 DCE 2.2: Introduction to DCE

Several processes run on DFS file server machines: the file exporter (which
includes the token manager), the BOS server, the replication server, the fileset
server, and the client side of the update server. Also present on the file server
machine is a physical file system, DCE LFS, UFS, or both.

Some DFS processes must run on a machine that contains the files or database
they access. These processes usually run on DFS file server machines. (See
Figure 36 on page 68.)

DFS FILE SERVER MACHINE

BOS
Server

upclient

Fileset
Server

Replication
Server

File
Exporter

Token
Manager

DCE LFS
or UFS

User

Kernel

Files and
Directories

DFS CLIENT MACHINE

Cache Manager
(in Kernel)

On-Disk
Cache

Figure 35. DFS Client and File Server Machines

Chapter 3. DCE Technology Components 67

These processes are the server side of the update server (which runs both on
machines that contain master copies of configuration files and on machines that
contain master copies of binary files), the FL server (which runs on machines on
which the fileset location database is located), and the backup server (which runs
on machines on which the backup database resides).

End User’s Perspective

Users are usually not aware that some of the files that they access are stored on
their local computer, some on their cell’s file server machines, and some in another
cell, because to a user, DCE DFS presents one large, worldwide file system. Users
do notice a few differences between working on a distributed file system and
working on a local file system. For example, DFS users are issued quotas for file
storage, which they can use DFS commands to examine. DFS also includes
commands for determining the location of a file and other information that is unique
to a distributed file system.

BACKUP SERVER

DFS File
Server

DFS File
Server

Backup
Server

Backup
DB

FILESET LOCATION SERVER

Fileset Location
Server

DFS
Client

DFS File
Server

FLDB

UPDATE SERVER

upclient

upclientupserver

Admin
Files

Binary
Files

Figure 36. Other DFS Servers

68 DCE 2.2: Introduction to DCE

Programming with DFS

Application programmers typically use DFS transparently by making POSIX 1003.1
file system calls. Additional DFS interfaces provide administrative capabilities such
as calls for administering filesets. The fact that programmers can use a distributed
file system through a familiar interface means that DFS enables distributed
applications programming without special distributed programming expertise.
Through the use of DFS, programmers can write distributed applications without the
use of RPC and the client/server model, assuming the DFS data sharing model is
appropriate to the application.

DFS Administration

Administration of DFS is a significant task because several processes that
implement DFS need to be set up and maintained. However, administrative tools
are provided to aid in this task. DFS configuration is varied and flexible, so a DFS
administrator has the additional task of designing and evolving a configuration of
DFS servers and clients that best suits the needs of the system’s users. DFS
day-to-day administration includes fileset administration such as making filesets
available, backing them up, and moving them.

Additional Information on DFS

For additional information about the DCE Distributed File Service, see the chapters
and reference pages in the IBM DCE for AIX, Version 2.2: DFS Administration
Guide and Reference. For additional information about the NFS/DFS Authenticating
Gateway , see the IBM DCE for AIX, Version 2.2: NFS/DFS Authenticating
Gateway.

DCE Cross-Component Facilities

For most applications, multiple DCE components work in concert. Several services
are dedicated to facilitating interaction among components and are described
separately from the components themselves in the following subsections.

Host Services

The DCE host services provide remote system management. Each host runs a
DCE host daemon (dced) as the interface to the host services. In many cases dced
automatically maintains the data and performs the functions. Some of the data that
can be accessed (and maintained) remotely includes the host name, the host’s cell
name, configuration and execution data for all servers on the host, and a database
of endpoints (server addresses) on which running servers can be found. Some of
the functions that can be performed remotely include starting and stopping servers.

A security validation service maintains a login context for host identification and
certifies for application programs that the DCE security daemon (secd) is legitimate.

The key table management service enables remote management of server key
tables. A server uses private keys rather than human-readable passwords for
authentication. This service can be used to add, remove, and change keys and
entire key tables.

Chapter 3. DCE Technology Components 69

The endpoint mapper service maintains a local database (an endpoint map)
associating port addresses that locate servers on a host with servers, interfaces,
and objects. Remote procedure calls use this service via the RPC runtime to
resolve bindings between clients and servers. The data can be remotely perused,
and even changed (although changes to the database are usually performed
automatically by dced and the RPC runtime).

Application Message Service

The application message service is a general-purpose messages manager for
readable character strings that are commonly displayed to application users. The
service automatically and transparently takes care of many of the special problems
that distributed application messaging can give rise to. The service uses catalog
files to maintain message text and explanations separate from the program in a
culture- or nationality-specific way.

Serviceability

Serviceability is another kind of message text service with functionality beyond just
the display of general-purpose text. To the general-purpose messaging service,
Serviceability adds storage of additional attributes specifying subcomponents
(program modules), message severity, the action users or programs should take,
and the debug level.

Backing Store Databases

DCE provides a backing store library for the convenience of programmers who are
writing DCE servers. A backing store is a persistent database or persistent object
store from which typed data can be stored and retrieved by a key. Designed to
satisfy the needs of programmers writing servers that deal with ACLs, this facility
can be used to store any data IDL can describe that needs to persist between
invocations of applications. The backing store routines can be used in servers, in
clients, or in standalone programs that do not involve remote procedure calls.

These cross-component facilities are described in detail in the IBM DCE for AIX,
Version 2.2: Application Development Guide—Core Components .

The DCE Control Program

The core services (especially CDS and the security service) for large cells can be
complex, with some services being replicated or even partitioned across differing
systems. The host services described in the previous section will exist on every
computer in the cell. An administrative interface is needed that provides consistent
and uniform access to DCE administration functions, wherever they reside, from
any and every point in the cell. Administrative commands must work consistently
and predictably regardless of the platform on which they execute.

The DCE control program (dcecp) available with DCE IBM DCE Version 2.1 was
developed to provide consistent, portable, extensible, and secure access to nearly
all DCE administration functions from any point in a DCE cell. The DCE control
program implements most of the operations previously performed by using various
component control programs (for instance rpccp, cdscp, rgy_edit, acl_edit, dtscp,
and sec_admin). Where before administrators needed multiple control programs with
different syntaxes to perform certain operations such as adding a host to a cell, now

70 DCE 2.2: Introduction to DCE

only dcecp is required. Furthermore, these complex operations can be done now
using a single ′′task script’’ that walks administrators through the pertinent
commands prompting for input as necessary.

To do this, dcecp is able to manipulate data (for instance, directories, entries,
groups, principals, accounts, and ACLs) stored in the various databases (for
instance, the registry, clearinghouses, and ACL managers). It can also perform
certain management operations like user create, server disable, and registry
synchronize.

The DCE control program is built on a portable command language called Tcl
(pronounced ′′tickle’’), which stands for Tool Command Language. Tcl is a
platform-independent command language that runs on every system where IBM
DCE Version 2.1 is installed. The Tcl command interpreter is provided along with
dcecp. Together, these enable administrators to use variables, if statements,
looping functions, and other programming operations to enhance the command set.
Administrators can share scripts, moving them to other platforms without change. A
common cell environment can be developed by propagating scripts.For information
on Tcl, see Tcl and Tk Toolkit, by John C. Ousterhout (Addison-Wesley: Menlo Park,
CA, 1995).

The DCE control program uses an object-operation syntax, in which an object
comes first, followed by an operation. The object-operation order makes it easy to
add new objects and operations to DCE.

In summary, dcecp is an interactive command-line interface used to manage most
aspects of the DCE core components. Only a few infrequently performed control
operations have not been replaced by dcecp.

Two DCE Application Examples

This section presents two implementations of a very simple distributed application
called greet. This section assumes some familiarity with UNIX systems and the C
programming language. The greet application is implemented two different ways:
one using DCE RPC, the other using DCE DFS. For a more extensive application
example, which uses many more DCE services and facilities, see the timop
example in the IBM DCE for AIX, Version 2.2: Application Development Guide .

The greet Application: An Implementation Using DCE RPC

This first implementation of the greet application is an example of a simple DCE
RPC-based application. The client side of the application sends a greeting to the
server side of the application. The server prints the client’s greeting and sends a
return greeting back to the client. The client prints the server’s reply and terminates.

Steps in Developing a DCE RPC Application

This section provides a step-by-step description of the development of the greet
application.

1. Generate an IDL template.

The first step is to run the uuidgen program, which creates a Unique Universal
Identifier for uniquely labeling the application’s interface. It also creates a
template for an IDL file. The following command creates the file greet.idl:

Chapter 3. DCE Technology Components 71

The file greet.idl contains the following:

2. Name the interface.

Replace the string INTERFACENAME in the IDL file with the name of the application
interface, in this case, greetif.

3. Define the interface operations.

Within the braces, write definitions of the operations constituting the interface. In
this example, there is only one operation, called greet.

The first line of the operation definition gives the name of the operation, greet,
and indicates by the void declaration that it has no meaningful return value. The
next three lines specify the arguments to the operation, namely h,
client_greeting, and server_reply. The first argument is a handle containing
binding information for the server. The second is a string that is passed from the
client to the server (the client’s greeting). The third argument is a string returned
from the server back to the client (the server’s reply).

4. Run the IDL compiler.

The following command runs the IDL compiler:

uuidgen -i > greet.idl

[
uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)
]
interface INTERFACENAME
{

}

[
uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)
]
interface greetif
{

}

/*
* greet.idl
*
* The "greet" interface.
*/

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)]

interface greetif
{

const long int REPLY_SIZE = 100;

void greet(
[in] handle_t h,
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_SIZE]

);
}

72 DCE 2.2: Introduction to DCE

(Some of the commands in this section are somewhat simplified. See “Makefile
for the greet Application” on page 79 for the complete command.) Three new
files are created automatically as a result of this command:

a. greet.h

b. greet_cstub.o

c. greet_sstub.o

5. Write the client application code greet_client.c.

In general, the DCE RPC application programmer writes three application code
files:

a. The client code

b. The server initialization code

c. The server operation code

The following is the client code for the greet application, a file called
greet_client.c.

idl greet.idl

Chapter 3. DCE Technology Components 73

In this routine, the client makes two calls to the RPC runtime to acquire binding
information needed to communicate with the server. The client then calls the
greet remote procedure, supplying a greeting to be sent to the server. The
client prints the reply received by the server.

6. Write the server initialization code greet_server.c.

The second file that the DCE RPC application programmer must write is the
server initialization code. This is boilerplate code; that is, it is largely the same

/*
* greet_client.c
*
* Client of "greet" interface.
*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"

int
main(

int argc,
char *argv[]

)
{

rpc_ns_handle_t import_context;
handle_t binding_h;
error_status_t status;
idl_char reply[REPLY_SIZE];

if (argc < 2) {
fprintf(stderr, "usage: greet_client <CDS pathname>\n");
exit(1);

}

/*
* Start importing servers using the name specified
* on the command line.
*/

rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],

greetif_v1_0_c_ifspec, NULL, &import_context,
&status);

ERROR_CHECK(status, "Can't begin import");

/*
* Import the first server (we could interate here,
* but we'll just take the first one).
*/

rpc_ns_binding_import_next(import_context, &binding_h,
&status);

ERROR_CHECK(status, "Can't import");

/*
* Make the remote call.
*/

greet(binding_h, (idl_char *) "hello, server", reply);

printf("The Greet Server said: %s\n", reply);
}

74 DCE 2.2: Introduction to DCE

for any RPC application. The greet_server.c file contains the server
initialization code for the greet application.

Chapter 3. DCE Technology Components 75

/*
* greet_server.c
*
* Main program (initialization) for "greet" server.
*/

#include <stdio.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"

int
main(

int argc,
char *argv[]

)
{

unsigned32 status;
rpc_binding_vector_t *binding_vector;

if (argc < 2) {
fprintf(stderr, "usage: greet_server <CDS pathname>\n");
exit(1);

}

/*
* Register interface with RPC runtime.
*/

rpc_server_register_if(greetif_v1_0_s_ifspec, NULL, NULL,
&status);

ERROR_CHECK(status, "Can't register interface");

/*
* Use all protocol sequences that are available.
*/

rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default,
&status);

ERROR_CHECK(status, "Can't use protocol sequences");

/*
* Get the binding handles generated by the runtime.
*/

rpc_server_inq_bindings(&binding_vector, &status);
ERROR_CHECK(status, "Can't get bindings for server");

/*
* Register assigned endpoints with endpoint mapper.
*/

rpc_ep_register(
greetif_v1_0_s_ifspec, binding_vector, NULL,
(unsigned_char_p_t) "greet server version 1.0", &status);

ERROR_CHECK(status, "Can't register with endpoint map");

/*
* Export ourselves into the CDS namespace.
*/

rpc_ns_binding_export(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],
greetif_v1_0_s_ifspec, binding_vector, NULL, &status);

ERROR_CHECK(status, "Can't export into CDS namespace");

/*
* Start listening for calls.
*/

printf("Listening...\n");

rpc_server_listen(rpc_c_listen_max_calls_default, &status);
ERROR_CHECK(status, "Can't start listening for calls");

/*
* Unregister from endpoint mapper

76 DCE 2.2: Introduction to DCE

In this file, the server registers its interface with the RPC runtime. It then
retrieves the binding information assigned to it by the runtime. It registers its
binding information with the RPC endpoint mapper, and then with CDS. It then
is ready to service requests. Before exiting, the server unregisters its
information in the endpoint map.

7. Write the server operation code greet_manager.c.

The third file that an RPC programmer writes is the code that implements the
operations defined in the IDL file. In this case, there is only one operation,
greet. The greet_manager.c file implements this operation.

The server prints the message it received from the client, then puts its own
message in the reply parameter to be sent back to the client.

8. Write any utility code.

In addition to the three standard RPC application code files, greet_client.c,
greet_server.c, and greet_manager.c, the greet application contains a utility
file for handling errors. This file is called util.c.

/*
* greet_manager.c
*
* Implementation of "greet" interface.
*/

#include <stdio.h>
#include "greet.h"

void
greet(

handle_t h,
idl_char *client_greeting,
idl_char *server_reply

)
{

printf("The client says: %s\n", client_greeting);

strcpy(server_reply, "Hi, client!");
}

/*
* util.c
*
* Utility routine(s) shared by "greet" client and server programs.
*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/dce_error.h>

void
error_exit(

error_status_t status,
char *text

)
{

unsigned char error_text[100];
int dummy;

dce_error_inq_text(status, error_text, &dummy);
fprintf(stderr, "Error: %s - %s\n", text, error_text);
exit(1);

}

Chapter 3. DCE Technology Components 77

The util.c file comes with a header file called util.h.

9. Compile the client and server programs.

The greet_client and greet_server programs can now be compiled. The client
side of the application is compiled using the following command (again,
somewhat simplified):

The server side of the application is compiled as follows:

Installing and Running the greet Application

This section describes the process for an administrator who is installing and starting
up the greet application, and a user who is running it.

1. Installing the client and server programs

An administrator installs the greet_client program on machines on which users
will run the greet application. The administrator also installs the greet_server
program on one or more machines that will execute the server part of the greet
application.

2. Starting the greet server

To start up the greet server, the administrator enters the following command on
a machine that has the greet server installed:

3. Running the greet application

To run the greet application, a user types the following command on any greet
client machine:

The greet server will print the message it received from the greet client. Then
the greet client prints the reply that the greet server sent back to it.

/*
* util.h
*
* Declarations of utility routine(s) shared by "greet" client
* and server programs.
*/

#define ERROR_CHECK(status, text) \
if (status != error_status_ok) error_exit(status, text)

void
error_exit(

error_status_t status,
char *text

);

cc -o greet_client greet_client.c \
greet_cstub.o util.o -ldce

cc -o greet_server greet_server.c greet_manager.c greet_sstub.o \
util.o -ldce

greet_server
/.../my_cell/subsys/my_company/greet_server

greet_client
/.../my_cell/subsys/my_company/greet_server

78 DCE 2.2: Introduction to DCE

Makefile for the greet Application

The commands given in the preceding description for building the greet application
have been simplified. Following is the actual Makefile, containing the complete
commands for generating the application:

The greet Application: An Implementation Using DCE DFS

This section describes an implementation of the greet application using DCE DFS.
In this version, the client and server use well-known files in the DCE filespace to
communicate with each other.

This application looks just like an application that uses a local file system, except
for the names of the files in the DCE filespace. The communication (using RPC) is
done by DFS and is not visible to the programmer.

Note:

Please note that this example is intended to be simple, not necessarily to
model good programming. For example, a real application would check
return values for errors, and would be likely to use the lock system call to
synchronize client and server access to files, rather than waking up every
few seconds to check if a file had been created.

The application contains three files: dfs_greet.h, dfs_greet_client.c, and
dfs_greet_server.c.

1. The dfs_greet.h file

This file gives the well-known filenames that the client and server communicate
through.

DCEROOT = /opt/dcelocal
CC = /bin/cc
IDL = idl
LIBDIRS = -L${DCEROOT}/usr/lib
LIBS = -ldce
LIBALL = ${LIBDIRS} ${LIBS}
INCDIRS = -I. -I${DCEROOT}/usr/include
CFLAGS = -g ${INCDIRS}
IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet_client greet_server

greet.h greet_cstub.o greet_sstub.o: greet.idl
${IDL} ${IDLFLAGS} greet.idl

greet_client: greet.h greet_client.o util.o greet_cstub.o
${CC} -o greet_client greet_client.o greet_cstub.o \
util.o ${LIBALL}

greet_server: greet.h greet_server.o greet_manager.o util.o \
greet_sstub.o
${CC} -o greet_server greet_server.o greet_manager.o \
greet_sstub.o util.o ${LIBALL}

greet_client.c greet_server.c util.c: util.h
greet_manager.c greet_client.c greet_server.c:
greet.h

Chapter 3. DCE Technology Components 79

2. The dfs_greet_client.c file

This is the client side of the application.

3. The dfs_greet_server.c file

This file contains the server side of the greet application.

