
IBM Distributed Computing Environment for AIX,
Version 2.2:

Application Development Reference

IBM

IBM Distributed Computing Environment for AIX,
Version 2.2:

Application Development Reference

IBM

Note
Before using this document, read the general information under “Appendix. Notices” on page 1607.

First Edition (February 1998)

This edition applies to Version 2.2 of IBM Distributed Computing Environment for AIX and to all subsequent releases
and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. Send your comments to the following address:

International Business Machines Corporation

Department VLXA

11400 Burnet Road

Austin, Texas

78758

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

Copyright © 1995, 1996 Open Software Foundation, Inc.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

Copyright © 1995, 1996 Hitachi, Ltd.

Licensee agrees that it will comply with and will require its Distributors to comply with all then applicable laws, rules
and regulations (i) relating to the export or re-export of technical data when exporting or re-exporting a Licensed
Program or Documentation, and (ii) required to limit a governmental agency’s rights in the Licensed Program,
Documentation or associated technical data by affixing a Restricted Rights notice to the Licensed Program,
Documentation and/or technical data equivalent to or substantially as follows: ″Use, duplication or disclosure by the
U.S. Government is subject to restrictions as set forth in DFARS 52.227-7013(c)(1)(i)-(ii); FAR 52.227-19; and FAR
52.227-14, Alternate III, as applicable or in the equivalent clause of any other applicable Federal government
regulations.″

© Copyright International Business Machines Corporation 1992, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface . xix
Audience. xix
Purpose . xix
Document Usage. xix
Related Documents . xx
Typographic and Keying Conventions xx
Pathnames of Directories and Files in DCE Documentation xxi

Chapter 1. DCE Routines . 1
dce_intro . 2
dce_attr_intro . 4
dce_cf_intro . 6
dce_db_intro . 9
dce_msg_intro. 13
dce_server_intro . 15
dce_svc_intro . 17
dced_intro . 20
dce_svc_intro . 30
dce_assert . 33
dce_attr_sch_aclmgr_strings 34
dce_attr_sch_bind . 36
dce_attr_sch_bind_free . 38
dce_attr_sch_create_entry . 39
dce_attr_sch_cursor_alloc . 41
dce_attr_sch_cursor_init . 43
dce_attr_sch_cursor_release 45
dce_attr_sch_cursor_reset . 46
dce_attr_sch_delete_entry . 47
dce_attr_sch_get_acl_mgrs . 49
dce_attr_sch_lookup_by_id . 51
dce_attr_sch_lookup_by_name 53
dce_attr_sch_scan . 55
dce_attr_sch_update_entry . 57
dce_cf_binding_entry_from_host 59
dce_cf_dced_entry_from_host 61
dce_cf_find_name_by_key . 63
dce_cf_find_names_by_key . 65
dce_cf_free_cell_aliases . 67
dce_cf_get_cell_aliases . 69
dce_cf_get_cell_name . 71
dce_cf_get_csrgy_filename . 73
dce_cf_get_host_name . 75
dce_cf_prin_name_from_host 77
dce_cf_profile_entry_from_host 79
dce_cf_same_cell_name . 81
dce_db_close . 83
dce_db_delete. 84
dce_db_delete_by_name . 86
dce_db_delete_by_uuid . 87
dce_db_fetch . 89
dce_db_fetch_by_name . 91
dce_db_fetch_by_uuid . 93
dce_db_free . 95

© Copyright IBM Corp. 1992, 1998 iii

dce_db_header_fetch . 96
dce_db_inq_count . 98
dce_db_iter_done . 99
dce_db_iter_next . 100
dce_db_iter_next_by_name . 102
dce_db_iter_next_by_uuid . 104
dce_db_iter_start . 105
dce_db_lock . 106
dce_db_open . 107
dce_db_std_header_init . 110
dce_db_store . 112
dce_db_store_by_name . 114
dce_db_store_by_uuid. 116
dce_db_unlock . 118
dce_error_inq_text . 119
dce_msg_cat_close . 121
dce_msg_cat_get_msg . 122
dce_msg_cat_open . 123
dce_msg_define_msg_table . 124
dce_msg_get . 126
dce_msg_get_cat_msg . 128
dce_msg_get_default_msg . 129
dce_msg_get_msg . 131
dce_msg_translate_table . 133
dce_pgm_printf, dce_pgm_fprintf, dce_pgm_sprintf 135
dce_printf, dce_fprintf, dce_sprintf 137
dce_server_disable_service . 139
dce_server_enable_service . 140
dce_server_inq_attr . 142
dce_server_inq_server. 143
dce_server_inq_uuids . 144
dce_server_register . 145
dce_server_sec_begin . 147
dce_server_sec_done . 149
dce_server_unregister . 150
dce_server_use_protseq . 151
dce_svc_components . 152
dce_svc_debug_routing . 154
dce_svc_debug_set_levels . 155
dce_svc_define_filter . 157
dce_svc_filter . 160
dce_svc_log_close . 162
dce_svc_log_get . 163
dce_svc_log_open . 164
dce_svc_log_rewind . 165
dce_svc_printf . 166
dce_svc_register . 169
dce_svc_routing . 171
dce_svc_set_progname . 172
dce_svc_table . 174
dce_svc_unregister . 176
dced_binding_create . 177
dced_binding_free . 180
dced_binding_from_rpc_binding 181
dced_binding_set_auth_info . 184
dced_entry_add . 186

iv IBM DCE for AIX, Version 2.2: Application Development Reference

dced_entry_get_next . 188
dced_entry_remove . 190
dced_hostdata_create . 192
dced_hostdata_delete . 195
dced_hostdata_read . 197
dced_hostdata_write . 199
dced_initialize_cursor . 201
dced_inq_id. 203
dced_inq_name . 205
dced_keytab_add_key . 207
dced_keytab_change_key . 209
dced_keytab_create. 211
dced_keytab_delete. 213
dced_keytab_get_next_key . 215
dced_keytab_initialize_cursor 217
dced_keytab_release_cursor 219
dced_keytab_remove_key . 220
dced_list_get . 222
dced_list_release. 224
dced_object_read . 225
dced_object_read_all . 228
dced_objects_release . 231
dced_release_cursor . 233
dced_secval_start . 234
dced_secval_status . 236
dced_secval_stop . 238
dced_secval_validate . 240
dced_server_create . 242
dced_server_delete . 244
dced_server_disable_if . 246
dced_server_enable_if . 248
dced_server_modify_attributes 250
dced_server_start . 252
dced_server_stop . 255
DCE_SVC_DEBUG . 258
DCE_SVC_DEBUG_ATLEAST. 260
DCE_SVC_DEBUG_IS . 261
DCE_SVC_DEFINE_HANDLE 262
DCE_SVC_LOG . 263
svcroute . 265

Chapter 2. DCE Threads . 269
thr_intro . 270
datatypes . 274
atfork . 277
exceptions . 278
pthread_attr_create . 279
pthread_attr_delete . 280
pthread_attr_getinheritsched 281
pthread_attr_getprio. 282
pthread_attr_getsched . 283
pthread_attr_getstacksize . 284
pthread_attr_setinheritsched 285
pthread_attr_setprio. 287
pthread_attr_setsched . 289
pthread_attr_setstacksize. 291

Contents v

pthread_cancel . 292
pthread_cleanup_pop . 294
pthread_cleanup_push. 295
pthread_cond_broadcast . 296
pthread_cond_destroy . 297
pthread_cond_init . 298
pthread_cond_signal . 300
pthread_cond_timedwait . 301
pthread_cond_wait . 303
pthread_condattr_create . 305
pthread_condattr_delete . 306
pthread_create . 307
pthread_delay_np . 310
pthread_detach . 311
pthread_equal . 312
pthread_exit . 313
pthread_get_expiration_np . 314
pthread_getprio . 315
pthread_getscheduler . 316
pthread_getspecific . 317
pthread_getunique_np . 318
pthread_join . 319
pthread_keycreate . 320
pthread_lock_global_np . 322
pthread_mutex_destroy . 323
pthread_mutex_init . 324
pthread_mutex_lock. 325
pthread_mutex_trylock. 327
pthread_mutex_unlock. 328
pthread_mutexattr_create . 329
pthread_mutexattr_delete. 330
pthread_mutexattr_getkind_np 331
pthread_mutexattr_setkind_np 332
pthread_once . 334
pthread_pseudo_thread_base_end 336
pthread_pseudo_thread_base_start 338
pthread_self . 340
pthread_setasynccancel . 341
pthread_setcancel . 343
pthread_setprio . 345
pthread_setscheduler . 347
pthread_setspecific . 350
pthread_signal_to_cancel_np 351
pthread_testcancel . 352
pthread_unlock_global_np . 353
pthread_yield . 354
sigaction . 355
sigpending . 357
sigprocmask . 358
sigwait . 360
ctime_r, localtime_r, gmtime_r, or asctime_r 361
rand_r . 363
readdir_r . 364

Chapter 3. DCE Remote Procedure Call 367
rpc_intro . 368

vi IBM DCE for AIX, Version 2.2: Application Development Reference

cs_byte_from_netcs. 398
cs_byte_local_size . 401
cs_byte_net_size. 404
cs_byte_to_netcs. 407
dce_cs_loc_to_rgy . 410
dce_cs_rgy_to_loc . 413
idl_es_decode_buffer . 415
idl_es_decode_incremental . 417
idl_es_encode_dyn_buffer . 419
idl_es_encode_fixed_buffer . 421
idl_es_encode_incremental . 423
idl_es_handle_free . 426
idl_es_inq_attrs . 427
idl_es_inq_encoding_id . 428
idl_es_set_attrs . 430
idl_es_set_transfer_syntax . 431
rpc_binding_copy . 432
rpc_binding_free . 434
rpc_binding_from_string_binding 436
rpc_binding_inq_auth_caller . 438
rpc_binding_inq_auth_client . 442
rpc_binding_inq_auth_info . 446
rpc_binding_inq_object . 449
rpc_binding_reset . 450
rpc_binding_server_from_client 452
rpc_binding_set_auth_info . 455
rpc_binding_set_object . 460
rpc_binding_to_string_binding 462
rpc_binding_vector_free . 464
rpc_cs_binding_set_tags . 466
rpc_cs_char_set_compat_check 468
rpc_cs_eval_with_universal . 470
rpc_cs_eval_without_universal 472
rpc_cs_get_tags . 474
rpc_ep_register . 477
rpc_ep_register_no_replace . 481
rpc_ep_resolve_binding . 485
rpc_ep_unregister . 489
rpc_if_id_vector_free . 491
rpc_if_inq_id . 493
rpc_mgmt_ep_elt_inq_begin. 494
rpc_mgmt_ep_elt_inq_done . 498
rpc_mgmt_ep_elt_inq_next . 500
rpc_mgmt_ep_unregister . 503
rpc_mgmt_inq_com_timeout. 505
rpc_mgmt_inq_dflt_protect_level 507
rpc_mgmt_inq_if_ids . 509
rpc_mgmt_inq_server_princ_name 511
rpc_mgmt_inq_stats. 513
rpc_mgmt_is_server_listening 515
rpc_mgmt_set_authorization_fn 517
rpc_mgmt_set_call_timeout . 520
rpc_mgmt_set_cancel_timeout 521
rpc_mgmt_set_com_timeout. 523
rpc_mgmt_set_server_stack_size 525
rpc_mgmt_stats_vector_free 527

Contents vii

rpc_mgmt_stop_server_listening 528
rpc_network_inq_protseqs . 530
rpc_network_is_protseq_valid 532
rpc_ns_binding_export . 534
rpc_ns_binding_import_begin 537
rpc_ns_binding_import_done 539
rpc_ns_binding_import_next. 541
rpc_ns_binding_inq_entry_name 544
rpc_ns_binding_lookup_begin 546
rpc_ns_binding_lookup_done 549
rpc_ns_binding_lookup_next 551
rpc_ns_binding_select . 555
rpc_ns_binding_unexport . 557
rpc_ns_entry_expand_name 560
rpc_ns_entry_inq_resolution. 562
rpc_ns_entry_object_inq_begin 564
rpc_ns_entry_object_inq_done 566
rpc_ns_entry_object_inq_next 568
rpc_ns_group_delete . 570
rpc_ns_group_mbr_add . 572
rpc_ns_group_mbr_inq_begin 574
rpc_ns_group_mbr_inq_done 576
rpc_ns_group_mbr_inq_next 578
rpc_ns_group_mbr_remove . 580
rpc_ns_import_ctx_add_eval 582
rpc_ns_mgmt_binding_unexport 585
rpc_ns_mgmt_entry_create . 589
rpc_ns_mgmt_entry_delete . 591
rpc_ns_mgmt_entry_inq_if_ids 593
rpc_ns_mgmt_free_codesets 595
rpc_ns_mgmt_handle_set_exp_age 597
rpc_ns_mgmt_inq_exp_age . 600
rpc_ns_mgmt_read_codesets 602
rpc_ns_mgmt_remove_attribute 604
rpc_ns_mgmt_set_attribute . 606
rpc_ns_mgmt_set_exp_age . 608
rpc_ns_profile_delete . 610
rpc_ns_profile_elt_add. 612
rpc_ns_profile_elt_inq_begin 615
rpc_ns_profile_elt_inq_done. 619
rpc_ns_profile_elt_inq_next . 621
rpc_ns_profile_elt_remove . 624
rpc_object_inq_type. 626
rpc_object_set_inq_fn . 628
rpc_object_set_type. 630
rpc_protseq_vector_free . 632
rpc_rgy_get_codesets . 633
rpc_rgy_get_max_bytes . 635
rpc_server_inq_bindings . 637
rpc_server_inq_if . 639
rpc_server_listen . 641
rpc_server_register_auth_ident 644
rpc_server_register_auth_info 646
rpc_server_register_if . 650
rpc_server_unregister_if . 653
rpc_server_use_all_protseqs 655

viii IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_use_all_protseqs_if 658
rpc_server_use_protseq . 661
rpc_server_use_protseq_ep . 663
rpc_server_use_protseq_if . 665
rpc_sm_allocate . 668
rpc_sm_client_free . 670
rpc_sm_destroy_client_context. 671
rpc_sm_disable_allocate . 672
rpc_sm_enable_allocate . 673
rpc_sm_free . 674
rpc_sm_get_thread_handle . 675
rpc_sm_set_client_alloc_free 677
rpc_sm_set_thread_handle . 679
rpc_sm_swap_client_alloc_free 681
rpc_ss_allocate . 683
rpc_ss_bind_authn_client. 685
rpc_ss_client_free . 687
rpc_ss_destroy_client_context 688
rpc_ss_disable_allocate . 689
rpc_ss_enable_allocate . 690
rpc_ss_free . 691
rpc_ss_get_thread_handle . 692
rpc_ss_set_client_alloc_free. 694
rpc_ss_set_thread_handle . 696
rpc_ss_swap_client_alloc_free 698
rpc_string_binding_compose 700
rpc_string_binding_parse . 702
rpc_string_free . 704
rpc_tower_to_binding . 706
rpc_tower_vector_free . 708
rpc_tower_vector_from_binding 709
uuid_compare . 710
uuid_create . 712
uuid_create_nil . 713
uuid_equal . 714
uuid_from_string . 716
uuid_hash . 718
uuid_is_nil . 719
uuid_to_string . 721

Chapter 4. DCE Directory Service 723
xds_intro . 724
decode_alt_addr . 726
dsX_extract_attr_values . 728
ds_add_entry . 730
ds_bind . 733
ds_compare . 735
ds_initialize . 738
ds_list . 739
ds_modify_entry . 741
ds_modify_rdn. 744
ds_read . 746
ds_remove_entry. 749
ds_search . 751
ds_shutdown . 754
ds_unbind . 755

Contents ix

ds_version . 757
encode_alt_addr . 759
gds_decode_alt_addr . 761
gds_encode_alt_addr . 763
xds_intro . 765
xds.h . 766
xdsbdcp.h . 774
xdscds.h . 778
xdsdme.h . 780
xdsgds.h . 781
xdsmdup.h . 784
xdssap.h . 786
xmhp.h . 789
xmsga.h . 798
xom_intro . 801
omX_extract . 804
omX_fill . 808
omX_fill_oid . 810
omX_object_to_string . 811
omX_string_to_object . 813
om_copy . 815
om_copy_value . 817
om_create . 819
om_delete . 821
om_get . 823
om_instance . 827
om_put . 829
om_read . 832
om_remove . 834
om_write . 836
xom.h . 839

Chapter 5. DCE Distributed Time Service 845
dts_intro . 846
utc_abstime. 850
utc_addtime . 852
utc_anytime. 854
utc_anyzone . 856
utc_ascanytime . 858
utc_ascgmtime . 860
utc_asclocaltime . 861
utc_ascreltime . 863
utc_binreltime . 864
utc_bintime . 866
utc_boundtime. 867
utc_cmpintervaltime . 869
utc_cmpmidtime . 872
utc_gettime . 874
utc_getusertime . 875
utc_gmtime . 876
utc_gmtzone . 878
utc_localtime . 880
utc_localzone . 882
utc_mkanytime . 884
utc_mkascreltime. 886
utc_mkasctime . 888

x IBM DCE for AIX, Version 2.2: Application Development Reference

utc_mkbinreltime . 890
utc_mkbintime . 891
utc_mkgmtime. 893
utc_mklocaltime . 894
utc_mkreltime . 896
utc_mulftime . 898
utc_multime. 900
utc_pointtime . 902
utc_reltime . 903
utc_spantime . 904
utc_subtime. 906

Chapter 6. DCE Security Service 909
sec_intro . 910
Registry API Data Types . 912
Extended Registry Attribute Data Types 922
Login API Data Types . 935
Extended Privilege Attribute API Data Types. 938
ACL API Data Types . 943
Key Management API Data Types 950
ID Mapping API Data Types . 952
Password Management API Data Types 953
audit_intro . 954
gssapi_intro. 961
dce_acl_copy_acl . 971
dce_acl_inq_acl_from_header 972
dce_acl_inq_client_creds . 974
dce_acl_inq_client_permset . 976
dce_acl_inq_permset_for_creds 978
dce_acl_inq_prin_and_group.3sec 980
dce_acl_is_client_authorized 982
dce_acl_is_unauthenticated . 984
dce_acl_obj_add_any_other_entry 985
dce_acl_obj_add_foreign_entry 986
dce_acl_obj_add_group_entry 988
dce_acl_obj_add_id_entry . 989
dce_acl_obj_add_obj_entry . 991
dce_acl_obj_add_unauth_entry 993
dce_acl_obj_add_user_entry 994
dce_acl_obj_free_entries . 995
dce_acl_obj_init . 996
dce_acl_register_object_type 998
dce_acl_resolve_by_name .1002
dce_acl_resolve_by_uuid .1004
dce_aud_clean .1006
dce_aud_close .1007
dce_aud_commit .1008
dce_aud_discard .1011
dce_aud_event_table .1012
dce_aud_first .1014
dce_aud_free_ev_info .1016
dce_aud_free_header .1017
dce_aud_get_ev_info .1018
dce_aud_get_event .1020
dce_aud_get_header .1022
dce_aud_last .1024

Contents xi

dce_aud_length .1026
dce_aud_modify_sstrategy .1028
dce_aud_next .1030
dce_aud_open. .1033
dce_aud_prev .1036
dce_aud_print .1039
dce_aud_put_ev_info .1041
dce_aud_rename. .1043
dce_aud_reset. .1045
dce_aud_rewind .1047
dce_aud_save. .1049
dce_aud_set_local_cell_uuid1051
dce_aud_set_trail_size_limit.1052
dce_aud_start .1054
dce_aud_start_with_name .1058
dce_aud_start_with_pac .1062
dce_aud_start_with_server_binding1066
dce_aud_start_with_uuid .1070
get_event_name_from_number1074
get_event_number_from_name1075
gss_accept_sec_context .1076
gss_acquire_cred .1080
gss_compare_name .1082
gss_context_time. .1084
gss_delete_sec_context .1085
gss_display_name .1087
gss_display_status .1089
gss_import_name .1091
gss_indicate_mechs .1093
gss_init_sec_context .1094
gss_inquire_cred .1099
gss_process_context_token .1101
gss_release_buffer .1102
gss_release_cred .1103
gss_release_name .1104
gss_release_oid_set .1105
gss_seal .1106
gss_sign .1108
gss_unseal .1110
gss_verify .1113
gssdce_add_oid_set_member1115
gssdce_create_empty_oid_set1116
gssdce_cred_to_login_context1117
gssdce_extract_creds_from_sec_context1119
gssdce_extract_PAC_from_cred1121
gssdce_extract_PAC_from_sec_context1122
gssdce_login_context_to_cred1123
gssdce_register_acceptor_identity1125
gssdce_set_cred_context_ownership1127
gssdce_test_oid_set_member1129
Rdacl Interface for User-Written Back-end Code1130

rdacl_get_access. .1131
rdacl_get_manager_types1133
rdacl_get_mgr_types_semantics1135
rdacl_get_printstring .1137
rdacl_get_referral .1140

xii IBM DCE for AIX, Version 2.2: Application Development Reference

rdacl_lookup .1142
rdacl_replace .1144
rdacl_test_access .1146
rdacl_test_access_on_behalf1148

rsec_pwd_mgmt_gen_pwd .1150
rsec_pwd_mgmt_str_chk .1152
sec_acl_bind .1154
sec_acl_bind_auth .1156
sec_acl_bind_to_addr .1160
sec_acl_calc_mask .1162
sec_acl_get_access. .1164
sec_acl_get_error_info. .1166
sec_acl_get_manager_types1167
sec_acl_get_mgr_types_semantics1169
sec_acl_get_printstring .1171
sec_acl_lookup .1174
sec_acl_mgr_configure .1176
sec_acl_mgr_get_access .1178
sec_acl_mgr_get_manager_types1180
sec_acl_mgr_get_types_semantics1182
sec_acl_mgr_get_printstring.1184
sec_acl_mgr_is_authorized .1187
sec_acl_mgr_lookup .1190
sec_acl_mgr_replace .1192
sec_acl_release .1194
sec_acl_release_handle .1195
sec_acl_replace .1196
sec_acl_test_access .1198
sec_acl_test_access_on_behalf1200
sec_attr_trig_query .1203
priv_attr_trig_query .1206
sec_attr_trig_update .1209
sec_attr_util_alloc_copy .1212
sec_attr_util_free .1214
sec_attr_util_inst_free .1215
sec_attr_util_inst_free_ptrs .1216
sec_attr_util_sch_ent_free .1217
sec_attr_util_sch_ent_free_ptrs1218
sec_attr_util_sch_free_acl_mgrs1219
sec_attr_util_sch_free_binding1220
sec_cred_free_attr_cursor .1221
sec_cred_free_cursor .1222
sec_cred_free_pa_handle .1223
sec_cred_get_authz_session_info1224
sec_cred_get_client_princ_name1226
sec_cred_get_deleg_restrictions1227
sec_cred_get_delegate .1228
sec_cred_get_delegation_type1230
sec_cred_get_extended_attrs1231
sec_cred_get_initiator .1233
sec_cred_get_opt_restrictions1235
sec_cred_get_pa_data. .1236
sec_cred_get_req_restrictions1237
sec_cred_get_tgt_restrictions1238
sec_cred_get_v1_pac .1239
sec_cred_initialize_attr_cursor1240

Contents xiii

sec_cred_initialize_cursor .1241
sec_cred_inq_auth_service_info1242
sec_cred_is_authenticated .1243
sec_id_gen_group .1244
sec_id_gen_name .1246
sec_id_parse_group .1248
sec_id_parse_name. .1250
sec_key_mgmt_change_key1252
sec_key_mgmt_delete_key .1255
sec_key_mgmt_delete_key_type1257
sec_key_mgmt_free_key .1259
sec_key_mgmt_garbage_collect1260
sec_key_mgmt_gen_rand_key1262
sec_key_mgmt_generate_key1264
sec_key_mgmt_get_key .1266
sec_key_mgmt_get_next_key1268
sec_key_mgmt_get_next_kvno.1270
sec_key_mgmt_get_nth_key1272
sec_key_mgmt_initialize_cursor1274
sec_key_mgmt_manage_key1276
sec_key_mgmt_release_cursor1278
sec_key_mgmt_set_key .1279
sec_login_become_delegate1281
sec_login_become_impersonator1284
sec_login_become_initiator .1286
sec_login_certify_identity .1289
sec_login_cred_get_delegate1291
sec_login_cred_get_initiator .1293
sec_login_cred_init_cursor .1295
sec_login_disable_delegation1296
sec_login_export_context. .1297
sec_login_free_net_info .1299
sec_login_get_current_context1300
sec_login_get_expiration .1302
sec_login_get_groups .1304
sec_login_get_pwent .1306
sec_login_import_context. .1308
sec_login_init_first .1310
sec_login_inq_pag .1311
sec_login_inquire_net_info .1312
sec_login_newgroups .1314
sec_login_purge_context .1317
sec_login_purge_context_exp1319
sec_login_refresh_identity .1320
sec_login_release_context .1322
sec_login_set_context .1323
sec_login_set_extended_attrs1325
sec_login_setup_first .1327
sec_login_setup_identity .1329
sec_login_tkt_request_options1332
sec_login_valid_and_cert_ident1333
sec_login_validate_cert_auth1336
sec_login_valid_from_keytable1337
sec_login_validate_first .1341
sec_login_validate_identity .1343
sec_pwd_mgmt_free_handle1347

xiv IBM DCE for AIX, Version 2.2: Application Development Reference

sec_pwd_mgmt_gen_pwd .1348
sec_pwd_mgmt_get_val_type1350
sec_pwd_mgmt_setup .1352
sec_rgy_acct_add .1354
sec_rgy_acct_admin_replace1357
sec_rgy_acct_delete .1360
sec_rgy_acct_get_projlist .1362
sec_rgy_acct_lookup .1365
sec_rgy_acct_passwd .1368
sec_rgy_acct_rename .1370
sec_rgy_acct_replace_all .1372
sec_rgy_acct_user_replace .1375
sec_rgy_attr_cursor_alloc .1378
sec_rgy_attr_cursor_init .1380
sec_rgy_attr_cursor_release1382
sec_rgy_attr_cursor_reset .1384
sec_rgy_attr_delete .1385
sec_rgy_attr_get_effective .1387
sec_rgy_attr_lookup_by_id .1390
sec_rgy_attr_lookup_by_name1394
sec_rgy_attr_lookup_no_expand1396
sec_rgy_attr_sch_aclmgr_strings1399
sec_rgy_attr_sch_create_entry.1402
sec_rgy_attr_sch_cursor_alloc1404
sec_rgy_attr_sch_cursor_init1405
sec_rgy_attr_sch_cursor_release1407
sec_rgy_attr_sch_cursor_reset.1408
sec_rgy_attr_sch_delete_entry1409
sec_rgy_attr_sch_get_acl_mgrs1411
sec_rgy_attr_sch_lookup_by_id1413
sec_rgy_attr_sch_lookup_by_name1415
sec_rgy_attr_sch_scan .1417
sec_rgy_attr_sch_update_entry1419
sec_rgy_attr_test_and_update1422
sec_rgy_attr_update .1425
sec_rgy_auth_plcy_get_effective1428
sec_rgy_auth_plcy_get_info .1430
sec_rgy_auth_plcy_set_info .1432
sec_rgy_cell_bind .1434
sec_rgy_cursor_reset .1436
sec_rgy_enable_nsi .1438
sec_rgy_login_get_effective .1439
sec_rgy_login_get_info .1442
sec_rgy_pgo_add .1445
sec_rgy_pgo_add_member .1447
sec_rgy_pgo_delete. .1449
sec_rgy_pgo_delete_member1451
sec_rgy_pgo_get_by_eff_unix_num1453
sec_rgy_pgo_get_by_id .1456
sec_rgy_pgo_get_by_name .1459
sec_rgy_pgo_get_by_unix_num1462
sec_rgy_pgo_get_members .1465
sec_rgy_pgo_get_next .1468
sec_rgy_pgo_id_to_name .1471
sec_rgy_pgo_id_to_unix_num1473
sec_rgy_pgo_is_member .1475

Contents xv

sec_rgy_pgo_name_to_id .1477
sec_rgy_pgo_name_to_unix_num1479
sec_rgy_pgo_rename .1481
sec_rgy_pgo_replace .1483
sec_rgy_pgo_unix_num_to_id1485
sec_rgy_pgo_unix_num_to_name1487
sec_rgy_plcy_get_effective .1489
sec_rgy_plcy_get_info .1491
sec_rgy_plcy_get_override_info1493
sec_rgy_plcy_set_info .1494
sec_rgy_plcy_set_override_info1496
sec_rgy_properties_get_info.1497
sec_rgy_properties_set_info.1499
sec_rgy_rep_admin_become_master1502
sec_rgy_rep_admin_become_slave1503
sec_rgy_rep_admin_change_master1504
sec_rgy_rep_admin_destroy.1505
sec_rgy_rep_admin_get_sw_vers.1506
sec_rgy_rep_admin_info .1507
sec_rgy_rep_admin_info_vers1508
sec_rgy_rep_admin_init_replica1510
sec_rgy_rep_admin_maint .1511
sec_rgy_rep_admin_mkey .1512
sec_rgy_rep_admin_set_sw_vers1513
sec_rgy_rep_admin_stop .1514
sec_rgy_site_bind .1515
sec_rgy_site_bind_query .1517
sec_rgy_site_bind_update .1519
sec_rgy_site_binding_get_info1521
sec_rgy_site_close .1523
sec_rgy_site_get .1524
sec_rgy_site_is_readonly .1526
sec_rgy_site_open .1527
sec_rgy_site_open_query .1529
sec_rgy_site_open_update .1531
sec_rgy_unix_getgrent .1533
sec_rgy_unix_getgrgid .1535
sec_rgy_unix_getgrnam .1537
sec_rgy_unix_getpwent .1539
sec_rgy_unix_getpwnam .1541
sec_rgy_unix_getpwuid .1543
sec_rgy_wait_until_consistent1545

Chapter 7. DCE Event Management Service API1547
ems_intro .1548
ems_add_filter_to_group .1560
ems_consumer_handler_register1562
ems_consumer_register .1563
ems_consumer_start .1565
ems_consumer_stop .1566
ems_consumer_unregister .1567
ems_delete_filter_from_group1568
ems_event_type_add .1569
ems_event_type_delete .1570
ems_event_type_free_list. .1571
ems_event_type_get .1572

xvi IBM DCE for AIX, Version 2.2: Application Development Reference

ems_event_type_get_list .1573
ems_filter_add. .1574
ems_filter_append .1576
ems_filter_delete .1577
ems_filter_free. .1578
ems_filter_get_namelist .1579
ems_filter_free_list .1580
ems_filter_free_namelist .1581
ems_filter_get .1582
ems_filter_get_list .1583
ems_get_filter_group .1584
ems_log_close .1585
ems_log_open. .1586
ems_log_read .1587
ems_log_rewind .1588
ems_mgmt_add_filter_to_group1589
ems_mgmt_delete_consumer1590
ems_mgmt_delete_filter_from_group1592
ems_mgmt_free_attributes .1594
ems_mgmt_free_consumers1595
ems_mgmt_free_ems .1596
ems_mgmt_get_filter_group .1597
ems_mgmt_list_attributes. .1599
ems_mgmt_list_consumers .1600
ems_mgmt_list_ems .1601
ems_register .1602
ems_supplier_send .1603
ems_svc_connect_push_supplier1604
ems_unregister .1606

Appendix. Notices .1607
Trademarks .1607

Index .1609

Contents xvii

xviii IBM DCE for AIX, Version 2.2: Application Development Reference

Preface

The IBM DCE for AIX, Version 2.2: Application Development Reference provides
complete and detailed reference information to help application programmers use
the correct syntax for Distributed Computing Environment (DCE) calls when writing
AIX applications for a distributed computing environment.

Audience

This reference is written for application programmers with AIX ® or UNIX operating
system and C language experence who want to develop and and write applications
to run on DCE. It does not assume that you have prior knowledge of, or experience
with, designing and writing distributed applications using the Open Software
Foundation’s (OSF)® Distributed Computing Environment (DCE) services. Ideally,
you should be able to perform the following:

v Edit, browse, and copy AIX files

v Print files

v Write, compile, link, debug, and run C programs on AIX.

A good working knowledge and understanding of the following would also be
helpful:

v Structured programming techniques

v Computer communications over a network using Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP)

v Concepts behind a distributed application.

Some exposure to the UNIX or AIX operating systems is helpful but not essential to
use this guide.

Purpose

The purpose of this document is to assist application programmers when writing AIX
applications for a distributed computing environment. After reading this manual,
application programmers should be able to use the correct syntax for DCE calls.

Document Usage

This document is organized into eight chapters.

v For DCE Routines, see Chapter 1.

v For DCE Threads, see Chapter 2.

v For DCE Remote Procedure Call, see Chapter 3.

v For DCE Directory Service, see Chapter 4.

v For DCE Distributed Time Service, see Chapter 5.

v For DCE Security Service, see Chapter 6.

v For DCE Event Management Service, see Chapter 7.

© Copyright IBM Corp. 1992, 1998 xix

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

1. IBM DCE for AIX, Version 2.2: Introduction to DCE

2. IBM DCE for AIX, Version 2.2: Command Reference

3. IBM DCE for AIX, Version 2.2: Administration Guide—Introduction

4. IBM DCE for AIX, Version 2.2: Administration Guide—Core Components

5. IBM DCE for AIX, Version 2.2: DFS Administration Guide and Reference

6. OSF DCE GDS Administration Guide and Reference

7. IBM DCE for AIX, Version 2.2: Application Development Guide—Introduction
and Style Guide

8. IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components

9. IBM DCE for AIX, Version 2.2: Application Development Guide—Directory
Services

10. OSF DCE/File-Access Administration Guide and Reference

11. OSF DCE/File-Access User’s Guide

12. IBM DCE for AIX, Version 2.2: Problem Determination Guide

13. OSF DCE Testing Guide

14. OSF DCE/File-Access FVT User’s Guide

15. Application Environment Specification/Distributed Computing

16. IBM DCE for AIX, Version 2.2: Release Notes

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

dcelocal
The OSF variable dcelocal in this document equates to the AIX value
/opt/dcelocal .

xx IBM DCE for AIX, Version 2.2: Application Development Reference

dceshare
The OSF variable dceshare in this document equates to the AIX value
/opt/dcelocal .

This guide uses the following keying conventions:

<Ctrl-x> or |x
The notation <Ctrl-x> or |x followed by the name of a key indicates a
control character sequence. For example, <Ctrl-C> means that you hold
down the control key while pressing <C>.

<Return>
The notation <Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Pathnames of Directories and Files in DCE Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
IBM DCE for AIX, Version 2.2: Administration Guide—Introduction and OSF DCE
Testing Guide.

Preface xxi

xxii IBM DCE for AIX, Version 2.2: Application Development Reference

Chapter 1. DCE Routines

© Copyright IBM Corp. 1992, 1998 1

dce_intro

Purpose

Introduction to the DCE routines

Description

The DCE routines provide several facilities that are applicable across more than
one DCE component. They can be divided into the following major areas:

DCE Attribute Interface Routines
These routines allow applications to define and access attribute types
(schema entries) in a schema of your choice. They are based on the
extended registry attribute (ERA) interface, which defines and accesses
attribute types in the register database schema.

For more information about the individual attribute interface routines, see
the dce_attr_intro(3dce) reference page.

DCE Configuration Routines
These routines return information based on the contents of the local DCE
configuration file, which is created during the DCE cell-configuration or
machine-configuration process.

For more information about the various individual configuration routines, see
the dce_config_intro(3dce) reference page.

DCE Backing Store Routines
These routines allow you to maintain typed data between program
invocations. The backing store routines can be used in servers, in clients or
in standalone programs that do not involve remote procedure calls (RPCs).

For more information about the individual backing store routines, see the
dce_db_intro(3dce) reference page.

DCE Messaging Interface Routines
These routines give you access to message catalogs, to specific message
texts and message IDs, and to in-memory message tables.

For more information about the individual messaging interface routines, see
the dce_msg_intro(3dce) reference page.

DCE Server Routines
These routines are used by servers to register themselves with DCE. This
includes RPC runtime, the local endpoint mapper, and the namespace.
Routines are also available to set up DCE security so that servers can
receive and invoke authenticated RPCs.

For more information about the individual server routines, see the
dce_server_intro(3dce) reference page.

DCE Serviceability Routines
These routines are intended for use by servers that export the serviceability
interface defined in service.idl . There are also a set of DCE serviceability
macros can be used for diagnostic purposes, and to create a serviceability
handle.

2 IBM DCE for AIX, Version 2.2: Application Development Reference

For more information about the individual serviceability routines, see the
dce_svc_intro(3dce) reference page. For more information about the
individual DCE serviceability macros, see the DCE_SVC_INTRO(3dce)
reference page.

DCE Host Daemon Application Programming Interface
These routines give management applications remote access to various
data, servers, and services on DCE hosts.

For more information about the individual host daemon application
programming interface routines, see the dced_intro(3dce) reference page.

dce_intro(3dce)

Chapter 1. DCE Routines 3

dce_attr_intro

Purpose

Introduction to the DCE attribute interface routines

Description

The DCE attribute interface API allows applications to define and access attributes
types (schema entries) in a schema of your choice. It is based on the extended
registry attribute (ERA) interface, which defines and accesses attribute types in the
registry database schema. Except for the binding methods, the two APIs are similar.

Note however, that the extended registry attribute API provides routines to create
attribute types in the registry schema, to create and manipulate attribute instances,
and to attach those instances to objects. The DCE attribute interface in its current
state provides calls only to create attribute types.

The DCE Attribute Interface Routines

The DCE attribute interface consists of the following routines:

dce_attr_sch_aclmgr_strings
Returns printable ACL strings associated with an ACL manager protecting a
schema object.

dce_attr_sch_bind()
Returns an opaque handle of type dce_attr_sch_handle_t to a schema
object specified by name and sets authentication and authorization
parameters for the handle.

dce_attr_sch_bind_free()
Releases an opaque handle of type dce_attr_sch_handle_t .

dce_attr_sch_create_entry()
Creates a schema entry in a schema bound to with dce_attr_sch_bind() .

dce_attr_sch_update_entry()
Updates a schema entry in a schema bound to with dce_attr_sch_bind() .

dce_attr_sch_delete_entry()
Deletes a schema entry in a schema bound to with dce_attr_sch_bind() .

dce_attr_sch_scan()
Reads a specified number of schema entries.

dce_attr_sch_cursor_init()
Allocates resources to and initializes a cursor used with
dce_attr_sch_scan() . The dce_attr_sch_cursor_init() routine makes a
remote call that also returns the current number of schema entries in the
schema.

dce_attr_sch_cursor_alloc()
Allocates resources to a cursor used with dce_attr_sch_scan() . The
dce_attr_sch_cursor_alloc() routine is a local operation.

dce_attr_sch_cursor_release()
Releases states associated with a cursor created by
dce_attr_sch_cursor_alloc() or dce_attr_sch_cursor_init() .

4 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_cursor_reset()
Reinitializes a cursor used with dce_attr_sch_scan() . The reset cursor can
then be reused without releasing and reallocating.

dce_attr_sch_lookup_by_id()
Reads a schema entry identified by attribute type UUID.

dce_attr_sch_lookup_by_name()
Reads a schema entry identified by attribute name.

dce_attr_sch_get_acl_mgrs()
Retrieves the manager types of the ACLs protecting objects dominated by a
named schema.

dce_attr_sch_aclmgr_strings()
Returns printable ACL strings associated with an ACL manager protecting a
schema object.

Data Types and Structures
dce_attr_sch_handle_t

An opaque handle to a schema object. Use dce_attr_sch_bind() to acquire
the handle.

dce_attr_component_name_t
A pointer to a character string used to further specify a schema object.

dce_bind_auth_info_t
An enumeration that defines whether or not the binding is authenticated.
This data type is defined exactly as the sec_attr_bind_auth_info_t data
type in the ERA interface. See the sec_intro(3sec) reference page for
more information on sec_attr_bind_auth_info_t .

dce_attr_schema_entry_t
A structure that defines a complete attribute entry for the schema catalog.
This data type is defined exactly as the sec_attr_schema_entry_t data
type in the ERA interface. See the sec_intro(3sec) reference page for
more information on sec_attr_schema_entry_t .

dce_attr_cursor_t
A structure that provides a pointer into a database and is used for multiple
database operations. This cursor must minimally represent the object
indicated by dce_attr_sch_handle_t . The cursor may additionally represent
an entry within that schema.

dce_attr_schema_entry_parts_t
A 32-bit bitset containing flags that specify the schema entry fields that can
be modified on a schema entry update operation. This data type is defined
exactly as the sec_attr_schema_entry_parts_t data type in the ERA
interface. See the sec_intro(3sec) reference page for more information on
sec_attr_schema_entry_parts_t .

dce_attr_intro(3dce)

Chapter 1. DCE Routines 5

dce_cf_intro

Purpose

Introduction to the DCE configuration routines

Description

The DCE configuration routines return information based on the contents of the
local DCE configuration file, which is created during the DCE cell-configuration or
machine-configuration process. A configuration file is located on each DCE
machine; it contains the host’s name, the primary name of the cell in which the host
is located, and any aliases for that cell name.

The configuration routines can also be used to get the following additional
information corollary to the host name:

v The host’s principal name

v Binding information to the host

The configuration file on machines that belong to internationalized DCE cells also
contains the pathname to the code set registry object file on the host.

The security service component on each DCE machine must be able to find out, by
strictly local means, its machine’s host name, the host machine’s principal name,
and its cell’s name. The DCE configuration routines exist primarily to enable
security components to do these things. But because this information can be useful
to DCE applications as well, these routines are made available as part of the
general application programming interface.

Note that host name as used throughout this section refers to the DCE host name
(that is, the machine’s /.../cellname/ host_directory/ hostname entry in the CDS
namespace), and not, for example, its Domain Name Service (DNS) host name,
which could be quite different from the DCE name.

The DCE configuration routines are as follows:

dce_cf_binding_entry_from_host()
Returns the host binding entry name.

dce_cf_dced_entry_from_host()
Returns the dced entry name on a host.

dce_cf_find_name_by_key()
Returns a string tagged by key (this is a lower-level utility routine that is
used by the others).

dce_cf_find_names_by_key()
Returns an array of strings tagged by keys.

dce_cf_free_cell_aliases()
Frees a list of cell aliases for a cell.

dce_cf_get_cell_aliases()
Returns a list of cell aliases for a cell.

dce_cf_get_cell_name()
Returns the primary cell name for the local cell.

6 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_get_csrgy_filename()
Returns the pathname of the local code set registry object file.

dce_cf_get_host_name()
Returns the host name relative to a local cell.

dce_cf_prin_name_from_host()
Returns the host’s principal name.

dce_cf_profile_entry_from_host
Returns the host’s profile entry.

dce_cf_same_cell_name()
Indicates whether or not two cell names refer to the same cell.

Files
dcelocal//dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The format of the configuration file is as follows:

Each of the entries is tagged with its own identifier, which must be the first nonblank
token on a line that does not begin with a # (number sign) comment character. The
second token on a line is assumed to be the name associated with the tag that was
detected in front of it.

For example, cellname and hostname are tags, identifying the cell name and host
name, respectively, for the machine on which the configuration file is located. A
sample configuration file could have the following contents, which would identify the
host brazil in the osf.org cell:
cellname /.../osf.org
hostname hosts/brazil

Text characterized by the following is ignored:

v Garbage lines (lines that do not conform to the previously described format)

v Leading and trailing spaces in lines

v Additional tokens appearing on a line after the second token

The configuration file should be writable only by privileged users, and readable by
all.

Output

The DCE configuration routines return names without global or cell-relative prefixes,
such as the following:
host_directory/hostname

or
principalname

where host_directory is usually hosts .

However, the DCE Name Service Interface (NSI) routines require names passed to
them to be expressed either in a cell-relative form or as global names. Cell-relative
names have the following form:

dce_cf_intro(3dce)

Chapter 1. DCE Routines 7

/.:/host_directory/ hostname

Global names, with the global root prefix /.../ and the cell name, have the following
form:
/.../cellname/ host_directory/ hostname

Therefore, an application must add either the cell-relative prefix (/.:/) or correct
global prefix (/.../cellname) to any name it receives from a DCE configuration routine
before it passes the name to an NSI routine. (NSI routines all have names
beginning with rpc_ns_). For example, the name host_directory/ hostname would
become the following, if expressed in cell-relative form:
/.:/hosts/ hostname

The cell-relative form of the name principalname would be
/.:/sec/principals/principalname

where hostname and principalname are the host’s name and principal name,
respectively.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce) ,
dce_cf_dced_entry_from_host(3dce) , dce_cf_find_name_by_key(3dce) ,
dce_cf_find_names_by_key(3dce) , dce_cf_free_cell_aliases(3dce) ,
dce_cf_get_cell_aliases(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_csrgy_filename(3dce) , dce_cf_get_host_name(3dce) ,
dce_cf_prin_name_from_host(3dce) , dce_cf_profile_entry_from_host(3dce) ,
dce_cf_same_cell_name(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AIX, Version 2.2: Command Reference.

dce_cf_intro(3dce)

8 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_intro

Purpose

Introduction to the DCE backing store interface

Description

The DCE backing store interface allows you to maintain typed data between
program invocations. For example, you might store application-specific configuration
data in a backing store, and then retrieve it from the backing store when the
application restarts. The backing store routines can be used in servers, in clients or
in standalone programs that do not involve remote procedure calls (RPCs). A
program can have more than one backing store open at the same time.

Sometimes the backing store is called a database. For instance, the associated IDL
file is dce/database.idl , and the name of the backing store routines begin with
dce_db_ . The backing store is, however, not a full-fledged database in the
conventional sense, and it has no support for SQL or for any other query system.

Backing Store Data

The backing store interface provides for the tagged storage and retrieval of typed
data. The tag (or retrieval key) can be either a UUID or a standard C string. For a
specific backing store, the data type must be specified at compile time, and is
established through the IDL encoding services. Each backing store can contain only
a single data type.

Each data item (also called a data object or data record) consists of the data stored
by a single call to a storage routine (dce_db_store() , dce_db_store_by_name() ,
or dce_db_store_by_uuid()). Optionally, data items can have headers. If a backing
store has been created to use headers, then every data item must have a header.
For a description of the data item header, see the section in this reference page
entitled Data Types and Structures .

Encoding and Decoding in the Backing Store

When an RPC sends data between a client and a server, it serializes the user’s
data structures by using the IDL encoding services (ES), described in the IBM DCE
for AIX, Version 2.2: Application Development Guide.

The backing store uses this same serialization scheme for encoding and decoding,
informally called pickling, when storing data structures to disk. The IDL compiler, idl ,
writes the routine that encodes and decodes the data.

This routine is passed to dce_db_open() , remembered in the handle, and used by
the store and fetch routines:

v dce_db_fetch()

v dce_db_fetch_by_name()

v dce_db_fetch_by_uuid()

v dce_db_header_fetch()

v dce_db_store()

v dce_db_store_by_name()

Chapter 1. DCE Routines 9

v dce_db_store_by_uuid()

Memory Allocation

When fetching data, the encoding services allocate memory for the data structures
that are returned. These services accept a structure, and use rpc_sm_allocate() to
provide additional memory needed to hold the data.

The backing store library does not know what memory has been allocated, and
therefore cannot free it. For fetch calls that are made from a server stub, this is not
a problem, since the memory is freed automatically when the server call terminates.
For fetch calls that are made from a nonserver, the programmer is responsible for
freeing the memory.

Programs that call the fetch or store routines, such as dce_db_fetch() , outside of a
server operation (for instance, if a server does some backing store initialization, or
in a standalone program) must call rpc_sm_enable_allocate() first.

The Backing Store Routines

Many of the backing store routines appear in three versions: plain, by name, and by
UUID. The plain version will work with backing stores that were created to be
indexed either by name, or by UUID, while the restricted versions accept only the
matching type. It is advantageous to use the restricted versions when they are
appropriate, because they provide type checking by the compiler, as well as visual
clarity of purpose.

The backing store routines are as follows, listed in alphabetical order:

dce_db_close()
Frees the handle returned by dce_db_open() . It closes any open files and
releases all other resources associated with the backing store.

dce_db_delete()
Deletes an item from a backing store that is indexed by name or by UUID.
The key’s type must match the flag that was used in dce_db_open() .

dce_db_delete_by_name()
Deletes an item only from a backing store that is indexed by name.

dce_db_delete_by_uuid()
Deletes an item only from a backing store that is indexed by UUID.

dce_db_fetch()
Retrieves data from a backing store that is indexed by name or by UUID.
The key’s type must match the flag that was used in dce_db_open() .

dce_db_fetch_by_name()
Retrieves data only from a backing store that is indexed by name.

dce_db_fetch_by_uuid()
Retrieves data only from a backing store that is indexed by UUID.

dce_db_free()
Releases the data supplied from a backing store.

dce_db_header_fetch()
Retrieves a header from a backing store.

dce_db_inq_count()
Returns the number of items in a backing store.

dce_db_intro(3dce)

10 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_iter_done()
Terminates and iteration operation initiated by dce_db_iter_start() . It
should be called when iteration is done.

dce_db_iter_next()
Returns the key for the next item from a backing store that is indexed by
name or by UUID. The db_s_no_more return value indicates that there are
no more items.

dce_db_iter_next_by_name()
Returns the key for the next item only from a backing store that is indexed
by name. The db_s_no_more return value indicates that there are no more
items.

dce_db_iter_next_by_uuid()
Returns the key for the next item only from a backing store that is indexed
by UUID. The db_s_no_more return value indicates that there are no more
items.

dce_db_iter_start()
Prepares for the start of iteration.

dce_db_lock()
Locks a backing store. A lock is associated with an open backing store’s
handle. The storage routines, dce_db_store() , dce_db_store_by_name() ,
and dce_db_store_by_uuid() , all acquire the lock before updating.

dce_db_open()
Creates a new backing store or opens an existing one. The backing store is
identified by a filename. Flags allow you to

v Create a new backing store, or open an existing one.

v Create a new backing store indexed by name, or indexed by UUID.

v Open an existing backing store read/write, or read-only.

v Use the standard data item header, or not.

The routine returns a handle by which subsequent routines can reference
the opened backing store.

dce_db_std_header_init()
Initializes a standard backing store header retrieved by
dce_db_header_fetch() . It only places the values into the header, and
does not write into the backing store.

dce_db_store()
Stores a data item into a backing store that is indexed by name or by
UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_store_by_name()
Stores a data item only into a backing store that is indexed by name.

dce_db_store_by_uuid()
Stores a data item only into a backing store that is indexed by UUID.

dce_db_unlock()
Unlocks a backing store.

dce_db_intro(3dce)

Chapter 1. DCE Routines 11

Data Types and Structures
dce_db_handle_t

An opaque handle to a backing store. Use dce_db_open() to acquire the
handle.

dce_db_header_t
The data structure that defines a standard backing store header for data
items. Use dce_db_header_fetch() to retrieve it from a backing store and
dce_db_std_header_init() to initialize it.

dce_db_convert_func_t
An opaque pointer to the data conversion function to be used when storing
or retrieving data. This function is specified as an argument to
dce_db_open() at open time. It converts between native format and on-disk
(serialized) format. It is generated from the IDL file by the IDL compiler.

Cautions

You can not use conformant arrays in objects stored to a backing store. This is
because the idl-generated code that encodes (pickles) the structure has no way to
predict or detect the size of the array. When the object is fetched, there will likely be
insufficient space provided for the structure, and the array’s data will destroy
whatever is in memory after the structure.

Files
database.idl

database.h

db.h

dbif.h

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide

dce_db_intro(3dce)

12 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_intro

Purpose

Introduction to the DCE messaging interface

Description

All DCE message texts are assigned a unique message ID. This is a 32-bit number,
with the special value of all-bits-zero reserved to indicate success. All other
numbers are divided into a technology/component that identifies the message
catalog, and an index into the catalog.

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component is built. (The messages may
also be compiled into the application code, rendering the successful retrieval of
message text independent of whether or not the message catalogs were correctly
installed.)

In typical use, a message is first retrieved from a message catalog, allowing
localization to occur. If this fails, the default message is retrieved from an
in-memory table. If this fails, a fallback text identifying the message number is
generated. The two most useful routines, dce_error_inq_text() and
dce_msg_get() , and the DCE printf routines follow these rules. The rest of this API
gives direct access for special needs.

The dce_msg_cat_ *() routines provide a DCE abstraction to standard message
catalog routines, mapping DCE message IDs to message catalog names. They offer
a convenient way of opening and accessing a message catalog simply by supplying
the ID of a message contained in it, rather than the name of the catalog itself. Once
opened, the catalog is accessed by means of an opaque handle (the
dce_msg_cat_handle_t typedef).

The DCE Messaging Routines

The messaging routines are as follows, listed in alphabetical order:

dce_error_inq_text()
Retrieves from the installed DCE component message catalogs the
message text associated with an error status code returned by a DCE
library routine.

dce_fprintf()
Functions much like dce_printf() , except that it prints the message and its
arguments on the specified stream.

dce_msg_cat_close()
Closes the message catalog (which was opened with
dce_msg_cat_open()) .

dce_msg_cat_get_msg()
Retrieves the text for a specified message.

dce_msg_cat_open()
Opens the message catalog that contains the specified message, and
returns a handle that can be used in subsequent calls to
dce_msg_cat_get_msg() .

Chapter 1. DCE Routines 13

dce_msg_define_msg_table()
Registers an in-memory table containing the messages.

dce_msg_get()
Retrieves the text for a specified message. A convenience form of the
dce_msg_get_msg() routine.

dce_msg_get_cat_msg()
A convenience form of the dce_msg_cat_get_msg() routine. Unlike
dce_msg_cat_get_msg() , dce_msg_get_cat_msg() does not require the
message catalog to be explicitly opened.

dce_msg_get_default_msg()
Retrieves a message from the application’s in-memory tables.

dce_msg_get_msg()
Retrieves the text for a specified message.

dce_msg_translate_table()
The dce_msg_translate_table() routine overwrites the specified in-memory
message table with the values from the equivalent message catalogs.

dce_pgm_fprintf()
Equivalent to dce_fprintf() , except that it prepends the program name and
appends a newline.

dce_pgm_printf()
Equivalent to dce_printf() , except that it prepends the program name and
appends a newline.

dce_pgm_sprintf()
Equivalent to dce_sprintf() , except that it prepends the program name and
appends a newline.

dce_printf()
Retrieves the message text associated with the specified message ID, and
prints the message and its arguments on the standard output.

dce_sprintf()
Retrieves the message text associated with the specified message ID, and
prints the message and its arguments into an allocated string that is
returned.

Data Types and Structures
dce_error_string_t

An array of characters big enough to hold any error text returned by
dce_error_inq_text() .

dce_msg_cat_handle_t
An opaque handle to a DCE message catalog. (Use dce_msg_cat_open()
to get a handle.)

Files
dce/dce_msg.h

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide

dce_msg_intro(3dce)

14 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_server_intro

Purpose

Introduction to the DCE server routines

Description

The routines described on this reference page are used by servers to register
themselves with DCE. This includes registering with the RPC runtime, the local
endpoint mapper, and the namespace. Routines are also available to set up DCE
security so that servers can receive and invoke authenticated RPCs.

The DCE Server Routines

The server routines are as follows, listed in alphabetical order:

dce_server_disable_service()
Unregisters an individual interface of a DCE server from the RPC runtime,
and marks the server’s endpoints as disabled in the dced ’s endpoint
mapper service.

dce_server_enable_service()
Registers an individual interface (application service) of a DCE server with
the RPC runtime, and marks the server’s endpoints as enabled in the dced
’s endpoint mapper service.

dce_server_inq_attr()
Obtains application-specific attribute data from the dced server
configuration data.

dce_server_inq_server()
Obtains the server configuration data dced used to start the server.

dce_server_inq_uuids()
Obtains the UUIDs that dced used in its srvrconf and srvrexec facilities to
identify the server’s configuration and execution data.

dce_server_register()
Registers a DCE server by establishing a server’s binding information,
registering its services (represented by interface IDs) with the RPC runtime,
and entering its endpoints in the dced ’s endpoint mapper service.

dce_server_sec_begin()
Prepares a server to receive and generate authenticated RPCs.

dce_server_sec_done()
Releases the resources previously set up by a call to
dce_server_sec_begin() .

dce_server_unregister()
Unregisters a DCE server by unregistering a servers services (interfaces)
from the RPC runtime, and removing the server’s endpoints from the dced
’s endpoint mapper service.

dce_server_use_protseq()
Registers a protocol sequence to use for the server.

Chapter 1. DCE Routines 15

Data Types and Structures
dce_server_handle_t

An opaque data structure containing information the runtime uses to
establish the server with DCE.

dce_server_register_data_t
A structure that contains an interface handle (generated by IDL), a default
EPV, and a count and array of dce_server_type_t s for services that use
RPC object types.

dce_server_type_t
A structure containing a manager type UUID and an RPC entry-point vector
(EPV) that specified which routines implement the IDL interface for the
specific type.

server_t
See dced_intro(3dce) for a complete description of server_t .

Files
dce/dced.h

dce/dced_base.idl

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide

dce_server_intro(3dce)

16 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_intro

Purpose

Introduction to the DCE serviceability interface

Description

The routines listed below are intended to be used by servers that export the
serviceability interface defined in service.idl . The complete list of these remote
serviceability implementation calls is as follows (the remote operation name is given
in the left column, and the corresponding implementation routine is given in the right
column).

Remote Operation Implementation Routine

dce_svc_set_route dce_svc_routing
dce_svc_set_dbg_route dce_svc_debug_routing
dce_svc_set_dbg_levels dce_svc_debug_set_levels
dce_svc_inq_components dce_svc_components
dce_svc_inq_table dce_svc_table
dce_svc_filter_control dce_svc_filter
dce_svc_inq_stats dce_svc_inq_stats

These routines perform all the necessary processing (except for checking clients’
authorization) that must be done by the application manager to implement the
remote serviceability operations.

Note that most of these routines have little meaning except as implementations of
remote operations. However, the dce_svc_routing() , dce_svc_filter() ,
dce_svc_debug_routing() and dce_svc_debug_set_levels() routines can
conceivably be used by servers as purely local operations (for example, in order to
allow routing and debug levels to be set via command line flags when the server is
invoked).

The dce_svc_log_ routines provide read access to BINFILE format logs which are
created and written by the DCE serviceability routines; see svcroute(5) for further
information. The dce_svc_log_handle_t typedef is an opaque pointer to a handle
for an opened log file.

Applications that use the serviceability interface can install a routine that will be
effectively hooked into the operation of the interface. If a filter is installed, it will be
called whenever one of the serviceability output routines (dce_svc_printf()) is
about to output a message; whenever this happens, the filter will receive a group of
parameters that describe the message that is about to be output and the
circumstances that provoked the action. The filter can then allow the message
output to proceed, or suppress the message.

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. The dce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

Chapter 1. DCE Routines 17

The DCE Serviceability Routines

The serviceability routines are as follows, listed in alphabetical order:

dce_assert()
Adds runtime ″can’t happen’’ assertions to programs (such as, programming
errors).

dce_svc_components()
Returns an array containing the names of all components in the program
that have been registered with the dce_svc_register() routine.

dce_svc_debug_routing()
Specifies both the level of an applications’s serviceability debug messaging,
and where the messages are routed.

dce_svc_debug_set_levels()
Sets serviceability debugging message levels for a component.

dce_svc_define_filter()
Lets applications define serviceability filtering routines.

dce_svc_filter()
Controls the behavior of the serviceability message filtering routine, if one
exists.

dce_svc_log_close()
Closes an open binary format serviceability log and releases all internal
state associated with the handle.

dce_svc_log_get()
Reads the next entry from a binary format serviceability log.

dce_svc_log_open()
Opens the specified file for reading.

dce_svc_log_rewind()
Rewinds the current reading position of the specified (by handle) log file to
the first record.

dce_svc_printf()
Provides the normal call for writing or displaying serviceability messages.

dce_svc_register()
Registers a serviceability handle and subcomponent table.

dce_svc_routing()
Specifies how normal (non-debug) serviceability messages are routed.

dce_svc_set_progname()
If not called, the application’s generated serviceability messages will be
identified by its process ID.

dce_svc_table()
Returns the serviceability subcomponent table registered with the specified
component.

dce_svc_unregister()
Destroys a serviceability handle, releasing all allocated resources
associated with the handle.

Data Types and Structures
dce_svc_filter_proc_t

The prototype of a serviceability filtering routine.

dce_svc_intro(3dce)

18 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_filterctl_proc_t
The prototype of a serviceability filter-control routine.

dce_svc_handle_t
An opaque handle to generate serviceability messages. (Use
dce_svc_register() or DCE_DEFINE_SVC_HANDLE to obtain one.)

dce_svc_log_handle_t
An opaque handle to an open serviceability binary format log file. (Use
dce_svc_log_open() to obtain one.)

dce_svc_log_prolog_t
A structure containing data about a serviceability binary format log entry.

dce_svc_prolog_t
A structure containing the initial message parameters passed to the filtering
routine.

Files
dce/service.idl

dce/dce_svc.h

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide

dce_svc_intro(3dce)

Chapter 1. DCE Routines 19

dced_intro

Purpose

Introduction to the DCE host daemon routines

Description

This introduces the DCE host daemon application programming interface: the dced
API. This API gives management applications remote access to various data,
servers, and services on DCE hosts. Servers manage their own configuration in the
local dced by using the routines starting with dce_server , introduced in the
dce_server_intro(3dce) reference page.

The dced API Naming Conventions

All of the dced API routine names begin with the dced_ prefix. This API contains
some specialized routines that operate on services represented by the following
keywords in the routine names:

hostdata
The host data management service stores host-specific data such as the
host name, the host’s cell name, and other data, and it provides access to
these data items.

server The server control service configures, starts, and stops servers, among
other things. Applications must distinguish two general states of server
control: server configuration (srvrconf) and server execution (srvrexec).

secval
The security validation service maintains a host’s principal identity and
ensures applications that the DCE security daemon is genuine.

keytab
The key table management service remotely manages key tables.

The dced also provides the endpoint mapper service which has its own API,
described with the RPC API. These routines begin with rpc_ep and rpc_mgmt_ep .

Since some of the dced daemon’s services require the same operations (but on
different data types), the dced API also contains generic routines that may operate
on more than one of the preceding services. For example, you use the routine
dced_object_read() to read a data item (object) from the hostdata , srvrconf ,
srvrexec , or keytab services.

dced Binding Routines

A binding must be established to a dced service on a particular host before you can
use any other dced routines. The resources of the dced binding should also be
released when an application is finished with the service.

dced_binding_create()
Establishes a dced binding to a host service.

dced_binding_from_rpc_binding()
Establishes a dced binding to a dced service on the host specified in an
already-established RPC binding handle to any server.

20 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_set_auth_info()
Sets authentication, authorization, and protection level information for a
dced binding handle.

dced_binding_free()
Releases the resources of a dced binding handle.

Generic Entry Routines

All data maintained by dced is managed as entries. Most of the services of dced
have lists of entries traversed with a cursor that describe where the actual data is
maintained.

dced_entry_add()
Adds a keytab or hostdata entry.

dced_entry_remove()
Removes a hostdata or keytab data entry from dced .

dced_initialize_cursor()
Obtains a list of data entries from dced and sets a cursor at the beginning
of the list.

dced_entry_get_next()
Obtains the next data entry from a list of entries.

dced_release_cursor()
Releases the resources associated with a cursor which traverses a
service’s list of entries.

dced_list_get()
Returns the list of data entries maintained by a DCE host service.

dced_list_release()
Releases the resources of a list of entries.

dced_inq_id()
Obtains the UUID associated with an entry name.

dced_inq_name()
Obtains the name associated with an entry UUID.

Generic Routines to Read Data Objects

These routines obtain the actual data for items to which entries refer (objects).

dced_object_read()
Reads one data item of a dced service, based on the entry UUID.

dced_object_read_all()
Reads all the data of a dced service’s entry list.

dced_objects_release()
Releases the resources allocated for data obtained.

Host Data Management Routines
dced_hostdata_create()

Creates a hostdata item and the associated entry.

dced_hostdata_read()
Reads a hostdata item.

dced_hostdata_write()
Replaces an existing hostdata item.

dced_intro(3dce)

Chapter 1. DCE Routines 21

dced_hostdata_delete()
Deletes a hostdata item from a specific host and removes the associated
entry.

Server Configuration Control Routines
dced_server_create()

Creates a DCE server’s configuration data.

dced_server_modify_attributes()
Modifies a DCE server’s configuration data.

dced_server_delete()
Deletes a DCE server’s configuration data.

dced_server_start()
Starts a DCE-configured server.

Server Execution Control Routines
dced_server_disable_if()

Disables a service provided by a server.

dced_server_enable_if()
Re-enables a service provided by a server.

dced_server_stop()
Stops a DCE-configured server.

Security Validation Routines
dced_secval_start()

Starts a host’s security validation service.

dced_secval_validate()
Validates that the DCE security daemon (secd) used by a specific host is
legitimate.

dced_secval_status()
Returns a status parameter of TRUE if the security validation service is
activated and FALSE if not.

dced_secval_stop()
Stops a host’s security validation service.

Key Table Management Routines
dced_keytab_create()

Creates a key table with a list of keys in a new file.

dced_keytab_delete()
Deletes a key table file and removes the associated entry.

dced_keytab_initialize_cursor()
Obtains a list of keys from a key table and sets a cursor at the beginning of
the list.

dced_keytab_get_next_key()
Returns a key from a cached list, and advances the cursor.

dced_keytab_release_cursor()
Releases the resources associated with a cursor that traverses a key table.

dced_keytab_add_key()
Adds a key to a key table.

dced_intro(3dce)

22 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_change_key()
Changes a key in both a key table and in the security registry.

dced_keytab_remove_key()
Removes a key from a key table.

Data Types and Structures

The following data types used with the dced API are defined in dce/dced_base.idl
and are shown here in alphabetical order.

dced_attr_list_t
This data structure specifies the configuration attributes to use when you
start a server via dced . The structure consists of the following:

count An unsigned32 number representing the number of attributes in
the list.

list An array of configuration attributes where each element is of type
sec_attr_t . This data type is described in the sec_intro(3sec)
reference page. For dced , the list[i].attr_id field can have values
of either dced_g_uuid_fileattr specifying plain text or
dced_g_uuid_binfileattr specifying binary data.

dced_binding_handle_t
A dced binding handle is an opaque pointer that refers to information that
includes a dced service (hostdata , srvrconf , srvrexec , secval , or keytab)
and RPC binding information for a specific DCE host daemon.

dced_cursor_t
The entry list cursor is an opaque pointer used to keep track of a location in
an entry list between calls that traverse the list.

dced_entry_t
An entry is the structure that contains information about a data item (or
object) maintained by a dced service. The actual data is maintained
elsewhere. Each entry consists of the following structure members:

id A unique identifer of type uuid_t that dced maintains for every data
item it maintains

name The name for the data item. The data type is dced_string_t .

description
A brief description the data item (of type dced_string_t) for the
convenience of human users.

storage_tag
A string of type dced_string_t describing the location of the actual
data. This is implementation-specific and may be a file (with a
pathname) on the host system or a storage identifier for the dced
process.

dced_entry_list_t
An entry list is a uniform way to list the data items a dced service
maintains. The entry list structure contains a list of all the entries for a given
service. For example, the complete list of all entries of hostdata, server
configuration data, server execution data, and keytab data are each
maintained in separate entry lists. The structure consists of the following:

count An unsigned32 number representing the number of entries in the
list.

dced_intro(3dce)

Chapter 1. DCE Routines 23

list An array of entries where each element is of type dced_entry_t .

dced_key_t
A key consists of the following structure members:

principal
A dced_string_t type string representing the principal for the key.

version
An unsigned32 number representing the version number of the
key.

authn_service
An unsigned32 number representing the authentication service
used.

passwd
A pointer to a password. This is of type sec_passwd_rec_t .

See also the security introduction reference page, sec_intro(3sec) .

dced_key_list_t
A key list contains all the keys for a given key table and consists of the
following structure elements:

count An unsigned32 number representing the number of keys in the list.

list An array of keys where each element is of type dced_key_t .

dced_keytab_cursor_t
The keytab cursor is an opaque pointer used to keep track of a location in a
key list between calls that traverse the list.

dced_opnum_list_t
A list of operation numbers is used in the service_t structure. This structure
consists of the following fields:

count An unsigned32 number representing the number of operations in
the list.

list An array of UUIDs where each element is of type uuid_t .

dced_service_type_t
The dced service type distinguishes the services provided by dced . It is an
enumerated type used mainly in a parameter of the
dced_binding_from_rpc_binding() routine. It can have one of the
following values:

dced_e_service_type_hostdata
The host data management service.

dced_e_service_type_srvrconf
The server configuration management service.

dced_e_service_type_srvrexec
The server execution management service.

dced_e_service_type_secval
The security validation service.

dced_e_service_type_keytab
The key table management service.

dced_e_service_type_null
A NULL service type used internally.

dced_intro(3dce)

24 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_string_t
This data type is a character string from the Portable Character Set (PCS).

dced_string_list_t
A list of strings with the following format:

count An unsigned32 number representing the number of strings in the
list.

list An array of strings where each element is of type dced_string_t .

dced_tower_list_t
A list of protocol towers used in the service_t structure. This structure
consists of the following fields:

count An unsigned32 number representing the number of protocol towers
in the list.

list An array of pointers where each element is a pointer to a protocol
tower of the type sec_attr_twr_set_p_t . This data type is described
in the sec_intro(3sec) reference page.

server_fixedattr_t
This structure is a field in the server_t structure. It contains the following
fields:

startupflags
This field is of type unsigned32 and can be any combination of the
following bits:

server_c_startup_at_boot
This means that dced should start the server when dced is
started.

server_c_startup_auto
This means that the server can be started automatically if
dced determines there is a need.

server_c_startup_explicit
This means dced can start the server if it receives an
explicit command to do so via dced_server_start() or the
dcecp operation server start .

server_c_startup_on_failure
This means that the server should be restarted by dced if it
exits with an unsuccesful exit status.

Several bits are also reserved for vendor-specific startup and
include the following:

server_c_startup_vendor1

server_c_startup_vendor2

server_c_startup_vendor3

server_c_startup_vendor4

flags This represents the execution state of the server and is the
unsigned32 type. This field is maintained only by dced and should
not be modified. Valid values to check for are self-explanatory and
include the following:

server_c_exec_notrunning

dced_intro(3dce)

Chapter 1. DCE Routines 25

server_c_exec_running

Several bits are also reserved for vendor-specific execution states
and include:

server_c_exec_vendor1

server_c_exec_vendor2

server_c_exec_vendor3

server_c_exec_vendor4

program
This is the full path name of the server and is of type
dced_string_t .

arguments
This is a list of arguments for the server and is of type
dced_string_list_t .

prerequisites
This is an advisory field that means this server is a client of other
prerequisite servers whose IDs are in a list of type uuid_list_t . The
UUIDs should be the id fields from the server_t structures of the
relevent servers.

keytables
This is a list of keytab entry UUIDs representing the key tables for
this server and is of type uuid_list_t .

posix_uid
This is a POSIX execution attribute for the user ID. It is of type
unsigned32 .

posix_gid
This is a POSIX execution attribute for the group ID. It is of type
unsigned32 .

posix_dir
This is a POSIX execution attribute for the directory in which the
server started when it is invoked. It is of type dced_string_t .

server_t
The DCE host daemon describes a server as follows:

id Each server has a unique ID of type uuid_t .

name Each server’s name is of type dced_string_t .

entryname
The server’s entry name is a hint as to where the server appears in
the namespace. This is of type dced_string_t .

services
Each server offers a list of services specified in a list of type
service_list_t . This structure has the following members:

count An unsigned32 number representing the number of
services in the list.

list A pointer to an array of services where each element is of
type service_t .

dced_intro(3dce)

26 IBM DCE for AIX, Version 2.2: Application Development Reference

fixed This is a set of attributes common to all DCE implementations. The
data type is server_fixedattr_t .

attributes
This field is of type dced_attr_list_t and contains a list of attributes
representing the behavior specific to a particular server or host.

prin_names
This field is a list of principal names for the server and is of type
dced_string_list_t .

exec_data
Data about an executing server is maintained in a tagged union
(named tagged_union) with a discriminator of type unsigned32
named execstate representing the server’s execution state.

The union has the following two execution states:

server_c_exec_notrunning
For the case where the server is not running, the union
member has no value. For example:
if(server->exec_data.execstate == server_c_exec_notrunning)
server->exec_data.tagged_union = NULL;

server_c_exec_running
For the case where the server is running, and the value of
the union member is a srvrexec_data_t data type named
running_data . A srvrexec_data_t structure contains the
following members:

instance
Each instance of a server on a host is identified
with a UUID (type uuid_t).

posix_pid
Each server has a POSIX process ID of type
unsigned32 .

service_t
This structure describes each service offered by a server. The server_t
structure, described earlier, contains an array of these structures. The
service_t structure contains the following fields:

ifspec An interface specification of type rpc_if_id_t, generated by an idl
compilation of the interface definition representing the service. This
data type is described in the rpc_intro(3rpc) reference page.

ifname
An interface name of type dced_string_t .

annotation
An annotation about the purpose of the interface (type
dced_string_t). This field is for user display purposes only.

flags The flag field is of type unsigned32 and currently has only one bit
field defined, service_c_disabled . If this flag is set, it indicates that
the service is not currently available for the server. Also, the dced
endpoint mapper will not map an endpoint to a disabled service.
Several values are also reserved for vendor-specific use:

service_c_vendor1

service_c_vendor2

dced_intro(3dce)

Chapter 1. DCE Routines 27

service_c_vendor3

service_c_vendor4

entryname
The entry name (type dced_string_t) is a hint as to where this
service appears in the namespace. If the value is NULL, the value
in the entryname field of the server_t structure is used.

objects
This is a list of objects supported by the service. The list is of type
uuid_list_t .

operations
This is a list of operation numbers of type dced_opnum_list_t . This
field is not currently used.

towers
This is a list of protocol towers of type dced_tower_list_t ,
specifying the endpoints where this server can be reached.

srvrexec_stop_method_t
The server execution stop method is an enumerated type with one of the
following values:

srvrexec_stop_rpc
Stops the running server gracefully by letting the server complete
all outstanding remote procedure calls. This causes dced to invoke
the rpc_mgmt_server_stop_listening() routine in that server.

srvrexec_stop_soft
This uses a system-specific mechanism such as the SIGTERM
signal. It stops the running server with a mechanism that the server
can ignore or intercept in order to do application-specific cleanup.

srvrexec_stop_hard
This uses a system-specific mechanism such as the SIGKILL
signal. It stops the running server immediately with a mechanism
that the server cannot intercept.

srvrexec_stop_error
This uses a system-specific mechanism such as the SIGABRT
signal. The local operating system captures the server’s state
before stopping it, and the server can also intercept it.

uuid_list_t
A list of UUIDs in the following format:

count An unsigned32 number representing the number of UUIDs in the
list.

list A pointer to an array of UUIDs where each element is of type
uuid_t .

Files
dce/dced_base.h

dce/dced.h

dce/dced_data.h

dce/rpctypes.idl

dce/passwd.idl

dced_intro(3dce)

28 IBM DCE for AIX, Version 2.2: Application Development Reference

dce/sec_attr_base.idl

Related Information

Functions: dced_ * API.

Books: IBM DCE for AIX, Version 2.2: Application Development Guide

dced_intro(3dce)

Chapter 1. DCE Routines 29

dce_svc_intro

Purpose

Introduction to the DCE serviceability interface

Description

The routines listed below are intended to be used by servers that export the
serviceability interface defined in service.idl . The complete list of these remote
serviceability implementation calls is as follows (the remote operation name is given
in the left column, and the corresponding implementation routine is given in the right
column).

Remote Operation Implementation Routine

dce_svc_set_route dce_svc_routing
dce_svc_set_dbg_route dce_svc_debug_routing
dce_svc_set_dbg_levels dce_svc_debug_set_levels
dce_svc_inq_components dce_svc_components
dce_svc_inq_table dce_svc_table
dce_svc_filter_control dce_svc_filter
dce_svc_inq_stats dce_svc_inq_stats

These routines perform all the necessary processing (except for checking clients’
authorization) that must be done by the application manager to implement the
remote serviceability operations.

Note that most of these routines have little meaning except as implementations of
remote operations. However, the dce_svc_routing() , dce_svc_filter() ,
dce_svc_debug_routing() and dce_svc_debug_set_levels() routines can
conceivably be used by servers as purely local operations (for example, in order to
allow routing and debug levels to be set via command line flags when the server is
invoked).

The dce_svc_log_ routines provide read access to BINFILE format logs which are
created and written by the DCE serviceability routines; see svcroute(5) for further
information. The dce_svc_log_handle_t typedef is an opaque pointer to a handle
for an opened log file.

Applications that use the serviceability interface can install a routine that will be
effectively hooked into the operation of the interface. If a filter is installed, it will be
called whenever one of the serviceability output routines (dce_svc_printf()) is
about to output a message; whenever this happens, the filter will receive a group of
parameters that describe the message that is about to be output and the
circumstances that provoked the action. The filter can then allow the message
output to proceed, or suppress the message.

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. The dce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

30 IBM DCE for AIX, Version 2.2: Application Development Reference

The DCE Serviceability Routines

The serviceability routines are as follows, listed in alphabetical order:

dce_assert()
Adds runtime ′′can’t happen’’ assertions to programs (such as,
programming errors).

dce_svc_components()
Returns an array containing the names of all components in the program
that have been registered with the dce_svc_register() routine.

dce_svc_debug_routing()
Specifies both the level of an applications’s serviceability debug messaging,
and where the messages are routed.

dce_svc_debug_set_levels()
Sets serviceability debugging message levels for a component.

dce_svc_define_filter()
Lets applications define serviceability filtering routines.

dce_svc_filter()
Controls the behavior of the serviceability message filtering routine, if one
exists.

dce_svc_log_close()
Closes an open binary format serviceability log and releases all internal
state associated with the handle.

dce_svc_log_get()
Reads the next entry from a binary format serviceability log.

dce_svc_log_open()
Opens the specified file for reading.

dce_svc_log_rewind()
Rewinds the current reading position of the specified (by handle) log file to
the first record.

dce_svc_printf()
Provides the normal call for writing or displaying serviceability messages.

dce_svc_register()
Registers a serviceability handle and subcomponent table.

dce_svc_routing()
Specifies how normal (non-debug) serviceability messages are routed.

dce_svc_set_progname()
If not called, the application’s generated serviceability messages will be
identified by its process ID.

dce_svc_table()
Returns the serviceability subcomponent table registered with the specified
component.

dce_svc_unregister()
Destroys a serviceability handle, releasing all allocated resources
associated with the handle.

Data Types and Structures
dce_svc_filter_proc_t

The prototype of a serviceability filtering routine.

dce_svc_intro(3dce)

Chapter 1. DCE Routines 31

dce_svc_filterctl_proc_t
The prototype of a serviceability filter-control routine.

dce_svc_handle_t
An opaque handle to generate serviceability messages. (Use
dce_svc_register() or DCE_DEFINE_SVC_HANDLE to obtain one.)

dce_svc_log_handle_t
An opaque handle to an open serviceability binary format log file. (Use
dce_svc_log_open() to obtain one.)

dce_svc_log_prolog_t
A structure containing data about a serviceability binary format log entry.

dce_svc_prolog_t
A structure containing the initial message parameters passed to the filtering
routine.

Files
dce/service.idl

dce/dce_svc.h

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide

dce_svc_intro(3dce)

32 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_assert

Purpose

Inserts program diagnostics

Synopsis
#define DCE_ASSERT
#include <dce/assert.h>

void dce_assert(
dce_svc_handle_t handle
int expression);

Parameters

Input
handle A registered serviceability handle.

expression
An expression the truth of which is to be tested.

Description

The dce_assert macro is used to add runtime ′′can’t happen’’ assertions to
programs (that is, programming errors). On execution, when expression evaluates
to 0 (that is, to FALSE), then dce_svc_printf() is called with parameters to
generate a message identifying the expression, source file and line number. The
message is generated with a severity level of svc_c_sev_fatal , with the
svc_c_action_abort flag specified (which will cause the program to abort when the
assertion fails and the message is generated). See the dce_svc_register(3dce)
reference page for more information.

The handle parameter should be a registered serviceability handle; it can also be
NULL, in which case an internal serviceability handle will be used.

Assertion-checking can be enabled or disabled at compile time. The header file
dce/assert.h can be included multiple times. If DCE_ASSERT is defined before the
header is included, assertion checking is performed. If it is not so defined, then the
assertion-checking code is not compiled in. The system default is set in dce/dce.h .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_register(3dce) .

Chapter 1. DCE Routines 33

dce_attr_sch_aclmgr_strings

Purpose

Retrieves printable ACL strings for each permission bit that the acl_mgr_type will
support.

Format
#include <dce/dce_attr_sch.h>

void dce_attr_sch_aclmgr_strings(
dce_attr_sch_handle_t h,
uuid_t *acl_mgr_type,
unsigned32 size_avail,
uuid_t *acl_mgr_type_chain,
sec_acl_printstring_t *acl_mgr_info,
boolean32 *tokenize,
unsigned32 *total_num_printstrings,
unsigned32 *size_used,
sec_acl_printstring_t permstrings[],
error_status_t *st);

Parameters

Input
h An opaque handle to the schema on which this operation is being

performed.

acl_mgr_type
The UUID of the acl_mgr_type for which the printstrings are to be returned.

size_avail
The size of the permstrings array.

Output
acl_mgr_type_chain

If not uuid_nil , identifies the next acl_mgr_type UUID in a chain supporting
ACL managers with more than 32 permission bits.

acl_mgr_info
Printstrings containing the name, help information, and complete set of
supported permission bits for this ACL manager.

tokenize
If TRUE, permission bit strings should be tokenized. If FALSE, permission
print strings are unambiguous and print strings for various permissions can
be concatenated.

total_num_printstrings
The total number of permission print strings supported by this
acl_mgr_type.

size_used
The number of perm print strings returned.

permstrings[]
An array containing the print strings for each permission supported by this
acl_mgr_type.

34 IBM DCE for AIX, Version 2.2: Application Development Reference

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns
dce_attr_s_not_implemented .

Usage

The dce_attr_sch_aclmgr_strings routine retrieves printable representations for
each permission bit that the input acl_mgr_type will support. There can be aliases
for common permission combinations; by convention, simple entries should appear
at the beginning of the array, and combinations should appear at the end. When
FALSE, the tokenize flag indicates that permission print strings are unambiguous
and therefore can be concatenated for various permissions.When TRUE, however,
this property does not hold and the strings should be tokenized before input or
output.

The acl_mgr_info string provides a name and help information for the manager type
as well as the complete set of supported permission bits. The total_num_printstrings
parameter contains the total number of ACL print strings supported by this ACL
manager type. If total_num_printstrings is greater than size_avail, this routine
should be invoked again with a buffer of the appropriate size.

If acl_mgr_type supports more than 32 permission bits, multiple manager types can
be used, one for each 32-bit-wide slice of permissions. When this is the case the
acl_mgr_type_chain parameter is set to the UUID of the next manager type in the
set.The final result for the chain returns uuid_nil in the manager_type_chain
parameter.

Context
/usr/include/dce/dce_attr_sch.idl

The idl file from which dce/dce_attr_sch.h was derived.

dce_attr_sch_aclmgr_strings(3sec)

Chapter 1. DCE Routines 35

dce_attr_sch_bind

Purpose

Returns an opaque handle to a schema object

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_bind(
dce_attr_component_name_t schema_name
dce_bind_auth_info_t *auth_info
dce_attr_sch_handle_t *h
error_status_t *st);

Parameters

Input
schema_name

A pointer to a value of type dce_attr_component_name_t that specifies
the name of the schema object to bind to.

auth_info
A value of type dce_bind_auth_info_t that defines the authentication and
authorization parameters to use with the binding handle. If set to NULL, the
default authentication and authorization parameters are used.

Output
h An opaque handle of type dce_attr_sch_handle_t to the named schema

object for use with dce_attr_sch operations.

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_bind() routine returns an opaque handle of type
dce_attr_sch_handle_t to a named schema object. The returned handle can then
be used for subsequent dce_attr_sch operations performed on the object.

Permissions Required

The dce_attr_sch_update_entry() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

36 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_s_bad_name

sec_login_s_no_current_context

rpc_s_entry_not_found

rpc_s_no_more_bindings

dce_attr_s_unknown_auth_info_type

dce_attr_s_no_memory

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_bind_free(3dce) .

dce_attr_sch_bind(3dce)

Chapter 1. DCE Routines 37

dce_attr_sch_bind_free

Purpose

Releases an opaque handle of type dce_attr_sch_handle_t to a schema object

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_bind_free(
dce_attr_sch_handle_t *h
error_status_t *st);

Parameters

Input
h An opaque handle of type dce_attr_sch_handle_t .

Output
st A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_bind_free() routine releases an opaque handle of type
dce_attr_sch_handle_t . The handle was returned with the dce_attr_sch_bind()
routine and used to perform dce_attr_sch operations.

Permissions Required

The dce_attr_sch_bind_free() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_sch.idl

The idl file from which dce/dce_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_bind(3dce) .

38 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_create_entry

Purpose

Creates a schema entry in a schema bound to by a previous dce_attr_sch_bind()

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_create_entry(
dce_attr_sch_handle_t h
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

schema_entry
A pointer to a dce_attr_schema_entry_t that contains the schema entry
values for the schema in which the entry is to be created.

Output
st A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_create_entry() routine creates schema entries that define
attribute types in the schema object bound to by h.

Permissions Required

The dce_attr_sch_create_entry() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok

Chapter 1. DCE Routines 39

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_delete_entry(3dce) ,
dce_attr_sch_update(3dce) .

dce_attr_sch_create_entry(3dce)

40 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_cursor_alloc

Purpose

Allocates resources to a cursor used with dce_attr_sch_scan()

Synopsis
#include <dce/dce_attr_sch.h>

void dce_rgy_attr_cursor_alloc(
dce_attr_cursor_t *cursor
error_status_t *status);

Parameters

Output
cursor A pointer to a dce_attr_cursor_t .

status A pointer to the completion status. On successful completion, the call
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_alloc() routine allocates resources to a cursor used with
the dce_attr_sch_scan() routine. This routine, which is a local operation, does not
initialize cursor.

The dce_attr_sch_cursor_init() routine, which makes a remote call, allocates and
initializes the cursor. In addition, dce_attr_sch_cursor_init() returns the total
number of entries found in the schema as an output parameter;
dce_attr_sch_cursor_alloc() does not.

Permissions Required

The dce_attr_sch_cursor_alloc() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_no_memory

error_status_ok

Chapter 1. DCE Routines 41

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_init(3dce) ,
dce_attr_sch_cursor_release(3dce) , dce_attr_sch_scan(3dce).

dce_attr_sch_cursor_alloc(3dce)

42 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_cursor_init

Purpose

Initializes and allocates a cursor used with dce_attr_sch_scan()

Synopsis
#include <dce/dce_attr_base.h>

void dce_rgy_attr_cursor_init(
dce_attr_sch_handle_t h
unsigned32 *cur_num_entries
dce_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

Output
cur_num_entries

A pointer to an unsigned 32-bit integer that specifies the total number of
entries contained in the schema at the time of this call.

cursor A pointer to a dce_attr_cursor_t that is initialized to the first entry in the
the schema.

status A pointer to the completion status. On successful completion, the call
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_init() routine initializes and allocates a cursor used with
the dce_attr_sch_scan() routine. This call makes remote calls to initialize the
cursor. To limit the number of remote calls, use the dce_attr_sch_cursor_alloc()
routine to allocate cursor, but not initialize it. If the cursor input to
dce_attr_sch_scan() has not been initialized, dce_attr_sch_scan() routine will
initialize it; if it has been initialized, dce_attr_sch_scan() advances it.

Unlike the dce_attr_sch_cursor_alloc() routine, the dce_attr_sch_cursor_init()
routine supplies the total number of entries found in the schema as an output
parameter.

Permissions Required

None.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Chapter 1. DCE Routines 43

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding

dce_attr_s_no_memory

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_allocate(3dce),
dce_attr_sch_cursor_release(3dce) , dce_attr_sch_scan(3dce).

dce_attr_sch_cursor_init(3dce)

44 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_cursor_release

Purpose

Releases states associated with a cursor that has been allocated with either
dce_attr_sch_cursor_init() or dce_attr_sch_cursor_alloc()

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_cursor_release(
dce_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor A pointer to a dce_attr_cursor_t . As an input parameter, cursor must have

been initialized to the first entry in a schema. As an output parameter,
cursor is uninitialized with all resources released.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_init() routine releases the resources allocated to a
cursor that has been allocated by either dce_attr_sch_cursor_init() or
dce_attr_sch_cursor_alloc() . This call is a local operation and makes no remote
calls.

Permissions Required

None.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce) ,
dce_attr_sch_cursor_init(3dce) , dce_attr_sch_cursor_reset(3dce) ,
dce_attr_sch_scan(3dce) .

Chapter 1. DCE Routines 45

dce_attr_sch_cursor_reset

Purpose

Resets a cursor that has been allocated with either dce_attr_sch_cursor_init() or
dce_attr_sch_cursor_alloc()

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_cursor_reset(
dce_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor A pointer to a dce_attr_cursor_t . As an input parameter, an initialized

cursor. As an output parameter, cursor is reset to the first attribute in the
schema.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_reset() routine resets a dce_attr_cursor_t that has
been allocated by either the dce_attr_sch_cursor_init() routine or the
dce_attr_sch_cursor_alloc() routine. The reset cursor can then be used to
process a new dce_attr_sch_scan query by reusing the cursor instead of releasing
and reallocating it. This is a local operation and makes no remote calls.

Permissions Required

None.

Files
/usr/include/dce/dce_attr_sch.idl

The idl file from which dce/dce_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce) ,
dce_attr_sch_cursor_init(3dce) , dce_attr_sch_scan(3dce) .

46 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_delete_entry

Purpose

Deletes a schema entry

Synopsis
#include <dce/dce_attr_sch.h>

void dce_attr_sch_delete_entry(
dce_attr_sch_handle_t h
uuid_t *attr_id
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

attr_id A pointer to a uuid_t that identifies the schema entry to be deleted in the
schema bound to by h.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_delete_entry() routine deletes a schema entry. Because this is
a radical operation that invalidates any existing attributes of this type on objects
dominated by the schema, access to this operation should be severely limited.

Permissions Required

The dce_attr_sch_delete_entry() routine requires requires appropriate permissions
on the schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok

Chapter 1. DCE Routines 47

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_create_entry(3dce) ,
dce_attr_sch_update_entry(3dce) .

dce_attr_sch_delete_entry(3dce)

48 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_get_acl_mgrs

Purpose

Retrieves the manager types of the ACLs protecting the objects dominated by a
named schema

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_get_acl_mgrs(
dce_attr_sch_handle_t h
unsigned32 size_avail
unsigned32 *size_used
unsigned32 *num_acl_mgr_types
uuid_t acl_mgr_types[]
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

size_avail
An unsigned 32-bit integer containing the allocated length of the
acl_manager_types[] array.

Output
size_used

An unsigned 32-bit integer containing the number of output entries returned
in the acl_mgr_types[] array.

num_acl_mgr_types
An unsigned 32-bit integer containing the number of types returned in the
acl_mgr_types[] array. This may be greater than size_used if there was not
enough space allocated by size_avail for all the manager types in the
acl_manager_types[] array.

acl_mgr_types[]
An array of the length specified in size_avail to contain UUIDs (of type
uuid_t) identifying the types of ACL managers protecting the target object.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_get_acl_mgrs() routine returns a list of the manager types
protecting the schema object identified by h.

ACL editors and browsers can use this operation to determine the ACL manager
types protecting a selected schema object.

Chapter 1. DCE Routines 49

Permissions Required

The dce_attr_sch_get_acl_mgrs() routine requires appropriate permissions on the
schema object for which the ACL manager types are to be returned. These
permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_not_implemented

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) .

dce_attr_sch_get_acl_mgrs(3dce)

50 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_lookup_by_id

Purpose

Reads a schema entry identified by UUID

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_lookup_by_id(
dce_attr_sch_handle_t h
uuid_t *attr_id
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

attr_id A pointer to a uuid_t that identifies a schema entry.

Output
schema_entry

A dce_attr_schema_entry_t that contains an entry identified by attr_id.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_lookup_by_id() routine reads a schema entry identified by
attr_id. This routine is useful for programmatic access.

After a successful call, free the resources allocated by this routine for the
schema_entry parameter by using the sec_attr_util_sch_ent_free_ptrs() routine.

Permissions Required

The dce_attr_sch_lookup_by_id() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding

Chapter 1. DCE Routines 51

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_lookup_by_name(3dce) ,
dce_attr_sch_scan(3dce) .

dce_attr_sch_lookup_by_id(3dce)

52 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_lookup_by_name

Purpose

Reads a schema entry identified by name

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_lookup_by_name(
dce_attr_sch_handle_t h
idl_char *attr_name
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

attr_name
A pointer to a character string that identifies the schema entry.

Output
schema_entry

A dce_attr_schema_entry_t that contains the schema entry identified by
attr_name.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_lookup_by_name() routine reads a schema entry identified by
name. This routine is useful for use with an interactive editor.

After a successful call, free the resources allocated by this routine for the attr
parameter by using the sec_attr_util_inst_free_ptrs() routine.

Permissions Required

The dce_attr_sch_lookup_by_name() routine requires appropriate permissions on
the schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 53

dce_attr_s_bad_binding

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_lookup_by_id(3dce) ,
dce_attr_sch_scan(3dce) .

dce_attr_sch_lookup_by_name(3dce)

54 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_scan

Purpose

Reads a specified number of schema entries

Synopsis
#include <dce/dce_attr_base.h>

void dce_attr_sch_scan(
dce_attr_sch_handle_t h
dce_attr_cursor_t *cursor
unsigned32 num_to_read
unsigned32 *num_read
dce_attr_schema_entry_t schema_entries[]
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

num_to_read
An unsigned 32-bit integer specifying the size of the schema_entries[] array
and the maximum number of entries to be returned.

Input/Output
cursor A pointer to a dce_attr_cursor_t . As input cursor must be allocated and

can be initialized. If cursor is not initialized, dce_attr_sch_scan will
initialize it. As output, cursor is positioned at the first schema entry after the
returned entries.

Output
num_read

A pointer to an unsigned 32-bit integer specifying the number of entries
returned in schema_entries[].

schema_entries[]
A dce_attr_schema_entry_t that contains an array of the returned schema
entries.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_scan() routine reads schema entries. The read begins at the
entry at which the input cursor is positioned and ends after the number of entries
specified in num_to_read.

The input cursor must have been allocated by either the
dce_attr_sch_cursor_init() or the dce_attr_sch_cursor_alloc() routine. If the
input cursor is not initialized, dce_attr_sch_scan() initializes it; if cursor is
initialized, dce_attr_sch_scan() simply advances it.

Chapter 1. DCE Routines 55

To read all entries in a schema, make successive dce_attr_sch_scan() calls. When
all entries have been read, the routine returns the message no_more_entries .

This routine is useful as a browser.

Permissions Required

The dce_attr_sch_scan() routine requires requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding

dce_attr_s_bad_cursor

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce) ,
dce_attr_sch_cursor_init(3dce) , dce_attr_sch_cursor_release(3dce) .

dce_attr_sch_scan(3dce)

56 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_update_entry

Purpose

Updates a schema entry

Synopsis
#include <dce/dce_attr_sch.h>

void dce_attr_sch_update_entry(
dce_attr_sch_handle_t h
dce_attr_schema_entry_parts_t modify_parts
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to

acquire the handle.

modify_parts
A value of type dce_attr_schema_entry_parts_t that identifies the fields in
the schema bound to by h that can be modified.

schema_entry
A pointer to a dce_attr_schema_entry_t that contains the schema entry
values for the schema entry to be updated.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_update_entry() routine modifies schema entries. Only those
schema entry fields set to be modified in the dce_attr_schema_entry_parts_t data
type can be modified.

Some schema entry components can never be modified. Instead, in order to make
any changes to these components, the schema entry must be deleted (which
deletes all attribute instances of that type) and recreated. The schema entry
components that can never be modified are as follows:

v Attribute name

v Reserved flag

v Apply defaults flag

v Intercell action flag

v Trigger types

v Comment

Fields that are arrays of structures (such as acl_mgr_set and trig_binding) are
completely replaced by the new input array. This operation cannot be used to add a
new element to the existing array.

Chapter 1. DCE Routines 57

Permissions Required

The dce_attr_sch_update_entry() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files
/usr/include/dce/dce_attr_base.idl

The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_create_entry(3dce) ,
dce_attr_sch_delete_entry(3dce) .

dce_attr_sch_update_entry(3dce)

58 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_binding_entry_from_host

Purpose

Returns the host binding entry name

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_binding_entry_from_host(
char *hostname
char **entry_name
error_status_t *status);

Parameters

Input
hostname

Specifies the name of the host. Note that host names are case sensitive. If
NULL, the configuration file is searched for the host name, and that name,
if found, is used.

Output
entry_name

The binding entry name associated with the specified host.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_binding_entry_from_host() routine returns the binding entry name
string associated with the hostname passed to it. If hostname is NULL, the binding
entry name associated with the name returned by dce_cf_get_host_name() is
returned.

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

Chapter 1. DCE Routines 59

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions: dce_cf_find_name_by_key(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_prin_name_from_host(3dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_binding_entry_from_host(3dce)

60 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_dced_entry_from_host

Purpose

Returns the dced entry name on a host

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_dced_entry_from_host(
char *hostname
char **entry_name
error_status_t *status);

Parameters

Input
hostname

Specifies the name of the host. Note that host names are case sensitive. If
this value is NULL, the value returned by dce_cf_get_host_name() is
used.

Output
entry_name

The dced entry name associated with the specified host. Storage for this
name is dynamically allocated; release it with free() when you no longer
need it.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_dced_entry_from_host() routine returns the name entered into the
DCE namespace for a DCE host daemon (dced) on the host specified by the
hostname parameter. If the hostname parameter is NULL, the dced name
associated with the name returned by dce_cf_get_host_name() is returned. The
string name is of the form /.:/hosts/ hostname/config , and specifies the entry point
into the dced namespace on the host. This is the location in the DCE namespace
at which dced stores the objects associated with the host services it provides (the
hostdata , srvrconf , srvrexec , secval , and keytab services, as well as ACL
editing). It is also an actual name in the DCE namespace that you can import if you
want to create your own RPC binding to dced .

You can use the dced entry name returned by this routine as input to the
dced_binding_create() routine, input to sec_acl_ * routines, or to
rpc_ns_binding_import_ * routines to establish a binding to a dced host service.

If using dced_binding_create() , you append a service name to the entry returned
by this routine. If using sec_acl_ * routines, you append the service and the object
name. If using rpc_ns_binding_import_ *, you use only the entry returned by the
routine.

Chapter 1. DCE Routines 61

You can also use the returned string to name objects that dced maintains, for
example, when editing these objects’ ACLs with dcecp . For example, the string
name /.:/hosts/vineyard/config/srvrconf/dtsd names the server configuration data
for the DTS server on the host vineyard .

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce) ,
dce_cf_find_name_by_key(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_prin_name_from_host(3dce) ,
dced_binding_create(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AIX, Version 2.2: Command Reference.

dce_cf_dced_entry_from_host(3dce)

62 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_find_name_by_key

Purpose

Returns a string tagged by a character string key

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_find_name_by_key(
FILE *fp
char *key
char **name
error_status_t *status);

Parameters

Input
fp A file pointer to a correctly formatted text file opened for reading.

key A character string key that will be used to find name.

Input/Output
name A pointer to a string (char **) in which a string containing the name found

will be placed.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_find_name_by_key() routine searches a text file for the first
occurrence of a string tag identical to the string passed in key. The tag string, in
order to be found, must be the first nonwhitespace string on an uncommented line.
If the tag string is found, dce_cf_find_name_by_key() copies the next string found
on the same line as the tag string into the buffer, and returns its address in the
name input parameter.

The name of the DCE configuration file is in the constant
dce_cf_c_base_db_name ; in turn, this constant is defined in the source file
<dce_cf.h> .

Cautions

The memory for a returned name string is allocated by malloc() , and must be freed
by the original caller of the configuration routine that called
dce_cf_find_name_by_key() .

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Chapter 1. DCE Routines 63

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed succesfully.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No match for key in the file.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce) ,
dce_cf_get_cell_name(3dce) , dce_cf_get_host_name(3dce) ,
dce_cf_find_names_by_key(3dce), dce_cf_prin_name_from_host(3dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_find_name_by_key(3dce)

64 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_find_names_by_key

Purpose

Returns an array of strings tagged by character string keys

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_find_names_by_key(
FILE *fp
char *key
char ***name
error_status_t *status);

Parameters

Input
fp A file pointer to a correctly formatted text file opened for reading.

key A character string key that will be used to find name.

Input/Output
name A pointer to an array of strings (char ***) in which the strings containing the

names found will be placed. The name strings will be allocated by malloc() .

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_find_names_by_key() routine searches a text file for the first
occurrence of a string tag identical to the string passed in key. The tag string, in
order to be found, must be the first nonwhitespace string on an uncommented line.
If the tag string is found, dce_cf_find_names_by_key() allocates (by a call to
malloc()) a buffer for the next string found on the same line as the tag string,
copies this second string into the buffer, and returns its address in the name input
parameter.

The name of the DCE configuration file is in the constant
dce_cf_c_base_db_name ; in turn, this constant is defined in the source file
<dce_cf.c> .

Cautions

The memory for a returned name string is allocated by malloc() , and must be freed
by the original caller of the configuration routine that called
dce_cf_find_names_by_key() .

Chapter 1. DCE Routines 65

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed succesfully.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No match for key in the file.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce) ,
dce_cf_get_cell_name(3dce) , dce_cf_get_host_name(3dce) ,
dce_cf_prin_name_from_host(3dce) , dce_cf_find_name_by_key(3dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_find_names_by_key(3dce)

66 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_free_cell_aliases

Purpose

Frees a list of cell name aliases for the local cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_free_cell_aliases(
char **cell_alias_list
error_status_t *status);

Parameters

Input
cell_alias_list

The address of a cell alias list, which is a null-terminated array of pointers
to the cell alias names for the local cell.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_free_cell_aliases() routine frees the list of aliases for the local cell that
the dce_cf_free_cell_aliases() routine allocated. The routine frees the memory
allocated to hold the array of pointers to cell alias string buffers, and also frees the
string buffers.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed succesfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No match for key in the file.

Related Information

Functions: dce_cf_get_cell_aliases(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_prin_name_from_host(3dce) ,
dce_cf_same_cell_name(3dce) .

Chapter 1. DCE Routines 67

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AIX, Version 2.2: Command Reference.

dce_cf_free_cell_aliases(3dce)

68 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_get_cell_aliases

Purpose

Returns a list of aliases for the local cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get_cell_aliases(
char ***cell_alias_list
error_status_t *status);

Parameters

Input

None.

Output
cell_alias_list

The address of a string pointer array. This routine sets this address to point
to the address of an allocated null-terminated array of pointers to the cell
alias names for the local cell. If no aliases exist, the routine returns NULL in
this parameter.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_get_cell_aliases() routine retrieves the local cell’s cell name aliases. If
cell aliases are found, the routine returns the address of an allocated list of cell
alias names in the cell_alias_list parameter. If no aliases exist for the cell, the
routine returns NULL.

Use the dce_cf_free_cell_aliases() routine to free the memory allocated by the
dce_cf_get_cell_aliases() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed succesfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No match for key in the file.

Chapter 1. DCE Routines 69

Related Information

Functions: dce_cf_free_cell_aliases(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_same_cell_name(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AIX, Version 2.2: Command Reference.

dce_cf_get_cell_aliases(3dce)

70 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_get_cell_name

Purpose

Returns the primary name for the local cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get_cell_name(
char **cellname
error_status_t *status);

Parameters

Input

None.

Output
cellname

The address of a string pointer. This pointer will be set by the function to
point to an allocated buffer that contains the cell name.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_get_cell_name() routine retrieves the primary name for the local cell. If
the name is found, dce_cf_get_cell_name() returns an allocated (by a call to
malloc()) copy of it in the cellname output parameter. Use free() to free the
allocated copy when you no longer need it.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed succesfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No match for key in the file.

Chapter 1. DCE Routines 71

Related Information

Functions: dce_cf_free_cell_aliases(3dce) , dce_cf_get_cell_aliases(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_prin_name_from_host(3dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_get_cell_name(3dce)

72 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_get_csrgy_filename

Purpose

Returns the pathname of the code set registry file on a host

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get_csrgy_filename(
char **csrgy_filename
error_status_t *status);

Parameters

Input

None.

Input/Output
csrgy_filename

The address of a string pointer. This pointer will be set by the function to
point to a buffer that contains the pathname to the code set registry file.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_get_csrgy_filename() routine is a DCE function that returns the
pathname of a code set registry file that has been created on a given host with the
csrc utility. DCE RPC routines for code set interoperability use this routine when
they need to locate a host’s code set registry file in order to map between unique
code set identifiers and their operating system-specific local code set names, or to
obtain supported code sets for a client or server. User-written code set
interoperability routines can also use the routine.

The dce_cf_get_csrgy_filename() routine searches the DCE configuration file for
the name of the local host’s code set registry file, allocates a buffer for it (by a call
to malloc()), copies the name into the buffer, and returns its address in the
csrgy_filename input parameter.

Cautions

The memory for a returned name string is allocated by malloc() , and must be freed
by the caller of dce_cf_get_csrgy_filename() .

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Chapter 1. DCE Routines 73

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation successfully completed.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

Related Information

Functions: dce_cf_find_name_by_key(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_prin_name_from_host(3dce) ,
rpc_rgy_get_codesets(3rpc) .

Commands: csrc(8dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_get_csrgy_filename(3dce)

74 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_get_host_name

Purpose

Returns the host name relative to the local cell root

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get_host_name(
char **hostname
error_status_t *status);

Parameters

Input

None.

Input/Output
hostname

The address of a string pointer. This pointer will be set by the function to
point to a buffer that contains the host name.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_get_host_name() routine searches the DCE configuration file for the
local host’s name relative to the local cell’s root. If the name is found,
dce_cf_get_host_name() allocates (by a call to malloc()) a buffer for it, copies the
name into the buffer, and returns its address in the hostname input/output
parameter.

Cautions

The memory for a returned name string is allocated by malloc() , and must be freed
by the caller of dce_cf_get_host_name() .

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 75

dce_cf_st_ok
Operation successfully completed.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce) ,
dce_cf_find_name_by_key(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_prin_name_from_host(3dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_get_host_name(3dce)

76 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_prin_name_from_host

Purpose

Returns the host’s principal name

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_prin_name_from_host(
char *hostname
char **prin_name
error_status_t *status);

Parameters

Input
hostname

The name of the host. Note that host names are case sensitive. If NULL,
the configuration file is searched for the host name, and that name, if found,
is used.

Output
prin_name

The principal name associated with the specified host.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_prin_name_from_host() routine returns the principal name associated
with the hostname passed to it. If hostname is NULL,
dce_cf_prin_name_from_host() returns the principal name associated with the
name returned by dce_cf_get_host_name() .

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

Chapter 1. DCE Routines 77

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce) ,
dce_cf_find_name_by_key(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_host_name(3dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_prin_name_from_host(3dce)

78 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_profile_entry_from_host

Purpose

Returns the host profile entry

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_profile_entry_from_host(
char *hostname
char **prof_name
error_status_t *status);

Parameters

Input
hostname

Specifies the name of the host. Note that host names are case sensitive. If
NULL, the configuration file is searched for the host name, and that name,
if found, is used.

Output
prof_name

The profile entry associated with the specified host.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_profile_entry_from_host() routine returns the profile entry string
associated with the hostname passed to it. If hostname is NULL, the profile entry
associated with the name returned by dce_cf_get_host_name() is returned.

Files
dcelocal/dce_cf.db

The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

Chapter 1. DCE Routines 79

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce) ,
dce_cf_find_name_by_key(3dce) , dce_cf_get_cell_name(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_prin_name_from_host(3dce) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide.

dce_cf_profile_entry_from_host(3dce)

80 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf_same_cell_name

Purpose

Indicates whether or not two cell names refer to the same cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_same_cell_name(
char *cell_name1
char *cell_name2
boolean32 *result
error_status_t *status);

Parameters

Input
cell_name1

A character string that specifies the name of a cell.

cell_name2
A character string that specifies the name of a cell to compare with
cell_name1. If this value is NULL, the routine determines whether or not the
cell name specified in cell_name1 is the name of the local cell.

Output
result A boolean value that indicates whether or not the specified cell names

match, when two cell names are given, and indicates whether or not the
specified cell name is the name of the local cell, when only one cell name
is given. A value of TRUE indicates that the cell names refer to the same
cell.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_cf_same_cell_name () routine, when given the names of two cells as
input parameters, compares the cell names to determine whether or not they refer
to the same call. The result parameter is set to TRUE if they do, and to FALSE if
they do not.

If only one cell name is specified as an input parameter, the
dce_cf_same_cell_name() routine determines whether or not the specified cell
name is the same as the local cell’s primary name (which it retrieves by calling
dce_cf_get_cell_name()). You can use the routine in this way to determine
whether a given cell name is the primary name of your local cell.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 81

dce_cf_st_ok
Operation completed succesfully.

dce_cf_e_no_match
No match for key in the file.

Related Information

Functions: dce_cf_free_cell_aliases(3dce) , dce_cf_get_cell_aliases(3dce) ,
dce_cf_get_cell_name(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AIX, Version 2.2: Command Reference.

dce_cf_same_cell_name(3dce)

82 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_close

Purpose

Closes an open backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_close(
dce_db_handle_t *handle
error_status_t *status);

Parameters

Input
handle A handle identifying the backing store to be closed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_close() routine closes a backing store that was opened by
dce_db_open() . It also frees the storage used by the handle, and sets the handle’s
value to NULL.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_open(3dce) .

Chapter 1. DCE Routines 83

dce_db_delete

Purpose

Deletes an item from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_delete(
dce_db_handle_t handle
void *key
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A pointer to a string or UUID that is the key to the item in the backing store.
The datatype of key must match the key method that was selected in the
flags parameter to dce_db_open() when the backing store was created.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error code.

Description

The dce_db_delete() routine deletes an item from the backing store that is
identified by the handle parameter, which was obtained from dce_db_open() . It is a
general deletion routine, interpreting the key parameter according to the type of
index with which the backing store was created.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_del_failed
The deletion did not occur. The global variable errno may indicate further
information about the error.

db_s_bad_index_type
The key’s type is wrong, or the backing store is not by name or by UUID.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Deletion is not allowed during iteration.

error_status_ok
The call was successful.

84 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_db_delete_by_name(3dce) , dce_db_delete_by_uuid(3dce) ,
dce_db_open(3dce) .

dce_db_delete(3dce)

Chapter 1. DCE Routines 85

dce_db_delete_by_name

Purpose

Deletes an item from a string-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_delete_by_name(
dce_db_handle_t handle
char *key
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A NULL-terminated string that is the key to the item in the backing store.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_del_failed
The deletion did not occur. The global variable errno may indicate further
information about the error.

db_s_bad_index_type
The backing store is not indexed by name.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Deletion is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_delete(3dce) , dce_db_delete_by_uuid(3dce) ,
dce_db_open(3dce) .

86 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_delete_by_uuid

Purpose

Deletes an item from a UUID-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_delete_by_uuid(
dce_db_handle_t handle
uuid_t *key
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A pointer to a UUID that is the key to the item in the backing store.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error code.

Description

The dce_db_delete_by_uuid() routine deletes an item from the backing store that
is identified by the handle parameter, which was obtained from dce_db_open() . It is
a specialized deletion routine for backing stores that are indexed by UUID, as
selected by the db_c_index_by_uuid bit in the flags parameter to dce_db_open()
when the backing store was created.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_del_failed
The deletion did not occur. The global variable errno may indicate further
information about the error.

db_s_bad_index_type
The backing store is not indexed by UUID.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Deletion is not allowed during iteration.

error_status_ok
The call was successful.

Chapter 1. DCE Routines 87

Related Information

Functions: dce_db_delete(3dce) , dce_db_delete_by_name(3dce) ,
dce_db_open(3dce) .

dce_db_delete_by_uuid(3dce)

88 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_fetch

Purpose

Retrieves data from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_fetch(
dce_db_handle_t handle
void *key
void *data
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A string or UUID that is the key to the item in the backing store. The
datatype of key must match the key method that was selected in the flags
parameter to dce_db_open() when the backing store was created.

Output
data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_fetch() routine retrieves data from the backing store that is identified
by the handle parameter, which was obtained from dce_db_open() . It is a general
retrieval routine, interpreting the key parameter according to the type of index with
which the backing store was created.

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

Notes

After calling dce_db_fetch() , it may be necessary to free some memory, if the call
was made outside of an RPC, on the server side. This is done by calling
rpc_sm_client_free() . (Inside an RPC the memory is allocated through
rpc_sm_allocate() , and is automatically freed.)

Programs that call dce_db_fetch() outside of a server operation (for instance, if a
server does some backing store initialization, or in a standalone program) must call
rpc_sm_enable_allocate() first. Indeed, every thread that calls dce_db_fetch()
must do rpc_sm_allocate() , but in the server side of an RPC, this is already done.

Chapter 1. DCE Routines 89

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This circumstance is
not necessarily an error.)

db_s_bad_index_type
The key’s type is wrong, or else the backing store is not by name or by
UUID.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch_by_name(3dce) , dce_db_fetch_by_uuid(3dce) ,
dce_db_free(3dce) , dce_db_open(3dce) .

dce_db_fetch(3dce)

90 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_fetch_by_name

Purpose

Retrieves data from a string-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_fetch_by_name(
dce_db_handle_t handle
char *key
void *data
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A null-terminated string that is the key to the item in the backing store.

Output
data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_fetch_by_name() routine retrieves data from the string-indexed
backing store that is identified by the handle parameter, which was obtained from
dce_db_open() . It is a specialized retrieval routine for backing stores that are
indexed by string, as selected by the db_c_index_by_name bit in the flags
parameter to dce_db_open() when the backing store was created.

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

Notes

After calling dce_db_fetch_by_name() , it may be necessary to free some memory,
if the call was made outside of an RPC, on the server side. This is done by calling
rpc_sm_client_free() . (Inside an RPC the memory is allocated through
rpc_sm_allocate() , and is automatically freed.)

Programs that call dce_db_fetch_by_name() outside of a server operation (for
instance, if a server does some backing store initialization, or in a standalone
program) must call rpc_sm_enable_allocate() first. Indeed, every thread that calls
dce_db_fetch_by_name() must do rpc_sm_allocate() , but in the server side of an
RPC, this is already done.

Chapter 1. DCE Routines 91

Examples

This example shows the use of the user-defined data type as the data parameter.
extern dce_db_handle_t db_h;
uuid_t key_uuid;
my_data_type_t my_data;
error_status_t status;
/* set key_uuid = xxx; */
dce_db_fetch_by_name(db_h, &key_uuid, &my_data, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This circumstance is
not necessarily an error.)

db_s_bad_index_type
The backing store is not indexed by name.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by_uuid(3dce) ,
dce_db_free(3dce) , dce_db_open(3dce) .

dce_db_fetch_by_name(3dce)

92 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_fetch_by_uuid

Purpose

Retrieves data from a UUID-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_fetch_by_uuid(
dce_db_handle_t handle
uuid_t *key
void *data
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A UUID that is the key to the item in the backing store.

Output
data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_fetch_by_uuid() routine retrieves data from the UUID-indexed
backing store that is identified by the handle parameter, which was obtained from
dce_db_open() . It is a specialized retrieval routine for backing stores that are
indexed by UUID, as selected by the db_c_index_by_uuid bit in the flags
parameter to dce_db_open() when the backing store was created.

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

Notes

After calling dce_db_fetch_by_uuid() , it may be necessary to free some memory, if
the call was made outside of an RPC, on the server side. This is done by calling
rpc_sm_client_free() . (Inside an RPC the memory is allocated through
rpc_sm_allocate() , and is automatically freed.)

Programs that call dce_db_fetch_by_uuid() outside of a server operation (for
instance, if a server does some backing store initialization, or in a standalone
program) must call rpc_sm_enable_allocate() first. Indeed, every thread that calls
dce_db_fetch_by_uuid() must do rpc_sm_allocate() , but in the server side of an
RPC, this is already done.

Chapter 1. DCE Routines 93

Examples

This example shows the use of the user-defined data type as the data parameter.
extern dce_db_handle_t db_h;
uuid_t key_uuid;
my_data_type_t my_data;
error_status_t status;
/* set key_uuid = xxx; */
dce_db_fetch_by_uuid(db_h, &key_uuid, &my_data, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This circumstance is
not necessarily an error.)

db_s_bad_index_type
The backing store is not indexed by UUID.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by_name(3dce) ,
dce_db_free(3dce) , dce_db_open(3dce) .

dce_db_fetch_by_uuid(3dce)

94 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_free

Purpose

Releases the data supplied from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_free(
dce_db_handle_t handle
void *data
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

data The data area to be released.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_free() routine is designed to free the data area previously returned via
a call to any of the routines dce_db_fetch() , dce_db_fetch_by_name() , or
dce_db_fetch_by_uuid() .

Notes

In the current implementation, the dce_db_free() routine does not perform any
action. For servers that execute properly, this is of little consequence because their
allocated memory is automatically cleaned up when a remote procedure call
finishes. For completeness, and for compatibility with future releases, the use of
dce_db_free() is recommended.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by_name(3dce) ,
dce_db_fetch_by_uuid(3dce) .

Chapter 1. DCE Routines 95

dce_db_header_fetch

Purpose

Retrieves the header from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_header_fetch(
dce_db_handle_t handle
void *key
dce_db_header_t *hdr
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A string or UUID that is the backing store key.

Output
hdr A pointer to a caller-supplied header structure to be filled in by the library.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_header_fetch() routine returns a pointer to a copy of the header of
the object in the backing store that is identified by the handle parameter, which was
obtained from dce_db_open() . The caller must free the copy’s storage. It was
allocated (as with other fetch routines) through rpc_ss_alloc() . The key parameter
is interpreted according to the type of index with which the backing store was
created.

The hdr parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key_not_found
The key was not found in the backing store.

error_status_ok
The call was successful.

96 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_db_fetch(3dce) , dce_db_std_header_init(3dce) .

dce_db_header_fetch(3dce)

Chapter 1. DCE Routines 97

dce_db_inq_count

Purpose

Returns the number of items in a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_inq_count(
dce_db_handle_t handle
unsigned32 *count
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
count A pointer to the number of items in the backing store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_inq_count() routine returns the number of items in the backing store
that is identified by the handle parameter, which was obtained from
dce_db_open() . It performs identically on backing stores that are indexed by UUID
and those that are indexed by string. The count of items can be helpful when
iterating through a backing store.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Determining the count is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_next(3dce) .

98 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_iter_done

Purpose

Frees the state associated with iteration

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_done(
dce_db_handle_t handle
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Description

The dce_db_iter_done() routine frees the state that permits iteration. It should be
called after an iteration through a backing store is finished.

The iteration state is established by dce_db_iter_start() . The routines for
performing iteration over the items are dce_db_iter_next() ,
dce_db_iter_next_by_name() , and dce_db_iter_next_by_uuid() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_next(3dce) , dce_db_iter_next_by_name(3dce) ,
dce_db_iter_next_by_uuid(3dce) , dce_db_iter_start(3dce) .

Chapter 1. DCE Routines 99

dce_db_iter_next

Purpose

During iteration, returns the next key from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_next(
dce_db_handle_t handle
void **key
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
key A pointer to the string or UUID that is the key to the item in the backing

store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_iter_next() routine retrieves the next key from the backing store that is
identified by the handle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use one of the
dce_db_fetch() routines to retrieve the actual data.

The iteration functions scan sequentially through a backing store, in no particular
order. The dce_db_iter_start() routine initialized the process, a dce_db_iter_next()
routine retrieves successive keys, for which the data can be retrieved with
dce_db_fetch() , and the dce_db_iter_done() routine finishes the process. The
iteration can also use the dce_db_iter_next_by_name() and
dce_db_iter_next_by_uuid() routines; the fetching can use the
dce_db_fetch_by_name() and dce_db_fetch_by_uuid() routines.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_no_more
All the keys in the backing store have been accessed; there are no more
iterations remaining to be done.

100 IBM DCE for AIX, Version 2.2: Application Development Reference

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by_name(3dce) ,
dce_db_fetch_by_uuid(3dce) , dce_db_iter_done(3dce) ,
dce_db_iter_next_by_name(3dce) , dce_db_iter_next_by_uuid(3dce) ,
dce_db_iter_start(3dce) .

dce_db_iter_next(3dce)

Chapter 1. DCE Routines 101

dce_db_iter_next_by_name

Purpose

During iteration, returns the next key from a backing store indexed by string

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_next_by_name(
dce_db_handle_t handle
char **key
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
key The string that is the key to the item in the backing store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_iter_next_by_name() routine retrieves the next key from the backing
store that is identified by the handle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use the
dce_db_fetch_by_name() routine to retrieve the actual data.

This iteration routine is the same as dce_db_iter_next() , except that it only works
with backing stores indexed by name, and returns an error if the backing store
index is the wrong type.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_no_more
All the keys in the backing store have been accessed; there are no more
iterations remaining to be done.

error_status_ok
The call was successful.

102 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_db_fetch_by_uuid(3dce) , dce_db_iter_done(3dce) ,
dce_db_iter_next(3dce) , dce_db_iter_next_by_uuid(3dce) ,
dce_db_iter_start(3dce) .

dce_db_iter_next_by_name(3dce)

Chapter 1. DCE Routines 103

dce_db_iter_next_by_uuid

Purpose

During iteration, returns the next key from a backing store indexed by UUID

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_next_by_uuid(
dce_db_handle_t handle
uuid_t **key
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
key The UUID that is the key to the item in the backing store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_iter_next_by_uuid() routine retrieves the next key from the backing
store that is identified by the handle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use the
dce_db_fetch_by_uuid() routine to retrieve the actual data.

This iteration routine is the same as dce_db_iter_next() , except that it only works
with backing stores indexed by UUID, and returns an error if the backing store
index is the wrong type.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_done(3dce) , dce_db_iter_next(3dce) ,
dce_db_iter_next_by_name(3dce) , dce_db_iter_start(3dce) .

104 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_iter_start

Purpose

Prepares a backing store for iteration

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_start(
dce_db_handle_t handle
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Description

The dce_db_iter_start() routine prepares the backing store that is identified by the
handle parameter for iterative retrieval of all its keys in succession.

A given handle can support only a single instance of iteration at one time.

To avoid the possibility that another thread will write to the backing store during an
iteration, always use the dce_db_lock() routine before calling dce_db_iter_start() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_iter_not_allowed
The function was called while an iteration was already in progress. The
concept of nested iterations is not supported.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_done(3dce) , dce_db_iter_next(3dce) ,
dce_db_iter_next_by_name(3dce) , dce_db_iter_next_by_uuid(3dce) ,
dce_db_lock(3dce) , dce_db_open(3dce) , dce_db_unlock(3dce) .

Chapter 1. DCE Routines 105

dce_db_lock

Purpose

Applies an advisory lock on a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_lock(
dce_db_handle_t handle
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_lock() routine acquires the lock associated with the handle.

There is an advisory lock associated with each handle. The routines for storing and
deleting backing stores apply the lock before updating a backing store. This routine
provides a means to apply the lock for other purposes, such as iteration.

Advisory locks allow cooperating threads to perform consistent operations on
backing stores, but do not guarantee consistency; that is, threads may still access
backing stores without using advisory locks, possibly resulting in inconsistencies.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_already_locked
An attempt was made to lock a backing store, but it was already locked.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_delete(3dce) , dce_db_delete_by_name(3dce) ,
dce_db_delete_by_uuid(3dce) , dce_db_store(3dce) ,
dce_db_store_by_name(3dce) , dce_db_store_by_uuid(3dce) ,
dce_db_unlock(3dce) .

106 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_open

Purpose

Opens an existing backing store or creates a new one

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_open(
const char *name
const char *backend_type
unsigned32 flags
dce_db_convert_func_t convert
dce_db_handle_t *handle
error_status_t *status);

Parameters

Input
name The filename of the backing store to be opened or created.

backend_type
Either of the strings, bsd4.4-hash or bsd4.4-btree , or a null pointer, which
defaults to hash. This parameter specifies the backing store backend type
for licensees adding multiple backends.

flags The manner of opening, as specified by any of the following bits:

db_c_index_by_name
The backing store is to be indexed by name. Either this or
db_c_index_by_uuid , but not both, must be selected.

db_c_index_by_uuid
The backing store is to be indexed by UUID. Either this or
db_c_index_by_name , but not both, must be selected.

db_c_std_header
The first field of each item (which is defined as a union in
dce_db_header_t) is the standard backing store header, with the
case dce_db_header_std selected. The selection for header
cannot have both db_c_std_header and db_c_acl_uuid_header .
If neither header flag is specified, no header is used.

db_c_acl_uuid_header
The first field of each item (the union) is an ACL UUID, with the
case dce_db_header_acl_uuid selected. The selection for header
cannot have both db_c_std_header and db_c_acl_uuid_header .
If neither header flag is specified, no header is used.

db_c_readonly
An existing backing store is to be opened in read-only mode.
Read/write is the default.

db_c_create
Creates an empty backing store if one of the given name does not
already exist. It is an error to try to create an existing backing store.

Chapter 1. DCE Routines 107

convert
The function, generated by the IDL compiler, that is called to perform
serialization.

Output
handle A pointer to a handle that identifies the backing store being used.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_open() routine opens the specified backing store. The flags parameter
must specify whether the backing store is to be indexed by name or by UUID. If all
of a server’s objects have entries in the CDS namespace, then it is probably best to
use a UUID index. If the server provides a junction or another name-based lookup
operation, then it is probably best to use a name index.

The IDL code in /usr/include/dce/database.idl defines the backing store header
(selected by the flags parameter) that is placed on each item, the possible header
types, and the form of the function for serializing headers.

Notes

Backing stores are also called databases. For instance, the associated IDL header
is dce/database.idl , and the name of the backing store routines begin with
dce_db_ . Nevertheless, backing stores are not databases in the conventional
sense, and have no support for SQL or for any other query system.

It is illegal to delete a mutex that is associated with a handle (one that identifies the
backing store to be closed) when the mutex has a current owner.

Examples

Standardized use of the backing store library is encouraged. The following is the
skeleton IDL interface for a server’s backing store:
interface XXX_db
{
import "dce/database.idl";
typedef XXX_data_s_t {
dce_db_header_t header;
/* server-specific data */

} XXX_data_t;
void XXX_data_convert(
[in] handle_t h,
[in, out] XXX_data_t *data,
[out] error_status_t *st

);
}

This interface should be compiled with the following ACF:
interface XXX_db
{
[encode, decode] XXX_data_convert();

}

A typical call to dce_db_open() , using the preceding IDL example, follows:

dce_db_open(3dce)

108 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_open("XXX_db", NULL,
db_c_std_header | db_c_index_by_uuid,
(dce_db_convert_func_t)XXX_data_convert,
&handle, &st);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_bad_index_type
The index type in flags is specified neither by name nor by UUID, or else it
is specified as both.

db_s_bad_header_type
The header type in flags is specified as both standard header and ACL
header.

db_s_index_type_mismatch
An existing backing store was opened with the wrong index type.

db_s_open_already_exists
The backing store file specified for creation already exists.

db_s_no_name_specified
No filename is specified.

db_s_open_failed_eacces
The server does not have permission to open the backing store file.

db_s_open_failed_enoent
The specified directory or backing store file was not found.

db_s_open_failed
The underlying database-open procedure failed. The global variable errno
may provide more specific information.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_close(3dce) .

dce_db_open(3dce)

Chapter 1. DCE Routines 109

dce_db_std_header_init

Purpose

Initializes a standard backing store header

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_std_header_init(
dce_db_handle_t handle
dce_db_header_t *hdr
uuid_t *uuid
uuid_t *acl_uuid
uuid_t *def_object_acl
uuid_t *def_container_acl
unsigned32 ref_count
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

hdr Pointer to the object header part of the users’ structure.

uuid The UUID to be placed into the header. Can be NULL.

acl_uuid
The UUID of the ACL protecting this object, to be placed into the header.
Can be NULL.

def_object_acl
The UUID of the default object ACL, to be placed into the header. Can be
NULL.

def_container_acl
The UUID of the default container ACL, to be placed into the header. Can
be NULL.

ref_count
The reference count to be placed into the header.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_std_header_init() routine initializes the fields of the standard header
for a data object whose backing store is identified by the handle parameter. The
fields are only set in memory and should be stored to the backing store by one of
the store routines. The handle was obtained from dce_db_open() , which must have
been called with the db_c_std_header flag.

110 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_bad_header_type
The header type is not dce_db_header_std .

error_status_ok
The call was successful.

Related Information

Functions: dce_db_header_fetch(3dce) .

dce_db_std_header_init(3dce)

Chapter 1. DCE Routines 111

dce_db_store

Purpose

Stores data into a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_store(
dce_db_handle_t handle
void *key
void *data
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A string or UUID that is the backing store key. The datatype of key must
match the key method that was selected in the flags parameter to
dce_db_open() when the backing store was created.

data A pointer to the data structure to be stored.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_store() routine stores the data structure pointed to by data into the
backing store. The conversion function that was specified in the call to
dce_db_open() serializes the structure so that it can be written to disk.

If the key value is the same as a key already stored, the new data replaces the
previously stored data associated with that key.

Notes

Because the dce_db_store() routine uses the encoding services, and they in turn
use rpc_sm_allocate() , all programs that call dce_db_store() outside of a server
operation (for instance, if a server does some backing store initialization, or in a
standalone program) must call rpc_sm_enable_allocate() first. Indeed, every
thread that calls dce_db_store() must do rpc_sm_enable_allocate() , but in the
server side of an RPC, this is already done.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

112 IBM DCE for AIX, Version 2.2: Application Development Reference

db_s_bad_index_type
The key’s type is wrong, or else the backing store is not by name or by
UUID.

db_s_readonly
The backing store was opened with the db_c_readonly flag, and cannot be
written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variable errno may contain more information about the error.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Storing is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_open(3dce) ,
dce_db_store_by_name(3dce) , dce_db_store_by_uuid(3dce) .

dce_db_store(3dce)

Chapter 1. DCE Routines 113

dce_db_store_by_name

Purpose

Stores data into a string-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_store_by_name(
dce_db_handle_t handle
char *key
void *data
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A null-terminated string that is the backing store key.

data A pointer to the data structure to be stored.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_store_by_name() routine stores the data structure pointed to by data
into the backing store. The conversion function that was specified in the call to
dce_db_open() serializes the structure so that it can be written to disk.

This routine is specialized for storage into backing stores that are indexed by string,
as selected by the db_c_index_by_name bit in the flags parameter to
dce_db_open() when the backing store was created.

If the key value is the same as a key already stored, the new data replaces the
previously stored data associated with that key.

Notes

Because the dce_db_store_by_name() routine uses the encoding services, and
they in turn use rpc_sm_allocate() , all programs that call
dce_db_store_by_name() outside of a server operation (for instance, if a server
does some backing store initialization, or in a standalone program) must call
rpc_sm_enable_allocate() first. Indeed, every thread that calls
dce_db_store_by_name() must do rpc_sm_enable_allocate() , but in the server
side of an RPC, this is already done.

114 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_bad_index_type
The backing store is not indexed by name.

db_s_readonly
The backing store was opened with the db_c_readonly flag, and cannot be
written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variable errno may contain more information about the error.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Storing is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_open(3dce) , dce_db_store(3dce) ,
dce_db_store_by_uuid(3dce) .

dce_db_store_by_name(3dce)

Chapter 1. DCE Routines 115

dce_db_store_by_uuid

Purpose

Stores data into a UUID-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_store_by_uuid(
dce_db_handle_t handle
uuid_t *key
void *data
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

key A UUID that is the backing store key.

data A pointer to the data structure to be stored.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_store_by_uuid() routine stores the data structure pointed to by data
into the backing store. The conversion function that was specified in the call to
dce_db_open() serializes the structure so that it can be written to disk.

This routine is specialized for storage into backing stores that are indexed by UUID,
as selected by the db_c_index_by_uuid bit in the flags parameter to
dce_db_open() when the backing store was created.

If the key value is the same as a key already stored, the new data replaces the
previously stored data associated with that key.

Notes

Because the dce_db_store_by_uuid() routine uses the encoding services, and
they in turn use rpc_sm_allocate() , all programs that call dce_db_store_by_uuid()
outside of a server operation (for instance, if a server does some backing store
initialization, or in a standalone program) must call rpc_sm_enable_allocate() first.
Indeed, every thread that calls dce_db_store_by_uuid() must do
rpc_sm_enable_allocate() , but in the server side of an RPC, this is already done.

116 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_bad_index_type
The backing store is not indexed by UUID.

db_s_readonly
The backing store was opened with the db_c_readonly flag, and cannot be
written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variable errno may contain more information about the error.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Storing is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_open(3dce) , dce_db_store(3dce) ,
dce_db_store_by_name(3dce) .

dce_db_store_by_uuid(3dce)

Chapter 1. DCE Routines 117

dce_db_unlock

Purpose

Releases the backing store lock

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_unlock(
dce_db_handle_t handle
error_status_t *status);

Parameters

Input
handle A handle, returned from dce_db_open() , that identifies the backing store

being used.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_unlock() routine releases the lock associated with the handle.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_not_locked
An attempt was made to unlock a backing store, but it was not locked.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_lock(3dce) .

118 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_error_inq_text

Purpose

Retrieves message text associated with a DCE error code

Synopsis
#include <dce/dce_error.h>

void dce_error_inq_text(
error_status_t status_to_convert
dce_error_string_t error_text
int *status);

Parameters

Input
status_to_convert

DCE status code for which text message is to be retrieved.

Output
error_text

The message text associated with the status_to_convert.

status Returns the status code from this operation. The status code is set to 0 on
success, and to -1 on failure.

Description

The dce_error_inq_text() routine retrieves from the installed DCE component
message catalogs the message text associated with an error status code returned
by a DCE library routine.

All DCE message texts are assigned a unique 32-bit message ID. The special value
of all-bits-zero is reserved to indicate success.

The dce_error_inq_text() routine uses the message ID as a series of indices into
the correct DCE component’s message catalog; the text found by this indexing is
the message that explains the status code that was returned by the DCE or DCE
application routine.

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component is built. (The messages may
also be compiled into the component code, rendering the successful retrieval of
message text independent of whether or not the message catalogs were correctly
installed.)

If the user sets their LANG variable and has the correct message catalog files
installed, the user can receive translated messages. That is, the text string returned
by dce_error_inq_text() is dependant on the current locale.

Chapter 1. DCE Routines 119

Examples

The following code fragment shows how dce_error_inq_text() can be used to
retrieve the message text describing the status code returned by a DCE RPC library
routine:
dce_error_string_t error_string;
error_status_t status;
int print_status;

rpc_server_register_if(application_v1_0_s_ifspec, &type_uuid,
(rpc_mgr_epv_t)&manager_epv, &status);

if (status != rpc_s_ok) {
dce_error_inq_text(status, error_string, &print_status);
fprintf(stderr," Server: %s: %s\n", caller, error_string);

}

dce_error_inq_text(3dce)

120 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_cat_close

Purpose

DCE message catalog close routine

Synopsis
#include <dce/dce_msg.h>

void dce_msg_cat_close(
dce_msg_cat_handle_t handle
error_status_t *status);

Parameters

Input
handle The handle returned by dce_msg_cat_open() to the catalog that is to be

closed.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_msg_cat_close() routine closes the message catalog which was opened
with dce_msg_cat_open() . On error, it fills in status with an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_cat_get_msg(3dce) , dce_msg_cat_open(3dce) ,
dce_msg_get(3dce) , dce_msg_get_cat_msg(3dce) , dce_msg_get_msg(3dce) .

Chapter 1. DCE Routines 121

dce_msg_cat_get_msg

Purpose

DCE message text retrieval routine

Synopsis
#include <dce/dce_msg.h>

unsigned char *
dce_msg_cat_get_msg(

dce_msg_cat_handle_t handle
unsigned32 message
error_status_t *status);

Parameters

Input
message

The ID of the message to be retrieved.

handle A handle returned by dce_msg_cat_open() to an opened message catalog.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

Once the catalog has been opened with the dce_msg_cat_open() routine, the
dce_msg_cat_get_msg() routine can be used to retrieve the text for a specified
message (which is a 32-bit DCE message ID as described in
dce_error_inq_text(3dce)). The space allocated for the message should not be
freed. The output pointer is useable until a call to the dce_msg_cat_get_msg() or
dce_msg_cat_close() routine. If the specified message cannot be found in the
catalog, the routine returns a NULL and fills in status with the appropriate error
code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_cat_close(3dce) , dce_msg_cat_open(3dce) ,
dce_msg_get(3dce) , dce_msg_get_cat_msg(3dce) , dce_msg_get_msg(3dce) .

122 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_cat_open

Purpose

DCE message catalog open routine

Synopsis
#include <dce/dce_msg.h>

dce_msg_cat_handle_tdce_msg_cat_open(
unsigned32 message_ID
error_status_t *status);

Parameters

Input
message_ID

The ID of the message to be retrieved.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_msg_cat_open() routine opens the message catalog that contains the
specified message_ID. It returns a handle that can be used in subsequent calls to
dce_msg_cat_get_msg() . On error, it returns NULL and fills in status with an
appropriate error code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_cat_close(3dce) , dce_msg_cat_get_msg(3dce) ,
dce_msg_get(3dce) , dce_msg_get_cat_msg(3dce) , dce_msg_get_msg(3dce) .

Chapter 1. DCE Routines 123

dce_msg_define_msg_table

Purpose

Adds a message table to in-memory table

Synopsis
#include <dce/dce_msg.h>

void dce_msg_define_msg_table(
dce_msg_table_t *table
unsigned32 count
error_status_t *status);

Parameters

Input
table A message table structure (defined in a header file generated by sams

during compilation (see the EXAMPLES section).

count The number of elements contained in the table.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component (application) is built.

However, the messages may also be compiled directly into the component code,
thus rendering the successful retrieval of message text independent of whether or
not the message catalogs were correctly installed. Generation of in-memory
message tables is specified by the incatalog flag in the sams file in which the
message text is defined (see sams(1dce) for more information on sams files). If
the messages have been generated at compile time with this option specified, the
dce_msg_define_msg_table() routine can be called by the application to register
an in-memory table containing the messages.

The table parameter to the call should identify a message table structure defined in
a header file generated by sams during compilation (see the EXAMPLES section).
The count parameter specifies the number of elements contained in the table. If an
error is detected during the call, the routine will return an appropriate error code in
the status parameter.

Examples

The following code fragment shows how an application (whose serviceability
component name is app) would set up an in-memory message table:

124 IBM DCE for AIX, Version 2.2: Application Development Reference

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include "dceappmsg.h" /* defines app_msg_table */

error_status_t status;

The following call adds the message table to the in-memory table. Note that you
must include <dce/dce_msg.h> . You also have to link in dce appmsg.o and dce
appsvc.o (object files produced by compiling sams -generated .c files), which
contain the code for the messages and the table, respectively.
dce_msg_define_msg_table(app_msg_table,

sizeof(app_msg_table) / sizeof(app_msg_table[0]),
&status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_get(3dce) , dce_msg_get_default_msg(3dce) ,
dce_msg_get_msg(3dce) .

dce_msg_define_msg_table(3dce)

Chapter 1. DCE Routines 125

dce_msg_get

Purpose

Retrieves text of specified DCE message

Synopsis
#include <dce/dce_msg.h>

unsigned char *
dce_msg_get(

unsigned32 message);

Parameters

Input
message

ID of message to be retrieved.

Description

The dce_msg_get() routine is a convenience form of the dce_msg_get_msg()
routine. Like dce_msg_get_msg() , dce_msg_get() retrieves the text for a specified
message (which is a 32-bit DCE message ID as described in
dce_msg_intro(3dce)). However, dce_msg_get() does not return a status code; it
either returns the specified message successfully or fails (aborts the program) with
an assertion error if the message could not be found or memory could not be
allocated.

The routine implicitly determines the correct message catalog in which to access
the specified message, and opens it; the caller only has to call this routine.

The routine first searches the appropriate message catalog for the message, and
then (if it cannot find the catalog) searches the in-memory message table, if it
exists.

The message, if found, is returned in allocated space to which the routine returns a
pointer. The pointed-to space must be freed by the caller using free() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

msg_s_bad_id
A message ID with an invalid technology or component was specified.

msg_s_no_cat_open
Could not open the message catalog for the specified message ID.

msg_s_no_cat_perm
Local file permissions prevented the program from opening the message
catalog for the specified message ID.

126 IBM DCE for AIX, Version 2.2: Application Development Reference

msg_s_no_catalog
The message catalog for the specified message ID does not exist.

msg_s_no_default
Could not find the default message for the specified status code in the
internal tables.

msg_s_no_memory
Could not allocate memory for message table, string copy, or other internal
requirement.

msg_s_not_found
Could not find the text for the specified status code in either the in-core
message tables or the message catalogs.

msg_s_ok_text
The operation was performed successfully.

Related Information

Functions: dce_msg_define_msg_table(3dce) ,
dce_msg_get_default_msg(3dce) , dce_msg_get_msg(3dce) .

dce_msg_get(3dce)

Chapter 1. DCE Routines 127

dce_msg_get_cat_msg

Purpose

Opens message catalog and retrieves message

Synopsis
#include <dce/dce_msg.h>

unsigned char *
dce_msg_get_cat_msg(

unsigned32 message
error_status_t *status);

Parameters

Input
message

ID of message to be retrieved.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_msg_get_cat_msg() routine is a convenience form of the
dce_msg_cat_get_msg() routine. The difference between it and the latter routine is
that dce_msg_get_cat_msg() does not require the message catalog to be explicitly
opened; it determines the correct catalog from the message parameter (which is a
32-bit DCE message ID as described in dce_error_inq_text(3dce)), opens it, and
returns a pointer to the message. If the message catalog is inaccessible, the routine
returns an error. (See the routine dce_msg_get() for a description of the return
value.) The space allocated for the message should not be freed. The output
pointer is useable until a call to another dce_msg... routine or a call to the
dce_error_inq_text() routine.

The routine will fail if the message catalog is not correctly installed.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_cat_close(3dce) ,
dce_msg_cat_get_msg(3dce),dce_msg_cat_open(3dce) , dce_msg_get(3dce) ,
dce_msg_get_msg(3dce) .

128 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_get_default_msg

Purpose

Retrieves DCE message from in-memory tables

Synopsis
#include <dce/dce_msg.h>

unsigned char *
dce_msg_get_default_msg(

unsigned32 message
error_status_t *status);

Parameters

Input
message

ID of message to be retrieved.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_msg_get_default_msg() routine retrieves a message from the
application’s in-memory tables. It returns a pointer to static space that should not be
freed. If the specified message (which is a 32-bit DCE message ID as described in
dce_error_inq_text(3dce)) cannot be found in the in-memory tables, the routine
returns NULL and fills in status with the appropriate error code.

This routine should be used only for message strings that will never have to be
translated (see dce_msg_translate_table(3dce)).

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component is built. Messages may also be
compiled directly into the component code, thus rendering the successful retrieval of
message text independent of whether or not the message catalogs were correctly
installed. Generation of in-memory message tables is specified by the incatalog
flag in the sams file in which the message text is defined. (See sams(1dce) for
more information on sams files.) If the messages have been generated at compile
time with this option specified, the dce_msg_define_msg_table() routine can be
called by the application to set up an in-memory table containing the messages.

Examples

The following code fragment shows how dce_msg_get_default_msg() might be
called to retrieve the in-memory copy of a message defined by a DCE application
(whose serviceability component name is app):
#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include "dceappmsg.h" /* test_msg is defined in this file */

Chapter 1. DCE Routines 129

unsigned char *my_msg;
error_status_t status;

<. . .>

my_msg = dce_msg_get_default_msg(test_msg, &status);
printf("Message is: %s\n", my_msg);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_define_msg_table(3dce) , dce_msg_get(3dce) ,
dce_msg_get_msg(3dce) .

dce_msg_get_default_msg(3dce)

130 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_get_msg

Purpose

Retrieves a DCE message from its ID

Synopsis
#include <dce/dce_msg.h>

unsigned char *
dce_msg_get_msg(

unsigned32 message
error_status_t *status);

Parameters

Input
message

ID of message to be retrieved.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_msg_get_msg() routine retrieves the text for a specified message (which
is a 32-bit DCE message ID as described in dce_error_inq_text(3dce)). The
routine implicitly determines the correct message catalog in which to access the
message, and opens it; the caller only has to call the routine.

The routine first searches the appropriate message catalog for the message, and
then (if it cannot find the catalog) searches the in-memory message table. If the
message cannot be found in either of these places, the routine returns a default
string and fills in status with an error code. This routine thus always returns a string,
even if there is an error (except for msg_sno_memory).

The message, if found, is returned in allocated space to which the routine returns a
pointer. The pointed-to space must be freed by the caller using free() . If memory
cannot be allocated, the routine returns NULL and fills in status with the
msg_s_no_memory error code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_get_msg(3dce) .

Chapter 1. DCE Routines 131

Related Information

Functions: dce_msg_define_msg_table(3dce) , dce_msg_get(3dce) ,
dce_msg_get_default_msg(3dce) .

dce_msg_get_msg(3dce)

132 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_translate_table

Purpose

Translates all in-memory messages in a table

Synopsis
#include <dce/dce_msg.h>

void dce_msg_translate_table(
dce_msg_table_t *table
unsigned32 count
error_status_t *status);

Parameters

Input
table A message table structure (defined in a header file generated by sams

during compilation (see the EXAMPLES section), the contents of which are
to be translated.

count The number of elements contained in the table.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_msg_translate_table() routine overwrites the specified in-memory
message table (that is, updates the in-memory table with the contents of a message
table, which has changed for some reason; for example, because of a change in
locale).

If any in-memory message is not found in the message catalog, all in-memory
messages are left unchanged.

Examples

The following code fragment shows how dce_msg_translate_table() might be
called (in an application whose serviceability component name is app) to translate a
DCE application’s in-memory message table, set up by an earlier call to
dce_msg_define_msg_table() :
#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include "dceappmsg.h"

char *loc_return;
error_status_t status;

<. . .>

dce_msg_translate_table(app_msg_table,
sizeof(app_msg_table) / sizeof(app_msg_table[0]),
&status);

Chapter 1. DCE Routines 133

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_define_msg_table(3dce) .

dce_msg_translate_table(3dce)

134 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_pgm_printf, dce_pgm_fprintf, dce_pgm_sprintf

Purpose

Formatted DCE message output routines

Synopsis
#include <dce/dce.h>

int dce_pgm_printf(
unsigned32 messageid
. . .);

int dce_pgm_fprintf(
FILE *stream
unsigned32 messageid
. . .);

unsigned char *dce_pgm_sprintf(
unsigned32 messageid
. . .);

Parameters

Input
messageid

The message ID, defined in the message’s code field in the sams file.

stream
An open file pointer.

. . . Any format arguments for the message string.

Description

The dce_pgm_printf() routine is equivalent to dce_printf() , except that it prefixes
the program name to the message (in the standard style of DCE error messages),
and appends a newline to the end of the message. The routine dce_printf() does
neither. This allows clients (which do not usually use the serviceability interface) to
produce error (or other) messages which automatically include the originating
application’s name. Note that the application should call dce_svc_set_progname()
first to set the desired application name. Otherwise, the default program name will
be PID# nnnn, where nnnn is the process ID of the application making the call.

The dce_pgm_sprintf() routine is similarly equivalent to dce_sprintf() , and the
dce_pgm_fprintf() routine is similarly equivalent to dce_fprintf() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Chapter 1. DCE Routines 135

Related Information

Functions: dce_fprintf(3dce) , dce_msg_get_msg(3dce) , dce_printf(3dce) ,
dce_sprintf(3dce) , dce_svc_set_progname(3dce) .

dce_pgm_printf(3dce)

136 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_printf, dce_fprintf, dce_sprintf

Purpose

Formatted DCE message output routines

Synopsis
#include <dce/dce.h>

int dce_printf(
unsigned32 messageid
. . .);

int dce_fprintf(
FILE *stream
unsigned32 messageid
. . .);

unsigned char *dce_sprintf(
unsigned32 messageid
. . .);

Parameters

Input
messageid

The message ID, defined in the message’s code field in the sams file.

stream
An open file pointer.

. . . Any format arguments for the message string.

Description

The dce_printf() routine retrieves the message text associated with the specified
messageid, and prints the message and its arguments on the standard output. The
routine determines the correct message catalog and, if necessary, opens it. If the
message catalog is inaccessible, and the message exists in an in-memory table,
then this message is printed. If neither the catalog nor the default message is
available, a default message is printed.

The dce_fprintf() routine functions much like dce_printf() , except that it prints the
message and its arguments on the specified stream.

The dce_sprintf() routine retrieves the message text associated with the specified
messageid, and prints the message and its arguments into an allocated string that
is returned. The routine determines the correct message catalog and, if necessary,
opens it. If the message catalog is inaccessible, and the message exists in an
in-memory table, then this message is printed. If neither the catalog nor the default
message is available, a default message is printed. The dce_pgm_printf() routine
is equivalent to dce_printf() , except that it prefixes the program name to the
message (in the standard style of DCE error messages), and appends a newline to
the end of the message. For more information, see the dce_pgm_printf(3dce)
reference page.

Chapter 1. DCE Routines 137

Examples

Assume that the following message is defined in an application’s sams file:
start
code arg_msg
text "This message has exactly %d, not %d argument(s)"
action "None required"
explanation "Test message with format arguments"
end

The following code fragment shows how dce_sprintf() might be called to write the
message (with some argument values) into a string:
unsigned char *my_msg;
my_msg = dce_sprintf(arg_msg, 2, 8);
puts(my_msg);
free(my_msg);

Of course, dce_printf() could also be called to print the message and arguments:
dce_printf(arg_msg, 2, 8);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Notes

The final formatted string generated by dce_sprintf() must not exceed 1024 bytes.

Related Information

Functions: dce_msg_get_msg(3dce) , dce_svc_set_progname(3dce) .

dce_printf(3dce)

138 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_server_disable_service

Purpose

Disables an individual service of a server

Synopsis
#include <dce/dced.h>

void dce_server_disable_service(
dce_server_handle_t server_handle
rpc_if_handle_t interface
error_status_t *status);

Parameters

Input
server_handle

An opaque handle returned by dce_server_register() .

interface
Specifies an opaque variable containing information the runtime uses to
access interface specification data.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully. The only status code is
error_status_ok .

Description

The dce_server_disable_service() routine disables an individual service that a
server provides by unregistering the service’s interface from the RPC runtime and
marking the server’s endpoints as disabled in the local dced ’s endpoint mapper
service.

For dced to recognize all of a server’s services, a server should register all its
application services using the dce_server_register() routine. If it later becomes
necessary for the server to disable an interface, it can use the
dce_server_disable_service() routine rather than unregistering the entire server.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_enable_service(3dce) , dce_server_register(3dce) ,
rpc_intro(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 139

dce_server_enable_service

Purpose

Enables an individual service for a server

Synopsis
#include <dce/dced.h>

void dce_server_enable_service(
dce_server_handle_t server_handle
rpc_if_handle_t interface
error_status_t *status);

Parameters

Input
server_handle

An opaque handle returned by dce_server_register() .

interface
Specifies an opaque variable containing information the runtime uses to
access interface specification data.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully. The only status code is
error_status_ok .

Description

The dce_server_enable_service() routine enables an individual service that a
server provides by registering the service’s interface with the RPC runtime, and
registering the endpoints in the endpoint map. If the dce_server_c_no_endpoints
flag was set with the dce_server_register() call prior to callibng this routine, the
endpoints are not registered in the endpoint map.

A server commonly registers all its services with DCE at once by using the
dce_server_register() routine. If necessary, a server can use the
dce_server_disable_service() routine to disable individual services and then
reenable them by using dce_server_enable_service() . However, suppose a server
needs its services registered in a certain order, or it require application-specific
activities between the registration of services. If a server requires this kind of control
as services are registered, you can set the server->services.list[i].flags field of the
server_t structure to service_c_disabled for individual services prior to calling
dce_server_register() . Then, the server can call dce_server_enable_service() for
each service when needed.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

140 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_server_disable_service(3dce) , dce_server_register(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dce_server_enable_service(3dce)

Chapter 1. DCE Routines 141

dce_server_inq_attr

Purpose

Obtains from dced the value of an attribute known to the server

Synopsis
#include <dce/dced.h>

void dce_server_inq_attr(
uuid_t attribute_uuid
sec_attr_t *value
error_status_t *status);

Parameters

Input
attribute_uuid

The UUID dced uses to identify an attribute.

Output
value Returns the attribute.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_server_inq_attr() routine obtains an attribute from the environment
created by dced when it started the server. Each server maintains among other
things, a list of attributes that are used to describe application-specific behavior.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_server_attr_not_found

dced_s_not_started_by_dced

Related Information

Functions: dce_server_inq_server(3dce) , dce_server_inq_uuids(3dce) ,
dced_intro(3dce) , sec_intro(3sec) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

142 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_server_inq_server

Purpose

Obtains the server configuration data dced used to start the server

Synopsis
#include <dce/dced.h>

void dce_server_inq_server(
server_t **server
error_status_t *status);

Parameters

Output
server Returns the structure that describes the server’s configuration.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_server_inq_server() routine obtains the server configuration data
(srvrconf) maintained by dced and used by dced to start the server. This routine is
commonly called prior to registering the server to obtain the server data used as
input to dce_server_register() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_not_started_by_dced

dced_s_data_unavailable

Related Information

Functions: dce_server_register(3dce) , dced_intro(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 143

dce_server_inq_uuids

Purpose

Obtains the UUIDs that dced associates with the server’s configuration and
execution data

Synopsis
#include <dce/dced.h>

void dce_server_inq_uuids(
uuid_t *conf_uuid
uuid_t *exec_uuid
error_status_t *status);

Parameters

Output
conf_uuid

Returns the UUID that dced uses to identify the server’s configuration data.
If a NULL value is input, no value is returned.

exec_uuid
Returns the UUID that dced uses to identify the executing server. If a NULL
value is input, no value is returned.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_server_inq_uuids() routine obtains the UUIDs that dced uses in its
srvrconf and srvrexec services to identify the server’s configuration and execution
data. The server can then use dced API routines to access the data and perform
other server management functions.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_not_started_by_dced

Related Information

Functions: dce_server_inq_server(3dce) , dced_intro(3dce) , dced_ *(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

144 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_server_register

Purpose

Registers a server with DCE

Synopsis
#include <dce/dced.h>

void dce_server_register(
unsigned32 flags
server_t *server
dce_server_register_data_t *data
dce_server_handle_t *server_handle
error_status_t *status);

Parameters

Input
flags Specifies options for server registration. Combinations of the following

values may be used:

dce_server_c_no_protseqs

dce_server_c_no_endpoints

dce_server_c_ns_export

server Specifies the server data, commonly obtained from dced by calling
dce_server_inq_server() . The server_t structure is described in
sec_intro(3sec) .

data Specifies the array of data structures that contain the additional information
required for the server to service requests for specific remote procedures.
Each structure of the array includes the following:

v An interface handle (ifhandle) of type rpc_if_handle_t

v An entry point vector (epv) of type rpc_mgr_epv_t

v A number (num_types) of type unsigned32 representing the number in
the following array

v An array of server types (types) of type dce_server_type_t

The dce_server_type_t structure contains a UUID (type) of type uuid_t
representing the object type, and a manager entry point vector (epv) of type
rpc_mgr_epv_t representing the set of procedures implemented for the
object type.

Output
server_handle

Returns a server handle, which is a pointer to an opaque data structure
containing information about the server.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Chapter 1. DCE Routines 145

Description

By default, the dce_server_register() routine registers a DCE server by
establishing a server’s binding information for all valid protocol sequences,
registering all the servers services with the RPC runtime, and entering the server’s
endpoints in dced ’s endpoint mapper service.

Prior to calling the dce_server_register() routine, the server obtains the server
configuration data from dced by calling dce_server_inq_server() . The server must
also set up an array of registration data, where the size of the array represents all
the server’s services that are currently registered in the server configuration data of
dced (server->services.count). If the memory for the array is dynamically
allocated, it must not be freed until after the corresponding
dce_server_unregister() routine is called.

You can modify the behavior of dce_server_register() Depending on the values of
the flags parameter. If the flag has the value dce_server_c_ns_export , the the
binding information is also exported to the namespace. The namespace entry is
determined for each service by the server->services.list[i].entryname parameter.
If this parameter has no value, the default value for the entire server is used
(server->entryname). If the flag has the value dce_server_c_no_endpoints , the
binding information is not registered with the endpoint map. Your application can
use rpc_ep_register() to register specific binding information. If the flag has the
value dce_server_c_no_protseqs , specific protocol sequences are used rather
than all valid protocol sequences. Use of this flag requires that the server first call
dce_server_use_protseq() at least once for a valid protocol sequence.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

rpc_s_no_memory

Related Information

Functions: dce_server_inq_server(3dce) , dce_server_sec_begin(3dce) ,
dce_server_unregister(3dce) , dced_intro(3dce) , rpc_server_listen(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dce_server_register(3dce)

146 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_server_sec_begin

Purpose

Establishes a server to receive fully authenticated RPCs and to act as a client to do
authenticated RPCs

Synopsis
#include <dce/dced.h>

void dce_server_sec_begin(
unsigned32 flags
error_status_t *status);

Parameters

Input
flags Flags are set to manage keys and setup a login context. Valid values

include the following:

dce_server_c_manage_key

dce_server_c_login

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dce_server_sec_begin() routine prepares a server to receive authenticated
RPCs. It also sets up all that is required for the application, when behaving as a
client to other servers, to do authenticated RPCs as a client. When authentication is
required, this call must precede all other RPC and DCE server initialization calls,
including dce_server_register() . When your application is finished listening for
RPCs, it should call the dce_server_sec_done() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_need_one_server_prin

dced_s_not_started_by_dced

dced_s_no_server_keyfile

dced_s_cannot_create_key_mgmt_thr

dced_s_cannot_detach_key_mgmt_thr

Chapter 1. DCE Routines 147

Related Information

Functions: dce_server_register(3dce) , dce_server_sec_done(3dce) ,
rpc_server_listen(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dce_server_sec_begin(3dce)

148 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_server_sec_done

Purpose

Releases resources established for a server to receive (and when acting as a client,
to send) fully authenticated RPCs

Synopsis
#include <dce/dced.h>

void dce_server_sec_done(
error_status_t *status);

Parameters

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully. The only status code is
error_status_ok .

Description

The dce_server_sec_done() routine releases the resources previously set up by a
call to dce_server_sec_begin() . The dce_server_sec_begin() routine sets all that
is needed for a server to receive authenticated RPCs and it also sets up all that is
required for the application to do authenticated RPCs as a client. If this routine is
used, it must follow all other server DCE and RPC initialization and cleanup calls.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_sec_begin(3dce) , rpc_server_listen(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 149

dce_server_unregister

Purpose

Unregisters a DCE server

Synopsis
#include <dce/dced.h>

void dce_server_unregister(
dce_server_handle_t *server_handle
error_status_t *status);

Parameters

Input
server_handle

An opaque handle returned by dce_server_register() .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully. The only status code is
error_status_ok .

Description

The dce_server_unregister() routine unregisters a DCE server by unregistering a
server’s services (interfaces) from the RPC runtime. When a server has stopped
listening for remote procedure calls, it should call this routine.

The flags set with the corresponding dce_server_register() routine are part of the
server handle’s information used to determine what action to take or not take.
These actions include removing the server’s endpoints from the dced ’s endpoint
mapper service and unexporting binding information from the namespace.

Use the dce_server_disable_service() routine to disable specific application
services rather than unregistering the whole server.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_disable_service(3dce) , dce_server_register(3dce) ,
rpc_server_listen(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

150 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_server_use_protseq

Purpose

Tells DCE to use the specified protocol sequence for receiving RPCs

Synopsis
#include <dce/dced.h>

void dce_server_use_protseq(
dce_server_handle_t server_handle
unsigned char *protseq
error_status_t *status);

Parameters

Input
server_handle

An opaque handle. Use the value of NULL.

protseq
Specifies a string identifier for the protocol sequence to register with the
RPC runtime. (For a list of string identifiers, see the table of valid protocol
sequences in the intro(3rpc) reference page.)

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully. The only status code is
error_status_ok .

Description

The dce_server_use_protseq() routine registers an individual protocol sequence
with DCE. Typical servers use all valid protocol sequences, the default behavior for
the dce_server_register() call, and so most servers do not need to call this
dce_server_use_protseq() routine. However, this routine may be called prior to
dce_server_register() , to restrict the protocol sequences used. A server must
register at least one protocol sequence with the RPC runtime to receive remote
procedure call requests. A server can call this routine multiple times to register
additional protocol sequences.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_register(3dce) , rpc_intro(3rpc) ,
rpc_server_use_protseq(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 151

dce_svc_components

Purpose

Returns registered component names

Synopsis
#include <dce/dce.h>#include <dce/svcremote.h>

void dce_svc_components(
dce_svc_stringarray_t *table
error_status_t *status);

Parameters

Output
table An array containing the names of all components that have been registered

with the dce_svc_register() routine.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_components routine returns an array containing the names of all
components in the program that have been registered with the dce_svc_register()
routine.

Examples

The following code fragment shows how the dce_svc_components() routine
should be used in a DCE application’s implementation of the serviceability remote
interface. The function defined below is the implementation of the
app_svc_inq_components operation defined in the application’s serviceability .epv
file. Clients call this function remotely, and the function, when called, first checks the
caller’s authorization and then (if the client is authorized to perform the operation)
calls the dce_svc_components() routine to perform the actual operation.
/*****
* app_svc_inq_components -- remote request for list of all
* components registered by dce_svc_register().
*****/
static void
app_svc_inq_components(
handle_t h,
dce_svc_stringarray_t *table,
error_status_t *st)
{
int ret;

/* Check the client's permissions here, if insufficient, */
/* deny the request. Otherwise, proceed with operation */

dce_svc_components(table, st);
}

152 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages. See dce_svc_register(3dce) .

Files
dce/service.idl

dce_svc_components(3dce)

Chapter 1. DCE Routines 153

dce_svc_debug_routing

Purpose

Specifies how debugging messages are routed

Synopsis
#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_debug_routing(
unsigned char *where
error_status_t *status);

Parameters

Input
where A four-field routing string, the format of which is described in

svcroute(5dce) .

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_debug_routing() routine specifies both the level of an applications’s
serviceability debug messaging, and where the messages are routed. The where
parameter is a four-field routing string, as described in svcroute(5dce) . All four
fields are required.

The routine is used to specify the disposition of serviceability debug messages. If
called before the component is registered (with dce_svc_register()), the disposition
is stored until it is needed. In case of error, the status parameter is filled in with an
error code.

To set only the debugging level for a component, use the
dce_svc_debug_set_levels() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_debug_set_levels(3dce) .

Files: svcroute(5dce) .

154 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_debug_set_levels

Purpose

Sets the debugging level for a component

Synopsis
#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_debug_set_levels(
unsigned char *where
error_status_t *status);

Parameters

Input
where A multifield string consisting of the component name separated by a colon

from a comma-separated list of subcomponent/level pairs, as described in
svcroute(5dce) .

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_debug_set_levels() routine sets serviceability debugging message
levels for a component. The where parameter is a multifield string consisting of the
component name separated by a colon from a comma-separated list of
subcomponent/level pairs, as described in svcroute(5dce) . The subcomponents are
specified by codes defined in the component’s sams file; the levels are specified by
single digits (1 through 9).

If the routine is called before the component is registered (with
dce_svc_register()), the disposition is stored until it is needed. In case of error, the
status parameter is filled in with an error code.

To set both the debug level and routing for a component, use the
dce_svc_debug_routing() routine.

Files

See svcroute(5dce) .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Chapter 1. DCE Routines 155

Related Information

Functions: dce_svc_debug_routing(3dce) .

dce_svc_debug_set_levels(3dce)

156 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_define_filter

Purpose

DCE serviceability filtering routines

Synopsis
#include <stdarg.h>
#include <dce/dce.h>
#include <pthread.h>
#include <dce/svcfilter.h>

void dce_svc_define_filter(
dce_svc_handle_t handle
dce_svc_filter_proc_t filter_function
dce_svc_filterctl_proc_t filter_ctl_function
error_status_t *status);

Description

The serviceability interface provides a hook into the message-output mechanism
that allows applications to decide at the time of messaging whether the given
message should be output or not. The application defines its own routine to perform
whatever checking is desired, and installs the routine (the filter_function parameter)
with a call to dce_svc_define_filter() .

The filter routine to be installed must have the signature defined by the
dce_svc_filter_proc_t typedef. Once installed, the routine will be automatically
invoked every time a serviceability routine is called to output a message. The filter
receives a prolog argument which contains all the pertinent information about the
message. If the filter returns TRUE, the message is output per the original
serviceability call. If the filter returns FALSE, the message is not output. The
information in the prolog allows such decisions to be made on the basis of severity
level, subcomponent, message index, and so on. For details, see the header file
dce/svcfilter.h .

In addition, an application that installs a message-filtering routine must also define a
routine that can be called remotely to alter the operation of the filter routine. This
procedure must have the signature defined by the dce_svc_filterctl_proc_t
typedef. The routine will be invoked with an opaque byte array parameter (and its
length), which it is free to interpret in an appropriate manner. The remote-control
routine is installed by the same call to dce_svc_define_filter() (as the
filter_ctl_function parameter) in which the filter itself is installed. See
dce_svc_filter(3dce) .

Examples

The following code fragment consists of example versions of an application’s
routines to filter serviceability messages, alter the behavior of the filter routine, and
install the two routines.
/*****
* Filter routine-- this is the routine that's hooked into
* the serviceability mechanism when you install
* it by calling dce_svc_define_filter().
*****/
boolean app_filter(prolog, args)

Chapter 1. DCE Routines 157

dce_svc_prolog_t prolog;
va_list args;
{
if (filter_setting) {
printf("The value of filter_setting is TRUE\n");
printf("The progname is %s\n", prolog->progname);
if (prolog->attributes & svc_c_sev_notice)
printf("This is a Notice-type message\n");

switch (prolog->table_index) {
case app_s_server:
printf("Server subcomponent\n");
break;

case app_s_refmon:
printf("Refmon subcomponent\n");
break;

case app_s_manager:
printf("Manager subcomponent\n");
break;

}
}
return 1;

}
/*****
* Filter Control routine-- this is the entry point for
* the remote-control call to modify the filter
* routine's behavior.
*****/
void app_filter_control(arg_size, arg, status)
idl_long_int arg_size;
idl_byte *arg;
error_status_t *status;
{

if (strncmp(arg, "Toggle", arg_size) != 0)
return;
else {

filter_setting = (filter_setting == FALSE) ? TRUE : FALSE;
if (filter_setting)

printf(" FILTER IS TURNED ON\n");
else

printf(" FILTER IS TURNED OFF\n");
}
return;
}

/*****
* install_filters-- calls dce_svc_define_filter()
* to install the above 2 routines.
*****/
void install_filters()
{
unsigned32 status;

filter_setting = TRUE;
dce_svc_define_filter(app_svc_handle, app_filter,

dce_svc_filterctl_proc_t)app_filter_control, &status);
}

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_svc_define_filter(3dce)

158 IBM DCE for AIX, Version 2.2: Application Development Reference

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_register(3dce) , DCE_SVC_DEFINE_HANDLE(3dce) .

dce_svc_define_filter(3dce)

Chapter 1. DCE Routines 159

dce_svc_filter

Purpose

Controls behavior of serviceability filter

Synopsis
#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_filter(
dce_svc_string_t component
idl_long_int arg_size
idl_byte *argument
error_status_t *status);

Parameters

Input
component

The name of the serviceability-registered component, defined in the
component field of the sams file.

arg_size
The number of characters contained in argument.

argument
A string value to be interpreted by the target component’s filter control
routine.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_filter() routine controls the behavior of the serviceability message
filtering routine, if one exists.

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. The dce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

If an application has installed a serviceability filtering routine, and if filter remote
control is desired, the application’s filter routine (installed by the call to
dce_svc_define_filter()) should be coded so that its operation can be switched to
the various desired alternatives by the values of static variables to which it has
access. These variables should also be accessible to the filter control routine. The
filter control routine thus receives from dce_svc_filter() an argument string (which it
uses to set the variables), the meaning of whose contents are entirely
application-defined.

160 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Files
dce/service.idl

dce_svc_filter(3dce)

Chapter 1. DCE Routines 161

dce_svc_log_close

Purpose

Closes an open log file

Synopsis
#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_close(
dce_svc_log_handle_t handle
error_status_t *status);

Parameters

Input
handle The handle (returned by dce_svc_log_open()) of the log file to be closed.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_log_close() routine closes an open binary format serviceability log
and releases all internal state associated with the handle.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_get(3dce) , dce_svc_log_open(3dce) ,
dce_svc_log_rewind(3dce) .

162 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_log_get

Purpose

Reads the next record from a binary log file

Synopsis
#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_get(
dce_svc_log_handle_t handle
dce_svc_log_prolog_t *prolog
error_status_t *status);

Parameters

Input
handle The handle (returned by dce_svc_log_open()) of the log file to be read.

Output
prolog A pointer to a structure containing information read from the log file record.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_log_get() routine reads the next entry from a binary format
serviceability log, and fills in prolog with a pointer to a private data area containing
the data read. The contents of the prolog structure are defined in dce/svclog.h .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_close(3dce) , dce_svc_log_open(3dce) ,
dce_svc_log_rewind(3dce) .

Chapter 1. DCE Routines 163

dce_svc_log_open

Purpose

Opens binary log file

Synopsis
#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_open(
const char *name
dce_svc_log_handle_t *handle
error_status_t *status);

Parameters

Input
name The pathname of the log file to be opened.

Output
handle A filled-in handle to the opened log file specified by name.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_log_open() routine opens the binary log file specified by name for
reading. If the call is successful, handle is filled in with a handle to be used with the
other dce_svc_log_ calls. On error, status will contain an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_close(3dce) , dce_svc_log_get(3dce) ,
dce_svc_log_rewind(3dce) .

164 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_log_rewind

Purpose

Rewinds binary log file to first record

Synopsis
#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_rewind(
dce_svc_log_handle_t handle
error_status_t *status);

Parameters

Input
handle The handle (returned by dce_svc_log_open()) of the log file to be

rewound.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_log_rewind() routine rewinds the current reading position of the
specified (by handle) binary log file to the first record.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_close(3dce) , dce_svc_log_get(3dce) ,
dce_svc_log_open(3dce) .

Chapter 1. DCE Routines 165

dce_svc_printf

Purpose

Generates a serviceability message

Synopsis
#include <dce/dce.h>

void dce_svc_printf(
DCE_SVC(dce_svc_handle_t handle

char * argtypes)
const unsigned32 table_index
const unsigned32 attributes
const unsigned32 messageID
. . .);

Parameters

Input
handle The caller’s serviceability handle.

argtypes
Format string for the message.

table_index
The message’s subcomponent name (defined in the sams file).

attributes
Any routing, severity, action, or debug attributes that are to associated with
the generated message, OR’d together.

messageID
The message ID, defined in the message’s code field in the sams file.

. . . Any format arguments for the message string.

Description

The dce_svc_printf() routine is the normal call for writing or displaying
serviceability messages. It cannot be called with a literal text argument. Instead, the
message text is retrieved from a message catalog or an in-core message table.
These are generated by the sams utility, which in turn outputs sets of tables from
which the messages are extracted for output.

There are two main ways in which to call the routine. If a message has been
defined in the sams file with both sub-component and attributes specified, then
the sams output will include a convenience macro for the message that can be
passed as the single argument to dce_svc_printf() , for example:
dce_svc_printf(SIGN_ON_MSG);

The convenience macro’s name will be generated from the uppercase version of
the message’s code value (as specified in the sams file), with the string _MSG
appended.

166 IBM DCE for AIX, Version 2.2: Application Development Reference

If a convenience macro is not generated, or if you want to override some of the
message’s attributes at the time of output, then you must call the routine in its long
form. An example of this form of the call looks as follows:
dce_svc_printf(DCE_SVC(app_svc_handle, ""), app_subcomponent,\
svc_c_sev_error | svc_c_route_stderr, messageID);

DCE_SVC() is a macro that must be passed as the first argument to
dce_svc_printf() if a convenience macro is not being used. It takes two arguments:

v The caller’s serviceability handle

v A format string for the message that is to be output

The format string is for use with messages that have been coded with argument
specifiers. It is a character string consisting of the argument types as they would be
passed to a printf() call. If the message is to be routed to a binary file, the format is
extended to include a %b specifier; using %b in a different routing will give
unpredictable results. The %b specifier takes two arguments: an integer size, and a
buffer pointer.

The remaining arguments passed to dce_svc_printf() are as follows:

v Subcomponent table index

This symbol is declared in the sub-component list coded in Part II of the sams
file; its value is used to index into the subtable of messages in which the desired
message is located.

v Message attributes

This argument consists of one or more attributes to be applied to the message
that is to be printed. Note that you must specify at least one severity here.
Multiple attributes are OR’d together, as shown in the following example.

There are four categories of message attributes:

Routing
The available routing attribute constants are as follows:

– svc_c_route_stderr

– svc_c_route_nolog

However, most routing is done either by passing specially-formatted
strings to dce_svc_routing() or by environment variable values. Note
that using svc_c_route_nolog without using svc_c_route_stderr will
result in no message being generated.

Severity
The available severity attribute constants are as follows:

– svc_c_sev_fatal

– svc_c_sev_error

– svc_c_sev_warning

– svc_c_sev_notice

– svc_c_sev_notice_verbose

Action
The available message action attribute constants are as follows:

– svc_c_action_abort

– svc_c_action_exit_bad

– svc_c_action_exit_ok

– svc_c_action_brief

dce_svc_printf(3dce)

Chapter 1. DCE Routines 167

– svc_c_action_none

Note that svc_c_action_brief is used to suppress the standard prolog.

Debug Level
Nine different debug levels can be specified (svc_c_debug1 ...
svc_c_debug9 or svc_c_debug_off).

v Message ID

This argument consists of the message’s code , as declared in the sams file.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This routine has no return value.

Related Information

Functions: dce_svc_register(3dce) , DCE_SVC_DEFINE_HANDLE(3dce) .

dce_svc_printf(3dce)

168 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_register

Purpose

Registers a serviceability message table

Synopsis
#include <dce/dce.h>

dce_svc_handle_t dce_svc_register(
dce_svc_subcomp_t *table
const idl_char *component_name
error_status_t *status);

Parameters

Input
table A message table structure (defined in a header file generated by sams

during compilation).

component_name
The serviceability name of the component, defined in the component field
of the sams file.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_register() routine registers a serviceability message table. An
application must call either it (or the DCE_SVC_DEFINE_HANDLE() macro) in
order to set up its tables and obtain the serviceability handle it must have in order
to use the serviceability interface.

Two parameters are required for the call: table is a pointer to the application’s
serviceability table, defined in a file called dce appsvc.h generated by the sams
utility. component_name is a string whose value is app, which is defined in the
component field of the sams file in which the serviceability messages are defined.

On error, this routine returns NULL and fills in status with an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

The following serviceability status codes are defined:

svc_s_assertion_failed
A programmer-developed compile-time assertion failed.

svc_s_at_end
No more data is available.

Chapter 1. DCE Routines 169

svc_s_bad_routespec
See svcroute(5dce) for information on routing specification format.

svc_s_cantopen
Permission denied or file does not exist; consult errno .

svc_s_no_filter
Attempted to send data to the filter-control handle for a component that
does not have a filter registered.

svc_s_no_memory
Could not allocate memory for message table, string copy or other internal
requirement.

svc_s_no_stats
The definition of the return value has not been specified.

svc_s_ok
Operation performed.

svc_s_unknown_component
Could not find the service handle for a component.

Related Information

Functions: dce_svc_debug_routing(3dce) , dce_svc_debug_set_levels(3dce) ,
dce_svc_define_filter(3dce) , dce_svc_routing(3dce) ,
dce_svc_unregister(3dce) .

dce_svc_register(3dce)

170 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_routing

Purpose

Specifies routing of serviceability messages

Synopsis
#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_routing(
unsigned char *where
error_status_t *status);

Parameters

Input
where A three-field routing string, as described in svcroute(5) .

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_routing() routine specifies how normal (non-debug) serviceability
messages are routed. The where parameter is a three-field routing string, as
described in svcroute(5) . For convenience, the first field of the routing specifier
(which indicates the message severity type to which the routing is to be applied)
may be an * (asterisk) to indicate that all messages, whatever their severity, should
be routed as specified.

If the routine is called before the component is registered (with the
dce_svc_register() routine), the routing is stored until it is needed. In case of error,
the status parameter is filled in with an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Files
dce/service.idl

Chapter 1. DCE Routines 171

dce_svc_set_progname

Purpose

Sets an application’s program name

Synopsis
#include <dce/dce.h>

void dce_svc_set_progname(
char *program_name
error_status_t *status);

Parameters

Input
program_name

A string containing the name that is to be included in the text of all
serviceability messages that the application generates during the session.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

This function sets the application’s program name, which is included in serviceability
messages. This allows serviceability messages from more than one application to
be written to the same file and still be distinguishable as to their separate origins.

If dce_svc_set_progname() is not called, the application’s generated serviceability
messages will be identified by its process ID.

Examples

Suppose an application sets its program name to be demo_program , as follows:
dce_svc_set_progname("demo_program", &status);

Serviceability messages generated by the program will as a result look like the
following:
1994-04-05-20:13:34.500+00:00I----- demo_program NOTICE app
main.c 123 0xa444e208 message text

If the application does not set its program name, its generated serviceability
messages will have the following form:
1994-04-05-20:13:34.500+00:00I----- PID#9467 NOTICE app
main.c 123 0xa444e208 message text

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages. See dce_svc_register(3dce) .

172 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_printf(3dce) , dce_svc_printf(3dce) , DCE_SVC_DEBUG(3dce) .

dce_svc_set_progname(3dce)

Chapter 1. DCE Routines 173

dce_svc_table

Purpose

Returns a registered component’s subcomponent table

Synopsis
#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_table(
dce_svc_string_t component
dce_svc_subcomparray_t *table
error_status_t *status);

Parameters

Input
component

The name of the serviceability-registered component, defined in the
component field of the application’s sams file.

Output
table An array of elements, each of which describes one of the component’s

serviceability subcomponents (as defined in its sams file).

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_table routine returns the serviceability subcomponent table registered
with the specified component. The returned table consists of an array of elements,
each of which describes one subcomponent. Each element consists of four fields,
which contain the subcomponent name, its description, its message catalog ID, and
the current value of its debug message level.

The first three of these values are specified in the sams file which is processed
during the application’s compilation, and from which the application’s message
catalogs and other serviceability and message files are generated.

Examples

The following code fragment shows how the remote operation might be called from
an application’s client side, and how the results might be printed out:
#include <dce/rpc.h>
#include <dce/service.h>

handle_t svc_bind_handle;
dce_svc_string_t component;
dce_svc_subcomparray_t subcomponents_table;
error_status_t remote_status;
int i;

dce_svc_inq_table(svc_bind_handle, component, &subcomponents_table,
&remote_status);

174 IBM DCE for AIX, Version 2.2: Application Development Reference

fprintf(stdout, "Subcomponent table size received is: %d...\n",
subcomponents_table.tab_size);

fprintf(stdout, "Subcomponent table contents are:\n");
for (i = 0; i < subcomponents_table.tab_size; i++)
{
fprintf(stdout, "Name: %s\n",
subcomponents_table.table[i].sc_name);

fprintf(stdout, "Desc: %s\n",
subcomponents_table.table[i].sc_descr);

fprintf(stdout, "Msg Cat ID: 0x%8.8lx\n",
(long) subcomponents_table.table[i].sc_descr_msgid);

fprintf(stdout, "Active debug level: %d\n\n",
subcomponents_table.table[i].sc_level);

}

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Files
dce/service.idl

dce_svc_table(3dce)

Chapter 1. DCE Routines 175

dce_svc_unregister

Purpose

Destroys a serviceability handle

Synopsis
#include <dce/dce.h>

void dce_svc_unregister(
dce_svc_handle_t handle
error_status_t *status);

Parameters

Input
handle The application’s serviceability handle, originally returned by a call to

dce_svc_register() , or filled in by the DCE_SVC_DEFINE_HANDLE()
macro.

Output
status Returns the status code from this operation. The status code is a value that

indicates whether the routine completed successfully and if not, why not.

Description

The dce_svc_unregister() routine destroys a serviceability handle. Calling it closes
any open serviceability message routes and frees all allocated resources associated
with the handle.

The handle parameter is the serviceability handle that was originally returned by the
call to dce_svc_register() , or filled in by the DCE_SVC_DEFINE_HANDLE()
macro. On error, the routine fills in status with an error code.

Note that it is not usually necessary to call this routine, since the normal process
exit will perform the required cleanup.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_register(3dce) .

176 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_create

Purpose

Establishes a dced binding to one of the host services of a remote (or the local)
dced

Synopsis
#include <dce/dced.h>

void dced_binding_create(
dced_string_t service
unsigned32 binding_flags
dced_binding_handle_t *dced_bh
error_status_t *status);

Parameters

Input
service

A character string that specifies a host daemon service name and an
optional remote host. A service name is specified with one of the following:
hostdata , srvrconf , srvrexec , secval , or keytab . The format of a complete
service and host specification is one of the following:

service_name
A service at the local host. Pre-existing defined values include

dced_c_service_hostdata

dced_c_service_srvrconf

dced_c_service_srvrexec

dced_c_service_secval

dced_c_service_keytab

service_name@hosts/ host_name
A service at a host anywhere in the local namespace.

/.:/hosts/ host_name/config/ service_name
A complete specification for service_name@ host, where the host is
anywhere in the local namespace.

/.../cell/hosts/ host_name/config/ service_name
A service at a host anywhere in the global namespace.

binding_flags
The only valid flag value for this parameter is
dced_c_binding_syntax_default .

Output
dced_bh

Returns a dced binding handle which is a pointer to an opaque data
structure containing information about an RPC binding, the host, the host
service, and a local cache.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Chapter 1. DCE Routines 177

Description

The dced on each DCE host maintains the host services and provides a remote
interface to them. The host services include the following:

v endpoint mapper

v host data management (hostdata)

v server management, including server configuration (srvrconf) and server
execution (srvrexec)

v security validation (secval)

v key table management (keytab)

The dced_binding_create() routine establishes a dced binding to a dced service
and it (or dced_binding_from_rpc_binding()) must be the first dced API routine
called before an application can access one of the host services with other dced
API routines. When an application is finished with the service, it should call the
dced_binding_free() routine to free resources. To establish a dced binding to your
local host’s dced , you can use the service name by itself, and do not need to
specify a host.

To access the endpoint map directly, use rpc_mgmt_ep_elt_inq_begin() and
associated routines.

Examples

The following example establishes a dced binding to the server configuration
service on the host patrick .
dced_binding_handle_t dced_bh;
error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",
dced_c_binding_syntax_default,
&dced_bh,
&status);

.

. /* Other routines including dced API routines. */

.
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dce_cf_e_no_mem

dced_s_invalid_arg

dced_s_no_memory

dced_s_unknown_service

rpc_s_entry_not_found

rpc_s_incomplete_name

rpc_s_invalid_object

dced_binding_create(3dce)

178 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_name_service_unavailable

rpc_s_no_memory

rpc_s_no_more_bindings

rpc_s_no_ns_permission

Related Information

Functions: dced_binding_free(3dce) , dced_binding_from_rpc_binding(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_binding_create(3dce)

Chapter 1. DCE Routines 179

dced_binding_free

Purpose

Releases the resources associated with a dced binding handle

Synopsis
#include <dce/dced.h>

void dced_binding_free(
dced_binding_handle_t dced_bh
error_status_t *status);

Parameters

Input
dced_bh

Specifies a dced binding handle to free for a dced service on a specific
host.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_binding_free() routine frees resources used by a dced binding handle
and referenced information. Use this routine when your application is finished with a
host service to break the communication between your application and the dced .
The dced binding handle and referenced information is created with the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

180 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_from_rpc_binding

Purpose

Establishes a dced binding to one of the host services on the host specified in an
existing RPC binding handle

Synopsis
#include <dce/dced.h>

void dced_binding_from_rpc_binding(
dced_service_type_t service
handle_t rpc_bh
dced_binding_handle_t *dced_bh
error_status_t *status);

Parameters

Input
service

A variable that specifies one of the host services. A valid variable name
includes one of the following:

dced_e_service_type_hostdata

dced_e_service_type_srvrconf

dced_e_service_type_srvrexec

dced_e_service_type_secval

dced_e_service_type_keytab

rpc_bh
An RPC binding handle to some server.

Output
dced_bh

Returns a dced binding handle which is a pointer to an opaque data
structure containing information about an RPC binding, the host, the host
service, and a local cache.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced on each DCE host maintains the host services and provides a remote
interface to the services. The dced_binding_from_rpc_binding() routine
establishes a dced binding to a dced service, and it (or dced_binding_create())
must be the first dced API routine called before an application can access one of
the host services with other dced routines. When an application is finished with the
service, it should call the dced_binding_free() routine to free resources.

Prior to using the RPC binding in this routine, make a copy of the binding by using
the rpc_binding_copy() routine. This is necessary if the application needs to
continue using the RPC binding, because otherwise the dced binding takes over
the RPC binding.

Chapter 1. DCE Routines 181

The RPC binding may be obtained from a call to specific RPC runtime routines
such as the routines rpc_binding_from_string_binding(3rpc) ,
rpc_ns_binding_import_next(3rpc) , or rpc_ns_binding_lookup_next(3rpc) .

Examples

This example obtains an RPC binding from a string binding, and it later makes a
copy of the RPC binding for use in the dced_binding_from_rpc_binding() call.
handle_t rpc_bh, binding_handle;
dced_binding_handle_t dced_bh;
dced_service_type_t service_type;
error_status_t status;
unsigned_char_t string_binding[STRINGLEN];
.
.
.

rpc_binding_from_string_binding(string_binding, &binding_handle,
&status);

.

.