/*
* DCE Program Example Using DFS
*
* dfs_greet.h
*/

#define C_GREET_FILE "/.../my_cell/fs/opt/my_company/greet/client"
#define S_GREET_FILE
"/.../my_cell/fs/opt/my_company/greet/server"

/*
* DCE Program Example Using DFS
* dfs_greet_client.c
*
* The client writes a message for the server into
* a well-known file. It waits until the server has
* created its own well-known file, then reads the
* server's message from the file, prints it, and
* deletes the file.
*/

#include <stdio.h>
#include "dfs_greet.h"

#define C_GREET_TEXT "Hi, server!"

main()
{
FILE *f;
size_t ret;
char s[BUFSIZ];

f = fopen(C_GREET_FILE, "w");
ret = fwrite(C_GREET_TEXT, sizeof(C_GREET_TEXT), 1, f);
fclose(f);
while ((f = fopen(S_GREET_FILE, "r")) == NULL)
sleep(3);
ret = fread(s, sizeof(char), BUFSIZ, f);
fclose(f);
printf("Server says: %s\n", s);
unlink(S_GREET_FILE);
}

80 DCE 2.2: Introduction to DCE

The Makefile for creating the client and server programs is as follows:

The greet client and greet server are installed as in the RPC application. They are
run in the same way, except they do not take a servername argument.

/*
* DCE Example Program Using DFS
* dfs_greet_server.c
*
* The server waits until the client has created a
* well-known file, then reads the client's message
* from the file, prints the message, and removed the
* file. The server then writes a message for the
* client into another well-known file.
*/

#include <stdio.h>
#include "dfs_greet.h"

#define S_GREET_TEXT "Hi, client!"

main()
{
FILE *f;
size_t ret;
char s[BUFSIZ];

while ((f = fopen(C_GREET_FILE, "r")) == NULL)
sleep(3);
ret = fread(s, sizeof(char), BUFSIZ, f);
fclose(f);
printf("Client says: %s\n", s);
unlink(C_GREET_FILE);

f = fopen(S_GREET_FILE, "w");
ret = fwrite(S_GREET_TEXT, sizeof(S_GREET_TEXT), 1, f);
fclose(f);
}

Makefile for DCE Program Example Using DFS

all: dfs_greet_client dfs_greet_server

dfs_greet_client: dfs_greet.h dfs_greet_client.c
cc -o dfs_greet_client dfs_greet_client.c

dfs_greet_server: dfs_greet.h dfs_greet_server.c
cc -o dfs_greet_server dfs_greet_server.c

Chapter 3. DCE Technology Components 81

82 DCE 2.2: Introduction to DCE

Chapter 4. Integration of DCE Technology Components

One of the advantages of OSF DCE is the integration of its component technologies
with one another. Wherever appropriate, DCE technologies make use of other DCE
technologies to accomplish their tasks. For example, CDS uses many of the other
DCE components—Threads, RPC, DTS, and Security—in providing its service.

Because the DCE technologies are well integrated, they also depend on one
another for correct functioning. For example, CDS needs a running DCE security
server in order to provide its directory service in a secure manner. These
dependencies among technology components have implications for DCE activities
such as porting, planning, and bringing up a DCE cell.

This chapter describes how DCE components are integrated and the implications of
their resulting interdependencies. First a matrix shows the integration of the
technology components. Then a section on each of the components describes its
use of other DCE technologies. The final section discusses the impact of
technology interdependencies on DCE-related activities.

Integration Matrix

Table 4-1 shows which DCE components are used by each of the other DCE
components. The components listed in the leftmost column are the technology
consumers. The components listed in the top row are the technology providers. For
example, in the box (row RPC, column Threads), the X indicates that RPC makes
use of the Threads technology. The abbreviation NA (for Not Applicable) in a box
shows the intersection of a technology with itself. A blank box indicates that the
consuming technology does not use the providing technology. The following
sections include discussions of technology integration, including reasons why
certain technologies do not make use of other technologies.

Table 1. DCE Component Integration
Threads RPC CDS DTS Security GDS DFS

Threads NA
RPC X NA X X
CDS X X NA X X X
DTS X X X NA X
Security X X X X NA*
GDS NA
DFS X X X X X NA

Note:

The security service is actually a client of itself, because it uses the audit
service to log security service events.

The DCE components support distributed applications, and, in accomplishing that
task, they also use each other’s services, as shown in the matrix. The use of a
given DCE component by another DCE component can provide an example for the
application programmer.

Note that many of the boxes are filled in, especially those representing the five
most basic components (threads, RPC, CDS, DTS, and security). As a result, some
pairs of components have mutual dependencies; for example, the security and CDS

© Copyright IBM Corp. 1992, 1998 83

components. The security service uses information from CDS, while CDS uses the
security service to control access to its information. The implications of these
mutual dependencies are discussed in“Implications of Mutual Dependencies” on
page 85 .

Integration by Technology Component

This section takes each of the DCE technology components in turn and describes
its use of other technology components.

1. DCE Threads integration

The DCE Threads component does not involve distribution across nodes and
therefore does not use any other DCE component.

2. DCE RPC integration

RPC uses threads, CDS, and the security service. Threads are used to allow
clients and servers to deal with multiple simultaneous RPCs. Note that, as a
result of the use of threads by RPC, any component that uses DCE RPC also
uses threads.

RPC uses CDS to look up servers that support a given interface or object in
order to discover the locations of those servers and the protocols that they use.
GDS can be used indirectly by RPC. If an RPC server is located in a foreign
cell that is registered in the X.500 namespace, then GDS is accessed via CDS
to find the given RPC server.

RPC uses a notion of time; for example, how long to wait for a reply to a
message. However, this involves only the time on the local node, such as
comparing the time when a message was sent with the current time to see if a
timeout has expired. As a result, RPC does not use DTS timestamps directly.
RPC does, however, depend on DTS to help ensure that clocks on different
machines run at approximately the same rate.

The DCE Security Service is used to authenticate the RPC client and server to
one another, and to pass authorization information about the client for the server
to check against its ACLs.

3. DCE CDS integration

CDS makes use of several DCE technology components. It uses DCE Threads
to allow the CDS server and the CDS clerk to handle multiple requests
concurrently. It uses RPC in communications between CDS clerks and CDS
servers, as well as in communications between CDS servers, such as for
keeping replicated information consistent.

CDS relies on DTS to maintain synchronized clocks in the network for use in
the sequencing of updates to the namespace and for use in replication. CDS
uses GDS (via the GDA) to find foreign cells registered in GDS. And finally,
CDS uses DCE security’s ACLs and authenticated RPC to ensure authorized
access to directory data and administrative functions.

4. DCE DTS integration

DTS uses RPC in the communications between DTS clients and DTS servers. It
also uses RPC in the protocol between a time server and a time-provider. Since
DTS is based on DCE RPC, which uses DCE Threads, DTS also uses Threads.

DTS depends on CDS to find time servers and their locations. GDS may be
used indirectly if a global time server is registered in a foreign cell that is
registered in the X.500 namespace. DTS uses the DCE Security Service to
authenticate its interactions and to audit security-critical DTS events.

5. DCE Security Service integration

84 DCE 2.2: Introduction to DCE

The DCE security server, like all DCE RPC-based applications, uses DCE
Threads. The security server communicates with its clients via DCE RPC. CDS
is used to find security servers. GDS may be used indirectly in accessing a
security server that is in a foreign cell registered in the X.500 namespace.

The security service uses a notion of time for the expiration of credentials and
for detecting replays of authentication information. It assumes reasonable
synchronization of the clocks in the network, which is accomplished in DCE by
DTS. The security service does not use DTS timestamps in this version of DCE.

6. DCE GDS integration

The GDS server does not use DCE Threads; instead, it uses multiple processes
to handle multiple requests. Since GDS is based on the X.500 standard, which
is specified to run over ISO protocols, GDS does not use DCE RPC.

GDS does not use CDS; since GDS is at a higher level in the global
namespace hierarchy, CDS refers to GDS but not the other way around. GDS
supports DCE authentication and has a separate security mechanism based on
its own implementation of ACLs. Again, this is in order for GDS to comply to the
international directory service standard.

7. DCE DFS integration

The DFS servers that run in user space (for example, the backup, fileset
location, and fileset servers) all use DCE Threads to handle multiple requests.
Because the DFS file exporter and cache manager run in the kernel, they do
not use DCE Threads; DCE Threads is a user-space, not kernel, threads
implementation.

DFS uses DCE RPC for all remote interaction between the DFS clients (for
example, the cache manager and Scout) and servers (for example, the file
exporter, fileset location server, and backup server). Because the cache
manager and file exporter run in the kernel, they use a kernel version of RPC.
DFS uses CDS to locate fileset location servers. DFS may use GDS indirectly
(via CDS) to locate fileset location servers in foreign cells registered in the
X.500 namespace. DFS uses authenticated RPC and DCE ACLs to protect its
resources. DFS relies on DTS to maintain clock synchronization in the network.

Implications of Mutual Dependencies

Mutual dependencies among DCE technology components result in restrictions in
areas such as the startup of a cell. For example, since the security service depends
on CDS to find the location of a security server, and CDS depends on the security
service to verify the authenticity of a CDS server, how can a DCE system ever get
started? This section identifies the implications of mutual dependencies in the areas
of DCE system startup, porting and testing of DCE, and planning for DCE
configuration.

1. Implications for startup

Mutual dependencies in DCE technologies dictate the order in which some
steps must be taken in bringing up a DCE client machine, a DCE server
machine, and a DCE cell. In particular, a DCE cell’s servers must be started up
in a particular order. The security server is started first, since its dependency on
CDS can be circumvented through the use of a local file to find security servers.
Then the CDS server is started. For information on starting up DCE, see the
IBM DCE for AIX, Version 2.2: Administration Guide—Introduction.

2. Implications for porting and testing

The interdependencies among DCE technologies constrain the order in which
technologies can be ported. DCE Threads can be ported first, since other
technologies use it, and it has no dependencies. Many of the other technologies

Chapter 4. Integration of DCE Technology Components 85

have mutual dependencies, however. To resolve this, a porting effort can
proceed by first porting the libraries of all the components, and then going on to
port and test the servers. GDS can be ported independently, since it has no
dependencies on other DCE components. For information on porting DCE
technologies, see the OSF DCE Porting and Testing Guide.

3. Implications for configuration

DCE technology interdependencies also have implications for configuration. The
servers that other servers depend on are the servers that are the highest priority
for replication, in environments where high availability is important. This means
that CDS and security servers should be replicated since other DCE servers
depend on them in order to operate. Among the various DFS servers, the fileset
location server is the highest priority for replication. For information on DCE
configuration, see the IBM DCE for AIX, Version 2.2: Administration
Guide—Introduction.

4. Implications for application programmers

Since DCE RPC is integrated with DCE Threads, programmers writing
RPC-based applications need to be aware of the implications of using multiple
threads of control. See the IBM DCE for AIX, Version 2.2: Application
Development Guide—Introduction and Style Guide and IBM DCE for AIX,
Version 2.2: Application Development Guide—Core Componentsfor information
about programming with Threads.

86 DCE 2.2: Introduction to DCE

Overview of DCE Documentation

This appendix describes the documentation set supplied with IBM DCE.

DCE Documentation

DCE documentation consists of the following documents:

1. IBM DCE for AIX, Version 2.2: Quick Beginnings

2. IBM DCE for AIX, Version 2.2: Introduction to DCE

3. IBM DCE for AIX, Version 2.2: Application Development Guide

4. IBM DCE for AIX, Version 2.2: Application Development Reference

5. IBM DCE for AIX, Version 2.2: Administration Commands Reference

6. IBM DCE for AIX, Version 2.2: Administration Guide

7. IBM DCE for AIX, Version 2.2: DFS Administration Guide and Reference

8. IBM DCE for AIX, Version 2.2: Problem Determination Guide

9. IBM DCE for AIX, Version 2.2: Release Notes

A brief description of the purpose and audience of each document follows.

Documentation Intended for Multiple Audiences:

The following documents can be used by audiences of varying levels of technical
expertise:

v IBM DCE for AIX, Version 2.2: Quick Beginnings provides an overview of DCE,
information on the packaging, installation, and configuration of DCE clients and
servers, and serves as an introduction to the rest of the DCE documentation.

v IBM DCE for AIX, Version 2.2: Introduction to DCE provides an overview of DCE
and serves as an introduction to the remainder of the DCE documentation. It also
contains the glossary of terms used in DCE documentation.

v IBM DCE for AIX, Version 2.2: Release Notes contains last-minute information
that could not be included in the other documents.

Documentation Intended for DCE Administrators:

Guide information for DCE administrators is in the following documents:

v IBM DCE for AIX, Version 2.2: Administration Guide consists of two volumes:

– IBM DCE for AIX, Version 2.2: Administration Guide—Introduction

– IBM DCE for AIX, Version 2.2: Administration Guide—Core Components

This guide provides conceptual and task-oriented information for the DCE
administrator. The first volume is an overview, which describes administering
DCE as a whole, including planning and configuring information. The second
volume,Core Components, describes management of RPC, CDS, DTS, and
Security Service.

Reference information for DCE administrators is in the following document:

v IBM DCE for AIX, Version 2.2: Administration Commands Reference provides
reference material for DCE commands, including administrative commands. It is
divided into technology component sections.

© Copyright IBM Corp. 1992, 1998 87

Documentation for DFS Administrators:

The following documents explain tasks performed by administrators of the
Distributed File Service (DFS):

v IBM DCE for AIX, Version 2.2: DFS Administration Guide and Reference provides
concepts and procedures for managing the DFS in a DCE cell. It provides
detailed reference information about the complete syntax and use of each DFS
command and configuration file.

v IBM DCE for AIX, Version 2.2: NFS/DFS Authenticating Gateway provides
information on how to associate an NFS client request with the DFS filespace.

Documentation for Application Developers:

Guide information for DCE application developers is in the following documents:

v IBM DCE for AIX, Version 2.2: Application Development Guide—Introduction and
Style Guide provides information describing programming with DCE in general,
using its various components and facilities. It also provides information describing
relevant issues regarding distributed applications.

v IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components provides information describing the APIs for the various DCE
components.

v IBM DCE for AIX, Version 2.2: Application Development Guide—Directory
Services provides information describing the DCE naming and access to CDS
through XDS, the use of the X/Open Directory Service Interface, and the Object
Classification Tables. It also contains additional information on XDS and the
X.500 Directory.

v IBM DCE for AIX, Version 2.2: Application Development Reference provides
reference material for the DCE programming interfaces. It also has command
references for the few commands needed by the DCE programmer, in particular,
those used with the RPC component.

88 DCE 2.2: Introduction to DCE

List of Acronyms and Abbreviations

This appendix consists of a table that lists the acronyms and abbreviations used in
DCE.

Table 2. DCE Acronyms and Abbreviations
Acronym/Abbreviation Definition

ACF Attribute Configuration File
ACL Access Control List
ACSE Association Control Service Element
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
AT Attribute Table
AVA Attribute Value Assertion
BER Basic Encoding Rules
BOS Basic OverSeer Server
C Country
C-ISAM C-language Indexed Sequential Access Method
CAE Common Application Environment
CCITT International Telegraph & Telephone Consultative Committee
CDS Cell Directory Service
CDSD Cell Directory Service Daemon
CDSCP Cell Directory Service Control Program
CDSPI Cell Directory Service Portable Interface
CPU Central Processing Unit
CRT Creation Timestamp
DAP Directory Access Protocol
DB Database
DCE Distributed Computing Environment
DCED Cell Directory Service Daemon
DCECP Cell Directory Service Control Program
DES Data Encryption Standard
DFS Distributed File Service
DIB Directory Information Base
DIT Directory Information Tree
DN Distinguished Name
DNS Domain Name Service
DSA Directory System Agent
DSP Directory System Protocol
DTS Distributed Time Service
DTSD Distributed Time Service Daemon
DUA Directory User Agent
EPAC Extended Privilege Attribute Certificate
EPV Entry Point Vector
ERA Extended Registry Attribute
FIFO First In, First Out
FLDB Fileset Location Database
GDA Global Directory Agent
GDS Global Directory Service
GECOS General Electric Common Operating System
GSS Generic Security Service

© Copyright IBM Corp. 1992, 1998 89

Table 2. DCE Acronyms and Abbreviations (continued)
Acronym/Abbreviation Definition

IDL Interface Definition Language
IP Internet Protocol
ISO International Organization for Standardization
LAN Local Area Network
LFS Local File System
LRU Least Recently Used
NDR Network Data Representation
NetBIOS Network Version of Basic Input/Output System
NSAP Network Service Access Point (OSI)
NSI Name Service Independent
NTP Network Time Protocol
O Organization
OCT Object Class Taable
OS Operating System
OS/2 Operating System/2
OSF Open Software Foundation
OSI Open Systems Interconnection
OSS OSI Session Service
OU Organizational Unit
P Principal
PAC Privilege Attribute Certificate
PAG Process Activation Group
PCS Portable Character Set
PSAP Presentation Service Access Point
RDN Relative Distinguished Name
ROM Read-Only Memory
ROS Remote Operation Service
ROSE Remote Operation Service Elements
RPC Remote Procedure Call
RPCCP Remote Procedure Call Control Program
RR Resource Record (DNS)
RR Round Robin (scheduling)
SPI Stub Programming Interface
SRT Structure Rule Table
TCID Tape Coordinator ID
TCP/IP Transmission Control Protocol/Internet Protocol
TDF Time Differential Factor
TFTP Trivial File Transfer Protocol
TLI Transport Layer Interface
TPI Time Provider Interface
UDP/IP User Datagram Protocol/Internet Protocol
UFS UNIX File System
UTC Coordinated Universal Time
UTS Update Timestamp
UUID Universal Unique Identifier
VFS Virtual File System
WAN Wide Area Network
XOM X/Open OSI-Abstract-Data Manipulation
XDS X/Open Directory Service

90 DCE 2.2: Introduction to DCE

Table 2. DCE Acronyms and Abbreviations (continued)
Acronym/Abbreviation Definition

XTI X/Open Transport Interface

List of Acronyms and Abbreviations 91

92 DCE 2.2: Introduction to DCE

Glossary

This Glossary defines terms used in this document
and in the remainder of the DCE documentation
set. Each term is defined for the audience of the
document in which it is found. In some cases, a
given term has a different meaning when used in
the context of different technology components.
This difference is indicated by the technology’s
abbreviation as a prefix to its definition. For
example, the term serverhas a different meaning
when used in conjunction with the RPC, CDS,
DTS, and DFS technology components. The four
definitions are listed in the entry for server in the
Glossary. When no prefix is given, the definition
applies to all DCE documentation.

absolute time. A point on a time scale. For DTS,
absolute time refers to the UTC standard.

abstract class. GDS: An OM class of OM object of
which instances are forbidden. An abstract class
typically serves to document the similarities between
instances of two or more concrete classes.