.
rpc_binding_copy(binding_handle, &rpc_bh, &status);
dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,

&status);
.
. /* Other routines including dced API routines. */
.

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_no_memory

dced_s_unknown_service

ept_s_cant_perform_op

ept_s_database_invalid

ept_s_invalid_context

ept_s_invalid_entry

rpc_s_comm_failure

rpc_s_fault_context_mismatch

rpc_s_invalid_arg

rpc_s_invalid_binding

rpc_s_no_more_elements

rpc_s_wrong_kind_of_binding

dced_binding_from_rpc_binding(3dce)

182 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dced_binding_create(3dce) , dced_binding_free(3dce) ,
rpc_binding_copy(3rpc) , rpc_binding_from_string_binding(3rpc) ,
rpc_ns_binding_import_next(3rpc) , rpc_ns_binding_lookup_next(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_binding_from_rpc_binding(3dce)

Chapter 1. DCE Routines 183

dced_binding_set_auth_info

Purpose

Sets authentication and authorization information for a dced binding handle

Synopsis
#include <dce/dced.h>

void dced_binding_set_auth_info(
dced_binding_handle_t dced_bh
unsigned32 protect_level
unsigned32 authn_service
rpc_auth_identity_handle_t authn_identity
unsigned32 authz_service
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for which to set the authentication and
authorization information.

protect_level
Specifies the protection level for dced API calls that will use the dced
binding handle dced_bh.

authn_service
Specifies the authentication service to use for dced API calls that will use
the dced binding handle dced_bh.

authn_identity
Specifies a handle for the data structure that contains the calling
application’s authentication and authorization credentials appropriate for the
selected authn_service and authz_service services.

Specify NULL to use the default security login context for the current
address space.

authz_service
Specifies the authorization service to be implemented by dced for the host
service accessed.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_binding_set_auth_info() routine sets up the dced binding handle so it
can be used for authenticated calls that include authorization information. The
rpc_binding_set_auth_info() routine performs in the same way as this one. See it
for details of the parameters and values. Prior to calling this routine, the application
must have established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

184 IBM DCE for AIX, Version 2.2: Application Development Reference

Examples

This example establishes a dced binding to a host’s key table service, and then it
calls dced_binding_set_auth_info() so that the application is authorized to access
remote key tables by using additional calls to the key table service.
dced_binding_handle_t dced_bh;
error_status_t status;

dced_binding_create((dced_string_t)"keytab@hosts/patrick",
dced_c_binding_syntax_default,
&dced_bh,
&status);

dced_binding_set_auth_info(dced_bh,
rpc_c_protect_level_default,
rpc_c_authn_pkt_privacy,
NULL,
rpc_c_authz_dce,
&status);

.

. /* Other routines including dced API routines. */

.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_support

ept_s_not_registered

rpc_s_authn_authz_mismatch

rpc_s_binding_incomplete

rpc_s_comm_failure

rpc_s_invalid_binding

rpc_s_mgmt_op_disallowed

rpc_s_rpcd_comm_failure

rpc_s_unknown_authn_service

rpc_s_unsupported_protect_level

rpc_s_wrong_kind_of_binding

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
rpc_binding_set_auth_info(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_binding_set_auth_info(3dce)

Chapter 1. DCE Routines 185

dced_entry_add

Purpose

Adds a keytab or hostdata entry to a host’s dced for an existing file on that host

Synopsis
#include <dce/dced.h>

void dced_entry_add(
dced_binding_handle_t dced_bh
dced_entry_t *entry
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

Input/Output
entry Specifies the data entry to add to the service.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_entry_add() routine adds a data entry to a dced service. The data it
refers to must already exist in a file on the dced ’s host. You can only add
hostdata or keytab entries.

A service’s data entries do not contain the actual data. Instead, they contain a
UUID, a name for the entry, a brief description of the item, and a storage tag that
describes the location of the actual data. In the cases of the hostdata and keytab
services, the data for each entry is stored in a file. The dced uses this two-level
scheme so that it can manipulate different kinds of data in the same way and so
names are independent of local file system requirements.

The hostdata and keytab services each have their respective routines to create
new data and at the same time, add a new entry to the appropriate service. These
routines are dced_hostdata_create() and dced_keytab_create().

Prior to calling the dced_entry_add() routine, the application must have established
a valid dced binding handle for the hostdata or keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Examples

The following example shows how to add a printer configuration file to the hostdata
service. The example creates a dced binding to the local hostdata service, an
entry data structure is filled in with the storage tag containing the full path of the
existing configuration file, and finally, the dced_entry_add() routine is called.

186 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_handle_t dced_bh;
error_status_t status;
dced_entry_t entry;

dced_binding_create(dced_c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);
uuid_create(&(entry.id), &status);
entry.name = (dced_string_t)("NEWERprinter");
entry.description = (dced_string_t)("Configuration for a new printer.");
entry.storage_tag = (dced_string_t)("/etc/NEWprinter");

dced_entry_add(dced_bh, &entry, &status);
.
.
.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_import_cant_access

dced_s_no_support

rpc_s_binding_has_no_auth

sec_acl_invalid_permission

uuid_s_no_address

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_remove(3dce) , dced_hostdata_create(3dce) ,
dced_keytab_create(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_entry_add(3dce)

Chapter 1. DCE Routines 187

dced_entry_get_next

Purpose

Obtains one data entry from a list of entries of a dced service

Synopsis
#include <dce/dced.h>

void dced_entry_get_next(
dced_cursor_t cursor
dced_entry_t **entry
error_status_t *status);

Parameters

Input/Output
cursor Specifies the entry list’s cursor that points to an entry, and returns the

cursor advanced to the next entry in the list.

Output
entry Returns a pointer to an entry.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_entry_get_next() routine obtains a pointer to a data entry, and advances
the cursor to the next entry in the list. This routine is commonly used in a loop to
traverse a host service’s entry list. The data is obtained in an undetermined order.
Prior to using this routine, the application must call dced_initialize_cursor() to
obtain a list of entries and to establish the beginning of the cursor. When the
application is finished traversing the entry list, it should call dced_release_cursor()
to release resources.

A data entry does not contain the actual data, but it contains the name, identity,
description, and storage location of the data. In the cases of hostdata and keytab
services, the data for each entry is stored in a file. In the cases of srvrconf and
srvrexec services, data is stored in memory. The dced uses this two-level scheme
so that it can manipulate different kinds of data in the same way.

Prior to using the dced_entry_get_next() routine, the application must have
established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Examples

In the following example, a dced binding is obtained from a service type and an
existing rpc binding handle. After establishing an entry list cursor, the
dced_entry_get_next() routine obtains an entry, one at a time, and the name and
description of each entry is displayed until the entry list is exausted.

188 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh, &status);
dced_initialize_cursor(dced_bh, &cursor, &status);
for(; ;) { /* forever loop */
dced_entry_get_next(cursor, &entry, &status);
if(status != error_status_ok) break;
display(entry->name, entry->description); /* application specific */

}
dced_release_cursor(&cursor, &status);
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_no_more_entries

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_initialize_cursor(3dce) , dced_release_cursor(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_entry_get_next(3dce)

Chapter 1. DCE Routines 189

dced_entry_remove

Purpose

Removes a hostdata or keytab data entry from a dced service’s list of entries

Synopsis
#include <dce/dced.h>

void dced_entry_remove(
dced_binding_handle_t dced_bh
uuid_t *entry_uuid
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

entry_uuid
Specifies the UUID of the entry to be removed from the service.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_entry_remove() routine removes an entry from the hostdata or keytab
service entry list of dced . It does not remove the actual data stored in the file, but
makes it inaccessible from a remote host by way of the dced ’s user interfaces
which include the dced API and the DCE control program, dcecp . Each host
service that maintains data also maintains a list of data entries. A data entry
contains a name, a UUID, a brief description, and a storage tag indicating the
location of the actual data.

To delete both the data and entry for the hostdata , keytab , or srvrconf services,
use dced_hostdata_delete() , dced_keytab_delete() , or dced_server_delete() ,
respectively. (The srvrexec service is maintained only by dced and the secval
service does not maintain data, so you cannot remove data for these services.)

Applications commonly obtain an entry by traversing the entry list using the
dced_entry_get_next() routine with its associated cursor routines.

Prior to calling the dced_entry_remove() routine, the application must have
established a valid dced binding handle to the hostdata or keytab service by
calling either the dced_binding_create() or dced_binding_from_rpc_binding()
routine.

190 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_del_failed

db_s_key_not_found

db_s_readonly

dced_s_bad_binding

dced_s_no_support

dced_s_not_found

sec_acl_invalid_permission

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_hostdata_delete(3dce) , dced_initialize_cursor(3dce) ,
dced_keytab_delete(3dce) , dced_server_delete(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_entry_remove(3dce)

Chapter 1. DCE Routines 191

dced_hostdata_create

Purpose

Creates a hostdata item and the associated entry in dced on a specific host

Synopsis
#include <dce/dced.h>

void dced_hostdata_create(
dced_binding_handle_t dced_bh
dced_entry_t *entry
dced_attr_list_t *data
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the host data service on a specific
host.

Input/Output
entry Specifies the hostdata entry to create. You supply a name (entry->name),

description (entry->description), and file name (entry->storage_tag), in
the form of dced strings. You can supply a UUID (entry->id) for dced to
use or you can use a NULL value and dced will generate a new UUID for
the entry.

Input
data Specifies the data created and written to a file on the host. The

dced_attr_list_t consists of a count of the number of attributes, and an
array of attributes of type sec_attr_t . The reference OSF implementation
has one attribute for a hostdata item (file contents). However some
vendors may provide multiple attributes.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_hostdata_create() routine creates a new host data item in a file on the
host to which the dced binding handle refers, and it generates the associated
hostdata entry in the host’s dced .

If data that you want to add to the host data service already exists on the host (in a
file), you can add it to the service by calling dced_entry_add() , which only creates
the new data entry for dced .

Prior to calling the dced_hostdata_create() routine, the application must have
established a valid dced binding handle to the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

192 IBM DCE for AIX, Version 2.2: Application Development Reference

Examples

The following example creates a binding to the host data service on the local host,
creates the entry data, and fills in the data structure for one attribute to a
hypothetical printer configuration. The attribute represents a plain-text file containing
one string of data.
dced_binding_handle_t dced_bh;
error_status_t status;
dced_entry_t entry;
dced_attr_list_t data;
int num_strings, str_size;
sec_attr_enc_str_array_t *attr_array;

dced_binding_create(dced_c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);

/*Create an Entry. */
uuid_create(&entry.id, &status);
entry.name = (dced_string_t)("NEWERprinter");
entry.description = (dced_string_t)("Configuration for a new printer.");
entry.storage_tag = (dced_string_t)("/etc/NEWprinter");

/* create the attributes */
data.count = 1;
num_strings = 1;
data.list = (sec_attr_t *)malloc(data.count * sizeof(sec_attr_t));
data.list->attr_id = dced_g_uuid_fileattr;
data.list->attr_value.attr_encoding = sec_attr_enc_printstring_array;
str_size = sizeof(sec_attr_enc_str_array_t) +

num_strings * sizeof(sec_attr_enc_printstring_p_t);
attr_array = (sec_attr_enc_str_array_t *)malloc(str_size);
data.list->attr_value.tagged_union.string_array = attr_array;
attr_array->num_strings = num_strings;
attr_array->strings[0] = (dced_string_t)("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_cant_open_storage_file

dced_s_import_already_exists

dced_s_unknown_attr_type

sec_acl_invalid_permission

dced_hostdata_create(3dce)

Chapter 1. DCE Routines 193

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_add(3dce) , dced_hostdata_read(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_hostdata_create(3dce)

194 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_hostdata_delete

Purpose

Deletes a hostdata item from a specific host and removes the associated entry from
dced

Synopsis
#include <dce/dced.h>

void dced_hostdata_delete(
dced_binding_handle_t dced_bh
uuid_t *entry_uuid
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the hostdata service on a specific
host.

entry_uuid
Specifies the UUID of the hostdata entry (and associated data) to delete.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_hostdata_delete() routine deletes a hostdata item (a file) from a
specific host, and removes the associated entry from the host data service of that
host’s dced .

If you want to only make the data inaccessible remotely but not delete it, use the
dced_entry_remove() routine which only removes the data’s hostdata entry.

Prior to calling the dced_hostdata_delete() routine, the application must have
established a valid dced binding handle for the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

Warnings

Do not delete the standard hostdata items such as cell_name, cell_aliases ,
host_name, post_processors , or dce_cf.db . This will cause operational problems
for the host.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 195

error_status_ok

db_s_bad_index_type

db_s_del_failed

db_s_iter_not_allowed

db_s_key_not_found

dced_s_bad_binding

dced_s_cant_remove_storage_file

dced_s_not_found

sec_acl_invalid_permission

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_remove(3dce) , dced_hostdata_read(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_hostdata_delete(3dce)

196 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_hostdata_read

Purpose

Reads a hostdata item maintained by dced on a specific host

Synopsis
#include <dce/dced.h>

void dced_hostdata_read(
dced_binding_handle_t dced_bh
uuid_t *entry_uuid
uuid_t *attr_uuid
sec_attr_t **data
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the hostdata service on a specific
host.

entry_uuid
Specifies the hostdata entry UUID associated with the data to read.

attr_uuid
Specifies the UUID associated with an attribute of the data. The attribute is
either plain text (dced_g_uuid_fileattr) or binary
(dced_g_uuid_binfileattr). Some vendors may allow other attributes.

Output
data Returns the data for the item. See the sec_intro(3sec) reference page for

details on the sec_attr_t data type.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_hostdata_read() routine returns a hostdata item maintained by dced on
a specific host. The standard data items include the cell name, a list of cell aliases,
the host name, a list of UUID-program pairs (post_processors), and the DCE
configuration database, among other items.

For programming convenience, the following global variables are defined for the
entry_uuid of some standard data items:

dced_g_uuid_cell_name

dced_g_uuid_cell_aliases

dced_g_uuid_host_name

dced_g_uuid_hostdata_post_proc

dced_g_uuid_dce_cf_db

dced_g_uuid_pe_site

Chapter 1. DCE Routines 197

dced_g_uuid_svc_routing

Other host-specific data items may also be maintained by the hostdata service.
The UUIDs for these are established when the data item is created (see
dced_hostdata_create()). After the application reads host data and when it is done
with the data, it should call the dced_objects_release() routine to release the
resources allocated.

Each hostdata item for a specific host is stored in a local file. The name of an
item’s storage file is indicated in the storage tag field of each dced hostdata entry.

You can also use the dced_object_read() routine to read the text of a hostdata
item. You might use this routine if your application needs to read data for other host
services (srvrconf , srvrexec , or keytab) in addition to data for the hostdata
service.

Prior to calling the dced_hostdata_read() routine, the application must have
established a valid dced binding handle to the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dce_cf_e_file_open

dce_cf_e_no_match

dce_cf_e_no_mem

dced_s_bad_binding

dced_s_cant_open_storage_file

dced_s_invalid_attr_type

dced_s_no_memory

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_object_read(3dce) , dced_objects_release(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_hostdata_read(3dce)

198 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_hostdata_write

Purpose

Replaces an existing hostdata item maintained by dced on a specific host

Synopsis
#include <dce/dced.h>

void dced_hostdata_write(
dced_binding_handle_t dced_bh
uuid_t *entry_uuid
dced_attr_list_t *data
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the host data service on a specific
host.

entry_uuid
Specifies the hostdata entry UUID to associate with the data to be written.

data Specifies the data to write. The dced_attr_list_t consists of a count of the
number of attributes, and an array of attributes of type sec_attr_t . The
reference OSF implementation has one attribute for a hostdata item (file
contents). However some vendors may require multiple attributes.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_hostdata_write() routine replaces existing data for a hostdata item
maintained by dced on a specific host. If the entry_uuid is not one maintained by
dced , an error is returned and a new entry is not created. Use
dced_hostdata_create() to create a new entry.

Prior to calling the dced_hostdata_write() routine, the application must have
established a valid dced binding handle to the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

Chapter 1. DCE Routines 199

dced_s_bad_binding

dced_s_cant_open_storage_file

dced_s_no_postprocessors

dced_s_postprocessor_file_fail

dced_s_postprocessor_spawn_fail

dced_s_unknown_attr_type

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_hostdata_create(3dce) , dced_hostdata_read(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_hostdata_write(3dce)

200 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_initialize_cursor

Purpose

Sets a cursor to the start of a cached list of data entries for a dced service

Synopsis
#include <dce/dced.h>

void dced_initialize_cursor(
dced_binding_handle_t dced_bh
dced_cursor_t *cursor
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

Output
cursor Returns the cursor used to traverse the list of data entries, one at a time.

The cursor is an opaque data structure that is used to keep track of the
entries between invocations of the dced_entry_get_next() routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_initialize_cursor() routine sets a cursor at the start of a DCE host
service’s list of data entries. The cursor is then used in subsequent calls to
dced_entry_get_next() to obtain individual data entries. When the application is
finished traversing the entry list, it should call dced_release_cursor() to free the
resources allocated for the cursor.

The valid services for this routine that have entry lists include hostdata , srvrconf ,
srvrexec , and keytab .

If a service’s entry list is small, it may be more efficient to obtain the entire list using
the dced_list_get() routine, rather than using cursor routines. This is because
dced_list_get() guarantees that the list is obtained with one remote procedure call.
However, your application is scalable if you use the cursor routines. This is because
when an entry list is very large, it may be more efficient (or even necessary) to
obtain the list in chunks with more than one remote procedure call.

Prior to calling the dced_initialize_cursor() routine, the application must have
established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Chapter 1. DCE Routines 201

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

dced_s_bad_binding

dced_s_no_memory

dced_s_no_support

sec_acl_invalid_permission

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_get_next(3dce) , dced_list_get(3dce) , dced_release_cursor(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_initialize_cursor(3dce)

202 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_inq_id

Purpose

Obtains the entry UUID that dced associates with a name

Synopsis
#include <dce/dced.h>

void dced_inq_id(
dced_binding_handle_t dced_bh
dced_string_t name
uuid_t *uuid
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

name Specifies the name for which to obtain the uuid.

Output
uuid returns the UUID associated with the name input.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_inq_id() routine obtains the UUID associated with a name in a service of
a specific host’s dced . Applications and administrators use strings maintained by
dced to identify data, but dced and its API must associate each data entry with a
UUID. This routine is valid for the hostdata , srvrconf , srvrexec , and keytab
services.

Prior to calling this routine, the application must have established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

The following example establishes a dced binding to a host’s server configuration
service. The example then obtains the UUID of some known server in order to read
the server’s configuration data.
dced_binding_handle_t dced_bh;
server_t conf;
dced_string_t server_name;
uuid_t srvrconf_id;
error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",
dced_c_binding_syntax_default,
&dced_bh,
&status);

Chapter 1. DCE Routines 203

dced_inq_id(dced_bh, server_name, &srvrconf_id, &status);
dced_object_read(dced_bh, &srvrconf_id, (void**)&(conf), &status);
.
.
.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

dced_s_not_found

sec_acl_invalid_permission

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_inq_name(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_inq_id(3dce)

204 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_inq_name

Purpose

Obtains the entry name that dced associates with a UUID

Synopsis
#include <dce/dced.h>

void dced_inq_name(
dced_binding_handle_t dced_bh
uuid_t *uuid
dced_string_t *name
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

uuid Specifies the UUID for which to obtain the name.

Output
name Returns the name associated with the uuid input.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_inq_name() routine obtains the name associated with a UUID in a
service of a specific host’s dced .

A name is a label for each data entry to help applications and administrators identify
all data maintained by dced . The dced requires UUIDs to keep track of the data it
maintains. But it also maintains a mapping of UUIDs to names so that other
applications and administrators can more easily access the data by using a
recognizable name rather than a cumbersome UUID. A name is a label for
hostdata items, srvrconf and srvrexec servers, and keytab tables.

Prior to calling this routine, the application must have established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

The following example establishes a dced binding handle to the local host data
service, reads an entry, and uses dced_inq_name() to get the name associated
with the attribute ID.
dced_binding_handle_t dced_bh;
uuid_t entry_uuid;
sec_attr_t *data_ptr;
error_status_t status;
.
.

Chapter 1. DCE Routines 205

.
dced_binding_create(dced_c_service_hostdata,

dced_c_binding_syntax_default,
&dced_bh,
&status);

dced_hostdata_read(dced_bh,
&entry_uuid,
&dced_g_uuid_fileattr,
&data_ptr,
&status);

dced_inq_name(dced_bh, data_ptr->sec_attr.attr_id, &name, &status);
.
.
.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

dced_s_not_found

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_inq_id(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_inq_name(3dce)

206 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_add_key

Purpose

Adds a key (server password) to a specified key table on a specific host

Synopsis
#include <dce/dced.h>

void dced_keytab_add_key(
dced_binding_handle_t dced_bh
uuid_t *keytab_uuid
dced_key_t *key
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID that dced uses to identify the key table to which the key
is to be added.

Input/Output
key Specifies the key to be added. Some fields are completed by dced . See

dced_intro(3dce) .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_add_key() routine adds a key to a server’s key table (file) on a
specific host, without changing the key in the security registry. (Servers use
sec_key_mgmt_set_key(3sec) to do this for their own local key table.)

Most management applications use the dced_keytab_change_key() routine to
remotely change a key because it also changes the key in the security registry.

Managing the same key in multiple key tables is a more complex process. The
security registry needs a copy of a server’s key, so that during the authentication
process, it can encrypt tickets that only a server with that key can later decrypt. Part
of updating a key in the security registry also includes automatic version number
updating. When servers share the same principle identity they use the same key. If
these servers are on different hosts, then the key must be in more than one key
table. (Even if the servers are on the same host, it is possible for their keys to be in
different key tables, although this is not a recommended key management practice.)
When the same keys in different tables need changing, one (perhaps the master
server or busiest one) is changed using dced_keytab_change_key() which also
causes an automatic version update. However, all other copies of the key must be
changed using the dced_keytab_add_key() routine so that the version number
does not change again.

Chapter 1. DCE Routines 207

Prior to calling dced_keytab_add_key() the application must have established a
valid dced binding handle to the keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dced_s_bad_binding

dced_s_key_v0_not_allowe

dced_s_key_version_mismatch

dced_s_need_privacy

dced_s_random_key_not_allowed

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_key_unsupported

sec_key_mgmt_e_key_version_exists

sec_key_mgmt_e_unauthorized

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_keytab_change_key(3dce) , sec_key_mgmt_set_key(3sec) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_keytab_add_key(3dce)

208 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_change_key

Purpose

Changes a key (server password) in both a key table and in the security registry

Synopsis
#include <dce/dced.h>

void dced_keytab_change_key(
dced_binding_handle_t dced_bh
uuid_t *keytab_uuid
dced_key_t *key
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID dced uses to identify the key table in which the key is
to be changed.

Input/Output
key Specifies the new key. Some fields are modified by dced .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_change_key() routine updates a key in both the key table on a
specific host and in the security registry. Management applications change keys
remotely with this routine. (Servers can change their own keys locally with the
sec_key_mgmt_change_key() routine.)

The security registry needs a copy of a server’s current key, so that during the
authentication process, it can encrypt tickets that only a server with that key can
later decrypt. When a management application calls dced_keytab_change_key() ,
dced first tries to make the modification in the security registry, and, if successful, it
then modifies the key in the key table. The old key is not really replaced, but a new
version and key is established for all new authenticated communication. The old
version is maintained in the key table (and registry too) for a time, so that existing
clients with valid tickets can still communicate with the server. The old key is
removed depending on the local cell’s change policy and whether the server calls
sec_key_mgmt_garbage_collect() to purge its old keys explicitly, or calls
sec_key_mgmt_manage_key() to purge them implicitly.

When more than one server shares the same principal identity, the servers use the
same key. If you need to change the same key in more than one key table, use
decd_keytab_change_key() for one change and then use the
dced_keytab_add_key() routine for all others.

Chapter 1. DCE Routines 209

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dced_s_bad_binding

dced_s_key_version_mismatch

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_authn_unavailable

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_key_unsupported

sec_key_mgmt_e_key_version_exists

sec_key_mgmt_e_not_implemented

sec_key_mgmt_e_unauthorized

sec_rgy_object_not_found

sec_rgy_server_unavailable

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_keytab_add_key(3dce) , sec_key_mgmt_change_key(3sec) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_keytab_change_key(3dce)

210 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_create

Purpose

Creates a key table with a list of keys (server passwords) in a new file on a specific
host

Synopsis
#include <dce/dced.h>

void dced_keytab_create(
dced_binding_handle_t dced_bh
dced_entry_t *keytab_entry
dced_key_list_t *keys
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the keytab service on a specific host.

Input/Output
keytab_entry

Specifies the keytab entry to create for dced .

keys Specifies the list of keys to be written to the key table file.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_create() routine creates a new key table file on a specific host,
and it generates the associated keytab service entry in dced . This routine is used
by management applications to remotely create a key table. Servers typically create
their own key table locally using the sec_key_mgmt_set_key() routine. However, if
several servers on different hosts share the same principal, each host requires a
local copy of the key table.

If a key table that you want to add to the keytab service already exists on the host,
you can add it to the service by calling dced_entry_add() . This routine creates a
new keytab service entry by associating the existing key table file with a new UUID
in dced .

Prior to calling the dced_keytab_create() routine, the application must have
established a valid dced binding handle to the keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Chapter 1. DCE Routines 211

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_header_type

db_s_bad_index_type

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_import_already_exists

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_key_unsupported

sec_key_mgmt_e_key_version_exists

sec_key_mgmt_e_unauthorized

uuid_s_bad_version

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_add(3dce) , sec_key_mgmt_set_key(3sec) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_keytab_create(3dce)

212 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_delete

Purpose

Deletes a key table file from a specific host

Synopsis
#include <dce/dced.h>

void dced_keytab_delete(
dced_binding_handle_t dced_bh
uuid_t *keytab_uuid
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID of the keytab entry and associated key table to be
deleted.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_delete() routine deletes a key table (file) from a specific host
and removes the associated entry from the keytab service of that host’s dced . A
key table is a file containing a list of server keys (passwords). This routine is used
by management applications to remotely delete a key table.

To remove individual keys from a remote key table, use the
dced_keytab_remove_key() routine. If you only want to make the key table
inaccessible remotely (via dced), but not to delete it, use the dced_entry_remove()
routine. This routine only removes the key table’s keytab entry from dced .

Prior to calling the dced_keytab_delete() routine, the application must have
established a valid dced binding handle to the keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_del_failed

Chapter 1. DCE Routines 213

db_s_iter_not_allowed

db_s_key_not_found

dced_s_bad_binding

dced_s_cant_remove_storage_file

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_remove(3dce) , dced_keytab_remove_key(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_keytab_delete(3dce)

214 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_get_next_key

Purpose

Returns a key from a cached list and advances the cursor in the list

Synopsis
#include <dce/dced.h>

void dced_keytab_get_next_key(
dced_keytab_cursor_t cursor
dced_key_t **key
error_status_t *status);

Parameters

Input/Output
cursor Specifies the cursor that points to a key, and returns the cursor advanced to

the next key in the list.

Output
key Returns the current key to which the cursor points.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_get_next_key() routine obtains the current key to which the
key-list cursor points. This routine is commonly used in a loop to traverse a key
table’s keys. The keys are returned in an undetermined order. Prior to using this
routine in the loop, the application must call dced_keytab_initialize_cursor() to
obtain the key list and establish the beginning of the cursor. When the application is
finished traversing the key list, it should call dced_keytab_release_cursor() to
release the resources allocated.

Management applications use dced_keytab_get_next_key() to remotely access a
server’s individual keys. Servers use sec_key_mgmt_get_next_key() to access
their own local keys individually.

You can also use the dced_object_read() routine to read an entire key table. You
might use dced_object_read() if your application needs to bind to and read data
for other host services (srvrconf , srvrexec , or hostdata) in addition to data for the
keytab service.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_no_more_entries

Chapter 1. DCE Routines 215

Related Information

Functions: dced_keytab_initialize_cursor(3dce) ,
dced_keytab_release_cursor(3dce) , dced_object_read(3dce) ,
sec_key_mgmt_get_next_key(3sec) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_keytab_get_next_key(3dce)

216 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_initialize_cursor

Purpose

Obtains a list of keys from a key table and sets a cursor at the beginning of the list

Synopsis
#include <dce/dced.h>

void dced_keytab_initialize_cursor(
dced_binding_handle_t dced_bh
uuid_t *keytab_uuid
dced_keytab_cursor_t *cursor
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the keytab entry dced associates with a key table.

Output
cursor Returns the cursor that is used to traverse the list of keys.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_initialize_cursor() routine obtains the complete list of keys from
a remote key table and sets a cursor at the beginning of the cached list keys. In
order to minimize the security risks of keys exposed to the network, the entire set of
keys are encrypted and transferred in one remote procedure call rather than
individually or in chunks. The cursor is then used in subsequent calls to
dced_keytab_get_next_key() to obtain individual keys. When the application is
finished traversing the key list, it should call dced_keytab_release_cursor() to
release the resources previously allocated.

Management applications use dced_keytab_initialize_cursor() and its associated
routines to remotely access server keys. Servers use
sec_key_mgmt_initialize_cursor() and its associated routines to manage their
own keys locally.

Prior to calling the dced_keytab_initialize_cursor() routine, the application must
have established a valid dced binding handle to the keytab service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 217

error_status_ok

dced_s_bad_binding

dced_s_need_privacy

dced_s_no_memory

dced_s_no_support

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_unauthorized

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_keytab_get_next_key(3dce) , dced_keytab_release_cursor(3dce) ,
sec_key_mgmt_initialize_cursor(3sec) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_keytab_initialize_cursor(3dce)

218 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_release_cursor

Purpose

Releases the resources of a cursor that traverses a key table’s list of keys (server
passwords)

Synopsis
#include <dce/dced.h>

void dced_keytab_release_cursor(
dced_keytab_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor Specifies the cursor for which resources are released.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_release_cursor() routine releases the cursor and resources
initially set by the dced_keytab_initialize_cursor() routine and used by the
dced_keytab_get_next_key() routine.

Prior to calling this routine, the application must have first established a valid dced
binding handle by calling either dced_binding_create() or
dced_binding_from_rpc_binding() , and then the application must have called the
dced_keytab_initialize_cursor() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_support

Related Information

Functions: dced_keytab_get_next_key(3dce) ,
dced_keytab_initialize_cursor(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 219

dced_keytab_remove_key

Purpose

Removes a key (server password) from a specified key table on a specific host

Synopsis
#include <dce/dced.h>

void dced_keytab_remove_key(
dced_binding_handle_t dced_bh
uuid_t *keytab_uuid
dced_key_t *key
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID dced maintains to identify the key table from which the
key is to be removed.

key Specifies the key to be removed from the key table.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_remove_key() routine removes a key from a key table (file) on a
specific host. The key table is specified with a keytab entry UUID from the host’s
dced . Management applications use dced_keytab_remove_key() to remotely
remove server keys from key tables. Typically, servers delete their own keys from
their local key tables implicitly by calling sec_key_mgmt_manage_key() , or
explicitly by calling sec_key_mgmt_delete_key() . Applications can delete an entire
key table file using the dced_keytab_delete() routine.

Prior to calling this routine, the application must have established a valid dced
binding handle to the keytab service by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

220 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_s_bad_binding

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_unauthorized

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_keytab_delete(3dce) , sec_key_mgmt_delete_key(3sec) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_keytab_remove_key(3dce)

Chapter 1. DCE Routines 221

dced_list_get

Purpose

Returns the list of data entries maintained by a dced service on a specific host

Synopsis
#include <dce/dced.h>

void dced_list_get(
dced_binding_handle_t dced_bh
dced_entry_list_t *list
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

Output
list Returns a list of data entries for the service.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_list_get() routine obtains all the data entries for a dced service on a
specific host. The list of data entries obtained is not the actual data. Each entry
contains a UUID, name, description, and storage tag that describes where the data
is located (for example, a filename or memory location). Call the
dced_list_release() routine when your application is finished with the entry list to
release resources allocated with dced_list_get() routine.

If a service’s entry list is small, it may be efficient to obtain the entire list using the
dced_list_get() routine, because this guarantees that the list is obtained with one
remote procedure call. However, to make your application scalable, use the
dced_initialize_cursor() , dced_entry_get_next() , and dced_release_cursor()
routines, because if an entry list is very large, it may be more efficient (or even
necessary) to obtain the list in chunks with more than one remote procedure call.

Prior to calling this routine, the application must have established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

In the following example, a dced binding is obtained from a service type and an
existing RPC binding handle. The list of entries for the service is obtained with the
dced_list_get() routine and each entry’s name and description are displayed.
dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,

&status);
dced_list_get(dced_bh, &entries, &status);

222 IBM DCE for AIX, Version 2.2: Application Development Reference

for(i=0; i<entries.count; i++)
display(&entries); /* application specific */

dced_list_release(dced_bh, &entries, &status);
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_memory

dced_s_no_support

sec_acl_invalid_permission

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_initialize_cursor(3dce) , dced_list_release(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_list_get(3dce)

Chapter 1. DCE Routines 223

dced_list_release

Purpose

Releases the resources for a list of entries of a dced service

Synopsis
#include <dce/dced.h>

void dced_list_release(
dced_binding_handle_t dced_bh
dced_entry_list_t *list
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

InputOutput
list Specifies a list of data entries for the service.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_list_release() routine releases the resources allocated for a list of data
entries previously retrieved by the dced_list_get() routine.

Prior to calling this routine, the application must have first established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine, and then the application must have
called the dced_list_get() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_list_get(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

224 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_object_read

Purpose

Reads a data item of a dced service on a specific host

Synopsis
#include <dce/dced.h>

void dced_object_read(
dced_binding_handle_t dced_bh
uuid_t *entry_uuid
void **data
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

entry_uuid
Specifies the UUID of the dced service’s data entry associated with the
data item.

Output
data Returns the data read. The data returned is one of the following structures,

depending on the service:

Service Data Type Returned

hostdata sec_attr_t
srvrconf server_t
srvrexec server_t
keytab dced_key_list_t

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_object_read() routine reads the data for a specified entry of a dced
service. When the application is done with the data, it should call the
dced_objects_release() routine with a value of 1 for the count parameter.

The valid services for which you can read data include hostdata , srvrconf ,
srvrexec , and keytab . These host services each have a list of data entries
maintained by dced . The entries do not contain the actual data, but contain the
data’s identity and an indicator of the location of the data item. The hostdata
service also has the dced_hostdata_read() routine to read data, and the keytab
service has a series of routines that traverse over the keys in a key table. (See the
dced_keytab_initialize_cursor() routine.) The secval and endpoint services do
not have data items to read with this routine.

Applications can also read the data for all entries of a service using one call to
dced_objects_read_all() .

Chapter 1. DCE Routines 225

Prior to reading the actual data, an application commonly obtains the entries to read
using the series of cursor routines that begin with dced_entry_initialize_cursor() .

Prior to calling the dced_object_read() routine, the application must have
established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Examples

The following example creates a dced binding to a dced service based on a
service type and host in an RPC binding handle. The example then obtains the
service’s entry list and reads the data associated with each entry.
dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,

&status);
dced_list_get(dced_bh, &entries, &status);
for(i=0; i<entries.count; i++) {
dced_object_read(dced_bh, &entries.list[i].id, &data, &status);
.
.
.
dced_objects_release(dced_bh, 1, data, &status);

}
.
.
.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dce_cf_e_file_open

dce_cf_e_no_match

dce_cf_e_no_mem

dced_s_bad_binding

dced_s_need_privacy

dced_s_no_memory

dced_s_no_support

dced_s_not_found

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

dced_object_read(3dce)

226 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_key_mgmt_e_unauthorized

uuid_s_bad_version

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_hostdata_read(3dce) , dced_initialize_cursor(3dce) ,
dced_keytab_initialize_cursor(3dce) , dced_objects_read_all(3dce) ,
dced_objects_release(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_object_read(3dce)

Chapter 1. DCE Routines 227

dced_object_read_all

Purpose

Reads all the data for a service of dced on specific host

Synopsis
#include <dce/dced.h>

void dced_object_read_all(
dced_binding_handle_t dced_bh
unsigned32 *count
void **data_list
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

Output
count Returns the count of the number of data items read.

data_list
Returns the list of data items read. The data returned is an array of one of
the following types, depending on the service:

Service Data Type of Array Returned

hostdata sec_attr_t
srvrconf server_t
srvrexec server_t
keytab dced_key_list_t

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_object_read_all() routine reads all the data for a specified host service
on a specific host. When the application is done with the data, it should call the
dced_objects_release() routine. Applications can also read individual data objects
for a service using the dced_object_read() routine.

Note: This call may fail if calling the hostdata service and the hostdata object
called, points to storage file that do not exist. These hostdata objects are the
OSF default hostdata objects.

The valid services for which you can read data include hostdata , srvrconf ,
srvrexec , and keytab .

Prior to calling the dced_object_read_all() routine, the application must have
established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

228 IBM DCE for AIX, Version 2.2: Application Development Reference

Examples

The following example reads and displays all the data for a particular dced service.
dced_binding_handle_t dced_bh;
dced_string_t host_service;
void *data_list;
unsigned32 count;
error_status_t status;

dced_binding_create(host_service, dced_c_binding_syntax_default,
&dced_bh, &status);

dced_object_read_all(dced_bh, &count, &data_list, &status);
display(host_service, count, &data_list); /* application specific */
dced_objects_release(dced_bh, count, data_list, &status);
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dce_cf_e_file_open

dce_cf_e_no_match

dce_cf_e_no_mem

dced_s_bad_binding

dced_s_need_privacy

dced_s_no_memory

dced_s_no_support

dced_s_not_found

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_unauthorized

sec_s_no_memory

uuid_s_bad_version

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_object_read(3dce) , dced_objects_release(3dce) .

dced_object_read_all(3dce)

Chapter 1. DCE Routines 229

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

230 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_objects_release

Purpose

Releases the resources allocated for data read from a dced service

Synopsis
#include <dce/dced.h>

void dced_objects_release(
dced_binding_handle_t dced_bh
unsigned32 count
void *data
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for a dced service on a specific host.

count Specifies the number of data items previously read and now to be released.

Input/Output
data Specifies the data for which resources are released.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_objects_release() routine releases the resources allocated when data
for dced is read. Applications should call dced_objects_release() when finished
with data allocated by the following dced API routines:

v dced_object_read_all()

v dced_object_read()

v dced_hostdata_read()

If the data being released was read by using dced_object_read_all() , the count
returned from this routine is used as input to the dced_objects_release() routine. If
the data being released was read by using dced_object_read() or
dced_hostdata_read() , the count value required as input for the
dced_objects_release() routine is 1.

Examples

In the following example, a binding is created to a dced service on some host for a
service that stores data, and the service’s entry list is obtained. For each entry, the
data is read, displayed, and released.
dced_binding_handle_t dced_bh;
dced_entry_list_t entries;
unsigned32 i;
void *data;

Chapter 1. DCE Routines 231

error_status_t status;

dced_binding_create(host_service, dced_c_binding_syntax_default,
&dced_bh, &status);

dced_list_get(dced_bh, &entries, &status);
for(i=0; i<entries.count; i++) {
dced_object_read(dced_bh, &(entries.list[i].id), &data, &status);
display(host_service, 1, &data); /* application specific */
dced_objects_release(dced_bh, 1, data, &status);
.
.
.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_support

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_hostdata_read(3dce) , dced_object_read(3dce) ,
dced_object_read_all(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_objects_release(3dce)

232 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_release_cursor

Purpose

Releases the resources of a cursor which traverses a dced service’s list of entries

Synopsis
#include <dce/dced.h>

void dced_release_cursor(
dced_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor Specifies the cursor for which resources are released.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_release_cursor() routine releases the resources of a cursor initially set
by the dced_initilalize_cursor() routine and used by the dced_entry_get_next()
routine.

Prior to calling this routine, the application must have first established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine, and then the application must have
called the dced_initialize_cursor() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_get_next(3dce) , dced_initialize_cursor(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 233

dced_secval_start

Purpose

Starts the security validation service of a specific host’s dced

Synopsis
#include <dce/dced.h>

void dced_secval_start(
dced_binding_handle_t dced_bh
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the secval service on a specific host.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_secval_start() routine starts the security validation service of a specific
host’s dced . This routine is typically used by management applications.

The security validation service (secval) has two major functions:

v Maintains a login context for the host’s self identity.

v Validates and certifies to applications (usually login programs) that the DCE
security daemon (secd) is legitimate.

The secval program is commonly started by default when dced starts. See the
dced_secval_stop() routine for a discussion of when to use the combination of
dced_secval_stop() and dced_secval_start() .

Prior to calling this routine, the application must have established a valid dced
binding handle to the secval service by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_sv_already_enabled

sec_acl_invalid_permission

234 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_secval_stop(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_secval_start(3dce)

Chapter 1. DCE Routines 235

dced_secval_status

Purpose

Indicates whether or not a specific host’s security validation service of dced is
running

Synopsis
#include <dce/dced.h>

void dced_secval_status(
dced_binding_handle_t dced_bh
boolean32 *secval_active
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the secval service on a specific host.

Output
secval_active

Returns a value of TRUE if the security validation service is running and
FALSE if it is not running.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_secval_status() routine sets a parameter to TRUE or FALSE depending
on whether the security validation service has been activated or deactivated.

Prior to calling this routine, the application must have established a valid dced
binding handle to the secval service by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_secval_start(3dce) , dced_secval_stop(3dce) .

236 IBM DCE for AIX, Version 2.2: Application Development Reference

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 237

dced_secval_stop

Purpose

Stops the security validation service of a specific host’s dced

Synopsis
#include <dce/dced.h>

void dced_secval_stop(
dced_binding_handle_t dced_bh
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the secval service on a specific host.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_secval_stop() routine stops the security validation service (secval) of a
specific host’s dced . This routine is typically used by management applications.

The secval service is commonly started by default when dced starts. The main use
of dced_secval_stop() and dced_secval_start() is to force a refresh of the host
principal credentials. This is the only way to force certain registry changes made by
the host principal (such as groupset membership) to be seen by processes running
on the host.

You can easily stop and then start the secval service with the following operations:
dcecp -c secval deactivate
dcecp -c secval activate

It is not a good idea to remove the machine principal self credentials for an
extended period of time because processes running as self will fail in their attempts
to perform authenticated operations.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_sv_not_enabled

sec_acl_invalid_permission

238 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_secval_start(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_secval_stop(3dce)

Chapter 1. DCE Routines 239

dced_secval_validate

Purpose

Validates that the secd used by a specific host is legitimate

Synopsis
#include <dce/dced.h>

void dced_secval_validate(
dced_binding_handle_t dced_bh
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the secval service on a specific host.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_secval_validate() routine validates and certifies for a specific host that
the DCE security daemon (secd) is legitimate. Typically, a login program uses the
security validation service when it uses the security service’s login API (routines that
begin with sec_login). However, if a management application trusts some remote
host, it can use dced_secval_validate() to validate secd , without logging in to the
host.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

ept_s_not_registered

rpc_s_comm_failure

rpc_s_invalid_binding

rpc_s_rpcd_comm_failure

rpc_s_wrong_kind_of_binding

sec_login_s_no_current_context

Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

240 IBM DCE for AIX, Version 2.2: Application Development Reference

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_secval_start(3dce) , sec_login_ *(3sec) API.

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_secval_validate(3dce)

Chapter 1. DCE Routines 241

dced_server_create

Purpose

Creates a DCE server’s configuration data for the host’s dced

Synopsis
#include <dce/dced.h>

void dced_server_create(
dced_binding_handle_t dced_bh
server_t *conf_data
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the srvrconf service on a specific
host.

Input/Output
conf_data

Specifies the configuration data for the server. The dced_intro(3dce)
reference page describes the server_t structure.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_server_create() routine creates a server’s configuration data. This
routine is used by management installation applications to remotely (or locally)
establish the data used to control how a DCE server starts. However, this routine
does not create the program or start it. Since this activity is typically part of a
server’s installation, you can also use dcecp ’s server create operation.

Management applications use the dced_object_read() routine to read the
configuration data.

Prior to calling dced_server_create() , the application must have established a valid
dced binding handle to the srvrconf service by calling either
dced_binding_create() or dced_binding_from_rpc_binding() .

Examples

The following example shows how to fill in some of the fields of a server_t structure
and then create the configuration in dced .
dced_binding_handle_t dced_bh;
server_t conf;
error_status_t status;

dced_binding_create("srvrconf@hosts/katharine",

242 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_c_binding_syntax_default,
&dced_bh,
&status);

/* setup a server_t structure */
uuid_create(&conf.id, &status);
conf.name = (dced_string_t)"application";
conf.entryname = (dced_string_t)"/.:/development/new_app";
conf.services.count = 1;

/* service_t structure(s) */
conf.services.list = malloc(conf.services.count * sizeof(service_t));
rpc_if_inq_id(application_v1_0_c_ifspec,

&(conf.services.list[0].ifspec), &status);
conf.services.list[0].ifname = (dced_string_t)"application";
conf.services.list[0].annotation = (dced_string_t)"A new application";
conf.services.list[0].flags = 0;

/* server_fixedattr_t structure */
conf.fixed.startupflags = server_c_startup_explicit |

server_c_startup_on_failure;
conf.fixed.flags = 0;
conf.fixed.program = (dced_string_t)"/usr/users/bin/new_app";

dced_server_create(dced_bh, &conf, &status);
.
.
.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_header_type

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_name_missing

sec_acl_invalid_permission

Related Information

dcecp objects: server(8dce) .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_object_read(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_server_create(3dce)

Chapter 1. DCE Routines 243

dced_server_delete

Purpose

Deletes a DCE server’s configuration data from dced

Synopsis
#include <dce/dced.h>

void dced_server_delete(
dced_binding_handle_t dced_bh
uuid_t *conf_uuid
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the srvrconf service on a specific
host.

conf_uuid
Specifies the UUID that dced uses to identify the server’s configuration
data to be deleted.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_server_delete() routine deletes a server’s configuration data from the
server’s dced . This routine removes a server from DCE control by making it
incapable of starting via dced . The routine does not delete the program from disk
nor does it affect the server if the server is currently running.

Prior to using dced_server_delete() , the server configuration data must be created
by an administrator using the dcecp server create operation or by an application
using dced_server_create() .

Prior to calling dced_server_delete() , the application must have established a valid
dced binding handle to the srvrconf service by calling either
dced_binding_create() or dced_binding_from_rpc_binding() .

Examples

In the following example, a dced binding is created to the server configuration
service on a host, and then an inquiry is made as to the UUID associated with a
particular server. The dced_server_delete() routine is then used to delete the
configuration.
dced_binding_handle_t dced_bh;
dced_string_t server_name;
uuid_t srvrconf_id;
error_status_t status;

244 IBM DCE for AIX, Version 2.2: Application Development Reference

name_server(&server_name); /* application specific */
dced_binding_create("srvrconf@hosts/katharine",

dced_c_binding_syntax_default, &dced_bh, &status);
dced_inq_id(dced_bh, server_name, &srvrconf_id, &status);
dced_server_delete(dced_bh, &srvrconf_id, &status);
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_del_failed

db_s_iter_not_allowed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects: server(8dce) .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_server_create(3dce) , dced_server_modify_attributes(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_server_delete(3dce)

Chapter 1. DCE Routines 245

dced_server_disable_if

Purpose

Disables a service (RPC interface) provided by a specific server on a specific host

Synopsis
#include <dce/dced.h>

void dced_server_disable_if(
dced_binding_handle_t dced_bh
uuid_t *exec_uuid
rpc_if_id_t *interface
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the srvrexec service on a specific
host.

exec_uuid
Specifies the UUID that dced uses to identify the running server.

interface
Specifies the RPC interface identifier that represents the service to be
disabled. The interface identifier is generated when idl compiles an
interface definition file. The interface identifier is an rpc_if_id_t structure that
contains the interface UUID (uuid) of type uuid_t , and numbers of type
unsigned16 representing the major (vers_major) and minor (vers_minor)
version numbers for the interface.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_server_disable_if() routine disables a service provided by a server on a
specific host. A service is represented by an RPC interface identifier. Management
applications use this routine to remotely disable an interface so it is inaccessible by
clients, without completely stopping the entire server.

When a server starts and initializes itself, it must call the dce_server_register()
routine to enable all of its services. The server can then disable its own individual
services by using dce_server_disable_service() . This routine unregisters the
service’s interface from the RPC runtime and marks the interface as disabled in the
endpoint map. As an alternative, a management application can use
dced_server_disable_if() to disable individual services. However, this routine only
affects the endpoint map in dced by marking the interface as disabled and does not
affect the server’s runtime.

246 IBM DCE for AIX, Version 2.2: Application Development Reference

A management application can reenable a service again by calling the
dced_server_enable_if() routine. (Servers reenable their own services using the
dce_server_enable_if() routine.)

Prior to calling dced_server_disable_if() , the application must have established a
valid dced binding handle to the srvrexec service by calling either
dced_binding_create() or dced_binding_from_rpc_binding() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects: server(8dce) .

Functions: dce_server_disable_if(3dce) , dce_server_enable_if(3dce) ,
dce_server_register(3dce) , dced_binding_create(3dce) ,
dced_binding_from_rpc_binding(3dce) , dced_server_enable_if(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_server_disable_if(3dce)

Chapter 1. DCE Routines 247

dced_server_enable_if

Purpose

Enables a service (RPC interface) of a specific server on a specific host

Synopsis
#include <dce/dced.h>

void dced_server_enable_if(
dced_binding_handle_t dced_bh
uuid_t *exec_uuid
rpc_if_id_t *interface
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the srvrexec service on a specific
host.

exec_uuid
Specifies the UUID that dced uses to identify the running server.

interface
Specifies the RPC interface identifier that represents the service to be
enabled. The interface identifier is generated when idl compiles an interface
definition file. The interface identifier is a structure that contains the
interface UUID (interface->uuid), and the major (interface->vers_major)
and minor (interface->vers_minor) version numbers for the interface.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_server_enable_if() routine enables a service (or reenables a previously
disabled service) that a specific server provides. Management applications use this
routine. A service is represented by an RPC interface identifier.

When a server starts and initializes itself, it typically calls the dce_server_register()
routine to enable all of its services. The services can then be disabled and
reenabled, as needed. A server enables and disables its own services by using the
routines dce_server_enable_service() and dce_server_disable_service() . A
management application enables and disables a remote server’s service using the
routines dced_server_enable_if() and dced_server_disable_if() .

The dce_server* routines affect both the RPC runtime and the local endpoint map
by registering (or unregistering) with the runtime and setting a flag for the interface
in the the endpoint map as enabled (or disabled). The dced_server_enable_if()
and dced_server_disable_if() routines affect only the remote endpoint map by
setting the flag.

248 IBM DCE for AIX, Version 2.2: Application Development Reference

Prior to calling dced_server_enable_if() , the application must have established a
valid dced binding handle to the srvrexec service by calling either
dced_binding_create() or dced_binding_from_rpc_binding() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects: server(8dce) .

Functions: dce_server_disable_if(3dce) , dce_server_enable_if(3dce) ,
dce_server_register(3dce) , dced_binding_create(3dce) ,
dced_binding_from_rpc_binding(3dce) , dced_server_disable_if(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_server_enable_if(3dce)

Chapter 1. DCE Routines 249

dced_server_modify_attributes

Purpose

Modifies attributes for a DCE server’s configuration data

Synopsis
#include <dce/dced.h>

void dced_server_modify_attributes(
dced_binding_handle_t dced_bh
uuid_t *conf_uuid
dced_attr_list_t *data
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the srvrconf service on a specific
host.

conf_uuid
Specifies the UUID that dced uses to identify a server’s configuration data
to be modified.

data Specifies the attributes to be modified.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_server_modify_attributes() routine replaces a server’s attributes of its
configuration data maintained by dced on a specific host. This routine is typically
called after a configuration is created with the dced_server_create() routine.

A server’s configuration is manipulated in a server_t data structure, and the
dced_server_modify_attributes() routine affects only the attributes member of
this structure. To change other server configuration data, you must first delete the
configuration by using dced_server_delete() , and then create the configuration
again by using dced_server_create() .

Prior to calling dced_server_modify_attributes() , the application must have
established a valid dced binding handle to the srvrconf service by calling either
dced_binding_create() or dced_binding_from_rpc_binding() .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

250 IBM DCE for AIX, Version 2.2: Application Development Reference

db_s_bad_index_type

db_s_iter_not_allowed

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects: server(8dce) .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_object_read(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide

dced_server_modify_attributes(3dce)

Chapter 1. DCE Routines 251

dced_server_start

Purpose

Starts a DCE-configured server on a specified host

Synopsis
#include <dce/dced.h>

void dced_server_start(
dced_binding_handle_t dced_bh
uuid_t *conf_uuid
dced_attr_list_t *attributes
uuid_t *exec_uuid
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the srvrconf service on a specific
host.

conf_uuid
Specifies the UUID that dced uses to identify the server to start. If the
value input is that of a server that is already running, dced starts a new
instance.

attributes
Specifies the configuration attributes to use to start the server. If the value
is NULL, the default configuration defined in dced is used.

Input/Output
exec_uuid

Specifies a new UUID for dced to use to identify the running server. If a nil
UUID is input, a new UUID is created and returned. If the value input is that
of a server that is already running, dced starts a new instance and returns
a new value.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The dced_server_start() routine starts DCE-configured servers on a specific
remote host (or the local host). The configuration data is stored in an object in the
srvrconf service of dced . When the server starts, dced uses the server
configuration object and creates a server execution object in the srvrexec service.
A server execution object consists of data that describes the executing server.

Management applications create the configuration data by using the
dced_server_create() and the dced_object_read() routine to read the
configuration or execution data.

252 IBM DCE for AIX, Version 2.2: Application Development Reference

Prior to calling dced_server_start() , the application must have established a valid
dced binding handle to the srvrconf service by calling either
dced_binding_create() or dced_binding_from_rpc_binding() .

Examples

The following example starts a configured server using a nil UUID as input for the
executing server.
dced_binding_handle_t conf_bh;
dced_string_t server_name;
uuid_t srvrconf_id, srvrexec_id;
error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",
dced_c_binding_syntax_default,
&conf_bh,
&status);

dced_inq_id(conf_bh, server_name, &srvrconf_id, &status);
uuid_create_nil(&srvrexec_id, &status);
dced_server_start(conf_bh, &srvrconf_id, NULL, &srvrexec_id,

&status);
.
.
.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s_bad_header_type

db_s_iter_not_allowed

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_no_support

dced_s_not_found

dced_s_sc_cant_fork

dced_s_sc_invalid_attr_type

dced_s_sc_open_file_failed

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Commands: server(8dce) .

dced_server_start(3dce)

Chapter 1. DCE Routines 253

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_server_create(3dce) , dced_server_stop(3dce) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_server_start(3dce)

254 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_server_stop

Purpose

Stops a DCE-configured server running on a specific host

Synopsis
#include <dce/dced.h>

void dced_server_stop(
dced_binding_handle_t dced_bh
uuid_t *exec_uuid
srvrexec_stop_method_t method
error_status_t *status);

Parameters

Input
dced_bh

Specifies the dced binding handle for the srvrexec service on a specific
host.

exec_uuid
Specifies a UUID that dced uses to identify the running server. If the value
input is dced_g_uuid_all_servers , dced attempts to stop all the DCE
servers running on that host.

method
Specifies the method dced uses to stop a server. A method is represented
by one of the following values:

srvrexec_stop_rpc
Uses the rpc_mgmt_stop_server_listening() routine. This is the
cleanest way to stop a server, because it waits for outstanding
remote procedure calls to finish before making the server’s
rpc_server_listen() routine return.

srvrexec_stop_soft
Uses a soft local host mechanism (such as the TERM signal in
UNIX)

srvrexec_stop_hard
Uses a hard local host mechanism (such as the KILL signal in
UNIX)

srvrexec_stop_error
Uses a mechanism that saves the program state (such as the
ABORT signal in UNIX)

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Chapter 1. DCE Routines 255

Description

The dced_server_stop() routine stops DCE-configured servers on specific hosts.
When the server is completely stopped and no longer a running process, dced
deletes the associated execution data it maintained.

Administrators use the dcecp operations server create and server start to
configure and start a server, and management applications use the associated
dced_server_create() and dced_server_start() routines.

Prior to calling dced_server_stop() , the application must have established a valid
dced binding handle to the srvrexec service by calling either
dced_binding_create() or dced_binding_from_rpc_binding() .

Cautions

Using the value dced_g_uuid_all_servers for the exec_uuid parameter causes
dced to shutdown all servers including itself.

Examples

The following example obtains dced binding handles to the server configuration and
execution services of dced on the host patrick . The example then checks to see if
the server is running by seeing if dced has a UUID and entry for the executing
server. However, the server may be in the process of starting up or stopping, so the
example also checks to be sure the instance UUID of the running server matches
the UUID of the configuration for that server. If there is a match, the server is
running. Finally, the example stops the server by calling dced_server_stop() with
the srvrexec_stop_rpc parameter.
dced_binding_handle_t conf_bh, exec_bh;
dced_string_t server_name;
void *data;
server_t *exec_ptr;
uuid_t srvrconf_id, srvrexec_id;
error_status_t status;
.
.
.

dced_binding_create("srvrconf@hosts/patrick",
dced_c_binding_syntax_default,
&conf_bh,
&status);

dced_binding_create("srvrexec@hosts/patrick",
dced_c_binding_syntax_default,
&exec_bh,
&status);

/* is server running? */
dced_inq_id(exec_bh, server_name, &srvrexec_id, &status);
/* also check to be sure server is not coming up or going down */

dced_object_read(exec_bh, &srvrexec_id, &data, &status);
exec_ptr = (server_t*)data;
dced_inq_id(conf_bh, server_name, &srvrconf_id, &status);
if(uuid_equal(&srvrconf_id,

&exec_ptr->exec_data.tagged_union.running_data.instance,
&status)) {

dced_server_stop(exec_bh, &srvrexec_id, srvrexec_stop_rpc, &status);
}
dced_objects_release(exec_bh, 1, data, &status);
dced_binding_free(conf_bh, &status);
dced_binding_free(exec_bh, &status);

dced_server_stop(3dce)

256 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_support

dced_s_not_found

rpc_s_binding_incomplete

rpc_s_comm_failure

rpc_s_invalid_binding

rpc_s_mgmt_op_disallowed

rpc_s_unknown_if

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

dcecp Objects: server(8dce) .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_server_create(3dce) dced_server_start(3dce) ,
rpc_mgmt_stop_server_listening(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide.

dced_server_stop(3dce)

Chapter 1. DCE Routines 257

DCE_SVC_DEBUG

Purpose

Macro to output a serviceability debug message

Synopsis
#include <dce/dce.h>

DCE_SVC_DEBUG((
dce_svc_handle_t handle
const unsigned32 table_index
unsigned32 debug_level
char * format
...));

Parameters

Input
handle The caller’s serviceability handle.

table_index
The message’s subcomponent name (defined in the sams file).

debug_level
Serviceability debug level for the message.

format The message string.

. . . Format arguments, if any.

Description

The DCE_SVC_DEBUG macro is used to generate debugging output. Because it is
a macro that takes a variable number of arguments, the entire parameter list must
be enclosed in two sets of parentheses. The handle and table_index parameters
are as described for dce_svc_printf() .

In contrast to the normal operation of the serviceability interface,
DCE_SVC_DEBUG requires the caller to specify the message as a string literal in
the call, rather than by defining it in the application’s sams file specifying the
message by a message ID.

The debug_level argument indicates the level of detail associated with this message
and must be in the range svc_c_debug1 to svc_c_debug9 .

Thus the value of debug_level associates the message with one of nine levels, and
whether or not the message is actually generated at run time will depend on what
debugging level has been set for the application. The level can be set by the
application itself by a call to dce_svc_debug_set_levels() or
dce_svc_debug_routing() . The level can also be set by the value of an
environment variable or a serviceability routing file. See svcroute(5dce) for further
information.

The significance of the various levels is application-defined, but in general the
higher levels (numbers) imply more detail in debugging output.

258 IBM DCE for AIX, Version 2.2: Application Development Reference

The format and . . . parameters are passed directly to fprintf() or its equivalent.

Related Information

Functions: dce_svc_debug_routing(3dce) , dce_svc_debug_set_levels(3dce) ,
dce_svc_printf(3dce) , dce_svc_routing(3dce) .

Files: svcroute(5dce) .

DCE_SVC_DEBUG(3dce)

Chapter 1. DCE Routines 259

DCE_SVC_DEBUG_ATLEAST

Purpose

Macro to test a component’s serviceability debug level

Synopsis
#include <dce/dce.h>

DCE_SVC_DEBUG_ATLEAST(
dce_svc_handle_t handle
const unsigned32 table_index
unsigned32 debug_level);

Parameters

Input
handle The caller’s serviceability handle.

table_index
The subcomponent name (defined in the sams file) whose debug level is
being tested.

debug_level
The debug level being tested.

Description

If serviceability debug code was enabled (by defining DCE_DEBUG) during
compilation, the DCE_SVC_DEBUG_ATLEAST and DCE_SVC_DEBUG_IS macros
can be used to test the debug level of a subcomponent (specified by table_index)
for the specified handle. DCE_SVC_DEBUG_ATLEAST tests whether the debug
level is at least at the specified level. DCE_SVC_DEBUG_IS tests for an exact
match with the specified level. In either case, the specified level should be a
number between 1 and 9.

Related Information

Functions: DCE_SVC_DEBUG(3dce) , DCE_SVC_DEBUG_IS(3dce) ,
DCE_SVC_LOG(3dce) .

260 IBM DCE for AIX, Version 2.2: Application Development Reference

DCE_SVC_DEBUG_IS

Purpose

Macro to test a component’s serviceability debug level

Synopsis
#include <dce/dce.h>

DCE_SVC_DEBUG_IS(
dce_svc_handle_t handle
const unsigned32 table_index
unsigned32 debug_level);

Parameters

Input
handle The caller’s serviceability handle.

table_index
The name of the subcomponent name (defined in the sams file) whose
debug level is to be tested.

debug_level
The serviceability debug level being tested.

Description

If serviceability debug code was enabled (by defining DCE_DEBUG) during
compilation, the DCE_SVC_DEBUG_ATLEAST and DCE_SVC_DEBUG_IS macros
can be used to test the debug level of a subcomponent (specified by table_index)
for the specified handle. DCE_SVC_DEBUG_ATLEAST tests whether the debug
level is at least at the specified level. DCE_SVC_DEBUG_IS tests for an exact
match with the specified level. In either case, the specified level should be a
number between 1 and 9.

Related Information

Functions: DCE_SVC_DEBUG(3dce) , DCE_SVC_DEBUG_ATLEAST(3dce) ,
DCE_SVC_LOG(3dce) .

Chapter 1. DCE Routines 261

DCE_SVC_DEFINE_HANDLE

Purpose

Macro to create a serviceability handle

Synopsis
#include <dce/dce.h>

DCE_SVC_DEFINE_HANDLE(
dce_svc_handle_t handle
dce_svc_subcomp_t *table
const idl_char *component_name);

Parameters

Input
table A message table structure (defined in a header file generated by sams

during compilation).

component_name
The serviceability name of the component, defined in the component field
of the sams file.

Output
handle A serviceability handle structure that will be filled in by the macro.

Description

There are two ways to register a serviceability table preparatory to using the
serviceability interface in an application. The first is to create a global variable using
the DCE_SVC_DEFINE_HANDLE macro. The first parameter is the serviceability
handle, the second is a pointer to the component’s message table, and the third is
the name of the serviceability component (application). The macro creates a
skeleton variable that will be completed the first time the handle is used. This can
be useful when writing library code that has no explicit initialization routine.

The second method is to call the dce_svc_register() routine.

Note: If an application is using advanced serviceability function, such as filtering
with dce_svc_filter() , dce_svc_register() should be used, not
DCE_SVC_DEFINE_HANDLE .

DCE_SVC_DEFINE_HANDLE does not actually register the handle, it simply
defines the data structures.

Related Information

Functions: dce_svc_register(3dce) .

262 IBM DCE for AIX, Version 2.2: Application Development Reference

DCE_SVC_LOG

Purpose

Macro to output a binary form of a serviceability debug message

Synopsis
#include <dce/dce.h>

DCE_SVC_LOG((
dce_svc_handle_t handle
const unsigned32 table_index
unsigned32 debug_level
const unsigned32 messageid
char * format
. . .));

Parameters

Input
handle The caller’s serviceability handle.

table_index
The message’s subcomponent name (defined in the sams file).

debug_level
Serviceability debug level for the message.

messageid
A message ID, defined in the message’s code field in the sams file.

format A message format specifier string (used if messageid cannot be found).

. . . Any format arguments for the message string.

Description

The DCE_SVC_LOG macro is used to generate debugging output based on a
message defined in an application’s sams file (in this respect it is unlike
DCE_SVC_DEBUG, in which the message is specified as a literal string
parameter). Because it is a macro that takes a variable number of arguments, the
entire parameter list must be enclosed in two sets of parentheses. The handle and
table_index parameters are as described for dce_svc_printf() .

The message can be specified in either one of two ways: by messageid, identifying
a message defined in the normal way in the application’s sams file; or as a string
literal paramater (format). The format string is used only if the specified messageid
cannot be found.

DCE_SVC_LOG generates a record in the serviceability binary format, not a
conventional serviceability message as such. The complete message text is not
normally written; instead, only the message ID (the messageid specified in the
macro parameter), and its format arguments (if any) are written. When the binary
log is read (see svcdumplog(8dce)), the text of the message is reconstructed from
the application’s installed message catalog. However, if the original message was
generated from the format argument, then the entire message text is written to the
binary record.

Chapter 1. DCE Routines 263

The debug_level argument indicates the level of detail associated with the message
and must be in the range svc_c_debug1 to svc_c_debug9 .

Thus the value of debug_level associates the message with one of nine levels, and
whether or not the message is actually generated at run time will depend on what
debugging level has been set for the application. The level can be set by the
application itself by a call to dce_svc_debug_set_levels() or
dce_svc_debug_routing() . The level can also be set by the value of an
environment variable or a serviceability routing file. See svcroute(5dce) for further
information.

The significance of the various levels is application-defined, but in general the
higher levels (numbers) imply more detail in debugging output.

Related Information

Functions: DCE_SVC_DEBUG(3dce) , DCE_SVC_DEBUG_ATLEAST(3dce) ,
DCE_SVC_DEBUG_IS(3dce) .

DCE_SVC_LOG(3dce)

264 IBM DCE for AIX, Version 2.2: Application Development Reference

svcroute

Purpose

Routing control file for DCE serviceability messages

Description

The file svc/routing specifies routing for serviceability messages. The default
location for svc/routing is the DCE local data directory (typically /opt/dcelocal/var).
The environment variable DCE_SVC_ROUTING_FILE, if set, specifies a different
location for the file.

The file consists of a series of text lines. Blank lines and lines that begin with a #
(number sign) character are ignored when the file’s contents are interpreted. All
other lines must consist of either three or four fields, each separated by a : (colon).
Leading whitespace is ignored.

Lines consisting of three fields specify routing for nondebug serviceability
messages. Their format is as follows:

sev:out_form:dest[;out_form:dest
...] [GOESTO:{sev | comp}]

The sev (severity) field specifies one of the following message severities:

FATAL
Fatal error exit: An unrecoverable error (such as database corruption) has
occurred and will probably require manual intervention to be corrected. The
program usually terminates immediately after such an error.

ERROR
Error detected: An unexpected event that is nonterminal (such as a
timeout), or is correctable by human intervention, has occurred. The
program will continue operation, although some functions or services may
no longer be available. This severity level may also be used to indicate that
a particular request or action could not be completed.

WARNING
Correctible error: An error occurred that was automatically corrected (for
example, a configuration file was not found, and default values were used
instead). This severity level may also be used to indicate a condition that
may be an error if the effects are undesirable (for example, removing all
files as a side-effect of removing a nonempty directory). This severity level
may also be used to indicate a condition that, if not corrected, will
eventually result in an error (for example, a printer’s running low on paper).

NOTICE
Informational notice: A significant routine major event has occurred; for
example, a server has started.

NOTICE_VERBOSE
Verbose information notice: A significant routine event has occurred; for
example, a directory entry was removed.

The out_form (output form) field specifies how the messages of a given severity
level should be processed, and must be one of the following:

Chapter 1. DCE Routines 265

BINFILE
Write these messages as a binary log entry to the specified file.

TEXTFILE
Write these messages as human-readable text.

FILE Equivalent to TEXTFILE.

DISCARD
Do not record messages of this severity level.

STDOUT
Write these messages as human-readable text to standard output.

STDERR
Write these messages as human-readable text to standard error.

Files written as BINFILE s can be read and manipulated with a set of log file
functions (for more information, see dce_svc_log_open() and dce_svc_log_get()),
or by the svcdumplog command (see svcdumplog(1dce)).

The out_form specifier may be followed by a two-number specifier of the form

.gens.count

where

gens is an integer that specifies the number of files (that is, generations) that
should be kept

count is an integer specifying how many entries (that is, messages) should be
written to each file

The multiple files are named by appending a dot to the simple specified name, dest,
followed by the current generation number. When the number of entries in a file
reaches the maximum specified by count, the file is closed, the generation number
is incremented, and the next file is opened. When the maximum generation number
files have been created and filled, the generation number is reset to 1, and a new
file with that number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being written. Thus
the files wrap around to their beginning, and the total number of log files never
exceeds gens, although messages continue to be written as long as the program
continues writing them. Note that when a program starts, the generation starts at 1.

The dest (destination) field specifies where the message should be sent, and is a
pathname. The field can be left blank if the out_form specified is DISCARD,
STDOUT, or STDERR. The field can also contain a %ld string in the filename
which, when the file is written, will be replaced by the process ID of the program
that wrote the messages. Filenames may not contain colons or periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as semicolon-separated out_form: dest strings.

For example, the following strings specify that

v Fatal error messages should be sent to the console.

v Warnings should be discarded.

v Notices should be written both to standard error and as binary entries in files
located in the /tmp directory. No more than 50 files should be written, and there
should be no more than 100 messages written to each file. The files will have

svcroute(5dce)

266 IBM DCE for AIX, Version 2.2: Application Development Reference

names of the form /tmp/log process_id. n, where process_id is the process ID of
the program originating the messages, and n is the generation number of the file
(expressed with only as many digits as needed).

FATAL:TEXTFILE:/dev/console
WARNING:DISCARD:--
NOTICE:STDERR:-;BINFILE.50.100:/tmp/log%ld

The GOESTO specifier allows messages for the severity whose routing
specification it appears in to be routed to the same destination (and in the same
output form) as those for the other, specified, severity level (or component name).
For example, the following specification means that WARNING messges should
show up in three places: twice to stderr , and then once to the file /tmp/foo :
WARNING:STDERR:;GOESTO:FATAL
FATAL:STDERR:;FILE:/tmp/foo

Note that a GOESTO specification should be the last element in a multidestination
route specification.

Routing Serviceability Messages by Environment Variable

Serviceability message routing can also be specified by the values of certain
environment variables. If environment variables are used, the routings they specify
will override any conflicting routes specified by the routing file.

The routes are specified on the basis of severity level by putting the desired routing
instructions in their corresponding environment variables:

v SVC_FATAL

v SVC_ERROR

v SVC_WARNING

v SVC_NOTICE

v SVC_NOTICE_VERBOSE

Each variable should contain a single string in the format

out_form:dest[;out_form:dest
...]

where out_form and dest have the same meanings and form as in the preceding
syntax line. Multiple routings can be specified with semicolon-separated additional
substrings specifying the additional routes, as shown.

Setting Serviceability Debug Message Levels

Nine serviceability debug message levels (specified respectively by single digits
from 1 to 9) are available. The precise meaning of each level varies with the
application or DCE component in question, but the general notion is that ascending
to a higher level (for example, from 2 to 3) increases the level of informational detail
in the messages.

Setting debug messaging at a certain level means that all levels up to and including
the specified level are enabled. For example, if the debug level is set at 4, then the
1, 2, and 3 levels are enabled as well.

The general format for the debug level specifier string is

component:sub_comp.level,sub_comp.level, ...

svcroute(5dce)

Chapter 1. DCE Routines 267

where

component
is the three-character serviceability component code for the program whose
debug message levels are being specified.

sub_comp. level
is a serviceability subcomponent name, followed (after a dot) by a debug
level (expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

If there are multiple subcomponents and it is desired to set the debug level to be
the same for all of them, then the following form will do this (where * specifies all
subcomponents):

component:*.level

Routing Serviceability Debug Messages

Routing for serviceability debug messages can be specified in either of the two
following ways:

v By the contents of the SVC_ COMP_DBG environment variable (where COMP is
the code of the component, converted to upper case, whose debug message
routing is to be set).

v By the contents of the /svc/routing routing file.

The routing is specified by the contents of a specially-formatted string that is either
included in the value of the environment variable or the contents of the routing file.

The general format for the debug routing specifier string is

component:sub_comp.level,. . .:out_form:dest[;out_form:dest
...] \
[GOESTO:{sev | component}]

where component, sub_comp.level, out_form, dest, and sev have the same
meanings as defined earlier in this reference page.

For example, consider the following string value:
hel:*.4:STDERR:-;TEXTFILE:/tmp/hel_debug_log_%ld

This value, when assigned to the SVC_HEL_DBG environment variable, would set
the debug level and routing for all hel subcomponents. A debug level of 4 is
specified, and all debug messages of that level or lower will be written both to
standard error, and in text form to the file /tmp/hel_debug_log_ process_ID, where
process_ID is the process ID of the program writing the messages.

svcroute(5dce)

268 IBM DCE for AIX, Version 2.2: Application Development Reference

Chapter 2. DCE Threads

© Copyright IBM Corp. 1992, 1998 269

thr_intro

Purpose

Introduction to DCE Threads

Description

DCE Threads is a set of routines that you can call to create a multithreaded
program. Multithreading is used to improve the performance of a program. Routines
implemented by DCE Threads that are not specified by Draft 4 of the POSIX
1003.4a standard are indicated by an _np suffix on the name. These routines are
new primitives.

The threads routines sort alphabetically in the reference pages; however, the tables
in this introduction list the routines in the following functional groups:

v Threads routines

v Routines that implicitly initialize threads package

v Attributes object routines

v Mutex routines

v Condition variable routines

v Thread-specific data routines

v Threads cancellation routines

v Threads priority and scheduling routines

v Cleanup routines

v The atfork() routine

v Signal handling routines

Table 1. Threads Routines
Routine Description

pthread_create() Creates a thread
pthread_delay_np() Causes a thread to wait for a period of time
pthread_detach() Marks a thread for deletion
pthread_equal() Compares one thread identifier to another

thread identifier
pthread_exit() Terminates the calling thread
pthread_getunique_np() Obtains the sequence number associated

with a thread.
pthread_join() Causes the calling thread to wait for the

termination of a specified thread
pthread_once() Calls an initialization routine to be executed

only once
pthread_self() Obtains the identifier of the current thread
pthread_yield() Notifies the scheduler that the current thread

will release its processor to other threads of
the same or higher priority

The following DCE Threads routines will, when called, implicitly perform any
necessary initialization of the threads package. Thus any application using DCE

270 IBM DCE for AIX, Version 2.2: Application Development Reference

Threads should call one of the following routines before calling any other threads
routines, in order to ensure that the package is properly initialized.

Table 2. Routines that Implicitly Perform Threads Initialization
Routine Description

pthread_attr_create() Creates a thread attributes object
pthread_create() Creates a thread
pthread_self() Obtains the identifier of the current thread
pthread_setprio() Changes the scheduling priority attribute
pthread_getprio() Obtains the scheduling priority attribute
pthread_setscheduler() Changes the scheduling policy attribute
pthread_getscheduler() Obtains the scheduling policy attribute
pthread_once() Calls an initialization routine to be executed

only once
pthread_keycreate() Generates a unique thread-specific data key

value
pthread_mutexattr_create() Creates a mutex attributes object
pthread_mutex_init() Creates a mutex
pthread_condattr_create() Creates a condition variable attributes object
pthread_cond_init() Creates a condition variable
pthread_testcancel() Requests delivery of a pending cancel
pthread_setcancel() Enables or disables the current thread’s

general cancelability
pthread_setasynccancel() Enables or disables the current thread’s

asynchronous cancelability
pthread_delay_np() Causes a thread to wait for a period of time

Table 3. Attributes Object Routines
Routine Description

pthread_attr_create() Creates a thread attributes object
pthread_attr_delete() Deletes a thread attributes object
pthread_attr_getinheritsched() Obtains the inherit scheduling attribute
pthread_attr_getprio() Obtains the scheduling priority attribute
pthread_attr_getsched() Obtains the scheduling policy attribute
pthread_attr_getstacksize() Obtains the stacksize attribute
pthread_attr_setinheritsched() Changes the inherit scheduling attribute
pthread_attr_setprio() Changes the scheduling priority attribute
pthread_attr_setsched() Changes the scheduling policy attribute
pthread_attr_setstacksize() Changes the stacksize attribute
pthread_condattr_create() Creates a condition variable attributes object
pthread_condattr_delete() Deletes a condition variable attributes object
pthread_mutexattr_create() Creates a mutex attributes object
pthread_mutexattr_delete() Deletes a mutex attributes object
pthread_mutexattr_getkind_np() Obtains the mutex type attribute
pthread_mutexattr_setkind_np() Changes the mutex type attribute

thr_intro(3thr)

Chapter 2. DCE Threads 271

Table 4. Mutex Routines
Routine Description

pthread_lock_global_np() Locks a global mutex
pthread_mutex_destroy() Deletes a mutex
pthread_mutex_init() Creates a mutex
pthread_mutex_lock() Locks a mutex and waits if the mutex is

already locked
pthread_mutex_trylock() Locks a mutex and returns if the mutex is

already locked
pthread_mutex_unlock() Unlocks a mutex
pthread_unlock_global_np() Unlocks a global mutex

Table 5. Condition Variable Routines
Routine Description

pthread_cond_broadcast() Wakes all threads waiting on a condition
variable

pthread_cond_destroy() Deletes a condition variable
pthread_cond_init() Creates a condition variable
pthread_cond_signal() Wakes one thread waiting on a condition

variable
pthread_cond_timedwait() Causes a thread to wait for a specified period

of time for a condition variable to be signaled
or broadcast

pthread_cond_wait() Causes a thread to wait for a condition
variable to be signaled or broadcast

pthread_get_expiration_np() Obtains a value representing a desired
expiration time

Table 6. Thread-Specific Data
Routine Description

pthread_getspecific() Obtains the thread-specific data associated
with the specified key

pthread_keycreate() Generates a unique thread-specific data key
value

pthread_setspecific() Sets the thread-specific data associated with
the specified key

Table 7. Threads Cancellation Routines
Routine Description

pthread_cancel() Allows a thread to request termination
pthread_setasynccancel() Enables or disables the current thread’s

asynchronous cancelability
pthread_setcancel() Enables or disables the current thread’s

general cancelability

thr_intro(3thr)

272 IBM DCE for AIX, Version 2.2: Application Development Reference

Table 7. Threads Cancellation Routines (continued)
Routine Description

pthread_signal_to_cancel_np() Cancels a thread if a signal is received by the
process

pthread_testcancel() Requests delivery of a pending cancel

Table 8. Threads Priority and Scheduling Routines
Routine Description

pthread_getprio() Obtains the current priority of a thread
pthread_getscheduler() Obtains the current scheduling policy of a

thread
pthread_setprio() Changes the current priority of a thread
pthread_setscheduler() Changes the current scheduling policy and

priority of a thread

Table 9. Cleanup Routines
Routine Description

pthread_cleanup_pop() Removes a cleanup handler from the stack
pthread_cleanup_push() Establishes a cleanup handler

Table 10. The atfork() Routine
Routine Description

atfork() Arranges for fork cleanup handling

Table 11. Signal Handling Routines
Routine Description

sigaction() Specifies action to take on receipt of signal
sigpending() Examines pending signals
sigprocmask() Sets the current signal mask
sigwait() Causes thread to wait for asynchronous

signal

Table 12. libc_r Routines
Routine Description

ctime_r(), localtime_r(), gmtime_r(), or
asctime_r()

Converts the formats of date and time
representations.

rand_r() Generates pseudorandom numbers.
readdir_r() Performs operations on directories.

thr_intro(3thr)

Chapter 2. DCE Threads 273

datatypes

Purpose

Data types used by DCE Threads

Description

The DCE Threads data types can be divided into two broad categories: primitive
system and application level.

Primitive System Data Types

The first category consists of types that represent structures used by (and internal
to) DCE Threads. These types are defined as being primitive system data types.

v pthread_attr_t

v pthread_cond_t

v pthread_condattr_t

v pthread_key_t

v pthread_mutex_t

v pthread_mutexattr_t

v pthread_once_t

v pthread_t

Although applications must know about these types, passing them in and receiving
them from various DCE Threads routines, the structures themselves are opaque:
they cannot be directly modified by applications, and they can be manipulated only
(and only in some cases) through specific DCE Threads routines. (The
pthread_key_t type is somewhat different from the others in this list, in that it is
essentially a handle to a thread-private block of memory requested by a call to
pthread_keycreate() .)

Application Level Data Types

The second category of DCE Threads data consists of types used to describe
objects that originate in the application:

v pthread_addr_t

v pthread_destructor_t

v pthread_initroutine_t

v pthread_startroutine_t

v sigset_t

All of the above types, with the exception of the last, are various kinds of memory
addresses that must be passed by callers of certain DCE Threads routines. These
types are extensions to POSIX. They permit DCE Threads to be used on platforms
that are not fully ANSI C compliant. While being extensions to permit the use of
compilers that are not ANSI C compatible, they are fully portable data types.

The last data type, sigset_t , exhibits properties of both primitive system and
application level data types. While objects of this type originate in the application,
the data type is opaque. A set of functions is provided to manipulate objects of this
type.

274 IBM DCE for AIX, Version 2.2: Application Development Reference

For further information, see the following descriptions, listed in sorted order.

Data Type Descriptions

Following are individual descriptions of each of the DCE Threads data types. The
descriptions include the routines where the data type is modified, such as, created,
changed or deleted/destroyed, but not the routines referencing or using them that
do not change them.

v pthread_addr_t

A miscellaneous data type representing an address value that must be passed by
the caller of various threads routines. Usually the pthread_addr_t value is the
address of an area which contains various parameters to be made accessible to
an implicitly called routine. For example, when the pthread_create() routine is
called, one of the parameters passed is a pthread_addr_t value that contains an
address which will be passed to the start_routine which the thread is being
created to execute; presumably the routine will extract necessary parameters
from the area referenced by this address.

v pthread_attr_t

Threads attribute object, used to specify the attributes of a thread when it is
created by a call to pthread_create() . The object is created by a call to
pthread_attr_create() , then modified as desired by calls to

– pthread_attr_setinheritsched()

– pthread_attr_setprio()

– pthread_attr_setsched()

– pthread_attr_setstacksize()

(Note that there are _get versions of these four calls, which can be used to
retrieve the respective values.)

v pthread_cond_t

Data type representing a threads condition variable. The variable is created by a
call to pthread_cond_init() , and destroyed by a call to
pthread_cond_destroy() .

v pthread_condattr_t

Data type representing a threads condition variable attributes object. Created by
a call to pthread_condattr_create() . The range of possible modifications to a
condition variable attributes object is not great: creation (via
pthread_condattr_create()) and deletion (via pthread_condattr_delete()) are
all. The object is created with default values.

v pthread_destructor_t

Data type, passed in a call to pthread_keycreate() , representing the address of
a procedure to be called to destroy a data value associated with a unique
thread-specific data key value when the thread terminates.

v pthread_initroutine_t

Data type representing the address of a procedure that performs a one-time
initialization for a thread. It is passed in a call to pthread_once() . The
pthread_once() routine, when called, executes the initialization routine. The
specified routine is guaranteed to be executed only once, even though the
pthread_once() call occurs in multithreaded code.

v pthread_key_t

Data type representing a thread-specific data key, created by a call to
pthread_keycreate() . The key is an address of memory. Associating a static

datatypes(3thr)

Chapter 2. DCE Threads 275

block of memory with a specific thread in this way is an alternative to using stack
memory for the thread. The key is destroyed by the application-supplied
procedure specified by the routine specified using the pthread_destructor_t
data type in the call to pthread_keycreate() .

v pthread_mutex_t

Data type representing a mutex object. It is created by a call to
pthread_mutex_init() and destroyed by a call to pthread_mutex_destroy() .
Care should be taken not to attempt to destroy a locked object.

v pthread_mutexattr_t

Data type representing an attributes object which defines the characteristics of a
mutex. Created by a call to pthread_mutexattr_create() ; modified by calls to
pthread_mutexattr_setkind_np() (which allows you to specify fast, recursive, or
nonrecursive mutexes); passed to pthread_mutex_init() to create the mutex with
the specified atttributes. The only other modification allowed is to destroy the
mutex attributes object, with pthread_mutexattr_delete() .

v pthread_once_t

A data structure that defines the characteristics of the one-time initialization
routine executed by calling pthread_once() . The structure is opaque to the
application, and cannot be modified by it, but it must be explicitly declared by the
client code, and initialized by a call to pthread_once_init() . The pthread_once_t
type must not be an array.

v pthread_startroutine_t

Data type representing the address of the application routine or other routine,
whatever it is, that a new thread is created to execute as its start routine.

v pthread_t

Data type representing a thread handle, created by a call to pthread_create() .
The thread handle is used thenceforth to identify the thread to calls such as
pthread_cancel() , pthread_detach() , pthread_equal() (to which two handles
are passed for comparison).

v sigset_t

Data type representing a set of signals. It is always an integral or structure type.
If a structure, it is intended to be a simple structure, such as, a set of arrays as
opposed to a set of pointers. It is opaque in that a set of functions called the
sigsetops primitives is provided to manipulate signal sets. They operate on
signal set data objects addressable by the application, not on any objects known
to the system.

The primitives are sigemptyset() and sigfillset() which initialize the set as either
empty or full, sigaddset() and sigdelset() which add or delete signals from the
set, and sigismember() which permits the application to check if a object (signal)
of type sigset_t is a member of the signal set. Applications must call at least one
of the initialization primitives at least once for each object of type sigset_t prior
to any other use of that object (signal set).

The object, or objects, represented by this data type when used by sigaction() is
(are) used in conjunction with a sigaction structure by the sigaction function to
describe an action to be taken with (a) specified sigset_t -type objects.

datatypes(3thr)

276 IBM DCE for AIX, Version 2.2: Application Development Reference

atfork

Purpose

Arranges for fork cleanup handling

Synopsis
#include <pthread.h>

void atfork(
void (*user_state)()
void (*pre_fork)()
void (*parent_fork)()
void (*child_fork)());

Parameters
user_state

Pointer to the user state that is passed to each routine.

pre_fork
Routine to be called before performing the fork.

parent_fork
Routine to be called in the parent after the fork.

child_fork
Routine to be called in the child after the fork.

Description

The atfork() routine allows you to register three routines to be executed at different
times relative to a fork. The different times and/or places are as follows:

v Just prior to the fork in the parent process.

v Just after the fork in the parent process.

v Just after the fork in the created (child) process.

Use these routines to clean up just prior to fork (), to set up after fork (), and to
perform locking relative to fork (). You are allowed to provide one parameter to be
used in conjunction with all the routines. This parameter must be user_state.

Return Values

The atfork () routine does not return a value. Instead, an exception is raised if there
is insufficient table space to record the handler addresses.

Related Information

Functions: fork(2) .

Chapter 2. DCE Threads 277

exceptions

Purpose

Exception handling in DCE Threads

Description

DCE Threads provides the following two ways to obtain information about the status
of a threads routine:

v The routine returns a status value to the thread.

v The routine raises an exception.

Before you write a multithreaded program, you must choose only one of the
preceding two methods of receiving status. These two methods cannot be used
together in the same code module.

The POSIX P1003.4a (pthreads) draft standard specifies that errors be reported to
the thread by setting the external variable errno to an error code and returning a
function value of −1. The threads reference pages document this status
value-returning interface. However, an alternative to status values is provided by
DCE Threads in the exception-returning interface.

Access to exceptions from the C language is defined by the macros in the
exc_handling.h file. The exc_handling.h header file is included automatically
when you include pthread_exc.h.

To use the exception-returning interface, replace #include <pthread.h> with the
following include statement:
#include <dce/pthread_exc.h>

The following example shows the syntax for handling exceptions:
TRY
try_block

[CATCH (exception_name)
handler_block]...

[CATCH_ALL
handler_block]

ENDTRY

278 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_attr_create

Purpose

Creates a thread attributes object

Synopsis
#include <pthread.h>

int pthread_attr_create(
pthread_attr_t *attr);

Parameters
attr Thread attributes object created.

Description

The pthread_attr_create() routine creates a thread attributes object that is used to
specify the attributes of threads when they are created. The attributes object
created by this routine is used in calls to pthread_create() .

The individual attributes (internal fields) of the attributes object are set to default
values. (The default values of each attribute are discussed in the descriptions of the
following services.) Use the following routines to change the individual attributes:

v pthread_attr_setinheritsched()

v pthread_attr_setprio()

v pthread_attr_setsched()

v pthread_attr_setstacksize()

When an attributes object is used to create a thread, the values of the individual
attributes determine the characteristics of the new thread. Attributes objects perform
in a manner similar to additional parameters. Changing individual attributes does
not affect any threads that were previously created using the attributes object.

Return Values

If the function fails, -1 is returned and errno may be set to one of the following
values:

Return Error Description

−1 [ENOMEM] Insufficient memory exists to create the thread
attributes object.

−1 [EINVAL] The value specified by attr is invalid.

Related Information

Functions: pthread_attr_delete(3thr) , pthread_attr_setinheritsched(3thr) ,
pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr) ,
pthread_attr_setstacksize(3thr) , pthread_create(3thr) .

Chapter 2. DCE Threads 279

pthread_attr_delete

Purpose

Deletes a thread attributes object

Synopsis
#include <pthread.h>

int pthread_attr_delete(
pthread_attr_t *attr);

Parameters
attr Thread attributes object deleted.

Description

The pthread_attr_delete() routine deletes a thread attributes object and gives
permission to reclaim storage for the thread attributes object. Threads that were
created using this thread attributes object are not affected by the deletion of the
thread attributes object.

The results of calling this routine are unpredictable if the value specified by the attr
parameter refers to a thread attributes object that does not exist.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is

invalid.

Related Information

Functions: pthread_attr_create(3thr) .

280 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_attr_getinheritsched

Purpose

Obtains the inherit scheduling attribute

Synopsis
#include <pthread.h>

int pthread_attr_getinheritsched(
pthread_attr_t attr);

Parameters
attr Thread attributes object whose inherit scheduling attribute is obtained.

Description

The pthread_attr_getinheritsched() routine obtains the value of the inherit
scheduling attribute in the specified thread attributes object. The inherit scheduling
attribute specifies whether threads created using the attributes object inherit the
scheduling attributes of the creating thread, or use the scheduling attributes stored
in the attributes object that is passed to pthread_create() .

The default value of the inherit scheduling attribute is
PTHREAD_INHERIT_SCHED.

Return Values

On successful completion, this routine returns the inherit scheduling attribute value.

If the function fails, errno may be set to one of the following values:

Return Error Description

Inherit scheduling attribute Successful completion.
−1 [EINVAL] The value specified by attr is

invalid.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_setinheritsched(3thr) ,
pthread_create(3thr) .

Chapter 2. DCE Threads 281

pthread_attr_getprio

Purpose

Obtains the scheduling priority attribute

Synopsis
#include <pthread.h>

int pthread_attr_getprio(
pthread_attr_t attr);

Parameters
attr Thread attributes object whose priority attribute is obtained.

Description

The pthread_attr_getprio() routine obtains the value of the scheduling priority of
threads created using the thread attributes object specified by the attr parameter.

Return Values

On successful completion, this routine returns the scheduling priority attribute value.

If the function fails, errno may be set to one of the following values:

Return Error Description

Scheduling priority attribute Successful completion.
−1 [EINVAL] The value specified by attr is

invalid.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_setprio(3thr) ,
pthread_create(3thr) .

282 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_attr_getsched

Purpose

Obtains the value of the scheduling policy attribute

Synopsis
#include <pthread.h>

int pthread_attr_getsched(
pthread_attr_t attr);

Parameters
attr Thread attributes object whose scheduling policy attribute is obtained.

Description

The pthread_attr_getsched() routine obtains the scheduling policy of threads
created using the thread attributes object specified by the attr parameter. The
default value of the scheduling attribute is SCHED_OTHER.

Return Values

On successful completion, this routine returns the value of the scheduling policy
attribute.

If the function fails, errno may be set to one of the following values:

Return Error Description

Scheduling policy attribute Successful completion.
−1 [EINVAL] The value specified by attr is

invalid.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_setsched(3thr) ,
pthread_create(3thr) .

Chapter 2. DCE Threads 283

pthread_attr_getstacksize

Purpose

Obtains the value of the stacksize attribute

Synopsis
#include <pthread.h>

long pthread_attr_getstacksize(
pthread_attr_t attr);

Parameters
attr Thread attributes object whose stacksize attribute is obtained.

Description

The pthread_attr_getstacksize() routine obtains the minimum size (in bytes) of the
stack for a thread created using the thread attributes object specified by the attr
parameter.

Return Values

On successful completion, this routine returns the stacksize attribute value.

If the function fails, errno may be set to one of the following values:

Return Error Description

Stacksize attribute Successful completion.
−1 [EINVAL] The value specified by attr is invalid.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_setstacksize(3thr) ,
pthread_create(3thr) .

284 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_attr_setinheritsched

Purpose

Changes the inherit scheduling attribute

Synopsis
#include <pthread.h>

int pthread_attr_setinheritsched(
pthread_attr_t attr
int inherit);

Parameters
attr Thread attributes object to be modified.

inherit New value for the inherit scheduling attribute. Valid values are as follows:

PTHREAD_INHERIT_SCHED
This is the default value. The created thread inherits the current
priority and scheduling policy of the thread calling
pthread_create() .

PTHREAD_DEFAULT_SCHED
The created thread starts execution with the priority and scheduling
policy stored in the thread attributes object.

Description

The pthread_attr_setinheritsched() routine changes the inherit scheduling
attribute of thread creation. The inherit scheduling attribute specifies whether
threads created using the specified thread attributes object inherit the scheduling
attributes of the creating thread, or use the scheduling attributes stored in the
thread attributes object that is passed to pthread_create() .

The first thread in an application that is not created by an explicit call to
pthread_create() has a scheduling policy of SCHED_OTHER. (See the
pthread_attr_setprio() and pthread_attr_setsched() routines for more information
on valid priority values and valid scheduling policy values, respectively.)

Inheriting scheduling attributes (instead of using the scheduling attributes stored in
the attributes object) is useful when a thread is creating several helper
threads—threads that are intended to work closely with the creating thread to
cooperatively solve the same problem. For example, inherited scheduling attributes
ensure that helper threads created in a sort routine execute with the same priority
as the calling thread.

Return Values

If the function fails, -1 is returned, and errno may be set to one of the following
values:

Chapter 2. DCE Threads 285

Return Error Description

−1 [EINVAL] The value specified by attr is
invalid.

−1 [EINVAL] The value specified by inherit
is invalid.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_getinheritsched(3thr) ,
pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr) , pthread_create(3thr) .

pthread_attr_setinheritsched(3thr)

286 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_attr_setprio

Purpose

Changes the scheduling priority attribute of thread creation

Synopsis
#include <pthread.h>

int pthread_attr_setprio(
pthread_attr_t *attr
int priority);

Parameters
attr Thread attributes object modified.

priority New value for the priority attribute. The priority attribute depends on
scheduling policy. Valid values fall within one of the following ranges:

v PRI_OTHER_MIN <= priority <= PRI_OTHER_MAX (use with the
SCHED_OTHER policy)

v PRI_FIFO_MIN <= priority <= PRI_FIFO_MAX (use with the
SCHED_FIFO policy)

v PRI_RR_MIN <= priority <= PRI_RR_MAX (use with the SCHED_RR
policy)

v PRI_FG_MIN_NP <= priority <= PRI_FG_MAX_NP (use with the
SCHED_FG_NP policy)

v PRI_BG_MIN_NP <= priority <= PRI_BG_MAX_NP (use with the
SCHED_BG_NP policy)

The default priority is the midpoint between PRI_OTHER_MIN and
PRI_OTHER_MAX. To specify a minimum or maximum priority, use the appropriate
symbol; for example, PRI_FIFO_MIN or PRI_FIFO_MAX. To specify a value
between the minimum and maximum, use an appropriate arithmetic expression. For
example, to specify a priority midway between the minimum and maximum for the
Round Robin scheduling policy, specify the following concept using your
programming language’s syntax:
pri_rr_mid = (PRI_RR_MIN + PRI_RR_MAX + 1)/2

If your expression results in a value outside the range of minimum to maximum, an
error results when you attempt to use it.

Description

The pthread_attr_setprio() routine sets the execution priority of threads that are
created using the attributes object specified by the attr parameter.

By default, a created thread inherits the priority of the thread calling
pthread_create() . To specify a priority using this routine, scheduling inheritance
must be disabled at the time the thread is created. Before calling this routine and
pthread_create() , call pthread_attr_setinheritsched() and specify the value
PTHREAD_DEFAULT_SCHED for the inherit parameter.

Chapter 2. DCE Threads 287

An application specifies priority only to express the urgency of executing the thread
relative to other threads. Priority is not used to control mutual exclusion when
accessing shared data.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.
−1 [ERANGE] One or more parameters supplied have an invalid value.
−1 [EPERM] The caller does not have the appropriate privileges to set

the priority of the specified thread.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_getprio(3thr) ,
pthread_attr_setinheritsched(3thr) , pthread_create(3thr) .

pthread_attr_setprio(3thr)

288 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_attr_setsched

Purpose

Changes the scheduling policy attribute of thread creation

Synopsis
#include <pthread.h>

int pthread_attr_setsched(
pthread_attr_t *attr
int scheduler);

Parameters
attr The thread attributes object modified.

scheduler
The new value for the scheduling policy attribute. Valid values are as
follows:

SCHED_FIFO
First In, First Out—The highest-priority thread runs until it blocks. If
there is more than one thread with the same priority, and that
priority is the highest among other threads, the first thread to begin
running continues until it blocks.

SCHED_RR
Round Robin—The highest-priority thread runs until it blocks;
however, threads of equal priority, if that priority is the highest
among other threads, are timesliced. Timeslicing is a process in
which threads alternate making use of available processors.

SCHED_OTHER
Default—All threads are timesliced. SCHED_OTHER ensures that
all threads, regardless of priority, receive some scheduling so that
no thread is completely denied execution time. (However,
SCHED_OTHER threads can be denied execution time by
SCHED_FIFO or SCHED_RR threads.)

SCHED_FG_NP
Foreground—Same as SCHED_OTHER. Threads are timesliced
and priorities can be modified dynamically by the scheduler to
ensure fairness.

SCHED_BG_NP
Background—Ensures that all threads, regardless of priority, receive
some scheduling. However, SCHED_BG_NP can be denied
execution by SCHED_FIFO or SCHED_RR threads.

Description

The pthread_attr_setsched() routine sets the scheduling policy of a thread that is
created by using the attributes object specified by the attr parameter. The default
value of the scheduling attribute is SCHED_OTHER.

Chapter 2. DCE Threads 289

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.
−1 [EINVAL] The value specified by scheduler is invalid.
−1 [EPERM] The caller does not have the appropriate privileges to set the

scheduling policy attribute in the specified threads attribute
object.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_getsched(3thr) ,
pthread_attr_setinheritsched(3thr) , pthread_create(3thr) .

pthread_attr_setsched(3thr)

290 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_attr_setstacksize

Purpose

Changes the stacksize attribute of thread creation

Synopsis
#include <pthread.h>

int pthread_attr_setstacksize(
pthread_attr_t *attr
long stacksize);

Parameters
attr Thread attributes object modified.

stacksize
New value for the stacksize attribute. The stacksize parameter specifies the
minimum size (in bytes) of the stack needed for a thread.

Description

The pthread_attr_setstacksize() routine sets the minimum size (in bytes) of the
stack needed for a thread created using the attributes object specified by the attr
parameter. Use this routine to adjust the size of the writable area of the stack. The
default value of the stacksize attribute is machine specific.

A thread’s stack is fixed at the time of thread creation. Only the main or initial
thread can dynamically extend its stack.

Most compilers do not check for stack overflow. Ensure that your thread stack is
large enough for anything that you call from the thread.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.
−1 [EINVAL] The value specified by stacksize is

invalid.

Related Information

Functions: pthread_attr_create(3thr) , pthread_attr_getstacksize(3thr) ,
pthread_create(3thr) .

Chapter 2. DCE Threads 291

pthread_cancel

Purpose

Allows a thread to request that it or another thread terminate execution

Synopsis
#include <pthread.h>

int pthread_cancel(
pthread_t thread);

Parameters
thread Thread that receives a cancel request.

Description

The pthread_cancel() routine sends a cancel to the specified thread. A cancel is a
mechanism by which a calling thread informs either itself or the called thread to
terminate as quickly as possible. Issuing a cancel does not guarantee that the
canceled thread receives or handles the cancel. The canceled thread can delay
processing the cancel after receiving it. For instance, if a cancel arrives during an
important operation, the canceled thread can continue if what it is doing cannot be
interrupted at the point where the cancel is requested.

Because of communications delays, the calling thread can only rely on the fact that
a cancel eventually becomes pending in the designated thread (provided that the
thread does not terminate beforehand). Furthermore, the calling thread has no
guarantee that a pending cancel is to be delivered because delivery is controlled by
the designated thread.

Termination processing when a cancel is delivered to a thread is similar to
pthread_exit() . Outstanding cleanup routines are executed in the context of the
target thread, and a status of −1 is made available to any threads joining with the
target thread.

This routine is preferred in implementing Ada’s abort statement and any other
language (or software-defined construct) for requesting thread cancellation.

The results of this routine are unpredictable if the value specified in thread refers to
a thread that does not currently exist.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The specified thread is invalid.
−1 [ERSCH] The specified thread does not refer to a currently

existing thread.

292 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: pthread_exit(3thr) , pthread_join(3thr) , pthread_setasynccancel(3thr) ,
pthread_setcancel(3thr) , pthread_testcancel(3thr) .

pthread_cancel(3thr)

Chapter 2. DCE Threads 293

pthread_cleanup_pop

Purpose

Removes the cleanup handler at the top of the cleanup stack and optionally
executes it

Synopsis
#include <pthread.h>

void pthread_cleanup_pop(
int execute);

Parameters
execute

Integer that specifies whether the cleanup routine that is popped should be
executed or just discarded. If the value is nonzero, the cleanup routine is
executed.

Description

The pthread_cleanup_pop() routine removes the routine specified in
pthread_cleanup_push() from the top of the calling thread’s cleanup stack and
executes it if the value specified in execute is nonzero.

This routine and pthread_cleanup_push() are implemented as macros and must
be displayed as statements and in pairs within the same lexical scope. You can
think of the pthread_cleanup_push() macro as expanding to a string whose first
character is a { (left brace) and pthread_cleanup_pop as expanding to a string
containing the corresponding } (right brace).

Return Values

This routine must be used as a statement.

Related Information

Functions: pthread_cleanup_push(3thr) .

294 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_cleanup_push

Purpose

Establishes a cleanup handler

Synopsis
#include <pthread.h>

void pthread_cleanup_push(
void routine
pthread_addr_t arg);

Parameters
routine

Routine executed as the cleanup handler.

arg Parameter executed with the cleanup routine.

Description

The pthread_cleanup_push() routine pushes the specified routine onto the calling
thread’s cleanup stack. The cleanup routine is popped from the stack and executed
with the arg parameter when any of the following actions occur:

v The thread calls pthread_exit() .

v The thread is canceled.

v The thread calls pthread_cleanup_pop() and specifies a nonzero value for the
execute parameter.

This routine and pthread_cleanup_pop() are implemented as macros and must be
displayed as statements and in pairs within the same lexical scope. You can think of
the pthread_cleanup_push() macro as expanding to a string whose first character
is a { (left brace) and pthread_cleanup_pop() as expanding to a string containing
the corresponding } (right brace).

Return Values

This routine must be used as a statement.

Related Information

Functions: pthread_cancel(3thr) , pthread_cleanup_pop(3thr) , pthread_exit(3thr) ,
pthread_testcancel(3thr) .

Chapter 2. DCE Threads 295

pthread_cond_broadcast

Purpose

Wakes all threads that are waiting on a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_broadcast(
pthread_cond_t *cond);

Parameters
cond Condition variable broadcast.

Description

The pthread_cond_broadcast() routine wakes all threads waiting on a condition
variable. Calling this routine implies that data guarded by the associated mutex has
changed so that it might be possible for one or more waiting threads to proceed. If
any one waiting thread might be able to proceed, call pthread_cond_signal() .

Call this routine when the associated mutex is either locked or unlocked.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by cond is invalid.

Related Information

Functions: pthread_cond_destroy(3thr) , pthread_cond_init(3thr) ,
pthread_cond_signal(3thr) , pthread_cond_timedwait(3thr) ,
pthread_cond_wait(3thr) .

296 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_cond_destroy

Purpose

Deletes a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_destroy(
pthread_cond_t *cond);

Parameters
cond Condition variable deleted.

Description

The pthread_cond_destroy() routine deletes a condition variable. Call this routine
when a condition variable is no longer referenced. The effect of calling this routine
is to give permission to reclaim storage for the condition variable.

The results of this routine are unpredictable if the condition variable specified in
cond does not exist.

The results of this routine are also unpredictable if there are threads waiting for the
specified condition variable to be signaled or broadcast when it is deleted.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by cond is invalid.
−1 [EBUSY] A thread is currently executing a pthread_cond_timedwait()

routine or pthread_cond_wait() on the condition variable
specified in cond.

Related Information

Functions: pthread_cond_broadcast(3thr) , pthread_cond_init(3thr) ,
pthread_cond_signal(3thr) , pthread_cond_timedwait(3thr) ,
pthread_cond_wait(3thr) .

Chapter 2. DCE Threads 297

pthread_cond_init

Purpose

Creates a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_init(
pthread_cond_t *cond
pthread_condattr_t attr);

Parameters
cond Condition variable that is created.

attr Condition variable attributes object that defines the characteristics of the
condition variable created. If you specify pthread_condattr_default , default
attributes are used.

Description

The pthread_cond_init() routine creates and initializes a condition variable. A
condition variable is a synchronization object used in conjunction with a mutex. A
mutex controls access to shared data; a condition variable allows threads to wait for
that data to enter a defined state. The state is defined by a Boolean expression
called a predicate.

A condition variable is signaled or broadcast to indicate that a predicate might have
become true. The broadcast operation indicates that all waiting threads need to
resume and reevaluate the predicate. The signal operation is used when any one
waiting thread can continue.

If a thread that holds a mutex determines that the shared data is not in the correct
state for it to proceed (the associated predicate is not true), it waits on a condition
variable associated with the desired state. Waiting on the condition variable
automatically releases the mutex so that other threads can modify or examine the
shared data. When a thread modifies the state of the shared data so that a
predicate might be true, it signals or broadcasts on the appropriate condition
variable so that threads waiting for that predicate can continue.

It is important that all threads waiting on a particular condition variable at any time
hold the same mutex. If they do not, the behavior of the wait operation is
unpredictable (an implementation can use the mutex to control internal access to
the condition variable object). However, it is legal for a client to store condition
variables and mutexes and later reuse them in different combinations. The client
must ensure that no threads use the condition variable with the old mutex. At any
time, an arbitrary number of condition variables can be associated with a single
mutex, each representing a different predicate of the shared data protected by that
mutex.

Condition variables are not owned by a particular thread. Any associated storage is
not automatically deallocated when the creating thread terminates.

298 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EAGAIN] The system lacks the necessary resources to

initialize another condition variable.
−1 [EINVAL] Invalid attributes object.
−1 [ENOMEM] Insufficient memory exists to initialize the

condition variable.

Related Information

Functions: pthread_cond_broadcast(3thr) , pthread_cond_destroy(3thr) ,
pthread_cond_signal(3thr) , pthread_cond_timedwait(3thr) ,
pthread_cond_wait(3thr) .

pthread_cond_init(3thr)

Chapter 2. DCE Threads 299

pthread_cond_signal

Purpose

Wakes one thread that is waiting on a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_signal(
pthread_cond_t *cond);

Parameters
cond Condition variable signaled.

Description

The pthread_cond_signal() routine wakes one thread waiting on a condition
variable. Calling this routine implies that data guarded by the associated mutex has
changed so that it is possible for a single waiting thread to proceed. Call this routine
when any thread waiting on the specified condition variable might find its predicate
true, but only one thread needs to proceed.

The scheduling policy determines which thread is awakened. For policies
SCHED_FIFO and SCHED_RR a blocked thread is chosen in priority order.

Call this routine when the associated mutex is either locked or unlocked.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by cond is invalid.

Related Information

Functions: pthread_cond_broadcast(3thr) , pthread_cond_destroy(3thr) ,
pthread_cond_init(3thr) , pthread_cond_timedwait(3thr) ,
pthread_cond_wait(3thr) .

300 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_cond_timedwait

Purpose

Causes a thread to wait for a condition variable to be signaled or broadcast

Synopsis
#include <pthread.h>

int pthread_cond_timedwait(
pthread_cond_t *cond
pthread_mutex_t *mutex
struct timespec *abstime);

Parameters
cond Condition variable waited on.

mutex Mutex associated with the condition variable specified in cond.

abstime
Absolute time at which the wait expires, if the condition has not been
signaled or broadcast. (See the pthread_get_expiration_np() routine,
which you can use to obtain a value for this parameter.)

Description

The pthread_cond_timedwait() routine causes a thread to wait until one of the
following occurs:

v The specified condition variable is signaled or broadcast.

v The current system clock time is greater than or equal to the time specified by
the abstime parameter.

This routine is identical to pthread_cond_wait() except that this routine can return
before a condition variable is signaled or broadcast—specifically, when a specified
time expires.

If the current time equals or exceeds the expiration time, this routine returns
immediately, without causing the current thread to wait.

Call this routine after you lock the mutex specified in mutex. The results of this
routine are unpredictable if this routine is called without first locking the mutex.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by cond, mutex, or abstime

is invalid.
−1 [EAGAIN] The time specified by abstime expired.
−1 [EDEADLK] A deadlock condition is detected.

Chapter 2. DCE Threads 301

Related Information

Functions: pthread_cond_broadcast(3thr) , pthread_cond_destroy(3thr) ,
pthread_cond_init(3thr) , pthread_cond_signal(3thr) , pthread_cond_wait(3thr) ,
pthread_get_expiration_np(3thr) .

pthread_cond_timedwait(3thr)

302 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_cond_wait

Purpose

Causes a thread to wait for a condition variable to be signaled or broadcast

Synopsis
#include <pthread.h>

int pthread_cond_wait(
pthread_cond_t *cond
pthread_mutex_t *mutex);

Parameters
cond Condition variable waited on.

mutex Mutex associated with the condition variable specified in cond.

Description

The pthread_cond_wait() routine causes a thread to wait for a condition variable to
be signaled or broadcast. Each condition corresponds to one or more predicates
based on shared data. The calling thread waits for the data to reach a particular
state (for the predicate to become true).

Call this routine after you have locked the mutex specified in mutex. The results of
this routine are unpredictable if this routine is called without first locking the mutex.

This routine automatically releases the mutex and causes the calling thread to wait
on the condition. If the wait is satisfied as a result of some thread calling
pthread_cond_signal() or pthread_cond_broadcast() , the mutex is reacquired
and the routine returns.

A thread that changes the state of storage protected by the mutex in such a way
that a predicate associated with a condition variable might now be true must call
either pthread_cond_signal() or pthread_cond_broadcast() for that condition
variable. If neither call is made, any thread waiting on the condition variable
continues to wait.

This routine might (with low probability) return when the condition variable has not
been signaled or broadcast. When a spurious wakeup occurs, the mutex is
reacquired before the routine returns. (To handle this type of situation, enclose this
routine in a loop that checks the predicate.)

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by cond or mutex is

invalid.
−1 [EDEADLK] A deadlock condition is detected.

Chapter 2. DCE Threads 303

Related Information

Functions: pthread_cond_broadcast(3thr) , pthread_cond_destroy(3thr) ,
pthread_cond_init(3thr) , pthread_cond_signal(3thr) ,
pthread_cond_timedwait(3thr) .

pthread_cond_wait(3thr)

304 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_condattr_create

Purpose

Creates a condition variable attributes object

Synopsis
#include <pthread.h>

int pthread_condattr_create(
pthread_condattr_t *attr);

Parameters
attr Condition variable attributes object that is created.

Description

The pthread_condattr_create() routine creates a condition variable attributes
object that is used to specify the attributes of condition variables when they are
created. The condition variable attributes object is initialized with the default value
for all of the attributes defined by a given implementation.

When a condition variable attributes object is used to create a condition variable,
the values of the individual attributes determine the characteristics of the new
object. Attributes objects act like additional parameters to object creation. Changing
individual attributes does not affect objects that were previously created using the
attributes object.

Return Values

The created condition variable attributes object is returned to the attr parameter.

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.
−1 [ENOMEM] Insufficient memory exists to create the condition

variable attributes object.

Related Information

Functions: pthread_cond_init(3thr) , pthread_condattr_delete(3thr) .

Chapter 2. DCE Threads 305

pthread_condattr_delete

Purpose

Deletes a condition variable attributes object

Synopsis
#include <pthread.h>

int pthread_condattr_delete(
pthread_condattr_t *attr);

Parameters
attr Condition variable attributes object deleted.

Description

The pthread_condattr_delete() routine deletes a condition variable attributes
object. Call this routine when a condition variable attributes object created by
pthread_condattr_create() is no longer referenced.

This routine gives permission to reclaim storage for the condition variable attributes
object. Condition variables that are created using this attributes object are not
affected by the deletion of the condition variable attributes object.

The results of calling this routine are unpredictable if the handle specified by the attr
parameter refers to an attributes object that does not exist.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.

Related Information

Functions: pthread_condattr_create(3thr) .

306 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_create

Purpose

Creates a thread object and thread

Synopsis
#include <pthread.h>

int pthread_create(
pthread_t *thread
pthread_attr_t attr
pthread_startroutine_t start_routine
pthread_addr_t arg);

Parameters
thread Handle to the thread object created.

attr Thread attributes object that defines the characteristics of the thread being
created. If you specify pthread_attr_default , default attributes are used.

start_routine
Function executed as the new thread’s start routine.

arg Address value copied and passed to the thread’s start routine.

Description

The pthread_create() routine creates a thread object and a thread. A thread is a
single, sequential flow of control within a program. It is the active execution of a
designated routine, including any nested routine invocations. A thread object defines
and controls the executing thread.

Creating a Thread

Calling this routine sets into motion the following actions:

v An internal thread object is created to describe the thread.

v The associated executable thread is created with attributes specified by the attr
parameter (or with default attributes if pthread_attr_default is specified).

v The thread parameter receives the new thread.

v The start_routine function is called. This may occur before this routine returns
successfully.

Thread Execution

The thread is created in the ready state and therefore might immediately begin
executing the function specified by the start_routine parameter. The newly created
thread begins running before pthread_create() completes if the new thread follows
the SCHED_RR or SCHED_FIFO scheduling policy or has a priority higher than the
creating thread, or both. Otherwise, the new thread begins running at its turn, which
with sufficient processors might also be before pthread_create() returns.

The start_routine parameter is passed a copy of the arg parameter. The value of
the arg parameter is unspecified.

Chapter 2. DCE Threads 307

The thread object exists until the pthread_detach() routine is called or the thread
terminates, whichever occurs last.

The synchronization between the caller of pthread_create() and the newly created
thread is through the use of the pthread_join() routine (or any other mutexes or
condition variables they agree to use).

Terminating a Thread

A thread terminates when one of the following events occurs:

v The thread returns from its start routine.

v The thread exits (within a routine) as the result of calling the pthread_exit()
routine.

v The thread is canceled.

When a Thread Terminates

The following actions are performed when a thread terminates:

v If the thread terminates by returning from its start routine or calling
pthread_exit() , the return value is copied into the thread object. If the start
routine returns normally and the start routine is a procedure that does not return
a value, then the result obtained by pthread_join() is unpredictable. If the thread
has been cancelled, a return value of −1 is copied into the thread object. The
return value can be retrieved by other threads by calling the pthread_join()
routine.

v A destructor for each thread-specific data point is removed from the list of
destructors for this thread and then is called. This step destroys all the
thread-specific data associated with the current thread.

v Each cleanup handler that has been declared by pthread_cleanup_push() and
not yet removed by pthread_cleanup_pop() is called. The most recently pushed
handler is called first.

v A flag is set in the thread object indicating that the thread has terminated. This
flag must be set in order for callers of pthread_join() to return from the call.

v A broadcast is made so that all threads currently waiting in a call to
pthread_join() can return from the call.

v The thread object is marked to indicate that it is no longer needed by the thread
itself. A check is made to determine if the thread object is no longer needed by
other threads; that is, if pthread_detach() has been called. If that routine is
called, then the thread object is deallocated.

Return Values

Upon successful completion, this routine stores the identifier of the created thread
at thread and returns 0. Otherwise, a value of -1 is returned and no thread is
created, the contents of thread are undefined, and errno may be set to one of the
following values:

Return Error Description

0 Successful completion.
−1 [EAGAIN] The system lacks the necessary resources to

create another thread.
−1 [ENOMEM] Insufficient memory exists to create the thread

object. This is not a temporary condition.

pthread_create(3thr)

308 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: pthread_attr_create(3thr) , pthread_cancel(3thr) ,
pthread_detach(3thr) , pthread_exit(3thr) , pthread_join(3thr) .

pthread_create(3thr)

Chapter 2. DCE Threads 309

pthread_delay_np

Purpose

Causes a thread to wait for a specified period

Synopsis
#include <pthread.h>

int pthread_delay_np(
struct timespec *interval);

Parameters
interval

Number of seconds and nanoseconds that the calling thread waits before
continuing execution. The value specified must be greater than or equal to
0 (zero).

Description

The pthread_delay_np() routine causes a thread to delay execution for a specified
period of elapsed wall clock time. The period of time the thread waits is at least as
long as the number of seconds and nanoseconds specified in the interval
parameter.

Specifying an interval of 0 (zero) seconds and 0 (zero) nanoseconds is allowed and
can result in the thread giving up the processor or delivering a pending cancel.

The struct timespec structure contains two fields, as follows:

v The tv_sec field is an integer number of seconds.

v The tv_nsec field is an integer number of nanoseconds.

This routine is a new primitive.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by interval is invalid.

Related Information

Functions: pthread_yield(3thr) .

310 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_detach

Purpose

Marks a thread object for deletion

Synopsis
#include <pthread.h>

int pthread_detach(
pthread_t *thread);

Parameters
thread Thread object marked for deletion.

Description

The pthread_detach() routine indicates that storage for the specified thread is
reclaimed when the thread terminates. This includes storage for the thread
parameter’s return value. If thread has not terminated when this routine is called,
this routine does not cause it to terminate.

Call this routine when a thread object is no longer referenced. Additionally, call this
routine for every thread that is created to ensure that storage for thread objects
does not accumulate.

You cannot join with a thread after the thread has been detached.

The results of this routine are unpredictable if the value of thread refers to a thread
object that does not exist.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by thread is invalid.
−1 [ESRCH] The value specified by thread does not

refer to an existing thread.

Related Information

Functions: pthread_cancel(3thr) , pthread_create(3thr) , pthread_exit(3thr) ,
pthread_join(3thr) .

Chapter 2. DCE Threads 311

pthread_equal

Purpose

Compares one thread identifier to another thread identifier.

Synopsis
#include <pthread.h>

boolean32 pthread_equal(
pthread_t *thread1
pthread_t *thread2);

Parameters
thread1

The first thread identifier to be compared.

thread2
The second thread identifier to be compared.

Description

This routine compares one thread identifier to another thread identifier. (This routine
does not check whether the objects that correspond to the identifiers currently
exist.) If the identifiers have values indicating that they designate the same object, 1
(true) is returned. If the values do not designate the same object, 0 (false) is
returned.

This routine is implemented as a C macro.

Return Values

Possible return values are as follows:

Return Error Description

0 Values of thread1 and thread2 do not designate
the same object.

1 Values of thread1 and thread2 designate the
same object.

Related Information

Functions: pthread_create(3thr)

312 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_exit

Purpose

Terminates the calling thread

Synopsis
#include <pthread.h>

void pthread_exit(
pthread_addr_t status);

Parameters
status Address value copied and returned to the caller of pthread_join() .

Description

The pthread_exit() routine terminates the calling thread and makes a status value
available to any thread that calls pthread_join() and specifies the terminating
thread.

An implicit call to pthread_exit() is issued when a thread returns from the start
routine that was used to create it. The function’s return value serves as the thread’s
exit status. If the return value is −1, an error exit is forced for the thread instead of
a normal exit. The process exits when the last running thread calls pthread_exit() ,
with an undefined exit status.

Restrictions

The pthread_exit() routine does not work in the main (initial) thread because DCE
Threads relies on information at the base of thread stacks; this information does not
exist in the main thread.

Return Values

No value is returned.

Related Information

Functions: pthread_create(3thr) , pthread_detach(3thr) , pthread_join(3thr) .

Chapter 2. DCE Threads 313

pthread_get_expiration_np

Purpose

Obtains a value representing a desired expiration time

Synopsis
#include <pthread.h>

int pthread_get_expiration_np(
struct timespec *delta
struct timespec *abstime);

Parameters
delta Number of seconds and nanoseconds to add to the current system time.

The result is the time when a timed wait expires.

abstime
Value representing the expiration time.

Description

The pthread_get_expiration_np() routine adds a specified interval to the current
absolute system time and returns a new absolute time. This new absolute time is
used as the expiration time in a call to pthread_cond_timedwait() . This routine is a
new primitive.

The struct timespec structure contains two fields, as follows:

v The tv_sec field is an integer number of seconds.

v The tv_nsec field is an integer number of nanoseconds.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by delta is invalid.

Related Information

Functions: pthread_cond_timedwait(3thr) .

314 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_getprio

Purpose

Obtains the current priority of a thread

Synopsis
#include <pthread.h>

int pthread_getprio(
pthread_t thread);

Parameters
thread Thread whose priority is obtained.

Description

The pthread_getprio() routine obtains the current priority of a thread. The current
priority is different from the initial priority of the thread if the pthread_setprio()
routine is called.

The exact effect of different priority values depends upon the scheduling policy
assigned to the thread.

Return Values

The current priority value of the thread specified in thread is returned. (See the
pthread_setprio() reference page for valid values.)

If the function fails, errno may be set to one of the following values:

Return Error Description

Priority value Successful completion.
−1 [EINVAL] The value specified by thread is invalid.
−1 [ESRCH] The value specified by thread does not refer to

an existing thread.

Related Information

Functions: pthread_attr_setprio(3thr) , pthread_setprio(3thr) ,
pthread_setscheduler(3thr) .

Chapter 2. DCE Threads 315

pthread_getscheduler

Purpose

Obtains the current scheduling policy of a thread

Synopsis
#include <pthread.h>

int pthread_getscheduler(
pthread_t thread);

Parameters
thread Thread whose scheduling policy is obtained.

Description

The pthread_getscheduler() routine obtains the current scheduling policy of a
thread. The current scheduling policy of a thread is different from the initial
scheduling policy if the pthread_setscheduler() routine is called.

Return Values

The current scheduling policy value of the thread specified in thread is returned.
(See the pthread_setscheduler() reference page for valid values.)

If the function fails, errno may be set to one of the following values:

Return Error Description

Current scheduling
policy

Successful completion.

−1 [EINVAL] The value specified by thread is invalid.
−1 [ESRCH] The value specified by thread does not

refer to an existing thread.

Related Information

Functions: pthread_attr_setscheduler(3thr) , pthread_setscheduler(3thr) .

316 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_getspecific

Purpose

Obtains the thread-specific data associated with the specified key

Synopsis
#include <pthread.h>

int pthread_getspecific(
pthread_key_t key
pthread_addr_t *value);

Parameters
key Context key value that identifies the data value obtained. This key value

must be obtained from pthread_keycreate() .

value Address of the current thread-specific data value associated with the
specified key.

Description

The pthread_getspecific() routine obtains the thread-specific data associated with
the specified key for the current thread.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The key value is invalid.

Related Information

Functions: pthread_keycreate(3thr) , pthread_setspecific(3thr) .

Chapter 2. DCE Threads 317

pthread_getunique_np

Purpose

Obtains the sequence number associated with a thread.

Format
#include <pthread.h>

unsigned int pthread_getunique_np(
pthread_t *thread);

Parameters
thread Thread whose priority is obtained.

Usage

The pthread_getunique_np routine returns the sequence number associated with
the thread identifier passed to it.

Error Conditions

The pthread_getunique_np routine returns the sequence number associated with
the thread identifier passed to it.

Comments

Functions: pthread_create(3thr) , pthread_self(3thr) .

318 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_join

Purpose

Causes the calling thread to wait for the termination of a specified thread

Synopsis
#include <pthread.h>

int pthread_join(
pthread_t thread
pthread_addr_t *status);

Parameters
thread Thread whose termination is awaited by the caller of this routine.

status Status value of the terminating thread when that thread calls
pthread_exit() .

Description

The pthread_join() routine causes the calling thread to wait for the termination of a
specified thread. A call to this routine returns after the specified thread has
terminated.

Any number of threads can call this routine. All threads are awakened when the
specified thread terminates.

If the current thread calls this routine to join with itself, an error is returned.

The results of this routine are unpredictable if the value for thread refers to a thread
object that no longer exists.

Return Values

If the thread terminates normally, the exit status is the value that is is optionally
returned from the thread’s start routine.

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by thread is invalid.
−1 [ESRCH] The value specified by thread does not refer to a

currently existing thread.
−1 [EDEADLK] A deadlock is detected.

Related Information

Functions: pthread_create(3thr) , pthread_detach(3thr) , pthread_exit(3thr) .

Chapter 2. DCE Threads 319

pthread_keycreate

Purpose

Generates a unique thread-specific data key value

Synopsis
#include <pthread.h>

int pthread_keycreate(
pthread_key_t *key
void (*destructor) (void *value));

Parameters
key Value of the new thread-specific data key.

destructor
Procedure to be called to destroy a data value associated with the created
key when the thread terminates.

Description

The pthread_keycreate() routine generates a unique thread-specific data key
value. This key value identifies a thread-specific data value, which is an address of
memory generated by the client containing arbitrary data of any size.

Thread-specific data allows client software to associate information with the current
thread.

For example, thread-specific data can be used by a language runtime library that
needs to associate a language-specific thread-private data structure with an
individual thread. The thread-specific data routines also provide a portable means of
implementing the class of storage called thread-private static, which is needed to
support parallel decomposition in the FORTRAN language.

This routine generates and returns a new key value. Each call to this routine within
a process returns a key value that is unique within an application invocation. Calls
to pthread_keycreate() must occur in initialization code guaranteed to execute only
once in each process. The pthread_once() routine provides a way of specifying
such code.

When multiple facilities share access to thread-specific data, the facilities must
agree on the key value that is associated with the context. The key value must be
created only once and needs to be stored in a location known to each facility. (It
may be desirable to encapsulate the creation of a key, and the setting and getting
of context values for that key, within a special facility created for that purpose.)

When a thread terminates, thread-specific data is automatically destroyed. For each
thread-specific data currently associated with the thread, the destructor routine
associated with the key value of that context is called. The order in which
per-thread context destructors are called at thread termination is undefined.

320 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by key is invalid.
−1 [EAGAIN] An attempt was made to allocate a key

when the key namespace is exhausted.
This is not a temporary condition.

−1 [ENOMEM] Insufficient memory exists to create the
key.

Related Information

Functions: pthread_getspecific(3thr) , pthread_setspecific(3thr) .

pthread_keycreate(3thr)

Chapter 2. DCE Threads 321

pthread_lock_global_np

Purpose

Locks the global mutex

Synopsis
#include <pthread.h>

void pthread_lock_global_np();

Description

The pthread_lock_global_np() routine locks the global mutex. If the global mutex
is currently held by another thread when a thread calls this routine, the thread waits
for the global mutex to become available.

The thread that has locked the global mutex becomes its current owner and
remains the owner until the same thread has unlocked it. This routine returns with
the global mutex in the locked state and with the current thread as the global
mutex’s current owner.

Use the global mutex when calling a library package that is not designed to run in a
multithreaded environment. (Unless the documentation for a library function
specifically states that it is compatible with multithreading, assume that it is not
compatible; in other words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that is not known to
be reentrant uses the same lock. This prevents dependencies among threads
calling library functions and those functions calling other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global mutex
can relock it without deadlocking. (The locking thread must call
pthread_unlock_global_np() as many times as it called this routine to allow
another thread to lock the global mutex.)

This routine is a new primitive.

Return Values

No value is returned.

Related Information

Functions: pthread_mutex_lock(3thr) , pthread_mutex_unlock(3thr) ,
pthread_mutexattr_setkind_np(3thr) , pthread_unlock_global_np(3thr) .

322 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_mutex_destroy

Purpose

Deletes a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_destroy(
pthread_mutex_t *mutex);

Parameters
mutex Mutex to be deleted.

Description

The pthread_mutex_destroy() routine deletes a mutex and must be called when a
mutex object is no longer referenced. The effect of calling this routine is to reclaim
storage for the mutex object.

It is illegal to delete a mutex that has a current owner (in other words, is locked).

The results of this routine are unpredictable if the mutex object specified in the
mutex parameter does not currently exist.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EBUSY] An attempt was made to

destroy a mutex that is
locked.

−1 [EINVAL] The value specified by mutex
is invalid.

Related Information

Functions: pthread_mutex_init(3thr) , pthread_mutex_lock(3thr) ,
pthread_mutex_trylock(3thr) , pthread_mutex_unlock(3thr) .

Chapter 2. DCE Threads 323

pthread_mutex_init

Purpose

Creates a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_init(
pthread_mutex_t *mutex
pthread_mutexattr_t attr);

Parameters
mutex Mutex that is created.

attr Attributes object that defines the characteristics of the created mutex. If you
specify pthread_mutexattr_default , default attributes are used.

Description

The pthread_mutex_init() routine creates a mutex and initializes it to the unlocked
state. If the thread that called this routine terminates, the created mutex is not
automatically deallocated, because it is considered shared among multiple threads.

Return Values

If an error condition occurs, this routine returns −1, the mutex is not initialized, the
contents of mutex are undefined, and errno may be set to one of the following
values:

Return Error Description

0 Successful completion.
−1 [EAGAIN] The system lacks the necessary

resources to initialize another mutex.
−1 [EINVAL] The value specified by attr is invalid.
−1 [ENOMEM] Insufficient memory exists to initialize the

mutex.

Related Information

Functions: pthread_mutex_lock(3thr) , pthread_mutex_trylock(3thr) ,
pthread_mutex_unlock(3thr) , pthread_mutexattr_create(3thr) ,
pthread_mutexattr_getkind_np(3thr) , pthread_mutexattr_setkind_np(3thr) .

324 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_mutex_lock

Purpose

Locks an unlocked mutex

Synopsis
#include <pthread.h>

int pthread_mutex_lock(
pthread_mutex_t *mutex);

Parameters
mutex Mutex that is locked.

Description

The pthread_mutex_lock() routine locks a mutex. If the mutex is locked when a
thread calls this routine, the thread waits for the mutex to become available.

The thread that has locked a mutex becomes its current owner and remains the
owner until the same thread has unlocked it. This routine returns with the mutex in
the locked state and with the current thread as the mutex’s current owner.

If you specified a fast mutex in a call to pthread_mutexattr_setkind_np() , a
deadlock can result if the current owner of a mutex calls this routine in an attempt
to lock the mutex a second time. If you specified a recursive mutex in a call to
pthread_mutexattr_setkind_np() , the current owner of a mutex can relock the
same mutex without blocking. If you specify a nonrecursive mutex in a call to
pthread_mutexattr_setkind_np() , an error is returned and the thread does not
block if the current owner of a mutex calls this routine in an attempt to lock the
mutex a second time.

The preemption of a lower-priority thread that locks a mutex possibly results in the
indefinite blocking of higher-priority threads waiting for the same mutex. The
execution of the waiting higher-priority threads is blocked for as long as there is a
sufficient number of runnable threads of any priority between the lower-priority and
higher-priority values. Priority inversion occurs when any resource is shared
between threads with different priorities.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by mutex is invalid.
−1 [EDEADLK] A deadlock condition is detected.

Related Information

Functions: pthread_mutex_destroy(3thr) , pthread_mutex_init(3thr) ,
pthread_mutex_trylock(3thr) , pthread_mutex_unlock(3thr) ,

Chapter 2. DCE Threads 325

pthread_mutexattr_setkind_np(3thr) .

326 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_mutex_trylock

Purpose

Locks a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_trylock(
pthread_mutex_t *mutex);

Parameters
mutex Mutex that is locked.

Description

The pthread_mutex_trylock() routine locks a mutex. If the specified mutex is
locked when a thread calls this routine, the calling thread does not wait for the
mutex to become available.

When a thread calls this routine, an attempt is made to lock the mutex immediately.
If the mutex is successfully locked, 1 is returned and the current thread is then the
mutex’s current owner.

If the mutex is locked by another thread when this routine is called, 0 (zero) is
returned and the thread does not wait to acquire the lock. If a fast mutex is owned
by the current thread, 0 is returned. If a recursive mutex is owned by the current
thread, 1 is returned and the mutex is relocked. (To unlock a recursive mutex, each
call to pthread_mutex_trylock() must be matched by a call to the
pthread_mutex_unlock() routine.)

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

1 Successful completion.
0 The mutex is locked; therefore, it was not

acquired.
−1 [EINVAL] The value specified by mutex is invalid.

Related Information

Functions: pthread_mutex_destroy(3thr) , pthread_mutex_init(3thr) ,
pthread_mutex_lock(3thr) , pthread_mutex_unlock(3thr) ,
pthread_mutexattr_setkind_np(3thr) .

Chapter 2. DCE Threads 327

pthread_mutex_unlock

Purpose

Unlocks a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_unlock(
pthread_mutex_t *mutex);

Parameters
mutex Mutex that is unlocked.

Description

The pthread_mutex_unlock() routine unlocks a mutex. If no threads are waiting for
the mutex, the mutex unlocks with no current owner. If one or more threads are
waiting to lock the specified mutex, this routine causes one thread to return from its
call to pthread_mutex_lock() . The scheduling policy is used to determine which
thread acquires the mutex. For the SCHED_FIFO and SCHED_RR policies, a
blocked thread is chosen in priority order.

The results of calling this routine are unpredictable if the mutex specified in mutex
is unlocked. The results of calling this routine are also unpredictable if the mutex
specified in mutex is currently owned by a thread other than the calling thread.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by mutex is invalid.

Related Information

Functions: pthread_mutex_destroy(3thr) , pthread_mutex_init(3thr) ,
pthread_mutex_lock(3thr) , pthread_mutex_trylock(3thr) ,
pthread_unlock_global_np(3thr) , pthread_mutexattr_setkind_np(3thr) .

328 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_mutexattr_create

Purpose

Creates a mutex attributes object

Synopsis
#include <pthread.h>

int pthread_mutexattr_create(
pthread_mutexattr_t *attr);

Parameters
attr Mutex attributes object created.

Description

The pthread_mutexattr_create() routine creates a mutex attributes object used to
specify the attributes of mutexes when they are created. The mutex attributes object
is initialized with the default value for all of the attributes defined by a given
implementation.

When a mutex attributes object is used to create a mutex, the values of the
individual attributes determine the characteristics of the new object. Attributes
objects act like additional parameters to object creation. Changing individual
attributes does not affect any objects that were previously created using the
attributes object.

Return Values

The created mutex attributes object is returned to the attr parameter.

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.
−1 [ENOMEM] Insufficient memory exists to create the

mutex attributes object.

Related Information

Functions: pthread_create(3thr) , pthread_mutex_init(3thr) ,
pthread_mutexattr_delete(3thr) , pthread_mutexattr_getkind_np(3thr) ,
pthread_mutexattr_setkind_np(3thr) .

Chapter 2. DCE Threads 329

pthread_mutexattr_delete

Purpose

Deletes a mutex attributes object

Synopsis
#include <pthread.h>

int pthread_mutexattr_delete(
pthread_mutexattr_t *attr);

Parameters
attr Mutex attributes object deleted.

Description

The pthread_mutexattr_delete() routine deletes a mutex attributes object. Call this
routine when a mutex attributes object is no longer referenced by the
pthread_mutexattr_create() routine.

This routine gives permission to reclaim storage for the mutex attributes object.
Mutexes that were created using this attributes object are not affected by the
deletion of the mutex attributes object.

The results of calling this routine are unpredictable if the attributes object specified
in the attr parameter does not exist.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.

Related Information

Functions: pthread_mutexattr_create(3thr) .

330 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_mutexattr_getkind_np

Purpose

Obtains the mutex type attribute used when a mutex is created

Synopsis
#include <pthread.h>

int pthread_mutexattr_getkind_np(
pthread_mutexattr_t attr);

Parameters
attr Mutex attributes object whose mutex type is obtained.

Description

The pthread_mutexattr_getkind_np() routine obtains the mutex type attribute that
is used when a mutex is created. See the pthread_mutexattr_setkind_np()
reference page for information about mutex type attributes.

This routine is a new primitive.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

Mutex type attribute Successful completion.
−1 [EINVAL] The value specified by attr is invalid.

Related Information

Functions: pthread_mutex_init(3thr) , pthread_mutexattr_create(3thr) ,
pthread_mutexattr_setkind_np(3thr) .

Chapter 2. DCE Threads 331

pthread_mutexattr_setkind_np

Purpose

Specifies the mutex type attribute

Synopsis
#include <pthread.h>

int pthread_mutexattr_setkind_np(
pthread_mutexattr_t *attr
int kind);

Parameters
attr Mutex attributes object modified.

kind New value for the mutex type attribute. The kind parameter specifies the
type of mutex that is created. Valid values are MUTEX_FAST_NP (default),
MUTEX_RECURSIVE_NP, and MUTEX_NONRECURSIVE_NP.

Description

The pthread_mutexattr_setkind_np() routine sets the mutex type attribute that is
used when a mutex is created.

A fast mutex is locked and unlocked in the fastest manner possible. A fast mutex
can only be locked (obtained) once. All subsequent calls to pthread_mutex_lock()
cause the calling thread to block until the mutex is freed by the thread that owns it.
If the thread that owns the mutex attempts to lock it again, the thread waits for itself
to release the mutex (causing a deadlock).

A recursive mutex can be locked more than once by the same thread without
causing that thread to deadlock. In other words, a single thread can make
consecutive calls to pthread_mutex_lock() without blocking. The thread must then
call pthread_mutex_unlock() the same number of times as it called
pthread_mutex_lock() before another thread can lock the mutex.

A nonrecursive mutex is locked only once by a thread, like a fast mutex. If the
thread tries to lock the mutex again without first unlocking it, the thread receives an
error. Thus, nonrecursive mutexes are more informative than fast mutexes because
fast mutexes block in such a case, leaving it up to you to determine why the thread
no longer executes. Also, if someone other than the owner tries to unlock a
nonrecursive mutex, an error is returned.

Never use a recursive mutex with condition variables because the implicit unlock
performed for a pthread_cond_wait() or pthread_cond_timedwait() might not
actually release the mutex. In that case, no other thread can satisfy the condition of
the predicate.

This routine is a new primitive.

332 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by attr is invalid.
−1 [EPERM] The caller does not have the appropriate

privileges.
−1 [ERANGE] One or more parameters supplied have

an invalid value.

Related Information

Functions: pthread_mutex_init(3thr) , pthread_mutexattr_create(3thr) ,
pthread_mutexattr_getkind_np(3thr) .

pthread_mutexattr_setkind_np(3thr)

Chapter 2. DCE Threads 333

pthread_once

Purpose

Calls an initialization routine executed by one thread, a single time

Synopsis
#include <pthread.h>

int pthread_once(
pthread_once_t *once_block
pthread_initroutine_t init_routine);

Parameters
once_block

Address of a record that defines the one-time initialization code. Each
one-time initialization routine must have its own unique pthread_once_t
data structure.

init_routine
Address of a procedure that performs the initialization. This routine is called
only once, regardless of the number of times it and its associated
once_block are passed to pthread_once() .

Description

The pthread_once() routine calls an initialization routine executed by one thread, a
single time. This routine allows you to create your own initialization code that is
guaranteed to be run only once, even if called simultaneously by multiple threads or
multiple times in the same thread.

For example, a mutex or a thread-specfic data key must be created exactly once.
Calling pthread_once() prevents the code that creates a mutex or thread-specific
data from being called by multiple threads. Without this routine, the execution must
be serialized so that only one thread performs the initialization. Other threads that
reach the same point in the code are delayed until the first thread is finished.

This routine initializes the control record if it has not been initialized and then
determines if the client one-time initialization routine has executed once. If it has not
executed, this routine calls the initialization routine specified in init_routine. If the
client one-time initialization code has executed once, this routine returns.

The pthread_once_t data structure is a record that allows client initialization
operations to guarantee mutual exclusion of access to the initialization routine, and
that each initialization routine is executed exactly once.

The client code must declare a variable of type pthread_once_t to use the client
initialization operations. This variable must be initialized using the
pthread_once_init macro, as follows:
static pthread_once_t myOnceBlock = pthread_once_init;

334 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by a parameter is invalid.

pthread_once(3thr)

Chapter 2. DCE Threads 335

pthread_pseudo_thread_base_end

Purpose

A macro that ends a pseudo-pthread wrapper, which allows OS/2 threads to
function within a DCE threads environment and use DCE threads routines.

Format
#include <pthread.h>

void pthread_pseudo_thread_base_end();

Usage

The pthread_pseudo_thread_base_end routine allows threads that were created
in an OS/2 environment to use DCE pthread libraries and routines. This routine
must be used with the pthread_pseudo_thread_base_start routine to bracket
code that uses the DCE pthread environment. These two routines, called a
pseudo-pthread wrapper, are written as macros that are intended primarily for use
in existing OS/2 threads libraries to enable OS/2 threads applications to use DCE
routines, which require a thread to be of pthread type. This wrapper is not intended
to be used by the applications directly; you can write a new application to use
pthread routines directly, without using the wrapper.

The pseudo-pthread wrapper has some limits:

v You can only put one wrapper in the same routine

v There must be no returns from the code within the wrapper because returning
from within the code bypasses the pthread_pseudo_thread_base_end routine.

v For maximum performance, the pair of macros should only be used once. Do not
locate them within a loop or other structure that calls these routines repeatedly.

v You cannot nest these macros within the same routine. However, the
pseudo-thread wrapper supports recursion; code within the wrapper can call
another routine that also uses the wrapper.

When an OS/2 thread calls the library routine that contains the pseudo-pthread
wrapper, that thread temporarily becomes a DCE pthread that can use the pthread
libraries and routines. If the thread that calls the library routine is already a pthread,
the wrapper has no effect.

Examples

The following is an example, in pseudocode, of a library routine with a
pseudo-pthread wrapper:
#include <pthread.h>

user_written_library_function
{

pthread_pseudo_thread_base_start();...

/*
existing code using the DCE pthread library

*/..

336 IBM DCE for AIX, Version 2.2: Application Development Reference

.

pthread_pseudo_thread_base_end();
}

Comments

Functions: pthread_pseudo_thread_base_start(3thr) .

pthread_pseudo_thread_base_end(3thr)

Chapter 2. DCE Threads 337

pthread_pseudo_thread_base_start

Purpose

A macro that starts a pseudo-pthread wrapper that allows OS/2 threads to function
within a DCE threads environment and use DCE pthread routines.

Format
#include <pthread.h>

void pthread_pseudo_thread_base_start();

Usage

The pthread_pseudo_thread_base_start routine allows threads that were created
in an OS/2 environment to use DCE pthread libraries and routines. This routine
must be used with the pthread_pseudo_thread_base_end routine to bracket code
that uses the DCE pthread environment. These two routines, called a
pseudo-pthread wrapper, are written as macros that are intended primarily for use
in existing OS/2 threads libraries to enable OS/2 threads applications to use DCE
routines, which require a thread to be of pthread type. This wrapper is not intended
to be used by the applications directly; you can write a new application to use
pthread routines directly, without using the wrapper.

The pseudo-pthread wrapper has some limits:

v You can only put one wrapper in the same routine

v There must be no returns from the code within the wrapper because returning
from within the code bypasses the pthread_pseudo_thread_base_end routine.

v For maximum performance, the pair of macros should only be used once. Do not
locate them within a loop or other structure that calls these routines repeatedly.

v You cannot nest these macros within the same routine. However, the
pseudo-thread wrapper supports recursion; code within the wrapper can call
another routine that also uses the wrapper.

When an OS/2 thread calls the library routine that contains the pseudo-pthread
wrapper, that thread temporarily becomes a DCE pthread that can use the pthread
libraries and routines. If the thread that calls the library routine is already a pthread,
the wrapper has no effect.

Examples

The following is an example, in pseudocode, of a library routine with a
pseudo-pthread wrapper:
#include <pthread.h>

user_written_library_function
{

pthread_pseudo_thread_base_start();...
/*
existing code using the DCE pthread library

*/..

338 IBM DCE for AIX, Version 2.2: Application Development Reference

.

pthread_pseudo_thread_base_end();
}

Comments

Functions: pthread_pseudo_thread_base_end(3thr) .

pthread_pseudo_thread_base_start(3thr)

Chapter 2. DCE Threads 339

pthread_self

Purpose

Obtains the identifier of the current thread

Synopsis
#include <pthread.h>

pthread_t pthread_self();

Description

The pthread_self() routine allows a thread to obtain its own identifier. For example,
this identifier allows a thread to set its own priority.

This value becomes meaningless when the thread object is deleted; that is, when
the thread terminates its execution and pthread_detach() is called.

Return Values

Returns the identifier of the calling thread to pthread_t .

Related Information

Functions: pthread_create(3thr) , pthread_setprio(3thr) ,
pthread_setscheduler(3thr) .

340 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_setasynccancel

Purpose

Enables or disables the current thread’s asynchronous cancelability

Synopsis
#include <pthread.h>

int pthread_setasynccancel(
int state);

Parameters
state State of asynchronous cancelability set for the calling thread. On return,

receives the prior state of asynchronous cancelability. Valid values are as
follows:

CANCEL_ON
Asynchronous cancelability is enabled.

CANCEL_OFF
Asynchronous cancelability is disabled.

Description

The pthread_setasynccancel() routine enables or disables the current thread’s
asynchronous cancelability and returns the previous asynchronous cancelability
state.

When general cancelability is set to CANCEL_OFF , a cancel cannot be delivered to
the thread, even if a cancelable routine is called or asynchronous cancelability is
enabled. When general cancelability is set to CANCEL_ON , cancelability depends
on the state of the thread’s asynchronous cancelability.

When general cancelability is set to CANCEL_ON and asynchronous cancelability
is set to CANCEL_OFF , the thread can only receive a cancel at specific
cancellation points (for example, condition waits, thread joins, and calls to the
pthread_testcancel() routine). If both general cancelability and asynchronous
cancelability are set to CANCEL_ON , the thread can be canceled at any point in its
execution.

When a thread is created, the default asynchronous cancelability state is
CANCEL_OFF .

If you call this routine to enable asynchronous cancels, call it in a region of code
where asynchronous delivery of cancels is disabled by a previous call to this
routine. Do not call threads routines in regions of code where asynchronous
delivery of cancels is enabled. The previous state of asynchronous delivery can be
restored later by another call to this routine.

Return Values

On successful completion, the previous state of asynchronous cancelability is
returned. If the function fails, -1 is returned. Following are the possible return values

Chapter 2. DCE Threads 341

and the possible corresponding values (if any) for errno :

Return Error Description

CANCEL_ON Asynchronous cancelability was on.
CANCEL_OFF Asynchronous cancelability was off.

−1 [EINVAL] The specified state is not CANCEL_ON or
CANCEL_OFF .

Related Information

Functions: pthread_cancel(3thr) , pthread_setcancel(3thr) ,
pthread_testcancel(3thr) .

pthread_setasynccancel(3thr)

342 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_setcancel

Purpose

Enables or disables the current thread’s general cancelability

Synopsis
#include <pthread.h>

int pthread_setcancel(
int state);

Parameters
state State of general cancelability set for the calling thread. On return, receives

the prior state of general cancelability. Valid values are as follows:

CANCEL_ON
General cancelability is enabled.

CANCEL_OFF
General cancelability is disabled.

Description

The pthread_setcancel() routine enables or disables the current thread’s general
cancelability and returns the previous general cancelability state.

When general cancelability is set to CANCEL_OFF , a cancel cannot be delivered to
the thread, even if a cancelable routine is called or asynchronous cancelability is
enabled.

When a thread is created, the default general cancelability state is CANCEL_ON .

Possible Dangers of Disabling Cancelability

The most important use of cancels is to ensure that indefinite wait operations are
terminated. For example, a thread waiting on some network connection, which may
take days to respond (or may never respond), is normally made cancelable.

However, when cancelability is disabled, no routine is cancelable. Waits must be
completed normally before a cancel can be delivered. As a result, the program
stops working and the user is unable to cancel the operation.

When disabling cancelability, be sure that no long waits can occur or that it is
necessary for other reasons to defer cancels around that particular region of code.

Return Values

On successful completion, the previous state of general cancelability is returned. If
the function fails, −1 is returned. Following are the possible return values and the
possible corresponding values (if any) for errno :

Return Error Description

CANCEL_ON Asynchronous cancelability was on.

Chapter 2. DCE Threads 343

Return Error Description

CANCEL_OFF Asynchronous cancelability was off.
−1 [EINVAL] The specified state is not CANCEL_ON or

CANCEL_OFF .

Related Information

Functions: pthread_cancel(3thr) , pthread_setasynccancel(3thr) ,
pthread_testcancel(3thr) .

pthread_setcancel(3thr)

344 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_setprio

Purpose

Changes the current priority of a thread

Synopsis
#include <pthread.h>

int pthread_setprio(
pthread_t thread
int priority);

Parameters
thread Thread whose priority is changed.

priority New priority value of the thread specified in thread. The priority value
depends on scheduling policy. Valid values fall within one of the following
ranges:

v PRI_OTHER_MIN <= priority <=PRI_OTHER_MAX

v PRI_FIFO_MIN <= priority <=PRI_FIFO_MAX

v PRI_RR_MIN <= priority <=PRI_RR_MAX

v PRI_FG_MIN_NP <= priority <=PRI_FG_MAX_NP

v PRI_BG_MIN_NP <= priority <=PRI_BG_MAX_NP

If you create a new thread without specifying a threads attributes object that
contains a changed priority attribute, the default priority of the newly created thread
is the midpoint between PRI_OTHER_MIN and PRI_OTHER_MAX (the midpoint
between the minimum and the maximum for the SCHED_OTHER policy).

When you call this routine to specify a minimum or maximum priority, use the
appropriate symbol; for example, PRI_FIFO_MIN or PRI_FIFO_MAX. To specify a
value between the minimum and maximum, use an appropriate arithmetic
expression. For example, to specify a priority midway between the minimum and
maximum for the Round Robin scheduling policy, specify the following concept
using your programming language’s syntax:
pri_rr_mid = (PRI_RR_MIN + PRI_RR_MAX + 1)/2

If your expression results in a value outside the range of minimum to maximum, an
error results when you use it.

Description

The pthread_setprio() routine changes the current priority of a thread. A thread can
change its own priority using the identifier returned by pthread_self() .

Changing the priority of a thread can cause it to start executing or be preempted by
another thread. The effect of setting different priority values depends on the
scheduling priority assigned to the thread. The initial scheduling priority is set by
calling the pthread_attr_setprio() routine.

Chapter 2. DCE Threads 345

Note that pthread_attr_setprio() sets the priority attribute that is used to establish
the priority of a new thread when it is created. However, pthread_setprio()
changes the priority of an existing thread.

Return Values

If successful, this routine returns the previous priority. If the function fails, errno
may be set to one of the following values:

Return Error Description

Previous priority Successful completion.
−1 [EINVAL] The value specified by thread is invalid.
−1 [ENOTSUP] An attempt is made to set the priority to

an unsupported value.
−1 [ESRCH] The value specified by thread does not

refer to an existing thread.
−1 [EPERM] The caller does not have the appropriate

privileges to set the priority of the
specified thread.

Related Information

Functions: pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr) ,
pthread_create(3thr) , pthread_self(3thr) , pthread_setscheduler(3thr) .

pthread_setprio(3thr)

346 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_setscheduler

Purpose

Changes the current scheduling policy and priority of a thread

Synopsis
#include <pthread.h>

int pthread_setscheduler(
pthread_t thread
int scheduler
int priority);

Parameters
thread Thread whose scheduling policy is to be changed.

scheduler
New scheduling policy value for the thread specified in thread. Valid values
are as follows:

SCHED_FIFO
(First In, First Out) The highest-priority thread runs until it blocks. If
there is more than one thread with the same priority, and that
priority is the highest among other threads, the first thread to begin
running continues until it blocks.

SCHED_RR
(Round Robin) The highest-priority thread runs until it blocks;
however, threads of equal priority, if that priority is the highest
among other threads, are timesliced. Timeslicing is a process in
which threads alternate using available processors.

SCHED_OTHER
(Default) All threads are timesliced. SCHED_OTHER ensures that
all threads, regardless of priority, receive some scheduling, and thus
no thread is completely denied execution time. (However,
SCHED_OTHER threads can be denied execution time by
SCHED_FIFO or SCHED_RR threads.)

SCHED_FG_NP
(Foreground) Same as SCHED_OTHER. Threads are timesliced
and priorities can be modified dynamically by the scheduler to
ensure fairness.

SCHED_BG_NP
(Background) Like SCHED_OTHER, ensures that all threads,
regardless of priority, receive some scheduling. However,
SCHED_BG_NP can be denied execution by any of the other
scheduling policies.

priority New priority value of the thread specified in thread. The priority attribute
depends on scheduling policy. Valid values fall within one of the following
ranges:

v PRI_OTHER_MIN <= priority <=PRI_OTHER_MAX

v PRI_FIFO_MIN <= priority <=PRI_FIFO_MAX

v PRI_RR_MIN <= priority <=PRI_RR_MAX

Chapter 2. DCE Threads 347

v PRI_FG_MIN_NP <= priority <=PRI_FG_MAX_NP

v PRI_BG_MIN_NP <= priority <=PRI_BG_MAX_NP

If you create a new thread without specifying a threads attributes object that
contains a changed priority attribute, the default priority of the newly created thread
is the midpoint between PRI_OTHER_MIN and PRI_OTHER_MAX (the midpoint
between the minimum and the maximum for the SCHED_OTHER policy).

When you call this routine to specify a minimum or maximum priority, use the
appropriate symbol; for example, PRI_FIFO_MIN or PRI_FIFO_MAX. To specify a
value between the minimum and maximum, use an appropriate arithmetic
expression. For example, to specify a priority midway between the minimum and
maximum for the Round Robin scheduling policy, specify the following concept
using your programming language’s syntax:
pri_rr_mid = (PRI_RR_MIN + PRI_RR_MAX)/2

If your expression results in a value outside the range of minimum to maximum, an
error results when you use it.

Description

The pthread_setscheduler() routine changes the current scheduling policy and
priority of a thread. Call this routine to change both the priority and scheduling
policy of a thread at the same time. To change only the priority, call the
pthread_setprio() routine.

A thread changes its own scheduling policy and priority by using the identifier
returned by pthread_self() . Changing the scheduling policy or priority, or both, of a
thread can cause it to start executing or to be preempted by another thread.

This routine differs from pthread_attr_setprio() and pthread_attr_setsched()
because those routines set the priority and scheduling policy attributes that are
used to establish the priority and scheduling policy of a new thread when it is
created. This routine, however, changes the priority and scheduling policy of an
existing thread.

Return Values

If successful, the previous scheduling policy value is returned. If the function fails,
errno may be set to one of the following values:

Return Error Description

Previous policy Successful completion.
−1 [EINVAL] The value specified by thread is invalid.
−1 [ENOTSUP] An attempt is made to set the priority to an

unsupported value.
−1 [ESRCH] The value specified by thread does not refer to

an existing thread.
−1 [EPERM] The caller does not have the appropriate

privileges to set the scheduling policy of the
specified thread.

pthread_setscheduler(3thr)

348 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr) ,
pthread_create(3thr) , pthread_self(3thr) , pthread_setprio(3thr) .

pthread_setscheduler(3thr)

Chapter 2. DCE Threads 349

pthread_setspecific

Purpose

Sets the thread-specific data associated with the specified key for the current thread

Synopsis
#include <pthread.h>

int pthread_setspecific(
pthread_key_t key
pthread_addr_t value);

Parameters
key Context key value that uniquely identifies the context value specified in

value. This key value must have been obtained from pthread_keycreate() .

value Address containing data to be associated with the specified key for the
current thread; this is the thread-specific data.

Description

The pthread_setspecific() routine sets the thread-specific data associated with the
specified key for the current thread. If a value has already been defined for the key
in this thread, the new value is substituted for it.

Different threads can bind different values to the same key. These values are
typically pointers to blocks of dynamically allocated memory that are reserved for
use by the calling thread.

Return Values

If the function fails, −1 is returned, and errno may be set to the following value:

Return Error Description

−1 [EINVAL] The key value is invalid.

Related Information

Functions: pthread_getspecific(3thr) , pthread_keycreate(3thr) .

350 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_signal_to_cancel_np

Purpose

Cancels the specified thread

Synopsis
#include <pthread.h>

int pthread_signal_to_cancel_np(
sigset_t *sigset
pthread_t *thread);

Parameters
sigset Signal mask containing a list of signals that, when received by the process,

cancels the specified thread.

thread The thread canceled if a valid signal is received by the process.

Description

The pthread_signal_to_cancel_np() routine requests that the specified thread be
canceled if one of the signals specified in the signal mask is received by the
process. The set of legal signals is the same as that for the sigwait() service. The
sigset parameter is not validated. If it is invalid, this routine returns successfully but
neither the specified thread nor the previously specified thread is canceled if a
signal occurs.

Note that the address of the specified thread is saved in a per-process global
variable. Therefore, any subsequent call to this routine by your application or any
library function will supercede the thread specified in the previous call, and that
thread will not be canceled if one of the signals specified for it is delivered to the
process. In other words, take care when you call this routine; if another thread calls
it after you do, the expected result of this routine will not occur.

Return Values

If the function fails, errno may be set to one of the following values:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by thread is invalid.

Related Information

Functions: pthread_cancel(3thr) .

Chapter 2. DCE Threads 351

pthread_testcancel

Purpose

Requests delivery of a pending cancel to the current thread

Synopsis
#include <pthread.h>

void pthread_testcancel();

Description

The pthread_testcancel() routine requests delivery of a pending cancel to the
current thread. The cancel is delivered only if a cancel is pending for the current
thread and general cancel delivery is not currently disabled. (A thread disables
delivery of cancels to itself by calling the pthread_setcancel() routine.)

This routine, when called within very long loops, ensures that a pending cancel is
noticed within a reasonable amount of time.

Return Values

No value is returned.

Related Information

Functions: pthread_cancel(3thr) , pthread_setasynccancel(3thr) ,
pthread_setcancel(3thr) .

352 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_unlock_global_np

Purpose

Unlocks a global mutex

Synopsis
#include <pthread.h>

void pthread_unlock_global_np();

Description

The pthread_unlock_global_np() routine unlocks the global mutex when each call
to pthread_lock_global_np() is matched by a call to this routine. For example, if
you called pthread_lock_global_np() three times, pthread_unlock_global_np()
unlocks the global mutex when you call it the third time. If no threads are waiting for
the global mutex, it becomes unlocked with no current owner. If one or more
threads are waiting to lock the global mutex, one thread returns from its call to
pthread_lock_global_np() . The scheduling policy is used to determine which
thread acquires the global mutex. For the policies SCHED_FIFO and SCHED_RR,
a blocked thread is chosen in priority order.

The results of calling this routine are unpredictable if the global mutex is already
unlocked. The results of calling this routine are also unpredictable if the global
mutex is owned by a thread other than the calling thread.

This routine is a new primitive.

Return Values

No value is returned.

Related Information

Functions: pthread_lock_global_np(3thr) , pthread_mutex_lock(3thr) ,
pthread_mutex_unlock(3thr) , pthread_mutexattr_setkind_np(3thr) .

Chapter 2. DCE Threads 353

pthread_yield

Purpose

Notifies the scheduler that the current thread is willing to release its processor

Synopsis
#include <pthread.h>

void pthread_yield();

Description

The pthread_yield() routine notifies the scheduler that the current thread is willing
to release its processor to other threads of the same priority. (A thread releases its
processor to a thread of a higher priority without calling this routine.)

If the current thread’s scheduling policy (as specified in a call to the
pthread_attr_setsched() or pthread_setscheduler() routine) is SCHED_FIFO or
SCHED_RR, this routine yields the processor to other threads of the same or a
higher priority. If no threads of the same priority are ready to execute, the thread
continues.

This routine allows knowledge of the details of an application to be used to increase
fairness. It increases fairness of access to the processor by removing the current
thread from the processor. It also increases fairness of access to shared resources
by removing the current thread from the processor as soon as it is finished with the
resource.

Call this routine when a thread is executing code that denies access to other
threads on a uniprocessor if the scheduling policy is SCHED_FIFO.

Use pthread_yield() carefully because misuse causes unnecessary context
switching, which increases overhead without increasing fairness. For example, it is
counterproductive for a thread to yield while it has a needed resource locked.

Return Values

No value is returned.

Related Information

Functions: pthread_attr_setsched(3thr) , pthread_setscheduler(3thr) .

354 IBM DCE for AIX, Version 2.2: Application Development Reference

sigaction

Purpose

Examines and changes synchronous signal actions (POSIX software signal
facilities)

Synopsis
#include <signal.h>

struct sigaction {
void (*sa_handler);
sigset_t sa_mask;
int sa_flags;

};

int sigaction (sig, act, oact)
int sig;
const struct sigaction *act;
struct sigaction *oact;

Parameters
sig Synchronous signal to examine or change.

act Points to a sigaction structure that describes the action to be taken upon
receipt of the signal indicated by the value of the act parameter.

oact Points to a sigaction structure in which the signal action data in effect at
the time of the sigaction() function call is returned.

Description

The sigaction POSIX service allows for per-thread handlers to be installed for
catching synchronous signals. It is called in a multithreaded process to establish
thread specific actions for such signals. This call is the POSIX equivalent of the
sigaction() system call with the following exceptions or modifications:

v The sigaction() routine only modifies behavior for individual threads.

v The sigaction() routine only works for synchronous signals. Attempting to set a
signal action for an asynchronous signal is an error. This is true even in a
single-threaded process.

Any multithreaded application using DCE Threads will need to use the sigwait()
function for dealing with asynchronous signals. The sigwait() function can be
used to synchronously wait for delivery of asynchronously generated signals.

v The SA_RESTART flag is always set by the underlying system in POSIX mode
so that interrupted system calls will fail with return value of −1 and the EINTR
error in errno instead of getting restarted.

The system’s SA_RESTART flag has the opposite meaning of the SA_RESTART
flag in the sa_flags field and is always set in the underlying system call resulting
from sigaction() regardless of whether SA_RESTART was indicated in sa_flags.

v The signal mask is manipulated using the POSIX § 3.3.3 sigsetops() functions.
They are sigemptyset() , sigfillset() , sigaddset() , sigdelset() , and
sigismember() .

The sigaction() function can be used to inquire about the current handling of a
given signal by specifying a null pointer for act, since the action is unchanged

Chapter 2. DCE Threads 355

unless this parameter is not a null pointer. In order for the signal action in effect at
the time of the sigaction() call to be returned, the oact parameter must not be a
null pointer.

Return Values

Possible return values are as follows:

Return Error Description

0 Successful completion.
−1 [EFAULT] Either act or oact points to memory

which is not a valid part of the process
address space.
A new signal handler is not installed.

−1 [EINVAL] The value specified by sig is invalid. A
new signal handler is not installed.

−1 [EINVAL] An attempt is made to ignore or supply a
handler for SIGKILL or SIGSTOP. A new
signal handler is not installed.

Related Information

Functions: setjmp(3) , siginterrupt(3) , sigpending(3thr) , sigprocmask(3thr) ,
sigsetops(3) , sigsuspend(3) , sigvec(2) , tty(4) .

sigaction(3thr)

356 IBM DCE for AIX, Version 2.2: Application Development Reference

sigpending

Purpose

Examines pending signals (POSIX software signal facilities)

Synopsis
#include <signal.h>

int sigpending(sigset_t *set;

Parameters
set Points to a location in which the signals that are blocked from delivery and

pending at the time of the sigpending() function call are returned.

Description

The sigpending() function stores the set of signals that are blocked from delivery
and pending for the calling process in the space pointed to by the argument set.

The sigpending() function may be called by any thread in a multithreaded process
to determine which signals are in the pending set for that thread. Since DCE
Threads supports the {_POSIX_THREADS_PER_PROCESS_SIGNALS_1} option,
signals pending upon the thread are those that are pending upon the process.

Return Values

Possible return values are as follows:

Return Error Description

0 Successful completion.
−1 [EFAULT] The set argument points to memory that is not

a valid part of the process address space.

Related Information

Functions: sigprocmask(3thr) , sigsetops(3) .

Chapter 2. DCE Threads 357

sigprocmask

Purpose

Examines and changes blocked signals (POSIX software signal facilities)

Synopsis
#include <signal.h>

int sigprocmask(int how const sigset_t *set
sigset_t *oset);

Parameters
how The manner in which the values in set are changed as defined by one of

the described argument values.

set A set of signals that will be used to change the current thread’s signal mask
according to the value in the how parameter.

oset Points to a location in which the signal mask in effect at the time of the
sigprocmask() function call is returned.

Description

The sigprocmask() function is used to examine or change (or both) the signal
mask of the calling process. If the value of the argument set is not NULL, it points
to a set of signals to be used to change the currently blocked set according to the
how parameter as follows:

SIG_BLOCK
The resulting signal set is the union of the current set and the signal set
pointed to by the argument set.

SIG_UNBLOCK
The resulting signal set is the intersection of the current set and the and the
complement of the signal set pointed to by the argument set.

SIG_SETMASK
The resulting signal set is the signal set pointed to by the argument set.

If the argument oset is not NULL, the previous mask is stored in the space pointed
to by oset.

The sigprocmask() function can be used to inquire about the currently blocked
signals by specifying a null pointer for set, since the value of the argument how is
not significant and the signal mask of the process is unchanged unless this
parameter is not a null pointer. In order for the signal mask in effect at the time of
the sigprocmask() call to be returned, the oset argument must not be a null
pointer.

If there are any pending unblocked signals after the call to the sigprocmask()
function, at least one of those signals shall be delivered before the sigprocmask()
function returns. As a system restriction, the SIGKILL and SIGSTOP signals cannot
be blocked.

358 IBM DCE for AIX, Version 2.2: Application Development Reference

If the sigprocmask() function fails, the signal mask of the process is not changed
by this function call.

Return Values

Possible return values are as follows:

Return Error Description

0 Successful completion.
−1 [EINVAL] The value specified by the how parameter is

not equal to one of the defined values.
The signal mask of the process remains
unchanged.

Related Information

Functions: sigaction(3thr) , sigpending(3thr) , sigsetops(3) , sigsuspend(3) .

sigprocmask(3thr)

Chapter 2. DCE Threads 359

sigwait

Purpose

Causes a thread to wait for an asynchronous signal

Synopsis
#include <pthread.h>

int sigwait(
sigset_t *set);

Parameters
set Set of pending signals upon which the calling thread will wait.

Description

This routine causes a thread to wait for an asynchronous signal. It atomically
chooses a pending signal from set, atomically clears it from the system’s set of
pending signals and returns that signal number. If no signal in set is pending at the
time of the call, the thread is blocked until one or more signals becomes pending.
The signals defined by set may be unblocked during the call to this routine and will
be blocked when the thread returns from the call unless some other thread is
currently waiting for one of those signals.

A thread must block the signals it waits for using sigprocmask () prior to calling
this function.

If more than one thread is using this routine to wait for the same signal, only one of
these threads will return from this routine with the signal number.

A call to sigwait () is a cancellation point.

Return Values

Possible return values are as follows:

Return Error Description

Signal number Successful completion.
−1 [EINVAL] One or more of the values specified by

set is invalid.
−1 [EINVAL] One or more of the values specified by

set is not blocked.
−1 [EINVAL] There are no values specified in set.

Related Information

Functions: pause(3) , pthread_cancel(3thr) , pthread_setasynccancel(3thr) ,
sigpending(3) , sigprocmask(3) , sigsetops(3) .

360 IBM DCE for AIX, Version 2.2: Application Development Reference

ctime_r, localtime_r, gmtime_r, or asctime_r

Purpose

Converts the formats of date and time representations.

ThreadSafe C Library (libdce/libc_r.a)

Format
#include <time.h>

int ctime_r(
const time_t *timer,
char *buffptr,
int length);

int localtime_r(
const time_t *timer,
struct tm *ct);

int gmtime_r(
const time_t *timer,
struct tm *xtime);

int asctime_r(
const struct tm *timeptr,
char *buffptr,
int length);

Parameters
timer Pointer to a time_t structure, which contains the number of seconds since

00:00:00 Greenwich Mean Time (GMT), January 1, 1970.

buffptr Pointer to a character array at least 26 characters long.

length length, in bytes, of buffptr.

ct Pointer to a tm structure. The result of the localtime_r routine is placed
here.

xtime Pointer to a tm structure used for the results of the gmtime_r routine.

timeptr
Pointer to a tm structure used as input to the asctime_r routine.

Usage

The ctime_r routine converts a time value pointed to by the timer parameter, which
represents the time in seconds since 00:00:00 Greenwich Mean Time (GMT),
January 1, 1970, into the character array, buffptr with length length. The buffptr
parameter should be at least 26 characters so the string of the following form will fit
without being truncated:
Sun Sep 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime_r routine adjusts for the time zone and daylight saving time, if it is in
effect.

Chapter 2. DCE Threads 361

The localtime_r routine converts the time_t structure pointed to by the timer
parameter, which contains the time in seconds since 00:00:00 GMT, January 1,
1970, into the tm structure, ct . The localtime_r routine adjusts for the time zone
and for daylight saving time, if it is in effect.

The gmtime_r routine converts the time_t structure pointed to by the timer
parameter into the tm structure, xtime .

The tm structure is defined in the time.h header file. It contains the following
members:
int tm_sec; /* Seconds (0 - 59) */
int tm_min; /* Minutes (0 - 59) */
int tm_hour; /* Hours (0 - 23) */
int tm_mday; /* Day of month (1 - 31) */
int tm_mon; /* Month of year (0 - 11) */
int tm_year; /* Year - 1900 */
int tm_wday; /* Day of week (Sunday = 0) */
int tm_yday; /* Day of year (0 - 365) */
int tm_isdst; /* Nonzero = Daylight saving time */

The asctime_r routine converts the tm structure, timeptr , into a 26-character string
in the same format as ctime_r with the results being placed into the character
array, buffptr, of length length.
char *tzname[2] = {"EST", "EDT"};

The time.h file contains declarations of all these routines, externals, and the tm
structure.

Error Conditions
0 Indicates that the routine is successful.

-1 Indicates that the routine is not successful.

Authorization

Subroutines Overview in AIX Version 3.2 General Programming Concepts.

List of Time Data Manipulation Services in AIX Version 3.2 General Programming
Concepts.

National Language Support Overview for Programming in AIX Version 3.2 General
Programming Concepts.

Context
/usr/include/time.h

Defines time macros, data types, and structures.

Comments

Functions: ctime , localtime , gmtime , mktime , difftime , asctime , tzset , timezone .

ctime_r, localtime_r, gmtime_r, or asctime_r (3thr)

362 IBM DCE for AIX, Version 2.2: Application Development Reference

rand_r

Purpose

Generates pseudorandom numbers.

ThreadSafe C Library (libdce/libc_r.a)

Format
#include <stdlib.h>

int rand_r(
unsigned int *seed
int *randomvalue);

Parameters
seed Specifies an initial seed value.

randomvalue
Random value generated.

Usage

The rand_r routine generates a random number using a multiplicative congruential
algorithm. The random number generator has a period of 2**32, and it returns
successive pseudorandom numbers in the range from 0 to 2**15-1.

Note:

The rand_r routine is a simple random number generator. Its spectral
properties, the mathematical measurement of how random the number
sequence is, are somewhat limited. See the drand48_r routine or the
random_r routine for more elaborate random number generators that have
better spectral properties.

Error Conditions
0 Indicates that the routine is successful.

-1 Indicates that the routine is not successful.

Subroutines Overview in AIX Version 3.2 General Programming Concepts.

Context
/usr/include/sys/types.h

Defines system macros, data types, and routines.

Comments

Functions: drand48_r , erand48_r , lrand48_r , nrand48_r , mrand48_r , jrand48_r ,
srand48_r , seed48_r , lcong48_r , random_r , srandom_r , initstate_r , setstate_r .

Chapter 2. DCE Threads 363

readdir_r

Purpose

Performs operations on directories.

ThreadSafe C Library (libdce/libc_r.a)

Format
#include <sys/types.h>
#include <dirent.h>

int readdir(
DIR *directory_ptr,
struct dirent *result);

Parameters
directory_ptr

Points to the DIR structure of an open directory.

result A structure that contains the next directory entry.

Usage

The readdir_r routine returns the directory entry in the result parameter. The
readdir_r routine returns entries for . (dot) and .. (dot-dot), if present, but never
returns an entry that is not valid (with d_ino set to 0). When it reaches the end of
the directory or when it detects an invalid seekdir operation, the readdir_r routine
returns a -1.

Note:

The readdir routine is re-entrant when different directory_ptrs (returned from
the opendir routine) are used. When multiple threads use the same directory
pointer, the readdir_r routine should be used instead.

The result of using the readdir_r routine after the closedir_r routine has been
called for directory_ptr is undefined. The directory_ptr parameter becomes invalid
for all threads, including the caller.

Error Conditions
0 Indicates that the routine is successful.

-1 Indicates that the routine is not successful.

Examples

To search a directory for the entry name, type:
len = strlen(name);
directory_ptr = opendir(".");
for (dp = readdir_r(directory_ptr, result); dp != NULL;

dp = readdir_r(directory_ptr, result))
if (dp->d_namlen == len && !strcmp(dp->d_name, name))
{

closedir(directory_ptr);

364 IBM DCE for AIX, Version 2.2: Application Development Reference

return FOUND;
}

closedir(directory_ptr);
return NOT_FOUND;

Authorization

List of File and Directory Manipulation Services in AIX Version 3.2 General
Programming Concepts.

readdir_r

Chapter 2. DCE Threads 365

366 IBM DCE for AIX, Version 2.2: Application Development Reference

Chapter 3. DCE Remote Procedure Call

© Copyright IBM Corp. 1992, 1998 367

rpc_intro

Purpose

Introduction to the DCE RPC API runtime

Description

This introduction gives general information about the DCE RPC application
programming interface (API) and an overview of the following parts of the DCE
RPC API runtime:

v Runtime services

v Environment variables

v Data types and structures

v Permissions required

v Frequently used routine arguments

General Information

The following subsections contain topics, beyond those directly related to the RPC
API, that application programmers need to know.

IDL-to-C Mappings
The Interface Definition Language (IDL) compiler converts an interface
definition into output files. The rpc_intro(1rpc) reference page in the IBM
DCE for AIX, Version 2.2: Command Reference contains a summary of the
idl command, which invokes the IDL compiler.

Additional information about the IDL compiler appears in the following table,
which shows the IDL base types and the IDL-to-C mappings.

The following table lists the IDL base data type specifiers. Where
applicable, the table shows the size of the corresponding transmittable type
and the type macro emitted by the IDL compiler for resulting declarations.

Table 13. Base Data Type Specifiers—rpc_intro(3rpc)
Specifier

Size
Type Macro
Emitted by idl(sign) (size) (type)

small int 8 bits idl_small_int
short int 16 bits idl_short_int
long int 32 bits idl_long_int

hyper int 64 bits idl_hyper_int
unsigned small int 8 bits idl_usmall_int
unsigned short int 16 bits idl_ushort_int
unsigned long int 32 bits idl_ulong_int
unsigned hyper int 64 bits idl_uhyper_int

float 32 bits idl_short_float
double 64 bits idl_long_float
char 8 bits idl_char
boolean 8 bits idl_boolean
byte 8 bits idl_byte
void — idl_void_p_t

368 IBM DCE for AIX, Version 2.2: Application Development Reference

Table 13. Base Data Type Specifiers—rpc_intro(3rpc) (continued)
Specifier

Size
Type Macro
Emitted by idl(sign) (size) (type)

handle_t — —

Note that you can use the idl_ macros in the code you write for an
application to ensure that your type declarations are consistent with those in
the stubs, even when the application is ported to another platform. The idl_
macros are especially useful when passing constant values to RPC calls.
For maximum portability, all constants passed to RPC calls declared in your
network interfaces should be cast to the appropriate type because the size
of integer constants (like the size of the int data type) is unspecified in the
C language.

The idl_ macros are defined in dce/idlbase.h , which is included by header
files that the IDL compiler generates.

Management Commands for Programmers

In addition to the idl command for programmers, DCE RPC provides two
management commands for the RPC control program and the DCE host
daemon, as follows:

v The rpccp control program accesses the RPC control program (RPCCP).
This program provides a set of commands for accessing the operations
of the RPC Name Service Interface (NSI). RPCCP also supports showing
the elements of the local endpoint map and removing elements from it.

You can manage the name service with RPCCP commands or with DCE
RPC runtime routines. For example, suppose you want to obtain the
members of a group. You can give the show group command to RPCCP
or you can write an application program that calls the following DCE RPC
runtime routines:

– rpc_ns_group_mbr_inq_begin()

– rpc_ns_group_mbr_inq_next()

– rpc_ns_group_mbr_inq_done()

v The dced command starts the DCE host daemon. The daemon
maintains the local endpoint map for RPC servers and looks up
endpoints for RPC clients.

See the IBM DCE for AIX, Version 2.2: Command Reference for more
information about these two management commands.

Overview of DCE RPC Runtime Services

The RPC runtime services consist of RPC routines that perform a variety of
operations.

Note that the RPC API is thread safe and synchronous cancel safe (in the context
of POSIX threads). However, the RPC API is not asynchronous cancel safe. For
more information about threads and their cancellation, see the IBM DCE for AIX,
Version 2.2: Application Development Guide—Core Components.

The rest of this overview consists of the following items:

v An explanation of abbreviations in the names of the RPC runtime routines

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 369

v An alphabetical list of DCE RPC runtime routines. With each routine name is its
description and the type of application program that most likely calls the routine.

An alphabetical list of abbreviations in the names of the DCE RPC routines follows.
The list can help you remember the names more easily. For example, consider the
routine name rpc_mgmt_ep_elt_inq_begin() . Use the next list to expand the name
to ′′RPC management endpoint element inquiry begin,’’ which summarizes the
description ′′Creates an inquiry context for viewing the elements in a local or remote
endpoint map. (Management).’’

auth authentication, authorization

com communications

cs character/code set interoperability

dce distributed computing environment

dflt default

elt element

ep endpoint

exp expiration

fn function

id identifier

idl_es IDL encoding services

if interface

inq inquiry

mbr member

mgmt management

ns name service

protseq
protocol sequence

rgy DCE character and code set registry

rpc remote procedure call

stats statistics

An alphabetical list of the RPC runtime routines follows. With each routine name is
its description and the type of application program that most likely calls the routine.

cs_byte_from_netcs()
Converts international character data from a network code set to a local
code set. (Client, server).

cs_byte_local_size()
Calculates the necessary buffer size for a code set conversion from a
network code set to a local code set. (Client, server).

cs_byte_net_size()
Calculates the necessary buffer size for a code set conversion from a local
code set to a network code set. (Client, server).

rpc_intro(3rpc)

370 IBM DCE for AIX, Version 2.2: Application Development Reference

cs_byte_to_netcs()
Converts international character data from a local code set to a network
code set. (Client, server).

dce_cs_loc_to_rgy()
Maps a local name for a code set to a code set value in the code set
registry. (Client, server).

dce_cs_rgy_to_loc()
Maps a code set value in the code set registry to a the local name for a
code set. (Client, server).

idl_es_decode_buffer()
Returns a buffer decoding handle. (Client, server).

idl_es_decode_incremental()
Returns an incremental decoding handle. (Client, server).

idl_es_encode_dyn_buffer()
Returns a dynamic buffer encoding handle. (Client, server).

idl_es_encode_fixed_buffer()
Returns a fixed buffer encoding handle. (Client, server).

idl_es_encode_incremental()
Returns an incremental encoding handle. (Client, server).

idl_es_handle_free()
Frees an IDL encoding services handle. (Client, server).

idl_es_inq_attrs()
Gets the flags from an IDL encoding services handle (client, server).

idl_es_inq_encoding_id()
Identifies an application encoding operation. (Client, server).

idl_es_set_attrs()
Sets attribute flags in an IDL encoding service handle (client, server).

idl_es_set_transfer_syntax()
Sets the transfer syntax (client, server).

rpc_binding_copy()
Returns a copy of a binding handle. (Client or server).

rpc_binding_free()
Releases binding handle resources. (Client or server).

rpc_binding_from_string_binding()
Returns a binding handle from a string representation of a binding handle.
(Client or management).

rpc_binding_inq_auth_client()
Returns authentication and authorization information from the binding
handle for an authenticated client. (Server).

rpc_binding_inq_auth_info()
Returns authentication and authorization information from a server binding
handle. (Client).

rpc_binding_inq_object()
Returns the object UUID from a binding handle. (Client or server).

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 371

rpc_binding_reset()
Resets a server binding handle so the host remains specified, but the
server instance on that host is unspecified. (Client or management).

rpc_binding_server_from_client()
Converts a client binding handle to a server binding handle. (Server).

rpc_binding_set_auth_info()
Sets authentication and authorization information into a server binding
handle. (Client).

rpc_binding_set_object()
Sets the object UUID value into a server binding handle. (Client).

rpc_binding_to_string_binding()
Returns a string representation of a binding handle. (Client, server, or
management).

rpc_binding_vector_free()
Frees the memory used to store a vector and binding handles. (Client or
server).

rpc_cs_binding_set_tags()
Places code set tags into a server binding handle. (Client).

rpc_cs_char_set_compat_check()
Evaluates character set compatibility between a client and a server. (Client).

rpc_cs_eval_with_universal()
Evaluates a server’s supported character sets and code sets during the
server binding selection process. (Client).

rpc_cs_eval_without_universal()
Evaluates a server’s supported character sets and code sets during the
server binding selection process. (Client).

rpc_cs_get_tags()
Retrieves code set tags from a binding handle. (Client, server).

rpc_ep_register()
Adds to, or replaces, server address information in the local endpoint map.
(Server).

rpc_ep_register_no_replace()
Adds to server address information in the local endpoint map. (Server).

rpc_ep_resolve_binding()
Resolves a partially bound server binding handle into a fully bound server
binding handle. (Client or management).

rpc_ep_unregister()
Removes server address information from the local endpoint map. (Server).

rpc_if_id_vector_free()
Frees a vector and the interface identifier structures it contains. (Client,
server, or management).

rpc_if_inq_id()
Returns the interface identifier for an interface specification. (Client or
server).

rpc_mgmt_ep_elt_inq_begin()
Creates an inquiry context for viewing the elements in a local or remote
endpoint map. (Management).

rpc_intro(3rpc)

372 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_ep_elt_inq_done()
Deletes the inquiry context for viewing the elements in a local or remote
endpoint map. (Management).

rpc_mgmt_ep_elt_inq_next()
Returns one element at a time from a local or remote endpoint map.
(Management).

rpc_mgmt_ep_unregister()
Removes server address information from a local or remote endpoint map.
(Management).

rpc_mgmt_inq_com_timeout()
Returns the communications timeout value in a binding handle. (Client).

rpc_mgmt_inq_dflt_protect_level()
Returns the default protection level for an authentication service. (Client or
server).

rpc_mgmt_inq_if_ids()
Returns a vector of interface identifiers of interfaces a server offers. (Client,
server, or management).

rpc_mgmt_inq_server_princ_name()
Returns a server’s principal name. (Client, server, or management).

rpc_mgmt_inq_stats()
Returns RPC runtime statistics. (Client, server, or management).

rpc_mgmt_is_server_listening()
Tells whether a server is listening for remote procedure calls. (Client, server,
or management).

rpc_mgmt_set_authorization_fn()
Establishes an authorization function for processing remote calls to a
server’s management routines. (Server).

rpc_mgmt_set_call_timeout()
Sets the amount of time the RPC runtime is to wait for a server to complete
(client).

rpc_mgmt_set_cancel_timeout()
Sets the lower bound on the time to wait before timing out after forwarding
a cancel. (Client).

rpc_mgmt_set_com_timeout()
Sets the communications timeout value in a binding handle. (Client).

rpc_mgmt_set_server_stack_size()
Specifies the stack size for each server thread. (Server).

rpc_mgmt_stats_vector_free()
Frees a statistics vector. (Client, server, or management).

rpc_mgmt_stop_server_listening()
Tells a server to stop listening for remote procedure calls. (Client, server, or
management).

rpc_network_inq_protseqs()
Returns all protocol sequences supported by both the RPC runtime and the
operating system. (Client or server).

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 373

rpc_network_is_protseq_valid()
Tells whether the specified protocol sequence is supported by both the RPC
runtime and the operating system. (Client or server).

rpc_ns_binding_export()
Establishes a name service database entry with binding handles or object
UUIDs for a server. (Server).

rpc_ns_binding_import_begin()
Creates an import context for an interface and an object in the name
service database. (Client).

rpc_ns_binding_import_done()
Deletes the import context for searching the name service database.
(Client).

rpc_ns_binding_import_next()
Returns a binding handle of a compatible server (if found) from the name
service database. (Client).

rpc_ns_binding_inq_entry_name()
Returns the name of an entry in the name service database from which the
server binding handle came. (Client).

rpc_ns_binding_lookup_begin()
Creates a lookup context for an interface and an object in the name service
database. (Client).

rpc_ns_binding_lookup_done()
Deletes the lookup context for searching the name service database.
(Client).

rpc_ns_binding_lookup_next()
Returns a list of binding handles of one or more compatible servers (if
found) from the name service database. (Client).

rpc_ns_binding_select()
Returns a binding handle from a list of compatible server binding handles.
(Client).

rpc_ns_binding_unexport()
Removes the binding handles for an interface, or object UUIDs, from an
entry in the name service database. (Server).

rpc_ns_entry_expand_name()
Expands the name of a name service entry. (Client, server, or
management).

rpc_ns_entry_object_inq_begin()
Creates an inquiry context for viewing the objects of an entry in the name
service database. (Client, server, or management).

rpc_ns_entry_object_inq_done()
Deletes the inquiry context for viewing the objects of an entry in the name
service database. (Client, server, or management).

rpc_ns_entry_object_inq_next()
Returns one object at a time from an entry in the name service database.
(Client, server, or management).

rpc_ns_group_delete()
Deletes a group attribute. (Client, server, or management).

rpc_intro(3rpc)

374 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_group_mbr_add()
Adds an entry name to a group; if necessary, creates the entry. (Client,
server, or management).

rpc_ns_group_mbr_inq_begin()
Creates an inquiry context for viewing group members. (Client, server, or
management).

rpc_ns_group_mbr_inq_done()
Deletes the inquiry context for a group. (Client, server, or management).

rpc_ns_group_mbr_inq_next()
Returns one member name at a time from a group. (Client, server, or
management).

rpc_ns_group_mbr_remove()
Removes an entry name from a group. (Client, server, or management).

rpc_ns_import_ctx_add_eval()
Adds an evaluation routine to an import context. (Client).

rpc_ns_mgmt_binding_unexport()
Removes multiple binding handles, or object UUIDs, from an entry in the
name service database. (Management).

rpc_ns_mgmt_entry_create()
Creates an entry in the name service database. (Management).

rpc_ns_mgmt_entry_delete()
Deletes an entry from the name service database. (Management).

rpc_ns_mgmt_entry_inq_if_ids()
Returns the list of interfaces exported to an entry in the name service
database. (Client, server, or management).

rpc_ns_mgmt_free_codesets()
Frees a code sets array that has been allocated in memory. (Client).

rpc_ns_mgmt_handle_set_exp_age()
Sets a handle’s expiration age for local copies of name service data.
(Client, server, or management).

rpc_ns_mgmt_inq_exp_age()
Returns the application’s global expiration age for local copies of name
service data. (Client, server, or management).

rpc_ns_mgmt_read_codesets()
Reads the code sets attribute associated with an RPC server entry in the
name service database. (Client).

rpc_ns_mgmt_remove_attribute()
Removes an attribute from an RPC server entry in the name service
database. (Server, management).

rpc_ns_mgmt_set_attribute()
Adds an attribute to an RPC server entry in the name service database.
(Server, management).

rpc_ns_mgmt_set_exp_age()
Modifies the application’s global expiration age for local copies of name
service data. (Client, server, or management).

rpc_ns_profile_delete()
Deletes a profile attribute. (Client, server, or management).

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 375

rpc_ns_profile_elt_add()
Adds an element to a profile. If necessary, creates the entry. (Client, server,
or management).

rpc_ns_profile_elt_inq_begin()
Creates an inquiry context for viewing the elements in a profile. (Client,
server, or management).

rpc_ns_profile_elt_inq_done()
Deletes the inquiry context for a profile. (Client, server, or management).

rpc_ns_profile_elt_inq_next()
Returns one element at a time from a profile. (Client, server, or
management).

rpc_ns_profile_elt_remove()
Removes an element from a profile. (Client, server, or management).

rpc_object_inq_type()
Returns the type of an object. (Server).

rpc_object_set_inq_fn()
Registers an object inquiry function. (Server).

rpc_object_set_type()
Assigns the type of an object. (Server).

rpc_protseq_vector_free()
Frees the memory used by a vector and its protocol sequences. (Client or
server).

rpc_rgy_get_codesets()
Gets supported code sets information from the local host. (Client, server).

rpc_rgy_get_max_bytes()
Gets the maximum number of bytes that a code set uses to encode one
character. (Client, server).

rpc_server_inq_bindings()
Returns binding handles for communication with a server. (Server).

rpc_server_inq_if()
Returns the manager entry point vector registered for an interface. (Server).

rpc_server_listen()
Tells the RPC runtime to listen for remote procedure calls. (Server).

rpc_server_register_auth_info()
Registers authentication information with the RPC runtime. (Server).

rpc_server_register_if()
Registers an interface with the RPC runtime. (Server).

rpc_server_unregister_if()
Unregisters an interface from the RPC runtime. (Server).

rpc_server_use_all_protseqs()
Tells the RPC runtime to use all supported protocol sequences for receiving
remote procedure calls. (Server).

rpc_server_use_all_protseqs_if()
Tells the RPC runtime to use all the protocol sequences and endpoints
specified in the interface specification for receiving remote procedure calls.
(Server).

rpc_intro(3rpc)

376 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_use_protseq()
Tells the RPC runtime to use the specified protocol sequence for receiving
remote procedure calls. (Server).

rpc_server_use_protseq_ep()
Tells the RPC runtime to use the specified protocol sequence combined
with the specified endpoint for receiving remote procedure calls. (Server).

rpc_server_use_protseq_if()
Tells the RPC runtime to use the specified protocol sequence combined
with the endpoints in the interface specification for receiving remote
procedure calls. (Server).

rpc_sm_allocate()
Allocates memory within the RPC stub memory management scheme.
(Usually server, possibly client).

rpc_sm_client_free()
Frees memory allocated by the current memory allocation and freeing
mechanism used by the client stubs. (Client).

rpc_sm_destroy_client_context()
Reclaims the client memory resources for a context handle, and sets the
context handle to NULL. (Client).

rpc_sm_disable_allocate()
Releases resources and allocated memory within the RPC stub memory
management scheme. (Client).

rpc_sm_enable_allocate()
Enables the stub memory management environment. (Client).

rpc_sm_free()
Frees memory allocated by the rpc_sm_allocate() routine. (Usually server,
possibly client).

rpc_sm_get_thread_handle()
Gets a thread handle for the stub memory management environment.
(Usually server, possibly client).

rpc_sm_set_client_alloc_free()
Sets the memory allocation and freeing mechanism used by the client
stubs. (Client).

rpc_sm_set_thread_handle()
Sets a thread handle for the stub memory management environment.
(Usually server, possibly client).

rpc_sm_swap_client_alloc_free()
Exchanges the current memory allocation and freeing mechanism used by
the client stubs with one supplied by the client. (Client).

rpc_string_binding_compose()
Combines the components of a string binding into a string binding. (Client
or server).

rpc_string_binding_parse()
Returns, as separate strings, the components of a string binding. (Client or
server).

rpc_string_free()
Frees a character string allocated by the runtime. (Client, server, or
management).

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 377

uuid_compare()
Compares two UUIDs and determines their order. (Client, server, or
management).

uuid_create()
Creates a new UUID. (Client, server, or management).

uuid_create_nil()
Creates a nil UUID. (Client, server, or management).

uuid_equal()
Determines if two UUIDs are equal. (Client, server, or management).

uuid_from_string()
Converts a string UUID to its binary representation. (Client, server, or
management).

uuid_hash()
Creates a hash value for a UUID. (Client, server, or management).

uuid_is_nil()
Determines if a UUID is nil. (Client, server, or management).

uuid_to_string()
Converts a UUID from a binary representation to a string representation.
(Client, server, or management).

Environment Variables

The RPC NSI routines use the following environment variables:

v RPC_DEFAULT_ENTRY

Designates the default entry in the name service database that the import and
lookup routines use as the starting point to search for binding information for a
compatible server. Normally, the starting entry is a profile.

An application that uses a default entry name must define this environment
variable. The RPC runtime does not provide a default.

For example, suppose that a client application needs to search the name service
database for a server binding handle. The application can use the
rpc_ns_binding_import_begin() routine as part of the search. If so, the
application must specify, to the routine’s entry_name parameter, the name of the
entry in the name service database at which to begin the search. If the search is
to begin at the entry that the RPC_DEFAULT_ENTRY environment variable
specifies, then the application must specify the value NULL to parameter
entry_name in rpc_ns_binding_import_begin() .

v RPC_DEFAULT_ENTRY_SYNTAX

Specifies the syntax of the name provided in the RPC_DEFAULT_ENTRY
environment variable. In addition, provides the syntax for those RPC NSI routines
that allow a default value for the name syntax argument.

If the RPC_DEFAULT_ENTRY_SYNTAX environment variable is not defined, the
RPC runtime uses the rpc_c_ns_syntax_dce name syntax.

(For the valid name syntaxes in this reference page and for the valid syntax
values, see the table in the description of the frequently used routine argument
name_syntax, which appears later in this reference page.)

Optionally, each application defines either or both of the first two environment
variables. The application can change the value of either one, or both, at any time
during runtime.

rpc_intro(3rpc)

378 IBM DCE for AIX, Version 2.2: Application Development Reference

RPC Data Types and Structures

The following subsections contain the data types and structures used by client,
server, and management application programs.

Much of the information in this section is derived from the IBM DCE for AIX, Version
2.2: Application Development Guide . You may want to refer to the appropriate
volume of this book as you read this section. For example, this section contains a
brief description of a binding handle. The IBM DCE for AIX, Version 2.2: Application
Development Guide—Core Components explains binding handles in detail. It also
explains concepts related to binding handles, such as binding information and string
bindings.

Binding Handle
A binding handle is a pointer-size opaque variable containing information
the RPC runtime uses to manage binding information. The RPC runtime
uses binding information to establish a client/server relationship that allows
the execution of remote procedure calls.

Based on the context where it is created, a binding handle is considered a
server binding handle or a client binding handle.

A server binding handle is a reference to the binding information necessary
for a client to establish a relationship with a specific server. Many RPC API
runtime routines return a server binding handle that you can use to make a
remote procedure call.

A server binding handle refers to several components of binding
information. One is the network address of a server’s host system. Each
server instance has one or more transport addresses (endpoints). A
well-known endpoint is a stable address on the host, while a dynamic
endpoint is an address that the RPC runtime requests for the server. Some
transport protocols provide fewer well-known endpoints than dynamic
endpoints.

If binding information contains an endpoint, the corresponding binding
handle is a fully bound binding handle. If the information lacks an endpoint,
the binding handle is a partially bound binding handle.

The RPC runtime creates and provides a client binding handle to a called
remote procedure as the handle_t parameter. The client binding handle
contains information about the calling client. A client binding handle cannot
be used to make a remote procedure call. A server uses the client binding
handle. The rpc_binding_server_from_client() routine converts a client
binding handle to a server binding handle. You can use the resulting server
binding handle to make a remote procedure call.

For an explanation of making a remote procedure call with a partially bound
binding handle, see the IBM DCE for AIX, Version 2.2: Application
Development Guide—Core Components. For an explanation of failures
associated with such a call, see the explanation of status code
rpc_s_wrong_boot_time in the IBM DCE for AIX, Version 2.2: Problem
Determination Guide.

Binding information can contain an object UUID. The default object UUID
associated with a binding handle is a nil UUID. Clients can obtain a nonnil
UUID in various ways, such as from a string representation of binding
information (a string binding), or by importing it.

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 379

The following table contains the RPC runtime routines that operate on
binding handles. The table also specifies the type of binding handle, client
or server, allowed.

Table 14. Client and Server Binding Handles
Routine Input Argument Output Argument

rpc_binding_copy() Server Server
rpc_binding_free() Server None
rpc_binding_from_string_binding() None Server
rpc_binding_inq_auth_client() Client None
rpc_binding_inq_auth_info() Server None
rpc_binding_inq_object() Server or client None
rpc_binding_reset() Server None
rpc_binding_server_from_client() Client Server
rpc_binding_set_auth_info() Server None
rpc_binding_set_object() Server None
rpc_binding_to_string_binding() Server or client None
rpc_binding_vector_free() Server None
rpc_ns_binding_export() Server None
rpc_ns_binding_import_next() None Server
rpc_ns_binding_inq_entry_name() Server None
rpc_ns_binding_lookup_next() None Server
rpc_ns_binding_select() Server Server
rpc_server_inq_bindings() None Server

If the input argument type is only a client or only a server, the routines
return the status code rpc_s_wrong_kind_of_binding when an application
provides the incorrect binding handle type.

An application can share a single binding handle across multiple threads of
execution. The RPC runtime, instead of the application, manages binding
handle concurrency control across concurrent remote procedure calls that
use a single binding handle. However, the client application has
responsibility for binding handle concurrency control for operations that read
or modify a binding handle.

The related routines are as follows:

v rpc_binding_free()

v rpc_binding_reset()

v rpc_binding_set_auth_info()

v rpc_binding_set_object()

v rpc_ep_resolve_binding()

v rpc_mgmt_set_com_timeout()

For example, suppose an application shares a binding handle across two
threads of execution and it resets the binding handle endpoint in one of the
threads (by calling rpc_binding_reset()). The binding handle in the other
thread is then also reset. Similarly, freeing the binding handle in one thread
(by calling rpc_binding_free()) frees the binding handle in the other thread.

rpc_intro(3rpc)

380 IBM DCE for AIX, Version 2.2: Application Development Reference

If you do not want this effect, your application can create a copy of a
binding handle by calling rpc_binding_copy() . An operation on one binding
handle then has no effect on the second binding handle.

Clients and servers can access and set object UUIDs by using
rpc_binding_inq_object() and rpc_binding_set_object() .

Routines requiring a binding handle as an argument show a data type of
rpc_binding_handle_t . Binding handle arguments are passed by value.

Binding Vector
The binding vector data structure contains a list of binding handles over
which a server application can receive remote procedure calls.

The binding vector contains a count member (count), followed by an array
of binding handle (binding_h) elements.

The C language representation of a binding vector is as follows:
typedef struct {

unsigned32 count;
rpc_binding_handle_t binding_h[1];
} rpc_binding_vector_t;

The RPC runtime creates binding handles when a server application
registers protocol sequences. To obtain a binding vector, a server
application calls the rpc_server_inq_bindings() routine.

A client application obtains a binding vector of compatible servers from the
name service database by calling the routine
rpc_ns_binding_lookup_next() .

In both routines, the RPC runtime allocates memory for the binding vector.
An application calls the rpc_binding_vector_free() routine to free the
binding vector.

An application, when it is finished with an individual binding handle in a
binding vector, frees the binding handle by calling rpc_binding_free() . This
routine also sets the corresponding pointer in the binding vector to NULL.

Note that you should not decrement the count field in a binding vector
structure when you call the rpc_binding_free() routine to free an individual
binding handle.

The following routines require a binding vector and show an argument data
type of rpc_binding_vector_t :

v rpc_binding_vector_free()

v rpc_ep_register()

v rpc_ep_register_no_replace()

v rpc_ep_unregister()

v rpc_ns_binding_export()

v rpc_ns_binding_lookup_next()

v rpc_ns_binding_select()

v rpc_server_inq_bindings()

Boolean
Routines that require a Boolean-valued argument or return a Boolean value

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 381

show a data type of boolean32 . DCE RPC provides the integer constants
TRUE (1) and FALSE (0) for use as Boolean values.

Code Set
A code set is a mapping of the members of a character set to specific
numeric code values. Different code sets use different numeric code values
to represent the same character. In general, operating systems use string
names to refer to the code sets that the system supports. It is common for
different operating systems to use different string names to refer to the
same code set.

Distributed applications that run in a network of heterogeneous operating
systems need to be able to identify the character sets and code sets that
client and server machines are using to avoid losing data during
communications between each other.

DCE RPC supports transparent automatic conversion for characters that
are members of the DCE Portable Character Set (DCE PCS) and which are
encoded in the ASCII and U.S. EBCDIC code sets. The RPC runtime
automatically converts DCE PCS characters encoded in ASCII or U.S.
EBCDIC, if necessary, when they are passed over the network between
client and server.

DCE RPC applications that need to transfer character data that is outside
the DCE PCS character set and ASCII and U.S. EBCDIC encodings
(international characters) can use special IDL constructs and a set of DCE
RPC routines to set up their applications so that they can pass this
international character data with minimal or no loss between client and
server applications. An example of such an application would be one that
used European, Chinese, or Japanese characters mapped to EUC, Big5, or
SJIS encodings. Together, the IDL constructs and the DCE RPC routines
provide a method of automatic code set conversion for applications that
transfer international character data in heterogeneous code set
environments.

DCE provides a mechanism to uniquely identify a code set; this mechanism
is the code set registry. The code set registry assigns a unique identifier to
each character set and code set. Because the registry provides code set
identifiers that are consistent across a network of heterogeneous operating
systems, it provides a method for clients and servers in a heterogeneous
environment to use to identify code sets without having to rely on operating
system-specific string names.

The code set data structure contains the following fields:

c_set A 32–bit hexadecimal value that uniquely identifies the code set.
This value is one of the registered values in the code set registry.

c_max_bytes
A 16–bit decimal value that indicates the maximum number of bytes
this code set uses to encode one character in this code set.

ch_sets_num
A 16–bit decimal value that indicates the number of character sets
supported by the code set.

ch_sets
A 32–bit pointer to a dynamically allocated array of OSF assigned
character set identifiers.

The following routines require a code set value:

rpc_intro(3rpc)

382 IBM DCE for AIX, Version 2.2: Application Development Reference

v cs_byte_from_netcs()

v cs_byte_local_size()

v cs_byte_net_size()

v cs_byte_to_netcs()

v dce_cs_loc_to_rgy()

v dce_cs_rgy_to_loc()

v rpc_cs_get_tags()

v rpc_cs_binding_set_tags()

v rpc_rgy_get_max_bytes()

In these routines, the code set value shows a data type of unsigned32 .

The RPC stub buffer sizing routines *_net_size() and *_local_size use the
value of c_max_bytes to calculate the size of a buffer for code set
conversion.

The RPC character set compatibility evaluation routine
rpc_cs_char_set_compat_check uses the value of ch_sets_num and
values pointed to by ch_sets to evaluate character set compatibility
between a client and a server.

The C language representation of a code set structure is as follows:
typedef struct {

long c_set;
short c_max_bytes;
short ch_sets_num;
short *ch_sets;

} rpc_cs_c_set_t;

The code set data structure is a member of the code sets array.

Code Sets Array

The code sets array contains the list of the code sets that a client or server
supports. The structure consists of a version number member (version),
followed by a count member (count), followed by an array of code set data
structures (rpc_cs_c_set_t). This array is declared to be a conformant array
so that its size will be determined at runtime. The count member indicates
the number of code sets contained in the array.

The first element in the code sets array represents the client or server
process’s local code set.

DCE RPC routines for character/code sets compatibility evaluation and
code set conversion support one intermediate code set, which is the ISO
10646 Universal character/code set (UCS-2, Level 1). Consequently, DCE
requires host systems running applications that transfer international
characters to provide converters for this code set.

The remaining elements in the array represent other code sets that the
process’s host supports (that is, code sets for which the system provides
converters).

The C language representation of a code set structure is as follows:
typedef struct rpc_codeset_mgmt_t {

unsigned32 version;
long count;
[size_is(count)] rpc_cs_c_set_t codesets[];

} rpc_codeset_mgmt_t, *rpc_codeset_mgmt_p_t;

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 383

Client and server applications and DCE RPC routines for automatic code
set conversion obtain a code sets array by calling the routine
rpc_rgy_get_codesets() . Server applications user the code sets array as
input to the rpc_ns_mgmt_set_attribute() routine, which registers their
supported code sets in the name service database. Client applications look
up a server’s supported code sets in the name service database by calling
the routine rpc_ns_mgmt_read_codesets() and then use their code sets
array to evaluate their supported code sets against the code sets that the
server supports.

The following DCE RPC routines require a code sets array and show an
argument data type of rpc_codeset_mgmt_t :

v rpc_cs_set_compat_check

v rpc_ns_mgmt_read_codesets()

v rpc_rgy_get_codesets()

Server applications that use rpc_ns_mgmt_set_attribute() to register their
supported code sets in the name service database also specify the code
sets array, but show an argument data type of void .

Conversion Type
The conversion type data structure is an enumerated type that RPC stub
buffer sizing routines return to indicate whether character data conversion is
necessary and whether or not existing storage is sufficient for the stub to
store the results of the conversion. The conversion type can be one of the
following values:

idl_cs_no_convert
No code set conversion is required.

idl_cs_in_place_convert
Code set conversion can be performed in a single storage area.

idl_cs_new_buffer_convert
The converted data must be written to a new storage area.

The C language representation of a conversion type structure is as follows:
typedef enum {

idl_cs_no_convert,
idl_cs_in_place_convert,
idl_cs_new_buffer_convert,

} idl_cs_convert_t;

Note: In this release, the DCE RPC supplied stub buffer sizing routines do
not support the idl_cs_in_place_convert conversion type. The
reason is that the actual conversion method used is determined at
runtime. There is no guarantee that the conversion can be performed
in a single storage area.

Endpoint Map Inquiry Handle

An endpoint map inquiry handle is a pointer-size opaque variable containing
information the RPC runtime uses to access the elements in a local or
remote endpoint map. The description of the rpc_ep_register() routine lists
the contents of an element.

The following routines require an endpoint map inquiry handle and show an
argument data type of rpc_ep_inq_handle_t :

v rpc_mgmt_ep_elt_inq_begin()

rpc_intro(3rpc)

384 IBM DCE for AIX, Version 2.2: Application Development Reference

v rpc_mgmt_ep_elt_inq_done()

v rpc_mgmt_ep_elt_inq_next()

Global Name

The NSI uses global names for the names of name service entries. A global
name includes both a cell name and a cell-relative name composed of a
directory pathname and a leaf name. For a description of global names, see
the IBM DCE for AIX, Version 2.2: Administration Guide—Introduction. The
cell name is assigned to a cell root at its creation. When you specify only a
cell-relative name to an NSI operation, the NSI automatically expands the
name into a global name by inserting the local cell name. Thus, the name
of a member in a group or in a profile element is always stored as a global
name. When returning the name of a name service entry or a member, NSI
operations return global names.

For example, even when you specify a cell-relative name as the
member_name parameter to routine rpc_ns_group_mbr_add() , when you
read that group member (by calling rpc_ns_group_mbr_inq_next()), you
will receive the corresponding global name.

IDL Encoding Service Handle
An IDL encoding service handle is a pointer-size opaque variable that
points to functions that control how data encoding or decoding is performed.
The following routines return an IDL encoding service handle and show an
argument data type of idl_es_handle_t :

v idl_es_encode_incremental()

v idl_es_decode_buffer()

v idl_es_decode_incremental()

v idl_es_encode_dyn_buffer()

v idl_es_encode_fixed_buffer()

The idl_es_handle_free() and idl_es_inq_encoding_id() routines require
an IDL encoding service handle.

Note that in order to use the IDL encoding services, you must include a
header file that has been generated for an application that has used the
encode and decode ACF attributes on one or more of its operations.

Interface Handle and Specification

An interface handle is a pointer-size opaque variable containing information
the RPC runtime uses to access the interface specification data structure.

The DCE IDL compiler automatically creates an interface specification data
structure from each IDL file and creates a global variable of type
rpc_if_handle_t for the interface specification.

The DCE IDL compiler places an interface handle declaration in the
generated interface-name.h file. The compiler generates this header file for
each interface.

Routines requiring the interface handle as an argument show a data type of
rpc_if_handle_t .

The form of each interface handle name is as follows:

v For the client:

if-name_v major-version_ minor-version_c_ifspec

v For the server:

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 385

if-name_v major-version_ minor-version_s_ifspec

where

v The if-name variable is the interface identifier specified in the IDL file.

v The major-version variable is the interface’s major-version number
specified in the IDL file.

v The minor-version variable is the interface’s minor-version number
specified in the IDL file.

An example is notes_v1_2_c_ifspec .

The maximum combined length of the interface identifier and interface
version number is 19 characters.

Since the major-version and minor-version numbers must each be at least 1
character, the interface name can be no more than 17 characters. This
limits the interface handle name to 31 or fewer characters.

No concurrency control is required for interface handles.

The following routines require an interface handle and show an argument
data type of rpc_if_handle_t :

v rpc_ep_register()

v rpc_ep_register_no_replace()

v rpc_ep_resolve_binding()

v rpc_ep_unregister()

v rpc_if_inq_id()

v rpc_ns_binding_export()

v rpc_ns_binding_import_begin()

v rpc_ns_binding_lookup_begin()

v rpc_ns_binding_unexport()

v rpc_server_inq_if()

v rpc_server_register_if()

v rpc_server_unregister_if()

v rpc_server_use_all_protseqs_if()

v rpc_server_use_protseq_if()

Interface Identifier

The interface identifier (id) data structure contains the interface UUID and
major-version and minor-version numbers of an interface. The interface
identifier is a subset of the data contained in the interface specification
structure.

The C language representation of an interface identifier structure is as
follows:
typedef struct {

uuid_t uuid;
unsigned16 vers_major;
unsigned16 vers_minor;
} rpc_if_id_t;

rpc_intro(3rpc)

386 IBM DCE for AIX, Version 2.2: Application Development Reference

Routines that require an interface identifier structure show a data type of
rpc_if_id_t . In those routines, the application is responsible for providing
memory for the structure.

The rpc_if_inq_id() routine returns the interface identifier from an interface
specification. The following routines require an interface identifier:

v rpc_mgmt_ep_elt_inq_begin()

v rpc_mgmt_ep_elt_inq_next()

v rpc_mgmt_ep_unregister()

v rpc_ns_mgmt_binding_unexport()

v rpc_ns_profile_elt_add()

v rpc_ns_profile_elt_inq_begin()

v rpc_ns_profile_elt_inq_next()

v rpc_ns_profile_elt_remove()

Interface Identifier Vector
The interface identifier vector data structure contains a list of interfaces
offered by a server. The interface identifier vector contains a count member
(count), followed by an array of pointers to interface identifiers (rpc_if_id_t).

The C language representation of an interface identifier vector is as follows:
typedef struct {

unsigned32 count;
rpc_if_id_t *if_id[1];
} rpc_if_id_vector_t;

The interface identifier vector is a read-only vector. To obtain a vector of the
interface identifiers registered by a server with the RPC runtime, an
application calls the rpc_mgmt_inq_if_ids() routine. To obtain a vector of
the interface identifiers exported by a server to a name service database,
an application calls the rpc_ns_mgmt_entry_inq_if_ids() routine.

The RPC runtime allocates memory for the interface identifier vector. The
application calls the rpc_if_id_vector_free() routine to free the interface
identifier vector.

Manager Entry Point Vector
The manager entry point vector (EPV) is an array of pointers to remote
procedures.

The DCE IDL compiler automatically generates a manager EPV data type,
into the header file generated by the IDL compiler, for use in constructing
manager EPVs. The data type is named as follows:

if-name_v major-version_ minor-version_epv_t

where

v The if-name variable is the interface identifier specified in the IDL file.

v The major-version variable is the interface’s major-version number
specified in the IDL file.

v The minor-version variable is the interface’s minor-version number
specified in the IDL file.

By default, the DCE IDL compiler automatically creates and initializes a
manager EPV. DCE IDL creates this EPV assuming that a manager routine
of the same name exists for each procedure in the interface (as specified in
the IDL file).

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 387

The DCE IDL compiler can define a client entry point vector with addresses
of local routines. Client applications can call these routines. For more
information about client entry point vectors, see the explanation of the
−cepv argument in the idl(1rpc) reference page.

If the server offers multiple implementations of the same interface, the
server must create additional manager EPVs, one for each implementation.
Each EPV must contain exactly one entry point (address of a function) for
each procedure defined in the IDL file. The server application declares and
initializes one manager EPV variable of type if-name_v major-version_
minor-version_epv_t for each implementation of the interface.

The rpc_server_register_if() and rpc_server_inq_if() routines use the
manager EPV data type and show the manager EPV argument as having
an rpc_mgr_epv_t data type.

Name Service Handle

A name service handle is a pointer-size opaque variable containing
information the RPC runtime uses to return the following RPC data from the
name service database:

v Server binding handles

v UUIDs of resources offered by a server

v Profile members

v Group members

The following routines require a name service handle and show an
argument data type of rpc_ns_handle_t :

v rpc_ns_binding_import_begin()

v rpc_ns_binding_import_next()

v rpc_ns_binding_import_done()

v rpc_ns_binding_lookup_begin()

v rpc_ns_binding_lookup_next()

v rpc_ns_binding_lookup_done()

v rpc_ns_entry_object_inq_begin()

v rpc_ns_entry_object_inq_next()

v rpc_ns_entry_object_inq_done()

v rpc_ns_group_mbr_inq_begin()

v rpc_ns_group_mbr_inq_next()

v rpc_ns_group_mbr_inq_done()

v rpc_ns_profile_elt_inq_begin()

v rpc_ns_profile_elt_inq_next()

v rpc_ns_profile_elt_inq_done()

v rpc_ns_mgmt_handle_set_exp_age()

The scope of a name service handle is from a *_begin() routine through the
corresponding *_done() routine.

Applications have responsibility for concurrency control of name service
handles across threads.

Protocol Sequence

rpc_intro(3rpc)

388 IBM DCE for AIX, Version 2.2: Application Development Reference

A protocol sequence is a character string identifying the network protocols
used to establish a relationship between a client and server. The protocol
sequence contains a set of options that the RPC runtime must know about.
The following options are in this set:

v The RPC protocol used for communications (choices are ncacn and
ncad).

v The format used in the network address supplied in the binding (choice is
ip).

v The transport protocol used for communications (choices are tcp and
udp).

Because only certain combinations of these options are valid (are useful for
interoperation), RPC provides predefined strings that represent the valid
combinations. RPC applications use only these strings.

The following table contains predefined strings representing valid protocol
sequences. In the descriptions NCA is an abbreviation of Network
Computing Architecture.

Table 15. Valid Protocol Sequences
Protocol Sequence Description

ncacn_ip_tcp NCA Connection over Internet Protocol:
Transmission Control Protocol

ip or ncadg_ip_udp NCA Datagram over Internet Protocol: User
Datagram Protocol

A server application can use a particular protocol sequence only if the
operating system software supports that protocol. A server chooses to
accept remote procedure calls over some or all of the supported protocol
sequences.

Client and server applications can determine if a protocol sequence is
supported by both the RPC runtime and the operating system. The
applications make this determination by calling the following routines:

v rpc_network_inq_protseqs()

v rpc_network_is_protseq_valid()

The following routines allow server applications to register protocol
sequences with the runtime:

v rpc_server_use_all_protseqs()

v rpc_server_use_all_protseqs_if()

v rpc_server_use_protseq()

v rpc_server_use_protseq_ep()

v rpc_server_use_protseq_if()

Those routines requiring a protocol sequence argument show a data type of
unsigned_char_t * .

A client can use the protocol sequence strings to construct a string binding
using the rpc_string_binding_compose() routine.

Protocol Sequence Vector
The protocol sequence vector data structure contains a list of protocol
sequences over which the RPC runtime can send or receive remote

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 389

procedure calls. The protocol sequence vector contains a count member
(count), followed by an array of pointers to protocol sequence strings
(protseq).

The C language representation of a protocol sequence vector is as follows:
typedef struct {

unsigned32 count;
unsigned_char_t *protseq[1];
} rpc_protseq_vector_t;

The protocol sequence vector is a read-only vector. To obtain a protocol
sequence vector, a server application calls the
rpc_network_inq_protseqs() routine. The RPC runtime allocates memory
for the protocol sequence vector. The server application calls the
rpc_protseq_vector_free() routine to free the protocol sequence vector.

Statistics Vector
The statistics vector data structure contains statistics from the RPC runtime
on a per address space basis. The statistics vector contains a count
member (count), followed by an array of statistics. Each array element
contains an unsigned32 value. The following list describes the statistics
indexed by the specified constant:

rpc_c_stats_calls_in
The number of remote procedure calls received by the runtime.

rpc_c_stats_calls_out
The number of remote procedure calls initiated by the runtime.

rpc_c_stats_pkts_in
The number of network packets received by the runtime.

rpc_c_stats_pkts_out
The number of network packets sent by the runtime.

The C language representation of a statistics vector is as follows:
typedef struct {

unsigned32 count;
unsigned32 stats[1];
} rpc_stats_vector_t;

To obtain runtime statistics, an application calls the rpc_mgmt_inq_stats()
routine. The RPC runtime allocates memory for the statistics vector. The
application calls the rpc_mgmt_stats_vector_free() routine to free the
statistics vector.

String Binding

A string binding contains the character representation of a binding handle.

String bindings are a convenient way of representing portions of a binding
handle. However, you cannot use string bindings directly to make remote
procedure calls. You must first call the routine
rpc_binding_from_string_binding() , which converts a string binding to a
binding handle.

A string binding does not contain all the information from a binding handle.
For example, a call to rpc_binding_to_string_binding() does not translate
the authentication information sometimes associated with a binding handle
into the resulting string binding.

You can begin the development of a distributed application by having its
servers communicate their binding information to clients by using string

rpc_intro(3rpc)

390 IBM DCE for AIX, Version 2.2: Application Development Reference

bindings. This communication allows a server to establish a client/server
relationship without using the local endpoint map or the name service
database.

In this case, the server calls none of the rpc_ep_register() ,
rpc_ep_register_no_replace() , and rpc_ns_binding_export() routines.
Instead, the server calls only routine rpc_server_inq_bindings() to obtain
a vector of binding handles. The server obtains binding handles one at a
time from the vector and calls routine rpc_binding_to_string_binding() to
convert each binding handle into a string binding. The resulting string
binding is always fully bound and may contain a nonnil object UUID. The
server then makes some or all of its string bindings available to clients. One
way is placing the string bindings in a file to be read by clients or users or
both. Another way is delivering the string bindings to clients or users by
means of a file, mail, or paper.

You can continue the distributed application’s development by changing the
application so that servers use the local endpoint map and the name
service database to communicate their binding information.

To find the server, a client obtains a string binding containing a protocol
sequence that the client runtime supports and, optionally, an object UUID
that the client requires. The client then calls routine
rpc_binding_from_string_binding() to convert the string binding into a
server binding handle.

Other useful routines for working with string bindings are
rpc_string_binding_compose() , which creates a string binding from its
component parts, and rpc_string_binding_parse() , which separates a
string binding into its component parts.

The two formats of a string binding follow. The four fields represent the
object UUID, RPC protocol sequence, network address, and endpoint and
network options of the binding. A delimiter character such as @ (at sign) or
: (colon) separates each field. A string binding does not contain any
whitespace.
object-uuid @ rpc-prot-seq :
nw-addr [endpoint, opt ...]

or
object-uuid @ rpc-prot-seq :
nw-addr [endpoint = endpoint, opt
...]

object-uuid

This field specifies the UUID of the object operated on by the
remote procedure that is called with this string binding. The RPC
runtime, at the server, maps the object’s type to a manager entry
point vector (EPV) to invoke the correct manager routine. The
explanation of the routine rpc_server_register_if() discusses
mapping object UUIDs to manager EPVs.

This field is optional. If you do not provide it the RPC runtime
assumes a nil UUID.

@ This symbol is the delimiter character for the object UUID field. If
you specify an object UUID you must follow it with this symbol.

rpc-protocol-sequence

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 391

This field specifies the protocol sequence used for making remote
procedure calls. The valid protocol sequences are as follows:
ncacn_ip_tcp
ncacn_dnet_nsp
ncacn_osi_dna
ncadg_ip_udp
ncadg_dds

More information about these valid protocol sequences appears in
the preceding table.

This field is required.

: This symbol is the delimiter character for the RPC protocol
sequence field.

nw-addr

This field specifies the address (addr) of a host on a network (nw)
that receives remote procedure calls made with this string binding.
The format and content of the network address depends on the
value of rpc-protocol-sequence as follows:

ncacn_ip_tcp and ncadg_ip_udp

Specify an Internet address using the common Internet address
notation or host name.

Two examples with common Internet address notation are
128.10.2.30 and #126.15.1.28. The second example shows the use
of the optional # (number sign) character.

An example with a host name is ko .

If the specified host name is multihomed, the binding handle that is
returned from the routine rpc_binding_from_string_binding()
contains a host address. It is the first host address returned from
the system library call that translates a host name to a host address
for the network address format in the protocol sequence. To control
the host address used, specify the network address using the
common Internet address notation instead of a host name.

The network address field is optional. If you do not supply this field,
the string binding refers to your local host.

[This symbol is the delimiter character specifying that one endpoint
and zero or more options follow. If the string binding contains at
least one endpoint, this symbol is required.

endpoint

This field specifies the endpoint, or address of a specific server
instance on a host, to receive remote procedure calls made with
this string binding. Optionally the keyword endpoint= can precede
the endpoint specifier.

The format and content of the endpoint depends on the specified
protocol sequence as follows:

ncacn_ip_tcp and ncadg_ip_udp

The endpoint field is optional. For more information about
endpoints, see the information on binding handles in this reference
page.

rpc_intro(3rpc)

392 IBM DCE for AIX, Version 2.2: Application Development Reference

, This symbol is the delimiter character specifying that option data
follows. If an option follows, this delimiter is required.

option

This field specifies any options. Each option is specified as option
name= option value.

The format and content of the option depends on the specified
protocol sequence as follows:

ncacn_ip_tcp and ncadg_ip_udp

There are no Internet options.

The option field is optional.

] This symbol is the delimiter character specifying that one endpoint
and zero or more options precede. If the string binding contains at
least one endpoint, this symbol is required.

The \ (backslash) character is treated as an escape character for all string
binding fields.

Examples of valid string bindings follow. In each example obj-uuid
represents a UUID in string form. In other words, the symbol obj-uuid can
represent the UUID 308fb580-1eb2-11ca-923b-08002b1075a7.
obj-uuid@ncacn_ip_tcp:16.20.16.27[2001]
obj-uuid@ncacn_ip_tcp:16.20.16.27[endpoint=2001]

String UUID

A string UUID contains the character representation of a UUID. A string
UUID consists of multiple fields of hexadecimal characters. Each field has a
fixed length, and dashes separate the fields. An example of a string UUID
follows:
989c6e5c-2cc1-11ca-a044-08002b1bb4f5

When you supply a string UUID as an input argument to an RPC runtime
routine, you can enter the alphabetic hexadecimal characters in either
uppercase or lowercase letters. The RPC runtime routines that return a
string UUID always return the hexadecimal characters in lowercase letters.

The following routines require a string UUID:

v rpc_string_binding_compose()

v uuid_from_string()

The following routines return a string UUID:

v rpc_string_binding_parse()

v uuid_to_string()

Unsigned Character String

DCE RPC treats all characters in strings as unsigned characters. Those
routines with character string arguments show a data type of
unsigned_char_t * .

UUID Vector

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 393

The UUID vector data structure contains a list of UUIDs. The UUID vector
contains a count member (count), followed by an array of pointers to
UUIDs.

The C language representation of a UUID vector is as follows:
typedef struct
{

unsigned32 count;
uuid_t *uuid[1];

} uuid_vector_t;

An application constructs a UUID vector to contain object UUIDs to be
exported or unexported from the name service database. The following
routines require a UUID vector and show an argument data type of
uuid_vector_t :

v rpc_ep_register()

v rpc_ep_register_no_replace()

v rpc_ep_unregister()

v rpc_ns_binding_export()

v rpc_ns_binding_unexport()

v rpc_ns_mgmt_binding_unexport()

Permissions Required

To use the NSI routines to access entries in a Cell Directory Service (CDS)
database, you need access control list (ACL) permissions. Depending on the NSI
operation, you need ACL permissions to the parent directory or the CDS object
entry (the name service entry) or both.

The ACL permissions are as follows:

v To create an entry, you need insert permission to the parent directory.

v To read an entry, you need read permission to the CDS object entry.

v To write to an entry, you need write permission to the CDS object entry.

v To delete an entry, you need delete permission either to the CDS object entry or
to the parent directory.

v To test an entry, you need either test permission or read permission to the CDS
object entry.

Note that write permission does not imply read permission.

To find the ACL permissions for the NSI routines whose names begin with rpc_ns ,
see these routines’ reference pages.

The non-NSI routines whose names do not begin with rpc_ns do not need ACL
permissions, so their reference pages do not specify any.

Frequently Used Routine Parameters

A few parameters are common to many of the DCE RPC routines. These
parameters are described fully here and again briefly on the specific routine
reference pages.

binding

Used as an input or output parameter.

Returns a binding handle for making remote procedure calls to a server.

rpc_intro(3rpc)

394 IBM DCE for AIX, Version 2.2: Application Development Reference

A client obtains a binding handle by calling one of the following routines:

v rpc_binding_copy()

v rpc_binding_from_string_binding()

v rpc_ns_binding_import_next()

v rpc_ns_binding_select()

Creating a binding handle establishes a relationship between a client and a
server. However, the relationship does not involve any communications
between the client and server. The communications occur when a client
makes a remote procedure call.

As an input parameter to a remote procedure call, binding specifies a
binding handle that refers to binding information. The client’s RPC runtime
uses this binding information to make a remote procedure call to a server.

Server manager routines can extract client information from a client binding
handle by using the following routines:

v rpc_binding_inq_auth_client()

v rpc_binding_inq_object()

v rpc_binding_to_string_binding()

v rpc_string_binding_parse()

name

Used as an input/output parameter.

When used as an input parameter, the value of this parameter depends on
the syntax selected in the name_syntax parameter. If it is allowed by the
called routine, the value NULL specifies that the routine uses the name
specified in the RPC_DEFAULT_ENTRY environment variable. Specifying
NULL also has the called routine use the name syntax that the environment
variable RPC_DEFAULT_ENTRY_SYNTAX specifies.

For a name_syntax value of rpc_c_ns_syntax_dce , use the DCE naming
rules to specify parameter name.

As an output parameter, returns an entry in the name service database in
the form of a character string that includes a terminating null character. The
value of this parameter depends on the syntax selected in name_syntax.

For a name_syntax value of rpc_c_ns_syntax_dce , name is returned
using the DCE naming syntax.

The DCE RPC runtime allocates memory for the returned string. The
application is responsible for calling the rpc_string_free() routine to
deallocate the string.

If an application does not want a returned name string, the application
usually specifies NULL for this parameter. The one exception is routine
rpc_ns_entry_expand_name() ; it always returns a name string.

name_syntax

Used as an input parameter, an integer value that specifies the syntax of an
entry name. When allowed by the called routine, a value of
rpc_c_ns_syntax_default specifies that the routine uses the syntax
specified in the RPC_DEFAULT_ENTRY_SYNTAX environment variable.
The following table lists the valid syntaxes that applications can use in DCE
RPC for entries in the name service database.

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 395

Table 16. Valid Name Syntaxes
Constant Value Description

rpc_c_ns_syntax_default 0 Default syntax
rpc_c_ns_syntax_dce 3 DCE

The name_syntax parameter tells routines how to parse the entry name
specified in an input name parameter or specifies the syntax to use when
returning an entry name as an output name parameter.

If the RPC_DEFAULT_ENTRY_SYNTAX environment variable is not
defined, the RPC runtime uses the rpc_c_ns_syntax_dce name syntax.

string

Used as an input or output parameter.

Returns a character string, which always includes the terminating null
character \0. The DCE RPC runtime allocates memory for the returned
string. The application calls the rpc_string_free() routine to deallocate the
memory occupied by the string.

If there is no data for the requested string, the routine returns the string \0.
For example, if the string binding passed to routine
rpc_string_binding_parse() does not contain an object UUID, the routine
returns \0 as the value of the object UUID string. The application must call
the rpc_string_free() routine to deallocate the memory occupied by this
string.

If an application does not require a returned output string, the application
specifies NULL for this parameter.

status

Each routine in the RPC API returns a DCE status code indicating whether
the routine completed successfully or, if not, why not. A return value of
rpc_s_ok indicates success. All other return values signify routine failure.
The status codes listed for each RPC runtime routine are the most likely,
but not necessarily all, the status codes that the routine can return.

The status code argument has a data type of unsigned32 .

To translate a DCE status code to a text message, call the routine
dce_error_inq_text() .

Note that RPC exceptions are equivalent to RPC status codes. To identify
the status code that corresponds to a given exception, replace the _x_
string of the exception with the string _s_; for example, the exception
rpc_x_already_listening is equivalent to the status code
rpc_s_already_listening .

For more information about the RPC status codes, see the IBM DCE for
AIX, Version 2.2: Problem Determination Guide.

uuid

Used as an input or output parameter.

When you need to specify a nil UUID to a uuid input parameter in any of
the DCE RPC routines, you can supply the value NULL.

rpc_intro(3rpc)

396 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Introduction
and Style Guide, IBM DCE for AIX, Version 2.2: Application Development
Guide—Core Components, IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services, IBM DCE for AIX, Version 2.2: Command Reference,
IBM DCE for AIX, Version 2.2: Problem Determination Guide.

rpc_intro(3rpc)

Chapter 3. DCE Remote Procedure Call 397

cs_byte_from_netcs

Purpose

Converts international character data from a network code set to a local code set
prior to unmarshalling; used by client and server applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_from_netcs(
rpc_binding_handle_t binding
unsigned32 network_code_set_value
idl_byte *network_data
unsigned32 network_data_length
unsigned32 local_buffer_size
idl_byte *local_data
unsigned32 *local_data_length
error_status_t *status);

Parameters

Input
binding

Specifies the target binding handle from which to obtain code set
conversion information. When called from the client stub, this value is the
binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select() routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set that
was used to transmit character data over the network. In general, the
network code set is the code set that the client application’s code sets
evaluation routine has determined to be compatible for this client and
server. When the caller is the client stub, this value is the receiving tag.
When the caller is the server stub, this value is the sending tag.

network_data
A pointer to the international character data that has been received, in the
network code set encoding.

network_data_length
The number of idl_byte data elements to be converted. For a varying array
or a conformant varying array, this value is the local value of the length_is
variable. For a conformant array, this value is the local value of the size_is
variable. For a fixed array, the value is the array size specified in the
interface definition.

local_buffer_size
A pointer to the buffer size to be allocated to contain the converted data, in
units of cs_byte . The value specified in this parameter is the local buffer
size returned from the cs_byte_local_size() routine.

Output
local_data

A pointer to the converted data, in cs_byte format.

398 IBM DCE for AIX, Version 2.2: Application Development Reference

local_data_length
The length of the converted data, in units of cs_byte . NULL is specified if a
fixed array or varying array is to be converted.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The cs_byte_from_netcs() routine belongs to a set of DCE RPC routines for use
by client and server applications that are transferring international character data in
a heterogeneous character set and code sets environment.

The cs_byte_from_netcs() routine is one of the DCE RPC stub code set
conversion routines that RPC stubs use before they marshall or unmarshall data to
convert international character data to and from local and network code sets.

Client and server stubs call the cs_byte_ *_netcs() routines when the cs_byte type
has been specified as the local data type using the cs_char attribute in the attribute
configuration file for the application. (The cs_byte type is equivalent to the idl_byte
type.)

Client and server stubs call the cs_byte_from_netcs() routine before they
unmarshall the international character data received from the network. The routine
takes a binding handle, a code set value that identifies the code set used to transfer
international character data over the network, the address of the network data, in
idl_byte format, that may need to be converted, and the data length, in units of
idl_byte .

The routine compares the sending code set to the local code set currently in use. If
the routine finds that code set conversion is necessary, (because the local code set
differs from the code set specified to be used on the network), it determines which
host code set converter to call to convert the data and then invokes that converter.

The routine then returns the converted data, in cs_byte format. If the data is a
conformant or conformant varying array, the routine also returns the length of the
converted data, in units of cs_byte .

Applications can specify local data types other than cs_byte (the local data type for
which DCE RPC supplies stub code set conversion routines) with the cs_char ACF
attribute. In this case, the application must also supply local_type_to_netcs() and
local_type_from_netcs() stub conversion routines for this type.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

cs_byte_from_netcs(3rpc)

Chapter 3. DCE Remote Procedure Call 399

rpc_s_ok
Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain code set evaluation information. If this
error occurs in the server stub, an exception is raised to the client
application.

When running the host converter, the following errors can occur:

v rpc_s_ss_invalid_char_input

v rpc_s_ss_short_conv_buffer

When invoked from the server stub, the routine calls the dce_cs_loc_to_rgy()
routine and the host converter routines. If these routines return an error, an
exception is raised to the client application.

Related Information

Functions: cs_byte_local_size(3rpc) , cs_byte_net_size(3rpc) ,
cs_byte_to_netcs(3rpc) , dce_cs_loc_to_rgy(3rpc) , wchar_t_from_netcs(3rpc) ,
wchar_t_to_netcs(3rpc) .

cs_byte_from_netcs(3rpc)

400 IBM DCE for AIX, Version 2.2: Application Development Reference

cs_byte_local_size

Purpose

Calculates the necessary buffer size for code set conversion from a network code
set to a local code set prior to unmarshalling; used by client and server stubs but
not directly by applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_local_size(
rpc_binding_handle_t binding
unsigned32 network_code_set_value
unsigned32 network_buffer_size
idl_cs_convert_t *conversion_type
unsigned32 *local_buffer_size
error_status_t *status);

Parameters

Input
binding

Specifies the target binding handle from which to obtain buffer size
evaluation information. When called from the client stub, this value is the
binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select() routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set used
to transmit character data over the network. In general, the network code
set is the code set that the client application’s code sets evaluation routine
has determined to be compatible for this client and server. When the caller
is the client stub, this value is the receiving tag. When the caller is the
server stub, this value is the sending tag.

network_buffer_size
The size, in units of idl_byte , of the buffer that is allocated for the
international character data. For a conformant or conformant varying array,
this value is the network value of the size_is variable for the array; that is,
the value is the size of the unmarshalled string if no conversion is done.

Output
conversion_type

A pointer to the enumerated type defined in dce/idlbase.h that indicates
whether data conversion is necessary and whether or not the existing buffer
is sufficient for storing the results of the conversion. The conversion type
can be one of the following values:

idl_cs_no_convert
No code set conversion is required.

idl_cs_in_place_convert
Code set conversion can be performed in the current buffer.

idl_cs_new_buffer_convert
The converted data must be written to a new buffer.

Chapter 3. DCE Remote Procedure Call 401

local_buffer_size
A pointer to the buffer size that needs to be allocated to contain the
converted data, in units of cs_byte . This value is to be used as the local
value of the size_is variable for the array, and is nonNULL only if a
conformant or conformant varying array is to be unmarshalled. A value of
NULL in this parameter indicates that a fixed or varying array is to be
unmarshalled.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The cs_byte_local_size() routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The cs_byte_local_size() routine is one of the four DCE RPC buffer sizing routines
that RPC stubs use before they marshall or unmarshall data to determine whether
or not the buffers allocated for code set conversion need to be enlarged to hold the
converted data. The buffer sizing routines determine the type of conversion required
and calculate the size of the necessary buffer (if a conformant or conformant
varying array is to be marshalled or unmarshalled); the RPC stub then allocates a
buffer of that size before it calls one of the code set conversion routines.

Client and server stubs call the two cs_byte_ *_size routines when the cs_byte
type (which is internally equivalent to idl_byte) has been specified as the local
data type using the cs_char attribute in the attribute configuration file for the
application. The cs_byte_local_size() routine is used to evaluate buffer size
requirements prior to unmarshalling data received over the network.

Applications do not call cs_byte_local_size() routine directly. Client and server
stubs call the routine before they unmarshall any data. The stubs pass the routine a
binding handle and a code set value that identifies the code set that was used to
transfer international character data over the network. The stubs also specify the
network storage size of the data, in units of idl_byte , if a conformant or conformant
varying array is to be unmarshalled, or they specify NULL if a fixed or varying array
is to be marshalled.

When called from a client stub, the cs_byte_local_size() routine determines the
value of conversion_type from the client and server’s code set tag information
stored in the binding handle by a code sets evaluation routine or a tag-setting
routine. If the conversion type specified in the handle is
idl_cs_new_buffer_convert , the routine sets the conversion_type parameter to this
value and, if a conformant or conformant varying array is to be unmarshalled,
calculates a new buffer size by multiplying the value of network_buffer_size by the
maximum number of bytes and by an expansion factor required to represent the
code set specified in network_code_set_value. The routine returns the new buffer
size in the local_buffer_size parameter. The size is specified in units of cs_byte ,
which is the local representation used for international character data (and is
equivalent to the idl_byte data type). For fixed and varying arrays, the routine
assumes that network_buffer_size is sufficient to store the converted data.

If the handle information specifies idl_cs_convert_in_place or idl_cs_no_convert ,
the routine assumes that network_buffer_size can store the converted data (or that
no conversion is necessary) and returns idl_cs_convert_in_place (or

cs_byte_local_size(3rpc)

402 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_cs_no_convert) in the conversion_type parameter. If a conformant or
conformant varying array is to be unmarshalled. the routine also returns the value of
network_buffer_size in local_buffer_size

In cases in which the binding handle does not contain the results of character and
code sets evaluation, or in which the cs_byte_local_size() routine is being called
from the server stub, it determines the value of conversion_type itself using the
local code set value and the code set value passed in the network_code_set_value
parameter and returns the appropriate conversion_type value. If a conformant or
conformant varying array is to be unmarshalled, and the routine finds that a new
buffer is required to hold the converted data, it also calculates the size of this new
buffer (by multiplying the value of network_buffer_size by the maximum number of
bytes required and by an expansion factor to represent the code set specified in
network_code_set_value) and returns the results, in units of cs_byte , in
local_buffer_size.

Note: In this release, the DCE RPC supplied stub buffer sizing routines do not
support the idl_cs_in_place_convert conversion type. The reason is that
the actual conversion method used is determined at runtime. There is no
guarantee that the conversion can be performed in a single storage area.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain the information necessary to evaluate
the code set. If this error occurs in the server stub, an exception is raised to
the client application.

When invoked from the server stub, this routine calls the routines
dce_cs_loc_to_rgy() and rpc_rgy_get_max_bytes() . If either of these routines
returns an error, the cs_byte_local_size() routine raises an exception to the client
application.

Related Information

Functions: cs_byte_from_netcs(3rpc) , cs_byte_net_size(3rpc) ,
cs_byte_to_netcs(3rpc) , dce_cs_loc_to_rgy(3rpc) ,
rpc_rgy_get_max_bytes(3rpc) . wchar_t_local_size(3rpc) ,
wchar_t_net_size(3rpc) .

cs_byte_local_size(3rpc)

Chapter 3. DCE Remote Procedure Call 403

cs_byte_net_size

Purpose

Calculates the necessary buffer size for code set conversion from a local code set
to a network code set prior to marshalling; used by client and server stubs but not
directly by applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_net_size(
rpc_binding_handle_t binding
unsigned32 network_code_set_value
unsigned32 local_buffer_size
idl_cs_convert_t *conversion_type
unsigned32 *network_buffer_size
error_status_t *status);

Parameters

Input
binding

Specifies the target binding handle from which to obtain buffer size
evaluation information. When called from the client stub, this value is the
binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select() routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set to be
used to transmit character data over the network. In general, the network
code set is the code set that the client application’s code sets evaluation
routine has determined to be compatible for this client and server. When the
caller is the client stub, this value is the sending tag. When the caller is the
server stub, this value is the receiving tag.

local_buffer_size
The size, in units of cs_byte , of the buffer that is allocated for the
international character data. For a conformant or conformant varying array,
this value is the local value of the size_is variable for the array; that is, the
value is the size of the marshalled string if no conversion is done.

Output
conversion_type

A pointer to the enumerated type defined in dce/idlbase.h that indicates
whether data conversion is necessary and whether or not existing storage
is sufficient for storing the results of the conversion. The conversion type
can be one of the following values:

idl_cs_no_convert
No code set conversion is required.

idl_cs_in_place_convert
Code set conversion can be performed in the current buffer.

idl_cs_new_buffer_convert
The converted data must be written to a new buffer.

404 IBM DCE for AIX, Version 2.2: Application Development Reference

network_buffer_size
A pointer to the buffer size that needs to be allocated to contain the
converted data, in units of idl_byte . This value is to be used as the network
value of the size_is variable for the array, and is non-NULL only if a
conformant or conformant varying array is to be marshalled. A value of
NULL in this parameter indicates that a fixed or varying array is to be
marshalled.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The cs_byte_net_size() routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The cs_byte_net_size() routine is one of the four DCE RPC buffer sizing routines
that RPC stubs use before they marshall or unmarshall data to determine whether
or not the buffers allocated for code set conversion need to be enlarged to hold the
converted data. The buffer sizing routines determine the type of conversion required
and calculate the size of the necessary buffer (if a conformant or conformant
varying array is to be marshalled or marshalled). The RPC stub then allocates a
buffer of that size before it calls one of the code set conversion routines.

Client and server stubs call the two cs_byte_ *_size routines when the cs_byte
type (which is internally equivalent to idl_byte) has been specified as the local
data type using the cs_char attribute in the attribute configuration file for the
application. The cs_byte_net_size() routine is used to evaluate buffer size
requirements prior to marshalling data to be sent over the network.

Applications do not call the cs_byte_net_size() routine directly. Client and server
stubs call the routine before they marshall any data. The stubs pass the routine a
binding handle and a code set value that identifies the code set to be used to
transfer international character data over the network. The stubs also specify the
local storage size of the data, in units of cs_byte .

When called from a client stub, the cs_byte_net_size() routine determines the
value of conversion_type from the client and server’s code set tag information set
up the binding handle by a code sets evaluation routine or a tag-setting routine. If
the conversion type specified in the handle is idl_cs_new_buffer_convert , the
routine sets the conversion_type parameter to this value and, if a conformant or
conformant varying array is to be marshalled, calculates a new buffer size by
multiplying the value of local_buffer_size by the maximum number of bytes and by
an expansion factor required to represent the code set specified in
network_code_set_value (the sending tag parameter).

The routine returns the new buffer size in the network_buffer_size parameter. The
size is specified in units of idl_byte , which is the network representation used for
international character data (and is internally equivalent to the cs_byte type). For
fixed and varying arrays, the routine assumes that local_buffer_size is sufficient to
store the converted data.

If the binding handle information specifies idl_cs_convert_in_place or
idl_cs_no_convert , the routine assumes that local_buffer_size can store the
converted data (or that no conversion is necessary) and returns

cs_byte_net_size(3rpc)

Chapter 3. DCE Remote Procedure Call 405

idl_cs_convert_in_place (or idl_cs_no_convert) in the conversion_type
parameter. If a conformant or conformant varying array is to be marshalled, the
routine also returns the value of local_buffer_size in network_buffer_size.

In cases in which the binding handle does not contain the results of character and
code sets evaluation, or in which the cs_byte_net_size() routine is being called
from the server stub, it determines the value of conversion_type itself using the
local code set value and the code set value passed in the network_code_set_value
parameter and returns the appropriate conversion_type value. If a conformant or
conformant varying array is to be marshalled, and the routine finds that a new
buffer is required to hold the converted data, it also calculates the size of this new
buffer (by multiplying the value of local_buffer_size by the maximum number of
bytes and by an expansion factor required to represent the code set specified in
network_code_set_value) and returns the results, in units of idl_byte , in
network_buffer_size.

Note: In this release, the DCE RPC supplied stub buffer sizing routines do not
support the idl_cs_in_place_convert conversion type. The reason is that
the actual conversion method used is determined at runtime. There is no
guarantee that the conversion can be performed in a single storage area.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain the information necessary to evaluate
the code set. If this error occurs in the server stub, an exception is raised to
the client application.

When invoked from the server stub, this routine calls the routines
dcs_cs_loc_to_rgy() and rpc_rgy_get_max_bytes() . If either of these routines
returns an error, the cs_byte_net_size() routine raises an exception to the client
application.

Related Information

Functions: cs_byte_from_netcs(3rpc) , cs_byte_local_size(3rpc) ,
cs_byte_to_netcs(3rpc) , dcs_cs_loc_to_rgy(3rpc) ,
rpc_rgy_get_max_bytes(3rpc) , wchar_t_local_size(3rpc) ,
wchar_t_net_size(3rpc) .

cs_byte_net_size(3rpc)

406 IBM DCE for AIX, Version 2.2: Application Development Reference

cs_byte_to_netcs

Purpose

Converts international character data from a local code set to a network code set
prior to marshalling; used by client and server applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_to_netcs(
rpc_binding_handle_t binding
unsigned32 network_code_set_value
idl_byte *local_data
unsigned32 local_data_length
idl_byte *network_data
unsigned32 *network_data_length
error_status_t *status);

Parameters

Input
binding

Specifies the target binding handle from which to obtain code set
conversion information. When called from the client stub, this value is the
binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select() routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set to be
used to transmit character data over the network. In general, the network
code set is the code set that the client application’s code sets evaluation
routine has determined to be compatible for this client and server. When the
caller is the client stub, this value is the sending tag. When the caller is the
server stub, this value is the receiving tag.

local_data
A pointer to the international character data to be transmitted, in the local
code set encoding.

local_data_length
The number of cs_byte data elements to be converted. For a varying array
or a conformant varying array, this value is the local value of the length_is
variable. For a conformant array, this value is the local value of the size_is
variable. For a fixed array, the value is the array size specified in the
interface definition.

Output
network_data

A pointer to the converted data, in idl_byte format.

network_data_length
A pointer to the length of the converted data, in units of idl_byte . NULL is
specified if a fixed or varying array is to be converted.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Chapter 3. DCE Remote Procedure Call 407

Description

The cs_byte_to_netcs() routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The cs_byte_to_netcs() routine is one of the DCE RPC stub code set conversion
routines that RPC stubs use before they marshall or unmarshall data to convert
international character data to and from local and network code sets.

Client and server stubs call the cs_byte_ *_netcs() routines when the cs_byte type
has been specified as the local data type using the cs_char attribute in the attribute
configuration file for the application. (The cs_byte type is equivalent to the idl_byte
type.)

Client and server stubs call the cs_byte_to_netcs() routine before they marshall
any data. The routine takes a binding handle, a code set value that identifies the
code set to be used to transfer international character data over the network, the
address of the data to be converted, and the length of the data to be converted, in
units of idl_byte .

The routine compares the code set specified as the network code set to the local
code set currently in use. If the routine finds that code set conversion is necessary,
(because the local code set differs from the code set specified to be used on the
network), it determines which host code set converter to call to convert the data and
then invokes that converter.

The routine then returns the converted data, in idl_byte format. If the data is a
conformant or conformant varying array, the routine also returns the length of the
converted data, in units of idl_byte .

Applications can specify local data types other than cs_byte (the local data type for
which DCE RPC supplies stub code set conversion routines) with the cs_char ACF
attribute. In this case, the application must also supply local_type_to_netcs() and
local_type_from_netcs() stub conversion routines for this type.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

cs_byte_to_netcs(3rpc)

408 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_ss_incompatible_codesets
The binding handle does not contain code set evaluation information. If this
error occurs in the server stub, an exception is raised to the client
application.

When running the host converter, the following errors can occur:

v rpc_s_ss_invalid_char_input

v rpc_s_ss_short_conv_buffer

When invoked from the server stub, the routine calls the dce_cs_loc_to_rgy()
routine and the host converter routines. If these routines return an error, an
exception is raised to the client application.

Related Information

Functions: cs_byte_from_netcs(3rpc) , cs_byte_local_size(3rpc) ,
cs_byte_net_size(3rpc) , dce_cs_loc_to_rgy(3rpc) , wchar_t_from_netcs(3rpc) ,
wchar_t_to_netcs(3rpc) .

cs_byte_to_netcs(3rpc)

Chapter 3. DCE Remote Procedure Call 409

dce_cs_loc_to_rgy

Purpose

Maps a local name for a code set to a code set value in the code set registry; used
by client and server applications

Synopsis
#include <dce/rpc.h>

void dce_cs_loc_to_rgy(
idl_char *local_code_set_name
unsigned32 *rgy_code_set_value
unsigned16 *rgy_char_sets_number
unsigned16 **rgy_char_sets_value
error_status_t *status);

Parameters

Input
local_code_set_name

A string that specifies the name that the local host’s locale environment
uses to refer to the code set. The string is a maximum of 32 bytes: 31
character data bytes plus a terminating NULL character.

Output
rgy_code_set_value

The registered integer value that uniquely identifies the code set specified
by local_code_set_name.

rgy_char_sets_number
The number of character sets that the specified code set encodes.
Specifying NULL prevents this routine from returning this parameter.

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify the
character sets that the specified code set encodes. Specifying NULL
prevents this routine from returning this parameter. The routine dynamically
allocates this value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_cs_loc_to_rgy() routine is a DCE function that maps operating
system-specific names for character/code set encodings to their unique identifiers in
the code set registry.

The routine is currently used by the DCE RPC routines for character and code set
interoperability, which permit DCE RPC clients and servers to transfer international
character data in a heterogeneous character set and code sets environment.

The dce_cs_loc_to_rgy() routine takes as input a string that holds the host-specific
local name of a code set and returns the corresponding integer value that uniquely
identifies that code set, as registered in the host’s code set registry. If the integer

410 IBM DCE for AIX, Version 2.2: Application Development Reference

value does not exist in the registry, the routine returns the status
dce_cs_c_unknown . The routine also returns the number of character sets that the
code set encodes and the registered integer values that uniquely identify those
character sets. Specifying NULL in the rgy_char_sets_number and
rgy_char_sets_value[] parameters prevents the routine from performing the
additional search for these values. Applications that want only to obtain a code set
value from the code set registry can specify NULL for these parameters in order to
improve the routine’s performance. If the value is returned from the routine,
application developers should free the array after it is used, since the array is
dynamically allocated.

The DCE RPC stub support routines for code set conversion can use this routine to
obtain the registered code set value that corresponds to the code set they are
currently using; that is, the local code set specified in their host’s locale
environment. The stub routines for code set conversion then compare their local
code set value to the code set value specified in the sending tag for the call to
determine whether code set conversion is necessary.

In general, programmers who are developing RPC applications that transfer
international characters do not need to call this routine directly; the DCE RPC
routines provided for code sets evaluation and the DCE RPC stub support routines
for code set conversion call this routine on the client or server application’s behalf.

However, programmers who are developing their own stub support routines for code
set conversion may want to include this routine in their conversion code to map
their current locale information to a code set value in order to perform
local-to-sending tag code set comparison.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cs_c_ok

dce_cs_c_cannot_allocate_memory

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

dce_cs_c_unknown

dce_cs_c_not_found

Related Information

Commands: csrc(8dce) .

dce_cs_loc_to_rgy(3rpc)

Chapter 3. DCE Remote Procedure Call 411

Functions: dce_cs_rgy_to_loc(3rpc) , rpc_cs_char_set_compat_check(3rpc) ,
rpc_cs_eval_with_universal(3rpc) , rpc_cs_eval_without_universal(3rpc) ,
rpc_rgy_get_code_sets(3rpc) .

dce_cs_loc_to_rgy(3rpc)

412 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cs_rgy_to_loc

Purpose

Maps a code set value in the code set registry to the local name for a code set;
used by client and server applications

Synopsis
#include <dce/rpc.h>

void dce_cs_rgy_to_loc(
unsigned32 *rgy_code_set_value
idl_char **local_code_set_name
unsigned16 *rgy_char_sets_number
unsigned16 **rgy_char_sets_value
error_status_t *status);

Parameters

Input
rgy_code_set_value

The registered hexadecimal value that uniquely identifies the code set.

Output
local_code_set_name

A string that specifies the name that the local host’s locale environment
uses to refer to the code set. The string is a maximum of 32 bytes: 31
character data bytes and a terminating NULL character.

rgy_char_sets_number
The number of character sets that the specified code set encodes.
Specifying NULL in this parameter prevents the routine from returning this
value.

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify the
character sets that the specified code set encodes. Specifying NULL in this
parameter prevents the routine from returning this value. The routine
dynamically allocates this value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_cs_rgy_to_loc() routine is a DCE function that maps a unique identifier
for a code set in the code set registry to the operating system-specific name for the
code set, if it exists in the code set registry.

The routine is currently used by the DCE RPC routines for character and code set
interoperability, which permit DCE applications to transfer international characters in
a heterogeneous character and code sets environment.

The dce_cs_rgy_to_loc() routine takes as input a registered integer value of a
code set and returns a string that holds the operating system-specific, or local
name, of the code set.

Chapter 3. DCE Remote Procedure Call 413

If the local code set name does not exist in the registry, the routine returns the
status dce_cs_c_unknown and returns an undefined string.

The routine also returns the number of character sets that the code set encodes
and the registered integer values that uniquely identify those character sets.
Specifying NULL in the rgy_char_sets_number and rgy_char_sets_value[]
parameters prevents the routine from performing the additional search for these
values. Applications that want only to obtain a local code set name from the code
set registry can specify NULL for these parameters in order to improve the routine’s
performance. If the value is returned from the routine, application developers should
free the rgy_char_sets_value array after it is used.

In general, client and server applications that use the DCE RPC character and code
set interoperablity features do not need to call this routine directly; the DCE RPC
stub support routines provided for code set conversion call this routine on the client
or server application’s behalf to obtain the string name that matches the name of
the host code set converter that they will call to perform the actual code set
conversion.

However, application programmers who are developing their own RPC stub support
routines for code set conversion may want to include this routine in their conversion
code to map code set values sent in code set tags into the local names for the
code sets so that they can locate the correct operating system code set converter.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cs_c_ok

dce_cs_c_cannot_allocate_memory

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

dce_cs_c_unknown

dce_cs_c_not_found

Related Information

Commands: csrc(8dce) .

Functions: dce_cs_loc_to_rgy(3rpc) , rpc_cs_char_set_compat_check(3rpc) ,
rpc_cs_eval_with_universal(3rpc) , rpc_cs_eval_without_universal(3rpc) ,
rpc_rgy_get_code_sets(3rpc) .

dce_cs_rgy_to_loc(3rpc)

414 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_es_decode_buffer

Purpose

Returns a buffer decoding handle to the IDL encoding services

Synopsis
void idl_es_decode_buffer(

idl_byte *encoded_data_buffer
idl_ulong_int buffer_size
idl_es_handle_t *es_handle
error_status_t *status);

Parameters

Input
encoded_data_buffer

The address of the buffer that contains the data to be decoded.

buffer_size
The number of bytes of data in the buffer to be decoded.

Output
es_handle

Returns the address of an IDL encoding services handle for use by a client
or server decoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a
method for encoding data types in input parameters into a byte stream and
decoding data types in output parameters from a byte stream without invoking the
RPC runtime. Encoding and decoding operations are analogous to marshalling and
unmarshalling, except that the data is stored locally, and is not transmitted over the
network. Client and server applications can use the IDL encoding services to create
persistent storage for their data. Encoding flattens complex data types into a byte
stream for storage on disk, while decoding restores the flattened data to complex
form.

The idl_es_decode_buffer() routine belongs to a set of routines that return handles
to the IDL encoding services for use by client and server encoding and decoding
operations. The information in the handle controls the way in which the IDL
encoding services manage memory when encoding or decoding data.

The idl_es_decode_buffer() routine returns a buffer decoding handle, which directs
the IDL encoding services to decode data from a single application-supplied buffer
of encoded data.

Return Values

None.

Chapter 3. DCE Remote Procedure Call 415

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_ss_bad_buffer
Bad buffer operation.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Function: idl_es_decode_incremental(3rpc) .

idl_es_decode_buffer(3rpc)

416 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_es_decode_incremental

Purpose

Returns an incremental decoding handle to the IDL encoding services; used by
client and server applications

Synopsis
void idl_es_decode_incremental(

idl_void_p_t state
idl_es_read_fn_t read_fn
idl_es_handle_t *es_handle
error_status_t *status);

Parameters

Input/Output
state Specifies the address of an application-provided data structure that

coordinates the actions of successive calls to the read_fn routine. The state
data structure acts as a communications channel between the application
and the read_fn routine.

Input
read_fn

Specifies the address of a user-provided routine that generates a buffer of
encoded data for decoding by the IDL encoding services. The IDL encoding
services call the read_fn routine repeatedly until all of the data has been
decoded.

The following C definition for idl_es_read_fn_t illustrates the prototype for
the read_fn routine:
typedef void (*idl_es_read_fn_t)
(
idl_void_p_t state, /* in/out */
idl_byte **buffer, /* in */
idl_ulong_int *size, /* in */
);

The idl_es_decode_incremental() routine passes the specified state
parameter value as input to the read_fn routine. The state data structure is
the communications path between the application and the read_fn routine.
For example, the application can use the state parameter to pass in an
open file pointer from which the read_fn routine is to read encoded data.

The buffer parameter specifies the address of the data to be decoded; this
address must be 8-byte aligned. The size parameter specifies the size of
the buffer to be decoded, and must be a multiple of 8 bytes unless it
represents the size of the last buffer to be decoded.

The read_fn routine should return an exception on error.

Output
es_handle

Returns the address of an IDL encoding services handle for use by a client
or server decoding operation.

Chapter 3. DCE Remote Procedure Call 417

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a
method for encoding data types in input parameters into a byte stream and
decoding data types in output parameters from a byte stream without invoking the
RPC runtime. Encoding and decoding operations are analogous to marshalling and
unmarshalling, except that the data is stored locally, and is not transmitted over the
network. Client and server applications can use the IDL encoding services to create
persistent storage for their data. Encoding flattens complex data types into a byte
stream for storage on disk, while decoding restores the flattened data to complex
form.

The idl_es_decode_incremental() routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and
decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

The idl_es_decode_incremental() routine returns an incremental decoding handle,
which directs the IDL encoding services to decode data by calling the user-supplied
read_fn routine, which generates a small buffer of encoded data for the IDL
encoding services to decode. The routine passes the buffer address and size to the
IDL encoding services, which then decode the buffer. The IDL encoding services
call the read_fn routine repeatedly until there is no more data to decode.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Functions: idl_es_decode_buffer(3rpc) , idl_es_encode_incremental(3rpc) .

idl_es_decode_incremental(3rpc)

418 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_es_encode_dyn_buffer

Purpose

Returns a dynamic buffer encoding handle to the IDL encoding services; used by
client and server applications

Synopsis
void idl_es_encode_dyn_buffer(

idl_byte **encoded_data_buffer
idl_ulong_int *buffer_size
idl_es_handle_t *es_handle
error_status_t *status);

Parameters

Input

None.

Output
encoded_data_buffer

The address to which the IDL encoding services will write the address of
the buffer that contains the encoded data, when the encoding process is
complete. When the application no longer needs the buffer, it should
release the memory resource. See the IBM DCE for AIX, Version 2.2:
Application Development Guide—Core Components for an explanation of
how to manage memory when using the IDL encoding services.

buffer_size
The address to which the IDL encoding services will write the size of the
buffer that contains the encoded data, when the encoding process is
complete.

es_handle
Returns the address of an IDL encoding services handle for use by a client
or server encoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a
method for encoding data types in input parameters into a byte stream and
decoding data types in output parameters from a byte stream without invoking the
RPC runtime. Encoding and decoding operations are analogous to marshalling and
unmarshalling, except that the data is stored locally, and is not transmitted over the
network. Client and server applications can use the IDL encoding services to create
persistent storage for their data. Encoding flattens complex data types into a byte
stream for storage on disk, while decoding restores the flattened data to complex
form.

The idl_es_encode_dyn_buffer() routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and

Chapter 3. DCE Remote Procedure Call 419

decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

The idl_es_encode_dyn_buffer() routine returns a dynamic buffer encoding
handle, which directs the IDL encoding services to store the encoded data in a
chain of small buffers, build an additional single buffer that contains the encoded
data, and pass that buffer’s address to the application. Dynamic buffering is the
most expensive style of IDL encoding services buffering, since two copies of the
encoded data exist (one in the chain of buffers, and one in the single buffer).

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_ss_bad_buffer
Bad buffer operation.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Functions: idl_es_encode_fixed_buffer(3rpc) , idl_es_encode_incremental(3rpc) .

idl_es_encode_dyn_buffer(3rpc)

420 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_es_encode_fixed_buffer

Purpose

Returns a fixed buffer encoding handle to the IDL encoding services

Synopsis
void idl_es_encode_fixed_buffer(

idl_byte *data_buffer
idl_ulong_int data_buffer_size
idl_ulong_int *encoded_buffer_size
idl_es_handle_t *es_handle
error_status_t *status);

Parameters

Input
data_buffer

The address of the application-supplied buffer. This address must be 8-byte
aligned.

data_buffer_size
The size of the application-supplied buffer. The size must be a multiple of 8
bytes.

Output
encoded_buffer_size

Returns the address to which the IDL encoding services write the size of
the encoded buffer when they have completed encoding the data.

es_handle
Returns the address of an IDL encoding services handle for use by a client
or server encoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a
method for encoding data types in input parameters into a byte stream and
decoding data types in output parameters from a byte stream without invoking the
RPC runtime. Encoding and decoding operations are analogous to marshalling and
unmarshalling, except that the data is stored locally, and is not transmitted over the
network.

Client and server applications can use the IDL encoding services to create
persistent storage for their data. Encoding flattens complex data types into a byte
stream for storage on disk, while decoding restores the flattened data to complex
form.

The idl_es_encode_fixed_buffer() routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and
decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

Chapter 3. DCE Remote Procedure Call 421

The idl_es_encode_fixed_buffer() routine returns a fixed buffer encoding handle,
which directs the IDL encoding services to encode data into a single buffer that the
application has provided. The fixed buffer encoding style is useful for applications
that need only one buffer for their encoding and decoding process. The buffer that
the application allocates must be large enough to hold all of the encoded data, and
must also allocate 56 bytes for each encoding operation that the application has
defined (this space is used to hold per-operation header information.)

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_bad_buffer
Bad buffer operation.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Functions: idl_es_encode_dyn_buffer(3rpc) , idl_es_encode_incremental(3rpc) .

idl_es_encode_fixed_buffer(3rpc)

422 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_es_encode_incremental

Purpose

Returns an incremental encoding handle to the IDL encoding services; used by
client and server applications

Synopsis
void idl_es_encode_incremental(

idl_void_p_t state
idl_es_allocate_fn_t allocate_fn
idl_es_write_fn_t write_fn
idl_es_handle_t *es_handle
error_status_t *status);

Parameters

Input/Output
state Specifies the address of an application-provided data structure that

coordinates the actions of the allocate_fn and write_fn routines. The state
data structure acts as a communications channel between the application
and the allocate_fn and write_fn routines.

Input
allocate_fn

Specifies the address of a user-provided routine that allocates an empty
buffer. The encoding stub uses the allocated buffer to store encoded data.

The following C definition for idl_es_allocate_fn_t illustrates the prototype
for the buffer allocation routine:
typedef void (*idl_es_allocate_fn_t)
(
idl_void_p_t state, /* in/out */
idl_byte **buffer, /* out */
idl_ulong_int *size, /* in/out */
);

The idl_es_encode_incremental() routine passes the specified state
parameter value as input to the allocate_fn buffer allocation routine. When
the IDL encoding services call the allocate_fn routine, the value at the
address indicated by size represents the buffer size that the IDL encoding
services have requested the routine to allocate. When the allocate_fn buffer
allocation routine allocates the buffer, it writes the actual size of the
allocated buffer to this parameter; the value must be a multiple of eight
bytes. The buffer parameter specifies the address of the allocated buffer;
this address must be 8-byte aligned.

The allocate_fn routine should return an exception on error.

write_fn
Specifies the address of a user-provided routine that writes the contents of
a buffer that contains data that has been encoded by the IDL encoding
services. The IDL encoding services will call this routine when the buffer
allocated by allocate_fn is full, or when all of the application’s encoding
operation parameters have been encoded.

Chapter 3. DCE Remote Procedure Call 423

The following C definition for idl_es_write_fn_t illustrates the prototype for
the write_fn routine:
typedef void (*idl_es_write_fn_t)
(
idl_void_p_t state, /* in/out */
idl_byte *buffer, /* in */
idl_ulong_int size, /* in */
);

The idl_es_encode_incremental() routine passes the specified state
parameter value as input to the write_fn routine. The buffer parameter value
is the address of the data that the IDL encoding services have encoded.
The size parameter value is the size, in bytes, of the encoded data.

The write_fn routine should return an exception on error.

Output
es_handle

Returns the address of an IDL encoding services handle for use by a client
or server encoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a
method for encoding data types in input parameters into a byte stream and
decoding data types in output parameters from a byte stream without invoking the
RPC runtime. Encoding and decoding operations are analogous to marshalling and
unmarshalling, except that the data is stored locally, and is not transmitted over the
network. Client and server applications can use the IDL encoding services to create
persistent storage for their data. Encoding flattens complex data types into a byte
stream for storage on disk, while decoding restores the flattened data to complex
form.

The idl_es_encode_incremental() routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and
decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

The idl_es_encode_incremental() routine returns an incremental encoding handle,
which directs the IDL encoding services to encode data into a chain of small buffers
that the user-provided allocate_fn routine manages. The user-provided write_fn
routine writes the encoded data in these buffers back for access by the application.

The state data structure is the communications path between the application and
the allocate_fn and write_fn routines. For example, the application can build a
cache of pre-allocated memory to store encoded data, and store pointers to that
pre-allocated memory in the state data structure. When invoked by the IDL
encoding services to allocate a buffer, the allocate_fn routine can search the state
data structure for a free memory location to use.

Return Values

None.

idl_es_encode_incremental(3rpc)

424 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Functions: idl_es_decode_incremental(3rpc) , idl_es_encode_dyn_buffer(3rpc) ,
idl_es_encode_fixed_buffer(3rpc) .

idl_es_encode_incremental(3rpc)

Chapter 3. DCE Remote Procedure Call 425

idl_es_handle_free

Purpose

Frees an IDL encoding services handle

Synopsis

void idl_es_handle_free(
idl_es_handle_t *es_handle
error_status_t *status);

Parameters

Input/Output
es_handle

The address of the handle whose resources are to be freed. The handle is
made NULL by this operation.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The idl_es_handle_free routine frees an IDL encoding services handle that has
been allocated by one of the IDL encoding services handle-returning routines.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: idl_es_decode_buffer(3rpc) , idl_es_decode_incremental(3rpc) ,
idl_es_encode_dyn_buffer(3rpc) , idl_es_encode_fixed_buffer(3rpc) ,
idl_es_encode_incremental(3rpc) .

426 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_es_inq_attrs

Purpose

Returns the flags from an IDL encoding services handle.

Format
void idl_es_inq_attrs(

idl_es_handle_t es_handle,
unsigned32 *flags,
error_status_t *status);

Parameters

Input
es_handle

An encoding services handle returned by one of the IDL encoding services
routines.

Output
flags Returns the flags stored in the IDL encoding services handle that is

associated with the encoded data.

status Returns the status code from this routine. The possible status code is
rpc_s_ok , which indicates success.

Usage

The idl_es_inq_attrs routine returns the flags stored in the IDL encoding services
handle that is associated with the encoded data. Applications can use the
idl_es_set_attrs routine to set the flags. Currently, the only valid flag that can be
set is IDL_ES_NO_ENCODING_CHECK, which tells the encoding services to not
check the interface ID so an interface that did not encode data can decode parts of
it, such as a common header.

Comments

Functions: idl_es_set_attrs(3rpc) , idl_es_set_transfer_syntax(3rpc) .

Chapter 3. DCE Remote Procedure Call 427

idl_es_inq_encoding_id

Purpose

Identifies an operation within an interface that has been called to encode data using
the IDL encoding services

Synopsis
void idl_es_inq_encoding_id(

idl_es_handle_t es_handle
rpc_if_id_t *if_id
idl_ulong_int *op_num
error_status_t *status);

Parameters

Input
es_handle

A encoding services handle returned by one of the IDL encoding services
handle-returning routines.

Output
if_id Returns the interface UUID and version number assigned to the interface

that defines the operation that encoded the data. This information is stored
in the IDL encoding services handle that is associated with the encoded
data.

op_num
Returns the operation number assigned to the operation that encoded the
data. Operations are numbered in the order in which they appear in the
interface definition, starting with zero (0). The operation number for the
operation that encoded the data is stored in the IDL encoding services
handle that is associated with the encoded data.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a
method for encoding data types in input parameters into a byte stream and
decoding data types in output parameters from a byte stream without invoking the
RPC runtime. Encoding and decoding operations are analogous to marshalling and
unmarshalling, except that the data is stored locally, and is not transmitted over the
network. Client and server applications can use the IDL encoding services to create
persistent storage for their data. Encoding flattens complex data types into a byte
stream for storage on disk, while decoding restores the flattened data to complex
form.

The idl_es_inq_encoding_id() routine returns the identity of an operation within an
application that has been invoked to encode data using the IDL encoding services.
Applications can use this routine to determine the identity of an encoding operation,
for example, before calling their decoding operations.

428 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_unknown_if
Interface identifier and operation number unavailable.

Related Information

Functions: idl_es_decode_buffer(3rpc) , idl_es_decode_incremental(3rpc) ,
idl_es_encode_dyn_buffer(3rpc) , idl_es_encode_fixed_buffer(3rpc) ,
idl_es_encode_incremental(3rpc) .

idl_es_inq_encoding_id(3rpc)

Chapter 3. DCE Remote Procedure Call 429

idl_es_set_attrs

Purpose

Sets attribute flags in an IDL encoding services handle.

Format
void idl_es_set_attrs(

idl_es_handle_t es_handle,
unsigned32 *flags,
error_status_t *status);

Parameters

Input
es_handle

An encoding services handle returned by one of the IDL encoding services
routines.

flags Specifies the flags to be stored in association with the IDL encoding
services handle.

Output
status Returns the status code from this routine. The possible status code is

rpc_s_ok , which indicates success.

Usage

The idl_es_set_attrs routine sets the attribute flags to be stored in the IDL
encoding services handle that is associated with the encoded data. Applications can
use the idl_es_inq_attrs routine to get the flags set by this routine. Currently, the
only valid flag that can be set is IDL_ES_NO_ENCODING_CHECK.

Using idl_es_set_attrs with the IDL_ES_NO_ENCODING_CHECK flag causes IDL,
during decoding, to not check the validity of the interface UUIDs and version
numbers. This allows an interface that did not encode the data to decode it or parts
of it, such as a common header.

Comments

Functions: idl_es_inq_attrs(3rpc) , idl_es_set_transfer_syntax(3rpc) .

430 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_es_set_transfer_syntax

Purpose

Sets a transfer syntax.

Format
void idl_es_set_transfer_syntax(

idl_es_handle_t es_handle,
idl_es_transfer_syntax_t es_transfer_syntax,
error_status_t *status);

Parameters

Input/Output
es_handle

Specifies the user’s encoding services handle.

Input
es_transfer_syntax

Specifies the requested transfer syntax.

Output
status Returns the status code from this routine. On successful completion, the

routine returns rpc_s_ok . Otherwise, it returns
rpc_s_tsyntaxes_unsupported , which indicates that the transfer syntaxes
are unsupported.

Usage

The idl_es_set_transfer_syntax routine is a machinery for platforms that support
encodings in more than one transfer syntax. You must call this routine before
encoding data if you want a transfer syntax other than the default. If only one
transfer syntax is supported by the platform, this routine can be used to explicitly
specify the transfer syntax. Currently, the only valid syntax that can be set is
idl_es_transfer_syntax_ndr .

Comments

Functions: idl_es_inq_attrs(3rpc) , idl_es_set_attrs(3rpc) .

Chapter 3. DCE Remote Procedure Call 431

rpc_binding_copy

Purpose

Returns a copy of a binding handle; used by client or server applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_copy(
rpc_binding_handle_t source_binding
rpc_binding_handle_t *destination_binding
unsigned32 *status);

Parameters

Input
source_binding

Specifies the server binding handle whose referenced binding information is
copied.

Output
destination_binding

Returns the server binding handle that refers to the copied binding
information.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_copy() routine copies the server binding information referenced
by the binding handle specified in the source_binding parameter. This routine
returns a new server binding handle for the copied binding information. The new
server binding handle is returned in the destination_binding parameter.

Use the rpc_binding_copy() routine if you want a change (made to binding
information by one thread) not to affect the binding information used by other
threads. The explanation of binding handles in the rpc_intro(3rpc) reference page
has more detail about this use of routine rpc_binding_copy() .

After calling this routine, operations performed on the source_binding binding
handle do not affect the binding information referenced by the destination_binding
binding handle. Similarly, operations performed on the destination_binding binding
handle do not affect the binding information referenced by the source_binding
binding handle.

If you want the changes made to binding information by one thread to affect the
binding information used by other threads, your program must share a single
binding handle across the threads. In this case the application controls binding
handle concurrency.

432 IBM DCE for AIX, Version 2.2: Application Development Reference

When an application is finished using the binding handle specified by the
destination_binding parameter, the application calls the rpc_binding_free() routine
to release the memory used by the destination_binding binding handle and its
referenced binding information.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_binding_free(3rpc) .

rpc_binding_copy(3rpc)

Chapter 3. DCE Remote Procedure Call 433

rpc_binding_free

Purpose

Releases binding handle resources; used by client or server applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_free(
rpc_binding_handle_t *binding
unsigned32 *status);

Parameters

Input/Output
binding

Specifies the server binding handle to free.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_free() routine frees the memory used by a server binding handle
and its referenced binding information. Use this routine when your application is
finished using a server binding handle that was dynamically created during program
execution.

If the free-binding operation succeeds, the binding parameter returns the value
NULL.

An application can dynamically create binding handles by calling any of the
following routines:

v rpc_binding_copy()

v rpc_binding_from_string_binding()

v rpc_ns_binding_import_next()

v rpc_ns_binding_select()

v rpc_server_inq_bindings()

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

434 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_binding_copy(3rpc) , rpc_binding_from_string_binding(3rpc) ,
rpc_binding_vector_free(3rpc) , rpc_ns_binding_import_next(3rpc) ,
rpc_ns_binding_lookup_next(3rpc) , rpc_ns_binding_select(3rpc) ,
rpc_server_inq_bindings(3rpc) .

rpc_binding_free(3rpc)

Chapter 3. DCE Remote Procedure Call 435

rpc_binding_from_string_binding

Purpose

Returns a binding handle from a string representation; used by client or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_from_string_binding(
unsigned_char_t *string_binding
rpc_binding_handle_t *binding
unsigned32 *status);

Parameters

Input
string_binding

Specifies a string representation of a binding handle.

Output
binding

Returns the server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_from_string_binding() routine creates a server binding handle
from a string representation of a binding handle.

The string_binding parameter does not need to contain an object UUID. In this
case, the returned binding contains a nil UUID.

If the provided string_binding parameter does not contain an endpoint field, the
returned binding parameter is a partially bound server binding handle.

If the provided string_binding parameter does contain an endpoint field, the returned
binding parameter is a fully bound server binding handle with a well-known
endpoint.

If the provided string_binding parameter does not contain a host address field, the
returned binding parameter refers to the local host.

To create a string binding, call the rpc_string_binding_compose() routine or call
the rpc_binding_to_string_binding() routine or provide a character string
constant.

When an application finishes using the binding parameter, the application calls the
rpc_binding_free() routine to release the memory used by the binding handle.

The rpc_intro(3rpc) reference page contains an explanation of partially and fully
bound binding handles.

436 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_invalid_string_binding
Invalid string binding.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

uuid_s_bad_version
Bad UUID version.

uuid_s_invalid_string_uuid
Invalid format for a string UUID.

Related Information

Functions: rpc_binding_copy(3rpc) , rpc_binding_free(3rpc) ,
rpc_binding_to_string_binding(3rpc) , rpc_string_binding_compose(3rpc) .

rpc_binding_from_string_binding(3rpc)

Chapter 3. DCE Remote Procedure Call 437

rpc_binding_inq_auth_caller

Purpose

Returns authentication and authorization information from the binding handle for an
authenticated client; used by server applications

Synopsis
#include <dce/rpc.h>
#include <dce/id_base.h>

void rpc_binding_inq_auth_caller(
rpc_binding_handle_t binding_handle
rpc_authz_cred_handle_t *privs
unsigned_char_p_t *server_princ_name
unsigned32 *protect_level
unsigned32 *authn_svc
unsigned32 *authz_svc
unsigned32 *status);

Parameters

Input
binding_handle

Specifies the client binding handle from which to return the authentication
and authorization information.

Output
privs Returns an opaque handle to the authorization information for the client that

made the remote procedure call on binding_handle.

The data referenced by this parameter are read-only and should not be
modified by the server. If the server wants to preserve any of the returned
data, it must copy the data into server-allocated memory.

server_princ_name
Returns a pointer to the server principal name specified by the client that
made the remote procedure call on binding_handle. The content of the
returned name and its syntax are defined by the authentication service in
use.

Specifying NULL prevents the routine from returning this parameter. In this
case, the caller does not have to call the rpc_string_free() routine.

protect_level
Returns the protection level requested by the client that made the remote
procedure call on binding. The protection level determines the degree to
which authenticated communications between the client and the server are
protected.

Specifying NULL prevents the routine from returning this parameter.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication
service.

438 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_c_protect_level_none
Performs no protection.

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship
with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote procedure
call when the server receives the request.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred between
client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and
also encrypt each remote procedure call argument value.

authn_svc
Returns the authentication service requested by the client that made the
remote procedure call on binding.

Specifying NULL prevents the routine from returning this parameter.

The possible authentication services are as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

authz_svc
Returns the authorization service requested by the client that made the
remote procedure call on binding_handle.

Specifying NULL prevents the routine from returning this parameter.

The possible authorization services are as follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if the authn_svc
parameter is rpc_c_authn_none .

rpc_c_authz_name
Server performs authorization based on the client principal name.

rpc_c_authz_dce
Server performs authorization by using the client’s DCE privilege
attribute certificate (PAC) sent to the server with each remote
procedure call made with binding_handle. Generally, access is
checked against DCE access control lists (ACLs).

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

rpc_binding_inq_auth_caller(3rpc)

Chapter 3. DCE Remote Procedure Call 439

The possible status codes and their meanings are as follows:

rpc_s_ok
The routine completed successfully.

rpc_s_invalid_binding
The routine did not complete because of an invalid binding handle.

rpc_s_wrong_kind_of_binding
The routine did not complete because of the wrong kind of binding
was specified for the operation.

rpc_s_binding_has_no_auth
The routine completed successfully, but the binding has no
authentication information.

Description

The rpc_binding_inq_auth_caller() routine returns authentication and authorization
information associated with the client identified by binding_handle. The calling
server manager routine can use the returned data for authorization purposes.

If the client is part of a delegation chain, the call returns the authentication and
authorization information for each member of the chain, the initiator and all
subsequent delegates. You can use the sec_cred_get_initiator() or
sec_cred_get_delegate() calls to obtain the authorization information for a specific
member of the chain.

The RPC runtime allocates memory for the returned server_princ_name parameter.
The server is responsible for calling the rpc_string_free() routine for the returned
parameter string.

For applications in which the client side uses the Interface Definition Language
(IDL) auto_handle or implicit_handle attributes, the server side needs to be built
with the IDL explicit_handle attribute specified in the attribute configuration file
(ACF). Using explicit_handle provides binding_handle as the first parameter to
each server manager routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

rpc_s_binding_has_no_auth

sec_login_s_default_use

sec_login_s_context_invalid

error_status_ok

Related Information

Functions: rpc_binding_inq_auth_info(3rpc) , rpc_binding_set_auth_info(3rpc) ,
rpc_string_free(3rpc) , sec_cred_get_initiator(3sec) ,

rpc_binding_inq_auth_caller(3rpc)

440 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_get_delegate(3sec) .

Chapter 3. DCE Remote Procedure Call 441

rpc_binding_inq_auth_client

Purpose

Returns authentication and authorization information from the binding handle for an
authenticated client; used by server applications

Synopsis
#include <dce/rpc.h>
#include <dce/id_base.h>

void rpc_binding_inq_auth_client(
rpc_binding_handle_t binding
rpc_authz_handle_t *privs
unsigned_char_t **server_princ_name
unsigned32 *protect_level
unsigned32 *authn_svc
unsigned32 *authz_svc
unsigned32 *status);

Parameters

Input
binding

Specifies the client binding handle from which to return the authentication
and authorization information.

Output
privs Returns a handle to the authorization information for the client that made

the remote procedure call on binding.

The server must cast this handle to the data type specified by authz_svc.
The following table shows how to cast the return value:

Table 17. Casts for Authorization Information

For authz_svc value: privs contains this data: Use this cast:

rpc_c_authz_none A NULL value. None

rpc_c_authz_name The calling client’s principal
name.

(unsigned_char_t *)

rpc_c_authz_dce The calling client’s privilege
attribute certificate.

(sec_id_pac_t *)

Note that rpc_c_authz_none is valid only if the authn_svc parameter is
rpc_c_authn_none .

The data referenced by this parameter are read-only and should not be
modified by the server. If the server wants to preserve any of the returned
data, it must copy the data into server-allocated memory.

Specifying NULL prevents the routine from returning this parameter.

server_princ_name
Returns a pointer to the server principal name specified by the client that

442 IBM DCE for AIX, Version 2.2: Application Development Reference

made the remote procedure call on binding. The content of the returned
name and its syntax are defined by the authentication service in use.

Specifying NULL prevents the routine from returning this parameter. In this
case, the caller does not have to call the rpc_string_free() routine.

protect_level
Returns the protection level requested by the client that made the remote
procedure call on binding. The protection level determines the degree to
which authenticated communications between the client and the server are
protected.

Specifying NULL prevents the routine from returning this parameter.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication
service.

rpc_c_protect_level_none
Performs no protection.

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship
with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote procedure
call when the server receives the request.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred between
client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and
also encrypt each remote procedure call argument value.

authn_svc
Returns the authentication service requested by the client that made the
remote procedure call on binding.

Specifying NULL prevents the routine from returning this parameter.

The possible authentication services are as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

authz_svc
Returns the authorization service requested by the client that made the
remote procedure call on binding.

rpc_binding_inq_auth_client(3rpc)

Chapter 3. DCE Remote Procedure Call 443

Specifying NULL prevents the routine from returning this parameter.

The possible authorization services are as follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if the authn_svc
parameter is rpc_c_authn_none .

rpc_c_authz_name
Server performs authorization based on the client principal name.

rpc_c_authz_dce
Server performs authorization by using the client’s DCE privilege
attribute certificate (PAC) sent to the server with each remote
procedure call made with binding. Generally, access is checked
against DCE access control lists (ACLs).

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

rpc_s_ok
The routine completed successfully.

rpc_s_invalid_binding
The routine did not complete because of an invalid binding handle.

rpc_s_wrong_kind_of_binding
The routine did not complete because of the wrong kind of binding
was specified for the operation.

rpc_s_binding_has_no_auth
The routine completed successfully, but the binding has no
authentication information.

Description

The rpc_binding_inq_auth_client() routine returns authentication and authorization
information associated with the client identified by binding. The calling server
manager routine can use the returned data for authorization purposes.

Note:

This call is provided only for compatibility with pre-DCE Version 1.1
applications. Applications based on DCE Version 1.1 and later releases of
DCE should use the rpc_binding_inq_auth_caller() call.

The RPC runtime allocates memory for the returned server_princ_name parameter.
The server is responsible for calling the rpc_string_free() routine for the returned
parameter string.

For applications in which the client side uses the Interface Definition Language
(IDL) auto_handle or implicit_handle attributes, the server side needs to be built
with the IDL explicit_handle attribute specified in the attribute configuration file
(ACF). Using explicit_handle provides binding as the first parameter to each server
manager routine.

rpc_binding_inq_auth_client(3rpc)

444 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Related Information

Functions: rpc_binding_inq_auth_info(3rpc) , rpc_binding_set_auth_info(3rpc) ,
rpc_string_free(3rpc) .

rpc_binding_inq_auth_client(3rpc)

Chapter 3. DCE Remote Procedure Call 445

rpc_binding_inq_auth_info

Purpose

Returns authentication and authorization information from a server binding handle;
used by client applications

Synopsis
#include <dce/rpc.h>
#include <dce/sec_login.h>

void rpc_binding_inq_auth_info(
rpc_binding_handle_t binding
unsigned_char_t **server_princ_name
unsigned32 *protect_level
unsigned32 *authn_svc
rpc_auth_identity_handle_t *auth_identity
unsigned32 *authz_svc
unsigned32 *status);

Parameters

Input
binding

Specifies the server binding handle from which to return the authentication
and authorization information.

Output
server_princ_name

Returns a pointer to the expected principal name of the server referenced
by binding. The content of the returned name and its syntax are defined by
the authentication service in use.

Specifying NULL prevents the routine from returning this parameter. In this
case, the caller does not have to call the rpc_string_free() routine.

protect_level
Returns the protection level used for remote procedure calls made with
binding. The protection level determines the degree to which authenticated
communications between the client and the server are protected.

Note that the returned level may be different from the level specified for
protect_level on the call to rpc_binding_set_auth_info() . If the RPC
runtime or the RPC protocol in the bound protocol sequence does not
support a specified level, the level is automatically upgraded to the next
higher supported level.

Specifying NULL prevents the routine from returning this parameter.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication
service.

rpc_c_protect_level_none
Performs no protection.

446 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship
with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote procedure
call when the server receives the request.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred between
client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and
also encrypt each remote procedure call parameter value.

authn_svc
Returns the authentication service used for remote procedure calls made
with binding.

Specifying NULL prevents the routine from returning this argument.

The possible authentication services are as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

auth_identity
Returns a handle for the data structure that contains the client’s
authentication and authorization credentials. This parameter must be cast
as appropriate for the authentication and authorization services established
via rpc_binding_set_auth_info() .

When using the rpc_c_authn_dce_secret authentication service and any
authorization service, this value must be a sec_login_handle_t obtained
from one of the following routines:

v sec_login_setup_identity()

v sec_login_get_current_context()

v sec_login_newgroups()

See the sec_login_setup_identity(3sec) ,
sec_login_get_current_context(3sec) , and sec_login_newgroups(3sec)
reference pages for more information.

Specifying NULL prevents the routine from returning this parameter.

authz_svc
Returns the authorization service used for remote procedure calls made
with binding.

Specifying NULL prevents the routine from returning this parameter.

rpc_binding_inq_auth_info(3rpc)

Chapter 3. DCE Remote Procedure Call 447

The possible authorization services are as follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if the authn_svc
parameter is rpc_c_authn_none .

rpc_c_authz_name
Server performs authorization based on the client principal name.

rpc_c_authz_dce
Server performs authorization using the client’s DCE privilege
attribute certificate (PAC) sent to the server with each remote
procedure call made with binding. Generally, access is checked
against DCE access control lists (ACLs).

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

rpc_s_ok
The routine completed successfully.

rpc_s_invalid_binding
The routine did not complete because of an invalid binding handle.

rpc_s_wrong_kind_of_binding
The routine did not complete because of the wrong kind of binding
was specified for the operation.

rpc_s_binding_has_no_auth
The routine completed successfully, but the binding has no
authentication information.

Description

The rpc_binding_inq_auth_info() routine returns authentication and authorization
information associated with the specified server binding handle. The calling client
associates the authentication and authorization data with the server binding handle
by a prior call to the rpc_binding_set_auth_info() routine.

The RPC runtime allocates memory for the returned server_princ_name parameter.
The caller is responsible for calling the rpc_string_free() routine for the returned
parameter string.

Return Values

No value is returned.

Related Information

Functions: rpc_binding_set_auth_info(3rpc) , rpc_string_free(3rpc) .

rpc_binding_inq_auth_info(3rpc)

448 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_binding_inq_object

Purpose

Returns the object UUID from a binding handle; used by client or server
applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_inq_object(
rpc_binding_handle_t binding
uuid_t *object_uuid
unsigned32 *status);

Parameters

Input
binding

Specifies a client or server binding handle.

Output
object_uuid

Returns the object UUID found in the binding parameter. The object UUID is
a unique identifier for an object for which a remote procedure call can be
made.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_inq_object() routine obtains the object UUID associated with a
client or server binding handle. If no object UUID has been associated with the
binding handle, this routine returns a nil UUID.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_binding
Invalid binding handle.

Related Information

Functions: rpc_binding_set_object(3rpc) .

Chapter 3. DCE Remote Procedure Call 449

rpc_binding_reset

Purpose

Resets a server binding handle; used by client or management applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_reset(
rpc_binding_handle_t binding
unsigned32 *status);

Parameters

Input
binding

Specifies the server binding handle to reset.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_reset() routine disassociates a server instance from the server
binding handle specified in the binding parameter. This routine removes the
endpoint portion of the server address in the binding handle as well as any other
server instance information in the binding handle. The host portion of the server
address remains unchanged. The result is a partially bound server binding handle.
This binding handle can rebind to another server instance on the previous host
when it is later used to make a remote procedure call. The rpc_intro(3rpc)
reference page contains an explanation of partially and fully bound binding handles.

This routine does not affect any authentication information for the binding
parameter.

Suppose that a client can be serviced by any compatible server instance on the
host specified in the binding handle. Then, the client can call the
rpc_binding_reset() routine before making a remote procedure call using the
binding handle specified in binding.

When the client makes the next remote procedure call using the reset server
binding handle in binding, the client’s RPC runtime uses a well-known endpoint
from the client’s interface specification, if any. Otherwise, the client’s RPC runtime
automatically communicates with the DCE host daemon (dced) on the specified
remote host, to obtain the endpoint of a compatible server from the local endpoint
map. If a compatible server is located, the RPC runtime updates binding with a new
endpoint.

However, if a compatible server is not located, the client’s remote procedure call
fails. If the failed call uses a connection protocol (ncacn), it receives the
rpc_s_endpoint_not_found status code. If the failed call uses a datagram protocol
(ncadg), it receives the rpc_s_comm_failure status code.

450 IBM DCE for AIX, Version 2.2: Application Development Reference

If a server application wants to be available to clients making a remote procedure
call on a reset binding handle, it registers all binding handles by calling
rpc_ep_register() or rpc_ep_register_no_replace() . If, however, the
IDL-generated file contains endpoint address information, then the application does
not have to call either of these two routines.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) .

rpc_binding_reset(3rpc)

Chapter 3. DCE Remote Procedure Call 451

rpc_binding_server_from_client

Purpose

Converts a client binding handle to a server binding handle; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_server_from_client(
rpc_binding_handle_t client_binding
rpc_binding_handle_t *server_binding
unsigned32 *status);

Parameters

Input
client_binding

Specifies the client binding handle to convert to a server binding handle.

Output
server_binding

Returns a server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

When a remote procedure call arrives at a server, the RPC runtime creates a client
binding handle to refer to information about the calling client (client binding
information). The RPC runtime passes the client binding handle to the called remote
procedure as the first input argument (which uses the handle_t type).

The rpc_binding_server_from_client() routine converts client binding information
into server binding information corresponding to the client’s system. When calling
this routine, the called remote procedure specifies the client binding handle, and the
routine returns a partially bound server binding handle (that is, the newly
constructed server binding information contains a network address for the client’s
system, but lacks an endpoint).

The server binding information also lacks authentication information, but the called
procedure can add it by calling rpc_binding_set_auth_info() . The object UUID
from the client binding information remains.

The rpc_binding_server_from_client() routine is relevant when a called remote
procedure (the first remote procedure) needs to make its own remote procedure call
(a nested procedure call) to a second remote procedure offered by a server on the
system of the client that called the first remote procedure (that is, the original
client). The partially bound server binding handle returned by the
rpc_binding_server_from_client() routine ensures that a nested call requests the
second remote procedure on the original client’s system.

452 IBM DCE for AIX, Version 2.2: Application Development Reference

In a multithreaded RPC application, the second remote procedure can belong to a
server that shares the original client’s address space (that is, the server and client
can operate jointly as a server/client instance). If the original client belongs to a
server/client instance and the application requires the nested call to execute in that
instance, the application must guarantee that the nested remote procedure call uses
one of the instances’ endpoints.

An application can provide this guarantee by meeting any of the following
conditions:

v The interface possesses its own well-known endpoints, and the server elects to
use these interface-specific endpoints (by calling the routine
rpc_server_use_protseq_if() or rpc_server_use_all_protseqs_if()).

v The server uses server-specific endpoints, and the interface is offered by only
one server/client instance per system.

To use server-specific endpoints, a server either requests dynamic endpoints (by
calling rpc_server_use_protseq() or rpc_server_use_all_protseqs()) or
specifies its own well-known endpoints (by calling the routine
rpc_server_use_protseq_ep()). The server must also register its server-specific
endpoints in the local endpoint map (by calling rpc_ep_register()).

v The original client sets an object UUID into the server binding information of the
first call (by calling rpc_binding_set_object()); the object UUID identifies the
server/client instance.

The client can obtain the object UUID from the list of object UUIDs used to
register the endpoints of the server/client instance. The client must select an
object UUID that belongs exclusively to its instance.

Server binding information containing an object UUID impacts the selection of a
manager for a remote procedure call; see the IBM DCE for AIX, Version 2.2:
Application Development Guide—Core Components for a description of manager
selection. The object UUID can either identify a particular resource offered by the
companion server or, used as an instance UUID, the object UUID can identify the
original client’s server/client instance.

The object UUID is passed in the first remote procedure call as part of the client
binding information and is retained in the server binding information. This server
binding information is newly constructed by the
rpc_binding_server_from_client() routine. When the second remote procedure
call arrives at the original client’s system, the DCE host daemon uses the object
UUID to look for associated endpoints in the local endpoint map. To ensure that
the object UUID is associated with the endpoints of the original server/client
instance, the server must complete the following steps:

– Obtain the UUID (for example, by calling uuid_create()).

– Specify the UUID as part of registering endpoints for the interface of the
second remote procedure (by calling rpc_ep_register() or
rpc_ep_register_no_replace()).

If the second remote procedure call will be routed to a manager of a nonnil
type, then the server must also do the following:

- Specify the type for the manager that implements that interface (by calling
rpc_server_register_if()).

- Set the object UUID to the same type as the manager (by calling
rpc_object_set_type()).

v The first remote procedure call contains a distinct call argument used by the
original client to pass server information that identifies its server/client instance.

rpc_binding_server_from_client(3rpc)

Chapter 3. DCE Remote Procedure Call 453

The first remote procedure call uses this information to route the second remote
procedure call to the original server/client instance. For example, server
information can be as follows:

– A fully bound string binding that identifies the client’s server/client instance.

If the first remote procedure receives this string binding, calling the
rpc_binding_server_from_client routine is unnecessary. Instead, the first
remote procedure requests a server binding handle for the string binding (by
calling rpc_binding_from_string_binding()).

– An object UUID that is associated in the endpoint map with one or more
endpoints of the original server/client instance.

The client can obtain the object UUID from the list of object UUIDs used to
register the endpoints of the server/client instance. The client must select an
object UUID that belongs exclusively to its instance, and pass that UUID as a
call argument.

After calling the rpc_binding_server_from_client() routine, add the object
UUID from the call argument to the newly constructed server binding
information (by calling rpc_binding_set_object()).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_cant_getpeername
Cannot get peer name.

rpc_s_connection_closed
Connection closed.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding.

Related Information

Functions: rpc_binding_free(3rpc) , rpc_binding_set_object(3rpc) ,
rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_binding_server_from_client(3rpc)

454 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_binding_set_auth_info

Purpose

Sets authentication and authorization information for a server binding handle; used
by client applications

Synopsis
#include <dce/rpc.h>
#include <dce/sec_login.h>

void rpc_binding_set_auth_info(
rpc_binding_handle_t binding
unsigned_char_t *server_princ_name
unsigned32 protect_level
unsigned32 authn_svc
rpc_auth_identity_handle_t auth_identity
unsigned32 authz_svc
unsigned32 *status);

Parameters

Input
binding

Specifies the server binding handle for which to set the authentication and
authorization information.

server_princ_name
Specifies the principal name of the server referenced by binding. The
content of the name and its syntax is defined by the authentication service
in use.

A client that does not know the server principal name can call the
rpc_mgmt_inq_server_princ_name() routine to obtain the principal name
of a server that is registered for the required authentication service. Using a
principal name obtained in this way means that the client is interested in
one-way authentication. In other words, it means that the client does not
care which server principal received the remote procedure call request. The
server, though, still verifies that the client is who the client claims to be.

protect_level
Specifies the protection level for remote procedure calls made using
binding. The protection level determines the degree to which authenticated
communications between the client and the server are protected by the
authentication service specified by authn_svc.

If the RPC runtime or the RPC protocol in the bound protocol sequence
does not support a specified level, the level is automatically upgraded to the
next higher supported level. The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication
service.

rpc_c_protect_level_pkt_integ is the default protection level for
the DCE shared-secret key authentication service.

rpc_c_protect_level_none
Performs no authentication: tickets are not exchanged, session

Chapter 3. DCE Remote Procedure Call 455

keys are not established, client PACs or names are not certified,
and transmissions are in the clear. Note that although uncertified
PACs should not be trusted, they may be useful for debugging,
tracing, and measurement purposes.

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship
with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote procedure
call when the server receives the request.

This level does not apply to remote procedure calls made over a
connection-based protocol sequence (that is, ncacn_ip_tcp). If this
level is specified and the binding handle uses a connection-based
protocol sequence, the routine uses rpc_c_protect_level_pkt
instead.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred between
client and server has been modified.

This is the highest protection level that is guaranteed to be present
in the RPC runtime.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and
also encrypt each remote procedure call argument value.

This is the highest protection level, but it may not be available in
the RPC runtime.

authn_svc
Specifies the authentication service to use. The exact level of protection
provided by the authentication service is specified by the protect_level
parameter. The supported authentication services are as follows:

rpc_c_authn_none
No authentication: no tickets are exchanged, no session keys
established, client PACs or names are not transmitted, and
transmissions are in the clear. Specify rpc_c_authn_none to turn
authentication off for remote procedure calls made using binding.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_default
DCE default authentication service.

Note:

The current default authentication service is DCE
shared-secret key. Specifying rpc_c_authn_default is
therefore equivalent to specifying rpc_c_authn_dce_secret .

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_binding_set_auth_info(3rpc)

456 IBM DCE for AIX, Version 2.2: Application Development Reference

auth_identity
Specifies a handle for the data structure that contains the client’s
authentication and authorization credentials appropriate for the selected
authentication and authorization services.

When using the rpc_c_authn_dce_secret authentication service and any
authorization service, this value must be a sec_login_handle_t obtained
from one of the following routines:

v sec_login_setup_identity()

v sec_login_get_current_context()

v sec_login_newgroups()

Specify NULL to use the default security login context for the current
address space.

authz_svc
Specifies the authorization service implemented by the server for the
interface of interest. The validity and trustworthiness of authorization data,
like any application data, is dependent on the authentication service and
protection level specified. The supported authorization services are as
follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if the authn_svc
parameter is rpc_c_authn_none , specifying that no authentication
is being performed.

rpc_c_authz_name
Server performs authorization based on the client principal name.
This value cannot be used if authn_svc is rpc_c_authn_none .

rpc_c_authz_dce
Server performs authorization using the client’s DCE privilege
attribute certificate (PAC) sent to the server with each remote
procedure call made with binding. Generally, access is checked
against DCE access control lists (ACLs). This value cannot be used
if authn_svc is rpc_c_authn_none .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_set_auth_info() routine sets up the specified server binding
handle so that it can be used to make authenticated remote procedure calls that
include authorization information.

Unless a client calls rpc_binding_set_auth_info() with the parameters to set
establish authentication and authorization methods, all remote procedure calls made
on the binding binding handle are unauthenticated. Some authentication services
(authn_svc) may need to communicate with the security service to perform this
operation. Otherwise, they may receive the rpc_s_comm_failure status.

The authn_svc parameter specifies the authentication service to use. Since
currently, there is only one available authentication service (DCE shared-secret
key), the parameter currently functions to specify whether or not rpc calls will be

rpc_binding_set_auth_info(3rpc)

Chapter 3. DCE Remote Procedure Call 457

authenticated and client PACs certified. If authentication is chosen, the protect_level
parameter can specify a variety of protection levels, ranging from no authentication
to the highest level of authentication and encryption. If the protect_level parameter
is set to rpc_c_protect_level_none , no authentication is performed, regardless of
the authentication service choosen.

The authz_svc parameter specifies the authorization service to use. If no
authentication has been chosen (authn_svc of rpc_c_authn_none), then no
authorization (authz_svc of rpc_c_authz_none) must be chosen as well. If
authentication will be performed, you have two choices for authorization:
name-based authorization and DCE authorization. The use of name
based_authorization, which provides a server with a client’s principal name, is not
recommended. DCE authorization uses PACs, a trusted mechanism for conveying
client authorization data to authenticated servers. PACs are designed to be used
with the DCE ACL facility.

Whether the call actually wakes up in the server manager code or is rejected by the
runtime depends on following conditions:

v If the client specified no authentication, then none is attempted by the RPC
runtime. The call wakes up in the manager code whether the server specified
authentication or not. This permits both authenticated and unauthenticated clients
to call authenticated servers. When the manager receives an unauthenticated
call, it needs to make a decision about how to proceed.

v If the client specified DCE secret key authentication and the server specified no
authentication, then the runtime will fail the call, and it will never reach the
manager routine.

v If both client and server specified DCE secret key authentication, then
authentication will be carried out by the RPC runtime transparently. Whether the
call reaches the server manager code or is rejected by the runtime depends on
whether the authentication succeeded.

Although the RPC runtime is responsible any authentication that is carried out, the
fact that the runtime will always permit unauthenticated clients to reach the
manager code means that a manager access function typically does need to make
an authentication check. When the manager access routine calls
rpc_binding_inq_auth_client() it needs to check for a status of
rpc_s_binding_has_no_auth . In this case, the client has specified no
authentication and the manager access function needs to make an access decision
based on this fact. Note that in such a case, no meaningful authentication or
authorization information is returned from rpc_binding_inq_auth_client() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_binding_set_auth_info(3rpc)

458 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

rpc_s_unknown_authn_service
Unknown authentication service.

rpc_s_authn_authz_mismatch
Requested authorization service is not supported by the requested
authentication service.

rpc_s_unsupported_protect_level
Requested protection level is not supported.

Related Information

Functions: rpc_binding_inq_auth_client(3rpc) ,
rpc_binding_inq_auth_info(3rpc) , rpc_mgmt_inq_dflt_protect_level(3rpc) ,
rpc_mgmt_inq_server_princ_name(3rpc) ,
sec_login_get_current_context(3sec) , sec_login_newgroups(3sec) ,
sec_login_setup_identity(3sec) .

rpc_binding_set_auth_info(3rpc)

Chapter 3. DCE Remote Procedure Call 459

rpc_binding_set_object

Purpose

Sets the object UUID value into a server binding handle; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_set_object(
rpc_binding_handle_t binding
uuid_t *object_uuid
unsigned32 *status);

Parameters

Input
binding

Specifies the server binding into which parameter object_uuid is set. Supply
NULL to specify a nil UUID for this parameter.

object_uuid
Specifies the UUID of the object serviced by the server specified in the
binding parameter. The object UUID is a unique identifier for an object for
which a remote procedure call can be made.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_set_object() routine associates an object UUID with a server
binding handle. This operation replaces the previously associated object UUID with
the UUID in the object_uuid parameter.

To set the object UUID to the nil UUID, specify NULL or the nil UUID for the
object_uuid parameter.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_binding
Invalid binding handle.

460 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_binding_from_string_binding(3rpc) ,
rpc_binding_inq_object(3rpc) .

rpc_binding_set_object(3rpc)

Chapter 3. DCE Remote Procedure Call 461

rpc_binding_to_string_binding

Purpose

Returns a string representation of a binding handle; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h

void rpc_binding_to_string_binding(
rpc_binding_handle_t binding
unsigned_char_t **string_binding
unsigned32 *status);

Parameters

Input
binding

Specifies a client or server binding handle to convert to a string
representation of a binding handle.

Output
string_binding

Returns a pointer to the string representation of the binding handle
specified in the binding parameter.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_to_string_binding() routine converts a client or server binding
handle to its string representation.

The RPC runtime allocates memory for the string returned in the string_binding
parameter. The application calls the rpc_string_free() routine to deallocate that
memory.

If the binding handle in the binding parameter contains a nil object UUID, the object
UUID field is not included in the returned string.

To parse the returned string_binding parameter, call rpc_string_binding_parse() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

462 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_ok
Success.

rpc_s_cant_getpeername
Cannot get peer name.

rpc_s_connection_closed
Connection closed.

rpc_s_invalid_binding
Invalid binding handle.

Related Information

Functions: rpc_binding_from_string_binding(3rpc) ,
rpc_string_binding_parse(3rpc) , rpc_string_free(3rpc) .

rpc_binding_to_string_binding(3rpc)

Chapter 3. DCE Remote Procedure Call 463

rpc_binding_vector_free

Purpose

Frees the memory used to store a vector and binding handles; used by client or
server applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_vector_free(
rpc_binding_vector_t **binding_vector
unsigned32 *status);

Parameters

Input/Output
binding_vector

Specifies the address of a pointer to a vector of server binding handles. On
return the pointer is set to NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_vector_free() routine frees the memory used to store a vector of
server binding handles. The freed memory includes both the binding handles and
the vector itself.

A server obtains a vector of binding handles by calling rpc_server_inq_bindings() .
A client obtains a vector of binding handles by calling
rpc_ns_binding_lookup_next() . Call rpc_binding_vector_free() if you have used
either of these routines.

The rpc_binding_free() routine frees individual elements of the vector. If an
element is freed with this routine, the NULL element entry replaces it;
rpc_binding_vector_free() ignores such an entry.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

464 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_binding_free(3rpc) , rpc_ns_binding_lookup_next(3rpc) ,
rpc_server_inq_bindings(3rpc) .

rpc_binding_vector_free(3rpc)

Chapter 3. DCE Remote Procedure Call 465

rpc_cs_binding_set_tags

Purpose

Places code set tags into a server binding handle; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_binding_set_tags(
rpc_binding_handle_t *binding
unsigned32 sending_tag
unsigned32 desired_receiving_tag
unsigned16 sending_tag_max_bytes
error_status_t *status);

Parameters

Input/Output
binding

On input, specifies the server binding handle to modify with tag information.
This handle is the binding handle returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select() routine. On
output, returns the server binding handle modified with code set tag
information. The server stub retrieves the tag information from the binding
handle and uses it to invoke the appropriate buffer sizing and code set
conversion routines.

Input
sending_tag

Specifies the code set value for the code set in which client data to be sent
to the server is to be encoded. If the client is not sending any data, set this
value to the client’s current code set. This step prevents the code set
conversion routine from being invoked.

desired_receiving_tag
Specifies the code set value for the code set in which the client prefers data
to be encoded when sent back from the server. If the client is not planning
to receive any data from the server, set this value to the server’s current
code set. This step prevents the code set conversion routine from being
invoked.

sending_tag_max_bytes
Specifies the maximum number of bytes that a code set requires to encode
one character. The value is the c_max_bytes value associated with the
code set value (c_set) used as the sending_tag value.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not. The routine
can also return status codes generated by the rpc_rgy_get_codesets()
routine.

466 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The rpc_cs_binding_set_tags() routine belongs to a set of DCE RPC routines for
use by client and server applications that are transferring international character
data in a heterogeneous character set and code sets environment. These routines
are used to enable automatic code set conversion between client and server for
character representations that are not part of the DCE portable character set.

Client applications use the rpc_cs_binding_set_tags() routine to add code sets tag
information to the binding handle of a compatible server. The tag information
specified in the routine is usually obtained from a character and code sets
evaluation routine (which is typically a user-written routine).

The sending_tag value identifies the code set encoding that the client is using to
send international character data to the server. The desired_receiving_tag value
indicates to the server the code set that the client prefers the server to use when
sending return international character data. The sending_tag_max_bytes value is
the number of bytes the sending code set uses to encode one character.

Client applications that use the rpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal() routines do not need to call this routine because
these routines set tag information in the server binding handle as part of their
operation. Application developers who are writing their own character and code sets
evaluation routines need to include code that sets tags in a server binding handle.

The rpc_cs_binding_set_tags() routine provides this function and can be used in
user-written evaluation routines, or alone if the application does not need to perform
evaluation. In this case, the routine provides a short cut for application
programmers whose applications do not need to evaluate for character and code
set compatibility.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok

rpc_s_no_memory

Related Information

Functions: rpc_cs_eval_with_universal(3rpc) ,
rpc_cs_eval_without_universal(3rpc) , rpc_cs_get_tags(3rpc) .

rpc_cs_binding_set_tags(3rpc)

Chapter 3. DCE Remote Procedure Call 467

rpc_cs_char_set_compat_check

Purpose

Evaluates character set compatibility between a client and a server; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_char_set_compat_check(
rpc_codeset_mgmt_p_t client_code_sets_array
rpc_codeset_mgmt_p_t server_code_sets_array
error_status_t *status);

Parameters

Input
client_code_sets_array

The list of character and code sets supported by the client machine.

server_code_sets_array
The list of character and code sets supported by the server machine.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_cs_char_set_compat_check() routine belongs to a set of DCE RPC
routines for use by client and server applications that are transferring international
character data in a heterogeneous character set and code sets environment.

The rpc_cs_char_set_compat_check() routine provides a method for determining
character set compatibility between a client and a server; if the server’s character
set is incompatible with that of the client, then connecting to that server is most
likely not acceptable, since massive data loss would result from such a connection.

The RPC routines that perform character and code sets evaluation use the
rpc_cs_char_set_compat_check() routine in their character sets and code sets
compatibility checking procedure. Before calling this routine, client applications must
use the rpc_rgy_get_codesets routine to get the client’s supported character and
code sets, and use the rpc_ns_mgmt_read_codesets routine to retrieve the
server’s supported character and code sets from the name service database in
order to do the character sets compatibility checking. If both client and server
support just one character set, the routine compares client and server registered
character set values to determine whether the sets are compatible. If they are not,
the routine returns the status message rpc_s_ss_no_compat_charsets .

If the client and server support multiple character sets, the routine determines
whether at least two of the sets are compatible. If two or more sets match, the
routine considers the character sets compatible, and returns a success status code
to the caller.

468 IBM DCE for AIX, Version 2.2: Application Development Reference

Client and server applications that use the DCE RPC code sets evaluation routines
rpc_cs_eval_with_universal() and rpc_cs_eval_without_universal() do not need
to call this routine explicitly because these DCE RPC routines call it on their behalf.

Client applications that do not use the DCE RPC code sets evaluation routines can
use the rpc_cs_char_set_compat_check() routine in their code sets evaluation
code as part of their procedure for determining character and code set compatibility
with a server.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok

rpc_s_ss_no_compat_charsets

Related Information

Functions: rpc_cs_eval_with_universal(3rpc) ,
rpc_cs_eval_without_universal(3rpc) , rpc_cs_get_tags(3rpc) ,
rpc_ns_mgmt_read_codesets(3rpc) , rpc_rgy_get_codesets(3rpc) .

rpc_cs_char_set_compat_check(3rpc)

Chapter 3. DCE Remote Procedure Call 469

rpc_cs_eval_with_universal

Purpose

Evaluates a server’s supported character sets and code sets during the server
binding selection process; used indirectly by client applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_eval_with_universal(
rpc_ns_handle_t binding_handle
idl_void_p_t eval_args
idl_void_p_t *context);

Parameters

Input
binding_handle

The server binding handle.

eval_args
An opaque data type that contains matching criteria that the routine uses to
perform character and code sets compatibility evaluation.

Input/Output
context

An opaque data type that contains search context to perform character and
code sets compatibility evaluation. The routine returns the result of the
evaluation in a field within context.

Description

The rpc_cs_eval_with_universal() routine is a DCE RPC character and code sets
evaluation routine that can be added to an import context. The routine provides a
mechanism for a client application that is passing character data in a
heterogeneous character set and code sets environment to evaluate a server’s
character and code sets compatibility before establishing a connection with it.

Client applications do not call rpc_cs_eval_with_universal() directly. Instead, they
add it to the import context created by the rpc_ns_binding_import_begin() routine
by calling the routine rpc_ns_import_ctx_add_eval() and specifying the routine
name and the RPC server entry name to be evaluated. When the client application
calls the rpc_ns_binding_import_next() routine to import compatible binding
handles for servers, this routine calls rpc_cs_eval_with_universal() , which applies
client-server code sets compatibility checking as another criteria for compatible
binding selection.

The rpc_cs_eval_with_universal() routine directs the routine
rpc_ns_binding_import_next() to reject servers with incompatible character sets.
If client and server character sets are compatible, but their supported code sets are
not, the routine establishes tags that direct the client and/or server stubs to convert
character data to the default intermediate code set, which is the ISO10646 (or
universal) code set.

470 IBM DCE for AIX, Version 2.2: Application Development Reference

Note:

Application programmers need not pay attention to the arguments of this
routine. Programmers only need to use the routine
rpc_ns_import_ctx_add_eval() to set the routine, for example:
rpc_ns_import_ctx_add_eval(
&import_context,
rpc_c_eval_type_codesets,
(void *) nsi_entry_name,
rpc_cs_eval_with_universal,
NULL,
&status);

Permissions Required

No permissions are required.

Return Values

No value is returned.

Related Information

Functions: rpc_cs_eval_without_universal(3rpc) , rpc_cs_get_tags(3rpc) ,
rpc_ns_binding_import_begin(3rpc) , rpc_ns_binding_import_done(3rpc) ,
rpc_ns_binding_import_next(3rpc) , rpc_ns_import_ctx_add_eval(3rpc) ,
rpc_ns_mgmt_handle_set_exp_age(3rpc) .

rpc_cs_eval_with_universal(3rpc)

Chapter 3. DCE Remote Procedure Call 471

rpc_cs_eval_without_universal

Purpose

Evaluates a server’s supported character sets and code sets during the server
binding selection process; used indirectly by client applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_eval_without_universal(
rpc_ns_handle_t binding_handle
idl_void_p_t eval_args
idl_void_p_t *context);

Parameters

Input
binding_handle

The server binding handle.

eval_args
An opaque data type that contains matching criteria that the routine uses to
perform code sets compatibility evaluation.

Input/Output
context

An opaque data type that contains search context to perform character and
code sets compatibility evaluation. The routine returns the result of the
evaluation in a field within context.

Description

The rpc_cs_eval_without_universal() routine is a DCE RPC character and code
sets evaluation routine that can be added to an import context. The routine provides
a mechanism for a client application that is passing character data in a
heterogeneous character set and code sets environment to evaluate a server’s
character and code sets compatibility before establishing a connection with it.

Client applications do not call rpc_cs_eval_without_universal() directly. Instead,
they add it to the import context created by the rpc_ns_binding_import_begin()
routine by calling the routine rpc_ns_import_ctx_add_eval() and specifying the
routine name and the RPC server entry name to be evaluated. When the client
application calls the rpc_ns_binding_import_next() routine to import compatible
binding handles for servers, this routine calls rpc_cs_eval_without_universal() ,
which applies client-server code sets compatibility checking as another criteria for
compatible binding selection.

The rpc_cs_eval_without_universal() routine directs the routine
rpc_ns_binding_import_next() to reject servers with incompatible character sets.
The routine also directs the rpc_ns_binding_import_next() routine to reject
servers whose supported code sets are incompatible with the client’s supported
code sets; that is, it does not resort to using an intermediate code set as a last
resort.

472 IBM DCE for AIX, Version 2.2: Application Development Reference

Note:

Application programmers need not pay attention to the arguments of this
routine. Programmers only need to use the routine
rpc_ns_import_ctx_add_eval() to set the routine, for example:
rpc_ns_import_ctx_add_eval(
&import_context,
rpc_c_eval_type_codesets,
(void *) nsi_entry_name,
rpc_cs_eval_without_universal,
NULL,
&status);

Permissions Required

No permissions are required.

Return Values

No value is returned.

Related Information

Functions: rpc_cs_get_tags(3rpc) , rpc_ns_binding_import_begin(3rpc) ,
rpc_ns_binding_import_done(3rpc) , rpc_ns_binding_import_next(3rpc) ,
rpc_ns_import_ctx_add_eval(3rpc) , rpc_ns_mgmt_handle_set_exp_age(3rpc) .

rpc_cs_eval_without_universal(3rpc)

Chapter 3. DCE Remote Procedure Call 473

rpc_cs_get_tags

Purpose

Retrieves code set tags from a binding handle; used by client and server
applications

Synopsis
#include <dce/codesets_stub.h>

void rpc_cs_get_tags(
rpc_binding_handle_t binding
boolean32 server_side
unsigned32 *sending_tag
unsigned32 *desired_receiving_tag
unsigned32 *receiving_tag
error_status_t *status);

Parameters

Input
binding

Specifies the target binding handle from which to obtain the code set tag
information. When called from the client stub, this value is the binding
handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select() routines.

server_side
Indicates whether a client stub or a server stub is calling the routine.

desired_receiving_tag
(Server stub only) Specifies the code set value for the code set in which the
client prefers data to be encoded when sent back from the server. The
client stub passes this value in the RPC call. If the routine is retrieving code
set tags for an operation that does not specify a desired receiving tag
parameter (the cs_drtag ACF parameter attribute has not been applied to
one of the operation’s parameters), this value is NULL.

Output
sending_tag

(Client stub only) Specifies the code set value for the code set in which
client data to be sent to the server is to be encoded. If the routine is
retrieving code set tags for an operation that does not specify a sending tag
parameter (the cs_stag ACF parameter attribute has not been applied to
one of the operation’s parameters), this value is NULL.

desired_receving_tag
(Client stub only) Specifies the code set value for the code set in which the
client prefers to receive data sent back to it from the server. If the routine is
retrieving code set tags for an operation that does not specify a desired
receiving tag parameter (the cs_drtag ACF parameter attribute has not
been applied to one of the operation’s parameters), this value is NULL.

receiving_tag
(Server stub only) Specifies the code set value for the code set in which the
server is to encode data to be sent back to the client. If the routine is
retrieving code set tags for an operation that does not specify a receiving

474 IBM DCE for AIX, Version 2.2: Application Development Reference

tag parameter (the cs_rtag ACF parameter attribute has not been applied
to one of the operation’s parameters), this value is NULL.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. If code set
compatibility evaluation is performed, error values can also be returned
from the following routines:

v rpc_rgy_get_codesets()

v rpc_ns_binding_inq_entry_name()

v rpc_ns_mgmt_read_codesets() .

Description

The rpc_cs_get_tags() routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The rpc_cs_get_tags() routine is a DCE RPC routine that RPC stubs can use to
retrieve the code set values to be used to tag international character data to be
sent over the network. In general, the code set values to be used as tags are
determined by a character and code sets evaluation routine, which is invoked from
the client application code. However, application programmers can use other
methods to establish values for code set tags.

RPC stubs call the rpc_cs_get_tags() routine before they call the buffer sizing
routines *_net_size() and the code set conversion routines *_netcs() . The
rpc_cs_get_tags() routine provides the stubs with code set values to use as input
to the buffer sizing routines (to determine whether or not buffer storage needs to be
allocated for conversion) and as input to the code set conversion routines (to
determine whether conversion is necessary, and if so, which host code set
converter to invoke).

Client and server stubs call the rpc_cs_get_tags() routine before they marshall any
data. When called from the client stub, the boolean value server_side is set to
FALSE to indicate that the client stub has invoked the routine. The binding handle is
the handle to a compatible server that is returned by the routines
rpc_ns_binding_import_next() or rpc_ns_binding_select() . If the client has
added a code sets evaluation routine to the binding import procedure (by calling the
routine rpc_ns_import_ctx_add_eval()), the binding handle will contain the
conversion method and the code set values to set for the client’s sending tag and
desired receiving tag. If the binding handle does not contain the results of an
evaluation, the rpc_cs_get_tags() routine will perform the character/code sets
evaluation within the client stub and set the client code set tag values itself.

On the client side, the output of the routine is the code set value that represents the
client’s sending tag and the code set value that represents the client’s desired
receiving tag. If the conversion method is ′′client makes it right’’ (CMIR), the
sending tag and desired receiving tags will be set to the code set value of the
server’s local code set. If the conversion method is ′′server makes it right’’ (SMIR),
the sending tag and desired receiving tag will be set to the client’s local code set
value. If the conversion method is ′′receiver makes it right’’ (RMIR), the sending tag
is the client’s code set, and the desired receiving tag is the server’s code set.

When called from the server stub, the boolean value server_side is set to TRUE to
indicate that the server stub has invoked the routine.

rpc_cs_get_tags(3rpc)

Chapter 3. DCE Remote Procedure Call 475

The server stub specifies the code set value given in the client’s desired receiving
tag as input to the routine. The rpc_cs_get_tags() routine sets the code set value
in desired_receiving_tag to receiving_tag and returns this value as output to the
server stub. The server stub will then use the code set value in receiving_tag as the
code set to use for data it sends back to the client.

Application programmers who want their applications to use the rpc_cs_get_tags()
routine to retrieve code set tag information as part of the automatic code set
conversion process specify the routine name as the argument to the ACF attribute
cs_tag_rtn when developing their internationalized RPC application.

Application programmers can also write their own code set tags retrieval routine
that RPC stubs can call; in this case, they specify the name of this routine as the
argument to the ACF attribute cs_tag_rtn instead of specifying the DCE RPC
routine rpc_cs_get_tags() . Application programmers can also use the automatic
code conversion mechanism, but design their applications so that the code set tags
are set explicitly in the application instead of in the stubs.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_ss_invalid_codeset_tag
The result of the client-side evaluation used an invalid code set tag.

Related Information

Functions: cs_byte_from_netcs(3rpc) , cs_byte_local_size(3rpc) ,
cs_byte_net_size(3rpc) , cs_byte_to_netcs(3rpc) , wchar_t_from_netcs(3rpc) ,
wchar_t_local_size(3rpc) , wchar_t_net_size(3rpc) , wchar_t_to_netcs(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_cs_get_tags(3rpc)

476 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ep_register

Purpose

Adds to, or replaces, server address information in the local endpoint map; used by
server applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_register(
rpc_if_handle_t if_handle
rpc_binding_vector_t *binding_vec
uuid_vector_t *object_uuid_vec
unsigned_char_t *annotation
unsigned32 *status);

Parameters

Input
if_handle

Specifies an interface specification to register with the local endpoint map.

binding_vec
Specifies a vector of binding handles over which the server can receive
remote procedure calls.

object_uuid_vec
Specifies a vector of object UUIDs that the server offers. The server
application constructs this vector.

Supply the value NULL to indicate there are no object UUIDs to register.

annotation
Defines a character string comment applied to each cross product element
added to the local endpoint map. The string can be up to 64 characters
long, including the NULL terminating character. Specify NULL or the string
\0 if there is no annotation string.

The string is used by applications for informational purposes only. The RPC
runtime does not use this string to determine which server instance a client
communicates with, or for enumerating endpoint map elements.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ep_register() routine adds elements to, or replaces elements in, the local
host’s endpoint map.

Each element in the local endpoint map logically contains the following:

v Interface ID, consisting of an interface UUID and versions (major and minor)

v Binding information

v Object UUID (optional)

Chapter 3. DCE Remote Procedure Call 477

v Annotation (optional)

A server uses this routine, instead of rpc_ep_register_no_replace() , when only a
single instance of the server runs on the server’s host. Use this routine if, at any
time, no more than one server instance offers the same interface UUID, object
UUID, and protocol sequence.

When local endpoint map elements are not replaced, obsolete elements accumulate
each time a server instance stops running without calling rpc_ep_unregister() .
Periodically the DCE host daemon identifies these obsolete elements and removes
them. However, during the time between these removals the obsolete elements
increase the chance that a client will receive endpoints to nonexistent servers. The
client then wastes time trying to communicate with these servers before obtaining
another endpoint.

Using this routine to replace any existing local endpoint map elements reduces the
chance that a client will receive the endpoint of a nonexistent server instance.

Suppose an existing element in the local endpoint map matches the interface UUID,
binding information exclusive of the endpoint, and object UUID of an element this
routine provides. The routine changes the endpoint map according to the elements’
interface major and minor version numbers, as shown in the following table:

Existing Element Relationship Provided Element Routine’s Action

Major version
number

Not equal to Major version
number

Ignores minor version
number relationship and
adds a new endpoint
map element. The
existing element
remains unchanged.

Major version
number

Equal to Major version
number

Acts according to the
minor version number
relationship.

Minor version
number

Equal to Minor version
number

Replaces the endpoint
of the existing element
based on the provided
information.

Minor version
number

Less than Minor version
number

Replaces the existing
element based on the
provided information.

Minor version
number

Greater than Minor version
number

Ignores the provided
information. The
existing element
remains unchanged.

For example, suppose under these circumstances that the existing interface version
number is 1.3 (major.minor) and the provided version number is 2.0. The routine
adds a new endpoint map element with interface version number 2.0 and does not
change the element with version number 1.3. However, if the existing interface
version number is 1.5 and the provided version number is 1.4, the routine does not
change the endpoint map.

A server program calls this routine to register endpoints that have been specified by
calling any of the following routines:

rpc_ep_register(3rpc)

478 IBM DCE for AIX, Version 2.2: Application Development Reference

v rpc_server_use_all_protseqs()

v rpc_server_use_protseq()

v rpc_server_use_protseq_ep()

A server that calls only the rpc_server_use_all_protseqs_if() or
rpc_server_use_protseq_if() routines does not need to call this routine. In such
cases, the client’s runtime uses an endpoint from the client’s interface specification
to fill in a partially bound binding handle. However, it is recommended that you also
register well-known endpoints that the server specifies (registering endpoints from
interface definitions is unnecessary).

If the server also exports to the name service database, the server calls this routine
with the same if_handle, binding_vec and object_uuid_vec parameters as the server
uses when calling the rpc_ns_binding_export() routine.

The rpc_ep_register() routine communicates with the DCE host daemon (dced),
which in turn communicates with the local endpoint map. The routine communicates
using one of the protocol sequences specified in one of the binding handles in
binding_vec. Attempting to register a binding that specifies a protocol sequence that
the DCE host daemon is not listening on results in the failure of rpc_ep_register() .
The routine indicates this failure by placing the value rpc_s_comm_failure into
status.

For information about how the endpoint map service selects an element for an
interface ID and an object UUID, see the RPC information in the IBM DCE for AIX,
Version 2.2: Application Development Guide—Core Components . This guide
explains how the endpoint map service searches for the endpoint of a server that is
compatible with a client. If the client supplies a nonnil object UUID that is not in the
endpoint map, or the client supplies a nil object UUID, the search can succeed, but
only if the server has registered a nil object UUID using the rpc_ep_register() or
rpc_ep_register_no_replace() routines. The object_uuid_vec parameter can
contain both nil and nonnil object UUIDs for the routine to place into endpoint map
elements.

For an explanation of how a server can establish a client/server relationship without
using the local endpoint map, see the explanation of a string binding in the
rpc_intro(3rpc) reference page.

This routine creates a cross product from the if_handle, binding_vec and
object_uuid_vec parameters, and adds each element in the cross product as a
separate registration in the local endpoint map. If you supply NULL to
object_uuid_vec, the corresponding elements in the cross product contain a nil
object UUID.

For example, suppose that if_handle has the value ifhand , binding_vec has the
values b1, b2, b3, and object_uuid_vec has the values u1, u2, u3, u4. The
resulting 12 elements in the cross product are as follows:
(ifhand,b1,u1) (ifhand,b1,u2) (ifhand,b1,u3) (ifhand,b1,u4)
(ifhand,b2,u1) (ifhand,b2,u2) (ifhand,b2,u3) (ifhand,b2,u4)
(ifhand,b3,u1) (ifhand,b3,u2) (ifhand,b3,u3) (ifhand,b3,u4)

(An annotation string is part of each of these 12 elements.)

rpc_ep_register(3rpc)

Chapter 3. DCE Remote Procedure Call 479

Return Values

No value is returned.

Errors
rpc_s_ok

Success.

ept_s_cant_access
Error reading endpoint database.

ept_s_cant_create
Error creating endpoint database.

ept_s_cant_perform_op
Cannot perform requested operation.

ept_s_database_invalid
Endpoint map database invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_update_failed
Update failed.

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_bindings
No bindings.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_register_no_replace(3rpc) , rpc_ep_resolve_binding(3rpc) ,
rpc_ep_unregister(3rpc) , rpc_mgmt_ep_unregister(3rpc) ,
rpc_ns_binding_export(3rpc) , rpc_server_inq_bindings(3rpc) ,
rpc_server_use_all_protseqs(3rpc) , rpc_server_use_all_protseqs_if(3rpc) ,
rpc_server_use_protseq(3rpc) , rpc_server_use_protseq_ep(3rpc) ,
rpc_server_use_protseq_if(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_ep_register(3rpc)

480 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ep_register_no_replace

Purpose

Adds to server address information in the local endpoint map; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_register_no_replace(
rpc_if_handle_t if_handle
rpc_binding_vector_t *binding_vec
uuid_vector_t *object_uuid_vec
unsigned_char_t *annotation
unsigned32 *status);

Parameters

Input
if_handle

Specifies an interface specification to register with the local endpoint map.

binding_vec
Specifies a vector of binding handles over which the server can receive
remote procedure calls.

object_uuid_vec
Specifies a vector of object UUIDs that the server offers. The server
application constructs this vector.

Supply the value NULL to indicate there are no object UUIDs to register.

annotation
Defines a character string comment applied to each cross-product element
added to the local endpoint map. The string can be up to 64 characters
long, including the NULL terminating character. Specify NULL or the string
\0 if there is no annotation string.

The string is used by applications for informational purposes only. The RPC
runtime does not use this string to determine which server instance a client
communicates with, or for enumerating endpoint map elements.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ep_register_no_replace() routine adds elements to the local host’s
endpoint map. The routine does not replace existing elements. Otherwise, this
routine is identical to rpc_ep_register() .

Each element in the local endpoint map logically contains the following:

v Interface ID, consisting of an interface UUID and versions (major and minor)

v Binding information

Chapter 3. DCE Remote Procedure Call 481

v Object UUID (optional)

v Annotation (optional)

A server uses this routine, instead of rpc_ep_register() , when multiple instances of
the server run on the same host. Use this routine if, at any time, more than one
server instance offers the same interface UUID, object UUID, and protocol
sequence.

Since this routine does not replace elements, calling servers must unregister (that
is, remove) themselves before they stop running. Otherwise, when local endpoint
map elements are not replaced, obsolete elements accumulate each time a server
instance stops running without calling rpc_ep_unregister() . Periodically the DCE
host daemon identifies obsolete elements and removes them from the local
endpoint map. However, during the time between these removals, the obsolete
elements increase the chance that a client will receive endpoints to nonexistent
servers. The client then wastes time trying to communicate with these servers
before obtaining another endpoint.

A server program calls this routine to register endpoints that were specified by
calling any of the following routines:

v rpc_server_use_all_protseqs()

v rpc_server_use_protseq()

v rpc_server_use_protseq_ep()

A server that calls only the rpc_server_use_all_protseqs_if() or
rpc_server_use_protseq_if() routine does not need to call this routine. In such
cases, the client’s runtime uses an endpoint from the client’s interface specification
to fill in a partially bound binding handle. However, it is recommended that you also
register well-known endpoints that the server specifies (registering endpoints from
interface definitions is unnecessary).

If the server also exports to the name service database, the server calls this routine
with the same if_handle, binding_vec and object_uuid_vec parameters as the server
uses when calling the rpc_ns_binding_export() routine.

The rpc_ep_register_no_replace() routine communicates with the DCE host
daemon (dced), which in turn communicates with the local endpoint map. The
routine communicates using one of the protocol sequences specified in one of the
binding handles in binding_vec. Attempting to register a binding that specifies a
protocol sequence that the DCE host daemon is not listening on results in the
failure of rpc_ep_register_no_replace() . The routine indicates this failure by
placing the value rpc_s_comm_failure into status.

For information about how the endpoint map service selects an element for an
interface ID and an object UUID, see the RPC information in the IBM DCE for AIX,
Version 2.2: Application Development Guide—Core Components . This guide
explains how the endpoint map service searches for the endpoint of a server that is
compatible with a client. If the client supplies a nonnil object UUID that is not in the
endpoint map, or the client supplies a nil object UUID, the search can succeed, but
only if the server has registered a nil object UUID using the
rpc_ep_register_no_replace() or rpc_ep_register() routine. The object_uuid_vec
parameter can contain both nil and nonnil object UUIDs for the routine to place into
endpoint map elements.

rpc_ep_register_no_replace(3rpc)

482 IBM DCE for AIX, Version 2.2: Application Development Reference

For an explanation of how a server can establish a client/server relationship without
using the local endpoint map, see the explanation of a string binding in the
rpc_intro(3rpc) reference page.

This routine creates a cross-product from the if_handle, binding_vec and
object_uuid_vec parameters, and adds each element in the cross-product as a
separate registration in the local endpoint map. If you supply NULL to
object_uuid_vec, the corresponding elements in the cross-product contain a nil
object UUID. The rpc_ep_register() routine’s reference page summarizes the
contents of an element in the local endpoint map.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

ept_s_cant_access
Error reading endpoint database.

ept_s_cant_create
Error creating endpoint database.

ept_s_cant_perform_op
Cannot perform requested operation.

ept_s_database_invalid
Endpoint map database invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_update_failed
Update failed.

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_bindings
No bindings.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_register(3rpc) , rpc_ep_resolve_binding(3rpc) ,
rpc_ep_unregister(3rpc) , rpc_mgmt_ep_unregister(3rpc) ,
rpc_ns_binding_export(3rpc) , rpc_server_inq_bindings(3rpc) ,

rpc_ep_register_no_replace(3rpc)

Chapter 3. DCE Remote Procedure Call 483

rpc_server_use_all_protseqs(3rpc) , rpc_server_use_all_protseqs_if(3rpc) ,
rpc_server_use_protseq(3rpc) , rpc_server_use_protseq_ep(3rpc) ,
rpc_server_use_protseq_if(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_ep_register_no_replace(3rpc)

484 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ep_resolve_binding

Purpose

Resolves a partially bound server binding handle into a fully bound server binding
handle; used by client and management applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_resolve_binding(
rpc_binding_handle_t binding
rpc_if_handle_t if_handle
unsigned32 *status);

Parameters

Input/Output
binding

Specifies a partially bound server binding handle to resolve into a fully
bound server binding handle.

if_handle
Contains a stub-generated data structure that specifies the interface of
interest.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

An application calls the rpc_ep_resolve_binding() routine to resolve a partially
bound server binding handle into a fully bound server binding handle.

Resolving binding handles requires an interface UUID and an object UUID. The
object UUID can be a nil UUID. The RPC runtime requests the DCE host daemon’s
endpoint mapper service, on the host that the binding parameter specifies, to look
up an endpoint for a compatible server instance. The endpoint mapper service finds
the endpoint by looking in the local endpoint map for the interface UUID from the
if_handle parameter and for the object UUID in the binding parameter.

The rpc_ep_resolve_binding() routine depends on whether the specified binding
handle is partially bound or fully bound. When the application specifies a partially
bound handle, the routine produces the following results:

v If no compatible server instances are registered in the local endpoint map, the
routine returns the ept_s_not_registered status code.

v If one compatible server instance is registered in the local endpoint map, the
routine returns a fully bound binding handle in binding and the rpc_s_ok status
code.

v If more than one compatible server instance is registered in the local endpoint
map, the routine randomly selects one. It then returns the corresponding fully
bound binding handle in binding and the rpc_s_ok status code.

Chapter 3. DCE Remote Procedure Call 485

When the application specifies a fully bound binding handle, the routine returns the
specified binding handle in binding and the rpc_s_ok status code. The routine
makes no request of the DCE host daemon.

In neither the partially bound case nor the fully bound case does the routine contact
a compatible server instance.

Using This Routine

For each server instance, the RPC runtime automatically provides routines (the
rpc_mgmt_* routines) that form an RPC management interface. If a server instance
registers any application-provided interfaces, the RPC runtime automatically
registers the RPC-provided management interface with the local endpoint map for
that server instance.

An application can call rpc_ep_resolve_binding() at any time with either a partially
bound or a fully bound handle. However, applications typically call this routine to
avoid calling a routine in the management interface with a partially bound handle.

An application can have a partially bound binding handle at the following times:

v After importing a binding handle.

v After resetting a binding handle.

v After converting a string binding without an endpoint to a binding handle.

If an application calls an application-provided remote procedure using a partially
bound handle, the RPC runtime automatically asks the DCE host daemon to
resolve the binding handle into a fully bound handle. This fully bound binding
handle corresponds to the RPC interface of the called remote procedure and the
requested object, if any. The application can then use this fully bound handle to
make remote management calls, so calling the rpc_ep_resolve_binding() routine
is unnecessary.

When a high proportion of all servers in an environment offers the same interface,
the interface is known as a pervasive one. The RPC management interface is a
pervasive interface in all environments that use DCE RPC.

Using this routine to unambiguously locate compatible server instances applies to
application-pervasive interfaces as well as to the RPC management interface.

Partially Bound Handles with a Nonnil Object UUID

If the application has a partially bound handle with a nonnil object UUID, the
application can decide not to call the rpc_ep_resolve_binding() routine before
calling a procedure in the management interface. In this case the remote
management call is sent to a server instance, registered on the remote host, that
offers that object UUID.

After completing the remote management call, the application has a fully bound
handle to that server instance. The server instance that the handle specifies
probably offers the nonmanagement interfaces of interest to the calling application.
However, if you want to be certain of obtaining a fully bound handle to a server
instance that offers the interfaces needed for later remote procedure calls, call the
rpc_ep_resolve_binding() routine.

rpc_ep_resolve_binding(3rpc)

486 IBM DCE for AIX, Version 2.2: Application Development Reference

Partially Bound Handles with a Nil Object UUID

When an application makes a remote procedure or management call using a
partially bound handle with a nil object UUID, the DCE host daemon searches for a
compatible server instance. The search is based on the nil object UUID and the
UUID of the interface to which the call belongs.

All server instances that register any RPC interface automatically offer the RPC
management interface. When an application makes a remote management call
using a partially bound handle with a nil object UUID, the DCE host daemon on the
remote host cannot distinguish among server instances registered in the local
endpoint map.

When the DCE host daemon cannot distinguish among these instances it selects
any server instance. After completing the remote management call, the calling
application has a fully bound handle. However, the server instance that the handle
represents probably does not offer the nonmanagement interfaces that interest the
application.

The remote RPC management routines avoid this ambiguity. They do this by
returning the status rpc_s_binding_incomplete if the provided binding handle is a
partially bound one with a nil object UUID.

An application wanting to contact servers that have exported and registered
interfaces with a nil object UUID calls routine rpc_ep_resolve_binding() . The
application obtains a fully bound binding handle for calling remote management
procedures in a server instance that also offers the remote procedures in the
application-specific interface.

Note that an application that wants to manage all the server instances on a host
does not call rpc_ep_resolve_binding() . Instead, the application obtains fully
bound binding handles for each server instance by calling the routines
rpc_mgmt_ep_elt_inq_ *() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

ept_s_not_registered
No entries found.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

rpc_s_rpcd_comm_failure
Communications failure while trying to reach the endpoint map.

rpc_ep_resolve_binding(3rpc)

Chapter 3. DCE Remote Procedure Call 487

Related Information

Functions: rpc_binding_from_string_binding(3rpc) , rpc_binding_reset(3rpc) ,
rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) ,
rpc_mgmt_ep_elt_inq_begin(3rpc) , rpc_mgmt_ep_elt_inq_done(3rpc) ,
rpc_mgmt_ep_elt_inq_next(3rpc) .

rpc_ep_resolve_binding(3rpc)

488 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ep_unregister

Purpose

Removes server address information from the local endpoint map; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_unregister(
rpc_if_handle_t if_handle
rpc_binding_vector_t *binding_vec
uuid_vector_t *object_uuid_vec
unsigned32 *status);

Parameters

Input
if_handle

Specifies an interface specification to remove (that is, unregister) from the
local endpoint map.

binding_vec
Specifies a vector of binding handles to remove.

object_uuid_vec
Specifies a vector of object UUIDs to remove. The server application
constructs this vector. This routine removes all local endpoint map elements
that match the specified if_handle parameter, binding_vec parameter, and
object UUIDs.

This is an optional parameter. The value NULL indicates there are no object
UUIDs to remove.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ep_unregister() routine removes elements from the local host’s endpoint
map. A server application calls this routine only if the server has registered
endpoints previously and the server wishes to remove that address information from
the local endpoint map.

A server program is able to remove its own local endpoint map elements (server
address information) based on either of the following:

v The interface specification.

v The interface specification and the object UUIDs of resources offered.

The server calls the rpc_server_inq_bindings() routine to obtain the required
binding_vec parameter. To remove selected endpoints, the server can remove
individual elements from binding_vec before calling this routine. (See the

Chapter 3. DCE Remote Procedure Call 489

explanation of a binding vector in the rpc_intro(3rpc) reference page for more
information about removing a single element from a vector of binding handles.)

This routine creates a cross product from the if_handle, binding_vec and
object_uuid_vec parameters and removes each element in the cross product from
the local endpoint map. The rpc_ep_register() routine’s reference page
summarizes the contents of a cross product in the local endpoint map.

Servers must always call the rpc_ep_unregister() routine to remove their endpoints
from the local endpoint map before they exit. Otherwise, stale information will be in
the local endpoint map. However, if a server prematurely removes endpoints (the
server is not in the process of exiting), clients that do not already have fully bound
binding handles to the server will not be able to send remote procedure calls to the
server.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

ept_s_cant_access
Error reading endpoint database.

ept_s_cant_create
Error creating endpoint database.

ept_s_cant_perform_op
Cannot perform requested operation.

ept_s_database_invalid
Endpoint map database invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_update_failed
Update failed.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_bindings
No bindings.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) ,
rpc_mgmt_ep_unregister(3rpc) , rpc_ns_binding_unexport(3rpc) ,
rpc_server_inq_bindings(3rpc) .

rpc_ep_unregister(3rpc)

490 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_if_id_vector_free

Purpose

Frees a vector and the interface identifier structures it contains; used by client,
server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_if_id_vector_free(
rpc_if_id_vector_t **if_id_vector
unsigned32 *status);

Parameters

Input/Output
if_id_vector

Specifies the address of a pointer to a vector of interface information. On
return the pointer is set to NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_if_id_vector_free() routine frees the memory used to store a vector of
interface identifiers. This includes memory used by the interface identifiers and the
vector itself. On return this routine sets the if_id_vector parameter to NULL.

To obtain a vector of interface identifiers, call rpc_ns_mgmt_entry_inq_if_ids() or
rpc_mgmt_inq_if_ids() . Call rpc_if_id_vector_free() if you have used either of
these routines.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_arg
Invalid argument.

Chapter 3. DCE Remote Procedure Call 491

Related Information

Functions: rpc_if_inq_id(3rpc) , rpc_mgmt_inq_if_ids(3rpc) ,
rpc_ns_mgmt_entry_inq_if_ids(3rpc) .

rpc_if_id_vector_free(3rpc)

492 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_if_inq_id

Purpose

Returns the interface identifier for an interface specification; used by client or server
applications

Synopsis
#include <dce/rpc.h>

void rpc_if_inq_id(
rpc_if_handle_t if_handle
rpc_if_id_t *if_id
unsigned32 *status);

Parameters

Input
if_handle

Represents a stub-generated data structure that specifies the interface
specification to inquire about.

Output
if_id Returns the interface identifier. The application provides memory for the

returned data.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application calls the rpc_if_inq_id() routine to obtain a copy of the interface
identifier from the provided interface specification.

The returned interface identifier consists of the interface UUID and interface version
numbers (major and minor) specified in the DCE IDL file’s interface specification.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_if_id_vector_free(3rpc) , rpc_mgmt_inq_if_ids(3rpc) ,
rpc_ns_mgmt_entry_inq_if_ids(3rpc) .

Chapter 3. DCE Remote Procedure Call 493

rpc_mgmt_ep_elt_inq_begin

Purpose

Creates an inquiry context for viewing the elements in an endpoint map; used by
management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_begin(
rpc_binding_handle_t ep_binding
unsigned32 inquiry_type
rpc_if_id_t *if_id
unsigned32 vers_option
uuid_t *object_uuid
rpc_ep_inq_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input
ep_binding

Specifies the host whose local endpoint map elements you receive. To
receive elements from the same host as the calling application, specify
NULL.

To receive local endpoint map elements from another host, specify a server
binding handle for that host. You can specify the same binding handle you
are using to make other remote procedure calls. The object UUID
associated with this parameter must be a nil UUID. If you specify a nonnil
UUID, the routine fails with the status code ept_s_cant_perform_op . Other
than the host information and object UUID, all information in this parameter
is ignored.

inquiry_type
Specifies an integer value that indicates the type of inquiry to perform on
the local endpoint map. The following table shows the valid inquiry types:

Table 18. Valid Inquiries on Local Endpoint Maps

Value Description

rpc_c_ep_all_elts Returns every element from the local endpoint
map. The if_id, vers_option, and object_uuid
parameters are ignored.

rpc_c_ep_match_by_if Searches the local endpoint map for those
elements that contain the interface identifier
specified by the if_id and vers_option values. The
object_uuid parameter is ignored.

rpc_c_ep_match_by_obj Searches the local endpoint map for those
elements that contain the object UUID specified
by the object_uuid parameter. The if_id and
vers_option parameters are ignored.

494 IBM DCE for AIX, Version 2.2: Application Development Reference

Table 18. Valid Inquiries on Local Endpoint Maps (continued)

Value Description

rpc_c_ep_match_by_both Searches the local endpoint map for those
elements that contain the interface identifier and
object UUID specified by the if_id, vers_option,
and object_uuid parameters.

if_id Specifies the interface identifier of the local endpoint map elements to be
returned by the rpc_mgmt_ep_elt_inq_next() routine.

Use this parameter only when specifying a value of rpc_c_ep_match_by_if
or rpc_c_ep_match_by_both for the inquiry_type parameter. Otherwise,
this parameter is ignored and the value NULL can be specified.

vers_option
Specifies how the rpc_mgmt_ep_elt_inq_next() routine uses the if_id
parameter. Use this parameter only when specifying a value of
rpc_c_ep_match_by_if or rpc_c_ep_match_by_both for the inquiry_type
parameter. Otherwise, this parameter is ignored and a 0 (zero) value can
be specified.

The following table presents the valid values for this parameter:

Table 19. Valid values of vers_option
Value Description

rpc_c_vers_all Returns local endpoint map elements that offer
the specified interface UUID, regardless of the
version numbers. For this value, specify 0 (zero)
for both the major and minor versions in if_id.

rpc_c_vers_compatible Returns local endpoint map elements that offer
the same major version of the specified interface
UUID and a minor version greater than or equal to
the minor version of the specified interface UUID.

rpc_c_vers_exact Returns local endpoint map elements that offer
the specified version of the specified interface
UUID.

rpc_c_vers_major_only Returns local endpoint map elements that offer
the same major version of the specified interface
UUID (ignores the minor version). For this value,
specify 0 (zero) for the minor version in if_id.

rpc_c_vers_upto Returns local endpoint map elements that offer a
version of the specified interface UUID less than
or equal to the specified major and minor version.
(For example, suppose if_id contains V2.0 and the
local endpoint map contained elements with the
following versions: V1.3, V2.0, and V2.1. The
rpc_mgmt_ep_elt_inq_next() routine returns the
elements with V1.3 and V2.0.)

object_uuid
Specifies the object UUID that rpc_mgmt_ep_elt_inq_next() looks for in
local endpoint map elements.

rpc_mgmt_ep_elt_inq_begin(3rpc)

Chapter 3. DCE Remote Procedure Call 495

This parameter is used only when you specify a value of
rpc_c_ep_match_by_obj or rpc_c_ep_match_by_both for the
inquiry_type parameter. Otherwise, this parameter is ignored and you can
supply NULL to specify a nil UUID.

Output
inquiry_context

Returns an inquiry context for use with the rpc_mgmt_ep_elt_inq_next()
and rpc_mgmt_ep_elt_inq_done() routines.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_ep_elt_inq_begin() routine creates an inquiry context for viewing
server address information stored in the local endpoint map.

Using the inquiry_type and vers_option parameters, an application specifies which
of the following local endpoint map elements are returned from calls to the
rpc_mgmt_ep_elt_inq_next() routine:

v All elements.

v Those elements with the specified interface identifier.

v Those elements with the specified object UUID.

v Those elements with both the specified interface identifier and object UUID.

Before calling the rpc_mgmt_ep_elt_inq_next() routine, the application must first
call this routine to create an inquiry context.

After viewing the local endpoint map elements, the application calls the
rpc_mgmt_ep_elt_inq_done() routine to delete the inquiry context.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_inquiry_context
Invalid inquiry context.

rpc_s_invalid_inquiry_type
Invalid inquiry type.

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

rpc_mgmt_ep_elt_inq_begin(3rpc)

496 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) ,
rpc_ep_unregister(3rpc) , rpc_mgmt_ep_elt_inq_done(3rpc) ,
rpc_mgmt_ep_elt_inq_next(3rpc) , rpc_mgmt_ep_unregister(3rpc) .

rpc_mgmt_ep_elt_inq_begin(3rpc)

Chapter 3. DCE Remote Procedure Call 497

rpc_mgmt_ep_elt_inq_done

Purpose

Deletes the inquiry context for viewing the elements in an endpoint map; used by
management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_done(
rpc_ep_inq_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input/Output
inquiry_context

Specifies the inquiry context to delete. (An inquiry context is created by
calling rpc_mgmt_ep_elt_inq_begin() .)

Returns the value NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_ep_elt_inq_done() routine deletes an inquiry context. The
rpc_mgmt_ep_elt_inq_begin() routine created the inquiry context.

An application calls this routine after viewing local endpoint map elements using the
rpc_mgmt_ep_elt_inq_next() routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_inquiry_context
Invalid inquiry context.

498 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_mgmt_ep_elt_inq_begin(3rpc) ,
rpc_mgmt_ep_elt_inq_next(3rpc) .

rpc_mgmt_ep_elt_inq_done(3rpc)

Chapter 3. DCE Remote Procedure Call 499

rpc_mgmt_ep_elt_inq_next

Purpose

Returns one element from an endpoint map; used by management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_next(
rpc_ep_inq_handle_t inquiry_context
rpc_if_id_t *if_id
rpc_binding_handle_t *binding
uuid_t *object_uuid
unsigned_char_t **annotation
unsigned32 *status);

Parameters

Input
inquiry_context

Specifies an inquiry context. This inquiry context is returned from the
rpc_mgmt_ep_elt_inq_begin() routine.

Output
if_id Returns the interface identifier of the local endpoint map element.

binding
Returns the binding handle from the local endpoint map element.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not call the rpc_binding_free() routine.

object_uuid
Returns the object UUID from the local endpoint map element.

Specify NULL to prevent the routine from returning this parameter.

annotation
Returns the annotation string for the local endpoint map element. If there is
no annotation string in the local endpoint map element, the string \0 is
returned.

Specify NULL to prevent the routine from returning this argument. In this
case the application does not call the rpc_string_free() routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_ep_elt_inq_next() routine returns one element from the local
endpoint map. Regardless of the selector value specified for the inquiry_type
parameter in rpc_mgmt_ep_elt_inq_begin() , this routine returns all the
components of a selected local endpoint map element. The rpc_ep_register()
routine’s reference page summarizes the contents of an element in the local
endpoint map.

500 IBM DCE for AIX, Version 2.2: Application Development Reference

An application can view all the selected local endpoint map elements by repeatedly
calling the rpc_mgmt_ep_elt_inq_next() routine. When all the elements have been
viewed, this routine returns an rpc_s_no_more_elements status. The returned
elements are unordered.

If a remote endpoint map contains elements that include a protocol sequence that
your system does not support, this routine does not return the elements. (A protocol
sequence is part of the binding information component of an endpoint map
element.) To receive all possible elements from a remote endpoint map, your
application must run on a system that supports the protocol sequences included in
the elements.

For example, if your system does not support protocol sequence ncacn_ip_tcp and
a remote endpoint map contains elements that include this protocol sequence, this
routine does not return these elements to your application. If your application ran on
a system that supported protocol sequence ncacn_ip_tcp , this routine would return
the elements.

The RPC runtime allocates memory for the returned binding and the annotation
string on each call to this routine. The application calls the rpc_binding_free()
routine for each returned binding and the rpc_string_free() routine for each
returned annotation string.

After viewing the local endpoint map’s elements, the application must call the
rpc_mgmt_ep_elt_inq_done() routine to delete the inquiry context.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

ept_s_cant_perform_op
Cannot perform the requested operation.

rpc_s_comm_failure
Communications failure.

ept_s_database_invalid
Endpoint map database invalid.

rpc_s_fault_context_mismatch
Fault context mismatch.

ept_s_invalid_context
Invalid inquiry type for this context.

ept_s_invalid_entry
Invalid database entry.

rpc_s_invalid_arg
Invalid argument.

rpc_mgmt_ep_elt_inq_next(3rpc)

Chapter 3. DCE Remote Procedure Call 501

rpc_s_invalid_inquiry_context
Invalid inquiry context.

rpc_s_invalid_inquiry_type
Invalid inquiry type.

rpc_s_no_more_elements
No more elements.

Related Information

Functions: rpc_binding_free(3rpc) , rpc_ep_register(3rpc) ,
rpc_ep_register_no_replace(3rpc) , rpc_mgmt_ep_elt_begin(3rpc) ,
rpc_mgmt_ep_elt_done(3rpc) , rpc_string_free(3rpc) .

rpc_mgmt_ep_elt_inq_next(3rpc)

502 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_ep_unregister

Purpose

Removes server address information from an endpoint map; used by management
applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_unregister(
rpc_binding_handle_t ep_binding
rpc_if_id_t *if_id
rpc_binding_handle_t binding
uuid_t *object_uuid
unsigned32 *status);

Parameters

Input
ep_binding

Specifies the host whose local endpoint map elements you unregister (that
is, remove). To remove elements from the same host as the calling
application, specify NULL.

To remove local endpoint map elements from another host, specify a server
binding handle for that host. You can specify the same binding handle you
are using to make other remote procedure calls. The object UUID
associated with this parameter must be a nil UUID. If you specify a nonnil
UUID, the routine fails with the status code ept_s_cant_perform_op . Other
than the host information and object UUID, all information in this parameter
is ignored.

if_id Specifies the interface identifier to remove from the local endpoint map.

binding
Specifies the binding handle to remove.

object_uuid
Specifies an optional object UUID to remove.

The value NULL indicates there is no object UUID to consider in the
removal.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_ep_unregister() routine unregisters (that is, removes) an element
from a local endpoint map. A management program calls this routine to remove
addresses of servers that are no longer available, or to remove addresses of
servers that support objects that are no longer offered.

Chapter 3. DCE Remote Procedure Call 503

Use this routine cautiously; removing elements from the local endpoint map may
make servers unavailable to client applications that do not already have a fully
bound binding handle to the server.

A management application calls the rpc_mgmt_ep_inq_next() routine to view local
endpoint map elements. The application can then remove the elements using the
rpc_mgmt_ep_unregister() routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

ept_s_cant_access
Error reading the endpoint database.

ept_s_cant_perform_op
Cannot perform the requested operation.

rpc_s_comm_failure
Communications failure.

ept_s_database_invalid
Endpoint map database is invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_not_registered
No entries found.

ept_s_update_failed
Update failed.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_interfaces
No interfaces registered.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) ,
rpc_mgmt_ep_elt_inq_begin(3rpc) , rpc_mgmt_ep_elt_inq_done(3rpc) ,
rpc_mgmt_ep_elt_inq_next(3rpc) , rpc_ns_binding_unexport(3rpc) .

rpc_mgmt_ep_unregister(3rpc)

504 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_inq_com_timeout

Purpose

Returns the communications timeout value in a binding handle; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_com_timeout(
rpc_binding_handle_t binding
unsigned32 *timeout
unsigned32 *status);

Parameters

Input
binding

Specifies a server binding handle.

Output
timeout

Returns the communications timeout value from the binding parameter.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_inq_com_timeout() routine returns the communications timeout
value in a server binding handle. The timeout value specifies the relative amount of
time to spend trying to communicate with the server. Depending on the protocol
sequence for the specified binding handle, the value in timeout acts only as advice
to the RPC runtime.

The rpc_mgmt_set_com_timeout(3rpc) reference page explains the timeout
values returned in timeout.

To change the timeout value, a client calls rpc_mgmt_set_com_timeout() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 505

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_mgmt_set_com_timeout(3rpc) .

rpc_mgmt_inq_com_timeout(3rpc)

506 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_inq_dflt_protect_level

Purpose

Returns the default protection level for an authentication service; used by client and
server applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_dflt_protect_level(
unsigned32 authn_svc
unsigned32 *protect_level
unsigned32 *status);

Parameters

Input
authn_svc

Specifies the authentication service for which to return the default protection
level.

The supported authentication services are as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

Output
protect_level

Returns the default protection level for the specified authentication service.
The protection level determines the degree to which authenticated
communications between the client and the server are protected.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication
service.

rpc_c_protect_level_none
Performs no protection.

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship
with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote procedure
call when the server receives the request.

Chapter 3. DCE Remote Procedure Call 507

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred between
client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and
also encrypts each remote procedure call argument value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_inq_dflt_protect_level() routine returns the default protection level
for the specified authentication service.

A client can call this routine to learn the default protection level before specifying
rpc_c_protect_level_default for the protect_level parameter in the
rpc_binding_set_auth_info() routine. If the default level is inappropriate, the client
can specify a different, explicit level.

A called remote procedure within a server application can call this routine to obtain
the default protection level for a given authentication service. By calling routine
rpc_binding_inq_auth_client() in the remote procedure, the server can obtain the
protection level set up by the calling client. The server can then compare the
client-specified protection level with the default level to determine whether to allow
the remote procedure to execute.

Alternatively, a remote procedure can compare the client’s protection level against a
level other than the default level. In this case there is no need for the server’s
remote procedure to call this routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_unknown_authn_service
Unknown authentication service.

Related Information

Functions: rpc_binding_inq_auth_client(3rpc) , rpc_binding_set_auth_info(3rpc) .

rpc_mgmt_inq_dflt_protect_level(3rpc)

508 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_inq_if_ids

Purpose

Returns a vector of interface identifiers of interfaces a server offers; used by client,
server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_if_ids(
rpc_binding_handle_t binding
rpc_if_id_vector_t **if_id_vector
unsigned32 *status);

Parameters

Input
binding

Specifies a binding handle. To receive interface identifiers from a remote
application, specify a server binding handle for that application. To receive
interface information about your own (local) application, specify NULL.

If the binding handle you supply refers to partially bound binding information
and the binding information contains a nil object UUID, this routine returns
the rpc_s_binding_incomplete status code. In this case, the DCE host
daemon (dced) does not know which server instance to select from the
local endpoint map because the RPC management interface is
automatically registered (by the RPC runtime) for all RPC servers.

To avoid this situation, you can obtain a fully bound server binding handle
by calling the rpc_ep_resolve_binding() routine.

Output
if_id_vector

Returns the address of an interface identifier vector.

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not. status can also return the
value of parameter status from the application-defined authorization function
(rpc_mgmt_authorization_fn_t). The prototype for such a function is
defined in the authorization_fn parameter listed in the reference page for
the rpc_mgmt_set_authorization_fn(3rpc) routine.

Description

An application calls the rpc_mgmt_inq_if_ids() routine to obtain a vector of
interface identifiers listing the interfaces registered by a server with the RPC
runtime.

If a server has not registered any interfaces with the runtime, this routine returns a
rpc_s_no_interfaces status code and an if_id_vector parameter value of NULL.

The application calls the rpc_if_id_vector_free() routine to release the memory
used by the vector.

Chapter 3. DCE Remote Procedure Call 509

By default, the RPC runtime allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorization function
using the rpc_mgmt_set_authorization_fn() routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_no_interfaces
No interfaces registered.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_resolve_binding(3rpc) , rpc_if_id_vector_free(3rpc) ,
rpc_mgmt_set_authorization_fn(3rpc) , rpc_server_register_if(3rpc) .

rpc_mgmt_inq_if_ids(3rpc)

510 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_inq_server_princ_name

Purpose

Returns a server’s principal name; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_server_princ_name(
rpc_binding_handle_t binding
unsigned32 authn_svc
unsigned_char_t **server_princ_name
unsigned32 *status);

Parameters

Input
binding

Specifies a binding handle. If a client application wants the principal name
from a server application, supply a server binding handle for that server. For
a server application to receive a principal name of itself, supply the value
NULL.

If the binding handle you supply refers to partially bound binding information
and the binding information contains a nil object UUID, this routine returns
the rpc_s_binding_incomplete status code. In this case the DCE host
daemon does not know which server instance to select from the local
endpoint map because the RPC runtime automatically registers the RPC
management interface for all RPC servers.

You can avoid this situation by calling rpc_ep_resolve_binding() to obtain
a fully bound server binding handle.

authn_svc
Specifies the authentication service for which a principal name is returned.
The rpc_binding_set_auth_info(3rpc) reference page, in its explanation of
the authn_svc parameter, contains a list of supported authentication
services.

Output
server_princ_name

Returns a principal name. This name is registered for the authentication
service in parameter authn_svc by the server referenced in parameter
binding. If the server registered multiple principal names, only one of them
is returned.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

In addition to the above values, status can return the value of parameter
status from the application-defined authorization function
(rpc_mgmt_authorization_fn_t). The prototype for such a function is
defined in the authorization_fn parameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc) .

Chapter 3. DCE Remote Procedure Call 511

Description

An application calls the rpc_mgmt_inq_server_princ_name() routine to obtain the
principal name of a server registered for a specified authentication service.

A client (or management) application uses this routine when it wants to allow
one-way authentication with the server specified by binding. This means that the
client does not care which server principal receives the remote procedure call
request. However, the server verifies that the client is who the client claims to be.
For one-way authentication, a client calls this routine before calling
rpc_binding_set_auth_info() .

A server application uses this routine to obtain the principal name it registered by
calling rpc_server_register_auth_info() .

The RPC runtime allocates memory for the string returned in server_princ_name.
The application calls rpc_string_free() to deallocate that memory.

By default, the RPC runtime allows all clients to call this routine remotely. To restrict
these calls, a server application supplies an authorization function by calling
rpc_mgmt_set_authorization_fn() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_unknown_authn_service
Unknown authentication service.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_binding_inq_object(3rpc) , rpc_binding_set_auth_info(3rpc) ,
rpc_ep_resolve_binding(3rpc) , rpc_mgmt_set_authorization_fn(3rpc) ,
rpc_server_register_auth_info(3rpc) , rpc_string_free(3rpc) , uuid_is_nil(3rpc) .

rpc_mgmt_inq_server_princ_name(3rpc)

512 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_inq_stats

Purpose

Returns RPC runtime statistics; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_stats(
rpc_binding_handle_t binding
rpc_stats_vector_t **statistics
unsigned32 *status);

Parameters

Input
binding

Specifies a binding handle. To receive statistics about a remote application,
specify a server binding handle for that application. To receive statistics
about your own (local) application, specify NULL.

If the binding handle you supply refers to partially bound binding information
and the binding information contains a nil object UUID, this routine returns
the rpc_s_binding_incomplete status code. In this case, the DCE host
daemon does not know which server instance to select from the local
endpoint map because the RPC management interface is automatically
registered (by the RPC runtime) for all RPC servers.

To avoid this situation, you can obtain a fully bound server binding handle
by calling the rpc_ep_resolve_binding() routine.

Output
statistics

Returns the statistics vector for the server specified by the binding
parameter. Each statistic is a value of the type unsigned32 .

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. status can
also return the value of parameter status from
rpc_mgmt_authorization_fn_t , which is the application-defined
authorization function. The prototype for such a function is defined in the
authorization_fn parameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc) .

Description

The rpc_mgmt_inq_stats() routine returns statistics from the RPC runtime about a
specified server.

The explanation of a statistics vector in the rpc_intro(3rpc) reference page lists the
elements of the vector.

The RPC runtime allocates memory for the statistics vector. The application calls
the rpc_mgmt_stats_vector_free() routine to release the memory that the statistics
vector used.

Chapter 3. DCE Remote Procedure Call 513

By default, the RPC runtime allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorization function
using the rpc_mgmt_set_authorization_fn() routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_resolve_binding(3rpc) ,
rpc_mgmt_set_authorization_fn(3rpc) , rpc_mgmt_stats_vector_free(3rpc) .

rpc_mgmt_inq_stats(3rpc)

514 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_is_server_listening

Purpose

Tells whether a server is listening for remote procedure calls; used by client, server,
or management applications

Synopsis
#include <dce/rpc.h>

boolean32 rpc_mgmt_is_server_listening(
rpc_binding_handle_t binding
unsigned32 *status);

Parameters

Input
binding

Specifies a server binding handle. To determine if a remote application is
listening for remote procedure calls, specify a server binding handle for that
application. To determine if your own (local) application is listening for
remote procedure calls, specify NULL.

If the binding handle you supply refers to partially bound binding information
and the binding information contains a nil object UUID, this routine returns
the rpc_s_binding_incomplete status code. In this case, the DCE host
daemon does not know which server instance to select from the local
endpoint map because the RPC management interface is automatically
registered (by the RPC runtime) for all RPC servers.

To avoid this situation, you can obtain a fully bound server binding handle
by calling the rpc_ep_resolve_binding() routine.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not. status can
also return the value of parameter status from
rpc_mgmt_authorization_fn_t , which is the application-defined
authorization function. The prototype for such a function is defined in the
authorization_fn parameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc) .

Description

The rpc_mgmt_is_server_listening() routine determines whether the server
specified in the binding parameter is listening for remote procedure calls.

This routine returns a value of TRUE if the server is blocked in the
rpc_server_listen() routine.

By default, the RPC runtime allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorization function
using the rpc_mgmt_set_authorization_fn() routine.

Chapter 3. DCE Remote Procedure Call 515

Return Values

Your program must examine the return value of the status parameter and the return
value of the routine to understand the meaning of the routine value. The following
table summarizes the values that this routine can return.

Table 20. Values Returned by rpc_mgmt_is_server_listening()

Value Returned Status Code Explanation

TRUE rpc_s_ok The specified server is
listening for remote
procedure calls.

FALSE One of the status codes
returned by the status
parameter

The specified server is not
listening for remote
procedure calls, or the server
cannot be reached.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_resolve_binding(3rpc) ,
rpc_mgmt_set_authorization_fn(3rpc) , rpc_server_listen(3rpc) .

rpc_mgmt_is_server_listening(3rpc)

516 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_set_authorization_fn

Purpose

Establishes an authorization function for processing remote calls to a server’s
management routines; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_authorization_fn(
rpc_mgmt_authorization_fn_t authorization_fn
unsigned32 *status);

Parameters

Input
authorization_fn

Specifies a pointer to an authorization function. The RPC server runtime
automatically calls this function whenever the server runtime receives a
client request to execute one of the RPC management routines.

Specify NULL to unregister a previously registered authorization function. In
this case, the default authorizations (as described later) are used.

The following C definition for rpc_mgmt_authorization_fn_t illustrates the
prototype for the authorization function:
typedef boolean32 (*rpc_mgmt_authorization_fn_t)
(
rpc_binding_handle_t client_binding, /* in */
unsigned32 requested_mgmt_operation, /* in */
unsigned32 *status /* out */
);

The following table shows the requested_mgmt_operation values passed by
the RPC runtime to the authorization function.

Table 21. Operation Values Passed to Authorization Function
Called Remote Routine requested_mgmt_operationValue

rpc_mgmt_inq_if_ids() rpc_c_mgmt_inq_if_ids
rpc_mgmt_inq_server_princ_name() rpc_c_mgmt_inq_princ_name
rpc_mgmt_inq_stats() rpc_c_mgmt_inq_stats
rpc_mgmt_is_server_listening() rpc_c_mgmt_is_server_listen
rpc_mgmt_stop_server_listening() rpc_c_mgmt_stop_server_listen

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_authorization_fn() routine sets up an authorization function to
control remote access to the calling server’s remote management routines.

If a server does not provide an authorization function, the RPC runtime controls
client application access to the server’s remote management routines as shown in

Chapter 3. DCE Remote Procedure Call 517

the next table. In the table, an enabled authorization allows all clients to execute the
remote routine and a disabled authorization prevents all clients from executing the
remote routine.

Table 22. Default Controls for Remote Management Routines
Remote Routine Default Authorization

rpc_mgmt_inq_if_ids() Enabled
rpc_mgmt_inq_server_princ_name() Enabled
rpc_mgmt_inq_stats() Enabled
rpc_mgmt_is_server_listening() Enabled
rpc_mgmt_stop_server_listening() Disabled

A server can modify the default authorizations by calling
rpc_mgmt_set_authorization_fn() to specify an authorization function. When an
authorization function is provided, the RPC runtime automatically calls that function
to control the execution of all remote management routines called by clients.

The specified function must provide access control for all of the remote
management routines.

If the authorization function returns TRUE, the management routine is allowed to
execute. If the authorization function returns FALSE, the management routine does
not execute, and the called routine returns to the client the status code returned
from the rpc_mgmt_authorization_fn_t function. However, if the status code that
the rpc_mgmt_authorization_fn_t function returns is 0 (zero) or rpc_s_ok , then
the status code rpc_s_mgmt_op_disallowed is returned to the client.

The RPC runtime calls the server-provided authorization function with the following
two input arguments:

v The binding handle of the calling client.

v An integer value denoting which management routine the client has called.

Using these arguments, the authorization function determines whether the calling
client is allowed to execute the requested management routine. For example, the
authorization function can call rpc_binding_inq_auth_client() to obtain
authentication and authorization information about the calling client and determine if
that client is authorized to execute the requested management routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_mgmt_ep_unregister(3rpc) , rpc_mgmt_inq_if_ids(3rpc) ,
rpc_mgmt_inq_server_princ_name(3rpc) , rpc_mgmt_inq_stats(3rpc) ,

rpc_mgmt_set_authorization_fn(3rpc)

518 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_is_server_listening(3rpc) , rpc_mgmt_stop_server_listening(3rpc) .

Chapter 3. DCE Remote Procedure Call 519

rpc_mgmt_set_call_timeout

Purpose

Sets the amount of time the RPC runtime is to wait for a server to complete a call.

Note:

This routine is not a documented API operation. Initially, only the ncadg_ xxx
protocols support the use of this timeout. It might not be supported by other
DCE products due to implementation changes.

Format
void rpc_mgmt_set_call_timeout(

rpc_binding_handle_t *binding,
unsigned32 seconds);
unsigned32 *status);

Parameters

Input
binding

The binding handle to use.

seconds
The number of seconds to wait for call completion.

Output
status Returns the status code from this routine. On successful completion, the

routine returns rpc_s_ok . Otherwise, it returns one of the following errors:

rpc_s_no_memory

rpc_s_coding_error

rpc_s_invalid_binding

Usage

The rpc_mgmt_set_call_timeout routine is a local management routine that sets
the amount of time the RPC runtime is to wait for a server to complete a call. A
timeout of 0 (zero) means no maximum call execution time is imposed (this is the
default).

The value for the call timeout applies to all remote procedure calls made using the
specified binding handle.

Comments

Functions: rpc_mgmt_set_com_timeout(3rpc) .