Abstract Syntax Notation One (ASN.1). A notation
that both enables complicated types to be defined and
also enables values of these types to be specified.

access control list (ACL).

1. Security: Data that controls access to a protected
object. An ACL specifies the privilege attribute(s)
needed to access the object and the permissions
that can be granted, with respect to the protected
object, to principals that possess such privilege
attribute(s).

2. DFS: The following ACL permissions are defined for
file system objects: (1) read (abbreviated r): allows
you to read a file or, with x, list a directory and the
ACLs of its objects; (2) write (abbreviated w): allows
you to modify a file or, with i, add a new object to a
directory or, with d, remove an object from a
directory; (3) execute (abbreviated x): allows you to
execute a file or, with r, list a directory and the
ACLs of its objects; (4) control (abbreviated c):
allows you to modify a file’s ACLs or a directory’s
ACLs; (5) insert (abbreviated i): with w, allows you
to add a new object to a directory or, with w and d,
rename an object in a directory; (6) delete
(abbreviated d): with w, allows you to remove an
object from a directory or, with w and i, rename an
object in a directory.

3. CDS: The following ACL permissions are defined for
CDS: (1) read (abbreviated r): allows a principal to
look up a name and view the attribute values
associated with it; (2) write (abbreviated w): allows a
principal to change the modifiable attributes
associated with a name, except its ACLs; (3) insert

(abbreviated i): (for use with directory entries only)
allows a principal to create new names in a
directory; (4) delete (abbreviated d): allows a
principal to delete a name from the namespace; (5)
test (abbreviated t): allows a principal to test
whether an attribute of a name has a particular
value without being able to actually see any of the
values (that is, without having read permission to
the name). Test permission provides application
programs with a more efficient way to verify a CDS
attribute value. Rather than reading an entire set of
values, an application can test for the presence of a
particular value; (6) control (abbreviated c): allows a
principal to modify the ACL entries associated with a
name. Control permission is automatically granted to
the creator of a CDS name; (7) administer
(abbreviated a): (for use with directory entries only)
allows a principal to issue cdscp commands that
control the replication of directories.

4. GDS: A recurring attribute of an entry for specifying
the access authorization for an object. The following
ACL permissions are defined for GDS: (1) MODIFY
PUBLIC: specifies the user, or subtree of users, that
can modify attributes classified as public attributes;
(2) READ STANDARD: specifies the user, or subtree of
users, that can read attributes classified as standard
attributes; (3) MODIFY STANDARD: specifies the user,
or subtree of users, that can modify attributes
classified as standard attributes; (4) READ SENSITIVE:
specifies the user, or subtree of users, that can read
attributes classified as sensitive attributes; (5)
MODIFY SENSITIVE: specifies the user, or subtree of
users, that can modify attributes classified as
sensitive attributes.

access control list entry. Data in an ACL that
specifies a set of permissions. In the case of a principal
or group entry, the permission set is that which can be
granted to a principal having the privilege attribute
specified in the entry; in the case of a mask entry, the
permission set is that which masks the permission set in
a principal or group entry.

access control list facility. A DCE security facility
that enables a principal’s access to an object to be
determined by a comparison of the principal’s privileges
to entries in an object’s ACL.

access right. See permission.

accessible. Said of an object for which the client
possesses a valid designator or handle.

account. An entry in the registry database that defines
a principal’s network identity by associating the principal
with a group and optional organization, and with related
account information such as the password used to
authenticate a principal’s identity.

ACF. See attribute configuration file.

ACL. See access control list.

© Copyright IBM Corp. 1992, 1998 93

active context handle. RPC: In RPC applications, a
context handle that the remote procedure has set to a
nonnull value and passed back to the calling program;
the calling program supplies the active context handle in
any future calls to procedures that share the same client
context. See also client context, context handle.

address. An unambiguous name, label, or number that
identifies the location of a particular entity or service.
See also presentation address.

administration domain. GDS: A collection of several
DSAs that share the same schema object (mastered by
one of these DSAs and shadowed by all the others).

administrative domain.

1. DFS: A collection of machines configured as the
server machines necessary to be administered as a
single unit. The administration is typically handled by
groups of administrative users.

2. GDS: A collection of several DSAs that share the
same schema object (mastered by one of these
DSAs and shadowed by all the others).

administrative list. DFS: A file used to determine who
can issue commands that affect filesets or DFS server
processes. Administrative lists allow system
administrators to control the security of the
administrative domains in a cell. See also
administrative domain, privilege required.

aggregate. DFS: A logical unit of disk storage that can
contain multiple DCE LFS filesets or a single UFS
fileset. An aggregate is physically equivalent to a
standard UNIX disk partition, but a DCE LFS aggregate
supports an optimized metadata structure and a number
of specialized fileset-level operations not available on
standard UNIX partitions. A UFS partition exported into
the global namespace is referred to as an aggregate
even though it does not support the optimizations and
features of a DCE LFS aggregate.

aggregate identifier. DFS: The part of the fileset
representation that identifies the aggregate on the file
server machine on which the fileset is stored.

alias.

1. GDS: A name for a (directory) object, provided by
the use of one or more alias entries in the DIT.

2. Security: An optional alternate name for a primary
name in the registry database. Aliases and the
primary name for which they are an alternate share
the same UUID and UNIX ID.

alias entry. GDS: A directory entry, of object class
alias, containing information used to provide an
alternative name for an object.

aliased object. The object to which an alias entry
refers.

aliasing. RPC: Occurs when two pointers of the same
operation point at the same storage.

anode. DFS: An abstraction for referring to an
open-ended address space of storage. See also vnode.

anonymous user. A user who is not entered in the
directory as an object and who logs into the directory
service without giving a name and password.

API. See application programming interface.

application programming interface (API). A set of
runtime routines or system calls that allows an
application program to use a particular service provided
by either the operating system or another application
program.

application thread. RPC: A thread of execution
created and managed by application code. See also
client application thread, local application
thread, RPC thread, server application thread.

ASN.1. See Abstract Syntax Notation One.

asynchronous operation. An operation that does not
of itself cause the process requesting the operation to
be blocked from further use of the CPU. This implies
that the process and the operation are running
concurrently.

AT. See attribute table.

at-most-once semantics. RPC: A characteristic of a
procedure that restricts it to executing once, partially, or
not at all—never more than once. See also idempotent
semantics, broadcast semantics, maybe semantics.

atomic transaction. DFS: A transaction that happens
entirely or not at all; used when partial completion of a
transaction is undesirable.

attention threshold. DFS: In the scout program, the
value at which the program highlights a statistic in its
graphical display. Separate attention thresholds can be
set for most scout statistics. See also scout.

attribute.

1. Threads: The individual components of the attributes
object. Attributes specify detailed properties about
the objects to be created.

2. RPC: (1) An IDL or ACF syntax element, occurring
within [] (brackets), and conveying information about
an interface, type, field, parameter, or operation. (2)
An attribute of an entry in a name service database
that stores binding, group, object, or profile
information for an RPC application and identifies the
entry as an RPC server entry; an NSI attribute.

3. DTS: A piece of information associated with a DTS
entity or command. DTS has four attribute
categories: characteristics, counters, identifiers, and
status.

94 DCE 2.2: Introduction to DCE

4. XDS: Information of a particular type concerning an
object and appearing in an entry that describes the
object in the DIB.

5. XOM: A component of an object, comprising an
integer that denotes the attribute’s type and an
ordered sequence of one or more attribute values,
each accompanied by an integer denoting the
value’s syntax.

attribute configuration file (ACF). RPC: A .acf file.
An optional companion to an interface definition file (a
.idl file) that modifies how the DCE IDL compiler
locally interprets the interface definition. See also
interface definition, Interface Definition
Language.

attribute configuration language. RPC: A high-level
declarative language that provides syntax for attribute
configuration files. See also attribute configuration
file.

attribute encoding type. A specifier of the data format
(for example, integer, string, UUID) of an attribute value.

attribute instance. An attribute type UUID and value
created according to the attribute type’s semantics and
attached to a registry object. (Also called attribute or
ERA.)

attribute schema. A collection of attribute type
definitions or schema entries. (Also called schema.)

attribute schema object. See schema object.

attribute set. An attribute instance with encoding type
attr_set. Its value is a list of attribute type UUIDs that
identify member attributes of this set. Attribute sets are
created for the purpose of efficient queries for related
attributes.

attribute syntax. GDS: A definition of the set of values
that an attribute can assume. It includes the data type,
in ASN.1, and usually one or more matching rules by
which values can be compared.

attribute table (AT). GDS: A recurring attribute of the
directory schema with the description of the attribute
types that are permitted.

attribute type.

1. XDS: The component of an attribute that indicates
the class of information given by that attribute. It is
an object identifier, so it is completely unique.

2. XOM: Any of the various categories into which the
client dynamically groups values on the basis of
their semantics. It is an integer unique only within
the package.

3. Security: The description of the identifiers (such as
name and UUID) and semantics (such as encoding
type and access control parameters) of instances of
this type.

attribute value.

1. XDS: A particular instance of the class of information
indicated by an attribute type.

2. XOM: An atomic information object.

3. Security: The data in an attribute instance.

attribute value assertion (AVA). GDS: A proposition,
which may be true, false, or undefined, concerning the
values (or perhaps only the distinguished values) of an
entry.

attribute value syntax. See attribute syntax,
syntax.

audit action. A component of the filter directive that
specifies where the audit record is to be written: to the
console or to an audit trail file.

audit client. Users of the DCE Audit Service. All DCE
servers and user-written distributed applications can be
audit clients.

audit condition. A component of the filter directive
that specifies the required outcome of the event before
an audit record is written to the audit trail file.

audit daemon. A DCE component. It maintains the
audit filters and the central audit trail file.

audit event. An occurrence in the use of the
application that requires logging of audit records.
Generally, audit events involve the integrity of the
system.

audit filter. Used to narrow down the conditions by
which audit records are logged. A filter provides a
means to specify these conditions.

audit record. Contains information pertaining to an
audit event.

audit trail file. A set of audit records that provide
evidence of the sequence of events that occurred on
the system.

authentication. The verification of a principal’s
network identity.

authentication header. A record containing a ticket
and an authenticator to be presented to a server as part
of the authentication process.

authentication level. See protection level.

authentication path. The sequence of cells transited
when a principal in one cell communicates with one in
another cell. Also known as a trust path.

authentication protocol. A formal procedure for
verifying a principal’s network identity; Kerberos is an
instance of a shared-secret authentication protocol.

Glossary 95

authentication service. One of the services provided
by DCE Security: the authentication service
authenticates principals according to a specified
authentication protocol. See also authentication
protocol.

authentication surrogate. A type of principal
represented by an entry in a cell’s registry that specifies
the same secret key as a corresponding entry in
another cell’s registry. The authentication services of the
two cells use the secret key for the purpose of
exchanging data about principals without either
authentication service having to share its private key
with the other. Authentication surrogates are necessary
for intercell authentication. See also peer trust.

authenticator. A record containing information that can
be shown to have been recently generated via a
conversation key known only by two principals that are
participating in an authenticated network exchange.

authorization.

1. The determination of a principal’s permission(s) with
respect to a protected object.

2. The approval of a permission sought by a principal
with respect to a protected object.

authorization data. That portion of a Kerberos ticket
that contains data necessary for authorization decisions.
Sometimes abbreviated Auth_Data or A_D.

authorization protocol. A formal procedure for
establishing the authorization of principals with respect
to protected objects. Authorization protocols supported
by DCE Security include one based on PACs and
EPACs (DCE authorization) and one based on names
(name-based authorization) See also PAC, EPAC,
name-based authorization.

automatic binding method. RPC: A method of
managing the binding for a remote procedure call. The
automatic method completely hides binding
management from client application code. If the client
makes a series of remote procedure calls, the stub
passes the same binding handle with each call. See
also binding handle, implicit binding method,
explicit binding method.

AVA. See attribute value assertion.

background skulk time. An automatic timer that
guarantees a maximum lapse of time between skulks of
a CDS directory, regardless of other factors, such as
namespace management activities and user-initiated
skulks. Every 24 hours, a CDS server checks each
master replica in its clearinghouse and initiates a skulk
if changes were made in a replica since the last time a
skulk of that replica completed successfully.

backup. DFS: The dump of a fileset to a permanent
medium such as tape. To back up also means to clone
a read/write fileset, which results in a backup fileset.

backup database. DFS: A database that records the
dump schedule for backups, the backup system’s tape
coordinators, the fileset families that can be dumped,
and other administrative information.

backup database machine. DFS: A server machine in
a cell that houses the backup database. See also
server machine.

backup fileset. DFS: A fileset created by cloning
(copying) a read/write fileset (referred to as the source
fileset). The backup version always resides on the same
aggregate as its source and usually requires little disk
space. It preserves the state of the read/write fileset at
the time of the cloning. See also clone, read-only
fileset, read/write fileset.

backup fileset ID. DFS: A unique fileset identification
number (fileset ID) assigned to the backup version of a
fileset.

backup server. DFS: A server process that runs on
backup database machines (which house the backup
database). It communicates with the backup database
to back up and restore filesets and aggregates.

backup system. DFS: A system that allows you to
copy fileset data to tape and restore it from tape if
necessary. The DFS backup system consists of the
backup server, the backup database, and one or more
tape coordinator machines. See also dump, restore.

basename. DFS: In the scout program, the DCE
pathname prefix common to the file server machines to
be monitored. If specified on the command line, the
basename is displayed in the program’s banner line.
See also scout.

Basic Encoding Rules (BER). A set of rules used to
encode ASN.1 values as strings of octets.

basic overseer server (BOS server). DFS: A server
process that runs on all DFS server machines. It
monitors the other DFS server processes running on its
machine; it can usually restart those that fail without
requiring intervention from a human operator.

BER. See Basic Encoding Rules.

big endian. An attribute of data representation that
reflects how multioctet data is stored in memory. In big
endian representation, the lowest addressed octet of a
multioctet data item is the most significant. See also
endian, little endian.

binary distribution machine. DFS: A server machine
that distributes DFS binaries to other file server
machines of its machine type (same CPU/operating
system). It runs the server portion of the update server
for this purpose. There is one binary distribution
machine of each machine type that the cell uses as a
DFS server machine. See also server machine, update
server, upserver.

96 DCE 2.2: Introduction to DCE

binary timestamp. An opaque 128-bit (16-octet)
binary number that represents a DTS time value.

binding. RPC: A relationship between a client and a
server involved in a remote procedure call.

binding handle. RPC: A reference to binding
information that defines one possible binding (a
client/server relationship). See also binding, customized
binding handle, primitive binding handle.

binding handle vector. RPC: A data structure that
contains an array of binding handles and the size of the
array. See also binding handle.

binding information. RPC: Information about one or
more potential bindings, including an RPC protocol
sequence, a network address, an endpoint, at least one
transfer syntax, and an RPC protocol version number.
See also binding, endpoint, network address, RPC
protocol sequence, RPC protocol, transfer syntax.

binding management method. RPC: Any of the
methods for managing the binding for a remote
procedure call. See also automatic binding method,
implicit binding method, explicit binding method.

blocking call. A call in which a caller is suspended
until a called procedure completes.

bnode. DFS: A structure that describes common
characteristics of the BOS server process. There are
two types: simple and cron. Processes are created
through bnodes. See also basic overseer server.

BOS server. See basic overseer server.

broadcast. Threads: To wake all threads waiting on a
condition variable. See also signal.

broadcast semantics. RPC: A form of idempotent
semantics that indicates that the operation is always
broadcast to all host systems on the local network,
rather than delivered to a specific system. An operation
with broadcast semantics is implicitly idempotent.
Broadcast semantics are supported only by
connectionless protocols. See also at-most-once
semantics, idempotent semantics, maybe semantics.

browser. A Motif-based program that lets users view
the contents and structure of a cell namespace.

butc process. DFS: A process that runs on a tape
coordinator machine to monitor the activity of a tape
drive. One butc process must run for each tape drive on
the machine. See also tape coordinator.

C interface. The interface, defined at a level that
depends on the variant of C standardized by ANSI.

C-stub. The part of the DUA that implements the
connection with the communications network.

cache.

1. CDS: The information that a CDS clerk stores locally
to optimize name lookups. The cache contains
attribute values resulting from previous lookups, as
well as information about other clearinghouses and
namespaces. The cache is written to disk
periodically so that it can survive a system reboot.
See also copy.

2. DFS: A reserved amount of disk or memory space
on a DFS client machine. The DFS cache manager
uses the cache to temporarily store files or parts of
files retrieved from DFS file server machines so that
future access time and network load are reduced.
DFS uses a cache-consistency mechanism
(token-passing) to guarantee that the source and
cached data are consistent. See also caching.

cache manager. DFS: The portion of a DFS client
machine’s kernel that communicates with DFS server
processes by translating local file requests into RPCs (if
needed). It stores the requested files in a local disk or
memory cache, from which it makes the files available
to users on that machine.

caching. DFS: The technique of copying a file from a
file server machine (its central storage place) to a client
machine’s local disk or memory; users then access the
copy locally. Caching reduces network load because a
file does not have to be fetched across the network
more than once (unless the central copy changes).

caching layer. DFS: The part of the DFS cache
manager that manages the cached data, performing
fetches and stores and answering status requests.

call chain. The chain of operations (RPC calls)
leading from the delegation initiator to the final target.

call queue. RPC: A first-in, first-out queue used by an
RPC server to hold incoming calls when the server is
already executing its maximum number of concurrent
calls.

call thread. RPC: A thread created by a server’s RPC
runtime to execute remote procedures. When engaged
by a remote procedure call, a call thread temporarily
forms part of the RPC thread of the call. See also
application thread, RPC thread.

callback. DFS: A procedure that is registered with a
token to be called automatically if the token is revoked.
The act of revoking a token is also referred to as a
callback.

cancel.

1. Threads: A mechanism by which a thread informs
either itself or another thread to terminate as soon
as possible. If a cancel arrives during an important
operation, the canceled thread may continue until it
can terminate in a controlled manner.

2. RPC: A mechanism by which a client thread notifies
a server thread (the canceled thread) to terminate
as soon as possible. See also thread.

Glossary 97

CDS. See DCE Cell Directory Service.

CDS Advertiser. See Cell Directory Service
Advertiser.

CDS control program (cdscp). A command interface
that CDS managers use to control CDS servers and
clerks and manage the namespace and its contents.

CDS-defined attribute. A standard attribute that CDS
associates with names. A specific CDS-defined attribute
has the same meaning no matter what type of entry
(clearinghouse, directory, object) it is associated with.
However, different types of entries can have different
CDS-defined attributes. For example, every CDS name
has the CDS-defined attributes of Creation Timestamp
(CDS_CTS), Update Timestamp (CDS_UTS), and Access
Control Set (CDS_ACS). In addition to those attributes, a
soft link has unique CDS-defined attributes containing
its expiration time and the name it points to.

cdscp. See CDS control program.

cell.

1. The basic unit of operation in DCE. A cell is a group
of users, systems, and resources that are typically
centered around a common purpose and that share
common DCE services. At a minimum, a cell
configuration includes one cell directory server, one
security server, and one distributed time server. A
cell can consist of from one system to as many as
several thousand systems. Systems in the cell can
be in the same geographic area (for example, on
the same LAN), but geography does not necessarily
determine a cell’s boundaries. The boundaries of a
cell are typically influenced by its purpose, as well
as by security, administrative, and performance
considerations. With respect to individual DCE
technologies, a cell represents the following
definitions.

2. CDS: A unified naming environment consisting of
CDS clerks and servers.

3. DFS: An administratively independent installation of
server and client machines.

4. Security: The set of principals that share their secret
keys with the same authentication service.

cell alias. DFS: An additional global name given to a
cell.

Cell Directory Service (CDS) Advertiser. A daemon
that starts a CDS clerk, when needed, to access the
CDS name space. On the CDS server machine, the
advertiser broadcasts the existence of the server every
10 minutes and each time a client is first started. On the
client machine, the advertiser receives broadcasts from
the CDS server which inform the clients of the existence
of the CDS servers and their addresses.

cell module. DFS: The part of the DFS cache
manager that maintains a list of cells that have been
contacted.

cell-relative name. See local name.

central audit trail file. The audit trail file that is
maintained by the audit daemon. This is created and
used if the user does not specify an audit trail file when
starting the audit daemon.

chaining. A mode of interaction optionally used by a
DSA that cannot perform an operation itself. The DSA
chains by invoking an operation of another DSA and
then relaying the outcome to the original requester.

character set. A group of characters, such as the
English alphabet, Japanese Kanji, and the European
character set.

characteristic attribute. A type of attribute that
reflects or affects the behavior of a software entity. You
generally can set or change characteristic attributes.

child cell. A cell whose name is stored in the CDS
server of another cell (its parent cell) and includes its
parent cell’s name as a prefix to its own name.

child directory. A CDS directory that has a directory
above it is considered a child of the directory
immediately above it.

child pointer. A pointer that connects a directory to a
directory immediately below it in a namespace. You do
not explicitly create child pointers; CDS creates them for
you when you create a new directory. CDS stores the
child pointer in the directory that is the parent of the
new directory.

ciphertext. The output of an encryption function.
Encryption transforms plaintext into ciphertext.

class. A category into which objects are placed on the
basis of both their purpose and their internal structure.
See also object class, OM class.

class-id. A component of the event class number,
which identifies the event class within the set of event
classes.

class-specific attribute. CDS: An attribute that has
meaning only to a particular class of object and to the
application using that object class. A CDS object’s class
can be defined in an attribute named CDS_Class.
Programmers who write applications that use CDS can
define their own object classes and class-specific
attributes.

clearinghouse. A collection of directory replicas on
one CDS server. A clearinghouse takes the form of a
database file. It can exist only on a CDS server node; it
cannot exist on a node running only CDS clerk

98 DCE 2.2: Introduction to DCE

software. Usually only one clearinghouse exists on a
server node, but there may be special cases when more
than one exists.

clearinghouse object entry. A special class of object
entry that describes a clearinghouse. The clearinghouse
object entry is a pointer to the network address of an
actual clearinghouse. This pointer enables CDS to find
a clearinghouse and use and manage its contents. A
clearinghouse modifies and manages its own object
entry when necessary; normally CDS managers do not
need to maintain it. The clearinghouse object entry has
the same name as the clearinghouse.

clerk.

1. CDS: The software that provides an interface
between client applications and CDS servers. The
clerk receives a request from an application, sends
the request to a CDS server, and returns any
resulting information to the application. The clerk
saves (caches) the results of lookups so that it does
not have to repeatedly go to a CDS server for the
same information.

2. DTS: A software component that synchronizes the
clock for its client system by requesting time values
from servers, computing a new time from the values,
and supplying the computed time to client
applications.

client.

1. CDS: Any application that interacts with a CDS
server through the CDS clerk.

2. DTS: Any application that interacts with a DTS
server through the DTS clerk.

3. RPC: The party that initiates a remote procedure
call. Some applications act as both an RPC client
and an RPC server. See also server.

4. DFS: A consumer of resources or services. See also
server.

5. GDS: Consists of an application that links the DUA
library, the C-stub that handles the connection over
the communications network for accessing a remote
server, and the DUA cache.

client application thread. RPC: A thread which is
executing client application code that makes one or
more remote procedure calls. See also application
thread, local application thread, RPC thread, server
application thread.

client binding information. RPC: Information about a
calling client provided by the client runtime to the server
runtime, including the address where the call originated,
the RPC protocol used for the call, the requested object
UUID, and any client authentication information. See
also binding information, server binding
information.

client context. RPC: The state in an RPC server’s
address space generated by a set of remote procedures

(manager) and maintained across a series of calls for a
particular client. See also manager, context handle.

client machine. DFS: A machine whose kernel
includes the DFS cache manager. A client machine is
capable of requesting data from remote file exporters
and caching the data locally. See also server machine.

client portion of update server. See upclient.

client stub. RPC: The surrogate code for an RPC
interface that is linked with and called by the client
application code. In addition to general operations such
as marshalling data, a client stub calls the RPC runtime
to perform remote procedure calls and, optionally,
manages bindings. See also server stub, stub.

clock. The combined hardware interrupt timer and
software register that maintain the system time. In many
systems, the hardware timer sends interrupts to the
operating system; at each interrupt, the operating
system adds an increment to a software register that
contains the time value.

clock adjustment. DTS: Process of changing the
system clock time by modifying the incremental value
that is added to the clock’s software register for a
specified duration.

clone. DFS: A backup or read-only copy of a fileset
created by copying only the read/write (source) fileset’s
header rather than the data it contains. The clone
preserves pointers to fileset data that existed when the
clone was made; it therefore must exist on the same
aggregate as the source. Cloning a fileset also refers to
making a copy of it with the proper fts commands for
later use with the DFS backup system. See also
replica.

clone ID number. DFS: The fileset ID number of the
last clone made from the fileset’s read/write source for
the purpose of replication.

code point. Location in the distributed application
code that designates the operations in the application
where logging of audit records may be required. The
DCE audit APIs are called in the application’s code
points.

code set. The mapping of the members of a character
set to specific numeric code values. Examples of code
sets include ASCII, JIS X0208, and ISO 8859-1.

code set registry. A per-host file that contains, for
each code set supported on the host, a mapping
between a string name for the code set (which is the
name used on the host to refer to the code set) and the
unique identifier that has been assigned (by OSF or by
the site) to the code set.

collapse. To remove the contents of a directory from
the display (close it) via the CDS browser. To collapse

Glossary 99

an open directory, you double-click on its icon.
Double-clicking on a closed directory expands it.

command suite. DFS: The DFS command suites are
bak, bos, cm, dfsgw, dfstrace, and fts.

commit. DFS: An indication that all of the actions
associated with a specific transaction have been written
to the log. Once a transaction has committed, its actions
are permanent. In the event of system problems, those
actions are repeated when the system’s recovery
mechanism replays the log.

communications link. RPC: A network pathway
between an RPC client and server that uses a valid
combination of transport and network protocols that are
available to both the client and server RPC runtimes.

compatible server. RPC: A server that offers the
requested RPC interface and RPC object and that is
available over a valid combination of network and
transport protocols that are supported by both the client
and server RPC runtimes.

computed time. The result of the synchronization
process—the time value that the clerk or server process
computes according to the values it receives from
several servers.

concrete class. An OM class of which instances are
permitted.

condition variable. A synchronization object used in
conjunction with a mutex. A condition variable allows a
thread to block until some event happens.

configuration of directory service. GDS can be
configured as a client system or a client/server system.
In a client system, a DUA either accesses the local DUA
cache or a remote server over the communications
network. In a client/server system, a DUA either
accesses a local server or a remote server over the
communications network. The local server is also
accessible from a remote client or server.

conformant array. RPC: An array whose size is
determined at runtime. A structure containing a
conformant array as a field is a conformant structure.

connection-oriented protocol. A connection-based,
reliable, virtual-circuit transport protocol, such as TCP;
an RPC protocol that runs over a connection-based
transport protocol.

connectionless. Not connected. For example, a
connected datagram is a network protocol that is
connected. A connectionless datagram network protocol
is one that is not connected.

container. Containers are objects that hold other
objects. The objects they hold can themselves be either
simple objects or container objects. Simple objects do
not hold other objects. Files are simple objects, and

directories are containers. The directories can hold
simple objects (files) and other containers
(subdirectories). See also container object, simple
object.

container object. An object that can hold another
object. For example, a directory is a container object
since it can hold files. See also simple object.

context handle. RPC: A reference to the state (client
context) maintained across remote procedure calls by a
server on behalf of a client. See also client context.

continuation reference. Describes how the
performance of all or part of an operation can be
continued at a different DSA or DSAs. See also
referral.

control access. CDS: An access right that grants
users the ability to change the access control on a
name and do other powerful management tasks, such
as replicate a directory or move a clearinghouse.

convergence. The degree to which CDS attempts to
keep all replicas of a directory consistent. Two factors
control the persistence and speed at which CDS keeps
directory replicas up to date: the setting of a directory’s
CDS_Convergence attribute and the background skulk
time. You can set the CDS_Convergence attribute to high,
medium, or low. By default, every directory inherits the
convergence setting of its parent. See also background
skulk time.

conversation key. A short-lived encryption key
provided by the authentication service to two principals
for the purpose of ensuring secure communications
between them.

Coordinated Universal Time (UTC). An international
time standard that DTS uses. The zero hour of
Coordinated Universal Time is based on the zero hour
of Greenwich (England) Mean Time.

copy. GDS: Either a copy of an entry stored in other
DSAs or a locally and dynamically stored copy of an
entry resulting from a request (a cache copy).

core leak. DFS: A situation that can develop as a
process allocates virtual memory but does not free it
again. When memory is completely exhausted, the
machine crashes. The BOS server can be configured to
restart all processes on a file server machine once a
week to reduce the likelihood of core leaks.

courier. DTS: A local server that requests a time value
from a randomly selected global server each time it
synchronizes.

Creation Timestamp (CTS). An attribute of all CDS
clearinghouses, directories, soft links, child pointers, and
object entries that contains a unique value reflecting the
date and time the name was created. The timestamp
actually consists of two parts: a time portion, and a

100 DCE 2.2: Introduction to DCE

portion containing the system identifier of the node on
which the name was created. This guarantees
uniqueness among timestamps generated on different
nodes.

credentials. A general term for privilege attribute data
that has been certified by a trusted privilege certification
authority. The DCE authorization protocol implements
credentials as Privilege Attribute Certificates (PACs).

cron bnode. DFS: A bnode that manages a single
process that is to be run either exactly once or
periodically. See also basic overseer server, bnode.

cron process. DFS: A type of process defined in a
server machine’s BosConfig file. It executes weekly or
daily at a defined time rather than running continuously.
See also cron bnode, simple process.

CTS. See Creation Timestamp.

customized binding handle. RPC: A user-defined
data structure from which a primitive binding handle can
be derived by user-defined routines in application code.
See also primitive binding handle.

daemon. A program that runs unattended to perform a
standard service. Some daemons are triggered
automatically to perform their tasks; others operate
periodically. An example is the cron daemon, which
periodically performs the tasks listed in the crontab file.

DAP. See Directory Access Protocol.

Data Encryption Standard (DES). A data encryption
algorithm widely used in the United States.

data limit. RPC: A value that specifies which elements
of an array are transmitted during a remote procedure
call.

data token. DFS: A token that grants access to a
range of bytes in a file. Read and write data tokens are
available. See also token.

datagram. An unreliable network data packet that is
independent of all other packets and lacks any
guarantees of delivery or sequentiality.

datagram protocol. A connectionless,
datagram-based transport protocol, such as UDP; an
RPC protocol that runs over a connectionless transport
protocol.

date-specific restore. DFS: In the DFS backup
system, a restore that returns a fileset to its state when
it was last dumped before a specified date. A
date-specific restore differs from a full restore. See also
full restore, restore.

DCE. See Distributed Computing Environment.

DCE Audit Service. That part of the DCE Security
Service which detects and records the execution of

DCE server operations that are relevant to the
maintenance of a secure distributed computing
environment. See also DCE Security Service.

DCE authorization. Provides a server with the client’s
PAC and EPAC. See also PAC, EPAC, name-based
authorization, authorization protocol.

DCE Cell Directory Service (CDS). The DCE Cell
Directory Service stores names and attributes of
resources located in a DCE cell. It is optimized for local
access, since most directory service queries are for
information about resources within the same cell as the
originator of the query. It is replicated, in order to make
it highly available. There must be at least one cell
directory server in each DCE cell.

DCE control program (dcecp). An administrative
interface that provides consistent and uniform access to
DCE administration functions, wherever they reside,
from any and every point in the cell.

DCE daemon (dced). A continuously running program
on each host that provides access to the host services
either locally on that host, or remotely from another
host.

DCE Directory Service. The DCE Directory Service is
a distributed, replicated database service consisting of a
hierarchical set of names which have associated
attributes. Given a name, its associated attributes can
be looked up in the directory service.

DCE Distributed File Service (DFS). In DCE, a file
service that joins the local file systems of several file
server machines, making the file systems equally
available to all DFS client machines.

DCE Distributed Time Service (DTS). A time service
that provides fault-tolerant clock synchronization for
systems in local area networks and wide area networks.
The clock synchronization provided by DTS enables
distributed computing applications to determine event
sequencing, duration, and scheduling.

DCE Global Directory Service (GDS). The DCE GDS
component is a distributed, replicated directory service
based on the CCITT X.500/ISO 9594 international
standard. It provides a global namespace that connects
the local DCE cells into one worldwide hierarchy.

DCE remote procedure call (RPC). A call to a
procedure in a different address space. In a traditional
procedure call, the calling procedure and the called
procedure are in the same address space on one
machine. In a remote procedure call, the calling
procedure invokes a procedure in a different address
space, and usually on a different machine. See other
glossary terms beginning with binding, interface, and
RPC.

DCE Security Service. The DCE Security Service
comprises several parts, including the authentication

Glossary 101

service, the privilege service, the registry service, the
access control list facility, the login facility, and the audit
service.

DCE Threads. A user-level (nonkernel) threads library
based on the pthreads interface specified by POSIX in
the 1003.4a standard (Draft 4). It consists of an API that
gives programmers the ability to create and manipulate
threads.

dcecp. See DCE control program.

dced. See DCE daemon.

default cell. Security: With the sec_admin and
rgy_edit commands, the cell in which the replica being
acted on by the sec_admin command is registered.

default DSA. The DSA generally used when the user
does not specify any particular DSA when connecting to
the directory system.

default element. RPC: An optional profile element that
contains a nil interface identifier and object UUID and
that specifies a default profile. Each profile can contain
only one default element. See also default profile,
profile, profile element.

default profile. RPC: A backup profile, referred to by
the default element in another profile. The NSI import
and lookup operations use the default profile, if present,
whenever a search based on the current profile fails to
find any useful binding information. See also default
element, profile.

delegate restrictions. Restrictions that limit who can
act as an intermediary for a particular identity in a call
chain.

delegation token. A checksum over EPAC data,
encrypted in the privilege server’s key and placed in the
A_D field of a PTGT. The token is placed in the A_D field
by the privilege server when it enables delegation and
when it generates a new delegation chain or
impersonated identity.

DES. See Data Encryption Standard.

descriptor.

1. XOM: The means by which the client and service
exchange an attribute value and the integers that
denote its representation, type, and syntax.

2. XDS: A defined data structure that is used to
represent an OM attribute type and a single value.

descriptor list. GDS: An ordered sequence of
descriptors that is used to represent several OM
attribute types and values.

destructor. A user-supplied routine that is expected to
finalize and then deallocate a per-thread context value.

DFS. See Distributed File Service.

dfsd. DFS: A program that initializes the cache
manager and several daemons on a DFS client
machine. It must run each time the client machine
reboots for the machine to function as a DFS client.

DIB. See Directory Information Base.

directory.

1. CDS: A logical unit for storing entries under one
name (the directory name) in a CDS namespace. In
addition to object entries, a directory can contain
soft links and child pointers. You can copy, delete,
and control access to a directory. Each physical
instance of a directory is called a replica.

2. GDS: A collection of open systems that cooperate to
hold a logical database of information about a set of
objects in the real world.

Directory Access Protocol (DAP). GDS: The protocol
used by a DUA to access a remote DSA.

directory ID. See directory identifier.

directory identifier (directory ID). An identifier for
distinguishing several configurations of the directory
service within an installation.

Directory Information Base (DIB). GDS: The
complete set of information to which the directory
provides access, which includes all of the pieces of
information that can be read or manipulated using the
operations of the directory. It consists of entries.

Distributed File Service (DFS). DFS: A file service
that joins the local file systems of several file server
machines, making the file systems equally available to
all DFS client machines.

Directory Information Tree (DIT). GDS: The DIB
considered as a tree, whose vertices (other than the
root) are the directory entries.

directory package. DFS: The part of the DFS cache
manager that stores directory (rather than file) caching
information.

directory schema. See schema.

directory service. GDS: A system using a directory.
The directory service consists of the DUA and the
directory system. The components of the directory
service are connected by a communications network.

directory system. GDS: A system for managing a
directory, consisting of one or more DSAs. Each DSA
manages part of the DIB.

Directory System Agent (DSA). GDS: An Open
Systems Interconnection (OSI) application process that
is part of the directory.

Directory System Protocol (DSP). GDS: The protocol
by a DSA to access another DSA.