520 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_set_cancel_timeout

Purpose

Sets the lower bound on the time to wait before timing out after forwarding a
cancel; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_cancel_timeout(
signed32 seconds
unsigned32 *status);

Parameters

Input
seconds

An integer specifying the number of seconds to wait for a server to
acknowledge a cancel. To specify that a client waits an infinite amount of
time, supply the value rpc_c_cancel_infinite_timeout .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_cancel_timeout() routine resets the amount of time the RPC
runtime waits for a server to acknowledge a cancel before orphaning the call.

The application specifies either to wait forever or to wait a length of time specified
in seconds. If the value of seconds is 0 (zero), the remote procedure call is
immediately orphaned when the RPC runtime detects and forwards a pending
cancel; control returns immediately to the client application. The default value,
rpc_c_cancel_infinite_timeout , specifies waiting forever for the call to complete.

The value for the cancel timeout applies to all remote procedure calls made in the
current thread. A multithreaded client that wishes to change the timeout value must
call this routine in each thread of execution.

For more information about canceled threads and orphaned remote procedure calls,
see the IBM DCE for AIX, Version 2.2: Application Development Guide—Directory
Services.

Return Values

No value is returned.

Chapter 3. DCE Remote Procedure Call 521

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: pthread_cancel(3thr) , pthread_setcancel(3thr) .

rpc_mgmt_set_cancel_timeout(3rpc)

522 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_set_com_timeout

Purpose

Sets the communications timeout value in a binding handle; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_com_timeout(
rpc_binding_handle_t binding
unsigned32 timeout
unsigned32 *status);

Parameters

Input
binding

Specifies the server binding handle whose timeout value is set.

timeout
Specifies a communications timeout value.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_com_timeout() routine resets the communications timeout
value in a server binding handle. The timeout value specifies the relative amount of
time to spend trying to communicate with the server. Depending on the protocol
sequence for the specified binding handle, the timeout value acts only as advice to
the RPC runtime.

After the initial relationship is established, subsequent communications for the
binding handle cannot revert to less than the default timeouts for the protocol
service. This means that after setting a short initial timeout and establishing a
connection, calls in progress are not timed out any sooner than the default.

Note:

Because of differences in underlying transport layers, only the
rpc_c_infinite_binding_timeout constant changes binding behavior when
rpc_mgmt_set_com_timeout() is used with connection-oriented RPC.

The timeout value can be any integer value from 0 (zero) to 10. Note that these
values do not represent seconds. They represent a relative amount of time to spend
to establish a client/server relationship (a binding).

Constants are provided for certain values in the timeout range. The following table
lists the binding timeout values, describing the DCE RPC predefined values that an
application can use for the timeout parameter.

Chapter 3. DCE Remote Procedure Call 523

Table 23. Predefined Time-Out Values

Name Value Description

rpc_c_binding_min_timeout 0 Attempts to communicate for the
minimum amount of time for the
network protocol being used. This value
favors response time over correctness
in determining whether the server is
running.

rpc_c_binding_default_timeout 5 Attempts to communicate for an
average amount of time for the network
protocol being used. This value gives
equal consideration to response time
and correctness in determining whether
a server is running. This is the default
value.

rpc_c_binding_max_timeout 9 Attempts to communicate for the
longest finite amount of time for the
network protocol being used. This value
favors correctness in determining
whether a server is running over
response time.

rpc_c_binding_infinite_timeout 10 Attempts to communicate forever.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_invalid_timeout
Invalid timeout value.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_mgmt_inq_com_timeout(3rpc) .

rpc_mgmt_set_com_timeout(3rpc)

524 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_set_server_stack_size

Purpose

Specifies the stack size for each server thread; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_server_stack_size(
unsigned32 thread_stack_size
unsigned32 *status);

Parameters

Input
thread_stack_size

Specifies, in bytes, the stack size allocated for each thread created by
rpc_server_listen() . This value is applied to all threads created for the
server. Select this value based on the stack requirements of the remote
procedures offered by the server.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_server_stack_size() routine specifies the thread stack size to
use when the RPC runtime creates call threads for executing remote procedure
calls. The max_calls_exec parameter in rpc_server_listen() specifies the number
of call execution threads created.

A server, provided it knows the stack requirements of all the manager routines in
the interfaces it offers, can call rpc_mgmt_set_server_stack_size() to ensure that
each call thread has the necessary stack size.

This routine is optional. When it is used, it must be called before the server calls
rpc_server_listen() . If a server does not call this routine, the default per thread
stack size from the underlying threads package is used.

Some thread packages do not support the specification or modification of thread
stack sizes. The packages cannot perform such operations or the concept of a
thread stack size is meaningless to them.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 525

rpc_s_invalid_arg
Invalid argument.

rpc_s_not_supported
Not supported.

Return Values

No value is returned.

Related Information

Functions: rpc_server_listen(3rpc) .

rpc_mgmt_set_server_stack_size(3rpc)

526 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_mgmt_stats_vector_free

Purpose

Frees a statistics vector; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_stats_vector_free(
rpc_stats_vector_t **stats_vector
unsigned32 *status);

Parameters

Input/Output
stats_vector

Specifies the address of a pointer to a statistics vector. On return,
stats_vector contains the value NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

An application calls rpc_mgmt_stats_vector_free() to release the memory used to
store a vector of statistics.

An application calls rpc_mgmt_inq_stats() to obtain a vector of statistics. Follow a
call to rpc_mgmt_inq_stats() with a call to rpc_mgmt_stats_vector_free() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_mgmt_inq_stats(3rpc) .

Chapter 3. DCE Remote Procedure Call 527

rpc_mgmt_stop_server_listening

Purpose

Tells a server to stop listening for remote procedure calls; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_stop_server_listening(
rpc_binding_handle_t binding
unsigned32 *status);

Parameters

Input
binding

Specifies a server binding handle. To direct a remote server to stop listening
for remote procedure calls, specify a server binding handle to that server.
To direct your own (local) server to stop listening for remote procedure
calls, specify NULL.

If the binding handle you supply refers to partially bound binding information
and the binding information contains a nil object UUID, this routine returns
the rpc_s_binding_incomplete status code. In this case, the DCE host
daemon does not know which server instance to select from the local
endpoint map because the RPC management interface is automatically
registered (by the RPC runtime) for all RPC servers.

To avoid this situation, you can obtain a fully bound server binding handle
by calling rpc_ep_resolve_binding() .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not. status can
also return the value of parameter status from
rpc_mgmt_authorization_fn_t() , which is the application-defined
authorization function. The prototype for such a function is defined in the
authorization_fn parameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc) .

Description

The rpc_mgmt_stop_server_listening() routine directs a server to stop listening
for remote procedure calls.

On receiving such a request, the DCE RPC runtime stops accepting new remote
procedure calls. Executing calls are allowed to complete.

After all calls complete, rpc_server_listen() returns to the caller.

By default, the RPC runtime does not allow any client to remotely call this routine.
To allow clients to execute this routine, a server application supplies an
authorization function using rpc_mgmt_set_authorization_fn() .

528 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_unknown_if
Unknown interface.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_resolve_binding(3rpc) ,
rpc_mgmt_set_authorization_fn(3rpc) , rpc_server_listen(3rpc) .

rpc_mgmt_stop_server_listening(3rpc)

Chapter 3. DCE Remote Procedure Call 529

rpc_network_inq_protseqs

Purpose

Returns all protocol sequences supported by both the RPC runtime and the
operating system; used by client and server applications

Synopsis
#include <dce/rpc.h>

void rpc_network_inq_protseqs(
rpc_protseq_vector_t **protseq_vector
unsigned32 *status);

Parameters

Input

None.

Output
protseq_vector

Returns the address of a protocol sequence vector.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_network_inq_protseqs() routine obtains a vector containing the protocol
sequences supported by the RPC runtime and the operating system. A server
chooses to accept remote procedure calls over some or all of the supported
protocol sequences. If there are no supported protocol sequences, this routine
returns the rpc_s_no_protseqs status code and the value NULL in the
protseq_vector parameter.

The application calls rpc_protseq_vector_free() to release the memory used by
the vector.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_no_protseqs
No supported protocol sequences.

530 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_network_is_protseq_valid(3rpc) , rpc_protseq_vector_free(3rpc) .

rpc_network_inq_protseqs(3rpc)

Chapter 3. DCE Remote Procedure Call 531

rpc_network_is_protseq_valid

Purpose

Tells whether the specified protocol sequence is supported by both the RPC runtime
and the operating system; used by client and server applications

Synopsis
#include <dce/rpc.h>

boolean32 rpc_network_is_protseq_valid(
unsigned_char_t *protseq
unsigned32 *status);

Parameters

Input
protseq

Specifies a string identifier for a protocol sequence. (See the table of valid
protocol sequences in the rpc_intro(3rpc) reference page for a list of
acceptable values.)

The rpc_network_is_protseq_valid() routine determines whether this
parameter contains a valid protocol sequence. If not, the routine returns
FALSE and the status parameter contains the rpc_s_invalid_rpc_protseq
status code.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_network_is_protseq_valid() routine determines whether a specified
protocol sequence is available for making remote procedure calls. A server chooses
to accept remote procedure calls over some or all of the supported protocol
sequences.

A protocol sequence is valid if the RPC runtime and the operating system support
the protocol sequence. DCE RPC supports the protocol sequences pointed to by
the explanation of the protseq parameter.

An application calls rpc_network_inq_protseqs() to obtain all the supported
protocol sequences.

Return Values

This routine can return the following values:

TRUE The RPC runtime supports the protocol sequence specified in the protseq
parameter. The routine returns the status code rpc_s_ok in the status
parameter.

532 IBM DCE for AIX, Version 2.2: Application Development Reference

FALSE
The RPC runtime does not support the protocol sequence specified in the
protseq parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions: rpc_network_inq_protseqs(3rpc) , rpc_string_binding_parse(3rpc) .

rpc_network_is_protseq_valid(3rpc)

Chapter 3. DCE Remote Procedure Call 533

rpc_ns_binding_export

Purpose

Establishes a name service database entry with binding handles or object UUIDs
for a server; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_export(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_if_handle_t if_handle
rpc_binding_vector_t *binding_vec
uuid_vector_t *object_uuid_vec
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter.

To use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide the value rpc_c_ns_syntax_default .

entry_name
Specifies the entry name to which binding handles and object UUIDs are
exported. This can be either the global or cell-relative name.

if_handle
Specifies a stub-generated data structure that identifies the interface to
export. Specifying the value NULL indicates there are no binding handles to
export (only object UUIDs are exported) and the binding_vec parameter is
ignored.

binding_vec
Specifies a vector of server bindings to export. Specify the value NULL for
this parameter in cases where there are no binding handles to export (only
object UUIDs are exported).

object_uuid_vec
Identifies a vector of object UUIDs offered by the server. The server
application constructs this vector. NULL indicates there are no object UUIDs
to export (only binding handles are exported).

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_export() routine allows a server application to publicly offer,
in the name service database, an interface that any client application can use. A
server application can also use this routine to publicly offer the object UUIDs of the
application’s resources.

534 IBM DCE for AIX, Version 2.2: Application Development Reference

To export an interface, the server application calls the routine with an interface and
the server binding handles that a client can use to access the server.

A server can export interfaces and objects in a single call to this routine, or it can
export them separately.

If the entry in the name service database specified by the entry_name parameter
does not exist, rpc_ns_binding_export() tries to create it. In this case a server
must have the correct permissions to create the entry. Otherwise, a management
application with the necessary permissions creates the entry by calling
rpc_ns_mgmt_entry_create() before the server runs.

A server is not required to export its interfaces to the name service database. When
a server does not export any interfaces, only clients that privately know of that
server’s binding information can access its interfaces. For example, a client that has
the information needed to construct a string binding can call
rpc_binding_from_string_binding() to create a binding handle for making remote
procedure calls to a server.

Before calling rpc_ns_binding_export() to export interfaces (but not to export
object UUIDs), a server must do the following:

v Register one or more protocol sequences with the local RPC runtime by calling
one of the following routines:

– rpc_server_use_protseq()

– rpc_server_use_protseq_ep()

– rpc_server_use_protseq_if()

– rpc_server_use_all_protseqs()

– rpc_server_use_all_protseqs_if()

v Obtain a list of server bindings by calling rpc_server_inq_bindings() .

The vector returned from rpc_server_inq_bindings() becomes the binding_vec
parameter for this routine. To prevent a binding from being exported, set the
selected vector element to the value NULL. (See the section on RPC data types
and structures in the rpc_intro(3rpc) reference page.)

If a server exports an interface to the same entry in the name service database
more than once, the second and subsequent calls to this routine add the binding
information and object UUIDs only if they differ from the ones in the server entry.
Existing data is not removed from the entry.

To remove binding handles and object UUIDs from the name service database, a
server application calls rpc_ns_binding_unexport() and a management application
calls rpc_ns_mgmt_binding_unexport() .

For an explanation of how a server can establish a client/server relationship without
using the name service database, see the explanation of a string binding in the
rpc_intro(3rpc) reference page.

In addition to calling this routine, a server that called either
rpc_server_use_all_protseqs() or rpc_server_use_protseq() must also register
with the local endpoint map by calling either rpc_ep_register() or
rpc_ep_register_no_replace() .

rpc_ns_binding_export(3rpc)

Chapter 3. DCE Remote Procedure Call 535

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry). If the entry does not exist, you also need insert
permission to the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_nothing_to_export
Nothing to export.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) ,
rpc_ns_binding_unexport(3rpc) , rpc_ns_mgmt_binding_unexport(3rpc) ,
rpc_ns_mgmt_entry_create(3rpc) , rpc_server_inq_bindings(3rpc) ,
rpc_server_use_all_protseqs(3rpc) , rpc_server_use_all_protseqs_if(3rpc) ,
rpc_server_use_protseq(3rpc) , rpc_server_use_protseq_ep(3rpc) ,
rpc_server_use_protseq_if(3rpc) .

rpc_ns_binding_export(3rpc)

536 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_binding_import_begin

Purpose

Creates an import context for an interface and an object in the name service
database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_import_begin(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_if_handle_t if_handle
uuid_t *obj_uuid
rpc_ns_handle_t *import_context
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of parameter entry_name. To use
the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide the value rpc_c_ns_syntax_default .

entry_name
Specifies the entry name with which the search for compatible binding
handles begins. This can be either the global or the cell-relative name.

To use the entry name found in the RPC_DEFAULT_ENTRY environment
variable, supply NULL or a null string (\0) for this parameter. When this
entry name is used, the RPC runtime automatically uses the default name
syntax specified in the RPC_DEFAULT_ENTRY_SYNTAX environment
variable.

if_handle
A stub-generated data structure specifying the interface to import. If the
interface specification has not been exported or is of no concern to the
caller, specify NULL for this parameter. In this case the bindings returned
are only guaranteed to be of a compatible and supported protocol sequence
and, depending on the value of parameter obj_uuid, contain the specified
object Universal Unique Identifier (UUID). The desired interface may not be
supported by the contacted server.

obj_uuid
Specifies an optional object UUID.

If you specify NULL or a nil UUID for this parameter, the returned binding
handles contain one of the object UUIDs that the compatible server
exported. If the server did not export any object UUIDs, the returned
compatible binding handles contain a nil object UUID.

If you specify a nonnil UUID, compatible binding handles are returned from
an entry only if the server has exported the specified object UUID. Each
returned binding handle contains the specified nonnil object UUID.

Chapter 3. DCE Remote Procedure Call 537

Output
import_context

Returns the name service handle for use with the following routines:

v rpc_ns_binding_import_next()

v rpc_ns_binding_import_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_object
Invalid object.

rpc_s_no_env_setup
Environment variable not set up.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Description

The rpc_ns_binding_import_begin() routine creates an import context for
importing compatible server binding handles for servers. These servers offer the
specified interface and object UUID in the respective if_handle and obj_uuid
parameters.

Before calling rpc_ns_binding_import_next() , the client must first call this routine
to create an import context. The arguments to this routine control the operation of
rpc_ns_binding_import_next() .

After importing binding handles, the client calls rpc_ns_binding_import_done() to
delete the import context.

Return Values

No value is returned.

Related Information

Functions: rpc_ns_binding_import_done(3rpc) ,
rpc_ns_binding_import_next(3rpc) , rpc_ns_mgmt_handle_set_exp_age(3rpc) .

rpc_ns_binding_import_begin(3rpc)

538 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_binding_import_done

Purpose

Deletes the import context for searching the name service database; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_import_done(
rpc_ns_handle_t*import_context
unsigned32 *status);

Parameters

Input/Output
import_context

Specifies the name service handle to delete. (A name service handle is
created by calling rpc_ns_binding_import_begin() .)

Returns the value NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_import_done() routine deletes an import context created by
calling rpc_ns_binding_import_begin() . This deletion does not affect any
previously imported bindings.

Typically, a client calls this routine after completing remote procedure calls to a
server using a binding handle returned from rpc_ns_binding_import_next() . A
client program calls this routine for each created import context, regardless of the
status returned from rpc_ns_binding_import_next() , or the success in making
remote procedure calls.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 539

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions: rpc_ns_binding_import_begin(3rpc) ,
rpc_ns_binding_import_next(3rpc) .

rpc_ns_binding_import_done(3rpc)

540 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_binding_import_next

Purpose

Returns a binding handle of a compatible server (if found) from the name service
database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_import_next(
rpc_ns_handle_t import_context
rpc_binding_handle_t *binding
unsigned32 *status);

Parameters

Input
import_context

Specifies a name service handle. This handle is returned from the
rpc_ns_binding_import_begin() routine.

Output
binding

Returns a compatible server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_import_next() routine returns one compatible (to the client)
server binding handle selected at random from the name service database. The
server offers the interface and object UUID specified by the respective if_handle
and obj_uuid parameters in rpc_ns_binding_import_begin() .

A similar routine is rpc_ns_binding_lookup_next() , which returns a vector of
compatible server binding handles for one or more servers.

Note:

The routine rpc_ns_binding_import_next() calls the routine
rpc_ns_binding_lookup_next() which, in turn, obtains a vector of server
binding handles from the name service database. Next, routine
rpc_ns_binding_import_next() randomly selects one of the elements from
the vector.

The rpc_ns_binding_import_next() routine communicates only with the name
service database, not directly with servers.

The returned compatible binding handle always contains an object UUID. Its value
depends on the value specified in the obj_uuid parameter of the
rpc_ns_binding_import_begin() routine, as follows:

Chapter 3. DCE Remote Procedure Call 541

v If obj_uuid contains a nonnil object UUID, the returned binding handle contains
that object UUID.

v If obj_uuid contains a nil object UUID or NULL, the object UUID returned in the
binding handle depends on how the server exported object UUIDs:

– If the server did not export any object UUIDs, the returned binding handle
contains a nil object UUID.

– If the server exported one object UUID, the returned binding handle contains
that object UUID.

– If the server exported multiple object UUIDs, the returned binding handle
contains one of the object UUIDs, selected in an unspecified way.

Applications should not count on multiple calls to
rpc_ns_binding_import_next() returning different object UUIDs. In particular,
note that each name service entry stores server address information
separately from exported object UUIDs. Successive calls to
rpc_ns_binding_import_next() using the same import context will return
exactly one binding for each compatible server address, not the cross product
of all compatible server addresses with all exported UUIDs. Each returned
binding will contain one of the exported object UUIDs, but applications should
not count on any specific selection mechanism for these object UUIDs

The client application can use the returned binding handle to make a remote
procedure call to the server. If the client fails to communicate with the server, it can
call the rpc_ns_binding_import_next() routine again.

Each time the client calls rpc_ns_binding_import_next() , the routine returns
another server binding handle. The binding handles returned are unordered.
Multiple binding handles can refer to different protocol sequences from the same
server.

When the search finishes, the routine returns a status code of
rpc_s_no_more_bindings and returns the value NULL in binding.

A client application calls rpc_ns_binding_inq_entry_name() to obtain the name of
the entry in the name service database where the binding handle came from.

The rpc_ns_binding_import_next() routine allocates memory for the returned
binding parameter. When a client application finishes with the binding handle, it
must call rpc_binding_free() to deallocate the memory. Each call to
rpc_ns_binding_import_next() requires a corresponding call to
rpc_binding_free() .

The client calls the rpc_ns_binding_import_done() routine after it has
satisfactorily used one or more returned server binding handles. The
rpc_ns_binding_import_done() routine deletes the import context. The client also
calls rpc_ns_binding_import_done() if the application wants to start a new search
for compatible servers (by calling rpc_ns_binding_import_begin()). The order of
binding handles returned can be different for each new search. This means that the
order in which binding handles are returned to an application can be different each
time the application is run.

Permissions Required

You need read permission to the specified CDS object entry (the starting name
service entry) and to any CDS object entry in the resulting search path.

rpc_ns_binding_import_next(3rpc)

542 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_bindings
No more bindings.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions: rpc_ns_binding_import_begin(3rpc) ,
rpc_ns_binding_import_done(3rpc) , rpc_ns_binding_inq_entry_name(3rpc) ,
rpc_ns_binding_lookup_begin(3rpc) , rpc_ns_binding_lookup_done(3rpc) ,
rpc_ns_binding_lookup_next(3rpc) , rpc_ns_binding_select(3rpc) .

rpc_ns_binding_import_next(3rpc)

Chapter 3. DCE Remote Procedure Call 543

rpc_ns_binding_inq_entry_name

Purpose

Returns the name of an entry in the name service database from which the server
binding handle came; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_inq_entry_name(
rpc_binding_handle_t binding
unsigned32 entry_name_syntax
unsigned_char_t **entry_name
unsigned32 *status);

Parameters

Input
binding

Specifies a server binding handle whose entry name in the name service
database is returned.

entry_name_syntax
An integer value that specifies the syntax of returned parameter
entry_name. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide the value
rpc_c_ns_syntax_default .

Output
entry_name

Returns the name of the entry in the name service database in which
binding was found. The returned name is a global name.

Specify NULL to prevent the routine from returning this parameter. When
you specify this value, the client does not need to call rpc_string_free() .

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_inq_entry_name() routine returns the global name of the
entry in the name service database from which a binding handle for a compatible
server came.

The RPC runtime allocates memory for the string returned in the entry_name
parameter. Your application calls rpc_string_free() to deallocate that memory.

An entry name is associated only with binding handles returned from the following
routines:

v rpc_ns_binding_import_next()

v rpc_ns_binding_lookup_next()

v rpc_ns_binding_select()

544 IBM DCE for AIX, Version 2.2: Application Development Reference

If the binding handle specified in the binding parameter is not returned from an
entry in the name service database (for example, the binding handle is created by
calling rpc_binding_from_string_binding()), this routine returns the
rpc_s_no_entry_name status code.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_no_entry_name
No entry name for binding.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions: rpc_binding_from_string_binding(3rpc) ,
rpc_ns_binding_import_next(3rpc) , rpc_ns_binding_lookup_next(3rpc) ,
rpc_ns_binding_select(3rpc) , rpc_string_free(3rpc) .

rpc_ns_binding_inq_entry_name(3rpc)

Chapter 3. DCE Remote Procedure Call 545

rpc_ns_binding_lookup_begin

Purpose

Creates a lookup context for an interface and an object in the name service
database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_lookup_begin(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_if_handle_t if_handle
uuid_t *object_uuid
unsigned32 binding_max_count
rpc_ns_handle_t *lookup_context
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide the value rpc_c_ns_syntax_default .

entry_name
Specifies the entry name at which the search for compatible binding
handles begins. This can be either the global or cell-relative name.

To use the entry name found in the RPC_DEFAULT_ENTRY environment
variable, supply NULL or a null string (\0) for this parameter. When this
entry name is used, the RPC runtime automatically uses the default name
syntax specified in the RPC_DEFAULT_ENTRY_SYNTAX environment
variable.

if_handle
A stub-generated data structure specifying the interface to look up. If the
interface specification has not been exported or is of no concern to the
caller, specify NULL for this parameter. In this case the bindings returned
are only guaranteed to be of a compatible and supported protocol sequence
and contain the specified object UUID. The desired interface might not be
supported by the contacted server.

object_uuid
Specifies an optional object UUID.

If you specify NULL or a nil UUID for this parameter, the returned binding
handles contain one of the object UUIDs exported by the compatible server.
If the server did not export any object UUIDs, the returned compatible
binding handles contain a nil object UUID.

For a nonnil UUID, compatible binding handles are returned from an entry
only if the server has exported the specified object UUID. Each returned
binding handle contains the specified nonnil object UUID.

binding_max_count
Sets the maximum number of bindings to return in the binding_vector

546 IBM DCE for AIX, Version 2.2: Application Development Reference

parameter of rpc_ns_binding_lookup_next() . Specify
rpc_c_binding_max_count_default to use the default count.

Output
lookup_context

Returns the name service handle for use with the following routines:

v rpc_ns_binding_lookup_next()

v rpc_ns_binding_lookup_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_lookup_begin() routine creates a lookup context for locating
compatible server binding handles for servers. These servers offer the specified
interface and object UUID in the respective if_handle and object_uuid parameters.

Before calling rpc_ns_binding_lookup_next() , the client application must first
create a lookup context by calling rpc_ns_binding_lookup_begin() . The
parameters to this routine control the operation of the routine
rpc_ns_binding_lookup_next() .

When finished locating binding handles, the client application calls the
rpc_ns_binding_lookup_done() routine to delete the lookup context.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_object
Invalid object.

rpc_s_no_env_setup
Environment variable not set up.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

rpc_ns_binding_lookup_begin(3rpc)

Chapter 3. DCE Remote Procedure Call 547

Related Information

Functions: rpc_ns_binding_lookup_done(3rpc) ,
rpc_ns_binding_lookup_next(3rpc) , rpc_ns_mgmt_handle_set_exp_age(3rpc) .

rpc_ns_binding_lookup_begin(3rpc)

548 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_binding_lookup_done

Purpose

Deletes the lookup context for searching the name service database; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_lookup_done(
rpc_ns_handle_t *lookup_context
unsigned32 *status);

Parameters

Input/Output
lookup_context

Specifies the name service handle to delete. (A name service handle is
created by calling rpc_ns_binding_lookup_begin() .)

Returns the value NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_lookup_done() routine deletes a lookup context created by
calling rpc_ns_binding_lookup_begin() .

Typically, a client calls this routine after completing remote procedure calls to a
server using a binding handle returned from rpc_ns_binding_lookup_next() . A
client program calls this routine for each created lookup context, regardless of the
status returned from rpc_ns_binding_lookup_next() , or success in making remote
procedure calls.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 549

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions: rpc_ns_binding_lookup_begin(3rpc) ,
rpc_ns_binding_lookup_next(3rpc) .

rpc_ns_binding_lookup_done(3rpc)

550 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_binding_lookup_next

Purpose

Returns a list of binding handles of one or more compatible servers (if found) from
the name service database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_lookup_next(
rpc_ns_handle_t lookup_context
rpc_binding_vector_t **binding_vec
unsigned32 *status);

Parameters

Input
lookup_context

Specifies a name service handle. This handle is returned from the
rpc_ns_binding_lookup_begin() routine.

Output
binding_vec

Returns a vector of compatible server binding handles.

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_lookup_next() routine returns a vector of compatible (to the
client) server binding handles. The servers offer the interface and object UUID
specified by the respective if_handle and object_uuid parameters in
rpc_ns_binding_lookup_begin() . The number of binding handles that
rpc_ns_binding_lookup_next() attempts to return is the value of
binding_max_count in the rpc_ns_binding_lookup_begin() routine.

A similar routine is rpc_ns_binding_import_next() , which returns one compatible
server binding handle.

The rpc_ns_binding_lookup_next() routine communicates only with the name
service database, not directly with servers.

This routine traverses entries in the name service database, returning compatible
server binding handles from each entry. The routine can return multiple binding
handles from each entry. The search operation obeys the following rules for
traversing the entries:

v At each entry visited, the search operation randomly processes binding
information, then group members, then profile members. Profile members with
different priorities are returned according to their priorities, highest priority first.

v The search operation returns members of a group in random order.

v The search operation returns members of a profile with the same priority in
random order.

Chapter 3. DCE Remote Procedure Call 551

If the entry where the search begins (see the entry_name parameter in
rpc_ns_binding_lookup_begin()) contains binding handles as well as an RPC
group and/or a profile, rpc_ns_binding_lookup_next() returns the binding handles
from entry_name before searching the group or profile. This means that
rpc_ns_binding_lookup_next() can return a partially full vector before processing
the members of the group or profile.

Each binding handle in the returned vector always contains an object UUID. Its
value depends on the value specified in the object_uuid parameter of
rpc_ns_binding_lookup_begin() as follows:

v If object_uuid contains a nonnil object UUID, each returned binding handle
contains that object UUID.

v If object_uuid contains a nil object UUID or NULL, the object UUID returned in
each binding handle depends on how the server exported object UUIDS:

– If the server did not export any object UUIDs, each returned binding handle
contains a nil object UUID.

– If the server exported one object UUID, each returned binding handle contains
that object UUID.

– If the server exported multiple object UUIDs, the returned binding handle
contains one of the object UUIDs, selected in an unspecified way.

Applications should not count on the binding handles returned from a given
entry to contain different object UUIDs. In particular, note that each name
service entry stores server address information separately from exported
object UUIDs. One or more calls to rpc_ns_binding_lookup_next() will
return exactly one binding for each compatible server address, not the cross
product of all compatible server addresses with all exported UUIDs. Each
returned binding will contain one of the exported object UUIDs, but
applications should not count on any specific selection mechanism for these
object UUIDs.

From the returned vector of server binding handles, the client application can
employ its own criteria for selecting individual binding handles, or the application
can call rpc_ns_binding_select() to select a binding handle. The
rpc_binding_to_string_binding() and rpc_string_binding_parse() routines are
useful for a client creating its own selection criteria.

The client application can use the selected binding handle to attempt a remote
procedure call to the server. If the client fails to communicate with the server, it can
select another binding handle from the vector. When all the binding handles in the
vector are used, the client application calls rpc_ns_binding_lookup_next() again.

Each time the client calls rpc_ns_binding_lookup_next() , the routine returns
another vector of binding handles. The binding handles returned in each vector are
unordered, as is the order in which the vectors are returned from multiple calls to
this routine.

When looking up compatible binding handles from a profile, the binding handles
from entries of equal profile priority are unordered in the returned vector. In addition,
the vector returned from a call to rpc_ns_binding_lookup_next() contains only
compatible binding handles from entries of equal profile priority. This means the
returned vector may be partially full.

For example, if the binding_max_count parameter value in
rpc_ns_binding_lookup_begin() was 5 and rpc_ns_binding_lookup_next() finds

rpc_ns_binding_lookup_next(3rpc)

552 IBM DCE for AIX, Version 2.2: Application Development Reference

only three compatible binding handles from profile entries of priority 0 (zero),
rpc_ns_binding_lookup_next() returns a partially full binding vector (with three
binding handles). The next call to rpc_ns_binding_lookup_next() creates a new
binding vector and begins looking for compatible binding handles from profile
entries of priority 1.

When the search finishes, the routine returns a status code of
rpc_s_no_more_bindings and returns the value NULL in binding_vec.

A client application calls rpc_ns_binding_inq_entry_name() to obtain the name of
the entry in the name service database where the binding handle came from.

The rpc_ns_binding_lookup_next() routine allocates memory for the returned
binding_vec. When a client application finishes with the vector, it must call
rpc_binding_vector_free() to deallocate the memory. Each call to
rpc_ns_binding_lookup_next() requires a corresponding call to
rpc_binding_vector_free() .

The client calls rpc_ns_binding_lookup_done() , which deletes the lookup context.
The client also calls rpc_ns_binding_lookup_done() if the application wants to
start a new search for compatible servers (by calling the routine
rpc_ns_binding_lookup_begin()). The order of binding handles returned can be
different for each new search. This means that the order in which binding handles
are returned to an application can be different each time the application is run.

Permissions Required

You need read permission to the specified CDS object entry (the starting name
service entry) and to any CDS object entry in the resulting search path.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_bindings
No more bindings.

rpc_ns_binding_lookup_next(3rpc)

Chapter 3. DCE Remote Procedure Call 553

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions: rpc_binding_to_string_binding(3rpc) , rpc_binding_vector_free(3rpc) ,
rpc_ns_binding_import_next(3rpc) , rpc_ns_binding_inq_entry_name(3rpc) ,
rpc_ns_binding_lookup_begin(3rpc) , rpc_ns_binding_lookup_done(3rpc) ,
rpc_ns_binding_select(3rpc) , rpc_string_binding_parse(3rpc) .

rpc_ns_binding_lookup_next(3rpc)

554 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_binding_select

Purpose

Returns a binding handle from a list of compatible server binding handles; used by
client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_select(
rpc_binding_vector_t *binding_vec
rpc_binding_handle_t *binding
unsigned32 *status);

Parameters

Input/Output
binding_vec

Specifies the vector of compatible server binding handles from which a
binding handle is selected. The returned binding vector no longer
references the selected binding handle (returned separately in the binding
parameter).

Output
binding

Returns a selected server binding handle.

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_select() routine randomly chooses and returns a server
binding handle from a vector of server binding handles.

Each time the client calls rpc_ns_binding_select() , the routine returns another
binding handle from the vector.

When all of the binding handles are returned from the vector, the routine returns a
status code of rpc_s_no_more_bindings and returns the value NULL in binding.

The select operation allocates storage for the data referenced by the returned
binding parameter. When a client finishes with the binding handle, it calls
rpc_binding_free() to deallocate the storage. Each call to the
rpc_ns_binding_select() routine requires a corresponding call to
rpc_binding_free() .

Instead of using this routine, client applications can select a binding handle
according to their specific needs. In this case the routines
rpc_binding_to_string_binding() and rpc_string_binding_parse() are useful to
the applications since the routines work together to extract the individual fields of a
binding handle for examination.

Chapter 3. DCE Remote Procedure Call 555

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_no_more_bindings
No more bindings.

Related Information

Functions: rpc_binding_free(3rpc) , rpc_binding_to_string_binding(3rpc) ,
rpc_ns_binding_lookup_next(3rpc) , rpc_string_binding_parse(3rpc) .

rpc_ns_binding_select(3rpc)

556 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_binding_unexport

Purpose

Removes the binding handles for an interface, or object UUIDs, from an entry in the
name service database; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_unexport(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_if_handle_t if_handle
uuid_vector_t *object_uuid_vec
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide the value rpc_c_ns_syntax_default .

entry_name
Specifies an entry name whose binding handles or object UUIDs are
removed. This can be either the global or cell-relative name.

if_handle
Specifies an interface specification for the binding handles to be removed
from the name service database. The value NULL indicates that no binding
handles are removed (only object UUIDs are removed).

object_uuid_vec
Specifies a vector of object UUIDs to be removed from the name service
database. The application constructs this vector. The value NULL indicates
that no object UUIDs are removed (only binding handles are removed).

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_unexport() routine allows a server application to unexport
(that is, remove) one of the following from an entry in the name service database:

v All the binding handles for an interface.

v One or more object UUIDs for a resource or resources.

v Both binding handles and object UUIDs.

The rpc_ns_binding_unexport() routine removes only those binding handles that
match the interface UUID and the major and minor interface version numbers found
in the if_handle parameter. To remove multiple versions of an interface, use
rpc_ns_mgmt_binding_unexport() .

Chapter 3. DCE Remote Procedure Call 557

A server application can remove an interface and objects in a single call to this
routine, or it can remove them separately.

If rpc_ns_binding_unexport() does not find any binding handles for the specified
interface, it returns an rpc_s_interface_not_found status code and does not
remove the object UUIDs, if any are specified.

If one or more binding handles for the specified interface are found and removed
without error, rpc_ns_binding_unexport() removes the specified object UUIDs, if
any.

If any of the specified object UUIDs are not found, rpc_ns_binding_unexport()
returns the status code rpc_s_not_all_objs_unexported .

A server application, in addition to calling this routine, also calls
rpc_ep_unregister() to unregister any endpoints that the server previously
registered with the local endpoint map.

Use this routine with caution, only when you expect a server to be unavailable for
an extended time; for example, when it is permanently removed from service.

Additionally, keep in mind that name service databases are designed to be relatively
stable. In replicated name service databases, frequent use of
rpc_ns_binding_export() and rpc_ns_binding_unexport() causes the name
service to remove and replace the same entry repeatedly, and can cause
performance problems.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_interface_not_found
Interface not found.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_ns_binding_unexport(3rpc)

558 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_all_objs_unexported
Not all objects unexported.

rpc_s_nothing_to_unexport
Nothing to unexport.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ep_unregister(3rpc) , rpc_ns_binding_export(3rpc) ,
rpc_ns_mgmt_binding_unexport(3rpc) .

rpc_ns_binding_unexport(3rpc)

Chapter 3. DCE Remote Procedure Call 559

rpc_ns_entry_expand_name

Purpose

Expands the name of a name service entry; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_expand_name(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
unsigned_char_t **expanded_name
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide a value of rpc_c_ns_syntax_default .

entry_name
Specifies the entry name to expand. This can be either the global or
cell-relative name.

Output
expanded_name

Returns a pointer to the expanded version of entry_name. Do not specify
NULL since the routine always returns a name string.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application calls rpc_ns_entry_expand_name() to obtain a fully expanded entry
name.

The RPC runtime allocates memory for the returned expanded_name parameter.
The application is responsible for calling rpc_string_free() for that returned
parameter string.

The returned and expanded entry name accounts for local name translations and
differences in locally defined naming schemas. For example, suppose the entry in
the name service is
/.:/subsys/PrintQ/server1

Upon return from rpc_ns_entry_expand_name() , the expanded name could be
/.../abc.com/subsys/PrintQ/server1

560 IBM DCE for AIX, Version 2.2: Application Development Reference

For more information about local names and their expansions, see the information
on the DCE Directory Service in the IBM DCE for AIX, Version 2.2: Administration
Guide—Core Components.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

Related Information

Functions: rpc_string_free(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Administration Guide—Introduction.

rpc_ns_entry_expand_name(3rpc)

Chapter 3. DCE Remote Procedure Call 561

rpc_ns_entry_inq_resolution

Purpose

Resolves the cell namespace components of a name and returns partial results.

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_inq_resolution(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
unsigned_char_t **resolved_name
unsigned_char_t **unresolved_name
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the argument entry_name. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, supply a value of rpc_c_ns_syntax_default .

entry_name
The entry name on which the attempted name resolution is to be done. The
name can be specified in either cell-relative or global from.

Input/Output
resolved_name

Returns a pointer to the resolved portion of the entry name. The
resolved_name string returned will be null terminated and will not contain
trailing component separators (that is, no trailing / (slash) characters).

If NULL is specified on input for this parameter, nothing will be returned.

unresolved_name
Returns a pointer to the unresolved portion of the entry name. The
unresolved_name string returned will be a relative name, containing no
leading component separators (that is, it will contain no leading / (slash)
characters).

If NULL is specified on input for this parameter, nothing will be returned.

Output
status Returns the status code from this routine. The status code indicates

whether the routine completed successfully, or if not, why not.

Description

The rpc_ns_entry_inq_resolution() routine attempts to read an entry in the cell
namespace. If the entire entry name as specified is successfully read, the full
resolution of the entry name (that is, the originally-specified entry_name) is returned
in resolved_name and the status is set to rpc_s_ok .

562 IBM DCE for AIX, Version 2.2: Application Development Reference

If the read was unsuccessful because the full entry was not found in the cell
namespace, then the status code will be set to rpc_s_partial_results , and the
following will occur:

v The part of the name successfully read will be returned in resolved_name

v The remaining (unresolved) part of the name will be returned in
unresolved_name

Thus, if the status code is rpc_s_partial_results and the (nonempty) return
parameter resolved_name specifies a leaf (not a directory) entry, the contents of
resolved_name can be used in subsequent calls to the NSI interface to obtain a
binding handle for the server that exported to the entry. This behavior allows
applications to implement namespace junctions to their own internally-implemented
namespaces. Using this routine, clients can attempt to bind to overqualified name
entries whose resolved_name part is the name of the server entry, and whose
unresolved_name part is the pathname (meaningful to the server) of some object
that is managed by the application. Calling rpc_ns_entry_inq_resolution() with the
full name allows the client to learn what part of the name denotes the server entry it
must import bindings from; it can then bind to the server, passing the rest of the
name, which the server interprets as appropriate. The sec_acl_bind() routine, for
example, works this way.

The RPC runtime allocates memory for the returned resolved_name and
unresolved_name parameters. The application is responsible for calling
rpc_string_free() to free the allocated memory.

The application requires read permission for the name entries that are resolved
within the cell namespace.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_partial_results
The entry name was only partially resolved within the cell namespace and
the value of unresolved_name points to the residual of the name.

rpc_s_invalid_name_syntax
The requested name syntax is invalid.

rpc_s_unsupported_name_syntax
The requested name syntax is not supported.

Related Information

Functions: rpc_ns_binding_ *() routines.

rpc_ns_entry_inq_resolution()

Chapter 3. DCE Remote Procedure Call 563

rpc_ns_entry_object_inq_begin

Purpose

Creates an inquiry context for viewing the objects of an entry in the name service
database; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_begin(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_ns_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide a value of rpc_c_ns_syntax_default .

entry_name
Specifies the entry in the name service database for which object UUIDs
are viewed. This can be either the global or cell-relative name.

Output
inquiry_context

Returns a name service handle for use with the routine
rpc_ns_entry_object_inq_next() , and with the routine
rpc_ns_entry_object_inq_done() .

status Returns the status code from this routine, indicating whether the routine
completed successfully or, if not, why not.

Description

The rpc_ns_entry_object_inq_begin() routine creates an inquiry context for
viewing the object UUIDs exported to entry_name.

Before calling rpc_ns_entry_object_inq_next() , the application must first call this
routine to create an inquiry context.

When finished viewing the object UUIDs, the application calls the
rpc_ns_entry_object_inq_done() routine to delete the inquiry context.

Permissions Required

No permissions are required.

Return Values

No value is returned.

564 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_binding_export(3rpc) , rpc_ns_entry_object_inq_done(3rpc) ,
rpc_ns_entry_object_inq_next(3rpc) , rpc_ns_mgmt_handle_set_exp_age(3rpc) .

rpc_ns_entry_object_inq_begin(3rpc)

Chapter 3. DCE Remote Procedure Call 565

rpc_ns_entry_object_inq_done

Purpose

Deletes the inquiry context for viewing the objects of an entry in the name service
database; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_done(
rpc_ns_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input/Output
inquiry_context

Specifies the name service handle to delete. (A name service handle is
created by calling rpc_ns_entry_object_inq_begin() .)

Returns the value NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_entry_object_inq_done() routine deletes an inquiry context created by
calling rpc_ns_entry_object_inq_begin() .

An application calls this routine after viewing exported object UUIDs using the
rpc_ns_entry_object_inq_next() routine.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

566 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_ns_entry_object_inq_begin(3rpc) ,
rpc_ns_entry_object_inq_next(3rpc) .

rpc_ns_entry_object_inq_done(3rpc)

Chapter 3. DCE Remote Procedure Call 567

rpc_ns_entry_object_inq_next

Purpose

Returns one object at a time from an entry in the name service database; used by
client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_next(
rpc_ns_handle_t inquiry_context
uuid_t *obj_uuid
unsigned32 *status);

Parameters

Input
inquiry_context

Specifies a name service handle. This handle is returned from the
rpc_ns_entry_object_inq_begin() routine.

Output
obj_uuid

Returns an exported object UUID.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_entry_object_inq_next() routine returns one of the object UUIDs
exported to an entry in the name service database. The entry_name parameter in
the rpc_ns_entry_object_inq_begin() routine specified the entry.

An application can view all of the exported object UUIDs by repeatedly calling the
rpc_ns_entry_object_inq_next() routine. When all the object UUIDs are viewed,
this routine returns an rpc_s_no_more_members status. The returned object
UUIDs are unordered.

The application supplies the memory for the object UUID returned in the obj_uuid
parameter.

After viewing the object UUIDs, the application must call the
rpc_ns_entry_object_inq_done() routine to delete the inquiry context.

The order in which rpc_ns_entry_object_inq_next() returns object UUIDs can be
different for each viewing of an entry. Therefore, the order in which an application
receives object UUIDs can be different each time the application is run.

Permissions Required

You need read permission to the CDS object entry (the target name service entry).

568 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_members
No more members.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions: rpc_ns_binding_export(3rpc) , rpc_ns_entry_object_inq_begin(3rpc) ,
rpc_ns_entry_object_inq_done(3rpc) .

rpc_ns_entry_object_inq_next(3rpc)

Chapter 3. DCE Remote Procedure Call 569

rpc_ns_group_delete

Purpose

Deletes a group attribute; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_delete(
unsigned32 group_name_syntax
unsigned_char_t *group_name
unsigned32 *status);

Parameters

Input
group_name_syntax

An integer value that specifies the syntax of the group_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide the integer value rpc_c_ns_syntax_default .

group_name
Specifies the RPC group to delete. This can be either the global or
cell-relative name.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_delete() routine deletes the group attribute from the specified
entry in the name service database.

Neither the specified entry nor the entries represented by the group members are
deleted.

Permissions Required

You need write permission to the CDS object entry (the target group entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

570 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_group_member_add(3rpc) ,
rpc_ns_group_member_delete(3rpc) .

rpc_ns_group_delete(3rpc)

Chapter 3. DCE Remote Procedure Call 571

rpc_ns_group_mbr_add

Purpose

Adds an entry name to a group; if necessary, creates the entry; used by client,
server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_add(
unsigned32 group_name_syntax
unsigned_char_t *group_name
unsigned32 member_name_syntax
unsigned_char_t *member_name
unsigned32 *status);

Parameters

Input
group_name_syntax

An integer value that specifies the syntax of the group_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

group_name
Specifies the RPC group that receives a new member. This can be either
the global or cell-relative name.

member_name_syntax
An integer value that specifies the syntax of member_name.

To use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

member_name
Name of the new RPC group member. This can be either the global or
cell-relative name.

Output
status Returns the status code from this routine, indicating whether the routine

completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_add() routine adds, to the name service database, an
entry name as a member to the name service interface (NSI) group attribute of an
entry. The group_name parameter specifies the entry.

If the specified group_name entry does not exist, this routine creates the entry with
a group attribute and adds the group member specified by the member_name
parameter. In this case, the application must have permission to create the entry.
Otherwise, a management application with the necessary permissions creates the
entry by calling rpc_ns_mgmt_entry_create() before the application is run.

572 IBM DCE for AIX, Version 2.2: Application Development Reference

An application can add the entry in member_name to a group before it creates the
entry itself.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target group entry). If the entry does not exist, you also need insert permission to
the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_group_mbr_remove(3rpc) , rpc_ns_mgmt_entry_create(3rpc) .

rpc_ns_group_mbr_add(3rpc)

Chapter 3. DCE Remote Procedure Call 573

rpc_ns_group_mbr_inq_begin

Purpose

Creates an inquiry context for viewing group members; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_begin(
unsigned32 group_name_syntax
unsigned_char_t *group_name
unsigned32 member_name_syntax
rpc_ns_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input
group_name_syntax

An integer value that specifies the syntax of the group_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

group_name
Specifies the name of the RPC group to view.

member_name_syntax
An integer value that specifies the syntax of member_name in the
rpc_ns_group_mbr_inq_next() routine.

To use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

Output
inquiry_context

Returns a name service handle for use with the following routines:

v rpc_ns_group_mbr_inq_next()

v rpc_ns_group_mbr_inq_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_inq_begin() routine creates an inquiry context for viewing
the members of an RPC group.

Before calling rpc_ns_group_mbr_inq_next() , the application must first call this
routine to create an inquiry context.

When finished viewing the RPC group members, the application calls the
rpc_ns_group_mbr_inq_done() routine to delete the inquiry context.

574 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_group_mbr_add(3rpc) , rpc_ns_group_mbr_inq_done(3rpc) ,
rpc_ns_group_mbr_inq_next(3rpc) , rpc_ns_mgmt_handle_set_exp_age(3rpc) .

rpc_ns_group_mbr_inq_begin(3rpc)

Chapter 3. DCE Remote Procedure Call 575

rpc_ns_group_mbr_inq_done

Purpose

Deletes the inquiry context for a group; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_done(
rpc_ns_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input/Output
inquiry_context

Specifies the name service handle to delete. (A name service handle is
created by calling rpc_ns_group_mbr_inq_begin() .)

Returns the value NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_inq_done() routine deletes an inquiry context created by
calling rpc_ns_group_mbr_inq_begin() .

An application calls this routine after viewing RPC group members using the
rpc_ns_group_mbr_inq_next() routine.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

576 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_ns_group_mbr_inq_begin(3rpc) ,
rpc_ns_group_mbr_inq_next(3rpc) .

rpc_ns_group_mbr_inq_done(3rpc)

Chapter 3. DCE Remote Procedure Call 577

rpc_ns_group_mbr_inq_next

Purpose

Returns one member name at a time from a group; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_next(
rpc_ns_handle_t inquiry_context
unsigned_char_t **member_name
unsigned32 *status);

Parameters

Input
inquiry_context

Specifies a name service handle. This handle is returned from the
rpc_ns_group_mbr_inq_begin() routine.

Output
member_name

Returns a pointer to a (global) RPC group member name. The syntax of the
returned name is specified by the rpc_ns_group_mbr_inq_begin() routine
parameter member_name_syntax.

Specify NULL to prevent the routine from returning this parameter. In this
case, the application does not call rpc_string_free() .

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_inq_next() routine returns one member of the RPC group
specified by the group_name parameter in the routine
rpc_ns_group_mbr_inq_begin() .

An application can view all the members of an RPC group by calling the
rpc_ns_group_mbr_inq_next() routine repeatedly. When all the group members
have been viewed, this routine returns an rpc_s_no_more_members status. The
returned group members are unordered.

On each call to this routine that returns a member name (as a global name), the
RPC runtime allocates memory for the returned member_name. The application
calls rpc_string_free() for each returned member_name string.

After viewing the RPC group’s members, the application must call the
rpc_ns_group_mbr_inq_done() routine to delete the inquiry context.

Permissions Required

You need read permission to the CDS object entry (the target group entry).

578 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_members
No more members.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions: rpc_ns_group_mbr_inq_begin(3rpc) ,
rpc_ns_group_mbr_inq_done(3rpc) , rpc_string_free(3rpc) .

rpc_ns_group_mbr_inq_next(3rpc)

Chapter 3. DCE Remote Procedure Call 579

rpc_ns_group_mbr_remove

Purpose

Removes an entry name from a group; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_remove(
unsigned32 group_name_syntax
unsigned_char_t *group_name
unsigned32 member_name_syntax
unsigned_char_t *member_name
unsigned32 *status);

Parameters

Input
group_name_syntax

An integer value that specifies the syntax of the group_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

group_name
Specifies the RPC group from which to remove member_name. This can be
either the global or cell-relative name.

member_name_syntax
An integer value that specifies the syntax of member_name.

To use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

member_name
Specifies the member to remove from the name service interface (NSI)
group attribute in the group_name entry. This member can be either the
global or cell-relative name.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_remove() routine removes a member from the NSI group
attribute in the group_name entry.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target group entry).

580 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_group_member_not_found
Group member not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_group_mbr_add(3rpc) .

rpc_ns_group_mbr_remove(3rpc)

Chapter 3. DCE Remote Procedure Call 581

rpc_ns_import_ctx_add_eval

Purpose

Adds an evaluation routine to an import context; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_import_ctx_add_eval(
rpc_ns_handle_t *import_context
unsigned32 function_type
rpc_ns_handle_t *eval_args
void *eval_func
void *free_func
error_status_t *status);

Parameters

Input
import_context

The name service handle obtained from the
rpc_ns_binding_import_begin() routine.

func_type
The type of evaluation function. This value currently must be
rpc_cs_code_eval_func .

eval_args
An opaque data type that data used by the evaluation routine.

Client applications adding a DCE RPC code sets evaluation routine (that is,
the routines rpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal()) specify the server’s NSI entry name in
this parameter.

eval_func
A function pointer to the evaluation routine to be called from the
rpc_ns_binding_import_next() routine. The void declaration for eval_func
means that the function does not return a value.

Client applications adding a DCE RPC code sets evaluation routine (that is,
the routines rpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal()) specify the routine name in this
parameter.

free_func
A function pointer to a routine that is invoked from
rpc_ns_binding_import_done() and which performs application-specific
cleanup. Client applications adding a DCE RPC code sets evaluation
routine (that is, rpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal()) specify NULL in this parameter.

Output
import_context

Returns the name service handle which contains the following routines:

v rpc_ns_binding_import_next()

582 IBM DCE for AIX, Version 2.2: Application Development Reference

v rpc_ns_binding_import_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_import_ctx_add_eval() routine adds an evaluation routine to an
import context created by the rpc_ns_binding_import_begin() routine. The
evaluation routine adds additional criteria to that used by
rpc_ns_binding_import_next() (that is, protocol and interface information) for
importing compatible server binding handles. Client applications call the
rpc_ns_import_ctx_add_eval() routine once for each evaluation routine to be
added to an import context (if there are multiple evaluation routines to be set up.)

If the user-specified evaluation routine needs to perform special cleanup functions,
such as deleting a temporary file from a disk, use the free_func parameter to
specify the cleanup routine to be called from rpc_ns_binding_import_done() .

For DCE 1.1, client applications that transfer international character data in a
heterogeneous character set and code set environment use the
rpc_ns_import_ctx_add_eval() routine to add one or more code sets evaluation
routines to the import context returned by the rpc_ns_binding_import_begin()
routine. When the client application calls the rpc_ns_binding_import_next()
routine to import compatible binding handles for servers, this routine calls the code
sets evaluation routine, which applies client-server character set and code sets
compatibility checking as another criteria for compatible binding selection.

The code sets compatibility evaluation routine specified can be one of the following:

rpc_cs_eval_with_universal
A DCE RPC code sets evaluation routine that evaluates character set and
code sets compatibility between client and server. If client and server
character sets are compatible, but their supported code sets are not, the
routine sets code set tags that direct the client and/or server stubs to
convert character data to either user-defined intermediate code sets (if they
exist) or the DCE intermediate code set, which is the ISO 10646 (or
universal) code set.

rpc_cs_eval_without_universal
A DCE RPC code sets evaluation routine that evaluates character set and
code sets compatibility between client and server. If client and server
character sets are compatible, but their supported code sets are not, the
routine attempts to return the message rpc_s_no_compat_codesets to
rpc_ns_binding_import_next() .

application-supplied-routine
A user-written code sets evaluation routine. Application developers writing
internationalized DCE applications can develop their own code sets
evaluation routines for client-server code sets evaluation if the
DCE-supplied routines do not meet their application’s needs.

Restrictions

Client applications that add evaluation routines to server binding import context
cannot use the automatic binding method to bind to a server.

rpc_ns_import_ctx_add_eval(3rpc)

Chapter 3. DCE Remote Procedure Call 583

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_no_memory
The RPC runtime could not allocate heap storage.

rpc_s_invalid_ns_handle
The import_context parameter was not valid.

Related Information

Functions: rpc_cs_eval_with_universal(3rpc) ,
rpc_cs_eval_without_universal(3rpc) , rpc_ns_binding_import_begin(3rpc) ,
rpc_ns_binding_import_done(3rpc) , rpc_ns_binding_import_next(3rpc) ,
rpc_ns_mgmt_handle_set_exp_age(3rpc) .

rpc_ns_import_ctx_add_eval(3rpc)

584 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_mgmt_binding_unexport

Purpose

Removes multiple binding handles, or object UUIDs, from an entry in the name
service database; used by management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_binding_unexport(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_if_id_t *if_id
unsigned32 vers_option
uuid_vector_t *object_uuid_vec
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

entry_name
Specifies an entry name whose binding handles or object UUIDs are
removed. This can be either the global or cell-relative name.

if_id Specifies an interface identifier for the binding handles to be removed from
the name service database. The value NULL indicates that no binding
handles are removed (only object UUIDs are removed).

vers_option
Specifies how the rpc_ns_mgmt_binding_unexport() routine uses the
vers_major and the vers_minor fields of the if_id parameter.

The following table presents the accepted values for this parameter:

Table 24. Uses of vers_major and vers_minor fields of if_id

Value Description

rpc_c_vers_all Unexports (removes) all bindings for the
interface UUID in if_id, regardless of the
version numbers. For this value, specify 0
(zero) for both the major and minor versions
in if_id.

rpc_c_vers_compatible Removes those bindings for the interface
UUID in if_id with the same major version as
in if_id, and with a minor version greater than
or equal to the minor version in if_id.

rpc_c_vers_exact Removes those bindings for the interface
UUID in if_id with the same major and minor
versions as in if_id.

Chapter 3. DCE Remote Procedure Call 585

Table 24. Uses of vers_major and vers_minor fields of if_id (continued)

Value Description

rpc_c_vers_major_only Removes those bindings for the interface
UUID in if_id with the same major version as
in if_id (ignores the minor version). For this
value, specify 0 (zero) for the minor version in
if_id.

rpc_c_vers_upto Removes those bindings that offer a version
of the specified interface UUID less than or
equal to the specified major and minor
version. (For example, if if_id contains V2.0
and the name service entry contains binding
handles with the versions V1.3, V2.0, and
V2.1, the rpc_ns_mgmt_binding_unexport()
routine removes the binding handles with
V1.3 and V2.0.)

object_uuid_vec
Specifies a vector of object UUIDs to be removed from the name service
database. The application constructs this vector. The value NULL indicates
that no object UUIDs are removed (only binding handles are removed).

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_binding_unexport() routine allows a management application
to unexport (that is, remove) one of the following from an entry in the name service
database:

v All the binding handles for a specified interface UUID, qualified by the interface
version numbers (major and minor).

v One or more object UUIDs of resources.

v Both binding handles and object UUIDs of resources.

A management application can remove an interface and objects in a single call to
this routine, or it can remove them separately.

If the rpc_ns_mgmt_binding_unexport() routine does not find any binding handles
for the specified interface, the routine returns an rpc_s_interface_not_found status
and does not remove the object UUIDs, if any are specified.

If one or more binding handles for the specified interface are found and removed
without error, rpc_ns_mgmt_binding_unexport() removes the specified object
UUIDs, if any.

If any of the specified object UUIDs are not found,
rpc_ns_mgmt_binding_unexport() returns the rpc_not_all_objs_unexported
status code.

A management application, in addition to calling this routine, also calls the
rpc_mgmt_ep_unregister() routine to remove any servers that have registered
with the local endpoint map.

rpc_ns_mgmt_binding_unexport(3rpc)

586 IBM DCE for AIX, Version 2.2: Application Development Reference

Use this routine with caution, only when you expect a server to be unavailable for
an extended time; for example, when it is permanently removed from service.

Additionally, keep in mind that name service databases are designed to be relatively
stable. In replicated name service databases, frequent use of the
rpc_ns_binding_export() and rpc_ns_mgmt_binding_unexport() routines causes
the name service to remove and replace the same entry repeatedly, and can cause
performance problems.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_interface_not_found
Interface not found.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_all_objs_unexported
Not all objects unexported.

rpc_s_nothing_to_unexport
Nothing to unexport.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

rpc_ns_mgmt_binding_unexport(3rpc)

Chapter 3. DCE Remote Procedure Call 587

Related Information

Functions: rpc_mgmt_ep_unregister(3rpc) , rpc_ns_binding_export(3rpc) ,
rpc_ns_binding_unexport(3rpc) .

rpc_ns_mgmt_binding_unexport(3rpc)

588 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_mgmt_entry_create

Purpose

Creates an entry in the name service database; used by management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_create(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

entry_name
Specifies the name of the entry to create. This can be either the global or
cell-relative name.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_entry_create() routine creates an entry in the name service
database.

A management application can call rpc_ns_mgmt_entry_create() to create an
entry in the name service database for use by another application that does not
itself have the necessary name service permissions to create an entry.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry). You also need insert permission to the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 3. DCE Remote Procedure Call 589

rpc_s_ok
Success.

rpc_s_entry_already_exists
Name service entry already exists.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_mgmt_entry_delete(3rpc) .

rpc_ns_mgmt_entry_create(3rpc)

590 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_mgmt_entry_delete

Purpose

Deletes an entry from the name service database; used by management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_delete(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

entry_name
Specifies the name of the entry to delete. This can be either the global or
cell-relative name.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_entry_delete() routine removes an RPC entry from the name
service database.

Management applications use this routine only when an entry is no longer needed,
such as when a server is permanently removed from service. If the entry is a
member of a group or profile, it must also be deleted from the group or profile.

Use this routine cautiously. Since name service databases are designed to be
relatively stable, the frequent use of rpc_ns_mgmt_entry_delete() can result in the
following difficulties:

v Performance problems

Creating and deleting entries in client or server applications causes the name
service to remove and replace the same entry repeatedly in the name service
database, which can lead to performance problems.

v Lost entry updates

When multiple applications access a single entry through different replicas of a
name service database, updates to the entry can be lost.

In this situation, if one application deletes the entry and another application
updates the entry before the replicas are synchronized, the delete operation

Chapter 3. DCE Remote Procedure Call 591

takes precedence over the update operation. When the replicas are
synchronized, the update is lost because the entry is deleted from all replicas.

Permissions Required

You need read permission to the CDS object entry (the target name service entry).
You also need delete permission to the CDS object entry or to the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_mgmt_entry_create(3rpc) .

rpc_ns_mgmt_entry_delete(3rpc)

592 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_mgmt_entry_inq_if_ids

Purpose

Returns the list of interfaces exported to an entry in the name service database;
used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_inq_if_ids(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_if_id_vector_t **if_id_vec
unsigned32 *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of argument entry_name. To use
the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

entry_name
Specifies the entry in the name service database for which an interface
identifier vector is returned. This can be either the global or cell-relative
name.

Output
if_id_vec

Returns the address of the interface identifier vector.

status Returns the status code from this routine, indicating whether the routine
completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_entry_inq_if_ids() routine returns an interface identifier vector
containing the interfaces of binding handles exported to argument entry_name.

This routine uses an expiration age of 0 (zero) to cause an immediate update of the
local copy of name service data. The rpc_ns_mgmt_inq_exp_age() routine’s
reference page contains an explanation of the expiration age.

The application calls rpc_if_id_vector_free() to release memory used by the
returned vector.

Permissions Required

You need read permission to the CDS object entry (the target name service entry).

Return Values

No value is returned.

Chapter 3. DCE Remote Procedure Call 593

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_interfaces_exported
No interfaces were exported to entry.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_if_id_vector_free(3rpc) , rpc_if_inq_id(3rpc) ,
rpc_ns_binding_export(3rpc) .

rpc_ns_mgmt_entry_inq_if_ids(3rpc)

594 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_mgmt_free_codesets

Purpose

Frees a code sets array that has been allocated by the RPC runtime; used by client
and server applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_free_codesets(
rpc_codeset_mgmt_p_t *code_sets_array
error_status_t *status);

Parameters

Input/Output
code_sets_array

A pointer to a code sets array that has been allocated by a call to
rpc_ns_mgmt_read_codesets() or rpc_rgy_get_codesets() .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_free_codesets() routine belongs to a set of DCE RPC routines
for character and code set interoperability. These routines permit client and server
applications to transfer international character data in a heterogeneous character
set and code sets environment.

The rpc_ns_mgmt_free_codesets() routine frees from the client application’s
memory a code sets array allocated by a client call to the
rpc_ns_mgmt_read_codesets() or the rpc_rgy_get_codesets() routines. The
routine frees from a server application’s memory a code sets array allocated by a
server call to the rpc_rgy_get_codesets() routine.

Client applications use the rpc_ns_mgmt_read_codesets() routine to retrieve a
server’s supported code sets in order to evaluate them against the code sets that
the client supports. Clients and servers use the rpc_rgy_get_codesets() routine to
get their supported code sets from the code set registery. Clients and servers use
the rpc_ns_mgmt_free_codesets() routine to free the memory allocated to the
code sets array as part of their cleanup procedures.

Permissions Required

None.

Return Values

No value is returned.

Chapter 3. DCE Remote Procedure Call 595

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_ns_mgmt_read_codesets(3rpc) , rpc_rgy_get_codesets(3rpc) .

rpc_ns_mgmt_free_codesets(3rpc)

596 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_mgmt_handle_set_exp_age

Purpose

Sets a handle’s expiration age for local copies of name service data; used by client,
server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_handle_set_exp_age(
rpc_ns_handle_t ns_handle
unsigned32 expiration_age
unsigned32 *status);

Parameters

Input
ns_handle

Specifies the name service handle for which you supply an expiration age.
An RPC name service interface (NSI) inquiry begin operation returns a
name service handle. An example is the operation that
rpc_ns_entry_object_inq_begin() performs; it returns a name service
handle in its inquiry_context parameter.

expiration_age
This integer value specifies the expiration age, in seconds, of local name
service data. This data is read by all RPC NSI next routines that use the
specified ns_handle parameter. An example is the
rpc_ns_entry_object_inq_next() routine; it accepts a name service handle
in its inquiry_context parameter.

An expiration age of 0 (zero) causes an immediate update of the local
name service data.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_handle_set_exp_age() routine sets an expiration age for a
specified name service handle (in ns_handle). The expiration age is the amount of
time, in seconds, that a local copy of data from a name service attribute can exist,
before a request from the application for the attribute requires updating the local
copy. When an application begins running, the RPC runtime specifies a random
value of between 8 and 12 hours as the default expiration age. The default is global
to the application. An expiration age applies only to a specific name service handle
and temporarily overrides the current global expiration age.

Normally, avoid using this routine; instead, rely on the application’s global expiration
age.

A handle’s expiration age is used exclusively by RPC NSI next operations (which
read data from name service attributes). A next operation normally starts by looking

Chapter 3. DCE Remote Procedure Call 597

for a local copy of the attribute data being requested by an application. In the
absence of a local copy, the next operation creates one with fresh attribute data
from the name service database. If a local copy already exists, the operation
compares its actual age to the expiration age being used by the application (which
in this case is the expiration age set for the name service handle). If the actual age
exceeds the handle’s expiration age, the operation automatically tries to update the
local copy with fresh attribute data. If updating is impossible, the old local data
remains in place and the next operation fails, returning the
rpc_s_name_service_unavailable status code.

The scope of a handle’s expiration age is a single series of RPC NSI next
operations. The rpc_ns_mgmt_handle_set_exp_age() routine operates as follows:

1. An RPC NSI begin operation, such as the one performed by
rpc_ns_group_mbr_inq_begin() , creates a name service handle.

2. A call to rpc_ns_mgmt_handle_set_exp_age() creates an expiration age for
the handle.

3. A series of corresponding RPC NSI next operations for the name service handle
uses the handle’s expiration age.

4. A corresponding RPC NSI done operation for the name service handle deletes
both the handle and its expiration age.

Permissions Required

No permissions are required.

Cautions

Use this routine with extreme caution.

Setting the handle’s expiration age to a small value causes the RPC NSI next
operations to frequently update local data for any name service attribute requested
by your application. For example, setting the expiration age to 0 (zero) forces the
next operation to update local data for the name service attribute requested by your
application. Therefore, setting a small expiration age for a name service handle can
create performance problems for your application. Also, if your application is using a
remote server with the name service database, a small expiration age can
adversely affect network performance for all applications.

Limit the use of this routine to the following types of situations:

v When you must always get accurate name service data.

For example, during management operations to update a profile, you may need
to always see the profile’s current contents. In this case, before beginning to
inquire about a profile, your application must call
rpc_ns_mgmt_handle_set_exp_age() and specify 0 (zero) for the
expiration_age parameter.

v When a request using the default expiration age fails, and your application needs
to retry the operation.

For example, a client application using import must first try to obtain bindings
using the application’s default expiration age. However, sometimes the
import-next operation returns either no binding handles or an insufficient number
of them. In this case, the client can retry the import operation and, after
rpc_ns_binding_import_begin() terminates, include a
rpc_ns_mgmt_handle_set_exp_age() routine that specifies 0 (zero) for the
expiration_age parameter. When the client calls the import-next routine again, the

rpc_ns_mgmt_handle_set_exp_age(3rpc)

598 IBM DCE for AIX, Version 2.2: Application Development Reference

small expiration age for the name service handle causes the import-next
operation to update the local attribute data.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions: rpc_ns_binding_import_begin(3rpc) ,
rpc_ns_binding_lookup_begin(3rpc) , rpc_ns_entry_object_inq_begin(3rpc) ,
rpc_ns_group_mbr_inq_begin(3rpc) , rpc_ns_mgmt_inq_exp_age(3rpc) ,
rpc_ns_mgmt_set_exp_age(3rpc) , rpc_ns_profile_elt_inq_begin(3rpc) .

rpc_ns_mgmt_handle_set_exp_age(3rpc)

Chapter 3. DCE Remote Procedure Call 599

rpc_ns_mgmt_inq_exp_age

Purpose

Returns the application’s global expiration age for local copies of name service
data; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_inq_exp_age(
unsigned32 *expiration_age
unsigned32 *status);

Parameters

Input

None.

Output
expiration_age

Returns the default expiration age (in seconds). All the RPC name service
interface (NSI) read operations (all the next operations) use this value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_inq_exp_age() routine returns the global expiration age that
the application is using. The expiration_age parameter represents the amount of
time, in seconds, that a local copy of data from a name service attribute can exist
before a request from the application for the attribute requires updating the local
copy. When an application begins running, the RPC runtime specifies a random
value of between 8 and 12 hours as the default expiration age. The default is global
to the application.

The RPC NSI next operations, which read data from name service attributes, use
an expiration age. A next operation normally starts by looking for a local copy of the
attribute data that an application requests. In the absence of a local copy, the next
operation creates one with fresh attribute data from the name service database. If a
local copy already exists, the operation compares its actual age to the expiration
age being used by the application. If the actual age exceeds the expiration age, the
operation automatically tries to update the local copy with fresh attribute data from
the name service database. If updating is impossible, the old local data remains in
place and the next operation fails, returning the rpc_s_name_service_unavailable
status code.

Applications normally use only the default expiration age. For special cases, an
application can substitute a user-supplied global expiration age for the default by
calling rpc_ns_mgmt_set_exp_age() . The rpc_ns_mgmt_inq_exp_age() routine
returns the current global expiration age, whether it is a default or a user-supplied
value.

600 IBM DCE for AIX, Version 2.2: Application Development Reference

An application can also override the global expiration age temporarily by calling
rpc_ns_mgmt_handle_set_exp_age() .

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_ns_mgmt_handle_set_exp_age(3rpc) ,
rpc_ns_mgmt_set_exp_age(3rpc) .

rpc_ns_mgmt_inq_exp_age(3rpc)

Chapter 3. DCE Remote Procedure Call 601

rpc_ns_mgmt_read_codesets

Purpose

Reads the code sets attribute associated with an RPC server entry in the name
service database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_read_codesets(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
rpc_codeset_mgmt_p_t *code_sets_array
error_status_t *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

entry_name
Specifies the name of the RPC server entry in the name service database
from which to read the code sets attribute. The name can be either the
global or cell-relative name.

Output
code_sets_array

A code sets array that specifies the code sets that the RPC server
supports.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_read_codesets() routine belongs to a set of DCE RPC routines
for character and code set interoperability. These routines permit client and server
applications to transfer international character data in a heterogeneous character
set and code sets environment. The rpc_ns_mgmt_read_codesets() routine reads
the code sets attribute associated with an RPC server entry in the name service
database. The routine takes the name of an RPC server entry and returns a code
sets array that corresponds to the code sets that this RPC server supports.

Client applications use the rpc_ns_mgmt_read_codesets() routine to retrieve a
server’s supported code sets in order to evaluate them against the code sets that
the client supports. Client applications that use the evaluation routines
rpc_cs_eval_with_universal() and rpc_cs_eval_without_universal() do not need
to call this routine explicitly, because these code sets evaluation routines call it on
the client’s behalf. Application developers who are writing their own character and
code set evaluation routines may need to include rpc_ns_mgmt_read_codesets()
in their user-written evaluation routines.

602 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

You need read permission to the target RPC server entry (which is a CDS object).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok

rpc_s_invalid_name_syntax

rpc_s_mgmt_bad_type

rpc_s_name_service_unavailable

rpc_s_no_permission

rpc_s_incomplete_name

rpc_s_no_memory

Related Information

Functions: dce_cs_rgy_to_loc(3rpc) , dce_cs_loc_to_rgy(3rpc) ,
rpc_ns_mgmt_free_codesets(3rpc) , rpc_ns_mgmt_remove_attribute(3rpc) ,
rpc_ns_mgmt_set_attribute(3rpc) , rpc_rgy_get_codesets(3rpc) ,
rpc_rgy_get_max_bytes(3rpc) .

rpc_ns_mgmt_read_codesets(3rpc)

Chapter 3. DCE Remote Procedure Call 603

rpc_ns_mgmt_remove_attribute

Purpose

Removes an attribute from an RPC server entry in the name service database;
used mainly by server applications; can also be used by management applications

Synopsis
#include <dce/rpc.h>
#include <dce/nsattrid.h>

void rpc_ns_mgmt_remove_attribute(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
uuid_t *attr_type
error_status_t *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

entry_name
Specifies the name of the RPC server entry in the name service database
from which the attribute will be removed. The name can be either the global
or cell-relative name. If you are using this routine to remove a code sets
attribute from an RPC server entry in the Cell Directory Service database,
then this parameter specifies the CDS name of the server entry that
contains the code sets attribute to be removed.

attr_type
A UUID that specifies the attribute type. For DCE 1.2, this value must be
rpc_c_attr_codesets .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_remove_attribute() routine belongs to a set of DCE RPC
routines for use by client and server applications that are transferring international
character data in a heterogeneous character set and code sets environment.

The rpc_ns_mgmt_remove_attribute() routine is designed to be a generic routine
for removing an attribute from an RPC server entry in the name service database.
The routine removes the attribute from the specified RPC server entry in the name
service database. The routine does not remove the RPC server entry.

For DCE 1.2, you use rpc_ns_mgmt_remove_attribute() in your application server
initialization routine or signal handling routine to remove a code sets attribute from

604 IBM DCE for AIX, Version 2.2: Application Development Reference

the server’s entry in the Cell Directory Service database as part of the server
cleanup procedure carried out prior to the server’s termination.

A management application can call rpc_ns_mgmt_remove_attribute() to remove
an attribute from an RPC server entry in the name service database on behalf of an
application that does not itself have the necessary name service permissions to
remove one.

Permissions Required

You need write permission to the target RPC server entry (which is a CDS object).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_entry_not_found
The routine cannot find the RPC server entry specified in the call in the
name service database.

rpc_s_incomplete_name
The routine cannot expand the RPC server entry name specified in the call.

rpc_s_invalid_name_syntax
The name syntax specified in the call is not valid.

rpc_s_mgmt_bad_type
The attribute type specified in the call does not match that of the attribute to
be removed from the name service database.

rpc_s_name_service_unavailable
The routine was unable to communicate with the name service.

rpc_s_no_ns_permission
The routine’s caller does not have the proper permission for an NSI
operation.

Related Information

Functions: rpc_ns_mgmt_read_codesets(3rpc) ,
rpc_ns_mgmt_set_attribute(3rpc) , rpc_rgy_get_codesets(3rpc) .

rpc_ns_mgmt_remove_attribute(3rpc)

Chapter 3. DCE Remote Procedure Call 605

rpc_ns_mgmt_set_attribute

Purpose

Adds an attribute to an RPC server entry in the name service database; used
mainly by server applications; can also be used by management applications

Synopsis
#include <dce/rpc.h>
#include <dce/nsattrid.h>

void rpc_ns_mgmt_set_attribute(
unsigned32 entry_name_syntax
unsigned_char_t *entry_name
uuid_t *attr_type
void *attr_value
error_status_t *status);

Parameters

Input
entry_name_syntax

An integer value that specifies the syntax of the entry_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

entry_name
Specifies the name of the RPC server entry in the name service database
with which the attribute will be associated. The name can be either the
global or cell-relative name. If you are using this routine to add a code sets
attribute to an RPC server entry in the name service database, then this
parameter specifies the name of the server entry with which the code sets
attribute will be associated.

attr_type
A UUID that specifies the attribute type. For DCE 1.2, this value must be
rpc_c_attr_codesets .

attr_val
An opaque data structure that specifies the attribute value to be stored in
the name service database. If you are using this routine to add a code sets
attribute to an RPC server entry, you must cast the representation of the
code set data from the data type rpc_codeset_mgmt_p_t to the data type
void* .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_set_attribute() routine belongs to a set of DCE RPC routines
for use by client and server applications that are transferring international character
data in a heterogeneous character set and code sets environment.

606 IBM DCE for AIX, Version 2.2: Application Development Reference

The rpc_ns_mgmt_set_attribute() routine is designed to be a generic routine for
adding an attribute to an RPC server entry in the name service database. The
routine takes an attribute type and a pointer to the value, and stores the attribute
value in the name service database.

For DCE 1.2, you use rpc_ns_mgmt_set_attribute() in your application server
initialization routine to add a code sets attribute to the server’s entry in the Cell
Directory Service database (which the initialization routine has created with the
rpc_ns_binding_export() routine). Because CDS stores integer values in
little-endian format, the rpc_ns_mgmt_set_attribute() routine also encodes the
code sets attribute value into an endian-safe format before storing it in the name
service database.

A management application can call rpc_ns_mgmt_set_attribute() to add an
attribute to an RPC server entry in the name service database on behalf of an
application that does not itself have the necessary name service permissions to add
one.

Permissions Required

You need both read permission and write permission to the target RPC server entry
(which is a CDS object). You also need insert permission to the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_name_syntax
The name syntax specified in the call is not valid.

rpc_s_mgmt_bad_type
The attribute type specified in the call does not match that of the attribute to
be added to the name service database.

rpc_s_no_memory
The routine was unable to allocate memory to encode the value.

rpc_s_name_service_unavailable
The routine was unable to communicate with the name service.

rpc_s_no_ns_permission
The routine’s caller does not have the proper permission for an NSI
operation.

Related Information

Functions: rpc_ns_mgmt_read_codesets(3rpc) ,
rpc_ns_mgmt_remove_attribute(3rpc) , rpc_rgy_get_codesets(3rpc) .

rpc_ns_mgmt_set_attribute(3rpc)

Chapter 3. DCE Remote Procedure Call 607

rpc_ns_mgmt_set_exp_age

Purpose

Modifies the application’s global expiration age for local copies of name service
data; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_set_exp_age(
unsigned32 expiration_age
unsigned32 *status);

Parameters

Input
expiration_age

An integer value that specifies the default expiration age, in seconds, for
local name service data. This expiration age applies to all RPC name
service interface (NSI) read operations (all the next operations).

An expiration age of 0 (zero) causes an immediate update of the local
name service data.

To reset the expiration age to an RPC-assigned random value between 8
and 12 hours, specify a value of rpc_c_ns_default_exp_age .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_set_exp_age() routine modifies the global expiration age that
the application is using. The expiration_age parameter represents the amount of
time, in seconds, that a local copy of data from a name service attribute can exist
before a request from the application for the attribute requires updating the local
copy. When an application begins running, the RPC runtime specifies a random
value of between 8 and 12 hours as the default expiration age. The default is global
to the application.

Normally, you should avoid using this routine; instead, rely on the default expiration
age.

The RPC NSI next operations, which read data from name service attributes, use
an expiration age. A next operation normally starts by looking for a local copy of the
attribute data that an application requests. In the absence of a local copy, the next
operation creates one with fresh attribute data from the name service database. If a
local copy already exists, the operation compares its actual age to the expiration
age being used by the application. If the actual age exceeds the expiration age, the
operation automatically tries to update the local copy with fresh attribute data from
the name service database. If updating is impossible, the old local data remains in
place and the next operation fails, returning the rpc_s_name_service_unavailable
status code.

608 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

No permissions are required.

Cautions

Use this routine with extreme caution.

Setting the expiration age to a small value causes the RPC NSI next operations to
frequently update local data for any name service attribute that your application
requests. For example, setting the expiration age to 0 (zero) forces all next
operations to update local data for the name service attribute that your application
has requested. Therefore, setting small expiration ages can create performance
problems for your application. Also, if your application is using a remote server with
the name service database, a small expiration age can adversely affect network
performance for all applications.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_ns_mgmt_handle_set_exp_age(3rpc) ,
rpc_ns_mgmt_set_exp_age(3rpc) .

rpc_ns_mgmt_set_exp_age(3rpc)

Chapter 3. DCE Remote Procedure Call 609

rpc_ns_profile_delete

Purpose

Deletes a profile attribute; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_delete(
unsigned32 profile_name_syntax
unsigned_char_t *profile_name
unsigned32 *status);

Parameters

Input
profile_name_syntax

An integer value that specifies the syntax of the profile_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

profile_name
Specifies the name of the profile to delete. This can be either the global or
cell-relative name.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_delete() routine deletes the profile attribute from the specified
entry in the name service database (the profile_name parameter).

Neither the specified entry nor the entry names included as members in each profile
element are deleted.

Use this routine cautiously; deleting a profile may break a hierarchy of profiles.

Permissions Required

You need write permission to the CDS object entry (the target profile entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

610 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_ok
Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_profile_elt_add(3rpc) , rpc_ns_profile_elt_remove(3rpc) .

rpc_ns_profile_delete(3rpc)

Chapter 3. DCE Remote Procedure Call 611

rpc_ns_profile_elt_add

Purpose

Adds an element to a profile; if necessary, creates the entry; used by client, server,
or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_add(
unsigned32 profile_name_syntax
unsigned_char_t *profile_name
rpc_if_id_t *if_id
unsigned32 member_name_syntax
unsigned_char_t *member_name
unsigned32 priority
unsigned_char_t *annotation
unsigned32 *status);

Parameters

Input
profile_name_syntax

An integer value that specifies the syntax of the profile_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

profile_name
Specifies the RPC profile that receives a new element. This can be either
the global or cell-relative name.

if_id Specifies the interface identifier of the new profile element. To add or
replace the default profile element, specify NULL.

member_name_syntax
An integer value that specifies the syntax of member_name.

To use the syntax specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

member_name
Specifies the entry in the name service database to include in the new
profile element. This can be either the global or cell-relative name.

priority An integer value (0 to 7) that specifies the relative priority for using the new
profile element during the import and lookup operations. A value of 0 (zero)
is the highest priority. A value of 7 is the lowest priority. Two or more
elements can have the same priority.

When adding the default profile member, use a value of 0 (zero).

annotation
Specifies an annotation string that is stored as part of the new profile
element. The string can be up to 17 characters long. Specify NULL or the
string \0 if there is no annotation string.

The string is used by applications for informational purposes only. For
example, an application can use this string to store the interface name
string (specified in the IDL file).

612 IBM DCE for AIX, Version 2.2: Application Development Reference

DCE RPC does not use this string during lookup or import operations, or for
enumerating profile elements.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_add() routine adds an element to the profile attribute of the
entry in the name service database specified by the profile_name parameter.

If the profile_name entry does not exist, this routine creates the entry with a profile
attribute and adds the profile element specified by the if_id, member_name, priority,
and annotation parameters. In this case, the application must have permission to
create the entry. Otherwise, a management application with the necessary
permissions creates the entry by calling rpc_ns_mgmt_entry_create() before the
application is run.

If an element with the specified member name and interface identifier are already in
the profile, this routine updates the element’s priority and annotation string using the
values provided in the priority and annotation parameters.

An application can add the entry in the member_name parameter to a profile before
it creates the entry itself.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target profile entry). If the entry does not exist, you also need insert permission to
the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_priority
Invalid profile element priority.

rpc_ns_profile_elt_add(3rpc)

Chapter 3. DCE Remote Procedure Call 613

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_if_inq_id(3rpc) , rpc_ns_mgmt_entry_create(3rpc) ,
rpc_ns_profile_elt_remove(3rpc) .

rpc_ns_profile_elt_add(3rpc)

614 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_profile_elt_inq_begin

Purpose

Creates an inquiry context for viewing the elements in a profile; used by client,
server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_begin(
unsigned32 profile_name_syntax
unsigned_char_t *profile_name
unsigned32 inquiry_type
rpc_if_id_t *if_id
unsigned32 vers_option
unsigned32 member_name_syntax
unsigned_char_t *member_name
rpc_ns_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input
profile_name_syntax

An integer value that specifies the syntax of the profile_name parameter. To
use the syntax that is specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

profile_name
Specifies the name of the profile to view. This can be either the global or
cell-relative name.

inquiry_type
An integer value that specifies the type of inquiry to perform on the profile.
The following table describes the valid inquiry types:

Table 25. Valid Values of inquiry_ type

Value Description

rpc_c_profile_default_elt Searches the profile for the default
profile element, if any. The if_id,
vers_option, and member_name
parameters are ignored.

rpc_c_profile_all_elts Returns every element from the profile.
The if_id, vers_option, and
member_name parameters are ignored.

rpc_c_profile_match_by_if Searches the profile for those elements
that contain the interface identifier
specified by the if_id and vers_option
values. The member_name parameter is
ignored.

Chapter 3. DCE Remote Procedure Call 615

Table 25. Valid Values of inquiry_ type (continued)

Value Description

rpc_c_profile_match_by_mbr Searches the profile for those elements
that contain the member name specified
by the member_name parameter. The
if_id and vers_option parameters are
ignored.

rpc_c_profile_match_by_both Searches the profile for those elements
that contain the interface identifier and
member name specified by the if_id,
vers_option, and member_name
parameters.

if_id Specifies the interface identifier of the profile elements to be returned by
rpc_ns_profile_elt_inq_next() .

This parameter is used only when specifying a value of either
rpc_c_profile_match_by_if or rpc_c_profile_match_by_both for the
inquiry_type parameter. Otherwise, this parameter is ignored and you can
specify the value NULL.

vers_option
Specifies how rpc_ns_profile_elt_inq_next() uses the if_id parameter.

This parameter is used only when specifying a value of either
rpc_c_profile_match_by_if or rpc_c_profile_match_by_both for the
inquiry_type parameter. Otherwise, this parameter is ignored and you can
specify the value 0 (zero).

The following table describes the valid values for this parameter:

Table 26. Valid Values of vers_option

Value Description

rpc_c_vers_all Returns profile elements that offer the
specified interface UUID, regardless of the
version numbers. For this value, specify 0
(zero) for both the major and minor versions in
if_id.

rpc_c_vers_compatible Returns profile elements that offer the same
major version of the specified interface UUID
and a minor version greater than or equal to
the minor version of the specified interface
UUID.

rpc_c_vers_exact Returns profile elements that offer the
specified version of the specified interface
UUID.

rpc_c_vers_major_only Returns profile elements that offer the same
major version of the specified interface UUID
(ignores the minor version). For this value,
specify 0 (zero) for the minor version in if_id.

rpc_ns_profile_elt_inq_begin(3rpc)

616 IBM DCE for AIX, Version 2.2: Application Development Reference

Table 26. Valid Values of vers_option (continued)

Value Description

rpc_c_vers_upto Returns profile elements that offer a version of
the specified interface UUID less than or equal
to the specified major and minor version. (For
example, if if_id contains V2.0 and the profile
contains elements with the versions V1.3,
V2.0, and V2.1,
rpc_ns_profile_elt_inq_next() returns the
elements with V1.3 and V2.0.)

member_name_syntax
An integer value that specifies the syntax of the member_name parameter
in this routine and the syntax of the member_name parametr in
rpc_ns_profile_elt_inq_next() . To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default .

member_name
Specifies the member name that rpc_ns_profile_elt_inq_next() looks for in
profile elements. This can be either the global or cell-relative name.

This parameter is used only when specifying a value of either
rpc_c_profile_match_by_mbr or rpc_c_profile_match_by_both for the
inquiry_type parameter. Otherwise, this parameter is ignored and you
specify the value NULL.

Output
inquiry_context

Returns a name service handle for use with the following routines:

v rpc_ns_profile_elt_inq_next()

v rpc_ns_profile_elt_inq_done()

status Returns the status code from this routine, indicating indicates whether the
routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_inq_begin() routine creates an inquiry context for viewing
the elements in a profile.

Using the inquiry_type and vers_option parameters, an application specifies which
of the following profile elements will be returned from calls to
rpc_ns_profile_elt_inq_next() :

v The default element.

v All elements.

v Those elements with the specified interface identifier.

v Those elements with the specified member name.

v Those elements with both the specified interface identifier and member name.

Before calling rpc_ns_profile_elt_inq_next() , the application must first call this
routine to create an inquiry context.

When finished viewing the profile elements, the application calls the
rpc_ns_profile_elt_inq_done() routine to delete the inquiry context.

rpc_ns_profile_elt_inq_begin(3rpc)

Chapter 3. DCE Remote Procedure Call 617

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_inquiry_type
Invalid inquiry type.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_if_inq_id(3rpc) , rpc_ns_mgmt_handle_set_exp_age(3rpc) ,
rpc_ns_profile_elt_inq_done(3rpc) , rpc_ns_profile_elt_inq_next(3rpc) .

rpc_ns_profile_elt_inq_begin(3rpc)

618 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_profile_elt_inq_done

Purpose

Deletes the inquiry context for a profile; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_done(
rpc_ns_handle_t *inquiry_context
unsigned32 *status);

Parameters

Input/Output
inquiry_context

Specifies the name service handle to delete. (A name service handle is
created by calling rpc_ns_profile_elt_inq_begin() .)

Returns the value NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_inq_done() routine deletes an inquiry context created by
calling rpc_ns_profile_elt_inq_begin() .

An application calls this routine after viewing profile elements using the
rpc_ns_profile_elt_inq_next() routine.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Chapter 3. DCE Remote Procedure Call 619

Related Information

Functions: rpc_ns_profile_elt_inq_begin(3rpc) ,
rpc_ns_profile_elt_inq_next(3rpc) .

rpc_ns_profile_elt_inq_done(3rpc)

620 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ns_profile_elt_inq_next

Purpose

Returns one element at a time from a profile; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_next(
rpc_ns_handle_t inquiry_context
rpc_if_id_t *if_id
unsigned_char_t **member_name
unsigned32 *priority
unsigned_char_t **annotation
unsigned32 *status);

Parameters

Input
inquiry_context

Specifies a name service handle. This handle is returned from the
rpc_ns_profile_elt_inq_begin() routine.

Output
if_id Returns the interface identifier of the profile element.

member_name
Returns a pointer to the profile element’s member name. The name is a
global name.

The syntax of the returned name is specified by the
rpc_ns_profile_elt_inq_begin() member_name_syntax parameter.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not call rpc_string_free() .

priority Returns the profile element priority.

annotation
Returns the annotation string for the profile element. If there is no
annotation string in the profile element, the string \0 is returned.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not need to call the rpc_string_free() routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_inq_next() routine returns one element from the profile
specified by the profile_name parameter in the rpc_ns_profile_elt_inq_begin()
routine.

The selection criteria for the element returned are based on the inquiry_type
parameter in the rpc_ns_profile_elt_inq_begin() routine. The

Chapter 3. DCE Remote Procedure Call 621

rpc_ns_profile_elt_inq_next() routine returns all the components (interface
identifier, member name, priority, annotation string) of a profile element.

An application can view all the selected profile entries by repeatedly calling the
rpc_ns_profile_elt_inq_next() routine. When all the elements have been viewed,
this routine returns an rpc_s_no_more_elements status code. The returned
elements are unordered.

On each call to this routine that returns a profile element, the DCE RPC runtime
allocates memory for the returned member_name (which points to a global name)
and annotation strings. The application is responsible for calling the
rpc_string_free() routine for each returned member_name and annotation string.

After viewing the profile’s elements, the application must call the
rpc_ns_profile_elt_inq_done() routine to delete the inquiry context.

Permissions Required

You need read permission to the CDS object entry (the target profile entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_elements
No more elements.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_ns_profile_elt_inq_next(3rpc)

622 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_ns_profile_elt_begin(3rpc) , rpc_ns_profile_elt_done(3rpc) ,
rpc_string_free(3rpc) .

rpc_ns_profile_elt_inq_next(3rpc)

Chapter 3. DCE Remote Procedure Call 623

rpc_ns_profile_elt_remove

Purpose

Removes an element from a profile; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_remove(
unsigned32 profile_name_syntax
unsigned_char_t *profile_name
rpc_if_id_t *if_id
unsigned32 member_name_syntax
unsigned_char_t *member_name
unsigned32 *status);

Parameters

Input
profile_name_syntax

An integer value that specifies the syntax of the profile_name parameter. To
use the syntax specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, provide rpc_c_ns_syntax_default .

profile_name
Specifies the profile from which to remove an element. This can be either
the global or cell-relative name.

if_id Specifies the interface identifier of the profile element to be removed.
Specify NULL to remove the default profile member.

member_name_syntax
An integer value that specifies the syntax of member_name. To use the
syntax specified in the RPC_DEFAULT_ENTRY_SYNTAX environment
variable, provide rpc_c_ns_syntax_default .

member_name
Specifies the name service entry name in the profile element to remove.
This can be either the global or cell-relative name. When if_id is NULL, this
argument is ignored.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_remove() routine removes a profile element from the
profile specified by profile_name. Unless if_id is NULL, the member_name
parameter and the if_id parameter must match the corresponding profile element
attributes exactly for an element to be removed. When if_id is NULL, the default
profile element is removed, and the member_name argument is ignored.

The routine removes the reference to the entry specified by member_name from the
profile; it does not delete the entry itself.

624 IBM DCE for AIX, Version 2.2: Application Development Reference

Use this routine cautiously; removing elements from a profile may break a hierarchy
of profiles.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target profile entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_profile_element_not_found
Profile element not found.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions: rpc_ns_profile_delete(3rpc) , rpc_ns_profile_elt_add(3rpc) .

rpc_ns_profile_elt_remove(3rpc)

Chapter 3. DCE Remote Procedure Call 625

rpc_object_inq_type

Purpose

Returns the type of an object; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_object_inq_type(
uuid_t *obj_uuid
uuid_t *type_uuid
unsigned32 *status);

Parameters

Input
obj_uuid

Specifies the object UUID whose associated type UUID is returned. Supply
NULL to specify a nil UUID for this parameter.

Output
type_uuid

Returns the type UUID corresponding to the object UUID supplied in the
obj_uuid parameter.

Specifying NULL here prevents the return of a type UUID. An application,
by specifying NULL here, can determine from the value returned in status
whether obj_uuid is registered. This determination occurs without the
application specifying an output type UUID variable.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

A server application calls the rpc_object_inq_type() routine to obtain the type
UUID of an object.

If the object is registered with the RPC runtime using the rpc_object_set_type()
routine, the registered type is returned.

Optionally, an application can maintain an object/type registration privately. In this
case, if the application provides an object inquiry function (see the
rpc_object_set_inq_fn(3rpc) reference page), the RPC runtime uses that function
to determine an object’s type.

The table below shows how rpc_object_inq_type() obtains the returned type
UUID.

626 IBM DCE for AIX, Version 2.2: Application Development Reference

Table 27. Rules for Returning an Object’s Type

Was object UUID registered
(using rpc_object_set_type)?

Was an object inquiry
runction registered (using
rpc_object_set_inq_fn)?

Return Value

Yes Ignored Returns the object’s
registered type UUID.

No Yes Returns the type UUID
returned from calling the
inquiry function.

No No Returns the nil UUID.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_object_not_found
Object not found.

uuid_s_bad_version
Bad UUID version.

Related Information

Functions: rpc_object_set_inq_fn(3rpc) , rpc_object_set_type(3rpc) .

rpc_object_inq_type(3rpc)

Chapter 3. DCE Remote Procedure Call 627

rpc_object_set_inq_fn

Purpose

Registers an object inquiry function; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_object_set_inq_fn(
rpc_object_inq_fn_t inquiry_fn
unsigned32 *status);

Parameters

Input
inquiry_fn

Specifies a pointer to an object type inquiry function. When an application
calls the rpc_object_inq_type() routine and the RPC runtime finds that the
specified object is not registered, the runtime automatically calls the
rpc_object_inq_type() routine to determine the object’s type. Specify NULL
to remove a previously set inquiry function.

The following C language definition for rpc_object_inq_fn_t illustrates the
prototype for this function:
typedef void (*rpc_object_inq_fn_t)
(

uuid_t *object_uuid, /* in */
uuid_t *type_uuid, /* out */
unsigned32 *status /* out */

);

The returned type_uuid and status values are returned as the output
arguments from the rpc_object_inq_type() routine.

If you specify NULL, the rpc_object_set_inq_fn() routine unregisters (that
is, removes) a previously registered object type inquiry function.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

A server application calls rpc_object_set_inq_fn() to specify a function to
determine an object’s type. If an application privately maintains object/type
registrations, the specified inquiry function returns the type UUID of an object from
that registration.

The RPC runtime automatically calls the inquiry function when the application calls
rpc_object_inq_type() and the object was not previously registered by
rpc_object_set_type() . The RPC runtime also automatically calls the inquiry
function for every remote procedure call it receives if the object was not previously
registered.

628 IBM DCE for AIX, Version 2.2: Application Development Reference

Cautions

Use this routine with caution. When the RPC runtime automatically calls this routine
in response to a received remote procedure call, the inquiry function can be called
from the context of runtime internal threads with runtime internal locks held. The
inquiry function should not block or at least not block for long (for example, the
inquiry function should not perform a remote procedure call). Also, the inquiry
function must not unwind because of an exception. In general, the inquiry function
should not call back into the RPC runtime. It is legal to call rpc_object_set_type()
or any of the uuid_ * routines. Failure to comply with these restrictions will result in
undefined behavior.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_object_inq_type(3rpc) , rpc_object_set_type(3rpc) .

rpc_object_set_inq_fn(3rpc)

Chapter 3. DCE Remote Procedure Call 629

rpc_object_set_type

Purpose

Registers the type of an object with the RPC runtime; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_object_set_type(
uuid_t *obj_uuid
uuid_t *type_uuid
unsigned32 *status);

Parameters

Input
obj_uuid

Specifies an object UUID to associate with the type UUID in the type_uuid
parameter. Do not specify NULL or a nil UUID.

type_uuid
Specifies the type UUID of the obj_uuid parameter.

Specify an argument value of NULL or a nil UUID to reset the object type to
the default association of object UUID/nil type UUID.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_object_set_type() routine assigns a type UUID to an object UUID.

By default, the RPC runtime assumes that the type of all objects is nil. A server
program that contains one implementation of an interface (one manager entry point
vector) does not need to call this routine, provided that the server registered the
interface with the nil type UUID (see the rpc_server_register_if(3rpc) reference
page).

A server program that contains multiple implementations of an interface (multiple
manager entry point vectors; that is, multiple type UUIDs) calls this routine once for
each object UUID the server offers. Associating each object with a type UUID tells
the RPC runtime which manager entry point vector (interface implementation) to
use when the server receives a remote procedure call for a nonnil object UUID.

The RPC runtime allows an application to set the type for an unlimited number of
objects.

To remove the association between an object UUID and its type UUID (established
by calling this routine), a server calls this routine again and specifies the value
NULL or a nil UUID for the type_uuid parameter. This resets the association
between an object UUID and type UUID to the default.

630 IBM DCE for AIX, Version 2.2: Application Development Reference

A server cannot register a nil object UUID. The RPC runtime automatically registers
the nil object UUID with a nil type UUID. Attempting to set the type of a nil object
UUID will result in the routine’s returning the status code rpc_s_invalid_object .

Servers that want to maintain their own object UUID to type UUID mapping can use
rpc_object_set_inq_fn() in place of, or in addition to, rpc_object_set_type() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_already_registered
Object already registered.

rpc_s_invalid_object
Invalid object.

uuid_s_bad_version
Bad UUID version.

Related Information

Functions: rpc_object_set_inq_fn(3rpc) , rpc_server_register_if(3rpc) .

rpc_object_set_type(3rpc)

Chapter 3. DCE Remote Procedure Call 631

rpc_protseq_vector_free

Purpose

Frees the memory used by a vector and its protocol sequences; used by client or
server applications

Synopsis
#include <dce/rpc.h>

void rpc_protseq_vector_free(
rpc_protseq_vector_t **protseq_vector
unsigned32 *status);

Parameters

Input/Output
protseq_vector

Specifies the address of a pointer to a vector of protocol sequences. On
return the pointer is set to NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_protseq_vector_free() routine frees the memory used to store a vector of
protocol sequences. The freed memory includes both the protocol sequences and
the vector itself.

Call rpc_network_inq_protseqs() to obtain a vector of protocol sequences. Follow
a call to rpc_network_inq_protseqs() with a call to rpc_protseq_vector_free() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_network_inq_protseqs(3rpc) .

632 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_rgy_get_codesets

Purpose

Gets supported code sets information from the local host; used by client and server
applications

Synopsis
#include <dce/rpc.h>

void rpc_rgy_get_codesets(
rpc_codeset_mgmt_p_t *code_sets_array
error_status_t *status);

Parameters

Input

No input is required.

Output
code_sets_array

An integer array that specifies the code sets that the client’s or server’s
host environment supports. Each array element is an integer value that
uniquely identifies one code set.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_rgy_get_codesets() routine belongs to a set of DCE RPC routines for use
by client and server applications that are transferring international character data in
a heterogeneous character set and code sets environment.

The rpc_rgy_get_codesets() routine examines the locale environment of the host
on which the client or server process is running to determine the local code set
currently in use by the client or server process and the set of supported code set
conversion routines that exist on the host into which the client or server process
can convert if necessary. It then reads the code sets registry on the local host to
retrieve the unique identifiers associated with these supported code sets.

The routine returns a code sets array. The set of values returned in this structure
correspond to the process’s local code set and the code sets into which processes
that run on this host can convert. The array also contains, for each code set, the
maximum number of bytes that code set uses to encode one character
(c_max_bytes).

Server applications use the rpc_rgy_get_codesets() routine in their initialization
code to get their host’s supported character and code sets values in order to export
them into the name service database with rpc_ns_mgmt_set_attribute() .

Client applications use the rpc_rgy_get_codesets() routine during the server
binding selection process to retrieve the supported character and code sets at their
host in order to evaluate them against the character and code sets that a server

Chapter 3. DCE Remote Procedure Call 633

supports. Client applications that use the evaluation routines
rpc_cs_eval_with_universal() and rpc_cs_eval_without_universal() do not need
to call this routine explicitly, because these code sets evaluation routines call it on
the client’s behalf. Application developers who are writing their own character and
code set evaluation routines may need to include rpc_rgy_get_codesets() in their
user-written evaluation routines.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

rpc_s_ok

rpc_s_no_memory

Related Information

Commands: csrc(8dce) .

Functions: rpc_ns_mgmt_read_codesets(3rpc) ,
rpc_ns_mgmt_remove_attribute(3rpc) , rpc_ns_mgmt_set_attribute(3rpc) .

rpc_rgy_get_codesets(3rpc)

634 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_rgy_get_max_bytes

Purpose

Gets the maximum number of bytes that a code set uses to encode one character
from the code set registry on a host; used by client and server applications

Synopsis
#include <dce/rpc.h>

void rpc_rgy_get_max_bytes(
unsigned32 rgy_code_set_value
unsigned16 *rgy_max_bytes
error_status_t *status);

Parameters

Input
rgy_code_set_value

The registered hexadecimal value that uniquely identifies the code set.

Output
rgy_max_bytes

The registered decimal value that indicates the number of bytes this code
set uses to encode one character.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_rgy_get_max_bytes() routine belongs to a set of DCE RPC routines for
use by client and server applications that are transferring international character
data in a heterogeneous character set and code sets environment.

The rpc_rgy_get_max_bytes() routine reads the code set registry on the local
host. It takes the specified registered code set value, uses it as an index into the
registry, and returns the decimal value that indicates the number of bytes that the
code set uses to encode one character.

The DCE RPC stub support routines for buffer sizing use the
rpc_rgy_get_max_bytes() routine as part of their procedure to determine whether
additional storage needs to be allocated for conversion between local and network
code sets. The DCE RPC stub support routines call the rpc_rgy_get_max_bytes()
routine once to get the rgy_max_bytes value for the code set to be used to transfer
the data over the network (the network code set) then call the routine again to get
the rgy_max_bytes value of their local code set. The stubs then compare the two
values to determine whether or not additional buffers are necessary or whether the
conversion can be done in place.

Client and server applications that use the following DCE RPC buffer sizing routines
do not need to call this routine explicitly because these DCE RPC stub support
routines call it on their behalf:

v byte_net_size()

Chapter 3. DCE Remote Procedure Call 635

v byte_local_size()

Application programmers who are developing their own stub support routines for
buffer sizing can use the rpc_rgy_get_max_bytes() routine in their code to get
code set max_byte information for their user-written buffer sizing routines.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

dce_cs_c_notfound

dce_cs_c_unknown

rpc_s_ok

Related Information

Commands: csrc(8dce) .

Functions: dce_cs_loc_to_rgy(3rpc) , dce_cs_rgy_to_loc(3rpc) ,
rpc_ns_mgmt_read_code_sets(3rpc) , rpc_rgy_get_code_sets(3rpc) .

rpc_rgy_get_max_bytes(3rpc)

636 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_inq_bindings

Purpose

Returns binding handles for communications with a server; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_server_inq_bindings(
rpc_binding_vector_t **binding_vector
unsigned32 *status);

Parameters

Input

None.

Output
binding_vector

Returns the address of a vector of server binding handles.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_inq_bindings() routine obtains a vector of server binding handles.
Binding handles are created by the RPC runtime when a server application calls
any of the following routines to register protocol sequences:

v rpc_server_use_all_protseqs()

v rpc_server_use_all_protseqs_if()

v rpc_server_use_protseq()

v rpc_server_use_protseq_ep()

v rpc_server_use_protseq_if()

The returned binding vector can contain binding handles with dynamic endpoints
and binding handles with well-known endpoints, depending on which of the
preceding routines the server application called. The rpc_intro(3rpc) reference
page contains an explanation of dynamic and well-known endpoints.

A server uses the vector of binding handles for exporting to the name service, for
registering with the local endpoint map, or for conversion to string bindings.

If there are no binding handles (no registered protocol sequences), this routine
returns the rpc_s_no_bindings status code and returns the value NULL to the
binding_vector parameter.

The server is responsible for calling the rpc_binding_vector_free() routine to
deallocate the memory used by the vector.

Chapter 3. DCE Remote Procedure Call 637

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_no_bindings
No bindings.

Related Information

Functions: rpc_binding_vector_free(3rpc) , rpc_ep_register(3rpc) ,
rpc_ep_register_no_replace(3rpc) , rpc_ns_binding_export(3rpc) ,
rpc_server_use_all_protseqs(3rpc) , rpc_server_use_all_protseqs_if(3rpc) ,
rpc_server_use_protseq(3rpc) , rpc_server_use_protseq_ep(3rpc) ,
rpc_server_use_protseq_if(3rpc) .

rpc_server_inq_bindings(3rpc)

638 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_inq_if

Purpose

Returns the manager entry point vector registered for an interface; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_server_inq_if(
rpc_if_handle_t if_handle
uuid_t *mgr_type_uuid
rpc_mgr_epv_t *mgr_epv
unsigned32 *status);

Parameters

Input
if_handle

Specifies the interface specification whose manager entry point vector
(EPV) pointer is returned in the mgr_epv parameter.

mgr_type_uuid
Specifies a type UUID for the manager whose EPV pointer is returned in
the mgr_epv parameter.

Specifying the value NULL (or a nil UUID) has this routine return a pointer
to the manager EPV that is registered with if_handle and the nil type UUID
of the manager.

Output
mgr_epv

Returns a pointer to the manager EPV corresponding to if_handle and
mgr_type_uuid.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

A server application calls the rpc_server_inq_if() routine to determine the manager
EPV for a registered interface and type UUID of the manager.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 639

rpc_s_unknown_if
Unknown interface.

rpc_s_unknown_mgr_type
Unknown manager type.

Related Information

Functions: rpc_server_register_if(3rpc) .

rpc_server_inq_if(3rpc)

640 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_listen

Purpose

Tells the RPC runtime to listen for remote procedure calls; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_server_listen(
unsigned32 max_calls_exec
unsigned32 *status);

Parameters

Input
max_calls_exec

Specifies the maximum number of concurrent executing remote procedure
calls.

Use the value rpc_c_listen_max_calls_default to specify the default
value.

Also, the five rpc_server_use_ *_protseq *() routines limit (according to
their max_call_requests parameter) the number of concurrent remote
procedure call requests that a server can accept.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_listen() routine makes a server listen for remote procedure calls.
DCE RPC allows a server to simultaneously process multiple calls. The
max_calls_exec parameter specifies the maximum number of concurrent remote
procedure calls the server executes. Each remote procedure call executes in a call
execution thread. The implementation of the RPC architecture determines whether it
reuses call execution threads for the execution of subsequent remote procedure
calls or, instead, it creates a new thread for each execution of a subsequent remote
procedure call.

The following conditions affect the number of concurrent remote procedure calls
that a server can process:

v Sufficient network resources must be available to accept simultaneous call
requests arriving over a particular protocol sequence. The value of
max_call_requests in the five rpc_server_use_ *_protseq* () routines advises
the RPC runtime about the runtime’s request of network resources.

v Enough call threads must be available to execute the simultaneous call requests
once they have been accepted. The value of max_calls_exec in
rpc_server_listen() specifies the number of call threads.

These conditions are independent of each other.

Chapter 3. DCE Remote Procedure Call 641

A server application that specifies a value for max_calls_exec greater than 1 is
responsible for concurrency control among the remote procedures since each
executes in a separate thread.

If the server receives more remote procedure calls than it can execute (more calls
than the value of max_calls_exec), the RPC runtime accepts and queues additional
remote procedure calls until a call execution thread is available. From the client’s
perspective, a queued remote procedure call appears the same as one that the
server is actively executing. A client call remains blocked and in the queue until any
one of the following events occurs:

v The remote procedure call is assigned to an available call execution thread and
the call runs to completion.

v The client no longer can communicate with the server.

v The client thread is canceled and the remote procedure call does not complete
within the cancel timeout limits.

The implementation of the RPC architecture determines the amount of queuing it
provides.

The RPC runtime continues listening for remote procedure calls (that is, the routine
does not return to the server) until one of the following events occurs:

v One of the server application’s manager routines calls
rpc_mgmt_stop_server_listening() .

v A client is allowed to, and makes, a remote rpc_mgmt_stop_server_listening()
call to the server.

On receiving a request to stop listening, the RPC runtime stops accepting new
remote procedure calls for all registered interfaces. Executing calls and existing
queued calls are allowed to complete.

After all calls complete, rpc_server_listen() returns to the caller, which is a server
application.

For more information about a server’s listening for and handling incoming remote
procedure calls, refer to the IBM DCE for AIX, Version 2.2: Application Development
Guide—Core Components. It also contains information about canceled threads.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_already_listening
Server already listening.

rpc_s_max_calls_too_small
Maximum calls value too small.

rpc_server_listen(3rpc)

642 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_no_protseqs_registered
No protocol sequences registered.

Related Information

Functions: rpc_mgmt_server_stop_listening(3rpc) , rpc_server_register_if(3rpc) ,
rpc_server_use_all_protseqs(3rpc) , rpc_server_use_all_protseqs_if(3rpc) ,
rpc_server_use_protseq(3rpc) , rpc_server_use_protseq_ep(3rpc) ,
rpc_server_use_protseq_if(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_server_listen(3rpc)

Chapter 3. DCE Remote Procedure Call 643

rpc_server_register_auth_ident

Purpose

Registers user-to-user based authentication information with the RPC runtime; used
by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_register_auth_ident(
unsigned_char_p_t *server_princ_name
unsigned32 authn_svc
rpc_auth_identity_handle_t auth_identity
unsigned32 *status);

Parameters

Input
server_princ_name

A pointer to the principal name to use for the server when authenticating
remote procedure calls. The content of the name and its syntax is defined
by the authentication service in use.

Note: Do not free or clear the memory containing the key table name string
if the server_princ_name parameter contains a pointer to the key
table name.

authn_svc
Specifies the authentication service to use when the server receives a
remote procedure call request. The following authentication services are
supported:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

auth_identity
Specifies a handle for the data structure that contains the client’s
authentication and authorization credentials appropriate for the selected
authentication and authorization services.

When using the rpc_c_authn_dce_secret authentication service and any
authorization service, this value must be a sec_login_handle_t , which can
be obtained from one of the following routines:

v sec_login_setup_identity()

v sec_login_get_current_context()

v sec_login_import_context()

644 IBM DCE for AIX, Version 2.2: Application Development Reference

Specify NULL to use the default security login context for the current
address space.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_register_auth_ident() routine registers an authentication service
to use for authenticating remote procedure calls to a particular server principal. This
routine is used for user-to-user authentication where the server principal’s
credentials are available, but not the server principal’s long-term key. Use the
rpc_server_register_auth_info() routine for server-key based authentication.

A server calls this routine once for each authentication service and principal name
combination that it wants to register. The authentication service specified by a client
(using the rpc_binding_set_auth_info() routine) must be one of the authentication
services registered by the server. If it is not, the client’s remote procedure call
request fails with an rpc_s_unknown_authn_service status code.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_unknown_authn_service
Unknown authentication service.

sec_s_user_to_user_disabled
Account is not allowed to use user-to-user protocol registration.

sec_s_multiple_u2u_req
Server identity has already been registered.

sec_s_svr_type_conflict
Simultaneous registration of both keytable and identity is not suppported.
Server has already registered with the rpc_server_register_auth_info()
routine.

Related Information

Functions: rpc_binding_set_auth_info(3rpc) ,
rpc_server_register_auth_info(3rpc) .

rpc_server_register_auth_ident(3rpc)

Chapter 3. DCE Remote Procedure Call 645

rpc_server_register_auth_info

Purpose

Registers server-key based authentication information with the RPC runtime; used
by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_register_auth_info(
unsigned_char_t *server_princ_name
unsigned32 authn_svc
rpc_auth_key_retrieval_fn_t get_key_fn
void *arg
unsigned32 *status);

Parameters

Input
server_princ_name

Specifies the principal name to use for the server when authenticating
remote procedure calls using the service specified by authn_svc. The
content of the nam e and its syntax is defined by the authentication service
in use.

authn_svc
Specifies the authentication service to use when the server receives a
remote procedure call request. The following authentication services are
supported:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

get_key_fn
Specifies the address of a server-provided routine that returns encryption
keys.

The following C definition for rpc_auth_key_ret rieval_fn_t illustrates the
prototype for the encryption key acquisition routine:
typedef void (*rpc_auth_key_retrieval_fn_t)
(
void *arg, /* in */
unsigned_char_t *server_princ_name, /* in */
unsigned32 key_type, /* in */
unsigned32 key_ver, /* in */
void **key, /* out */
unsigned32 *status /* out */
);

The RPC runtime passes the server_princ_name parameter value specified
on the call to rpc_server_register_auth_info() , as the server_princ_name

646 IBM DCE for AIX, Version 2.2: Application Development Reference

parameter value, to the get_key_fn key acquisition routine. The RPC
runtime automatically provides a value for the key version (key_ver)
parameter. For a key_ver value of 0 (zero), the key acquisition routine must
return the most recent key available. The routine returns the key in the key
parameter.

Note:

The key_type parameter specifies a Kerberos encryption key type.
Because currently the DCE supports only DES encryption, this
parameter can be ignored.

If the key acquisition routine, when called from the
rpc_server_register_auth_info() routine, returns a status other than
rpc_s_ok , the rpc_server_register_auth_info() routine fails and returns
the error status to the calling server.

If the key acquisition routine, when called by the RPC runtime while
authenticating a client remote procedure call request, returns a status other
than rpc_s_ok , the request fails and the RPC runtime returns the error
status to the client.

arg Specifies an argument to pass to the get_key_fn key acquisition routine, if
specified. (See the description of the get_key_fn parameter for details.)

Specify NULL for arg to use the default key table file, /krb/v5srvtab . The
calling server must be root to access this file.

If arg is a key table filename, the file must have been created with the
ktadd command. If the specified key table file resides in /krb5 , you can
supply only the filename. If the file does not reside in /krb5 , you must
supply the full pathname. You must prepend the file’s absolute pathname
with the prefix FILE: .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_register_auth_info() routine registers an authentication service to
use for authenticating remote procedure calls to a particular server principal. This
routine is used for server-key based authentication. Use the
rpc_server_register_auth_ident() routine for user-to-user authentication.

A server calls this routine once for each authentication service and principal name
combination that it wants to register. The authentication service specified by a client
(using the rpc_binding_set_auth_info() routine) must be one of the authentication
services registered by the server. If it is not, the client’s remote procedure call
request fails with an rpc_s_unknown_authn_service status code.

The following table shows the RPC runtime behavior for acquiring encryption keys
for each supported authentication service. Note that if authn_svc is
rpc_c_authn_default , then get_key_fn must be NULL.

rpc_server_register_auth_info(3rpc)

Chapter 3. DCE Remote Procedure Call 647

Table 28. RPC Key Acquisition for Authentication Services

authn_svc get_key_fn arg Runtime Behavior

rpc_c_authn_default NULL NULL Uses the default
method of
encryption key
acquisition from the
default key table.

rpc_c_authn_default NULL non-NULL Uses the default
method of
encryption key
acquisition from the
specified key table.

rpc_c_authn_default non-NULL Ignored Error returned.

rpc_c_authn_none Ignored Ignored No authentication
performed.

rpc_c_authn_dce_secret NULL NULL Uses the default
method of
encryption key
acquisition from the
default key table.

rpc_c_authn_dce_secret NULL non-NULL Uses the default
method of
encryption key
acquisition from the
specified key table.

rpc_c_authn_dce_secret non-NULL NULL Uses the specified
encryption key
acquisition routine to
obtain keys from the
default key table.

Table 29. RPC Key Acquisition for Authentication Services

authn_svc get_key_fn arg Runtime Behavior

rpc_c_authn_dce_secret non-NULL non-NULL Uses the specified
encryption key
acquisition routine
to obtain keys from
the specified key
table.

rpc_c_authn_dce_public Ignored Ignored (Reserved for future
use.)

Return Values

No value is returned.

rpc_server_register_auth_info(3rpc)

648 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_unknown_authn_service
Unknown authentication service.

rpc_s_key_func_not_allowed
authn_svc is rpc_c_authn_default and a nonnull value was supplied for
get_key_fn parameter.

Related Information

Functions: rpc_binding_set_auth_info(3rpc) ,
rpc_server_register_auth_ident(3rpc) .

rpc_server_register_auth_info(3rpc)

Chapter 3. DCE Remote Procedure Call 649

rpc_server_register_if

Purpose

Registers an interface with the RPC runtime; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_register_if(
rpc_if_handle_t if_handle
uuid_t *mgr_type_uuid
rpc_mgr_epv_t mgr_epv
unsigned32 *status);

Parameters

Input
if_handle

An IDL-generated data structure specifying the interface to register.

mgr_type_uuid
Specifies a type UUID to associate with the mgr_epv parameter. Specifying
the value NULL (or a nil UUID) registers the if_handle with a nil type UUID.

mgr_epv
Specifies the manager routines’ entry point vector. To use the
IDL-generated default entry point vector, specify NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_register_if() routine registers a server interface with the RPC
runtime. A server can register an unlimited number of interfaces. Once registered,
an interface is available to clients through any binding handle of the server,
provided that the binding handle is compatible for the client.

A server must provide the following information to register an interface:

v An interface specification, which is a data structure generated by the IDL
compiler. The server specifies the interface specification of the interface using the
if_handle parameter.

v A type UUID and manager entry point vector (EPV), a data pair that determines
which manager routine executes when a server receives a remote procedure call
request from a client.

The server specifies the type UUID and EPV using the mgr_type_uuid and
mgr_epv parameters, respectively. Note that when a nonnil type UUID is
specified, the server must also call the rpc_object_set_type() routine to register
objects of this nonnil type.

A server that only offers a single manager for an interface calls
rpc_server_register_if() once for that interface. In the simple case where the
single manager’s entry point names are the same as the operation names in the

650 IBM DCE for AIX, Version 2.2: Application Development Reference

IDL interface definition, the IDL-generated default manager EPV for the interface
may be used. The value NULL in mgr_epv specifies the default manager EPV.

Note that if a server offers multiple implementations of an interface, the server code
must register a separate manager entry point vector for each interface
implementation.

Rules for Invoking Manager Routines

The RPC runtime dispatches an incoming remote procedure call to a manager that
offers the requested RPC interface. When multiple managers are registered for an
interface, the RPC runtime must select one of them. To select a manager, the RPC
runtime uses the object UUID specified by the call’s binding handle. The following
table summarizes the rules applied for invoking manager routines.

Table 30. Rules for Invoking Manager Routines

Object UUID of
Call 1

Has Server Set
Type of Object

UUID? 2

Has Server Set
Type for Manager

EPV? 3 Dispatching Action

Nil Not applicable4 Yes Uses the manager with the
nil type UUID.

Nil Not applicable4 No The RPC error
(rpc_s_unknown_mgr_type).
Rejects the remote procedure
call.

Non-nil Yes Yes Uses the manager with the
same type UUID.

Table 31. Rules for Invoking Manager Routines

Object UUID of
Call 1

Has Server Set
Type of Object
UUID? 2

Has Server
Registered Type
for Manager EPV?
3 Dispatching Action

Non-nil No Ignored Uses the manager with the
nil type UUID. If no manager
with the nil type UUID,
rpc_s_unknown_mgr_type .
Rejects the remote procedure
call.

Non-nil Yes No The error
(rpc_s_unknown_mgr_type).
Rejects the remote procedure
call.

1 This is the object UUID found in a binding handle for a remote procedure.
2 By calling rpc_object_set_type() to specify the type UUID for an object.
3 By calling rpc_server_register_if() using the same type UUID.
4 The nil object UUID is always automatically assigned the nil type UUID. It is

illegal to specify a nil object UUID in rpc_object_set_type() .

rpc_server_register_if(3rpc)

Chapter 3. DCE Remote Procedure Call 651

For more information about registering server interfaces and invoking manager
routines, refer to the IBM DCE for AIX, Version 2.2: Application Development
Guide—Core Components.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_type_already_registered
An interface with the given type of UUID is already registered.

Related Information

Functions: rpc_binding_set_object(3rpc) , rpc_ep_register(3rpc) ,
rpc_ep_register_no_replace(3rpc) , rpc_ns_binding_export(3rpc) ,
rpc_object_set_type(3rpc) , rpc_server_unregister_if(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_server_register_if(3rpc)

652 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_unregister_if

Purpose

Removes an interface from the RPC runtime; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_unregister_if(
rpc_if_handle_t if_handle
uuid_t *mgr_type_uuid
unsigned32 *status);

Parameters

Input
if_handle

Specifies an interface specification to unregister (remove).

Specify NULL to remove all interfaces previously registered with the type
UUID value given in the mgr_type_uuid parameter.

mgr_type_uuid
Specifies the type UUID for the manager entry point vector (EPV) to
remove. This needs to be the same value as provided in a call to the
rpc_server_register_if() routine.

Specify NULL to remove the interface given in the if_handle parameter for
all previously registered type UUIDs.

Specify a nil UUID to remove the IDL-generated default manager EPV. In
this case all manager EPVs registered with a nonnil type UUID remain
registered.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_unregister_if() routine removes the association between an
interface and a manager entry point vector (EPV).

Specify the manager EPV to remove by providing, in the mgr_type_uuid parameter,
the type UUID value specified in a call to the rpc_server_register_if() routine.
Once removed, an interface is no longer available to client applications.

When an interface is removed, the RPC runtime stops accepting new calls for that
interface. Executing calls (on that interface) are allowed to complete.

The table below summarizes the actions of this routine.

Chapter 3. DCE Remote Procedure Call 653

Table 32. Rules for Removing an Interface
if_handle mgr_type_uuid Action

nonNULL non-NULL Removes the manager EPV associated with
the specified parameters.

nonNULL NULL Removes all manager EPVs associated with
parameter if_handle.

NULL non-NULL Removes all manager EPVs associated with
parameter mgr_type_uuid.

NULL NULL Removes all manager EPVs.

Note that when both of the parameters if_handle and mgr_type_uuid are given the
value NULL, this call has the effect of preventing the server from receiving any new
remote procedure calls since all the manager EPVs for all interfaces have been
removed.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_unknown_if
Unknown interface.

rpc_s_unknown_mgr_type
Unknown manager type.

Related Information

Functions: rpc_server_register_if(3rpc) .

rpc_server_unregister_if(3rpc)

654 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_use_all_protseqs

Purpose

Tells the RPC runtime to use all supported protocol sequences for receiving remote
procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_all_protseqs(
unsigned32 max_call_requests
unsigned32 *status);

Parameters

Input
max_call_requests

Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value of max_call_requests and can vary for each
protocol sequence.

Use the value rpc_c_protseq_max_reqs_default to specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is replaced
by the default value.

Also, the rpc_server_listen() routine limits (according to its max_calls_exec
parameter) the amount of concurrent remote procedure call execution. See
the rpc_server_listen(3rpc) reference page for more information.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_all_protseqs() routine registers all supported protocol
sequences with the RPC runtime. A server must register at least one protocol
sequence with the RPC runtime to receive remote procedure call requests.

For each protocol sequence registered by a server, the RPC runtime creates one or
more binding handles. Each binding handle contains a dynamic endpoint that the
RPC runtime and operating system generated.

The max_call_requests parameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

After registering protocol sequences, a server typically calls the following routines:

Chapter 3. DCE Remote Procedure Call 655

rpc_server_inq_bindings()
Obtains a vector containing all of the server’s binding handles.

rpc_ep_register()
Registers the binding handles with the local endpoint map.

rpc_ep_register_no_replace()
Registers the binding handles with the local endpoint map.

rpc_ns_binding_export()
Places the binding handles in the name service database for access by any
client.

rpc_binding_vector_free()
Frees the vector of server binding handles.

rpc_server_register_if()
Registers with the RPC runtime those interfaces that the server offers.

rpc_server_listen()
Enables the reception of remote procedure calls.

To register protocol sequences selectively, a server calls one of the following
routines:

v rpc_server_use_protseq()

v rpc_server_use_all_protseqs_if()

v rpc_server_use_protseq_if()

v rpc_server_use_protseq_ep()

For an explanation of how a server can establish a client/server relationship without
using the local endpoint map or the name service database, see the information on
string bindings in the rpc_intro(3rpc) reference page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_no_protseqs
No supported protocol sequences.

Related Information

Functions: rpc_binding_from_string_binding(3rpc) ,
rpc_binding_to_string_binding(3rpc) , rpc_binding_vector_free(3rpc) ,

rpc_server_use_all_protseqs(3rpc)

656 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ep_register(3rpc) , rpc_ep_register_no_replace(3rpc) ,
rpc_ns_binding_export(3rpc) , rpc_server_inq_bindings(3rpc) ,
rpc_server_listen(3rpc) , rpc_server_register_if(3rpc) ,
rpc_server_use_all_protseqs_if(3rpc) , rpc_server_use_protseq(3rpc) ,
rpc_server_use_protseq_ep(3rpc) , rpc_server_use_protseq_if(3rpc) .

rpc_server_use_all_protseqs(3rpc)

Chapter 3. DCE Remote Procedure Call 657

rpc_server_use_all_protseqs_if

Purpose

Tells the RPC runtime to use all the protocol sequences and endpoints specified in
the interface specification for receiving remote procedure calls; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_all_protseqs_if(
unsigned32 max_call_requests
rpc_if_handle_t if_handle
unsigned32 *status);

Parameters

Input
max_call_requests

Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater that the value of max_call_requests and can vary for each
protocol sequence.

Use the value rpc_c_protseq_max_reqs_default to specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is replaced
by the default value.

Also, the rpc_server_listen() routine limits (according to its max_calls_exec
parameter) the amount of concurrent remote procedure call execution. See
the rpc_server_listen(3rpc) reference page for more information.

if_handle
Specifies an interface specification containing the protocol sequences and
their corresponding endpoint information to use in creating binding handles.
Each created binding handle contains a well-known (nondynamic) endpoint
contained in the interface specification.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_all_protseqs_if() routine registers all protocol sequences and
associated endpoint address information provided in the IDL file with the RPC
runtime. A server must register at least one protocol sequence with the RPC
runtime to receive remote procedure call requests.

658 IBM DCE for AIX, Version 2.2: Application Development Reference

For each protocol sequence registered by a server, the RPC runtime creates one or
more binding handles. Each binding handle contains the well-known endpoint
specified in the IDL file.

The max_call_requests parameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

If you want to register selected protocol sequences specified in the IDL, your server
uses rpc_server_use_protseq_if() .

The explanation of rpc_server_use_all_protseqs() contains a list of the routines a
server typically calls after calling this routine. (However, a server that uses only
rpc_server_use_all_protseqs_if() does not subsequently call rpc_ep_register() or
rpc_ep_register_no_replace() .) For an explanation of how a server can establish a
client/server relationship without using the local endpoint map or the name service
database, see the information on string bindings in the rpc_intro(3rpc) reference
page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_calls_too_large_for_wk_ep
Maximum concurrent calls too large.

rpc_s_cant_bind_socket
Cannot bind to socket.

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_cant_inq_socket
Cannot inquire endpoint from socket.

rpc_s_invalid_endpoint_format
Invalid interface handle.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_no_protseqs
No supported protocol sequences.

Related Information

Functions: rpc_binding_vector_free(3rpc) , rpc_ep_register(3rpc) ,
rpc_ep_register_no_replace(3rpc) , rpc_ns_binding_export(3rpc) ,
rpc_server_inq_bindings(3rpc) , rpc_server_listen(3rpc) ,
rpc_server_register_if(3rpc) , rpc_server_use_all_protseqs(3rpc) ,
rpc_server_use_protseq(3rpc) , rpc_server_use_protseq_ep(3rpc) ,

rpc_server_use_all_protseqs_if(3rpc)

Chapter 3. DCE Remote Procedure Call 659

rpc_server_use_protseq_if(3rpc) .

660 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_use_protseq

Purpose

Tells the RPC runtime to use the specified protocol sequence for receiving remote
procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_protseq(
unsigned_char_t *protseq
unsigned32 max_call_requests
unsigned32 *status);

Parameters

Input
protseq

Specifies a string identifier for the protocol sequence to register with the
RPC runtime. (For a list of string identifiers, see the table of valid protocol
sequences in the rpc_intro(3rpc) reference page.)

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value of max_call_requests and can vary for each
protocol sequence.

Use the value rpc_c_protseq_max_reqs_default to specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is replaced
by the default value.

Also, rpc_server_listen() limits (according to its max_calls_exec
parameter) the amount of concurrent remote procedure call execution. See
the rpc_server_listen(3rpc) reference page for more information.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_protseq() routine registers a single protocol sequence with
the RPC runtime. A server must register at least one protocol sequence with the
RPC runtime to receive remote procedure call requests. A server can call this
routine multiple times to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC runtime creates one or
more binding handles. Each binding handle contains a dynamic endpoint that the
RPC runtime and operating system generated.

Chapter 3. DCE Remote Procedure Call 661

The max_call_requests parameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

A server calls rpc_server_use_all_protseqs() to register all protocol sequences.

The explanation of the rpc_server_use_all_protseqs() routine contains a list of the
routines a server typically calls after calling this routine. For an explanation of how a
server can establish a client/server relationship without using the local endpoint
map or the name service database, see the information on string bindings in the
rpc_intro(3rpc) reference page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions: rpc_binding_vector_free(3rpc) , rpc_ep_register(3rpc) ,
rpc_ep_register_no_replace(3rpc) , rpc_network_is_protseq_valid(3rpc) ,
rpc_ns_binding_export(3rpc) , rpc_server_inq_bindings(3rpc) ,
rpc_server_listen(3rpc) , rpc_server_register_if(3rpc) ,
rpc_server_use_all_protseqs(3rpc) , rpc_server_use_all_protseqs_if(3rpc) ,
rpc_server_use_protseq_ep(3rpc) , rpc_server_use_protseq_if(3rpc) .

rpc_server_use_protseq(3rpc)

662 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_use_protseq_ep

Purpose

Tells the RPC runtime to use the specified protocol sequence combined with the
specified endpoint for receiving remote procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_protseq_ep(
unsigned_char_t *protseq
unsigned32 max_call_requests
unsigned_char_t *endpoint
unsigned32 *status);

Parameters

Input
protseq

Specifies a string identifier for the protocol sequence to register with the
RPC runtime. (For a list of string identifiers, see the table of valid protocol
sequences in the rpc_intro(3rpc) reference page.

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value of max_call_requests and can vary for each
protocol sequence.

Use the value rpc_c_protseq_max_reqs_default to specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is replaced
by the default value.

Also, rpc_server_listen() limits (according to its max_calls_exec
parameter) the amount of concurrent remote procedure call execution. See
the rpc_server_listen(3rpc) reference page for more information.

endpoint
Specifies address information for an endpoint. This information is used in
creating a binding handle for the protocol sequence specified in the protseq
parameter.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_protseq_ep() routine registers a protocol sequence and its
specified endpoint address information with the RPC runtime. A server must register

Chapter 3. DCE Remote Procedure Call 663

at least one protocol sequence with the RPC runtime to receive remote procedure
call requests. A server can call this routine multiple times to register additional
protocol sequences and endpoints.

For each protocol sequence registered by a server, the RPC runtime creates one or
more binding handles. Each binding handle contains the well-known endpoint
specified in the endpoint parameter.

The max_call_requests parameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

The explanation of rpc_server_use_all_protseqs() contains a list of the routines a
server typically calls after calling this routine. For an explanation of how a server
can establish a client/server relationship without using the local endpoint map or the
name service database, see the information on string bindings in the
rpc_intro(3rpc) reference page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_calls_too_large_for_wk_ep
Maximum concurrent calls too large.

rpc_s_cant_bind_socket
Cannot bind to socket.

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions: rpc_binding_vector_free(3rpc) , rpc_ep_register(3rpc) ,
rpc_ep_register_no_replace(3rpc) , rpc_ns_binding_export(3rpc) ,
rpc_server_inq_bindings(3rpc) , rpc_server_listen(3rpc) ,
rpc_server_register_if(3rpc) , rpc_server_use_all_protseqs(3rpc) ,
rpc_server_use_all_protseqs_if(3rpc) , rpc_server_use_protseq(3rpc) ,
rpc_server_use_protseq_ep(3rpc) .

rpc_server_use_protseq_ep(3rpc)

664 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_server_use_protseq_if

Purpose

Tells the RPC runtime to use the specified protocol sequence combined with the
endpoints in the interface specification for receiving remote procedure calls; used by
server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_protseq_if(
unsigned_char_t *protseq
unsigned32 max_call_requests
rpc_if_handle_t if_handle
unsigned32 *status);

Parameters

Input
protseq

Specifies a string identifier for the protocol sequence to register with the
RPC runtime. For a list of string identifiers, see the table of valid protocol
sequences in the rpc_intro(3rpc) reference page.

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value of max_call_requests and can vary for each
protocol sequence.

Use the value rpc_c_protseq_max_reqs_default to specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is replaced
by the default value.

Also, the rpc_server_listen() routine limits (according to its max_calls_exec
parameter) the amount of concurrent remote procedure call execution. See
the rpc_server_listen(3rpc) reference page for more information.

if_handle
Specifies an interface specification whose endpoint information is used in
creating a binding for the protocol sequence specified in the protseq
parameter. Each created binding handle contains a well-known
(nondynamic) endpoint contained in the interface specification.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Chapter 3. DCE Remote Procedure Call 665

Description

The rpc_server_use_protseq_if() routine registers one protocol sequence with the
RPC runtime, including its endpoint address information as provided in the specified
IDL file.

A server must register at least one protocol sequence with the RPC runtime to
receive remote procedure call requests. A server can call this routine multiple times
to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC runtime creates one or
more binding handles. Each binding handle contains the well-known endpoint
specified in the IDL file.

The max_call_requests parameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

To register all protocol sequences from the IDL, a server calls the
rpc_server_use_all_protseqs_if() routine.

The explanation of rpc_server_use_all_protseqs() contains a list of the routines a
server typically calls after calling this routine. However, a server that uses only
rpc_server_use_protseq_if() does not subsequently call rpc_ep_register() or
rpc_ep_register_no_replace() . For an explanation of how a server can establish a
client/server relationship without using the local endpoint map or the name service
database, see the information on string bindings in the rpc_intro(3rpc) reference
page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_calls_too_large_for_wk_ep
Maximum concurrent calls too large.

rpc_s_cant_bind_socket
Cannot bind to socket.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

rpc_server_use_protseq_if(3rpc)

666 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_binding_vector_free(3rpc) , rpc_ep_register(3rpc) ,
rpc_ep_register_no_replace(3rpc) , rpc_ns_binding_export(3rpc) ,
rpc_server_inq_bindings(3rpc) , rpc_server_listen(3rpc) ,
rpc_server_register_if(3rpc) , rpc_server_use_all_protseqs(3rpc) ,
rpc_server_use_all_protseqs_if(3rpc) , rpc_server_use_protseq(3rpc) ,
rpc_server_use_protseq_ep(3rpc) .

rpc_server_use_protseq_if(3rpc)

Chapter 3. DCE Remote Procedure Call 667

rpc_sm_allocate

Purpose

Allocates memory within the RPC stub memory management scheme.

Synopsis
#include <rpc.h>

idl_void_p_t rpc_sm_allocate(
unsigned long size
unsigned32 *status

);

Parameters

Input
size Specifies, in bytes, the size of memory to be allocated.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

Applications call rpc_sm_allocate() to allocate memory within the RPC stub
memory management scheme. Before a call to this routine, the stub memory
management environment must have been established. For manager code that is
called from the stub, the stub itself normally establishes the necessary environment.
When rpc_sm_allocate() is used by code that is not called from the stub, the
application must establish the required memory management environment by calling
rpc_sm_enable_allocate() .

When the stub establishes the memory management environment, the stub itself
frees any memory allocated by rpc_sm_allocate() . The application can free such
memory before returning to the calling stub by calling rpc_sm_free() .

When the application establishes the memory management environment, it must
free any memory allocated, either by calling rpc_sm_free() or by calling
rpc_sm_disable_allocate() .

Multiple threads may call rpc_sm_allocate() and rpc_sm_free() to manage the
same memory within the stub memory management environment. To do so, the
threads must share the same stub memory management thread handle.
Applications pass thread handles from thread to thread by calling
rpc_sm_get_thread_handle() and rpc_sm_set_thread_handle() .

Return Values

A pointer to the allocated memory.

668 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_sm_free(3rpc) , rpc_sm_enable_allocate(3rpc) ,
rpc_sm_disable_allocate(3rpc) , rpc_sm_get_thread_handle(3rpc) ,
rpc_sm_set_thread_handle(3rpc) .

rpc_sm_allocate(3rpc)

Chapter 3. DCE Remote Procedure Call 669

rpc_sm_client_free

Purpose

Frees memory returned from a client stub

Synopsis
#include <rpc.h>

void rpc_sm_client_free(
idl_void_p_t node_to_free
unsigned32 *status);

Parameters

Input
node_to_free

Specifies a pointer to memory returned from a client stub.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_client_free() routine releases memory allocated and returned from a
client stub. The thread calling rpc_sm_client_free() must have the same thread
handle as the thread that made the RPC call. Applications pass thread handles
from thread to thread by calling rpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle() .

This routine enables a routine to deallocate dynamically allocated memory returned
by an RPC call without knowledge of the memory management environment from
which it was called.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_sm_free(3rpc) , rpc_sm_get_thread_handle(3rpc) ,
rpc_sm_set_client_alloc_free(3rpc) , rpc_sm_set_thread_handle(3rpc) ,
rpc_sm_swap_client_alloc_free(3rpc) .

670 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_sm_destroy_client_context

Purpose

Reclaims the client memory resources for a context handle, and sets the context
handle to null

Synopsis
#include <rpc.h>

void rpc_sm_destroy_client_context(
idl_void_p_t p_unusable_context_handle
unsigned32 *status);

Parameters

Input
p_unusable_context_handle

Specifies the context handle that can no longer be accessed.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_destroy_client_context() routine is used by client applications to
reclaim the client resources used in maintaining an active context handle.
Applications call this routine after a communications error makes the context handle
unusable. When the rpc_sm_destroy_client_context() routine reclaims the
memory resources, it also sets the context handle to null.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 671

rpc_sm_disable_allocate

Purpose

Releases resources and allocated memory within the stub memory management
scheme

Synopsis
#include <rpc.h>

void rpc_sm_disable_allocate(
unsigned32 *status);

Parameters

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_disable_allocate() routine releases all resources acquired by a call to
rpc_sm_enable_allocate() , and any memory allocated by calls to
rpc_sm_allocate() after the call to rpc_sm_enable_allocate() was made.

The rpc_sm_enable_allocate() and rpc_sm_disable_allocate() routines must be
used in matching pairs.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_sm_allocate(3rpc) , rpc_sm_enable_allocate(3rpc) .

672 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_sm_enable_allocate

Purpose

Enables the stub memory managment environment

Synopsis
#include <rpc.h>

void rpc_sm_enable_allocate(
unsigned32 *status);

Parameters

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

Applications can call rpc_sm_enable_allocate() to establish a stub memory
management environment in cases where one is not established by the stub itself.
A stub memory management environment must be established before any calls are
made to rpc_sm_allocate() . For server manager code called from the stub, the
stub memory management environment is normally established by the stub itself.
Code that is called from other contexts needs to call rpc_sm_enable_allocate()
before calling rpc_sm_allocate() .

Note:

For a discussion of how spawned threads acquire a stub memory
management environment, see the rpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle() reference pages.

Return Values

None

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_sm_allocate(3rpc) , rpc_sm_disable_allocate(3rpc) .

Chapter 3. DCE Remote Procedure Call 673

rpc_sm_free

Purpose

Frees memory allocated by the rpc_sm_allocate() routine

Synopsis
#include <rpc.h>

void rpc_sm_free(
idl_void_p_t node_to_free
unsigned32 *status);

Parameters

Input
node_to_free

Specifies a pointer to memory allocated by rpc_sm_allocate() .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

Applications call rpc_sm_free() to release memory allocated by rpc_sm_allocate() .

When the stub allocates memory within the stub memory management
environment, manager code called from the stub can also use rpc_sm_free() to
release memory allocated by the stub.

The thread calling rpc_sm_free() must have the same thread handle as the thread
that allocated the memory with rpc_sm_allocate() . Applications pass thread
handles from thread to thread by calling rpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle() .

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_sm_allocate(3rpc) , rpc_sm_get_thread_handle(3rpc) ,
rpc_sm_set_thread_handle(3rpc) .

674 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_sm_get_thread_handle

Purpose

Gets a thread handle for the stub memory management environment

Synopsis
#include <rpc.h>

rpc_ss_thread_handle_t rpc_sm_get_thread_handle(
unsigned32 *status);

Parameters

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

Applications call rpc_sm_get_thread_handle() to get a thread handle for the
current stub memory management environment. A thread that is managing memory
within the stub memory managment scheme calls pc_sm_get_thread_handle() to
get a thread handle for its current stub memory management environment. A thread
that calls rpc_sm_set_thread_handle() with this handle, is able to use the same
memory management environment.

When multiple threads call rpc_sm_allocate() and rpc_sm_free() to manage the
same memory, they must share the same thread handle. The thread that
established the stub memory management environment calls
rpc_sm_get_thread_handle() to get a thread handle before spawning new threads
that will manage the same memory. The spawned threads then call
rpc_sm_set_thread_handle() with the handle provided by the parent thread.

Note:

Typically, rpc_sm_get_thread_handle() is called by a server manager
routine before it spawns additional threads. Normally the stub sets up the
memory management environment for the manager routine. The manager
calls rpc_sm_get_thread_handle() to make this environment available to
the spawned threads.

A thread may also use rpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle() to save and restore its memory management
environment.

Return Values

A thread handle.

Chapter 3. DCE Remote Procedure Call 675

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_sm_allocate(3rpc) , rpc_sm_free(3rpc) ,
rpc_sm_set_thread_handle(3rpc .

rpc_sm_get_thread_handle(3rpc)

676 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_sm_set_client_alloc_free

Purpose

Sets the memory allocation and freeing mechanisms used by the client stubs

Synopsis
#include <rpc.h>

void rpc_sm_set_client_alloc_free(
idl_void_p_t (* p_allocate) (
unsigned long size),
void (* p_free) (
idl_void_p_t ptr),
unsigned32

* status);

Parameters

Input
p_allocate

Specifies a memory allocator routine.

p_free Specifies a memory free routine. This routine is used to free memory
allocated with the routine specified by p_allocate.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_set_client_alloc_free() routine overrides the default routines that the
client stub uses to manage memory.

Note:

The default memory management routines are ISO malloc() and ISO free()
except when the remote call occurs within manager code in which case the
default memory management routines are rpc_sm_allocate() and
rpc_sm_free() .

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 677

Related Information

Functions: rpc_sm_allocate(3rpc) , rpc_sm_free(3rpc) .

rpc_sm_set_client_alloc_free(3rpc)

678 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_sm_set_thread_handle

Purpose

Sets a thread handle for the stub memory management environment

Synopsis
#include <rpc.h>

void rpc_sm_set_thread_handle(
rpc_ss_thread_handle_t id
unsigned32 *status);

Parameters

Input
id Specifies a thread handle returned by a call to the routine

rpc_sm_get_thread_handle() .

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

An application thread calls rpc_sm_set_thread_handle() to set a thread handle for
memory management within the stub memory management environment. A thread
that is managing memory within the stub memory managment scheme calls
rpc_sm_get_thread_handle() to get a thread handle for its current stub memory
management environment. A thread that calls rpc_sm_set_thread_handle() with
this handle is able to use the same memory management environment.

When multiple threads call rpc_sm_allocate() and rpc_sm_free() to manage the
same memory, they must share the same thread handle. The thread that
established the stub memory management environment calls
rpc_sm_get_thread_handle() to get a thread handle before spawning new threads
that will manage the same memory. The spawned threads then call
rpc_sm_set_thread_handle() with the handle provided by the parent thread.

Note:

Typically, rpc_sm_set_thread_handle() is called by a thread spawned by a
server manager routine. Normally the stub sets up the memory management
environment for the manager routine and the manager calls
rpc_sm_get_thread_handle() to get a thread handle. Each spawned thread
then calls rpc_sm_get_thread_handle() to get access to the manager’s
memory management environment.

A thread may also use rpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle() to save and restore its memory management
environment.

Chapter 3. DCE Remote Procedure Call 679

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_sm_allocate(3rpc) , rpc_sm_free(3rpc) ,
rpc_sm_get_thread_handle(3rpc) .

rpc_sm_set_thread_handle(3rpc)

680 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_sm_swap_client_alloc_free

Purpose

Exchanges the current memory allocation and freeing mechanism used by the client
stubs with one supplied by the client

Synopsis
#include <rpc.h>

void rpc_sm_swap_client_alloc_free (
idl_void_p_t (* p_allocate) (
unsigned long size),
void (* p_free) (
idl_void_p_t ptr),
idl_void_p_t (** p_p_old_allocate) (
unsigned long size),
void (** p_p_old_free) (
idl_void_p_t ptr),
unsigned32 * status);

Parameters

Input
p_allocate

Specifies a new memory allocation routine.

p_free Specifies a new memory free routine.

Output
p_p_old_allocate

Returns the memory allocation routine in use before the call to this routine.

p_p_old_free
Returns the memory free routine in use before the call to this routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_swap_client_alloc_free() routine exchanges the current allocate and
free mechanisms used by the client stubs for routines supplied by the caller.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Chapter 3. DCE Remote Procedure Call 681

Related Information

Functions: rpc_sm_allocate(3rpc) , rpc_sm_free(3rpc) ,
rpc_sm_set_client_alloc_free(3rpc) .

rpc_sm_swap_client_alloc_free(3rpc)

682 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ss_allocate

Purpose

Allocates memory within the RPC stub memory management scheme; used by
server or possibly by client applications

Synopsis
#include <dce/rpc.h>

idl_void_p_t rpc_ss_allocate(
idl_size_t size);

Parameters

Input
size Specifies, in bytes, the size of memory to be allocated.

Note that in ANSI standard C environments, idl_void_p_t is defined as void * and
in other environments is defined as char * .

Description

Usually, the rpc_ss_allocate() routine is used in the manager code that is called
from a server stub. Memory allocated by rpc_ss_allocate() is released by the
server stub after marshalling any output parameters at the end of the remote call in
which the memory was allocated. If you want to release memory allocated by
rpc_ss_allocate() before returning from the manager code use rpc_ss_free() .

You can also use rpc_ss_free() in manager code to release memory pointed to by
a full pointer (ptr) in an input parameter.

When the server uses rpc_ss_allocate() , the server stub creates the environment
the routine needs. If the parameters of the operation include any pointers other than
those used for passing parameters by reference, the environment is set up
automatically.

If you need to use rpc_ss_allocate() in a manager code routine that does not have
a pointer in any of its parameters, use an ACF and apply the enable_allocate
attribute to the relevant operation. This causes the generated server stub to set up
the necessary environment.

Note that memory allocated by allocators other than rpc_ss_allocate() is not
released when the operation on the server side completes execution.

If you want to use rpc_ss_allocate() outside the code called from a server stub,
you must first create an environment for it by calling rpc_ss_enable_allocate() .

See the IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components for more information.

Chapter 3. DCE Remote Procedure Call 683

Return Values

A pointer to the allocated memory.

An exception, rpc_x_no_memory , when no memory is available for allocation.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: rpc_ss_disable_allocate(3rpc) , rpc_ss_enable_allocate(3rpc) ,
rpc_ss_free(3rpc) , rpc_ss_get_thread_handle(3rpc) ,
rpc_ss_set_thread_handle(3rpc) .

rpc_ss_allocate(3rpc)

684 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ss_bind_authn_client

Purpose

Authenticates a client’s identity to a server from a client stub; a pointer to the server
binding handle for the remote procedure call to which the routine will add
authentication and authorization context

Synopsis
#include <rpc.h>

void rpc_ss_bind_authn_client(
rpc_binding_handle_t *binding
if_handle_t if_handle
error_status_t *status);

Parameters

Input/Output
binding

A pointer to the server binding handle for the remote procedure call to
which the routine will add authentication and authorization context.

Input
if_handle

A stub-generated data structure that specifies the interface of interest. The
routine can use this parameter to resolve a partial binding or to distinguish
between interfaces.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_ss_bind_authn_client() routine is a DCE-supplied binding callout routine
for use with the binding_callout ACF interface attribute.

The binding_callout attribute enables applications to specify the name of a routine
that the client stub will call automatically to modify a server binding handle with
additional information before it initiates a remote procedure call. This attribute is
especially useful for applications using the automatic binding method, where it is the
client stub that obtains the binding handle, rather than the application code. The
binding_callout attribute provides these applications with a way to gain access to
a server binding handle from the client stub, since the handle is not accessible from
the application code.

Applications can specify rpc_ss_bind_authn_client() to the binding_callout ACF
interface attribute in order to authenticate the client’s identity to a server from the
client stub before the remote procedure call to the server is initiated. This routine
performs one-way authentication: the client does not care which server principal
receives the remote procedure call request, but the server verifies that the client is
who the client claims to be.

Chapter 3. DCE Remote Procedure Call 685

The routine sets the protection level used, the authentication identity, and the
authentication service used to their default values. See the
rpc_binding_set_auth_info(3rpc) reference page for more information on these
default values. It sets the authorization service to perform authorization based on
the client’s principal name.

Applications can also specify user-written binding callout routines with the
binding_callout attribute to modify server binding handles from client stubs with
other types of information. For more information on using the binding_callout ACF
attribute, see the IBM DCE for AIX, Version 2.2: Application Development
Guide—Core Components.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
Success.

rpc_s_no_more_bindings
Directs the client stub not to look for another server binding.

Related Information

Functions: rpc_binding_set_auth_info(3rpc) , rpc_ep_resolve_binding(3rpc) ,
rpc_mgmt_inq_server_princ_name(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Introduction
and Style Guide, IBM DCE for AIX, Version 2.2: Application Development
Guide—Core Components.

rpc_ss_bind_authn_client(3rpc)

686 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ss_client_free

Purpose

Frees memory returned from a client stub; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_client_free(
idl_void_p_t node_to_free);

Parameters

Input
node_to_free

Specifies a pointer to memory returned from a client stub.

Description

The rpc_ss_client_free() routine releases memory allocated and returned from a
client stub. The thread calling rpc_ss_client_free() must have the same thread
handle as the thread that made the RPC call.

This routine enables a routine to deallocate dynamically allocated memory returned
by an RPC call without knowledge of the memory management environment from
which it was called.

Note that while this routine is always called from client code, the code can be
executing as part of another server.

Return Values

No value is returned.

Related Information

Functions: rpc_ss_free(3rpc) , rpc_ss_get_thread_handle(3rpc) ,
rpc_ss_set_client_alloc_free(3rpc) , rpc_ss_set_thread_handle(3rpc) ,
rpc_ss_swap_client_alloc_free(3rpc) .

Chapter 3. DCE Remote Procedure Call 687

rpc_ss_destroy_client_context

Purpose

Reclaims the client memory resources for the context handle, and sets the context
handle to NULL; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_destroy_client_context(
void *p_unusable_context_handle);

Parameters

Input
p_unusable_context_handle

Specifies the context handle that can no longer be accessed.

Description

The rpc_ss_destroy_client_context() routine is used by the client application to
reclaim the client resources used in maintaining an active context handle. Only call
this after a communications error makes the context handle unusable. When
rpc_ss_destroy_client_context() reclaims the memory resources, it also sets the
context handle to null.

Return Values

No value is returned.

The rpc_ss_destroy_client_context() routine raises no exceptions.

688 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ss_disable_allocate

Purpose

Releases resources and allocated memory; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_disable_allocate(
void);

Description

The rpc_ss_disable_allocate() routine releases (disables) all resources acquired
by a call to rpc_ss_enable_allocate() , and any memory allocated by calls to
rpc_ss_allocate() after the call to rpc_ss_enable_allocate() was made.

The rpc_ss_enable_allocate() and rpc_ss_disable_allocate() routines must be
used in matching pairs.

For information about rules for using memory management routines, see the IBM
DCE for AIX, Version 2.2: Application Development Guide—Core Components.

Related Information

Functions: rpc_ss_allocate(3rpc) , rpc_ss_enable_allocate(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

Chapter 3. DCE Remote Procedure Call 689

rpc_ss_enable_allocate

Purpose

Enables the allocation of memory by the rpc_ss_allocate() routine when not in
manager code; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_enable_allocate(
void);

Description

In sophisticated servers, it may be necessary to call manager code routines from
different environments. This occurs, for example, when the application is both a
client and a server of the same interface. Therefore, a manager code routine may
need to be called both by the application code and by the stub code. If code, other
than manager code, calls the rpc_ss_allocate() routine, it must first call
rpc_ss_enable_allocate() to initialize the memory management environment that
rpc_ss_allocate() uses.

For information about rules for using memory management routines, see the IBM
DCE for AIX, Version 2.2: Application Development Guide—Core Components.

Return Values

An exception, rpc_x_no_memory , when there is insufficient memory available to
set up necessary data structures.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: rpc_ss_allocate(3rpc) , rpc_ss_disable_allocate(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

690 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_ss_free

Purpose

Frees memory allocated by the rpc_ss_allocate() routine; used by server or
possibly by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_free(
idl_void_p_t node_to_free);

Parameters

Input
node_to_free

Specifies a pointer to memory allocated by rpc_ss_allocate() .

Note that in ANSI standard C environments, idl_void_p_t is defined as void * and
in other environments is defined as char * .

Description

The rpc_ss_free() routine releases memory allocated by rpc_ss_allocate() . The
thread calling rpc_ss_free() must have the same thread handle as the thread that
allocated the memory with rpc_ss_allocate() . Use it only in an environment where
rpc_ss_allocate() is used.

If the manager code allocates memory with rpc_ss_allocate() and the memory is
not released by rpc_ss_free() during manager code execution, then the server stub
automatically releases the memory when the manager code completes execution
and returns control to the stub.

Manager code can also use rpc_ss_free() to release memory that is pointed to by
a full pointer in an input parameter.

For information about rules for using memory management routines, see the IBM
DCE for AIX, Version 2.2: Application Development Guide—Core Components.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: rpc_ss_allocate(3rpc) , rpc_ss_get_thread_handle(3rpc) ,
rpc_ss_set_thread_handle(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

Chapter 3. DCE Remote Procedure Call 691

rpc_ss_get_thread_handle

Purpose

Gets a thread handle for the manager code before it spawns additional threads, or
for the client code when it becomes a server; used by server or possibly by client
applications

Synopsis
#include <dce/rpc.h>

rpc_ss_thread_handle_t rpc_ss_get_thread_handle(
void);

Description

The rpc_ss_get_thread_handle() routine is used by a server manager thread
when it spawns additional threads. To spawn additional threads that are able to
perform memory management, the server manager code calls
rpc_ss_get_thread_handle() and passes the thread handle to each spawned
thread. Each spawned thread that uses rpc_ss_allocate() and rpc_ss_free() for
memory management must first call rpc_ss_set_thread_handle() , using the handle
obtained by the original manager thread.

The rpc_ss_get_thread_handle() routine can also be used when a program
changes from being a client to being a server. The program gets a handle on its
environment as a client by calling rpc_ss_get_thread_handle() . When the program
reverts to being a client it re−establishes the client environment by calling
rpc_ss_set_thread_handle() , supplying the previously obtained handle as a
parameter.

Return Values

A thread handle.

Examples

This function determines the thread handle, creates a thread, and passes the
thread handle to the thread so it can share the memory management environment
of the calling thread.
#include <pthread.h>
#include <idlbase.h>

pthread_t Launch_thread(
int (*routine_to_launch)(
pthread_addr_t th
)

)
{
rpc_ss_thread_handle_t th = rpc_ss_get_thread_handle();
pthread_t t;

/*
* Create the thread and pass to it the thread handle
* so it can use rpc_ss_set_thread_handle.
*/

692 IBM DCE for AIX, Version 2.2: Application Development Reference

pthread_create (&t, pthread_attr_default,
(pthread_startroutine_t)routine_to_launch,
(pthread_addr_t)th);

return t;
}

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: rpc_ss_allocate(3rpc) , rpc_ss_free(3rpc) ,
rpc_ss_set_thread_handle(3rpc) .

rpc_ss_get_thread_handle(3rpc)

Chapter 3. DCE Remote Procedure Call 693

rpc_ss_set_client_alloc_free

Purpose

Sets the memory allocation and freeing mechanism used by the client stubs,
thereby overriding the default routines the client stub uses to manage memory for
pointed-to nodes; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_set_client_alloc_free (
idl_void_p_t (* p_allocate) (
unsigned long size),
void (* p_free) (
idl_void_p_t * ptr)
);

Parameters

Input
p_allocate

Specifies a pointer to a routine that has the same procedure declaration as
the malloc() routine and that is used by the client stub to allocate memory.

p_free Specifies a pointer to a routine that has the same procedure declaration as
the free() routine and that is used to free memory that was allocated using
the routine pointed at by p_allocate.

Note that in ANSI standard C environments, idl_void_p_t is defined as void * and
in other environments is defined as char * .

Description

The rpc_ss_set_client_alloc_free() routine overrides the default routines that the
client stub uses to manage memory for pointed-to nodes. The default memory
management routines are malloc() and free() , except when the remote call occurs
within manager code, in which case the default memory management routines are
rpc_ss_allocate() and rpc_ss_free() .

For information about rules for using memory management routines, see the IBM
DCE for AIX, Version 2.2: Application Development Guide—Core Components.

Return Values

An exception, rpc_x_no_memory , when there is insufficient memory available to
set up necessary data structures.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

694 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: rpc_ss_allocate(3rpc) , rpc_ss_free(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_ss_set_client_alloc_free(3rpc)

Chapter 3. DCE Remote Procedure Call 695

rpc_ss_set_thread_handle

Purpose

Sets the thread handle for either a newly created spawned thread or for a server
that was formerly a client and is ready to be a client again; used by server or
possibly by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_set_thread_handle(
rpc_ss_thread_handle_t id);

Parameters

Input
id A thread handle returned by a call to rpc_ss_get_thread_handle() .

Description

The rpc_ss_set_thread_handle() routine is used by a thread spawned in the
manager code to associate itself with the main RPC manager thread. Each
spawned thread that uses rpc_ss_allocate() and rpc_ss_free() for memory
management must call rpc_ss_set_thread_handle() , using the handle that the
main RPC manager thread obtained through rpc_ss_get_thread_handle() .

The rpc_ss_set_thread_handle() routine can also be used by a program that
originally was a client, then became a server, and is now reverting to a client. The
program must re−establish the client environment by calling the
rpc_ss_set_thread_handle() routine, supplying the handle it received (through
rpc_ss_get_thread_handle()) prior to becoming a server, as a parameter.

Return Values

An exception, rpc_x_no_memory , when there is insufficient memory available to
set up necessary data structures.

Examples

When this function is invoked within a spawned thread, its argument is the thread
handle of the calling thread. This example assumes the data passed to the thread
consists of only the middle thread.
#include <pthread.h>
#include <dce/idlbase.h>

int helper_thread (
pthread_addr_t th
)

{
/*
* Set the memory management environment to match
* the parent environment.
*/
rpc_ss_set_thread_handle(rpc_ss_thread_handle_t)th;

696 IBM DCE for AIX, Version 2.2: Application Development Reference

/*
* Real work of this thread follows here ...
*/

}

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: rpc_ss_allocate(3rpc) , rpc_ss_free(3rpc) ,
rpc_ss_get_thread_handle(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_ss_set_thread_handle(3rpc)

Chapter 3. DCE Remote Procedure Call 697

rpc_ss_swap_client_alloc_free

Purpose

Exchanges the current memory allocation and freeing mechanism used by the client
stubs with one supplied by the client; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_swap_client_alloc_free(
idl_void_p_t (* p_allocate) (
idl_size_t size),
void (* p_free) (
idl_void_p_t ptr),
idl_void_p_t (** p_p_old_allocate) (
idl_size_t size),
void (** p_p_old_free) (
idl_void_p_t ptr)
);

Parameters

Input
p_allocate

Specifies a pointer to a routine that has the same procedure declaration as
the malloc() routine and that is used for allocating client stub memory.

p_free Specifies a pointer to a routine that has the same procedure declaration as
the free() routine and that is used for freeing client stub memory.

Output
p_p_old_allocate

Specifies a pointer to a pointer to a routine that has the same procedure
declaration as the malloc() routine. A pointer to the routine that was
previously used to allocate client stub memory is returned in this parameter.

p_p_old_free
Specifies a pointer to a pointer to a routine that has the same procedure
declaration as the free() routine. A pointer to the routine that was previously
used to free client stub memory is returned in this parameter.

Note that in ANSI standard C environments, idl_void_p_t is defined as void * and
in other environments is defined as char * .

Description

The rpc_ss_swap_client_alloc_free() routine exchanges the current client allocate
and free mechanism used by the client stubs for one supplied by the caller. If it is
appropriate for the client code called by an application to use a certain memory
allocation and freeing mechanism, regardless of its caller’s state, the client code
can swap its own mechanism into place on entry, replacing its caller’s mechanism.
It can then swap the caller’s mechanism back into place prior to returning.

For information about rules for using memory management routines, see the IBM
DCE for AIX, Version 2.2: Application Development Guide—Core Components.

698 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

An exception, rpc_x_no_memory , is returned when there is insufficient memory
available to set up necessary data structures.

Errors

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: rpc_ss_allocate(3rpc) , rpc_ss_free(3rpc) ,
rpc_ss_set_client_alloc_free(3rpc) .

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

rpc_ss_swap_client_alloc_free(3rpc)

Chapter 3. DCE Remote Procedure Call 699

rpc_string_binding_compose

Purpose

Combines the components of a string binding into a string binding; used by client or
server applications

Synopsis
#include <dce/rpc.h>

void rpc_string_binding_compose(
unsigned_char_t *obj_uuid
unsigned_char_t *protseq
unsigned_char_t *network_addr
unsigned_char_t *endpoint
unsigned_char_t *options
unsigned_char_t **string_binding
unsigned32 *status);

Parameters

Input
obj_uuid

Specifies a NULL-terminated string representation of an object UUID.

protseq
Specifies a NULL-terminated string representation of a protocol sequence.

network_addr
Specifies a NULL-terminated string representation of a network address.

endpoint
Specifies a NULL-terminated string representation of an endpoint.

options
Specifies a NULL-terminated string representation of network options.

Output
string_binding

Returns a pointer to a NULL-terminated string representation of a binding
handle.

Specify NULL to prevent the routine from returning this argument. In this
case the application does not call rpc_string_free() .

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_string_binding_compose() routine combines string binding handle
components into a string binding handle.

The RPC runtime allocates memory for the string returned in the string_binding
parameter. The application calls rpc_string_free() to deallocate that memory.

Specify NULL or provide a null string (\0) for each input string that has no data.

700 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: rpc_binding_from_string_binding(3rpc) ,
rpc_binding_to_string_binding(3rpc) , rpc_string_binding_parse(3rpc) ,
rpc_string_free(3rpc) , uuid_to_string(3rpc) .

rpc_string_binding_compose(3rpc)

Chapter 3. DCE Remote Procedure Call 701

rpc_string_binding_parse

Purpose

Returns, as separate strings, the components of a string binding; used by client or
server applications

Synopsis
#include <dce/rpc.h>

void rpc_string_binding_parse(
unsigned_char_t *string_binding
unsigned_char_t **obj_uuid
unsigned_char_t **protseq
unsigned_char_t **network_addr
unsigned_char_t **endpoint
unsigned_char_t **network_options
unsigned32 *status);

Parameters

Input
string_binding

Specifies a NULL-terminated string representation of a binding.

Output
obj_uuid

Returns a pointer to a NULL-terminated string representation of an object
UUID.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not call rpc_string_free() .

protseq
Returns a pointer to a NULL-terminated string representation of a protocol
sequence.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not call rpc_string_free() .

network_addr
Returns a pointer to a NULL-terminated string representation of a network
address.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not call rpc_string_free() .

endpoint
Returns a pointer to a NULL-terminated string representation of an
endpoint.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not call rpc_string_free() .

network_options
Returns a pointer to a NULL-terminated string representation of network
options.

Specify NULL to prevent the routine from returning this parameter. In this
case the application does not call rpc_string_free() .

702 IBM DCE for AIX, Version 2.2: Application Development Reference

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_string_binding_parse() routine parses a string representation of a binding
handle into its component fields.

The RPC runtime allocates memory for each component string the routine returns.
The application calls rpc_string_free() once for each returned string to deallocate
the memory for that string.

If any field of the string_binding field is empty, rpc_string_binding_parse() returns
the empty string in the corresponding output parameter.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_string_binding
Invalid string binding.

Related Information

Functions: rpc_binding_from_string_binding(3rpc) ,
rpc_binding_to_string_binding(3rpc) , rpc_string_binding_compose(3rpc) ,
rpc_string_free(3rpc) , uuid_from_string(3rpc) .

rpc_string_binding_parse(3rpc)

Chapter 3. DCE Remote Procedure Call 703

rpc_string_free

Purpose

Frees a character string allocated by the runtime; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_string_free(
unsigned_char_t **string
unsigned32 *status);

Parameters

Input/Output
string Specifies the address of the pointer to the character string to free.

The value NULL is returned.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The rpc_string_free() routine deallocates the memory occupied by a character
string returned by the RPC runtime.

An application must call this routine once for each character string allocated and
returned by calls to other RPC runtime routines. The names of these routines
appear at the end of this reference page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

Related Information

Functions: dce_error_inq_text(3rpc) , rpc_binding_inq_auth_client(3rpc) ,
rpc_binding_inq_auth_info(3rpc) , rpc_binding_to_string_binding(3rpc) ,
rpc_mgmt_ep_elt_inq_next(3rpc) , rpc_mgmt_inq_server_princ_name(3rpc) ,
rpc_ns_binding_inq_entry_name(3rpc) , rpc_ns_entry_expand_name(3rpc) ,
rpc_ns_group_mbr_inq_next(3rpc) , rpc_ns_profile_elt_inq_next(3rpc) ,

704 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_string_binding_compose(3rpc) , rpc_string_binding_parse(3rpc) ,
uuid_to_string(3rpc) .

rpc_string_free(3rpc)

Chapter 3. DCE Remote Procedure Call 705

rpc_tower_to_binding

Purpose

Returns a binding handle from a tower representation

Synopsis
#include <dce/rpc.h>

void rpc_tower_to_binding(
byte_p_t prot_tower
rpc_binding_handle_t *binding
unsigned32 *status);

Parameters

Input
prot_tower

Specifies a single protocol tower to convert to a binding handle.

Output
binding

Returns the server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_tower_to_binding() routine creates a server binding handle a canonical
representation of a protocol tower.

When an application finishes using the binding parameter, the application calls the
rpc_binding_free() routine to release the memory used by the binding handle.

The rpc_intro(3rpc) reference page contains an explanation of binding handles.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

706 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions: rpc_binding_copy(3rpc) , rpc_binding_free(3rpc) ,
rpc_tower_vector_free(3rpc) , rpc_tower_vector_from_binding(3rpc) .

rpc_tower_to_binding(3rpc)

Chapter 3. DCE Remote Procedure Call 707

rpc_tower_vector_free

Purpose

Releases memory associated with a tower vector

Synopsis
#include <dce/rpc.h>

void rpc_tower_vector_free(
rpc_tower_vector_p_t *twr_vector
unsigned32 *status);

Parameters

Input
twr_vector

Specifies the tower vector to be freed. On return, its value is NULL.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

The status code is either rpc_s_ok or a value returned from a called
routine.

Description

The rpc_tower_vector_free() routine releases memory associated with a tower
vector, including the towers as well as the vector.

Return Values

No value is returned.

Related Information

Functions: rpc_binding_copy(3rpc) , rpc_binding_free(3rpc) ,
rpc_tower_to_binding(3rpc) , rpc_tower_vector_from_binding(3rpc) .

708 IBM DCE for AIX, Version 2.2: Application Development Reference

rpc_tower_vector_from_binding

Purpose

Creates a tower vector from a binding handle

Synopsis
#include <dce/rpc.h>

void rpc_tower_vector_from_binding(
rpc_if_handle_t if_spec
rpc_binding_handle_t binding
rpc_tower_vector_p_t *twr_vector
unsigned32 *status);

Parameters

Input
if_spec

The interface specification that will be combined with a binding handle to
form a tower vector.

binding
The binding handle that will be combined with a interface specification to
form a tower vector.

Output
twr_vector

Returns the allocated tower vector.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The status code is either rpc_s_ok , or rpc_s_no_interfaces , or a value
returned from a called routine.

Description

The rpc_tower_vector_from_binding() routine creates a vector of towers from a
binding handle. After the caller is finished with the tower vector, the
rpc_tower_vector_free() routine must be called to release the memory used by the
vector.

Return Values

No value is returned.

Related Information

Functions: rpc_binding_copy(3rpc) , rpc_binding_free(3rpc) ,
rpc_tower_to_binding(3rpc) , rpc_tower_vector_free(3rpc) .

Chapter 3. DCE Remote Procedure Call 709

uuid_compare

Purpose

Compares two UUIDs and determines their order; used by client, server, or
management applications

Synopsis
#include <dce/uuid.h>

signed32 uuid_compare(
uuid_t *uuid1
uuid_t *uuid2
unsigned32 *status);

Parameters

Input
uuid1 Specifies a pointer to a UUID. This UUID is compared with the UUID

specified in uuid2.

Use the value NULL to specify a nil UUID for this parameter.

uuid2 Specifies a pointer to a UUID. This UUID is compared with the UUID
specified in uuid1.

Use the value NULL to specify a nil UUID for this parameter.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The uuid_compare() routine compares two UUIDs and determines their order. A nil
UUID is considered the first element in order. The order of UUIDs is defined by the
RPC architecture and is not a temporal (related to time) ordering. Comparing two
specific UUIDs always returns the same result regardless of the implementation or
system architecture.

You can use this routine to sort data with UUIDs as a key.

Return Values

Returns one of the following constants:

−1 The uuid1 parameter precedes the uuid2 parameter in order.

0 The uuid1 parameter is equal to the uuid2 parameter in order.

1 The uuid1 parameter follows the uuid2 parameter in order.

Note that a value of 0 (zero) has the same meaning as if uuid_equal (&uuid1,
&uuid2) returned a value of TRUE.

A nil UUID is the first UUID in order. This means the following:

v If uuid1 is NULL and uuid2 is nonnil, the routine returns -1.

710 IBM DCE for AIX, Version 2.2: Application Development Reference

v If uuid1 is NULL and uuid2 is NULL, the routine returns 0.

v If uuid1 is nonnil and uuid2 is NULL, the routine returns 1.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

uuid_s_bad_version
Bad UUID version.

Related Information

Functions: uuid_equal(3rpc) , uuid_is_nil(3rpc) .

uuid_compare(3rpc)

Chapter 3. DCE Remote Procedure Call 711

uuid_create

Purpose

Creates a new UUID; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

void uuid_create(
uuid_t *uuid
unsigned32 *status);

Parameters

Input

None.

Output
uuid Returns the new UUID.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_create() routine creates a new UUID.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

uuid_s_getconf_failure
Cannot get network interface device configuration.

uuid_s_no_address
Cannot get Ethernet hardware address.

uuid_s_socket_failure
Cannot create socket.

Related Information

Functions: uuid_create_nil(3rpc) , uuid_from_string(3rpc) , uuid_to_string(3rpc) .

712 IBM DCE for AIX, Version 2.2: Application Development Reference

uuid_create_nil

Purpose

Creates a nil UUID; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

void uuid_create_nil(
uuid_t *nil_uuid
unsigned32 *status);

Parameters

Input

None.

Output
nil_uuid

Returns a nil UUID.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_create_nil() routine creates a nil UUID.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

Related Information

Functions: uuid_create(3rpc) .

Chapter 3. DCE Remote Procedure Call 713

uuid_equal

Purpose

Determines if two UUIDs are equal; used by client, server, or management
applications

Synopsis
#include <dce/uuid.h>

boolean32 uuid_equal(
uuid_t *uuid1
uuid_t *uuid2
unsigned32 *status);

Parameters

Input
uuid1 Specifies a pointer to a UUID. This UUID is compared with the UUID

specified in uuid2. Supply the value NULL to specify a nil UUID for this
parameter.

uuid2 Specifies a pointer to a UUID. This UUID is compared with the UUID
specified in uuid1. Supply the value NULL to specify a nil UUID for this
parameter.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The uuid_equal() routine compares two UUIDs and determines if they are equal.

Return Values

The possible return values and their meanings are as follows:

TRUE The uuid1 parameter is equal to the uuid2 parameter. Parameter status
contains the status code uuid_s_ok .

FALSE
The uuid1 parameter is not equal to the uuid2 parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

uuid_s_bad_version
Bad UUID version.

714 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: uuid_compare(3rpc) .

uuid_equal(3rpc)

Chapter 3. DCE Remote Procedure Call 715

uuid_from_string

Purpose

Converts a string UUID to its binary representation; used by client, server, or
management applications

Synopsis
#include <dce/uuid.h>

void uuid_from_string(
unsigned_char_t *string_uuid
uuid_t *uuid
unsigned32 *status);

Parameters

Input
string_uuid

Specifies a string representation of a UUID. Supply the value NULL or the
null string (\0) to specify a nil UUID.

Output
uuid Returns the binary form of the UUID specified by the string_uuid parameter

into the address specified by this parameter.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application calls the uuid_from_string() routine to convert a string UUID to its
binary representation.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

uuid_s_bad_version
Bad UUID version.

uuid_s_invalid_string_uuid
Invalid format for a string UUID.

716 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: uuid_to_string(3rpc) .

uuid_from_string(3rpc)

Chapter 3. DCE Remote Procedure Call 717

uuid_hash

Purpose

Creates a hash value for a UUID; used by client, server, or management
applications

Synopsis
#include <dce/uuid.h>

unsigned16 uuid_hash(
uuid_t *uuid
unsigned32 *status);

Parameters

Input
uuid Specifies the UUID for which a hash value is created. Supply NULL to

specify a nil UUID for this parameter.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The uuid_hash() routine generates a hash value for a specified UUID.

Note that the return value for a single uuid value may differ across platforms.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

uuid_s_bad_version
Bad UUID version.

Return Values

Returns a hash value for the specified UUID.

718 IBM DCE for AIX, Version 2.2: Application Development Reference

uuid_is_nil

Purpose

Determines if a UUID is nil; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

boolean32 uuid_is_nil(
uuid_t *uuid
unsigned32 *status);

Parameters

Input
uuid Specifies a UUID to test as a nil UUID. Supply NULL to specify a nil UUID

for this parameter.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or, if not, why not.

Description

The uuid_is_nil() routine determines whether the specified UUID is a nil UUID.
This routine yields the same result as if an application did the following:

v Called the uuid_create_nil() routine.

v Called the uuid_equal() routine to compare the returned nil UUID to the UUID
specified in the uuid parameter.

Return Values

The possible return values and their meanings are as follows:

TRUE The uuid parameter is a nil UUID. Parameter status contains the status
code uuid_s_ok .

FALSE
The uuid parameter is not a nil UUID.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

uuid_s_bad_version
Bad UUID version.

Chapter 3. DCE Remote Procedure Call 719

Related Information

Functions: uuid_compare(3rpc) , uuid_create_nil(3rpc) , uuid_equal(3rpc) .

uuid_is_nil(3rpc)

720 IBM DCE for AIX, Version 2.2: Application Development Reference

uuid_to_string

Purpose

Converts a UUID from a binary representation to a string representation; used by
client, server, or management applications

Synopsis
#include <dce/uuid.h>

void uuid_to_string(
uuid_t *uuid
unsigned_char_t **string_uuid
unsigned32 *status);

Parameters

Input
uuid Specifies a UUID in its binary format. Supply NULL to specify a nil UUID for

this parameter.

Output
string_uuid

Returns a pointer to the string representation of the UUID specified in the
uuid parameter. Specify NULL for this parameter to prevent the routine from
returning this information.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_to_string() routine converts a UUID from its binary representation to its
string representation.

The RPC runtime allocates memory for the string returned in the string_uuid
parameter. The application calls rpc_string_free() to deallocate that memory. It is
not necessary to call rpc_string_free() when you supply NULL for the string_uuid
parameter.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

uuid_s_ok
Success.

uuid_s_bad_version
Bad UUID version.

Chapter 3. DCE Remote Procedure Call 721

Related Information

Functions: rpc_string_free(3rpc) , uuid_from_string(3rpc) .

uuid_to_string(3rpc)

722 IBM DCE for AIX, Version 2.2: Application Development Reference

Chapter 4. DCE Directory Service

© Copyright IBM Corp. 1992, 1998 723

xds_intro

Purpose

Introduction to X/OPEN Directory Services (XDS) functions

Synopsis

#include <xom.h> #include <xds.h> #include <xdsext.h>

Description

This xds_intro reference page lists the XDS interface functions in the following
table. XDS provides a C language binding.

Table 33. Service Interface Functions—xds_intro(3xds)
Function Description

dsX_extract_attr_values() Extracts attribute values from an OM object.
ds_abandon() Function not supported.
ds_add_entry() Adds a leaf entry to the directory information tree (DIT).
ds_bind() Opens a session with a directory user agent.
ds_compare() Compares a purported attribute value with the attribute value

stored in the directory for a particular entry.
ds_initialize() Initializes the interface.
ds_list() Enumerates the immediate subordinates of a particular directory

entry.
ds_modify_entry() Performs an atomic modification of a directory entry.
ds_modify_rdn() Changes the relative distinguished name (RDN) of a leaf entry.
ds_read() Queries information on a directory entry by name.
ds_receive_result() Function partially supported.
ds_remove_entry() Removes a leaf entry from the DIT.
ds_search() Finds entries of interest in a portion of the DIT.
ds_shutdown() Shuts down the interface.
ds_unbind() Unbinds from a directory session.
ds_version() Negotiates features of the interface and service.
gds_decode_alt_addr() Used by DME applications for alternate address mapping.
gds_encode_alt_addr() Used by DME applications for alternate address mapping.

The Distributed Computing Environment (DCE) XDS interface does not support
asynchronous operations within the same thread. Thus, ds_abandon() is
redundant. A ds_abandon() call returns with a DS_C_ABANDON_FAILED
(DS_E_TOO_LATE) error. For ds_receive_result() , if there are any outstanding
operations (when multiple threads issue XDS calls in parallel), this function returns
DS_SUCCESS with the completion_flag_return parameter set to
DS_OUTSTANDING_OPERATIONS .

If no XDS calls are outstanding, ds_receive_result() returns with DS_status set to
DS_SUCCESS, and with the completion_flag_return parameter set to
DS_NO_OUTSTANDING_OPERATION .

The following differences exist between Global Directory Service (GDS) and Cell
Directory Service (CDS):

724 IBM DCE for AIX, Version 2.2: Application Development Reference

v All functions operate on the GDS namespace.

v CDS does not support the ds_modify_rdn() or ds_search() . If either of these
two functions is attempted on CDS, the error message DS_C_SERVICE_ERROR
is returned (DS_E_UNWILLING_TO_PERFORM).

v In CDS, no X.500 schema rules apply. There is

– No concept of an object class.

– No mandatory attributes for a given object.

– No set of attributes expressly permitted for a given object.

– No predefined definition of single and multivalued attributes.

The absence of these schema rules means that the usual errors, which are
returned by GDS for breach of schema rules, are not returned by CDS.

The CDS naming DIT is modeled on a typical file system architecture, where
directories are used for storing objects and directories can contain subdirectories.
Leaf objects in the CDS DIT are similar to X.500 naming objects. However, subtree
objects are called directories as in a file system directory. All new objects must be
added to an existing directory. CDS directory objects cannot be added, removed,
modified, or compared using the XDS programming interface.

In CDS, the naming attribute of an object is not stored in the object. Consequently,
in CDS, ds_read() never returns this attribute. Note that the ds_compare() routine
applied to this attribute returns with DS_C_ATTRIBUTE_ERROR
(DS_E_CONSTRAINT_VIOLATION).

Notes

See the notes in the relevant reference page for function-specific differences.

XDS functions check for NULL pointers and will return an error. The pointers are
only checked at the function interface. The check is only for NULL and not for
validity. If NULL pointers are passed, this may result in an undetermined behavior.

xds_intro(3xds)

Chapter 4. DCE Directory Service 725

decode_alt_addr

Purpose

Converts an alternate address attribute from internal GDS format to a structured
format

Synopsis
#include <xom.h>
#include <xds.h>
#include <dce/d2dir.h>

int decode_alt_addr(
const D2_str *in
D2_alt_addr **out);

Parameters
in A pointer to a D2_str structure that contains the alternate address attribute

in an internal GDS format.

Description

The decode_alt_addr() routine converts a linearized string that is stored in a
structure D2_str into a structured alternate address format stored in a D2_alt_addr
structure. This function is provided for use by DME applications. It converts an
alternate address attribute from an internal GDS format (linear octet string) to a
structured format for application usage.

in->d2_size contains the length of the encoded octet string.

in->d2_value is a pointer to the beginning of the encoded octet string.

The decode_alt_addr() routine allocates memory for the structured alternate
address. The parameter (*out) contains the address of the memory area that should
later be freed by the application.

The D2_alt_addr structure contains one field D2_str for the address, followed by a
structured field for the set of object identifiers. The structure D2_str consists of the
length of the address and a pointer to the beginning of the address (not
zero-terminated). The second component of the D2_alt_addr contains the number
of object identifiers and the address of the first D2_obj_id structure. To read a set
of object identifiers, the address of the first D2_obj_id structure should be
increased by sizeof(D2_obj_id) bytes for each object identifier to be read.

The structure D2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier
is treated as an octet string; that means that decode_alt_addr() does no BER
conversion for object identifiers.

Return Values
**out A pointer to the structure D2_alt_addr that stores the alternate address

attribute in a structured format.

int 0 if successful.

726 IBM DCE for AIX, Version 2.2: Application Development Reference

-1 if unsuccessful (malloc() failure).

Related Information

Functions: encode_alt_addr(3xds) .

decode_alt_addr(3xds)

Chapter 4. DCE Directory Service 727

dsX_extract_attr_values

Purpose

Extracts attribute values from an OM object

Synopsis
#include <xom.h>
#include <xds.h>
#include <xdsext.h>

OM_return_code dsX_extract_attr_values(
OM_private_object object
OM_object_identifier attribute_type
OM_boolean local_strings
OM_public_object *values
OM_value_position *total_number);

Parameters

Input
object The private object from which the attribute values are to be extracted.

Objects of type DS_C_ATTRIBUTE_LIST or DS_C_ENTRY_INFO are
supported.

attribute_type
The attribute type from which the values are to extracted.

local_strings
Indicates if results should be converted to a local string format.

Output
values The values parameter is only present if the return value from

OM_return_code is OM_SUCCESS. It points to a public object containing
an array of OM descriptors with the extracted attribute values.

total_number
Contains the total number of attribute values that have been extracted.

Note that the total includes only the attribute descriptors in the values
parameter. It excludes the special descriptor signaling the end of a public
object.

Description

The dsX_extract_attr_values() routine is used to extract the attribute values
associated with the specified attribute type from an OM object. The OM object must
be of type DS_C_ATTRIBUTE_LIST or DS_C_ENTRY_INFO. It returns an object
containing an array of OM descriptors.

Notes

The memory space for the values return parameter is allocated by
dsX_extract_attr_values() . The calling application is responsible for releasing this
memory with the om_delete() routine.

728 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values
OM_return_code

Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
the xom.h(4xom) reference page.

Errors

Refer to xom.h(4xom) for a list of possible error values that can be returned in
OM_return_code. Refer to the IBM DCE for AIX, Version 2.2: Problem
Determination Guide for complete descriptions of all error messages.

dsX_extract_attr_values(3xds)

Chapter 4. DCE Directory Service 729

ds_add_entry

Purpose

Adds a leaf entry to the DIT

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_add_entry(
OM_private_object session
OM_private_object context
OM_object name
OM_object entry
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context
(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant. Note that
DS_DONT_DEREFERENCE_ALIASES and DS_SIZE_LIMIT do not apply
to this operation.

name (Object(DS_C_NAME)). The name of the entry to be added. The immediate
superior of the new entry is determined by removing the last RDN
component, which belongs to the new entry.

The immediate superior must exist in the same Directory Service Agent, or
the function can fail with DS_C_UPDATE_ERROR
(DS_E_AFFECTS_MULTIPLE_DSAS). Any aliases in the name are not
dereferenced.

entry (Object(DS_C_ATTRIBUTE_LIST)). The attribute information that, together
with that from the RDN, constitutes the entry to be created. Note that an
instance of OM class DS_C_ENTRY_INFO can be supplied as the value of
this parameter, since OM class DS_C_ENTRY_INFO is a subclass of OM
class DS_C_ATTRIBUTE_LIST .

Output
invoke_id_return

(Integer). Not supported.

Description

The ds_add_entry() function adds a leaf entry to the directory. The entry can be
either an object or an alias. The directory checks that the resulting entry conforms
to the directory schema.