102 DCE 2.2: Introduction to DCE

Directory User Agent (DUA). GDS: An OSI
application process that represents a user accessing the
directory.

discriminator. RPC: The data item that determines
which union case is currently used.

disk usage. DFS: A statistic reported by the scout
program that indicates space usage on a file server
machine’s aggregates and partitions. An administrator
can use scout to highlight disk usage statistics that
exceed specified values. See also scout.

dispatcher. XOM: The software that implements the
service interface functions using workspace interface
functions.

distinguished encoding. The restrictions to the Basic
Encoding Rules designed to ensure a unique encoding
of each ASN.1 value, defined in the X.500 Directory
Standards (CCITT X.509).

Distinguished Name (DN). GDS: One of the names of
an object, formed from the sequence of RDNs of its
object entry and each of its superior entries.

distinguished value. GDS: An entry’s attribute value
that has been designated to appear in the RDN of the
entry.

Distributed Computing Environment (DCE).
Services and tools that support the creation, use, and
maintenance of distributed applications in a
heterogeneous computing environment.

DIT. See Directory Information Tree.

DN. See Distinguished Name.

Domain Name Service (DNS). A hierarchical,
distributed naming service which, like the GDS, can act
a a higher level connector of DCE cells. See also DCE
Global Directory Service.

drift. DTS: The change in a clock’s error rate over a
specified period of time.

DSA. See Directory System Agent.

DSP. See Directory System Protocol.

DTS. See DCE Distributed Time Service.

DTS entity. DTS: The server or clerk software on a
system.

DUA. See Directory User Agent.

DUA cache. GDS: The part of the DUA that stores
frequently required information.

dump. DFS: Generally, the conversion of a fileset’s
contents into a format suitable for storage on a backup
tape and the data object that results from this action.

However, the operation need not involve dumping to
other media such as tape. See also full dump,
incremental dump, restore.

dump hierarchy. DFS: A logical structure in the DFS
backup system that defines the parent/child relationship
between full and incremental dump levels. See also
full dump, incremental dump.

dump ID number. DFS: A unique identification number
that the DFS backup system assigns to a dump set. It is
distinct from the job ID number assigned to an operation
in interactive mode. See also job ID number.

dump level. DFS: An entry in the dump hierarchy
recorded in the DFS backup system’s backup database.
There are two types of dump levels: full and
incremental. See also full dump, incremental dump.

dump set. In the DFS backup system, the fileset data
that results from dumping a particular fileset family at a
given dump level. By implication, all of the data in a
dump set was dumped at the same time and in the
same manner (fully or incrementally).

dynamic endpoint. RPC: An endpoint that is
generated by the RPC runtime for an RPC server when
the server registers its protocol sequences and that
expires when the server stops running. See also
well-known endpoint, endpoint.

effective permissions. The permissions granted to a
principal as a result of a masking operation.

element. Any of the bits of a bit string, the octets of an
octet string, or the octets by means of which the
characters of a character string are represented.

encryption key. A secret value shared between two
parties that enables them to communicate securely by
using the key to encrypt and decrypt messages. Some
servers store encryption keys in a keytab file. See also
keytab file, password.

endian. An attribute of data representation that reflects
how certain multioctet data is stored in memory. See
also big endian, little endian.

endpoint. RPC: An address of a specific server
instance on a host. See also dynamic endpoint,
well-known endpoint.

endpoint map. RPC: A system-wide database where
local RPC servers register binding information
associated with their interface identifiers and object
UUIDs. The endpoint map is maintained by the endpoint
map service of the RPC daemon. See also endpoint
map service, RPC daemon.

endpoint map service. RPC: A service provided by
the RPC daemon that maintains a system’s endpoint
map for local RPC servers. When an RPC client makes
a remote procedure call by using a partially bound

Glossary 103

binding handle, the endpoint map service looks up the
endpoint of a compatible local server. See also
endpoint map, partially bound binding handle, RPC
daemon.

entity.

1. CDS: A component of CDS software that you can
manage independently of any other component. The
CDS control program commands are based on
directives targeted for specific entities.

2. DTS: A specific software implementation on a
system.

entity type. DTS: An identifier of an entity that
determines its relationship to other components: clerk or
server.

entry. GDS: The part of the DIB that contains
information relating to a single directory object. Each
entry consists of directory attributes.

entry point vector (EPV). RPC: A list of addresses for
the entry points of a set of remote procedures that
implements the operations declared in an interface
definition. The addresses are listed in the same order
as the corresponding operation declarations.

EPAC. See extended privilege attribute
certificate.

epoch. A timestamp that identifies directory replicas as
being part of the same set. CDS uses the epoch
timestamp when it skulks a directory: it finds all replicas
of the directory that are in the same epoch and makes
their contents consistent. If not all replicas share the
same epoch, the skulk aborts. The set directory to
new epoch command updates the value of the CDS_Epoch
attribute.

epoch number. DTS: An identifier that a server
appends to the time values it sends to other servers.
Servers only use time values from other servers with
whom they share epoch numbers.

EPV. See entry point vector.

ERA. See extended registry attribute.

error. DTS: The difference between a system’s clock
value and the computed time.

error tolerance. DTS: The amount of system clock
error to which DCE Distributed Time Service responds
by abruptly setting the system clock to the computed
time, rather than gradually adjusting the clock.

event class. Logical grouping of audit events,
designated by a name that can be any character string
up to 256 characters. Generally, an event class
comprises audit events that have some form of
commonality.

event class file. A file that contains the declaration of
events that constitute an event class. The name of the
event class is the same as the name of the event class
file.

event name. Symbolic name assigned to an audit
event, consisting of any character string up to 256
characters. It is used for documentation only, and is not
used for any other administrative purpose.

event number. A 32-bit integer assigned to an audit
event. An event number is a tuple made up of a set-id
and the event-id. It is used in grouping audit events into
event classes.

event-id. Component of the event number that
identifies the audit event.

execution semantics. RPC: The rules of execution for
a remote procedure call, including the effect of multiple
invocations on the outcome of a procedure’s operation.
See also at-most-once semantics, broadcast
semantics, maybe semantics, idempotent semantics.

expand. To display the contents of (open) a directory
by using the CDS browser. You expand a directory that
is closed by double-clicking on its icon. Double-clicking
on an expanded directory collapses it.

expiration age. RPC: The amount of time that a local
copy of name service data from an NSI attribute
remains unchanged before a request from an RPC
application for the attribute requires updating it. See
also NSI attribute.

explicit binding method. RPC: The explicit method of
managing the binding for a remote procedure call in
which a remote procedure call passes a binding handle
as its first parameter. The binding handle is initialized in
the application code. See also automatic binding
method, binding handle, implicit binding method.

export.

1. RPC: (1) To place the server binding information
associated with an RPC interface or a list of object
UUIDs or both into an entry in a name service
database. (2) To provide access to an RPC
interface.

2. DFS: Offering data or making data available to
another system. For example, hosts must export a
local DCE LFS or non-LFS aggregate to make it
available in the DCE namespace.

extended privilege attribute certificate (EPAC).
Contains authorization information specific to the user,
such as groups to which the user belongs. EPACs are
used to authorize users; that is, to help a server decide
whether users should be granted access to resources
that the server manages.

104 DCE 2.2: Introduction to DCE

extended registry attribute (ERA). An attribute
attached to a registry object, created using the ERA API
interfaces.

fault. RPC: An exception condition, occurring on a
server, that is transmitted to a client.

file exporter. DFS: The part of a file server machine’s
kernel that responds to file or directory information
requests from the client’s cache manager.

file server machine. DFS: A system that maintains
one or more local file systems on disk and makes them
available (exports them) to other nodes through the file
exporter. See also server machine.

file system. DFS: A mountable subtree of the directory
hierarchy.

fileset. DFS: A hierarchical grouping of files managed
as a single unit. DCE LFS supports multiple filesets
within a single aggregate; in other file systems used
with DFS, filesets are equivalent in size to a partition.

fileset database machine. DFS: A server machine in
a cell that houses the FLDB. See also server machine.

fileset family. DFS: In the DFS backup system, a
collection of one or more fileset entries. It defines a
group of filesets to be backed up together (at the same
time and in the same manner).

fileset family entry. DFS: A single definition in a DFS
backup system fileset family. It defines a collection of
filesets in terms of their common site, their prefix, or
both. See also site.

fileset header. DFS: Part of the data structure that
records information about a fileset. The fileset header
records status information such as the the current size
of the fileset, the quota of the fileset, and the ID number
of the fileset. Information such as the fileset ID is also
stored in the entry for the fileset in the FLDB.

fileset ID number. DFS: A number that uniquely
identifies each fileset. The read/write and backup
versions of a fileset each have their own fileset ID; all
copies of the read-only version share the same fileset
ID.

fileset label. DFS: A file containing information about a
fileset, such as its name, fileset ID, unique identifier,
type, and status.

fileset location database (FLDB). DFS: A database
that records the location and other status information
about available DCE LFS and non-LFS filesets, allowing
transparent data access. To be available, a fileset must
be exported, registered in the FLDB, and mounted in
DFS. The FLDB is maintained by the FL server.

fileset location server (FL server). DFS: A server
process that runs on fileset database machines and

maintains the FLDB, which tracks the locations of all
DCE LFS and non-LFS filesets.

fileset module. DFS: The part of the cache manager
that maintains a list of accessed filesets, their mounted
positions in the global file system tree, and their
physical locations.

fileset name. DFS: A name that uniquely identifies
each fileset. All versions of a fileset have the same
name; the read-only and backup versions have
.readonly and .backup extensions.

fileset quota. DFS: A disk space limit that a system
administrator imposes on each read/write fileset.

fileset registry. DFS: The part of the file exporter that
stores information about filesets residing on the local
machine.

fileset server. DFS: A server process that runs on all
file server machines. It provides the interface for system
administrators to perform all tasks that treat a fileset as
a unit, including creating, deleting, backing up, cloning,
and moving.

filespace. DFS: The global file system made available
to all cells in DCE by DFS. Every entry for a file or
directory in DFS resides in the DFS filespace. See also
Distributed File Service, DCE.

filter. An assertion about the presence or value of
certain attributes of an entry in order to limit the scope
of a search.

filter directives. Specifies the conditions that must be
satisfied before audit records are written, and where to
write these records: the audit trail file or the console.

filter rules. The prescribed procedure used to resolve
overlapping directives from different filters.

filter subject. Denotes the principal, group, or cell to
which the filter applies. The filter subject is the client of
the distributed application program that caused the
event to occur. A filter is always associated with one
and only one filter subject.

first-level DSA. GDS: A DSA that holds the master
entry of a first-level object. See also first-level
object.

first-level object. GDS: A directory object that is an
immediate subordinate to the root.

FL server. See fileset location server.

FLDB. See fileset location database.

flush. DFS: To force the cache manager to discard
data from the local cache, so that the next time an
application requests the data, the data must be fetched
from the file exporter.

Glossary 105

foreign cell. A cell other than the one to which the
local machine belongs. See also local cell.

foreign cell surrogate. Principals (whose names are
in the form krbtgt/ cell_name) that are maintained in
the registry database for the purpose of intercell
authentication. To accomplish intercell authentication,
the foreign cell surrogates in each cell’s registry share a
secret key. This secret key is known to both the local
and foreign cell’s authentication service. It is through
their surrogates that two instances of the authentication
service are able to convey information about their
respective principals to one another, thus enabling a
principal from one cell to acquire a ticket to a principal
in another cell. See also trust peer.

full dump. DFS: A dump set in the DFS backup
system that includes all of the data from a fileset. A full
dump is different from an incremental dump. See also
dump, incremental dump.

full name. CDS: The complete specification of a CDS
name, including all parent directories in the path from
the cell root to the entry being named.

full pointer. RPC: A pointer without the restrictions of
a reference pointer.

full restore. DFS: In the DFS backup system, a full
restore returns a fileset to its state when last dumped.
The resultant fileset includes data from the last full
dump and all subsequent incremental dumps, if any. A
full restore is different from a date-specific restore. See
also date-specific restore, restore.

fully bound binding handle. RPC: A server binding
handle that contains a complete server address
including an endpoint. See also partially bound
binding handle.

function. A programming language construct, modeled
after the mathematical concept. A function encapsulates
some behavior. It is given some arguments as input,
performs some processing, and returns some results.
Also known as procedures, subprograms or subroutines.
See also operation.

GDA. See Global Directory Agent.

GDS. See DCE Global Directory Service.

generic interface. The interface, defined at a level
that is independent of any particular programming
language.

gigabyte (GB). A unit of measurement for storage
capacity equal to 1,073,741,824 (230) bytes.

Global Directory Agent (GDA). A DCE component
that makes it possible for the local CDS to access
names in foreign cells. The GDA provides a connection
to foreign cells through either GDS or DNS.

global name. A name that is universally meaningful
and usable from anywhere in the DCE naming
environment. The prefix /... indicates that a name is
global.

global server. DTS: A server that frequently provides
its clock value to courier servers on other LANs, or
infrequently provides its clock value to systems that
have failed to obtain the specified number of servers
locally.

global set. DTS: The group of global servers in a
network.

glue layer. DFS: The VFS+ functions that integrate the
token and authentication requirements of the DCE
environment with the standard VFS functions available
to a file system.

group.

1. RPC: A name service entry that corresponds to one
or more RPC servers that offer common RPC
interface(s), RPC object(s), or both. A group
contains the names of the server entries, other
groups, or both that are members of the group. See
also NSI group attribute.

2. Security: Data that associates a named set of
principals who can be granted common access
rights. Also, the second field of a subject identifier.

group member. RPC: A name service entry whose
name occurs in the group. See also group.

group name. A name that uniquely identifies a group
of users to the system.

handle. RPC: An opaque reference to information. See
also binding handle, context handle, interface
handle, name service handle, thread handle.

high convergence. A setting that controls the degree
to which CDS attempts to keep all replicas of a directory
consistent. High convergence means CDS makes one
attempt to immediately propagate an update to all
replicas. If that attempt fails (for example, if one of the
replicas is unavailable), the software schedules a skulk
for within 1 hour. Under normal circumstances, a skulk
occurs at least once every 12 hours on a directory with
high convergence. High convergence is expensive, so
constant use of it is not advisable. To control
convergence, you modify a directory’s CDS_Convergence
attribute. See also low convergence, medium
convergence.

home cell. See local cell.

host ID. See network address.

host module. DFS: The part of the file exporter that
associates information with each cache manager’s
request. This information includes the state of the client
that made the call and authentication information about
the user who made the request.

106 DCE 2.2: Introduction to DCE

idempotent semantics. RPC: A characteristic of a
procedure in which executing it more than once with
identical input always produces the same result, without
any undesirable side effects; for example, a procedure
that reads a particular block of an immutable file is
idempotent. DCE RPC supports maybe and broadcast
semantics as special forms of idempotent operations.
See also at-most-once semantics, broadcast
semantics, maybe semantics.

IDL. See Interface Definition Language.

IDL compiler, DCE. RPC: A compiler that processes
an RPC interface definition and optional ACF to
generate client and server stubs, header files, and
auxiliary files. See also Interface Definition
Language, stub.

illegal. A violation of an architecture rule that an
implementation is required to report. See also
unpredictable.

immediate delegation target. An object on which a
client directly performed an operation.

immediate subclass. A subclass, of a class C, having
no superclasses that are themselves subclasses of C.

immediate subobject. One object that is a value of an
attribute of another.

immediate subordinate. In the DIT, an entry is an
immediate subordinate of another if its DN is formed by
appending its RDN to the DN of the other entry.

immediate superclass. The superclass, of a class C,
having no subclasses that are themselves superclasses
of C.

immediate superior. In the DIT, an entry is the
immediate superior of another if its DN, followed by the
RDN of the other, forms the DN of the other entry.

immediate superobject. One object that contains
another among its attribute values.

impersonation. Transmission of a delegation initiator’s
identity in a manner than does not preserve the
identities of participants in the call chain.

implicit binding method. RPC: The implicit method of
managing the binding for a remote procedure call in
which a global variable in the client application holds a
binding handle that the client stub passes to the RPC
runtime. See also automatic binding method, binding
handle, explicit binding method.

import.

1. RPC: To obtain binding information from a name
service database about a server that offers a given
RPC interface by calling the RPC NSI import
operation.

2. RPC: To incorporate constant, type, and import
declarations from one RPC interface definition into
another RPC interface definition by means of the
IDL import statement.

inaccessible. XOM: Said of an object for which the
client does not possess a valid designator or handle.

inaccuracy. DTS: The bounded uncertainty of a clock
value as compared to a standard reference.

incremental dump. DFS: A dump set in the DFS
backup system that includes only data from a fileset that
changed since the previous dump. An incremental dump
is different from a full dump. See also dump, full dump.

index priority. Priority of an attribute type in search
queries.

index window. A navigation aid in the CDS browser.
When the namespace is in the display window, dragging
the slider up and down the vertical scroll bar produces a
rectangular box called the index window. The index
window displays the name where the slider is currently
positioned; releasing mouse button 1 causes the
browser to position that name at the top of the window.

information architecture. GDS: Describes the
representation of the information stored in OM objects
and the hierarchical relationships between different
classes of OM objects.

initial DSA. GDS: The master DSA of the directory
schema.

initiator. The initial client in a delegation call chain.

instance. XOM: An object in the category represented
by a class.

instance UUID. RPC: An object UUID that is
associated with a single server instance and is provided
to clients to unambiguously identify that instance. See
also object UUID, server instance.

integrity. A protection level that can be specified in
secure RPC communications that ensures that data
transferred between two principals has not been
modified in transit.

interface. See also API, RPC interface, SPI.

interface definition. RPC: A description of an RPC
interface written in the DCE Interface Definition
Language (IDL). See also RPC interface.

Interface Definition Language (IDL). RPC: A
high-level declarative language that provides the syntax
for interface definitions. The file syntax of the IDL
interface definition is part of the NCA. See also IDL
compiler, DCE.