730 IBM DCE for AIX, Version 2.2: Application Development Reference

Notes

Although the user ideally is not aware whether naming operations are being
handled by GDS or CDS, there are some situations where naming results can differ
between the two services. (See the xds_intro(3xds) reference page for XDS
functions for the general differences between operations on GDS and CDS.)

Note the following issues for the ds_add_entry() operation:

v Only leaf objects (that is, objects that are not CDS directory objects) can be
added to CDS through the XDS interface. In other words, the immediate superior
of the new entry must exist.

v Only the DS_A_COMMON_NAME and DS_A_MEMBER attributes are valid for
the DS_O_GROUP_OF_NAMES object in CDS.

v GDS-structured attribute types are not supported by CDS. If an attempt is made
to add a GDS-structured attribute type to CDS, then it returns with a
DS_C_ATTRIBUTE_ERROR (DS_E_CONSTRAINT_VIOLATION).

Since CDS does not implement the X.500 schema rules, some CDS objects may
not contain mandatory attributes like object class and so on.

Return Values
DS_status

DS_SUCCESS is returned if the entry was added; otherwise, an error is
returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

v DS_E_TOO_MANY_OPERATIONS

The function can return the following directory errors:

v DS_C_ATTRIBUTE_ERROR

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

v DS_C_UPDATE_ERROR

ds_add_entry(3xds)

Chapter 4. DCE Directory Service 731

The DS_C_UPDATE_ERROR (DS_E_AFFECTS_MULTIPLE_DSAS) error, referred
to earlier in this reference page, need not be returned if there is local agreement
between the DSAs to allow the entry to be added.

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

ds_add_entry(3xds)

732 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_bind

Purpose

Opens a session with the directory

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_bind(
OM_object session
OM_workspace workspace
OM_private_object *bound_session_return);

Parameters

Input
session

(Object(DS_C_SESSION)). Specifies a particular directory service provider,
together with other details of the service required. This parameter can be
either a public object or a private object. The DS_DEFAULT_SESSION
constant can also be used as the value of this parameter, causing a new
session to be created with default values for all its OM attributes.

workspace
Specifies the workspace obtained from a call to ds_initialize() that is to be
associated with the session. All function results from directory operations
using this session will be returned as private objects in this workspace. If
the session parameter is a private object, it must be a private object in this
workspace.

Output
bound_session_return

(Object(DS_C_SESSION)). Upon successful completion, this parameter
contains an instance of a directory session that can be used as a
parameter to other functions (for example, ds_read()). This is a new private
object if the value of the session parameter was DS_DEFAULT_SESSION
or a public object; otherwise, it is that value supplied as a parameter. The
function supplies default values for any of the OM attributes that are not
present in the session parameter instance supplied as a parameter. It also
sets the value of the DS_FILE_DESCRIPTOR OM attribute to
DS_NO_VALID_FILE_DESCRIPTOR , since the functionality is not
supported.

Description

The ds_bind() function sets up a communications link to the DSA.

Notes

Although the user ideally is not aware whether naming operations are being
handled by GDS or CDS, there are some situations where naming results can differ

Chapter 4. DCE Directory Service 733

between the two services. (See the xds_intro(3xds) reference page for XDS
functions at the start of this chapter for general differences between operations on
GDS and CDS.)

Note that in order to use CDS when GDS is not active, ds_bind() must be called
with the value of the session parameter set to DS_DEFAULT_SESSION .

Return Values
DS_status

DS_SUCCESS is returned if the function is completed successfully;
otherwise, it indicates the error that has occurred.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_SESSION

v DS_E_BAD_WORKSPACE

v DS_E_MISCELLANEOUS

v DS_E_NOT_SUPPORTED

v DS_E_TOO_MANY_SESSIONS

The function can return the following directory errors:

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

Related Information

Functions: ds_unbind(3xds) .

ds_bind(3xds)

734 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_compare

Purpose

Compares an attribute value with the attribute value stored in the directory for a
particular entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_compare(
OM_private_object session
OM_private_object context
OM_object name
OM_object ava
OM_private_object *result_return
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context
(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. Note that DS_SIZE_LIMIT does not apply to this operation. This
parameter must be a private object or the DS_DEFAULT_CONTEXT
constant.

name (Object(DS_C_NAME)). The name of the target object entry. Any aliases in
the name are dereferenced unless prohibited by the
DS_DONT_DEREFERENCE_ALIASES service control attribute of the
DS_C_CONTEXT object.

ava (Object(DS_C_AVA)). The attribute value assertion that specifies the
attribute type and value to be compared with those in the entry.

Output
result_return

(Object(DS_C_COMPARE_RESULT)). Upon successful completion, the
result contains flags indicating whether the values matched and whether the
comparison was made against the original entry. It also contains the DN of
the target object if an alias is dereferenced.

invoke_id_return
(Integer). Not supported.

Description

The ds_compare() function compares the value supplied in the given ava
parameter with the value or values of the same attribute type in the named entry.

Chapter 4. DCE Directory Service 735

Notes

Although the user ideally is not aware whether naming operations are being
handled by GDS or CDS, there are some situations where naming results can differ
between the two services. (See the xds_intro(3xds) reference page for XDS
functions for the general differences between operations on GDS and CDS.)

Note the following issues for the ds_compare() operation:

v In CDS, the naming attribute of an object is not stored in the attribute list of an
object. Thus in CDS, a ds_compare() of the purported naming attribute value
with the naming attribute value of the directory object always fails to match.

v GDS-structured types are not supported by CDS. If a GDS-structured attribute
type is used as a parameter to ds_compare() on a CDS object, then it returns
with the error DS_C_ATTRIBUTE_ERROR (DS_E_CONSTRAINT_VIOLATION).

v In CDS, ds_compare() can only be used on leaf objects; otherwise, a
DS_C_NAME_ERROR (DS_E_NO_SUCH_OBJECT) is returned.

v In CDS, if the name parameter is a CDS soft link and the
Dont_Dereference_Aliases context parameter is set to TRUE, the only allowed
attribute for comparison is the DS_A_ALIASED_OBJECT_NAME attribute. This
attribute is compared with the Distinguished Name of the soft link target.

Return Values
DS_status

Indicates whether the comparison is completed or not. If successful,
DS_SUCCESS is returned. Note that the operation fails and an error is
returned either if the target object is not found or if it does not have an
attribute of the required type.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

v DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned:

v DS_C_ATTRIBUTE_ERROR

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

ds_compare(3xds)

736 IBM DCE for AIX, Version 2.2: Application Development Reference

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

ds_compare(3xds)

Chapter 4. DCE Directory Service 737

ds_initialize

Purpose

Initializes the XDS interface

Synopsis
#include <xom.h>
#include <xds.h>

OM_workspace ds_initializ(
void);

Description

The ds_initialize() function performs any necessary initialization of the XDS
application program interface (API), including the creation of a workspace. It must
be called before any other directory interface functions are called. If it is
subsequently called before ds_shutdown() , the function returns NULL.

Return Values
OM_workspace

Upon successful completion, OM_workspace contains a handle to a
workspace in which OM objects can be created and manipulated. Objects
created in this workspace, and only such objects, can be used as
parameters to the other directory interface functions. This function returns
NULL if it fails.

Related Information

Functions: ds_shutdown(3xds) .

738 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_list

Purpose

Enumerates the immediate subordinates of a particular directory entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_list(
OM_private_object session
OM_private_object context
OM_object name
OM_private_object *result_return
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context
(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The name of the object entry whose immediate
subordinates are to be listed. Any aliases in the name are dereferenced
unless this is prohibited by the service control attribute
DS_DONT_DEREFERENCE_ALIASES of the DS_C_CONTEXT object.

Output
result_return

(Object(DS_C_LIST_RESULT)). Upon successful completion, the result
contains some information about the target object’s immediate
subordinates. It also contains the DN of the target object, if an alias was
dereferenced to find it. Aliases in the subordinate names are not
dereferenced. In addition, there can be a partial outcome qualifier, which
indicates that the result is incomplete. It also explains the reason for this
(for example, because the time limit expired), and it contains information
that can be helpful when attempting to complete the operation.

invoke_id_return
(Integer). Not supported.

Description

The ds_list() function is used to obtain a list of the immediate subordinates of the
named entry. The list can be incomplete in some circumstances; for example, if the
results exceed DS_SIZE_LIMIT.

Chapter 4. DCE Directory Service 739

Return Values
DS_status

Takes the value DS_SUCCESS if the named object is located (even if there
are no subordinates) and takes an error value if not.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

v DS_E_TOO_MANY_OPERATIONS

The function can return the following directory errors:

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

ds_list(3xds)

740 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_modify_entry

Purpose

Performs an atomic modification on a directory entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_modify_entry(
OM_private_object session
OM_private_object context
OM_object name
OM_object changes
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context

(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. Note that DS_SIZE_LIMIT and
DS_DONT_DEREFERENCE_ALIASES do not apply to this operation. This
parameter must be a private object or the DS_DEFAULT_CONTEXT
constant.

name

(Object(DS_C_NAME)). The name of the target object entry. Any aliases in
the name are not dereferenced.

changes
(Object(DS_C_ENTRY_MOD_LIST)). A sequence of modifications to the
named entry.

Output
invoke_id_return

(Integer). Not supported.

Description

The ds_modify_entry() routine is used to make a series of one or more of the
following changes to a single directory entry:

v Add a new attribute (DS_ADD_ATTRIBUTE).

v Remove an attribute (DS_REMOVE_ATTRIBUTE).

v Add attribute values (DS_ADD_VALUES).

v Remove attribute values (DS_REMOVE_VALUES).

Values can be replaced by a combination of adding values and removing values in
a single operation. The RDN can only be changed by using ds_modify_rdn() .

Chapter 4. DCE Directory Service 741

The result of the operation is as if each modification is made in the order specified
in the changes parameter. If any of the individual modifications fails, then a
DS_C_ATTRIBUTE_ERROR is reported and the entry is left as it was prior to the
whole operation. The operation is atomic; that is, either all or none of the changes
are made. The directory checks that the resulting entry conforms to the directory
schema.

Notes

Although the user ideally is not aware whether naming operations are being
handled by GDS or CDS, there are some situations where naming results can differ
between the two services. (See the xds_intro(3xds) reference page for XDS
functions for the general differences between operations on GDS and CDS.)

Note the following issues for the ds_modify_entry() operation:

v Naming schema rules do not apply in CDS. Thus, the following attribute errors
are never returned by CDS:

– DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE

– DS_E_ATTRIBUTE_OR_VALUE_EXISTS

v Naming operations that would normally return these errors succeed in CDS. In
particular, the addition of an attribute that already exists does not return with an
error. Instead, the values of the attribute to be added are combined with the
values of the existing attribute.

v GDS-structured attribute types are not supported by CDS. If a GDS-structured
attribute type is used as a parameter to ds_modify_entry() on a CDS object,
then it returns with a DS_C_ATTRIBUTE_ERROR
(DS_E_CONSTRAINT_VIOLATION). In CDS, ds_modify_entry() can only be
used on leaf objects; otherwise, a DS_C_NAME_ERROR
(DS_E_NO_SUCH_OBJECT) is returned.

v In CDS, if the name parameter is a CDS soft link and the
Dont_Dereference_Alias flag is set to TRUE, the soft link entry itself is modified.
In this case, the only allowed modifications are to the
DS_A_ALIASED_OBJECT_NAME attribute.

Return Values
DS_status

Takes the value DS_SUCCESS if all the modifications succeeded and takes
an error value if not.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

ds_modify_entry(3xds)

742 IBM DCE for AIX, Version 2.2: Application Development Reference

v DS_E_MISSING_TYPE

v DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

v DS_C_ATTRIBUTE_ERROR

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

v DS_C_UPDATE_ERROR

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

The following situations apply to GDS:

v An attempt to use DS_ADD_ATTRIBUTE to add an existing attribute results in a
DS_C_ATTRIBUTE_ERROR .

v An attempt to use DS_ADD_VALUES to add an existing value results in a
DS_C_ATTRIBUTE_ERROR , as does an attempt to add a value to a nonexistent
attribute type.

v An attempt to use DS_REMOVE_ATTRIBUTE to remove a nonexisting attribute
results in a DS_C_ATTRIBUTE_ERROR , whereas an attempt to remove an
attribute that is part of the object’s RDN results in a DS_C_UPDATE_ERROR.

v An attempt to use DS_REMOVE_VALUES to remove a nonexisting value results
in a DS_C_ATTRIBUTE_ERROR , whereas an attempt to remove a value of an
attribute that is part of the object’s RDN, or to modify the object class attribute,
results in a DS_C_UPDATE_ERROR.

ds_modify_entry(3xds)

Chapter 4. DCE Directory Service 743

ds_modify_rdn

Purpose

Changes the RDN of a leaf entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_modify_rdn(
OM_private_object session
OM_private_object context
OM_object name
OM_object new_RDN
OM_boolean delete_old_RDN
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context

(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. Note that DS_SIZE_LIMIT and
DS_DONT_DEREFERENCE_ALIASES do not apply to this operation. This
parameter must be a private object or the DS_DEFAULT_CONTEXT
constant.

name

(Object(DS_C_NAME)). The current name of the target leaf entry. Any
aliases in the name are not dereferenced. The immediate superior must not
have any nonspecific subordinate references; if it does, the function can fail
with a DS_C_UPDATE_ERROR (DS_E_AFFECTS_MULTIPLE_DSAS).

A nonspecific subordinate reference is an indication that another DSA holds
some number of children, but does not indicate their RDNs. This means
that it is not possible to check the uniqueness of the requested new RDN
within a single DSA.

new_RDN
(Object(DS_C_RELATIVE_NAME)). The requested new RDN. If an attribute
value in the new RDN does not already exist in the entry (either as part of
the old RDN or as a nondistinguished value), the new value is added. If it
cannot be added, an error is reported.

delete_old_RDN
(Boolean). If this value is OM_TRUE, all attribute values that are in the old
RDN but not in the new RDN are deleted. If the value is OM_FALSE , the
old values should remain in the entry (not as part of the RDN). The value
must be OM_TRUE when a single value attribute in the RDN has its value
changed by the operation. If this operation removes the last attribute value
of an attribute, that attribute is deleted.

744 IBM DCE for AIX, Version 2.2: Application Development Reference

Output
invoke_id_return

(Integer). Not supported.

Description

The ds_modify_rdn() function is used to change the RDN of a leaf entry (either an
object entry or an alias entry).

Notes

CDS does not support ds_modify_rdn() , and returns with
DS_C_SERVICE_ERROR (DS_E_UNWILLING_TO_%PERFORM).

Return Values
DS_status

Indicates whether the name of the entry is changed (DS_SUCCESS is
returned); otherwise, an error is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

v DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

v DS_C_ATTRIBUTE_ERROR

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

v DS_C_UPDATE_ERROR

The DS_C_UPDATE_ERROR (DS_E_AFFECTS_MULTIPLE_DSAS) error, referred
to earlier in this reference page, need not be returned if there is local agreement
between the DSAs to allow the entry to be modified.

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

ds_modify_rdn(3xds)

Chapter 4. DCE Directory Service 745

ds_read

Purpose

Queries information on an entry by name

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_read(
OM_private_object session
OM_private_object context
OM_object name
OM_object selection
OM_private_object *result_return
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context
(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. Note that DS_SIZE_LIMIT does not apply to this operation. This
parameter must be a private object or the DS_DEFAULT_CONTEXT
constant.

name (Object(DS_C_NAME)). The name of the target object entry. Any aliases in
the name are dereferenced unless prohibited by the
DS_DONT_DEREFERENCE_ALIASES service control attribute of the
DS_C_CONTEXT object.

selection
(Object(DS_C_ENTRY_INFO_SELECTION)). Specifies what information
from the entry is requested. Information about no attributes, all attributes, or
just for a named set can be chosen. Attribute types are always returned, but
the attribute values need not be returned. The possible values of this
parameter are given in the IBM DCE for AIX, Version 2.2: Application
Development Guide—Directory Services.

Output
result_return

(Object(DS_C_READ_RESULT)). Upon successful completion, the result
contains the DN of the target object, and a flag indicating whether the result
came from the original entry or a copy, as well as any requested attribute
types and values. Attribute information is only returned if access rights are
sufficient.

invoke_id_return
(Integer). Not supported.

746 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The ds_read() function is used to extract information from an explicitly named entry.
It can also be used to verify a DN.

Notes

Although the user ideally is not aware whether naming operations are being
handled by GDS or CDS, there are some situations where naming results can differ
between the two services. (See the xds_intro(3xds) reference page for XDS
functions for the general differences between operations on GDS and CDS.)

Note the following issues for the ds_read() operation:

v Since CDS does not implement the X.500 schema rules, some CDS objects may
not contain mandatory attributes like object class and so on. In CDS, a read of
an alias object fails if the DS_A_ALIASED_OBJECT_NAME does not exist.
Instead, CDS returns with DS_C_NAME_ERROR (DS_E_NO_SUCH_OBJECT).

v In CDS, the naming attribute of an object is not stored in the attribute list for the
object. Thus in CDS, ds_read() does not return this attribute in the attribute list
for an object.

Return Values
DS_status

Indicates whether or not the read operation is completed. This is
DS_SUCCESS if completed.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_ATTRIBUTE

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

v DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

v DS_C_ATTRIBUTE_ERROR

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

ds_read(3xds)

Chapter 4. DCE Directory Service 747

Note that the directory error DS_C_ATTRIBUTE_ERROR
(DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE) is reported in GDS if an explicit list
of attributes is specified by the selection parameter, but none of them are present in
the entry. This error is not reported if any of the selected attributes are present.

A DS_C_SECURITY_ERROR (DS_E_INSUFFICIENT_ACCESS_RIGHTS) is only
reported where access rights preclude the reading of all requested attribute values.

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

ds_read(3xds)

748 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_remove_entry

Purpose

Removes a leaf entry from the DIT

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_remove_entry(
OM_private_object session
OM_private_object context
OM_object name
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION). The directory session against which this
operation is performed. This must be a private object.

context
(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. Note that DS_SIZE_LIMIT and
DS_DONT_DEREFERENCE_ALIASES do not apply to this operation. This
parameter must be a private object or the DS_DEFAULT_CONTEXT
constant.

name (Object(DS_C_NAME)). The name of the target object entry. Any aliases in
the name are not dereferenced.

Output
invoke_id_return

(Integer). Not supported.

Description

The ds_remove_entry() function is used to remove a leaf entry from the directory
(either an object entry or an alias entry).

Return Values
DS_status

Indicates whether or not the entry was deleted.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

Chapter 4. DCE Directory Service 749

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

v DS_E_TOO_MANY_OPERATIONS

The function can return the following directory errors:

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

v DS_C_UPDATE_ERROR

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

ds_remove_entry(3xds)

750 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_search

Purpose

Finds entries of interest in a part of the DIT

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_search(
OM_private_object session
OM_private_object context
OM_object name
OM_sint subset
OM_object filter
OM_boolean search_aliases
OM_object selection
OM_private_object *result_return
OM_sint *invoke_id_return);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context

(Object(DS_C_CONTEXT)). The directory context to be used for this
operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name

(Object(DS_C_NAME)). The name of the object entry that forms the base of
ds_search() . Any aliases in the name are dereferenced, unless
dereferencing is prohibited by the DS_DONT_DEREFERENCE_ALIASES
service control attribute of the DS_C_CONTEXT object.

subset (Integer). Specifies the portion of the DIT to be searched. Its value must be
one of the following:

v DS_BASE_OBJECT Searches just the given object entry.

v DS_ONE_LEVEL Searches just the immediate subordinates of the given
object entry.

v DS_WHOLE_SUBTREE Searches the given object and all its
subordinates.

filter (Object(DS_C_FILTER)). The filter is used to eliminate entries from the
search that are not wanted. Information is only returned on entries that
satisfy the filter. The DS_NO_FILTER constant can be used as the value of
this parameter if all entries are searched and none eliminated. This
corresponds to a filter with a DS_FILTER_TYPE value of DS_AND and no
values of the DS_FILTER or DS_FILTER_ITEM OM attributes.

search_aliases
(Boolean). Any aliases in the subordinate entries being searched are

Chapter 4. DCE Directory Service 751

dereferenced if the value of this parameter is OM_TRUE, and they are not
dereferenced if its value is OM_FALSE .

selection
(Object(DS_C_ENTRY_INFO_SELECTION)). Specifies what information
from the entry is requested. Information about no attributes, all attributes, or
just for a named set can be chosen. Attribute types are always returned, but
the attribute values need not be. The possible values of this parameter are
listed in the IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

Output
result_return

(Object(DS_C_SEARCH_RESULT)). If completion is successful, the result
contains the requested information from each object in the search space
that satisfied the filter. The DN of the target object is present if an alias is
dereferenced. In addition, there may be a partial outcome qualifier, which
indicates that the result is incomplete. It also explains why it is not complete
and how it could be completed.

invoke_id_return
(Integer). Not supported.

Description

The ds_search() function is used to search a portion of the directory and return
selected information from entries of interest. The information may be incomplete in
some circumstances; for example, if the results exceed DS_SIZE_LIMIT.

Notes

CDS does not support ds_search() , and it returns with DS_C_SERVICE_ERROR
(DS_E_UNWILLING_TO_PERFORM).

Return Values
DS_status

Takes the value DS_SUCCESS if the named object is located and takes an
error value if not.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

ds_search(3xds)

752 IBM DCE for AIX, Version 2.2: Application Development Reference

v DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

v DS_C_ATTRIBUTE_ERROR

v DS_C_NAME_ERROR

v DS_C_REFERRAL

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

Note that an unfiltered search of just the base object succeeds even if none of the
requested attributes are found, while the ds_read() call fails with the same selected
attributes.

A DS_C_SECURITY_ERROR (DS_E_INSUFFICIENT_ACCESS_RIGHTS) is only
reported where access rights preclude the reading of all requested attribute values.

This function can return a DS_C_COMMUNICATIONS_ERROR, as well as the
error constant DS_NO_WORKSPACE .

ds_search(3xds)

Chapter 4. DCE Directory Service 753

ds_shutdown

Purpose

Deletes a directory workspace

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_shutdown(
OM_workspace workspace);

Parameters

Input
workspace

Specifies the workspace (obtained from a call to ds_initialize()) that is to
be deleted.

Description

The ds_shutdown() function deletes the workspace established by ds_initialize()
and enables the service to release resources. All sessions associated with the
workspace must be terminated by calling ds_unbind() prior to calling
ds_shutdown() . No other directory function can reference the specified workspace
after it has been deleted. However, om_delete() and om_instance() may be called
if referring to public objects.

Return Values
DS_status

DS_SUCCESS if the function completed successfully; otherwise, it indicates
the error that has occurred.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SERVICE_ERROR (value DS_E_BUSY) if
ds_shutdown() is called before all directory connections have been released with
ds_unbind() .

This function can return the error constant DS_NO_WORKSPACE .

This function does not return a DS_C_COMMUNICATIONS_ERROR or any
directory errors.

Related Information

Functions: ds_initialize(3xds) .

754 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_unbind

Purpose

Unbinds from a directory session

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_unbind(
OM_private_object session);

Parameters

Input
session

(Object(DS_C_SESSION)). The directory session to be unbound. This must
be a private object. The value of the DS_FILE_DESCRIPTOR OM attribute
is DS_NO_VALID_FILE_DESCRIPTOR if the function succeeds. The
remaining OM attributes are unchanged.

Description

The ds_unbind() function terminates the given directory session and makes the
parameter unavailable for use with other interface functions (except ds_bind()).

The unbound session can be used again as a parameter to ds_bind() possibly after
modification by the OM functions. When it is no longer required, it must be deleted
by using the OM functions.

Return Values
DS_status

Takes the value DS_SUCCESS if the session parameter is unbound and
takes an error value if not.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

If ds_unbind() is called while there are outstanding directory operations (from other
threads), then this function will return a DS_SERVICE_ERROR with the value
DS_E_BUSY.

Chapter 4. DCE Directory Service 755

This function does not return a DS_C_COMMUNICATIONS_ERROR or any
directory errors. However, this function can return the error constant
DS_NO_WORKSPACE .

Related Information

Functions: ds_bind(3xds) .

ds_unbind(3xds)

756 IBM DCE for AIX, Version 2.2: Application Development Reference

ds_version

Purpose

Negotiates features of the interface and service

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_version(
DS_feature feature_list[]
OM_workspace workspace);

Parameters

Input
workspace

Specifies the workspace obtained from a call to om_initialize() for which
the features are to be negotiated. The features will be in effect for
operations that use the workspace or directory sessions associated with the
workspace.

Input/Output
feature_list[]

(DS_feature). On input contains an ordered sequence of features, each
represented by an object identifier. The sequence is terminated by an object
identifier having no components (a length of 0 (zero) and any value for the
data pointer.)

If the function completed successfully, an ordered sequence of boolean
values are returned, with the same number of elements as the feature_list[]
parameter. If OM_TRUE, each value indicates that the corresponding
feature is now part of the interface. If OM_FALSE , each value indicates that
the corresponding feature is not available.

This result is combined with the feature_list[] parameter as a single array
of structures of type DS_feature , which is defined as follows:
typedef struct
{
OM_object_identifier feature;
OM_boolean activated;
}
DS_feature;

Description

The ds_version() function negotiates features of the interface, which are
represented by object identifiers. The DS_BASIC_DIR_CONTENTS_PKG ,
DS_STRONG_AUTHENT_PKG , and the MHS_DIR_USER_PKG specified in the
IBM DCE for AIX, Version 2.2: Application Development Guide—Directory Services
are negotiable features in this specification. Features can also include vendor
extensions, such as the DSX_GDS_PKG, and new features in future versions of the
XDS specification. Versions are negotiated after a workspace is initialized with
ds_initialize() .

Chapter 4. DCE Directory Service 757

Return Values
DS_status

Takes the value DS_SUCCESS if the function completed successfully.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or the following
DS_C_LIBRARY_ERROR errors:

v DS_E_BAD_WORKSPACE

v DS_E_MISCELLANEOUS

This function does not return a DS_C_COMMUNICATIONS_ERROR or any
directory errors. However, this function can return the error constant
DS_NO_WORKSPACE .

ds_version(3xds)

758 IBM DCE for AIX, Version 2.2: Application Development Reference

encode_alt_addr

Purpose

Converts an alternate address attribute structure into an internal GDS format

Synopsis
#include <xom.h>
#include <xds.h>
#include <dce/d2dir.h>

int encode_alt_addr(
const D2_alt_addr *in
D2_str **out);

Parameters
in A pointer to an alternate address attribute in a structured format.

Description

The encode_alt_addr() converts an alternate address stored in a D2_alt_addr
structure into a linearized string that is stored in a structure of type D2_str . This
function is provided for use by DME applications. It converts a structured alternate
address attribute into a linear octet string for internal use by GDS.

The D2_alt_addr structure contains one field of type D2_str for storing the address,
followed by a structured field for a set of object identifiers. The structure D2_str
consists of the length of the address and a pointer to the start of the address (not
zero-terminated). The second component of D2_alt_addr contains the number of
object identifiers and the address of the first D2_obj_id structure. To store
additional object identifiers, the address of the first D2_obj_id structure has to be
increased by sizeof(D2_obj_id) bytes for each object identifier to be added.

The structure D2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier
is treated as an octet string; that means there is no BER conversion done by
encode_alt_addr() .

encode_alt_addr() will allocate memory for the encoded string. (*out) contains the
address of the memory area that should later be freed by the application.

Return Values
**out A pointer to the structure D2_str which stores the alternate address

attribute in an internal GDS format.

(*out)->d2_size will contain the length of the encoded octet string.

(*out)->d2_value will be a pointer to the beginning of the encoded octet
string. This string is not zero-terminated.

int

0 If successful.

−1 If unsuccessful (malloc() failure).

Chapter 4. DCE Directory Service 759

Related Information

Functions: decode_alt_addr(3xds) .

encode_alt_addr(3xds)

760 IBM DCE for AIX, Version 2.2: Application Development Reference

gds_decode_alt_addr

Purpose

Converts an alternate address attribute from internal GDS format to a structured
format

Synopsis
#include <xom.h>
#include <xds.h>
#include <dce/d2dir.h>

d2_ret_val gds_decode_alt_addr(
const D2_str *in
D2_alt_addr **out);

Parameters

Input
in A pointer to a D2_str structure that contains the alternate address attribute

in an internal GDS format.

Output
out A pointer to the structure D2_alt_addr that stores the alternate address

attribute in a structured format.

Description

The gds_decode_alt_addr() function converts a linearized string that is stored in a
structure D2_str into a structured alternate address format stored in a D2_alt_addr
structure. This function is provided for use by DME applications. It converts an
alternate address attribute from an internal GDS format (linear octet string) to a
structured format for application usage.

The in->d2_size parameter contains the length of the encoded octet
string;in->d2_value is a pointer to the beginning of the encoded octet string.

The gds_decode_alt_addr() function allocates memory for the structured alternate
address. The (*out) parameter contains the address of the memory area that should
later be freed by the application.

The D2_alt_addr structure contains one field D2_str for the address, followed by a
structured field for the set of object identifiers. The structure D2_str consists of the
length of the address and a pointer to the beginning of the address (not
zero-terminated). The second component of the D2_alt_addr contains the number
of object identifiers and the address of the first D2_obj_id structure. To read a set
of object identifiers, the address of the first D2_obj_id structure should be
increased by sizeof(D2_obj_id) bytes for each object identifier to be read.

The structure D2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier
is treated as an octet string; that means that gds_decode_alt_addr() does no BER
conversion for object identifiers.

Chapter 4. DCE Directory Service 761

Return Values
d2_ret_val

D2_NOERROR (that is, 0) if successful.

D2_ERROR (that is, -1), if unsuccessful (malloc() failure).

Related Information

Functions: gds_encode_alt_addr(3xds) .

gds_decode_alt_addr(3xds)

762 IBM DCE for AIX, Version 2.2: Application Development Reference

gds_encode_alt_addr

Purpose

Converts an alternate address attribute structure into an internal GDS format

Synopsis
#include <xom.h>#include <xds.h>#include <dce/d2dir.h>

d2_ret_val gds_encode_alt_addr(
const D2_alt_addr *in
D2_str **out);

Parameters

Input
in A pointer to an alternate address attribute in a structured format.

Output
out A pointer to the structure D2_str that stores the alternate address attribute

in an internal GDS format.

The (*out)->d2_size parameter will contain the length of the encoded octet
string; the (*out)->d2_value parameter will be a pointer to the beginning of
the encoded octet string. This string is not zero-terminated.

Description

The gds_encode_alt_addr() function converts an alternate address stored in a
D2_alt_addr structure into a linearized string that is stored in a structure of type
D2_str . This function is provided for use by DME applications. It converts a
structured alternate address attribute into a linear octet string for internal use by
GDS.

The D2_alt_addr structure contains one field of type D2_str for storing the address,
followed by a structured field for a set of object identifiers. The structure D2_str
consists of the length of the address and a pointer to the start of the address (not
zero-terminated). The second component of D2_alt_addr contains the number of
object identifiers and the address of the first D2_obj_id structure. To store
additional object identifiers, the address of the first D2_obj_id structure has to be
increased by sizeof(D2_obj_id) bytes for each object identifier to be added.

The structure D2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier
is treated as an octet string; that means there is no BER conversion done by
gds_encode_alt_addr() .

The gds_encode_alt_addr() function will allocate memory for the encoded string.
The (*out) parameter contains the address of the memory area that should later be
freed by the application.

Return Values
d2_ret_val

D2_NOERROR (that is, 0), if successful.

Chapter 4. DCE Directory Service 763

D2_ERROR (that is, -1), if unsuccessful (malloc() failure).

Related Information

Functions: gds_decode_alt_addr(3xds) .

gds_encode_alt_addr(3xds)

764 IBM DCE for AIX, Version 2.2: Application Development Reference

xds_intro

Purpose

Introduction to XDS header files

Description

There are nine XDS headers, as follows:

xds.h Contains definitions for the XDS functions and directory service package.

xdsbdcp.h
Contains definitions for the basic directory contents package.

xdssap.h
Contains definitions for the strong authentication package.

xdscds.h
Contains definitions for the cell directory service.

xdsdme.h
Contains definitions for the DME specific directory object and attribute.

xdsgds.h
Contains definitions for the global directory service package.

xdsmdup.h
Contains definitions for the MHS directory user package.

xmhp.h
Contains definitions for the MHS directory objects/attributes.

xmsga.h
Contains definitions for the message store general attributes.

The xds.h header file is a mandatory include for all applications using the XDS API.

The xdsbdcp.h ,xdsmdup.h , and xdssap.h headers are part of the X/Open XDS
specifications. They are required when using the basic directory contents package,
MHS directory user package, and strong authentication package respectively.

The xdsgds.h and xdscds.h headers are DCE extensions to the XDS API. The
xdsgds.h header is required when using the GDS package. The xdscds.h header
is required when using CDS.

The xmhp.h and xmsga.h headers are required when using the MHS directory
user package.

The xdsdme.h header is required when using the DME specific directory object
class and attribute.

Chapter 4. DCE Directory Service 765

xds.h

Purpose

Definitions for the directory service package

Synopsis

#include <xom.h>
#include <xds.h>

Description

The xds.h header declares the interface functions, the structures passed to and
from those functions, and the defined constants used by the functions and
structures.

All application programs that include this header must first include the xom.h object
management header.
#ifndef XDS_HEADER
#define XDS_HEADER

/* DS package object identifier */

/* { iso(1) identified-organization(3) icd-ecma(12)
member-company(2) dec(1011) xopen(28) dsp(0) } */

#define OMP_O_DS_SERVICE_PKG "\x2B\x0C\x02\x87\x73\x1C\x00"

/*Defined constants */

/* Intermediate object identifier macro */

#define dsP_c(X) OMP_O_DS_SERVICE_PKG #X

/* OM class names (prefixed by DS_C_) */

/* Every application program which makes use of a class or other */
/* Object Identifier must explicitly import it into every */
/* compilation unit (C source program) which uses it. Each such */
/* class or Object Identifier name must be explicitly exported */
/* from just one compilation unit. */

/* In the header file, OM class constants are prefixed with the */
/* OMP_O prefix to denote that they are OM classes. However, */
/* when using the OM_IMPORT and OM_EXPORT macros, the base */
/* names (without the OMP_O prefix) should be used. */
/* For example: */
/* OM_IMPORT (DS_C_AVA) */

#define OMP_O_DS_C_ABANDON_FAILED dsP_c(\x85\x3D)
#define OMP_O_DS_C_ACCESS_POINT dsP_c(\x85\x3E)
#define OMP_O_DS_C_ADDRESS dsP_c(\x85\x3F)
#define OMP_O_DS_C_ATTRIBUTE dsP_c(\x85\x40)
#define OMP_O_DS_C_ATTRIBUTE_ERROR dsP_c(\x85\x41)
#define OMP_O_DS_C_ATTRIBUTE_LIST dsP_c(\x85\x42)
#define OMP_O_DS_C_ATTRIBUTE_PROBLEM dsP_c(\x85\x43)
#define OMP_O_DS_C_AVA dsP_c(\x85\x44)
#define OMP_O_DS_C_COMMON_RESULTS dsP_c(\x85\x45)

766 IBM DCE for AIX, Version 2.2: Application Development Reference

#define OMP_O_DS_C_COMMUNICATIONS_ERROR dsP_c(\x85\x46)
#define OMP_O_DS_C_COMPARE_RESULT dsP_c(\x85\x47)
#define OMP_O_DS_C_CONTEXT dsP_c(\x85\x48)
#define OMP_O_DS_C_CONTINUATION_REF dsP_c(\x85\x49)
#define OMP_O_DS_C_DS_DN dsP_c(\x85\x4A)
#define OMP_O_DS_C_DS_RDN dsP_c(\x85\x4B)
#define OMP_O_DS_C_ENTRY_INFO dsP_c(\x85\x4C)
#define OMP_O_DS_C_ENTRY_INFO_SELECTION dsP_c(\x85\x4D)
#define OMP_O_DS_C_ENTRY_MOD dsP_c(\x85\x4E)
#define OMP_O_DS_C_ENTRY_MOD_LIST dsP_c(\x85\x4F)
#define OMP_O_DS_C_ERROR dsP_c(\x85\x50)
#define OMP_O_DS_C_EXT dsP_c(\x85\x51)
#define OMP_O_DS_C_FILTER dsP_c(\x85\x52)
#define OMP_O_DS_C_FILTER_ITEM dsP_c(\x85\x53)
#define OMP_O_DS_C_LIBRARY_ERROR dsP_c(\x85\x54)
#define OMP_O_DS_C_LIST_INFO dsP_c(\x85\x55)
#define OMP_O_DS_C_LIST_INFO_ITEM dsP_c(\x85\x56)
#define OMP_O_DS_C_LIST_RESULT dsP_c(\x85\x57)
#define OMP_O_DS_C_NAME dsP_c(\x85\x58)
#define OMP_O_DS_C_NAME_ERROR dsP_c(\x85\x59)
#define OMP_O_DS_C_OPERATION_PROGRESS dsP_c(\x85\x5A)
#define OMP_O_DS_C_PARTIAL_OUTCOME_QUAL dsP_c(\x85\x5B)
#define OMP_O_DS_C_PRESENTATION_ADDRESS dsP_c(\x85\x5C)
#define OMP_O_DS_C_READ_RESULT dsP_c(\x85\x5D)
#define OMP_O_DS_C_REFERRAL dsP_c(\x85\x5E)
#define OMP_O_DS_C_RELATIVE_NAME dsP_c(\x85\x5F)
#define OMP_O_DS_C_SEARCH_INFO dsP_c(\x85\x60)
#define OMP_O_DS_C_SEARCH_RESULT dsP_c(\x85\x61)
#define OMP_O_DS_C_SECURITY_ERROR dsP_c(\x85\x62)
#define OMP_O_DS_C_SERVICE_ERROR dsP_c(\x85\x63)
#define OMP_O_DS_C_SESSION dsP_c(\x85\x64)
#define OMP_O_DS_C_SYSTEM_ERROR dsP_c(\x85\x65)
#define OMP_O_DS_C_UPDATE_ERROR dsP_c(\x85\x66)

/* OM attribute names */

#define DS_ACCESS_POINTS ((OM_type) 701)
#define DS_ADDRESS ((OM_type) 702)
#define DS_AE_TITLE ((OM_type) 703)
#define DS_ALIASED_RDNS ((OM_type) 704)
#define DS_ALIAS_DEREFERENCED ((OM_type) 705)
#define DS_ALIAS_ENTRY ((OM_type) 706)
#define DS_ALL_ATTRIBUTES ((OM_type) 707)
#define DS_ASYNCHRONOUS ((OM_type) 708)
#define DS_ATTRIBUTES ((OM_type) 709)
#define DS_ATTRIBUTES_SELECTED ((OM_type) 710)
#define DS_ATTRIBUTE_TYPE ((OM_type) 711)
#define DS_ATTRIBUTE_VALUE ((OM_type) 712)
#define DS_ATTRIBUTE_VALUES ((OM_type) 713)
#define DS_AUTOMATIC_CONTINUATION ((OM_type) 714)
#define DS_AVAS ((OM_type) 715)
#define DS_CHAINING_PROHIB ((OM_type) 716)
#define DS_CHANGES ((OM_type) 717)
#define DS_CRIT ((OM_type) 718)
#define DS_DONT_DEREFERENCE_ALIASES ((OM_type) 719)
#define DS_DONT_USE_COPY ((OM_type) 720)
#define DS_DSA_ADDRESS ((OM_type) 721)
#define DS_DSA_NAME ((OM_type) 722)
#define DS_ENTRIES ((OM_type) 723)
#define DS_ENTRY ((OM_type) 724)
#define DS_EXT ((OM_type) 725)
#define DS_FILE_DESCRIPTOR ((OM_type) 726)
#define DS_FILTERS ((OM_type) 727)
#define DS_FILTER_ITEMS ((OM_type) 728)
#define DS_FILTER_ITEM_TYPE ((OM_type) 729)
#define DS_FILTER_TYPE ((OM_type) 730)

xds.h(4xds)

Chapter 4. DCE Directory Service 767

#define DS_FINAL_SUBSTRING ((OM_type) 731)
#define DS_FROM_ENTRY ((OM_type) 732)
#define DS_IDENT ((OM_type) 733)
#define DS_INFO_TYPE ((OM_type) 734)
#define DS_INITIAL_SUBSTRING ((OM_type) 735)
#define DS_ITEM_PARAMETERS ((OM_type) 736)
#define DS_LIMIT_PROBLEM ((OM_type) 737)
#define DS_LIST_INFO ((OM_type) 738)
#define DS_LOCAL_SCOPE ((OM_type) 739)
#define DS_MATCHED ((OM_type) 740)
#define DS_MOD_TYPE ((OM_type) 741)
#define DS_NAME_RESOLUTION_PHASE ((OM_type) 742)
#define DS_NEXT_RDN_TO_BE_RESOLVED ((OM_type) 743)
#define DS_N_ADDRESSES ((OM_type) 744)
#define DS_OBJECT_NAME ((OM_type) 745)
#define DS_OPERATION_PROGRESS ((OM_type) 746)
#define DS_PARTIAL_OUTCOME_QUAL ((OM_type) 747)
#define DS_PERFORMER ((OM_type) 748)
#define DS_PREFER_CHAINING ((OM_type) 749)
#define DS_PRIORITY ((OM_type) 750)
#define DS_PROBLEM ((OM_type) 751)
#define DS_PROBLEMS ((OM_type) 752)
#define DS_P_SELECTOR ((OM_type) 753)
#define DS_RDN ((OM_type) 754)
#define DS_RDNS ((OM_type) 755)
#define DS_RDNS_RESOLVED ((OM_type) 756)
#define DS_REQUESTOR ((OM_type) 757)
#define DS_SCOPE_OF_REFERRAL ((OM_type) 758)
#define DS_SEARCH_INFO ((OM_type) 759)
#define DS_SIZE_LIMIT ((OM_type) 760)
#define DS_SUBORDINATES ((OM_type) 761)
#define DS_S_SELECTOR ((OM_type) 762)
#define DS_TARGET_OBJECT ((OM_type) 763)
#define DS_TIME_LIMIT ((OM_type) 764)
#define DS_T_SELECTOR ((OM_type) 765)
#define DS_UNAVAILABLE_CRIT_EXT ((OM_type) 766)
#define DS_UNCORRELATED_LIST_INFO ((OM_type) 767)
#define DS_UNCORRELATED_SEARCH_INFO ((OM_type) 768)
#define DS_UNEXPLORED ((OM_type) 769)

/* DS_Filter_Item_Type: */

enum DS_Filter_Item_Type {
DS_EQUALITY = 0,
DS_SUBSTRINGS = 1,
DS_GREATER_OR_EQUAL = 2,
DS_LESS_OR_EQUAL = 3,
DS_PRESENT = 4,
DS_APPROXIMATE_MATCH = 5

};

/* DS_Filter_Type: */

enum DS_Filter_Type {
DS_ITEM = 0,
DS_AND = 1,
DS_OR = 2,
DS_NOT = 3

};

/* DS_Information_Type: */

enum DS_Information_Type {
DS_TYPES_ONLY = 0,

xds.h(4xds)

768 IBM DCE for AIX, Version 2.2: Application Development Reference

DS_TYPES_AND_VALUES = 1
};

/* DS_Limit_Problem: */

enum DS_Limit_Problem {
DS_NO_LIMIT_EXCEEDED = -1,
DS_TIME_LIMIT_EXCEEDED = 0,
DS_SIZE_LIMIT_EXCEEDED = 1,
DS_ADMIN_LIMIT_EXCEEDED = 2

};

/* DS_Modification_Type: */

enum DS_Modification_Type {
DS_ADD_ATTRIBUTE = 0,
DS_REMOVE_ATTRIBUTE = 1,
DS_ADD_VALUES = 2,
DS_REMOVE_VALUES = 3

};

/* DS_Name_Resolution_Phase: */

enum DS_Name_Resolution_Phase {
DS_NOT_STARTED = 1,
DS_PROCEEDING = 2,
DS_COMPLETED = 3

};

/* DS_Priority: */

enum DS_Priority {
DS_LOW = 0,
DS_MEDIUM = 1,
DS_HIGH = 2

};

/* DS_Problem: */

enum DS_Problem {
DS_E_ADMIN_LIMIT_EXCEEDED = 1,
DS_E_AFFECTS_MULTIPLE_DSAS = 2,
DS_E_ALIAS_DEREFERENCING_PROBLEM = 3,
DS_E_ALIAS_PROBLEM = 4,
DS_E_ATTRIBUTE_OR_VALUE_EXISTS = 5,
DS_E_BAD_ARGUMENT = 6,
DS_E_BAD_CLASS = 7,
DS_E_BAD_CONTEXT = 8,
DS_E_BAD_NAME = 9,
DS_E_BAD_SESSION = 10,
DS_E_BAD_WORKSPACE = 11,
DS_E_BUSY = 12,
DS_E_CANNOT_ABANDON = 13,
DS_E_CHAINING_REQUIRED = 14,
DS_E_COMMUNICATIONS_PROBLEM = 15,
DS_E_CONSTRAINT_VIOLATION = 16,
DS_E_DIT_ERROR = 17,
DS_E_ENTRY_EXISTS = 18,
DS_E_INAPPROP_AUTHENTICATION = 19,
DS_E_INAPPROP_MATCHING = 20,
DS_E_INSUFFICIENT_ACCESS_RIGHTS = 21,
DS_E_INVALID_ATTRIBUTE_SYNTAX = 22,

xds.h(4xds)

Chapter 4. DCE Directory Service 769

DS_E_INVALID_ATTRIBUTE_VALUE = 23,
DS_E_INVALID_CREDENTIALS = 24,
DS_E_INVALID_REF = 25,
DS_E_INVALID_SIGNATURE = 26,
DS_E_LOOP_DETECTED = 27,
DS_E_MISCELLANEOUS = 28,
DS_E_MISSING_TYPE = 29,
DS_E_MIXED_SYNCHRONOUS = 30,
DS_E_NAMING_VIOLATION = 31,
DS_E_NO_INFO = 32,
DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE = 33,
DS_E_NO_SUCH_OBJECT = 34,
DS_E_NO_SUCH_OPERATION = 35,
DS_E_NOT_ALLOWED_ON_NON_LEAF = 36,
DS_E_NOT_ALLOWED_ON_RDN = 37,
DS_E_NOT_SUPPORTED = 38,
DS_E_OBJECT_CLASS_MOD_PROHIB = 39,
DS_E_OBJECT_CLASS_VIOLATION = 40,
DS_E_OUT_OF_SCOPE = 41,
DS_E_PROTECTION_REQUIRED = 42,
DS_E_TIME_LIMIT_EXCEEDED = 43,
DS_E_TOO_LATE = 44,
DS_E_TOO_MANY_OPERATIONS = 45,
DS_E_TOO_MANY_SESSIONS = 46,
DS_E_UNABLE_TO_PROCEED = 47,
DS_E_UNAVAILABLE = 48,
DS_E_UNAVAILABLE_CRIT_EXT = 49,
DS_E_UNDEFINED_ATTRIBUTE_TYPE = 50,
DS_E_UNWILLING_TO_PERFORM = 51
};

/* DS_Scope_Of_Referral: */

enum DS_Scope_Of_Referral {
DS_DMD = 0,
DS_COUNTRY = 1

};

/* Typedefs */

typedef OM_private_object DS_status;

typedef struct
{
OM_object_identifier feature;
OM_boolean activated;

} DS_feature;

/* OM_object constants */

#define DS_DEFAULT_CONTEXT ((OM_object) 0)
#define DS_DEFAULT_SESSION ((OM_object) 0)
#define DS_OPERATION_NOT_STARTED ((OM_object) 0)
#define DS_NO_FILTER ((OM_object) 0)
#define DS_NULL_RESULT ((OM_object) 0)
#define DS_SELECT_ALL_TYPES ((OM_object) 1)
#define DS_SELECT_ALL_TYPES_AND_VALUES ((OM_object) 2)
#define DS_SELECT_NO_ATTRIBUTES ((OM_object) 0)
#define DS_SUCCESS ((DS_status) 0)
#define DS_NO_WORKSPACE ((DS_status) 1)

/* ds_search() subset */

xds.h(4xds)

770 IBM DCE for AIX, Version 2.2: Application Development Reference

#define DS_BASE_OBJECT ((OM_sint) 0)
#define DS_ONE_LEVEL ((OM_sint) 1)
#define DS_WHOLE_SUBTREE ((OM_sint) 2)

/* ds_receive_result() completion_flag_return */

#define DS_COMPLETED_OPERATION ((OM_uint) 1)
#define DS_OUTSTANDING_OPERATIONS ((OM_uint) 2)
#define DS_NO_OUTSTANDING_OPERATION ((OM_uint) 3)

/* asynchronous operations limit (implementation-defined) */

#define DS_MAX_OUTSTANDING_OPERATIONS 0 /* no asynchronous */
/* operation */

/*asynchronous event posting */

#define DS_NO_VALID_FILE_DESCRIPTOR -1
/* Function Prototypes */

DS_status ds_abandon(
OM_private_object session,
OM_sint invoke_id

);

DS_status ds_add_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object entry,
OM_sint *invoke_id_return

);

DS_status ds_bind(
OM_object session,
OM_workspace workspace,
OM_private_object *bound_session_return

);

DS_status ds_compare(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object ava,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

OM_workspace ds_initialize(
void

);

DS_status ds_list(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_modify_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object changes,
OM_sint *invoke_id_return

xds.h(4xds)

Chapter 4. DCE Directory Service 771

);
DS_status ds_modify_rdn(

OM_private_object session,
OM_private_object context,
OM_object name,
OM_object new_RDN,
OM_boolean delete_old_RDN,
OM_sint *invoke_id_return

);

DS_status ds_read(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object selection,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_receive_result(
OM_private_object session,
OM_uint *completion_flag_return,
DS_status *operation_status_return,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_remove_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint *invoke_id_return

);

DS_status ds_search(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint subset,
OM_object filter,
OM_boolean search_aliases,
OM_object selection,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_shutdown(
OM_workspace workspace

);
DS_status ds_unbind(

OM_private_object session
);

DS_status ds_version(
DS_feature feature_list[]
OM_workspace workspace

);

#endif /* XDS_HEADER */

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development

xds.h(4xds)

772 IBM DCE for AIX, Version 2.2: Application Development Reference

Guide—Directory Services.

Chapter 4. DCE Directory Service 773

xdsbdcp.h

Purpose

Definitions for the basic directory contents package

Synopsis

#include <xom.h>#include
<xds.h>#include
<xdsbdcp.h>

Description

The xdsbdcp.h header defines the object identifiers of directory attribute types and
object classes supported by the basic directory contents package. It also defines
OM classes used to represent the values of the attribute types.

All application programs that include this header must first include the xom.h object
management header and the xds.h header.

Object identifiers are defined for the (directory) attribute types that are specified in
the following list. The actual values of the object identifiers are listed in the IBM
DCE for AIX, Version 2.2: Application Development Guide—Directory Services.
#ifndef XDSBDCP_HEADER
#define XDSBDCP_HEADER

/* BDC package object identifier */

/* { iso(1) identified-organization(3) icd-ecma(12)
member-company(2) dec(1011) xopen(28) bdcp(1) } */

#define OMP_O_DS_BASIC_DIR_CONTENTS_PKG \
"\x2B\x0C\x02\x87\x73\x1c\x01"

/* Intermediate object identifier macros */

#ifndef dsP_attributeType /* joint-iso-ccitt(2) */
/* ds(5) attributeType(4) ... */

#define dsP_attributeType (X) ("\x55\x04" #X)
#endif

#ifndef dsP_objectClass /* joint-iso-ccitt(2) */
/* ds(5) objectClass(6) ... */

#define dsP_objectClass(X) ("\x55\x06" #X)
#endif

#define dsP_bdcp_c(X) (OMP_O_DS_BASIC_DIR_CONTENTS_PKG #X)

/* OM class names (prefixed by DS_C_) */
/* Directory attribute types (prefixed by DS_A_) */
/* Directory object classes (prefixed by DS_O_) */

/* Every application program which makes use of a class or */
/* other Object Identifier must explicitly import it into */
/* every compilation unit (C source program) which uses it. */
/* Each such class or Object Identifier name must be */
/* explicitly exported from just one compilation unit. */

774 IBM DCE for AIX, Version 2.2: Application Development Reference

/* In the header file, OM class constants are prefixed with */
/* the OMP_O prefix to denote that they are OM classes. */
/* However, when using the OM_IMPORT and OM_EXPORT macros, */
/* the base names (without the OMP_O prefix) should be used.*/
/* For example: */
/* OM_IMPORT (DS_O_COUNTRY) */

/* Directory attribute types */

#define OMP_O_DS_A_ALIASED_OBJECT_NAME dsP_attributeType(\x01)
#define OMP_O_DS_A_BUSINESS_CATEGORY dsP_attributeType(\x0F)
#define OMP_O_DS_A_COMMON_NAME dsP_attributeType(\x03)
#define OMP_O_DS_A_COUNTRY_NAME dsP_attributeType(\x06)
#define OMP_O_DS_A_DESCRIPTION dsP_attributeType(\x0D)
#define OMP_O_DS_A_DEST_INDICATOR dsP_attributeType(\x1B)
#define OMP_O_DS_A_FACSIMILE_PHONE_NBR dsP_attributeType(\x17)
#define OMP_O_DS_A_INTERNAT_ISDN_NBR dsP_attributeType(\x19)
#define OMP_O_DS_A_KNOWLEDGE_INFO dsP_attributeType(\x02)
#define OMP_O_DS_A_LOCALITY_NAME dsP_attributeType(\x07)
#define OMP_O_DS_A_MEMBER dsP_attributeType(\x1F)
#define OMP_O_DS_A_OBJECT_CLASS dsP_attributeType(\x00)
#define OMP_O_DS_A_ORG_NAME dsP_attributeType(\x0A)
#define OMP_O_DS_A_ORG_UNIT_NAME dsP_attributeType(\x0B)
#define OMP_O_DS_A_OWNER dsP_attributeType(\x20)
#define OMP_O_DS_A_PHYS_DELIV_OFF_NAME dsP_attributeType(\x13)
#define OMP_O_DS_A_POST_OFFICE_BOX dsP_attributeType(\x12)
#define OMP_O_DS_A_POSTAL_ADDRESS dsP_attributeType(\x10)
#define OMP_O_DS_A_POSTAL_CODE dsP_attributeType(\x11)
#define OMP_O_DS_A_PREF_DELIV_METHOD dsP_attributeType(\x1C)
#define OMP_O_DS_A_PRESENTATION_ADDRESS dsP_attributeType(\x1D)
#define OMP_O_DS_A_REGISTERED_ADDRESS dsP_attributeType(\x1A)
#define OMP_O_DS_A_ROLE_OCCUPANT dsP_attributeType(\x21)
#define OMP_O_DS_A_SEARCH_GUIDE dsP_attributeType(\x0E)
#define OMP_O_DS_A_SEE_ALSO dsP_attributeType(\x22)
#define OMP_O_DS_A_SERIAL_NBR dsP_attributeType(\x05)
#define OMP_O_DS_A_STATE_OR_PROV_NAME dsP_attributeType(\x08)
#define OMP_O_DS_A_STREET_ADDRESS dsP_attributeType(\x09)
#define OMP_O_DS_A_SUPPORT_APPLIC_CONTEXT dsP_attributeType(\x1E)
#define OMP_O_DS_A_SURNAME dsP_attributeType(\x04)
#define OMP_O_DS_A_PHONE_NBR dsP_attributeType(\x14)
#define OMP_O_DS_A_TELETEX_TERM_IDENT dsP_attributeType(\x16)
#define OMP_O_DS_A_TELEX_NBR dsP_attributeType(\x15)
#define OMP_O_DS_A_TITLE dsP_attributeType(\x0C)
#define OMP_O_DS_A_USER_PASSWORD dsP_attributeType(\x23)
#define OMP_O_DS_A_X121_ADDRESS dsP_attributeType(\x18)

/* Directory object classes */

#define OMP_O_DS_O_ALIAS dsP_objectClass(\x01)
#define OMP_O_DS_O_APPLIC_ENTITY dsP_objectClass(\x0C)
#define OMP_O_DS_O_APPLIC_PROCESS dsP_objectClass(\x0B)
#define OMP_O_DS_O_COUNTRY dsP_objectClass(\x02)
#define OMP_O_DS_O_DEVICE dsP_objectClass(\x0E)
#define OMP_O_DS_O_DSA dsP_objectClass(\x0D)
#define OMP_O_DS_O_GROUP_OF_NAMES dsP_objectClass(\x09)
#define OMP_O_DS_O_LOCALITY dsP_objectClass(\x03)
#define OMP_O_DS_O_ORG dsP_objectClass(\x04)
#define OMP_O_DS_O_ORG_PERSON dsP_objectClass(\x07)
#define OMP_O_DS_O_ORG_ROLE dsP_objectClass(\x08)
#define OMP_O_DS_O_ORG_UNIT dsP_objectClass(\x05)
#define OMP_O_DS_O_PERSON dsP_objectClass(\x06)
#define OMP_O_DS_O_RESIDENTIAL_PERSON dsP_objectClass(\x0A)
#define OMP_O_DS_O_TOP dsP_objectClass(\x00)

xdsbdcp.h(4xds)

Chapter 4. DCE Directory Service 775

/* OM class names */

#define OMP_O_DS_C_FACSIMILE_PHONE_NBR dsP_bdcp_c(\x86\x21)
#define OMP_O_DS_C_POSTAL_ADDRESS dsP_bdcp_c(\x86\x22)
#define OMP_O_DS_C_SEARCH_CRITERION dsP_bdcp_c(\x86\x23)
#define OMP_O_DS_C_SEARCH_GUIDE dsP_bdcp_c(\x86\x24)
#define OMP_O_DS_C_TELETEX_TERM_IDENT dsP_bdcp_c(\x86\x25)
#define OMP_O_DS_C_TELEX_NBR dsP_bdcp_c(\x86\x26)

/* OM attribute names */

#define DS_ANSWERBACK ((OM_type) 801)
#define DS_COUNTRY_CODE ((OM_type) 802)
#define DS_CRITERIA ((OM_type) 803)
#define DS_OBJECT_CLASS ((OM_type) 804)
#define DS_PARAMETERS ((OM_type) 805)
#define DS_POSTAL_ADDRESS ((OM_type) 806)
#define DS_PHONE_NBR ((OM_type) 807)
#define DS_TELETEX_TERM ((OM_type) 808)
#define DS_TELEX_NBR ((OM_type) 809)
/* DS_Preferred_Delivery_Method: */

#define DS_ANY_DELIV_METHOD 0
#define DS_MHS_DELIV 1
#define DS_PHYS_DELIV 2
#define DS_TELEX_DELIV 3
#define DS_TELETEX_DELIV 4
#define DS_G3_FACSIMILE_DELIV 5
#define DS_G4_FACSIMILE_DELIV 6
#define DS_IA5_TERMINAL_DELIV 7
#define DS_VIDEOTEX_DELIV 8
#define DS_PHONE_DELIV 9

/* Upper bounds on string lengths and the number of repeated OM */
/* attribute values */

#define DS_VL_A_BUSINESS_CATEGORY ((OM_value_length) 128)
#define DS_VL_A_COMMON_NAME ((OM_value_length) 64)
#define DS_VL_A_DESCRIPTION ((OM_value_length) 1024)
#define DS_VL_A_DEST_INDICATOR ((OM_value_length) 128)
#define DS_VL_A_INTERNAT_ISDN_NBR ((OM_value_length) 16)
#define DS_VL_A_LOCALITY_NAME ((OM_value_length) 128)
#define DS_VL_A_ORG_NAME ((OM_value_length) 64)
#define DS_VL_A_ORG_UNIT_NAME ((OM_value_length) 64)
#define DS_VL_A_PHYS_DELIV_ OFF_NAME ((OM_value_length) 128)
#define DS_VL_A_POST_OFFICE_BOX ((OM_value_length) 40)
#define DS_VL_A_POSTAL_CODE ((OM_value_length) 40)
#define DS_VL_A_SERIAL_NBR ((OM_value_length) 64)
#define DS_VL_A_STATE_OR_PROV_NAME ((OM_value_length) 128)
#define DS_VL_A_STREET_ADDRESS ((OM_value_length) 128)
#define DS_VL_A_SURNAME ((OM_value_length) 64)
#define DS_VL_A_PHONE_NBR ((OM_value_length) 32)
#define DS_VL_A_TITLE ((OM_value_length) 64)
#define DS_VL_A_USER_PASSWORD ((OM_value_length) 128)
#define DS_VL_A_X121_ADDRESS ((OM_value_length) 15)
#define DS_VL_ANSWERBACK ((OM_value_length) 8)
#define DS_VL_COUNTRY_CODE ((OM_value_length) 4)
#define DS_VL_POSTAL_ADDRESS ((OM_value_length) 30)
#define DS_VL_PHONE_NBR ((OM_value_length) 32)
#define DS_VL_TELETEX_TERM ((OM_value_length) 1024)
#define DS_VL_TELEX_NBR ((OM_value_length) 14)
#define DS_VN_POSTAL_ADDRESS ((OM_value_length) 6)

#endif /* XDSBDCP_HEADER */

xdsbdcp.h(4xds)

776 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

xdsbdcp.h(4xds)

Chapter 4. DCE Directory Service 777

xdscds.h

Purpose

Definitions for the Cell Directory Service (CDS)

Synopsis

#include <xom.h>#include
<xds.h>#include
<xdscds.h>

Description

The xdscds.h header declares the object identifiers of directory attribute types
supported by CDS.

All application programs that include this header must first include the xom.h object
management header and the xds.h header.
#ifndef XDSCDS_HEADER
#define XDSCDS_HEADER

/* iso(1) identified-organization(3) osf(22) dce(1) cds(3)
= "\x2B\x16\x01\x03" */

/* Cell Directory Service attribute types */

#define OMP_O_DSX_A_CDS_Members "\x2B\x16\x01\x03\x0A"
#define OMP_O_DSX_A_CDS_GroupRevoke "\x2B\x16\x01\x03\x0B"
#define OMP_O_DSX_A_CDS_CTS "\x2B\x16\x01\x03\x0C"
#define OMP_O_DSX_A_CDS_UTS "\x2B\x16\x01\x03\x0D"
#define OMP_O_DSX_A_CDS_ACS "\x2B\x16\x01\x03\x0E"
#define OMP_O_DSX_A_CDS_Class "\x2B\x16\x01\x03\x0F"
#define OMP_O_DSX_A_CDS_ClassVersion "\x2B\x16\x01\x03\x10"
#define OMP_O_DSX_A_CDS_ObjectUID "\x2B\x16\x01\x03\x11"
#define OMP_O_DSX_A_CDS_Address "\x2B\x16\x01\x03\x12"
#define OMP_O_DSX_A_CDS_Replicas "\x2B\x16\x01\x03\x13"
#define OMP_O_DSX_A_CDS_AllUpTo "\x2B\x16\x01\x03\x14"
#define OMP_O_DSX_A_CDS_Convergence "\x2B\x16\x01\x03\x15"
#define OMP_O_DSX_A_CDS_InCHName "\x2B\x16\x01\x03\x16"
#define OMP_O_DSX_A_CDS_ParentPointer "\x2B\x16\x01\x03\x17"
#define OMP_O_DSX_A_CDS_DirecoryVersion "\x2B\x16\x01\x03\x18"
#define OMP_O_DSX_A_CDS_UpgradeTo "\x2B\x16\x01\x03\x19"
#define OMP_O_DSX_A_CDS_LinkTarget "\x2B\x16\x01\x03\x1B"
#define OMP_O_DSX_A_CDS_LinkTimeout "\x2B\x16\x01\x03\x1C"
#define OMP_O_DSX_A_CDS_Towers "\x2B\x16\x01\x03\x1E"
#define OMP_O_DSX_A_CDS_CHName "\x2B\x16\x01\x03\x20"
#define OMP_O_DSX_A_CDS_CHLastAddress "\x2B\x16\x01\x03\x22"
#define OMP_O_DSX_A_CDS_CHUpPointers "\x2B\x16\x01\x03\x23"
#define OMP_O_DSX_A_CDS_CHState "\x2B\x16\x01\x03\x24"

/* iso(1) identified-organization(3) osf(22) dce(1) gds(2)
= "\x2B\x16\x01\x02" */

#define OMP_O_DSX_UUID "\x2B\x16\x01\x01\x01"
#define OMP_O_DSX_TYPELESS_RDN "\x2B\x16\x01\x01\x02"
#define OMP_O_DSX_NORMAL_SIMPLE_NAME "\x2B\x16\x01\x03\x00"
#define OMP_O_DSX_BINARY_SIMPLE_NAME "\x2B\x16\x01\x03\x02"

#endif /*XDSCDS_HEADER*/

778 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

xdscds.h(4xds)

Chapter 4. DCE Directory Service 779

xdsdme.h

Purpose

Definitions for the DME NMO requirements.

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdsdme.h>

Description

The xdsdme.h header declares the object identifiers of directory attribute types and
directory object classes supported for DME use.

All application programs that include this header must first include the xom.h object
management header and the xds.h header.
#ifndef XDSDME_HEADER
#define XDSDME_HEADER

/* Intermediate object identifier macros */

/* iso(1) identified-organization(3) osf(22) dme(2)
components(1) nmo(2) dmeNmoAttributeType(1) ...

*/

#define dsP_NMOattributeType(X) "\x2B\x16\x02\x01\x02\x01" #X

/* iso(1) identified-organization(3) osf(22) dme(2)
components(1) nmo(2) dmeNmoObjectClass(2) ...

*/

#define dsP_NMOobjectClass(X) "\x2B\x16\x02\x01\x02\x02" #X

/* Directory attribute types (prefixed by DSX_A_)
Directory object classes (prefixed by DSX_O_)

*/

/* Directory attribute types */

#define OMP_O_DSX_A_ALTERNATE_ADDRESS dsP_NMOattributeType(\x01)
/* Directory object classes */

#define OMP_O_DSX_O_DME_NMO_AGENT dsP_NMOobjectClass(\x01)

#endif /* XDSDME_HEADER */

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Directory
Services.

780 IBM DCE for AIX, Version 2.2: Application Development Reference

xdsgds.h

Purpose

Definitions for the global directory service package

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdsgds.h>

Description

The xdsgds.h header declares the object identifiers of directory attribute types and
directory object classes supported by the GDS package. It also defines OM classes
used to represent the values of the attribute types.

All application programs that include this header must first include the xom.h object
management header and the xds.h header.
#ifndef XDSGDS_HEADER
#define XDSGDS_HEADER

/* GDS package object identifier */
/* iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) siemens-units(1107) sni(1) directory(3)
xds-api(100)gdsp(0) */

#define OMP_O_DSX_GDS_PKG \
"\x2B\x0C\x02\x88\x53\x01\x03\x64\x00"

/*Intermediate object identifier macros */

/* iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) siemens-units(1107) sni(1) directory(3)
attribute-type(4) ...*/

#define dsP_GDSattributeType(X) \
("\x2B\x0C\x02\x88\x53\x01\x03\x04" #X)

/* iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) siemens-units(1107) sni(1) directory(3)
object-class(6) ...*/

#define dsP_GDSobjectClass(X) \
("\x2B\x0C\x02\x88\x53\x01\x03\x06" #X)

#define dsP_gdsp_c(X) OMP_O_DSX_GDS_PKG #X
/* OM class names (prefixed by DSX_C_)
Directory attribute types (prefixed by DSX_A_)
Directory object classes (prefixed by DSX_O_)

*/

/* Directory attribute types */

#define OMP_O_DSX_A_MASTER_KNOWLEDGE dsP_GDSattributeType(\x00)
#define OMP_O_DSX_A_ACL dsP_GDSattributeType(\x01)
#define OMP_O_DSX_A_TIME_STAMP dsP_GDSattributeType(\x02)
#define OMP_O_DSX_A_SHADOWED_BY dsP_GDSattributeType(\x03)

Chapter 4. DCE Directory Service 781

#define OMP_O_DSX_A_SRT dsP_GDSattributeType(\x04)
#define OMP_O_DSX_A_OCT dsP_GDSattributeType(\x05)
#define OMP_O_DSX_A_AT dsP_GDSattributeType(\x06)
#define OMP_O_DSX_A_DEFAULT_DSA dsP_GDSattributeType(\x08)
#define OMP_O_DSX_A_LOCAL_DSA dsP_GDSattributeType(\x09)
#define OMP_O_DSX_A_CLIENT dsP_GDSattributeType(\x0A)
#define OMP_O_DSX_A_DNLIST dsP_GDSattributeType(\x0B)
#define OMP_O_DSX_A_SHADOWING_JOB dsP_GDSattributeType(\x0C)
#define OMP_O_DSX_A_CDS_CELL dsP_GDSattributeType(\x0D)
#define OMP_O_DSX_A_CDS_REPLICA dsP_GDSattributeType(\x0E)

/* Directory object classes */

#define OMP_O_DSX_O_SCHEMA dsP_GDSobjectClass(\x00)

/* OM class names */

#define OMP_O_DSX_C_GDS_SESSION dsP_gdsp_c(\x00)
#define OMP_O_DSX_C_GDS_CONTEXT dsP_gdsp_c(\x01)
#define OMP_O_DSX_C_GDS_ACL dsP_gdsp_c(\x02)
#define OMP_O_DSX_C_GDS_ACL_ITEM dsP_gdsp_c(\x03)

/* OM attribute names */

#define DSX_PASSWORD ((OM_type) 850)
#define DSX_DIR_ID ((OM_type) 851)
#define DSX_DUAFIRST ((OM_type) 852)
#define DSX_DONT_STORE ((OM_type) 853)
#define DSX_NORMAL_CLASS ((OM_type) 854)
#define DSX_PRIV_CLASS ((OM_type) 855)
#define DSX_RESIDENT_CLASS ((OM_type) 856)
#define DSX_USEDSA ((OM_type) 857)
#define DSX_DUA_CACHE ((OM_type) 858)
#define DSX_MODIFY_PUBLIC ((OM_type) 859)
#define DSX_READ_STANDARD ((OM_type) 860)
#define DSX_MODIFY_STANDARD ((OM_type) 861)
#define DSX_READ_SENSITIVE ((OM_type) 862)
#define DSX_MODIFY_SENSITIVE ((OM_type) 863)
#define DSX_INTERPRETATION ((OM_type) 864)
#define DSX_USER ((OM_type) 865)
#define DSX_PREFER_ADM_FUNCS ((OM_type) 866)
#define DSX_AUTH_MECHANISM ((OM_type) 867)
#define DSX_AUTH_INFO ((OM_type) 868) /* future use */
#define DSX_SIGN_MECHANISM ((OM_type) 869) /* future use */
#define DSX_PROT_REQUEST ((OM_type) 870) /* future use */

/* DSX_Interpretation */

enum DSX_Interpretation {
DSX_SINGLE_OBJECT = 0,
DSX_ROOT_OF_SUBTREE = 1

};

enum DSX_Auth_Mechanism {
DSX_DEFAULT = 1,
DSX_SIMPLE = 2,
DSX_SIMPLE_PROT1 = 3,
DSX_SIMPLE_PROT2 = 4,
DSX_DCE_AUTH = 5,
DSX_STRONG = 6

};

xdsgds.h(4xds)

782 IBM DCE for AIX, Version 2.2: Application Development Reference

enum DSX_Prot_Request {
DSX_NONE = 0,
DSX_SIGNED = 1

};

/* upper bound on string lengths*/

#define DSX_VL_PASSWORD ((OM_value_length) 16)

#endif /* XDSGDS_HEADER */

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

xdsgds.h(4xds)

Chapter 4. DCE Directory Service 783

xdsmdup.h

Purpose

Definitions for the MHS directory user package

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdsmdup.h>

Description

The xdsmdup.h header declares the object identifiers of directory attribute types
and object classes supported by the MHS directory user package. It also defines
OM classes used to represent the values of the attribute types.

All application programs that include this header must first include the object
management header xom.h and the xds.h header.
#ifndef XDSMDUP_HEADER
#define XDSMDUP_HEADER

#ifndef XMHP_HEADER
#include <xmhp.h>
#endif /* XMHP_HEADER */

/* MDUP package object identifier */

/* { iso(1) identified-organization(3) icd-ecma(12)
member-company(2) dec(1011) xopen(28) mdup(3) } */

#define OMP_O_DS_MHS_DIR_USER_PKG \
"\x2B\x0C\x02\x87\x73\x1C\x03"

/* Intermediate object identifier macros */

/* { joint-iso-ccitt(2) mhs-motis(6) arch(5) at(2) } */

#define dsP_MHSattributeType(X) ("\x56\x5\x2" #X)

/* { joint-iso-ccitt(2) mhs-motis(6) arch(5) oc(1) } */

#define dsP_MHSobjectClass(X) ("\x56\x5\x1" #X)

#define dsP_mdup_c(X) (OMP_O_DS_MHS_DIR_USER_PKG #X)
/* OM class names (prefixed DS_C_), */
/* Directory attribute types (prefixed DS_A_), */
/* and Directory object classes (prefixed DS_O_) */

/* Every application program which makes use of a class or */
/* other Object Identifier must explicitly import it into */
/* every compilation unit (C source program) which uses it. */
/* Each such class or Object Identifier name must be */
/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */
/* the OMP_O prefix to denote that they are OM classes. */
/* However, when using the OM_IMPORT and OM_EXPORT macros, */
/* the base names (without the OMP_O prefix) should be used. */
/* For example: */

784 IBM DCE for AIX, Version 2.2: Application Development Reference

/* OM_IMPORT(DS_O_CERT_AUTHORITY) */

/* Directory attribute types */

#define OMP_O_DS_A_DELIV_CONTENT_LENGTH dsP_MHSattributeType(\x00)
#define OMP_O_DS_A_DELIV_CONTENT_TYPES dsP_MHSattributeType(\x01)
#define OMP_O_DS_A_DELIV_EITS dsP_MHSattributeType(\x02)
#define OMP_O_DS_A_DL_MEMBERS dsP_MHSattributeType(\x03)
#define OMP_O_DS_A_DL_SUBMIT_PERMS dsP_MHSattributeType(\x04)
#define OMP_O_DS_A_MESSAGE_STORE dsP_MHSattributeType(\x05)
#define OMP_O_DS_A_OR_ADDRESSES dsP_MHSattributeType(\x06)
#define OMP_O_DS_A_PREF_DELIV_METHODS dsP_MHSattributeType(\x07)
#define OMP_O_DS_A_SUPP_AUTO_ACTIONS dsP_MHSattributeType(\x08)
#define OMP_O_DS_A_SUPP_CONTENT_TYPES dsP_MHSattributeType(\x09)
#define OMP_O_DS_A_SUPP_OPT_ATTRIBUTES dsP_MHSattributeType(\x0A)

/* Directory object classes */

#define OMP_O_DS_O_MHS_DISTRIBUTION_LIST dsP_MHSobjectClass(\x00)
#define OMP_O_DS_O_MHS_MESSAGE_STORE dsP_MHSobjectClass(\x01)
#define OMP_O_DS_O_MHS_MESSAGE_TRANS_AG dsP_MHSobjectClass(\x02)
#define OMP_O_DS_O_MHS_USER dsP_MHSobjectClass(\x03)
#define OMP_O_DS_O_MHS_USER_AG dsP_MHSobjectClass(\x04)

/* OM class names */

#define OMP_O_DS_C_DL_SUBMIT_PERMS dsP_mdup_c(\x87\x05)
/* OM attribute names */

#define DS_PERM_TYPE ((OM_type) 901)
#define DS_INDIVIDUAL ((OM_type) 902)
#define DS_MEMBER_OF_DL ((OM_type) 903)
#define DS_PATTERN_MATCH ((OM_type) 904)
#define DS_MEMBER_OF_GROUP ((OM_type) 905)

/* DS_Permission_Type */

enum DS_Permission_Type {
DS_PERM_INDIVIDUAL = 0,
DS_PERM_MEMBER_OF_DL = 1,
DS_PERM_PATTERN_MATCH = 2,
DS_PERM_MEMBER_OF_GROUP = 3

};

#endif /* XDSMDUP_HEADER */

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services, X/Open CAE Specification (November 1991), API to
Electronic Mail (X.400).

xdsmdup.h(4xds)

Chapter 4. DCE Directory Service 785

xdssap.h

Purpose

Definitions for the strong authentication package

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdssap.h>

Description

The xdssap.h header defines the object identifiers of directory attribute types and
object classes supported by the strong authentication package. It also defines OM
classes used to represent the values of the attribute types.

All application programs that include this header must first include the xom.h object
management header and the xds.h header.
#ifndef XDSSAP_HEADER
#define XDSSAP_HEADER

/* Strong Authentication Package object identifier */
/* { iso(1) identified-organization(3) icd-ecma(12)

member-company(2) dec(1011) xopen(28) sap(2) } */

#define OMP_O_DS_STRONG_AUTHENT_PKG \
"\x2B\x0C\x02\x87\x73\x1c\x02"

/* Intermediate object identifier macros */

#ifndef dsP_attributeType /* joint-iso-ccitt(2) */
/* ds(5) attributeType(4) ... */

#define dsP_attributeType (X) ("\x55\x04" #X)
#endif

#ifndef dsP_objectClass /* joint-iso-ccitt(2) */
/* ds(5) objectClass(6) ... */

#define dsP_objectClass(X) ("\x55\x06" #X)
#endif

#define dsP_sap_c(X) (OMP_O_DS_STRONG_AUTHENT_PKG #X)
/* OM class names (prefixed by DS_C_) */
/* Directory attribute types (prefixed by DS_A_) */
/* Directory object classes (prefixed by DS_O_) */

/* Every application program which makes use of a class or */
/* other Object Identifier must explicitly import it into */
/* every compilation unit (C source program) which uses it. */
/* Each such class or Object Identifier name must be */
/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */
/* the OMP_O prefix to denote that they are OM classes. */
/* However, when using the OM_IMPORT and OM_EXPORT macros, */
/* the base names (without the OMP_O prefix) should be used.*/
/* For example: */
/* OM_IMPORT (DS_O_CERT_AUTHORITY) */

786 IBM DCE for AIX, Version 2.2: Application Development Reference

/* Directory attribute types */

#define OMP_O_DS_A_AUTHORITY_REVOC_LIST dsP_attributeType(\x26)
#define OMP_O_DS_A_CA_CERT dsP_attributeType(\x25)
#define OMP_O_DS_A_CERT_REVOC_LIST dsP_attributeType(\x27)
#define OMP_O_DS_A_CROSS_CERT_PAIR dsP_attributeType(\x28)
#define OMP_O_DS_A_USER_CERT dsP_attributeType(\x24)

/* Directory object classes */

#define OMP_O_DS_O_CERT_AUTHORITY dsP_objectClass(\x10)
#define OMP_O_DS_O_STRONG_AUTHENT_USER dsP_objectClass(\x0F)

/* OM class names */

#define OMP_O_DS_C_ALGORITHM_IDENT dsP_sap_c(\x6\x35)
#define OMP_O_DS_C_CERT dsP_sap_c(\x6\x36)
#define OMP_O_DS_C_CERT_LIST dsP_sap_c(\x6\x37)
#define OMP_O_DS_C_CERT_PAIR dsP_sap_c(\x6\x38)
#define OMP_O_DS_C_CERT_SUBLIST dsP_sap_c(\x6\x39)
#define OMP_O_DS_C_SIGNATURE dsP_sap_c(\x6\x3A)

/* OM attribute names */

#define DS_ALGORITHM ((OM_type) 821)
#define DS_FORWARD ((OM_type) 822)
#define DS_ISSUER ((OM_type) 823)
#define DS_LAST_UPDATE ((OM_type) 824)
#define DS_ALGORITHM_PARAMETERS ((OM_type) 825)
#define DS_REVERSE ((OM_type) 826)
#define DS_REVOCATION_DATE ((OM_type) 827)
#define DS_REVOKED_CERTS ((OM_type) 828)
#define DS_SERIAL_NUMBER ((OM_type) 829)
#define DS_SERIAL_NUMBERS ((OM_type) 830)
#define DS_SIGNATURE ((OM_type) 831)
#define DS_SIGNATURE_VALUE ((OM_type) 832)
#define DS_SUBJECT ((OM_type) 833)
#define DS_SUBJECT_ALGORITHM ((OM_type) 834)
#define DS_SUBJECT_PUBLIC_KEY ((OM_type) 835)
#define DS_VALIDITY_NOT_AFTER ((OM_type) 836)
#define DS_VALIDITY_NOT_BEFORE ((OM_type) 837)
#define DS_VERSION ((OM_type) 838)

/* DS_Version */

#define DS_V1988 ((OM_enumeration) 1)

/* Upper bounds on string lengths and the number of repeated OM */
/* attribute values */

#define DS_VL_LAST_UPDATE ((OM_value_length) 17)
#define DS_VL_REVOC_DATE ((OM_value_length) 17)
#define DS_VL_VALIDITY_NOT_AFTER ((OM_value_length) 17)
#define DS_VL_VALIDITY_NOT_BEFORE ((OM_value_length) 17)
#define DS_VN_REVOC_DATE ((OM_value_length) 2)

#endif /* XDSSAP_HEADER */

xdssap.h(4xds)

Chapter 4. DCE Directory Service 787

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

xdssap.h(4xds)

788 IBM DCE for AIX, Version 2.2: Application Development Reference

xmhp.h

Purpose

Definitions for the MHS directory objects/attributes.

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdsmdup.h>
#include <xmhp.h>

Description

The xmhp.h header defines the constants used by the message handling
packages. It is required when using the MHS directory user package. The
xdsmdup.h header explicitly includes xmhp.h .

xmhp.h contains definitions for the X.400 message handling package. Some of
these definitions are needed when negotiating use of the MDUP.

The following four message handling classes are referenced:

v MH_C_G3_FAX_NBPS

v MH_C_OR_ADDRESS

v MH_C_OR_NAME

v MH_C_TELETEX_NBPS

The only enumerations referenced are Delivery Mode and Terminal Type . For
referenced OM attribute types and OM value lengths see the IBM DCE for AIX,
Version 2.2: Application Development Guide—Directory Services.
/*
Note that the identifier for the variable name of type OM_STRING

of a class in the Message Handling package can usually be
derived using the name of the class, preceded by "MH_C_", and
replacing a blank space with an underscore. To be in line with the
ANSI C language limitation, some words in the class names are
excepted and are abbreviated as below:

BILATERAL_INFORMATION is abbreviated to BILATERAL_INFO
DELIVERED DELIV
CONFIRMATION CONFIRM
CONFIRMATIONS CONFIRMS
PER_RECIPIENT_ PER_RECIP_
DELIV_PER_RECIP_REPORT DELIV_PER_RECIP_REP

*/

/* BEGIN MH PORTION OF INTERFACE */

/* SYMBOLIC CONSTANTS */

/* Class */

#define OMP_O_MH_C_ALGORITHM "\x56\x06\x01\x02\x05\x0B\x00"
#define OMP_O_MH_C_ALGORITHM_AND_RESULT "\x56\x06\x01\x02\x05\x0B\x01"
#define OMP_O_MH_C_ASYMMETRIC_TOKEN "\x56\x06\x01\x02\x05\x0B\x02"
#define OMP_O_MH_C_BILATERAL_INFO "\x56\x06\x01\x02\x05\x0B\x03"

Chapter 4. DCE Directory Service 789

#define OMP_O_MH_C_COMMUNIQUE "\x56\x06\x01\x02\x05\x0B\x04"
#define OMP_O_MH_C_CONTENT "\x56\x06\x01\x02\x05\x0B\x05"
#define OMP_O_MH_C_DELIV_MESSAGE "\x56\x06\x01\x02\x05\x0B\x06"
#define OMP_O_MH_C_DELIV_PER_RECIP_DR "\x56\x06\x01\x02\x05\x0B\x07"
#define OMP_O_MH_C_DELIV_PER_RECIP_NDR "\x56\x06\x01\x02\x05\x0B\x08"
#define OMP_O_MH_C_DELIV_PER_RECIP_REP "\x56\x06\x01\x02\x05\x0B\x09"
#define OMP_O_MH_C_DELIV_REPORT "\x56\x06\x01\x02\x05\x0B\x0A"
#define OMP_O_MH_C_DELIVERY_CONFIRM "\x56\x06\x01\x02\x05\x0B\x0B"
#define OMP_O_MH_C_DELIVERY_ENVELOPE "\x56\x06\x01\x02\x05\x0B\x0C"
#define OMP_O_MH_C_EITS "\x56\x06\x01\x02\x05\x0B\x0D"
#define OMP_O_MH_C_EXPANSION_RECORD "\x56\x06\x01\x02\x05\x0B\x0E"
#define OMP_O_MH_C_EXTENSIBLE_OBJECT "\x56\x06\x01\x02\x05\x0B\x0F"
#define OMP_O_MH_C_EXTENSION "\x56\x06\x01\x02\x05\x0B\x10"
#define OMP_O_MH_C_EXTERNAL_TRACE_ENTRY "\x56\x06\x01\x02\x05\x0B\x11"
#define OMP_O_MH_C_G3_FAX_NBPS "\x56\x06\x01\x02\x05\x0B\x12"
#define OMP_O_MH_C_GENERAL_CONTENT "\x56\x06\x01\x02\x05\x0B\x13"
#define OMP_O_MH_C_INTERNAL_TRACE_ENTRY "\x56\x06\x01\x02\x05\x0B\x14"
#define OMP_O_MH_C_LOCAL_DELIV_CONFIRM "\x56\x06\x01\x02\x05\x0B\x15"
#define OMP_O_MH_C_LOCAL_DELIV_CONFIRMS "\x56\x06\x01\x02\x05\x0B\x16"
#define OMP_O_MH_C_LOCAL_NDR "\x56\x06\x01\x02\x05\x0B\x17"
#define OMP_O_MH_C_LOCAL_PER_RECIP_NDR "\x56\x06\x01\x02\x05\x0B\x18"
#define OMP_O_MH_C_MESSAGE "\x56\x06\x01\x02\x05\x0B\x19"
#define OMP_O_MH_C_MESSAGE_RD "\x56\x06\x01\x02\x05\x0B\x1A"
#define OMP_O_MH_C_MTS_IDENTIFIER "\x56\x06\x01\x02\x05\x0B\x1B"
#define OMP_O_MH_C_OR_ADDRESS "\x56\x06\x01\x02\x05\x0B\x1C"
#define OMP_O_MH_C_OR_NAME "\x56\x06\x01\x02\x05\x0B\x1D"
#define OMP_O_MH_C_PER_RECIP_DR "\x56\x06\x01\x02\x05\x0B\x1E"
#define OMP_O_MH_C_PER_RECIP_NDR "\x56\x06\x01\x02\x05\x0B\x1F"
#define OMP_O_MH_C_PER_RECIP_REPORT "\x56\x06\x01\x02\x05\x0B\x20"
#define OMP_O_MH_C_PROBE "\x56\x06\x01\x02\x05\x0B\x21"
#define OMP_O_MH_C_PROBE_RD "\x56\x06\x01\x02\x05\x0B\x22"
#define OMP_O_MH_C_RD "\x56\x06\x01\x02\x05\x0B\x23"
#define OMP_O_MH_C_REDIRECTION_RECORD "\x56\x06\x01\x02\x05\x0B\x24"
#define OMP_O_MH_C_REPORT "\x56\x06\x01\x02\x05\x0B\x25"
#define OMP_O_MH_C_SECURITY_LABEL "\x56\x06\x01\x02\x05\x0B\x26"
#define OMP_O_MH_C_SESSION "\x56\x06\x01\x02\x05\x0B\x27"
#define OMP_O_MH_C_SUBMISSION_RESULTS "\x56\x06\x01\x02\x05\x0B\x28"
#define OMP_O_MH_C_SUBMITTED_COMMUNIQUE "\x56\x06\x01\x02\x05\x0B\x29"
#define OMP_O_MH_C_SUBMITTED_MESSAGE "\x56\x06\x01\x02\x05\x0B\x2A"
#define OMP_O_MH_C_SUBMITTED_MESSAGE_RD "\x56\x06\x01\x02\x05\x0B\x2B"
#define OMP_O_MH_C_SUBMITTED_PROBE "\x56\x06\x01\x02\x05\x0B\x2C"
#define OMP_O_MH_C_SUBMITTED_PROBE_RD "\x56\x06\x01\x02\x05\x0B\x2D"
#define OMP_O_MH_C_TELETEX_NBPS "\x56\x06\x01\x02\x05\x0B\x2E"
#define OMP_O_MH_C_DELIVERY_REPORT "\x56\x06\x01\x02\x05\x0B\x2F"
#define OMP_O_MH_C_MT_PUBLIC_DATA "\x56\x06\x01\x02\x05\x0B\x30"
#define OMP_O_MH_C_TOKEN_PUBLIC_DATA "\x56\x06\x01\x02\x05\x0B\x31"

/* Enumeration */

/* Action */
#define MH_AC_EXPANDED ((OM_enumeration) -2)
#define MH_AC_REDIRECTED ((OM_enumeration) -1)
#define MH_AC_RELAYED ((OM_enumeration) 0)
#define MH_AC_REROUTED ((OM_enumeration) 1)

/* Builtin EIT */
#define MH_BE_UNDEFINED ((OM_enumeration) 0)
#define MH_BE_TELEX ((OM_enumeration) 1)
#define MH_BE_IA5_TEXT ((OM_enumeration) 2)
#define MH_BE_G3_FAX ((OM_enumeration) 3)
#define MH_BE_G4_CLASS1 ((OM_enumeration) 4)
#define MH_BE_TELETEX ((OM_enumeration) 5)
#define MH_BE_VIDEOTEX ((OM_enumeration) 6)
#define MH_BE_MIXED_MODE ((OM_enumeration) 9)
#define MH_BE_ODA ((OM_enumeration) 10)
#define MH_BE_ISO_6937_TEXT ((OM_enumeration) 11)

xmhp.h(4xds)

790 IBM DCE for AIX, Version 2.2: Application Development Reference

/* Delivery Mode */
#define MH_DM_ANY ((OM_enumeration) 0)
#define MH_DM_MTS ((OM_enumeration) 1)
#define MH_DM_PDS ((OM_enumeration) 2)
#define MH_DM_TELEX ((OM_enumeration) 3)
#define MH_DM_TELETEX ((OM_enumeration) 4)
#define MH_DM_G3_FAX ((OM_enumeration) 5)
#define MH_DM_G4_FAX ((OM_enumeration) 6)
#define MH_DM_IA5_TERMINAL ((OM_enumeration) 7)
#define MH_DM_VIDEOTEX ((OM_enumeration) 8)
#define MH_DM_TELEPHONE ((OM_enumeration) 9)

/* Delivery Point */
#define MH_DP_PUBLIC_UA ((OM_enumeration) 0)
#define MH_DP_PRIVATE_UA ((OM_enumeration) 1)
#define MH_DP_MS ((OM_enumeration) 2)
#define MH_DP_DL ((OM_enumeration) 3)
#define MH_DP_PDAU ((OM_enumeration) 4)
#define MH_DP_PDS_PATRON ((OM_enumeration) 5)
#define MH_DP_OTHER_AU ((OM_enumeration) 6)
/* Diagnostic */

#define MH_DG_NO_DIAGNOSTIC ((OM_enumeration) -1)
#define MH_DG_OR_NAME_UNRECOGNIZED ((OM_enumeration) 0)
#define MH_DG_OR_NAME_AMBIGUOUS ((OM_enumeration) 1)
#define MH_DG_MTS_CONGESTED ((OM_enumeration) 2)
#define MH_DG_LOOP_DETECTED ((OM_enumeration) 3)
#define MH_DG_RECIPIENT_UNAVAILABLE ((OM_enumeration) 4)
#define MH_DG_MAXIMUM_TIME_EXPIRED ((OM_enumeration) 5)
#define MH_DG_EITS_UNSUPPORTED ((OM_enumeration) 6)
#define MH_DG_CONTENT_TOO_LONG ((OM_enumeration) 7)
#define MH_DG_IMPRACTICAL_TO_CONVERT ((OM_enumeration) 8)
#define MH_DG_PROHIBITED_TO_CONVERT ((OM_enumeration) 9)
#define MH_DG_CONVERSION_UNSUBSCRIBED ((OM_enumeration) 10)
#define MH_DG_PARAMETERS_INVALID ((OM_enumeration) 11)
#define MH_DG_CONTENT_SYNTAX_IN_ERROR ((OM_enumeration) 12)
#define MH_DG_LENGTH_CONSTRAINT_VIOLATD ((OM_enumeration) 13)
#define MH_DG_NUMBER_CONSTRAINT_VIOLATD ((OM_enumeration) 14)
#define MH_DG_CONTENT_TYPE_UNSUPPORTED ((OM_enumeration) 15)
#define MH_DG_TOO_MANY_RECIPIENTS ((OM_enumeration) 16)
#define MH_DG_NO_BILATERAL_AGREEMENT ((OM_enumeration) 17)
#define MH_DG_CRITICAL_FUNC_UNSUPPORTED ((OM_enumeration) 18)
#define MH_DG_CONVERSION_LOSS_PROHIB ((OM_enumeration) 19)
#define MH_DG_LINE_TOO_LONG ((OM_enumeration) 20)
#define MH_DG_PAGE_TOO_LONG ((OM_enumeration) 21)
#define MH_DG_PICTORIAL_SYMBOL_LOST ((OM_enumeration) 22)
#define MH_DG_PUNCTUATION_SYMBOL_LOST ((OM_enumeration) 23)
#define MH_DG_ALPHABETIC_CHARACTER_LOST ((OM_enumeration) 24)
#define MH_DG_MULTIPLE_INFO_LOSSES ((OM_enumeration) 25)
#define MH_DG_REASSIGNMENT_PROHIBITED ((OM_enumeration) 26)
#define MH_DG_REDIRECTION_LOOP_DETECTED ((OM_enumeration) 27)
#define MH_DG_EXPANSION_PROHIBITED ((OM_enumeration) 28)
#define MH_DG_SUBMISSION_PROHIBITED ((OM_enumeration) 29)
#define MH_DG_EXPANSION_FAILED ((OM_enumeration) 30)
#define MH_DG_RENDITION_UNSUPPORTED ((OM_enumeration) 31)
#define MH_DG_MAIL_ADDRESS_INCORRECT ((OM_enumeration) 32)
#define MH_DG_MAIL_OFFICE_INCOR_OR_INVD ((OM_enumeration) 33)
#define MH_DG_MAIL_ADDRESS_INCOMPLETE ((OM_enumeration) 34)
#define MH_DG_MAIL_RECIPIENT_UNKNOWN ((OM_enumeration) 35)
#define MH_DG_MAIL_RECIPIENT_DECEASED ((OM_enumeration) 36)
#define MH_DG_MAIL_ORGANIZATION_EXPIRED ((OM_enumeration) 37)
#define MH_DG_MAIL_REFUSED ((OM_enumeration) 38)
#define MH_DG_MAIL_UNCLAIMED ((OM_enumeration) 39)
#define MH_DG_MAIL_RECIPIENT_MOVED ((OM_enumeration) 40)
#define MH_DG_MAIL_RECIPIENT_TRAVELLING ((OM_enumeration) 41)
#define MH_DG_MAIL_RECIPIENT_DEPARTED ((OM_enumeration) 42)

xmhp.h(4xds)

Chapter 4. DCE Directory Service 791

#define MH_DG_MAIL_NEW_ADDRESS_UNKNOWN ((OM_enumeration) 43)
#define MH_DG_MAIL_FORWARDING_UNWANTED ((OM_enumeration) 44)
#define MH_DG_MAIL_FORWARDING_PROHIB ((OM_enumeration) 45)
#define MH_DG_SECURE_MESSAGING_ERROR ((OM_enumeration) 46)
#define MH_DG_DOWNGRADING_IMPOSSIBLE ((OM_enumeration) 47)

/* Explicit Conversion */

#define MH_EC_NO_CONVERSION ((OM_enumeration) -1)
#define MH_EC_IA5_TEXT_TO_TELETEX ((OM_enumeration) 0)
#define MH_EC_TELETEX_TO_TELEX ((OM_enumeration) 1)
#define MH_EC_TELEX_TO_IA5_TEXT ((OM_enumeration) 2)
#define MH_EC_TELEX_TO_TELETEX ((OM_enumeration) 3)
#define MH_EC_TELEX_TO_G4_CLASS1 ((OM_enumeration) 4)
#define MH_EC_TELEX_TO_VIDEOTEX ((OM_enumeration) 5)
#define MH_EC_IA5_TEXT_TO_TELEX ((OM_enumeration) 6)
#define MH_EC_TELEX_TO_G3_FAX ((OM_enumeration) 7)
#define MH_EC_IA5_TEXT_TO_G3_FAX ((OM_enumeration) 8)
#define MH_EC_IA5_TEXT_TO_G4_CLASS1 ((OM_enumeration) 9)
#define MH_EC_IA5_TEXT_TO_VIDEOTEX ((OM_enumeration) 10)
#define MH_EC_TELETEX_TO_IA5_TEXT ((OM_enumeration) 11)
#define MH_EC_TELETEX_TO_G3_FAX ((OM_enumeration) 12)
#define MH_EC_TELETEX_TO_G4_CLASS1 ((OM_enumeration) 13)
#define MH_EC_TELETEX_TO_VIDEOTEX ((OM_enumeration) 14)
#define MH_EC_VIDEOTEX_TO_TELEX ((OM_enumeration) 15)
#define MH_EC_VIDEOTEX_TO_IA5_TEXT ((OM_enumeration) 16)
#define MH_EC_VIDEOTEX_TO_TELETEX ((OM_enumeration) 17)

/* Postal Mode */

#define MH_PM_ORDINARY_MAIL ((OM_enumeration) 0)
#define MH_PM_SPECIAL_DELIVERY ((OM_enumeration) 1)
#define MH_PM_EXPRESS_MAIL ((OM_enumeration) 2)
#define MH_PM_CC ((OM_enumeration) 3)
#define MH_PM_CC_WITH_TELEPHONE_ADVICE ((OM_enumeration) 4)
#define MH_PM_CC_WITH_TELEX_ADVICE ((OM_enumeration) 5)
#define MH_PM_CC_WITH_TELETEX_ADVICE ((OM_enumeration) 6)

/* Postal Report */

#define MH_PR_UNDELIVBLE_MAIL_VIA_PDS ((OM_enumeration) 0)
#define MH_PR_NOTIFICN_VIA_PDS ((OM_enumeration) 1)
#define MH_PR_NOTIFICN_VIA_MTS ((OM_enumeration) 2)
#define MH_PR_NOTIFICN_VIA_MTS_AND_PDS ((OM_enumeration) 3)

/* Priority */

#define MH_PTY_NORMAL ((OM_enumeration) 0)
#define MH_PTY_LOW ((OM_enumeration) 1)
#define MH_PTY_URGENT ((OM_enumeration) 2)

/* Reason */

#define MH_RE_TRANSFER_FAILED ((OM_enumeration) 0)
#define MH_RE_TRANSFER_IMPOSSIBLE ((OM_enumeration) 1)
#define MH_RE_CONVERSION_NOT_PERFORMED ((OM_enumeration) 2)
#define MH_RE_PHYSICAL_RENDITN_NOT_DONE ((OM_enumeration) 3)
#define MH_RE_PHYSICAL_DELIV_NOT_DONE ((OM_enumeration) 4)
#define MH_RE_RESTRICTED_DELIVERY ((OM_enumeration) 5)
#define MH_RE_DIRECTORY_OPERATN_FAILED ((OM_enumeration) 6)

/* Redirection Reason */

#define MH_RR_RECIPIENT_ASSIGNED ((OM_enumeration) 0)
#define MH_RR_ORIGINATOR_REQUESTED ((OM_enumeration) 1)
#define MH_RR_RECIPIENT_DOMAIN_ASSIGNED ((OM_enumeration) 2)

xmhp.h(4xds)

792 IBM DCE for AIX, Version 2.2: Application Development Reference

/* Registration */

#define MH_RG_UNREGISTERED_MAIL ((OM_enumeration) 0)
#define MH_RG_REGISTERED_MAIL ((OM_enumeration) 1)
#define MH_RG_REGISTERED_MAIL_IN_PERSON ((OM_enumeration) 2)

/* Report Request */

#define MH_RQ_NEVER ((OM_enumeration) 0)
#define MH_RQ_NON_DELIVERY ((OM_enumeration) 1)
#define MH_RQ_ALWAYS ((OM_enumeration) 2)
#define MH_RQ_ALWAYS_AUDITED ((OM_enumeration) 3)

/* Security Classification */

#define MH_SC_UNMARKED ((OM_enumeration) 0)
#define MH_SC_UNCLASSIFIED ((OM_enumeration) 1)
#define MH_SC_RESTRICTED ((OM_enumeration) 2)
#define MH_SC_CONFIDENTIAL ((OM_enumeration) 3)
#define MH_SC_SECRET ((OM_enumeration) 4)
#define MH_SC_TOP_SECRET ((OM_enumeration) 5)

/* Terminal Type */

#define MH_TT_TELEX ((OM_enumeration) 3)
#define MH_TT_TELETEX ((OM_enumeration) 4)
#define MH_TT_G3_FAX ((OM_enumeration) 5)
#define MH_TT_G4_FAX ((OM_enumeration) 6)
#define MH_TT_IA5_TERMINAL ((OM_enumeration) 7)
#define MH_TT_VIDEOTEX ((OM_enumeration) 8)

/* Integer */

/* Content Type */

#define MH_CTI_UNIDENTIFIED ((OM_integer) 0)
#define MH_CTI_EXTERNAL ((OM_integer) 1)
#define MH_CTI_P2_1984 ((OM_integer) 2)
#define MH_CTI_P2_1988 ((OM_integer) 22)

/* Object Identifier (Elements component) */

/* Content Type */
#define OMP_O_MH_CTO_INNER_MESSAGE "\x56\x03\x03\x01"
#define OMP_O_MH_CTO_UNIDENTIFIED "\x56\x03\x03\x00"

/* External EITs */
#define OMP_O_MH_EE_G3_FAX "\x56\x03\x04\x03"
#define OMP_O_MH_EE_G4_CLASS_1 "\x56\x03\x04\x04"
#define OMP_O_MH_EE_IA5_TEXT "\x56\x03\x04\x02"
#define OMP_O_MH_EE_MIXED_MODE "\x56\x03\x04\x09"
#define OMP_O_MH_EE_TELETEX "\x56\x03\x04\x05"
#define OMP_O_MH_EE_TELEX "\x56\x03\x04\x01"
#define OMP_O_MH_EE_UNDEFINED "\x56\x03\x04\x00"
#define OMP_O_MH_EE_VIDEOTEX "\x56\x03\x04\x06"

/* Rendition Attributes */
#define OMP_O_MH_RA_BASIC_RENDITION "\x56\x03\x05\x00"

/* Type */

#define MH_T_A3_WIDTH ((OM_type) 200)
#define MH_T_ACTION ((OM_type) 201)
#define MH_T_ACTUAL_RECIPIENT_NAME ((OM_type) 202)
#define MH_T_ADMD_NAME ((OM_type) 203)

xmhp.h(4xds)

Chapter 4. DCE Directory Service 793

#define MH_T_ALGORITHM_DATUM ((OM_type) 204)
#define MH_T_ALGORITHM_ID ((OM_type) 205)
#define MH_T_ALGORITHM_RESULT ((OM_type) 206)
#define MH_T_ALTERNATE_RECIP_ALLOWED ((OM_type) 207)
#define MH_T_ALTERNATE_RECIPIENT_NAME ((OM_type) 208)
#define MH_T_ARRIVAL_TIME ((OM_type) 209)
#define MH_T_ATTEMPTED_ADMD_NAME ((OM_type) 210)
#define MH_T_ATTEMPTED_COUNTRY_NAME ((OM_type) 211)
#define MH_T_ATTEMPTED_MTA_NAME ((OM_type) 212)
#define MH_T_ATTEMPTED_PRMD_IDENTIFIER ((OM_type) 213)
#define MH_T_B4_LENGTH ((OM_type) 214)
#define MH_T_B4_WIDTH ((OM_type) 215)
#define MH_T_BILATERAL_INFO ((OM_type) 216)
#define MH_T_BINARY_CONTENT ((OM_type) 217)
#define MH_T_BUILTIN_EITS ((OM_type) 218)
#define MH_T_BUREAU_FAX_DELIVERY ((OM_type) 219)
#define MH_T_COMMON_NAME ((OM_type) 220)
#define MH_T_CONFIDENTIALITY_ALGORITHM ((OM_type) 221)
#define MH_T_CONFIDENTIALITY_KEY ((OM_type) 222)
#define MH_T_CONTENT ((OM_type) 223)
#define MH_T_CONTENT_CORRELATOR ((OM_type) 224)
#define MH_T_CONTENT_EXTENSIONS ((OM_type) 225)
#define MH_T_CONTENT_IDENTIFIER ((OM_type) 226)
#define MH_T_CONTENT_LENGTH ((OM_type) 227)
#define MH_T_CONTENT_RETURN_REQUESTED ((OM_type) 228)
#define MH_T_CONTENT_TYPE ((OM_type) 229)
#define MH_T_CONTROL_CHARACTER_SETS ((OM_type) 230)
#define MH_T_CONVERSION_LOSS_PROHIBITED ((OM_type) 231)
#define MH_T_CONVERSION_PROHIBITED ((OM_type) 232)
#define MH_T_CONVERTED_EITS ((OM_type) 233)
#define MH_T_COUNTRY_NAME ((OM_type) 234)
#define MH_T_CRITICAL_FOR_DELIVERY ((OM_type) 235)
#define MH_T_CRITICAL_FOR_SUBMISSION ((OM_type) 236)
#define MH_T_CRITICAL_FOR_TRANSFER ((OM_type) 237)
#define MH_T_DEFERRED_DELIVERY_TIME ((OM_type) 238)
#define MH_T_DEFERRED_TIME ((OM_type) 239)
#define MH_T_DELIVERY_CONFIRMS ((OM_type) 240)
#define MH_T_DELIVERY_POINT ((OM_type) 241)
#define MH_T_DELIVERY_TIME ((OM_type) 242)
#define MH_T_DIRECTORY_NAME ((OM_type) 243)
#define MH_T_DISCLOSURE_ALLOWED ((OM_type) 244)
#define MH_T_DISTINGUISHED_RECIP_ADDR ((OM_type) 245)
#define MH_T_DOMAIN_TYPE_1 ((OM_type) 246)
#define MH_T_DOMAIN_TYPE_2 ((OM_type) 247)
#define MH_T_DOMAIN_TYPE_3 ((OM_type) 248)
#define MH_T_DOMAIN_TYPE_4 ((OM_type) 249)
#define MH_T_DOMAIN_VALUE_1 ((OM_type) 250)
#define MH_T_DOMAIN_VALUE_2 ((OM_type) 251)
#define MH_T_DOMAIN_VALUE_3 ((OM_type) 252)
#define MH_T_DOMAIN_VALUE_4 ((OM_type) 253)
#define MH_T_ENVELOPES ((OM_type) 254)
#define MH_T_EVENT_HANDLE ((OM_type) 255)
#define MH_T_EXPANSION_HISTORY ((OM_type) 256)
#define MH_T_EXPANSION_PROHIBITED ((OM_type) 257)
#define MH_T_EXPLICIT_CONVERSION ((OM_type) 258)
#define MH_T_EXTENSION_TYPE ((OM_type) 259)
#define MH_T_EXTENSION_VALUE ((OM_type) 260)
#define MH_T_EXTENSIONS ((OM_type) 261)
#define MH_T_EXTERNAL_EITS ((OM_type) 262)
#define MH_T_EXTERNAL_TRACE_INFO ((OM_type) 263)
#define MH_T_FINE_RESOLUTION ((OM_type) 264)
#define MH_T_FORWARDING_ADDRESS ((OM_type) 265)
#define MH_T_FORWARDING_ADDR_REQUESTED ((OM_type) 266)
#define MH_T_FORWARDING_PROHIBITED ((OM_type) 267)
#define MH_T_G3_FAX_NBPS ((OM_type) 268)
#define MH_T_G4_FAX_NBPS ((OM_type) 269)
#define MH_T_GENERATION ((OM_type) 270)

xmhp.h(4xds)

794 IBM DCE for AIX, Version 2.2: Application Development Reference

#define MH_T_GIVEN_NAME ((OM_type) 271)
#define MH_T_GRAPHIC_CHARACTER_SETS ((OM_type) 272)
#define MH_T_INFORMATION ((OM_type) 273)
#define MH_T_INITIALS ((OM_type) 274)
#define MH_T_INTEGRITY_CHECK ((OM_type) 275)
#define MH_T_INTENDED_RECIPIENT_NAME ((OM_type) 276)
#define MH_T_INTENDED_RECIPIENT_NUMBER ((OM_type) 277)
#define MH_T_INTERNAL_TRACE_INFO ((OM_type) 278)
#define MH_T_ISDN_NUMBER ((OM_type) 279)
#define MH_T_ISDN_SUBADDRESS ((OM_type) 280)
#define MH_T_LATEST_DELIVERY_TIME ((OM_type) 281)
#define MH_T_LOCAL_IDENTIFIER ((OM_type) 282)
#define MH_T_MESSAGE_SEQUENCE_NUMBER ((OM_type) 283)
#define MH_T_MISCELANEOUS_CAPABILITIES ((OM_type) 284)
#define MH_T_MTA_CERTIFICATE ((OM_type) 285)
#define MH_T_MTA_NAME ((OM_type) 286)
#define MH_T_MTA_REPORT_REQUEST ((OM_type) 287)
#define MH_T_MTA_RESPONSIBILITY ((OM_type) 288)
#define MH_T_MTS_IDENTIFIER ((OM_type) 289)
#define MH_T_NAME ((OM_type) 290)
#define MH_T_NON_DELIVERY_DIAGNOSTIC ((OM_type) 291)
#define MH_T_NON_DELIVERY_REASON ((OM_type) 292)
#define MH_T_NUMERIC_USER_IDENTIFIER ((OM_type) 293)
#define MH_T_ORGANIZATION_NAME ((OM_type) 294)
#define MH_T_ORGANIZATIONAL_UNIT_NAME_1 ((OM_type) 295)
#define MH_T_ORGANIZATIONAL_UNIT_NAME_2 ((OM_type) 296)
#define MH_T_ORGANIZATIONAL_UNIT_NAME_3 ((OM_type) 297)
#define MH_T_ORGANIZATIONAL_UNIT_NAME_4 ((OM_type) 298)
#define MH_T_ORIG_AND_EXPANSION_HISTORY ((OM_type) 299)
#define MH_T_ORIGIN_CHECK ((OM_type) 300)
#define MH_T_ORIGINAL_EITS ((OM_type) 301)
#define MH_T_ORIGINALLY_INTENDED_RECIP ((OM_type) 302)
#define MH_T_ORIGINATOR_CERTIFICATE ((OM_type) 303)
#define MH_T_ORIGINATOR_NAME ((OM_type) 304)
#define MH_T_ORIGINATOR_REPORT_REQUEST ((OM_type) 305)
#define MH_T_ORIGINATOR_RETURN_ADDRESS ((OM_type) 306)
#define MH_T_OTHER_RECIPIENT_NAMES ((OM_type) 307)
#define MH_T_PAGE_FORMATS ((OM_type) 308)
#define MH_T_PER_RECIP_REPORTS ((OM_type) 309)
#define MH_T_POSTAL_ADDRESS_DETAILS ((OM_type) 310)
#define MH_T_POSTAL_ADDRESS_IN_FULL ((OM_type) 311)
#define MH_T_POSTAL_ADDRESS_IN_LINES ((OM_type) 312)
#define MH_T_POSTAL_CODE ((OM_type) 313)
#define MH_T_POSTAL_COUNTRY_NAME ((OM_type) 314)
#define MH_T_POSTAL_DELIVERY_POINT_NAME ((OM_type) 315)
#define MH_T_POSTAL_DELIV_SYSTEM_NAME ((OM_type) 316)
#define MH_T_POSTAL_GENERAL_DELIV_ADDR ((OM_type) 317)
#define MH_T_POSTAL_LOCALE ((OM_type) 318)
#define MH_T_POSTAL_MODE ((OM_type) 319)
#define MH_T_POSTAL_OFFICE_BOX_NUMBER ((OM_type) 320)
#define MH_T_POSTAL_OFFICE_NAME ((OM_type) 321)
#define MH_T_POSTAL_OFFICE_NUMBER ((OM_type) 322)
#define MH_T_POSTAL_ORGANIZATION_NAME ((OM_type) 323)
#define MH_T_POSTAL_PATRON_DETAILS ((OM_type) 324)
#define MH_T_POSTAL_PATRON_NAME ((OM_type) 325)
#define MH_T_POSTAL_REPORT ((OM_type) 326)
#define MH_T_POSTAL_STREET_ADDRESS ((OM_type) 327)
#define MH_T_PREFERRED_DELIVERY_MODES ((OM_type) 328)
#define MH_T_PRESENTATION_ADDRESS ((OM_type) 329)
#define MH_T_PRIORITY ((OM_type) 330)
#define MH_T_PRIVACY_MARK ((OM_type) 331)
#define MH_T_PRIVATE_USE ((OM_type) 332)
#define MH_T_PRMD_IDENTIFIER ((OM_type) 333)
#define MH_T_PRMD_NAME ((OM_type) 334)
#define MH_T_PROOF_OF_DELIVERY ((OM_type) 335)
#define MH_T_PROOF_OF_DELIV_REQUESTED ((OM_type) 336)
#define MH_T_PROOF_OF_SUBMISSION ((OM_type) 337)

xmhp.h(4xds)

Chapter 4. DCE Directory Service 795

#define MH_T_PROOF_OF_SUBMISN_REQUEST ((OM_type) 338)
#define MH_T_PUBLIC_INFORMATION ((OM_type) 339)
#define MH_T_RANDOM_NUMBER ((OM_type) 340)
#define MH_T_REASON ((OM_type) 341)
#define MH_T_REASSIGNMENT_PROHIBITED ((OM_type) 342)
#define MH_T_RECIPIENT_CERTIFICATE ((OM_type) 343)
#define MH_T_RECIPIENT_DESCRIPTORS ((OM_type) 344)
#define MH_T_RECIPIENT_NAME ((OM_type) 345)
#define MH_T_RECIPIENT_NUMBER ((OM_type) 346)
#define MH_T_RECIP_NUMBER_FOR_ADVICE ((OM_type) 347)
#define MH_T_REDIRECTION_HISTORY ((OM_type) 348)
#define MH_T_REGISTRATION ((OM_type) 349)
#define MH_T_RENDITION_ATTRIBUTES ((OM_type) 350)
#define MH_T_REPORT_ADDITIONAL_INFO ((OM_type) 351)
#define MH_T_REPORT_DESTINATION ((OM_type) 352)
#define MH_T_REPORTING_DL_NAME ((OM_type) 353)
#define MH_T_REPORTING_MTA_CERTIFICATE ((OM_type) 354)
#define MH_T_SECRET_INFORMATION ((OM_type) 355)
#define MH_T_SECURITY_CATEGORY_DATA ((OM_type) 356)
#define MH_T_SECURITY_CATEGORY_IDS ((OM_type) 357)
#define MH_T_SECURITY_CLASSIFICATION ((OM_type) 358)
#define MH_T_SECURITY_LABEL ((OM_type) 359)
#define MH_T_SECURITY_POLICY_ID ((OM_type) 360)
#define MH_T_SIGNATURE ((OM_type) 361)
#define MH_T_SUBJECT_EXT_TRACE_INFO ((OM_type) 362)
#define MH_T_SUBJECT_MTS_IDENTIFIER ((OM_type) 363)
#define MH_T_SUBMISSION_TIME ((OM_type) 364)
#define MH_T_SUPPLEMENTARY_INFO ((OM_type) 365)
#define MH_T_SURNAME ((OM_type) 366)
#define MH_T_TELETEX_NBPS ((OM_type) 367)
#define MH_T_TEMPORARY ((OM_type) 368)
#define MH_T_TERMINAL_IDENTIFIER ((OM_type) 369)
#define MH_T_TERMINAL_TYPE ((OM_type) 370)
#define MH_T_TIME ((OM_type) 371)
#define MH_T_TOKEN ((OM_type) 372)
#define MH_T_TWO_DIMENSIONAL ((OM_type) 373)
#define MH_T_UNCOMPRESSED ((OM_type) 374)
#define MH_T_UNLIMITED_LENGTH ((OM_type) 375)
#define MH_T_WORKSPACE ((OM_type) 376)
#define MH_T_X121_ADDRESS ((OM_type) 377)
/* Value Length */

#define MH_VL_ADMD_NAME ((OM_value_length) 16)
#define MH_VL_ATTEMPTED_ADMD_NAME ((OM_value_length) 16)
#define MH_VL_ATTEMPTED_COUNTRY_NAME ((OM_value_length) 3)
#define MH_VL_ATTEMPTED_PRMD_IDENTIFIER ((OM_value_length) 16)
#define MH_VL_COMMON_NAME ((OM_value_length) 64)
#define MH_VL_CONTENT_CORRELATOR ((OM_value_length) 512)
#define MH_VL_CONTENT_IDENTIFIER ((OM_value_length) 16)
#define MH_VL_COUNTRY_NAME ((OM_value_length) 3)
#define MH_VL_DOMAIN_TYPE ((OM_value_length) 8)
#define MH_VL_DOMAIN_VALUE ((OM_value_length) 128)
#define MH_VL_GENERATION ((OM_value_length) 3)
#define MH_VL_GIVEN_NAME ((OM_value_length) 16)
#define MH_VL_INFORMATION ((OM_value_length) 1024)
#define MH_VL_INITIALS ((OM_value_length) 5)
#define MH_VL_ISDN_NUMBER ((OM_value_length) 15)
#define MH_VL_ISDN_SUBADDRESS ((OM_value_length) 40)
#define MH_VL_LATEST_DELIVERY_TIME ((OM_value_length) 7)
#define MH_VL_LOCAL_IDENTIFIER ((OM_value_length) 32)
#define MH_VL_MSG_CONTENT_CORRELATOR ((OM_value_length) 16)
#define MH_VL_MTA_NAME ((OM_value_length) 32)
#define MH_VL_NUMERIC_USER_IDENTIFIER ((OM_value_length) 32)
#define MH_VL_ORGANIZATION_NAME ((OM_value_length) 64)
#define MH_VL_ORGANIZATIONAL_UNIT_NAMES ((OM_value_length) 32)
#define MH_VL_POSTAL_ADDRESS_DETAILS ((OM_value_length) 30)
#define MH_VL_POSTAL_ADDRESS_IN_FULL ((OM_value_length) 185)

xmhp.h(4xds)

796 IBM DCE for AIX, Version 2.2: Application Development Reference

#define MH_VL_POSTAL_CODE ((OM_value_length) 16)
#define MH_VL_POSTAL_COUNTRY_NAME ((OM_value_length) 32)
#define MH_VL_POSTAL_DELIV_POINT_NAME ((OM_value_length) 30)
#define MH_VL_POSTAL_DELIV_SYSTEM_NAME ((OM_value_length) 16)
#define MH_VL_POSTAL_GENERAL_DELIV_ADDR ((OM_value_length) 30)
#define MH_VL_POSTAL_LOCALE ((OM_value_length) 30)
#define MH_VL_POSTAL_OFFICE_BOX_NUMBER ((OM_value_length) 30)
#define MH_VL_POSTAL_OFFICE_NAME ((OM_value_length) 30)
#define MH_VL_POSTAL_OFFICE_NUMBER ((OM_value_length) 30)
#define MH_VL_POSTAL_ORGANIZATION_NAME ((OM_value_length) 30)
#define MH_VL_POSTAL_PATRON_DETAILS ((OM_value_length) 30)
#define MH_VL_POSTAL_PATRON_NAME ((OM_value_length) 30)
#define MH_VL_POSTAL_STREET_ADDRESS ((OM_value_length) 30)
#define MH_VL_PRIVACY_MARK ((OM_value_length) 128)
#define MH_VL_PRIVATE_USE ((OM_value_length) 126)
#define MH_VL_PRMD_IDENTIFIER ((OM_value_length) 16)
#define MH_VL_PRMD_NAME ((OM_value_length) 16)
#define MH_VL_RECIP_NUMBER_FOR_ADVICE ((OM_value_length) 32)
#define MH_VL_REDIRECTION_TIME ((OM_value_length) 7)
#define MH_VL_REPORT_ADDITIONAL_INFO ((OM_value_length) 1024)
#define MH_VL_SUPPLEMENTARY_INFO ((OM_value_length) 64)
#define MH_VL_SURNAME ((OM_value_length) 40)
#define MH_VL_TERMINAL_IDENTIFIER ((OM_value_length) 24)
#define MH_VL_TIME ((OM_value_length) 17)
#define MH_VL_X121_ADDRESS ((OM_value_length) 15)

/* Value Number */

#define MH_VN_BILATERAL_INFORMATION ((OM_value_number) 8)
#define MH_VN_ENCODED_INFORMATION_TYPES ((OM_value_number) 8)
#define MH_VN_EXPANSION_HISTORY ((OM_value_number) 512)
#define MH_VN_OTHER_RECIPIENT_NAMES ((OM_value_number) 32767)
#define MH_VN_PREFERRED_DELIVERY_MODES ((OM_value_number) 10)
#define MH_VN_RECIPIENT_DESCRIPTORS ((OM_value_number) 32767)
#define MH_VN_REDIRECTION_HISTORY ((OM_value_number) 512)
#define MH_VN_REPORT_SUBSTANCE ((OM_value_number) 32767)
#define MH_VN_SECURITY_CATEGORY_DATA ((OM_value_number) 64)
#define MH_VN_SECURITY_CATEGORY_IDS ((OM_value_number) 64)
#define MH_VN_TRACE_INFO ((OM_value_number) 512)

/* END MH PORTION OF INTERFACE */

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services, X/Open CAE Specification (November 1991), API to
Electronic Mail (X.400).

xmhp.h(4xds)

Chapter 4. DCE Directory Service 797

xmsga.h

Purpose

Definitions for the message store general attributes

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdsmdup.h>
#include <xmhp.h>
#include <xmsga.h>

Description

The xmsga.h header declares the object identifiers for the message store general
attributes. They are used with the directory message store object. This header must
be included when use of the MHS directory user package (MDUP) has been
negotiated.

All application programs that include this header must first include the xom.h object
management header, the xds.h header, the xdsmdup.h and xmhp.h headers.
#ifndef XMSGA_HEADER
#define XMSGA_HEADER

/* MS General Attributes Package object identifier */

#define OMP_O_MS_GENERAL_ATTRIBUTES_PACKAGE "\x56\x06\x01\x02\x06\x02"

/* MS General Attributes Types */
/*
* Note: Every client program must explicitly import into
* every compilation unit (C source program) the classes or
* Object Identifiers that it uses. Each of these classes or
* Object Identifier names must then be explicitly exported from
* just one compilation unit.
* Importing and exporting can be done using the OM_IMPORT and
* OM_EXPORT macros respectively (see [OM API]).
* For instance, the client program uses
* OM_IMPORT(MS_A_CHILD_SEQUENCE_NUMBERS)
* which in turn will make use of
* OMP_O_MS_A_CHILD_SEQUENCE_NUMBERS
* defined below.
*/

#define OMP_O_MS_A_CHILD_SEQUENCE_NUMBERS "\x56\x04\x03\x00"
#define OMP_O_MS_A_CONTENT "\x56\x04\x03\x01"
#define OMP_O_MS_A_CONTENT_CONFIDENTL_ALGM_ID "\x56\x04\x03\x02"
#define OMP_O_MS_A_CONTENT_CORRELATOR "\x56\x04\x03\x03"
#define OMP_O_MS_A_CONTENT_IDENTIFIER "\x56\x04\x03\x04"
#define OMP_O_MS_A_CONTENT_INTEGRITY_CHECK "\x56\x04\x03\x05"
#define OMP_O_MS_A_CONTENT_LENGTH "\x56\x04\x03\x06"
#define OMP_O_MS_A_CONTENT_RETURNED "\x56\x04\x03\x07"
#define OMP_O_MS_A_CONTENT_TYPE "\x56\x04\x03\x08"
#define OMP_O_MS_A_CONVERSION_LOSS_PROHIBITED "\x56\x04\x03\x09"
#define OMP_O_MS_A_CONVERTED_EITS "\x56\x04\x03\x0A"
#define OMP_O_MS_A_CREATION_TIME "\x56\x04\x03\x0B"
#define OMP_O_MS_A_DELIVERED_EITS "\x56\x04\x03\x0C"
#define OMP_O_MS_A_DELIVERY_FLAGS "\x56\x04\x03\x0D"

798 IBM DCE for AIX, Version 2.2: Application Development Reference

#define OMP_O_MS_A_DL_EXPANSION_HISTORY "\x56\x04\x03\x0E"
#define OMP_O_MS_A_ENTRY_STATUS "\x56\x04\x03\x0F"
#define OMP_O_MS_A_ENTRY_TYPE "\x56\x04\x03\x10"
#define OMP_O_MS_A_INTENDED_RECIPIENT_NAME "\x56\x04\x03\x11"
#define OMP_O_MS_A_MESSAGE_DELIVERY_ENVELOPE "\x56\x04\x03\x12"
#define OMP_O_MS_A_MESSAGE_DELIVERY_ID "\x56\x04\x03\x13"
#define OMP_O_MS_A_MESSAGE_DELIVERY_TIME "\x56\x04\x03\x14"
#define OMP_O_MS_A_MESSAGE_ORIGIN_AUTHEN_CHK "\x56\x04\x03\x15"
#define OMP_O_MS_A_MESSAGE_SECURITY_LABEL "\x56\x04\x03\x16"
#define OMP_O_MS_A_MESSAGE_SUBMISSION_TIME "\x56\x04\x03\x17"
#define OMP_O_MS_A_MESSAGE_TOKEN "\x56\x04\x03\x18"
#define OMP_O_MS_A_ORIGINAL_EITS "\x56\x04\x03\x19"
#define OMP_O_MS_A_ORIGINATOR_CERTIFICATE "\x56\x04\x03\x1A"
#define OMP_O_MS_A_ORIGINATOR_NAME "\x56\x04\x03\x1B"
#define OMP_O_MS_A_OTHER_RECIPIENT_NAMES "\x56\x04\x03\x1C"
#define OMP_O_MS_A_PARENT_SEQUENCE_NUMBER "\x56\x04\x03\x1D"
#define OMP_O_MS_A_PERRECIP_REPORT_DELIV_FLDS "\x56\x04\x03\x1E"
#define OMP_O_MS_A_PRIORITY "\x56\x04\x03\x1F"
#define OMP_O_MS_A_PROOF_OF_DELIVERY_REQUEST "\x56\x04\x03\x20"
#define OMP_O_MS_A_REDIRECTION_HISTORY "\x56\x04\x03\x21"
#define OMP_O_MS_A_REPORT_DELIVERY_ENVELOPE "\x56\x04\x03\x22"
#define OMP_O_MS_A_REPORT_ORIGIN_AUTHEN_CHK "\x56\x04\x03\x23"
#define OMP_O_MS_A_REPORTING_DL_NAME "\x56\x04\x03\x24"
#define OMP_O_MS_A_REPORTING_MTA_CERTIFICATE "\x56\x04\x03\x25"
#define OMP_O_MS_A_SECURITY_CLASSIFICATION "\x56\x04\x03\x26"
#define OMP_O_MS_A_SEQUENCE_NUMBER "\x56\x04\x03\x27"
#define OMP_O_MS_A_SUBJECT_SUBMISSION_ID "\x56\x04\x03\x28"
#define OMP_O_MS_A_THIS_RECIPIENT_NAME "\x56\x04\x03\x29"

/* Enumeration Constants */

/* for MS_A_ENTRY_STATUS */

#define MS_ES_NEW ((OM_enumeration) 0)
#define MS_ES_LISTED ((OM_enumeration) 1)
#define MS_ES_PROCESSED ((OM_enumeration) 2)

/* for MS_A_ENTRY_TYPE */

#define MS_ET_DELIVERED_MESSAGE ((OM_enumeration) 0)
#define MS_ET_DELIVERED_REPORT ((OM_enumeration) 1)
#define MS_ET_RETURNED_CONTENT ((OM_enumeration) 2)

/* for MS_A_PRIORITY */

#define MS_PTY_NORMAL ((OM_enumeration) 0)
#define MS_PTY_LOW ((OM_enumeration) 1)
#define MS_PTY_URGENT ((OM_enumeration) 2)

/* for MS_A_SECURITY_CLASSIFICATION */

#define MS_SC_UNMARKED ((OM_enumeration) 0)
#define MS_SC_UNCLASSIFIED ((OM_enumeration) 1)
#define MS_SC_RESTRICTED ((OM_enumeration) 2)
#define MS_SC_CONFIDENTIAL ((OM_enumeration) 3)
#define MS_SC_SECRET ((OM_enumeration) 4)
#define MS_SC_TOP_SECRET ((OM_enumeration) 5)

#endif /* XMSGA_HEADER */

xmsga.h(4xds)

Chapter 4. DCE Directory Service 799

Related Information

X/Open CAE Specification (November 1991), API to Directory Services (XDS),
X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation API
(XOM), IBM DCE for AIX, Version 2.2: Application Development Guide—Directory
Services, X/Open CAE Specification (November 1991), API to Electronic Mail
(X.400).

xmsga.h(4xds)

800 IBM DCE for AIX, Version 2.2: Application Development Reference

xom_intro

Purpose

Introduction to X/OPEN OSI-Abstract-Data Manipulation (XOM) functions

Synopsis

#include <xom.h>
#include <xomext.h>

Description

This xom_intro reference page defines the functions of the C interface. The
following table lists the relevant functions.

Table 34. Service Interface Functions—xom_intro(3xom)
Function Description

omX_extract() Gets attribute values from specified object.
omX_fill() Initializes an OM_descriptor structure.
omX_fill_oid() Initializes an OM_descriptor with an OID

value.
omX_object_to_string() Converts an OM_object to string format.
omX_string_to_object() Converts a string to OM_object.
om_copy() Copies a private object.
om_copy_value() Copies a string between private objects.
om_create() Creates a private object.
om_decode() This function is not supported by the DCE

XOM interface, and returns with an
OM_FUNCTION_DECLINED error.

om_delete() Deletes a private or service-generated object.
om_encode() This function is not supported by the DCE

XOM interface, and returns with an
OM_FUNCTION_DECLINED error.

om_get() Gets copies of attribute values from a private
object.

om_instance() Tests an object’s class.
om_put() Puts attribute values into a private object.
om_read() Reads a segment of a string in a private

object.
om_remove() Removes attribute values from a private

object.
om_write() Writes a segment of a string into a private

object.

As indicated in the table, the service interface comprises a number of functions
whose purpose and range of capabilities are summarized as follows:

omX_extract()
Creates a new public object that is an exact but independent copy of an
existing subobject in a private object. This function is similiar to the
om_get() function but includes an additional parameter navigation_path that
contains directions to the required object to be extracted.

Chapter 4. DCE Directory Service 801

omX_fill()
Initializes an OM descriptor structure with user supplied values for its type,
syntax and value.

omX_fill_oid()
Initializes an OM descriptor structure with user supplied values for its type
and value. The syntax of the descriptor is always set to
OM_S_OBJECT_IDENTIFIER_STRING .

omX_object_to_string()
Converts an OM object into a string format.

omX_string_to_object()
Creates a new private object, which is build from the string and class input
parameters.

om_copy()
Creates an independent copy of an existing private object and all its
subobjects. The copy is placed in the original’s workspace, or in another
specified by the XOM application.

om_copy_value()
Replaces an existing attribute value or inserts a new value in one private
object with a copy of an existing attribute value found in another. Both
values must be strings.

om_create()
Creates a new private object that is an instance of a particular class. The
object can be initialized with the attribute values specified as initial in the
class definition.

The service does not permit the API user to explicitly create instances of all
classes, but rather only those indicated by a package’s definition as having
this property.

om_delete()
Deletes a service-generated public object, or makes a private object
inaccessible.

om_get()
Creates a new public object that is an exact but independent copy of an
existing private object. The client can request certain exclusions, each of
which reduces the copy to a part of the original. The client can also request
that values be converted from one syntax to another before they are
returned.

The copy can exclude: attributes of types other than those specified, values
at positions other than those specified within an attribute, the values of
multivalued attributes, copies of (not handles for) subobjects, or all attribute
values (revealing only an attribute’s presence).

om_instance()
Determines whether an object is an instance of a particular class. The client
can determine an object’s class simply by inspection. This function is useful
since it reveals that an object is an instance of a particular class, even if the
object is an instance of a subclass of that class.

om_put()
Places or replaces in one private object copies of the attribute values of
another public or private object.

xom_intro(3xom)

802 IBM DCE for AIX, Version 2.2: Application Development Reference

The source values can be inserted before any existing destination values,
before the value at a specified position in the destination attribute, or after
any existing destination values. Alternatively, the source values can be
substituted for any existing destination values or for the values at specified
positions in the destination attribute.

om_read()
Reads a segment of a value of an attribute of a private object. The value
must be a string. The value can first be converted from one syntax to
another. The function enables the client to read an arbitrarily long value
without requiring that the service place a copy of the entire value in
memory.

om_remove()
Removes and discards particular values of an attribute of a private object.
The attribute itself is removed if no values remain.

om_write()
Writes a segment of a value of an attribute to a private object. The value
must be a string. The segment can first be converted from one syntax to
another. The written segment becomes the value’s last segment since any
elements beyond it are discarded. The function enables the client to write
an arbitrarily long value without having to place a copy of the entire value in
memory.

In the C interface, the functions are realized by macros. The function prototype in
the synopsis of a function’s specification simply shows the client’s view of the
function.

The intent of the interface definition is that each function be atomic; that is, either it
carries out its assigned task in full and reports success, or it fails to carry out even
a part of the task and reports an exception. However, the service does not
guarantee that a task is always carried out in full.

Errors

Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages. The possible error return values are
described in the function reference pages.

XOM functions check for NULL pointers and return an error, except for workspace
pointers. Pointers are only checked at the function interface. The check is only for
NULL and not for validity. If NULL or invalid pointers are passed this may result in
an undetermined behaviour.

xom_intro(3xom)

Chapter 4. DCE Directory Service 803

omX_extract

Purpose

Extracts the first occurrence of the requested OM type from an object

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_extract(
OM_private_object object
OM_type_list navigation_path
OM_exclusions exclusions
OM_type_list included_types
OM_boolean local_strings
OM_value_position initial_value
OM_value_position limiting_value
OM_public_object *values
OM_value_position *total_number);

Parameters

Input
object The object from which data is to be extracted.

navigation_path
Contains a NULL-terminated list of OM types that lead to the target object
to be extracted. It does not include the OM type of the target object.

exclusions
Explicit requests for zero or more exclusions, each of which reduces the
copy to a prescribed portion of the original. The exclusions apply to the
attributes of the target object, but not to those of its subobjects.

Apart from OM_NO_EXCLUSIONS, each value is chosen from the following
list. When multiple exclusions are specified, each is applied in the order in
which it is displayed in the list with lower-numbered exclusions having
precedence over higher-numbered exclusions. If, after the application of an
exclusion, that portion of the object is not returned, no further exclusions
need be applied to that portion.

v OM_EXCLUDE_ALL_BUT_THESE_TYPES

The copy includes descriptors comprising only attributes of specified
types. Note that this exclusion provides a means for determining the
values of specified attributes, as well as the syntaxes of those values.

v OM_EXCLUDE_MULTIPLES

The copy includes a single descriptor for each attribute that has two or
more values, rather than one descriptor for each value. None of these
descriptors contains an attribute value, and the OM_S_NO_VALUE bit of
the syntax component is set.

If the attribute has values of two or more syntaxes, the descriptor
identifies one of those syntaxes; however, the syntax identified is not
specified.

Note that this exclusion provides a means for discerning the presence of
multivalued attributes without simultaneously obtaining their values.

v OM_EXCLUDE_ALL_BUT_THESE_VALUES

804 IBM DCE for AIX, Version 2.2: Application Development Reference

The copy includes descriptors comprising only values at specified
positions within an attribute. Note that, when this exclusion is used in
conjunction with the OM_EXCLUDE_ALL_BUT_THESE_TYPES
exclusion, it provides a means for determining the values of a specified
attribute, as well as the syntaxes of those values, one or more but not all
attributes at a time.

v OM_EXCLUDE_VALUES

The copy includes a single descriptor for each attribute value, but the
descriptor does not contain the value, and the OM_S_NO_VALUE bit of
the syntax component is set.

Note that this exclusion provides a means for determining an object’s
composition; that is, the type and syntax of each of its attribute values.

v OM_EXCLUDE_SUBOBJECTS

The copy includes, for each value whose syntax is OM_S_OBJECT , a
descriptor containing an object handle for the original private subobject,
rather than a public copy of it. This handle makes that subobject
accessible for use in subsequent function calls.

Note that this exclusion provides a means for examining an object one
level at a time.

v OM_EXCLUDE_DESCRIPTORS

When this exclusion is specified, no descriptors are returned and the
copy result is not present. The total_number parameter reflects the
number of descriptors that would be returned by applying the other
inclusion and exclusion specifications.

Note that this exclusion provides an attribute analysis capability. For
instance, the total number of values in a multivalued attribute can be
determined by specifying an inclusion of the specific attribute type, and
exclusions of OM_EXCLUDE_DESCRIPTORS,
OM_EXCLUDE_SUBOBJECTS , and
OM_EXCLUDE_ALL_BUT_THESE_TYPES .

The OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion affects the
choice of descriptors, while the OM_EXCLUDE_VALUES exclusion affects
the composition of descriptors.

included_types
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion is requested; it
identifies the types of the attributes to be included in the copy (provided that
they are displayed in the original).

local_strings
This Boolean parameter indicates whether conversion to local string format
should be carried out or not.

initial_value
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is requested; it
specifies the position within each attribute of the first value to be included in
the copy.

If it is OM_ALL_VALUES or exceeds the number of values present in an
attribute, the parameter is taken to be equal to that number.

limiting_value
This parameter is present if and only if the

omX_extract(3xom)

Chapter 4. DCE Directory Service 805

OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is requested; it
specifies the position within each attribute one beyond that of the last value
to be included in the copy. If this parameter is not greater than the
initial_value parameter, no values are included (and no descriptors are
returned).

If it is OM_ALL_VALUES or exceeds the number of values present in an
attribute, the parameter is taken to be equal to that number.

Output
values The values parameter is only present if the return value from

OM_return_code is OM_SUCCESS and the
OM_EXCLUDE_DESCRIPTORS exclusion is not specified. It contains the
array of OM descriptors extracted.

The memory space for values is provided by omX_extract() . It is the
responsibility of the calling function to subsequently release this space
through a call to om_delete() .

total_number
The number of attribute descriptors returned in the public object, but not in
any of its subobjects, based on the inclusion and exclusion parameters
specified. If the OM_EXCLUDE_DESCRIPTORS exclusion is specified, no
values result is returned and the total_number result reflects the actual
number of attribute descriptors that would be returned based on the
remaining inclusion and exclusion values.

Note that the total includes only the attribute descriptors in the values
parameter. It excludes the special descriptor signaling the end of a public
object.

Description

The omX_extract() function creates a new public object that is an exact, but
independent, copy of an existing subobject in a private object. It is similiar to the
om_get() function but includes an additional parameter, navigation_path which
contains directions to the required object to be extracted. The client can request
certain exclusions, each of which reduces the copy to a part of the original.

One exclusion is always requested implicitly. For each attribute value in the original
that is a string whose length exceeds an implementation-defined number, the values
parameter includes a descriptor that omits the elements (but not the length) of the
string. The elements component of the string component in the descriptor’s value
component is OM_ELEMENTS_UNSPECIFIED, and the OM_S_LONG_STRING bit
of the syntax component is set to OM_TRUE.

The parameters exclusions, included_types, local_strings, initial_value, and
limiting_value only apply to the target object being extracted.

Note that the client can access long values by means of om_read() .

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

omX_extract(3xom)

806 IBM DCE for AIX, Version 2.2: Application Development Reference

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
the xom.h(4xom) reference page.

Errors

Refer to xom.h(4xom) for a list of the possible error values that can be returned in
OM_return_code. Refer to the IBM DCE for AIX, Version 2.2: Problem
Determination Guide for complete descriptions of all error messages.

omX_extract(3xom)

Chapter 4. DCE Directory Service 807

omX_fill

Purpose

Initializes an OM_descriptor structure

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_fill(
OM_type type
OM_syntax syntax
OM_uint32 length
void *elements
OM_descriptor *destination);

Parameters

Input
type The type of OM descriptor structure.

syntax The syntax value for this OM descriptor.

length The data length for values of string syntax. Zero is entered for values of
type OM_object . When initializing an OM_descriptor with an OM_type that
has an OM_syntax of either OM_S_INTEGER, OM_S_BOOLEAN or
OM_S_ENUMERATION, then the associated value must be entered in the
length parameter.

elements
The string contents.

Output
destination

Contains the filled descriptor.

Description

The omX_fill() function is used to initialize an OM descriptor structure with user
supplied values for its type, syntax, and value.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
the xom.h(4xom) reference page.

808 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages. Refer to xom.h(4xom) for a list of the
possible error values that can be returned in OM_return_code.

omX_fill(3xom)

Chapter 4. DCE Directory Service 809

omX_fill_oid

Purpose

Initializes an OM_descriptor structure with an object identifier value

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_fill_oid(
OM_type type
OM_object_identifier object_id
OM_descriptor *destination);

Parameters

Input
type The type of OM_descriptor structure.

object_id
The object identifier value.

Output
destination

Contains the filled descriptor.

Description

The omX_fill_oid() function is used to initialize an OM descriptor structure with
user-supplied values for its type and value. The syntax of the descriptor is always
set to OM_S_OBJECT_IDENTIFIER_STRING .

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
the xom.h(4xom) reference page.

Errors

Refer to xom.h(4xom) for a list of the possible error values that can be returned in
OM_return_code. Refer to the IBM DCE for AIX, Version 2.2: Problem
Determination Guide for complete descriptions of all error messages.

810 IBM DCE for AIX, Version 2.2: Application Development Reference

omX_object_to_string

Purpose

Converts an OM object from descriptor to string format

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_object_to_string(
OM_object object
OM_boolean local_strings
OM_string *string);

Parameters

Input
object Contains the OM object to be converted.

local_strings
This Boolean value indicates if the string return value should be converted
to a local string format. For further information on local strings please refer
to the IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

Output
string Contains the converted object in string format.

The calling function should provide the memory for string. The string’s
contents are initially unspecified. The string’s length becomes the number of
octets required to contain the segment that the function is to read. The
service modifies this parameter. The string’s elements become the elements
actually read. The string’s length becomes the number of octets required to
hold the segment actually read.

Description

The omX_object_to_string() function converts an OM object into a string format.
The object can either be a client-generated or a service-generated public or private
object.

The objects that can be handled by this function are restricted to those defined in
the schema file, xoischema . Additionally, the OM objects
DS_C_ATTRIBUTE_ERROR and DS_C_ERROR are also handled. For these, a
message string containing the error message is returned.

For the syntax of the output strings, please refer to the IBM DCE for AIX, Version
2.2: Application Development Guide—Directory Services .

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

Chapter 4. DCE Directory Service 811

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
the xom.h(4xom) reference page.

Errors

Refer to xom.h(4xom) and xomext.h for a list of the possible error values that can
be returned in OM_return_code. Refer to the IBM DCE for AIX, Version 2.2:
Problem Determination Guide for complete descriptions of all error messages.

omX_object_to_string(3xom)

812 IBM DCE for AIX, Version 2.2: Application Development Reference

omX_string_to_object

Purpose

Converts an OM object specified in string format to descriptor format

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_string_to_object(
OM_workspace workspace
OM_string *string
OM_object_identifier class
OM_boolean local_strings
OM_private_object *object
OM_integer *error_position
OM_integer *error_type);

Parameters

Input
workspace

The workspace pointer obtained from a ds_initialize() call.

string The string to be converted. Refer to the IBM DCE for AIX, Version 2.2:
Application Development Guide—Directory Services for details of the string
syntaxes allowed.

class The OM class of the object to be created.

local_strings
Indicates if the attribute values are to be converted from their local string
format.

Output
object The converted object.

error_position
If there is a syntax error in the input string, then error_position indicates the
position in the string where the error was detected.

error_type
Indicates the type of error. Refer to the xomext.h header file for
explanations of the error types.

Description

The omX_string_to_object() function creates a new private object, which is built
from the string and class input parameters.

The objects that can be created by this function are restricted to those defined in
the schema file, xoischema .

Chapter 4. DCE Directory Service 813

Notes

The memory space for the object return parameter is allocated by
omX_string_to_object() . The calling application is responsible for releasing this
memory with the om_delete() function call.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
the xom.h(4xom) reference page.

If there is a syntax error in the input string, OM_return_code is set to
OM_WRONG_VALUE_MAKEUP and the type of error is returned in
error_type.

Errors

Refer to xom.h(4xom) and xomext.h for a list of the possible error values that can
be returned in OM_return_code and error_type. Refer to the IBM DCE for AIX,
Version 2.2: Problem Determination Guide for complete descriptions of all error
messages.

omX_string_to_object(3xom)

814 IBM DCE for AIX, Version 2.2: Application Development Reference

om_copy

Purpose

Creates a new private object that is an exact, but independent, copy of an existing
private object

Synopsis
#include <xom.h>

OM_return_code om_copy(
OM_private_object original
OM_workspace workspace
OM_private_object *copy);

Parameters

Input
original

The original that remains accessible.

workspace
The workspace in which the copy is to be created. The original’s class must
be in a package associated with this workspace.

Output
copy The new copy of the private object. This result is present if and only if the

return value for OM_return_code is OM_SUCCESS.

Description

The om_copy() function creates a new private object (the copy) that is an exact but
independent copy of an existing private object (the original). The function is
recursive in that copying the original also copies its subobjects.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 4. DCE Directory Service 815

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_CLASS

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_WORKSPACE

v OM_NOT_PRIVATE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

v OM_TOO_MANY_VALUES

om_copy(3xom)

816 IBM DCE for AIX, Version 2.2: Application Development Reference

om_copy_value

Purpose

Places or replaces a string in one private object with a copy of a string in another
private object

Synopsis
#include <xom.h>

OM_return_code om_copy_value(
OM_private_object source
OM_type source_type
OM_value_position source_value_position
OM_private_object destination
OM_type destination_type
OM_value_position destination_value_position);

Parameters

Input
source The source that remains accessible.

source_type
Identifies the type of an attribute. One of the attribute values is copied.

source_value_position
The position within the source attribute of the value copied.

destination
The destination that remains accessible.

destination_type
Identifies the type of the attribute. One of the attribute values is placed or
replaced.

destination_value_position
The position within the destination attribute of the value placed or replaced.
If the value position exceeds the number of values present in the
destination attribute, the parameter is taken to be equal to that number.

Description

The om_copy_value() function places or replaces an attribute value in one private
object (the destination) with a copy of an attribute value in another private object
(the source). The source value is a string. The copy’s syntax is that of the original.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

Chapter 4. DCE Directory Service 817

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page later in this chapter).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_DECLINED

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_TYPE

v OM_NOT_PRESENT

v OM_NOT_PRIVATE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

v OM_WRONG_VALUE_LENGTH

v OM_WRONG_VALUE_SYNTAX

v OM_WRONG_VALUE_TYPE

om_copy_value(3xom)

818 IBM DCE for AIX, Version 2.2: Application Development Reference

om_create

Purpose

Creates a new private object that is an instance of a particular class

Synopsis
#include <xom.h>

OM_return_code om_create(
OM_object_identifier class
OM_boolean initialize
OM_workspace workspace
OM_private_object *object);

Parameters

Input
class Identifies the class of the object to be created. The specified class shall be

concrete.

initialize
Determines whether the object created is initialized as specified in the
definition of its class. If this parameter is OM_TRUE, the object is made to
comprise the attribute values specified as initial values in the tabular
definitions of the object’s class and its superclasses. If this parameter is
OM_FALSE , the object is made to comprise the OM_CLASS attribute
alone.

workspace
The workspace in which the object is created. The specified class is in a
package associated with this workspace.

Output
object The created object. This result is present if and only if the return value for

OM_return_code is OM_SUCCESS.

Description

The om_create() function creates a new private object that is an instance of a
particular class.

Notes

By subsequently adding new values to the object and replacing and removing
existing values, the client can create all conceivable instances of the object’s class.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the

Chapter 4. DCE Directory Service 819

function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page later in this chapter).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_DECLINED

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_CLASS

v OM_NO_SUCH_WORKSPACE

v OM_NOT_CONCRETE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

om_create(3xom)

820 IBM DCE for AIX, Version 2.2: Application Development Reference

om_delete

Purpose

Deletes a private or service-generated object

Synopsis
#include <xom.h>

OM_return_code om_delete(
OM_object subject);

Parameters

Input
subject

The object to be deleted.

Description

The om_delete() function deletes a service-generated public object or makes a
private object inaccessible. It is not intended for use on client-generated public
objects.

If applied to a service-generated public object, the function deletes the object and
releases any resources associated with the object, including the space occupied by
descriptors and attribute values. The function is applied recursively to any public
subobjects. This does not affect any private subobjects.

If applied to a private object, the function makes the object inaccessible. Any
existing object handles for the object are invalidated. The function is applied
recursively to any private subobjects.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

Chapter 4. DCE Directory Service 821

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_SYNTAX

v OM_NO_SUCH_TYPE

v OM_NOT_THE_SERVICES

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

om_delete(3xom)

822 IBM DCE for AIX, Version 2.2: Application Development Reference

om_get

Purpose

Creates a public copy of all or particular parts of a private object

Synopsis
#include <xom.h>

OM_return_code om_get(
OM_private_object original
OM_exclusions exclusions
OM_type_list included_types
OM_boolean local_strings
OM_value_position initial_value
OM_value_position limiting_value
OM_public_object *copy
OM_value_position *total_number);

Parameters

Input
original

The original that remains accessible.

exclusions
Explicit requests for zero or more exclusions, each of which reduces the
copy to a prescribed portion of the original. The exclusions apply to the
attributes of the object, but not to those of its subobjects.

Apart from OM_NO_EXCLUSIONS, each value is chosen from the following
list. When multiple exclusions are specified, each is applied in the order in
which it is displayed in the list with lower-numbered exclusions having
precedence over higher-numbered exclusions. If, after the application of an
exclusion, that portion of the object is not returned, no further exclusions
need be applied to that portion.

v OM_EXCLUDE_ALL_BUT_THESE_TYPES

The copy includes descriptors comprising only attributes of specified
types. Note that this exclusion provides a means for determining the
values of specified attributes, as well as the syntaxes of those values.

v OM_EXCLUDE_MULTIPLES

The copy includes a single descriptor for each attribute that has two or
more values, rather than one descriptor for each value. None of these
descriptors contains an attribute value, and the OM_S_NO_VALUE bit of
the syntax component is set.

If the attribute has values of two or more syntaxes, the descriptor
identifies one of those syntaxes; however, the syntax identified is not
specified.

Note that this exclusion provides a means for discerning the presence of
multivalued attributes without simultaneously obtaining their values.

v OM_EXCLUDE_ALL_BUT_THESE_VALUES

The copy includes descriptors comprising only values at specified
positions within an attribute. Note that, when this exclusion is used in
conjunction with the OM_EXCLUDE_ALL_BUT_THESE_TYPES

Chapter 4. DCE Directory Service 823

exclusion, it provides a means for determining the values of a specified
attribute, as well as the syntaxes of those values, one or more but not all
attributes at a time.

v OM_EXCLUDE_VALUES

The copy includes a single descriptor for each attribute value, but the
descriptor does not contain the value, and the OM_S_NO_VALUE bit of
the syntax component is set.

Note that this exclusion provides a means for determining an object’s
composition; that is, the type and syntax of each of its attribute values.

v OM_EXCLUDE_SUBOBJECTS

The copy includes, for each value whose syntax is OM_S_OBJECT , a
descriptor containing an object handle for the original private subobject,
rather than a public copy of it. This handle makes that subobject
accessible for use in subsequent function calls.

Note that this exclusion provides a means for examining an object one
level at a time.

v OM_EXCLUDE_DESCRIPTORS

When this exclusion is specified, no descriptors are returned and the
copy result is not present. The total_number parameter reflects the
number of descriptors that would be returned by applying the other
inclusion and exclusion specifications.

Note that this exclusion provides an attribute analysis capability. For
instance, the total number of values in a multivalued attribute can be
determined by specifying an inclusion of the specific attribute type, and
exclusions of OM_EXCLUDE_DESCRIPTORS,
OM_EXCLUDE_SUBOBJECTS , and
OM_EXCLUDE_ALL_BUT_THESE_TYPES .

The OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion affects the
choice of descriptors, while the OM_EXCLUDE_VALUES exclusion affects
the composition of descriptors.

included_types
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion is requested; it
identifies the types of the attributes to be included in the copy (provided that
they are displayed in the original).

local_strings
This Boolean parameter indicates whether conversion to local string format
should be carried out or not. For further information on local strings please
refer the IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

initial_value
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is requested; it
specifies the position within each attribute of the first value to be included in
the copy.

If it is OM_ALL_VALUES or exceeds the number of values present in an
attribute, the parameter is taken to be equal to that number.

limiting_value
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is requested; it

om_get(3xom)

824 IBM DCE for AIX, Version 2.2: Application Development Reference

specifies the position within each attribute one beyond that of the last value
to be included in the copy. If this parameter is not greater than the
initial_value parameter, no values are included (and no descriptors are
returned).

If it is OM_ALL_VALUES or exceeds the number of values present in an
attribute, the parameter is taken to be equal to that number.

Output
copy The copy parameter is only present if the return value from

OM_return_code is OM_SUCCESS and the
OM_EXCLUDE_DESCRIPTORS exclusion is not specified.

The space occupied by the public object and every attribute value that is a
string is service provided. If the client alters any part of that space, the
effect upon the service’s subsequent behavior is unspecified.

total_number
The number of attribute descriptors returned in the public object, but not in
any of its subobjects, based on the inclusion and exclusion parameters
specified. If the OM_EXCLUDE_DESCRIPTORS exclusion is specified, no
copy result is returned and the total_number result reflects the actual
number of attribute descriptors that would be returned based on the
remaining inclusion and exclusion values.

Note that the total includes only the attribute descriptors in the copy
parameter. It excludes the special descriptor signaling the end of a public
object.

Description

The om_get() function creates a new public object (the copy) that is an exact, but
independent, copy of an existing private object, the original parameter. The client
can request certain exclusions, each of which reduces the copy to a part of the
original.

One exclusion is always requested implicitly. For each attribute value in the original
that is a string whose length exceeds an implementation-defined number, the copy
parameter includes a descriptor that omits the elements (but not the length) of the
string. The elements component of the string component in the descriptor’s value
component is OM_ELEMENTS_UNSPECIFIED, and the OM_S_LONG_STRING bit
of the syntax component is set to OM_TRUE.

Note that the client can access long values by means of om_read() .

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

om_get(3xom)

Chapter 4. DCE Directory Service 825

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_EXCLUSION

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_TYPE

v OM_NOT_PRIVATE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

v OM_WRONG_VALUE_SYNTAX

v OM_WRONG_VALUE_TYPE

om_get(3xom)

826 IBM DCE for AIX, Version 2.2: Application Development Reference

om_instance

Purpose

Determines whether an object is an instance of a particular class or any of its
subclasses

Synopsis
#include <xom.h>

OM_return_code om_instance(
OM_object subject
OM_object_identifier class
OM_boolean *instance);

Parameters

Input
subject

The subject that remains accessible.

class Identifies the class in question.

Output
instance

Indicates whether the subject is an instance of the specified class or any of
its subclasses. This result is present if and only if the value of the
OM_return_code is set to OM_SUCCESS.

Description

The om_instance() function determines whether a service-generated public or
private object (the subject) is an instance of a particular class or any of its
subclasses.

Notes

The client can determine an object’s class (C) by simply inspecting the object, using
programming language constructs if the object is public or om_get() if it is private.
This function is useful in that it reveals that an object is an instance of the specified
class, even if C is a subclass of that class.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

Chapter 4. DCE Directory Service 827

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_CLASS

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_SYNTAX

v OM_NOT_THE_SERVICES

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

om_instance(3xom)

828 IBM DCE for AIX, Version 2.2: Application Development Reference

om_put

Purpose

Places or replaces in one private object copies of the attribute values of another
public or private object

Synopsis
#include <xom.h>

OM_return_code om_put(
OM_private_object destination
OM_modification modification
OM_object source
OM_type_list included_types
OM_value_position initial_value
OM_value_position limiting_value);

Parameters

Input
destination

The destination that remains accessible. The destination’s class is
unaffected.

modification
The nature of the requested modification. The modification determines how
om_put() uses the attribute values in the source to modify the object. In all
cases, for each attribute present in the source, copies of its values are
placed in the object’s destination attribute of the same type. The data value
is chosen from among the following:

v OM_INSERT_AT_BEGINNING

The source values are inserted before any existing destination values.
(The latter are retained.)

v OM_INSERT_AT_CERTAIN_POINT

The source values are inserted before the value at a specified position in
the destination attribute. (The latter are retained.)

v OM_INSERT_AT_END

The source values are inserted after any existing destination values. (The
latter are retained.)

v OM_REPLACE_ALL

The source values are placed in the destination attribute. The existing
destination values, if any, are discarded.

v OM_REPLACE_CERTAIN_VALUES

The source values are substituted for the values at specified positions in
the destination attribute. (The latter are discarded.)

source The source that remains accessible. The source’s class is ignored.
However, the attributes being copied from the source must be compatible
with the destination’s class definition.

included_types
If present, this parameter identifies the types of the attributes to be included

Chapter 4. DCE Directory Service 829

in the destination (provided that they are displayed in the source);
otherwise, all attributes are to be included.

initial_value
This parameter is present if and only if the modification parameter is
OM_INSERT_AT_CERTAIN_POINT or
OM_REPLACE_CERTAIN_VALUES . It specifies the position within each
destination attribute at which source values are inserted, or of the first value
replaced, respectively.

If it is OM_ALL_VALUES , or exceeds the number of values present in a
destination attribute, the parameter is taken to be equal to that number.

limiting_value
Present if and only if the modification parameter is
OM_REPLACE_CERTAIN_VALUES . It specifies the position within each
destination attribute one beyond that of the last value replaced. If this
parameter is present, it must be greater than the initial_value parameter.

If the limiting_value parameter is OM_ALL_VALUES or exceeds the
number of values present in a destination attribute, the parameter is taken
to be equal to that number.

Description

The om_put() function places or replaces in one private object (that is, the
destination) copies of the attribute values of another public or private object (that is,
the source). The client can specify that the source’s values replace all or particular
values in the destination, or are inserted at a particular position within each
attribute. All string values being copied that are in the local representation are first
converted into the nonlocal representation for that syntax (which may entail the loss
of some information).

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_DECLINED

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

om_put(3xom)

830 IBM DCE for AIX, Version 2.2: Application Development Reference

v OM_NO_SUCH_CLASS

v OM_NO_SUCH_MODIFICATION

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_SYNTAX

v OM_NO_SUCH_TYPE

v OM_NOT_CONCRETE

v OM_NOT_PRESENT

v OM_NOT_PRIVATE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

v OM_TOO_MANY_VALUES

v OM_VALUES_NOT_ADJACENT

v OM_WRONG_VALUE_LENGTH

v OM_WRONG_VALUE_MAKEUP

v OM_WRONG_VALUE_NUMBER

v OM_WRONG_VALUE_POSITION

v OM_WRONG_VALUE_SYNTAX

v OM_WRONG_VALUE_TYPE

om_put(3xom)

Chapter 4. DCE Directory Service 831

om_read

Purpose

Reads a segment of a string in a private object

Synopsis
#include <xom.h>

OM_return_code om_read(
OM_private_object subject
OM_type type
OM_value_position value_position
OM_boolean local_string
OM_string_length *string_offset
OM_string *elements);

Parameters

Input
subject

The subject that remains accessible.

type Identifies the type of the attribute, one of whose values is read.

value_position
The position within the attribute of the value read.

local_string
This Boolean parameter indicates whether conversion to local string format
should be carried out or not. For further information on local strings please
refer to the IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services .

Input/Output
string_offset

On input this parameter contains the offset, in octets, of the start of the
string segment to be read. If it exceeds the total length of the string, the
parameter is equal to the string length.

On output it contains the offset, in octets, of the start of the next string
segment to be read, or 0 (zero) if the value’s final segment is read. The
result is present if, and only if, the OM_return_code is OM_SUCCESS . The
value returned can be used as the input string_offset parameter in the next
call of this function. This enables sequential reading of a value of a long
string.

elements
On input, the space the client provides for the segment to be read. The
string’s contents are initially unspecified. The string’s length is initially the
number of octets required to contain the segment that the function is to
read.

On output, the string’s elements become the elements actually read. The
string’s length becomes the number of octets required to hold the segment
actually read. This can be less than the initial length if the segment is the
last in a long string.

832 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The om_read() function reads a segment of an attribute value in a private object,
namely the subject.

The segment returned is a segment of the string value that is returned if the
complete value is read in a single call.

Note that this function enables the client to read an arbitrarily long value without
requiring that the service place a copy of the entire value in memory.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_TYPE

v OM_NOT_PRESENT

v OM_NOT_PRIVATE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

v OM_WRONG_VALUE_SYNTAX

om_read(3xom)

Chapter 4. DCE Directory Service 833

om_remove

Purpose

Removes and discards values of an attribute of a private object

Synopsis
#include <xom.h>

OM_return_code om_remove(
OM_private_object subject
OM_type type
OM_value_position initial_value
OM_value_position limiting_value);

Parameters

Input
subject

The subject that remains accessible. The subject’s class is unaffected.

type Identifies the type of the attribute, some of whose values are removed. The
type is not OM_CLASS .

initial_value
The position within the attribute of the first value removed.

If it is OM_ALL_VALUES , or exceeds the number of values present in the
attribute, the parameter is taken to be equal to that number.

limiting_value
The position within the attribute one beyond that of the last value removed.
If this parameter is not greater than the initial_value parameter, no values
are removed.

If it is OM_ALL_VALUES , or exceeds the number of values present in an
attribute, the parameter is taken to be equal to that number.

Description

The om_remove() function removes and discards particular values of an attribute of
a private object, the subject. If no values remain, the attribute itself is also removed.
If the value is a subobject, the value is first removed and then om_delete() is
applied to it, thus destroying the object.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; if the function fails, it has one of the error values listed in
this reference page.

834 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_DECLINED

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_TYPE

v OM_NOT_PRIVATE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

om_remove(3xom)

Chapter 4. DCE Directory Service 835

om_write

Purpose

Writes a segment of a string into a private object

Synopsis
#include <xom.h>

OM_return_code om_write(
OM_private_object subject
OM_type type
OM_value_position value_position
OM_syntax syntax
OM_string_length *string_offset
OM_string elements);

Parameters

Input
subject

The subject that remains accessible.

type Identifies the type of the attribute, one of whose values is written.

value_position
The position within the above attribute of the value to be written. The value
position can neither be negative nor exceed the number of values present.
If it equals the number of values present, the segment is inserted into the
attribute as a new value.

syntax If the value being written is not already present in the subject, this identifies
the syntax that the value has. It must be a permissible syntax for the
attribute of which this is a value. If the value being written is already
present in the subject, then that value’s syntax is preserved and this
parameter is ignored.

elements
The string segment to be written. A copy of this segment occupies a
position within the string value being written, starting at the offset given by
the string_offset input parameter. Any values already at or beyond this
offset are discarded.

Input/Output
string_offset

On input this parameter contains the offset, in octets, of the start of the
string segment to be written. If it exceeds the current length of the string
value being written, the parameter is taken to be equal to that current
length.

On output it contains the offset, in octets, after the last string segment
written. This result is present if, and only if, the OM_return_code result is
OM_SUCCESS. The value returned in string_offset can be used as the
input string_offset parameter the next time this function is called. This
enables sequential writing of the value of a long string.

836 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The om_write() function writes a segment of an attribute value in a private object,
the subject parameter.

The segment supplied is a segment of the string value that is supplied if the
complete value is written in a single call.

The written segment is made the value’s last. The function discards any values
whose offset equals or exceeds the string_offset result. If the value being written is
in the local representation, it is converted to the nonlocal representation (which may
entail the loss of information and which may yield a different number of elements
than that provided).

Note that this function enables the client to write an arbitrarily long value without
having to place a copy of the entire value in memory.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If the
function is successful, the value of OM_return_code is set to
OM_SUCCESS; whereas, if the function fails, it has one of the values listed
under ERRORS.

The exact constants for OM_return_code are defined in the xom.h header
file (see the xom.h(4xom) reference page later in this chapter).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

v OM_FUNCTION_DECLINED

v OM_FUNCTION_INTERRUPTED

v OM_MEMORY_INSUFFICIENT

v OM_NETWORK_ERROR

v OM_NO_SUCH_OBJECT

v OM_NO_SUCH_SYNTAX

v OM_NO_SUCH_TYPE

v OM_NOT_PRESENT

v OM_NOT_PRIVATE

v OM_PERMANENT_ERROR

v OM_POINTER_INVALID

v OM_SYSTEM_ERROR

v OM_TEMPORARY_ERROR

v OM_WRONG_VALUE_LENGTH

v OM_WRONG_VALUE_MAKEUP

om_write(3xom)

Chapter 4. DCE Directory Service 837

v OM_WRONG_VALUE_POSITION

v OM_WRONG_VALUE_SYNTAX

om_write(3xom)

838 IBM DCE for AIX, Version 2.2: Application Development Reference

xom.h

Purpose

Header file for XOM

Synopsis

#include <xom.h>

Description

The declarations, as assembled here, constitute the contents of a header file made
accessible to client programmers. The header file includes by reference a second
header file (xomi.h) comprising the declarations defining the C workspace interface.
The xomi.h header file and the workspace interface are only used internally by the
service interface, and are not visible to the client programmer.
#ifndef XOM_HEADER
#define XOM_HEADER

/* BEGIN SERVICE INTERFACE */

/* INTERMEDIATE DATA TYPES */

typedef int OM_sint;
typedef short OM_sint16;
typedef long int OM_sint32;
typedef unsigned OM_uint;
typedef unsigned short OM_uint16;
typedef long unsigned OM_uint32;

/* PRIMARY DATA TYPES */

/* Boolean */

typedef OM_uint32 OM_boolean;

/* String Length */

typedef OM_uint32 OM_string_length;

/* Enumeration */

typedef OM_sint32 OM_enumeration;

/* Exclusions */

typedef OM_uint OM_exclusions;

/* Integer */

typedef OM_sint32 OM_integer;

/* Modification */

typedef OM_uint OM_modification;

/* Object */

typedef struct OM_descriptor_struct *OM_object;

Chapter 4. DCE Directory Service 839

/* String */

typedef struct {
OM_string_length length;
void *elements;

} OM_string;

#define OM_STRING(string) \
{ (OM_string_length)(sizeof(string)-1), string }

/* Workspace */

typedef void *OM_workspace;

/* SECONDARY DATA TYPES */

/* Object Identifier */

typedef OM_string OM_object_identifier;

/* Private Object */

typedef OM_object OM_private_object;

/* Public Object */

typedef OM_object OM_public_object;

/* Return Code */

typedef OM_uint OM_return_code;

/* Syntax */

typedef OM_uint16 OM_syntax;

/* Type */

typedef OM_uint16 OM_type;

/* Type List */

typedef OM_type *OM_type_list;

/* Value */

typedef struct {
OM_uint32 padding;
OM_object object;

} OM_padded_object;

typedef union OM_value_union {
OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;

} OM_value;

/* Value Length */

typedef OM_uint32 OM_value_length;

/* Value Position */

typedef OM_uint32 OM_value_position;

xom.h(4xom)

840 IBM DCE for AIX, Version 2.2: Application Development Reference

/* TERTIARY DATA TYPES */

/* Descriptor */

typedef struct OM_descriptor_struct {
OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

/* SYMBOLIC CONSTANTS */

/* Boolean */

#define OM_FALSE ((OM_boolean) 0)
#define OM_TRUE ((OM_boolean) 1)

/* Element Position */

#define OM_LENGTH_UNSPECIFIED ((OM_string_length) 0xFFFFFFFF)
/* Exclusions */

#define OM_NO_EXCLUSIONS ((OM_exclusions) 0)
#define OM_EXCLUDE_ALL_BUT_THESE_TYPES ((OM_exclusions) 1)
#define OM_EXCLUDE_ALL_BUT_THESE_VALUES ((OM_exclusions) 2)
#define OM_EXCLUDE_MULTIPLES ((OM_exclusions) 4)
#define OM_EXCLUDE_SUBOBJECTS ((OM_exclusions) 8)
#define OM_EXCLUDE_VALUES ((OM_exclusions) 16)
#define OM_EXCLUDE_DESCRIPTORS ((OM_exclusions) 32)

/* Modification */

#define OM_INSERT_AT_BEGINNING ((OM_modification) 1)
#define OM_INSERT_AT_CERTAIN_POINT ((OM_modification) 2)
#define OM_INSERT_AT_END ((OM_modification) 3)
#define OM_REPLACE_ALL ((OM_modification) 4)
#define OM_REPLACE_CERTAIN_VALUES ((OM_modification) 5)

/* Object Identifiers */

/* NOTE: These macros rely on the ## token-pasting operator of
* ANSI C. On many pre-ANSI compilers the same effect can be
* obtained by replacing ## with /**/

/* Private macro to calculate length of an object identifier
*/

#define OMP_LENGTH(oid_string) (sizeof(OMP_O_##oid_string)-1)

/* Macro to initialize the syntax and value of an object identifier
*/

#define OM_OID_DESC(type, oid_name) \
{ (type), OM_S_OBJECT_IDENTIFIER_STRING, \
{ { OMP_LENGTH(oid_name) , OMP_D_##oid_name } } }

/* Macro to mark the end of a client-allocated public object
*/

#define OM_NULL_DESCRIPTOR \
{ OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES, \
{ { 0, OM_ELEMENTS_UNSPECIFIED } } }

/* Macro to make class constants available
/* within a compilation unit
*/

xom.h(4xom)

Chapter 4. DCE Directory Service 841

#define OM_IMPORT(class_name) \
extern char OMP_D_##class_name []; \
extern OM_string class_name;

/* Macro to allocate memory for class constants
/* within a compilation unit
*/

#define OM_EXPORT(class_name) \
char OMP_D_##class_name[] = OMP_O_##class_name ; \
OM_string class_name = \
{ OMP_LENGTH(class_name), OMP_D_##class_name } ;

/* Constant for the OM package
*/

/* { joint-iso-ccitt(2) mhs-motis(6) group(6) white(1)
api(2) om(4) } */

#define OMP_O_OM_OM "\x56\x06\x01\x02\x04"

/* Constant for the Encoding class
*/

#define OMP_O_OM_C_ENCODING "\x56\x06\x01\x02\x04\x01"

/* Constant for the External class
*/

#define OMP_O_OM_C_EXTERNAL "\x56\x06\x01\x02\x04\x02"

/* Constant for the Object class
*/

#define OMP_O_OM_C_OBJECT "\x56\x06\x01\x02\x04\x03"

/* Constant for the BER Object Identifier
*/

#define OMP_O_OM_BER "\x51\x01"

/* Constant for the Canonical-BER Object Identifier
*/

#define OMP_O_OM_CANONICAL_BER "\x56\x06\x01\x02\x04\x04"

/* Return Code */

#define OM_SUCCESS ((OM_return_code) 0)
#define OM_ENCODING_INVALID ((OM_return_code) 1)
#define OM_FUNCTION_DECLINED ((OM_return_code) 2)
#define OM_FUNCTION_INTERRUPTED ((OM_return_code) 3)
#define OM_MEMORY_INSUFFICIENT ((OM_return_code) 4)
#define OM_NETWORK_ERROR ((OM_return_code) 5)
#define OM_NO_SUCH_CLASS ((OM_return_code) 6)
#define OM_NO_SUCH_EXCLUSION ((OM_return_code) 7)
#define OM_NO_SUCH_MODIFICATION ((OM_return_code) 8)
#define OM_NO_SUCH_OBJECT ((OM_return_code) 9)
#define OM_NO_SUCH_RULES ((OM_return_code) 10)
#define OM_NO_SUCH_SYNTAX ((OM_return_code) 11)
#define OM_NO_SUCH_TYPE ((OM_return_code) 12)
#define OM_NO_SUCH_WORKSPACE ((OM_return_code) 13)
#define OM_NOT_AN_ENCODING ((OM_return_code) 14)
#define OM_NOT_CONCRETE ((OM_return_code) 15)
#define OM_NOT_PRESENT ((OM_return_code) 16)
#define OM_NOT_PRIVATE ((OM_return_code) 17)
#define OM_NOT_THE_SERVICES ((OM_return_code) 18)
#define OM_PERMANENT_ERROR ((OM_return_code) 19)
#define OM_POINTER_INVALID ((OM_return_code) 20)
#define OM_SYSTEM_ERROR ((OM_return_code) 21)
#define OM_TEMPORARY_ERROR ((OM_return_code) 22)
#define OM_TOO_MANY_VALUES ((OM_return_code) 23)
#define OM_VALUES_NOT_ADJACENT ((OM_return_code) 24)
#define OM_WRONG_VALUE_LENGTH ((OM_return_code) 25)

xom.h(4xom)

842 IBM DCE for AIX, Version 2.2: Application Development Reference

#define OM_WRONG_VALUE_MAKEUP ((OM_return_code) 26)
#define OM_WRONG_VALUE_NUMBER ((OM_return_code) 27)
#define OM_WRONG_VALUE_POSITION ((OM_return_code) 28)
#define OM_WRONG_VALUE_SYNTAX ((OM_return_code) 29)
#define OM_WRONG_VALUE_TYPE ((OM_return_code) 30)

/* String (Elements component) */

#define OM_ELEMENTS_UNSPECIFIED ((void *) 0)

/* Syntax */

#define OM_S_NO_MORE_SYNTAXES ((OM_syntax) 0)
#define OM_S_BIT_STRING ((OM_syntax) 3)
#define OM_S_BOOLEAN ((OM_syntax) 1)
#define OM_S_ENCODING_STRING ((OM_syntax) 8)
#define OM_S_ENUMERATION ((OM_syntax) 10)
#define OM_S_GENERAL_STRING ((OM_syntax) 27)
#define OM_S_GENERALISED_TIME_STRING ((OM_syntax) 24)
#define OM_S_GRAPHIC_STRING ((OM_syntax) 25)
#define OM_S_IA5_STRING ((OM_syntax) 22)
#define OM_S_INTEGER ((OM_syntax) 2)
#define OM_S_NULL ((OM_syntax) 5)
#define OM_S_NUMERIC_STRING ((OM_syntax) 18)
#define OM_S_OBJECT ((OM_syntax) 127)
#define OM_S_OBJECT_DESCRIPTOR_STRING ((OM_syntax) 7)
#define OM_S_OBJECT_IDENTIFIER_STRING ((OM_syntax) 6)
#define OM_S_OCTET_STRING ((OM_syntax) 4)
#define OM_S_PRINTABLE_STRING ((OM_syntax) 19)
#define OM_S_TELETEX_STRING ((OM_syntax) 20)
#define OM_S_UTC_TIME_STRING ((OM_syntax) 23)
#define OM_S_VIDEOTEX_STRING ((OM_syntax) 21)
#define OM_S_VISIBLE_STRING ((OM_syntax) 26)
#define OM_S_LONG_STRING ((OM_syntax) 0x8000)
#define OM_S_NO_VALUE ((OM_syntax) 0x4000)
#define OM_S_LOCAL_STRING ((OM_syntax) 0x2000)
#define OM_S_SERVICE_GENERATED ((OM_syntax) 0x1000)
#define OM_S_PRIVATE ((OM_syntax) 0x0800)
#define OM_S_SYNTAX ((OM_syntax) 0x03FF)

/* Type */

#define OM_NO_MORE_TYPES ((OM_type) 0)
#define OM_ARBITRARY_ENCODING ((OM_type) 1)
#define OM_ASN1_ENCODING ((OM_type) 2)
#define OM_CLASS ((OM_type) 3)
#define OM_DATA_VALUE_DESCRIPTOR ((OM_type) 4)
#define OM_DIRECT_REFERENCE ((OM_type) 5)
#define OM_INDIRECT_REFERENCE ((OM_type) 6)
#define OM_OBJECT_CLASS ((OM_type) 7)
#define OM_OBJECT_ENCODING ((OM_type) 8)
#define OM_OCTET_ALIGNED_ENCODING ((OM_type) 9)
#define OM_PRIVATE_OBJECT ((OM_type) 10)
#define OM_RULES ((OM_type) 11)

/* Value Position */

#define OM_ALL_VALUES ((OM_value_position) 0xFFFFFFFF)

/* WORKSPACE INTERFACE */

#include <xomi.h> /* Only for internal use by interface */

/* END SERVICE INTERFACE */
#endif /* XOM_HEADER */

xom.h(4xom)

Chapter 4. DCE Directory Service 843

Related Information

Books: X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data
Manipulation API (XOM), IBM DCE for AIX, Version 2.2: Application Development
Guide—Directory Services.

xom.h(4xom)

844 IBM DCE for AIX, Version 2.2: Application Development Reference

Chapter 5. DCE Distributed Time Service

© Copyright IBM Corp. 1992, 1998 845

dts_intro

Purpose

Introduction to DCE Distributed Time Service (DTS)

Description

The DCE Distributed Time Service programming routines can obtain timestamps
that are based on Coordinated Universal Time (UTC), translate between different
timestamp formats, and perform calculations on timestamps. Applications can call
the DTS routines from server or clerk systems and use the timestamps that DTS
supplies to determine event sequencing, duration, and scheduling.

The DTS routines can perform the following basic functions:

v Retrieve the current (UTC-based) time from DTS.

v Convert binary timestamps expressed in the utc time structure to or from tm
structure components.

v Convert the binary timestamps expressed in the utc time structure to or from
timespec structure components.

v Convert the binary timestamps expressed in the utc time structure to or from
ASCII strings.

v Compare two binary time values.

v Calculate binary time values.

v Obtain time zone information.

DTS can convert between several types of binary time structures that are based on
different calendars and time unit measurements. DTS uses UTC-based time
structures, and can convert other types of time structures to its own presentation of
UTC-based time.

Absolute time is an interval on a time scale; absolute time measurements are
derived from system clocks or external time-providers. For DTS, absolute times
reference the UTC standard and include the inaccuracy and other information.
When you display an absolute time, DTS converts the time to ASCII text, as shown
in the following display:
1992-11-21-13:30:25.785-04:00I000.082

Relative time is a discrete time interval that is often added to or subtracted from an
absolute time. A TDF associated with an absolute time is one example of a relative
time. Note that a relative time does not use the calendar date fields, since these
fields concern absolute time.

UTC is the international time standard that DTS uses. The zero hour of UTC is
based on the zero hour of Greenwich Mean Time (GMT). The documentation
consistently refers to the time zone of the Greenwich Meridian as GMT. However,
this time zone is also sometimes referred to as UTC.

The Time Differential Factor (TDF) is the difference between UTC and the time in a
particular time zone.

The user’s environment determines the time zone rule (details are system
dependent). For example, on OSF/1 systems, the user selects a time zone by

846 IBM DCE for AIX, Version 2.2: Application Development Reference

specifying the TZ environment variable. (The reference information for the
localtime() system call, which is described in the ctime(3) reference page,
provides additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is
used (details of the rule are system dependent). For example, on OSF/1 systems,
the rule in /etc/zoneinfo/localtime applies.

The IBM DCE for AIX, Version 2.2: Application Development Guide provides
additional information about UTC and GMT, TDF and time zones, and relative and
absolute times.

Unless otherwise specified, the default input and output parameters are as follows:

v If NULL is specified for a utc input parameter, the current time is used.

v If NULL is specified for any output parameter, no result is returned.

The following illustration categorizes the DTS portable interface routines by function.

Converting Times ...

To/From

utc_binreltime
utc_bintime
utc_mkbinreltime
utc_mkbintime

timespec Structures:

utc_ascanytime
utc_ascgmtime
utc_asclocaltime
utc_ascreltime
utc_mkasctime
utc_mkascreltime

ASCII text:
To/From

utc_anytime
utc_gmtime
utc_localtime
utc_mkanytime
utc_mkgmtime
utc_mklocaltime
utc_mkreltime
utc_reltime

To/From
Structures:tm

Retrieving Time ...
utc_gettime
utc_getusertime

Information ...

Obtaining Timezone

utc_anyzone
utc_gmtzone
utc_localzone

Comparing Times ...

utc_cmpintervaltime
utc_cmpmidtime

Manipulating Times ...
utc_boundtime
utc_spantime
utc_pointtime

Calculating Times ...

utc_addtime
utc_mulftime
utc_multime
utc_subtime

utc_abstime

An alphabetical listing of the DTS portable interface routines and a brief description
of each one follows:

dts_intro(3dts)

Chapter 5. DCE Distributed Time Service 847

utc_abstime()
Computes the absolute value of a relative binary timestamp.

utc_addtime()
Computes the sum of two binary timestamps; the timestamps can be two
relative times or a relative time and an absolute time.

utc_anytime()
Converts a binary timestamp to a tm structure by using the TDF information
contained in the timestamp to determine the TDF returned with the tm
structure.

utc_anyzone()
Gets the time zone label and offset from GMT by using the TDF contained
in the utc input parameter.

utc_ascanytime()
Converts a binary timestamp to an ASCII string that represents an arbitrary
time zone.

utc_ascgmtime()
Converts a binary timestamp to an ASCII string that expresses a GMT time.

utc_asclocaltime()
Converts a binary timestamp to an ASCII string that represents a local time.

utc_ascreltime()
Converts a relative binary timestamp to an ASCII string that represents the
time.

utc_binreltime()
Converts a relative binary timestamp to two timespec structures that
express relative time and inaccuracy.

utc_bintime()
Converts a binary timestamp to a timespec structure.

utc_boundtime()
Given two UTC times, one before and one after an event, returns a single
UTC time whose inaccuracy includes the event.

utc_cmpintervaltime()
Compares two binary timestamps or two relative binary timestamps.

utc_cmpmidtime()
Compares two binary timestamps or two relative binary timestamps,
ignoring inaccuracies.

utc_gettime()
Returns the current system time and inaccuracy as a binary timestamp.

utc_getusertime()
Returns the time and process-specific TDF, rather than the system-specific
TDF.

utc_gmtime()
Converts a binary timestamp to a tm structure that expresses GMT or the
equivalent UTC.

utc_gmtzone()
Gets the time zone label for GMT.

utc_localtime()
Converts a binary timestamp to a tm structure that expresses local time.

dts_intro(3dts)

848 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_localzone()
Gets the local time zone label and offset from GMT, given utc .

utc_mkanytime()
Converts a tm structure and TDF (expressing the time in an arbitrary time
zone) to a binary timestamp.

utc_mkascreltime()
Converts a NULL-terminated character string that represents a relative
timestamp to a binary timestamp.

utc_mkasctime()
Converts a NULL-terminated character string that represents an absolute
timestamp to a binary timestamp.

utc_mkbinreltime()
Converts a timespec structure expressing a relative time to a binary
timestamp.

utc_mkbintime()
Converts a timespec structure to a binary timestamp.

utc_mkgmtime()
Converts a tm structure that expresses GMT or UTC to a binary timestamp.

utc_mklocaltime()
Converts a tm structure that expresses local time to a binary timestamp.

utc_mkreltime()
Converts a tm structure that expresses relative time to a relative binary
timestamp.

utc_mulftime()
Multiplies a relative binary timestamp by a floating-point value.

utc_multime()
Multiplies a relative binary timestamp by an integer factor.

utc_pointtime()
Converts a binary timestamp to three binary timestamps that represent the
earliest, most likely, and latest time.

utc_reltime()
Converts a relative binary timestamp to a tm structure.

utc_spantime()
Given two (possibly unordered) binary timestamps, returns a single UTC
time interval whose inaccuracy spans the two input binary timestamps.

utc_subtime()
Computes the difference between two binary timestamps that express either
an absolute time and a relative time, two relative times, or two absolute
times.

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

dts_intro(3dts)

Chapter 5. DCE Distributed Time Service 849

utc_abstime

Purpose

Computes the absolute value of a relative binary timestamp

Synopsis
#include <dce/utc.h>

int utc_abstime(
utc_t* result
utc_t *utc);

Parameters

Input
utc Relative binary timestamp. Use NULL if you want this routine to use the

current time for this parameter.

Output
result Absolute value of the input relative binary timestamp.

Description

The utc_abstime() routine computes the absolute value of a relative binary
timestamp. The input timestamp represents a relative (delta) time.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example scales a relative time, computes its absolute value, and
prints the result.
utc_t relutc, scaledutc;
char timstr[UTC_MAX_STR_LEN];

/*
* Make sure relative timestamp represents a positive interval...
*/

utc_abstime(&relutc, /* Out: Abs-value of rel time */
&relutc); /* In: Relative time to scale */

/*
* Scale it by a factor of 17...
*/

utc_multime(&scaledutc, /* Out: Scaled relative time */
&relutc, /* In: Relative time to scale */
17L); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII relative time */
UTC_MAX_STR_LEN, /* In: Length of input string */

850 IBM DCE for AIX, Version 2.2: Application Development Reference

&scaledutc); /* In: Relative time to */
/* convert */

printf("%s\n",timstr);

/*
* Scale it by a factor of 17.65...
*/

utc_mulftime(&scaledutc, /* Out: Scaled relative time */
&relutc, /* In: Relative time to scale */
17.65); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII relative time */
UTC_MAX_STR_LEN, /* In: Length of input string */
&scaledutc); /* In: Relative time to */

/* convert */

printf("%s\n",timstr);

utc_abstime(3dts)

Chapter 5. DCE Distributed Time Service 851

utc_addtime

Purpose

Computes the sum of two binary timestamps

Synopsis
#include <dce/utc.h>

int utc_addtime(
utc_t* result
utc_t *utc1
utc_t *utc2);

Parameters

Input
utc1 Binary timestamp or relative binary timestamp. Use NULL if you want this

routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want this
routine to use the current time for this parameter.

Output
result Resulting binary timestamp or relative binary timestamp, depending upon

the operation performed:

v relative time+relative time=relative time

v absolute time+relative time=absolute time

v relative time+absolute time=absolute time

v absolute time+absolute time is undefined. (See the note later in this
reference page.)

Description

The utc_addtime() routine adds two binary timestamps, producing a third binary
timestamp whose inaccuracy is the sum of the two input inaccuracies. One or both
of the input timestamps typically represents a relative (delta) time. The TDF in the
first input timestamp is copied to the output. The timestamps can be two relative
times or a relative time and an absolute time.