Glossary 107

interface handle. RPC: A reference in code to an
interface specification. See also interface
specification.

interface identifier. RPC: A string containing the
interface’s UUID and major and minor version numbers
of a given RPC interface. See also RPC interface.

interface specification. RPC: An opaque data
structure, generated by the DCE IDL compiler from an
interface definition, that contains identifying and
descriptive information about an RPC interface. See
also interface definition, interface handle, RPC
interface.

interface UUID. RPC: The UUID generated for an
RPC interface definition via the UUID generator,
uuidgen. See also interface definition, RPC
interface, Universal Unique Identifier (UUID).

intermediary. A server acting on behalf of an initiator,
via delegation or impersonation, making requests to
another target server.

intermediate data type. Any of the basic data types in
terms of which the other, substantive data types of the
interface are defined.

international character. A character that is not a
member of the DCE PCS character set and so is not
guaranteed to be supported in a DCE environment.
Programmers writing RPC applications that use
international characters build support for them into their
applications by using user-provided or DCE RPC
features for international character support.

interval. DTS: The combination of a time value and
the inaccuracy associated with it; the range of values
represented by a combined time and inaccuracy
notation. As an example, the interval 08:00.00I00:05:00
(8 o’clock, plus or minus 5 minutes) contains the time
07:57.00.

invoke ID. An integer used to distinguish one
(directory) operation from all other outstanding ones.

job ID number. DFS: A number assigned to each
operation by the DFS backup system when the backup
system is used in interactive mode. It is distinct from the
dump ID number assigned to a dump set. See also dump
ID number.

junction. A specialized entry in the DCE namespace
containing binding information to enable
communications between different implementations of
the directory service.

Kerberos. The authentication protocol implemented by
DCE shared-secret authentication. Kerberos was
developed at the Massachusetts Institute of Technology.
In classical mythology, Kerberos was the three-headed
dog that guarded the entrance to the underworld.

key. A value used to encrypt and decrypt data. See
also encryption key.

key management facility. A DCE security facility that
enables noninteractive principals to manage their secret
keys.

keytab file. A security file that contains the encryption
keys for server processes (for example, DFS processes)
that run on the host machine. Typically, encryption keys
for human principals are not stored in a keytab file. See
also encryption key.

kilobyte (KB). A unit of measurement for storage
capacity equal to 1024 (210) bytes.

knowledge reference. Knowledge that associates,
either directly or indirectly, a DIT entry with the DSA in
which it is located.

LAN. See local area network.

leaf entry. A directory entry that has no subordinates.
It can be an alias entry or an object entry.

leap seconds. An infrequent adjustment to UTC to
account for the irregularity of the earth’s rotation.

LFS, DCE. See local file system, DCE.

little endian. An attribute of data representation that
reflects how multioctet data is stored in memory. In little
endian representation, the lowest addressed octet of a
multioctet data item is the least significant. See also big
endian.

load balancing. DFS: Distributing system load evenly
across file server machines by placing frequently
accessed DCE LFS filesets among available file server
machines.

local application thread. RPC: An application thread
that executes within the confines of one address space
on a local system and passes control exclusively among
local code segments. See also application thread, RPC
thread, client application thread, server
application thread.

local area network (LAN). A set of computers sharing
a network that does not include bridges or WAN links.

local audit trail file. The audit trail file that is specified
by the user, using any convenient pathname. This is
specified when the audit daemon is started. If the file
name is not an absolute pathname, the file is created in
the <dcelocal>/var/audit/adm directory.

local cell. The cell to which the local machine
belongs. See also foreign cell.

local DSA. GDS: A DSA that is resident on the same
computer as the DUA.

108 DCE 2.2: Introduction to DCE

local file system, DCE (DCE LFS). DFS: The
high-performance, log-based file system provided by
DCE. DCE LFS supports multiple filesets within a single
aggregate, fileset replication, fast system restarts, and
DCE ACLs.

local name. A name that is meaningful and usable
only from within the cell where the entry exists. The
local name is a shortened form of a global name. Local
names begin with the prefix /.: (or the prefix /: for
names in the DFS filespace) and do not contain a cell
name.

local server. DTS: A server that synchronizes with its
peers and provides its clock value to other servers and
clerks on the same LAN.

local set. DTS: All of the servers in a particular LAN.

local type. RPC: A type named in a [represent_as]
clause and used by application code to manipulate data
that is passed in a remote procedure call as a network
type. See also network type.

lock token. DFS: A token that allows a client to place
a lock on a range of bytes in a file. Read and write lock
tokens are available.

log. DFS: A record of the actions of a program or
system and any changes to data associated with those
actions. DCE LFS also maintains a log of changes to
metadata on each LFS aggregate.

log-based file system. DFS: A file system in which
changes to metadata are recorded in a log associated
with the aggregate on which that file system is located.
DCE LFS is a log-based file system. See also log.

login facility. A DCE security facility that enables a
principal to establish its identity and assume other
identities.

low convergence. A setting that controls the degree
to which CDS attempts to keep all replicas of a directory
consistent. Low convergence means CDS does not
immediately propagate an update; it simply waits for the
next skulk to distribute all updates that occurred since
the last skulk. Skulks occur at least once every 24
hours on directories with low convergence. Low
convergence helps conserve resources by avoiding
update propagations between skulks. To control
convergence, you set a directory’s CDS_Convergence
attribute. See also high convergence, medium
convergence.

manager. RPC: A set of remote procedures that
implement the operations of an RPC interface and that
can be dedicated to a given type of object. See also
object, RPC interface.

manager entry point vector (manager EPV). RPC:
The runtime code on the server side uses this EPV to

dispatch incoming remote procedure calls. See also
entry point vector, manager.

marshalling. RPC: The process by which a stub
converts local arguments into network data and
packages the network data for transmission. See also
network data, unmarshalling.

mask.

1. With respect to DCE ACLs, a set of permissions that
may be intersected (logically ANDed) with another
set of permissions associated with a specified
privilege attribute in order to yield the effective
permissions for principals that possess that privilege
attribute.

2. To apply a mask.

3. DFS: A pattern of bits or characters used to control
the retention or elimination of portions of another
pattern of bits or characters, usually through an AND
or OR operation.

4. GDS: Refers to the administration screen interface
menus.

mask_obj mask. When supported by an ACL
manager type, the mask_obj mask represents the
greatest set of security: an optional alternate name for a
primary name in the registry database. Aliases and the
primary name for which they are an alternate share the
same UUID and UNIX ID permissions granted to
principals other than those that match the user_obj or
other_obj.

master DSA. GDS: The DSA that contains the master
entry of an object.

master entry. GDS: The original entry of an object.
This is the entry in the DSA that is specified in the
master knowledge attribute of the entry.

master information. GDS: The information from the
master entries.

master knowledge attribute. GDS: An attribute that
designates the master DSA of an entry.

master replica.

1. The first instance of a specific directory in the
namespace. Once copies of the directory have been
made, it is possible to designate a different replica
as the master if necessary, but only one master
replica of a directory can exist at a time. CDS can
create, update, and delete object entries and soft
links in a master replica.

2. Security: An instance of a security server that
accepts queries and updates to its associated
registry database. The master replica dynamically
propagates its updates to slave replicas. Each cell
has only one master replica. See also slave
replica.

Glossary 109

maybe semantics. RPC: A form of idempotent
semantics that indicates that the caller neither requires
nor receives any response or fault indication for an
operation, even though there is no guarantee that the
operation completed. An operation with maybe
semantics is implicitly idempotent and lacks output
parameters. See also at-most-once semantics,
broadcast semantics, idempotent semantics.

medium convergence. A setting that controls the
degree to which CDS attempts to keep all replicas of a
directory consistent. Medium convergence means CDS
makes one attempt to immediately propagate an update
to all replicas of the directory in which a change was
just made. If the attempt fails, the software lets the next
scheduled skulk take care of making the replicas
consistent. Skulks occur at least once every 12 hours
on a directory with medium convergence. When you
create a namespace, the default setting on the root
directory is medium. To control convergence, you set a
directory’s CDS_Convergence attribute. See also high
convergence, low convergence.

megabyte (MB). A unit of measurement for storage
capacity equal to 1,048,576 (220) bytes.

metadata. The structural data associated with the file
system, such as the organization of directories, inode
tables, and links. Metadata is not data supplied by a
user; it is information about the structure of user data.

minimally consistent. Said of an object that satisfies
various conditions set forth in the definition of its class.

monitoring window. DFS: A separate terminal
session dedicated to tracking the activities of a tape
coordinator on a tape coordinator machine. A monitoring
window must run on the same machine as the tape
coordinator and tape drive it is monitoring.

mount point. DFS: An access point to a fileset in the
DFS file tree. Once a fileset has been mounted, the
resulting mount point looks and acts like a directory in
the file tree.

mount-level directory. DFS: The top-level directory of
a mounted fileset. It becomes transparently equivalent
to the mount point for that fileset after the fileset is
mounted. See also mount point.

multivalued attribute. A collection of attribute
instances of the same attribute type attached to a single
registry object.

mutex. A synchronization object that provides mutual
exclusion among threads. A mutex is often used to
ensure that shared variables are always seen by other
threads in a consistent state.

name. GDS: A construct that singles out a particular
directory object from all other objects. A name must be
unambiguous (that is, denote just one object); however

it need not be unique (that is, be the only name that
unambiguously denotes the object).

name service handle. RPC: An opaque reference to
the context used by the series of next operations called
during a specific NSI search or inquiry.

Name Service Interface (NSI). RPC: A part of the
application programming interface of the RPC runtime.
NSI routines access a name service, such as CDS, for
RPC applications.

name-based authorization. Provides a server with the
client’s principal name. See also DCE authorization.

namespace. A complete set of CDS names (these can
include directories, object entries, and soft links) that
one or more CDS servers look up, manage, and share.
CDS names are stored in directory replicas in
clearinghouses at each server. The logical picture of a
namespace is a hierarchical tree of all of those
directories, with the root directory at the top, and one or
more levels of directories beneath the root directory.
The physical implementation of the namespace consists
of directories replicated in one or more clearinghouses
in the network.

naming attribute. An attribute used to form the RDN
of an entry.

NCA. See Network Computing Architecture.

NDR. See Network Data Representation.

network address. RPC: An address that identifies a
specific host on a network.

Network Computing Architecture (NCA). RPC: An
architecture for distributing software applications across
heterogeneous collections of networks, computers, and
programming environments. NCA specifies the DCE
RPC architecture.

network data. RPC: Data represented in a format
defined by a transfer syntax. See also transfer syntax.

Network Data Representation (NDR). RPC: The
transfer syntax defined by the NEA. See also transfer
syntax.

network descriptor. RPC: The identifier of a potential
network channel, such as a UNIX socket.

network protocol. A communications protocol from
the Network Layer of the OSI network architecture, such
as the IP.

Network Time Protocol (NTP). Internet-recommended
time standard.

network type. RPC: A type defined in an interface
definition and referenced in a [represent_as] clause
that is converted into a local type for manipulation by
application code. See also local type.

110 DCE 2.2: Introduction to DCE

NFS/DFS authenticating gateway. DFS: The
NFS/DFS authenticating gateway provides
authenticated access to DFS from NFS clients. Users
who have DCE accounts can authenticate to DCE via a
DFS client configured as a gateway server and access
DFS data according to their DCE identities.
Administrators can allow users to authenticate to DCE
from NFS clients, or administrators can reserve the
ability to grant authenticated access from a gateway
server only.

node. A computer connected to a network.

nonspecific subordinate reference. A knowledge
reference that holds information about the DSA that
holds one or more unspecified subordinate entries.

NSI. See Name Service Interface.

NSI attribute. RPC: An RPC-defined attribute of a
name service entry used by the DCE RPC name
service interface. An NSI attribute stores one of the
following: binding information, object UUIDs, a group, or
a profile. See also NSI binding attribute, NSI group
attribute, NSI object attribute, NSI profile
attribute.

NSI binding attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry; the binding
attribute stores binding information for one or more
interface identifiers offered by an RPC server and
identifies the entry as an RPC server entry. See also
binding information, NSI object attribute, server
entry.

NSI group attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
entry names of the members of an RPC group and
identifies the entry as an RPC group. See also group.

NSI object attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
object UUIDs of a set of RPC objects. See also object.

NSI profile attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores a
collection of RPC profile elements and identifies the
entry as an RPC profile. See also profile.

NTP. See Network Time Protocol.

NULL. The value of a pointer that indicates that the
pointer does not point to data.

null binding handle. RPC: A binding handle
containing the NULL value. See also binding handle.

object.

1. A data structure that implements some feature and
has an associated set of operations.

2. RPC: For RPC applications, an object can be
anything that an RPC server defines and identifies
to its clients (using an object UUID). Often, an RPC

object is a physical computing resource such as a
database, directory, device, or processor.
Alternatively, an RPC object can be an abstraction
that is meaningful to an application, such as a
service or the location of a server. See also object
UUID.

3. XDS: Anything in some ′′world,’’ generally the world
of telecommunications and information processing or
some part thereof, that is identifiable (can be
named) and for which the DIB contains some
information.

4. XOM: Any of the complex information objects
created, examined, modified, or destroyed by means
of the interface.

5. DFS: A file or directory in a file system. Directories
can be further classified as container objects.

object class. CDS, GDS: An identified family of
objects that share certain characteristics. An object
class can be specific to one application or shared
among a group of applications. An application interprets
and uses an entry’s class-specific attributes based on
the class of the object that the entry describes.

Object Class Table (OCT). A recurring attribute of the
directory schema with the description of the object
classes permitted.

object entry. CDS: The name of a resource (such as
a node, disk, or application) and its associated
attributes, as stored by CDS. CDS managers, client
application users, or the client applications themselves
can give a resource an object name. CDS supplies
some attribute information (such as a creation
timestamp) to become part of the object, and the client
application can supply more information for CDS to
store as other attributes. See also entry.

object identifier. A value (distinguishable from all
other such values) that is associated with an information
object. (X.208)

object management. The creation, examination,
modification, and deletion of potentially complex
information objects.

object name. A CDS name for a network resource.

object UUID. RPC: The universal unique identifier that
identifies a particular RPC object. A server specifies a
distinct object UUID for each of its RPC objects; to
access a particular RPC object, a client uses the object
UUID to find the server that offers the object. See also
object, Universal Unique Identifier.

OCT. See Object Class Table.

octet. An 8-bit quantity of data.

OM. See XOM.

Glossary 111

OM attribute. An OM attribute comprises one or more
values of a particular type (and therefore syntax).

OM class. A static grouping of OM objects, within a
specification, based on both their semantics and their
form.

opaque. A piece of data or a data type whose
contents are not visible to the application routines that
use it.

opaque structure. A data item or data type whose
structure is hidden from the code that is handling it.

Open Systems Interconnection (OSI). The
interconnection of open systems in accordance with ISO
standards.

open token. DFS: A token that grants the right to open
a file. The types of tokens available are as follows:
normal reading, normal writing, executing, shared
reading, and exclusive writing. See also token.

operation.

1. A set of step-by-step actions specified by a
procedure, function, or routine.

2. RPC: The task performed by a given routine or
procedure.

3. GDS: Processing performed within the directory to
provide a service, such as a read operation. It is
given some arguments as input, performs some
processing, and returns some results. An application
process invokes an operation by calling an interface
function.

organization. Data that associates a named set of
users who can be granted common access rights that
are usually associated with administrative policy. Also,
the third field of a subject identifier.

orphaned call. RPC: A call executing in an RPC
server after the client that started the call fails or loses
communications with the server.

OSI. See Open Systems Interconnection.

PAC. See privilege attribute certificate.

package. A specified group of related OM classes,
denoted by an object identifier.

package closure. The set of classes that need to be
supported in order to be able to create all possible
instances of all classes defined in the package.

PAG. See process activation group.

group name. A binding in which the first parameter is
a handle parameter that determines the location of a
server of the interface.

parent directory. Any directory that has one or more
levels of directories beneath it in a cell namespace. A
directory is the parent of any directory immediately
beneath it in the hierarchy.

parent dump level. DFS: An entry in the dump
hierarchy that is used as the reference point for dumps
made at an incremental dump level. Both a full dump
level and another incremental dump level can serve as
a parent. See also dump, dump hierarchy, full dump,
incremental dump.

parent ID number. DFS: A fileset ID number stored in
a fileset header. If the fileset being examined is a
read/write fileset, the parent ID is its fileset ID. If the
fileset being examined is a read-only or backup copy of
a read/write fileset, the parent ID is the fileset ID of the
read/write fileset. See also fileset ID number.

password. A string presented by a principal to prove
its identity. The login facility transforms this string to
generate an encryption key that is used by the
authentication service to authenticate the principal.
Server principals usually bypass the string-to-key
transformation and present an encryption key to the
authentication service for authentication. See also
encryption key.

PCS. See Portable Character Set.

peer trust. A type of trust relationship established
between two cells by means of a secret key shared by
mutual authentication surrogates maintained by the two
cells. A peer trust relationship enables principals in the
one cell to communicate securely with principals in the
other.

permission.

1. The modes of access to a protected object. In DCE
security, the number and meaning of permissions
with respect to the object are defined by the ACL
manager of the object. See also access control
list.

2. GDS: One of five groups that assigns modes of
access to users: MODIFY PUBLIC, READ STANDARD,
MODIFY STANDARD, READ SENSITIVE, or MODIFY
SENSITIVE. See also access control list.

person. The name assigned to a DCE principal. The
registry database contains the person objects with
which accounts can be associated. Also, the first field of
a subject identifier.

pickle. An encoding of a typed value in a byte stream.
Pickles are useful for storing or transmitting typed
values in typeless media. The type of value contained in
a pickle may be understood from context or represented
in the pickle itself.

pipe.

1. RPC: A mechanism for passing large amounts of
data in a remote procedure call.

112 DCE 2.2: Introduction to DCE

2. RPC: The data structure that represents this
mechanism.

PKSS. See private key storage server.

plaintext. The input to an encryption function or the
output of a decryption function. Decryption transforms
ciphertext into plaintext.

Portable Character Set (PCS). The DCE PCS is the
group of characters for which DCE guarantees support.
The DCE RPC runtime requires that all DCE RPC
clients and servers support the DCE PCS. The IDL base
type specifiers char and idl_char identify DCE PCS
characters.

position (within a string). The ordinal position of one
element of a string relative to another.

position (within an attribute). The ordinal position of
one value relative to another.

potential binding. RPC: A specific combination of an
RPC protocol sequence, RPC protocol major version,
network address, endpoint, and transfer syntax that an
RPC client can use to establish a binding with an RPC
server. See also binding, endpoint, network address,
RPC protocol sequence, RPC protocol, transfer
syntax.

predicate.