Notes

Although no error is returned, the combination absolute time+absolute time should
not be used.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

852 IBM DCE for AIX, Version 2.2: Application Development Reference

Examples

The following example shows how to compute a timestamp that represents a time
at least 5 seconds in the future.
utc_t now, future, fivesec;
reltimespec_t tfivesec;
timespec_t tzero;

/* Construct a timestamp that represents 5 seconds...
*/

tfivesec.tv_sec = 5;
tfivesec.tv_nsec = 0;
tzero.tv_sec = 0;
tzero.tv_nsec = 0;
utc_mkbinreltime(&fivesec, /* Out: 5 secs in binary timestamp */

&tfivesec, /* In: 5 secs in timespec */
&tzero); /* In: 0 secs inaccuracy in timespec */

/* Get the maximum possible current time...
* (The NULL input parameter is used to specify the current time.)
*/

utc_pointtime((utc_t *)0, /* Out: Earliest possible current time */
(utc_t *)0, /* Out: Midpoint of current time */
&now, /* Out: Latest possible current time */
(utc_t *)0); /* In: Use current time */

/* Add 5 seconds to get future timestamp...
*/

utc_addtime(&future, /* Out: Future binary timestamp */
&now, /* In: Latest possible time now */
&fivesec); /* In: 5 secs */

Related Information

Functions: utc_subtime(3dts) .

utc_addtime(3dts)

Chapter 5. DCE Distributed Time Service 853

utc_anytime

Purpose

Converts a binary timestamp to a tm structure

Synopsis
#include <dce/utc.h>

int utc_anytime(
struct tm *timetm
long *tns
struct tm *inacctm
long *ins
long *tdf
utc_t *utc);

Parameters

Input
utc Binary timestamp. Use NULL if you want this routine to use the current time

for this parameter.

Output
timetm Time component of the binary timestamp expressed in the timestamp’s local

time.

tns Nanoseconds since the time component of the binary timestamp.

inacctm
Seconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is finite, then tm_mday returns a value of −1 and tm_mon and
tm_year return values of 0 (zero). The field tm_yday contains the
inaccuracy in days. If the inaccuracy is unspecified, all tm structure fields
return values of −1.

ins Nanoseconds of the inaccuracy component of the binary timestamp.

tdf TDF component of the binary timestamp in units of seconds east of GMT.

Description

The utc_anytime() routine converts a binary timestamp to a tm structure by using
the TDF information contained in the timestamp to determine the TDF returned with
the tm structure. The TDF information contained in the timestamp is returned with
the time and inaccuracy components; the TDF component determines the offset
from GMT and the local time value of the tm structure. Additional returns include
nanoseconds since time and nanoseconds of inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

854 IBM DCE for AIX, Version 2.2: Application Development Reference

Examples

The following example converts a timestamp by using the TDF information in the
timestamp, and then prints the result.
utc_t evnt;
struct tm tmevnt;
timespec_t tevnt, ievnt;
char tznam[80];

/* Assume evnt contains the timestamp to convert...
*
* Get time as a tm structure, using the time zone information in
* the timestamp...
*/

utc_anytime(&tmevnt, /* Out: tm struct of time of evnt */
(long *)0, /* Out: nanosec of time of evnt */
(struct tm *)0, /* Out: tm struct of inacc of evnt */
(long *)0, /* Out: nanosec of inacc of evnt */
(int *)0, /* Out: tdf of evnt */
&evnt); /* In: binary timestamp of evnt */

/* Get the time and inaccuracy as timespec structures...
*/

utc_bintime(&tevnt, /* Out: timespec of time of evnt */
&ievnt, /* Out: timespec of inacc of evnt */
(int *)0, /* Out: tdf of evnt */
&evnt); /* In: Binary timestamp of evnt */

/* Construct the time zone name from time zone information in the
* timestamp...
*/

utc_anyzone(tznam, /* Out: Time zone name */
80, /* In: Size of time zone name */
(long *)0, /* Out: tdf of event */
(long *)0, /* Out: Daylight saving flag */
&evnt); /* In: Binary timestamp of evnt */

/* Print timestamp in the format:
*
* 1991-03-05-21:27:50.023I0.140 (GMT-5:00)
* 1992-04-02-12:37:24.003Iinf (GMT+7:00)
*/

printf("%d-%02d-%02d-%02d:%02d:%02d.%03d",
tmevnt.tm_year+1900, tmevnt.tm_mon+1, tmevnt.tm_mday,
tmevnt.tm_hour, tmevnt.tm_min, tmevnt.tm_sec,
(tevnt.tv_nsec/1000000));

if ((long)ievnt.tv_sec == -1)
printf("Iinf");

else
printf("I%d.%03d", ievnt.tv_sec, (ievnt.tv_nsec/1000000));

printf(" (%s)\n", tznam);

Related Information

Functions:
utc_anyzone(3dts),utc_gettime(3dts),utc_getusertime(3dts),utc_gmtime(3dts),utc_localtime(

utc_anytime(3dts)

Chapter 5. DCE Distributed Time Service 855

utc_anyzone

Purpose

Gets the time zone label and offset from GMT

Synopsis
#include <dce/utc.h>

int utc_anyzone(
char *tzname
size_t tzlen
long *tdf
int *isdst
const utc_t *utc);

Parameters

Input
tzlen Length of the tzname buffer.

utc Binary timestamp. Use NULL if you want this routine to use the current time
for this parameter.

Output
tzname

Character string that is long enough to hold the time zone label.

tdf Long word with differential in seconds east of GMT.

isdst Integer with a value of −1, indicating that no information is supplied as to
whether it is standard time or daylight saving time. A value of −1 is always
returned.

Description

The utc_anyzone() routine gets the time zone label and offset from GMT by using
the TDF contained in the utc input parameter. The label returned is always of the
form GMT+n or GMT-n where n is the tdf expressed in hours: minutes. (The label
associated with an arbitrary time zone is not known; only the offset is known.)

Notes

All of the output parameters are optional. No value is returned and no error occurs
if the pointer is NULL.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or an insufficient buffer.

Examples

See the sample program in the utc_anytime(3dts) reference page.

856 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_anytime(3dts) , utc_gmtzone(3dts) , utc_localzone(3dts) .

utc_anyzone(3dts)

Chapter 5. DCE Distributed Time Service 857

utc_ascanytime

Purpose

Converts a binary timestamp to an ASCII string that represents an arbitrary time
zone

Synopsis
#include <dce/utc.h>

int utc_ascanytime(
char *cp
size_t stringlen
utc_t *utc);

Parameters

Input
stringlen

The length of the cp buffer.

utc Binary timestamp. Use NULL if you want this routine to use the current time
for this parameter.

Output
cp ASCII string that represents the time.

Description

The utc_ascanytime() routine converts a binary timestamp to an ASCII string that
expresses a time. The TDF component in the timestamp determines the local time
used in the conversion.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts a time to an ASCII string that expresses the time in
the time zone where the timestamp was generated.
utc_t evnt;
char localTime[UTC_MAX_STR_LEN];

/*
* Assuming that evnt contains the timestamp to convert, convert
* the time to ASCII in the following format:
*
* 1991-04-01-12:27:38.37-8:00I2.00
*/

utc_ascanytime(localtime, /* Out: Converted time */
UTC_MAX_STR_LEN, /* In: Length of string */
&evnt); /* In: Time to convert */

858 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_ascgmtime(3dts) , utc_asclocaltime(3dts) .

utc_ascanytime(3dts)

Chapter 5. DCE Distributed Time Service 859

utc_ascgmtime

Purpose

Converts a binary timestamp to an ASCII string that expresses a GMT time

Synopsis
#include <dce/utc.h>

int utc_ascgmtime(
char *cp
size_t stringlen
utc_t *utc);

Parameters

Input
stringlen

Length of the cp buffer.

utc Binary timestamp.

Output
cp ASCII string that represents the time.

Description

The utc_ascgmtime() routine converts a binary timestamp to an ASCII string that
expresses a time in GMT.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts the current time to GMT format.
char gmTime[UTC_MAX_STR_LEN];

/* Convert the current time to ASCII in the following format:
* 1991-04-01-12:27:38.37I2.00
*/

utc_ascgmtime(gmTime, /* Out: Converted time */
UTC_MAX_STR_LEN, /* In: Length of string */
(utc_t*) NULL); /* In: Time to convert */

/* Default is current time */

Related Information

Functions: utc_ascanytime(3dts),utc_asclocaltime(3dts) .

860 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_asclocaltime

Purpose

Converts a binary timestamp to an ASCII string that represents a local time

Synopsis
#include <dce/utc.h>

int utc_asclocaltime(
char *cp
size_t stringlen
utc_t *utc);

Parameters

Input
stringlen

Length of the cp buffer.

utc Binary timestamp. Use NULL if you want this routine to use the current time
for this parameter.

Output
cp ASCII string that represents the time.

Description

The utc_asclocaltime() routine converts a binary timestamp to an ASCII string that
expresses local time.

The user’s environment determines the time zone rule (details are system
dependent). For example, on OSF/1 systems, the user selects a time zone by
specifying the TZ environment variable. (The reference information for the localtime
() system call, which is described in the ctime(3) reference page, provides
additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is
used (details of the rule are system dependent). For example, on OSF/1 systems,
the rule in /etc/zoneinfo/localtime applies.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts the current time to local time.
char localTime[UTC_MAX_STR_LEN];

/* Convert the current time...
*/

utc_asclocaltime(localTime, /* Out: Converted time */

Chapter 5. DCE Distributed Time Service 861

UTC_MAX_STR_LEN, /* In: Length of string */
(utc_t*) NULL); /* In: Time to convert */

/* Default is current time */

Related Information

Functions: utc_ascanytime(3dts) , utc_ascgmtime(3dts) .

utc_asclocaltime(3dts)

862 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_ascreltime

Purpose

Converts a relative binary timestamp to an ASCII string that represents the time

Synopsis
#include <dce/utc.h>

int utc_ascreltime(
char *cp
const size_t stringlen
utc_t *utc);

Parameters

Input
utc Relative binary timestamp.

stringlen
Length of the cp buffer.

Output
cp ASCII string that represents the time.

Description

The utc_ascreltime() routine converts a relative binary timestamp to an ASCII
string that represents the time.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

See the sample program in the utc_abstime(3dts) reference page.

Related Information

Functions: utc_mkascreltime(3dts) .

Chapter 5. DCE Distributed Time Service 863

utc_binreltime

Purpose

Converts a relative binary timestamp to two timespec structures that express
relative time and inaccuracy

Synopsis
#include <dce/utc.h>

int utc_binreltime(
reltimespec_t *timesp
timespec_t *inaccsp
utc_t *utc);

Parameters

Input
utc Relative binary timestamp. Use NULL if you want this routine to use the

current time for this parameter.

Output
timesp Time component of the relative binary timestamp, in the form of seconds

and nanoseconds since the base time (1970−01−01:00:00:00.0+00:00I0).

inaccsp
Inaccuracy component of the relative binary timestamp, in the form of
seconds and nanoseconds.

Description

The utc_binreltime() routine converts a relative binary timestamp to two timespec
structures that express relative time and inaccuracy. These timespec structures
describe a time interval.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example measures the duration of a process, then prints the resulting
relative time and inaccuracy.
utc_t before, duration;
reltimespec_t tduration;
timespec_t iduration;

/* Get the time before the start of the operation...
*/

utc_gettime(&before); /* Out: Before binary timestamp */

/* ...Later...
* Subtract, getting the duration as a relative time.
*
* NOTE: The NULL argument is used to obtain the current time.

864 IBM DCE for AIX, Version 2.2: Application Development Reference

*/

utc_subtime(&duration, /* Out: Duration rel bin timestamp */
(utc_t *)0, /* In: After binary timestamp */
&before); /* In: Before binary timestamp */

/* Convert the relative times to timespec structures...
*/

utc_binreltime(&tduration, /* Out: Duration time timespec */
&iduration, /* Out: Duration inacc timespec */
&duration); /* In: Duration rel bin timestamp */

/* Print the duration...
*/

printf("%d.%04d", tduration.tv_sec, (tduration.tv_nsec/10000));

if ((long)iduration.tv_sec == -1)
printf("Iinf\n");

else
printf("I%d.%04d\n", iduration.tv_sec, (iduration.tv_nsec/100000));

Related Information

Functions: utc_mkbinreltime(3dts) .

utc_binreltime(3dts)

Chapter 5. DCE Distributed Time Service 865

utc_bintime

Purpose

Converts a binary timestamp to a timespec structure

Synopsis
#include <dce/utc.h>

int utc_bintime(
timespec_t *timesp
timespec_t *inaccsp
long *tdf
utc_t *utc);

Parameters

Input
utc Binary timestamp. Use NULL if you want this routine to use the current time

for this parameter.

Output
timesp Time component of the binary timestamp, in the form of seconds and

nanoseconds since the base time.

inaccsp
Inaccuracy component of the binary timestamp, in the form of seconds and
nanoseconds.

tdf TDF component of the binary timestamp in the form of signed number of
seconds east of GMT.

Description

The utc_bintime() routine converts a binary timestamp to a timespec structure.
The TDF information contained in the timestamp is returned.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_anytime(3dts) reference page.

Related Information

Functions: utc_binreltime(3dts) , utc_mkbintime(3dts) .

866 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_boundtime

Purpose

Given two UTC times, one before and one after an event, returns a single UTC time
whose inaccuracy includes the event

Synopsis
#include <dce/utc.h>

int utc_boundtime(
utc_t *result
utc_t *utc1
utc_t *utc2);

Parameters

Input
utc1 Before binary timestamp or relative binary timestamp. Use NULL if you want

this routine to use the current time for this parameter.

utc2 After binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

Output
result Spanning timestamp.

Description

Given two UTC times, the utc_boundtime() routine returns a single UTC time
whose inaccuracy bounds the two input times. This is useful for timestamping
events: the routine gets the utc values before and after the event, then calls
utc_boundtime() to build a timestamp that includes the event.

Notes

The TDF in the output UTC value is copied from the utc2 input parameter. If one or
both input values have unspecified inaccuracies, the returned time value also has
an unspecified inaccuracy and is the average of the two input values.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid parameter order.

Examples

The following example records the time of an event and constructs a single
timestamp, which includes the time of the event. Note that the utc_getusertime()
routine is called so the time zone information that is included in the timestamp
references the user’s environment rather than the system’s default time zone.

The user’s environment determines the time zone rule (details are system
dependent). For example, on OSF/1 systems, the user selects a time zone by

Chapter 5. DCE Distributed Time Service 867

specifying the TZ environment variable. (The reference information for the localtime
() system call, which is described in the ctime(3) reference page, provides
additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is
used (details of the rule are system dependent). For example, on OSF/1 systems,
the rule in /etc/zoneinfo/localtime applies.
utc_t before, after, evnt;

/* Get the time before the event...
*/

utc_getusertime(&before); /* Out: Before binary timestamp */

/* Get the time after the event...
*/

utc_getusertime(&after); /* Out: After binary timestamp */

/* Construct a single timestamp that describes the time of the
* event...
*/

utc_boundtime(&evnt, /* Out: Timestamp that bounds event */
&before, /* In: Before binary timestamp */
&after); /* In: After binary timestamp

*/

Related Information

Functions: utc_gettime(3dts) , utc_pointtime(3dts) , utc_spantime(3dts) .

utc_boundtime(3dts)

868 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_cmpintervaltime

Purpose

Compares two binary timestamps or two relative binary timestamps

Synopsis
#include <dce/utc.h>

int utc_cmpintervaltime(
enum utc_cmptype *relation
utc_t *utc1
utc_t *utc2);

Parameters

Input
utc1 Binary timestamp or relative binary timestamp. Use NULL if you want this

routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want this
routine to use the current time for this parameter.

Output
relation

Receives the result of the comparison of utc1:utc2 where the result is an
enumerated type with one of the following values:

v utc_equalTo

v utc_lessThan

v utc_greaterThan

v utc_indeterminate

Description

The utc_cmpintervaltime() routine compares two binary timestamps and returns a
flag indicating that the first time is greater than, less than, equal to, or overlapping
with the second time. Two times overlap if the intervals (time − inaccuracy, time +
inaccuracy) of the two times intersect.

The input binary timestamps express two absolute or two relative times. Do not
compare relative binary timestamps to absolute binary timestamps. If you do, no
meaningful results and no errors are returned.

The following routine does a temporal ordering of the time intervals.
utc1 is utc_lessThan utc2 iff

utc1.time + utc1.inacc < utc2.time - utc2.inacc

utc1 is utc_greaterThan utc2 iff
utc1.time - utc1.inacc > utc2.time + utc2.inacc

utc1 utc_equalTo utc2 iff
utc1.time == utc2.time and
utc1.inacc == 0 and
utc2.inacc == 0

Chapter 5. DCE Distributed Time Service 869

utc1 is utc_indeterminate with respect to utc2 if the intervals overlap.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

The following example checks to see if the current time is definitely after 13:00 local
time.
struct tm tmtime, tmzero;
enum utc_cmptype relation;
utc_t testtime;

/* Zero the tm structure for inaccuracy...
*/

memset(&tmzero, 0, sizeof(tmzero));

/* Get the current time, mapped to a tm structure...
*
* NOTE: The NULL argument is used to get the current time.
*/

utc_gmtime(&tmtime, /* Out: Current GMT time in tm struct */
(long *)0, /* Out: Nanoseconds of time */
(struct tm *)0, /* Out: Current inaccuracy in tm struct */
(long *)0, /* Out: Nanoseconds of inaccuracy */
(utc_t *)0); /* In: Current timestamp */

/* Alter the tm structure to correspond to 13:00 local time */
*/

tmtime.tm_hour = 13;
tmtime.tm_min = 0;
tmtime.tm_sec = 0;

/* Convert to a binary timestamp...
*/

utc_mkgmtime(&testtime, /* Out: Binary timestamp of 13:00 */
&tmtime, /* In: 1:00 PM in tm struct */
0, /* In: Nanoseconds of time */
&tmzero, /* In: Zero inaccuracy in tm struct */
0); /* In: Nanoseconds of inaccuracy */

/* Compare to the current time. Note the use of the NULL argument */
*/

utc_cmpintervaltime(&relation, /* Out: Comparison relation */
(utc_t *)0, /* In: Current timestamp */
&testtime); /* In: 13:00 PM timestamp */

/* If it is not later - wait, print a message, etc.
*/

if (relation != utc_greaterThan) {

/*
* Note: It could be earlier than 13:00 local time or it could be
* indeterminate. If indeterminate, for some applications
* it might be worth waiting.
*/

}

utc_cmpintervaltime(3dts)

870 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_cmpmidtime(3dts) .

utc_cmpintervaltime(3dts)

Chapter 5. DCE Distributed Time Service 871

utc_cmpmidtime

Purpose

Compares two binary timestamps or two relative binary timestamps, ignoring
inaccuracies

Synopsis
#include <dce/utc.h>

int utc_cmpmidtime(
enum utc_cmptype *relation
utc_t *utc1
utc_t *utc2);

Parameters

Input
utc1 Binary timestamp or relative binary timestamp. Use NULL if you want this

routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want this
routine to use the current time for this parameter.

Output
relation

Result of the comparison of utc1:utc2 where the result is an enumerated
type with one of the following values:

v utc_equalTo

v utc_lessThan

v utc_greaterThan

Description

The utc_cmpmidtime() routine compares two binary timestamps and returns a flag
indicating that the first timestamp is greater than, less than, or equal to the second
timestamp. Inaccuracy information is ignored for this comparison; the input values
are therefore equivalent to the midpoints of the time intervals described by the input
binary timestamps.

The input binary timestamps express two absolute or two relative times. Do not
compare relative binary timestamps to absolute binary timestamps. If you do, no
meaningful results and no errors are returned.

The following routine does a lexical ordering on the time interval midpoints.
utc1 is utc_lessThan utc2 iff

utc1.time < utc2.time

utc1 is utc_greaterThan utc2 iff
utc1.time > utc2.time

utc1 is utc_equalTo utc2 iff
utc1.time == utc2.time

872 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

The following example checks if the current time (ignoring inaccuracies) is after
13:00 local time.
struct tm tmtime, tmzero;
enum utc_cmptype relation;
utc_t testtime;

/* Zero the tm structure for inaccuracy...
*/

memset(&tmzero, 0, sizeof(tmzero));

/* Get the current time, mapped to a tm structure...
*
* NOTE: The NULL argument is used to get the current time.
*/

utc_localtime(&tmtime, /* Out: Current local time in tm struct */
(long *)0, /* Out: Nanoseconds of time */
(struct tm *)0, /* Out: Current inacc in tm struct */
(long *)0, /* Out: Nanoseconds of inaccuracy */
(utc_t *)0); /* In: Current timestamp */

/* Alter the tm structure to correspond to 13:00 local time.
*/

tmtime.tm_hour = 13;
tmtime.tm_min = 0;
tmtime.tm_sec = 0;

/* Convert to a binary timestamp...
*/

utc_mklocaltime(&testtime, /* Out: Binary timestamp of 13:00 */
&tmtime, /* In: 13:00 in tm struct */
0, /* In: Nanoseconds of time */
&tmzero, /* In: Zero inaccuracy in tm struct */
0); /* In: Nanoseconds of inaccuracy */

/* Compare to the current time. Note the use of the NULL argument
*/

utc_cmpmidtime(&relation, /* Out: Comparison relation */
(utc_t *)0, /* In: Current timestamp */
&testtime); /* In: 13:00 local time timestamp */

/* If the time is not later - wait, print a message, etc.
*/

if (relation != utc_greaterThan) {

/* It is not later then 13:00 local time. Note that
* this depends on the setting of the user's environment.
*/

}

Related Information

Functions: utc_cmpintervaltime(3dts) .

utc_cmpmidtime(3dts)

Chapter 5. DCE Distributed Time Service 873

utc_gettime

Purpose

Returns the current system time and inaccuracy as a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_gettime(
utc_t *utc);

Parameters

Input

None.

Output
utc System time as a binary timestamp.

Description

The utc_gettime() routine returns the current system time and inaccuracy in a
binary timestamp. The routine takes the TDF from the operating system’s kernel;
the TDF is specified in a system-dependent manner.

Return Values
0 Indicates that the routine executed successfully.

−1 Generic error that indicates the time service cannot be accessed.

Examples

See the sample program in the utc_binreltime(3dts) reference page.

874 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_getusertime

Purpose

Returns the time and process-specific TDF, rather than the system-specific TDF

Synopsis
#include <dce/utc.h>

int utc_getusertime(
utc_t *utc);

Parameters

Input

None.

Output
utc System time as a binary timestamp.

Description

The utc_getusertime() routine returns the system time and inaccuracy in a binary
timestamp. The routine takes the TDF from the user’s environment, which
determines the time zone rule (details are system dependent). For example, on
OSF/1 systems, the user selects a time zone by specifying the TZ environment
variable. (The reference information for the localtime() system call, which is
described in the ctime(3) reference page, provides additional information.)

If the user environment does not specify a TDF, the system’s TDF is used. The
system’s time zone rule is applied (details of the rule are system dependent). For
example, on OSF/1 systems, the rule in /etc/zoneinfo/localtime applies.

Return Values
0 Indicates that the routine executed successfully.

−1 Generic error that indicates the time service cannot be accessed.

Examples

See the sample program in the utc_boundtime(3dts) reference page.

Related Information

Functions: utc_gettime(3dts) .

Chapter 5. DCE Distributed Time Service 875

utc_gmtime

Purpose

Converts a binary timestamp to a tm structure that expresses GMT or the
equivalent UTC

Synopsis
#include <dce/utc.h>

int utc_gmtime(
struct tm *timetm
long *tns
struct tm *inacctm
long *ins
utc_t *utc);

Parameters

Input
utc Binary timestamp to be converted to tm structure components. Use NULL if

you want this routine to use the current time for this parameter.

Output
timetm Time component of the binary timestamp.

tns Nanoseconds since the time component of the binary timestamp.

inacctm
Seconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is finite, then tm_mday returns a value of −1 and tm_mon and
tm_year return values of 0 (zero). The field tm_yday contains the
inaccuracy in days. If the inaccuracy is unspecified, all tm structure fields
return values of −1.

ins Nanoseconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is unspecified, ins returns a value of −1.

Description

The utc_gmtime() routine converts a binary timestamp to a tm structure that
expresses GMT (or the equivalent UTC). Additional returns include nanoseconds
since time and nanoseconds of inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_cmpintervaltime(3dts) reference page.

876 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_anytime(3dts),utc_gmtzone(3dts) , utc_localtime(3dts) ,
utc_mkgmtime(3dts) .

utc_gmtime(3dts)

Chapter 5. DCE Distributed Time Service 877

utc_gmtzone

Purpose

Gets the time zone label for GMT

Synopsis
#include <dce/utc.h>

int utc_gmtzone(
char *tzname
size_t tzlen
long *tdf
int *isdst
utc_t *utc);

Parameters

Input
tzlen Length of buffer tzname.

utc Binary timestamp. This parameter is ignored.

Output
tzname

Character string long enough to hold the time zone label.

tdf Long word with differential in seconds east of GMT. A value of 0 (zero) is
always returned.

isdst Integer with a value of 0 (zero), indicating that daylight saving time is not in
effect. A value of 0 (zero) is always returned.

Description

The utc_gmtzone() routine gets the time zone label and zero offset from GMT.
Outputs are always tdf=0 and tzname=GMT. This routine exists for symmetry with
the utc_anyzone() and the utc_localzone() routines. Use NULL if you want this
routine to use the current time for this parameter.

Notes

All of the output parameters are optional. No value is returned and no error occurs
if the tzname pointer is NULL.

Return Values
0 Indicates that the routine executed successfully (always returned).

Examples

The following example prints out the current time in both local time and GMT time.
utc_t now;
struct tm tmlocal, tmgmt;
long tzoffset;
int tzdaylight;

878 IBM DCE for AIX, Version 2.2: Application Development Reference

char tzlocal[80], tzgmt[80];

/* Get the current time once, so both conversions use the same
* time...
*/

utc_gettime(&now);

/* Convert to local time, using the process TZ environment
* variable...
*/

utc_localtime(&tmlocal, /* Out: Local time tm structure */
(long *)0, /* Out: Nanosec of time */
(struct tm *)0, /* Out: Inaccuracy tm structure */
(long *)0, /* Out: Nanosec of inaccuracy */
(int *)0, /* Out: TDF of local time */
&now); /* In: Current timestamp (ignore) */

/* Get the local time zone name, offset from GMT, and current
* daylight savings flag...
*/

utc_localzone(tzlocal, /* Out: Local time zone name */
80, /* In: Length of loc time zone name */
&tzoffset, /* Out: Loc time zone offset in secs */
&tzdaylight, /* Out: Local time zone daylight flag */
&now); /* In: Current binary timestamp */

/* Convert to GMT...
*/

utc_gmtime(&tmgmt, /* Out: GMT tm structure */
(long *)0, /* Out: Nanoseconds of time */
(struct tm *)0, /* Out: Inaccuracy tm structure */
(long *)0, /* Out: Nanoseconds of inaccuracy */
&now); /* In: Current binary timestamp */

/* Get the GMT time zone name...
*/

utc_gmtzone(tzgmt, /* Out: GMT time zone name */
80, /* In: Size of GMT time zone name */
(long *)0, /* Out: GMT time zone offset in secs */
(int *)0, /* Out: GMT time zone daylight flag */
&now); /* In: Current binary timestamp */

/* (ignore) */

/* Print out times and time zone information in the following
* format:
*
* 12:00:37 (EDT) = 16:00:37 (GMT)
* EDT is -240 minutes ahead of Greenwich Mean Time.
* Daylight savings time is in effect.
*/

printf("%d:%02d:%02d (%s) = %d:%02d:%02d (%s)\n",
tmlocal.tm_hour, tmlocal.tm_min, tmlocal.tm_sec, tzlocal,
tmgmt.tm_hour, tmgmt.tm_min, tmgmt.tm_sec, tzgmt);

printf("%s is %d minutes ahead of Greenwich Mean Time\n", tzlocal,
tzoffset/60);

if (tzdaylight != 0)
printf("Daylight savings time is in effect\n");

Related Information

Functions: utc_anyzone(3dts) , utc_gmtime(3dts) , utc_localzone(3dts) .

utc_gmtzone(3dts)

Chapter 5. DCE Distributed Time Service 879

utc_localtime

Purpose

Converts a binary timestamp to a tm structure that expresses local time

Synopsis
#include <dce/utc.h>

int utc_localtime(
struct tm *timetm
long *tns
struct tm *inacctm
long *ins
utc_t *utc);

Parameters

Input
utc Binary timestamp. Use NULL if you want this routine to use the current time

for this parameter.

Output
timetm Time component of the binary timestamp, expressing local time.

tns Nanoseconds since the time component of the binary timestamp.

inacctm
Seconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is finite, then tm_mday returns a value of −1 and tm_mon and
tm_year return values of 0 (zero). The field tm_yday contains the
inaccuracy in days. If the inaccuracy is unspecified, all tm structure fields
return values of −1.

ins Nanoseconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is unspecified, ins returns a value of −1.

Description

The utc_localtime() routine converts a binary timestamp to a tm structure that
expresses local time.

The user’s environment determines the time zone rule (details are system
dependent). For example, on OSF/1 systems, the user selects a time zone by
specifying the TZ environment variable. (The reference information for the localtime
() system call, which is described in the ctime(3) reference page, provides
additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is
used (details of the rule are system dependent). For example, on OSF/1 systems,
the rule in /etc/zoneinfo/localtime applies.

Additional returns include nanoseconds since time and nanoseconds of inaccuracy.

880 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_gmtzone(3dts) reference page.

Related Information

Functions: utc_anytime(3dts) , utc_gmtime(3dts) , utc_localzone(3dts) ,
utc_mklocaltime(3dts) .

utc_localtime(3dts)

Chapter 5. DCE Distributed Time Service 881

utc_localzone

Purpose

Gets the local time zone label and offset from GMT, given utc

Synopsis
#include <dce/utc.h>

int utc_localzone(
char *tzname
size_t tzlen
long *tdf
int *isdst
utc_t *utc);

Parameters

Input
tzlen Length of the tzname buffer.

utc Binary timestamp. Use NULL if you want this routine to use the current time
for this parameter.

Output
tzname

Character string long enough to hold the time zone label.

tdf Long word with differential in seconds east of GMT.

isdst Integer with a value of 0 (zero) if standard time is in effect or a value of 1 if
daylight saving time is in effect.

Description

The utc_localzone() routine gets the local time zone label and offset from GMT,
given utc .

The user’s environment determines the time zone rule (details are system
dependent). For example, on OSF/1 systems, the user selects a time zone by
specifying the TZ environment variable. (The reference information for the localtime
() system call, which is described in the ctime(3) reference page, provides
additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is
used (details of the rule are system dependent). For example, on OSF/1 systems,
the rule in /etc/zoneinfo/localtime applies.

Notes

All of the output parameters are optional. No value is returned and no error occurs
if the pointer is NULL.

Return Values
0 Indicates that the routine executed successfully.

882 IBM DCE for AIX, Version 2.2: Application Development Reference

−1 Indicates an invalid time argument or an insufficient buffer.

Examples

See the sample program in the utc_gmtzone(3dts) reference page.

Related Information

Functions: utc_anyzone(3dts) , utc_gmtzone(3dts) , utc_localtime(3dts) .

utc_localzone(3dts)

Chapter 5. DCE Distributed Time Service 883

utc_mkanytime

Purpose

Converts a tm structure and TDF (expressing the time in an arbitrary time zone) to
a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkanytime(
utc_t *utc
struct tm *timetm
long tns
struct tm *inacctm
long ins
long tdf);

Parameters

Input
timetm A tm structure that expresses the local time; tm_wday and tm_yday are

ignored on input; the value of tm_isdt should be −1.

tns Nanoseconds since the time component.

inacctm
A tm structure that expresses days, hours, minutes, and seconds of
inaccuracy. If a null pointer is passed, or if tm_yday is negative, the
inaccuracy is considered to be unspecified; tm_mday , tm_mon , tm_wday ,
and tm_isdst are ignored on input.

ins Nanoseconds of the inaccuracy component.

tdf Time differential factor to use in conversion.

Output
utc Resulting binary timestamp.

Description

The utc_mkanytime() routine converts a tm structure and TDF (expressing the
time in an arbitrary time zone) to a binary timestamp. Required inputs include
nanoseconds since time and nanoseconds of inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example converts a string ISO format time in an arbitrary time zone to
a binary timestamp. This may be part of an input timestamp routine, although a real
implementation will include range checking.

884 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_t utc;
struct tm tmtime, tminacc;
float tsec, isec;
double tmp;
long tnsec, insec;
int i, offset, tzhour, tzmin, year, mon;
char *string;

/* Try to convert the string... */

if(sscanf(string, "%d-%d-%d-%d:%d:%e+%d:%dI%e",
&year, &mon, &tmtime.tm_mday, &tmtime.tm_hour,
&tmtime.tm_min, &tsec, &tzhour, &tzmin, &isec) != 9) {

/* Try again with a negative TDF... */

if (sscanf(string, "%d-%d-%d-%d:%d:%e-%d:%dI%e",
&year, &mon, &tmtime.tm_mday, &tmtime.tm_hour,
&tmtime.tm_min, &tsec, &tzhour, &tzmin, &isec) != 9) {

/* ERROR */

exit(1);
}

/* TDF is negative */

tzhour = -tzhour;
tzmin = -tzmin;

}

/* Fill in the fields... */

tmtime.tm_year = year - 1900;
tmtime.tm_mon = --mon;
tmtime.tm_sec = tsec;
tnsec = (modf(tsec, &tmp)*1.0E9);
offset = tzhour*3600 + tzmin*60;
tminacc.tm_sec = isec;
insec = (modf(isec, &tmp)*1.0E9);

/* Convert to a binary timestamp... */

utc_mkanytime(&utc, /* Out: Resultant binary timestamp */
&tmtime, /* In: tm struct that represents input */
tnsec, /* In: Nanoseconds from input */
&tminacc, /* In: tm struct that represents inacc */
insec, /* In: Nanoseconds from input */
offset); /* In: TDF from input */

Related Information

Functions: utc_anytime(3dts) , utc_anyzone(3dts) .

utc_mkanytime(3dts)

Chapter 5. DCE Distributed Time Service 885

utc_mkascreltime

Purpose

Converts a NULL-terminated character string that represents a relative timestamp to
a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkascreltime(
utc_t *utc
char *string);

Parameters

Input
string A NULL-terminated string that expresses a relative timestamp in its ISO

format.

Output
utc Resulting binary timestamp.

Description

The utc_mkascreltime() routine converts a NULL-terminated string, which
represents a relative timestamp, to a binary timestamp.

Notes

The ASCII string must be NULL-terminated.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts an ASCII relative time string to its binary equivalent.
utc_t utc;
char str[UTC_MAX_STR_LEN];

/* Relative time of -333 days, 12 hours, 1 minute, 37.223 seconds
* Inaccuracy of 50.22 seconds in the format: -333-12:01:37.223I50.22
*/

(void)strcpy((void *)str,
"-333-12:01:37.223I50.22");

utc_mkascreltime(&utc, /* Out: Binary utc */
str); /* In: String */

886 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_ascreltime(3dts) .

utc_mkascreltime(3dts)

Chapter 5. DCE Distributed Time Service 887

utc_mkasctime

Purpose

Converts a NULL-terminated character string that represents an absolute timestamp
to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkasctime(
utc_t *utc
char *string);

Parameters

Input
string A NULL-terminated string that expresses an absolute time.

Output
utc Resulting binary timestamp.

Description

The utc_mkasctime() routine converts a NULL-terminated string that represents an
absolute time to a binary timestamp.

Notes

The ASCII string must be NULL-terminated.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts an ASCII time string to its binary equivalent.
utc_t utc;
char str[UTC_MAX_STR_LEN];

/* July 4, 1776, 12:01:37.223 local time
* TDF of -5:00 hours
* Inaccuracy of 3600.32 seconds
*/

(void)strcpy((void *)str,
"1776-07-04-12:01:37.223-5:00I3600.32");

utc_mkasctime(&utc, /* Out: Binary utc */
str); /* In: String */

888 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_ascanytime(3dts) , utc_ascgmtime(3dts) , utc_asclocaltime(3dts) .

utc_mkasctime(3dts)

Chapter 5. DCE Distributed Time Service 889

utc_mkbinreltime

Purpose

Converts a timespec structure expressing a relative time to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkbinreltime(
utc_t *utc
reltimespec_t *timesp
timespec_t *inaccsp);

Parameters

Input
timesp A reltimespec structure that expresses a relative time.

inaccsp
A timespec structure that expresses inaccuracy. If a null pointer is passed,
or if tv_sec is set to a value of −1, the inaccuracy is considered to be
unspecified.

Output
utc Resulting relative binary timestamp.

Description

The utc_mkbinreltime() routine converts a timespec structure that expresses
relative time to a binary timestamp.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_addtime(3dts) reference page.

Related Information

Functions: utc_binreltime(3dts) , utc_mkbintime(3dts) .

890 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_mkbintime

Purpose

Converts a timespec structure to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkbintime(
utc_t *utc
timespec_t *timesp
timespec_t *inaccsp
long tdf);

Parameters

Input
timesp A timespec structure that expresses time since

1970−01−01:00:00:00.0+00:00I0.

inaccsp
A timespec structure that expresses inaccuracy. If a null pointer is passed,
or if tv_sec is set to a value of −1, the inaccuracy is considered to be
unspecified.

tdf TDF component of the binary timestamp.

Output
utc Resulting binary timestamp.

Description

The utc_mkbintime() routine converts a timespec structure time to a binary
timestamp. The TDF input is used as the TDF of the binary timestamp.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example obtains the current time from time(3) , converts it to a binary
timestamp with an inaccuracy of 5.2 seconds, and specifies GMT.
timespec_t ttime, tinacc;
utc_t utc;

/* Obtain the current time (without the inaccuracy)...
*/

ttime.tv_sec = time((time_t *)0);
ttime.tv_nsec = 0;

/* Specify the inaccuracy...
*/

Chapter 5. DCE Distributed Time Service 891

tinacc.tv_sec = 5;
tinacc.tv_nsec = 200000000;

/* Convert to a binary timestamp...
*/

utc_mkbintime(&utc, /* Out: Binary timestamp */
&ttime, /* In: Current time in timespec */
&tinacc, /* In: 5.2 seconds in timespec */
0); /* In: TDF of GMT */

Related Information

Functions: utc_bintime(3dts) , utc_mkbinreltime(3dts) .

utc_mkbintime(3dts)

892 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_mkgmtime

Purpose

Converts a tm structure that expresses GMT or UTC to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkgmtime(
utc_t *utc
struct tm *timetm
long tns
struct tm *inacctm
long ins);

Parameters

Input
timetm A tm structure that expresses GMT. On input, tm_wday and tm_yday are

ignored; the value of tm_isdt should be −1.

tns Nanoseconds since the time component.

inacctm
A tm structure that expresses days, hours, minutes, and seconds of
inaccuracy. If a null pointer is passed, or if tm_yday is negative, the
inaccuracy is considered to be unspecified. On input, tm_mday , tm_mon ,
tm_wday , and tm_isdst are ignored.

ins Nanoseconds of the inaccuracy component.

Output
utc Resulting binary timestamp.

Description

The utc_mkgmtime() routine converts a tm structure that expresses GMT or UTC
to a binary timestamp. Additional inputs include nanoseconds since the last second
of time and nanoseconds of inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_cmpintervaltime(3dts) reference page.

Related Information

Functions: utc_gmtime(3dts) .

Chapter 5. DCE Distributed Time Service 893

utc_mklocaltime

Purpose

Converts a tm structure that expresses local time to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mklocaltime(
utc_t *utc
struct tm *timetm
long tns
struct tm *inacctm
long ins);

Parameters

Input
timetm A tm structure that expresses the local time. On input, tm_wday and

tm_yday are ignored; the value of tm_isdst should be −1.

tns Nanoseconds since the time component.

inacctm
A tm structure that expresses days, hours, minutes, and seconds of
inaccuracy. If a null pointer is passed, or if tm_yday is negative, the
inaccuracy is considered to be unspecified. On input, tm_mday , tm_mon ,
tm_wday , and tm_isdst are ignored.

ins Nanoseconds of the inaccuracy component.

Output
utc Resulting binary timestamp.

Description

The utc_mklocaltime() routine converts a tm structure that expresses local time to
a binary timestamp.

The user’s environment determines the time zone rule (details are system
dependent). For example, on OSF/1 systems, the user selects a time zone by
specifying the TZ environment variable. (The reference information for the localtime
() system call, which is described in the ctime(3) reference page, provides
additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is
used (details of the rule are system dependent). For example, on OSF/1 systems,
the rule in /etc/zoneinfo/localtime applies.

Additional inputs include nanoseconds since the last second of time and
nanoseconds of inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

894 IBM DCE for AIX, Version 2.2: Application Development Reference

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_cmpmidtime(3dts) reference page.

Related Information

Functions: utc_localtime(3dts) .

utc_mklocaltime(3dts)

Chapter 5. DCE Distributed Time Service 895

utc_mkreltime

Purpose

Converts a tm structure that expresses relative time to a relative binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkreltime(
utc_t *utc
struct tm *timetm
long tns
struct tm *inacctm
long ins);

Parameters

Input
timetm A tm structure that expresses a relative time. On input, tm_wday and

tm_yday are ignored; the value of tm_isdst should be −1.

tns Nanoseconds since the time component.

inacctm
A tm structure that expresses seconds of inaccuracy. If a null pointer is
passed, or if tm_yday is negative, the inaccuracy is considered to be
unspecified. On input, tm_mday , tm_mon , tm_year , tm_wday , tm_isdst ,
and tm_zone are ignored.

ins Nanoseconds of the inaccuracy component.

Output
utc Resulting relative binary timestamp.

Description

The utc_mkreltime() routine converts a tm structure that expresses relative time to
a relative binary timestamp. Additional inputs include nanoseconds since the last
second of time and nanoseconds of inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example converts the relative time 125-03:12:30.1I120.25 to a relative
binary timestamp.
utc_t utc;
struct tm tmtime,tminacc;
long tnsec,insec;

/* Fill in the fields
*/

896 IBM DCE for AIX, Version 2.2: Application Development Reference

memset((void *)&tmtime,0,sizeof(tmtime));
tmtime.tm_mday = 125;
tmtime.tm_hour = 3;
tmtime.tm_min = 12;
tmtime.tm_sec = 30;
tnsec = 100000000; /* .1 * 1.0E9 */

memset((void *)&tminacc,0,sizeof(tminacc));
tminacc.tm_sec = 120;
tnsec = 250000000; /* .25 * 1.0E9 */

/* Convert to a relative binary timestamp...
*/

utc_mkreltime(&utc, /* Out: Resultant relative binary timestamp */
&tmtime, /* In: tm struct that represents input */
tnsec, /* In: Nanoseconds from input */
&tminacc, /* In: tm struct that represents inacc */
insec); /* In: Nanoseconds from input

*/

utc_mkreltime(3dts)

Chapter 5. DCE Distributed Time Service 897

utc_mulftime

Purpose

Multiplies a relative binary timestamp by a floating-point value

Synopsis
#include <dce/utc.h>

int utc_mulftime(
utc_t *result
utc_t *utc1
double factor);

Parameters

Input
utc1 Relative binary timestamp. Use NULL if you want this routine to use the

current time for this parameter.

factor Real scale factor (double-precision, floating-point value).

Output
result Resulting relative binary timestamp.

Description

The utc_mulftime() routine multiplies a relative binary timestamp by a floating-point
value. Either or both may be negative; the resulting relative binary timestamp has
the appropriate sign. The unsigned inaccuracy in the relative binary timestamp is
also multiplied by the absolute value of the floating-point value.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example scales a relative time by a floating-point factor and prints the
result.
utc_t relutc, scaledutc;
struct tm scaledreltm;
char timstr[UTC_MAX_STR_LEN];

/* Assume relutc contains the time to scale.
*/

utc_mulftime(&scaledutc, /* Out: Scaled rel time */
&relutc, /* In: Rel time to scale */
17.65); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII rel time */
UTC_MAX_STR_LEN, /* In: Input buffer length */
&scaledutc); /* In: Rel time to convert */

printf("%s\n",timstr);

898 IBM DCE for AIX, Version 2.2: Application Development Reference

/* Convert it to a tm structure and print it.
*/

utc_reltime(&scaledreltm, /* Out: Scaled rel tm */
(long *)0, /* Out: Scaled rel nano-sec */
(struct tm *)0, /* Out: Scaled rel inacc tm */
(long *)0, /* Out: Scd rel inacc nanos */
&scaledutc); /* In: Rel time to convert */

printf("Approximately %d days, %d hours and %d minutes\n",
scaledreltm.tm_yday, scaledreltm.tm_hour, scaledreltm.tm_min);

Related Information

Functions: utc_multime(3dts) .

utc_mulftime(3dts)

Chapter 5. DCE Distributed Time Service 899

utc_multime

Purpose

Multiplies a relative binary timestamp by an integer factor

Synopsis
#include <dce/utc.h>

int utc_multime(
utc_t *result
utc_t *utc1
long factor);

Parameters

Input
utc1 Relative binary timestamp.

factor Integer scale factor.

Output
result Resulting relative binary timestamp.

Description

The utc_multime() routine multiplies a relative binary timestamp by an integer.
Either or both may be negative; the resulting binary timestamp has the appropriate
sign. The unsigned inaccuracy in the binary timestamp is also multiplied by the
absolute value of the integer.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example scales a relative time by an integral value and prints the
result.
utc_t relutc, scaledutc;

char timstr[UTC_MAX_STR_LEN];

/* Assume relutc contains the time to scale.
* Scale it by a factor of 17 ...
*/

utc_multime(&scaledutc, /* Out: Scaled rel time */
&relutc, /* In: Rel time to scale */
17L); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII rel time */
UTC_MAX_STR_LEN, /* In: Input buffer length */

&scakedutc); /* In: Rel time to convert */

printf("Scaled result is %s, timstr);

900 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_mulftime(3dts) .

utc_multime(3dts)

Chapter 5. DCE Distributed Time Service 901

utc_pointtime

Purpose

Converts a binary timestamp to three binary timestamps that represent the earliest,
most likely, and latest time

Synopsis
#include <dce/utc.h>

int utc_pointtime(
utc_t *utclp
utc_t *utcmp
utc_t *utchp
utc_t *utc);

Parameters

Input
utc Binary timestamp or relative binary timestamp. Use NULL if you want this

routine to use the current time for this parameter.

Output
utclp Lowest (earliest) possible absolute time or shortest possible relative time

that the input timestamp can represent.

utcmp Midpoint of the input timestamp.

utchp Highest (latest) possible absolute time or longest possible relative time that
the input timestamp can represent.

Description

The utc_pointtime() routine converts a binary timestamp to three binary
timestamps that represent the earliest, latest, and most likely (midpoint) times. If the
input is a relative binary time, the outputs represent relative binary times.

Notes

All outputs have zero inaccuracy. An error is returned if the input binary timestamp
has an unspecified inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

See the sample program in the utc_addtime(3dts) reference page.

Related Information

Functions: utc_boundtime(3dts) , utc_spantime(3dts) .

902 IBM DCE for AIX, Version 2.2: Application Development Reference

utc_reltime

Purpose

Converts a relative binary timestamp to a tm structure

Synopsis
#include <dce/utc.h>

int utc_reltime(
struct tm *timetm
long *tns
struct tm *inacctm
long *ins
utc_t *utc);

Parameters

Input
utc Relative binary timestamp.

Output
timetm Relative time component of the relative binary timestamp. The field

tm_mday returns a value of −1 and the fields tm_year and tm_mon return
values of 0 (zero). The field tm_yday contains the number of days of
relative time.

tns Nanoseconds since the time component of the relative binary timestamp.

inacctm
Seconds of the inaccuracy component of the relative binary timestamp. If
the inaccuracy is finite, then tm_mday returns a value of −1 and tm_mon
and tm_year return values of 0 (zero). The field tm_yday contains the
inaccuracy in days. If the inaccuracy is unspecified, all tm structure fields
return values of −1.

ins Nanoseconds of the inaccuracy component of the relative binary timestamp.

Description

The utc_reltime() routine converts a relative binary timestamp to a tm structure.
Additional returns include nanoseconds since time and nanoseconds of inaccuracy.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_mulftime(3dts) reference page.

Related Information

Functions: utc_mkreltime(3dts) .

Chapter 5. DCE Distributed Time Service 903

utc_spantime

Purpose

Given two (possibly unordered) binary timestamps, returns a single UTC time
interval whose inaccuracy spans the two input binary timestamps

Synopsis
#include <dce/utc.h>

int utc_spantime(
utc_t *result
utc_t *utc1
utc_t *utc2);

Parameters

Input
utc1 Binary timestamp. Use NULL if you want this routine to use the current time

for this parameter.

utc2 Binary timestamp. Use NULL if you want this routine to use the current time
for this parameter.

Output
result Spanning timestamp.

Description

Given two binary timestamps, the utc_spantime() routine returns a single UTC time
interval whose inaccuracy spans the two input timestamps (that is, the interval
resulting from the earliest possible time of either timestamp to the latest possible
time of either timestamp).

Notes

The tdf parameter in the output UTC value is copied from the utc2 input. If either
input binary timestamp has an unspecified inaccuracy, an error is returned.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

The following example computes the earliest and latest times for an array of 10
timestamps.
utc_t time_array[10], testtime, earliest, latest;
int i;

/* Set the running timestamp to the first entry...
*/

testtime = time_array[0];

904 IBM DCE for AIX, Version 2.2: Application Development Reference

for (i=1; i<10; i++) {

/* Compute the minimum and the maximum against the next
* element...
*/

utc_spantime(&testtime, /* Out: Resultant interval */
&testtime, /* In: Largest previous interval */
&time_array[i]); /* In: Element under test */

}

/* Compute the earliest and latest possible times
*/

utc_pointtime(&earliest, /* Out: Earliest poss time in array */
(utc_t *)0, /* Out: Midpoint */
&latest, /* Out: Latest poss time in array */
&testtime); /* In: Spanning interval

*/

Related Information

Functions: utc_boundtime(3dts) , utc_gettime(3dts) , utc_pointtime(3dts) .

utc_spantime(3dts)

Chapter 5. DCE Distributed Time Service 905

utc_subtime

Purpose

Computes the difference between two binary timestamps

Synopsis
#include <dce/utc.h>

int utc_subtime(
utc_t *result
utc_t *utc1
utc_t *utc2);

Parameters

Input
utc1 Binary timestamp or relative binary timestamp. Use NULL if you want this

routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want this
routine to use the current time for this parameter.

Output
result Resulting binary timestamp or relative binary timestamp, depending upon

the operation performed:

v absolute time − absolute time = relative time

v relative time − relative time = relative time

v absolute time − relative time = absolute time

v relative time − absolute time is undefined. (See the note later in this
reference page.)

Description

The utc_subtime() routine subtracts one binary timestamp from another. The two
binary timestamps express either an absolute time and a relative time, two relative
times, or two absolute times. The resulting timestamp is utc1 minus utc2. The
inaccuracies of the two input timestamps are combined and included in the output
timestamp. The TDF in the first timestamp is copied to the output.

Notes

Although no error is returned, the combination relative time−absolute time should
not be used.

Return Values
0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in the utc_binreltime(3dts) reference page.

906 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: utc_addtime(3dts) .

utc_subtime(3dts)

Chapter 5. DCE Distributed Time Service 907

908 IBM DCE for AIX, Version 2.2: Application Development Reference

Chapter 6. DCE Security Service

© Copyright IBM Corp. 1992, 1998 909

sec_intro

Purpose

Application program interface to the DCE Security Service

Description

The DCE Security Service application program interface (API) allows developers to
create network services with complete access to all the authentication and
authorization capabilities of DCE Security Service and facilities.

The transaction of a network service generally consists of a client process
requesting some action from a server process. The client may itself be a server, or
a user, and the server may also be a client of other servers. Before the targeted
server executes the specified action, it must be sure of the client’s identity, and it
must know whether the client is authorized to request the service.

The security service API consists of the following sets of remote procedure calls
(RPCs) used to communicate with various security-related services and facilities:

rgy Maintains the network registry of principal identities.

era Maintains extended registry attributes.

login Validates a principal’s network identity and establish delegated identities.

epa Extracts privilege attributes from an opaque binding handle.

acl Implements an access control list (ACL) protocol for the authorization of a
principal to network access and services.

key Provides facilities for the maintenance of account keys for daemon
principals.

id Maps file system names to universal unique IDs (UUIDs).

pwd_mgmt
Provides facilities for password management.

pk Provides facilities for public key authentication.

All the calls in this API have names beginning with the sec_ prefix. These are the
same calls used by various user-level tools provided as part of the DCE. For
example, the sec_create_db(1) tool is written with sec_rgy calls, acl_edit(1) is
written with sec_acl calls, and the login(1) program, with which a user logs in to a
DCE system, is written using sec_login calls. Most sites will find the user-level
tools adequate for their needs, and only must use the security service API to
customize or replace the functionality of these tools.

Though most of the calls in the security service API represent RPC transactions,
code has been provided on the client side to handle much of the overhead involved
with making remote calls. These stubs handle binding to the requested security
server site, the marshalling of data into whatever form is needed for transmission,
and other bookkeeping involved with these remote calls. An application programmer
can use the security service interfaces as if they were composed of simple C
functions.

This reference page introduces each of the following APIs:

910 IBM DCE for AIX, Version 2.2: Application Development Reference

v Registry APIs

v Login APIs

v Extended privilege attributes APIs

v Extended registry attributes APIs

v ACL APIs

v Key management APIs

v ID mapping APIs

v Password management APIs

v Public Key APIs

The section for each API is organized as follows:

v Synopsis

v Data Types

v Constants

v Files

sec_intro(3sec)

Chapter 6. DCE Security Service 911

Registry API Data Types

Synopsis

#include <dce/rgybase.h>

Data Types

The following data types are used in sec_rgy_ * calls:

sec_rgy_handle_t
A pointer to the registry server handle. The registry server is bound to a
handle with the sec_rgy_site_open() routine.

sec_rgy_bind_auth_info_type_t
A enumeration that defines whether or not the binding is authenticated. This
data type is used in conjunction with the sec_rgy_bind_auth_info_t data
type to set up the authorization method and parameters for a binding. The
sec_rgy_bind_auth_info_type_t type consists of the following elements:

sec_rgy_bind_auth_none
The binding is not authenticated.

sec_rgy_bind_auth_dce
The binding uses DCE shared-secret key authentication.

sec_rgy_bind_auth_info_t
A discriminated union that defines authorization and authentication
parameters for a binding. This data type is used in conjunction with the
sec_rgy_bind_auth_info_type_t data type to set up the authorization
method and parameters for a binding. The sec_rgy_bind_auth_info_t data
type consists of the following elements:

info_type
A sec_rgy_bind_auth_info_type_t data type that specifies whether
or not the binding is authenticated. The contents of the union
depend on the value of sec_rgy_bind_auth_info_type_t .

For unauthenticated bindings (sec_rgy_bind_auth_info_type_t =
sec_rgy_bind_auth_none), no parameters are supplied.

For authenticated bindings (sec_rgy_bind_auth_info_type_t =
sec_rgy_bind_auth_dce), the dce_info structure is supplied.

dce_info
A structure that consists of the following elements:

authn_level
An unsigned 32-bit integer indicating the protection level for
RPC calls made using the server binding handle. The
protection level determines the degree to which
authenticated communications between the client and the
server are protected by the authentication service specified
by authn_svc .

If the RPC runtime or the RPC protocol in the bound
protocol sequence does not support a specified level, the
level is automatically upgraded to the next higher supported
level. The possible protection levels are as follows:

912 IBM DCE for AIX, Version 2.2: Application Development Reference

Protection Level Description

rpc_c_protect_level_default Uses the default protection level for the specified
authentication service. The default protection level
for DCE shared-secret key authentication is
rpc_c_protect_level_pkt_value .

rpc_c_protect_level_none Performs no authentication: tickets are not
exchanged, session keys are not established, client
PACs or names are not certified, and transmissions
are in the clear. Note that although uncertified
PACs should not be trusted, they may be useful for
debugging, tracing, and measurement purposes.

rpc_c_protect_level_connect Authenticates only when the client establishes a
relationship with the server.

rpc_c_protect_level_call Authenticates only at the beginning of each remote
procedure call when the server receives the
request. This level does not apply to remote
procedure calls made over a connection-based
protocol sequence (that is, ncacn_ip_tcp). If this
level is specified and the binding handle uses a
connection-based protocol sequence, the routine
uses the rpc_c_protect_level_pkt level instead.

rpc_c_protect_level_pkt Ensures that all data received is from the expected
client.

Protection Level Description

rpc_c_protect_level_pkt_integ Ensures and verifies that none of the data
transferred between client and server has been
modified. This is the highest protection level that is
guaranteed to be present in the RPC runtime.

rpc_c_protect_level_pkt_privacy Authenticates as specified by all of the previous
levels and also encrypts each RPC argument
value. This is the highest protection level, but is not
guaranteed to be present in the RPC runtime.

authn_svc
Specifies the authentication service to use. The exact level
of protection provided by the authentication service is
specified by protect_level. The supported authentication
services are as follows:

Authentication Service Description

rpc_c_authn_none No authentication: no tickets are exchanged, no
session keys established, client PACs or names
are not transmitted, and transmissions are in the
clear. Specify rpc_c_authn_none to turn
authentication off for remote procedure calls made
using this binding.

rpc_c_authn_dce_secret DCE shared-secret key authentication.

rpc_c_authn_default Default authentication service. The current default
authentication service is DCE shared-secret key;
therefore, specifying rpc_c_authn_default is
equivalent to specifying rpc_c_authn_dce_secret .

Chapter 6. DCE Security Service 913

rpc_c_authn_dce_public DCE public key authentication (reserved for future
use).

authz_svc
Specifies the authorization service implemented by the
server for the interface. The validity and trustworthiness of
authorization data, like any application data, is dependent
on the authentication service and protection level specified.
The supported authorization services are as follows:

Authentication Service Description

rpc_c_authz_none Server performs no authorization. This is valid only
if authn_svc is set to rpc_c_authn_none ,
specifying that no authentication is being
performed.

rpc_c_authz_name Server performs authorization based on the client
principal name. This value cannot be used if
authn_svc is rpc_c_authn_none .

rpc_c_authz_dce Server performs authorization using the client’s
DCE privilege attribute certificate (PAC) sent to the
server with each remote procedure call made with
this binding. Generally, access is checked against
DCE access control lists (ACLs).

identity
A value of type sec_login_handle_t that represents a
complete login context.

sec_timeval_sec_t
A 32-bit integer containing the seconds portion of a UNIX timeval_t , to be
used when expressing absolute dates.

sec_timeval_t
A structure containing the full UNIX time. The structure contains two 32-bit
integers that indicate seconds (sec) and microseconds (usec) since 0:00,
January 1, 1970.

sec_timeval_period_t
A 32-bit integer expressing seconds relative to some well-known time.

sec_rgy_acct_key_t
Specifies how many parts (person, group, organization) of an account login
name will be enough to specify a unique abbreviation for that account.

sec_rgy_cursor_t
A structure providing a pointer into a registry database. This type is used for
iterative operations on the registry information. For example, a call to
sec_rgy_pgo_get_members() might return the 10 account names following
the input sec_rgy_cursor_t position. Upon return, the cursor position will
have been updated, so the next call to that routine will return the next 10
names. The components of this structure are not used by application
programs.

sec_rgy_pname_t
A character string of length sec_rgy_pname_t_size .

sec_rgy_name_t
A character string of length sec_rgy_name_t_size .

914 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_login_name_t
A structure representing an account login name. It contains three strings of
type sec_rgy_name_t :

pname
The person name for the account.

gname
The group name for the account.

oname
The organization name for the account.

sec_rgy_member_t
A character string of length sec_rgy_name_t_size .

sec_rgy_foreign_id_t
The representation of a foreign ID. This structure contains two components:

cell A string of type uuid_t representing the UUID of the foreign cell.

principal
A string of type uuid_t representing the UUID of the principal.

sec_rgy_sid_t
A structure identifying an account. It contains three fields:

person
The UUID of the person part of the account.

group The UUID of the group part of the account.

org The UUID of the organization part of the account.

sec_rgy_unix_sid_t
A structure identifying an account with UNIX ID numbers. It contains three
fields:

person
The UNIX ID of the person part of the account.

group The UNIX ID of the group part of the account.

org The UNIX ID of the organization part of the account.

sec_rgy_domain_t
This 32-bit integer specifies which naming domain a character string refers
to: person, group, or organization.

sec_rgy_pgo_flags_t
A 32-bit bitset containing flags pertaining to registry entries. This type
contains the following three flags:

sec_rgy_pgo_is_an_alias
If set, indicates the registry entry is an alias of another entry.

sec_rgy_pgo_is_required
If set, the registry item is required and cannot be deleted. An
example of a required account is the one for the registry server
itself.

sec_rgy_pgo_projlist_ok
If the accompanying item is a person entry, this flag indicates the
person may have concurrent group sets. If the item is a group entry,
the flag means this group can appear in a concurrent group set.
The flag is undefined for organization items.

Chapter 6. DCE Security Service 915

sec_rgy_pgo_item_t
The structure identifying a registry item. It contains five components:

id The UUID of the registry item, in uuid_t form.

unix_num
A 32-bit integer containing the UNIX ID number of the registry item.

quota A 32-bit integer representing the maximum number of user-defined
groups the account owner can create.

flags A sec_rgy_pgo_flags_t bitset containing information about the
entry.

fullname
A sec_rgy_pname_t character string containing a full name for the
registry entry. For a person entry, this field might contain the real
name of the account owner. For a group, it might contain a
description of the group. This is just a data field, and registry
queries cannot search on the fullname entry.

sec_rgy_acct_admin_flags_t
A 32-bit bitset containing administration flags used as part of the
administrator’s information for any registry account. The set contains three
flags:

sec_rgy_acct_admin_valid
Specifies that the account is valid for login.

sec_rgy_acct_admin_server
If set, the account’s name can be used as a server name in a
ticket-granting ticket.

sec_rgy_acct_admin_client
If set, the account’s name can be used as a client name in a
ticket-granting ticket.

Note that you can prevent the principal from being authenticated, by turning
off both the sec_rgy_acct_admin_server and the
sec_rgy_acct_admin_client flags .

sec_rgy_acct_auth_flags_t
A 32-bit bitset containing account authorization flags used to implement
authentication policy as defined by the Kerberos Version 5 protocol. The set
contains the following flags:

sec_rgy_acct_auth_user_to_user
Forces the use of user-to-user server authentication on a server
principal.

sec_rgy_acct_auth_post_dated
Allows issuance of post-dated certificates.

sec_rgy_acct_auth_forwardable
Allows issuance of forwardable certificates.

sec_rgy_acct_auth_tgt
Allows issuance of certificates based on ticket-granting ticket (TGT)
authentication. If this flag is not set, a client requesting a service
may have to supply a password directly to the server.

sec_rgy_acct_auth_renewable
Allows issuance of renewable certificates.

916 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_acct_auth_proxiable
Allows issuance of proxiable certificates.

sec_rgy_acct_auth_dup_session_key
Allows issuance of duplicate session keys.

sec_rgy_acct_admin_t
The portion of a registry account item containing components relevant to
administrators. This structure consists of the fields listed below. Note that
only expiration_date, good_since_date, flags, and authentication_flags can
be modified by an administrator; the remaining fields are set by the security
server.

creator
This field, in foreign_id_t format , identifies the administrator who
created the registry account.

creation_date
Specifies the creation date of the account, in sec_timeval_sec_t
format.

last_changer
Identifies the last person to change any of the account information,
in foreign_id_t format.

change_date
Specifies the date of the last modification of the account
information, in sec_timeval_sec_t format.

expiration_date
The date after which the account will no longer be valid. In
sec_timeval_sec_t format.

good_since_date
The Kerberos Version 5 TGT revocation date. TGTs issued before
this date will not be honored. In sec_timeval_sec_t format.

flags Administrative flags in sec_rgy_acct_admin_flags_t format.

authentication_flags
Authentication flags in sec_rgy_acct_auth_flags_t format.

sec_rgy_acct_user_flags_t
A 32-bit bitset containing flags controlling user-modifiable information. There
is only one flag currently implemented. If
sec_rgy_acct_user_passwd_valid is set, it indicates the user password is
valid. If it is not set, this flag prompts the user to change the password on
the next login attempt.

sec_rgy_acct_user_t
A structure containing registry account information. The structure consists of
the fields listed below. Note that only the gecos , homedir , shell , and flags
fields can be modified by the account owner or other authorized user; the
remaining fields are set by the security server.

gecos This is a character string (in sec_rgy_pname_t format) containing
information about the account user. It generally consists of
everything after the full name in the UNIX gecos format.

homedir
The login directory for the account user, in sec_rgy_pname_t
format.

Chapter 6. DCE Security Service 917

shell The default shell for the account user, in sec_rgy_pname_t format.

passwd_version_number
An unsigned 32-bit integer, indicating the password version number.
This value is used as output only.

passwd
The UNIX encrypted account password, in
sec_rgy_unix_passwd_buf_t format. This value is used as output
only.

passwd_dtm
The date the password was established, in sec_timeval_sec_t
format.

flags Account user flags, in sec_rgy_acct_user_flags_t format.

sec_rgy_plcy_pwd_flags_t
A 32-bit bitset containing two flags about password policy:

sec_rgy_plcy_pwd_no_spaces
If set, will not allow spaces in a password.

sec_rgy_plcy_pwd_non_alpha
If set, requires at least one nonalphanumeric character in the
password.

sec_rgy_plcy_t
A structure defining aspects of registry account policy. It contains five
components:

passwd_min_len
A 32-bit integer describing the minimum number of characters in the
account password.

passwd_lifetime
The number of seconds after a password’s creation until it expires,
in sec_timeval_period_t format.

passwd_exp_date
The expiration date of the account password, in sec_timeval_sec_t
format.

acct_lifespan
The number of seconds after the creation of an account before it
expires, in sec_timeval_period_t format.

passwd_flags
Account password policy flags, in sec_rgy_plcy_pwd_flags_t
format.

sec_rgy_plcy_auth_t
This type describes authentication policy. It is a structure containing two
time periods, in sec_timeval_period_t format. One, max_ticket_lifetime ,
specifies the maximum length of the period during which a ticket-granting
ticket (TGT) will be valid. The other, max_renewable_lifetime , specifies the
maximum length of time for which such a ticket may be renewed. This
authentication policy applies both to the registry as a whole as well as
individual accounts. The effective policy for a given account is defined to be
the more restrictive of the site and principal authentication policy.

sec_rgy_properties_t
A structure describing some registry properties. It contains the following:

918 IBM DCE for AIX, Version 2.2: Application Development Reference

read_version
A 32-bit integer describing the earliest version of the secd software
that can read this registry.

write_version
A 32-bit integer describing the version of the secd software that
wrote this registry.

minimum_ticket_lifetime
The minimum lifetime of an authentication certificate, in
sec_timeval_period_t format.

default_certificate_lifetime
The normal lifetime of an an authentication certificate
(ticket-granting ticket in Kerberos parlance), in
sec_timeval_period_t format. Processes may request
authentication certificates with longer lifetimes up to, but not in
excess of, the maximum allowable lifetime as determined by the
effective policy for the account.

low_unix_id_person
The lowest UNIX number permissible for a person item in the
registry.

low_unix_id_group
The lowest UNIX number permissible for a group item in the
registry.

low_unix_id_org
The lowest UNIX number permissible for an organization item in the
registry.

max_unix_id
The largest UNIX number permissible for any registry entry.

flags Property flags, in sec_rgy_properties_flags_t format.

realm The name of the cell, in sec_rgy_name_t form, for which this
registry is the authentication service.

realm_uuid
The UUID of the same cell.

sec_rgy_properties_flags_t
A 32-bit bitset, containing flags concerning registry properties:

sec_rgy_prop_readonly
If set (TRUE), indicates that this registry is a query site.

sec_rgy_prop_auth_cert_unbound
If set (TRUE), the registry server will accept requests from any site.

sec_rgy_prop_shadow_passwd
If the shadow password flag is set (TRUE), the registry server will
not include the account password when responding to a request for
the user data from a specified account. This helps minimize the risk
of an account password being intercepted while traveling over the
network.

sec_rgy_prop_embedded_unix_id
Indicates that all UUIDs in this registry contain a UNIX number
embedded. This implies that the UNIX numbers of objects in the
registry cannot be changed, since UUIDs are immutable.

Chapter 6. DCE Security Service 919

sec_rgy_override_t
A 32-bit integer used as a flag for registry override mode. Possible values
are the constants sec_rgy_no_override and sec_rgy_override . When this
mode is enabled, override data supplied by the node administrator will
replace some of the data gotten from the registry for a given
person/account under certain conditions. These conditions are as follows:

1. The registry permits the requested overrides to be set for this machine.

2. The override data is intended for person/account at hand.

When the mode is override off, data from the registry is returned to the end
user or the application remains untouched.

sec_rgy_mode_resolve_t
A 32-bit integer used as a flag for resolve mode. Possible values are the
constants sec_rgy_no_resolve_pname and sec_rgy_resolve_pname .
When the mode is enabled, pathnames containing leading // (slashes) will
be translated into a form understandable by the local machine’s NFS.

sec_rgy_unix_passwd_buf_t
A character array of UNIX password strings.

Constants

The following constants are used in sec_rgy_ calls:

sec_rgy_default_handle
The value of an unbound registry server handle.

sec_rgy_acct_key_t
The following 32-bit integer constants are used with the
sec_rgy_acct_key_t data type:

sec_rgy_acct_key_none
Invalid key.

sec_rgy_acct_key_person
The person name alone is enough.

sec_rgy_acct_key_group
The person and group names are both necessary for the account
abbreviation.

sec_rgy_acct_key_org
The person, group, and organization names are all necessary.

sec_rgy_acct_key_last
Key values must be less than this constant.

sec_rgy_pname_t_size
The maximum number of characters in a sec_rgy_pname_t .

sec_rgy_name_t_size
The maximum number of characters in a sec_rgy_name_t .

sec_rgy_domain_t
The following 32-bit integer constants are the possible values of the
sec_rgy_domain_t data type:

sec_rgy_domain_person
The name in question refers to a person.

920 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_domain_group
The name in question refers to a group.

sec_rgy_domain_org
The name in question refers to an organization.

sec_rgy_pgo_flags_t
A 32-bit constant equal to a variable of type sec_rgy_pgo_flags_t with no
flags set.

sec_rgy_quota_unlimited
A 32-bit integer. Set the quota field of the sec_rgy_pgo_item_t type to this
constant to override the registry quota limitation.

sec_rgy_acct_admin_flags_t
A 32-bit integer. This is the value of the sec_rgy_acct_admin_flags_t
bitset when none of its flags are set.

sec_rgy_acct_auth_flags_none
A 32-bit integer. This is the value of the sec_rgy_acct_auth_flags_t bitset
when none of its flags are set.

sec_rgy_acct_user_flags_t
A 16-bit integer. This is the value of the sec_rgy_acct_user_flags_t bitset
when none of its flags are set.

sec_rgy_plcy_pwd_flags_t
A 16-bit integer. This is the value of the sec_rgy_policy_pwd_flags_t
bitset when none of its flags are set.

sec_rgy_properties_flags_t
A 16-bit integer. This is the value of the sec_rgy_properties_flags_t bitset
when none of its flags are set.

sec_rgy_override
A 32-bit integer, which turns registry override mode on. When this mode is
enabled, override data supplied by the node administrator will replace some
of the data gotten from the registry for a given person/account under certain
conditions.

sec_rgy_no_override
A 32-bit integer, which turns off registry override mode.

sec_rgy_resolve_pname
A 32-bit integer, which turns on registry resolve mode. When the mode is
enabled, pathnames containing leading // (slashes) will be translated into a
form understandable by the local machine’s NFS.

sec_rgy_no_resolve_pname
A 32-bit integer, which turns off registry resolve mode.

Files
/usr/include/dce/rgybase.idl

The idl file from which rgybase.h was derived.

Chapter 6. DCE Security Service 921

Extended Registry Attribute Data Types

Synopsis

#include <dce/sec_attr_base.h>

Data Types

The following data types are used in sec_rgy_attr calls:

sec_attr_twr_ref_t
A pointer to a tower. This data type is used with the sec_attr_twr_set_t
data type to allow a client to pass an unallocated array of towers, which the
server must allocate. Both data types are used in conjunction with the
sec_attr_bind_type_t data type.

sec_attr_twr_set_t
A structure that defines an array of towers. This data type is used with the
sec_attr_twr_ref_t data type to allow a client to pass an unallocated array
of towers, which the server must allocate. Both data types are used in
conjunction with the sec_attr_bind_type_t data type. The
sec_attr_twr_set_t structure consists of the following elements:

count An unsigned 32-bit integer specifying the number of towers in the
array.

towers []
An array of pointers (of type sec_attr_twr_ref_t) to towers.

sec_attr_bind_type_t
A 32-bit integer that specifies the type of binding used by an attribute
interface. The data type (which is used in conjunction with the
sec_attr_binding_t data type) uses the following constants:

sec_attr_bind_type_string
An RPC string binding.

sec_attr_bind_type_twrs
A DCE protocol tower representation of a bindings.

sec_attr_bind_type_svrname
A name in rpc_c_ns_syntax format that identifies a CDS entry
containing the server’s binding information. This constant has the
following structure:

name_syntax
Must be rpc_c_ns_syntax_dce to specify that DCE naming
rules are used to specify name .

name A pointer to a name of a CDS entry in
rpc_c_ns_syntax_dce syntax.

sec_attr_binding_t
A discriminated union that supplies information to generate a binding handle
for a attribute trigger. This data type, which is used in conjunction with the
sec_attr_bind_info_t data type, is composed of the following elements:

bind_type
A value of type sec_attr_bind_type_t that defines the type of
binding used by an attribute interface. The contents of tagged
union (see table) depend on the value of sec_attr_bind_type_t .

922 IBM DCE for AIX, Version 2.2: Application Development Reference

tagged_union
A tagged union specifying the binding handle. The contents of the
tagged union depend on the value of bind_type as follows:

If bind_type is... Then tagged_union is...

sec_attr_bind_type_string A pointer to an unsigned 32-bit character
string specifying an attribute’s RPC string
binding.

sec_attr_bind type_twrs An attribute’s tower binding representation of
type sec_attr_twr_set_t .

sec_attr_bind_svrname A pointer to a name of type
sec_attr_bind_type_t that specifies a Cell
Directory Service entry containing a attribute
trigger’s binding information.

sec_attr_binding_p_t
A pointer to a sec_attr_binding_t union.

sec_attr_bind_auth_info_type_t
An enumeration that defines whether or not the binding is authenticated.
This data type is used in conjunction with the sec_attr_bind_auth_info_t
data type to set up the authorization method and parameters for an RPC
binding. The sec_attr_bind_auth_info_type_t type consists of the
following elements:

sec_attr_bind_auth_none
The binding is not authenticated.

sec_attr_bind_auth_dce
The binding uses DCE shared-secret key authentication.

sec_attr_bind_auth_info_t
A discriminated union that defines authorization and authentication
parameters for a binding. This data type is used in conjunction with the
sec_attr_bind_auth_info_type_t data type to set up the authorization
method and parameters for an RPC binding. The
sec_attr_bind_auth_info_t data type consists of the following elements:

info_type
A sec_attr_bind_auth_info_type_t data type that specifies
whether or not the binding is authenticated. The contents of tagged
union (below) depend on the value of
sec_attr_bind_auth_info_type_t .

tagged_union
A tagged union specifying the method of authorization and the
authorization parameters. For unauthenticated bindings
(sec_attr_bind_auth_info_type_t = sec_attr_bind_auth_none),
no parameters are supplied. For authenticated bindings
(sec_attr_bind_auth_info_type_t = sec_attr_bind_auth_dce),
the following union is supplied:

svr_princ_name
A pointer to a character string that specifies the principal
name of the server referenced by the binding handle.

protect_level
An unsigned 32-bit integer indicating the protection level for
RPC calls made using the server binding handle. The

Chapter 6. DCE Security Service 923

protection level determines the degree to which
authenticated communications between the client and the
server are protected by the authentication service specified
by authn_svc .

If the RPC runtime or the RPC protocol in the bound
protocol sequence does not support a specified level, the
level is automatically upgraded to the next higher supported
level. The possible protection levels are as follows:

Protection Level Description

rpc_c_protect_level_default Uses the default protection level for the specified
authentication service. The default protection level
for DCE shared-secret key authentication is
rpc_c_protect_level_pkt_value

rpc_c_protect_level_none Performs no authentication: tickets are not
exchanged, session keys are not established, client
PACs or names are not certified, and transmissions
are in the clear. Note that although uncertified
PACs should not be trusted, they may be useful for
debugging, tracing, and measurement purposes.

rpc_c_protect_level_connect Authenticates only when the client establishes a
relationship with the server.

rpc_c_protect_level_call Authenticates only at the beginning of each remote
procedure call when the server receives the
request. This level does not apply to remote
procedure calls made over a connection-based
protocol sequence (that is, ncacn_ip_tcp). If this
level is specified and the binding handle uses a
connection-based protocol sequence, the routine
uses the rpc_c_protect_level_pkt level instead.

rpc_c_protect_level_pkt Ensures that all data received is from the expected
client.

Protection Level Description

rpc_c_protect_level_pkt_integ Ensures and verifies that none of the data
transferred between client and server has been
modified. This is the highest protection level that is
guaranteed to be present in the RPC runtime.

rpc_c_protect_level_pkt_privacy Authenticates as specified by all of the previous
levels and also encrypts each RPC argument
value. This is the highest protection level, but is not
guaranteed to be present in the RPC runtime.

authn_svc
Specifies the authentication service to use. The exact level
of protection provided by the authentication service is
specified by protect_level. The supported authentication
services are as follows:

924 IBM DCE for AIX, Version 2.2: Application Development Reference

Authentication Service Description

rpc_c_authn_none No authentication: no tickets are exchanged, no
session keys established, client PACs or names
are not transmitted, and transmissions are in the
clear. Specify rpc_c_authn_none to turn
authentication off for remote procedure calls made
using this binding.

rpc_c_authn_dce_secret DCE shared-secret key authentication.

rpc_c_authn_default Default authentication service. The current default
authentication service is DCE shared-secret key;
therefore, specifying rpc_c_authn_default is
equivalent to specifying rpc_c_authn_dce_secret .

rpc_c_authn_dce_public DCE public key authentication (reserved for future
use).

authz_svc
Specifies the authorization service implemented by the
server for the interface. The validity and trustworthiness of
authorization data, like any application data, is dependent
on the authentication service and protection level specified.
The supported authorization services are as follows:

Authentication Service Description

rpc_c_authz_none Server performs no authorization. This is valid only
if authn_svc is set to rpc_c_authn_none ,
specifying that no authentication is being
performed.

rpc_c_authz_name Server performs authorization based on the client
principal name. This value cannot be used if
authn_svc is rpc_c_authn_none .

rpc_c_authz_dce Server performs authorization using the client’s
DCE privilege attribute certificate (PAC) sent to the
server with each remote procedure call made with
this binding. Generally, access is checked against
DCE ACLs.

sec_attr_bind_info_t
A structure that specifies attribute trigger binding information. This data
type, which is used in conjunction with the sec_attr_schema_entry_t data
type, contains of the following elements:

auth_info
The binding authorization information of type
sec_attr_bind_auth_info_t .

num_bindings
An unsigned 32-bit integer specifying the number of binding
handles in bindings .

bindings
An array of sec_attr_binding_t data types that specify binding
handles.

sec_attr_bind_info_p_t
A pointer to a sec_attr_bind_info_t union.

Chapter 6. DCE Security Service 925

sec_attr_encoding_t
An enumerator that contains attribute encoding tags used to define the legal
encodings for attribute values. The data type, which is used in conjunction
with the sec_attr_value_t and sec_attr_schema_entry_t data types,
consists of the following elements:

sec_attr_enc_any
The attribute value can be of any legal encoding type. This
encoding tag is legal only in a schema entry. An attribute entry must
contain a concrete encoding type.

sec_attr_enc_void
The attribute has no value. It is simple a marker that is either
present or absent.

sec_attr_enc_printstring
The attribute value is a printable IDL string in DCE portable
character set.

sec_attr_enc_printstring_array
The attribute value is an array of printstrings.

sec_attr_enc_integer
The attribute value is a signed 32-bit integer.

sec_attr_enc_bytes
The attribute value is a string of bytes. The string is assumed to be
a pickle or some other self describing type. (See also the
sec_attr_enc_bytes_t data type.)

sec_attr_enc_confidential_bytes
The attribute value is a string of bytes that have been encrypted in
the key of the principal object to which the attribute is attached. The
string is assumed to be a pickle or some other self describing type.
This encoding type is useful only when attached to a principal
object, where it is decrypted and encrypted each time the principal’s
password changes. (See also the sec_attr_enc_bytes_t data
type.)

sec_attr_enc_i18n_data
The attribute value is an internationalized string of bytes with a tag
identifying the OSF registered codeset used to encode the data.
(See also the sec_attr_i18n_data_t data type.)

sec_attr_enc_uuid
The attribute is a value of type uuid_t , a DCE UUID.

sec_attr_enc_attr_set
The attribute value is an attribute set, a vector of attribute UUIDs
used to associate multiple related attribute instances which are
members of the set. (See also the sec_attr_enc_attr_set_t data
type.)

sec_attr_enc_binding
The attribute value is a sec_attr_bind_info_t data type that
specifies DCE server binding information.

sec_attr_enc_trig_binding
This encoding type is returned by rs_attr_lookup call. It informs
the client agent of the trigger binding information of an attribute with
a query trigger.

926 IBM DCE for AIX, Version 2.2: Application Development Reference

Unless sec_attr_enc_void or sec_attr_enc_any is specified, the attribute
values must conform to the attribute’s encoding type.

sec_attr_enc_bytes_t
A structure that defines the length of attribute encoding values for attributes
encoded as sec_attr_enc_bytes and sec_attr_enc_confidential_bytes .
The structure, which is used in conjunction with the sec_attr_value_t data
type, consists of

length An unsigned 32-bit integer that defines the data length.

data []
An array of bytes specifying the length of attribute encoding data.

sec_attr_i18n_data_t
A structure that defines the codeset used for attributes encoded as
sec_attr_enc_il8n_data and the length of the attribute encoding values.
The structure, which is used in conjunction with the sec_attr_value_t data
type, consists of

codeset
An unsigned 32-bit identifier of a codeset registered with the Open
Software Foundation.

length An unsigned 32-bit integer that defines the data length.

data []
An array of bytes specifying the length of attribute encoding data.

sec_attr_enc_attr_set_t
A structure that that supplies the UUIDs of each member of an attribute set.
The structure, which is used in conjunction with the sec_attr_value_t data
type, consists of

num_members
An unsigned 32-bit integer specifying the total number of attribute’s
in the set.

members []
An array containing values of type uuid_t , the UUID of each
member in the set.

sec_attr_enc_printstring_t
A structure that contains a printstring.

sec_attr_enc_printstring_p_t
A pointer to a sec_attr_enc_printstring_t structure.

sec_attr_enc_str_array_t
A structure that defines a printstring array. It consists of

num_strings
An unsigned 32-bit integer specifying the number of strings in the
array.

strings []
An array of pointers (of type sec_attr_enc_print_string_p_t) to
printstrings.

sec_attr_value_t
A discriminated union that defines attribute values. The union, which is used
in conjunction with the sec_attr_t data type, consists of the following
elements:

Chapter 6. DCE Security Service 927

attr_encoding
A sec_attr_encoding_t data type that defines attribute encoding.
The contents of tagged union depend on the value of
sec_attr_encoding_t .

tagged_union
A tagged union whose contents depend on attr_encoding as
follows:

If attr_encoding is... Then tagged_union is...

sec_attr_enc_void NULL

sec_attr_enc_printstring A pointer to printstring

sec_attr_enc_printstring_array A pointer to an array of printstring s

sec_attr_enc_integer signed_int , a 32-bit signed integer

sec_attr_enc_bytes bytes , a pointer to a structure of type
sec_attr_enc_bytes_t

sec_attr_enc_confidential_bytes bytes , a pointer to a structure of type
sec_attr_enc_bytes_t

sec_attr_enc_i18n_data idata , a pointer to a structure of type
sec_attr_i18n_data_t

sec_attr_end_uuid uuid , a value of type uuid_t

sec_attr_enc_attr_set attr_set , a pointer to a structure of type
sec_attr_enc_attr_set_t

sec_attr_enc_binding binding , a pointer to a structure of type
sec_attr_binding_info_t

sec_attr_t
A structure that defines an attribute. The structure consists of

attr_id
A value of type uuid_t , the UUID of the attribute.

attr_value
A value of type sec_attr_value_t .

sec_attr_acl_mgr_info_t
A structure that contains the access control information defined in a schema
entry for an attribute. The structure, which is used in conjunction with the
sec_attr_schema_entry_t data type, consists of the following elements:

acl_mgr_type
The value of type uuid_t that specifies the UUID of the ACL
manager type that supports the object type to which the attribute
can be attached. This field provides a well-defined context for
evaluating the permission bits needed to operate on the attribute.
The following table lists the ACL manager types for registry objects.

Registry Object
Type

ACL Manager Type Valid
Permissions

principal 06ab9320-0191-11ca-a9e8-08001e039d7d rcDnfmaug

group 06ab9640-0191-11ca-a9e8-08001e039d7d rctDnfmM

organization 06ab9960-0191-11ca-a9e8-08001e039d7d rctDnfmM

directory 06ab9c80-0191-11ca-a9e8-08001e039d7d rcidDn

928 IBM DCE for AIX, Version 2.2: Application Development Reference

Registry Object
Type

ACL Manager Type Valid
Permissions

policy 06ab8f10-0191-11ca-a9e8-08001e039d7d rcma

replist 2ac24970-60c3-11cb-b261-08001e039d7d cidmAI

query_permset
Data of type sec_acl_permset_t that defines the permission bits
needed to access the attribute’s value.

update_permset
Data of type sec_acl_permset_t that defines the permission bits
needed to update the attribute’s value.

test_permset
Data of type sec_acl_permset_t that defines the permission bits
needed to test the attribute’s value.

delete_permset
Data of type sec_acl_permset_t that defines the permission bits
needed to delete an attribute instance.

sec_attr_acl_mgr_info_p_t
A pointer to a sec_attr_acl_mgr_info_t structure.

sec_attr_acl_mgr_info_set_t
A structure that defines an attribute’s ACL manager set. The structure
consists of the following elements:

num_acl_mgrs
An unsigned 32-bit integer that specifies the number of ACL
managers in the ACL manager set.

mgr_info []
An array of pointers of type sec_attr_mgr_info_p_t that define the
ACL manager types in the ACL manager set and the permission
sets associated with the ACL manager type.

sec_attr_intercell_action_t
An enumerator that specifies the action that should be taken by the
privilege service when it reads acceptable attributes from a foreign cell. A
foreign attribute is acceptable only if there is either a schema entry for the
foreign cell or if sec_attr_intercell_act_accept is set to true .

This enumerator, which is used in conjunction with the
sec_attr_schema_entry_t data type, is composed of the following
elements:

sec_attr_intercell_act_accept
If the unique flag in the sec_attr_schema_entry_t data type is not
set on, retain the attribute. If the unique flag is set on, retain the
attribute only if its value is unique among all attribute instances of
the same attribute type within the cell.

sec_attr_intercell_act_reject
Discard the input attribute.

sec_attr_intercell_act_evaluate
Use the binding information in the trig_binding field of this
sec_attr_schema_entry_t data type to make a
sec_attr_trig_query call to a trigger server. That server determines

Chapter 6. DCE Security Service 929

whether to retain the attribute value, discard the attribute value, or
map the attribute to another value.

sec_attr_trig_type_t
Specifies the trigger type, a flag that determines whether an attribute trigger
should be invoked for query operations. The data type, which is used in
conjunction with the sec_attr_schema_entry_t data type, uses the
following constants:

sec_attr_trig_type_query
The attribute trigger server is invoked for query operations.

sec_attr_trig_type_query
The attribute trigger server is invoked for update operations.

sec_attr_schema_entry_t
A structure that defines a complete attribute entry for the schema catalog.
The entry is identified by both a unique string name and a unique attribute
UUID. Although either can either can be used as a retrieval key, the string
name should be used for interactive access to the attribute and the UUID
for programmatic access. The attribute UUID is used to identify the
semantics defined for the attribute type in the schema.

The sec_attr_schema_entry_t data type consists of the following
elements:

attr_name
A pointer to the attribute name.

attr_id
A value of type uuid_t that identifies the attribute type.

attr_encoding
An enumerator of type sec_attr_encoding_t that specifies the
attribute’s encoding.

acl_mgr_set
A structure of type sec_attr_acl_mgr_info_set_t that specifies the
ACL manager types that support the objects on which attributes of
this type can be created and the permission bits supported by that
ACL manager type.

schema_entry_flags
An unsigned integer of type sec_attr_sch_entry_flags_t that
defines bitsets for the following flags:

unique
When set on, this flag indicates that each instance of this
attribute type must have a unique value within the cell for
the object type implied by the ACL manager type. If this flag
is not set on, uniqueness checks are not performed for
attribute writes.

multi_valued
When set on, this flag indicates that this attribute type may
be multivalued; in other words, multiple instances of the
same attribute type can be attached to a single registry
object. If this flag is not set on, only one instance of this
attribute type can be attached to an object.

reserved
When set on, this flag prevents the schema entry from

930 IBM DCE for AIX, Version 2.2: Application Development Reference

being deleted through any interface or by any user. If this
flag is not set on, the entry can be deleted by any
authorized principal.

use_defaults
When set on, the system-defined default attribute value will
be returned on a client query if an instance of this attribute
does not exist on the queried object. If this flag is not set
on, system defaults are not used.

intercell_action
An enumerator of type sec_attr_intercell_action_t that specifies
how the privilege service will handle attributes from a foreign cell.

trig_types
A flag of type sec_attr_trig_type_t that specifies whether whether
a trigger can perform update or query operations.

trig_binding
A pointer to a structure of type sec_attr_bind_info_t that supplies
the attribute trigger binding handle.

scope A pointer to a string that defines the objects to which the attribute
can be attached.

comment
A pointer to a string that contains general comments about the
attribute.

sec_attr_schema_entry_parts_t
A 32-bit bitset containing flags that specify the schema entry fields that can
be modified on a schema entry update operation. This data type contains
the following flags:

sec_attr_schema_part_name
If set, indicates that the attribute name (attr_name) can be
changed.

sec_attr_schema_part_reserved
If set, indicates that the setting of the flag that determines whether
or not the schema entry can be deleted (reserved) can be
changed.

sec_attr_schema_part_defaults
If set, indicates that the flag that determines whether or not a query
for a nonexistent attribute will not result in a search for a system
default (apply_default) can be changed.

sec_attr_schema_part_trig_bind
If set, indicates that the trigger’s binding information (trig_binding)
can be changed.

sec_attr_schema_part_comment
If set, indicates whether or not comments associated with the
schema entry (comment) can be changed.

sec_attr_component_name_t
A pointer to a character string used to further specify the object to which the
attribute is attached. (Note that this data type is analogous to the
sec_acl_component_name_t data type in the ACL interface.)

Chapter 6. DCE Security Service 931

sec_attr_cursor_t
A structure that provides a pointer into a registry database and is used for
multiple database operations.

This cursor must minimally represent the object indicated by xattrschema
in the schema interfaces, or component_name in the attribute interfaces.
The cursor may additionally represent an entry within that schema or an
attribute instance on that component.

sec_attr_srch_cursor_t
A structure that provides a pointer into a registry database and is used for
multiple database operations. The cursor must minimally represent the list
of all objects managed by this server that possess the search attributes
specified in the sec_attr_srch_cursor_init routine. It may additionally
represent a given object within this list as well as attribute instance(s)
possessed by that object.

sec_attr_trig_cursor_t
A structure that provides an attribute trigger cursor for interactive
operations. The structure consists of the following elements:

source
A value of type uuid_t that provides a UUID to identify the server
that initialized the cursor.

object_handle
A signed 32-bit integer that identifies the object (specified by
xattrschema in the schema interface or component_name in the
attribute interface) upon which the operation is being performed.

entry_handle
A signed 32-bit integer that identifies the current entry
(schema_entry in the schema interface or attribute instance in the
attribute interface) for the operation.

valid A Boolean field with the following values:

true (1)
Indicates an initialized cursor.

false (0)
Indicates an uninitialized cursor.

sec_attr_trig_timeval_sec_t
A 32-bit integer containing the seconds portion of a UNIX timeval_t , to be
used when expressing absolute dates.

Files
/usr/include/dce/sec_attr_base.idl

The idl file from which sec_attr_base.h was derived.

Constants

The following constants are used in sec_attr calls:

sec_attr_bind_auth_dce
The binding uses DCE shared-secret key authentication.

sec_attr_bind_auth_none
The binding is not authenticated.

932 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_attr_bind_type_string
The attribute uses an RPC string binding.

sec_attr_bind_type_svrname
The attribute uses a name in rpc_c_ns_syntax format that identifies a CDS
entry containing the server’s binding information. This constant has the
following structure:

name_syntax
Must be rpc_c_ns_syntax_dce to specify that DCE naming rules
are used to specify name .

name A pointer to a name of a CDS entry in rpc_c_ns_syntax_dce
syntax.

sec_attr_bind_type_twr
The attribute uses a DCE protocol tower binding representation.

sec_attr_trig_type_t
The following 32-bit constants are used with the sec_attr_trig_type_t data
type:

sec_attr_trig_type_query The trigger server can perform only
query operations.

sec_attr_trig_type_update The trigger server can perform only
update operations.

sec_attr_intercell_action_t
The following constants are used with the sec_attr_intercell_action_t data
type:

sec_attr_intercell_act_accept
If the unique flag in the sec_attr_schema_entry_t data type is not
set on, retain attributes from a foreign cell. If the unique flag is set
on, retain the foreign attribute only if its value is unique among all
attribute instances of the same attribute type within the cell.

sec_attr_intercell_act_reject
Discard attributes from a foreign cell.

sec_attr_intercell_act_evaluate
A trigger server determines whether to retain foreign attributes,
discard foreign attributes, or map foreign attribute to another
value(s).

sec_attr_schema_entry_parts_t
The following constants are used with the sec_attr_schema_entry_parts_t
data type:

sec_attr_schema_part_name
Indicates that the attribute name can be changed in an schema
update operation.

sec_attr_schema_part_reserved
Indicates that the setting of the reserved flag can be changed in a
schema entry update.

sec_attr_schema_part_defaults
Indicates that the apply_default flag can be changed in a schema
entry update operation.

Chapter 6. DCE Security Service 933

sec_attr_schema_part_trig_bind
Indicates that trigger binding information can be changed in a
schema entry update operation.

sec_attr_schema_part_comment
Indicates that comments associated with the schema entry can be
changed in a schema entry update.

934 IBM DCE for AIX, Version 2.2: Application Development Reference

Login API Data Types

Synopsis

#include <dce/sec_login.h>

Data Types

The following data types are used in sec_login_ calls:

sec_login_handle_t
This is an opaque pointer to a data structure representing a complete login
context. The context includes a principal’s network credentials, as well as
other account information. The network credentials are also referred to as
the principal’s ticket-granting ticket.

sec_login_flags_t
A 32-bit set of flags describing restrictions on the use of a principal’s
validated network credentials. Currently, only one flag is implemented.
Possible values are:

sec_login_no_flags
No special flags are set.

sec_login_credentials_private
Restricts the validated network credentials to the current process. If
this flag is not set, it is permissible to share credentials with
descendents of current process.

sec_login_auth_src_t
An enumerated set describing how the login context was authorized. The
possible values are:

sec_login_auth_src_network
Authentication accomplished through the normal network authority.
A login context authenticated this way will have all the network
credentials it ought to have.

sec_login_auth_src_local
Authentication accomplished via local data. Authentication occurs
locally if a principal’s account is tailored for the local machine, or if
the network authority is unavailable. Since login contexts
authenticated locally have no network credentials, they may not be
used for network operations.

sec_login_auth_src_overridden
Authentication accomplished via the override facility.

sec_login_passwd_t
The sec_login_get_pwent() call will return a pointer to a password
structure, which depends on the underlying registry structure.

In most cases, the structure will look like that supported by Berkeley
4.4BSD and OSF/1, which looks like this:
struct passwd {
char *pw_name; * user name *
char *pw_passwd; * encrypted password *
int pw_uid; * user uid *
int pw_gid; * user gid *
time_t pw_change; * password change time *
char *pw_class; * user access class *

Chapter 6. DCE Security Service 935

char *pw_gecos; * Honeywell login info *
char *pw_dir; * home directory *
char *pw_shell; * default shell *
time_t pw_expire; * account expiration *
};

sec_passwd_rec_t
A structure containing either a plaintext password or a preencrypted buffer
of password data. The sec_passwd_rec_t structure consists of three
components:

version_number
The version number of the password.

pepper
A character string combined with the password before an encryption
key is derived from the password.

key A structure consists of the following components:

key_type
The key type can be the following:

sec_passwd_plain
Indicates that a printable string of data is stored in
plain .

sec_passwd_des
Indicates that an array of data is stored in des_key
.

tagged_union
A structure specifying the password. The value of the
structure depends on key_type . If key_type is
sec_passwd_plain , structure contains plain , a character
string. If key_type is sec_passwd_des , the structure
contains des_key , a DES key of type
sec_passwd_des_key_t .

Constants

The following constants are used in sec_login_ calls:

sec_login_default_handle
The value of a login context handle before setup or validation.

sec_login_flags_t
The following two constants are used with the sec_login_flags_t type:

sec_login_no_flags
No special flags are set.

sec_login_credentials_private
Restricts the validated network credentials to the current process. If
this flag is not set, it is permissible to share credentials with
descendents of current process.

sec_login_remote_uid
Used in the sec_login_passwd_t structure for users from remote cells.

sec_login_remote_gid
Used in the sec_login_passwd_t structure for users from remote cells.

936 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/sec_login.idl

The idl file from which sec_login.h was derived.

Chapter 6. DCE Security Service 937

Extended Privilege Attribute API Data Types

Synopsis
#include <dce/id_epac.h>
#include <dce/nbase.h>

Data Types

The following data types are used in extended privilege attribute calls and in the
sec_login_cred calls that implement extended privilege attributes.

sec_cred_cursor_t
A structure that provides an input/output cursor used to iterate through a set
of delegates in the sec_cred_get_delegate() or
sec_login_cred_get_delegate() calls. This cursor is initialized by the
sec_cred_initialize_cursor() or sec_login_cred_init_cursor() call.

sec_cred_attr_cursor_t
A structure that provides an input/output cursor used to iterate through a set
of extended attributes in the sec_cred_get_extended_attributes() call.
This cursor is initialized by the sec_cred_initialize_attr_cursor() call.

sec_id_opt_req_t
A structure that specifies application-defined optional restrictions. The
sec_id_opt_req_t data type is composed of the following elements:

restriction_len
An unsigned 16-bit integer that defines the size of the restriction
data.

restrictions
A pointer to a byte_t that contains the restriction data.

sec_rstr_entry_type_t
An enumerator that specifies the entry types for delegate and target
restrictions. This data type is used in conjunction with the
sec_id_restriction_t data type where the specific UUID(s), if appropriate,
are supplied. It consists of the following components:

sec_rstr_e_type_user
The target is a local principal identified by UUID. This type
conforms with the POSIX 1003.6 standard.

sec_rstr_e_type_group
The target is a local group identified by UUID. This type conforms
with the POSIX 1003.6 standard.

sec_rstr_e_type_foreign_user
The target is a foreign principal identified by principal and cell
UUID.

sec_rstr_e_type_foreign_group
The target is a foreign group identified by group and cell UUID.

sec_rstr_e_type_foreign_other
The target is any principal that can authenticate to the foreign cell
identified by UUID.

sec_rstr_e_type_any_other
The target is any principal that can authenticate to any cell, but is
not identified in any other type entry.

938 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rstr_e_type_no_other
No principal can act as a target or delegate.

sec_id_restriction_t
A discriminated union that defines delegate and target restrictions. The
union, which is used in conjunction with the sec_restriction_set_t data
type, consists of the following elements:

entry_type
A sec_rstr_entry_type_t that defines the ACL entry types for
delegate and target restrictions. The value of tagged_union
depends on the value of entry_type .

tagged_union
A tagged union whose contents depend on entry_type as follows:

If entry_type is... Then tagged_union is...

sec_rstr_e_type_any_other NULL

sec_rstr_e_type_foreign_other foreign_id that identifies the foreign cell.

sec_rstr_e_type_user
Sec_rstr_e_type_group

id , a sec_id_t that identifies the user or
group.

sec_rstr_e_type_foreign_user
sec_rstr_e_type_foreign_group

foreign_id , a sec_id_foreign_t that identifies
the foreign user or group.

sec_id_restriction_set_t
A structure that that supplies delegate and target restrictions. The structure
consists of

num_restrictions
A 16-bit unsigned integer that defines the number of restrictions in
restrictions .

restrictions
A pointer to a sec_id_restriction_t that contains the restrictions.

sec_id_compatibility_mode_t
A unsigned 16 bit integer that defines the compatibility between current and
pre-1.1 servers. The data type uses the following constants:

sec_id_compat_mode_none
Compatibility mode is off.

sec_id_compat_mode_initiator
Compatibility mode is on. The 1.0 PAC data extracted from the
EPAC of the chain initiator.

sec_id_compat_mode_caller
Compatibility mode is on. The 1.0 PAC data extracted from the last
delegate in the delegation chain.

sec_id_delegation_type_t
An unsigned 16 bit integer that defines the delegation type. The data type
uses the following constants:

sec_id_deleg_type_none
Delegation is not allowed.

sec_id_deleg_type_traced
Traced delegation is allowed.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation is allowed.

Chapter 6. DCE Security Service 939

sec_id_pa_t
An structure that contains pre-1.1 PAC data extracted from an EPAC of a
current version server. This data type, which is used for compatibility with
pre-1.1 servers, consists of the following elements:

realm A value of type sec_id_t that contains the UUID that identifies the
cell in which the principal associated with the PAC exists.

principal
A value of type sec_id_t that contains the UUID of the principal.

group A value of type sec_id_t that contains the UUID of the principal’s
primary group.

num_groups
An unsigned 16-bit integer that specifies the number of groups in
the principal’s groupset.

groups
An array of pointers to sec_id_t s that contain the UUIDs of the
each group in the principal’s groupset.

num_foreign_groupsets
An unsigned 16-bit integer that specifies the number of foreign
groups for the principal’s groupset.

foreign_groupsets
An array of pointers to sec_id_t s that contain the UUIDs of the
each group in the principal’s groupset.

sec_id_pac_t
An structure that contains a pre-1.1 PAC. This data type, which is used as
output of the sec_cred_get_v1_pac call, consists of the following elements:

pac_type
A value of type sec_id_pac_format_t that can be used to describe
the PAC format.

authenticated
A boolean field that indicates whether or not the PAC is
authenticated (obtained from an authenticated source).
FALSE indicates that the PAC is not authenticated. No
authentication protocol was used in the rpc that transmitted the
identity of the caller. TRUE indicates that the PAC is authenticated.

realm A value of type sec_id_t that contains the UUID that identifies the
cell in which the principal associated with the PAC exists.

principal
A value of type sec_id_t that contains the UUID of the principal.

group For local principals, a value of type sec_id_t that contains the
UUID of the principal’s primary group.

num_groups
An unsigned 16-bit integer that specifies the number of groups in
the principal’s groupset.

groups
An array of pointers to sec_id_t s that contain the UUIDs of the
each group in the principal’s groupset.

940 IBM DCE for AIX, Version 2.2: Application Development Reference

num_foreign_groups
An unsigned 16-bit integer that specifies the number of foreign
groups in the principal’s groupset.

foreign_groups
An array of pointers to sec_id_t s that contain the UUIDs of the
each foreign group in the principal’s groupset.

sec_id_pac_format_t
An enumerator that can be used to describe the PAC format.

sec_id_t
A structure that contains UUIDs for principals, groups, or organizations and
an optional printstring name. Since a UUID is an handle for the object’s
identity, the sec_id_t data type is the basic unit for identifying principals,
groups, and organizations.

Because the printstring name is dynamically allocated, this datatype
requires a destructor function. Generally, however, the sec_id_t is
embedded in other data types (ACLs, for example), and these datatypes
have a destructor function to release the printstring storage.

The sec_id_t data type is composed of the following elements:

uuid A value of type uuid_t , the UUID of the principal, group, or
organization.

name A pointer to a character string containing the name of the principal,
group, or organization.

sec_id_foreign_t
A structure that contains UUIDs for principals, groups, or organizations for
objects in a foreign cell and the UUID that identifies the foreign cell. The
sec_id_foreign_t data type is composed of the following elements:

id A value of type sec_id_t that contains the UUIDs of the objects
from the foreign cell.

realm A value of type sec_id_t that contains the UUID of the foreign cell.

sec_id_foreign_groupset_t
A structure that contains UUIDs for set of groups in a foreign cell and the
UUID that identifies the foreign cell. The sec_id_foreign_groupset_t data
type is composed of the following elements:

realm A value of type sec_id_t that contain the UUID of the foreign cell.

num_groups
An unsigned 16-bit integer specifying the number of group UUIDs in
groups .

groups
A printer to a sec_id_t that contains the UUIDs of the groupset
from the foreign cell.

Constants

The following constants are used in the extended privilege attribute calls and in the
the sec_login calls that implement extended privilege attributes:

sec_id_compat_mode_none
Compatibility mode is off.

Chapter 6. DCE Security Service 941

sec_id_compat_mode_initiator
Compatibility mode is on. The 1.0 PAC data extracted from the EPAC of the
chain initiator.

sec_id_compat_mode_caller
Compatibility mode is on. The 1.0 PAC data extracted from the last
delegate in the delegation chain.

sec_id_deleg_type_none
Delegation is not allowed.

sec_id_deleg_type_traced
Traced delegation is allowed.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation is allowed.

sec_rstr_e_type_user
The delegation target is a local principal identified by UUID. This type
conforms with the POSIX 1003.6 standard.

sec_rstr_e_type_group
The delegation target is a local group identified by UUID. This type
conforms with the POSIX 1003.6 standard.

sec_rstr_e_type_foreign_user
The delegation target is a foreign principal identified by principal and cell
UUID.

sec_rstr_e_type_foreign_group
The delegation target is a foreign group identified by group and cell UUID.

sec_rstr_e_type_foreign_other
The delegation target is any principal that can authenticate to the foreign
cell identified by UUID.

sec_rstr_e_type_any_other
The delegation target is any principal that can authenticate to any cell, but
is not identified in any other type entry.

sec_rstr_e_type_no_other
No pincipal can act as a target or delegate.

Files
/usr/include/dce/sec_cred.idl

The idl file from which sec_cred.h was derived.

/usr/include/dce/id_epac.idl
The idl file from which id_epac.h was derived.

/usr/include/dce/nbase.idl
The idl file from which nbase.h was derived.

942 IBM DCE for AIX, Version 2.2: Application Development Reference

ACL API Data Types

Synopsis

#include <dce/aclbase.h>

Data Types

The following data types are used in sec_acl_ calls:

sec_acl_handle_t
A pointer to an opaque handle bound to an ACL that is the subject of a test
or examination. The handle is bound to the ACL with sec_acl_bind() . An
unbound handle has the value sec_acl_default_handle .

sec_acl_posix_semantics_t
A flag that indicates which, if any, POSIX ACL semantics an ACL manager
supports. The following constants are defined for use with the
sec_acl_posix_semantics_t data type:

sec_acl_posix_no_semantics
The manager type does not support POSIX semantics.

sec_acl_posix_mask_obj
The manager type supports the mask_obj entry type and POSIX
1003.6 Draft 12 ACL mask entry semantics.

sec_acl_t
This data type is the fundamental type for the ACL manager interfaces. The
sec_acl_t type contains a complete access control list, made up of a list of
entry fields (type sec_acl_entry_t). The default cell identifies the
authentication authority for simple ACL entries (foreign entries identify their
own foreign cells). The sec_acl_manager_type identifies the manager to
interpret this ACL.

The sec_acl_t type is a structure containing the following fields:

default_realm
A structure of type sec_acl_id_t , this identifies the UUID and
(optionally) the name of the default cell.

sec_acl_manager_type
Contains the UUID of the ACL manager type.

num_entries
An unsigned 32-bit integer containing the number of ACL entries in
this ACL.

sec_acl_entries
An array containing num_entries pointers to different ACL entries,
each of type sec_acl_entry_t .

sec_acl_p_t
This data type, simply a pointer to a sec_acl_t , is for use with the
sec_acl_list_t data type.

sec_acl_list_t
This data type is a structure containing an unsigned 32-bit integer
num_acls that describes the number of ACLs indicated by its companion
array of pointers, sec_acls , of type sec_acl_p_t .

Chapter 6. DCE Security Service 943

sec_acl_entry_t
The sec_acl_entry_t type is a structure made up of the following
components:

perms A set of flags of type sec_acl_permset_t that describe the
permissions granted for the principals identified by this ACL entry.
Note that if a principal matches more than one ACL entry, the
effective permissions will be the most restrictive combination of all
the entries.

entry_info
A structure containing two members:

entry_type
A flag of type sec_acl_entry_type_t , indicating the type of
ACL entry.

tagged_union
A tagged union whose contents depend on the type of the
entry.

The types of entries indicated by entry_type can be the following:

sec_acl_e_type_user_obj
The entry contains permissions for the implied user object.
This type is described in the POSIX 1003.6 standard.

sec_acl_e_type_group_obj
The entry contains permissions for the implied group object.
This type is described in the POSIX 1003.6 standard.

sec_acl_e_type_other_obj
The entry contains permissions for principals not otherwise
named through user or group entries. This type is described
in the POSIX 1003.6 standard.

sec_acl_e_type_user
The entry contains a key that identifies a user. This type is
described in the POSIX 1003.6 standard.

sec_acl_e_type_group
The entry contains a key that identifies a group. This type is
described in the POSIX 1003.6 standard.

sec_acl_e_type_mask_obj
The entry contains the maximum permissions for all entries
other than mask_obj , unauthenticated , user_obj ,
other_obj .

sec_acl_e_type_foreign_user
The entry contains a key that identifies a user and the
foreign realm.

sec_acl_e_type_foreign_group
The entry contains a key that identifies a group and the
foreign realm.

sec_acl_e_type_foreign_other
The entry contains a key that identifies a foreign realm. Any
user that can authenticate to the foreign realm will be
allowed access.

944 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_e_type_any_other
The entry contains permissions to be applied to any
accessor who can authenticate to any realm, but is not
identified in any other entry (except
sec_acl_e_type_unauthenticated).

sec_acl_e_type_unauthenticated
The entry contains permissions to be applied when the
accessor does not pass authentication procedures. A
privilege attribute certificate will indicate that the caller’s
identity is not authenticated. The identity is used to match
against the standard entries, but the access rights are
masked by this mask. If this mask does not exist in an ACL,
the ACL is assumed to grant no access and all
unauthenticated access attempts will be denied.

Great care should be exercised when allowing
unauthenticated access to an object. Almost by definition,
unauthenticated access is very easy to spoof. The presence
of this mask on an ACL essentially means that anyone can
get at least as much access as allowed by the mask.

sec_acl_e_type_extended
The entry contains additional pickled data. This kind of
entry cannot be interpreted, but can be used by an
out-of-date client when copying an ACL from one manager
to another (assuming that the two managers each
understand the data).

The contents of the tagged union depend on the entry type.

For the following entry types, the union contains a UUID and an
optional print string (called entry_info.tagged_union.id with type
sec_id_t) for an identified local principal, or for an identified foreign
realm.

v sec_acl_e_type_user

v sec_acl_e_type_group

v sec_acl_type_foreign_other

For the following entry types, the union contains two UUIDs and
optional print strings (called entry_info.tagged_union.foreign_id
with type sec_id_foreign_t) for an identified foreign principal and
its realm.

v sec_acl_e_type_foreign_user

v sec_acl_e_type_foreign_group

For an extended entry (sec_acl_e_type_extended), the union
contains entry_info.tagged_union.extended_info , a pointer to an
information block of type sec_acl_extend_info_t .

sec_acl_permset_t
A 32-bit set of permission flags. The flags currently represent the
conventional file system permissions (read, write, execute) and the
extended DFS permissions (owner, insert, delete).

The unused flags represent permissions that can only be interpreted by the
manager for the object. For example, sec_acl_perm_unused_00000080

Chapter 6. DCE Security Service 945

may mean to one ACL manager that withdrawals are allowed, and to
another ACL manager that rebooting is allowed.

The following constants are defined for use with the sec_acl_permset_t
data type:

sec_acl_perm_read
The ACL allows read access to the protected object.

sec_acl_perm_write
The ACL allows write access to the protected object.

sec_acl_perm_execute
The ACL allows execute access to the protected object.

sec_acl_perm_control
The ACL allows the ACL itself to be modified.

sec_acl_perm_insert
The ACL allows insert access to the protected object.

sec_acl_perm_delete
The ACL allows delete access to the protected object.

sec_acl_perm_test
The ACL allows access to the protected object only to the extent of
being able to test for existence.

The bits from 0x00000080 to 0x80000000 are not used by the conventional
ACL permission set. Constants of the form
sec_acl_perm_unused_00000080 have been defined so application
programs can easily use these bits for extended ACLs.

sec_acl_extend_info_t
This is an extended information block, provided for future extensibility.
Primarily, this allows an out-of-date client to read an ACL from a newer
manager and apply it to another (up-to-date) manager. The data cannot be
interpreted by the out-of-date client without access to the appropriate
pickling routines (that presumably are unavailable to such a client).

In general, ACL managers should not accept ACLs that contain entries the
manager does not understand. The manager clearly cannot perform the
security service requested by an uninterpretable entry, and it is considered
a security breach to lead a client to believe that the manager is performing
a particular class of service if the manager cannot do so.

The data structure is made up of the following components:

extension_type
The UUID of the extension type.

format_label
The format of the label, in ndr_format_t form.

num_bytes
An unsigned 32-bit integer indicating the number of bytes
containing the pickled data.

pickled_data
The byte array containing the pickled data.

sec_acl_type_t
The sec_acl_type_t type differentiates among the various types of ACLs an
object can possess. Most file system objects will only have one ACL

946 IBM DCE for AIX, Version 2.2: Application Development Reference

controlling the access to that object, but objects that control the creation of
other objects (sometimes referred to as containers) may have more. For
example, a directory can have three different ACLs: the directory ACL,
controlling access to the directory; the initial object (or default object) ACL,
which serves as a mask when creating new objects in the directory; and the
initial directory (or default directory) ACL, which serves as a mask when
creating new directories (containers).

The sec_acl_type_t is an enumerated set containing one of the following
values:

sec_acl_type_object
The ACL refers to the specified object.

sec_acl_type_default_object
The ACL is to be used when creating objects in the container.

sec_acl_type_default_container
The ACL is to be used when creating nested containers.

The following values are defined but not currently used. They are available
for application programs that may create an application-specific ACL
definition.

v sec_acl_type_unspecified_3

v sec_acl_type_unspecified_4

v sec_acl_type_unspecified_5

v sec_acl_type_unspecified_6

v sec_acl_type_unspecified_7

sec_acl_printstring_t
A sec_acl_printstring_t structure contains a printable representation for a
permission in a sec_acl_permset_t permission set. This allows a generic
ACL editing tool to be used for application-specific ACLs. The tool need not
know the printable representation for each permission bit in a given
permission set. The sec_acl_get_printstring() function will query an ACL
manager for the print strings of the permissions it supports. The structure
consists of three components:

printstring
A character string of maximum length sec_acl_printstring_len
describing the printable representation of a specified permission.

helpstring
A character string of maximum length
sec_acl_printstring_help_len containing some text that may be
used to describe the specified permission.

permissions
A sec_acl_permset_t permission set describing the permissions
that will be represented with the specified print string.

sec_acl_component_name_t
This type is a pointer to a character string, to be used to specify the entity a
given ACL is protecting.

Constants

The following constants are used in sec_acl_ calls:

Chapter 6. DCE Security Service 947

sec_acl_default_handle
The value of an unbound ACL manager handle.

sec_rgy_acct_key_t
The following 32-bit integer constants are used with the
sec_rgy_acct_key_t data type:

sec_rgy_acct_key_none
Invalid key.

sec_rgy_acct_key_person
The person name alone is enough.

sec_rgy_acct_key_group
The person and group names are both necessary for the account
abbreviation.

sec_rgy_acct_key_org
The person, group, and organization names are all necessary.

sec_rgy_acct_key_last
Key values must be less than this constant.

sec_rgy_pname_t_size
The maximum number of characters in a sec_rgy_pname_t .

sec_acl_permset_t
The following constants are defined for use with the sec_acl_permset_t
data type:

sec_acl_perm_read
The ACL allows read access to the protected object.

sec_acl_perm_write
The ACL allows write access to the protected object.

sec_acl_perm_execute
The ACL allows execute access to the protected object.

sec_acl_perm_owner
The ACL allows owner-level access to the protected object.

sec_acl_perm_insert
The ACL allows insert access to the protected object.

sec_acl_perm_delete
The ACL allows delete access to the protected object.

sec_acl_perm_test
The ACL allows access to the protected object only to the extent of
being able to test for existence.

sec_acl_perm_unused_00000080 – sec_acl_perm_unused_0x80000000
The bits from 0x00000080 to 0x80000000 are not used by the
conventional ACL permission set. Constants have been defined so
application programs can easily use these bits for extended ACLs.

sec_acl_printstring_len
The maximum length of the printable representation of an ACL permission.
(See sec_acl_printstring_t .)

sec_acl_printstring_help_len
The maximum length of a help message to be associated with a supported
ACL permission. (See sec_acl_printstring_t .)

948 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/aclbase.idl

The idl file from which aclbase.h was derived.

Chapter 6. DCE Security Service 949

Key Management API Data Types

Notes

Key management operations that take a keydata argument expect a pointer to a
sec_passwd_rec_t structure, and those that take a keytype argument (void *)
expect a pointer to a sec_passwd_type_t . Key management operations that yield a
keydata argument as output set the pointer to an array of sec_passwd_rec_t . (The
array is terminated by an element with a key type of sec_passwd_none .)

Operations that take a keydata argument expect a pointer to a sec_passwd_rec_t
structure. Operations that yield a keydata argument as output set the pointer to an
array of sec_passwd_rec_t . (The array is terminated by an element with key type
sec_passwd_none .) Operations that take a keytype argument (void *) expect a
pointer to a sec_passwd_type_t .

Synopsis

#include <dce/keymgmt.h>

Data Types
sec_passwd_type_t

An enumerated set describing the currently supported key types. The
possible values are as follows:

sec_passwd_none
Indicates no key types are supported.

sec_passwd_plain
Indicates that the key is a printable string of data.

sec_passwd_des
Indicates that the key is DES encrypted data.

sec_passwd_privkey
Indicates that the key is a private or public key of a public key pair
used in public key authentication.

sec_passwd_genprivkey
Indicates the modulus bit size of the private key to be generated for
a public key pair used in public key authentication.

sec_passwd_rec_t
A structure containing any of the following: a plaintext password, a
preencrypted buffer of password data, a public-key-pair generation request,
or a public or private key. The sec_passwd_rec_t structure consists of
three components:

version_number
The version number of the password.

pepper
A character string combined with the password before an encryption
key is derived from the password.

key A structure consists of the following components:

key_type
The key type can be the following:

950 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_passwd_plain
Indicates that a printable string of data is stored in
plain .

sec_passwd_des
Indicates that an array of data is stored in des_key
.

sec_passwd_privkey
Indicates that X.509 ASN.1 DER-encoded data is
stored in priv_key .

sec_passwd_genprivkey
Indicates that unsigned 32-bit data is stored in
modulus_size .

tagged_union
A structure specifying the password. The value of the
structure depends on key_type .

If key_type is sec_passwd_plain , the structure contains
plain , a character string.

If key_type is sec_passwd_des , the structure contains
des_key , a DES key of type sec_passwd_des_key_t .

If key_type is sec_passwd_privkey , the structure contains
priv_key , a public or private key of type sec_pk_data_t .

If key_type is sec_passwd_genprivkey , the structure
contains modulus_size , unsigned 32-bit data.

sec_passwd_version_t
An unsigned 32-bit integer that defines the password version number. You
can supply a version number or a 0 for no version number. If you supply
the constant sec_passwd_c_version_none , the security service supplies a
system-generated version number.

sec_key_mgmt_authn_service
A 32-bit unsigned integer whose purpose is to indicate the authentication
service in use, since a server may have different keys for different levels of
security. The possible values of this data type and their meanings are as
follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_private
DCE private key authentication (an implementation of the Kerberos
system).

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

Constants

There are no constants specially defined for use with the key management API.

Files
/usr/include/dce/keymgmt.idl

The idl file from which keymgmt.h was derived.

Chapter 6. DCE Security Service 951

ID Mapping API Data Types

Synopsis

#include <dce/secidmap.h>

Data Types

No special data types are defined for the ID mapping API.

Constants

No special constants are defined for the ID mapping API.

Files
/usr/include/dce/secidmap.idl

The idl file from which secidmap.h was derived.

952 IBM DCE for AIX, Version 2.2: Application Development Reference

Password Management API Data Types

Synopsis

#include <dce/sec_pwd_mgmt.h>

Data Types

The following data types are used in sec_pwd_mgmt_ calls:

sec_passwd_mgmt_handle_t
A pointer to an opaque handle consisting of password management
information about a principal. It is returned by sec_pwd_mgmt_setup() .

Constants

There are no constants specially defined for use with the password management
API.

Files
/usr/include/dce/sec_pwd_mgmt.idl

The idl file from which sec_pwd_mgmt.h was derived.

Chapter 6. DCE Security Service 953

audit_intro

Purpose

Introduction to the DCE audit API runtime

Description

This introduction gives general information about the DCE audit application
programming interface (API) and an overview of the following parts of the DCE
audit API runtime:

v Runtime services

v Environment variables

v Data types and structures

v Permissions required

Runtime Services

The following is an alphabetical list of the audit API routines. With each routine
name is its description. The types of application program that will most likely call the
routine are enclosed in parentheses.

dce_aud_clean()
Resets and rewinds the specificd audit trail (audit trail analysis and
examination tools).

dce_aud_close()
Closes an audit trail (client/server applications, audit trail analysis and
examination tools).

dce_aud_commit()
Performs the audit action(s) (client/server applications).

dce_aud_discard()
Discards an audit record which releases the memory (client/server
applications, audit trail analysis and examination tools).

dec_aud_event_table()
Builds a sorted event table to be used for sorting the audit records in the
audit trail file (audit trail analysis and examination tools).

dce_audit_first()
Reads the first audit record from a specified audit trail file into a buffer.

dce_aud_free_ev_info()
Frees the memory allocated for an event information structure returned from
calling the dce_aud_get_ev_info() function (audit trail analysis and
examination tools).

dce_aud_free_header()
Frees the memory allocated to a designated audit record header structure
(audit trail analysis and examination tools).

dce_aud_get_ev_info()
Gets the event-specific information of a specified audit record (audit trail
analysis and examination tools).

954 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_get_event()
Searches and reads the audit record that contains the specified event into a
buffer (audit trail analysis and examination tools).

dce_aud_get_header()
Gets the header of a specified audit record (audit trail analysis and
examination tools).

dce_aud_last()
Reads the last audit record from a specified audit trail file into a buffer.

dce_aud_length()
Gets the length of a specified audit record (client/server applications, audit
trail analysis and examination tools).

dce_aud_modify_sstrategy()
Modifies the storage strategy of the audit daemon.

dce_aud_next()
Reads the next audit record from a specified audit trail into a buffer (audit
trail analysis and examination tools).

dce_aud_open()
Opens a specified audit trail for read or write (client/server applications,
audit trail analysis and examination tools).

dce_aud_print()
Formats an audit record into a human-readable form (audit trail analysis
and examination tools).

dce_aud_prev()
Reads the previous audit record from a specified audit trail file into a buffer
(audit trail analysis and examination tools).

dce_aud_put_ev_info()
Adds event-specific information to a specified audit record buffer
(client/server applications).

dce_aud_reset()
Resets the cursors and the file pointers of the specified audit traul file (audit
trail analysis and examination tools).

dce_aud_rename()
Renames the specified audit trail file to another name (audit trail analysis
and examination tools).

dce_aud_rewind()
Rewinds the specified audit trail file (audit trail analysis and examination
tools).

dce_aud_save()
Saves or archives the specified audit trail file (audit trail analysis and
examination tools).

dce_aud_set_local_cell_uuid()
Obtains the cell’s UUID.

dce_aud_set_trail_size_limit()
Sets a limit to the audit trail size (client/server applications).

dce_aud_start()
Determines whether a specified event should be audited given the client’s
binding information and the event outcome. If the event should be audited
or if it is not yet known whether the event should be audited because the

audit_intro(3sec)

Chapter 6. DCE Security Service 955

event outcome is still unknown, memory for the audit record descriptor is
allocated and the address of this memory is returned to the caller
(client/server applications).

dce_aud_start_with_name()
Determines whether a specified event should be audited given the
client/server name and the event outcome. If the event should be audited or
if it is not yet known whether the event should be audited because the
event outcome is still unknown, memory for the audit record descriptor is
allocated and the address of this memory is returned to the caller
(client/server applications).

dce_aud_start_with_pac()
Determines whether a specified event should be audited given the client’s
privilege attribute certificate (PAC) and the event outcome. If the event
should be audited or if it is not yet known whether the event should be
audited because the event outcome is still unknown, memory for the audit
record descriptor is allocated and the address of this memory is returned to
the caller (client/server applications).

dce_aud_start_with_server_binding()
Determines whether a specified event should be audited given the server’s
binding information and the event outcome. If the event should be audited
or if it is not yet known whether the event should be audited because the
event outcome is still unknown, memory for the audit record descriptor is
allocated and the address of this memory is returned to the caller
(client/server applications).

dce_aud_start_with_uuid()
Determines whether a specified event should be audited given the
client/server UUID and the event outcome. If the event must be audited, or
if the outcome of the event is not yet known, the memory for the audit
record descriptor is allocated and the address of this structure is returned to
the caller (client/server applications).

get_event_name_from_number()
Returns the event name from the event number (audit trail analysis and
examination tools).

get_event_number_from_name()
Returns the event number from the event name (audit trail analysis and
examination tools).

Audit Data Types

The following subsections list the data types and structures used by applications to
perform auditing and to analyze audit trails.

Event-Specific Information
The audit APIs allow applications to include event-specific information in
audit records. Event-specific information must be represented as
information items using the following data type.
typedef struct {

unsigned16 format;
union {

idl_small_int small_int;
idl_short_int short_int;
idl_long_int long_int;
idl_hyper_int hyper_int;
idl_usmall_int usmall_int;
idl_ushort_int ushort_int;
idl_ulong_int ulong_int;

audit_intro(3sec)

956 IBM DCE for AIX, Version 2.2: Application Development Reference

idl_uhyper_int uhyper_int;
idl_short_float short_float;
idl_long_float long_float;
idl_boolean boolean;
uuid_t uuid;
utc_t utc;
sec_acl_t * acl;
idl_byte * byte_string;
idl_char * char_string;

} data;
} dce_aud_ev_info_t;

The format field of the above data structure defines formatting information
that is used to determine the type of the data referenced by the data field.
The following table shows possible values of the format field, their
corresponding data types, and their sizes.

Table 35. Event Data Format Specifiers—intro(3sec)

Specifier Data Type Size

aud_c_evt_info_small_int idl_small_int 1 byte

aud_c_evt_info_short_int idl_short_int 2 bytes

aud_c_evt_info_long_int idl_long_int 4 bytes

aud_c_evt_info_hyper_int idl_hyper_int 8 bytes

aud_c_evt_info_usmall_int idl_usmall_int 1 bytes

aud_c_evt_info_ushort_int idl_ushort_int 2 bytes

aud_c_evt_info_ulong_int idl_ulong_int 4 bytes

aud_c_evt_info_uhyper_int idl_uhyper_int 8 bytes

aud_c_evt_info_short_float idl_short_float 4 bytes

aud_c_evt_info_long_float idl_long_float 8 bytes

aud_c_evt_info_boolean idl_boolean 1 byte

aud_c_evt_info_uuid uuid_t 16 bytes

aud_c_evt_info_utc utc_t 16 bytes

aud_c_evt_info_acl sec_acl_t * variable size

aud_c_evt_info_byte_string idl_byte * variable size

aud_c_evt_info_char_string idl_char * variable size

Byte strings and character strings are terminated with a 0 (zero) byte. New
data types can be added to this list if they are used frequently. Servers
could use the pickling service of the IDL compiler to encode complex data
types into byte strings that are to be included in an audit record.

Audit Record Header Data Structure
The following data structure is used to store header information obtained
from an audit record. This structure is normally only used by audit trail
analysis and examination tools. That is, it is hidden from client/server
applications.
typedef struct {

unsigned16 format;
uuid_t server;
unsigned32 event;
unsigned16 outcome;
unsigned16 authz_st;

audit_intro(3sec)

Chapter 6. DCE Security Service 957

unsigned16 num_client_ids;
client_id_t *client_id;
utc_t time;
char *addr;

} dce_aud_hdr_t;

The uuid_t client field is now incotporated into the client_id_t *client_id
array. The client_id_t has the following structure.
typedef struct {

uuid_t client;
uuid_t cell;
unsigned16 num_groups;
uuid_t *groups;

} client_id_t;

These fields have the same meaning as they did when there was only one
possible client that could go in the header. The cell is the UUID of the cell
to which the client belongs.

format
Contains the version number of the tail format of the event used for
the event-specific information. With this format version number, the
audit analysis tools can accommodate changes in the formats of
the event-specific information. For example, the event-specific
information of an event may initially be defined to be a 32-bit
integer, and later changed to a character string. Format version 0
(zero) is assigned to the initial format for each event.

server Contains the UUID of the server that generates the audit record.

event Contains the event number.

outcome
Indicates whether the event failed or succeeded. If the event failed,
the reason for the failure is given.

authz_st
Indicates how the client is authorized: by a name or by a DCE
privilege attribute certificate (PAC).

client Contains the UUID of the client.

cell Contains the UUID of the client’s cell.

num_groups
Contains the number of local group privileges the client used for
access.

groups
Contains the UUIDs of the local group privileges that are used by
the client for the access. By default, the group information is not be
included in the header (num_groups is set to 0 in this case), to
minimize the size of the audit records. If the group information is
deemed as important, it can be included.

Information about foreign groups (global groups that do not belong
to the same cell where the client is registered) is not included in
this version of audit header but may be included in later versions
when global groups are supported.

time Contains a timestamp of utc_t type that records the time when the
server committed the audit record (that is, after providing the event
information through audit API function calls). Recording this time,

audit_intro(3sec)

958 IBM DCE for AIX, Version 2.2: Application Development Reference

rather than recording the time when the audit record is appended to
an audit trail, will better maintain the sequence of events. The
implementation of the audit subsystem may involve communication
between the server and a remote audit daemon, incurring indefinite
delays by network problems or intruders. The inaccuracy in the
utc_t timestamp may be useful for correlating events. When
searching for events in an audit trail that occur within a time
interval, if the results of the comparisons between the time of an
event and the interval’s starting and ending times is maybe
(because of inaccuracies), then the event should be returned.

addr Records the client’s address (port address of the caller). Port
addresses are not authenticated. A caller can provide a fraudulent
port address to a DCE server. However, if this unauthenticated port
address is deemed to be useful information, a DCE server can
record this information using this field.

The identity of the server cell is not recorded in the header, because of the
assumption that all audit records in an audit trail are for servers within a
single cell, and implicitly, the server cell is the local cell.

Audit Record Descriptor
An opaque data type, dce_aud_rec_t , is used to represent an audit record
descriptor. An audit record descriptor may be created, manipulated, or
disposed of by the following functions: The functions dce_aud_start() ,
dce_aud_start_with_pac() , dce_aud_start_with_name() ,
dce_aud_start_with_server_binding() , and dce_aud_next() return a
record descriptor. The function dce_aud_put_ev_info() adds event
information to an audit record through a record descriptor. The functions
dce_aud_get_header() , dce_aud_get_ev_info() , and dce_aud_length()
get the event and record information through a record descriptor. The
function dce_aud_commit() commits an audit record through its descriptor.
The function dce_aud_discard() disposes of a record descriptor. The
function dce_aud_discard() is necessary only after reading the record (that
is, after invoking dce_aud_next() .

Audit Trail Descriptor
An opaque data type, dce_aud_trail_t , is used to represent an audit trail
descriptor. The dce_aud_open() function opens an audit trail and returns a
trail descriptor; dce_aud_next() obtains an audit record from this descriptor;
and dce_aud_commit() commits an audit record from and to an opened
audit trail through this descriptor. The dce_aud_close() function disposes of
this descriptor.

Environment Variables

The audit API routines use the following environment variables:

DCEAUDITON
If this environment variable is defined and set equal to 1 at the time the
application is started, auditing is turned on.

DCEAUDITOFF
If this environment variable is defined and set equal to 1 at the time the
application is started, auditing is turned off.

DCEAUDITFILTERON
If this environment variable is defined, filtering is enabled.

audit_intro(3sec)

Chapter 6. DCE Security Service 959

DCEAUDITTRAILSIZE
Sets the limit of the audit trail size. This variable overrides the limit set by
the dce_aud_set_trail_size_limit() function.

Permissions Required

To use an audit daemon’s audit record logging service, you need the log (l)
permission to the audit daemon.

Related Information

Books: IBM DCE for AIX, Version 2.2: Command Reference, IBM DCE for AIX,
Version 2.2: Application Development Guide.

audit_intro(3sec)

960 IBM DCE for AIX, Version 2.2: Application Development Reference

gssapi_intro

Purpose

Generic security service application programming interface

Description

This introduction includes general information about the generic security service
application programming interface (GSSAPI) defined in Internet RFC 1508, Generic
Security Service Application Programming Interface, and RFC 1509, Generic
Security Service API : C-bindings. It also includes an overview of error handling,
data types, and calling conventions, including the following:

v Integer types

v String and similar data

v Object identifiers (OIDs)

v Object identifier sets (OID sets)

v Credentials

v Contexts

v Authentication tokens

v Major status values

v Minor status values

v Names

v Channel bindings

v Optional parameters

General Information

The GSSAPI provides security services to applications using peer-to-peer
communications (instead of DCE-secure RPC). Using DCE GSSAPI routines,
applications can perform the following operations:

v Enabling an application to determine another application’s user

v Enabling an application to delegate access rights to another application

v Applying security services, such as confidentiality and integrity, on a
per-message basis

GSSAPI represents a secure connection between two communicating applications
with a data structure called a security context. The application that establishes the
secure connection is called the context initiator or simply initiator. The context
initiator is like a DCE RPC client. The application that accepts the secure
connection is the context acceptor or simply acceptor. The context acceptor is like a
DCE RPC server.

There are four stages involved in using the GSSAPI, as follows:

1. The context initiator acquires a credential with which it can prove its identity to
other processes. Similarly, the context acceptor acquires a credential to enable
it to accept a security context. Either application may omit this credential
acquistion and use their default credentials in subsequent stages. See the
section on credentials for more information.

Chapter 6. DCE Security Service 961

The applications use credentials to establish their global identity. The global
identity can be, but is not necessarily, related to the local user name under
which the application is running. Credentials can contain either of the following:

v Login context

The login context includes a principal’s network credentials, as well as other
account information.

v Principal name and a key

The key corresponding to the principal name must be registered with the
DCE security registration in a key table. A set of GSSAPI routines enables
applications to register and use principal names.

2. The communicating applications establish a joint security context by exchanging
authentication tokens.

The security context is a pair of GSSAPI data structures that contain information
that is shared between the communicating applications. The information
describes the state of each application. This security context is required for
per-message security services.

To establish a security context, the context initiator calls the
gss_init_sec_context() routine to get a token. The token is cryptographically
protected, opaque data. The context initiator transfers the token to the context
acceptor, which in turn passes the token to the gss_accept_sec_context()
routine to decode and extract the shared information.

As part of the establishing the the security context, the context initiator is
authenticated to the context acceptor. The context initiator can require the
context acceptor to authenticate itself in return.

The context initiator can delegate rights to allow the context acceptor to act as
its agent. Delegation means the context initiator gives the context acceptor the
ability to initiate additional security contexts as an agent of the context initiator.
To delegate, the context initiator sets a flag on the gss_init_sec_context()
routine indicating that it wants to delegate and sends the returned token in the
normal way to the context acceptor. The acceptor passes this token to the
gss_accept_sec_context() routine, which generates a delegated credential.
The context acceptor can use the credential to initiate additional security
contexts.

3. The applications exchange protected messages and data.

The applications can call GSSAPI routines to protect data exchanged in
messages. The application sends a protected message by calling the
appropriate GSSAPI routine to do the following:

v Apply protection

v Bind the message to the appropriate security context

The application can then send the resulting information to the peer application.

The application that receives the message passes the received data to a
GSSAPI routine, which removes the protection and validates the data.

GSSAPI treats application data as arbitrary octet strings. The GSSAPI
per-message security services can provide either of the following:

v Integrity and authentication of data origin

v Confidentiality, integrity, and authentication of data origin

4. When the applications have finished communicating, either one may instruct
GSSAPI to delete the security context.

gssapi_intro(3sec)

962 IBM DCE for AIX, Version 2.2: Application Development Reference

There are two sets of GSSAPI routines, as follows:

v Standard GSSAPI routines, which are defined in the Internet RFC 1508, Generic
Security Service Application Programming Interface, and RFC 1509, Generic
Security Service API : C-bindings. These routines have the prefix gss_ .

v OSF DCE extensions to the GSSAPI routines. These are additional routines that
enable an application to use DCE security services. These routines have the
prefix gssdce_ .

The following sections provide an overview of the GSSAPI error handling and data
types.

Error Handling

Each GSSAPI routine returns two types of status values:

v Major status values, which are generic API routine errors or calling errors defined
in RFC 1509.

v Minor status values, which indicate DCE-specific errors.

If a routine has output parameters that contain pointers for storage allocated by the
routine, the output parameters will always contain a valid pointer even if the routine
returns an error. If no storage was allocated, the routine sets the pointer to NULL
and sets any length fields associated with the pointers (such as in the
gss_buffer_desc structure) to 0 (zero).

Minor status values usually contain more detailed information about the error. They
are not, however, portable between GSSAPI implementations. When designing
portable applications, use major status values for handling errors. Use minor status
values to debug applications and to display error and error-recovery information to
users.

GSSAPI Data Types

This section provides an overview of the GSSAPI data types and their definitions.

Integer Types

The GSSAPI defines the following integer data type:
OM_uint32 32-bit unsigned integer

This integer data type is a portable data type that the GSSAPI routine definitions
use for guaranteed minimum bit-counts.

String and Similar Data

Many of the GSSAPI routines take arguments and return values that describe
contiguous multiple-byte data, such as opaque data and character strings. Use the
gss_buffer_t data type, which is a pointer to the buffer descriptor
gss_buffer_desc , to pass the data between the GSSAPI routines and applications.

The gss_buffer_t data type has the following structure:
typedef struct gss_buffer_desc_struct {
size_t length;
void *value;
} gss_buffer_desc, *gss_buffer_t;

gssapi_intro(3sec)

Chapter 6. DCE Security Service 963

The length field contains the total number of bytes in the data and the value field
contains a pointer to the actual data.

When using the gss_buffer_t data type, the GSSAPI routine allocates storage for
any data it passes to the application. The calling application must allocate the
gss_buffer_desc object. It can initialize unused gss_buffer_desc objects with the
value GSS_C_EMPTY_BUFFER. To free the storage, the application calls the
gss_release_buffer() routine.

Object Identifier

Applications use the gss_OID data type to choose a security mechanism, either
DCE security or Kerberos, and to specify name types. Select a security mechanism
by using the following two OIDs:

v To use DCE security, specify either GSSDCE_C_OID_DCE_KRBV5_DES or
GSS_C_NULL_OID .

v To use Kerberos Version 5, specify GSSDCE_C_OID_KRBV5_DES .

Use of the default security mechanisms, specified by the constant
GSS_C_NULL_OID , helps to ensure the portability of the application.

The gss_OID data type contains tree-structured values defined by ISO and has the
following structure:
typedef struct gss_OID_desc_struct {
OM_uint32 length;
void *elements;
} gss_OID_desc, *gss_OID;

The elements field of the structure points to the first byte of an octet string
containing the ASN.1 BER encoding of the value of the gss_OID data type. The
length field contains the number of bytes in the value.

The gss_OID_desc values returned from the GSSAPI are read-only values. The
application should not try to deallocate them.

Object Identifier Sets

The gss_OID_set data type represents one or more object identifiers. The values
of the gss_OID_set data type are used to do the following:

v Report the available mechanisms supported by GSSAPI

v Request specific mechanisms

v Indicate which mechanisms a credential supports

The gss_OID_set data type has the following structure:
BKM:(Keep=3 Scale=auto Width=80)typedef struct gss_OID_set_desc_struct {
int count;
gss_OID elements;
} gss_OID_set_desc, *gss_OID_set;

The count field contains the number of OIDs in the set. The elements field is a
pointer to an array of gss_oid_desc objects, each describing a single OID. The
application calls the gss_release_oid_set() routine to deallocate storage
associated with the gss_OID_set values that the GSSAPI routines return to the
application.

gssapi_intro(3sec)

964 IBM DCE for AIX, Version 2.2: Application Development Reference

Credentials

Credentials establish, or prove, the identity of an application or other principal.

The gss_cred_id_t data type is an atomic data type that identifies a GSSAPI
credential data structure.

Contexts

The security context is a pair of GSSAPI data structures that contain information
shared between the communicating applications. The information describes the
cryptographic state of each application. This security context is required for
per-message security services and is created by a successful authentication
exchange.

The gss_ctx_id_t data type contains an atomic value that identifies one end of a
GSSAPI security context. The data type is opaque to the caller.

Authentication Tokens

GSSAPI uses tokens to maintain the synchronization between the applications
sharing a security context. The token is a cryptographically protected bit string
generated by DCE security at one end of the GSSAPI security context for use by
the peer application at the other end of the security context. The data type is
opaque to the caller.

The applications use the gss_buffer_t data type as tokens to GSSAPI routines.

Major Status Values

GSSAPI routines return GSS status codes as their OM_uint32 function value.
These codes indicate either generic API routine errors or calling errors.

A GSS status code can indicate a single, fatal generic API error from the routine
and a single calling error. Additional status information can also be contained in the
GSS status code. The errors are encoded into a 32-bit GSS status code, as follows:
MSB LSB
+---+
| Calling Error | Routine Error | Supplementary Info|
+---+
Bit 31 24 23 16 15 0

If a GSSAPI routine returns a GSS status code whose upper 16 bits contain a
nonzero value, the call failed. If the calling error field is nonzero, the context
initiator’s use of the routine was in error. In addition, the routine can indicate
additional information by setting bits in the supplementary information field of the
status code. The tables that follow describe the routine errors, calling errors, and
supplementary information status bits and their meanings.

The following table lists the GSSAPI routine errors and their meanings:

Name Field Value Meaning

GSS_S_BAD_MECH 1 The required mechanism is
unsupported.

GSS_S_NAME 2 The name passed is invalid.

gssapi_intro(3sec)

Chapter 6. DCE Security Service 965

Name Field Value Meaning

GSS_S_NAMETYPE 3 The name passed is unsupported.

GSS_S_BAD_BINDINGS 4 The channel bindings are incorrect.

GSS_S_BAD_STATUS 5 A status value was invalid.

GSS_S_BAD_SIG 6 A token had an invalid signature.

GSS_S_NO_CRED 7 No credentials were supplied.

GSS_S_NO_CONTEXT 8 No context has been established.

GSS_S_DEFECTIVE_TOKEN 9 A token was invalid.

GSS_S_DEFECTIVE _CREDENTIAL 10 A credential was invalid.

GSS_S_CREDENTIALS _EXPIRED 11 The referenced credentials expired.

GSS_S_CONTEXT_EXPIRED 12 The context expired.

GSS_S_FAILURE 13 The routine failed. Check minor status
codes.

The following table lists the calling error values and their meanings:

Name Field Value Meaning

GSS_S_CALL_INACCESSIBLE
_READ

1 Could not read a required input
parameter.

GSS_S_CALL_INACCESSIBLE
_WRITE

2 Could not write a required output
parameter.

GSS_S_BAD_STRUCTURE 3 A parameter was incorrectly
structured.

The following table lists the supplementary bits and their meanings.

Name Bit Number Meaning

GSS_S_CONTINUE_NEEDED 0 (LSB) Call the routine again to
complete its function.

GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of an
earlier token.
Note: If Sequence or Replay
checking is requested, Mutual
authentication is assumed.

GSS_S_OLD_TOKEN 2 The token’s validity period
expired; the routine cannot verify
that the token is not a duplicate
of an earlier token.
Note: If Sequence or Replay
checking is requested, Mutual
authentication is assumed.

GSS_S_UNSEQ_TOKEN 3 A later token has been
processed.
Note: If Sequence or Replay
checking is requested, Mutual
authentication is assumed.

gssapi_intro(3sec)

966 IBM DCE for AIX, Version 2.2: Application Development Reference

All GSS_S_ symbols equate to complete OM_uint32 status codes, rather than to
bitfield values. For example, the actual value of GSS_S_BAD_NAMETYPE (value 3
in the routine error field) is 3 << 16.

The major status code GSS_S_FAILURE indicates that DCE security detected an
error for which no major status code is available. Check the minor status code for
details about the error. See the section on minor status values for more information.

The GSSAPI provides the following three macros:

v GSS_CALLING_ERROR()

v GSS_ROUTINE_ERROR()

v GSS_SUPPLEMENTARY_INFO()

Each macro takes a GSS status code and masks all but the relevant field. For
example, when you use the GSS_ROUTINE_ERROR() macro on a status code, it
returns a value. The value of the macro is arrived at by using only the routine errors
field and zeroing the values of the calling error and the supplementary information
fields.

An additional macro, GSS_ERROR(), lets you determine whether the status code
indicated a calling or routine error. If the status code indicated a calling or routine
error, the macro returns a nonzero value. If no calling or routine error is indicated,
the routine returns a 0 (zero).

Note:

At times, a GSSAPI routine that is unable to access data can generate a
platform-specific signal, instead of returning a
GSS_S_CALL_INACCESSIBLE_READ or
GSS_S_CALL_INACCESSIBLE_WRITE status value.

Minor Status Values

The GSSAPI routines return a minor_status parameter to indicate errors from either
DCE security or Kerberos. The parameter can contain a single error, indicated by
an OM_uint32 value. The OM_uint32 data type is equivalent to the DCE data type
error_status_t and can contain any DCE-defined error.

Names

Names identify principals. The GSSAPI authenticates the relationship between a
name and the principal claiming the name.

Names are represented in the following two forms:

v A printable form, for presentation to an application

v An internal, canonical form that is used by the API and is opaque to applications

The gss_import_name() and gss_display_name() routines convert names
between their printable form and their gss_name_t data type. GSSAPI supports
only DCE principal names, which are identified by the constant OID,
GSSCDE_C_OID_DCENAME.

The gss_compare_names() routine compares internal form names.

Channel Bindings

gssapi_intro(3sec)

Chapter 6. DCE Security Service 967

You can define and use channel bindings to associate the security context with the
communications channel that carries the context. Channel bindings are
communicated to the GSSAPI by using the following structure:
typedef struct gss_channel_binding_struct {
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc aceptor_address;
gss_buffer_desc application_data;
} *gss_channel_bindings_t;

Use the initiator_addrtype and acceptor_addrtype fields to initiate the type of
addresses contained in the initiator_address and acceptor_address buffers. The
address types and their addrtype values are as follows:

Unspecified
GSS_C_AF_UNSPEC

Host-local
GSS_C_AF_LOCAL

DARPA Internet
GSS_C_AF_INET

ARPAnet IMP
GSS_C_AF_IMPLINK

pup protocols (for example, BSP)
GSS_C_AF_PUP

MIT CHAOS protocol
GSS_C_AF_CHAOS

XEROX NS
GSS_C_AF_NS

nbs GSS_C_AF_NBS

ECMA GSS_C_AF_ECMA

datakit protocols
GSS_C_AF_DATAKIT

CCITT protocols (for example, X.25)
GSS_C_AF_CCITT

IBM SNA
GSS_C_AF_SNA

Digital DECnet
GSS_C_AF_DECnet

Direct data link interface
GSS_C_AF_DLI

LAT GSS_C_AF_LAT

NSC Hyperchannel
GSS_C_AF_HYLINK

AppleTalk
GSS_C_AF_APPLETALK

BISYNC 2780/3780
GSS_C_AF_BSC

gssapi_intro(3sec)

968 IBM DCE for AIX, Version 2.2: Application Development Reference

Distributed system services
GSS_C_AF_DSS

OSI TP4
GSS_C_AF_OSI

X25 GSS_C_AF_X25

No address specified
GSS_C_AF_NULLADDR

The tags specify address families rather than addressing formats. For address
families that contain several alternative address forms, the initiator_address and the
acceptor_address fields should contain sufficient information to determine which
address form is used. Format the bytes that contain the addresses in the order in
which the bytes are transmitted across the network.

The GSSAPI creates an octet string by concatenating all the fields
(initiator_addrtype, initiator_address, acceptor_addrtype, acceptor_address, and
application_data). The security mechanism signs the octet string and binds the
signature to the token generated by the gss_init_sec_context() routine. The
context acceptor presents the same bindings to the gss_accept_sec_context()
routine, which evaluates the signature and compares it to the signature in the token.
If the signatures differ, the gss_accept_sec_context() routine returns a
GSS_S_BAD_BINDINGS error, and the context is not established.

Some security mechanisms check that the initiator_address field of the channel
bindings presented to the gss_init_sec_context() routine contains the correct
network address of the host system. Therefore portable applications should use
either the correct address type and value or the GSS_C_AF_NULLADDR for the
initiator_addrtype address field. Some security mechanisms include the channel
binding data in the token instead of a signature, so portable applications should not
use confidential data as channel-binding components. The GSSAPI does not verify
the address or include the plain text bindings information in the token.

Optional Parameters

In routine descriptions, optional parameters allow the application to request default
behaviors by passing a default value for the parameter. The following conventions
are used for optional parameters:

Convention Value Default Explanation

gss_buffer_t types GSS_C_NO_BUFFER For an input parameter,
indicates no data is
supplied. For an output
parameter, indicates that
the information returned
is not required by the
application.

Integer types (input) Refer to the reference
pages for default values.

Integer types (output) NULL Indicates that the
application does not
require the information.

gssapi_intro(3sec)

Chapter 6. DCE Security Service 969

Convention Value Default Explanation

Pointer types (output) NULL Indicates that the
application does not
require the information.

OIDs GSS_C_NULL_OID Indicates the default
choice for name type or
security mechanism.

OID sets GSS_C_NULL_OID_SET Indicates the default set
of security mechanisms,
DCE security and
Kerberos.

Credentials GSS_C_NO_CREDENTIAL Indicates that the
application should use
the default credential
handle.

Channel bindings GSS_C_NO_CHANNEL _BINDINGS Indicates that no channel
bindings are used.

Related Information

Books: IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components.

gssapi_intro(3sec)

970 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_acl_copy_acl

Purpose

Copies an ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_copy_acl(
sec_acl_t *source
sec_acl_t *target
error_status_t *status);

Parameters

Input
source A pointer to the ACL to be copied.

target A pointer to the new ACL that is to receive the copy.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_copy_acl() routine makes a copy of a specified ACL. The caller
passes the space for the target ACL, but the space for the sec_acl_entries array is
allocated. To free the allocated space, call dce_acl_obj_free_entries() , which frees
the entries, but not the ACL itself.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

rpc_s_no_memory
The rpc_sm_allocate() routine could not obtain memory.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_free_entries(3sec) .

Chapter 6. DCE Security Service 971

dce_acl_inq_acl_from_header

Purpose

Retrieves the UUID of an ACL from an item’s header in a backing store

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_acl_from_header(
dce_db_header_t db_header
sec_acl_type_t sec_acl_type
uuid_t *acl_uuid
error_status_t *status);

Parameters

Input
db_header

The backing store header containing the ACL object.

sec_acl_type
The type of ACL to be identified:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

Output
acl_uuid

A pointer to the UUID of the ACL object.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_inq_acl_from_header() routine gets the UUID for an ACL object of
the specified type from the specified backing store header.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This error is passed
through from dce_db_fetch() .)

db_s_bad_index_type
The key’s type is wrong, or else the backing store is not by name or by
UUID. (This error is passed through from dce_db_fetch() .)

sec_acl_invalid_type
The sec_acl_type parameter does not contain a valid type.

972 IBM DCE for AIX, Version 2.2: Application Development Reference

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_resolve_by_name(3sec) , dce_acl_resolve_by_uuid(3sec) .

dce_acl_inq_acl_from_header(3sec)

Chapter 6. DCE Security Service 973

dce_acl_inq_client_creds

Purpose

Returns the client’s credentials

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_client_creds(
handle_t handle
sec_cred_pa_handle_t *creds
error_status_t *status);

Parameters

Input
handle The remote procedure call binding handle.

Output
creds A pointer to the returned credentials, or NULL if unauthorized.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_inq_client_creds() routine returns the client’s security credentials
found through the RPC binding handle.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

rpc_s_authn_authz_mismatch
Either the client, or the server, or both is not using the rpc_c_authz_dce
authorization service.

rpc_s_invalid_binding
Invalid RPC binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

rpc_s_binding_has_no_auth
Binding has no authentication information. The client or the server should
have called rpc_binding_set_auth_info() .

974 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_acl_inq_client_permset(3sec) ,
dce_acl_inq_permset_for_creds(3sec) , dce_acl_register_object_type(3sec) .

dce_acl_inq_client_creds(3sec)

Chapter 6. DCE Security Service 975

dce_acl_inq_client_permset

Purpose

Returns the client’s permissions corresponding to an ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_client_permset(
handle_t handle
uuid_t *mgr_type
uuid_t *acl_uuid
uuid_t *owner_id
uuid_t *group_id
sec_acl_permset_t *permset
error_status_t *status);

Parameters

Input
handle The remote procedure call binding handle.

mgr_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them.

acl_uuid
A pointer to the UUID of the ACL.

owner_id
Identifies the owner of the object that is protected by the specified ACL. If
the sec_acl_e_type_user_obj ACLE (ACL entry) exists, then the owner_id
(uuid_t pointer) can not be NULL. If it is, then the error
sec_acl_expected_user_obj is returned.

group_id
Identifies the group to which the object that is protected by the specified
ACL belongs. If the a sec_acl_e_type_group_obj ACLE exists, the
group_id (uuid_t pointer) can not be NULL. If it is, the error
sec_acl_expected_group_obj is returned.

Output
permset

The set of permissions allowed to the client.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_inq_client_permset() routine returns the client’s permissions that
correspond to the ACL. It finds the ACL in the database as defined for this ACL

976 IBM DCE for AIX, Version 2.2: Application Development Reference

manager type with dce_acl_register_object_type() . The client’s credentials are
determined from the binding handle. The ACL and credentials determine the
permission set.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

acl_s_bad_manager_type
The mgr_type parameter does not match the manager type in the ACL
itself.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_inq_client_pac(3sec) , dce_acl_inq_permset_for_pac(3sec) ,
dce_acl_register_object_type(3sec) .

dce_acl_inq_client_permset(3sec)

Chapter 6. DCE Security Service 977

dce_acl_inq_permset_for_creds

Purpose

Determines a principal’s complete extent of access to an object

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_permset_for_creds(
sec_cred_pa_handle_t *creds
sec_acl_t *ap
uuid_t *owner_id
uuid_t *group_id
sec_acl_posix_semantics_t posix_semantics
sec_acl_permset_t *perms
error_status_t *status);

Parameters

Input
creds The security credentials that represent the principal.

ap The ACL that represents the object.

owner_id
Identifies the owner of the object that is protected by the specified ACL. If
the sec_acl_e_type_user_obj ACLE (ACL entry) exists, then the owner_id
(uuid_t pointer) can not be NULL. If it is, then the error
sec_acl_expected_user_obj is returned.

group_id
Identifies the group in which the object that is protected by the specified
ACL belongs. If the a sec_acl_e_type_group_obj ACLE exists, the
group_id (uuid_t pointer) can not be NULL. If it is, the error
sec_acl_expected_group_obj is returned.

posix_semantics
This parameter is currently unused in OSF’s implementation.

Output
perms A bit mask containing a 1 bit for each permission granted by the ACL and 0

(zero) bits elsewhere.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

Description

The dce_acl_inq_permset_for_creds() routine returns a principal’s complete
extent of access to some object. This routine is useful for implementing operations
such as the conventional UNIX access function.

The values allowed for the credentials representing the principal include NULL or
unauthenticated.

978 IBM DCE for AIX, Version 2.2: Application Development Reference

The routine normally returns TRUE, even when the access permissions are
determined to be all 0 (zero) bits (dce_acl_c_no_permissions). It returns FALSE
only on illogical error conditions (such as unsupported ACL entry types), in which
case the status output gets the error status code and the perms is set to
dce_acl_c_no_permissions .

All ACL entry types (of type sec_acl_entry_type_t) are supported by this routine

Notes

The meanings of the permission bits have no effect on the action of the
dce_acl_inq_permset_for_creds() routine. The interpretation of the bits is left
entirely to the application.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_inq_client_creds(3sec) , dce_acl_inq_client_permset(3sec) ,
dce_acl_register_object_type(3sec) .

dce_acl_inq_permset_for_creds(3sec)

Chapter 6. DCE Security Service 979

dce_acl_inq_prin_and_group.3sec

Purpose

Inquires the principal and group of an RPC caller

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_prin_and_group(
handle_t handle
uuid_t *principal
uuid_t *group
error_status_t *status);

Parameters

Input
handle The remote procedure call binding handle.

Output
principal

The UUID of the principal of the caller of the RPC.

group The UUID of the group of the caller of the RPC.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_inq_prin_and_group() routine finds the principal and group of the
caller of a remote procedure call. This information is useful for filling in the owner_id
and group_id fields of standard data or object headers. Setting the owner and group
make sense only if your ACL manager will handle owners and groups, which you
specify with the dce_acl_c_has_owner and dce_acl_c_has_groups flags to
dce_acl_register_object_type() .

If the caller is unauthenticated, the principal and group are filled with the NIL UUID,
generated through uuid_create_nil() .

Examples
dce_db_std_header_init(db, &data, ..., &st);
dce_acl_inq_prin_and_group(h, \
&data.h.owner_id, &data.h.group_id, &st);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages. The dce_acl_inq_prin_and_group() routine can
return errors from dce_acl_inq_client_creds() , sec_cred_get_initiator() , and
sec_cred_get_pa_data() . It generates no error messages of its own.

980 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_acl_register_object_type(3sec) .

dce_acl_inq_prin_and_group.3sec()

Chapter 6. DCE Security Service 981

dce_acl_is_client_authorized

Purpose

Checks whether a client’s credentials are authenticated

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_is_client_authorized(
handle_t handle
uuid_t *mgr_type
uuid_t *acl_uuid
uuid_t *owner_id
uuid_t *group_id
sec_acl_permset_t desired_perms
boolean32 *authorized
error_status_t *status);

Parameters

Input
handle The client’s binding handle.

mgr_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them.

acl_uuid
A pointer to the UUID of the ACL.

owner_id
Identifies the owner of the object that is protected by the specified ACL. If
the sec_acl_e_type_user_obj ACLE (ACL entry) exists, then the owner_id
(uuid_t pointer) can not be NULL. If it is, then the error
sec_acl_expected_user_obj is returned.

group_id
Identifies the group to which the object that is protected by the specified
ACL belongs. If the a sec_acl_e_type_group_obj ACLE exists, the
group_id (uuid_t pointer) can not be NULL. If it is, the error
sec_acl_expected_group_obj is returned.

desired_perms
A permission set containing the desired privileges. This is a 32-bit set of
permission flags. The flags may represent the conventional file system
permissions (read, write, and execute), the extended AFS permissions
(owner, insert, and delete), or some other permissions supported by the
specific application ACL manager. For example, a bit that is unused for file
system permissions may mean withdrawals are allowed for a bank ACL
manager, while it may mean matrix inversions are allowed for a CPU ACL
manager. The mgr_type identifies the semantics of the bits.

982 IBM DCE for AIX, Version 2.2: Application Development Reference

Output
authorized

A pointer to the TRUE or FALSE return value of the routine.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_is_client_authorized() routine returns TRUE in the authorized
parameter if and only if all of the desired permissions (represented as bits in
desired_perms) are included in the actual permissions corresponding to the handle,
the mgr_type, and the acl_uuid UUID. Otherwise, the returned value is FALSE.

Notes

The routine’s return value is void . The returned boolean32 value is in the
authorized parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

acl_s_bad_manager_type
The mgr_type does not match the manager type in the ACL itself.

error_status_ok
The call was successful.

dce_acl_is_client_authorized(3sec)

Chapter 6. DCE Security Service 983

dce_acl_is_unauthenticated

Purpose

Checks whether credentials are unauthenticated.

Format
#include <dce/dce.h>
#include <dce/aclif.h>

boolean32 dce_acl_is_unauthenticated(
rpc_authz_cred_handle_t cred_h);

Parameters

Output
cred_h

Returns an opaque handle of type rpc_authz_cred_handle_t to the
authorization information for the client that made the remote procedure call
on cred_h. The data referenced by this parameter is read-only and cannot
be modified by the server. If the server wants to preserve any of the
returned data, it must copy the data into server-allocated memory.

Usage

The dce_acl_is_unauthenticated routine checks whether credentials are
unauthenticated. The caller is unauthenticated if rpc_binding_inq_auth_caller
returns no_authen .

Comments

Functions: rpc_binfing_ing_auth_caller(3rpc).

984 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_acl_obj_add_any_other_entry

Purpose

Adds permissions for any_other ACL entry to a given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_any_other_entry(
sec_acl_t *acl
sec_acl_permset_t permset
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be modified.

permset
The permissions to be granted to sec_acl_e_type_any_other .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_add_any_other_entry() routine adds an ACL entry for
sec_acl_e_type_any_other access to the specified ACL. It is equivalent to calling
the dce_acl_obj_add_obj_entry() routine with the sec_acl_e_type_any_other
entry type, but is more convenient.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_add_obj_entry(3sec) .

Chapter 6. DCE Security Service 985

dce_acl_obj_add_foreign_entry

Purpose

Adds permissions for an ACL entry for a foreign user or group to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_foreign_entry(
sec_acl_t *acl
sec_acl_entry_type_t entry_type
sec_acl_permset_t permset
uuid_t *realm
uuid_t *id
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be modified.

entry_type
Must be one of the following types:

v sec_acl_e_type_foreign_user

v sec_acl_e_type_foreign_group

v sec_acl_e_type_for_user_deleg

v sec_acl_e_type_for_group_deleg

permset
The permissions to be granted to the foreign group or foreign user.

realm The UUID of the foreign cell.

id The UUID identifying the foreign group or foreign user.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_add_foreign_entry() routine adds an ACL entry for
sec_acl_e_type_foreign_xxx access to the specified ACL.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_invalid_entry_type
The type specified in entry_type is not one of the four specified types.

986 IBM DCE for AIX, Version 2.2: Application Development Reference

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_add_id_entry(3sec) , sec_id_parse_name(3sec) .

dce_acl_obj_add_foreign_entry(3sec)

Chapter 6. DCE Security Service 987

dce_acl_obj_add_group_entry

Purpose

Adds permissions for a group ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_group_entry(
sec_acl_t *acl
sec_acl_permset_t permset
uuid_t *group
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be modified.

permset
The permissions to be granted to the group.

group The UUID identifying the group.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_add_group_entry() routine adds a group ACL entry to the given
ACL. It is equivalent to calling the dce_acl_obj_add_id_entry() routine with the
sec_acl_e_type_group entry type, but is more convenient.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_add_id_entry(3sec) .

988 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_acl_obj_add_id_entry

Purpose

Adds permissions for an ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_id_entry(
sec_acl_t *acl
sec_acl_entry_type_t entry_type
sec_acl_permset_t permset
uuid_t *id
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be modified.

entry_type
Must be one of the following types:

v sec_acl_e_type_user

v sec_acl_e_type_group

v sec_acl_e_type_foreign_other

v sec_acl_e_type_user_deleg

v sec_acl_e_type_group_deleg

v sec_acl_e_type_for_other_deleg

permset
The permissions to be granted to the user , group , or foreign_other .

id The UUID identifying the user , group , or foreign_other to be added

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_add_id_entry() routine adds an ACL entry (user or group,
domestic or foreign) to the given ACL.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_invalid_entry_type
The type specified in entry_type is not one of the six specified types.

Chapter 6. DCE Security Service 989

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_add_group_entry(3sec) ,
dce_acl_obj_add_user_entry(3sec) .

dce_acl_obj_add_id_entry(3sec)

990 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_acl_obj_add_obj_entry

Purpose

Adds permissions for an object (obj) ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_obj_entry(
sec_acl_t *acl
sec_acl_entry_type_t entry_type
sec_acl_permset_t permset
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be modified.

entry_type
Must be one of these types:

v sec_acl_e_type_unauthenticated

v sec_acl_e_type_any_other

v sec_acl_e_type_mask_obj

v sec_acl_e_type_user_obj

v sec_acl_e_type_group_obj

v sec_acl_e_type_other_obj

v sec_acl_e_type_user_obj_deleg

v sec_acl_e_type_group_obj_deleg

v sec_acl_e_type_other_obj_deleg

v sec_acl_e_type_any_other_deleg

permset
The permissions to be granted.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_add_obj_entry() routine adds an obj ACL entry to the given
ACL.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 6. DCE Security Service 991

sec_acl_duplicate_entry
An obj ACL entry type already exits for the given ACL.

sec_acl_invalid_entry_type
The type specified in entry_type is not a valid ACL entry type.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_add_any_other_entry(3sec) ,
dce_acl_obj_add_unauth_entry(3sec) .

dce_acl_obj_add_obj_entry(3sec)

992 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_acl_obj_add_unauth_entry

Purpose

Adds permissions for unauthenticated ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_unauth_entry(
sec_acl_t *acl
sec_acl_permset_t permset
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be modified.

permset
The permissions to be granted for sec_acl_e_type_unauthenticated .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_add_unauth_entry() routine adds ACL entry for
sec_acl_e_type_unauthenticated to the given ACL. It is equivalent to calling the
dce_acl_obj_add_obj_entry() routine with the sec_acl_e_type_unauthenticated
entry type, but it is more convenient.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_add_obj_entry(3sec) .

Chapter 6. DCE Security Service 993

dce_acl_obj_add_user_entry

Purpose

Adds permissions for a user ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_user_entry(
sec_acl_t *acl
sec_acl_permset_t permset
uuid_t *user
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be modified.

permset
The permissions to be granted to the user.

user The UUID identifying the user to be added.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_add_user_entry() routine adds a user ACL entry to the given
ACL. It is equivalent to calling the dce_acl_obj_add_id_entry() routine with the
sec_acl_e_type_user entry type, but it is more convenient.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_add_id_entry(3sec) .

994 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_acl_obj_free_entries

Purpose

Frees space used by an ACL’s entries

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_free_entries(
sec_acl_t *acl
error_status_t *status);

Parameters

Input
acl A pointer to the ACL that is to be freed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_free_entries() routine frees space used by an ACL’s entries, then
sets the pointer to the ACL entry array to NULL and the entry count to 0 (zero).

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_obj_init(3sec) .

Chapter 6. DCE Security Service 995

dce_acl_obj_init

Purpose

Initializes an ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_init(
uuid_t *mgr_type
sec_acl_t *acl
error_status_t *status);

Parameters

Input
mgr_type

A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them.

acl A pointer to the ACL that is to be created.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_obj_init() routine initializes an ACL. The caller passes in the pointer
to the already-existing ACL structure (of type sec_acl_t), for which the caller
provides the space.

Examples

This example shows the use of dce_acl_obj_init() and the corresponding routine to
free the entries, dce_acl_obj_free_entries() .
sec_acl_t acl;
extern uuid_t my_mgr_type;
error_status_t status;
dce_acl_obj_init(&my_mgr_type, &acl, &status);
/* ... use the ACL ... */
dce_acl_obj_free_entries(&acl, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

996 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_acl_obj_free_entries(3sec) .

dce_acl_obj_init(3sec)

Chapter 6. DCE Security Service 997

dce_acl_register_object_type

Purpose

Registers an ACL manager’s object type

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_register_object_type(
dce_db_handle_t db
uuid_t *mgr_type
unsigned32 printstring_size
sec_acl_printstring_t *printstring
sec_acl_printstring_t *mgr_info
sec_acl_permset_t control_perm
sec_acl_permset_t test_perm
dce_acl_resolve_func_t resolver
void *resolver_arg
unsigned32 flags
error_status_t *status);

Parameters

Input
db The db parameter specifies the handle to the backing store database in

which the ACL objects are stored. It must be indexed by UUID and not use
backing store headers. The database is obtained through dce_db_open() ,
which is called prior to this routine.

mgr_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them.

printstring_size
The number of items in the printstring array.

printstring
An array of sec_acl_printstring_t structures containing the printable
representation of each specified permission. These are the printstrings used
by dcecp or other ACL editors.

mgr_info
A single sec_acl_printstring_t containing the name and short description
for the given ACL manager.

control_perm
The permission set needed to change an ACL, typically
sec_acl_perm_control . If the value is 0, then anyone is allowed to change
the ACL. The permission must be listed in the printstring .

test_perm
The permission set needed to test an ACL, typically sec_acl_perm_test . If
the value is 0, then anyone is allowed to test the ACL. The permissions
must be listed in the printstring .

998 IBM DCE for AIX, Version 2.2: Application Development Reference

resolver
The function for finding an ACL’s UUID.

resolver_arg
The argument to pass to the resolver function. If using
dce_acl_resolve_by_name() or dce_acl_resolve_by_uuid() , then pass
the database handle to the name or UUID backing store database. The
backing store must use the standard backing store header. See
dce_db_open(3dce) .

flags A bit mask with the following possible bit values:

dce_acl_c_orphans_ok
If this bit is specified, it is possible to replace an ACL with one in
which no control bits are turned on in any of the ACL entries. (Use
the rdacl_replace operation to replace an ACL.) This is a
write-once operation, and once it has been done, no one can
change the ACL.

dce_acl_c_has_owner
If this bit is set, then the ACL manager supports the concept of user
owners of objects. This is required to use ACL entries of type
user_obj and user_obj_deleg . entries such as
sec_acl_e_type_user_obj .

dce_acl_c_has_groups
A similar bit for group owners of objects.

Note: Dce rdacl interface does not support user object and group object
entries. The flags dce_acl_c_has_owner and
dce_acl_c_has_groups can not be used for the DCE rdacl
interface.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The dce_acl_register_object_type() routine registers an ACL manager’s object
types with the ACL library.

The resolver function may be the dce_acl_resolve_by_name() or the
dce_acl_resolve_by_uuid() routine, if the application uses the standard header in
the backing store database, or it may be some other user-supplied routine, as
appropriate. A user-supplied routine must be of type dce_acl_resolve_func_t . The
resolver function finds the UUID of the ACL of the given object. The resolver’s
parameters must match the type dce_db_convert_func_t defined in the file
<dce/aclif.h> . Observe the use of the resolver function dce_acl_convert_func() in
EXAMPLES .

Unless the dce_acl_c_orphans_ok bit is set in the flags parameter, all ACLs must
always have someone able to modify the ACL.

Another way to express this is that if dce_acl_c_orphans_ok is cleared in a call to
dce_acl_register_object_type() where a control_perm value is specified, then a
subsequent ACL replacement using an ACL that has no control bits set in any
nondelegation entry will fail, resulting in the acl_s_no_control_entries error. If

dce_acl_register_object_type(3sec)

Chapter 6. DCE Security Service 999

dce_acl_c_orphans_ok is set, but no control_perm bits are specified, then
dce_acl_c_orphans_ok is ignored, and the replacement works in all cases.

Files
/usr/include/dce/aclif.h

Definition of dce_acl_resolve_func_t .

Examples

The dce_acl_register_object_type() routine should be called once for each type of
object that the server manages. A typical call is shown below. The sample code
defines three variables: the manager printstring, the ACL printstrings, and the ACL
database. Note that the manager printstring does not define any permission bits;
they will be set by the library to be the union of all permissions in the ACL
printstring. The code also uses the global my_uuid as the ACL manager type
UUID. The ACL printstring uses the standard sec_acl_perm_XXX bits.
include <dce/aclif.h>

/* Manager help. */
sec_acl_printstring_t my_acl_help = {

"me", "My manager"
};

/*
* ACL permission descriptions;
* these are from /usr/include/dce/aclbase.idl
* This example refrains from redefining any of the
* conventionally established bits.
*/

sec_acl_printstring_t my_printstring[] = {
{ "r", "read", sec_acl_perm_read },
{ "f", "foobar", sec_acl_perm_unused_00000080 },
{ "w", "write", sec_acl_perm_write },
{ "d", "delete, sec_acl_perm_delete },
{ "c", "control", sec_acl_perm_control }

};

dce_db_open("my_acldb", NULL,
dce_db_c_std_header | dce_db_c_index_by_uuid,
(dce_db_convert_func_t)dce_acl_convert_func,
&dbh, &st);

dce_acl_register_object_type(dbh, &my_manager_uuid,
sizeof my_printstring / sizeof my_printstring[0],
my_printstring, &my_acl_help, sec_acl_perm_control,
0, xxx_resolve_func, NULL, 0, &st);

If the ACL manager can use the standard collection of ACL bits (that is, has not
defined any special ones), then it can use the global variable
dce_acl_g_printstring that predefines a printstring. Here is an example of its use:
dce_acl_register_object_type(acl_db, &your_mgr_type,

sizeof dce_acl_g_printstring / sizeof dce_acl_g_printstring[0],
dce_acl_g_printstring, &your_acl_help,
dced_perm_control, dced_perm_test, your_resolver, NULL, 0, st);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_acl_register_object_type(3sec)

1000 IBM DCE for AIX, Version 2.2: Application Development Reference

error_status_ok
The call was successful.

acl_s_owner_not_allowed
In a rdacl_replace operation an attempt was made to add an ACL entry of
type sec_acl_e_type_user_obj or sec_acl_e_type_user_obj_deleg to a
manager that does not support object users ownership.

acl_s_owner_not_allowed
In a rdacl_replace operation an attempt was made to add an ACL entry of
type sec_acl_e_type_user_obj or sec_acl_e_type_user_obj_deleg to a
manager that does not support object users ownership.

acl_s_group_not_allowed
In a rdacl_replace operation an attempt was made to add an ACL entry of
type sec_acl_e_type_group_obj or sec_acl_e_type_group_obj_deleg to
a manager that does not support object group ownership.

acl_s_no_control_entries
In a rdacl_replace operation an attempt was made to replace the ACL
where no entries have control permission.

acl_s_owner_not_allowed
In a rdacl_replace operation an attempt was made to add an ACL entry of
type sec_acl_e_type_user_obj or sec_acl_e_type_user_obj_deleg to a
manager that does not support object users ownership.

acl_s_group_not_allowed
In a rdacl_replace operation an attempt was made to add an ACL entry of
type sec_acl_e_type_group_obj or sec_acl_e_type_group_obj_deleg to
a manager that does not support object group ownership.

acl_s_no_control_entries
In a rdacl_replace operation an attempt was made to replace the ACL
where no entries have control permission. CL entry of type
sec_acl_e_type_group_obj or sec_acl_e_type_group_obj_deleg to a
manager that does not support object group ownership.

acl_s_no_control_entries
In a rdacl_replace operation an attempt was made to replace the ACL
where no entries have control permission.

Related Information

Functions: dce_acl_resolve_by_name(3sec) , dce_acl_resolve_by_uuid(3sec) ,
dce_db_open(3dce) .

dce_acl_register_object_type(3sec)

Chapter 6. DCE Security Service 1001

dce_acl_resolve_by_name

Purpose

Finds an ACL’s UUID, given an object’s name

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_resolve_by_name(
handle_t handle
sec_acl_component_name_t component_name
sec_acl_type_t sec_acl_type
uuid_t *mgr_type
boolean32 writing
void *resolver_arg
uuid_t *acl_uuid
error_status_t *status);

Parameters

Input
handle A client binding handle passed into the server stub. Use sec_acl_bind() to

create this handle.

component_name
A character string containing the name of the target object.

sec_acl_type
The type of ACL to be resolved:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

mgr_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them.

writing This parameter is ignored in OSF’s implementation.

resolver_arg
This argument is passed into dce_acl_register_object_type() . It should be
a handle for a backing store indexed by name.

Output
acl_uuid

The ACL UUID, as resolved by dce_acl_resolve_by_name() .

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

1002 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The dce_acl_resolve_by_name() routine finds an ACL’s UUID, given an object’s
name, as provided in the component_name parameter. The user does not call this
function directly. It is an instance of the kind of function provided to the resolver
argument of dce_acl_register_object_type() .

If dce_acl_resolve_by_name() and dce_acl_resolve_by_uuid() are inappropriate,
the user of dce_acl_register_object_type() must provide some other resolver
function.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_register_object_type(3sec) , dce_acl_resolve_by_uuid(3sec) ,
dce_db_open(3dce) , dce_db_header_fetch(3dce) .

dce_acl_resolve_by_name(3sec)

Chapter 6. DCE Security Service 1003

dce_acl_resolve_by_uuid

Purpose

Finds an ACL’s UUID, given an object’s UUID

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

dce_acl_resolve_func_t dce_acl_resolve_by_uuid(
handle_t handle
sec_acl_component_name_t component_name
sec_acl_type_t sec_acl_type
uuid_t *mgr_type
boolean32 writing
void *resolver_arg
uuid_t *acl_uuid
error_status_t *status);

Parameters

Input
handle A client binding handle passed into the server stub. Use sec_acl_bind() to

create this handle.

component_name
A character string containing the name of the target object. (The
dce_acl_resolve_by_uuid() routine ignores this parameter.)

sec_acl_type
The type of ACL to be resolved:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

mgr_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them.

writing This parameter is ignored in OSF’s implementation.

resolver_arg
This argument is passed into dce_acl_register_object_type() . It should be
a handle for a backing store indexed by UUID.

Output
acl_uuid

The ACL UUID, as resolved by dce_acl_resolve_by_uuid() .

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

1004 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The dce_acl_resolve_by_uuid() routine finds an ACL’s UUID, given an object’s
UUID, as provided through the handle parameter. The user does not call this
function directly. It is an instance of the kind of function provided to the resolver
argument of dce_acl_register_object_type() .

If dce_acl_resolve_by_uuid() and dce_acl_resolve_by_name() are inappropriate,
the user of dce_acl_register_object_type() must provide some other resolver
function.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_acl_register_object_type(3sec) ,
dce_acl_resolve_by_name(3sec) , dce_db_open(3dce) ,
dce_db_header_fetch(3dce) .

dce_acl_resolve_by_uuid(3sec)

Chapter 6. DCE Security Service 1005

dce_aud_clean

Purpose

Resets and rewinds the specified audit trail file. This routine is used by the audit
trail analysis and examination tools.

Format
#include <dce/audit.h>

void dce_aud_clean(
dce_aud_trail_t at,
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for writing

by the dce_aud_open routine.

Output
status The status code returned by this routine. On successful completion, the

routine returns aud_s_ok . Otherwise, the status code is one of the
following:

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_trl_invalid_open_flags
The audit trail is opened with the read flag.

aud_s_clean_trail_file
The chsize call failed on the trail file.

aud_s_clean_index_file
The chsize call failed on the index file.

Usage

The dce_aud_clean routine resets and rewinds the audit trail file to zero size. This
routine can be used to clean up the audit trail file instantly when the audit trail file is
no longer needed. The dce_aud_open routine must be called to specify the desired
audit trail to be reset and rewound. The specified audit trail file must be opened
with the aud_c_trl_open_write flag. Otherwise, the audit trail file that is currently
set in at will be reset and rewound.

If the call is successful, the file cursors are set to the beginning of the files.

Comments

Functions: dce_aud_open(3sec) , dce_aud_rewind(3sec) , dce_aud_save(3sec) .

1006 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_close

Purpose

Closes an audit trail file. Used by client/server applications and audit trail analysis
and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_close(
dce_aud_trail_t at
unsigned32 *status);

Parameters

Input
at A pointer to an audit trail descriptor returned by a previous call to

dce_aud_open() .

Output
status The status code returned by this routine.

Description

The dce_aud_close() function releases data structures of file openings, RPC
bindings, and other memory associated with the audit trail that is specified by the
audit trail descriptor.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

aud_s_invalid_trail_descriptor
The trail descriptor argument is not associated with a valid trail description.

Related Information

Functions: dce_aud_open(3sec) .

Chapter 6. DCE Security Service 1007

dce_aud_commit

Purpose

Writes the audit record in the audit trail file. Used by client/server applications.

Synopsis
#include <dce/audit.h>

void dce_aud_commit(
dce_aud_trail_t at
dce_aud_rec_t ard
unsigned32 options
unsigned16 format
unsigned32 outcome
unsigned32* status);

Parameters

Input
at Designates an audit trail file to which the completed audit record will be

written. The audit trail file must have been previously opened by a
successful call to the dce_aud_open() function.

ard Designates an audit record descriptor that was returned by a previously
successful call to one of the dce_aud_start_ *() functions. The content of
this record buffer will be appended to the audit trail specified by at.

options
Bitwise OR of option values described below. A value of 0 (zero) for options
results in the default operation (normal writing to the file without flushing to
stable storage). The possible option value is

aud_c_evt_commit_sync
Flushes the audit record to stable storage before the function
returns.

aud_c_evt_always_ems
Unconditionally sends the audit record to EMS as an audit event.

aud_c_evt_always_log
Unconditionally logs the audit record to the audit trail.

aud_c_evt_always_alarm
Unconditionally displays the audit record on the console.

format Event’s tail format used for the event-specific information. This format can
be configured by the user. With this format version number, the servers and
audit analysis tools can accommodate changes in the formats of the event
specific information, or use different formats dynamically.

outcome
The event outcome to be stored in the header. The possible event-outcome
values are as follows:

aud_c_esl_cond_success
The event completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

1008 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_c_esl_cond_failure
The event failed because of reasons other than access denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is pending,
being one in a series of connected events, where the application
desires to record the real outcome only after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success) is not
known. This outcome exists only between a dce_aud_start() (all
varieties of this routine) call and the next dce_aud_commit() call.
You can also use 0 to specify this outcome.

Output
status Returns the status code from this routine. This status code indicates

whether the routine completed successfully or not. If the routine did not
complete successfully, the reason for the failure is given.

Description

The dce_aud_commit() function determines whether the event should be audited
given the event outcome. If it should be audited, the function completes the audit
record identified by ard and writes it to the audit trail designated by at. If any of the
aud_c_evt_always_log or aud_c_evt_always_alarm options is selected, the event
is always audited (logged or an alarm message is sent to the standard output).

If the aud_c_evt_commit_sync option is selected, the function attempts to flush
the audit record to stable storage. If the stable storage write cannot be performed,
the function either continues to try until the stable-storage write is completed or
returns an error status.

Upon successful completion, dce_aud_commit() calls dce_aud_discard()
internally to release the memory of the audit record that is being committed.

The caller should not change the outcome between the dce_aud_start() and
dce_aud_commit() calls arbitrarily. In this case, the outcome can be made more
specific, for example, from aud_c_esl_cond_unknown to
aud_c_esl_cond_success or from aud_c_esl_cond_pending to
aud_c_esl_cond_success .

An outcome change from aud_c_esl_cond_success to aud_c_esl_cond_denial is
not logically correct because the outcome aud_c_esl_cond_success may have
caused a NULL ard to be returned in this function. If the final outcome can be
aud_c_esl_cond_success , then it should be specified in this function, or use
aud_c_esl_cond_unknown .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_aud_commit(3sec)

Chapter 6. DCE Security Service 1009

aud_s_wrong_protection_level
Client used the wrong protection level.

aud_s_dmn_disabled
The daemon is disabled for logging.

aud_s_log_access_denied
The client’s access to the Audit log was denied.

aud_s_cannot_gettime
The audit library cannot backup a trail file due to failure of the
utc_gettime() call.

aud_s_cannot_getgmtime
The audit library cannot backup a trail file due to failure of the
utc_gmtime() call.

aud_s_rename_trail_file_rc
Cannot rename the audit trail file.

aud_s_cannot_reopen_trail_file_rc
Internally, the audit trail file was being reopened and the reopening of the
file failed.

aud_s_rename_trail_index_file_rc
Internally, the audit trail index file was being renamed and the renaming of
the file failed.

aud_s_cannot_reopen_trail_index_file_rc
Internally, the audit trail index file was being reopened and the reopening of
the file failed.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_invalid_outcome
The event outcome parameter that was provided is invalid.

aud_s_outcomes_inconsistent
The event outcome parameter is inconsistent with the outcome parameter
provided in the dce_aud_start() call.

aud_s_trl_write_failure
The audit record cannot be written to stable storage.

aud_s_ok
The call was successful.

Status codes passed from dce_aud_discard()

Status codes passed from rpc_binding_inq_auth_caller()

Status codes passed from dce_acl_is_client_authorized()

Status codes passed from audit_pickle_dencode_ev_info() (RPC idl compiler)

Related Information

Functions: dce_aud_open(3sec) , dce_aud_put_ev_info(3sec) ,
dce_aud_start(3sec) , dce_aud_start_with_name(3sec) ,
dce_aud_start_with_pac(3sec) , dce_aud_start_with_server_binding(3sec) .

dce_aud_commit(3sec)

1010 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_discard

Purpose

Discards an audit record (releases the memory). Used by client/server applications
and trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_discard(
dce_aud_rec_t ard
unsigned32* status);

Parameters

Input
ard Designates an audit record descriptor that was returned by a previously

successful call to one of the dce_aud_start_*() functions or the
dce_aud_next() function.

Output
status The status code returned by this routine. This status code indicates whether

the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_discard() function releases the memory used by the audit record
descriptor and the associated audit record that is to be discarded.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Status codes passed from dce_aud_free_header()

Related Information

Functions: dce_aud_open(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_name(3sec) , dce_aud_start_with_pac(3sec) ,
dce_aud_start_with_server_binding(3sec) .

Chapter 6. DCE Security Service 1011

dce_aud_event_table

Purpose

Builds a sorted event table to be used for sorting the audit records in the audit trail
file. Used by the trail analysis and examination tools.

Format
#include <dce/audit.h>

void dce_aud_event_table(
dce_aud_trail_t at,
ep_t **ep_table,
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the dce_aud_open routine.

Output
ep_table

The sorted event table (two-dimensional linked list).

status The status code returned by this routine. On successful completion, the
routine returns aud_s_ok . Otherwise, it returns one of the following errors:

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_invalid_ep_table
The ep_table is invalid.

aud_s_trail_file_corrupted
The audit trail file is corrupted.

aud_s_cannot_allocate_memory
The malloc call failed.

Status codes passed from idl_es_decode_buffer .

Status codes passed from idl_es_handle_free

Status codes passed from audit_pickle_dencode_ev_info .

Usage

The dce_aud_event_table routine builds a sorted event table from the audit trail
file which is specified by the audit trail descriptor, at. The routine can be used to
sort out all the audit records in a specified audit trail file.

The output table, ep_table can be supplied to the dce_aud_get_event routine as
an input parameter to search for a specified event and to read the corresponding
audit record into a buffer.

The dce_aud_open routine must be called to specify the desired audit trail file from
the location where the event table is built. Otherwise, the audit trail that is currently
set in at is used.

1012 IBM DCE for AIX, Version 2.2: Application Development Reference

The free_ep_table routine must be called with ep_table as an input parameter to
free the event table after it is no longer needed.

Comments

Functions: dce_aud_open(3sec) , dce_aud_get_event(3sec) .

dce_aud_event_table

Chapter 6. DCE Security Service 1013

dce_aud_first

Purpose

Reads the first audit record from a specified audit trail file into a buffer. Used by the
trail analysis and examination tools.

Format
#include <dce/audit.h>

void dce_aud_first(
dce_aud_trail_t at,
unsigned16 format,
dce_aud_rec_t *ard,
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the dce_aud_open routine.

format The event’s tail format used for the event-specific information. This format
can be configured by the user. With this format version number, the servers
and audit analysis tools can accommodate changes in the formats of the
event specification information, or use different formats dynamically.

Output
ard A pointer to the audit record descriptor containing the returned record.

status The status code returned by this routine. On successful completion, the
routine returns aud_s_ok . Otherwise, it returns one of the following errors:

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_trail_file_corrupted
The audit trail file is corrupted.

aud_s_cannot_allocate_memory
The malloc call failed.

Status codes passed from idl_es_decode_buffer .

Status codes passed from idl_es_handle_free .

Status codes passed from audit_pickle_dencode_ev_info .

Usage

The dce_aud_first routine reads the first record from the audit trail file which is
specified by the audit trail descriptor, at. The routine can be used to examine the
first audit record written to the audit trail file. It is very useful after the audit trail file
is wrapped around or cleaned up.

If no record is found, a value of zero (NULL) is returned in ard. The value in ard
can be supplied as an input parameter to the following routines:

dce_aud_discard

dce_aud_get_ev_info

1014 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_get_event

dce_aud_get_header

dce_aud_length

dce_aud_print

If the routine successfully reads an audit trail record, the cursor associated with the
audit trail descriptor, at, is moved to the second record in the audit trail file. If no
record can be found in the audit trail file, an ard value of NULL is returned and the
cursor is set back to the beginning of the audit trail. If a call is unsuccessful, the
position of the cursor does not change.

Messages

Storage allocated by this routine must be explicitly freed by a call to
dce_aud_discard with ard as the input parameter.

Comments

Functions: dce_aud_discard(3sec) , dce_aud_get_event(3sec) ,
dce_aud_get_ev_info(3sec) , dce_aud_get_header(3sec) , dce_aud_next(3sec) ,
dce_aud_open(3sec) , dce_aud_prev(3sec) , dce_aud_print(3sec) .

dce_aud_first(3sec)

Chapter 6. DCE Security Service 1015

dce_aud_free_ev_info

Purpose

Frees the memory allocated for an event information stucture returned from calling
dce_aud_get_ev_info() . Used by the audit trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_free_ev_info(
dce_aud_ev_info_t *event_info
unsigned32 *status);

Parameters

Input
event_info

Designates an event-specific information item returned from a previous
successful call to the dce_aud_get_ev_info() function.

Output
status The status code returned by this routine.

Description

The dce_aud_free_ev_info() function frees the memory allocated for an event
information stucture returned by a previous successful call to the
dce_aud_get_ev_info() function.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Related Information

Functions: dce_aud_get_ev_info(3sec) , dce_aud_next(3sec) .

1016 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_free_header

Purpose

Frees the memory allocated to a designated audit record header structure. Used by
the audit trail analysis and examination tools

Synopsis
#include <dce/audit.h>

void dce_aud_free_header(
dce_aud_hdr_t *header
unsigned32 *status);

Parameters

Input
header

Designates a pointer to an audit record header structure that was returned
by a previous successful call to the dce_aud_get_header() function.

Output
status The status code returned by this routine.

Description

The dce_aud_free_header() frees the memory allocated to a designated audit
record header structure. The designated audit record header is usually obtained
from an audit record by calling dce_aud_get_header() .

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Related Information

Functions: dce_aud_get_header(3sec) , dce_aud_next(3sec) ,
dce_aud_open(3sec) .

Chapter 6. DCE Security Service 1017

dce_aud_get_ev_info

Purpose

Returns a pointer to an event information stucture (dce_aud_ev_info_t). Used by
the audit trail analysis and examination tools

Synopsis
#include <dce/audit.h>

void dce_aud_get_ev_info(
dce_aud_rec_t ard
dce_aud_ev_info_t **event_info
unsigned32 *status);

Parameters

Input
ard Designates an audit record descriptor that was returned by a previously

successful call to the dce_aud_next() function.

Output
event_info

Returns an event-specific information item of the designated audit record.
Returns NULL if there are no more information items.

status The status code returned by this routine. This status code indicates whether
the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_get_ev_info() function returns a pointer to an event information
structure. The designated record is usually obtained from an audit trail by calling
dce_aud_open() and dce_aud_next() . If there is more than one item of
event-specific information in the audit record, then one item is returned through one
call to dce_aud_get_ev_info() . The order in which the items are returned is the
same as the order in which they were included in the audit record through
dce_aud_put_ev_info() calls. This function allocates the memory to hold the
human-readable representation of the audit record and returns the address of this
memory. Use dce_aud_free_ev_info() with the dce_aud_event_info_t* to free the
memory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

1018 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_ok
The call was successful.

aud_s_cannot_allocate_memory
Unable to allociate memory for the event information structure.

Related Information

Functions: dce_aud_next(3sec) , dce_aud_open(3sec) .

dce_aud_get_ev_info(3sec)

Chapter 6. DCE Security Service 1019

dce_aud_get_event

Purpose

Searches and reads the audit record that contains the specified event into a buffer.
This routine is used by the trail administration and examination tools.

Format
#include <dce/audit.h>

void dce_aud_get_event(
dce_aud_trail_t at,
unsigned32 event,
ep_t *ep_table,
int order,
dce_aud_rect_t *ard,
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the dce_aud_open routine.

event The event to be searched.

ep_table
The sorted two-dimensional linked list was built successfully by the
dce_aud_event_table routine.

order The type of search: successor (1) or predecessor (0).

Output
ard A pointer to the audit record descriptor containing the returned record.

status The status code returned by this routine. If successful, the routine returns
aud_s_ok . If not, the status code contains one of the following:

aud_s_invalid_trail_descriptor
The audit trail descriptor is not valid.

aud_s_invalid_ep_table
The ep_table is empty.

aud_s_cannot_allocate_memory
The malloc call failed.

Status codes from idl_es_decode_buffer .

Status codes from idl_es_handle_free .

Status codes from audit_pickle_dencode_ev_info .

Usage

The dce_aud_get_event routine attempts to search a specified event in the audit
trail file. This routine uses the fast Search-Insert-Sort Matrix (SISM) to search and
read the record into the buffer. The search can be specified in successor order (

1020 IBM DCE for AIX, Version 2.2: Application Development Reference

order is 1) or predecessor order (order is 0). A subsequence call searches and
reads one record after or one record before into the buffer as do the dce_aud_next
and dce_aud_prev routines.

Use free() to free the memory allocated to ard when it is no longer needed or
before ard is used in a call to dce_aud_get_event() .

The dce_aud_get_event routine can be used to search for all the event records
that have the same event number recorded in the audit trail file. Although
dce_aud_next or dce_aud_prev can output the same results when the predicate
parameter is set to EVENT=value, they sequentially read all the records in the audit
trail file from top to bottom or vice versa to search for the right ones. Therefore, the
search is very slow.

The dce_aud_open routine must be called to specify the desired audit trail file to
be searched. Otherwise, the audit trail file that is currently set in at is used.

If a call is successful (that is, an appropriate record matched the event number) the
record is read into the buffer. The value of ard can be supplied as an input
parameter value to the following routines:

dce_aud_print

dce_aud_get_header

dce_aud_get_ev_info

dce_aud_discard

dce_aud_length

If no appropriate record matched the event number, an ard value of NULL is
returned.

Comments

Functions: dce_aud_event_table(3sec) , dce_aud_next(3sec) ,
dce_aud_open(3sec) , dce_aud_prev(3sec) .

dce_aud_get_event(3sec)

Chapter 6. DCE Security Service 1021

dce_aud_get_header

Purpose

Gets the header of a specified audit record. Used by the audit trail analysis and
examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_get_header(
dce_aud_rec_t ard
dce_aud_hdr_t **header
unsigned32 *status);

Parameters

Input
ard Designates an audit record descriptor that was returned by a previously

successful call to the dce_aud_next() function.

Output
header

Returns a pointer to the header information of the designated audit record.

status The status code returned by this routine. This status code indicates whether
the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_get_header() function gets the header information of a designated
audit record. The designated record is usually obtained from an audit trail by calling
dce_aud_open() and dce_aud_next() .

The dce_aud_free_header routine should be called with *header as an input
parameter to free the copy of the header information after it is no longer needed.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_ok
The call was successful.

1022 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: dce_aud_next(3sec) , dce_aud_open(3sec) .

dce_aud_get_header(3sec)

Chapter 6. DCE Security Service 1023

dce_aud_last

Purpose

Reads the last audit record from a specified audit trail file into a buffer. Used by the
trail analysis and examination tools.

Format
#include <dce/audit.h>

void dce_aud_last(
dce_aud_trail_t at,
unsigned16 format,
dce_aud_rec_t *ard,
unsigned32 * status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the dce_aud_open routine.

format The event’s tail format used for the event-specific information. This format
can be configured by the user. With this format version number, the servers
and audit analysis tools can accommodate changes in the formats of the
event specification information, or use different formats dynamically.

Output
ard A pointer to the audit record descriptor containing the returned record.

status The status code returned by this routine. On successful completion, the
routine returns aud_s_ok . Otherwise, it returns one of the following errors:

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_trail_file_corrupted
The audit trail file is corrupted.

aud_s_cannot_allocate_memory
The malloc call failed.

Status codes passed from idl_es_decode_buffer .

Status codes passed from idl_es_handle_free

Status codes passed from audit_pickle_dencode_ev_info .

Usage

The dce_aud_last routine reads the last record from the audit trail file which is
specified by the audit trail descriptor, at. The routine can be used to examine the
latest (current) audit record written to the audit trail file. DCE application programs
can use this routine to check the current audit record written to the audit trail file. It
is very useful after the audit trail file is wrapped around or cleaned up.

If no record is found, a value of zero (NULL) is returned in ard. The value in ard
can be supplied as an input parameter to the following routines:

dce_aud_discard

1024 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_get_ev_info

dce_aud_get_event

dce_aud_get_header

dce_aud_length

dce_aud_print

If the routine successfully reads an audit trail record, the cursor associated with the
audit trail descriptor, at, is moved to the end of the audit trail file. If no record can
be found in the audit trail file, an ard value of NULL is returned and the cursor is set
back to the beginning of the audit trail. If a call is unsuccessful, the position of the
cursor does not change.

Messages

Storage allocated by this routine must be explicitly freed by a call to
dce_aud_discard with ard as the input parameter.

Comments

Functions: dce_aud_discard(3sec) , dce_aud_get_event(3sec) ,
dce_aud_get_ev_info(3sec) , dce_aud_get_header(3sec) ,
dce_audit_length(3sec) , dce_aud_next(3sec) , dce_aud_open(3sec) ,
dce_aud_prev(3sec) , dce_aud_print(3sec) .

dce_aud_last(3esc)

Chapter 6. DCE Security Service 1025

dce_aud_length

Purpose

Gets the length of a specified audit record. Used by client/server applications and
trail analysis and examination tools

Synopsis
#include <dce/audit.h>

unsigned32 dce_aud_length(
dce_aud_rec_t ard
unsigned32 *status);

Parameters

Input
ard Designates an audit record descriptor that was returned by a previously

successful call to dce_aud_next() , or one of the dce_aud_start_ *()
functions.

Output
status The status code returned by this routine. This status code indicates whether

the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_length() function gets the length of a designated audit record. The
designated record (in binary format) may be obtained from an audit trail by calling
the dce_aud_open() and dce_aud_next() functions.

Applications can use this function to know how much space an audit record will use
before it is committed. This function can also be used by audit trail analysis and
examination tools to determine the space that a previously committed audit record
uses before it is read.

Return Values

The size of the specified audit record in number of bytes.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_ok
The call was successful.

Status codes passed from idl_es_encode_dyn_buffer()

1026 IBM DCE for AIX, Version 2.2: Application Development Reference

Status codes passed from audit_pickle_dencode_ev_info()
(RPC IDL compiler)

Status codes passed from idl_es_handle_free()

Status codes passed from rpc_sm_client_free()

Related Information

Functions: dce_aud_next(3aud) , dce_aud_open(3aud) ,
dce_aud_put_ev_info(3aud) , dce_aud_start(3aud) ,
dce_aud_start_with_name(3aud) , dce_aud_start_with_pac(3aud) ,
dce_aud_start_with_server_binding(3aud) .

dce_aud_length(3sec)

Chapter 6. DCE Security Service 1027

dce_aud_modify_sstrategy

Purpose

Modifies the storage strategy of the audit daemon.

Format
#include <dce/audit.h>

void dce_aud_modify_sstrategy(
dce_aud_trail_t at,
unsigned32 strgy,
error_status_t *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened by

dce_aud_open .

strgy This states the storage strategy. Possible values for strgy are:

SAVE The trail, when full, is backed up, renamed with a timestamp, and
then written to the original trail again.

WRAP
The trail, when full, returns to the beginning of the file, and
overwrites previously written records.

Output
status A pointer to the completion status. On successful completion, the routine

returns aud_s_ok .

Usage

The dce_aud_modify_sstrategy routine is an administrative operation that
modifies the storage strategy on the audit deamon. It defines what the daemon
does if the audit trail storage is full.

Return Codes

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

aud_s_invalid_trail_descriptor
The trail descriptor is not associated with a valid audit trail.

aud_s_invalid_stostrategy
The strgy argument is not a valid storage strategy constant.

1028 IBM DCE for AIX, Version 2.2: Application Development Reference

Comments

Functions: dce_aud_open(3sec) .

dce_aud_modify_sstrategy(3sec)

Chapter 6. DCE Security Service 1029

dce_aud_next

Purpose

Reads the next audit record from a specified audit trail file into a buffer. Used by the
trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_next(
dce_aud_trail_t at
char *predicate
unsigned16 format
dce_aud_rec_t *ard
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the function dce_aud_open() .

predicate
Criteria for selecting the audit records that are to be read from the audit trail
file. A predicate statement consists of an attribute and its value, separated
by any of the following operators: = (equal to), < (less than), <= (less than
or equal to), > (greater than), and >= (greater than or equal to):

v attribute= value

v attribute> value

v attribute>= value

v attribute< value

v attribute<= value

Attribute names are case sensitive, and no space is allowed within a
predicate expression. Multiple predicates are delimited by a comma, in the
following form:
attribute1= value1, attribute2> value2,
...

No space is allowed between predicates. Note that when multiple
predicates are defined, the values are logically ANDed together.

The possible attribute names, their values, and allowable operators are as
follows:

SERVER
The UUID of the server principal that generated the record. The
attribute value must be a UUID string. Operator allowed: = (equal
to).

EVENT
The audit event number. The attribute value must be a hexadecimal
number. Operator allowed: = (equal to).

1030 IBM DCE for AIX, Version 2.2: Application Development Reference

OUTCOME
The event outcome of the record. The possible attribute values are
SUCCESS, FAILURE , PENDING, or DENIAL . Operator allowed: =
(equal to).

STATUS
The authorization status of the client. The possible attribute values
are DCE for DCE authorization (PAC based), and NAME for
name-based authorization. Operator allowed: = (equal to).

CLIENT
The UUID of the client principal. The attribute value must be a
UUID string. Operator allowed: = (equal to).

TIME The time the record was generated. The attribute value must be a
null-terminated string that expresses an absolute time. Operators
allowed: <= (less than or equal to), < (less than), >= (greater than
or equal to), and > (greater than).

CELL The UUID of the client’s cell. The attribute value must be a UUID
string. Operator allowed: = (equal to).

GROUP
The UUID of one of the client’s group(s). The attribute value must
be a UUID string. Operator allowed: = (equal to).

ADDR The address of the client. The attribute is typically the string
representation of an RPC binding handle. Operator allowed: =
(equal to).

FORMAT
The format version number of the audit event record. The attribute
value must be an integer. Operators allowed: = (equal to), < (less
than), and > (greater than).

format Event’s tail format used for the event-specific information. This format can
be configured by the user. With this format version number, the servers and
audit analysis tools can accomodate changes in the formats of the event
specification information, or use different formats dynamically.

Output
ard A pointer to the audit record descriptor containing the returned record.

status The status code returned by this routine. This status code indicates whether
the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given. See ′′Errors’’ for
a list of the possible status codes and their meanings.

Description

The dce_aud_next() function attempts to read the next record from the audit trail
file specified by the audit trail descriptor, at. This function also defines the predicate
to be used to search for the next record and returns a matching record if one exists.
The dce_aud_next() function can be used to search for successive records in the
trail that match the defined predicate. By default, if no predicate is explicitly defined,
the function returns the next record from the audit trail.

If no record satisfies the predicate specified for the call, a value of zero (NULL) is
returned through ard.

dce_aud_next(3sec)

Chapter 6. DCE Security Service 1031

The value returned through ard can be supplied as an input parameter to the
functions dce_aud_get_header() , dce_aud_length() , dce_aud_discard() ,
dce_aud_print() , dce_aud_get_event() , and dce_aud_get_ev_info() .

Storage allocated by this function must be explicitly freed by a call to
dce_aud_discard() with ard as the input parameter.

If the function successfully reads an audit trail record, the cursor associated with the
audit trail descriptor at will be advanced to the next record in the audit trail. The
calling routine does not need to set or move the cursor explicitly.

If no appropriate record can be found in the audit trail, an ard value of NULL is
returned and the cursor is advanced to the end of the audit trail. If a call is
unsuccessful, the position of the cursor does not change.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successfully completed.

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_trail_file_corrupted
The trail file is corrupted.

aud_s_cannot_allocate_memory
The malloc() call failed.

Status codes passed from idl_es_decode_buffer()

Status codes passed from idl_es_handle_free()

Status codes passed from audit_pickle_dencode_ev_info()
(RPC IDL compiler)

Related Information

Functions: dce_aud_next(3sec) , dce_aud_get_header(3sec) ,
dce_aud_length(3sec) , dce_aud_get_ev_info(3sec) , dce_aud_open(3sec) ,
dce_aud_discard(3sec) , dce_aud_print(3sec) , dce_aud_get_event(3sec) .

dce_aud_next(3sec)

1032 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_open

Purpose

Opens a specified audit trail file for read or write. Used by client/server applications
and trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_open(
unsigned32 flags
char *description
unsigned32 first_evt_number
unsigned32 num_of_evts
dce_aud_trail_t *at
unsigned32 *status);

Parameters

Input
flags Specifies the mode of opening. The flags parameter is set to the bitwise OR

of the following values:

v aud_c_trl_open_read

v aud_c_trl_open_write

v aud_c_trl_ss_wrap

description
A character string specifying an audit trail file to be opened. If description
is NULL, the default audit trail file is opened. When the audit trail file is
opened for write, the default audit trail is an RPC interface to a local audit
daemon.

first_evt_num
The lowest assigned audit event number used by the calling server.

num_of_evts
The number of audit events defined for the calling server.

Output
at A pointer to an audit trail descriptor. When the audit trail descriptor is no

longer needed, it must be released by calling the dce_aud_close()
function.

status Returns the status code from this routine. This status code indicates
whether the routine was completed successfully or not. If the routine was
not completed successfully, the reason for the failure is given.

Description

The dce_aud_open() function opens the audit trail file specified by the description
parameter. If description is NULL, the function uses the default audit trail which is
an RPC interface to the local audit daemon.

This function must be invoked after the server has finished registering with RPC
and before calling rpc_server_listen() .

Chapter 6. DCE Security Service 1033

If the flags parameter is set to aud_c_trl_open_read , the specified file
(description cannot be null in this case) is opened for reading audit records, using
the dce_aud_next() function. If flags is set to aud_c_trl_open_write , the specified
file or the default audit trail device is opened and initialized for appending audit
records using the dce_aud_commit() function. Only one of the
aud_c_trl_open_read and aud_c_trl_open_write flags may be specified in any
call to dce_aud_open() . If the flags parameter is set to aud_c_trl_ss_wrap , the
audit trail operation is set to wrap mode. The aud_c_trl_ss_wrap flag has meaning
only if you specify the aud_c_trl_open_write flag.

If the audit trail specified is a file and the calling server does not have the read and
write permissions to the file, a NULL pointer is returned in at, and status is set to
aud_s_cannot_open_trail_file_rc . The same values will be returned if the default
audit trail file is used (that is, through an audit daemon) and if the calling server is
not authorized to use the audit daemon to log records.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

aud_s_trl_invalid_open_flags
The flags argument must include either aud_c_trl_open_read or
aud_c_trl_open_write flag, but not both.

aud_s_cannot_open_dmn_binding_file
The local audit daemon trail file is designated, but the daemon’s binding file
cannot be opened.

Status codes passed from sec_login_get_current_context()
When the local audit daemon trail file is designated, a login context is
needed for making secure audit logging RPC to the audit daemon.

aud_s_cannot_open_dmn_identity_file
The local audit daemon trail file is designated, but the daemon’s identity file
cannot be opened.

Status codes passed from rpc_binding_set_auth_info()
When the local audit daemon trail file is designated, dce_aud_open() sets
authentication information in the RPC binding handle for making secure
audit logging RPC to the audit daemon. This is done by calling
rpc_binding_set_auth_info() .

aud_s_cannot_open_trail_file_rc
Cannot open a local trail file.

aud_s_cannot_allocate_memory
Memory allocation failed.

aud_s_cannot_init_trail_mutex
Audit trail mutex initialization failed.

dce_aud_open(3sec)

1034 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_s_invalid_trail_descriptor
The trail descriptor argument is not associated with a valid audit trail.

aud_s_client_esl_mutex
Audit client’s event selection list mutext initialization failed.

aud_s_invalid_audit_trail_size_limit
Environment variable DCEAUDITTRAILSIZE has an invalid value.

Status codes passed from rpc_server_inq_bindings()
When filtering is turned on, dce_aud_open() gets the caller’s RPC bindings
to be used for registering an RPC interface in receiving filter update
notification from the local audit daemon. This is done by calling
rpc_server_inq_bindings() .

Status codes passed from rpc_binding_to_string_binding()
When filtering is turned on, the caller’s RPC bindings are converted to
string bindings before they are stored in a file. This is done by calling
rpc_binding_to_string_binding() .

aud_s_cannot_mkdir
Cannot create a directory for storing the bindings file for the filter update
notification interface.

Related Information

Functions: dce_aud_commit(3sec) , dce_aud_next(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_name(3sec) , dce_aud_start_with_pac(3sec) ,
dce_aud_start_with_server_binding(3sec) .

dce_aud_open(3sec)

Chapter 6. DCE Security Service 1035

dce_aud_prev

Purpose

Reads the previous audit record from a specified audit trail file into a buffer. Used
by the trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_prev(
dce_aud_trail_t at
char *predicate
unsigned16 format
dce_aud_rec_t *ard
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the function dce_aud_open() .

predicate
Criteria for selecting the audit records that are to be read from the audit trail
file. A predicate statement consists of an attribute and its value, separated
by any of the following operators: = (equal to), < (less than), <= (less than
or equal to), > (greater than), and >= (greater than or equal to).

v attribute= value

v attribute> value

v attribute>= value

v attribute< value

v attribute<= value

Attribute names are case sensitive, and no space is allowed within a
predicate expression. Multiple predicates are delimited by a comma, in the
following form:
attribute= value1, attribute> value2,
...

No space is allowed between predicates. Note that when multiple
predicates are defined, the values are logically ANDed together.

The possible attribute names, their values, and allowable operators are as
follows:

SERVER
The UUID of the server principal that generated the record. The
attribute value must be a UUID string. Operator allowed: = (equal
to).

EVENT
The audit event number. The attribute value must be a hexadecimal
number. Operator allowed: = (equal to).

1036 IBM DCE for AIX, Version 2.2: Application Development Reference

OUTCOME
The event outcome of the record. The possible attribute values are:
SUCCESS, FAILURE , PENDING, or DENIAL . Operator allowed: =
(equal to).

STATUS
The authorization status of the client. The possible attribute values
are DCE for DCE authorization (PAC based) and NAME for
name-based authorization. Operator allowed: = (equal to).

TIME The time the record was generated. The attribute value must be a
null terminated string that expresses an absolute time. Operators
allowed: <= (less than or equal to), < (less than), >= (greater than
or equal to), and > (greater than).

CELL The UUID of the client’s cell. The attribute value must be a UUID
string. Operator allowed: = (equal to).

GROUP
The UUID of one of the client’s group(s). The attribute value must
be a UUID string. Operator allowed: = (equal to).

ADDR The address of the client. The attribute is typically the string
representation of an RPC binding handle. Operator allowed: =
(equal to).

FORMAT
The format version number of the audit event record. The attribute
value must be an integer. Operators allowed: = (equal to), < (less
than), and > (greater than).

format Event’s tail format used for the event-specific information. This format can
be configured by the user. With this format version number, the servers and
audit analysis tools can accommodate changes in the formats of the event
specification information, or use different formats dynamically.

Output
ard A pointer to the audit record descriptor containing the returned record.

status The status code returned by this function. This status code indicates
whether the routine was completed successfully or not. If the routine was
not completed successfully, the reason for the failure is given. See ′′Errors’’
for a list of the possible status codes and their meanings.

Description

The dce_aud_prev() function attempts to read the previous record from the audit
trail file specified by the audit trail descriptor, at. This function also defines the
predicate to be used to search for the previous record and returns a matching
record if one exists. dce_aud_prev() can be used to search for previous records in
the trail file that match the defined predicate. By default, if no predicate is explicitly
defined, the function returns the previous record read from the audit trail.

If no record satisfies the predicate specified for the call, a value of zero (NULL) is
returned in ard.

The value returned in ard can be supplied as an input parameter to the functions:
dce_aud_get_header() , dce_aud_length() , dce_aud_discard() , dce_aud_print() ,
dce_aud_get_event() , and dce_aud_get_ev_info() .

dce_aud_prev(3sec)

Chapter 6. DCE Security Service 1037

Storage allocated by this function must be explicitly freed by a call to
dce_aud_discard() with ard as the input parameter.

If the function successfully reads an audit trail record, the cursor associated with the
audit trail descriptor at will be moved to the previous record in the audit trail file.
The calling routine does not need to set or move the file cursor explicitly.

If no appropriate record can be found in the audit trail, an ard value of NULL is
returned and the cursor is set back to the beginning of the audit trail. If a call is
unsuccessful, the position of the cursor does not change.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successfully completed

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid

aud_s_trail_file_corrupted
The audit trail is corrupted

aud_s_cannot_allocate_memory
The malloc() call failed

Status codes passed from idl_es_decode_buffer()

Status codes passed from idl_es_handle_free()

Status codes passed from audit_pickle_dencode_ev_info()
(RPC IDL compiler)

Related Information

Functions: dce_aud_next(3sec) , dce_aud_get_header(3sec) ,
dce_aud_length(3sec) , dce_aud_get_ev_info(3sec) , dce_aud_open(3sec) ,
dce_aud_discard(3sec) , dce_aud_print(3sec) , dce_aud_get_event(3sec) .

dce_aud_prev(3sec)

1038 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_print

Purpose

Formats an audit record into human-readable form. Used by audit trail examination
and analysis tools.

Synopsis
#include <dce/audit.h>

void dce_aud_print(
dce_aud_rec_t ard
unsigned32 options
char **buffer
unsigned32 *status);

Parameters

Input
ard An audit record descriptor. This descriptor can be obtained from an opened

audit trail by calling dce_aud_next() or it can be a new record established
by calling one of thedce_aud_start_*() functions, dce_aud_first() ,
dce_aud_last() , or dce_aud_prev() .

options
The options governing the transformation of the binary audit record
information into a character string. The value of the options parameter is the
bitwise OR of any selected combination of the following option values:

aud_c_evt_all_info
Includes all the optional information (that is, groups, address, and
event specific information).

aud_c_evt_groups_info
Includes the groups’ information.

aud_c_evt_address_info
Includes the address information.

aud_c_evt_specific_info
Includes the event specific information.

aud_c_evt_raw_info
Includes raw information (use UUIDs instead of names).

aud_c_evt_delegates_info
Include delegation information.

Output
buffer Returns the pointer to a character string converted from the audit record

specified by ard.

status The status code returned by this routine. This status code indicates whether
the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Chapter 6. DCE Security Service 1039

Description

The dce_aud_print() function transforms the audit record specified by ard into a
character string and places it in a buffer. The buffer is allocated by this routine using
malloc() and must be deallocated by the caller using free() . (This function allocates
the memory to hold the human-readable text of the audit record and returns the
address of this memory in the buffer parameter.)

The options parameter is set to the bitwise OR of flag values defined in the
dce/audit.h header file. A value of 0 (zero) for options will result in default
operation, that is, no group, address, and event-specific information is included in
the output string.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_cannot_allocate_memory
The malloc() call failed.

aud_s_ok
The call was successful.

Status codes passed from sec_login_get_current_context()

Status codes passed from sec_login_inquire_net_info()

Related Information

Functions: dce_aud_next(3sec) , dce_aud_open(3sec) ,
dce_aud_put_ev_info(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_name(3sec) , dce_aud_start_with_pac(3sec) ,
dce_aud_start_with_server_binding(3sec) .

dce_aud_print(3sec)

1040 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_put_ev_info

Purpose

Adds event-specific information to a specified audit record buffer. Used by
client/server applications.

Synopsis
#include <dce/audit.h>

void dce_aud_put_ev_info(
dce_aud_rec_t ard
dce_aud_ev_info_t info
unsigned32 *status);

Parameters

Input
ard A pointer to an audit record descriptor initialized by one of the

dce_aud_start_ *() functions.

info A data structure containing an event-specific information item that is to be
appended to the tail of the audit record identified by ard . The possible
formats of the event-specific information are listed in the sec_intro(3sec)
reference page of this book.

Output
status The status code returned by this routine. This status code indicates whether

the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_put_ev_info() function adds event-specific information to an audit
record. The event-specific information is included in an audit record by calling
dce_aud_put_ev_info() one or more times. The order of the information items
included by multiple calls is preserved in the audit record, so that they may be read
in the same order by the dce_aud_get_ev_info() function. This order is also
observed by the dce_aud_print() function. The info parameter is a pointer to an
instance of the self-descriptive dce_aud_ev_info_t structure.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_invalid_record_descriptor
The input audit record descriptor is invalid.

Chapter 6. DCE Security Service 1041

aud_s_evt_tail_info_exceeds_limit
The tail portion of the audit trail record has exceeded its limit of 4K.

aud_s_ok
The call was successful.

Related Information

Functions: dce_aud_commit(3sec) , dce_aud_open(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_name(3sec) , dce_aud_start_with_pac(3sec) ,
dce_aud_start_with_server_binding(3sec) .

dce_aud_put_ev_info(3sec)

1042 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_rename

Purpose

Renames the specified audit trail. This routine is used by the trail analysis and
examination tools.

Format
#include <dce/audit.h>

void dce_aud_rename(
dce_aud_trail_t at,
char * new_name,
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for writing

by the dce_aud_open routine.

new_name
The new audit trail file name.

Output
status The status code returned by this routine. If successful, the routine returns

aud_s_ok . Otherwise, the status code is one of the following:

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_trl_invalid_open_flags
The audit trail is opened with the read flag.

aud_s_invalid_name
The value of new_name is invalid (NULL or contains a period (.).

aud_s_rename_trail_file
The rename call failed on the trail file.

aud_s_rename_trail_index_file
The rename call failed on the index file.

Usage

The dce_aud_rename routine renames the audit trail file and the audit index file to
the name specified by new_name. DCE administrators can use this routine to save
the audit trail file before it reaches the wrapping point.

Note:

For a platform, where a FAT file system is applied, the specified name
cannot exceed 8 characters and the extension is not included.

The audit trail file and the audit index trail file must be closed and cannot be used
by any process before the files are renamed. The dce_aud_rename routine closes
the files before renaming them.

Chapter 6. DCE Security Service 1043

The dce_aud_open routine must be called to specify the desired audit trail. The
specified audit trail file must be opened with the aud_c_trl_open_write flag.
Otherwise, the audit trail that is currently set in at will be renamed.

Comments

Functions: dce_aud_clean(3sec) , dce_aud_open(3sec) , dce_aud_rewind(3sec) ,
dce_aud_save(3sec) .

dce_aud_rename(3sec)

1044 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_reset

Purpose

Resets the cursors and the file pointers of the specified audit trail file. Used by the
trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_reset(
dce_aud_trail_t *at
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened by the

function dce_aud_open() .

Output
status The status code returned by this function. This status code indicates

whether the routine was completed successfully or not. If the routine was
not completed successfully, the reason for the failure is given. For a list of
the possible status codes and their meanings, see ′′Errors’’.

Description

The dce_aud_reset() function resets the cursors and the file pointers of the
specified audit trail file. The function is used to explicitly reset the current cursors
and file pointers to the beginning of the audit trail file.

dce_aud_open() must be called to specify the desired audit trail file. Otherwise,
dce_aud_reset() will reset the audit trail which is currently set in the value of at.

If the call is successful, the file cursors are set to the beginning of the file.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages. The possible status codes and their meanings
are:

aud_s_ok
The call was successful

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid

Chapter 6. DCE Security Service 1045

Related Information

Functions: dce_aud_rewind(3sec) , dce_aud_clean(3sec) , dce_aud_open(3sec) .

dce_aud_reset(3sec)

1046 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_rewind

Purpose

Rewinds the specified audit trail file. Used by the trail analysis and examination
tools.

Synopsis
#include <dce/audit.h>

void dce_aud_rewind(
dce_aud_trail_t at
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for writing

by the function dce_aud_open() .

Output
status The status code returned by this function. This status code indicates

whether the routine was completed successfully or not. If the routine was
not completed successfully, the reason for the failure is given. For a list of
the possible status codes and their meanings, see ′′Errors’’.

Description

The dce_aud_rewind() function rewinds the specified audit trail file. This function
can be used to instantly clean up the audit trail file if it is no longer needed.

dce_aud_open() must be called to specify the desired audit trail file, and the
specified audit trail file must be opened with the aud_c_trl_open_write flag.
Otherwise, the routine will rewind the audit trail which is currently set in the value of
at.

If the call is successful, the file cursors are set to the beginning of the file.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

aud_s_invalid_trail_descriptor
The Audit Trail descriptor is invalid

Chapter 6. DCE Security Service 1047

aud_s_trl_invalid_open_flags
The Audit Trail is opened with open flag

aud_s_rewind_trail_file
The ftruncate() call failed on trail file

aud_s_rewind_index_file
The ftruncate() call failed on index file

Related Information

Functions: dce_aud_clean(3sec) , dce_aud_open(3sec) .

dce_aud_rewind(3sec)

1048 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_save

Purpose

Saves or archives the specified audit trail. This routine is used by the trail analysis
and examination tools.

Format
#include <dce/audit.h>

void dce_aud_save(
dce_aud_trail_t at,
char *name,
unsigned32 *status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the dce_aud_open routine.

name The new audit trail file name.

Output
status The status code returned by this routine. If successful, the routine returns

aud_s_ok . Otherwise, the status code is one of the following:

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_trail_file_exist
A file with the specified name already exists.

aud_s_cannot_open_trail_file
The fopen call failed on the trail file (R/W).

aud_s_cannot_open_index_file
The fopen call failed on the index file (R/W).

Usage

The dce_aud_save routine saves the specified audit trail and index files to the
specified names. This routine is useful for backup. DCE application developers can
use this routine to implement the save function in their applications.

For a platform, where a FAT file system is applied, the specified name cannot
exceed 8 characters and the extension is not included. If a NULL is specified for
name, the audit trail and index files are saved with a default extension. For
example, on the OS/2 platform, the file centrail is saved as centrail.old and
centrail.mdi is saved as centrail.odi . Similarly, on the AIX platform, central_trail is
saved as central_trail.old and central_trail.md_index is saved as
central_trail.md_index.old .

The dce_aud_open routine must be called to specify the desired audit trail to be
saved. Otherwise, the audit trail that is currently set in at will be saved.

Chapter 6. DCE Security Service 1049

Comments

Functions: dce_aud_clean(3sec) , dce_aud_open(3sec) , dce_aud_rename(3sec) ,
dce_aud_rewind(3sec) .

dce_aud_save(3sec)

1050 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_aud_set_local_cell_uuid

Purpose

Obtains the cell’s uuid.

Format
#include <dce/audit.h>

void dce_aud_set_local_cell_uuid(
uuid_t cell_uuid,
error_status_t *status);

Parameters

Input
cell_uuid

The cell’s uuid.

Output
status A pointer to the completion status. On successful completion, the routine

returns aud_s_ok .

Usage

Obtains the cell UUID from the registry and provides this to the audit daemon.

Chapter 6. DCE Security Service 1051

dce_aud_set_trail_size_limit

Purpose

Sets a limit to the audit trail size. Used by client/server applications.

Synopsis
#include <dce/audit.h>

void dce_aud_set_trail_size_limit(
dce_aud_trail_t at
unsigned32 file_size_limit_value
unsigned32 * status);

Parameters

Input
at A pointer to the descriptor of an audit trail file previously opened for reading

by the function dce_aud_open() .

file_size_limit_value
The desired maximum size of the audit trail file, in bytes.

Output
status Returns the status code of this routine. This status code indicates whether

the routine completed successfully or not. If the routine did not complete
successfully, the reason for the failure is given.

Description

The dce_aud_set_trail_size_limit() function can be used by an application that
links with libaudit to set the maximum size of the audit trail. This function must be
called immediately after calling dce_aud_open() .

For added flexibility, the environment variable DCEAUDITTRAILSIZE can also be
used to set the maximum trail size limit.

If none of these methods are used for setting the trail size, then a hardcoded limit
of 2 megabytes will be assumed.

If set, the value of the environment variable DCEAUDITTRAILSIZE overrides the
value set by this function. Any of the values set by DCEAUDITTRAILSIZE or this
function overrides the hardcoded default.

When the size limit is reached, the current trail file is copied to another file. The
name of this new file is the original filename appended by a timestamp. For
example, if the name of the original trail file is central_trail , its companion trail file
is named central_trail.md_index . These two files will be copied to the following
locations:
central_trail.1994-09-26-16-38-15
central_trail.1994-09-26-16-38-15.md_index

When a trail file is copied to a new file by the audit library because it has reached
the size limit, a serviceability message is issued to the console notifying the user

1052 IBM DCE for AIX, Version 2.2: Application Development Reference

that an audit trail file (and its companion index file) is available to be backed up.
Once the backup is performed, it is advisable to remove the old trail file, so as to
prevent running out of disk space.

Auditing will then continue, using the original name of the file, (in our example,
central_trail).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_invalid_trail_descriptor
The audit trail descriptor at is null.

aud_s_ok
The call is successful.

Related Information

Functions: dce_aud_open(3sec) .

dce_aud_set_trail_size_limit(3sec)

Chapter 6. DCE Security Service 1053

dce_aud_start

Purpose

Determines whether a specified event should be audited given the client binding
information and the event outcome. Used by client/server applications

Synopsis
#include <dce/audit.h>

void dce_aud_start(
unsigned32 event
rpc_binding_handle_t binding
unsigned32 options
unsigned32 outcome
dce_aud_rec_t *ard
unsigned32 *status);

Parameters

Input
event Specifies the event to be audited. This is a 32-bit event number. The event

field in the audit record header will be set to this number.

binding
Specifies the client’s RPC binding handle from which the client identification
information is retrieved to set the client, cell, num_groups, groups, and addr
fields in the audit record header.

options
Specifies the optional header information desired (aud_c_evt_all_info ,
aud_c_evt_group_info , or aud_c_evt_address_info).

It can also be used to specify whether the audit records are always logged
(aud_c_evt_always_log) or that an alarm message is always sent to the
standard output (aud_c_evt_always_alarm). If any of these two options is
selected, the filter is bypassed.

The value of the options parameter is the bitwise OR of any selected
combination of the following option values:

aud_c_evt_all_info
Includes all optional information (groups and address) in the audit
record header.

aud_c_evt_groups_info
Includes the groups information in the audit record header.

aud_c_evt_address_info
Includes the client address information in the audit record header.

aud_c_evt_always_ems
Unconditionally sends the audit record to EMS as an audit event.

aud_c_evt_always_log
Bypasses the filter mechanism and indicates that the event must be
logged.

1054 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_c_evt_always_alarm
Bypasses the filter mechanism and indicates that an alarm
message must be sent to the system console for the event.

outcome
The event outcome to be stored in the header. The following event outcome
values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is pending,
being one in a series of connected events, where the application
desires to record the real outcome only after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success) is still
unknown. This outcome exists only between a dce_aud_start() (all
varieties of this routine) call and the next dce_aud_commit() call.
You can also use 0 to specify this outcome.

Output
ard Returns a pointer to an audit record buffer. If the event does not need to be

audited because it is not selected by the filters, or if the environment
variable DCEAUDITOFF has been set, a NULL pointer is returned. If the
function is called with outcome set to aud_c_esl_cond_unknown , it is
possible that the function cannot determine whether the event should be
audited. In this case, the audit record descriptor is still allocated and its
address is returned to the caller. An outcome other than
aud_c_esl_cond_unknown must be provided when calling the
dce_aud_commit() function.

status The status code returned by this function. This status code indicates
whether the routine was completed successfully or not. If the routine was
not completed successfully, the reason for the failure is given.

Description

The dce_aud_start() function determines if an audit record should be generated for
the specified event. The decision is based on the event filters, an environment
variable (DCEAUDITOFF), the client’s identity provided in the binding parameter,
and the event outcome (if it is provided in the outcome parameter). If this event
needs to be audited, the function allocates an audit record descriptor and returns a
pointer to it, (that is, ard). If the event does not need to be audited, a NULL ard is
returned. If an internal error(s) has occurred, a NULL pointer is returned in ard. If
the aud_c_evt_always_log or aud_c_evt_always_alarm option is selected, an
audit record descriptor will always be created and returned.

The dce_aud_start() function is designed to be used by RPC applications.
Non-RPC applications that use the DCE authorization model (that is, DCE ACL and
PAC) must use dce_aud_start_with_pac() . Non-RPC applications that do not use
the DCE authorization model must use dce_aud_start_with_name() .

dce_aud_start(3sec)

Chapter 6. DCE Security Service 1055

This function obtains the client identity information from the RPC binding handle
and records it in the newly-created audit record descriptor.

Event-specific information can be added to the record by calling the
dce_aud_put_ev_info() function. This function can be called multiple times after
calling dce_aud_start() and before calling dce_aud_commit() . A completed audit
record will be appended to an audit trail file or sent to the audit daemon (depending
on the value of the description parameter used in the previous call to
dce_aud_open) by calling dce_aud_commit() .

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome,
and records an outcome-action table with ard. If the outcome is specified when
calling this function and the outcome does not require any action according to
filters, then this function returns a NULL ard.

If the outcome is not specified in the dce_aud_start() call, dce_aud_start() returns
a NULL ard if no action is required for all possible outcomes.

The caller should not change the outcome between the dce_aud_start() and
dce_aud_commit() calls arbitrarily. In this case, the outcome can be made more
specific, for example, from aud_c_esl_cond_unknown to
aud_c_esl_cond_success or from aud_c_esl_cond_pending to
aud_c_esl_cond_success .

An outcome change from aud_c_esl_cond_success to aud_c_esl_cond_denial is
not logically correct because the outcome aud_c_esl_cond_success may have
caused a NULL ard to be returned in this function. If the final outcome can be
aud_c_esl_cond_success , then it should be specified in this function, or use
aud_c_esl_cond_unknown .

This function can be called with the outcome parameter taking a value of zero or
the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success , aud_c_esl_cond_failure , aud_c_esl_cond_denial ,
and aud_c_esl_cond_pending . The outcome parameter used in the
dce_aud_commit() function should take one value from the same set of constants.

If dce_aud_start() used a nonzero value for outcome, then the constant used for
outcome in the dce_aud_commit() call should have been selected in the
dce_aud_start() call.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Status codes passed from rpc_binding_to_string_binding()

Status codes passed from rpc_string_free()

dce_aud_start(3sec)

1056 IBM DCE for AIX, Version 2.2: Application Development Reference

Status codes passed from dce_aud_start_with_name()

Status codes passed from sec_cred_get_initiator()

Status codes passed from sec_cred_get_v1_pac()

Status codes passed from dce_aud_start_with_pac()

Status codes passed from sec_cred_get_delegate()

Related Information

Functions: dce_aud_commit(3sec) , dce_aud_open(3sec) ,
dce_aud_put_ev_info(3sec) , dce_aud_start_with_name(3sec) ,
dce_aud_start_with_pac(3sec) , dce_aud_start_with_server_binding(3sec) .

dce_aud_start(3sec)

Chapter 6. DCE Security Service 1057

dce_aud_start_with_name

Purpose

Determines whether a specified event should be audited given the client/server
name and the event outcome. Used by non-RPC based client/server applications
that do not use the DCE authorization model

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_name(
unsigned32event
unsigned_char_t *client
unsigned_char_t *address
unsigned32 options
unsigned32 outcome
dce_aud_rec_t *ard
unsigned32 *status);

Parameters

Input
event Specifies the event to be audited. This is a 32-bit event number. The event

field in the audit record header will be set to this number.

client Specifies the principal name of the remote client/server.

address
Specifies the address of the remote client/server. The address could be in
any format of the underlying transport protocol.

options
Specifies the optional header information desired (aud_c_evt_all_info ,
aud_c_evt_group_info , aud_c_evt_address_info).

It can also be used to specify any of two options: to always log an audit
record (aud_c_evt_always_log) or to always send an alarm message to
the standard output (aud_c_evt_always_alarm). If any of these two
options is selected, the filter is bypassed. The value of the options
parameter is the bitwise OR of any selected combination of the following
option values:

aud_c_evt_all_info
Includes all optional information (groups and address) in the audit
record header.

aud_c_evt_groups_info
Includes the groups information in the audit record header.

aud_c_evt_address_info
Includes the client address information in the audit record header.

aud_c_evt_always_ems
Unconditionally sends the audit record to EMS as an audit event.

aud_c_evt_always_log
Bypasses the filter mechanism and indicates that the event must be
logged.

1058 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_c_evt_always_alarm
Bypasses the filter mechanism and indicates that an alarm
message must be sent to the system console for the event.

outcome
The event outcome to be stored in the header. The following event outcome
values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is pending,
being one in a series of connected events, where the application
desires to record the real outcome only after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success) is still
unknown. This outcome exists only between a dce_aud_start() (all
varieties of this routine) call and the next dce_aud_commit() call.
You can also use 0 to specify this outcome.

Output
ard Returns a pointer to an audit record buffer. If the event does not need to be

audited because it is not selected by the filters or if the environment
variable DCEAUDITOFF has been set, a NULL pointer is returned. If the
function is called with outcome set to aud_c_esl_cond_unknown , the
function may not be able to determine whether the event should be audited.
In this case, the audit record descriptor is still allocated and its address is
returned to the caller. An outcome must be provided prior to logging the
record with the dce_aud_commit() function.

status The status code returned by this routine. This status code indicates whether
the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_start_with_name() function determines if an audit record must be
generated for the specified event. The decision is based on the event filters, an
environment variable (DCEAUDITOFF), the client’s identity provided in the input
parameters, and the event outcome (if it is provided in the outcome parameter). If
this event needs to be audited, the function allocates an audit record descriptor and
returns a pointer to it, (that is, ard). If the event does not need to be audited, NULL
is returned in the ard parameter. If either the aud_c_evt_always_log or
aud_c_evt_always_alarm option is selected, an audit record descriptor will always
be created and returned.

The dce_aud_start_with_name() function is designed to be used by non-RPC
applications that do not use the DCE authorization model (that is, DCE PAC and
ACL). RPC applications must use dce_aud_start() . Non-RPC applications that use
the DCE authorization model must use dce_aud_start_with_pac() .

dce_aud_start_with_name(3sec)

Chapter 6. DCE Security Service 1059

This function records the input identity parameters in the newly created audit record
descriptor.

Event-specific information can be added to the record by using the
dce_aud_put_ev_info() function, which can be called multiple times after calling
any of the dce_aud_start_ * and before calling dce_aud_commit() . A completed
audit record can either be appended to an audit trail file or sent to the audit daemon
by calling dce_aud_commit() .

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome,
and records an outcome-action table with ard. If the outcome is specified when
calling this function and the outcome does not require any action according to
filters, then this function returns a NULL ard.

If the outcome is not specified in the dce_aud_start_with_name() call,
dce_aud_start_with_name() returns a NULL ard if no action is required for all
possible outcomes.

The caller should not change the outcome between the
dce_aud_start_with_name() and dce_aud_commit() calls arbitrarily. In this case,
the outcome can be made more specific, for example, from
aud_c_esl_cond_unknown to aud_c_esl_cond_success or from
aud_c_esl_cond_pending to aud_c_esl_cond_success .

An outcome change from aud_c_esl_cond_success to aud_c_esl_cond_denial is
not logically correct because the outcome aud_c_esl_cond_success may have
caused a NULL ard to be returned in this function. If the final outcome can be
aud_c_esl_cond_success , then it should be specified in this function, or use
aud_c_esl_cond_unknown .

This function can be called with the outcome parameter taking a value of zero or
the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success , aud_c_esl_cond_failure , aud_c_esl_cond_denial ,
and aud_c_esl_cond_pending . The outcome parameter used in the
dce_aud_commit() function should take one value from the same set of constants.

If dce_aud_start_with_name() used a nonzero value for outcome, then the
constant used for outcome in the dce_aud_commit() call should have been
selected in the dce_aud_start_with_name() call.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Status codes passed from sec_rgy_site_open()

Status codes passed from sec_id_parse_name()

dce_aud_start_with_name(3sec)

1060 IBM DCE for AIX, Version 2.2: Application Development Reference

Status codes passed from dce_aud_start_with_pac()

Related Information

Functions: dce_aud_commit(3sec) , dce_aud_open(3sec) ,
dce_aud_put_ev_info(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_pac(3sec) , dce_aud_start_with_server_binding(3sec) .

dce_aud_start_with_name(3sec)

Chapter 6. DCE Security Service 1061

dce_aud_start_with_pac

Purpose

Determines whether a specified event must be audited given the client’s privilege
attribute certificate (PAC) and the event outcome. Used by non-RPC based
client/server applications that use the DCE authorization model

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_pac(
unsigned32 event
sec_id_pac_t *pac
unsigned_char_t *address
unsigned32 options
unsigned32 outcome
dce_aud_rec_t *ard
unsigned32 *status);

Parameters

Input
event Specifies the event to be audited. This is a 32-bit event number. The event

field in the audit record header will be set to this number.

pac Specifies the client’s PAC from which the client’s identification information is
retrieved to set the client, cell, num_groups, and groups fields in the audit
record header.

address
Specifies the client’s address. The address can be in any format that is
native to the underlying transport protocol.

options
Specifies the optional header information desired (aud_c_evt_all_info ,
aud_c_evt_group_info , aud_c_evt_address_info). It can also be used to
specify any of two options: to always log an audit record
(aud_c_evt_always_log) or to always send an alarm message to the
standard output (aud_c_evt_always_alarm). If any of these two options is
selected, the filter is bypassed.

The value of the options parameter is the bitwise OR of any selected
combination of the following option values:

aud_c_evt_all_info
Includes all optional information (groups and address) in the audit
record header.

aud_c_evt_groups_info
Includes the groups’ information in the audit record header.

aud_c_evt_address_info
Includes the client address information in the audit record header.

aud_c_evt_always_ems
Unconditionally sends the audit record to EMS as an audit event.

aud_c_evt_always_log
Bypasses the filter and indicates that the event must be logged.

1062 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_c_evt_always_alarm
Bypasses the filter and indicates that an alarm message must be
sent to the system console for the event.

outcome
The event outcome to be stored in the header. The following event outcome
values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is pending,
being one in a series of connected events, where the application
desires to record the real outcome only after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success) is still
unknown. This outcome exists only between a dce_aud_start() (all
varieties of this routine) call and the next dce_aud_commit() call.
You can also use 0 to specify this outcome.

Output
ard Returns a pointer to an audit record buffer. If the event does not need to be

audited because it is not selected by the filters, or if the environment
variable DCEAUDITOFF has been set, a NULL pointer is returned. If the
function is called with outcome set to aud_c_esl_cond_unknown , it is
possible that the function cannot determine whether the event should be
audited. In this case, the audit record descriptor is still allocated and its
address is returned to the caller. An outcome must be provided prior to
logging the record with the dce_aud_commit() function.

status The status code returned by this routine. This status code indicates whether
the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_start_with_pac() function determines if an audit record must be
generated for the specified event. The decision is based on the event filters, an
environment variable (DCEAUDITOFF), the client’s identity provided in the pac
parameter, and the event outcome (if it is provided in the outcome parameter). If
this event needs to be audited, the function allocates an audit record descriptor and
returns a pointer to it, (that is, ard). If the event does not need to be audited, NULL
is returned in the ard parameter. If either the aud_c_evt_always_log or
aud_c_evt_always_alarm option is selected, then an audit record descriptor will
always be created and returned.

The dce_aud_start_with_pac() function is designed to be used by non-RPC
applications that use the DCE authorization model (that is, DCE PAC and ACL).
RPC applications must use dce_aud_start() . Non-RPC applications that do not use
the DCE authorization model must use dce_aud_start_with_name() .

dce_aud_start_with_pac(3sec)

Chapter 6. DCE Security Service 1063

This function obtains the client’s identity information from the client’s privilege
attribute certificate (PAC) and records it in the newly created audit record descriptor.

Event-specific information can be added to the record by calling the
dce_aud_put_ev_info() function. This function can be called multiple times after
calling any of the dce_aud_start_ * functions and before calling
dce_aud_commit() . A completed audit record can either be appended to an audit
trail file or sent to the audit daemon by calling the dce_aud_commit() function.

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome,
and records an outcome-action table with ard. If the outcome is specified when
calling this function and the outcome does not require any action according to
filters, then this function returns a NULL ard.

If the outcome is not specified in the dce_aud_start_with_pac() call,
dce_aud_start_with_pac() returns a NULL ard if no action is required for all
possible outcomes.

The caller should not change the outcome between the dce_aud_start_with_pac()
and dce_aud_commit() calls arbitrarily. In this case, the outcome can be made
more specific, for example, from aud_c_esl_cond_unknown to
aud_c_esl_cond_success or from aud_c_esl_cond_pending to
aud_c_esl_cond_success .

An outcome change from aud_c_esl_cond_success to aud_c_esl_cond_denial is
not logically correct because the outcome aud_c_esl_cond_success may have
caused a NULL ard to be returned in this function. If the final outcome can be
aud_c_esl_cond_success , then it should be specified in this function, or use
aud_c_esl_cond_unknown .

This function can be called with the outcome parameter taking a value of zero or
the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success , aud_c_esl_cond_failure , aud_c_esl_cond_denial ,
and aud_c_esl_cond_pending . The outcome parameter used in the
dce_aud_commit() function should take one value from the same set of constants.

If dce_aud_start_with_pac() used a nonzero value for outcome, then the constant
used for outcome in the dce_aud_commit() call should have been selected in the
dce_aud_start_with_pac() call.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Status codes passed from sec_rgy_site_open()

Status codes passed from sec_rgy_properties_get_info()

dce_aud_start_with_pac(3sec)

1064 IBM DCE for AIX, Version 2.2: Application Development Reference

Status codes passed from uuid_create_nil()

Related Information

Functions: dce_aud_commit(3sec) , dce_aud_open(3sec) ,
dce_aud_put_ev_info(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_name(3sec) , dce_aud_start_with_server_binding(3sec) .

dce_aud_start_with_pac(3sec)

Chapter 6. DCE Security Service 1065

dce_aud_start_with_server_binding

Purpose

Determines whether a specified event must be audited given the server binding
information and the event outcome. Used by client/server applications

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_server_binding(
unsigned32 event
rpc_binding_handle_t binding
unsigned32 options
unsigned32 outcome
dce_aud_rec_t *ard
unsigned32 *status);

Parameters

Input
event Specifies the event to be audited. This is a 32-bit event number. The event

field in the audit record header will be set to this number.

binding
Specifies the server’s RPC binding handle from which the server
identification information is retrieved to set the client, cell, and addr fields in
the audit record header. Note that when an application client issues an
audit record, the server identity is represented in the client field of the
record.

options
This parameter can be used to specify the optional header information
desired (aud_c_evt_all_info , aud_c_evt_group_info ,
aud_c_evt_address_info). It can also be used to specify any of two
options: to always log an audit record (aud_c_evt_always_log) or to
always send an alarm message to the standard output
(aud_c_evt_always_alarm). If any of these two options is selected, the
filter is bypassed.

The value of the options parameter is the bitwise OR of any selected
combination of the following option values:

aud_c_evt_address_info
Includes the server address information in the audit record header.

aud_c_evt_always_ems
Unconditionally sends the audit record to EMS as an audit event.

aud_c_evt_always_log
Bypasses the filter and indicates that the event must be logged.

aud_c_evt_always_alarm
Bypasses the filter and indicates that an alarm message must be
sent to the system console for the event.

aud_c_evt_all_info
Includes all optional information (groups and their address) in the
audit record header.

1066 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_c_evt_groups_info
Includes the groups information in the audit record header.

outcome
The event outcome to be stored in the header. The following event outcome
values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is pending,
being one in a series of connected events, where the application
desires to record the real outcome only after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success) is still
unknown. This outcome exists only between a dce_aud_start() (all
varieties of this routine) call and the next dce_aud_commit() call.

Output
ard Returns a pointer to an audit record buffer. If the event does not need to be

audited because it is not selected by the filters, or if the environment
variable DCEAUDITOFF has been set, a NULL pointer is returned. If the
function is called with outcome set to aud_c_esl_cond_unknown , it is
possible that the function cannot determine whether the event should be
audited. In this case, the audit record descriptor is still allocated and its
address is returned to the caller. An outcome must be provided prior to
logging the record with the dce_aud_commit() function.

status The status code returned by this routine. This status code indicates whether
the routine was completed successfully or not. If the routine was not
completed successfully, the reason for the failure is given.

Description

The dce_aud_start_with_server_binding() function determines if an audit record
must be generated for the specified event. The decision is based on the event
filters, an environment variable (DCEAUDITOFF), the server’s identity provided in
the binding parameter, and the event outcome (if it is provided in the outcome
parameter). If this event needs to be audited, the function allocates an audit record
descriptor and returns a pointer to it (that is, ard). If the event does not need to be
audited, NULL is returned in the ard parameter. If the aud_c_evt_always_log or
aud_c_evt_always_alarm option is selected, an audit record descriptor will always
be created and returned.

The dce_aud_start_with_server_binding() function is designed to be used by
RPC applications. Non-RPC applications that use the DCE authorization model
must use the dce_aud_start_with_pac() function. Non-RPC applications that do
not use the DCE authorization model must use the dce_aud_start_with_name()
function.

dce_aud_start_with_server_binding(3sec)

Chapter 6. DCE Security Service 1067

This function obtains the server identity information from the RPC binding handle
and records it in the newly created audit record descriptor.

Event-specific information can be added to the record by calling the
dce_aud_put_ev_info() function. The dce_aud_put_ev_info() function can be
called multiple times after calling any of the dce_aud_start_ * functions and before
calling dce_aud_commit() . A completed audit record can either be appended to an
audit trail file or sent to the audit daemon by calling dce_aud_commit() .

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome,
and records an outcome-action table with ard. If the outcome is specified when
calling this function and the outcome does not require any action according to
filters, then this function returns a NULL ard.

If the outcome is not specified in the dce_aud_start_with_server_binding() call,
dce_aud_start_with_server_binding() returns a NULL ard if no action is required
for all possible outcomes.

The caller should not change the outcome between the
dce_aud_start_with_server_binding() and dce_aud_commit() calls arbitrarily. In
this case, the outcome can be made more specific, for example, from
aud_c_esl_cond_unknown to aud_c_esl_cond_success or from
aud_c_esl_cond_pending to aud_c_esl_cond_success .

An outcome change from aud_c_esl_cond_success to aud_c_esl_cond_denial is
not logically correct because the outcome aud_c_esl_cond_success may have
caused a NULL ard to be returned in this function. If the final outcome can be
aud_c_esl_cond_success , then it should be specified in this function, or use
aud_c_esl_cond_unknown .

This function can be called with the outcome parameter taking a value of 0 (zero) or
the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success , aud_c_esl_cond_failure , aud_c_esl_cond_denial ,
and aud_c_esl_cond_pending . The outcome parameter used in the
dce_aud_commit() function should take one value from the same set of constants.

If dce_aud_start_with_server_binding() used a nonzero value for outcome, then
the constant used for outcome in the dce_aud_commit() call should have been
selected in the dce_aud_start_with_server_binding() call.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Status codes passed from rpc_binding_inq_auth_info()

Status codes passed from rpc_binding_to_string_binding()

dce_aud_start_with_server_binding(3sec)

1068 IBM DCE for AIX, Version 2.2: Application Development Reference

Status codes passed from dce_aud_start_with_name()

Related Information

Functions: dce_aud_commit(3sec) , dce_aud_open(3sec) ,
dce_aud_put_ev_info(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_name(3sec) , dce_aud_start_with_pac(3sec) .

dce_aud_start_with_server_binding(3sec)

Chapter 6. DCE Security Service 1069

dce_aud_start_with_uuid

Purpose

Determines whether a specified event should be audited given the client/server
UUID and the event outcome. Used by client/server applications which already
know the UUIDs of their clients and wish to avoid the overhead of the audit library
acquiring them

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_uuid(
unsigned32 event
uuid_t server_uuid
uuid_t client_uuid
uuid_ trealm_uuid
unsigned_char_t *address
unsigned3 2options
unsigned32 outcome
dce_aud_rec_t * ard
unsigned32 *status);

Parameters

Input
event Specifies the event to be audited. This is a 32-bit event number. The event

field in the audit record header will be set to this number.

server_uuid
Specifies the calling application’s principal uuid.

client_uuid
Specifies the remote client/server’s principal uuid.

realm_uuid
Specifies the remote client/server’s cell uuid.

address
Specifies the remote client/server’s address. The address could be in any
format of the underlying transport protocol.

options
Specifies the optional header information desired (aud_c_evt_all_info ,
aud_c_evt_group_info , aud_c_evt_address_info).

It can also be used to specify any of two options: to always log an audit
record (aud_c_evt_always_log) or to always send an alarm message to
the standard output (aud_c_evt_always_alarm). If any of these two
options is selected, the filter is bypassed. The value of the options
parameter is the bitwise OR of any selected combination of the following
option values:

aud_c_evt_all_info
Includes all optional information (groups and address) in the audit
record header.

aud_c_evt_groups_info
Includes the groups information in the audit record header.

1070 IBM DCE for AIX, Version 2.2: Application Development Reference

aud_c_evt_address_info
Includes the client address information in the audit record header.

aud_c_evt_always_ems
Unconditionally sends the audit record to EMS as an audit event.

aud_c_evt_always_log
Bypasses the filter mechanism and indicates that the event must be
logged.

aud_c_evt_always_alarm
Bypasses the filter mechanism and indicates that an alarm
message must be sent to the system console for the event.

outcome
The event outcome to be stored in the header. The following event outcome
values are defined:

aud_c_esl_cond_unknown
The event outcome (denial, failure, or success) is still unknown.

aud_c_esl_cond_success
The event completed successfully.

aud_c_esl_cond_denial
The event failed due to access denial.

aud_c_esl_cond_failure
The event failed due to reasons other than access denial.

aud_c_esl_cond_pending
The event outcome is pending, being one in a series of connected
events, where the application desires to record the real outcome
only after the last event.

Output
ard Returns a pointer to an audit record buffer. If the event does not need to be

audited because it is not selected by the filters, or if the environment
variable DCEAUDITOFF has been set, a NULL pointer is returned. If the
function is called with outcome set to aud_c_esl_cond_unknown , it is
possible that the function cannot determine whether the event should be
audited. In this case, the audit record descriptor is still allocated and its
address is returned to the caller. An outcome, different from unknown , must
be provided prior to logging the record with the dce_aud_commit()
function.

status The status code returned by this routine. This status code indicates whether
the routine completed successfully or not. If the routine did not complete
successfully, the reason for the failure is given.

Description

The dce_aud_start_with_uuid() function determines if an audit record must be
generated for the specified event. The decision is based on the event filters, an
environment variable (DCEAUDITOFF), the client’s identity provided in the input
parameters, and the event outcome (if it is provided in the outcome parameter). If
this event needs to be audited, the function allocates an audit record descriptor and
returns a pointer to it, (that is, ard). If the event does not need to be audited, NULL

dce_aud_start_with_uuid(3sec)

Chapter 6. DCE Security Service 1071

is returned in the ard parameter. If either the aud_c_evt_always_log or
aud_c_evt_always_alarm option is selected, an audit record descriptor will always
be created and returned.

The dce_aud_start_with_uuid() function is designed to be used by RPC
applications that know their client’s identity in UUID form. Otherwise, RPC
applications should use dce_aud_start() . Non-RPC applications that use the DCE
authorization model should use dce_aud_start_with_pac() . The
dce_aud_start_with_name() function should be used by non-RPC applications that
do not use the DCE authorization model.

This function records the input identity parameters in the newly-created audit record
descriptor.

Event-specific information can be added to the record by using the
dce_aud_put_ev_info() function, which can be called multiple times after calling
any of the dce_aud_start_ * and before calling dce_aud_commit() . A completed
audit record can either be appended to an audit trail file or sent to the audit daemon
by calling dce_aud_commit() .

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome,
and records an outcome-action table with ard. If the outcome is specified when
calling this function and the outcome does not require any action according to
filters, then this function returns a NULL ard.

If the outcome is not specified in the dce_aud_start_with_uuid() call,
dce_aud_start_with_uuid() returns a NULL ard if no action is required for all
possible outcomes.

The caller should not change the outcome between the dce_aud_start_with_uuid()
and dce_aud_commit() calls arbitrarily. In this case, the outcome can be made
more specific, for example, from aud_c_esl_cond_unknown to
aud_c_esl_cond_success or from aud_c_esl_cond_pending to
aud_c_esl_cond_success .

An outcome change from aud_c_esl_cond_success to aud_c_esl_cond_denial is
not logically correct because the outcome aud_c_esl_cond_success may have
caused a NULL ard to be returned in this function. If the final outcome can be
aud_c_esl_cond_success , then it should be specified in this function, or use
aud_c_esl_cond_unknown .

This function can be called with the outcome parameter taking a value of zero or
the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success , aud_c_esl_cond_failure , aud_c_esl_cond_denial ,
and aud_c_esl_cond_pending . The outcome parameter used in the
dce_aud_commit() function should take one value from the same set of constants.

If dce_aud_start_with_uuid() used a nonzero value for outcome, then the constant
used for outcome in the dce_aud_commit() call should have been selected in the
dce_aud_start_with_uuid() call.

Return Values

No value is returned.

dce_aud_start_with_uuid(3sec)

1072 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

aud_s_ok
The call was successful.

Status codes passed from dce_aud_start_with_pac()

Related Information

Functions: dce_aud_commit(3sec) , dce_aud_open(3sec) ,
dce_aud_put_ev_info(3sec) , dce_aud_start(3sec) ,
dce_aud_start_with_name(3sec) , dce_aud_start_with_pac(3sec) ,
dce_aud_start_with_server_binding(3sec) .

dce_aud_start_with_uuid(3sec)

Chapter 6. DCE Security Service 1073

get_event_name_from_number

Purpose

Returns the event name from the event number. This routine is used by the trail
analysis and examination tools.

Format
#include <dce/audit.h>

boolean32 get_event_name_from_number(
unsigned32 number,
char *name);

Parameters

Input
number

The unsigned 32-bit integer or hexadecimal event number.

Output
name The event name associated with the unsigned 32-bit event number.

Usage

The get_event_name_from_number routine returns the event name (ASCII) of the
associated unsigned 32-bit event number. This routine is used in dce_aud_print to
display the human readable form of the audit records. This routine can also be used
in any application where it is necessary to obtain the event name from the event
number.

Comments

Functions: get_event_number_from_name(3sec) .

1074 IBM DCE for AIX, Version 2.2: Application Development Reference

get_event_number_from_name

Purpose

Returns the event number from the event name. This routine is used by the trail
analysis and examination tools.

Format
#include <dce/audit.h>

boolean32 get_event_number_from_name(
char *name,
unsigned32 *number);

Parameters

Input
name The ASCII form of the event name.

Output
number

The unsigned 32-bit integer or hexadecimal event number associated with
the event name.

Usage

The get_event_number_from_name routine returns the unsigned 32-bit event
number associated with the event name. This routine is used in dce_aud_print to
display the human readable form of the audit records. This routine can also be used
in any application where it is necessary to obtain the event number from the event
name.

Comments

Functions: get_event_name_from_number(3sec) .

Chapter 6. DCE Security Service 1075

gss_accept_sec_context

Purpose

Establishes a security context between the application and a context acceptor

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_accept_sec_context(
OM_uint32 *minor_status
gss_ctx_id_t *context_handle
gss_cred_id_t verifier_cred_handle
gss_buffer_t input_token_buffer
gss_channel_bindings_t input_chan_bindings
gss_name_t *src_name
gss_OID *actual_mech_type
gss_buffer_t output_token
int *ret_flags
OM_uint32 *time_rec
gss_cred_id_t *delegated_cred_handle);

Parameters

Input
verifier_cred_handle

Specifies the credential handle (the identity) claimed by the context
acceptor. This is optional information. The credential must be either an
ACCEPT type credential or a BOTH type credential. If you do not specify a
credential handle and specify instead GSS_C_NO_CREDENTIAL , the
application can accept a context under any registered identity. Use the
gssdce_register_acceptor_identity() routine to register an identity before
specifying GSS_C_NO_CREDENTIAL .

input_token_buffer
Specifies the token received from the context acceptor.

input_chan_bindings
Specifies bindings supplied by the context acceptor.

Allows the context acceptor to bind the channel identification information
securely to the security context.

Input/Output
context_handle

Specifies a context handle for a new context. The first time the context
acceptor uses the routine, specify GSS_C_NO_CONTEXT to set up a
specific context. In subsequent calls, use the value returned by this
parameter.

Output
src_name

Returns the authenticated name of the context acceptor. This information is
optional. If the authenticated name is not required, specify NULL.

To deallocate the authenticated name, pass it to the gss_release_name()
routine.

1076 IBM DCE for AIX, Version 2.2: Application Development Reference

actual_mech_type
Returns the security mechanism with which the context was established.
The security mechanism will be one of the following:

v GSSDCE_C_OID_DCE_KRBV5_DES (for DCE security)

v GSSDCE_C_OID_KRBV5_DES (for Kerberos Version 5)

output_token
Returns a token to pass to the context initiator. If no token is to be passed
to the context acceptor, the routine sets the length field of the returned
token buffer to 0 (zero).

ret_flags
Returns a bitmask containing six independent flags, each of which requests
that the context support a service option. The following symbolic names are
provided to correspond to each flag. The symbolic names should be
logically ANDed with the value of ret_flags to test whether the context
supports the service option.

GSS_C_DELEG_FLAG

True Delegated credentials are available from the
delegated_cred_handle parameter.

False No credentials were delegated.

GSS_C_MUTUAL_FLAG

True The context acceptor requested mutual authentication.

False The context acceptor did not request mutual authentication.

GSS_C_REPLAY_FLAG

True Replayed signed or sealed messages will be detected.

False Replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG

True Out-of-sequence signed or sealed messages will be
detected.

False Out-of-sequence signed or sealed messages will not be
detected.

GSS_C_CONF_FLAG

True Confidentiality services are available by calling the
gss_seal() routine.

False Confidentiality services are not available. However, the
application can call the gss_seal() routine to provide
message encapsulation, data-origin authentication, and
integrity services.

GSS_C_INTEG_FLAG

True Integrity services can be invoked by calling either the
gss_sign() or gss_seal() routine.

False Integrity services for individual messages are not available.

time_rec
Returns the number of seconds for which the context remains valid. This is
optional information. If the time is not required, specify NULL.

gss_accept_sec_context(3sec)

Chapter 6. DCE Security Service 1077

delegated_cred_handle
Returns the credential handle for credentials received from the context
acceptor. The credential handle is valid only if delegated credentials are
available. If the ret_flags parameter is true, the flag GSS_C_DELEG_FLAG
is set, indicating that delegated credentials are available.

minor_status
Returns a status code from the security mechanism.

Description

The gss_accept_sec_context() routine is the second step in establishing a
security context between the context initiator and a context acceptor. In the first
step, the context initiator calls the gss_init_sec_context() routine. The
gss_init_sec_context() routine generates a token for the security context and
returns the token to the context initiator. The context initiator sends the token to the
context acceptor.

In the second step, the context acceptor calls the gss_accept_sec_context()
routine with the token received from the context initiator.

The gss_accept_sec_context() routine will return an output_token parameter if the
context initiator requested mutual authentication. The context acceptor must send
the output_token back to the context initiator to complete establishing the context if
the GSS_C_MUTUAL_FLAG is set.

The gss_accept_sec_context() routine must find a key to decrypt the token.
Therefore, the acceptor’s principal name must be registered prior to calling the
gss_accept_sec_context() routine. The acceptor may register the principal name
indirectly with the gss_acquire_cred() routine if the key is defined in the default
key table or the acceptor may call the gssdce_register_acceptor_identity()
routine. The token contains the unencrypted principal name of the context acceptor.
The acceptor’s principal name identifies the key that the context initiator used to
encrypt the rest of the token. The gss_accept_sec_context() routine matches the
principal name with a key in the following way:

v If you specify a credential, the principal in the credential and the name in the
token must match. The acceptor’s principal name is used to locate the encryption
key in the registered key table.

v If you specify GSS_C_NO_CREDENTIAL , the acceptor’s principal name is used
to locate the encryption key in the registered key table.

v If the principal name is not registered, gss_accept_sec_context() returns the
status code GSS_S_FAILURE .

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_BINDINGS
The input_token parameter contains different channel bindings from those
specified with the input_chan_bindings parameter.

gss_accept_sec_context(3sec)

1078 IBM DCE for AIX, Version 2.2: Application Development Reference

GSS_S_BAD_SIG
The input_token parameter contains an invalid signature.

GSS_S_CREDENTIALS_EXPIRED
The referenced credentials have expired.

GSS_S_DEFECTIVE_CREDENTIAL
Consistency checks performed on the credential failed.

GSS_S_DEFECTIVE_TOKEN
Consistency checks performed on the input_token parameter failed.

GSS_S_DUPLICATE_TOKEN
The input_token parameter was already processed. This is a fatal error that
occurs during context establishment.

Note: If Sequence or Replay checking is requested, Mutual authentication
is assumed.

GSS_S_FAILURE
The routine failed. See the minor_status parameter return value for more
information.

GSS_S_NO_CONTEXT
The supplied context handle did not refer to a valid context.

GSS_S_NO_CRED
Indicates either the supplied credentials were not valid for context
acceptance or the credential handle did not reference any credentials.

GSS_S_OLD_TOKEN
The input_token parameter was too old. This is a fatal error that occurs
during context establishment.

Note: If Sequence or Replay checking is requested, Mutual authentication
is assumed.

Related Information

Functions: gss_acquire_cred(3sec) , gss_delete_sec_context(3sec) ,
gss_init_sec_context(3sec) , gssdce_register_acceptor_identity(3sec) .

gss_accept_sec_context(3sec)

Chapter 6. DCE Security Service 1079

gss_acquire_cred

Purpose

Allows an application to acquire a handle for an existing named credential

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_acquire_cred(
OM_uint32 *minor_status
gss_name_t desired_name
OM_uint32 time_req
gss_OID_set desired_mechs
int cred_usage
gss_cred_id_t *output_cred_handle
gss_OID_set *actual_mechs
OM_uint32 *time_rec);

Parameters

Input
desired_name

Specifies the principal name to use for the credential.

time_req
Specifies the number of seconds that credentials remain valid.

desired_mechs
Specifies the object identifier (OID) set for the security mechanism to use
with the credential, as follows:

DCE security
Specify GSS_C_NULL_OID_SET .

Kerberos
Specify GSSDCE_C_OID_KRBV5_DES .

Both DCE security and Kerberos
Specify GSSDCE_C_OID_DCE_KRBV5_DES and
GSSDCE_C_OID_KRBV5_DES .

To help ensure portability of your application, request the default security
mechanism by specifying GSS_C_NULL_OID_SET .

cred_usage
Specify one of the following:

GSS_C_BOTH
Specifies credentials that the context initiator can use to either
initiate or accept security contexts.

GSS_C_ACCEPT
Specifies credentials that the context initiator can use only to accept
security contexts.

Output
output_cred_handle

Returns the handle for the return credential.

1080 IBM DCE for AIX, Version 2.2: Application Development Reference

actual_mechs
Returns a set of mechanisms for which the credential is valid. This
information is optional. If you do not want a set of mechanisms returned,
specify NULL.

time_rec
Returns the actual number of seconds for which the return credential
remains valid. This information is optional. If the actual number of seconds
is not required, specify NULL.

minor_status
Returns a status code from the security mechanism.

Description

The gss_acquire_cred() routine allows an application to obtain a handle for either
an ACCEPT or a BOTH credential. The application then passes the credential
handle to either the gss_init_sec_context() routine or the
gss_accept_sec_context() routine.

Credential handles created by the gss_acquire_cred() routine contain a principal
name. If the principal name is unregistered, the gss_acquire_cred() routine
automatically registers the principal in the default key table. You can change the
principal’s key table by calling the gssdce_register_acceptor_identify() routine.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_MECH
The requested security mechanism is unsupported or unavailable.

GSS_S_BAD_NAMETYPE
The name passed by the desired_name parameter is unsupported.

GSS_S_BAD_NAME
An invalid name was passed by the desired_name parameter.

GSS_S_FAILURE
The routine failed. See the minor_status parameter return value for more
information.

Related Information

Functions: gssdce_accept_sec_context(3sec) ,
gssdce_create_empty_oid_set(3sec) ,
gssdce_login_context_to_credential(3sec) ,
gssdce_register_acceptor_identity(3sec) , gss_init_sec_context(3sec) .

gss_acquire_cred(3sec)

Chapter 6. DCE Security Service 1081

gss_compare_name

Purpose

Allows an application to compare two internal names to determine whether they are
equivalent

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_compare_name(
OM_uint32 *minor_status
gss_name_t name1
gss_name_t name2
int *name_equal);

Parameters

Input
name1

Specifies the first internal name.

name2
Specifies the second internal name.

Output
name_equal

Returns one of the following values:

TRUE The names are the same.

FALSE
The names are not the same.

minor_status
Returns a status code from the security mechanism.

Description

The gss_compare_name() routine lets an application compare two internal names
to determine whether they are the same. This routine does not resolve the names
to see if they refer to the same object. It simply compares the input names for
equivalence.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_NAMETYPE
The name passed by the name1 or name2 parameter is unsupported.

1082 IBM DCE for AIX, Version 2.2: Application Development Reference

GSS_S_BAD_NAME
An invalid name was passed by the name1 or name2 parameter.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Related Information

Functions: gss_display_name(3sec) , gss_import_name(3sec) ,
gss_release_name(3sec) .

gss_compare_name(3sec)

Chapter 6. DCE Security Service 1083

gss_context_time

Purpose

Checks the number of seconds for which the context will remain valid

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_context_time(
OM_uint32 *minor_status
gss_ctx_id_t context_handle
OM_uint32 *time_rec);

Parameters

Input
context_handle

Specifies the context to be checked.

Output
time_rec

Returns the number of seconds that the context will remain valid. Returns a
0 (zero) if the context has already expired.

minor_status
Returns a status code from the security mechanism.

Description

The gss_context_time() routine checks the number of seconds for which the
context will remain valid.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_CONTEXT_EXPIRED
The context has already expired.

GSS_S_CREDENTIALS_EXPIRED
The context is recognized but the associated credentials have expired.

GSS_S_NO_CONTEXT
The context identified in the context_handle parameter was not valid.

GSS_S_FAILURE
The routine failed. See the minor_status parameter return value for more
information.

1084 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_delete_sec_context

Purpose

Deletes a security context

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_delete_sec_context(
OM_uint32 *minor_status
gss_ctx_id_t *context_handle
gss_buffer_t output_token_buffer);

Parameters

Input/Output
context_handle

Specifies the context handle for the context to delete.

Output
minor_status

Returns a status code from the security mechanism.

output_token_buffer
Returns a token to pass to the context acceptor.

Description

The gss_delete_sec_context() routine deletes a security context. It also deletes
the local data structures associated with the security context. When it deletes the
context, the routine can generate a token. The application passes the token to the
context acceptor. The context acceptor then passes the token to the
gss_process_context_token() routine, telling it to delete the context and all
associated local data structures.

When the context is deleted, the applications cannot use the context_handle
parameter for additional security services.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. See the minor_status parameter return value for more
information.

GSS_S_NO_CONTEXT
The supplied context handle did not refer to a valid context.

Chapter 6. DCE Security Service 1085

Related Information

Functions: gss_accept_sec_context(3sec) , gss_init_sec_context(3sec) ,
gss_process_context_token(3sec) .

gss_delete_sec_context(3sec)

1086 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_display_name

Purpose

Provides to an application the textual representation of an opaque internal name

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_display_name(
OM_uint32 *minor_status
gss_name_t input_name
gss_buffer_t output_name_buffer
gss_OID *output_name_type);

Parameters

Input
input_name

Specifies the name to convert to text.

Output
output_name_buffer

Returns the name as a character string.

output_name_type
Returns the type of name to display as a pointer to static storage. The
application should treat this as read-only.

minor_status
Returns a status code from the security mechanism.

Description

The gss_display_name() routine provides an application with the text form of an
opaque internal name. The application can use the text to display the name but not
to print it.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_NAMETYPE
The name passed by the input_name parameter is recognized.

GSS_S_BAD_NAME
An invalid name was passed by the input_name parameter.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Chapter 6. DCE Security Service 1087

Related Information

Functions: gss_compare_name(3sec) , gss_import_name(3sec) ,
gss_release_name(3sec) .

gss_display_name(3sec)

1088 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_display_status

Purpose

Provides an application with the textual representation of a GSSAPI status code
that can be displayed to a user or used for logging

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_display_status(
OM_uint32 *minor_status
OM_uint32 status_value
int status_type
gss_OID mech_type
int *message_context
gss_buffer_t status_string);

Parameters

Input
status_value

Specifies the status value to convert.

status_type
Specifies one of the following status types:

GSS_C_GSS_CODE
Major status; a GSS status code.

GSS_C_MECH_CODE
Minor status; either a DCE security status code or a Kerberos
status code.

mech_type
Specifies the security mechanism. To use DCE security, specify either of the
following:

v GSSDCE_C_OID_DCE_KRBV5_DES

v GSS_C_NULL_OID_SET

To use Kerberos Version 5, specify GSSDCE_C_OID_KRBV5_DES .

Input/Output
message_context

Indicates whether the status code has multiple messages to read.

The first time an application calls the routine, you initialize the parameter to
0 (zero). The routine returns the first message. If there are more messages,
the routine sets the parameter to a nonzero value. The application calls the
routine repeatedly to get the next message, until the message_context
parameter is zero again.

Output
status_string

Returns the status value as a text message.

Chapter 6. DCE Security Service 1089

minor_status
Returns a status code from the security mechanism.

Description

The gss_display_status() routine provides the context initiator with a textual
representation of a Generic Security Service Application Programming Interface
(GSSAPI) status code so that the application can display the message to a user or
log the message. Because some status values can indicate more than one error,
the routine enables the calling application to process status codes with multiple
messages.

The message_context parameter indicates which error message the application
should extract from the status_value parameter. The first time an application calls
the routine, it should initialize the message_context parameter to 0 (zero) and return
the first message. If there are additional messages to read, the
gss_display_status() routine returns a nonzero value. The application can call
gss_display_status() repeatedly to generate a single text string for each call.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_MECH
The translation requires a mechanism that is unsupported or unavailable.

GSS_S_BAD_STATUS
Either the status value was not recognized or the status type was
something other than GSS_C_GSS_CODE or GSS_C_MECH_CODE.

GSS_S_FAILURE
The routine failed. Check the minor_status for details.

Related Information

Functions: gss_accept_sec_context(3sec) , gss_acquire_cred(3sec) ,
gss_compare_name(3sec) , gss_delete_sec_context(3sec) ,
gss_display_status(3sec) , gss_import_name(3sec) , gss_inquire_cred(3sec) ,
gssdce_extract_creds_from_sec_context(3sec) ,
gssdce_login_context_to_cred(3sec) .

gss_display_status(3sec)

1090 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_import_name

Purpose

Converts a printable name to an internal form

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_import_name(
OM_uint32 *minor_status
gss_buffer_t input_buffer_name
gss_OID input_name_type
gss_name_t *output_name);

Parameters

Input
input_name_buffer

Specifies the buffer containing the printable name to convert.

input_name_type
Specifies the object identifier for the type of printable name.

Specify GSS_C_NULL_OID to use the DCE name. You can explicitly
request the DCE name by using GSSDCE_C_OID_DCE_NAME. To help
ensure portability of your application, use the default, GSS_C_NULL_OID .

Output
output_name

Returns the name in an internal form.

minor_status
Returns a status code from the security mechanism.

Description

The gss_import_name() routine converts a printable name to an internal form.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_NAMETYPE
The name passed by the input_name parameter is not recognized.

GSS_S_BAD_NAME
The routine could not interpret the input_name parameter as a name of the
type specified.

GSS_S_FAILURE
Check the minor status for details.

Chapter 6. DCE Security Service 1091

Related Information

Functions: gss_compare_name(3sec) , gss_display_name(3sec) ,
gss_release_name(3sec) .

gss_import_name(3sec)

1092 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_indicate_mechs

Purpose

Allows an application to determine which underlying security mechanisms are
available

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_indicate_mechs(
OM_uint32 *minor_status
gss_OID_set *mech_set);

Parameters

Output
mech_set

Returns the set of supported security mechanisms. The value of
gss_OID_set is a pointer to a static storage and should be treated as
read-only by the context initiator.

minor_status
Returns a status code from the security mechanism.

Description

The gss_indicate_mechs() routine enables an application to determine which
underlying security mechanisms are available. These are DCE security and
Kerberos Version 5.

You can use the gssdce_test_oid_set_member() routine to check whether a
specific security mechanism is available.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Related Information

Functions: gssdce_test_oid_set_member(3sec) .

Chapter 6. DCE Security Service 1093

gss_init_sec_context

Purpose

Establishes a security context between the context initiator and a context acceptor

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_init_sec_context(
OM_uint32 *minor_status
gss_cred_id_t claimant_cred_handle
gss_ctx_id_t *context_handle
gss_name_t target_name
gss_OID mech_type
int req_flags
OM_uint32 time_req
gss_channel_bindings_t input_channel_bindings
gss_buffer_t input_token
gss_OID *actual_mech_types
gss_buffer_t output_token
int *ret_flags
OM_uint32 *time_rec);

Parameters

Input
claimant_cred_handle

Specifies an optional handle for the credential. To use the default credential,
supply GSS_C_NO_CREDENTIAL . The credential handle created refers to
the DCE default login context. The credential must be either an INITIATE or
BOTH type credential.

target_name
Specifies the name of the context acceptor.

mech_type
Specifies the security mechanism. To use DCE security, specify either of the
following:

v GSS_C_OID_DCE_KRBV5_DES

v GSS_C_NULL_OID

To use Kerberos, specify GSS_C_OID_KRBV5_DES .

req_flags
Specifies four independent flags, each of which requests that the context
support a service option. The following symbolic names are provided to
correspond to each flag. The symbolic names should be logically ORed to
form a bit-mask value.

GSS_C_DELEG_FLAG

TRUE Delegate credentials to the context acceptor.

FALSE
Do not delegate credentials.

GSS_C_MUTUAL_FLAG

TRUE The context acceptor has been asked to authenticate itself.

1094 IBM DCE for AIX, Version 2.2: Application Development Reference

FALSE
The context acceptor has not been asked to authenticates itself.

GSS_C_REPLAY_FLAG

TRUE Replayed signed or sealed messages will be detected.

FALSE
Replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG

TRUE Out-of-sequence signed or sealed messages will be detected.

FALSE
Out-of-sequence signed or sealed messages will not be detected.

time_req
Specifies the desired number of seconds for which the context should
remain valid. To specify the default validity period, use 0 (zero).

input_chan_bindings
Specifies the bindings set by the context initiator. Allows the context initiator
to bind the channel identification information securely to the security
context.

input_token
Specifies the token received from the context acceptor.

The first time the application calls the routine, you specify
GSS_NO_BUFFER. Subsequent calls require a token from the context
acceptor.

Input/Output
context_handle

Specifies the context handle for the new context.

The first time the application calls the routine, you specify
GSS_C_NO_CONTEXT. Subsequent calls use the value returned by the
first call.

Output
actual_mech_type

Returns one of the following values indicating the security mechanism:

v GSS_C_OID_DCE_KRBV5_DES for DCE security

v GSS_C_OID_KRBV5_DES for Kerberos

output_token
Returns the token to send to the context acceptor.

If the length field of the returned buffer is 0 (zero), no token is sent.

ret_flags
Returns six independent flags, each of which indicates that the context
supports a service option. The following symbolic names are provided to
correspond to each flag:

GSS_C_DELEG_FLAG

TRUE Credentials were delegated to the context acceptor.

FALSE
No credentials were delegated.

gss_init_sec_context(3sec)

Chapter 6. DCE Security Service 1095

GSS_C_MUTUAL_FLAG

TRUE The context acceptor has been asked to authenticate itself.

FALSE
The context acceptor has not been asked to authenticate
itself.

GSS_C_REPLAY_FLAG

TRUE Replayed signed or sealed messages will be detected.

FALSE
Replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG

TRUE Out-of-sequence signed or sealed messages will be
detected.

FALSE
Out-of-sequence signed or sealed messages will not be
detected.

GSS_C_CONF_FLAG

TRUE Confidentiality service can be invoked by calling the
gss_seal() routine.

FALSE
No confidentiality service is available. (Confidentiality can
be provided using the gss_seal() routine, which provides
only message encapsulation, data-origin authentication, and
integrity services.)

GSS_C_INTEG_FLAG

TRUE Integrity service can be invoked by calling either the
gss_sign() or gss_seal() routine.

FALSE
Integrity service for individual messages is unavailable.

time_rec
Returns the number of seconds for which the context will be valid. If the
mechanism does not support credential expiration, the routine returns the
value GSS_C_INDEFINITE. If the credential expiration time is not required,
specify NULL.

minor_status
Returns a status code from the security mechanism.

Description

The gss_init_sec_context() routine is the first step in the establishment of a
security context between the context initiator and the context acceptor. To ensure
the portability of the application, use its default credential by supplying
GSS_C_NO_CREDENTIAL to the claimant_cred_handle parameter. Specify an
explicit credential when the application needs an additional credential; for example,
to use delegation.

The first time the application calls the gss_init_sec_context() routine, specify the
input_token parameter as GSS_NO_BUFFER. Calls to the routine can return an

gss_init_sec_context(3sec)

1096 IBM DCE for AIX, Version 2.2: Application Development Reference

output_token for transfer to the context acceptor. The context acceptor presents the
token to the gss_accept_sec_context() routine.

If the context initiator does not require a token, gss_init_sec_context() sets the
length field of the output_token argument to 0 (zero).

To complete establishing the context, the calling application can require one or
more reply tokens from the context acceptor. If the application requires reply tokens,
the gss_init_sec_context() routine returns a status value of
GSS_S_CONTINUE_NEEDED. The application calls the routine again when the
reply token is received from the context acceptor and passes the token to the
gss_init_sec_context() routine via the input_token parameter.

The values returned by the ret_flags and time_rec parameters are not defined
unless the routine returns the status GSS_S_COMPLETE.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_BINDINGS
The input_token parameter contains different channel bindings from those
specified with the input_chan_bindings parameter.

GSS_S_BAD_NAMETYPE
The target_name parameter contains an invalid or unsupported name type.

GSS_S_BAD_NAME
The target_name parameter was incorrectly formed.

GSS_S_BAD_SIG
Indicates either that the input_token parameter contains an invalid signature
or that the input_token parameter contains a signature that could not be
verified.

GSS_S_CONTINUE_NEEDED
To complete the context, the gss_init_sec_context() routine must be called
again with a token required from the context acceptor.

GSS_S_CREDENTIALS_EXPIRED
The referenced credentials have expired.

GSS_S_DEFECTIVE_CREDENTIAL
Consistency checks performed on the credential failed.

GSS_S_DEFECTIVE_TOKEN
Consistency checks performed on the input_token parameter failed.

GSS_S_DUPLICATE_TOKEN
The input_token parameter was already processed. This is a fatal error that
occurs during context establishment.

Note: If Sequence or Replay checking is requested, Mutual authentication
is assumed.

gss_init_sec_context(3sec)

Chapter 6. DCE Security Service 1097

GSS_S_FAILURE
The routine failed. See the minor_status parameter return value for more
information.

GSS_S_NO_CONTEXT
The supplied context handle did not refer to a valid context.

GSS_S_OLD_TOKEN
The input_token parameter was too old. This is a fatal error that occurs
during context establishment.

Related Information

Functions: gss_accept_sec_context(3sec) , gss_delete_sec_context(3sec) .

gss_init_sec_context(3sec)

1098 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_inquire_cred

Purpose

Provides the calling application information about a credential

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_inquire_cred(
OM_uint32 *minor_status
gss_cred_id_t cred_handle
gss_name_t *name
OM_uint32 *lifetime
int *cred_usage
gss_OID_set *mechs);

Parameters

Input
cred_handle

Specifies a handle for the target credential. To get information about the
default credential, specify GSS_C_NO_CREDENTIAL .

Output
name Returns the principal name asserted by the credential. If the principal name

is not required, specify NULL.

lifetime
Returns the number of seconds for which the credential will remain valid.

If the credential expired, the parameter returns a 0 (zero). If there is no
credential expiration, the parameter returns the value GSS_C_INDEFINITE.
If an expiration time is not required, specify NULL.

cred_usage
Returns one of the following values describing how the application can use
the credential:

v GSS_C_INITIATE

v GSS_C_ACCEPT

v GSS_C_BOTH

If no usage information is required, specify NULL.

mechs Returns a set of security mechanisms supported by the credential, as
follows:

v GSSDCE_C_OID_DCE_KRBV5_DES (for DCE security)

v GSSDCE_C_OID_KRBV5_DES (for Kerberos)

minor_status
Returns a status code from the security mechanism.

Chapter 6. DCE Security Service 1099

Description

The gss_inquire_cred() routine provides information about a credential to the
calling application. The calling application must first have called the
gss_acquire_cred() routine for a handle for the credential.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_CREDENTIALS_EXPIRED
The credentials expired. If the lifetime parameter was passed as NULL, it is
set to 0 (zero).

GSS_S_DEFECTIVE_CREDENTIAL
The credentials were invalid.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CRED
The routine could not access the credentials.

Related Information

Functions: gss_acquire_cred(3sec) .

gss_inquire_cred(3sec)

1100 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_process_context_token

Purpose

Passes a context to the security service

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_process_context_token(
OM_uint32 *minor_status
gss_ctx_id_t context_handle
gss_buffer_t input_token_buffer);

Parameters

Input
context_handle

Specifies the context handle on which the security service processes the
token.

input_token_buffer
Specifies an opaque pointer to the first byte of the token to be processed.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gss_process_context_token() routine passes tokens generated by the
gss_delete_security_context() routine to the security service.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_DEFECTIVE_TOKEN
Consistency checks performed on the input_token parameter failed.

GSS_S_FAILURE
The routine failed. See the minor_status parameter return value for more
information.

GSS_S_NO_CONTEXT
The supplied context handle did not refer to a valid context.

Related Information

Functions: gss_delete_security_context(3sec) .

Chapter 6. DCE Security Service 1101

gss_release_buffer

Purpose

Frees storage associated with a buffer

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_release_buffer(
OM_uint32 *minor_status
gss_buffer_t buffer);

Parameters

Input
buffer The buffer to delete.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gss_release_buffer() routine deletes the buffer by freeing the storage
associated with it.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. See the minor_status parameter for details.

1102 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_release_cred

Purpose

Marks a credential for deletion

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_release_cred(
OM_uint32 *minor_status
gss_cred_id_t *cred_handle);

Parameters

Input
cred_handle

Specifies the buffer containing the opaque credential handle. This
information is optional. To release the default credential, specify
GSS_C_NO_CREDENTIAL .

Output
minor_status

Returns a status code from the security mechanism.

Description

The gss_release_cred() routine informs the GSSAPI that a credential is no longer
required and marks it for deletion.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CRED
The credentials could not be accessed.

Chapter 6. DCE Security Service 1103

gss_release_name

Purpose

Frees storage associated with an internal name that was allocated by a GSSAPI
routine.

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_release_name(
OM_uint32 *minor_status
gss_name_t *name);

Parameters

Input
name The name to delete.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gss_release_name() routine deletes the internal name by freeing the storage
associated with that internal name.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_BAD_NAME
The name parameter did not contain a valid name.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Related Information

Functions: gss_compare_name(3sec) , gss_display_name(3sec) ,
gss_import_name(3sec) .

1104 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_release_oid_set

Purpose

Frees storage associated with a gss_OID_set object

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_release_oid_set (
OM_uint32 *minor_status
gss_OID_set *set);

Parameters

Input
set The OID set to delete.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gss_release_oid_set() routine frees storage that is associated with the
gss_OID_set parameter and was allocated by a GSSAPI routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Chapter 6. DCE Security Service 1105

gss_seal

Purpose

Cryptographically signs and optionally encrypts a message

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_seal(
OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int conf_req_flag,
int qop_req,
gss_buffer_t input_message_buffer,
int *conf_state,
gss_buffer_t output_message_buffer);

Parameters

Input
context_handle

Specifies the context on which the message is sent.

conf_req_flag
Specifies the requested level of confidentiality and integrity services, as
follows:

TRUE Both confidentiality and integrity services are requested.

FALSE
Only integrity services are requested.

qop_req
Specifies the cryptographic algorithm, or quality of protection. This
parameter has two parts: the high-order 16 bits represent the confidentiality
algorithm selected, and the low-order 16 bits represent the integrity
algorithm selected.

GSSDCE_C_QOP_CONF_DES
The DES confidentiality algorithm.

GSSDCE_C_QOP_CONF_CDMF
The CDMF confidentiality algorithm.

There are three constants defined for the integrity algorithm. These values
are as follows:

GSSDCE_C_QOP_MD5
Faster supported signature.

GSSDCE_C_QOP_DES_MD5
DES MAC of an MD5 signature. Faster than
GSSDCE_C_QOP_DES_MAC

GSSDCE_C_QOP_DES_MAC
Conventional DES MAC. Slow but well understood.

1106 IBM DCE for AIX, Version 2.2: Application Development Reference

The value of qop_reg can be any combination of the confidentiality and
integrity algorithms. To construct a qop_reg value to pass into gss_seal ,
simply OR the confidentiality and integrity constants as follows:
qop_reg = GSSDCE_C_QOP_CONF_CDMF | GSSDCE_C_QOP_MD5

The default qop_reg value is GSS_C_QOP_DEFAULT (0x00000000), and
represents GSSDCE_C_QOP_CONF_DES | GSSDCE_C_QOP_MD5.

Note: If an integrity algorithm that is not supported is specified in the
qop_reg parameter, gssdce_s_unsupported_signature_algorithm
is returned in minor_status.

If a confidentiality algorithm that is not supported was specified in the
qop_reg parameter, gss_s_unsupported_encryption_algorithm is
returned in minor_status.

input_message_buffer
Specifies the message to seal.

Output
conf_state

Returns the requested level of confidentiality and integrity services as
follows:

TRUE Both confidentiality and integrity services are requested.

FALSE
Only integrity services are requested.

output_message_buffer
Returns the buffer to receive the sealed message.

minor_status
Returns a status code from the security mechanism.

Description

The gss_seal() routine cryptographically signs and optionally encrypts a message.
The output_message_buffer token contains both the signature and the message in
a token structure.

Errors

This routine returns the following major status codes:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CONTEXT
The context identified in the context_handle parameter was not valid.

Related Information

Functions: gss_unseal(3sec)

gss_seal(3sec)

Chapter 6. DCE Security Service 1107

gss_sign

Purpose

Generates a cryptographic signature for a message.

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_sign(
OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int qop_req,
gss_buffer_t message_buffer,
gss_buffer_t msg_token);

Parameters

Input
context_handle

Specifies the context on which the message is sent.

qop_req
Specifies the cryptographic algorithm, or quality of protection. This
parameter has two parts: the high-order 16 bits represent the confidentiality
algorithm, which is ignored by this routine, and the low-order 16 bits, which
represent the integrity algorithm selected.

There are four constants defined for the integrity algorithm. These values
are as follows:

GSSDCE_C_QOP_MD5
Faster supported signature.

GSSDCE_C_QOP_DES_MD5
DES MAC of an MD5 signature. Faster than
GSSDCE_C_QOP_DES_MAC.

GSSDCE_C_QOP_DES_MAC
Conventional DES MAC. Slow but well understood.

GSS_C_QOP_DEFAULT
(0x00000000), represents GSSDCE_C_QOP_MD5 integrity.

Note: If an integrity algorithm that is not supported is specified in the
qop_reg parameter, gssdce_s_unsupported_signature_algorithm
is returned in minor_status.

message_buffer
Specifies the message to send.

Output
msg_token

Returns the buffer to receive the signature token to transfer to the context
acceptor.

minor_status
Returns a status code from the security mechanism.

1108 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The gss_sign() routine generates an encrypted signature for a message. It places
the signature in a token for transfer to the context acceptor.

Errors

This routine returns the following major status codes:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CONTEXT
The context identified in the context_handle parameter was not valid.

gss_sign(3sec)

Chapter 6. DCE Security Service 1109

gss_unseal

Purpose

Converts a sealed message into a usable form and verifies the embedded signature

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_unseal(
OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer,
int *conf_state,
int *qop_state);

Parameters

Input
context_handle

Specifies the context on which the message arrived.

input_message_buffer
Specifies the sealed message.

output_message_buffer
Specifies the buffer to receive the unsealed message.

Output
conf_state

Returns the requested level of confidentiality and integrity services, as
follows:

TRUE Both confidentiality and integrity services are requested.

FALSE
Only integrity services are requested.

qop_state
Returns the cryptographic algorithm, or quality of protection. This parameter
has two parts: the high-order 16 bits represent the confidentiality algorithm
selected, and the low-order 16 bits represent the integrity algorithm
selected.

One of the following two values is returned for the confidentiality algorithm:

0x00000000 (GSSDCE_C_QOP_CONF_DES)
The DES confidentiality algorithm.

0x00010000 (GSSDCE_C_QOP_CONF_CDMF)
The CDMF confidentiality algorithm.

One of the following three values is returned for the integrity algorithm:

0x00000001 (GSSDCE_C_QOP_MD5)
Faster supported signature.

1110 IBM DCE for AIX, Version 2.2: Application Development Reference

0x00000002 (GSSDCE_C_QOP_DES_MD5)
DES MAC of an MD5 signature. Faster than
GSSDCE_C_QOP_DES_MAC

0x00000003 (GSSDCE_C_QOP_DES_MAC)
Conventional DES MAC. Slow but well understood.

If GSS_C_QOP_DEFAULT was the input value for qop_reg in the gss_seal
routine, the return value for qop_reg is GSSDCE_C_QOP_CONF_DES |
GSSDCE_C_QOP_MD5.

Note: If an integrity algorithm that is not supported is specified in the
qop_reg parameter, gssdce_s_unsupported_signature_algorithm
is returned in minor_status.

minor_status
Returns a status code from the security mechanism.

Description

The gss_unseal() routine converts a sealed message to a usable form and verifies
the embedded signature. The conf_state parameter indicates whether the message
was encrypted. The qop_state parameter is ORed to return the type of algorithm
used for decryption and integrity verification.

Errors

This routine returns the following major status codes:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_DEFECTIVE_TOKEN
The token failed consistency checks.

GSS_S_DUPLICATE_TOKEN
The token was valid and contained the correct signature but it had already
been processed.

Note: If Sequence or Replay checking is requested, Mutual authentication
is assumed.

GSS_S_FAILURE
The routine failed. The context specified in the context_handle parameter
was not valid.

GSS_S_NO_CONTEXT
The context identified in the context_handle parameter was not valid.

GSS_S_OLD_TOKEN
The token was valid and contained the correct signature but it is too old.

Note: If Sequence or Replay checking is requested, Mutual authentication
is assumed.

GSS_S_UNSEQ_TOKEN
The token was valid and contained the correct signature but it has been
verified out of sequence. An earlier token signed or sealed by the remote
application has not been processed locally.

gss_unseal(3sec)

Chapter 6. DCE Security Service 1111

Note: If Sequence or Replay checking is requested, Mutual authentication
is assumed.

Related Information

Functions: gss_seal(3sec)

gss_unseal(3sec)

1112 IBM DCE for AIX, Version 2.2: Application Development Reference

gss_verify

Purpose

Checks that the cryptographic signature fits the supplied message

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_verify(
OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t message_buffer,
gss_buffer_t token_buffer,
int *qop_state);

Parameters

Input
context_handle

Specifies the context on which the message arrived.

message_buffer
Specifies the message to be verified.

token_buffer
Specifies the signature token to be associated with the message.

Output
qop_state

Returns the cryptographic algorithm, or quality of protection, from the
signature. This parameter has two parts: the high-order 16 bits represent
the confidentiality algorithm, which is ignored by this routine, and the
low-order 16 bits, which represent the integrity algorithm selected.

One of the following three values is returned for the integrity algorithm:

0x00000001 (GSSDCE_C_QOP_MD5)
Faster supported signature.

0x00000002 (GSSDCE_C_QOP_DES_MD5)
DES MAC of an MD5 signature. Faster than
GSSDCE_C_QOP_DES_MAC

0x00000003 (GSSDCE_C_QOP_DES_MAC)
Conventional DES MAC. Slow but well understood.

If GSS_C_QOP_DEFAULT was the input value for qop_reg in the gss_seal
routine, the return value for qop_reg is GSSDCE_C_QOP_CONF_DES |
GSSDCE_C_QOP_MD5.

minor_status
Returns a status code from the security mechanism.

Chapter 6. DCE Security Service 1113

Description

The gss_verify() routine checks that an encrypted signature, in the token_buffer
parameter, is the same as the one for the message in the message_buffer buffer.
The application receiving the message can use the qop_state parameter to check
the message’s protection.

Errors

This routine returns the following major status codes:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CONTEXT
The context identified in the context_handle parameter was not valid.

GSS_S_DEFECTIVE_TOKEN
Consistency checks performed on the input_token parameter failed.

GSS_S_BAD_SIG
The signature was incorrect.

Related Information

Functions: gss_sign(3sec) .

gss_verify(3sec)

1114 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_add_oid_set_member

Purpose

Adds an OID to an OID set

Synopsis
#include <dce/gssapi.h>

OM_uint32 gssdce_add_oid_set_member(
OM_uint32* minor_status
gss_OID member_OID
gss_OID_set* OID_set);

Parameters

Input
member_OID

Specifies the OID you want to add to the OID set.

OID_set
Specifies an OID set.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gssdce_add_oid_set_member() routine adds a new OID to an OID set. If an
OID set does not exist, you can create a new, empty OID set with the
gssdce_create_empty_oid_set() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Related Information

Functions: gss_acquire_cred(3sec) , gssdce_create_empty_oid_set(3sec) .

Chapter 6. DCE Security Service 1115

gssdce_create_empty_oid_set

Purpose

Creates a new, empty OID set to which members can be added by calling
gssdce_add_oid_set_member()

Synopsis
#include <dce/gssapi.h>

OM_uint32 gssdce_create_empty_oid_set(
OM_uint32 *minor_status
gss_OID_set *OID_set);

Parameters

Input
OID_set

Specifies the OID set you want to create.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gssdce_create_empty_oid_set() routine creates a new, empty OID set to
which the context initiator can add members. Use the
gssdce_add_oid_set_member() routine to add members to the OID set.

Use the gssdce_create_empty_oid_set() routine to specify a set of security
mechanisms with which you can use an acquired credential. To create a credential
that can accept a security context using DCE security, Kerberos, or a combination
of the two, use the gss_acquire_cred() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Related Information

Functions: gss_acquire_cred(3sec) , gssdce_add_oid_set_member(3sec) .

1116 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_cred_to_login_context

Purpose

Obtains the DCE login context associated with a GSSAPI credential

Synopsis
#include <dce/gssapi.h>

OM_uint32 gssdce_cred_to_login_context(
OM_uint32 *minor_status
cred_id_t cred_handle
sec_login_handle_t *login_context);

Parameters

Input
cred_handle

Specifies the credential handle.

Output
login_context

Returns the DCE login context associated with the credential.

minor_status
Returns a status code from the security mechanism.

Description

Using the gssdce_cred_to_login_context() routine, an application can obtain the
DCE login context associated with a GSSAPI credential. Only credentials with
usage-types INIT or BOTH have associated login contexts.

Use this routine in the following situations:

v If you want to add delegation notes to a login context

v To use an INITIATE or BOTH credential to initiate an authenticated RPC call

The application must delete the login context when it no longer needs the
credentials or the login context.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_CREDENTIALS_EXPIRED
The credentials have expired.

GSS_S_DEFECTIVE_CREDENTIAL
The credential is defective in some way.

Chapter 6. DCE Security Service 1117

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CRED
The routine requested the default login context, but no default login context
was available.

Related Information

Functions: gssdce_login_context_to_cred(3sec) ,
sec_login_purge_contexts(3sec) , sec_login_release_context(3sec) .

gssdce_cred_to_login_context(3sec)

1118 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_extract_creds_from_sec_context

Purpose

Extracts a DCE credential from a GSSAPI security context

Synopsis
#include <dce/gssapi.h>

OM_uint32 gssdce_extract_creds_from_sec_context(
OM_uint32 *minor_status
gss_ctx_id_t context_handle
rpc_authz_cred_handle_t *output_cred);

Parameters

Input
context_handle

Specifies the handle of the security context containing the DCE credential.

Output
output_cred

Returns the DCE credential.

minor_status
Returns a status code from the security mechanism.

Description

The gssdce_extract_creds_from_sec_context() routine extracts the context
initiator’s DCE credential from a context acceptor’s security context. Use this routine
if the underlying mechanism type is DCE security
(GSSDCE_C_OID_DCE_KRBV5_DES).

The context acceptor calls the gssdce_extract_creds_from_sec_context() routine
to get the DCE credential containing the privilege attributes of the context initiator.
DCE credentials are used by DCE access control list (ACL) managers to determine
whether the initiator has the right to access the object to which an ACL refers.

The principal contained in the DCE credential may not be the same as the
src_name parameter value from the gss_accept_sec_context() routine. The
principal in the DCE credential may be a compound principal.

If the context was established by calling the gss_init_set_context() routine and
specifying GSSDCE_C_OID_KRBV5_DES to use Kerberos (instead of DCE
security), the gssdce_extract_creds_from_sec_context() routine returns a major
status of O and a minor status of O.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

Chapter 6. DCE Security Service 1119

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CONTEXT
The routine could not access the security context.

Related Information

Functions: gss_init_sec_context(3sec) .

gssdce_extract_creds_from_sec_context(3sec)

1120 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_extract_PAC_from_cred

Purpose

Extracts a DCE privilege attribute certificate (PAC) from a GSSAPI credential.

Format
#include <dce/gssapi.h>

OM_uint32 gssdce_extract_PAC_from_cred
OM_uint32 *minor_status,
gss_cred_id_t context_handle,
sec_id_pac_t *output_pac);

Parameters

Input
context_handle

Specifies the handle of the security context containing the credential.

Output
output_pac

Returns the PAC.

minor_status
Returns a status code from the security mechanism.

Usage

The gssdce_extract_PAC_from_cred routine extracts a DCE credential from a
GSSAPI credential. The routine extracts privilege attribute information about the
principal associated with the credential.

A context acceptor calls this routine to examine the credential contained in a
delegated credential.

Return Codes

This routine returns the following major status codes:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CRED
The routine could not access the credentials.

GSS_S_DEFECTIVE_CREDENTIAL
The credential is defective in some way.

Comments

Functions: gssdce_extract_creds_from_sec_context(3sec) .

Chapter 6. DCE Security Service 1121

gssdce_extract_PAC_from_sec_context

Purpose

Extracts a DCE privilege attribute certifiicate (PAC) from a GSSAPI security context.

Format
#include <dce/gssapi.h>

OM_uint32 gssdce_extract_PAC_from_sec_context (
OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
sec_id_pac_t *output_PAC);

Parameters

Input
context_handle

Specifies the handle of the security context containing the PAC.

Output
output_PAC

Returns the DCE PAC.

minor_status
Returns a status code from the security mechanism.

Usage

The gssdce_extract_PAC_from_sec_context routine extracts the context
initiator’s DCE privilege attribute information (PAC) from a context acceptor’s
security context.

The context acceptor calls the gssdce_extract_PAC_from_sec_context routine to
get the DCE PAC of the context initiator.

Return Codes

This routine returns the following status codes:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

GSS_S_NO_CRED
No credentials were supplied.

GSS_S_DEFECTIVE_CREDENTIAL
A credential was not valid.

Comments

Functions: gssdce_extract_PAC_from_cred(3sec) .

1122 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_login_context_to_cred

Purpose

Creates a GSSAPI credential handle for a context initiator or context acceptor from
a DCE login context

Synopsis
#include <dce/gssapi.h>

OM_uint32 gssdce_login_context_to_cred(
OM_uint32 *minor_status
sec_login_handle_t login_context
OM_uint32 lifetime_req
gss_OID_set desired_mechs
gss_cred_id_t *output_cred_handle
gss_OID_set *actual_mechs
OM_uint32 *lifetime_rec);

Parameters

Input
login_context

Specifies the DCE login context handle. To use the default login context
handle, specify NULL.

lifetime_req
Specifies the number of seconds that the credential should remain valid.

desired_mechs
Specifies the object identifier (OID) set for the security mechanism to use
with the credential, as follows:

DCE security
Specify GSS_C_NULL_OID_SET .

Kerberos
Specify GSSDCE_C_OID_KRBV5_DES .

Both DCE security and Kerberos
Specify GSSDCE_C_OID_DCE_KRBV5_DES and
GSSDCE_C_OID_KRBV5_DES .

To help ensure portability of your application, use the default security
mechanism by specifying GSS_C_NULL_OID_SET .

Output
output_cred_handle

Returns the credential handle.

actual_mechs
Returns the set specifying the security mechanisms with which the
credential can be used. The set can contain one or both of the following:

v GSSDCE_C_OID_DCE_KRBV5_DES (for DCE security)

v GSSDCE_C_OID_KRBV5_DES (for Kerberos)

lifetime_rec
Returns the number of seconds that the credential will remain valid.

Chapter 6. DCE Security Service 1123

minor_status
Returns a status code from the security mechanism.

Description

The gssdce_login_context_to_cred() routine creates a generic security service
application programming interface (GSSAPI) credential handle for the context
initiator or context acceptor from a DCE login context. The routine creates a
credential that can be used to initiate or acquire a security context. Use this routine
if you need to create a GSSAPI credential for delegation.

Status Codes

The following describes a partial list of codes (messages) that might be returned.
Refer to the IBM DCE for AIX, Version 2.2: Problem Determination Guide for
complete descriptions of all messages. The following status codes can be returned:

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_DEFECTIVE_CREDENTIAL
The credential is defective in some way.

GSS_S_NO_CRED
The routine requested the default login context, but no default login context
was available.

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Related Information

Functions: gss_acquire_cred(3sec) , gssdce_cred_to_login_context(3sec) .

gssdce_login_context_to_cred(3sec)

1124 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_register_acceptor_identity

Purpose

Registers a context acceptor’s identity

Synopsis
#include <dce/gssapi.h>

OM_uint32 gss_register_acceptor_indentity(
OM_uint32 *minor_status
gss_name_t acceptor_principal_name
rpc_auth_key_retrieval_fn_t get_key_fn
void *arg);

Parameters

Input
acceptor_principal_name

Specifies the principal name to use for the context acceptor.

get_key_fn
Specifies either the DCE default key-retrieval routine or the address of a
routine that returns encryption keys.

arg Specifies an argument to pass to the get_key_fn key acquisition routine. To
specify the DCE default, use NULL.

Note: Do not free or clear the memory containing the key table name string
if the arg parameter contains a pointer to the key table name.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gssdce_register_acceptor_identity() routine registers the server principal
name as an identity claimed by the context acceptor and informs DCE security
where to find the key table containing the principal’s key information.

The gssdce_register_acceptor_identity() routine uses the get_key_fn and arg
parameters of the rpc_server_register_auth_info() routine to find the key for the
token for the context acceptor’s principal name. The following table lists the values
for the parameters and which key tables they point to:

Retrieval Routine Key Table Explanation

NULL NULL Uses the default DCE
retrieval routine to get the key
from the DCE key table. This
is accomplished via the
default key table,
/krb/v5srvtab .

Chapter 6. DCE Security Service 1125

NULL string= key_table_name Uses the default DCE
retrieval routine to get the key
from the a key table whose
name you specify using the
argument string.

routine_address user_written_routine Uses a user-written retrieval
routine to get the key from a
key table specified in the
routine.

For more information on registering a server with DCE, refer to the
rpc_server_register_auth_info(3rpc) reference page.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

GSS_S_FAILURE
The routine failed. Check the minor status for details.

Related Information

Functions: gss_accept_sec_context(3sec) , rpc_server_register_auth_info(3rpc) .

gssdce_register_acceptor_identity(3sec)

1126 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_set_cred_context_ownership

Purpose

Changes the ownership of a DCE credential’s login context

Synopsis
#include <dce/gssapi.h>

OM_uint32 gssdce_set_cred_context_ownership(
OM_uint32 *minor_status
gss_cred_id_t credential_handle
int ownership);

Parameters

Input
credential_handle

Specifies the handle of the DCE credential to be modified.

ownership
Specifies the owner of the DCE credential. Specify one of the following:

GSSDCE_C_OWNWERSHIP_GSSAPI
Specifies that the credential’s login context is owned by the generic
security service application programming interface (GSSAPI).

GSSDCE_C_OWNERSHIP_APPLICATION
Specifies that the credential’s login context is owned by the
application.

Output
minor_status

Returns a status code from the security mechanism.

Description

The gssdce_set_cred_context_ownership() routine modifies the ownership of a
DCE credential’s login context. INIT type and BOTH type credentials have DCE
login contexts. Normally, these internal login contexts are deleted when the
credential is released (when the application calls the gss_release_cred() routine).
However, for credentials created by the gssdce_cred_to_login_context() and
credentials passsed to the gsscdce_cred_to_login_context() routine, the
application may have an external reference to the credential’s login context and
may still be using the login context. The GSSAPI will not delete internal login
contexts of these credentials when they are released.

This routine allows the application to modify the ownership of a credential’s login
context. If ownership is changed to GSSDCE_C_OWNERSHIP_GSSAPI, the login
context is deleted when GSSAPI releases the credential. If ownership is changed to
GSSDCE_C_OWNERSHIP_APPLICATION , the application is responsible for
deleting the login context. DCE credential login contexts that are owned by an
application must not be deleted until the credential is released since the GSSAPI
may still need to access the credential’s login context.

Chapter 6. DCE Security Service 1127

Related Information

Functions: gss_acquire_cred(3sec) , gss_release_buffer(3sec) ,
gssdce_cred_to_login_context(3sec) .

gssdce_set_cred_context_ownership(3sec)

1128 IBM DCE for AIX, Version 2.2: Application Development Reference

gssdce_test_oid_set_member

Purpose

Checks an OID set to see if a specified OID is in the set

Synopsis
#include <dce/gssapi.h>

OM_uint32 gssdce_test_oid_set_member(
OM_uint32 *minor_status
gss_OID member_OID
gss_OID_set set
int* is_present);

Parameters

Input
member_OID

Specifies the OID to search for in the OID set.

set Specifies the OID set to check.

Output
is_present

Returns one of the following values to indicate whether the OID is a
member of the OID set:

Returns... If...

1 The OID is present as a member of the OID set

0 The OID is absent, not a member of the OID set

minor_status
Returns a status code from the security mechanism.

Description

The gssdce_test_oid_set_member() routine checks an OID set to see if the
specified OID is a member of the set. To add a member to an OID set, use the
gssdce_add_oid_set_member() routine.

The gssdce_test_oid_set_member() routine uses the value of the actual_mechs
output parameter from the gss_acquire_cred() routine to get the list of OIDs. It
checks this list to see if any of the OIDs are members of the OID set.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

GSS_S_COMPLETE
The routine was completed successfully.

Chapter 6. DCE Security Service 1129

GSS_S_FAILURE
The routine failed. Check the minor_status parameter for details.

Related Information

Functions: gss_acquire_cred(3sec) , gss_indicate_mechs(3sec) ,
gssdce_add_oid_set_member(3sec) .

Rdacl Interface for User-Written Back-end Code

The server routines listed in this section are to assist you in writing code in the
correct format for the rdacl interface. You need to develop server routines that
match the format of the rdacl interface if you want to develop both of the following:

v an ACL manager that does your back-end processing of the sec_acl_* APIs

v develop your own back-end routines rather than use DCE to do the back-end
processing. (DCE can do the back-end processing for you by using the
dce_acl_* APIs.

The server routines and their purpose are:

rdacl_get_acces
Reads a privilege attribute certificate

rdacl_get_manager_types
Lists the types of ACLs protecting an object

rdacl_get_mgr_types_semantics
Lists the ACL manager types protecting an object and the POSIX semantics
supported by each manager type

rdacl_get_printstring
Returns printable ACL strings

rdacl_get_referral
Gets a referral to an ACL update site

rdacl_lookup
Returns the ACL for an object

rdacl_replace
Replaces an ACL

rdacl_test_access
Tests access to an object

rdacl_test_access_on_behalf
Tests access to an object on behalf of another process.

The following topics specify the format of the server routines.

gssdce_test_oid_set_member (3sec)

1130 IBM DCE for AIX, Version 2.2: Application Development Reference

rdacl_get_access

Purpose

Reads a privilege attribute certificate

Synopsis
#include <dce/rdaclif.h>

void rdacl_get_access(
handle_t h
sec_acl_component_name_t component_name
uuid_t *manager_type
sec_acl_permset_t *net_rights
error_status_t *status);

Parameters

Input:

h A handle referring to the object whose ACL is to be accessed.

component_name
A character string containing the name of the target object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

Output:

net_rights
The output list of access rights, in sec_acl_permset_t form. This is a 32-bit
set of permission flags supported by the manager type.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The rdacl_get_access() routine determines the complete extent of access to the
specified object by the calling process. Although the rdacl_test_access() routines
are the preferred method of testing access, this routine is useful for implementing
operations like the conventional UNIX access function.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

Chapter 6. DCE Security Service 1131

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_invalid_manager_type
The manager type is not valid.

sec_acl_invalid_acl_type
The ACL type is not valid.

sec_acl_not_authorized
The requested operation is not allowed.

sec_acl_object_not_found
The requested object could not be found.

error_status_ok
The call was successful.

Related Information

Functions: rdacl_test_access(3sec) , sec_intro(3sec) .

rdacl_get_access(3sec)

1132 IBM DCE for AIX, Version 2.2: Application Development Reference

rdacl_get_manager_types

Purpose

Lists the types of ACLs protecting an object

Synopsis
#include <dce/rdaclif.h>

void rdacl_get_manager_types(
handle_t h
sec_acl_component_name_t component_name
sec_acl_type_t sec_acl_type
unsigned32 size_avail
unsigned32 *size_used
unsigned32 *num_types
uuid_t manager_types[]
error_status_t *status);

Parameters

Input:

h A handle referring to the target object.

component_name
A character string containing the name of the target object.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

size_avail
An unsigned 32-bit integer containing the allocated length of the
manager_types[] array.

Output:

size_used
An unsigned 32-bit integer containing the number of output entries returned
in the manager_types[] array.

num_types
An unsigned 32-bit integer containing the number of types returned in the
manager_types[] array. This is always equal to size_used.

manager_types[]
An array of length size_avail to contain UUIDs (of type uuid_t) identifying
the different types of ACL managers protecting the target object.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The rdacl_get_manager_types() routine returns a list of the types of ACLs
protecting an object. For example, in addition to the regular file system ACL, a file

Chapter 6. DCE Security Service 1133

representing the stable storage of some database could have an ACL manager that
supported permissions allowing database updates only on certain days of the week.

ACL editors and browsers can use this operation to determine the ACL manager
types that a particular reference monitor is using to protect a selected entity. Then,
using the rdacl_get_printstring() routine, they can determine how to format for
display the permissions supported by a specific manager.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: rdacl_get_printstring(3sec) , sec_intro(3sec) .

rdacl_get_manager_types(3sec)

1134 IBM DCE for AIX, Version 2.2: Application Development Reference

rdacl_get_mgr_types_semantics

Purpose

Lists the ACL manager types protecting an object and the POSIX semantics
supported by each manager type

Synopsis
#include <dce/rdaclif.h>

void rdacl_get_mgr_types_semantics(
handle_t h
sec_acl_component_name_t component_name
sec_acl_type_t sec_acl_type
unsigned32 size_avail
unsigned32 *size_used
unsigned32 *num_types
uuid_t manager_types[]
sec_acl_posix_semantics_t posix_semantics[]
error_status_t *status);

Parameters

Input:

h A handle referring to the target object.

component_name
A character string containing the name of the target object.

sec_acl_type
The ACL type used to limit the function’s output to ACL managers that
control the specified types of ACLs. The possible values are as follows:

v sec_acl_type_object

Object ACL, the ACL controlling access to an object.

v sec_acl_type_default_object

Initial Object ACL, the default ACL for objects created in a container
object.

v sec_acl_type_default_container

Initial Container ACL, the default ACL for containers created in a
container object.

size_avail
An unsigned 32-bit integer containing the allocated length of the
manager_types[] and the posix_semantics[] arrays.

Output:

size_used
An unsigned 32-bit integer containing the number of output entries returned
in the manager_types[] array.

num_types
An unsigned 32-bit integer containing the number of types returned in the
manager_types[] array. This is always equal to size_used.

manager_types[]
An array of length size_avail containing the returned UUIDs (of type uuid_t)
identifying the different ACL manager types protecting the target object.

Chapter 6. DCE Security Service 1135

posix_semantics[]
An array of length size_avail containing the POSIX semantics (of type
sec_acl_posix_semantics_t) that are supported by each returned ACL
manager type.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The rdacl_get_manager_types_semantics() routine returns a list of the ACL
manager types protecting an object and a list of the POSIX semantics supported by
those ACL manager types. Access to an object can be controlled by multiple ACL
manager types. For example, access to a file representing the stable storage of a
database could be controlled by two ACL manager types each with completely
different sets of permissions: one to provide standard file system access (read,
write, execute, and so on) and one to provide access that allows database updates
only on certain days of the week.

ACL editors and browsers can use this operation to determine the ACL manager
types that a particular reference monitor is using to protect a selected entity. Then,
using the rdacl_get_printstring() routine, they can determine how to format for
display the permissions supported by a specific manager.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: rdacl_get_printstring(3sec) , sec_intro(3sec) .

rdacl_get_mgr_types_semantics(3sec)

1136 IBM DCE for AIX, Version 2.2: Application Development Reference

rdacl_get_printstring

Purpose

Returns printable ACL strings

Synopsis
#include <dce/rdaclif.h>

void rdacl_get_printstring(
handle_t h
uuid_t *manager_type
unsigned32 size_avail
uuid_t *manager_type_chain
sec_acl_printstring_t *manager_info
boolean32 *tokenize
unsigned32 *total_num_printstrings
unsigned32 *size_used
sec_acl_printstring_t printstrings[]
error_status_t *status);

Parameters

Input:

h A handle referring to the target object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use rdacl_get_manager_types() to acquire a list of the manager
types protecting a given object.

size_avail
An unsigned 32-bit integer containing the allocated length of the
printstrings[] array.

Output:

manager_type_chain
If the target object ACL contains more than 32 permission bits, multiple
manager types are used, one for each 32-bit wide slice of permissions. The
UUID returned in manager_type_chain refers to the next ACL manager in
the chain. If there are no more ACL managers for this ACL, uuid_nil is
returned.

manager_info
Provides a name and helpstring for the given ACL manager.

tokenize
When FALSE this variable indicates that the returned permission
printstrings are unambiguous and therefore may be concatenated when
printed without confusion. When TRUE, however, this property does not
hold, and the strings need to be separated when printed or passed.

total_num_printstrings
An unsigned 32-bit integer containing the total number of permission
printstrings supported by this ACL manager type.

Chapter 6. DCE Security Service 1137

size_used
An unsigned 32-bit integer containing the number of permission entries
returned in the printstrings[] array.

printstrings[]
An array of permission printstrings of type sec_acl_printstring_t . Each
entry of the array is a structure containing three components:

printstring
A character string of maximum length sec_acl_printstring_len
containing the printable representation of a specified permission.

helpstring
A character string of maximum length
sec_acl_printstring_help_len containing some text that can be
used to describe the specified permission.

permissions
A sec_acl_permset_t permission set describing the permissions
that are to be represented with the companion printstring.

The array consists of one such entry for each permission supported
by the ACL manager identified by manager_type.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The rdacl_get_printstring() routine returns an array of printable representations
(called printstrings) for each permission bit or combination of permission bits the
specified ACL manager will support. The ACL manager type specified must be one
of the types indicated by the ACL handle.

In addition to returning the printstrings, this routine also returns instructions about
how to print the strings. When the tokenize variable is set to FALSE, a print string
might be r or w, which could be concatenated in the display as rw without any
confusion. However, when the tokenize variable is TRUE, it implies the printstrings
might be of a form like read or write , which must be displayed separated by spaces
or colons or something.

In any list of permission printstrings, there may appear to be some redundancy. ACL
managers often define aliases for common permission combinations. By convention,
however, simple entries need to appear at the beginning of the printstrings[] array,
and combinations need to appear at the end.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

rdacl_get_printstring(3sec)

1138 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not among those referenced by the input
handle.

error_status_ok
The call was successful.

Related Information

Functions: rdacl_get_manager_types(3sec) , sec_acl_bind(3sec) ,
sec_intro(3sec) .

rdacl_get_printstring(3sec)

Chapter 6. DCE Security Service 1139

rdacl_get_referral

Purpose

Gets a referral to an ACL update site

Synopsis
#include <dce/rdaclif.h>

void rdacl_get_referral(
handle_t h
sec_acl_component_name_t component_name
uuid_t *manager_type
sec_acl_type_t sec_acl_type
sec_acl_tower_set_t *towers[]
error_status_t *status);

Parameters

Input:

h A handle referring to the target object.

component_name
A character string containing the name of the target object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

Output:

towers[]
A pointer to address information indicating an ACL update site. This
information, obtained from the RPC runtime, is used by the client-side code
to construct a new ACL binding handle indicating a site that will not return
the sec_acl_site_readonly error.

The sec_acl_tower_set_t structure contains an array of towers (called
towers[]) and an unsigned 32-bit integer indicating the number of array
elements (called count). This type enables the client to pass in an
unallocated array of towers and have the server allocate the correct
amount.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

1140 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The rdacl_get_referral() routine obtains a referral to an ACL update site. This
function is used when the current ACL site yields a sec_acl_site_readonly error.
Some replication managers will require all updates for a given object to be directed
to a given replica. If clients of the generic ACL interface know they are dealing with
an object that is replicated in this way, this function allows them to recover from the
problem and rebind to the proper update site. The DCE network registry, for
example, is replicated this way.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

rdacl_get_referral(3sec)

Chapter 6. DCE Security Service 1141

rdacl_lookup

Purpose

Returns the ACL for an object

Synopsis
#include <dce/rdaclif.h>

void rdacl_lookup(
handle_t h
sec_acl_component_name_t component_name
uuid_t *manager_type
sec_acl_type_t sec_acl_type
sec_acl_result_t *result);

Parameters

Input:

h A handle referring to the target object.

component_name
A character string containing the name of the target object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

Output:

result A pointer to a tagged union of type sec_acl_result_t . The tag is the
completion status, result.st . If result.st is equal to error_status_ok , the
union contains an ACL. Otherwise, the completion status indicates an error,
and the union is empty.

If the call returned successfully, the result.tagged_union.sec_acl_list_t
structure contains a sec_acl_list_t . This data type is an array of pointers to
sec_acl_t s that define ACLs. If the permission set of the returned ACL is 32
bits or smaller, sec_acl_list_t points to only one sec_acl_t . If the
permission set of the returned ACL is larger than 32 bits, multiple
sec_acl_t s are used to hold them, and the sec_acl_list_t points to multiple
sec_acl_t s.

Description

The rdacl_lookup() routine loads into memory a copy of an object’s ACL
corresponding to the specified manager type. The routine returns a pointer to the

1142 IBM DCE for AIX, Version 2.2: Application Development Reference

ACL. This routine is only used by ACL editors and browsers; an application would
use sec_acl_test_access() or sec_acl_test_access_on_behalf() to process the
contents of an ACL.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

sec_acl_cant_allocate_memory
The requested operation requires more memory than is available.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_test_access(3sec) ,
sec_acl_test_access_on_behalf(3sec) , sec_intro(3sec) .

rdacl_lookup(3sec)

Chapter 6. DCE Security Service 1143

rdacl_replace

Purpose

Replaces an ACL

Synopsis
#include <dce/rdaclif.h>

void rdacl_replace(
handle_t h
sec_acl_component_name_t component_name
uuid_t *manager_type
sec_acl_type_t sec_acl_type
sec_acl_list_t *sec_acl_list
error_status_t *status);

Parameters

Input:

h A handle referring to the target object.

component_name
A character string containing the name of the target object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

sec_acl_list
The new ACL to use for the target object. This is represented by a pointer
to the sec_acl_list_t structure containing the complete access control list.
An ACL contains a list of ACL entries, the UUID of the default cell where
authentication takes place (foreign entries in the ACL contain the name of
their parent cell), and the UUID of the ACL manager to interpret the list.

Output:

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The rdacl_replace() routine replaces the ACL indicated by the input handle with the
information in the sec_acl_list parameter. ACLs are thought of as immutable, and in
order to modify them, an editing application must read an entire ACL (using the
sec_acl_lookup() routine), modify it as needed, and replace it using this routine.

1144 IBM DCE for AIX, Version 2.2: Application Development Reference

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_lookup(3sec) , sec_intro(3sec) .

rdacl_replace(3sec)

Chapter 6. DCE Security Service 1145

rdacl_test_access

Purpose

Tests access to an object

Synopsis
#include <dce/rdaclif.h>

boolean32 rdacl_test_access(
handle_t h
sec_acl_component_name_t component_name
uuid_t *manager_type
sec_acl_permset_t desired_permset
error_status_t *status);

Parameters

Input:

h A handle referring to the target object.

component_name
A character string containing the name of the target object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

desired_permset
A permission set in sec_acl_permset_t form containing the desired
privileges. This is a 32-bit set of permission flags supported by the manager
type.

Output:

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The rdacl_test_access() routine determines if the specified ACL contains entries
granting privileges to the calling process matching those in desired_permset. An
application generally only inquires after the minimum set of privileges needed to
accomplish a specific task.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

1146 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

error_status_ok
The call was successful.

Related Information

Functions: rdacl_test_access_on_behalf(3sec) , sec_intro(3sec) .

rdacl_test_access(3sec)

Chapter 6. DCE Security Service 1147

rdacl_test_access_on_behalf

Purpose

Tests access to an object on behalf of another process

Synopsis
#include <dce/rdaclif.h>

boolean rdacl_test_access_on_behalf(
handle_t h
sec_acl_component_name_t component_name
uuid_t *manager_type
sec_id_pac_t *subject
sec_acl_permset_t desired_permset
error_status_t *status);

Parameters

Input:

h A handle referring to the target object.

component_name
A character string containing the name of the target object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

subject
A privilege attribute certificate (PAC) for the subject process. The PAC
contains the name and UUID of the principal and parent cell of the subject
process, as well as a list of any groups to which it belongs. The PAC also
contains a flag (named authenticated). When set, it indicates that the
certificate was obtained from an authenticated source. When not set, the
certificate must not be trusted.

The field is FALSE when it was obtained from the rpc_auth layer and the
protect level was set to rpc_c_protect_level_none . This indicates that no
authentication protocol was actually used in the remote procedure call; the
identity was simply transmitted from the caller to the callee. If an
authentication protocol was used, then the flag is set to TRUE. A server
uses rpc_binding_inq_auth_client() to acquire a certificate for the client
process.

desired_permset
A permission set in sec_acl_permset_t form containing the desired
privileges. This is a 32-bit set of permission flags supported by the manager
type.

Output:

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

1148 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The rdacl_test_access_on_behalf() routine determines if the specified ACL
contains entries granting privileges to the subject, a process besides the calling
process, matching those in desired_permset. This routine succeeds only if the
access is available to both the caller process as well as the subject identified in the
call. An application will generally only inquire after the minimum set of privileges
needed to accomplish a specific task.

Notes

This call is not intended to be used by application programs. The sec_acl
application programming interface (API) provides all the functionality necessary to
use the ACL facility. This reference page is provided for programmers who wish to
write an ACL manager. In order to write an ACL manager, a programmer must
implement the entire rdacl interface.

This network interface is called on the client side via the sec_acl local interface.
Developers are responsible for implementing the server side of this interface. Test
server code is included as a sample implementation.

Files
/usr/include/dce/rdaclif.idl

The idl file from which dce/rdaclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

error_status_ok
The call was successful.

Related Information

Functions: rdacl_test_access(3sec) , rpc_binding_inq_auth_client(3rpc) ,
sec_intro(3sec) .

rdacl_test_access_on_behalf(3sec)

Chapter 6. DCE Security Service 1149

rsec_pwd_mgmt_gen_pwd

Purpose

Generates a set of passwords

Synopsis
#include <dce/rsec_pwd_mgmt.h>

void rsec_pwd_mgmt_gen_pwd(
handle_t pwd_mgmt_svr_h
sec_rgy_name_t princ_name
unsigned32 plcy_args
sec_attr_t plcy[]
sec_bytes_t gen_info_in
unsigned32 num_pwds
unsigned32 *num_returned
sec_passwd_rec_t gen_pwd_set[]
sec_bytes_t *gen_info_out
error_status_t *stp);

Parameters

Input
pwd_mgmt_svr_h

An RPC binding handle to the password management server exporting this
operation.

princ_name
The name of the principal requesting the generated passwords.

plcy_args
The size of the plcy[] array.

plcy[] An array of extended registry attributes, each specifying a password
management policy of some sort. The contents of this array are as follows:

plcy[0]
Effective registry password minimum length for the principal.

plcy[1]
Effective registry password policy flags for the principal, describing
limitations on password characters.

gen_info_in
An NDR pickle containing additional information needed to generate the
passwords. There are currently no encoding types defined.

num_pwds
The number of generated passwords requested.

Output
num_returned

The number of generated passwords returned.

gen_pwd_set[]
An array of generated passwords, each stored in a sec_passwd_rec_t
structure.

1150 IBM DCE for AIX, Version 2.2: Application Development Reference

gen_info_out
An NDR pickle containing additional information returned by the password
management server. There are currently no encoding types defined.

stp A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The rsec_pwd_mgmt_gen_pwd() routine returns a set of generated passwords.

Notes

This function is not intended to be called by application programmers. The
sec_pwd_mgmt() API provides all the functionality necessary to retrieve generated
passwords. This reference page is provided for programmers who want to write
their own password management servers.

This network interface is called on the client side via the
sec_pwd_mgmt_gen_pwd() operation. Developers are responsible for
implementing the server side of this interface. (pwd_strengthd(8sec) is provided as
a sample implementation.)

The plcy [] parameter is intended to be expandable to allow administrators to
attach new password policy ERAs to a principal. This feature is, however, currently
unsupported, and the plcy [] parameter consists only of the entries described in
this reference page.

Files
/usr/include/dce/sec_pwd_mgmt.idl

The idl file from which dce/sec_pwd_mgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_pwd_mgmt_not_authorized
The user is not authorized to call this API.

sec_pwd_mgmt_svr_error
Password management server generic error. Additional information is
usually logged by the password management server.

error_status_ok
The call was successful.

Related Information

Functions: pwd_strengthd(8sec) , rsec_pwd_mgmt_str_chk(3sec) ,
sec_intro(3sec) , sec_pwd_mgmt_gen_pwd(3sec) .

rsec_pwd_mgmt_gen_pwd(3sec)

Chapter 6. DCE Security Service 1151

rsec_pwd_mgmt_str_chk

Purpose

Strength-checks a password

Synopsis
#include <dce/rsec_pwd_mgmt.h>

boolean32 rsec_pwd_mgmt_str_chk(
handle_t handle
sec_rgy_name_t princ
sec_passwd_rec_t *pwd
signed32 pwd_val_type
unsigned32 plcy_args
sec_attr_t plcy[]
sec_bytes_t str_info_in
sec_bytes_t *str_info_out
error_status_t *stp);

Parameters

Input
handle An RPC binding handle to the password management server exporting this

operation.

princ The name of the principal requesting the generated passwords.

pwd A pointer to the password to be strength checked.

pwd_val_type
The value of the user’s password validation type (as stored in the
pwd_val_type ERA).

plcy_args
The size of the plcy[] array.

plcy[] An array of extended registry attributes, each specifying a password
management policy of some sort. The contents of this array are as follows:

plcy[0]
Effective registry password minimum length for the principal.

plcy[1]
Effective registry password policy flags for the principal, describing
limitations on password characters.

str_info_in
An NDR pickle containing additional information needed to strength check
the password. There are currently no encoding types defined.

Output
str_info_out

An NDR pickle containing additional information returned by the password
management server. There are currently no encoding types defined.

stp A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

1152 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The rsec_pwd_mgmt_str_chk() routine strength checks a password.

Notes

This function is not intended to be called by application programmers. The registry
server provides all the functionality necessary to strength check passwords. This
reference page is provided for programmers who wish to write their own password
management servers.

This network interface is called on the client side via secd(8) . Developers are
responsible for implementing the server side of this interface.
(pwd_strengthd(8sec) is provided as a sample implementation.)

The plcy [] parameter is intended to be expandable to allow administrators to
attach new password policy ERAs to a principal. This feature is, however, currently
unsupported, and the plcy [] parameter consists only of the entries described in
this reference page.

Return Value

The rsec_pwd_mgmt_str_chk() routine returns TRUE if the user’s password
passes the server’s strength checking algorithm and FALSE if it does not.

Files
/usr/include/dce/sec_pwd_mgmt.idl

The idl file from which dce/sec_pwd_mgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_pwd_mgmt_str_check_failed
The password failed the server’s strength checking algorithm.

sec_pwd_mgmt_not_authorized
The user is not authorized to call this API.

sec_pwd_mgmt_svr_error
Password management server generic error. Additional information is
usually logged by the password management server.

error_status_ok
The call was successful

Related Information

Functions: pwd_strengthd(8sec) , rsec_pwd_mgmt_gen_pwd(3sec) ,
sec_intro(3sec) .

rsec_pwd_mgmt_str_chk(3sec)

Chapter 6. DCE Security Service 1153

sec_acl_bind

Purpose

Returns a handle for an object’s ACL

Synopsis
#include <dce/daclif.h>

void sec_acl_bind(
unsigned char *entry_name
boolean32 bind_to_entry
sec_acl_handle_t *h
error_status_t *status);

Parameters

Input
entry_name

The name of the target object. Subsequent ACL operations using the
returned handle will affect the ACL of this object.

bind_to_entry
Bind indicator, for use when entry_name identifies both an entry in the
global namespace and an actual object. A TRUE value binds the handle to
the entry in the namespace, while FALSE binds the handle to the actual
object.

Output
h A pointer to the sec_acl_handle_t variable to receive the returned ACL

handle. The other sec_acl routines use this handle to refer to the ACL for
the object specified with entry_name.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_bind() routine returns a handle bound to the indicated object’s ACL.
This routine is central to all the other sec_acl routines, each of which requires this
handle to identify the ACL on which to operate.

Notes

If the specified name is both an actual object, and an entry in the global
namespace, there are two ACLs associated with it. For example, in addition to the
ACL normally attached to file system objects, the root directory of a file system has
an ACL corresponding to its entry in the global namespace. This controls access by
outsiders to the entire file system, whereas the resident ACL for the root directory
only controls access to the directory and, by inheritance, its subdirectories. The
ambiguity must be resolved with the bind_to_entry parameter.

1154 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_object_not_found
The requested object could not be found.

sec_acl_no_acl_found
There is no ACL associated with the specified object.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_acl_bind(3sec)

Chapter 6. DCE Security Service 1155

sec_acl_bind_auth

Purpose

Returns an opaque handle to an object’s ACL

Synopsis
#include <dce/daclif.h>

void sec_acl_bind(
unsigned char *entry_name
boolean32 bind_to_entry
sec_acl_bind_auth_info_t *auth_info
sec_acl_handle_t *h
error_status_t *status);

Parameters

Input
entry_name

The name of the target object. Subsequent access control list (ACL)
operations using the returned handle will affect the ACL of this object.

bind_to_entry
A bind indicator, for use when entry_name identifies both an entry in the
global namespace and an actual object. A TRUE value binds the handle to
the entry in the namespace, while FALSE binds the handle to the actual
object.

auth_info
A pointer to the sec_acl_bind_auth_info_t structure that identifies the
authentication protocol, protection level, and authorization protocol to use in
establishing the binding. If this argument is not supplied, default
authorization information is used as it is in the sec_acl_bind() routine.

In the sec_acl_bind_auth_info_t structure:

authn_lvl
Specifies the protection level for remote procedure calls made using
binding. The protection level determines the degree to which
authenticated communications between the client and the server
are protected by the authentication service specified by authn_svc.

If the RPC runtime or the RPC protocol in the bound protocol
sequence does not support a specified level, the level is
automatically upgraded to the next higher supported level. The
possible protection levels are as follows:

rpc_c_authn_level_default
Uses the default protection level for the specified
authentication service.

rpc_c_authn_level_pkt_integrity is the default protection
level for the DCE shared-secret key authentication service.

rpc_c_authn_level_none
Performs no authentication: tickets are not exchanged,
session keys are not established, client PACs or names are
not certified, and transmissions are in the clear. Note that

1156 IBM DCE for AIX, Version 2.2: Application Development Reference

although uncertified PACs should not be trusted, they may
be useful for debugging, tracing, and measurement
purposes.

rpc_c_authn_level_connect
Performs protection only when the client establishes a
relationship with the server.

rpc_c_authn_level_call
Performs protection only at the beginning of each remote
procedure call when the server receives the request.

This level does not apply to remote procedure calls made
over a connection-based protocol sequence (that is,
ncacn_ip_tcp). If this level is specified and the binding
handle uses a connection-based protocol sequence, the
routine uses rpc_c_authn_level_pkt instead.

rpc_c_authn_level_pkt
Ensures that all data received is from the expected client.

rpc_c_authn_level_pkt_integ
Ensures and verifies that none of the data transferred
between client and server has been modified.

This is the highest protection level that is guaranteed to be
present in the RPC runtime.

rpc_c_authn_level_pkt_privacy
Performs protection as specified by all of the previous
levels and also encrypt each remote procedure call
argument value.

This is the highest protection level, but it may not be
available in the RPC runtime.

authn_svc
Specifies the authentication service to use. The exact level of
protection provided by the authentication service is specified by the
authn_lvl parameter. The supported authentication services are as
follows:

rpc_c_authn_none
No authentication: no tickets are exchanged, no session
keys established, client PACs or names are not transmitted,
and transmissions are in the clear. Specify
rpc_c_authn_none to turn authentication off for remote
procedure calls made using binding.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_default
DCE default authentication service.

Note:

The current default authentication service is DCE
shared-secret key. Specifying rpc_c_authn_default
is therefore equivalent to specifying
rpc_c_authn_dce_secret .

sec_acl_bind_auth(3sec)

Chapter 6. DCE Security Service 1157

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

identity
Specifies a handle for the data structure that contains the client’s
authentication and authorization credentials appropriate for the
selected authentication and authorization services.

When using the rpc_c_authn_dce_secret authentication service
and any authorization service, this value must be a
sec_login_handle_t obtained from one of the following routines:

v sec_login_setup_identity()

v sec_login_get_current_context()

v sec_login_newgroups()

Specify NULL to use the default security login context for the
current address space.

authz_svc
Specifies the authorization service implemented by the server for
the interface of interest. The validity and trustworthiness of
authorization data, like any application data, is dependent on the
authentication service and protection level specified. The supported
authorization services are as follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if the
authn_svc parameter is rpc_c_authn_none , specifying that
no authentication is being performed.

rpc_c_authz_name
Server performs authorization based on the client principal
name. This value cannot be used if authn_svc is
rpc_c_authn_none .

rpc_c_authz_dce
Server performs authorization using the client’s DCE
privilege attribute certificate (PAC) sent to the server with
each remote procedure call made with binding. Generally,
access is checked against DCE access control lists (ACLs).
This value cannot be used if authn_svc is
rpc_c_authn_none .

Output
h A pointer to the sec_acl_handle_t variable to receive the returned ACL

handle. The other sec_acl routines use this handle to refer to the ACL for
the object specified with entry_name.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_bind_auth() routine returns a handle bound to the indicated object’s
ACL. This routine and the sec_acl_bind() routine provide the handle that identifies
the ACL on which other sec_acl routines operate. Use this routine instead of the
sec_acl_bind() routine to specify authorization information explicitly instead of
using the default authorization information.

sec_acl_bind_auth(3sec)

1158 IBM DCE for AIX, Version 2.2: Application Development Reference

Note:

If the specified name is both an actual object, and an entry in the global
namespace, there are two ACLs associated with it. For example, in addition
to the ACL normally attached to file system objects, the root directory of a file
system has an ACL corresponding to its entry in the global namespace. This
controls access by outsiders to the entire file system, whereas the resident
ACL for the root directory only controls access to the directory and, by
inheritance, its subdirectories. The ambiguity must be resolved with the
bind_to_entry parameter.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_object_not_found
The requested object could not be found.

sec_acl_no_acl_found
There is no ACL associated with the specified object.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_acl_bind(3sec) .

sec_acl_bind_auth(3sec)

Chapter 6. DCE Security Service 1159

sec_acl_bind_to_addr

Purpose

Returns a handle to an object identified by its network address

Synopsis
#include <dce/daclif.h>

void sec_acl_bind_to_addr(
unsigned char *site_addr
sec_acl_component_name_t component_name
sec_acl_handle_t *h
error_status_t *status);

Parameters

Input
site_addr

An RPC string binding to the fully qualified network address of the target
object.

component_name
The name of the target object. Subsequent ACL operations using the
returned handle will affect the ACL of this object.

Output
h A pointer to the sec_acl_handle_t variable to receive the returned ACL

handle. The other sec_acl routines use this handle to refer to the ACL for
the object specified with entry_name.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_bind_to_addr() routine returns a handle bound to the indicated
object’s ACL manager. This routine and the sec_acl_bind() routine are central to all
the other sec_acl routines, each of which requires a handle to identify the ACL on
which to operate.

This routine differs from sec_acl_bind() in that it binds to the network address of
the target object, rather than to a cell namespace entry. Therefore, unlike
sec_acl_bind() , it is possible to pass sec_acl_bind_to_addr() a null string as a
component name and to bind with a nonexistent name. The purpose of this call is
to eliminate the necessity of looking up an object’s name. To validate the name, use
sec_acl_bind() .

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

1160 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_object_not_found
The requested object could not be found.

sec_acl_no_acl_found
There is no ACL associated with the specified object.

sec_acl_unable_to_authenticate
The call could not authenticate to the server that manages the target
object’s ACL.

sec_acl_bind_error
The call could not bind to the requested site.

sec_acl_invalid_site_name
The site_addr parameter is invalid.

sec_acl_cant_allocate_memory
Memory allocation failure.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_acl_bind_to_addr(3sec)

Chapter 6. DCE Security Service 1161

sec_acl_calc_mask

Purpose

Returns the sec_acl_type_mask_obj entry for the specified ACL list

Synopsis
#include <dce/daclif.h>

void sec_acl_calc_mask(
sec_acl_list_t *sec_acl_list
error_status_t *status);

Parameters

Input/Output
sec_acl_list

A pointer to a sec_acl_type_t the specifies the number of ACLs of each
ACL type. The sec_acl_type_t data type distinguishes between the various
types of ACLs an object can possess for a given manager. In the file
system, for example, most objects have only one ACL, controlling the
access to that object, but objects that control the creation of other objects
(sometimes referred to as containers) may have more. A directory, for
example, can have ACLs to be used as initial values when member objects
are created.

Do not confuse ACL types with the permissions corresponding to different
ACL manager types or with the ACL manager types themselves.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_calc_mask() routine calculates and sets the
sec_acl_e_type_mask_obj entry of the specified ACL list. The value of the
sec_acl_e_type_mask_obj entry is the union of the permissions of all ACL entries
that refer to members of the file group class.

This operation is performed locally, within the client. The function does not check to
determine if the manager to which the specified ACL list will be submitted supports
the sec_acl_e_type_mask_obj entry type. The calling application must determine
whether to call this routine, after obtaining the required, if any, POSIX semantics,
via the sec_acl_get_mgr_types_semantics() routine.

Notes

This call is provided in source code form.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

1162 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_cant_allocate_memory
Requested operation requires more memory than is available.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_acl_calc_mask(3sec)

Chapter 6. DCE Security Service 1163

sec_acl_get_access

Purpose

Lists the access (permission set) that the caller has for an object

Synopsis
#include <dce/daclif.h>

void sec_acl_get_access(
sec_acl_handle_t h
uuid_t *manager_type
sec_acl_permset_t *net_rights
error_status_t *status);

Parameters

Input
h A handle referring to the object whose ACL is to be accessed. Use

sec_acl_bind() to create this handle.

manager_type
A pointer to the UUID identifying the manager type of the ACL in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

Output
net_rights

The output list of access rights in sec_acl_permset_t form. This is a 32-bit
set of permission flags supported by the manager type.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_get_access() routine determines the complete extent of access to the
specified object by the calling process. Although the sec_acl_test_access() and
sec_acl_test_access_on_behalf() routines are the preferred method of testing
access, this routine is useful for implementing operations like the conventional UNIX
access function.

Permissions Required

The sec_acl_get_access() routine requires at least one permission of any kind on
the object for which the access is to be returned.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

1164 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_test_access(3sec) , sec_acl_test_access_on_behalf(3sec) .

sec_acl_get_access(3sec)

Chapter 6. DCE Security Service 1165

sec_acl_get_error_info

Purpose

Returns error information from an ACL handle

Synopsis
#include <dce/daclif.h>

error_status_t sec_acl_get_error_info(
sec_acl_handle_t h);

Parameters

Input
h A handle referring to the target ACL. The handle is bound to the ACL with

the sec_acl_bind() routine, which also specifies the name of the object to
which the target ACL belongs.

Description

The sec_acl_get_error_info() routine returns error information from the specified
ACL handle.

During a call to a routine in the sec_acl application programming interface (API),
error codes received from the RPC runtime or other APIs are saved in the ACL
handle and a corresponding error code from the sec_acl set is passed back by the
ACL API. The sec_acl_get_error_info() routine returns the last error code stored in
the ACL handle for those clients who need to know exactly what went wrong.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Return Values

This routine returns a value of type error_status_t , indicating the cause of the last
error issued by the RPC runtime.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_invalid_handle
The ACL handle specified by sec_acl_handle_t is invalid.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_lookup(3sec) , sec_intro(3sec) .

1166 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_get_manager_types

Purpose

Lists the manager types of the ACLs protecting an object

Synopsis
#include <dce/daclif.h>

void sec_acl_get_manager_types(
sec_acl_handle_t h
sec_acl_type_t sec_acl_type
unsigned32 size_avail
unsigned32 *size_used
unsigned32 *num_types
uuid_t manager_types[]
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

size_avail
An unsigned 32-bit integer containing the allocated length of the
manager_types[] array.

Output
size_used

An unsigned 32-bit integer containing the number of output entries returned
in the manager_types[] array.

num_types
An unsigned 32-bit integer containing the number of types returned in the
manager_types[] array. This may be greater than size_used if there was
not enough space allocated in the manager_types[] array for all the
manager types.

manager_types[]
An array of length size_avail to contain UUIDs (of type uuid_t) identifying
the different types of ACL managers protecting the target object.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Chapter 6. DCE Security Service 1167

Description

The sec_acl_get_manager_types() routine returns a list of the manager types of
ACLs of type sec_acl_type that are protecting the object identified by h. For
example, in addition to the regular file system ACL, a file representing the stable
storage of some database could have an ACL manager that supported permissions
allowing database updates only on certain days of the week.

ACL editors and browsers can use this operation to determine the ACL manager
types that a particular reference monitor is using to protect a selected entity. Then,
using the sec_acl_get_printstring() routine, they can determine how to format for
display the permissions supported by a specific manager.

Permissions Required

The sec_acl_get_manager_types() routine requires at least one permission of any
kind on the object for which the ACL manager types are to be returned.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_get_printstring(3sec) , sec_intro(3sec) .

sec_acl_get_manager_types(3sec)

1168 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_get_mgr_types_semantics

Purpose

Lists the manager types of the ACLs protecting an object

Synopsis
#include <dce/daclif.h>

void sec_acl_get_mgr_types_semantics(
sec_acl_handle_t h
sec_acl_type_t sec_acl_type
unsigned32 size_avail
unsigned32 *size_used
unsigned32 *num_types
uuid_t manager_types[]
sec_acl_posix_semantics_t posix_semantics[]
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

size_avail
An unsigned 32-bit integer containing the allocated length of the
manager_types[] array.

Output
size_used

An unsigned 32-bit integer containing the number of output entries returned
in the manager_types[] array.

num_types
An unsigned 32-bit integer containing the number of types returned in the
manager_types[] array. This may be greater than size_used if there was
not enough space allocated in the manager_types[] array for all the
manager types.

manager_types[]
An array of length size_avail to contain UUIDs (of type uuid_t) identifying
the different types of ACL managers protecting the target object.

posix_semantics[]
An array of POSIX semantics supported by each manager type with entries
of type sec_acl_posix_semantics_t .

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Chapter 6. DCE Security Service 1169

Description

The sec_acl_get_mgr_types_semantics() routine returns a list of the manager
types of ACLs of type sec_acl_type that are protecting the object identified by h. For
example, in addition to the regular file system ACL, a file representing the stable
storage of some database could have an ACL manager that supported permissions
allowing database updates only on certain days of the week.

ACL editors and browsers can use this operation to determine the ACL manager
types that a particular reference monitor is using to protect a selected entity. Then,
using the sec_acl_get_printstring() routine, they can determine how to format for
display the permissions supported by a specific manager.

Permissions Required

The sec_acl_get_mgr_types_semantics() routine requires at least one permission
of any kind on the object for which the ACL manager types are to be returned.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_get_printstring(3sec) , sec_intro(3sec) .

sec_acl_get_mgr_types_semantics(3sec)

1170 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_get_printstring

Purpose

Returns printable ACL strings

Synopsis
#include <dce/daclif.h>

void sec_acl_get_printstring(
sec_acl_handle_t h
uuid_t *manager_type
unsigned32 size_avail
uuid_t *manager_type_chain
sec_acl_printstring_t *manager_info
boolean32 *tokenize
unsigned32 *total_num_printstrings
unsigned32 *size_used
sec_acl_printstring_t printstrings[]
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

size_avail
An unsigned 32-bit integer containing the allocated length of the
printstrings[] array.

Output
manager_type_chain

If the target object ACL contains more than 32 permission bits, multiple
manager types are used, one for each 32-bit wide ′′slice’’ of permissions.
The UUID returned in manager_type_chain refers to the next ACL manager
in the chain. If there are no more ACL managers for this ACL, uuid_nil is
returned.

manager_info
Provides a name and help string for the given ACL manager.

tokenize
When FALSE, this variable indicates that the returned permission
printstrings are unambiguous and therefore may be concatenated when
printed without confusion. When TRUE, however, this property does not
hold, and the strings need to be separated when printed or passed.

total_num_printstrings
An unsigned 32-bit integer containing the total number of permission
printstrings supported by this ACL manager type.

Chapter 6. DCE Security Service 1171

size_used
An unsigned 32-bit integer containing the number of permission entries
returned in the printstrings[] array.

printstrings[]
An array of permission printstrings of type sec_acl_printstring_t . Each
entry of the array is a structure containing the following three components:

printstring
A character string of maximum length sec_acl_printstring_len
describing the printable representation of a specified permission.

helpstring
A character string of maximum length
sec_acl_printstring_help_len containing some text that can be
used to describe the specified permission.

permissions
A sec_acl_permset_t permission set describing the permissions
that are represented with the companion printstring.

The array consists of one such entry for each permission supported
by the ACL manager identified by manager_type.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_get_printstring() routine returns an array of printable representations
(called printstrings) for each permission bit or combination of permission bits the
specified ACL manager supports. The ACL manager type specified must be one of
the types protecting the object indicated by h.

In addition to returning the printstrings, this routine also returns instructions about
how to print the strings. When the tokenize variable is set to FALSE, a printstring
might be r or w, which could be concatenated in the display as rw without any
confusion. However, when the tokenize variable is TRUE, it implies the printstrings
might be of a form like read or write , which must be displayed separated by spaces
or colons or something.

In any list of permission printstrings, there may appear to be some redundancy. ACL
managers often define aliases for common permission combinations. By convention,
however, simple entries should appear at the beginning of the printstrings[] array,
and combinations should appear at the end.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_get_printstring(3sec)

1172 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_unknown_manager_type
The manager type selected is not among those referenced by the input
handle.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_get_manager_types(3sec) ,
sec_intro(3sec) .

sec_acl_get_printstring(3sec)

Chapter 6. DCE Security Service 1173

sec_acl_lookup

Purpose

Returns the ACL for an object

Synopsis
#include <dce/daclif.h>

void sec_acl_lookup(
sec_acl_handle_t h
uuid_t *manager_type
sec_acl_type_t sec_acl_type
sec_acl_list_t *sec_acl_list
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

Output
sec_acl_list

A pointer to the sec_acl_list_t structure to receive the complete access
control list. An ACL contains a list of ACL entries, the UUID of the default
cell where authentication takes place (foreign entries in the ACL contain the
name of their home cell), and the UUID of the ACL manager to interpret the
list.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_lookup() routine loads into memory a copy of an object’s ACL
corresponding to the specified manager type. The routine returns a pointer to the
ACL. This routine is only used by ACL editors and browsers; an application would
use sec_acl_test_access() or sec_acl_test_access_on_behalf() to process the
contents of an ACL.

1174 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

The sec_acl_lookup() routine requires at least one permission of any kind on the
object for which the ACL is to be returned.

Notes

The memory containing the sec_acl_t structure for each ACL is dynamically
allocated. Use the sec_acl_release() routine to return each ACL’s memory block to
the pool when an application is finished with the ACLs.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

sec_acl_cant_allocate_memory
The requested operation requires more memory than is available.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_test_access(3sec) ,
sec_acl_test_access_on_behalf(3sec) , sec_intro(3sec) .

sec_acl_lookup(3sec)

Chapter 6. DCE Security Service 1175

sec_acl_mgr_configure

Purpose

Configures an ACL manager.

Format
#include <dce/daclmgr.h>

void sec_acl_mgr_configure(
sec_acl_mgr_config_t config_info,
unsigned_char_p_t db_name,
sec_acl_mgr_handle_t *sec_acl_mgr,
error_status_t *st);

Parameters

Input
config_info

An unsigned 32-bit set of flags containing miscellaneous information about
how to treat the specified ACL database. Currently, only the following two
flags are used:

sec_acl_mgr_config_create
Create a new database with the given name. If one with the input
name already exists, an error is returned.

sec_acl_mgr_config_stable
Provide stable storage for the database state. If not set,
sec_acl_mgr_configure assumes that the calling program takes
care of storing the ACL database, and does not save it.

db_name
Identifies the ACL database to use. The name generally refers to the file
system object that represents the persistent storage for the database.

Output
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with the config_info parameter. Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

Usage

The sec_acl_mgr_configure routine provides a handle to refer to the particular
ACL database in use and which is necessary for all other ACL manager operations.

The only storage model supported by the current ACL manager interface is one with
a separate stable storage file.

1176 IBM DCE for AIX, Version 2.2: Application Development Reference

Messages

This routine is not intended to be used by application programs. The sec_acl
Application Programming Interface (API) provides all the functions necessary to use
the ACL facility. This reference page is provided for programmers who wish to write
an ACL manager. In order to write an ACL manager, a programmer must implement
the entire rdacl interface. The sec_acl_mgr reference pages are provided as an
example of a successful implementation.

Examples

Here is an example of the common usage of the ACL manager routines. The
application uses rpc_binding_inq_auth_client to acquire a privilege attribute
certificate.
application_op(handle_t h, ...) {
...
sec_acl_mgr_configure(<configuration info>,

<name of acl file system object>,
&sec_acl_mgr_handle, &status);

...
rpc_binding_inq_auth_client(h, &PAC, &server_name, &lvl,

&authn_svc, &authz_svc, &status);
rpc_binding_inq_object(h, &object, &status);
if (sec_acl_mgr_is_authorized(acl_mgr_handle,

<needed permissions>,
&PAC, (sec_acl_key_t) &object,
sec_acl_type_object, NULL, NULL, &status)) {

/* Application code to perform operation */
} else {
/* Caller is not authorized to have the desired permissions
* over the indicated object. Act accordingly...

*/
...

}
}

Context
/usr/include/dce/daclmgr.idl

The idl file from which dce/daclmgr.h was derived.

sec_acl_mgr_configure(3sec)

Chapter 6. DCE Security Service 1177

sec_acl_mgr_get_access

Purpose

Reads a privilege attribute certificate.

Format
#include <dce/daclmgr.h>

void sec_acl_mgr_get_access
sec_acl_mgr_handle_t sec_acl_mgr,
rpc_authz_cred_handle_t accessor_info,
sec_acl_key_t sec_acl_key,
uuid_t *manager_type,
sec_id_t *user_obj,
sec_id_t *group_obj,
sec_acl_permset_t *net_rights,
error_status_t *st);

Parameters

Input
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with sec_acl_configure . Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

accessor_info
The privilege attribute certificate (PAC) that contains the identity and group
membership of the calling process. This can then be compared with entries
in the ACL to determine whether it is authorized to have indicated desired
privileges.

sec_acl_key
A pointer indicating the object whose ACL is in question. The type of the
pointer is dependent on the ACL manager involved. For file system ACLs, it
points to a uuid_t parameter, containing the UUID and name of the file
system object.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types to acquire a list of the manager
types protecting a given object.

user_obj
Contains the identity of the caller. This is to be used when the ACL
manager encounters a USER_OBJ field in an ACL. The identity used is
generally the person field of the caller account. This parameter may be
NULL, although this produces an error and denial of access to the object if
the ACL contains a USER_OBJ entry.

group_obj
Identical in use to the user_obj parameter, except this refers to the group of
the caller account and any potential GROUP_OBJ entry in the target
object’s ACL.

1178 IBM DCE for AIX, Version 2.2: Application Development Reference

Output
net_rights

The output list of access rights, in sec_acl_permset_t form. This is a 32-bit
set of permission flags. The flags may represent the conventional file
system permissions (read, write, execute), the extended AFS permissions
(owner, insert, delete), or some other permissions supported only by the
specific ACL manager. For example, a bit that is unused for file system
permissions may mean withdrawals are allowed for a bank ACL manager,
while it may mean rebooting is allowed for a CPU ACL manager.

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

Usage

The sec_acl_mgr_get_access routine determines the complete extent of access to
the specified object by the process described in the input privilege attribute
certificate (called a PAC and passed in the pac parameter). Although the
sec_acl_mgr_is_authorized routine is the preferred method of testing access, this
routine is useful for implementing operations like the conventional UNIX access
function.

The actual ACL to be compared against the input PAC is not passed directly to this
routine, but is referred to by the sec_acl_key and the sec_acl_mgr parameters.

Messages

This routine is not intended to be used by application programs. The sec_acl
Application Programming Interface (API) provides all the functions necessary to use
the ACL facility. This reference page is provided for programmers who wish to write
an ACL manager. In order to write an ACL manager, a programmer must implement
the entire rdacl interface. The sec_acl_mgr reference pages are provided as an
example of a successful implementation.

Context
/usr/include/dce/daclmgr.idl

The idl file from which dce/daclmgr.h was derived.

Comments

Functions: rpc_binding_auth_client(3rpc) , sec_acl_mgr_configure(3sec) ,
sec_acl_mgr_is_authorized(3sec) .

sec_acl_mgr_get_access(3sec)

Chapter 6. DCE Security Service 1179

sec_acl_mgr_get_manager_types

Purpose

Returns the types of ACLs that are protecting an object.

Format
#include <dce/daclmgr.h>

void sec_acl_mgr_get_manager_types(
sec_acl_mgr_handle_t sec_acl_mgr,
sec_acl_key_t sec_acl_key,
sec_acl_type_t sec_acl_type,
unsigned32 size_avail,
unsigned32 *size_used,
unsigned32 *num_types,
uuid_t manager_types**,
error_status_t *st);

Parameters

Input
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with sec_acl_mgr_configure . Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

sec_acl_key
A pointer indicating the object whose ACL is in question. The type of the
pointer is dependent on the ACL manager involved. For file system ACLs, it
points to a uuid_t parameter, containing the UUID and name of the file
system object.

sec_acl_type
The ACL type. It is generally sec_acl_type_object . The sec_acl_type_t
data type distinguishes between the various types of ACLs an object can
possess for a given manager. In the file system, for example, most objects
have only one ACL controlling the access to that object, but objects that
control the creation of other objects (sometimes referred to as containers)
may have more. A directory, for example, can have ACLs to be used as
initial values when member objects are created.

Do not confuse ACL types with the permissions corresponding to different
ACL manager types or with the ACL manager types themselves.

size_avail
An unsigned 32-bit integer containing the allocated length of the
manager_types array.

Output
size_used

An unsigned 32-bit integer containing the actual length of the
manager_types array.

num_types
An unsigned 32-bit integer containing the actual number of manager types
returned in the manager_types array.

1180 IBM DCE for AIX, Version 2.2: Application Development Reference

manager_types
An array of manager types in which each entry is of type uuid_t .

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns the following error:

sec_acl_cant_allocate_memory
Requested operation requires more memory than is available.

Usage

The sec_acl_mgr_get_manager_types routine returns the types of ACLs that are
protecting an object. ACL editors and browsers can use this routine to determine
the ACL manager types that a particular reference monitor is using to manage the
ACLs of sec_acl_type on the object identified by sec_acl_key.

The number of the ACL manager types supported by the object for the specified
sec_acl_type is returned in num_types. The actual ACL manager types are returned
as entries in the manager_types array.

If the returned size is greater than the specified size_avail, invoke the routine again
with a buffer large enough to hold the returned information.

Note that if num_types is greater than 1, it means that the object is polymorphic
and supports ACL manager types for each of its forms.

Context
/usr/include/dce/daclmgr.idl

The idl file that dce/daclmgr.h was derived from.

Comments

Functions: sec_acl_mgr_configure(3sec) , sec_acl_mgr_get_access(3sec) ,
sec_acl_mgr_is_authorized(3sec) .

sec_acl_mgr_get_manager_types(3sec)

Chapter 6. DCE Security Service 1181

sec_acl_mgr_get_types_semantics

Purpose

Returns the types of ACLs and the POSIX semantics that are protecting an object.

Format
#include <dce/daclmgr.h>

void sec_acl_mgr_get_types_semantics(
sec_acl_handle_t sec_acl_mgr,
sec_acl_key_t sec_acl_key,
sec_acl_type_t sec_acl_type,
unsigned32 size_avail,
unsigned32 *size_used,
unsigned32 *num_types,
uuid_t manager_types**,
sec_acl_posix_semantics_t posix_semantics**,
error_status_t *st);

Parameters

Input
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with sec_acl_mgr_configure . Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

sec_acl_key
A pointer indicating the object whose ACL is in question. The type of the
pointer depends on the ACL manager involved. For file system ACLs, it
points to a uuid_t parameter, containing the UUID and name of the system
object.

sec_acl_type
The ACL type. It is generally sec_acl_type_object . The sec_acl_type_t
data type distinguishes between the various types of ACLs an object can
possess for a given manager. In the file system, for example, most objects
have only one ACL controlling the access to that object, but objects that
control the creation of other objects (sometimes referred to as “containers”)
may have more. A directory, for example, can have ACLs to be used as
initial values when member objects are created.

Do not confuse ACL types with the permissions corresponding to different
ACL manager types or with the ACL manager types themselves.

size_avail
An unsigned 32-bit integer containing the allocated length of the
manager_types array.

Output
size_used

An unsigned 32-bit integer containing the actual length of the
manager_types array.

1182 IBM DCE for AIX, Version 2.2: Application Development Reference

num_types
An unsigned 32-bit integer containing the actual number of manager types
returned in the manager_types array.

manager_types
An array of manager types in which each entry is of type uuid_t .

posix_semantics
An array of POSIX semantics supported by each manager type with entries
of type sec_acl_posix_semantics .

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns the following error:

sec_acl_cant_allocate_memory
The requested operation requires more memory than is available.

Usage

The sec_acl_mgr_get_types_semantics routine returns the types of ACLs that are
protecting an object. ACL editors and browsers can use this routine to determine
the ACL manager types that a particular reference monitor is using to manage the
ACLs of sec_acl_type on the object identified by sec_acl_key.

The number of the ACL manager types supported by the object for the specified
sec_acl_type is returned in num_types. The actual ACL manager types are returned
as entries in the manager_types array.

If the returned size is greater than the specified size_avail, invoke the routine again,
with a buffer large enough to hold the returned information.

Note that if num_types is greater than 1, it means that the object is polymorphic
and supports ACL manager types for each of its forms.

This routine is provided in source code form.

Context
/usr/include/dce/daclmgr.idl

The idl file that dce/daclmgr.h was derived from.

Comments

Functions: sec_acl_mgr_config(3sec) , sec_acl_mgr_get_access(3sec) ,
sec_acl_mgr_is_authorized .

sec_acl_mgr_get_types_semantics(3sec)

Chapter 6. DCE Security Service 1183

sec_acl_mgr_get_printstring

Purpose

Returns printable ACL strings.

Format
#include <dce/daclmgr.h>

void sec_acl_mgr_get_printstring(
sec_acl_mgr_handle_t sec_acl_mgr,
uuid_t *manager_type,
unsigned32 size_avail,
uuid_t *manager_type_chain,
sec_acl_printstring_t *manager_info,
boolean32 *tokenize,
unsigned32 *total_num_printstrings,
unsigned32 *size_used,
sec_acl_printstring_t printstrings**,
error_status_t *st);

Parameters

Input
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with sec_acl_configure . Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

manager_type
The ACL manager type.

size_avail
An unsigned 32-bit integer containing the allocated length of the printstrings
array.

Output
manager_type_chain

If the target object ACL contains more than 32 permission bits, multiple
manager types are used, one for each 32-bit wide slice of permissions. The
UUID returned in manager_type_chain refers to the next ACL manager in
the chain. If there are no more ACL managers for this ACL, uuid_nil is
returned.

manager_info
A print string providing a name and help string for the given ACL manager.

tokenize
When FALSE this parameter indicates that the returned permission print
strings are unambiguous and therefore may be concatenated when printed
without confusion. When TRUE, however, this property does not hold, and
the strings need to be separated when printed or passed.

total_num_printstrings
An output pointer to an unsigned 32-bit integer indicating the total number
of print strings supported by this ACL manager. If size_avail is smaller than

1184 IBM DCE for AIX, Version 2.2: Application Development Reference

total_num_printstrings, multiple calls to sec_acl_mgr_get_printstring are
necessary to retrieve all the supported print strings.

size_used
An unsigned 32-bit integer containing the number of permission entries
returned in the printstrings array.

printstrings
An array of permission print strings of type sec_acl_printstring_t . Each
entry of the array is a structure containing three components:

printstring
A character string of maximum length sec_acl_printstring_len
describing the printable representation of a specified permission.

helpstring
A character string of maximum length
sec_acl_printstring_help_len containing some text that can be
used to describe the specified permission.

permissions
A sec_acl_permset_t permission set describing the permissions
that are represented with the companion print string.

The array consists of one such entry for each permission supported by the
target ACL manager.

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

Usage

The sec_acl_mgr_get_printstring routine returns an array of printable
representations (print strings) for each permission bit or combination of permission
bits the ACL manager will support.

In addition to returning the print strings, this routine also returns instructions about
how to print the strings. When the tokenize parameter is set to FALSE, a print string
might be r or w, which could be concatenated in the display as rw without any
confusion. However, when the tokenize parameter is TRUE, it implies the print
strings might be of a form like read or write , which must be displayed separated by
spaces or colons or some other separator.

In any list of permission print strings, there may appear to be some redundancy.
ACL managers often define aliases for common permission combinations. By
convention, however, simple entries should appear at the beginning of the
printstrings array, and combinations should appear at the end.

Messages

This routine is not intended to be used by application programs. The sec_acl
Application Programming Interface (API) provides all the functions necessary to use
the ACL facility. This reference page is provided for programmers who wish to write
an ACL manager. In order to write an ACL manager, a programmer must implement
the entire rdacl interface. The sec_acl_mgr reference pages are provided as an
example of a successful implementation.

sec_acl_mgr_get_printstring(3sec)

Chapter 6. DCE Security Service 1185

Context
/usr/include/dce/daclmgr.idl

The idl file that dce/daclmgr.h was derived from.

Comments

Functions: sec_acl_mgr_configure(3sec) .

sec_acl_mgr_get_printstring(3sec)

1186 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_mgr_is_authorized

Purpose

Compares a privilege attribute certificate with an ACL.

Format
#include <dce/daclmgr.h>

boolean32 sec_acl_mgr_is_authorized(
sec_acl_mgr_handle_t sec_acl_mgr,
sec_acl_permset_t desired_access,
rpc_authz_cred_handle_t *accessor_info,
sec_acl_key_t sec_acl_key,
uuid_t *manager_type,
sec_id_t *user_obj,
sec_id_t *group_obj,
error_status_t *st);

Parameters

Input
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with sec_acl_configure . Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

desired_access
A permission set in sec_acl_permset_t form containing the desired
privileges. This is a 32-bit set of permission flags. The flags can represent
the conventional file system permissions (read, write, execute), the
extended file system permissions (insert, delete), or some other
permissions supported only by the specific ACL manager. For example, a
bit that is unused for file system permissions may mean withdrawals are
allowed for a bank ACL manager, while it may mean rebooting is allowed
for a CPU ACL manager.

accessor_info
A pointer to the privilege attribute certificate (PAC) that contains the identity
and group membership of the calling process. The PAC can then be
compared with entries in the ACL to determine whether it is authorized to
have indicated desired privileges.

sec_acl_key
A pointer indicating the object whose ACL is in question. The type of the
pointer is dependent on the ACL manager involved. For file system ACLs, it
points to a uuid_t parameter, containing the UUID and name of the file
system object.

manager_type
The ACL manager type.

user_obj
Contains the identity of the caller. This is to be used when the ACL
manager encounters a USER_OBJ field in an ACL. The identity used is

Chapter 6. DCE Security Service 1187

generally the person field of the caller account. This parameter may be
NULL, although this produces an error and denial of access to the object if
the ACL contains a USER_OBJ entry.

group_obj
Identical in use to the user_obj parameter, except this refers to the group of
the caller account and any potential GROUP_OBJ entry in the target
object’s ACL.

Output
st A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_acl_mgr_is_authorized routine interprets an ACL, compares it to a
privilege attribute certificate (called a PAC and passed in the pac parameter) for a
process, and declares whether that process is permitted to have the access implied
by the privileges in desired_permset. This is the basic function of an ACL manager.
Applications that provide controlled access to objects must acquire a PAC and
submit that certificate to the ACL manager through this function.

The actual ACL to be compared against the input PAC is not passed directly to this
routine, but is referred to by the sec_acl_key and the manager_type parameters.

Messages

This routine is not intended to be used by application programs. The sec_acl
Application Programming Interface (API) provides all the functions necessary to use
the ACL facility. This reference page is provided for programmers who wish to write
an ACL manager. In order to write an ACL manager, a programmer must implement
the entire rdacl interface. The sec_acl_mgr reference pages are provided as an
example of a successful implementation.

Return Codes

The routine returns TRUE if the caller process is authorized to perform the
operations implied by the privileges specified in desired_permset.

Examples

Following is an example of the common usage of the ACL manager routines. The
application uses rpc_binding_inq_auth_client to acquire a PAC and
sec_acl_mgr_configure to acquire the ACL manager handle.
application_op(handle_t h, ...{
...
sec_acl_mgr_configure(<configuration info>,

<name of acl file system object>,
&sec_acl_mgr_handle, &status);

...
rpc_binding_inq_auth_client(h, &PAC, &server_name,

&lvl, &authn_svc, &authz_svc, &status);
rpc_binding_inq_object(h, &object, &status);
if (sec_acl_mgr_is_authorized(acl_mgr_handle,

<needed permissions>,
&PAC, (sec_acl_key_t) &object,
sec_acl_type_object, NULL, NULL, &status)) {

sec_acl_mgr_is_authorized(3sec)

1188 IBM DCE for AIX, Version 2.2: Application Development Reference

/* Application code to perform operation */
} else {
/* Caller is not authorized to have the desired permissions over
* the indicated object. Act accordingly...

*/
...

}
}

Context
/usr/include/dce/daclmgr.idl

The idl file from which dce/daclmgr.h was derived.

Comments

Functions: sec_acl_mgr_configure(3sec) , sec_acl_mgr_get_access(3sec) .

sec_acl_mgr_is_authorized(3sec)

Chapter 6. DCE Security Service 1189

sec_acl_mgr_lookup

Purpose

Finds an ACL using its key.

Format
#include <dce/daclmgr.h>

void sec_acl_mgr_lookup(
sec_acl_mgr_handle_t sec_acl_mgr,
sec_acl_key_t sec_acl_key,
uuid_t *manager_type,
sec_acl_type_t sec_acl_type,
sec_acl_list_t **sec_acl_list,
error_status_t *st);

Parameters

Input
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with sec_acl_mgr_configure . Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

sec_acl_key
A pointer indicating the object whose ACL is in question. The type of the
pointer is dependent on the ACL manager involved. For file system ACLs, it
points to a uuid_t parameter, containing the UUID and name of the file
system object.

manager_type
The ACL manager type.

sec_acl_type
The ACL type. It is generally sec_acl_type_object . The sec_acl_type_t
data type distinguishes between the various types of ACLs an object can
possess for a given manager. In the file system, for example, most objects
have only one ACL controlling the access to that object, but objects that
control the creation of other objects (sometimes referred to as containers)
may have more. A directory, for example, can have ACLs to be used as
initial values when member objects are created.

Do not confuse ACL types with the permissions corresponding to different
ACL manager types or with the ACL manager types themselves.

Output
sec_acl_list

A pointer to the sec_acl_list_t structure to receive the complete access
control list. An ACL contains a list of ACL entries, the UUID of the default
cell where authentication takes place (foreign entries in the ACL contain the
name of their parent cell), and the UUID of the ACL manager to interpret
the list.

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns

1190 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_cant_allocate_memory , which indicates that the requested
operation requires more memory than is available.

Usage

The sec_acl_mgr_lookup routine loads into memory a copy of the ACL
corresponding to the sec_acl_key. The routine returns a pointer to the ACL. This
routine is only used by ACL editors and browsers; an application uses
sec_acl_mgr_get_access or sec_acl_mgr_is_authorized to process the contents
of an ACL.

Messages

This routine is not intended to be used by application programs. The sec_acl
Application Programming Interface (API) provides all the functions necessary to use
the ACL facility. This reference page is provided for programmers who want to write
an ACL manager. In order to write an ACL manager, a programmer must implement
the entire rdacl interface. The sec_acl_mgr reference pages are provided as an
example of a successful implementation.

Context
/usr/include/dce/daclmgr.idl

The idl file that dce/daclmgr.h was derived from.

Comments

Functions: sec_acl_mgr_configure(3sec) , sec_acl_mgr_get_access(3sec) ,
sec_acl_mgr_is_authorized(3sec) .

sec_acl_mgr_lookup(3sec)

Chapter 6. DCE Security Service 1191

sec_acl_mgr_replace

Purpose

Replaces an ACL.

Format
#include <dce/daclmgr.h>

void sec_acl_mgr_replace(
sec_acl_mgr_handle_t sec_acl_mgr,
sec_acl_key_t sec_acl_key,
uuid_t *manager_type,
sec_acl_type_t sec_acl_type,
sec_acl_list_t *sec_acl_list,
error_status_t *st);

Parameters

Input
sec_acl_mgr

A pointer to a handle for an ACL manager and the storage configuration
chosen with sec_acl_mgr_configure . Having a distinct handle for the
combination of ACL manager and configuration allows the application to use
different storage strategies for different types of objects.

sec_acl_key
A pointer indicating the object whose ACL is in question. The type of the
pointer depends on the ACL manager involved. For file system ACLs, it
points to a uuid_t parameter, containing the UUID and name of the file
system object.

manager_type
A pointer indicating the ACL manager type.

sec_acl_type
The ACL type. It is generally sec_acl_type_object . The sec_acl_type_t
data type distinguishes between the various types of ACLs an object can
possess for a given manager. In the file system, for example, most objects
will have only one ACL controlling the access to that object, but objects that
control the creation of other objects (sometimes referred to as containers)
may have more. A directory, for example, can have ACLs to be used as
initial values when member objects are created.