1. A Boolean logic term denoting a logical expression
that determines the state of some variable(s). For
example, a predicate can be an expression stating
that ″variable A must have the value 3.″ The control
expression used in conjunction with condition
variables is based upon a predicate. Use a condition
variable to wait for some predicate to become true;
for example, to wait for something to be in a queue.

2. Audit Service: The criteria used to select audit
records in an audit trail file. This is used in creating
audit trail analysis and examination programs that
read a select number of records from the audit trail
file.

presentation address. An unambiguous name that is
used to identify a set of presentation service access
points. Loosely, it is the network address of an OSI
service. See also address.

Presentation Service Access Point (PSAP). Address
of an OSI communications partner. It addresses an
application in a computer.

presented type. RPC: For data types with the IDL
transmit_as attribute, the data type that clients and
servers manipulate. Stubs invoke conversion routines to
convert the presented type to a transmitted type, which
is passed over the network. See also transmitted type.

primary alias. The default name for a cell that has
multiple cell aliases. This is the name of the cell that the
system will return when asked. See also alias.

primary name. The string name of an object to which
any aliases for that object refer. DCE refers to objects
by their primary names, although DCE users can refer
to them by their aliases.

primary representation. The form in which the
service supplies an attribute value to the client.

primitive binding handle. RPC: A binding handle
whose data type in IDL is handle_t and in application
code is rpc_binding_handle_t. See also customized
binding handle.

principal. An entity that is capable of believing that it
can communicate securely with another entity. In DCE,
principals are represented as entries in the registry
database and include users, servers, computers, and
authentication surrogates.

principal identifier. The name used to identify a
principal uniquely. In DCE, principal identifiers are
implemented as UUIDs.

privacy. A protection level that may be specified in
secure RPC communications and that encrypts RPC
argument values.

private key. The key needed by a principal in public
key authentication. It is half of the key pair used in
public key authentication. The other half is the public
key. This method of public and private key pair usage
constitutes the public key protocol.

private key storage server. A server that stores
private keys in such a way that only their true owners
can retrieve them.

private object.

1. XDS: An OM object created in a workspace by using
the object management functions. The term is
simply used for contrast with a public object.

2. XOM: An object that is represented in an
unspecified fashion.

privilege attribute. An attribute of a principal that can
be associated with a set of permissions. DCE privilege
attributes are identity based and include the principal’s
name, group memberships, and native cell.

privilege attribute certificate (PAC). Data, describing
a principal’s privilege attributes, that has been certified
by an authority. In DCE, the privilege service is the
certifying authority and seals the privilege attribute data
in a ticket. The authorization protocol, DCE
authorization, determines the permissions granted to
principals by comparing the privilege attributes in PACs
with entries in an ACL.

privilege required. DFS: The administrative privilege
required to issue a DFS command that affects filesets
or DFS server processes. Administrative privilege for a

Glossary 113

DFS server process is granted to a user who is listed in
the administrative list for that server process. See also
administrative list.

privilege service. One of the services provided by
DCE security; the privilege service certifies a principal’s
privileges.

procedure declaration. RPC: The syntax for an
operation, including its name, the data type of the value
it returns (if any), and the number, order, and data types
of its parameters (if any).

process activation group (PAG). DFS: A unique
identifier that the DFS cache manager associates with a
user’s DCE credentials. The cache manager identifies
the user’s credentials by the associated PAG to allow
the user authenticated access to DFS. Processes forked
from the user’s login process inherit the PAG to allow
for authenticated access to DFS. The cache manager
stores the PAG in the kernel of the DFS client.

process entry. DFS: A definition in the BosConfig file
that determines a server process to run, the process’s
type, and any command parameters used by the
process.

profile. RPC: An entry in a name service database
that contains a collection of elements from which NSI
search operations construct search paths for the
database. Each search path is composed of one or
more elements that refer to name service entries
corresponding to a given RPC interface and, optionally,
a given object. See also NSI profile attribute,
profile element.

profile element. RPC: A record in an RPC profile that
maps an RPC interface identifier to a profile member (a
server entry, group, or profile in a name service
database). See also group, interface identifier,
profile, server entry.

profile member. RPC: A name service entry whose
name occupies the member field of an element of the
profile. See also profile.

project list. A list of all the groups in which a principal
is a member. The project list is used to determine the
principal’s access rights to objects. See also principal.

protection level. The degree to which secure network
communications are protected.

protocol sequence. See RPC protocol sequence.

protocol sequence vector. RPC: A data structure that
contains an array-size count and an array of pointers to
RPC protocol-sequence strings. See also RPC protocol
sequence.

PSAP. See Presentation Service Access Point.

public key. An authentication protocol that works via
public and private key pairs. The protocol is used by

security clients and servers to obtain TGTs for users
during login, and which is the first part of
user-authentication process. This method of public and
private key pair usage constitutes the public key
protocol.

public object.

1. XOM: An object that is represented by a data
structure whose format is part of the service’s
specification.

2. XDS: A descriptor list that contains all of the OM
attributes of an OM object.

purported name. A construct that is syntactically a
name but that has not yet been shown to be a valid
name.

RDN. See Relative Distinguished Name.

read access. An access right that grants the ability to
view CDS data.

read-only fileset. DFS: A fileset created by replicating
a read/write fileset. A read-only fileset is also referred to
as a read-only replica or a read-only version See also
backup fileset, read/write fileset.

read-only replica. A copy of a CDS directory in which
applications cannot make changes. Although
applications can look up information (read) from it, they
cannot create, modify, or delete entries in a read-only
replica. Read-only replicas become consistent with
other, modifiable replicas of the same directory during
skulks and routine propagation of updates.

read/write fileset. DFS: The single version of a fileset
that houses the modifiable versions of files and
directories. The read/write fileset is the original version
for which an FLDB entry is allocated. It serves as the
source fileset for its associated read-only and backup
filesets. It is also referred to as the read/write source or
read/write version. See also backup fileset, read-only
fileset.

read/write mount point. DFS: A type of mount point
that instructs the cache manager to access only the
exact fileset specified in the mount point, not its
read-only version. See also mount point, regular mount
point.

realm. A cell, considered exclusively from the point of
view of security; this term is used in Kerberos
specifications. In DCE documentation, the term ′′cell’’
designates the basic unit of DCE configuration and
administration, and incorporates the notion of a realm.

recurring attribute. An attribute with several attribute
values.

redirection. The act of changing the standard use of
input and output to a user-specific method. For
example, standard output can be redirected to a file.

114 DCE 2.2: Introduction to DCE

reentrant service. A service that is safe to call from
multiple threads in parallel. If a service is reentrant,
there is no burden placed on calling routines to serialize
their access or take other explicit precautions. See also
thread-serial service, thread-synchronous service.

reference monitor. Code that controls access to an
object. In DCE, servers control access to the objects
they maintain; and for a given object, the ACL manager
associated with that object makes authorization
decisions concerning the object.

reference pointer. RPC: A non-null pointer whose
value is invariant during a remote procedure call and
cannot point at aliased storage.

referral. An outcome that can be returned by a DSA
that cannot perform an operation itself. The referral
identifies one or more other DSAs more able to perform
the operation.

register.

1. RPC: To list an RPC interface with the RPC runtime.

2. RPC: To place server-addressing information into
the endpoint map.

3. RPC: To insert authorization and authentication
information into binding information. See also
endpoint map, RPC interface.

registry database. A database of information about
persons, groups, organizations, and accounts.

registry object. A data node in the registry database.
Registry objects are of the following object types:
principal, group, org, directory, policy, replist
(replica list), and xattrschema. There are many nodes of
the principal, group, org and directory types. There is
only one node each for the policy, replist and
xattrschema types.

registry replica. A read-only instance of a registry
database.

registry service. One of three services provided by
DCE security; the registry service manages account
information for principals. The other services are the
privilege service and the authentication service.

regular mount point. DFS: The most common type of
mount point. If the fileset it names is a read/write fileset,
the cache manager is free to access a read-only version
of the fileset (if one exists). See also mount point,
read/write mount point.

Relative Distinguished Name (RDN). A set of
Attribute Value Assertions (AVAs), each of which is true,
concerning the distinguished values of a particular entry.

relative time. A discrete time interval that is usually
added to or subtracted from an absolute time.

release replication. DFS: A method of updating
read-only copies of filesets. Release replication is not
automatic like scheduled replication; each update must
be initiated by an administrator. See also replication,
scheduled replication.

remote procedure. RPC: An application procedure
located in a separate address space from the calling
code. See also remote procedure call.

remote procedure call (RPC). RPC: A procedure call
executed by an application procedure located in a
separate address space from the calling code. See also
remote procedure.

replica.

1. CDS: a copy of a directory in the CDS namespace.
The first instance of a directory in the namespace is
the master replica. When CDS managers make
copies of the master replica to store in other
clearinghouses, all of the copies, including the
master replica, become part of the directory’s replica
set. See also read-only replica.

2. DFS: A read-only copy of a fileset that contains all
the data of the source fileset. As a full copy of a
fileset, a replica can exist on any aggregate. A
replica is different from a clone, which can reside
only on the same aggregate as the source fileset.
See also clone.

3. Security: An instance of the security server and its
database. One replica, the master replica, can
accept updates and queries to its database. The
slave replica can accept only queries.

replica set. The set of all copies of a CDS directory.
Information about a directory’s replica set is contained
in an attribute of directories and child pointers called
CDS_Replicas. The attribute contains the type of each
replica (master or read-only) and the clearinghouse
where it is located. When skulking a directory, CDS
refers to the directory’s replica set to ensure that it finds
all copies of that directory. During a lookup, CDS can
refer to the replica set in a child pointer when trying to
locate a directory that does not exist in the local
clearinghouse.

replication.

1. CDS: Making a copy of a CDS directory in another
clearinghouse. Replication can improve availability
and load sharing. See also replica.

2. GDS: The process by which copies of objects are
created and maintained.

3. DFS: The process of creating read-only copies of a
fileset. In DFS, there are two types of replication:
release replication and scheduled replication.
Replication is supported only for DCE LFS filesets.
See also release replication, scheduled
replication.

replication server. DFS: A server process used in
release replication and scheduled replication. The

Glossary 115

replication server tracks the currency of read-only
replicas of filesets. It updates each replica to match its
read/write source fileset as appropriate. See also
replication.

request buffer. RPC: A first-in, first-out queue where
an RPC system temporarily stores call requests that
arrive at an endpoint of an RPC server, until the server
can process them.

restore. DFS: The translation of a previously dumped
fileset back into fileset format and its eventual
replacement in the file system. The DFS Backup
System allows several different types of restores,
including full restores and date-specific restores. The
operation need not involve recovery from other media
such as tapes. See also date-specific restore, dump,
full restore.

return value. A function result that is returned in
addition to the values of any output or input/output
arguments.

RPC. See also remote procedure call, DCE remote
procedure call.

RPC control program. RPC: An interactive
management facility for managing name service entries
and endpoint maps for RPC applications. The program
is started by the rpccp command.

RPC interface. RPC: A logical grouping of operation,
data type, and constant declarations that serves as a
network contract for calling a set of remote procedures.
See also interface definition.

RPC protocol. RPC: An RPC-specific communications
protocol that supports the semantics of the DCE RPC
API and runs over either connectionless or
connection-oriented communications protocols.

RPC protocol sequence. RPC: A valid combination of
communications protocols represented by a character
string. Each protocol sequence typically includes three
protocols: a network protocol, a transport protocol, and
an RPC protocol that works with those network and
transport protocols. See also network protocol, RPC
protocol, transport protocol.

RPC runtime. RPC: A set of operations that manages
communications, provides access to the name service
database, and performs other tasks, such as managing
servers and accessing security information, for RPC
applications. See also RPC runtime library.

RPC runtime library. RPC: Routines of the RPC
runtime that support the RPC applications on a system.
The runtime library provides a public interface to
application programmers, the application programming
interface (API), and a private interface to stubs, the stub
programming interface (SPI). See also RPC runtime.

RPC thread. RPC: A logical thread within which a
remote procedure call executes. See also thread.

rundown procedure. RPC: A procedure, typically
used with a context handle, that is called following a
communications failure to recover resources reserved
by a server for servicing requests by a particular client.
See also context handle.

S-stub. The part of the DSA that establishes the
connection to the communications network.

salvager. DFS: A program that finds and attempts to
repair inconsistencies in DCE LFS aggregates. The
salvager is similar to the fsck program in other,
non-LFS file systems.

scheduled replication. DFS: A method of updating
read-only copies of filesets. Scheduled replication is
automatically performed by the replication server at
specified intervals. See also release replication,
replication.

schema. The directory schema is the set of rules and
constraints concerning the DIT structure, object class
definitions, attribute types, and syntaxes that
characterize the DIB. See also attribute schema.

schema entry. A record containing the identifiers and
characteristics of an attribute type. A schema entry is
essentially an attribute type definition.

schema object. The registry data node, with the
well-known name xattrschema (under the security
junction point, typically /.:/sec), containing the attribute
schema information. (Also called attribute schema
object.)

scout. DFS: A program that can be run on any
machine configured as a DFS client. It monitors the file
exporter running on designated file server machines by
periodically collecting statistics and displaying them in a
graphical format. See also attention threshold,
basename, disk usage.

seal. To encrypt a record containing several fields in
such a way that the fields cannot be modified without
either knowledge of the encryption key or leaving
evidence of tampering.

secondary representation. A second form, an
alternative to the primary representation, in which the
client can supply an attribute value to the service.

secondary site. DFS: A read-only site that receives
updates to its copy of a DFS administrative database
from the Ubik synchronization site. There can be more
than one secondary site. If necessary, a secondary site
can be elected to assume the role of synchronization
site. See also synchronization site, Ubik.

116 DCE 2.2: Introduction to DCE

secret key. A long-lived encryption key known to more
than one principal, usually two. In DCE, each secret key
is known to the Authentication Service and one other
principal.

security. See DCE Security Service.

segment. Zero or more contiguous elements of a
string.

self-pointing type. RPC: A data type containing a
pointer member that can point directly or indirectly to
another item of the same type.

SEP line. In an event class file, an entry that specifies
the prefixes of the event numbers in the file. This is an
optional entry and is used to speed up the search for
events in event class files.

server.

1. RPC: The party that receives remote procedure
calls. A given application can act as both an RPC
server and an RPC client. See also client.

2. CDS: A node running CDS server software. A CDS
server handles name-lookup requests and maintains
the contents of the clearinghouse or clearinghouses
at its node.

3. DTS: A system or process that synchronizes with its
peers and provides its clock value to clerks and their
client applications.

4. DFS: A provider of resources or services. See also
client.

5. GDS: The server consists of a DSA, which accesses
the database, and an S-stub, which handles the
connection over the communications network for
responding to remote clients and accessing remote
servers.

server addressing information. RPC: An RPC
protocol sequence, network address, and endpoint that
represent one way to access an RPC server over a
network; a part of server binding information. See also
binding information, endpoint, network address, RPC
protocol sequence.

server application thread. RPC: A thread executing
the server application code that initializes the server and
listens for incoming calls. See also application thread,
client application thread, local application
thread, RPC thread.

server binding information. RPC: Binding information
for a particular RPC server. See also binding
information, client binding information.

server entry.

1. RPC: A name service entry that stores the binding
information associated with the RPC interfaces of a
particular RPC server and also the object UUIDs for
any objects offered by the server. See also binding

information, NSI binding attribute, object, NSI
object attribute, RPC interface.

2. DFS: A unique identifier for a server machine in the
FLDB.

server instance. RPC: A server executing in a specific
address space; multiple server instances can coexist on
a single system. See also server.

server machine. DFS: A machine that runs one or
more DFS server processes. Depending on the process
it runs, a server machine can be further classified as a
file server machine, a system control machine, a binary
distribution machine, a fileset database machine, or a
backup database machine. See also client machine.

server module. DFS: The part of the DFS cache
manager that provides information for tracking server
activity.

server portion of update server. See upserver.

server process. DFS: A process that runs on server
machines, providing services such as storing and
transferring files or tracking fileset locations to clients.
See also server machine.

server stub. RPC: The surrogate calling code for an
RPC interface that is linked with server application code
containing one or more sets of remote procedures
(managers) that implement the interface. See also
client stub, manager, stub.

service. RPC: An integral set of RPC interfaces
offered together by a server to meet a specific goal.
See also RPC interface.

service controls. A group of parameters, applied to all
directory operations, that direct or constrain the
provision of the service.

session. A sequence of directory operations requested
by a particular user of a particular DUA. The operations
use the same session OM object.

session key. Used in Kerberos specifications;
acronym for ′′conversation key.’’ See also conversation
key.

set-id. In event numbers, the component of the event
number that identifies a set of events to which the audit
event belongs. In event class numbers, the component
of the event class number that identifies a set of event
classes to which the event class belongs.

shadow entry. A copy entry of an object. This is an
entry of an object in a DSA other than the master DSA.

signal. Threads: To wake only one thread waiting on a
condition variable. See also broadcast.

signed. Information is digitally signed by appending to
it an enciphered summary of the information. This is

Glossary 117

used to ensure the integrity of the data, the authenticity
of the originator, and the unambiguous relationship
between the originator and the data.

simple bnode. DFS: A bnode that manages a single
process that is to be kept running at all times. See also
bnode, basic overseer server.

simple name. One element in a CDS full name.
Simple names are separated by / (slashes).

simple object. An object that does not hold other
objects. For example, a file is a simple object. See also
container object.

simple process. DFS: A type of process defined in a
server machine’s BosConfig file. It runs continuously
and can be stopped and restarted independently of any
other process on its machine. See also cron process,
simple bnode.

site. DFS: The location of a fileset expressed as a
specific file server machine and aggregate.

site count. DFS: A count of the number of sites where
the read/write and read-only versions of a fileset reside.

site flags. DFS: A term for the flags associated with
each site definition in an FLDB entry. The flags can
indicate the fileset type (read/write or read-only) and
other administrative information.

skew. The time difference between two clocks or clock
values.

skulk. A process by which CDS makes the data
consistent in all replicas of a particular directory. CDS
collects all changes made to the master replica since
the last skulk completed, and disseminates the changes
from the up-to-date replica to all other existing replicas
of the directory. All replicas of a directory must be
available for a skulk to be considered successful. If a
skulk fails, CDS informs you of the replicas that it could
not reach.

slave replica. An instance of a security server that
accepts only queries to its associated registry database.
Slave replicas are updated by the master replica. Each
cell can have many slave replicas. See also master
replica.

soft link. A pointer that provides an alternate name for
an object entry, directory, or other soft link in the
namespace. A soft link can be permanent or it can
expire after a period of time that you specify. The CDS
server also can delete it automatically after the name
that the link points to is deleted.

source fileset. See read/write fileset.

specific. The attribute types that can appear in an
instance of a given class, but not in an instance of its
superclasses.

SPI. See stub programming interface.

SRT. See Structure Rule Table.

status flag. DFS: In a BosConfig file, the flag that tells
the BOS server whether a server process should be
running. In an FLDB entry, the flag that indicates
whether a fileset of each possible type (read/write,
read-only, and backup) actually exists at a site. In a
fileset header, a flag that indicates whether the contents
of the fileset are accessible via the file server machine.

status token. DFS: A token that grants access to the
status information associated with a file or directory.
Read and write status tokens are available.

string. An ordered sequence of bits, octets, or
characters, accompanied by the string’s length.

Structure Rule Table (SRT). A recurring attribute of
the directory schema with the description of the
permitted structures of distinguished names.

stub. RPC: A code module specific to an RPC
interface that is generated by the DCE IDL compiler to
support remote procedure calls for the interface. RPC
stubs are linked with client and server application and
hide the intricacies of remote procedure calls from the
application code. See also client stub, server stub.

stub programming interface (SPI). A private RPC
runtime interface whose routines are unavailable to
application code.

subclass. One of the classes, designated as such,
whose attribute types are a superset of those of another
class.

subobject. An object that is in a subordinate
relationship to a given object.

subordinate. In the DIT, an entry is subordinate to
another if its distinguished name includes that of the
other as a prefix.

superclass. One of the classes, designated as such,
whose attribute types are a subset of those of another
class.

superior. In the DIT, an entry is superior to another if
its distinguished name is included as a prefix of the
distinguished name of the other. Each entry has exactly
one immediate superior.

superobject. An object that is in a superior
relationship to a given object.

synchronization. DTS: The process by which a DTS
entity requests clock values from other systems,
computes a new time from the values, and adjusts its
system clock to the new time.

118 DCE 2.2: Introduction to DCE

synchronization list. DTS: The list of servers that a
DTS entity has discovered; the entity sends requests for
clock values to the servers on the list.

synchronization site. DFS: The one Ubik site that
accepts changes to its copy of a DFS administrative
database and distributes them to the secondary sites.
The synchronization site can change as necessary. See
also secondary site, Ubik.

syntax. XOM: (1) An OM syntax is any of various
categories into which the object management
specification statically groups values on the basis of
their form. These categories are additional to the OM
type of the value. (2) A category into which an attribute
value is placed on the basis of its form. See also
attribute syntax.

syntax template. A lexical construct containing an
asterisk from which several attribute syntaxes can be
derived by substituting text for the asterisk.

system control machine. DFS: The machine that
distributes common configuration files to other server
machines in the cell or administrative domain. The
system control machine runs the server portion of the
update server for this purpose. See also server
machine, update server, upserver.

system time. The time value that the operating
system maintains according to its reading of the
system’s hardware clock.

tape coordinator. DFS: A process that runs on a tape
coordinator machine and controls the behavior of one
tape drive. There must be one tape coordinator running
for each tape drive in use.

tape coordinator ID (TCID). DFS: A number, assigned
when a tape coordinator machine is configured, that
uniquely identifies each tape coordinator and the
associated tape drive. Backup operators use it to
specify the tape coordinator that is to execute a
command.

tape coordinator machine. DFS: A client machine on
which backup and restore operations are performed with
the DFS backup system. Each tape coordinator
machine must have one tape drive attached and must
run one instance of the butc process for each drive.

target restrictions. Restrictions on the targets to
whom a client’s delegated identity can be projected.

TCID. See tape coordinator ID.

TCP. See Transmission Control Protocol.

TDF. See Time Differential Factor.

thread. A single sequential flow of control within a
process.

thread handle. RPC: A data item that enables threads
to share a memory management environment.

thread-serial service. A reentrant system service is
thread-serial if it blocks the current thread and all other
threads that attempt to call the same service or other
related services until the first call returns.

thread-synchronous service. A reentrant system
service is thread-synchronous if it blocks only the
current thread and allows other threads to execute the
same operation during the block.

tick. DTS: The clock timer interrupt that causes the
operating system to increment the system time.

ticket. An application-transparent mechanism that
transmits the identity of an initiating principal to its
target. A simple ticket contains the principal’s identity, a
session key, a timestamp, and other information, sealed
using the target’s secret key. A privilege ticket contains
the same information as a simple ticket, and also
includes a privilege attribute certificate. A ticket-granting
ticket is ticket to the ticket-granting service; a service
ticket is a ticket for a specified service other than the
ticket-granting service.

Time Differential Factor (TDF). DTS: The difference
between UTC and the time in a particular time zone.

time-provider. DTS: A hardware device that monitors
UTC time and forwards it to a DTS server.

Time-Provider Interface (TPI). A software
intermediary between the DTS server and external
time-provider processes. The DTS server uses the
interface to obtain UTC time values and to determine
the associated inaccuracy of each value.

time-provider program. DTS: Software that enables a
time-provider device to call the time-provider interface
and supply time values to a DTS server.

timeslicing. A mechanism by which running threads
are preempted at fixed intervals. This ensures that
every thread is allowed time to execute.

token. DFS: A device sent along with requested data
from a file server machine to a client machine to
indicate the types of operations (for example, read or
write) the client can perform on the data. It prevents
simultaneous access while permitting cooperative
access; for example, only one client can possess a
write token for a single piece of data at any given time.
A client must have the appropriate tokens to operate on
a file exporter. See also data token.

token management layer. DFS: The part of the DFS
cache manager that handles file and directory tokens.
See also token manager.

Glossary 119

token manager. DFS: A component that maintains the
set of file and directory tokens that have been granted
to existing clients of a file server machine. See also
token management layer.

top-level pointer. RPC: A pointer parameter that, in a
chain of pointers, is the only member that is not the
referent of any other pointer.

tower. Physical address and protocol information for a
particular server. CDS uses this information to locate
the system on which a server resides and to determine
which protocols are available at the server. Tower
values are contained in the CDS_Towers attribute
associated with the object entry that represents the
server in the cell namespace.

TP server. DTS: A server system connected to a
time-provider.

TPI. See Time-Provider Interface.

traced delegation. Transmission of a delegation
initiator’s identity in a manner that preserves the
identities of each participant in a call chain.

transaction. A related set or unit of changes to
metadata. The events in a transaction are atomic. No
change takes effect unless all the changes that make
up that transaction are performed. See also log.

transfer syntax. RPC: A set of encoding rules used
for transmitting data over a network and for converting
application data to and from different local data
representations. See also Network Data
Representation.

transmissible. Able to send a data type over the
network by way of an RPC operation.

Transmission Control Protocol (TCP). A protocol of
the Internet Protocol (IP) family.

transmitted type. RPC: For data types with the IDL
transmit_as attribute, the data type that stubs pass
over the network. Stubs invoke conversion routines to
convert the transmitted type to a presented type, which
is manipulated by clients and servers. See also
presented type.

transparent access. DFS: A feature that allows users
to access files without needing to know which machine
stores the files. The FLDB keeps track of fileset
locations, so the user needs to know only a file’s
pathname. See also fileset location database.

transport independence. RPC: The capability, without
changing application code, to use any transport protocol
that both the client and server systems support, while
guaranteeing the same call semantics. See also
transport layer, transport protocol.

transport layer. A network service that provides
end-to-end communications between two parties, while
hiding the details of the communications network. The
TCP and ISO TP4 transport protocols provide
full-duplex virtual circuits on which delivery is reliable,
error free, sequenced, and duplicate free. UDP provides
no guarantees (the connectionless RPC protocol
provides some guarantees on top of UDP).

transport protocol. A communications protocol from
the transport layer of the OSI network architecture, such
as the TCP or the UDP.

trigger. A remote operation, associated with an
attribute type, that is executed when attributes of that
type are either queried or updated.

trigger type. A classification, either query or update,
on a trigger that identifies on which attribute operation
the trigger will be invoked.

trust path. See authentication path.

trust peer. A characterization of one cell with respect
to another with which the cell maintains a mutual
authentication surrogate.

type. XOM: A category into which attribute values are
placed on the basis of their purpose. See also
attribute type.

type UUID. RPC: The universal unique identifier that
identifies a particular type of object and an associated
manager. See also manager, object, Universal Unique
Identifier.

Ubik. DFS: A library of utilities that the DFS FL server
and the DFS backup server use to keep individual
copies of the FLDB and the backup database. See also
secondary site, synchronization site.

UFS. See UNIX File System.

unauthenticated mask. The maximum set of
permissions granted when access to the object is not
authenticated. Unauthenticated access is granted only if
the caller matches some ACL entry (frequently the
any_other entry) and if the required permission is
granted by both the entry and the mask.

unconfigure. To remove configuration data.

unexport. RPC: To remove binding information from a
server entry in a name service database. See also
export.

uniquifier. DFS: A piece of data that, in combination
with a fileset ID, produces a globally unique identifier.

Universal Unique Identifier (UUID). RPC: An
identifier that is immutable and unique across time and
space. A UUID can uniquely identify an entity such as
an RPC interface or object. See also interface UUID,
object UUID, type UUID.

120 DCE 2.2: Introduction to DCE

UNIX File System (UFS). A section of the UNIX file
tree that is physically contained on a single device or
disk partition and that can be separately mounted,
dismounted, and administered.

unmarshalling. RPC: The process by which a stub
disassembles incoming network data and converts it
into local data in the appropriate local data
representation. See also marshalling, network data.

unpickle. A decoding of a typed value in a byte
stream.See also pickle.

unpredictable. A violation of an architecture rule that
an implementation is not required to report. Results can
include an error report from a threads call, the operating
system, or the hardware; a hang or deadlock of the
program; or an incorrect operation of the program
without indication of error.

unreachable. At your current location in the network,
you cannot get to your destination. For example, the
network address may be in use or a physical network
connection may not exist or be operational.

upclient. DFS: A process that runs on DFS server
machines, taking copies of common configuration files
and new DFS server process binary files from central
sources. See also update server, upserver.

update propagation. An immediate attempt to apply a
change to all replicas of the CDS directory in which the
change was just made. An update propagation delivers
changes in a more efficient and timely way than a skulk,
which is the periodic distribution of a whole collection of
changes.

update server. DFS: A process that guarantees that
all DFS server machines in a cell have the same
versions of common configuration files and the same
versions of DFS binary files appropriate for their
machine types. It has a server portion called the
upserver and a client portion called the upclient. See
also upclient, upserver.

Update Timestamp (UTS). An attribute that identifies
the time at which the most recent change was made to
any attribute of a particular CDS name. For directories,
the UTS reflects changes made only to attributes that
apply to the directory as a whole (not one of its
replicas).

upserver. DFS: A process that runs on DFS server
machines, making local copies of common configuration
files and new DFS server process binary files available
to other DFS server machines. See also upclient,
update server.

user. GDS: The end user of the directory; the entity or
person that accesses the directory. A user can be an
application program that is calling the directory interface
on behalf of a human user.

user data. DFS: Data such as ASCII and binary files
that resides in a fileset. The data is manipulated and
accessed by users of the file system.

User Datagram Protocol (UDP). A protocol of the
Internet Protocol (IP) family.

user-to-user. A protocol used in the ticket-granting
process of security authentication of an application.

UTC. See Coordinated Universal Time.

UTS. See Update Timestamp.

UUID. See Universal Unique Identifier.

V file. DFS: With disk caches, a file on the disk that,
by default, can hold up to 64 kilobytes of cached data. A
maximum of 32,000 V files can be used for one disk
cache.

value. XOM: An arbitrarily complex information item
that can be viewed as a characteristic or property of an
object. See also attribute value.

varying array. RPC: An array whose elements do not
all need to be transmitted during a remote procedure
call.

vector. RPC: An array of other structures and the
number of array items.

VFS. See Virtual File System.

VFS+. DFS: Extensions to the standard UNIX Virtual
File System (VFS). See also Virtual File System.

Virtual File System (VFS). DFS: A level of abstraction
above the specific interfaces to various types of file
systems. It is used to avoid having to change kernel
code to handle low-level, system-specific differences.

vnode. DFS: The structure used to access the inode
or anode structure associated with a specific file through
a virtual file system interface. The term vnode stands for
virtual node. See also anode.

WAN. See wide area network.

WAN links. Communications connections between
groups of computers that are spread across a large
geographical distance. Modem connections, T1 lines,
and satellite hookups are some common examples. See
also wide area network.

well-known endpoint. RPC: A preassigned, stable
endpoint that a server can use every time it runs.
Well-known endpoints typically are assigned by a
central authority responsible for a transport protocol. An
application declares a well-known endpoint either as an
attribute in an RPC interface header or as a variable in
the server application code. See also dynamic endpoint,
endpoint.

Glossary 121

wide area network (WAN). A network that includes
computers spread across a large geographical distance,
usually involving several cities, states, or countries.

workspace. XDS: A space in which OM objects of
certain OM classes can be created, together with an
implementation of the object management functions that
supports those OM classes.

workspace interface. The interface as realized, for
the dispatcher’s benefit, by each workspace individually.

XDS. X/Open Common Application Environment
specification for Directory Services API.

XOM. X/Open Common Application Environment
specification for OSI-Abstract-Data Manipulation API.

122 DCE 2.2: Introduction to DCE

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594

USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Department LZKS

11400 Burnet Road

Austin, Texas 78758

USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

v AIX

v IBM

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

DFS is a trademark of the Transarc Corporation.

Microsoft, Windows, Windows NT®, and the Windows logo are registered
trademarks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1992, 1998 123

124 DCE 2.2: Introduction to DCE

Index

A
ACLs

example (figure) 59
in security service 55, 58

administration
client 19
server 20

aggregate 62
application message service 70
audit service 55
authentication service 54, 58
authorization service 58

B
backing store databases 70
backup server 64
basic overseer server 64
binding 35

C
cache manager 63
caching

in CDS 47
in GDA 49

CDS 11, 40, 45
additional information 47
administration 47
components 45
control program 45
database 46
end user’s perspective 47
programming with 47

cdscp program 45
cell

definition 12
Cell Directory Service 11
clearinghouse 45, 46
client/server

as nodes 5
as roles 5
model 4
model (figure) 5

condition variable 30
configuration 17

basic components 19
cells 22, 86
connected DCE cell 25
DCE cell with DFS 24
DFS 66
machines 17, 21
overview 12, 17
simple DCE cell 23

configuration components 19
consistency

in CDS 47
in DFS 64

Coordinated Universal Time 50
cross-component facilities 69

D
data sharing

in DFS 8
in directory service 8
model 7

database
backing store 70
CDS 46
security 55

DCE
administrative interface 70
administrator machine 17
administrator software 18
and related software 9, 13, 14, 38, 60
and related software (figure) 9
architecture 9
architecture (figure) 10
control program 33
cross-component facilities 69
directory service 39
host daemon 33
host services 69
motivation 2
overview 1
potential users 3
server machines 17
user machine 17
user software 18

DCE/File-Access 12
dcecp 33, 45, 70
dced daemon 33, 37, 44, 69
DFA 12
DFS 11, 61

additional information 69
administration 69
components 62
configuration 66
configuration (figure) 67, 68
data organization 61
end user’s perspective 68
features 65
programming with 69

DFS/NFS gateway 64
dfstrace utility 64
directories

CDS 46
DFS 61

directory entry 46
directory service 10, 39

administration 44
architecture 40
components (figure) 48
components overview 40
end user’s perspective 44

© Copyright IBM Corp. 1992, 1998 125

directory service (continued)
lookup 44
programming with 44

distributed computing 1
models 4
motivation for 1

Distributed Computing Environment 9
Distributed File Service 11
distributed object model 4
Distributed Time Service 11
DTS 11, 50

additional information 54
administration 53
components 50
end user’s perspective 53
programming with 53

E
endpoint mapper service 70
extended registry attribute 55
external time-provider 52

F
File-Access 12
file exporter 63
files 61
fileset 62

location server 64
server 64

G
GDA 11, 41, 48

additional information 49
GDS 11, 41
Generic Security Service 60
global

names 43
root (/...) 42, 43

Global Directory Agent 11
Global Directory Service 11
greet

application example 71
greet application example 71
GSSAPI 60

I
IDL files 34
implementation dependencies 14
inaccuracy

time 50
information architecture 49
initialization, cell 85
integration

overview 13
interface

definition 34

J
join routine 30

K
Kerberos 60
key table management service 69

L
LFS 11, 63
Local File System 11, 63
login facility 55

M
management 12
mutex object 30

N
namespace 40, 42, 44
naming 44

specialized naming services 44
Network Time Protocol 54
NTP 54

O
object model and DCE 4
object-operation syntax 71

P
password strength service 55
porting 85
principals 55
privilege service 54
profiles 44
protection level 58
public key certification 60
public key login 55

R
registration 44
registry service 55
related documents 87
remote procedure call 7
replication

in CDS 46
in DFS 64

replication server 64
rlogin 60
RPC 10, 31

additional information 39
administration 36
and system independence 38
authenticated 58
end user’s perspective 33

126 DCE 2.2: Introduction to DCE

RPC (continued)
how it works 37
model 7, 31
programming 33

rsh 60

S
Scout 64
secd daemon 69
security service 11, 54

additional information 61
administration 59
components 54
end user’s perspective 57
how it works 56
programming with 57
public key certification 60

security validation service 69
serviceability 70
skulking 47
standards

and DFS 66
and DTS 50
and Threads 28
and XDS 49

stub
client 35
server 35

T
Tcl 71
TDF 53
technology components 27

integration 83, 85
overview 10

testing 85
Threads 10, 28

additional information 31
administration 31
communications 30
end user’s perspective 29
exceptions 31
management 29
programming with 29
scheduling 29
synchronization 30

time
correctness 50
DTS format 53
synchronization 50, 51

Time Differential Factor 53
token manager 63
tokens 63
Tool Command Language 71

U
upclient process 64
update server 64

upserver process 64
user

client 19
server 19

UTC 50
utilities

secure remote 60
uuidgen program 33

X
X/Open Directory Service 11
XDS 11, 41, 49
XOM 49

Index 127

128 DCE 2.2: Introduction to DCE

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