Do not confuse ACL types with the permissions corresponding to different
ACL manager types or with the ACL manager types themselves.

sec_acl_list
The new ACL to use for the target object. This is represented by a pointer
to the sec_acl_list_t structure containing the complete access control list.
An ACL contains a list of ACL entries, the UUID of the default cell where
authentication will take place (foreign entries in the ACL contain the name
of their parent cell), and the UUID of the ACL manager to interpret the list.

Output
st A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns

1192 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_cant_allocate_memory , which indicates that the requested
operation requires more memory than is available.

Usage

The sec_acl_mgr_replace routine replaces the ACL indicated by the input handle
with the information in the sec_acl_list parameter. This package treats ACLs as
immutable, and in order to modify them an editing application must read an entire
ACL (using sec_acl_mgr_lookup), modify it as needed, and replace it using this
routine.

Restrictions

There is no authorization checking performed on this operation; it is strictly local.
The application needs to call sec_acl_mgr_is_authorized with desired_permset
set to something indicating permission to set the ACL before actually attempting the
replace.

Messages

The data type that stores an ACL has a limited size. Attempting to add too many
entries generates a sec_acl_cant_allocate_memory error.

This routine is not intended to be used by application programs. The sec_acl
Application Programming Interface (API) provides all the functions necessary to use
the ACL facility. This reference page is provided for programmers who wish to write
an ACL manager. In order to write an ACL manager, a programmer must implement
the entire rdacl interface. The sec_acl_mgr reference pages are provided as an
example of a successful implementation.

Context
/usr/include/dce/daclmgr.idl

The idl file that dce/daclmgr.h was derived from.

Comments

Functions: sec_acl_mgr_configure(3sec) , sec_acl_mgr_is_authorized(3sec) ,
sec_acl_mgr_lookup(3sec) .

sec_acl_mgr_replace(3sec)

Chapter 6. DCE Security Service 1193

sec_acl_release

Purpose

Releases ACL storage

Synopsis
#include <dce/daclif.h>

void sec_acl_release(
sec_acl_handle_t h
sec_acl_t *sec_acl
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

sec_acl
A pointer to the complete ACL associated with the target object.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_release() routine releases any local storage associated with the ACL
object, returning it to the pool. This is strictly a local operation (since the storage in
question is local), and has no effect on the remote object or its ACL. The ACL
handle is in the argument list only for consistency with other sec_acl routines.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_lookup(3sec) , sec_intro(3sec) .

1194 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_acl_release_handle

Purpose

Removes an ACL handle

Synopsis
#include <dce/daclif.h>

void sec_acl_release_handle(
sec_acl_handle_t *h
error_status_t *status);

Parameters

Input
h The handle to be removed. The handle is bound to the object to which the

ACL belongs with the sec_acl_bind() routine.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_release_handle() routine removes the specified handle. This is strictly
a local operation, and has no effect on the remote object or its ACL.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_intro(3sec) .

Chapter 6. DCE Security Service 1195

sec_acl_replace

Purpose

Replaces an ACL

Synopsis
#include <dce/daclif.h>

void sec_acl_replace(
sec_acl_handle_t h
uuid_t *manager_type
sec_acl_type_t sec_acl_type
sec_acl_list_t *sec_acl_list
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

sec_acl_type
The ACL type. The sec_acl_type_t data type distinguishes the various
types of ACLs an object can possess for a given manager type. The
possible values are as follows:

v sec_acl_type_object

v sec_acl_type_default_object

v sec_acl_type_default_container

sec_acl_list
The new ACL to use for the target object. This is represented by a pointer
to the sec_acl_list_t structure containing the complete access control list.
An ACL contains a list of ACL entries, the UUID of the default cell where
authentication will take place (foreign entries in the ACL contain the name
of their parent cell), and the UUID of the ACL manager to interpret the list.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_replace() routine replaces the ACL indicated by the input handle with
the information in the sec_acl_list parameter. ACLs are thought of as immutable,
and in order to modify them, an editing application must read an entire ACL (using
the sec_acl_lookup() routine), modify it as needed, and replace it using this
routine.

1196 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

The sec_acl_replace() routine requires the c (control) permission on the object for
which the ACL is to be replaced.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_lookup(3sec) , sec_intro(3sec) .

sec_acl_replace(3sec)

Chapter 6. DCE Security Service 1197

sec_acl_test_access

Purpose

Tests access to an object

Synopsis
#include <dce/daclif.h>

boolean32 sec_acl_test_access(
sec_acl_handle_t h
uuid_t *manager_type
sec_acl_permset_t desired_permset
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

desired_permset
A permission set in sec_acl_permset_t form containing the desired
privileges. This is a 32-bit set of permission flags supported by the manager
type.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_test_access() routine determines if the specified ACL contains entries
granting privileges to the calling process matching those in desired_permset. An
application generally only inquires after the minimum set of privileges needed to
accomplish a specific task.

Permissions Required

The sec_acl_test_access() routine requires at least one permission of any kind on
the object for which the privileges are to be tested.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

1198 IBM DCE for AIX, Version 2.2: Application Development Reference

Return Values

The routine returns TRUE if the calling application program is authorized to access
the target object with the privileges in desired_permset.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

error_status_ok
The call was successful.

Related Information

Functions: sec_acl_bind(3sec) , sec_acl_test_access_on_behalf(3sec) ,
sec_intro(3sec) .

sec_acl_test_access(3sec)

Chapter 6. DCE Security Service 1199

sec_acl_test_access_on_behalf

Purpose

Tests access to an object on behalf of another process

Note: This operation is obsolete, but is documented for backward compatibility.
sec_id_pac_t is no longer the data structure used for identities (for further
information, see the sec_cred_*(3sec) routines), and delegation subsumes
the functionality that the sec_acl_test_access_on_behalf() routine was
originally intended to provide. ACL managers do not have to implement the
server side of this functionality to be DCE compliant, and therefore clients
should not rely on its being available in servers.

Synopsis
#include <dce/daclif.h>

boolean32 sec_acl_test_access_on_behalf(
sec_acl_handle_t h
uuid_t *manager_type
sec_id_pac_t *subject
sec_acl_permset_t desired_permset
error_status_t *status);

Parameters

Input
h A handle referring to the target object. Use sec_acl_bind() to create this

handle.

manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the object
whose ACL is bound to the input handle. Use this parameter to distinguish
them. Use sec_acl_get_manager_types() to acquire a list of the manager
types protecting a given object.

subject
A privilege attribute certificate (PAC) for the subject process. The PAC
contains the name and UUID of the principal and cell of the subject
process, as well as a list of any groups to which it belongs. The PAC also
contains a flag (named authenticated). When set, it indicates that the
certificate was obtained from an authenticated source. When not set, the
certificate must not be trusted. (The field is FALSE when it was obtained
from the rpc_auth(3rpc) layer and the protect level was set to
rpc_c_protect_level_none . This indicates that no authentication protocol
was actually used in the remote procedure call; the identity was simply
transmitted from the caller to the callee. If an authentication protocol was
used, then the flag is set to TRUE.)

If a null PAC is passed, the subject is treated as an anonymous user,
matching only the any_other and unauthenticated entries (if they exist) on
the ACL.

A server uses rpc_binding_inq_auth_client() to acquire a certificate for
the client process.

1200 IBM DCE for AIX, Version 2.2: Application Development Reference

desired_permset
A permission set in sec_acl_permset_t form containing the desired
privileges. This is a 32-bit set of permission flags supported by the manager
type.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_acl_test_access_on_behalf() routine determines if the specified ACL
contains entries that grant the privileges specified in desired_permset to the subject
process. An application generally inquires about only the minimum set of privileges
needed to accomplish a specific task.

Permissions Required

The sec_acl_test_access_on_behalf() routine requires at least one permission of
any kind on the object for which the privileges are to be tested. Both the calling
process and the identified subject must have permission on the object.

Note: This operation is obsolete, but is documented for backward compatibility.
sec_id_pac_t is no longer the data structure used for identities (for further
information, see the sec_cred_*(3sec) routines), and delegation subsumes the
functionality that the sec_acl_test_access_on_behalf() routine was originally
intended to provide. ACL managers do not have to implement the server side of this
functionality to be DCE compliant, and therefore clients should not rely on its being
available in servers.

Files
/usr/include/dce/daclif.idl

The idl file from which dce/daclif.h was derived.

Return Values

If the routine completes successfully (with a completion status of error_status_ok)
it returns a value of

v TRUE, if the caller has any access (at least one permission of any kind), and the
subject has the desired_permset privileges.

v FALSE, if both the caller and the subject have any access, but the subject does
not have the desired_permset privileges.

If the routine does not complete successfully, it returns a bad completion status
code and a return value of FALSE.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_acl_unknown_manager_type
The manager type selected is not an available option.

sec_acl_test_access_on_behalf(3sec)

Chapter 6. DCE Security Service 1201

error_status_ok
The call was successful.

sec_acl_not_implemented
Requested operation is not implemented in this version of DCE.

Related Information

Functions: rpc_binding_inq_auth_client(3rpc) , sec_acl_bind(3sec) ,
sec_acl_test_access(3sec) , sec_intro(3sec) .

sec_acl_test_access_on_behalf(3sec)

1202 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_attr_trig_query

Purpose

Reads attributes coded with an attribute trigger type of query

Synopsis
#include <dce/sec_attr_trig.h>

void sec_attr_trig_query (
handle_t h
sec_attr_component_name_t cell_name
sec_attr_component_name_t component_name
sec_attr_trig_cursor_t *cursor
unsigned32 num_attr_keys
unsigned32 space_avail
sec_attr_t attr_keys[]
unsigned32 *num_returned
sec_attr_t attrs[]
sec_attr_trig_timeval_sec_t time_to_live[]
unsigned32 *num_left
error_status_t *status);

Parameters

Input
h A handle referring to the trigger server to be accessed. Use the trigger

binding information specified in the attribute encoding to acquire a bound
handle.

cell_name
A value of sec_attr_component_name_t that identifies the cell in which
the object whose attribute is to be accessed resides. Supply a NULL
cell_name to specify the local cell (/.:).

component_name
A value of sec_attr_component_name_t that identifies the name of the
object whose attribute is to be accessed. If cell_name specifies a foreign
cell, component_name is interpreted as a UUID in string format since the
caller of this interface knows only the UUID, not the name, of the foreign
principal.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the
attr_keys[] array. This integer must be greater than 0 (zero).

space_avail
An unsigned 32-bit integer that specifies the size of the attr_keys[] array.

attr_keys[]
An array of values of type sec_attr_t . For each attribute instance, the
sec_attr_t array contains an attr_id (a UUID of type uuid_t) to identify the
attribute to be queried and an attr_value. attr_value can be used to pass in
optional information required by the attribute trigger query. If no additional
information is to be passed, set attr_value to sec_attr_enc_void . This is
actually accomplished by setting the sec_attr_encoding_t data type to
sec_attr_enc_void .

The size of the attr_keys[] array is determined by num_attr_keys.

Chapter 6. DCE Security Service 1203

Input/Output
cursor A pointer to a cursor of type sec_attr_trig_cursor_t . As an input

parameter, cursor can be initialized (by the server) or uninitialized. If the
cursor is uninitialized, the cursor begins processing the query at the first
attribute that satisfies the search criteria. As an output parameter, cursor is
positioned past the attributes returned in this call.

Output
num_returned

A pointer to an unsigned 32-bit integer that specifies the number of attribute
instances returned in the attr_keys[] array.

attrs[]
An array of values of type sec_attr_t . The size of this array is determined
by the space_avail parameter and the length by the num_returned
parameter.

time_to_live[]
An array of values of type sec_attr_trig_timeval_sec_t . For each attribute
in the attrs[] array, The time_to_live[] array specifies the time in seconds
that the attribute can be safely cached.

num_left
A pointer to an unsigned 32-bit integer that supplies the number of
attributes found but not returned because of space constraints in the attrs[]
buffer.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_attr_trig_query() routine reads attributes coded with a attribute trigger
type of query.

The sec_attr_trig_query() routine is called by the DCE attribute lookup code for all
schema entries that specify a query attribute trigger (sec_attr_trig_type_query
specified with the sec_attr_trig_type_flags_t data type). The attribute query code
passes the sec_attr_trig_query() input parameters to a user-written query attribute
trigger server and receives the output parameters back from the server. Although
generally this routine is not called directly, this reference page is provided for users
who are writing the attribute trigger servers that will receive sec_attr_trig_query()
input and supply its output.

Multivalued attributes are returned as independent attribute instances sharing the
same attribute UUID. A read of an attribute set returns all instances of members of
the set; the attribute set instance is not returned.

For objects in the local cell, set the cell_name parameter to null , and the
component_name parameter to specify the object’s name.

For objects in a foreign cell, set the cell_name parameter to identify the name of the
foreign cell, and the component_name parameter to the UUID in string format that
identifies the object in the foreign cell.

The num_left parameter contains the number of attributes that were found but could
not be returned because of space constraints of the attrs[] array. (Note that this

sec_attr_trig_query(3sec)

1204 IBM DCE for AIX, Version 2.2: Application Development Reference

number may be inaccurate if the target server allows updates between successive
queries.) To obtain all of the remaining attributes, set the size of the attrs[] array so
that it is large enough to hold the number of attributes listed in num_left.

Files
/usr/include/dce/sec_attr_trig.idl

The idl file from which dce/sec_attr_trig.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

not_all_available

unauthorized

error_status_ok

Related Information

Functions: sec_attr_trig_cursor_init , sec_attr_trig_update(3sec) ,
sec_intro(3sec) .

sec_attr_trig_query(3sec)

Chapter 6. DCE Security Service 1205

priv_attr_trig_query

Purpose

Retrieves attributes stored by a trigger server for a specified principal for inclusion
in the principal’s EPAC.

Format
#include <dce/priv_attr_trig.h>

void priv_attr_trig_query (
handle_t h,
sec_id_foreign_t principal,
unsigned32 num_upstream_delegates,
sec_id_foreign_t upstream_delegates[],
priv_attr_trig_cursor_t *cursor,
unsigned32 num_attr_keys,
unsigned32 space_avail,
sec_attr_t attr_keys[],
unsigned32 *num_returned,
sec_attr_t attrs[],
priv_attr_trig_timeval_sec_t time_to_live[],
unsigned32 *num_left,
error_status_t *status);

Parameters

Input
h An opaque handle bound to a trigger server. Use the trigger binding

information specified in the attribute encoding to acquire a bound handle.

principal
A value of type sec_id_foreign_t that identifies the UUID, name, and cell of
the principals whose attributes are to be retrieved.

num_upstream_delegates
If principal is a member of a delegation chain, an unsigned 32-bit integer
that specifies the number of delegates in the chain upstream from (before)
this principal. The upstream delegate chain ordering reflects the sequence
in which delegates were added to the chain. For example, the delegation
initiator is always first in the chain.

upstream_delegates[]
If the Privilege sever is adding principal to a delegation chain, an array of
values of type sec_id_foreign_t that identify the UUID and cell of each
delegate in the upstream delegation chain. Note that principal names are
not provided.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the
attr_keys array. Set this parameter to 0 to return all the principal’s attributes
that the caller is authorized to see.

space_avail
An unsigned 32-bit integer that specifies the size of the attr_keys array.

attr_keys[]
An array of values of type sec_attr_t that identify the attribute type ID of

1206 IBM DCE for AIX, Version 2.2: Application Development Reference

the attribute instance(s) to be looked up. The size of the attr_keys array is
determined by the num_attr_keys parameter.

Input/Output
cursor A pointer to a priv_attr_trig_cursor_t . As an input parameter, cursor is a

pointer to a priv_attr_trig_cursor_t initialized by the
sec_rgy_attr_cursor_init routine. As an output parameter, cursor is a
pointer to a priv_attr_trig_cursor_t that is positioned past the components
returned in this routine.

Output
num_returned

A pointer to a 32-bit unsigned integer that specifies the number of attribute
instances returned in the attrs array.

attrs[] An array of values of type sec_attr_t that contains the attributes retrieved
by UUID. The size of the array is determined by space_avail and the length
by num_returned.

time_to_live[]
An array of values of type priv_attr_trig_timeval_sec_t that specifies, for
each attribute in the attrs array, the lifetime in seconds for which the
attribute can be safely cached. The size of the array is determined by
space_avail and the length by num_returned.

num_left
A pointer to a 32-bit unsigned integer that supplies the number of attributes
that were found but that could not be returned because of space constraints
in the attrs buffer. To ensure that all the attributes are be returned, increase
the size of the attrs array by increasing the size of space_avail and
num_returned.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok , or, if the requested attributes were not available, it
returns the message not_all_available . Otherwise, it returns one of the
following errors:

unauthorized

registry server unavailable

trigger server unavailable

Usage

The priv_attr_trig_query routine is used by the Privilege server to retrieve
attributes for a principal specified by UUID and include them in the principal’s
EPAC. The Privilege server calls this routine when it gets a request for ERAs in an
EPAC.

Although generally this routine is not called directly, this reference section is
provided for users who are writing the attribute trigger servers that receive
priv_attr_trig_query input and supply its output.

If the num_attr_keys parameter is set to 0, all of the object’s attributes that the
caller is authorized to see are returned. This routine is useful for access by
applications.

priv_attr_trig_query(3sec)

Chapter 6. DCE Security Service 1207

For multivalued attributes, the routine returns a sec_attr_t for each value as an
individual attribute instance. For attribute sets, the routine returns a sec_attr_t for
each member of the set; it does not return the set instance.

The attr_keys array, which specifies the attributes to be returned, contains values of
type sec_attr_t . These values consist of:

attr_id, a UUID that identifies the attribute type

attr_value, values of sec_attr_value_t that specify the attribute’s encoding type
and values.

Use the attr_id field of each attr_keys array element to specify the UUID that
identifies the attribute type to be returned.

If the attribute instance to be read is associated with a query attribute trigger that
requires additional information before it can process the query request, use a
sec_attr_value_t to supply the requested information:

v Set the sec_attr_encoding_t to an encoding type that is compatible with the
information required by the query attribute trigger.

v Set the sec_attr_value_t to hold the required information.

Note that if you set num_attr_keys to zero to return all the object’s attributes and
that attribute is associated with a query attribute trigger, the attribute trigger is called
with no input attribute information (that would normally have been passed in with
the attr_value field).

The cursor parameter specifies a cursor of type priv_attr_trig_cursor_t initialized
to the starting point in the attribute list for processing the query. Use the
sec_rgy_attr_cursor_init routine to initialize cursor. If cursor is uninitialized, the
server begins processing the query at the first attribute that satisfies the search
criteria.

The num_left parameter contains the number of attributes that were found but could
not be returned because of space constraints of the attrs array. (Note that this
number may be inaccurate if the target server allows updates between successive
queries.) To obtain all of the remaining attributes, set the size of the attrs array so
that it is large enough to hold the number of attributes listed in num_left.

The priv_attr_trig_query routine requires the query permission set for each
attribute type identified in the attr_keys array. These permissions are defined as part
of the ACL manager set in the schema entry of each attribute type.

Context
/usr/include/dce/priv_attr_trig.idl

The idl file from which dce/priv_attr_trig.h was derived.

Comments

Functions: sec_rgy_attr_cursor_init(3sec) , sec_attr_trig_update(3sec) .

priv_attr_trig_query(3sec)

1208 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_attr_trig_update

Purpose

For attributes coded with an attribute trigger type of update, passes attribute
updates to an update attribute trigger server for evaluation

Synopsis
#include <dce/sec_attr_trig.h>

void sec_attr_trig_update (
handle_t h
sec_attr_component_name_t cell_name
sec_attr_component_name_t component_name
unsigned32 num_to_write
unsigned32 space_avail
sec_attr_t in_attrs[]
unsigned32 *num_returned
sec_attr_t out_attrs[]
unsigned32 *num_left
signed32 *failure_index
error_status_t *status);

Parameters

Input
h A handle referring to the trigger server to be accessed. Use the trigger

binding information specified in the attribute encoding to acquire a bound
handle.

cell_name
A value of sec_attr_component_name_t that identifies the cell in which
the object whose attribute is to be accessed resides. Supply a NULL
cell_name to specify the local cell (/.:).

component_name
A value of sec_attr_component_name_t that identifies the name of the
object whose attribute is to be accessed. If cell_name specifies a foreign
cell, component_name is interpreted as a UUID in string format since the
caller of this interface knows only the UUID, not the name, of the foreign
principal.

num_to_write
An unsigned 32-bit integer that specifies the number of elements in the
in_attrs array. This integer must be greater than 0 (zero).

space_avail
An unsigned 32-bit integer that specifies the size of the out_attrs array.

in_attrs[]
An array of values of type sec_attr_t that specifies the attribute instances
to be written. The size of in_attrs[] is determined by num_to_write.

Output
num_returned

A pointer to an unsigned 32-bit integer that specifies the number of attribute
instances returned in the out_attrs[] array.

Chapter 6. DCE Security Service 1209

out_attrs[]
An array of values of type sec_attr_t . These values, supplied by the update
attribute trigger server, are in a form suitable for storage in the registry
database.

num_left
A pointer to an unsigned 32-bit integer that supplies the number of
attributes that were found but not returned because of space constraints in
the out_attrs[] buffer.

failure_index
In the event of an error, failure_index is a pointer to the element in the
in_attrs[] array that caused the update to fail. If the failure cannot be
attributed to a specific attribute, the value of failure_index is −1.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_attr_trig_update() routine passes attributes coded with an attribute trigger
type of update to a user-written update attribute trigger server for evaluation before
the updates are made to the registry.

Although generally this routine it is not called directly, this reference page is
provided for users who are writing the attribute trigger servers that will receive
sec_attr_trig_update() input and supply its output.

The sec_attr_trig_update() routine is called by the DCE attribute update code for
all schema entries that specify an update attribute trigger
(sec_attr_trig_type_update specified with the sec_attr_trig_type_flags_t data
type). The attribute update code passes the sec_attr_trig_update() input
parameters to a user-written update attribute trigger server and receives the output
parameters back from the server. The attribute trigger server is responsible for
evaluating the semantics of the entry in order to reject or accept it, and the attribute
trigger server may even make changes in the output it sends back to the update
code to ensure the entry adheres to the semantics. The output received from the
attribute trigger server is in a form to be stored in the registry. (Note that update
attribute trigger servers do not store attribute values. Attribute values are stored in
the registry database.)

This is an atomic operation: if the update of any attribute in the array fails to pass
the evaluation, all updates are aborted. The attribute causing the update to fail is
identified in failure_index. If the failure cannot be attributed to a given attribute,
failure_index contains −1.

For objects in the local cell, set the cell_name parameter to null , and the
component_name parameter to specify the object’s name.

For objects in a foreign cell, set the cell_name parameter the the name of the
foreign cells, and the component_name parameter to specify the UUID in string
format that identifies the object in the foreign cell.

Files
/usr/include/dce/sec_attr_trig.idl

The idl file from which dce/sec_attr_trig.h was derived.

sec_attr_trig_update(3sec)

1210 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

database read only

server unavailable

invalid/unsupported attribute type

invalid encoding type

value not unique

site read only

unauthorized

error_status_ok

Related Information

Functions: sec_attr_trig_query(3sec) , sec_intro(3sec) .

sec_attr_trig_update(3sec)

Chapter 6. DCE Security Service 1211

sec_attr_util_alloc_copy

Purpose

Allocates the necessary subfields of the destination sec_attr_t and copies the
corresponding data from the source sec_attr_t

Synopsis
#include <dce/sec_attr_util.h>

void sec_attr_util_alloc_copy (
idl_void_p_t (*allocate) (idl_size_t size)
sec_attr_t *from
sec_attr_t *to
error_status_t *status);

Parameters

Input
*(*allocate) (unsigned32 size)

A caller-specified allocate routine (such as rpc_ss_allocate()) used to
allocate resources for the output to parameter. Set to NULL to use the
default malloc() routine.

*from A pointer to a sec_attr_t that is the source to be copied from.

Output
*to A pointer to the target sec_attr_t that contains subfields allocated, if

necessary, by the caller-specified allocate routine and data copied from the
source sec_attr_t specified by from.

*status
A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_attr_util_alloc_copy() routine allocates memory for the subfields of the
target sec_attr_t , if necessary, and copies data from the source sec_attr_t to the
target sec_attr_t .

Use the sec_attr_util_free() routine to free the memory allocated by this routine. If
a nonnull allocate routine was input to sec_attr_util_alloc_copy() , then a
corresponding free routine must be input to the sec_attr_util_free() routine.

Files
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

1212 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_not_implemented

error_status_ok

Related Information

Functions: sec_attr_util_free(3sec) , sec_attr_util_inst_free_ptrs(3sec) ,
sec_attr_util_inst_free(3sec) .

sec_attr_util_alloc_copy(3sec)

Chapter 6. DCE Security Service 1213

sec_attr_util_free

Purpose

Frees nonnull pointers in a sec_attr_t with an input deallocate routine

Synopsis
#include <dce/sec_attr_util.h>

void sec_attr_util_free(
void (*deallocate) (void *ptr)
sec_attr_t *attr);

Parameters

Input/Output
(*deallocate)(void *ptr)

A caller-specified memory deallocate routine. If set to NULL, the default
free() is used.

*attr As input, a pointer to a sec_attr_t for which memory should be deallocated.
As output, a pointer to the sec_attr_t with subfields, if any, deallocated and
set to NULL.

Description

The sec_attr_util_free() routine uses the input deallocate routine to free memory
allocated to a sec_attr_t by sec_attr_util_alloc_copy() . With an input value of
NULL for deallocate, the sec_attr_util_free routine behaves identically to
sec_attr_util_inst_free_ptrs .

Files
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

Related Information

Functions: sec_attr_util_alloc_copy(3sec) , sec_attr_util_inst_free_ptrs(3sec) ,
sec_attr_util_inst_free(3sec) .

1214 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_attr_util_inst_free

Purpose

Frees nonnull pointers in a sec_attr_t and the pointer to the sec_attr_t itself

Synopsis
#include <dce/sec_attr_util.h>

void sec_attr_util_inst_free (
sec_attr_t **sec_attr_p);

Parameters

Input/Output
**sec_attr_p

As input, the address of an allocated pointer to a potentially initialized
sec_attr_t . As output, the address of a deallocated pointer that has been
set to NULL.

Description

The sec_attr_util_inst_free() routine frees each nonnull pointer in a sec_attr_t
pointed to by *sec_attr_p. The *sec_attr_p itself is also freed and set to NULL. A
partially initialized sec_attr_t is handled correctly .

The sec_attr_util_inst_free() routine is useful for freeing the resources of
dynamically allocated sec_attr_t s and their subfields.

Note that most DCE client application programming interfaces (APIs) that return
sec_attr_t s allocate only subfields, and not the sec_attr_t itself. Use
sec_attr_util_inst_free_ptrs instead of sec_attr_util_inst_free to free attribute
resources allocated by such APIs.

Files
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

Related Information

Functions: sec_attr_util_inst_free_ptrs(3sec) .

Chapter 6. DCE Security Service 1215

sec_attr_util_inst_free_ptrs

Purpose

Frees nonnull pointers in a sec_attr_t

Synopsis
#include <dce/sec_attr_util.h>

void sec_attr_util_inst_free_ptrs (
sec_attr_t *sec_attr_p);

Parameters

Input/Output
*sec_attr_p

As input, a pointer to an allocated and potentially initialized sec_attr_t . As
output, a pointer to a sec_attr_t with internal pointers freed and set to
NULL. The sec_attr_t itself is not freed.

Description

The sec_attr_util_inst_free_ptrs() routine frees and sets to NULL each nonnull
pointer in a sec_attr_t pointed to by sec_attr_p. The sec_attr_t itself is not freed.
The sec_attr_t may have been only partially initialized.

Files
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

Related Information

Functions: sec_attr_util_inst_free(3sec) .

1216 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_attr_util_sch_ent_free

Purpose

Frees nonnull pointers in a sec_attr_schema_entry_t and the pointer to the
sec_attr_schema_entry_t itself

Synopsis
#include <dce/sec_attr_util.h>

void sec_attr_util_sch_ent_free (
sec_attr_schema_entry_t **sec_sch_entry_p);

Parameters

Input/Output
**sec_sch_entry_p

As input, the address of an allocated pointer to a potentially initialized
sec_attr_schema_entry_t . As output, the address of a deallocated pointer
that has been set to NULL.

Description

The sec_attr_util_sch_ent_free() routine frees each nonnull pointer in a
sec_attr_schema_entry_t pointed to by a *sec_sch_entry_p. The
*sec_sch_entry_p itself is also freed and set to NULL. A partially initialized
sec_attr_schema_entry_t is handled correctly

Files
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

Related Information

Functions: sec_attr_util_sch_ent_free_ptrs(3sec) .

Chapter 6. DCE Security Service 1217

sec_attr_util_sch_ent_free_ptrs

Purpose

Frees nonnull pointers in a sec_attr_schema_entry_t

Synopsis
#include <dce/sec_attr_util.h>

void sec_attr_util_sch_ent_free_ptrs (
sec_attr_schema_entry_t *sec_sch_entry_p);

Parameters

Input/Output
*sec_sch_entry_p

As input, a pointer to an allocated and potentially initialized
sec_attr_schema_entry_t . As output, a pointer to a
sec_attr_schema_entry_t with internal pointers freed and set to NULL.

Description

The sec_attr_util_sch_ent_free_ptrs() routine frees and sets to NULL each
nonnull pointer in a sec_attr_schema_entry_t pointed to by sec_sch_entry_p. The
sec_sch_entry_p itself is not freed. A partially initialized sec_attr_schem_entry_t is
handled correctly.

Files
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

Related Information

Functions: sec_attr_util_sch_ent_free(3sec) .

1218 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_attr_util_sch_free_acl_mgrs

Purpose

Frees non-null pointers in the acl_mgr_set field of a schema entry.

Format
#incude <dce/sec_attr_util.h>

void sec_attr_util_sch_free_acl_mgrs(
sec_attr_schema_entry_t *sec_sch_entry_p);

Parameters

Input/Output
sec_sch_entry_p

On input, a pointer to an allocated and potentially initialized
sec_attr_shema_entry_t schema. On output, acl_mgr_set pointers are
freed and set to NULL.

Usage

The sec_attr_util_sch_free_acl_mgrs routine frees and sets to NULL every
non-null pointer in the acl_mgr_set field of the schema entry pointed to by
sec_sch_entry_p.

Context
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

Chapter 6. DCE Security Service 1219

sec_attr_util_sch_free_binding

Purpose

Frees non-null pointers in the trig_binding field of the sec_attr_schema_entry_t
schema.

Format
#incude <dce/sec_attr_util.h>

void sec_attr_util_sch_free_binding(
sec_attr_schema_entry_t *sec_sch_entry_p);

Parameters

Input
sec_sch_entry_p

On input, points to an allocated and potentially initialized
sec_attr_schema_entry_t schema. On output, trig_binding pointers are
freed and set to NULL.

Usage

The sec_attr_util_sch_free_binding routine frees and sets to NULL every non-null
pointer in the trig_binding field of the schema entry pointed to by sec_sch_entry_p.

Context
/usr/include/dce/sec_attr_util.idl

The idl file from which dce/sec_attr_util.h was derived.

1220 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_free_attr_cursor

Purpose

Frees the local resources allocated to a sec_attr_cursor_t

Synopsis
#include <dce/sec_cred.h>

void sec_cred_free_attr_cursor (
sec_cred_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor As input, a pointer to a sec_cred_attr_cursor_t whose resources are to be

freed. As output a pointer to an initialized sec_cred_attr_cursor_t with
allocated resources freed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_free_attr_cursor() routine frees the resources assoicated with a
cursor of type sec_cred_attr_cursor_t used by the
sec_cred_get_extended_attrs() call.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: sec_cred_get_extended_attrs(3sec) ,
sec_cred_initialize_attr_cursor(3sec) , sec_intro(3sec) .

Chapter 6. DCE Security Service 1221

sec_cred_free_cursor

Purpose

Releases local resources allocated to a sec_cred_cursor_t

Synopsis
#include <dce/sec_cred.h>

void sec_cred_free_cursor (
sec_cred_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor As input, a sec_cred_cursor_t whose resources are to be freed. As output,

a sec_cred_cursor_t whose resources are freed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_free_cursor() routine releases local resources allocated to a
sec_cred_cursor_t used by the sec_cred_get_delegate() call.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_memory

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_initialize_cursor(3sec) ,
sec_intro(3sec) .

1222 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_free_pa_handle

Purpose

Frees the local resources allocated to a privilege attribute handle of type
sec_cred_pa_handle_t

Synopsis
#include <dce/sec_cred.h>

void sec_cred_free_pa_handle (
sec_cred_pa_handle__t *pa_handle
error_status_t *status);

Parameters

Input/Output
pa_handle

As input, a pointer to a sec_cred_pa_handle_t whose resources are to be
freed. As output a pointer to a sec_cred_pa_handle_t with allocated
resources freed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_free_pa_handle() routine frees the resources assoicated with a
privilege attribute handle of type sec_cred_pa_handle_t used by the
sec_cred_get_initiator() and sec_cred_get_delegate() calls.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

Chapter 6. DCE Security Service 1223

sec_cred_get_authz_session_info

Purpose

Returns session-specific information that represents an authenticated client’s
credentials

Synopsis
#include <dce/sec_cred.h>

void sec_cred_get_authz_session_info(
rpc_authz_cred_handle_t callers_identity
uuid_t *session_id
sec_timeval_sec_t *session_expiration
error_status_t *status);

Parameters

Input
callers_identity

A credential handle of type rpc_authz_cred_handle_t . This handle is
supplied as output of the rpc_binding_inq_auth_caller() call.

Output
session_ID

A pointer to a uuid_t that identifies the client’s DCE authorization session.

session_expiration
A pointer to a sec_timeval_sec_t that specifies the expiration time of the
authenticated client’s credentials.

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_get_authz_session_info() routine retrieves session-specific
information that represents the credentials of authenticated client specified by
callers_identity. If the client is a member of a delegation chain, the information
represents the credentials of all members of the chain.

The information can aid application servers in the construction of identity-based
caches. For example, it could be used as a key into a cache of previously allocated
delegation contexts and thus avoid the overhead of allocating a new login context
on every remote operation. It could also be used as a key into a table of previously
computed authorization decisions.

Before you execute this call, you must execute an rpc_binding_inq_auth_caller()
call to obtain an rpc_authz_cred_handle_t for the callers_identity parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

1224 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_s_authz_cannot_comply

error_status_ok

Related Information

Functions: rpc_binding_inq_auth_caller(3rpc) , sec_intro(3sec) .

sec_cred_get_authz_session_info(3sec)

Chapter 6. DCE Security Service 1225

sec_cred_get_client_princ_name

Purpose

Returns the principal name associated with a credential handle

Synopsis
#include <dce/sec_cred.h>

void sec_cred_get_client_princ_name(
rpc_authz_cred_handle_t callers_identity
unsigned_char_p_t *client_princ_name
error_status_t *status);

Parameters

Input
callers_identity

A handle of type rpc_authz_cred_handle_t to the credentials for which to
return the principal name. This handle is supplied as output of the
rpc_binding_inq_auth_caller() call.

Output
client_princ_name

A pointer to the principal name of the server’s RPC client.

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_get_client_princ_name() routine extracts the principal name
associated with the credentials identified by callers_pas.

Before you execute sec_cred_get_client_princ_name() , you must execute an
rpc_binding_inq_auth_caller() call to obtain an rpc_authz_cred_handle_t for the
callers_identity parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_authz_cannot_comply

error_status_ok

Related Information

Functions: rpc_binding_inq_auth_caller(3sec) , sec_intro(3sec) .

1226 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_get_deleg_restrictions

Purpose

Returns delegate restrictions from a privilege attribute handle

Synopsis
#include <dce/sec_cred.h>

sec_id_restriction_set_t *sec_cred_get_deleg_restrictions(
sec_cred_pa_handle_t callers_pas
error_status_t *status);

Parameters

Input
callers_pas

A value of type sec_cred_pa_handle_t that provides a handle to a
principal’s privilege attributes. This handle is supplied as output of the
sec_cred_get_initiator() call, the sec_cred_get_delegate() call and the
sec_login_cred calls.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_deleg_restrictions() routine extracts delegate restrictions from
the privilege attribute handle identified by callers_pas. The restrictions are returned
in a sec_id_restriction_set_t .

Before you execute sec_cred_get_pa_data() , you must execute a
sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_pa_handle

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

Chapter 6. DCE Security Service 1227

sec_cred_get_delegate

Purpose

Returns a handle to the privilege attributes of an intermediary in a delegation chain

Synopsis
#include <dce/sec_cred.h>

sec_cred_pa_handle_t sec_cred_get_delegate(
rpc_authz_cred_handle_t callers_identity
sec_cred_cursor_t *cursor
error_status_t *status);

Parameters

Input
callers_identity

A handle of type rpc_authz_cred_handle_t . This handle is supplied as
output of the rpc_binding_inq_auth_caller() call.

Input/Output
cursor As input, a pointer to a cursor of type sec_cred_cursor_t that has been

initialized by the sec_cred_initialize_cursor() call. As an output parameter,
cursor is a pointer to a cursor of type sec_attr_srch_cursor_t that is
positioned past the principal whose privilege attributes have been returned
in this call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_delegate() routine returns a handle to the privilege attributes of
an intermediary in a delegation chain that performed an authenticated RPC
operation.

This call is used by servers. Clients use the sec_login_cred_get_delegate()
routine to return the privilege attribute handle of an intermediary in a delegation
chain.

The credential handle identified by callers_identity contains authentication and
authorization information for all delegates in the chain. This call returns a handle
(sec_cred_pa_handle_t) to the privilege attributes of one of the delegates in the
binding handle. The sec_cred_pa_handle_t returned by this call is used in other
sec_cred_get_ * calls to obtain privilege attribute information for a single delegate.

To obtain the privilege attributes of each delegate in the credential handle identified
by callers_identity, execute this call until the message
sec_cred_s_no_more_entries is returned.

Before you execute sec_cred_get_delegate() , you must execute

1228 IBM DCE for AIX, Version 2.2: Application Development Reference

v An rpc_binding_inq_auth_caller() call to obtain an rpc_authz_cred_handle_t
for the callers_identity parameter.

v A sec_cred_initialize_cursor() call to initialize a cursor of type
sec_cred_cursor_t .

Use the sec_cred_free_pa_handle() all to free the resources associated with the
sec_cred_pa_handle_t .

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_auth_handle

sec_cred_s_invalid_cursor

sec_cred_s_no_more_entries

error_status_ok

Related Information

Functions: rpc_binding_inq_auth_caller(3rpc) , sec_cred_free_pa_handle() ,
sec_cred_get_deleg_restrictions(3sec) ,
sec_cred_get_delegation_type(3sec),sec_cred_get_extended_attrs(3sec) ,
sec_cred_get_opt_restrictions(3sec) , sec_cred_get_pa_date ,
sec_cred_get_req_restrictions(3sec) , sec_cred_get_tgt_restrictions(3sec) ,
sec_cred_get_v1_pac(3sec) sec_cred_initialize_cursor(3sec) , sec_intro(3sec) .

sec_cred_get_delegate(3sec)

Chapter 6. DCE Security Service 1229

sec_cred_get_delegation_type

Purpose

Returns the delegation type from a privilege attribute handle

Synopsis
#include <dce/sec_cred.h>

sec_id_delegation_type_t sec_cred_get_delegation_type(
sec_cred_pa_handle_t callers_pas
error_status_t *status);

Parameters

Input
callers_pas

A value of type sec_cred_pa_handle_t that provides a handle to a
principal’s privilege attributes. This handle is supplied as output of either the
sec_cred_get_initiator() call or sec_cred_get_delegate() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_delegation_type () routine extracts the delegation type from the
privilege attribute handle identified by callers_pas and returns it in a
sec_id_delegation_type_t .

Before you execute sec_cred_get_delegation_type() , you must execute a
sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_pa_handle

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

1230 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_get_extended_attrs

Purpose

Returns extended attributes from a privilege handle

Synopsis
#include <dce/sec_cred.h>

void sec_cred_get_extended_attrs(
sec_cred_pa_handle_t callers_pas
sec_cred_attr_cursor_t *cursor
sec_attr_t *attr
error_status_t *status);

Parameters

Input
callers_pas

A handle of type sec_cred_pa_handle_t to the caller’s privilege attributes.
This handle is supplied as output of either the sec_cred_get_initiator() call
or sec_cred_get_delegate() call.

Input/Output
cursor A cursor of type sec_cred_attr_cursor_t that has been initialized by the

sec_cred_initialize_attr_cursor() routine. As input cursor must be
initialized. As output, cursor is positioned at the first attribute after the
returned attribute.

Output
attr A pointer to a value of sec_attr_t that contains extended registry attributes.

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok .

Description

The sec_cred_get_extended_attrs() routine extracts extended registry initialized
from the privilege attribute handle identified by callers_pas.

Before you execute call, you must execute

v A sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

v A sec_cred_initialize_attr_cursor() to initialize a sec_attr_t .

To obtain all the extended registry attributes in the privilege attribute handle, repeat
sec_cred_get_extended_attrs() calls until the status message
no_more_entries_available is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 6. DCE Security Service 1231

sec_cred_s_invalid_pa_handle

sec_cred_s_invalid_cursor

sec_cred_s_no_more_entries

error_status_ok

Related Information

Functions: sec_cred_get_initiator(3sec) , sec_cred_get_delegate(3sec) ,
sec_cred_initialize_attr_cursor(3sec) , sec_intro(3sec) .

sec_cred_get_extended_attrs(3sec)

1232 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_get_initiator

Purpose

Returns the privilege attributes of the initiator of a delegation chain

Synopsis
#include <dce/sec_cred.h>

sec_cred_pa_handle_t sec_cred_get_initiator(
rpc_authz_cred_handle_t callers_identity
error_status_t *status);

Parameters

Input
callers_identity

A credential handle of type rpc_authz_cred_handle_t . This handle is
supplied as output of the rpc_binding_inq_auth_caller() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_initiator() routine returns a handle to the privilege attributes of
the initiator of a delegation chain that performed an authenticated RPC operation.

The credential handle identified by callers_identity contains authentication and
authorization information for all delegates in the chain. This call returns a handle
(sec_cred_pa_handle_t) to the privilege attributes of the client that initiated the
delegation chain. The sec_cred_pa_handle_t returned by this call is used in other
sec_cred_get... calls to obtain privilege attribute information for the initiator.

Before you execute sec_cred_get_initiator() , you must execute an
rpc_binding_inq_auth_caller() call to obtain an rpc_authz_cred_handle_t for the
callers_identity parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_auth_handle

error_status_ok

Related Information

Functions: sec_intro(3sec) , rpc_binding_inq_auth_caller(3rpc) ,
sec_cred_get_deleg_restrictions(3sec) , sec_cred_get_delegation_type(3sec) ,
sec_cred_get_extended_attrs(3sec) , sec_cred_get_opt_restrictions(3sec) ,

Chapter 6. DCE Security Service 1233

sec_cred_get_pa_date , sec_cred_get_req_restrictions(3sec) ,
sec_cred_get_tgt_restrictions(3sec) , sec_cred_get_v1_pac(3sec) .

sec_cred_get_initiator(3sec)

1234 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_get_opt_restrictions

Purpose

Returns optional restrictions from a privilege handle

Synopsis
#include <dce/sec_cred.h>

sec_id_opt_req_t *sec_cred_get_opt_restrictions(
sec_cred_pa_handle_t callers_pas
error_status_t *status);

Parameters

Input
callers_pas

A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes.
This handle is supplied as output of either the sec_cred_get_initiator() call
or sec_cred_get_delegate() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_opt_restrictions () routine extracts optional restrictions from
the privilege attribute handle identified by callers_pas and returns them in a
sec_id_restriction_set_t .

Before you execute sec_cred_get_pa_data() , you must execute a
sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_pa_handle

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

Chapter 6. DCE Security Service 1235

sec_cred_get_pa_data

Purpose

Returns identity information from a privilege attribute handle

Synopsis
#include <dce/sec_cred.h>

sec_id_pa_t *sec_cred_get_pa_data(
sec_cred_pa_handle_t callers_pas
error_status_t *status);

Parameters

Input
callers_pas

A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes.
This handle is supplied as output of either the sec_cred_get_initiator() call
or sec_cred_get_delegate() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_pa_data() routine extracts identity information from the privilege
attribute handle specified by callers_pas and returns it in a sec_id_pa_t . The
identity information includes an identifier of the princpal’s locall cell and the
principal’s local and foreign group sets.

Before you execute sec_cred_get_pa_data() , you must execute a
sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_pa_handle

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

1236 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_get_req_restrictions

Purpose

Returns required restrictions from a privilege attribute handle

Synopsis
#include <dce/sec_cred.h>

sec_id_opt_req_t *sec_cred_get_req_restrictions(
sec_cred_pa_handle_t callers_pas
error_status_t *status);

Parameters

Input
callers_pas

A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes.
This handle is supplied as output of either the sec_cred_get_initiator() call
or sec_cred_get_delegate() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_req_restrictions() routine extracts required restrictions from the
privilege attribute handle identified by callers_pas and returns them in a
sec_id_opt_req_t .

Before you execute sec_cred_get_req_restrictions() , you must execute a
sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_pa_handle

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

Chapter 6. DCE Security Service 1237

sec_cred_get_tgt_restrictions

Purpose

Returns target restrictions from a privilege attribute handle

Synopsis
#include <dce/sec_cred.h>

sec_id_restriction_set_t *sec_cred_get_tgt_restrictions(
sec_cred_pa_handle_t callers_pas
error_status_t *status);

Parameters

Input
callers_pas

A handle of type sec_cred_pa_handle_t to a principal’s privilege attributes.
This handle is supplied as output of either the sec_cred_get_initiator() call
or sec_cred_get_delegate() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_tgt_restrictions() routine extracts target restrictions from the
privilege attribute handle identified by callers_pas and returns them in a
sec_id_restriction_set_t .

Before you execute sec_cred_get_tgt_restrictions() , you must execute a
sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_pa_handle

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

1238 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_get_v1_pac

Purpose

Returns pre-1.1 PAC from a privilege attribute handle

Synopsis
#include <dce/sec_cred.h>

sec_id_pac_t *sec_cred_get_v1_pac(
sec_cred_pa_handle_t callers_pas
error_status_t *status);

Parameters

Input
callers_pas

A handle of type sec_cred_pa_handle_t to the principal’s privilege
attributes. This handle is supplied as output of either the
sec_cred_get_initiator() call or sec_cred_get_delegate() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok .

Description

The sec_cred_get_v1_pac() routine extracts the privilege attributes from a pre-1.1
PAC for the privilege attribute handle specified by callers_pas and returns them in a
sec_id_pa_t .

Before you execute sec_cred_get_v1_pac() , you must execute a
sec_cred_get_initiator() or sec_cred_get_delegate() call to obtain a
sec_cred_pa_handle_t for the callers_pas parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_pa_handle

error_status_ok

Related Information

Functions: sec_cred_get_delegate(3sec) , sec_cred_get_initiator(3sec) ,
sec_intro(3sec) .

Chapter 6. DCE Security Service 1239

sec_cred_initialize_attr_cursor

Purpose

Initializes a sec_attr_cursor_t

Synopsis
#include <dce/sec_cred.h>

void sec_cred_initialize_attr_cursor (
sec_cred_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor As input, a pointer to a sec_cred_attr_cursor_t to be initialized. As output

a pointer to an initialized sec_cred_attr_cursor_t .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_initialize_attr_cursor() routine allocates and initializes a cursor of
type sec_cred_attr_cursor_t for use with the sec_cred_get_extended_attrs() call.
Use the sec_cred_free_attr_cursor() call to free the resources allocated to cursor.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_memory

error_status_ok

Related Information

Functions: sec_cred_free_attr_cursor() , sec_cred_get_extended_attrs(3sec) ,
sec_intro(3sec) .

1240 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_initialize_cursor

Purpose

Initializes a sec_cred_cursor_t

Synopsis
#include <dce/sec_cred.h>

void sec_cred_initialize_cursor (
sec_cred_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor As input, a sec_cred_cursor_t to be initialized. As output, an initialized

sec_cred_cursor_t .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_initialize_cursor() routine initializes a cursor of type sec_cursor_t
for use with the sec_cred_get_delegate() call. Use the sec_cred_free_cursor()
call to free the resources allocated to cursor.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_memory

error_status_ok

Related Information

Functions: sec_cred_free_cursor(3sec) , sec_cred_get_delegate(3sec) ,
sec_intro(3sec) .

Chapter 6. DCE Security Service 1241

sec_cred_inq_auth_service_info

Purpose

Returns information regarding the authentication and authorization services used in
an authenticated RPC.

Format
#include <dce/sec_cred.h>

void sec_cred_inq_auth_service_info (
rpc_authz_cred_handle_t callers_identity,
unsigned_char_p_t *server_princ_name,
unsigned32 *authn_svc,
unsigned32 *authz_svc,
error_status_t *error_status);

Parameters

Input
callers_identity

A credential handle of type rpc_authz_cred_handle_t. This parameter
specifies the identity of the server’s RPC client as obtained from the RPC
runtime. This handle is supplied as output of the
rpc_binding_inq_auth_caller call.

Output
server_princ_name

A pointer of type unsigned_char_p_t to the server name to which the
caller authenticated.

authn_svc
A pointer to the authentication service.

authz_svc
A pointer to the authorization service.

error_status
A pointer to the completion status. On successful completion,
error_status_ok is returned. Otherwise, an error is returned.

Usage

The sec_cred_inquire_auth_service_info routine returns information regarding the
authentication and authorization services used in an authenticated RPC. Before you
execute this call, you must execute a call to rpc_binding_inq_auth_caller to
obtain an rpc_authz_handle_t for the callers_identity parameter.

Comments

Functions: rpc_binding_inq_auth_caller(3sec) .

1242 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_cred_is_authenticated

Purpose

Returns TRUE if the supplied credentials are authenticated, and FALSE if they are
not

Synopsis
#include <dce/sec_cred.h>

boolean32 sec_cred_is_authenticated(
rpc_authz_cred_handle_t callers_identity
error_status_t *status);

Parameters

Input
callers_identity

A handle of type rpc_authz_cred_handle_t to the credentials to check for
authentication. This handle is supplied as output of the
rpc_binding_inq_auth_caller() call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_cred_is_authenticated() routine returns TRUE if the credentials identified
by callers_identity are authenticated or FALSE if they are not.

Before you execute this call, you must execute an rpc_binding_inq_auth_caller()
call to obtain an rpc_authz_cred_handle_t for the callers_identity parameter.

Files
/usr/include/dce/sec_cred.idl

The idl file from which dce/sec_cred.h was derived.

Return Values

The routine returns true if the credentials are authenticated; false if they are not.

Related Information

Functions: rpc_binding_inq_auth_caller(3rpc) , sec_intro(3sec) .

Chapter 6. DCE Security Service 1243

sec_id_gen_group

Purpose

Generates a global name from cell and group UUIDs

Synopsis
#include <dce/secidmap.h>

void sec_id_gen_group(
sec_rgy_handle_t context
uuid_t *cell_idp
uuid_t *group_idp
sec_rgy_name_t global_name
sec_rgy_name_t cell_namep
sec_rgy_name_t group_namep
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

cell_idp
A pointer to the UUID of the home cell of the group whose name is in
question.

group_idp
A pointer to the UUID of the group whose name is in question.

Output
global_name

The global (full) name of the group in sec_rgy_name_t form.

cell_namep
The name of the group’s home cell in sec_rgy_name_t form.

group_namep
The local (with respect to the home cell) name of the group in
sec_rgy_name_t form.

status A pointer to the completion status. On successful completion, the function
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_id_gen_group() routine generates a global name from input cell and
group UUIDs. For example, given a UUID specifying the cell /.../world/hp/brazil ,
and a UUID specifying a group resident in that cell named writers , the routine
would return the global name of that group, in this case, /.../world/hp/brazil/writers .
It also returns the simple names of the cell and group, translated from the UUIDs.

The routine will not produce translations to any name for which a NULL pointer has
been supplied.

1244 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/secidmap.idl

The idl file from which dce/secidmap.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_rgy_object_not_found
The registry server could not find the specified group.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_id_gen_name(3sec) , sec_id_parse_group(3sec) ,
sec_id_parse_name(3sec) , sec_intro(3sec) .

sec_id_gen_group(3sec)

Chapter 6. DCE Security Service 1245

sec_id_gen_name

Purpose

Generates a global name from cell and principal UUIDs

Synopsis
#include <dce/secidmap.h>

void sec_id_gen_name(
sec_rgy_handle_t context
uuid_t *cell_idp
uuid_t *princ_idp
sec_rgy_name_t global_name
sec_rgy_name_t cell_namep
sec_rgy_name_t princ_namep
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

cell_idp
A pointer to the UUID of the home cell of the principal whose name is in
question.

princ_idp
A pointer to the UUID of the principal whose name is in question.

Output
global_name

The global (full) name of the principal in sec_rgy_name_t form.

cell_namep
The name of the principal’s home cell in sec_rgy_name_t form.

princ_namep
The local (with respect to the home cell) name of the principal in
sec_rgy_name_t form.

status A pointer to the completion status. On successful completion, the function
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_id_gen_name() routine generates a global name from input cell and
principal UUIDs. For example, given a UUID specifying the cell /.../world/hp/brazil ,
and a UUID specifying a principal resident in that cell named writers/tom , the
routine would return the global name of that principal, in this case,
/.../world/hp/brazil/writers/tom . It also returns the simple names of the cell and
principal, translated from the UUIDs.

The routine will not produce translations to any name for which a NULL pointer has
been supplied.

1246 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

The sec_id_gen_name() routine requires at least one permission of any kind on
the account associated with the input cell and principal UUIDs.

Files
/usr/include/dce/secidmap.idl

The idl file from which dce/secidmap.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_rgy_object_not_found
The registry server could not find the specified principal.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_id_gen_group(3sec) , sec_id_parse_group(3sec) ,
sec_id_parse_name(3sec) , sec_intro(3sec) .

sec_id_gen_name(3sec)

Chapter 6. DCE Security Service 1247

sec_id_parse_group

Purpose

Translates a global name into group and cell names and UUIDs

Synopsis
#include <dce/secidmap.h>

void sec_id_parse_group(
sec_rgy_handle_t context
sec_rgy_name_t global_name
sec_rgy_name_t cell_namep
uuid_t *cell_idp
sec_rgy_name_t group_namep
uuid_t *group_idp
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

global_name
The global (full) name of the group in sec_rgy_name_t form.

Output
cell_namep

The output name of the group’s home cell in sec_rgy_name_t form.

cell_idp
A pointer to the UUID of the home cell of the group whose name is in
question.

group_namep
The local (with respect to the home cell) name of the group in
sec_rgy_name_t form.

group_idp
A pointer to the UUID of the group whose name is in question.

status A pointer to the completion status. On successful completion, the function
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_id_parse_group() routine translates a global group name into a cell name
and a cell-relative group name. It also returns the UUIDs associated with the group
and its home cell.

The routine will not produce translations to any name for which a NULL pointer has
been supplied.

1248 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/secidmap.idl

The idl file from which dce/secidmap.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_rgy_object_not_found
The registry server could not find the specified group.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_id_gen_group(3sec) , sec_id_gen_name(3sec) ,
sec_id_parse_group(3sec) , sec_id_parse_name(3sec) , sec_intro(3sec) .

sec_id_parse_group(3sec)

Chapter 6. DCE Security Service 1249

sec_id_parse_name

Purpose

Translates a global name into principal and cell names and UUIDs

Synopsis
#include <dce/secidmap.h>

void sec_id_parse_name(
sec_rgy_handle_t context
sec_rgy_name_t global_name
sec_rgy_name_t cell_namep
uuid_t *cell_idp
sec_rgy_name_t princ_namep
uuid_t *princ_idp
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

global_name
The global (full) name of the principal in sec_rgy_name_t form.

Output
cell_namep

The output name of the principal’s home cell in sec_rgy_name_t form.

cell_idp
A pointer to the UUID of the home cell of the principal whose name is in
question.

princ_namep
The local (with respect to the home cell) name of the principal in
sec_rgy_name_t form.

princ_idp
A pointer to the UUID of the principal whose name is in question.

status A pointer to the completion status. On successful completion, the function
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_id_parse_name() routine translates a global principal name into a cell
name and a cell-relative principal name. It also returns the UUIDs associated with
the principal and its home cell.

The routine will not produce translations to any name for which a NULL pointer has
been supplied.

1250 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

Only if princ_idp is requested as output does the sec_id_parse_name() routine
require a permission. In this case, the routine requires at least one permission of
any kind on the account whose global principal name is to be translated.

Files
/usr/include/dce/secidmap.idl

The idl file from which dce/secidmap.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_id_e_name_too_long
The name is too long for current implementation.

sec_id_e_bad_cell_uuid
The cell UUID is not valid.

sec_rgy_object_not_found
The registry server could not find the specified principal.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_id_gen_name(3sec) , sec_intro(3sec) .

sec_id_parse_name(3sec)

Chapter 6. DCE Security Service 1251

sec_key_mgmt_change_key

Purpose

Changes a principal’s key

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_change_key(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
unsigned32 key_vno
void *keydata
sec_timeval_period_t *garbage_collect_time
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key function.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal whose
key is to be changed.

key_vno
The version number of the new key. If 0 (zero) is specified, the routine will
select the next appropriate key version number.

keydata
A pointer to a structure of type sec_passwd_rec_t .

Output
garbage_collect_time

The number of seconds that must elapse before all currently valid tickets

1252 IBM DCE for AIX, Version 2.2: Application Development Reference

(which are encoded with the current or previous keys) expire. At that time,
all obsolete keys may be ′′garbage collected,’’ since no valid tickets
encoded with those keys will remain outstanding on the network.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_change_key() routine performs all activities necessary to
update a principal’s key to the specified value. This includes updating any local
storage for the principal’s key and also performing any remote operations needed to
keep the authentication protocol (or network registry) current. Old keys for the
principal are garbage collected if appropriate.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Any error condition will leave the key state unchanged.

sec_key_mgmt_e_key_unavailable
The old key is not present and therefore cannot be used to set a client side
authentication context.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_auth_unavailable
The authentication protocol is not available to update the network database
or to obtain the necessary network credentials.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_key_mgmt_e_key_unsupported
The key type is not supported.

sec_key_mgmt_e_key_version_ex
A key with this version number already exists.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

sec_rgy_object_not_found
No principal was found with the given name.

sec_login_s_no_memory
A memory allocation error occurred.

error_status_ok
The call was successful.

sec_key_mgmt_change_key(3sec)

Chapter 6. DCE Security Service 1253

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_gen_rand_key(3sec) ,
sec_key_mgmt_set_key(3sec) .

sec_key_mgmt_change_key(3sec)

1254 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_key_mgmt_delete_key

Purpose

Deletes a key from the local storage

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_delete_key(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
unsigned32 key_vno
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key function.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal whose
key is to be deleted.

key_vno
The version number of the desired key.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_delete_key() routine deletes the specified key from the local
key store. If an administrator ever discovers or suspects that the security of a

Chapter 6. DCE Security Service 1255

server’s key has been compromised, the administrator should delete the key
immediately with sec_key_mgmt_delete_key() . This routine removes the key from
the local key storage, which invalidates all extant tickets encoded with the key. If
the compromised key is the current one, the principal should change the key with
sec_key_mgmt_change_key() before deleting it. It is not an error for a process to
delete the current key (as long as it is done after the network context has been
established), but it may seriously inconvenience legitimate clients of a service.

This routine deletes all key types that have the specified key version number. A key
type identifies the data encryption algorithm being used (for example, DES). This
routine differs from sec_key_mgmt_delete_key_type() in that
sec_key_mgmt_delete_key_type() deletes only the specified key version of the
specified key type from the local key store.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Any error condition will leave the key state unchanged.

sec_key_mgmt_e_key_unavailable
The requested key is not present.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_delete_key_type(3sec) ,
sec_key_mgmt_garbage_collect(3sec) .

sec_key_mgmt_delete_key(3sec)

1256 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_key_mgmt_delete_key_type

Purpose

Deletes a key version of a key type from the local key storage

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_delete_key_type(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
void *keytype
unsigned32 key_vno
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal whose
key type is to be deleted.

keytype
A pointer to a value of type sec_passwd_type_t . The value identifies the
data encryption algorithm that is being used (for example, DES).

key_vno
The version number of the desired key.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Chapter 6. DCE Security Service 1257

Description

The sec_key_mgmt_delete_key_type() routine deletes the specified key version of
the specified key type from the local key store. It differs from
sec_key_mgmt_delete_key() in that sec_key_mgmt_delete_key() deletes all key
types that have the same key version number.

This routine removes the key from the local key storage, which invalidates all extant
tickets encoded with the key. If the key in question is the current one, the principal
should change the key with sec_key_mgmt_change_key() before deleting it. It is
not an error for a process to delete the current key (as long as it is done after the
network context has been established), but it may seriously inconvenience
legitimate clients of a service.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Any error condition will leave the key state unchanged.

sec_key_mgmt_e_key_unavailable
The requested key is not present.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_delete_key(3sec) ,
sec_key_mgmt_garbage_collect(3sec) .

sec_key_mgmt_delete_key_type(3sec)

1258 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_key_mgmt_free_key

Purpose

Frees the memory used by a key value

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_free_key(
void *keydata
error_status_t *status);

Parameters

Input
keydata

A pointer to a structure of type sec_passwd_rec_t .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Description

The sec_key_mgmt_free_key() routine releases any storage allocated for the
indicated key data by sec_key_mgmt_get_key() . The storage for the key data
returned by sec_key_mgmt_get_key() is dynamically allocated.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_get_key(3sec) .

Chapter 6. DCE Security Service 1259

sec_key_mgmt_garbage_collect

Purpose

Deletes obsolete keys

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_garbage_collect(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal whose
key information is to be garbage collected.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_garbage_collect() routine discards any obsolete key
information for this principal. An obsolete key is one that can only decode invalid
tickets. As an example, consider a key that was in use on Monday, and was only
used to encode tickets whose maximum lifetime was 1 day. If that key was changed

1260 IBM DCE for AIX, Version 2.2: Application Development Reference

at 8:00 a.m. Tuesday morning, then it would become obsolete by 8:00 a.m.
Wednesday morning, at which time there could be no valid tickets outstanding.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_key_mgmt_e_key_unavailable
Requested key not present.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

sec_rgy_object_not_found
No principal was found with the given name.

sec_login_s_no_memory
A memory allocation error occurred.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_delete_key(3sec) .

sec_key_mgmt_garbage_collect(3sec)

Chapter 6. DCE Security Service 1261

sec_key_mgmt_gen_rand_key

Purpose

Generates a new random key of a specified key type

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_gen_rand_key(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
void *keytype
unsigned32 key_vno
void **keydata
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal for whom
the key is to be generated.

keytype
A pointer to a value of type sec_passwd_type_t . The value identifies the
data encryption algorithm to be used for the key (for example, DES).

key_vno
The version number of the new key.

Output
keydata

A pointer to a value of sec_passwd_rec_t . The storage for keydata is

1262 IBM DCE for AIX, Version 2.2: Application Development Reference

allocated dynamically, so the returned pointer actually indicates a pointer to
the key value. The storage for this data may be freed with the
sec_key_mgmt_free_key() function.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_gen_rand_key() routine generates a new random key for a
specified principal and of a specified key type. The generated key can be used with
the sec_key_mgmt_change_key() and sec_key_mgmt_set_key() routines.

Note that to initialize the random keyseed, the process must first make an
authenticated call such as sec_rgy_site_open() .

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_key_mgmt_e_not_implemented
The specified key type is not supported.

sec_s_no_key_seed
No random key seed has been set.

sec_s_no_memory
Unable to allocate memory.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_change_key(3sec) ,
sec_key_mgmt_set_key(3sec) .

sec_key_mgmt_gen_rand_key(3sec)

Chapter 6. DCE Security Service 1263

sec_key_mgmt_generate_key

Purpose

Generates a new random key.

Synopsis
#include <dce\keymgmt.h>

void sec_key_mgmt_generate_key (
sec_key_mgmt_authn_service authn_service,
void *arg,
unsigned_char *principal_name,
unsigned32 key_vno,
sec_timeval_period_t *garbage_collect_time,
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key.

The possible authentication protocols are as follows:

rpc_c_authn_secret
DCE shared-secret key authentication.

rpc_c_authn_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file v5srvtab should be used.
A key file name specifies that file should be used as the key file. You must
prepend the file’s absolute file name with WRFILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth _info for more information.

principal_name
A pointer to a character string indicating the name of the principal for whom
the key is to be generated.

key_vno
The version number of the new key.

Output
garbage_collect_time

Informs the caller of how many seconds in the future the garbage collection
routine must be called to get rid of any remaining obsolete keys. A 0 return
value indicates there is no need to call the garbage collection routine.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns one of the following errors:

1264 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_key_mgmt_e_key_unavailable
The old key is not present and cannot be used to set a client side
authentication context.

sec_key_mgmt_e_authn_invalid
The authentication service is invalid.

sec_key_mgmt_e_authn_unavailable
The authentication service is unavailable and therefore cannot be
used to update the network database or obtain necessary network
credentials.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_key_mgmt_e_key_version_ex
A key with this version number already exists.

Description

The sec_key_mgmt_generate_key routine performs all activities necessary to
generate a new random key for the named principal. The behavior for this routine is
the same as sec_key _mgmt_change_key , except that the new key is randomly
selected by the system.

Notes

Use of this routine is deprecated. Use sec_key_mgmt_gen _rand_key followed by
sec_key_mgmt_change _key . This routine is deficient in that it does not allow the
caller to specify the key type; the implementation of this routine will only generate
DES keys.

Files
\include\dce\keymgmt.idl

The idl file from which dce\ keymgmt.h was derived.

Related Information

Functions: DCE ID Mapping API, sec_key_mgmt_change_key(3sec) ,
sec_key_mgmt_gen_rand_key(3sec) , sec_key_mgmt_set_key(3sec).

sec_key_mgmt_generate_key(3sec)

Chapter 6. DCE Security Service 1265

sec_key_mgmt_get_key

Purpose

Retrieves a key from local storage

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_get_key(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
unsigned32 key_vno
void **keydata
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal to whom
the key belongs.

key_vno
The version number of the desired key. To return the latest version of the
key, set this parameter to sec_c_key_version_none .

Output
keydata

A pointer to a value of type sec_passwd_rec_t . The storage for keydata is
allocated dynamically, so the returned pointer actually indicates a pointer to
the key value. The storage for this data may be freed with the
sec_key_mgmt_free_key() routine.

1266 IBM DCE for AIX, Version 2.2: Application Development Reference

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_get_key() routine extracts the specified key from the local key
store.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_key_mgmt_e_key_unavailable
The requested key is not present.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_s_no_memory
Unable to allocate memory.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_key_mgmt_get_key(3sec)

Chapter 6. DCE Security Service 1267

sec_key_mgmt_get_next_key

Purpose

Retrieves successive keys from the local key storage

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_get_next_key(
void *cursor
idl_char **principal_name
unsigned32 *key_vno
void **keydata
error_status_t *status);

Parameters

Input
cursor A pointer to the current cursor position in the local key storage. The cursor

position is set via the routine sec_key_mgmt_initialize_cursor() .

Output
principal_name

A pointer to a character string indicating the name of the principal
associated with the extracted key. Free the storage for the principal name
with the free() function.

key_vno
The version number of the extracted key.

keydata
A pointer to a value of type sec_passwd_rec_t . The storage for keydata is
allocated dynamically, so the returned pointer actually indicates a pointer to
the key value. The storage for this data may be freed with the
sec_key_mgmt_free_key() function.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_get_next_key() routine extracts the key pointed to by the
cursor in the local key store and updates the cursor to point to the next key. By
repeatedly calling this routine you can scan all the keys in the local store.

Files
/usr/lib/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

1268 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_key_mgmt_e_key_unavailable
The requested key is not present.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_s_no_memory
Unable to allocate memory.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_get_key(3sec) ,
sec_key_mgmt_initialize_cursor(3sec) .

sec_key_mgmt_get_next_key(3sec)

Chapter 6. DCE Security Service 1269

sec_key_mgmt_get_next_kvno

Purpose

Retrieves the next eligible key version number for a key

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_get_next_kvno(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
void *keytype
unsigned32 *key_vno
unsigned32 *next_key_vno
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal
associated with the key.

keytype
A pointer to a value of type sec_passwd_type_t . The value identifies the
data encryption algorithm (for example, DES) being used for the key.

Output
key_vno

The current version number of the key. Specify NULL if you do not need
this value to be returned.

1270 IBM DCE for AIX, Version 2.2: Application Development Reference

next_key_vno
The next eligible version number for the key. Specify NULL if you do not
need this value to be returned.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_get_next_kvno() routine returns the current and next eligible
version numbers for a key from the registry server (not from the local key table).
The key is identified via its associated authentication protocol, principal name, and
key type. The arg value associated with the key is also specified.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_key_mgmt_e_key_unavailable
The requested key is not present.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

sec_rgy_object_not_found
No principal was found with the given name.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_key_mgmt_get_next_kvno(3sec)

Chapter 6. DCE Security Service 1271

sec_key_mgmt_get_nth_key

Purpose

Extract the specified key from the local key store.

Format
#include <dce/keymgmt.h>

void sec_key_mgmt_get_nth_key (
sec_key_mgmt_authn_service authn_service,
void *arg,
char *principal_name,
signed32 index,
unsigned32 *key_vno,
void **keydata,
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication shema.

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

principal_name
The name of the principal whose key is to be read.

index The nth key to extract. Zero (0) indicates the first key available.

Output
key_vno

The key version extracted.

keydata
The key value extracted. This data may be released by calling the
sec_key_mgmt_free_key routine.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns one of the following errors:

sec_key_mgmt_e_key_unavailable
The requested key is not present.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

Note:

Any error condition will leave the key state unchanged.

1272 IBM DCE for AIX, Version 2.2: Application Development Reference

Usage

Extracts the specified key from the local key store. This operation can be used to
scan all keys belonging to the specified principal and stored in the local key store.
Use of this routine is not recommended; use sec_key_mgmt_get_next_key along
with the initialize and release cursor functions above. This routine was deficient in
that it made the caller keep track of an index into the key storage, and did not
return a principal name associated with the key.

Context
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Functions: rpc_seerver_register_auth_info(3sec) .

sec_key_mgmt_get_nth_key(3sec)

Chapter 6. DCE Security Service 1273

sec_key_mgmt_initialize_cursor

Purpose

Repositions the cursor in the local key store

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_initialize_cursor(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
void *keytype
void **cursor
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal whose
key is to be accessed. To access all keys in the local key store, supply
NULL for this parameter.

keytype
A pointer to the data encryption algorithm (for example, DES) being used
for the key.

Output
cursor The returned cursor value. The storage for the cursor information is

allocated dynamically, so the returned pointer actually indicates a pointer to
the cursor value. The storage for this data may be freed with the
sec_key_mgmt_release_cursor() routine.

1274 IBM DCE for AIX, Version 2.2: Application Development Reference

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_initialize_cursor() routine resets the cursor in the local key
store.

Use this routine to reposition the cursor before performing a scan of the local store
via sec_key_mgmt_get_next_key() . The returned cursor value is supplied as input
to sec_key_mgmt_get_next_key() .

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_s_no_memory
Unable to allocate memory.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_get_next_key(3sec) ,
sec_key_mgmt_release_cursor(3sec) .

sec_key_mgmt_initialize_cursor(3sec)

Chapter 6. DCE Security Service 1275

sec_key_mgmt_manage_key

Purpose

Automatically changes a principal’s key before it expires

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_manage_key(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. You
must prepend the file’s absolute filename with FILE: and the file must have
been created with the rgy_edit ktadd command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal whose
key is to be managed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_key_mgmt_manage_key() routine changes the specified principal’s key
on a regular basis, as determined by the local cell’s policy. It will run indefinitely,
never returning during normal operation, and therefore should be invoked only from
a thread that has been devoted to managing keys.

1276 IBM DCE for AIX, Version 2.2: Application Development Reference

This routine queries the DCE registry to determine the password expiration policy
that applies to the named principal. It then idles until a short time before the current
key is due to expire and then uses the sec_key_mgmt_gen_rand_key() to
produce a new random key, updating both the local key store and the DCE registry.
This routine also invokes sec_key_mgmt_garbage_collect() as needed.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_key_mgmt_e_key_unavailable
The old key is not present and therefore cannot be used to set a client side
authentication context.

sec_key_mgmt_e_key_unsupported
The key type is not supported.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

sec_rgy_object_not_found
No principal was found with the given name.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_gen_rand_key(3sec) ,
sec_key_mgmt_garbage_collect(3sec) .

sec_key_mgmt_manage_key(3sec)

Chapter 6. DCE Security Service 1277

sec_key_mgmt_release_cursor

Purpose

Releases the memory used by an initialized cursor value

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_release_cursor(
void **cursor
error_status_t *status);

Parameters

Input
cursor A pointer to the cursor value for which the storage is to be released.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Description

The sec_key_mgmt_release_cursor() routine releases any storage allocated for
the indicated cursor value by sec_key_mgmt_initialize_cursor() . The storage for
the cursor value returned by sec_key_mgmt_initialize_cursor() is dynamically
allocated.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_initialize_cursor(3sec) .

1278 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_key_mgmt_set_key

Purpose

Inserts a key value into the local storage

Synopsis
#include <dce/keymgmt.h>

void sec_key_mgmt_set_key(
sec_key_mgmt_authn_service authn_service
void *arg
idl_char *principal_name
unsigned32 key_vno
void *keydata
error_status_t *status);

Parameters

Input
authn_service

Identifies the authentication protocol using this key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local key file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default key file (/krb/v5srvtab) should be
used. A key filename specifies that file should be used as the key file. The
filename must begin with FILE: . If the filename does not begin with FILE: ,
the code will add it.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

principal_name
A pointer to a character string indicating the name of the principal
associated with the key to be set.

key_vno
The version number of the key to be set.

keydata
A pointer to the key value to be set.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Chapter 6. DCE Security Service 1279

Description

The sec_key_mgmt_set_key() routine performs all local activities necessary to
update a principal’s key to the specified value. This routine will not update the
authentication protocol’s value for the principal’s key.

In some circumstances, a server may only wish to change its key in the local key
storage, and not in the DCE registry. For example, a database system may have
several replicas of a master database, managed by servers running on independent
machines. Since these servers together represent only one service, they should all
share the same key. This way, a user with a ticket to use the database can choose
whichever server is least busy. To change the database key, the master server
would signal all the replica (slave) servers to change the current key in their local
key storage. They would use the sec_key_mgmt_set_key() routine, which does
not communicate with the DCE registry. Once all the slaves have complied, the
master server can then change the registry key and its own local storage.

Files
/usr/include/dce/keymgmt.idl

The idl file from which dce/keymgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_key_mgmt_e_key_unavailable
The old key is not present and therefore cannot be used to set a client side
authentication context.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_key_mgmt_e_key_unsupported
The key type is not supported.

sec_key_mgmt_e_key_version_ex
A key with this version number already exists.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_key_mgmt_change_key(3sec) ,
sec_key_mgmt_gen_rand_key(3sec) .

sec_key_mgmt_set_key(3sec)

1280 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_become_delegate

Purpose

Causes an intermediate server to become a delegate in traced delegation chain

Synopsis
#include <dce/sec_login.h>

sec_login_handle_t
sec_login_become_delegate(

rpc_authz_cred_handle_t callers_identity
sec_login_handle_t my_login_context
sec_id_delegation_type_t delegation_type_permitted
sec_id_restriction_set_t *delegate_restrictions
sec_id_restriction_set_t *target_restrictions
sec_id_opt_req_t *optional_restrictions
sec_id_opt_req_t *required_restrictions
sec_id_compatibility_mode_t compatibility_mode
error_status_t *status);

Parameters

Input
callers_identity

A handle of type rpc_authz_cred_handle_t to the authenticated identity of
the previous delegate in the delegation chain. The handle is supplied by the
rpc_binding_inq_auth_caller() call.

my_login_context
A value of sec_login_handle_t that provides an opaque handle to the
identity of the client that is becoming the intermediate delegate. The
sec_login_handle_t that specifies the client’s identity is supplied as output
of the following calls:

v sec_login_get_current_context() , if the client inherited the identity of
the current context

v The sec_login_setup_identity() and the sec_login_validate_identity()
pair that together establish an authenticated identity if a new identity was
established

Note that this identity specified by sec_login_handle_t must be a simple
login context; it cannot be a compound identity created by a previous
sec_login_become_delegate() call.

delegation_type_permitted
A value of sec_id_delegation_type_t that specifies the type of delegation
to be enabled. The types available are as follows:

sec_id_deleg_type_none
No delegation.

sec_id_deleg_type_traced
Traced delegation.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation.

Chapter 6. DCE Security Service 1281

Note that the initiating client sets the type of delegation. If it is set as
traced, all delegates must also specify traced delegation; they cannot
specify simple delegation. The same is true if the initiating client sets the
delegation type as simple; all subsequent delegates must also specify
simple delegation. The intermediate delegates can, however, specify no
delegation to indicate that the delegation chain can proceed no further.

delegate_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that
can act as delegates for the intermediate client identified by
my_login_context. These servers are added to delegates permitted by the
delegate_restrictions parameter of the sec_login_become_initiator call.

target_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that
can act as targets for the intermediate client identified by my_login_context.
These servers are added to targets specified by the target_restrictions
parameter of the sec_login_become_initiator call.

optional_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined
optional restrictions that apply to the intermediate client identified by
my_login_context. These restrictions are added to the restrictions identified
by the optional_restrictions parameter of the sec_login_become_initiator
call.

required_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined
required restrictions that apply to the intermediate client identified by
my_login_context. These restrictions are added to the restrictions identified
required_restrictions parameter of the sec_login_become_initiator call.

compatibility_mode
A value of sec_id_compatibility_mode_t that specifies the compatibility
mode to be used when the intermediate client operates on pre-1.1 servers.
The modes available are as follows:

sec_id_compat_mode_none
Compatibility mode is off.

sec_id_compat_mode_initiator
Compatibility mode is on. The pre-1.1 PAC data is extracted from
the EPAC of the initiating client.

sec_id_compat_mode_caller
Compatibility mode is on. The pre-1.1 PAC data extracted from the
EPAC of the last client in the delegation chain.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_become_delegate() is used by intermediate servers to become a
delegate for the client identified by callers_identity. The routine returns a new login
context (of type sec_login_handle_t) that carries delegation information. This
information includes the delegation type, delegate and target restrictions, and any
application-defined optional and required restrictions.

sec_login_become_delegate(3sec)

1282 IBM DCE for AIX, Version 2.2: Application Development Reference

The new login context created by this call can then used to to set up authenticated
rpc with an intermediate or target server using the rpc_binding_set_auth_info()
call.

Any delegate, target, required, or optional restrictions specified in this call are
added to the restrictions specified by the initiating client and any intermediate
clients.

The sec_login_become_delegate() call is run only if the initiating client enabled
traced delegation by setting the delegation_type_permitted parameter in the
sec_login_become_initiator call to sec_id_deleg_type_traced .

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

err_sec_login_invalid_delegate_restriction

err_sec_login_invalid_target_restriction

err_sec_login_invalid_opt_restriction

err_sec_login_invalid_req_restriction

sec_login_s_invalid_context

sec_login_s_compound_delegate

sec_login_s_invalid_deleg_type

sec_login_s_invalid_compat_mode

sec_login_s_deleg_not_enabled

error_status_ok

Related Information

Functions: rpc_binding_inq_auth_caller(3rpc) , sec_intro(3sec) ,
sec_login_become_impersonator(3sec) , sec_login_become_initiator(3sec) ,
sec_login_get_current_context(3sec) , sec_login_setup_identity(3sec) ,
sec_login_validate_identity() .

sec_login_become_delegate(3sec)

Chapter 6. DCE Security Service 1283

sec_login_become_impersonator

Purpose

Used by a server to create a login context and assoicated handle that impersonates
the identity of a caller

Synopsis
#include <dce/sec_login.h>

sec_login_handle_t
sec_login_become_impersonator(

rpc_authz_cred_handle_t callers_identity
sec_login_handle_t my_login_context
sec_id_delegation_type_t delegation_type_permitted
sec_id_restriction_set_t *delegate_restrictions
sec_id_restriction_set_t *target_restrictions
sec_id_opt_req_t *optional_restrictions
sec_id_opt_req_t *required_restrictions
error_status_t *status);

Description

The sec_login_become_impersonator() is used by intermediate servers to
become an impersonator for the client identified by callers_identity. The routine
returns a new login context (of type sec_login_handle_t) that carries delegation
information. This information includes the delegation type, delegate, and target
restrictions, and any application-defined optional and required restrictions.

The new login context created by this call can then used to to set up authenticated
rpc with an intermediate or target server using the rpc_binding_set_auth_info()
call.

The effective optional and required restrictions are the union of the optional and
required restrictions specified in this call and specified by the initiating client and
any intermediate clients. The effective target and delegate restrictions are the
intersection of the target and delegate restrictions specified in this call and specified
by the initiating client and any intermediate clients.

The sec_login_become_impersonator call is run only if the initiating client
enabled simple delegation by setting the delegation_type_permitted parameter in
the sec_login_become_initiator call to sec_id_deleg_type_simple .

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

err_sec_login_invalid_delegate_restriction

err_sec_login_invalid_target_restriction

1284 IBM DCE for AIX, Version 2.2: Application Development Reference

err_sec_login_invalid_opt_restriction

err_sec_login_invalid_req_restriction

sec_login_s_invalid_deleg_type

sec_login_s_invalid_compat_mode

sec_login_s_deleg_not_enabled

error_status_ok

Related Information

Functions: rpc_binding_inq_auth_caller(3rpc) , sec_intro(3sec) ,
sec_login_become_initiator(3sec) .

sec_login_become_impersonator(3sec)

Chapter 6. DCE Security Service 1285

sec_login_become_initiator

Purpose

Constructs a new login context that enables delegation for the calling client

Synopsis
#include <dce/sec_login.h>

sec_login_handle_t
sec_login_become_initiator(

sec_login_handle_t my_login_context
sec_id_delegation_type_t delegation_type_permitted
sec_id_restriction_set_t *delegate_restrictions
sec_id_restriction_set_t *target_restrictions
sec_id_opt_req_t *optional_restrictions
sec_id_opt_req_t *required_restrictions
sec_id_compatibility_mode_t compatibility_mode
error_status_t *status);

Parameters

Input
my_login_context

A value of sec_login_handle_t that provides an opaque handle to the
identity of the client that is enabling delegation. The sec_login_handle_t
that specifies the client’s identity is supplied as output of the following calls:

v sec_login_get_current_context() if the client inherited the identity of
the current context

v The sec_login_setup_identity() and the sec_login_validate_identity()
pair that together establish an authentiated identity if a new identity was
established

delegation_type_permitted
A value of sec_id_delegation_type_t that specifies the type of delegation
to be enabled. The types available are as follows:

sec_id_deleg_type_none
No delegation.

sec_id_deleg_type_traced
Traced delegation.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation.

Note each subsequent intermediate delegate of the delegation chain started
by the initiating client must set the delegation type to traced if the initiating
client set it to traced or to simple if the initiating client set it to simple.
Intermediate delegates, however, can set the delegation type to no
delegation to indicate that the delegation chain can proceed no further.

delegate_restrictions
A pointer to a sec_id_restriction_set_t that supplies a list of servers that
can act as delegates for the client initiating delegation.

target_restrictions
This parameter is not fully supported. It is recommended that you specify

1286 IBM DCE for AIX, Version 2.2: Application Development Reference

NULL for this parameter, which means that any server can act as a target
for the client initiating delegation. If you specify a list of servers with this
parameter, the parameter will be implemented in such a way that NO
servers (including the servers you specified) can act as targets for clients
initiating delegation.

optional_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined
optional restrictions that apply to the client initiating delegation.

required_restrictions
A pointer to a sec_id_opt_req_t that supplies a list of application-defined
required restrictions that apply to the client initiating delegation.

compatibility_mode
A value of sec_id_compatibility_mode_t that specifies the compatibility
mode to be used when the initiating client interacts with pre-1.1 servers.
The modes available are as follows:

sec_id_compat_mode_none
Compatibility mode is off.

sec_id_compat_mode_initiator
Compatibility mode is on. The pre-1.1 PAC data is extracted from
the EPAC of the initiating client.

sec_id_compat_mode_caller
Compatibility mode is on. The pre-1.1 PAC data extracted from the
EPAC of the last client in the delegation chain.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_become_initiator() enables delegation for the calling client by
constructing a new login context (in a sec_login_handle_t) that carries delegation
information. This information includes the delegation type, delegate, and target
restrictions, and any application-defined optional and required restrictions.

The new login context is then used to to set up authenticated rpc with an
intermediate server using the rpc_binding_set_auth_info() call. The intermediary
can continue the delegation chain by calling sec_login_become_delegate (if the
delegation type is sec_id_deleg_type_traced) or
sec_login_become_impersonator (if the delegation type is
sec_id_deleg_type_impersonation).

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_become_initiator(3sec)

Chapter 6. DCE Security Service 1287

err_sec_login_invalid_delegate_restriction

err_sec_login_invalid_target_restriction

err_sec_login_invalid_opt_restriction

err_sec_login_invalid_req_restriction

error_status_ok

sec_login_s_invalid_compat_mode

sec_login_s_invalid_context

sec_login_s_invalid_deleg_type

Related Information

Functions: sec_intro(3sec) , sec_login_become_delegate(3sec) ,
sec_login_become_impersonator(3sec) , sec_login_get_current_context(3sec) ,
sec_login_setup_identity(3sec) , sec_login_validate_identity() .

sec_login_become_initiator(3sec)

1288 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_certify_identity

Purpose

Certifies the network authentication service

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_certify_identity(
sec_login_handle_t login_context
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_certify_identity() routine certifies that the security server used to
set up and validate a login context is legitimate. A legitimate server is one that
knows the host machine’s secret key. On some systems, this may be a privileged
operation.

Information may be retrieved via sec_login_get_pwent() , sec_login_get_groups() ,
and sec_login_get_expiration() from an uncertified login context, but such
information cannot be trusted. All system login programs that use the sec_login
interface must call sec_login_certify_identity() to certify the security server. If they
do not, they open the local file system to attacks by imposter Security servers
returning suspect local process credentials (UUID and group IDs). This operation
updates the local registry with the login context credentials if the certification check
succeeds.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Return Values

The routine returns a boolean32 value that is TRUE if the certification was
successful, and FALSE otherwise.

Chapter 6. DCE Security Service 1289

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_config
The DCE configuration (dce_config) information is not available.

sec_login_s_context_invalid
The input context is invalid.

sec_login_s_default_use
It is an error to try to certify the default context.

error_status_ok
The call was successful.

Examples

Applications wishing to perform a straightforward login can use the sec_login
package as follows:
if (sec_login_setup_identity(user_name, sec_login_no_flags, &login_context,

&st)) {
... get password from user...

if (sec_login_validate_identity(login_context, password,
&reset_passwd, &auth_src, &st)) {

if (!sec_login_certify_identity(login_context, &st))
exit(error_weird_auth_svc);

sec_login_set_context(login_context, &st);

if (auth_src != sec_login_auth_src_network)
printf("no network credentials");

if (reset_passwd) {
... get new password from user, reset registry record ...

};

sec_login_get_pwent(login_context, &pw_entry, &st);

if (pw_entry.pw_expire < todays_date) {
sec_login_purge_context(&login_context, &st);
exit(0)

}

... any other application specific login valid actions ...
}

} else {
sec_login_purge_context(&login_context, &st);

... application specific login failure actions ...
}

}

Related Information

Functions: sec_intro(3sec) , sec_login_get_expiration(3sec) ,
sec_login_get_groups(3sec) , sec_login_get_pwent(3sec) .

sec_login_certify_identity(3sec)

1290 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_cred_get_delegate

Purpose

Returns a handle to the privilege attributes of an intermediary in a delegation chain.
Used by clients.

Synopsis
#include <dce/sec_login.h>

sec_cred_pa_handle_t sec_login_cred_get_delegate(
sec_login_handle_t login_context
sec_cred_cursor_t *cursor
error_status_t *status);

Parameters

Input
login_context

A value of sec_login_handle_t that provides an opaque handle to a login
context for which delegation has been enabled. The sec_login_handle_t
that specifies the identity is supplied as output of the
sec_login_become_delegate() call.

Input/Output
cursor As input, a pointer to a cursor of type sec_cred_cursor_t that has been

initialized by the sec_login_cred_init_cursor() call. As an output
parameter, cursor is a pointer to a cursor of type sec_cred_cursor_t that is
positioned past the principal whose privilege attributes have been returned
in this call.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_cred_get_delegate() routine returns a handle of type
sec_login_handle_t to the the privilege attributes of an intermediary in a delegation
chain that performed an authenticated RPC operation.

This call is used by clients. Servers use the sec_cred_get_delegate() routine to
return the privilege attribute handle of an intermediary in a delegation chain.

The login context identified by login_context contains all members in the delegation
chain. This call returns a handle (sec_cred_pa_handle_t) to the privilege attributes
of one of the delegates in the login context. The sec_cred_pa_handle_t returned
by this call is used in other sec_cred_get_ * calls to obtain privilege attribute
information for a single delegate.

To obtain the privilege attributes of each delegate in the credential handle identified
by callers_identity, execute this call until the message
sec_cred_s_no_more_entries is returned.

Chapter 6. DCE Security Service 1291

Before you execute sec_login_cred_get_delegate() , you must execute a
sec_login_cred_init_cursor() call to initialize a cursor of type sec_cred_cursor_t .

Use the sec_cred_free_pa_handle() sec_cred_free_cursor() calls to free the
resources allocated to the sec_cred_pa_handle_t and cursor.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_cursor

sec_cred_s_no_more_entries

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_cred_get_deleg_restrictions(3sec) ,
sec_cred_get_delegation_type(3sec) , sec_cred_get_extended_attrs(3sec) ,
sec_cred_get_opt_restrictions(3sec) , sec_cred_get_pa_date(3sec) ,
sec_cred_get_req_restrictions(3sec) , sec_cred_get_tgt_restrictions(3sec) ,
sec_cred_get_v1_pac(3sec) , sec_login_cred_init_cursor(3sec) .

sec_login_cred_get_delegate(3sec)

1292 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_cred_get_initiator

Purpose

Returns information about the delegation initiator in a specified login context

Synopsis
#include <dce/sec_login.h>

sec_cred_pa_handle_t sec_login_cred_get_initiator(
sec_login_handle_t login_context
error_status_t *status);

Parameters

Input
login_context

A value of sec_login_handle_t that provides an opaque handle to a login
context for which delegation has been enabled.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_cred_get_initiator() routine returns a handle of type
sec_cred_pa_handle_t to the privilege attributes of the delegation initiator.

The login context identified by login_context contains all members in the delegation
chain. This call returns a handle (sec_cred_pa_handle_t) to the privilege attributes
of the initiator. The sec_cred_pa_handle_t returned by this call is used in other
sec_cred_get_ * calls to obtain privilege attribute information for the initiator single
delegate.

Use the sec_cred_free_pa_handle() call to free the resources allocated to the
sec_cred_pa_handle_t handle.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_invalid_context

error_status_ok

Chapter 6. DCE Security Service 1293

Related Information

Functions: sec_cred_get_deleg_restrictions(3sec) ,
sec_cred_get_delegation_type(3sec) , sec_cred_get_extended_attrs(3sec) ,
sec_cred_get_opt_restrictions(3sec) , sec_cred_get_pa_date(3sec) ,
sec_cred_get_req_restrictions(3sec) , sec_cred_get_tgt_restrictions(3sec) ,
sec_cred_get_v1_pac(3sec) , sec_intro(3sec) .

sec_login_cred_get_initiator(3sec)

1294 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_cred_init_cursor

Purpose

Initializes a sec_cred_cursor_t

Synopsis
#include <dce/sec_cred.h>

void sec_login_cred_init_cursor (
sec_cred_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor As input, a pointer to a sec_cred_cursor_t to be initialized. As output, a

pointer to an initialized sec_cred_cursor_t .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_cred_init_cursor() routine allocates and initializes a cursor of type
sec_cursor_t for use with the sec_login_cred_get_delegate() call.

Use the sec_cred_free_cursor() call to free the resources allocated to cursor.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_cred_s_invalid_cursor

sec_login_s_no_memory

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_login_cred_get_delegate(3sec) .

Chapter 6. DCE Security Service 1295

sec_login_disable_delegation

Purpose

Disables delegation for a specified login context

Synopsis
#include <dce/sec_login.h>

sec_logon_handle_t *sec_login_disable_delegation(
sec_login_handle_t login_context
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context for which delegation has been enabled.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_disable_delegation() routine disables delegation for a specified
login context. It returns a new login context of type sec_login_handle_t without any
delegation information, thus preventing any further delegation.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_invalid_context

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_login_become_delegate(3sec) ,
sec_login_become_impersonator(3sec) , sec_login_become_initiator(3sec) .

1296 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_export_context

Purpose

Creates an exportable login context

Synopsis
#include <dce/sec_login.h>

void sec_login_export_context(
sec_login_handle_t login_context
unsigned32 buf_len
idl_byte buf[]
unsigned32 *len_used
unsigned32 *len_needed
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

buf_len
An unsigned 32-bit integer containing the allocated length (in bytes) of the
buffer that is to contain the login context.

Output
buf[] An idl_byte array that contains the exportable login context upon return.

len_used
A pointer to an unsigned 32-bit integer indicating the number of bytes
needed for the entire login context, up to buf_len.

len_needed
If the allocated length of the buffer is too short, an error is issued
(sec_login_s_no_memory), and on return this pointer indicates the
number of bytes necessary to contain the login context.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_export_context() routine obtains an exportable version of the login
context information. This information may be passed to another process running on
the same machine.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Chapter 6. DCE Security Service 1297

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_memory
Not enough space was allocated for the buf[] array. The len_needed
parameter will point to the needed length.

sec_login_s_handle_invalid
The login context handle is invalid.

sec_login_s_context_invalid
The login context specified by the input handle is invalid.

Related Information

Functions: sec_login_import_context(3sec) , sec_intro(3sec) .

sec_login_export_context(3sec)

1298 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_free_net_info

Purpose

Frees storage allocated for a principal’s network information

Synopsis
#include <dce/sec_login.h>

void sec_login_free_net_info(
sec_login_net_info_t *net_info);

Parameters

Input/Output
net_info

A pointer to the sec_login_net_info_t structure to be freed.

Description

The sec_login_free_net_info() routine frees any memory allocated for a principal’s
network information. Network information is returned by a previous successful call
to sec_login_inquire_net_info() .

Cautions

This routine does not return any completion codes. Make sure that you supply a
valid sec_login_net_info_t address. The routine simply frees a range of storage
beginning at the supplied address, without regard to the actual contents of the
storage.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Related Information

Functions: sec_intro(3sec) , sec_login_inquire_net_info(3sec) .

Chapter 6. DCE Security Service 1299

sec_login_get_current_context

Purpose

Returns a handle to the current login context

Synopsis
#include <dce/sec_login.h>

void sec_login_get_current_context(
sec_login_handle_t *login_context
error_status_t *status);

Parameters

Output
login_context

A pointer to an opaque handle to login context data. The login context
contains, among other data, the account principal name and UUID, account
restrictions, records of group membership, and the process home directory.
(See sec_intro(3sec) for more details about the login context.)

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_get_current_context() routine retrieves a handle to the login
context for the currently established network identity. The context returned is
created from locally cached data so subsequent data extraction operations may
return some NULL values.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_current_context
There was no current context to retrieve. (See
sec_login_setup_identity(3sec) for information about how to set up,
validate, and implement a login context.)

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_get_current_context()
routine as part of a process to change the groupset:

1300 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_get_current_context(&login_context, &st);

sec_login_get_groups(login_context, &num_groups, &groups, &st);

...the group IDs have to be converted from the returned UNIX
numbers into UUIDs (use sec_rgy_pgo_unix_num_to_id(3sec)...

for (i=0; i < num_groups; i++) {
... query whether the user wants to discard any of the current
group memberships. Copy new groupset to the new_groups array ...

}

if (!sec_login_newgroups(sec_login_no_flags, num_new_groups,
new_groups, &login_context, &st)) {

if (st == sec_login_s_groupset_invalid)
printf("New groupset invalid);

... application specific error handling ...
}

Related Information

Functions: sec_intro(3sec) , sec_login_setup_identity(3sec) .

sec_login_get_current_context(3sec)

Chapter 6. DCE Security Service 1301

sec_login_get_expiration

Purpose

Returns the TGT lifetime for an authenticated identity

Synopsis
#include <dce/sec_login.h>

void sec_login_get_expiration(
sec_login_handle_t login_context
signed32 *identity_expiration
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

Output
identity_expiration

The lifetime of the ticket-granting ticket (TGT) belonging to the
authenticated identity identified by login_context. It can be used in the same
ways as a UNIX time_t .

status A pointer to the completion status.

Description

The sec_login_get_expiration() routine extracts the lifetime for the TGT belonging
to the authenticated identity contained in the login context. The lifetime value is
filled in if available; otherwise, it is set to 0 (zero). This routine allows an application
to tell an interactive user how long the user’s network login (and authenticated
identity) will last before having to be refreshed.

The routine works only on previously certified contexts.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_context_invalid
The login context itself is invalid.

1302 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_s_default_use
There was illegal use of the default login handle.

sec_login_s_not_certified
The login context has not been certified.

sec_login_s_no_current_context
The calling process has no context of its own.

error_status_ok
The call was successful.

Examples

Since the authenticated network identity for a process has a finite lifetime, there is a
risk it will expire during some long network operation, preventing the operation from
completing. To avoid this situation, an application might, before initiating a long
operation, use the sec_login package to check the expiration time of its identity
and refresh it if there is not enough time remaining to complete the operation. After
refreshing the identity, the process must validate it again with
sec_login_validate_identity() .
sec_login_get_expiration(login_context, &expire_time, &st);

if (expire_time < (current_time + operation_duration)) {

if (!sec_login_refresh_identity(login_context, &st)) {
if (st == sec_login_s_refresh_ident_bad) {

... identity has changed ...
} else {

... login context cannot be renewed ...
exit(error_context_not_renewable);

}

if (sec_login_validate_identity(login_context, password,
&reset_passwd, &auth_src, &st)) {

... identity validated ...
} else {

... validation failed ...
exit(error_validation_failure);

}
}

}

operation();

Related Information

Functions: sec_intro(3sec) , sec_login_get_current_context(3sec) .

sec_login_get_expiration(3sec)

Chapter 6. DCE Security Service 1303

sec_login_get_groups

Purpose

Returns the group set from a login context

Synopsis
#include <dce/sec_login.h>

void sec_login_get_groups(
sec_login_handle_t login_context
unsigned32 *num_groups
signed32 **group_set
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

Output
num_groups

An unsigned 32-bit integer indicating the total number of groups returned in
the group_set array.

group_set
The list of groups to which the user belongs.

status A pointer to the completion status.

Description

The sec_login_get_groups() routine returns the groups contained in the supplied
login context. Part of a network identity is a list of the various groups to which the
principal belongs. The groups are used to determine a user’s access to various
objects and services. This routine extracts from the login context a list of the groups
for which the user has established network privileges.

The routine works only on previously validated contexts.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

1304 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_s_context_invalid
The login context itself is not valid.

sec_login_s_info_not_avail
The login context has no UNIX information.

sec_login_s_default_use
Illegal use of the default login handle occurred.

sec_login_s_not_certified
The login context has not been certified.

sec_login_s_not_certified
The login context is not certified.

sec_rgy_object_not_found
The registry server could not find the specified login context data.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_get_groups() routine as
part of a process to change the groupset:
sec_login_get_current_context(&login_context, &st);

sec_login_get_groups(login_context, &num_groups, &groups, &st);

...the group IDs have to be converted from the returned UNIX
numbers into UUIDs (use sec_rgy_pgo_unix_num_to_id(3sec)...

for (i=0; i < num_groups; i++) {
... query whether the user wants to discard any of the current
group memberships. Copy new groupset to the new_groups array ...

}

if (!sec_login_newgroups(sec_login_no_flags, num_new_groups,
new_groups, &login_context, &st)) {

if (st == sec_login_s_groupset_invalid)
printf("New groupset invalid);

... application specific error handling ...
}

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_get_projlist(3sec) .

sec_login_get_groups(3sec)

Chapter 6. DCE Security Service 1305

sec_login_get_pwent

Purpose

Returns a passwd-style entry for a login context

Synopsis
#include <dce/sec_login.h>

void sec_login_get_pwent(
sec_login_handle_t login_context
sec_login_passwd_t *pwent
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and Universal Unique Identifier
(UUID), account restrictions, records of group membership, and the process
home directory. (See the sec_intro(3sec) reference page for more details
about the login context.)

Output
pwent A pointer to a pointer to the returned passwd -style structure. The particular

structure depends on the underlying system. For example, on a system with
a passwd structure like that supported by 4.4BSD and OSF/1, the structure
(found in /usr/include/pwd.h) is as follows:
struct passwd {

char *pw_name; /* user name */
char *pw_passwd; /* encrypted password */
int pw_uid; /* user uid */
int pw_gid; /* user gid */
time_t pw_change; /* password change time */
char *pw_class; /* user access class */
char *pw_gecos; /* miscellaneous account info */
char *pw_dir; /* home directory */
char *pw_shell; /* default shell */
time_t pw_expire; /* account expiration */

};

status A pointer to the completion status. On successful completion, the routine
returns one of the following status codes:

error_status_ok
Indicates that the login context has been validated and certified.

sec_login_s_not_certified
Indicates that the login context has been validated, but not certified.
Although this code indicates successful completion, it warns you
that the context is not validated.

If the call does not complete successfully, it returns an error.

Description

The sec_login_get_pwent() routine creates a passwd -style structure for the
current network login context. This is generally useful for establishing the local

1306 IBM DCE for AIX, Version 2.2: Application Development Reference

operating system context. Applications that require all of the data normally extracted
via getpwnam() should extract that data from the login context with this call.

This routine works only on explicitly created (not inherited or imported) contexts.

CAUTION:

The returned sec_login_passwd_t structure points to data stored in the
structure indicated by the login_context pointer, and must be treated as
read-only data. Writing to these data objects may cause unexpected failures.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_context_invalid
The login context itself is invalid.

sec_login_s_not_certified
The login context has not been certified.

sec_login_s_default_use
Illegal use of the default login handle occurred.

sec_login_s_info_not_avail
The login context has no UNIX information.

sec_rgy_object_not_found
The registry server could not find the specified login context data.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_get_pwent() routine:
#include <pwd.h>
...
struct passwd *pwd;
...
sec_login_get_pwent(login_context,(sec_login_passwd_t*)&pwd,&status);
...
printf ("%s",pwd->pw_name);

Related Information

Functions: sec_intro(3sec) .

sec_login_get_pwent(3sec)

Chapter 6. DCE Security Service 1307

sec_login_import_context

Purpose

Imports a login context

Synopsis
#include <dce/sec_login.h>

void sec_login_import_context(
unsigned32 buf_len
idl_byte buf[]
sec_login_handle_t *login_context
error_status_t *status);

Parameters

Input
buf_len

The allocated length (in bytes) of the buffer containing the login context.

buf[] An idl_byte array containing the importable login context.

Output
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_import_context() routine imports a context obtained via a call to
sec_login_export_context() performed on the same machine. To import a login
context, users must have the appropriate privileges. Non-privileged users can
import only their own login context; privileged users can import the login contexts
created by any users.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_context_invalid
The login context itself is not valid.

1308 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_s_default_use
Illegal use of the default login handle occurred.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_login_export_context(3sec) .

sec_login_import_context(3sec)

Chapter 6. DCE Security Service 1309

sec_login_init_first

Purpose

Initializes the default context

Synopsis
#include <dce/sec_login.h>

void sec_login_init_first(
error_status_t *status);

Parameters

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_init_first() routine initializes the default context inheritance
mechanism. If the default inheritance mechanism is already initialized, the operation
fails. Typically, this routine is called by the initial process at machine boot time to
initialize the default context inheritance mechanism for the host machine process
hierarchy.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_default_use
The default context is already initialized.

sec_login_s_privileged
An unprivileged process was called in.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_login_setup_first(3sec) ,
sec_login_validate_first(3sec) .

1310 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_inq_pag

Purpose

Obtains the pag from the login context.

Format
#include <dce/sec_login.h>

unsigned32 sec_login_inq_pag(
sec_login_handle_t *login_context,
error_status_t *status);

Parameters

Input
login_context

A pointer to the sec_login_handle_t from which the pag will be extracted.

Output
status A pointer to the completion status. On successful completion,

erro_status_ok is returned.

Usage

The sec_login_inq_pag obtains a pag from the login context.

Context
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Chapter 6. DCE Security Service 1311

sec_login_inquire_net_info

Purpose

Returns a principal’s network information

Synopsis
#include <dce/sec_login.h>

void sec_login_inquire_net_info(
sec_login_handle_t login_context
sec_login_net_info_t *net_info
error_status_t *status);

Parameters

Input
login_context

An opaque handle to the login context for the desired principal. (See
sec_intro(3sec) for more details about the login context.)

Output
net_info

A pointer to the returned sec_login_net_info_t data structure that contains
the principal’s network information. The sec_login_net_info_t structure is
defined as follows:
typedef struct {

sec_id_pac_t pac;
unsigned32 acct_expiration_date;
unsigned32 passwd_expiration_date;
unsigned32 identity_expiration_date;

} sec_login_net_info_t;
};

status A pointer to the completion status.

Description

The sec_login_inquire_net_info() routine returns network information for the
principal identified by the specified login context. The network information consists
of the following:

v The privilege attribute certificate (PAC) that describes the identity and group
memberships of the principal.

v The expiration date for the principal’s account in the DCE registry.

v The expiration date for the principal’s password in the DCE registry.

v The lifetime for the principal’s authenticated network identity. This is the lifetime
of the principal’s TGT (see the sec_login_get_expiration() routine).

A value of 0 (zero) for an expiration date means there is no expiration date. In other
words, the principal’s account, password, or authenticated identity is good
indefinitely.

To remove the returned net_info structure when it is no longer needed, use
sec_login_free_net_info() .

1312 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_not_certified
The login context is not certified.

sec_login_s_context_invalid
The login context is not valid.

sec_login_s_no_current_context
The default context was specified, but none exists.

sec_login_s_auth_local
Operation not valid on local context. The call’s identity was not
authenticated.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_login_free_net_info(3sec) ,
sec_login_get_expiration(3sec) .

sec_login_inquire_net_info(3sec)

Chapter 6. DCE Security Service 1313

sec_login_newgroups

Purpose

Changes the group list for a login context

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_newgroups(
sec_login_handle_t login_context
sec_login_flags_t flags
unsigned32 num_local_groups
sec_id_t local_groups[]
sec_login_handle_t *restricted_context
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

flags A set of flags of type sec_login_flags_t . These contain information about
how the new network credentials will be used. Currently, the only flag used
is sec_login_credentials_private , that, when set, implies that the new
context is only to be used by the calling process. If this flag is not set (flags
= sec_login_no_flags), descendants of the calling process may also use
the new network credentials.

num_local_groups
An unsigned 32-bit integer containing the number of local group identities to
include in the new context.

local_groups[]
An array of sec_id_t elements. Each element contains the UUID of a local
group identity to include in the new context. These identities are local to the
cell. Optionally, each element may also contain a pointer to a character
string containing the name of the local group.

Output
restricted_context

An opaque handle to the login context containing the changed group list.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_newgroups() routine changes the group list for the specified login
context. Part of a network identity is a list of the various groups to which a principal
belongs. The groups are used to determine a user’s access to various objects and

1314 IBM DCE for AIX, Version 2.2: Application Development Reference

services. This routine returns a new login context that contains the changed group
list. To remove the new login context when it is no longer needed, use
sec_login_purge_context() .

This operation does not need to be validated as the user identity does not change.
Consequently, knowledge of the password is not needed.

Notes

Currently you can have only groups from the local cell.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Return Values

This routine returns TRUE when the new login context is successfully established.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_auth_local
Operation not valid on local context.

sec_login_s_default_use
It is an error to try to certify the default context.

sec_login_s_groupset_invalid
The input list of group names is invalid. There may be groups to which the
caller does not belong, or the list may contain groups that do not exist.

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_newgroups() routine as part
of a process to change the groupset:
sec_login_get_current_context(&login_context, &st);

sec_login_get_groups(login_context, &num_groups, &groups, &st);

...the group IDs have to be converted from the returned UNIX
numbers into UUIDs (use sec_rgy_pgo_unix_num_to_id(3sec)...

for (i=0; i < num_groups; i++) {
... query whether the user wants to discard any of the current
group memberships. Copy new groupset to the new_groups array ...

}

if (!sec_login_newgroups(sec_login_no_flags, num_new_groups,
new_groups, &login_context, &st)) {
if (st == sec_login_s_groupset_invalid)

sec_login_newgroups(3sec)

Chapter 6. DCE Security Service 1315

printf("New groupset invalid);

... application specific error handling ...
}

Related Information

Functions: sec_intro(3sec) , sec_login_get_groups(3sec) ,
sec_login_purge_context(3sec) .

sec_login_newgroups(3sec)

1316 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_purge_context

Purpose

Destroys a login context and frees its storage

Synopsis
#include <dce/sec_login.h>

void sec_login_purge_context(
sec_login_handle_t *login_context
error_status_t *status);

Parameters

Input
login_context

A pointer to an opaque handle to login context data. The login context
contains, among other data, the account principal name and UUID, account
restrictions, records of group membership, and the process home directory.
(See sec_intro(3sec) for more details about the login context.) Note that a
pointer to the handle is submitted, so the handle may be reset to NULL
upon successful completion.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_purge_context() routine frees any storage allocated for the
specified login context and destroys the associated network credentials, if any exist.

Cautions

Applications must be cautious when purging the current context as this destroys
network credentials for all processes that share the credentials.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_default_use
Illegal use of the default login handle occurred.

sec_login_s_context_invalid
The login context itself is not valid.

Chapter 6. DCE Security Service 1317

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_purge_context() routine as
part of a straightforward login process:
if (sec_login_setup_identity(user_name, sec_login_no_flags,

&login_context, &st)) {
... get password from user...

if (sec_login_validate_identity(login_context, password,
&reset_passwd, &auth_src, &st)) {

if (!sec_login_certify_identity(login_context, &st))
exit(error_wierd_auth_svc);

sec_login_set_context(login_context, &st);

if (auth_src != sec_login_auth_src_network)
printf("no network credentials");

if (reset_passwd) {
... get new password from user, reset registry record ...

};

sec_login_get_pwent(login_context, &pw_entry, &st);

if (pw_entry.pw_expire < todays_date) {
sec_login_purge_context(&login_context, &st);
exit(0)

}

... any other application specific login valid actions ...
}

} else {
sec_login_purge_context(&login_context, &st);

... application specific login failure actions ...
}

}

Related Information

Functions: sec_intro(3sec) , sec_login_set_context(3sec) ,
sec_login_setup_identity(3sec) , sec_login_validate_identity(3sec) .

sec_login_purge_context(3sec)

1318 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_purge_context_exp

Purpose

Purges expired contexts.

Format
#include <dce/sec_login.h>

void sec_login_purge_context_exp(
unsigned32 buf_len,
ndr_byte buf[],
signed32 purge_time,
error_status_t *status);

Parameters

Input
buf_len

The allocated length (in bytes) of the buffer containing the login context.

buf[] An idl_byte array containing the expired login context.

purge_time
Indicates the expiration time. The name ticket is purged if it expires before
the time indicated in purge_time.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns one of the following errors:

sec_login_s_context_invalid
The login context itself is not valid.

sec_login_s_default_use
Unpermitted use of the default login handle occurred.

Usage

The sec_login_purge_context_exp routine frees any storage allocated for any
expired network credentials.

Context
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Comments

Functions: sec_login_purge_context(3sec) .

Chapter 6. DCE Security Service 1319

sec_login_refresh_identity

Purpose

Refreshes an authenticated identity for a login context

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_refresh_identity(
sec_login_handle_t login_context
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_refresh_identity() routine refreshes a previously established
identity. It operates on an existing valid context, and cannot be used to change
credentials associated with that identity. The refreshed identity reflects changes that
affect ticket lifetimes, but not other changes. For example, the identity will reflect a
change to maximum ticket lifetime, but not the addition of the identity as a member
to a group. Only a DCE login reflects all administrative changes made since the last
login.

The refreshed identity must be validated with sec_login_validate_identity() before
it can be used.

It is an error to refresh a locally authenticated context.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_context_invalid
The login context itself is not valid.

1320 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_s_default_use
Illegal use of the default login handle occurred.

sec_login_s_no_memory
Not enough memory is available to complete the operation.

error_status_ok
The call was successful.

Examples

Since the authenticated network identity for a process has a finite lifetime, there is a
risk it will expire during some long network operation, preventing the operation from
completing.

For a server application that must run with an authenticated network identity
because they themselves sometimes act as clients of another server, the sec_login
calls can be used to check the network identity expiration date, run
sec_login_refresh_identity and sec_login_validate_identity before the
expiration. This will prevent interruptions in the server’s operation due to the
restrictions in network access applied to an unauthenticated identity.
sec_login_get_expiration(login_context, &expire_time, &st);

if (expire_time < (current_time + operation_duration)) {

if (!sec_login_refresh_identity(login_context, &st)) {
... login context cannot be renewed ...
... sleep and try again

}

} else {

if (sec_login_validate_identity(login_context, password,
&reset_passwd, &auth_src, &st)) {

... identity validated ...
} else {

... validation failed ...
exit(error_validation_failure);

}
}

}

operation();

Related Information

Functions: sec_intro(3sec) , sec_login_validate_identity(3sec) .

sec_login_refresh_identity(3sec)

Chapter 6. DCE Security Service 1321

sec_login_release_context

Purpose

Frees storage allocated for a login context

Synopsis
#include <dce/sec_login.h>

void sec_login_release_context(
sec_login_handle_t *login_context
error_status_t *status);

Parameters

Input/Output
login_context

A pointer to an opaque handle to login context data. The login context
contains, among other data, the account principal name and UUID, account
restrictions, records of group membership, and the process home directory.
(See sec_intro(3sec) for more details about the login context.)

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_release_context() routine frees any memory allocated for a login
context. Unlike sec_login_purge_context() , it does not destroy the associated
network credentials that still reside in the credential cache.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_default_use
Illegal use of the default login handle occurred.

sec_login_s_context_invalid
The login context itself is invalid.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_login_purge_context(3sec) .

1322 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_set_context

Purpose

Creates network credentials for a login context

Synopsis
#include <dce/sec_login.h>

void sec_login_set_context(
sec_login_handle_t login_context
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_login_set_context() routine sets the network credentials to those
specified by the login context. This context must have been previously validated.
Contexts acquired through sec_login_get_current_context() or
sec_login_newgroups() do not need to be validated since those routines return
previously validated contexts.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_context_invalid
The login context itself is invalid.

sec_login_s_default_use
Illegal use of the default login handle occurred.

sec_login_s_auth_local
Operation not valid on local context.

error_status_ok
The call was successful.

Chapter 6. DCE Security Service 1323

Examples

The following example illustrates use of the sec_login_set_context() routine as
part of a straightforward login process:
if (sec_login_setup_identity(user_name, sec_login_no_flags,

&login_context, &st)) {
... get password from user...

if (sec_login_validate_identity(login_context, password,
&reset_passwd, &auth_src, &st)) {

if (!sec_login_certify_identity(login_context, &st))
exit(error_weird_auth_svc);

sec_login_set_context(login_context, &st);

if (auth_src != sec_login_auth_src_network)
printf("no network credentials");

if (reset_passwd) {
... get new password from user, reset registry record ...

};

sec_login_get_pwent(login_context, &pw_entry, &st);

if (pw_entry.pw_expire < todays_date) {
sec_login_purge_context(&login_context, &st);
exit(0)

}

... any other application specific login valid actions ...
}

} else {
sec_login_purge_context(&login_context, &st);

... application specific login failure actions ...
}

}

Related Information

Functions: sec_intro(3sec) , sec_login_setup_identity(3sec) ,
sec_login_validate_identity(3sec) .

sec_login_set_context(3sec)

1324 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_set_extended_attrs

Purpose

Constructs a new login context that contains extended registry attributes

Synopsis
#include <dce/sec_login.h>

sec_login_handle_t
sec_login_set_extended_attrs(

sec_login_handle_t my_login_context
unsigned32 num_attributes
sec_attr_t attributes[]
error_status_t *status);

Parameters

Input
my_login_context

A value of sec_login_handle_t that provides an opaque handle to the
identity of the calling client.

num_attributes
An unsigned 32-bit integer that specifies the number of elements in the
attributes[] array. The number must be greater than 0.

attributes[]
An array of values of type sec_attr_t that specifies the list of attributes to
be set in the new login context.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_set_extended_attrs() constructs a login context that contains
extended registry attributes that have been established for the object identified by
my_login_context. The attributes themselves must have been established and
attached to the object using the extended registry attribute API.

The input attributes[] array of sec_attr_t values should specify the attr_id field for
each requested attribute. Since the lookup is by attribute type ID only, set the
attribute.attr_value.attr_encoding field to sec_attr_enc_void for each attribute. Note
that sec_attr_t is an extended registry attribute data type. For more information on
extended registry attributes, see the description of the sec_attr calls in this
document and the IBM DCE for AIX, Version 2.2: Application Development
Guide—Core Components.

You cannot use this call to add extended registry attributes to a delegation chain. If
you pass in a login context that refers to a delegation chain, an invalid context error
will be returned.

Chapter 6. DCE Security Service 1325

The routine returns a new login context of type sec_login_handle_t that includes
the attributes specified in the attributes[] array.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_invalid_context

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_login_become_impersonator(3sec) ,
sec_login_set_context(3sec) , sec_login_setup_identity(3sec) ,
sec_login_validate_identity(3sec) , sec_rgy_attr_ *(3sec) calls.

sec_login_set_extended_attrs(3sec)

1326 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_setup_first

Purpose

Sets up the default network context

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_setup_first(
sec_login_handle_t *init_context
error_status_t *status);

Parameters

Output
init_context

A pointer to an opaque handle to login context data. The login context
contains, among other data, the account principal name and UUID, account
restrictions, records of group membership, and the process home directory.
In this call, the context will be that of the host machine initial process. (See
sec_intro(3sec) for more details about the login context.)

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_setup_first() routine sets up the default context network identity. If
the default context already contains valid credentials, the routine fails. Typically, this
routine is called from the security validation service of the dced process to breathe
life into the default credentials for the host machine process hierarchy.

This routine uses the host name available via the local dce_config interface as the
principal name for the setup, so it does need a principal name as input.

Return Values

The routine returns a boolean32 value that is TRUE if the setup was successful,
and FALSE otherwise.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_default_use
The default context is already in use and does not need to be set up again.

Chapter 6. DCE Security Service 1327

sec_login_s_no_current_context
The calling process has no context of its own.

sec_login_s_privileged
An unprivileged process was called in.

sec_login_s_config
The DCE configuration (dce_config) information is not available.

sec_rgy_object_not_found
The principal does not exist.

sec_rgy_server_unavailable
The network registry is not available.

sec_login_s_no_memory
A memory allocation error occurred.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_login_init_first(3sec) ,
sec_login_validate_first(3sec) .

sec_login_setup_first(3sec)

1328 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_setup_identity

Purpose

Sets up the user’s network identity

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_setup_identity(
unsigned_char_p_t principal
sec_login_flags_t flags
sec_login_handle_t *login_context
error_status_t *status);

Parameters

Input
principal

A pointer (type unsigned_char_p_t) indicating a character string containing
the principal name on the registry account corresponding to the calling
process.

flags A set of flags of type sec_login_flags_t . These contain information about
how the new network credentials are to be used.

Output
login_context

A pointer to an opaque handle to login context data. The login context
contains, among other data, the account principal name and UUID, account
restrictions, records of group membership, and the process home directory.
(See sec_intro(3sec) for more details about the login context.)

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_setup_identity() routine creates any local context necessary to
perform authenticated network operations. It does not establish any local operating
system context; that is the responsibility of the caller. It is the standard network
login function. The network identity set up by this operation cannot be used until it
is validated via sec_login_validate_identity() .

The sec_login_setup_identity() operation and the sec_login_validate_identity()
operation are two halves of a single logical operation. Together they collect the
identity data needed to establish an authenticated identity.

Notes

Neither sec_login_setup_identity() nor sec_login_validate_identity() check for
account or identity expiration. The application program using this interface is
responsible for such checks.

Chapter 6. DCE Security Service 1329

Return Values

The routine returns TRUE if the identity has been successfully established.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
The principal does not exist.

sec_rgy_server_unavailable
The network registry is not available.

sec_login_s_no_memory
Not enough memory is available to complete the operation.

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_setup_identity() routine as
part of a straightforward login process:
if (sec_login_setup_identity(user_name, sec_login_no_flags,

&login_context, &st)) {
... get password from user...

if (sec_login_validate_identity(login_context, password,
&reset_passwd, &auth_src, &st)) {

if (!sec_login_certify_identity(login_context, &st))
exit(error_weird_auth_svc);

sec_login_set_context(login_context, &st);

if (auth_src != sec_login_auth_src_network)
printf("no network credentials");

if (reset_passwd) {
... get new password from user, reset registry record ...

};

sec_login_get_pwent(login_context, &pw_entry, &st);

if (pw_entry.pw_expire < todays_date) {
sec_login_purge_context(&login_context, &st);
exit(0)

}

... any other application specific login valid actions ...
}

} else {
sec_login_purge_context(&login_context, &st);

sec_login_setup_identity(3sec)

1330 IBM DCE for AIX, Version 2.2: Application Development Reference

... application specific login failure actions ...
}

}

Related Information

Functions: sec_intro(3sec) , sec_login_set_context(3sec) ,
sec_login_validate_identity(3sec) .

sec_login_setup_identity(3sec)

Chapter 6. DCE Security Service 1331

sec_login_tkt_request_options

Purpose

This routine is used by a client to request specific AS ticket options.

Format
#include <dce/sec_login.h>

void sec_login_tkt_request_options (
sec_login_handle_t login_context,
sec_login_tkt_info_t *tkt_info,
error_status_t *status);

Parameters

Input
login_context

A pointer to an opaque handle to login context data. The login context
contains, among other data, the account principal name and UUID, account
restrictions, records of group membership, and the process home directory.

tkt_info
A structure which specifies the types of ticket options requested.

Output
status A pointer to the completion status. On successful completion,

error_status_ok is returned.

Usage

This routine is used by a client to request specific AS ticket options. This optional
routine should be called after a call to sec_login_setup_identity or
sec_login_refresh_identity and before a call to sec_login_validate_identity or
sec_login_valid_and_cert_ident . Input should consist of a login context handle in
the setup or refreshed state, and a structure which specifies the types of ticket
options requested. If the user requests a renewable or postdated ticket, or a
non-default ticket lifetime, additional data must be provided in the
renewable_lifetime, postdated_dormanttime, and lifetime fields of the
sec_login_tkt_info_t structure, respectively.

Context
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Comments

Functions: sec_login_setup_identity(3sec) , sec_login_refresh_identity(3sec) ,
sec_login_validate_identity(3sec) , sec_login_valid_and_cert_ident(3sec) .

1332 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_valid_and_cert_ident

Purpose

Validates and certifies a login context

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_valid_and_cert_ident(
sec_login_handle_t login_context
sec_passwd_rec_t *passwd
boolean32 *reset_passwd
sec_login_auth_src_t *auth_src
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

passwd
A password record to be checked against the password in the principal’s
registry account. The routine returns TRUE if the two match. The contents
of the passwd parameter are erased after the call has finished processing
it.

Output
reset_passwd

A pointer to a 32-bit boolean32 value. The routine returns TRUE if the
account password has expired and must be reset.

auth_src
A 32-bit set of flags identifying the source of the authentication. Upon return
after successful authentication, the flags in auth_src indicate what authority
was used to validate the login context. If the authentication was
accomplished with the network authority, the sec_login_auth_src_network
flag is set, and the process login context has credentials to use the
network.

If the authentication was accomplished with local data only (either the
principal’s account is tailored for the local machine with overrides, or the
network authority is unavailable), the sec_login_auth_src_local flag is set.
Login contexts that are authenticated locally may not be used to establish
network credentials because they have none.

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Chapter 6. DCE Security Service 1333

Description

The sec_login_valid_and_cert_ident() routine validates and certifies a login
context established with sec_login_setup_identity() . The caller must supply the
user’s password as input with the passwd parameter.

This routine combines the operations of the sec_login_validate_identity() and
sec_login_certify_identity() routines. It is intended for use by system login
programs that need to extract trustworthy operating system credentials for use in
setting the local identity for a process. This operation destroys the contents of the
passwd input parameter.

If the network security service is unavailable or if the user’s password has been
overridden on the host, a locally authenticated context is created, and the auth_src
parameter is set to sec_login_auth_src_local . Data extracted from a locally
authenticated context may be used to set the local OS identity, but it cannot be
used to establish network credentials.

This routine is a privileged operation.

Return Values

The routine returns TRUE if the login identity has been successfully validated.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_passwd_invalid
The input string does not match the account password.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

sec_login_s_acct_invalid
The account is invalid or has expired.

sec_login_s_privileged
This is a privileged operation and was invoked by an unprivileged process.

sec_login_s_null_password
The input string is NULL.

sec_login_s_default_use
The input context was the default context, which cannot be validated.

sec_login_s_already_valid
The login context has already been validated.

sec_login_s_unsupp_passwd_type
The password type is not supported.

sec_login_valid_and_cert_ident(3sec)

1334 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_s_no_memory
Not enough memory is available to complete the operation.

sec_login_s_preauth_failed
Preauthentication failure.

sec_pk_e_domain_unsupported
The DCE login domain is not supported by the personal security
mechanism.

sec_pk_e_device_error
Personal security mechanism device error.

sec_pk_e_usage_unsupported
A private key of the required type was not located in the personal security
mechanism.

sec_pk_e_unauthorized
The password is invalid for personal security mechanism access.

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_valid_and_cert_ident()
routine as part of a system login process:
if (sec_login_setup_identity(<user>,

sec_login_no_flags, &login_context, &st)) {
... get password ...
if (sec_login_valid_and_cert_ident(login_context,

password, &st)) {
if (auth_src == sec_login_auth_src_network) {

if (GOOD_STATUS(&st)
sec_login_set_context(login_context);
}

}
if (reset_passwd) {

... reset the user's password ...
if (passwd_reset_fails) {

sec_login_purge_context(login_context)
... application login failure actions ...

}
... application specific login valid actions ...

}
}

Related Information

Functions: sec_intro(3sec) , sec_login_certify_identity(3sec) ,
sec_login_setup_identity(3sec) , sec_login_validate_identity(3sec) .

sec_login_valid_and_cert_ident(3sec)

Chapter 6. DCE Security Service 1335

sec_login_validate_cert_auth

Purpose

Validates certification authority.

Format
#include <dce/sec_login.h>

void sec_login_validate_cert_auth
sec_login_handle_t login_context,
error_status_t *status);

Parameters

Input
login_context

A pointer to an opaque handle to login context data. The login context
contains, among other data, the principal’s identity that needs to be
validated.

Output
status A pointer to the completion status. On successful completion,

error_status_ok is returned.

Usage

The sec_login_validate_cert_auth routine validates the certification authority by
making sure that the client can make an authenticated call.

Context
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Comments

Functions: sec_login_certify_identity(3sec) .

1336 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_valid_from_keytable

Purpose

Validates a login context’s identity using input from a specified keytable file

Synopsis
#include <dce/sec_login.h>

void sec_login_valid_from_keytable(
sec_login_handle_t login_context
unsigned32 authn_service
void *arg
unsigned32 try_kvno
unsigned32 *used_kvno
boolean32 *reset_passwd
sec_login_auth_src_t *auth_src
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal’s name and UUID, account restrictions,
records of the account principal’s group memberships, and the account’s
home directory. (See sec_intro(3sec) for more details about the login
context.)

authn_service
Identifies the authentication protocol using the key. The possible
authentication protocols are as follows:

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

arg This parameter can specify either the local keytab file or an argument to the
get_key_fn key acquisition routine of the rpc_server_register_auth_info
routine.

A value of NULL specifies that the default keytab file should be used. A
keytab filename specifies that that file should be used as the keytab file.
You must prepend the file’s absolute filename with FILE: and the file must
have been created with the rgy_edit command or the
sec_key_mgmt_set_key routine.

Any other value specifies an argument for the get_key_fn key acquisition
routine. See the rpc_server_register_auth_info() reference page for more
information.

try_kvno
The version number of the key in the keytab file to try first. Specify NULL to
try the current version of the key.

Chapter 6. DCE Security Service 1337

Output
used_kvno

A pointer to a 32-bit boolean32 value that specifies the version number of
the the key from the keytab file that was used to successfully validate the
login context, if any.

reset_passwd
A pointer to a 32-bit boolean32 value. The routine returns TRUE if the
account password has expired and should be reset.

auth_src
How the the login context was authorized. The sec_login_auth_src_t data
type distinguishes the various ways the login context was authorized. There
are three possible values:

sec_login_auth_src_network
Authentication accomplished through the normal network authority.
A login context authenticated this way will have all the network
credentials it ought to have.

sec_login_auth_src_local
Authentication accomplished via local data. Authentication occurs
locally if a principal’s account is tailored for the local machine, or if
the network authority is unavailable. Since a login contexts
authenticated locally has no network credentials, it can not be used
for network operations.

sec_login_auth_src_overridden
Authentication accomplished via the override facility.

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_valid_from_keytable () routine validates the login context
established with sec_login_setup_identity() . The sec_login_valid_from_keytable
() routine obtains the principal’s password from the specified keytable.

If try_kvno specifies a key version number, that version number key is tried first,
otherwise the current key version number is tried first. The function trys all keys in
the keytable until it finds one that validates the login context. This operation must
be invoked before the network credentials can be used.

Notes

A context is not secure and must not be set or exported until the authentication
service is itself authenticated with the sec_login_certify_identity() call.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

sec_login_valid_from_keytable(3sec)

1338 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_passwd_invalid
The input string does not match the account password.

sec_rgy_server_unavailable
There is no data with which to compare the input string.

sec_login_s_acct_invalid
The account is invalid or has expired.

sec_login_s_default_use
The input context was the default context, which cannot be validated.

sec_login_s_already_valid
The login context has already been validated.

sec_login_s_unsupp_passwd_type
The password type is not supported.

sec_key_mgmt_e_key_unavailable
The requested key is not present.

sec_key_mgmt_e_authn_invalid
The authentication protocol is not valid.

sec_key_mgmt_e_unauthorized
The caller is not authorized to perform the operation.

sec_s_no_memory
Unable to allocate memory.

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_valid_from_keytable()
routine as part of a straightforward login process:
if (sec_login_setup_identity(user_name, sec_login_no_flags,

&login_context, &st)) {
... get password from local keytable...

if (sec_login_valid_from_keytable(login_context, authn_service,
arg, try_kvno, &used_kvno, &reset_passwd,
&auth_src, &st)) {

sec_login_set_context(login_context, &st);

if (auth_src != sec_login_auth_src_network)
printf("no network credentials");

}

... any other application specific login valid actions ...
}

} else {
sec_login_purge_context(&login_context, &st);

sec_login_valid_from_keytable(3sec)

Chapter 6. DCE Security Service 1339

... application specific login failure actions ...
}

}

Related Information

Functions: sec_intro(3sec) , sec_login_certify_identity(3sec) ,
sec_login_setup_identity(3sec) , sec_login_valid_and_cert_ident(3sec) ,
sec_login_validate_identity(3sec) .

sec_login_valid_from_keytable(3sec)

1340 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_validate_first

Purpose

Validates the initial login context

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_validate_first(
sec_login_handle_t init_context
boolean32 *reset_passwd
sec_login_auth_src_t *auth_src
error_status_t *status);

Parameters

Input
init_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. In this call,
the context will be that of the host machine initial process. (See
sec_intro(3sec) for more details about the login context.)

Output
reset_passwd

A pointer to a 32-bit boolean32 value. The routine returns TRUE if the
account password has expired and must be reset.

auth_src
A 32-bit set of flags identifying the source of the authentication. Upon return
after successful authentication, the flags in auth_src indicate what authority
was used to validate the login context. If the authentication was
accomplished with the network authority, the sec_login_auth_src_network
flag is set, and the process login context has credentials to use the
network. If the authentication was accomplished with local data only (either
the principal’s account is tailored for the local machine with overrides, or the
network authority is unavailable), the sec_login_auth_src_local flag is set.
Login contexts that are authenticated locally may not be used to establish
network credentials because they have none.

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_validate_first() routine validates the default login context
established via sec_login_setup_first() . Typically, this operation is called from the
security validation service of the dced process to validate the default credentials for
the host machine process hierarchy. This operation uses the password for the local
host, and therefore does not require a password parameter.

Chapter 6. DCE Security Service 1341

Return Values

The routine returns a boolean32 value that is TRUE if the setup was successful,
and FALSE otherwise.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_privileged
An unprivileged process was called in.

sec_rgy_server_unavailable
The network authentication service was unavailable.

sec_pk_e_domain_unsupported
The DCE login domain is not supported by the personal security
mechanism.

sec_pk_e_device_error
Personal security mechanism device error.

sec_pk_e_usage_unsupported
A private key of the required type was not located in the personal security
mechanism.

sec_pk_e_unauthorized
The password is invalid for personal security mechanism access.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_login_init_first(3sec) ,
sec_login_setup_first(3sec) .

sec_login_validate_first(3sec)

1342 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_validate_identity

Purpose

Validates a login context’s identity

Synopsis
#include <dce/sec_login.h>

boolean32 sec_login_validate_identity(
sec_login_handle_t login_context
sec_passwd_rec_t *passwd
boolean32 *reset_passwd
sec_login_auth_src_t *auth_src
error_status_t *status);

Parameters

Input
login_context

An opaque handle to login context data. The login context contains, among
other data, the account principal name and UUID, account restrictions,
records of group membership, and the process home directory. (See
sec_intro(3sec) for more details about the login context.)

passwd
A password record to be checked against the password in the principal’s
registry account. The routine returns TRUE if the two match. The contents
of the passwd parameter are erased after the call has finished processing
it.

Output
reset_passwd

A pointer to a 32-bit boolean32 value. The routine returns TRUE if the
account password has expired and must be reset.

auth_src
How the the login context was authorized. The sec_login_auth_src_t data
type distinguishes the various ways the login context was authorized. There
are three possible values:

v sec_login_auth_src_network

v sec_login_auth_src_local

v sec_login_auth_src_overridden

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_login_validate_identity() routine validates the login context established
with sec_login_setup_identity() . This operation must be invoked before the
network credentials can be used. The caller must supply the principal’s password in
a sec_passwd_rec_t as input with the passwd parameter. The following example
sets up a plaintext password for the the passwd parameter:

Chapter 6. DCE Security Service 1343

sec_passwd_str_t tmp_passwd;

passwd.version_number = sec_passwd_c_version_none;
passwd.pepper = NULL;
passwd.key.key_type = sec_passwd_plain;

strncpy((char *) tmp_passwd, (char *) my_passwd,
sec_passwd_str_max_len);

tmp_passwd[sec_passwd_str_max_len] = ' ';
passwd_rec.key.tagged_union.plain = &(tmp_passwd[0]);

When a network identity is set, only state information for network operations has
been established. The local operating system identity has not been modified. It is
the responsibility of the caller to establish any local operating identity state.

The sec_login_setup_identity() operation and the sec_login_validate_identity()
operation are two halves of a single logical operation. Together they collect the
identity data needed to establish an authenticated identity. The operations are
independent so the principal’s password need not be sent across the network. The
identity validation performed by sec_login_validate_identity() is a local operation.

Notes

A context is not secure and must not be set or exported until the authentication
service is itself authenticated with the sec_login_certify_identity() call.

System login programs that set local operating system identity using data extracted
from a login context should use sec_login_valid_and_cert_ident() instead of
sec_login_validate_identity() .

If the security server and client clocks are not synchronized to within 2 to 3 minutes
of each other, this call can return a password validation error.

Return Values

The routine returns TRUE if the login identity has been successfully validated.

Files
/usr/include/dce/sec_login.idl

The idl file from which dce/sec_login.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_passwd_invalid
The input string does not match the account password.

sec_rgy_server_unavailable
There is no data with which to compare the input string.

sec_login_s_acct_invalid
The account is invalid or has expired.

sec_login_s_null_password
The input string is NULL.

sec_login_validate_identity(3sec)

1344 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_login_s_default_use
The input context was the default context, which cannot be validated.

sec_login_s_already_valid
The login context has already been validated.

sec_login_s_unsupp_passwd_type
The password type is not supported.

sec_login_s_no_memory
Not enough memory is available to complete the operation.

sec_login_s_preauth_failed
Preauthentication failure.

sec_pk_e_domain_unsupported
The DCE login domain is not supported by the personal security
mechanism.

sec_pk_e_device_error
Personal security mechanism device error.

sec_pk_e_usage_unsupported
A private key of the required type was not located in the personal security
mechanism.

sec_pk_e_unauthorized
The password is invalid for personal security mechanism access.

error_status_ok
The call was successful.

Examples

The following example illustrates use of the sec_login_validate_identity() routine
as part of a straightforward login process:
if (sec_login_setup_identity(user_name, sec_login_no_flags,

&login_context, &st)) {
... get password from user...

if (sec_login_validate_identity(login_context, password,
&reset_passwd, &auth_src, &st)) {

if (!sec_login_certify_identity(login_context, &st))
exit(error_weird_auth_svc);

sec_login_set_context(login_context, &st);

if (auth_src != sec_login_auth_src_network)
printf("no network credentials");

if (reset_passwd) {
... get new password from user, reset registry record ...

};

sec_login_get_pwent(login_context, &pw_entry, &st);

if (pw_entry.pw_expire < todays_date) {
sec_login_purge_context(&login_context, &st);
exit(0)

}

... any other application specific login valid actions ...
}

sec_login_validate_identity(3sec)

Chapter 6. DCE Security Service 1345

} else {
sec_login_purge_context(&login_context, &st);

... application specific login failure actions ...
}

}

Related Information

Functions: sec_intro(3sec) , sec_login_certify_identity(3sec) ,
sec_login_setup_identity(3sec) , sec_login_valid_and_cert_ident(3sec) .

sec_login_validate_identity(3sec)

1346 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_pwd_mgmt_free_handle

Purpose

Frees storage allocated for a password management handle

Synopsis
#include <dce/sec_pwd_mgmt.h>

void sec_pwd_mgmt_free_handle(
sec_pwd_mgmt_handle_t *pwd_mgmt_h
error_status_t *stp);

Parameters

Input/Output
pwd_mgmt_h

A handle to the password management data which is to be freed.

Output
stp A pointer to the completion status. On successful completion, the routine

returns error_status_ok. Otherwise, it returns an error.

Description

The sec_pwd_mgmt_free_handle() routine frees any memory allocated for the
contents of a password management handle. This handle was returned by
sec_pwd_mgmt_setup .

Files
/usr/include/dce/sec_pwd_mgmt.idl

The idl file from which dce/sec_pwd_mgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful

Related Information

Functions: sec_intro(3sec) , sec_pwd_mgmt_gen_pwd(3sec) ,
sec_pwd_mgmt_get_val_type(3sec) , sec_pwd_mgmt_setup(3sec) .

Chapter 6. DCE Security Service 1347

sec_pwd_mgmt_gen_pwd

Purpose

Generates a set of passwords

Synopsis
#include <dce/sec_pwd_mgmt.h>

void sec_pwd_mgmt_gen_pwd(
sec_pwd_mgmt_handle_t pwd_mgmt_h
unsigned32 num_pwds
unsigned32 *num_returned
sec_passwd_rec_t gen_pwds[]
error_status_t *stp);

Parameters

Input
pwd_mgmt_h

A handle to user’s password management data. This handle was obtained
from sec_pwd_mgmt_setup .

num_pwds
Number of generated passwords requested.

Output
num_returned

Number of generated passwords returned in the gen_pwds[] array.

gen_pwds[]
Array of generated passwords. Each generated password is stored in a
sec_passwd_rec_t structure.

stp A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_pwd_mgmt_gen_pwd() routine retrieves a set of generated passwords
from a password management server which is exporting the
rsec_pwd_mgmt_gen_pwd() routine. It obtains the binding information to this
server from the pwd_mgmt_h handle.

Files
/usr/include/dce/sec_pwd_mgmt.idl

The idl file from which dce/sec_pwd_mgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

1348 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_era_pwd_mgmt_auth_type
The pwd_mgmt_binding ERA must contain authentication information.

sec_pwd_mgmt_svr_unavail
The password management server is unavailable.

sec_pwd_mgmt_svr_error
Generic error returned from password management server. An administrator
should check the password management server’s log file for more
information.

error_status_ok
The call was successful

Various RPC communication errors can be returned if there are failures when
binding to the password management server.

Related Information

Functions: sec_intro(3sec) , sec_pwd_mgmt_free_handle(3sec) ,
sec_pwd_mgmt_get_val_type(3sec) , sec_pwd_mgmt_setup(3sec) .

sec_pwd_mgmt_gen_pwd(3sec)

Chapter 6. DCE Security Service 1349

sec_pwd_mgmt_get_val_type

Purpose

Gets users password validation type

Synopsis
#include <dce/sec_pwd_mgmt.h>

void sec_pwd_mgmt_get_val_type(
sec_pwd_mgmt_handle_t pwd_mgmt_h
signed32 *pwd_val_type
error_status_t *stp);

Parameters

Input
pwd_mgmt_h

A handle to a user’s password management data.

Output
pwd_val_type

The user’s password validation type. This is retrieved from the
pwd_val_type ERA. The possible values and their meaning are as follows:

0 (none): the user has no password policy.

1 (user_select): the user must choose his/her own password.

2 (user_can_select): the user can choose his/her own password or
request a generated password.

3 (generation_required): the user must use a generated password.

stp A pointer to the completion status. On successful completion, stp is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_pwd_mgmt_get_val_type() routine returns the value of the user’s
password validation type, as specified by the pwd_val_type ERA. If the ERA does
not exist, 0 (none) is returned in pwd_val_type.

Files
/usr/include/dce/sec_pwd_mgmt.idl

The idl file from which dce/sec_pwd_mgmt.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

1350 IBM DCE for AIX, Version 2.2: Application Development Reference

Various RPC communication errors can be returned if there are failures when
binding to the password management server.

Related Information

Functions: sec_intro(3sec) , sec_pwd_mgmt_free_handle(3sec) ,
sec_pwd_mgmt_get_pwd(3sec) , sec_pwd_mgmt_setup(3sec) .

sec_pwd_mgmt_get_val_type(3sec)

Chapter 6. DCE Security Service 1351

sec_pwd_mgmt_setup

Purpose

Sets up the user’s password policy information

Synopsis
#include <dce/sec_pwd_mgmt.h>

void sec_pwd_mgmt_setup(
sec_pwd_mgmt_handle_t *pwd_mgmt_h
sec_rgy_handle_t context
sec_rgy_login_name_t login_name
sec_login_handle_t your_lc
rpc_binding_handle_t pwd_mgmt_bind_h
error_status_t *stp);

Parameters

Input
context

A registry server handle indicating the desired registry site.

login_name
The login name of the user.

your_lc
The login context handle of the user currently logged in. If null is specified,
the default login context will be used.

pwd_mgmt_bind_h
An RPC binding handle to the password management server. Use of this
parameter is currently unsupported. The password management server
binding handle will be retrieved from the pwd_mgmt_binding ERA. Set this
parameter to NULL.

Output
pwd_mgmt_h

A pointer to an opaque handle to password management/policy data.
pwd_mgmt_h contains, among other data, the account name, values of
password management ERAs, and a binding handle to the password
management server.

stp A pointer to the completion status. On successful completion, stp is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_pwd_mgmt_setup() routine collects the data required to perform remote
password management calls to the password management server.

Files
/usr/include/dce/sec_pwd_mgmt.idl

The idl file from which dce/sec_pwd_mgmt.h was derived.

1352 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_s_no_memory
Not enough memory is available to complete the operation.

sec_rgy_server_unavailable
The network registry is not available.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_pwd_mgmt_free_handle(3sec) ,
sec_pwd_mgmt_gen_pwd(3sec) , sec_pwd_mgmt_get_val_type(3sec) .

sec_pwd_mgmt_setup(3sec)

Chapter 6. DCE Security Service 1353

sec_rgy_acct_add

Purpose

Adds an account for a login name

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_add(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_rgy_acct_key_t *key_parts
sec_rgy_acct_user_t *user_part
sec_rgy_acct_admin_t *admin_part
sec_passwd_rec_t *caller_key
sec_passwd_rec_t *new_key
sec_passwd_type_t new_keytype
sec_passwd_version_t *new_key_version
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

login_name
A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. All three names must be completely
specified.

key_parts
A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of
the account data. This represents such information as the account
password, home directory, and default shell.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the
administrative part of an account’s data. This information includes the
account creation and expiration dates and flags describing limits to the use
of privilege attribute certificates, among other information.

caller_key
The key representing the user’s current password, used to encrypt new_key
for transmission to the registry server.

new_key
The password for the new account. During transmission to the registry
server, it is encrypted with caller_key.

1354 IBM DCE for AIX, Version 2.2: Application Development Reference

new_keytype
The type of the new key. The server uses this parameter to decide how to
encode new_key if it is sent as plaintext.

Output
key_parts

A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

new_key_version
The key version number returned by the server. If the client requests a
particular key version number (via the version_number field of the new_key
input parameter), the server returns the requested version number back to
the client.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_add() routine adds an account with the specified login name.
The login name is given in three parts, corresponding to the principal, group, and
organization names for the account. All input paramters and all fields in those
parameters are required.

The key_parts variable specifies the minimum login abbreviation for the account. If
the requested abbreviation duplicates an existing abbreviation for another account,
the routine supplies the next shortest unique abbreviation and returns this
abbreviation in key_parts. Abbreviations are not currently implemented.

Permissions Required

The sec_rgy_acct_add() routine requires the following permissions on the account
(principal) that is to be added:

v The m (mgmt_info) permission to change management information.

v The a (auth_info) permission to change authentication information.

v The u (user_info) permission to change user information.

Notes

The constituent principal, group, and organization (PGO) items for an account must
be added before the account can be created. (See the sec_rgy_pgo_add()
routine). Also, the principal must have been added as a member of the specified
group and organization. (See the sec_rgy_pgo_add_member() routine).

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

sec_rgy_acct_add(3sec)

Chapter 6. DCE Security Service 1355

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to add an account to the registry.

sec_rgy_not_member_group
The indicated principal is not a member of the indicated group.

sec_rgy_not_member_org
The indicated principal is not a member of the indicated organization.

sec_rgy_not_member_group_org
The indicated principal is not a member of the indicated group or
organization.

sec_rgy_object exists
The account to be added already exists.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_delete(3sec) ,
sec_rgy_login_get_info(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_add_member(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_acct_add(3sec)

1356 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_acct_admin_replace

Purpose

Replaces administrative account data

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_admin_replace(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_rgy_acct_key_t *key_parts
sec_rgy_acct_admin_t *admin_part
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

login_name
A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. For the group and organization
names, blank strings can serve as wildcards, matching any entry. The
principal name must be input.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the
administrative part of an account’s data. This information includes the
account creation and expiration dates and flags describing limits to the use
of privilege attribute certificates, among other information, and can be
modified only by an administrator. The sec_rgy_acct_admin_t structure
contains the following fields:

creator
The identity of the principal who created this account in
sec_rgy_foreign_id_t form. This field is set by the registry server.

creation_date
The date (sec_timeval_sec_t) the account was created. This field
is set by the registry server.

last_changer
The identity of the principal who last modified any of the account
information (user or administrative). This field is set by the registry
server.

change_date
The date (sec_timeval_sec_t) the account was last modified
(either user or administrative data). This field is set by the registry
server.

expiration_date
The date (sec_timeval_sec_t) the account will cease to be valid.

Chapter 6. DCE Security Service 1357

good_since_date
This date (sec_timeval_sec_t) is for Kerberos-style, ticket-granting
ticket revocation. Ticket-granting tickets issued before this date will
not be honored by authenticated network services.

flags Contains administration flags used as part of the administrator’s
information for any registry account. This field is in
sec_rgy_acct_admin_flags_t form. (See sec_intro(3sec) for a
complete description of these flags.)

authentication_flags
Contains flags controlling use of authentication services. This field
is in sec_rgy_acct_auth_flags_t form. (See sec_intro(3sec) for a
complete description of these flags.)

Input/Output
key_parts

A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_admin_replace() routine replaces the administrative information
in the account record specified by the input login name. The administrative
information contains limitations on the account’s use and privileges. It can be
modified only by a registry administrator; that is, a user with the admin_info
(abbreviated as a) privilege for an account.

The key_parts variable identifies how many of the login_name parts to use as the
unique abbreviation for the account. If the requested abbreviation duplicates an
existing abbreviation for another account, the routine supplies the next shortest
unique abbreviation and returns this abbreviation using key_parts.

Permissions Required

The sec_rgy_acct_admin_replace() routine requires the following permissions on
the account principal:

v The m (mgmt_info) permission, if flags or expiration_date is to be changed.

v The a (auth_info) permission, if authentication_flags or good_since_date is to
be changed.

Notes

All users need the w (write) privilege in the appropriate ACL entry to modify any
account information.

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

sec_rgy_acct_admin_replace(3sec)

1358 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to change the administrative
information for the specified account.

sec_rgy_object_not_found
The registry server could not find the specified name.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_lookup(3sec) ,
sec_rgy_acct_replace_all(3sec) , sec_rgy_acct_user_replace(3sec) .

sec_rgy_acct_admin_replace(3sec)

Chapter 6. DCE Security Service 1359

sec_rgy_acct_delete

Purpose

Deletes an account

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_delete(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

login_name
A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. Only the principal name is required to
perform the deletion.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_delete() routine deletes from the registry the account
corresponding to the specified login name.

Permissions Required

The sec_rgy_acct_delete() routine requires the following permissions on the
account principal:

v The m (mgmt_info) permission to remove management information.

v The a (auth_info) permission to remove authentication information.

v The u (user_info) permission to remove user information.

Notes

Even though the account is deleted, the PGO items corresponding to the account
remain. These must be deleted with separate calls to sec_rgy_pgo_delete() .

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

1360 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to delete the specified account.

sec_rgy_object_not_found
No PGO item was found with the given name.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_add(3sec) ,
sec_rgy_pgo_delete(3sec) .

sec_rgy_acct_delete(3sec)

Chapter 6. DCE Security Service 1361

sec_rgy_acct_get_projlist

Purpose

Returns the projects in an account’s project list

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_get_projlist(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_rgy_cursor_t *projlist_cursor
volatile signed32 max_number
signed32 *supplied_number
uuid_t id_projlist[]
signed32 unix_projlist[]
signed32 *num_projects
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

login_name
A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. For the group and organization
names, blank strings can serve as wildcards, matching any entry. The
principal name must be input.

max_number
The maximum number of projects to be returned by the call. This must be
no larger than the allocated size of the projlist[] arrays.

Input/Output
projlist_cursor

An opaque pointer indicating a specific project in an account’s project list.
The sec_rgy_acct_get_projlist() routine returns the project indicated by
projlist_cursor, and advances the cursor to point to the next project in the
list. When the end of the list is reached, the routine returns the value
sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset() to reset the cursor.

Output
supplied_number

A pointer to the actual number of projects returned. This will always be less
than or equal to the max_number supplied on input. If there are more
projects in the account list, sec_rgy_acct_get_projlist() sets projlist_cursor
to point to the next entry after the last one in the returned list.

id_projlist[]
An array to receive the UUID of each project returned. The size allocated

1362 IBM DCE for AIX, Version 2.2: Application Development Reference

for the array is given by max_number. If this value is less than the total
number of projects in the account project list, multiple calls must be made
to return all of the projects.

unix_projlist[]
An array to receive the UNIX number of each project returned. The size
allocated for the array is given by max_number. If this value is less than the
total number of projects in the account project list, multiple calls must be
made to return all of the projects.

num_projects
A pointer indicating the total number of projects in the specified account’s
project list.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_get_projlist() routine returns members of the project list for the
specified account. It returns the project information in two arrays. The id_projlist[]
array contains the UUIDs for the returned projects. The unix_projlist[] array
contains the UNIX numbers for the returned projects.

The project list cursor, projlist_cursor, provides an automatic place holder in the
project list. The sec_rgy_acct_get_projlist() routine automatically updates this
variable to point to the next project in the project list. To return an entire project list,
reset projlist_cursor with sec_rgy_cursor_reset() on the initial call and then issue
successive calls until all the projects are returned.

Permissions Required

The sec_rgy_acct_get_projlist() routine requires the r (read) permission on the
account principal for which the project list data is to be returned.

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,
you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to refresh a cursor for use with another call or for
another server.

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

sec_rgy_acct_get_projlist(3sec)

Chapter 6. DCE Security Service 1363

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor is at the end of the list of projects.

sec_rgy_not_authorized
The client program is not authorized to see a project list for this principal.

sec_rgy_object exists
The account to be added already exists.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_cursor_reset(3sec) ,
sec_rgy_pgo_get_next(3sec) .

sec_rgy_acct_get_projlist(3sec)

1364 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_acct_lookup

Purpose

Returns data for a specified account

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_lookup(
sec_rgy_handle_t context
sec_rgy_login_name_t *name_key
sec_rgy_cursor_t *account_cursor
sec_rgy_login_name_t *name_result
sec_rgy_sid_t *id_sid
sec_rgy_unix_sid_t *unix_sid
sec_rgy_acct_key_t *key_parts
sec_rgy_acct_user_t *user_part
sec_rgy_acct_admin_t *admin_part
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

Input/Output
account_cursor

An opaque pointer to a specific account in the registry database. If
name_key is blank, sec_rgy_acct_lookup() returns information about the
account to which the cursor is pointing. On return, the cursor points to the
next account in the database after the returned account. If name_key is
blank and the account_cursor has been reset with sec_rgy_cursor_reset() ,
sec_rgy_acct_lookup() returns information about the first account in the
database.

When the end of the list of accounts in the database is reached, the routine
returns the value sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset() to refresh the cursor.

Output
name_key

A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. Blank strings serve as wildcards,
matching any entry.

name_result
A pointer to the full login name of the account (including all three names)
for which the information is returned. The remaining parameters contain the
information belonging to the returned account.

id_sid A structure containing the three UUIDs of the principal, group, and
organization for the account.

Chapter 6. DCE Security Service 1365

unix_sid
A structure containing the three UNIX numbers of the principal, group, and
organization for the account.

key_parts
A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of
the account data. This represents such information as the account
password, home directory, and default shell, all of which are accessible to,
and may be modified by, the account owner.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the
administrative part of an account’s data. This information includes the
account creation and expiration dates and flags describing limits to the use
of privilege attribute certificates, among other information, and can be
modified only by an administrator.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_lookup() routine returns all the information about an account in
the registry database. The account can be specified either with name_key or
account_cursor. If name_key is completely blank, the routine uses the
account_cursor value instead.

For name_key, a zero-length principal, group, or organization key serves as a
wildcard. For example, a login name key with the principal and organization fields
blank returns the next (possibly first) account whose group matches the input group
field. The full login name of the returned account is passed back in name_result.

The account_cursor provides an automatic place holder in the registry database.
The routine automatically updates this variable to point to the next account in the
database, after the account for which the information was returned. If name_key is
blank and the account_cursor has been reset with sec_rgy_cursor_reset() ,
sec_rgy_acct_lookup() returns information about the first account in the database.

Permissions Required

The sec_rgy_acct_lookup() routine requires the r (read) permission on the
account principal to be viewed.

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,
you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

sec_rgy_acct_lookup(3sec)

1366 IBM DCE for AIX, Version 2.2: Application Development Reference

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to renew a cursor for use with another call or for
another server.

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor is at the end of the accounts in the registry.

sec_rgy_object_not_found
The input account could not be found by the registry server.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_admin_replace(3sec) ,
sec_rgy_acct_replace_all(3sec) , sec_rgy_acct_user_replace(3sec) ,
sec_rgy_cursor_reset(3sec) .

sec_rgy_acct_lookup(3sec)

Chapter 6. DCE Security Service 1367

sec_rgy_acct_passwd

Purpose

Changes the password for an account

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_passwd(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_passwd_rec_t *caller_key
sec_passwd_rec_t *new_key
sec_passwd_type_t new_keytype
sec_passwd_version_t *new_key_version
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

login_name
A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. All three strings must be completely
specified.

caller_key
The key to use to encrypt the key for transmission to the registry server.

new_key
The password for the new account. During transmission to the registry
server, it is encrypted with caller_key.

new_keytype
The type of the new key. The server uses this parameter to decide how to
encode new_key if it is sent as plaintext.

Output
new_key_version

The key version number returned by the server. If the client requests a
particular key version number (via the version_number field of the new_key
input parameter), the server returns the requested version number back to
the client.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

1368 IBM DCE for AIX, Version 2.2: Application Development Reference

Description

The sec_rgy_acct_passwd() routine changes an account password to the input
password character string. Wildcards (blank fields) are not permitted in the specified
account name; the principal, group, and organization names of the account must be
completely specified.

Permissions Required

The sec_rgy_acct_passwd() routine requires the u (user_info) permission on the
account principal whose password is to be changed.

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to change the password of this
account.

sec_rgy_object_not_found
The account to be modified was not found by the registry server.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_rgy_acct_passwd(3sec)

Chapter 6. DCE Security Service 1369

sec_rgy_acct_rename

Purpose

Changes an account login name

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_rename(
sec_rgy_handle_t context
sec_rgy_login_name_t *old_login_name
sec_rgy_login_name_t *new_login_name
sec_rgy_acct_key_t *new_key_parts
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

old_login_name
A pointer to the current account login name. The login name is composed
of three character strings, containing the principal, group, and organization
(PGO) names corresponding to the account. All three strings must be
completely specified.

new_login_name
A pointer to the new account login name. Again, all three component names
must be completely specified.

Input/Output
new_key_parts

A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_rename() routine changes an account login name from
old_login_name to new_login_name. Wildcards (empty fields) are not permitted in
either input name; both the old and new login names must completely specify their
component principal, group, and organization names. Note, though, that the
principal component in a login name cannot be changed.

The new_key_parts variable identifies how many of the new_login_name parts to
use as the unique abbreviation for the account. If the requested abbreviation

1370 IBM DCE for AIX, Version 2.2: Application Development Reference

duplicates an existing abbreviation for another account, the routine identifies the
next shortest unique abbreviation and returns this abbreviation using
new_key_parts.

Permissions Required

The sec_rgy_acct_rename() routine requires the m (mgmt_info) permission on
the account principal to be renamed.

Notes

The sec_rgy_acct_rename() routine does not affect any of the registry PGO data.
The constituent principal, group, and organization items for an account must be
added before the account can be created. (See the sec_rgy_pgo_add() routine).
Also, the principal must have been added as a member of the specified group and
organization. (See the sec_rgy_pgo_add_member() routine).

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to make the changes.

sec_rgy_object_not_found
The account to be modified was not found by the registry server.

sec_rgy_name_exists
The new account name is already in use by another account.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_add(3sec) .

sec_rgy_acct_rename(3sec)

Chapter 6. DCE Security Service 1371

sec_rgy_acct_replace_all

Purpose

Replaces all account data for an account

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_replace_all(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_rgy_acct_key_t *key_parts
sec_rgy_acct_user_t *user_part
sec_rgy_acct_admin_t *admin_part
boolean32 set_password
sec_passwd_rec_t *caller_key
sec_passwd_rec_t *new_key
sec_passwd_type_t new_keytype
sec_passwd_version_t *new_key_version
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

login_name
A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. For the group and organization
names, blank strings can serve as wildcards, matching any entry. The
principal name must be input.

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of
the account data. This information can be modified only by the account
owner or other authorized user.

admin_part
A pointer to the sec_rgy_acct_admin_t structure containing the
administrative part of an account’s data. This information includes the
account creation and expiration dates and flags describing limits to the use
of privilege attribute certificates, among other information, and can be
modified only by an administrator.

set_passwd
The password reset flag. If you set this parameter to TRUE, the account’s
password will be changed to the value specified in new_key.

caller_key
A key to use to encrypt the key for transmission to the registry server. If
communications secure to the rpc_c_authn_level_pkt_privacy level are
available on a system, then this parameter is not necessary, and the packet
encryption is sufficient to ensure security.

1372 IBM DCE for AIX, Version 2.2: Application Development Reference

new_key
The password for the new account. During transmission to the registry
server, it is encrypted with caller_key.

new_keytype
The type of the new key. The server uses this parameter to decide how to
encode the plaintext key.

Input/Output
key_parts

A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

Output
new_key_version

The key version number returned by the server. If the client requests a
particular key version number (via the version_number field of the new_key
input parameter), the server returns the requested version number back to
the client.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_replace_all() routine replaces both the user and administrative
information in the account record specified by the input login name. The
administrative information contains limitations on the account’s use and privileges.
The user information contains information such as the account home directory and
default shell. The administrative information can only be modified by a registry
administrator or another authorized user (users with admin_info (a) and
mgmt_info (m) privileges for an account). The user information can be modified by
the account owner or another authorized user (users with user_info (u) privileges
for an account).

Use the set_passwd parameter to reset the account password. If you set this
parameter to TRUE, the account’s pasword is changed to the value specified in
new_key.

The key_parts variable identifies how many of the login_name parts to use as the
unique abbreviation for the replaced account. If the requested abbreviation
duplicates an existing abbreviation for another account, the routine identifies the
next shortest unique abbreviation and returns this abbreviation using key_parts.

Permissions Required

The sec_rgy_acct_replace_all() routine requires the following permissions on the
account principal:

v The m (mgmt_info) permission, if flags or expiration_date is to be changed.

v The a (auth_info) permission, if authentication_flags or good_since_date is to
be changed.

v The u (user_info) permission, if user flags , gecos , homedir (home directory),
shell , or passwd (password) are to be changed.

sec_rgy_acct_replace_all(3sec)

Chapter 6. DCE Security Service 1373

Notes

All users need the w (write) privilege to modify any account information.

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to change account information.

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_add(3sec) ,
sec_rgy_acct_admin_replace(3sec) , sec_rgy_acct_rename(3sec) ,
sec_rgy_acct_user_replace(3sec) .

sec_rgy_acct_replace_all(3sec)

1374 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_acct_user_replace

Purpose

Replaces user account data

Synopsis
#include <dce/acct.h>

void sec_rgy_acct_user_replace(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_rgy_acct_user_t *user_part
boolean32 set_passwd
sec_passwd_rec_t *caller_key
sec_passwd_rec_t *new_key
sec_passwd_type_t new_keytype
sec_passwd_version_t *new_key_version
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

login_name
A pointer to the account login name. A login name is composed of three
character strings, containing the principal, group, and organization (PGO)
names corresponding to the account. For the group and organization
names, blank strings can serve as wildcards, matching any entry. The
principal name must be input.

user_part
A pointer to the sec_rgy_acct_user_t structure containing the user part of
the account data. This information can be modified only by the account
owner or other authorized user. The structure contains the following fields:

gecos A character string containing information about the account owner.
This often includes such information as their name and telephone
number.

homedir
The default directory upon login for the account.

shell The default shell to use upon login.

passwd_version_number
The password version number, a 32-bit unsigned integer, set by the
registry server.

passwd_dtm
The date and time of the last password change (in
sec_timeval_sec_t form), also set by the registry server.

flags A flag set of type sec_rgy_acct_user_flags_t .

passwd
The account’s encrypted password.

Chapter 6. DCE Security Service 1375

The only user data fields that can be changed are: gecos , homedir , shell ,
flags , and passwd .

set_passwd
The password reset flag. If you set this parameter to TRUE, the user’s
password will be changed to the value specified in new_key.

caller_key
A key to use to encrypt the key for transmission to the registry server. If
communications secure to the rpc_c_authn_level_pkt_privacy level are
available on a system, then this parameter is not necessary, and the packet
encryption is sufficient to ensure security.

new_key
The password for the new account. During transmission to the registry
server, it is encrypted with caller_key.

new_keytype
The type of the new key. The server uses this parameter to decide how to
encode the plaintext key.

Output
new_key_version

The key version number returned by the server. If the client requests a
particular key version number (via the version_number field of the new_key
input parameter), the server returns the requested version number back to
the client.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_acct_user_replace() routine replaces the user information in the
account record specified by the input login name. The user information consists of
information such as the account home directory and default shell. The the user
information can be modified only by the account owner or other authorized users
(users with user_info (u) privileges for an account).

Use the set_passwd parameter to reset the user’s password. If you set this
parameter to TRUE, the user’s pasword is changed to the value specified in
new_key.

Permissions Required

The sec_rgy_acct_user_replace() routine requires the u (user_info) permission
on the account principal.

Notes

All users need the w (write) privilege to modify any account information.

Files
/usr/include/dce/acct.idl

The idl file from which dce/acct.h was derived.

sec_rgy_acct_user_replace(3sec)

1376 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to modify the account data.

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_add(3sec) ,
sec_rgy_acct_admin_replace(3sec) , sec_rgy_acct_rename(3sec) ,
sec_rgy_acct_replace_all(3sec) .

sec_rgy_acct_user_replace(3sec)

Chapter 6. DCE Security Service 1377

sec_rgy_attr_cursor_alloc

Purpose

Allocates resources to a cursor used by sec_rgy_attr_lookup_by_id

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_cursor_alloc(
sec_attr_cursor_t *cursor
error_status_t *status);

Parameters

Output
cursor A pointer to a sec_attr_cursor_t .

status A pointer to the completion status. On successful completion, the call
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_cursor_alloc() call allocates resources to a cursor used with the
sec_rgy_attr_lookup_by_id call. This routine, which is a local operation, does not
initialize cursor.

The sec_rgy_attr_cursor_init() routine, which makes a remote call, allocates and
initializes the cursor. In addition, sec_rgy_attr_cursor_init() returns the total
number of attributes attached to the object as an output parameter;
sec_rgy_attr_cursor_alloc() does not.

Permissions Required

None.

Files
/usr/include/dce/sec_attr_base.idl

The idl file from which dce/sec_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

no such object

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_cursor_init(3sec) ,
sec_rgy_attr_cursor_release(3sec) , sec_rgy_attr_cursor_reset(3sec) ,

1378 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_lookup_by_id(3sec) .

Chapter 6. DCE Security Service 1379

sec_rgy_attr_cursor_init

Purpose

Initializes a cursor used by sec_rgy_attr_lookup_by_id

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_cursor_init (
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
unsigned32 *cur_num_attrs
sec_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in
which the object specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A pointer to a sec_rgy_name_t character string containing the name of the
person, group, or organization to which the attribute to be scanned is
attached.

Output
cur_num_attrs

A pointer to an unsigned 32-bit integer that specifies the number of
attributes currently attached to the object.

cursor A pointer to a sec_rgy_cursor_t positioned at the first attribute in the list of
the object’s attributes.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_cursor_init() routine initializes a cursor of type
sec_attr_cursor_t (used with the sec_rgy_attr_lookup_by_id call) and initializes

1380 IBM DCE for AIX, Version 2.2: Application Development Reference

the cursor to the first attribute in the specified object’s list of attributes. This call also
supplies the total number of attributes attached to the object as part of its output.
The cursor allocation is a local operation. The cursor initialization is a remote
operation and makes a remote call to the registry.

Use the sec_rgy_attr_cursor_release() call to release all resources allocated to a
sec_attr_cursor_t cursor.

Permissions Required

The sec_rgy_attr_cursor_init() routine requires at least one permission (of any
type) on the person, group, or organization to which the attribute to be scanned is
attached.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

no such object

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_cursor_release,
sec_rgy_attr_lookup_by_id .

sec_rgy_attr_cursor_init(3sec)

Chapter 6. DCE Security Service 1381

sec_rgy_attr_cursor_release

Purpose

Releases a cursor

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_cursor_release (
sec_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

Input/Output
cursor As an input parameter, a pointer to an uninitialized cursor of type

sec_attr_cursor_t . As an output parameter, a pointer to an uninitialized
cursor of type sec_attr_cursor_t with all resources released.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_cursor_release() routine releases all resources allocated to a
sec_attr_cursor_t by the sec_rgy_attr_cursor_init() or
sec_rgy_attr_cursor_alloc() call.

This is a local-only operation and makes not remote calls.

Permissions Required

None.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

No such object

error_status_ok

1382 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_cursor_alloc(3sec) ,
sec_rgy_attr_cursor_init(3sec) , sec_rgy_attr_lookup_by_id .

sec_rgy_attr_cursor_release(3sec)

Chapter 6. DCE Security Service 1383

sec_rgy_attr_cursor_reset

Purpose

Reinitializes a cursor

Synopsis
#include <dce/sec_attr_base.h>

void sec_attr_cursor_reset(
sec_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor A pointer to a sec_attr_cursor_t . As an input parameter, an initialized

cursor. As an output parameter, cursor is reset to the first attribute in the
schema.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_cursor_reset() routine resets a dce_attr_cursor_t that has
been allocated by either a sec_rgy_attr_cursor_init() or
sec_rgy_attr_cursor_alloc() . The reset cursor can then be used to process a new
sec_rgy_attr_lookup_by_id query by reusing the cursor instead of releasing and
reallocating it. This is a local operation and makes no remote calls.

Permissions Required

None.

Files
/usr/include/dce/sec_rgy_attr.idl

The idl file from which dce/sec_rgy_attr.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_cursor_alloc(3sec) ,
sec_rgy_attr_cursor_init(3sec) , sec_rgy_attr_lookup_by_id(3sec) .

1384 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_delete

Purpose

Deletes specified attributes for a specified object

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_delete (
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
unsigned32 num_to_delete
sec_attr_t attrs[]
signed32 *failure_index
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in
which the object identified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A character string of type sec_rgy_name_t specifying the name of the
person, group, or organization to which the attributes are attached.

num_to_delete
A 32-bit integer that specifies the number of elements in the attrs[] array.
This integer must be greater than 0.

attrs[]
An array of values of type sec_attr_t that specifies the attribute instances
to be deleted. The size of the array is determined by num_to_delete.

Output
failure_index

In the event of an error, failure_index is a pointer to the element in the
in_attrs[] array that caused the update to fail. If the failure cannot be
attributed to a specific attribute, the value of failure_index is −1.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Chapter 6. DCE Security Service 1385

Description

The sec_rgy_attr_delete() routine deletes attributes. This is an atomic operation: if
the deletion of any attribute in the attrs[] array fails, all deletions are aborted. The
attribute causing the delete to fail is identified in failure_index. If the failure cannot
be attributed to a given attribute, failure_index contains -1.

The attrs[] array, which specifies the attributes to be deleted, contains values of
type sec_attr_t These values consist of

v attr_id, a UUID that identifies the attribute type

v attr_value, values of sec_attr_value_t that specify the attribute’s encoding type
and values.

To delete attributes that are not multivalued and to delete all instances of a
multivalued attribute, an attribute UUID is all that is required. For these attribute
instances, supply the attribute UUID in the input array and set the attribute
encoding (in sec_attr_encoding_t) to sec_attr_enc_void .

To delete a specific instance of a multivalued attribute, supply the UUID and value
that uniquely identify the multivalued attribute instance in the input array.

Note that if the deletion of any attribute instance in the array fails, all fail. However,
to help pinpoint the cause of the failure, the call identifies the first attribute whose
deletion failed in a failure index by array element number.

Permissions Required

The sec_rgy_attr_delete() routine requires the delete permission set for each
attribute type identified in the attrs[] array. These permissions are defined as part
of the ACL manager set in the schema entry for the attribute type.

Files
/usr/include/dce/sec_rgy_attr.idl

The idl file from which dce/sec_rgy_attr.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

database read only

invalid/unsupported attribute type

server unavailable

site read only

unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_update(3sec) .

sec_rgy_attr_delete(3sec)

1386 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_get_effective

Purpose

Reads effective attributes by ID

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_get_effective(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
unsigned32 num_attr_keys
sec_attr_t attr_keys[]
sec_attr_vec_t *attr_list
error_status_t status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the domain in which the
named object resides. The valid values are as follows:

sec_rgy_domain_principal
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A pointer to a sec_rgy_name_t character string containing the name of the
person, group, or organization to which the attribute is attached.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the
attr_keys[] array. If num_attr_keys is set to 0 (zero), all of the effective
attributes that the caller is authorized to see are returned.

attr_keys[]
An array of values of type sec_attr_t that specify the UUIDs of the
attributes to be returned if they are effective. If the attribute type is
associated with a query attribute trigger, the sec_attr_t attr_value field can
be used to pass in optional information required by the attribute trigger
query. If no information is to be passed in the attr_value field (whether the
type indicates an attribute trigger query or not), set the attribute’s encoding
type to sec_rgy_attr_enc_void . The size of the attr_keys[] array is
determined by the num_attr_keys parameter.

Chapter 6. DCE Security Service 1387

Output
attr_list

A pointer an attribute vector allocated by the server containing all of the
effective attributes matching the search criteria (defined in num_attr_keys or
attr_keys[]). The server allocates a buffer large enough to return all the
requested attributes so that subsequent calls are not necessary.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_get_effective() routine returns the UUIDs of a specified object’s
effective attributes. Effective attributes are determined by setting of the schema
entry apply_defaults flag:

v If the flag is set off, only the attributes directly attached to the object are effective.

v If the flag is set on, the effective attributes are obtained by performing the
following steps for each attribute identified by UUID in the attr_keys array:

– If the object named by name is a principal and if the a requested attribute
exists on the principal, that attribute is effective and is returned. If it does not
exist, the search continues.

– The next step in the search depends on the type of object:

For principals with accounts:

- The organization named in the principal’s account is examined to see if an
attribute of the requested type exists. If it does, it is effective and is
returned; then the search for that attribute ends. If it does not exist, the
search for that attribute continues to the policy object as described here.

- The registry policy object is examined to see if an attribute of the
requested type exits. If it does, it is returned. If it does not, a message
indicating the no attribute of the type exists for the object is returned.

For principals without accounts, for groups, and for organizations:

The registry policy object is examined to see if an attribute of the requested
type exits. If it does, it is returned. If it does not, a message indicating the no
attribute of the type exists for the object is returned.

For multivalued attributes, the call returns a sec_attr_t for each value as an
individual attribute instance. For attribute sets, the call returns a sec_attr_t for each
member of the set; it does not return the set instance.

If the attribute instance to be read is associated with a query attribute trigger that
requires additional information before it can process the query request, use a
sec_attr_value_t to supply the requested information. To do this

v Set the sec_attr_encoding_t to an encoding type that is compatible with the
information required by the query attribute trigger.

v Set the sec_attr_value_t to hold the required information.

If the attribute instance to be read is not associated with a query trigger or no
additional information is required by the query trigger, an attribute UUID is all that is
required. For these attribute instances, supply the attribute UUID in the input array
and set the attribute encoding (in sec_attr_encoding_t) to sec_attr_enc_void .

sec_rgy_attr_get_effective(3sec)

1388 IBM DCE for AIX, Version 2.2: Application Development Reference

If the requested attribute type is associated with a query trigger, the value returned
for the attribute will be the binding (as set in the schema entry) of the trigger server.
The caller must bind to the trigger server and pass the original input query attribute
to the sec_attr_trig_query call in order to retrieve the attribute value.

Files
/usr/include/dce/sec_rgy_attr.idl

The idl file from which dce/sec_rgy_attr.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: sec_intro(3sec) .

sec_rgy_attr_get_effective(3sec)

Chapter 6. DCE Security Service 1389

sec_rgy_attr_lookup_by_id

Purpose

Reads a specified object’s attributes, expanding attribute sets into individual
member attributes

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_lookup_by_id (
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
sec_attr_cursor_t *cursor
unsigned32 num_attr_keys
unsigned32 space_avail
sec_attr_t attr_keys[]
unsigned32 *num_returned
sec_attr_t attrs[]
unsigned32 *num_left
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in
which the object specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A pointer to a sec_rgy_name_t character string containing the name of the
person, group, or organization to which the attribute is attached.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the
attr_keys[] array. Set this parameter to 0 (zero) to return all of the object’s
attributes that the caller is authorized to see.

space_avail
An unsigned 32-bit integer that specifies the number of elements available
in the output array.

attr_keys[]
An array of values of type sec_attr_t that identify the attribute type ID of
the attribute instance(s) to be looked up. If the attribute type is associated

1390 IBM DCE for AIX, Version 2.2: Application Development Reference

with a query attribute trigger, the sec_attr_t attr_value field can be used to
pass in optional information required by the attribute trigger query. If no
information is to be passed in the attr_value field (whether the type
indicates an attribute trigger query or not), set the attribute’s encoding type
to sec_rgy_attr_enc_void .

The size of the attr_keys[] array is determined by the num_attr_keys
parameter.

Input/Output
cursor A pointer to a sec_attr_cursor_t . As an input parameter, cursor is a pointer

to a sec_attr_cursor_t initialized by a sec_rgy_attr_srch_cursor_init call.
As an output parameter, cursor is a pointer to a sec_attr_cursor_t that is
positioned past components returned in this call.

Output
num_returned

A pointer to a 32-bit unsigned integer that specifies the number of attribute
instances returned in the attrs[] array.

attrs[]
An array of values of type sec_attr_t that contains the attributes retrieved
by Universal Unique Identifier (UUID). The size of the array is determined
by space_avail and the length by num_returned.

num_left
A pointer to a 32-bit unsigned integer that supplies the number of attributes
that were found but could not be returned because of space constraints in
the attrs[] buffer. To ensure that all the attributes will be returned, increase
the size of the attrs[] array by increasing the size of space_avail and
num_returned.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok , or, if the requested attributes were not available, it
returns the message not_all_available . Otherwise, it returns an error.

Description

The sec_rgy_attr_lookup_by_id() function reads those attributes specified by
UUID for an object specified by name. This routine is similar to the
sec_rgy_attr_lookup_no_expand() routine with one exception: for attribute sets,
the sec_rgy_attr_lookup_no_expand() routine returns a sec_attr_t for the set
instance only; it does not expand the set and return a sec_attr_t for each member
in the set. This call expands attribute sets and returns a sec_attr_t for each
member in the set.

If the num_attr_keys parameter is set to 0 (zero), all of the object’s attributes that
the caller is authorized to see are returned. This routine is useful for programmatic
access.

After a successful call, free the resources allocated by this routine for each attribute
returned in the attrs[] parameter with the sec_attr_util_inst_free_ptrs() routine.

For multivalued attributes, the call returns a sec_attr_t for each value as an
individual attribute instance. For attribute sets, the call returns a sec_attr_t for each
member of the set; it does not return the set instance.

sec_rgy_attr_lookup_by_id(3sec)

Chapter 6. DCE Security Service 1391

The attr_keys[] array, which specifies the attributes to be returned, contains values
of type sec_attr_t . These values consist of the following:

v attr_id, a UUID that identifies the attribute type

v attr_value, values of sec_attr_value_t that specify the attribute’s encoding type
and values.

Use the attr_id field of each attr_keys[] array element, to specify the UUID that
identifies the attribute type to be returned.

If the attribute instance to be read is not associated with a query trigger or no
additional information is required by the query trigger, an attribute UUID is all that is
required. For these attribute instances, supply the attribute UUID in the input array
and set the attribute encoding (in sec_attr_encoding_t) to sec_attr_enc_void .

If the attribute instance to be read is associated with a query attribute trigger that
requires additional information before it can process the query request, use a
sec_attr_value_t to supply the requested information, as follows:

v Set the sec_attr_encoding_t to an encoding type that is compatible with the
information required by the query attribute trigger.

v Set the sec_attr_value_t to hold the required information.

Note that if you set num_attr_keys to zero to return all of the object’s attributes and
that attribute is associated with a query attribute trigger, the attribute trigger will be
called with no input attribute information (that would normally have been passed in
via the attr_value field).

The cursor parameter specifies a cursor of type sec_attr_cursor_t initialized to the
point in the attribute list at which to start processing the query. Use the
sec_attr_cursor_init function to initialize cursor. If cursor is uninitialized, the
behavior is undefined.

The num_left parameter contains the number of attributes that were found but could
not be returned because of space constraints in the attrs[] array. (Note that this
number may be inaccurate if the target server allows updates between successive
queries.) To obtain all of the remaining attributes, set the size of the attrs[] array so
that it is large enough to hold the number of attributes listed in num_left.

Permissions Required

The sec_rgy_attr_lookup_by_id() routine requires the q (query) permission set
for each attribute type identified in the attr_keys[] array. These permissions are
defined as part of the access control list (ACL) manager set in the schema entry of
each attribute type.

Files
/usr/include/dce/sec_rgy_attr.idl

The idl file from which dce/sec_rgy_attr.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

unauthorized

sec_rgy_attr_lookup_by_id(3sec)

1392 IBM DCE for AIX, Version 2.2: Application Development Reference

registry server unavailable

trigger server unavailable

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_attr_lookup_by_name(3sec) ,
sec_rgy_attr_lookup_no_expand(3sec) .

sec_rgy_attr_lookup_by_id(3sec)

Chapter 6. DCE Security Service 1393

sec_rgy_attr_lookup_by_name

Purpose

Reads a single attribute instance for a specific object

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_lookup_by_name(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
char *attr_name
sec_attr_t *attr
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the domain in which the
named object resides. The valid values are as follows:

sec_rgy_domain_principal
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A pointer to a sec_rgy_name_t character string containing the name of the
person, group, or organization to which the attribute is attached.

attr_name
A pointer to a character string that specifies the name of the attribute to be
retrieved.

Output
attr A pointer to a sec_attr_t that contains the first instance of the named

attribute.

status A pointer to the completion status. The completion status can be one of the
following:

error_status_ok
All instances of the value were returned with no errors.

more_available
A multivalued attribute was specified as name and the routine

1394 IBM DCE for AIX, Version 2.2: Application Development Reference

completed successfully. For multivalued attributes, this routine
returns the first instance of the attribute.

attribute_set_instance
An attribute set was specified as name and the routine completed
successfully.

An error message if the routine did not complete successfully.

Description

The sec_rgy_attr_lookup_by_name() routine returns the named attribute for a
named object. This routine is useful for an interactive editor.

For multivalued attributes, this routine returns the first instance of the attribute. To
retrieve every instance of the attribute, use the sec_rgy_attr_lookup_by_id call,
supplying the attribute Universal Unique Identifier (UUID) returned in the attr
parameter.

For attribute sets, the routine returns the attribute set instance, not the member
instances. To retrieve all members of the set, use the sec_rgy_attr_lookup_by_id
call, supplying the the attribute set UUID returned in the attr parameter.

After a successful call, free the resources allocated by this routine for the attr
parameter, with the sec_attr_util_inst_free_ptrs() routine.

Attention:

This routine does not provide for input data to an attribute trigger query operation. If
the named attribute is associated with a query attribute trigger, the attribute trigger
will be called with no input attribute value information.

Permissions Required

The sec_rgy_attr_lookup_by_name() routine requires the q (query) permission
set for the attribute type of the attribute instance identified by attr_name. These
permissions are defined as part of the access control list (ACL) manager set in the
schema entry of each attribute type.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

registry server unavailable

trigger server unavailable

unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_lookup_by_id(3sec) ,
sec_rgy_attr_lookup_no_expand(3sec) .

sec_rgy_attr_lookup_by_name(3sec)

Chapter 6. DCE Security Service 1395

sec_rgy_attr_lookup_no_expand

Purpose

Reads a specified object’s attribute(s), without expanding attribute sets into
individual member attributes

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_lookup_no_expand(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
sec_attr_cursor_t *cursor
unsigned32 num_attr_keys
unsigned32 space_avail
uuid_t attr_keys[]
unsigned32 *num_returned
sec_attr_t attr_sets[]
unsigned32 *num_left
error_status_t status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the domain in which the
named object resides. The valid values are as follows:

sec_rgy_domain_principal
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A pointer to a sec_rgy_name_t character string containing the name of the
person, group, or organization to which the attribute is attached.

num_attr_keys
An unsigned 32-bit integer that specifies the number of elements in the
attr_keys[] array. If num_attr_keys is set to 0 (zero), all attribute sets that
the caller is authorized to see are returned.

space_avail
An unsigned 32-bit integer that specifies the size of the attrs_sets[] array.

attr_keys[]
An array of values of type uuid_t that specify the UUIDs of the attribute
sets to be returned. The size of the attr_keys[] array is determined by the
num_attr_keys parameter.

1396 IBM DCE for AIX, Version 2.2: Application Development Reference

Input/Output
cursor A pointer to a sec_attr_cursor_t . As an input parameter, cursor is a pointer

to a sec_attr_cursor_t that is initialized by the sec_rgy_attr_cursor_init .
As an output parameter, cursor is a pointer to a sec_attr_cursor_t that is
positioned past the attribute sets returned in this call.

Output
num_returned

A pointer to a 32-bit integer that specifies the number of attribute sets
returned in the attrs[] array.

attr_sets[]
An array of values of type sec_attr_t that contains the attribute sets
retrieved by UUID. The size of the array is determined by space_avail and
the length by num_returned.

num_left
A pointer to a 32-bit unsigned integer that supplies the number of attribute
sets that were found but could not be returned because of space
constraints in the attr_sets[] buffer. To ensure that all the attributes will be
returned, increase the size of the attr_sets[] array by increasing the size of
space_avail and num_returned.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_lookup_no_expand() routine reads attribute sets. This routine is
similar to the sec_rgy_attr_lookup_by_id() routine with one exception: for attribute
sets, the sec_rgy_attr_lookup_by_id() routine expands attribute sets and returns a
sec_attr_t for each member in the set. This call does not. Instead it returns a
sec_attr_t for the set instance only. The sec_rgy_attr_lookup_no_expand()
routine is useful for programmatic access.

cursor is a cursor of type sec_attr_cursor_t that establishes the point in the
attribute set list from which the server should start processing the query. Use the
sec_rgy_attr_cursor_init function to initialize cursor. If cursor is uninitialized, the
behavior is undefined.

The num_left parameter contains the number of attribute sets that were found but
could not be returned because of space constraints of the attr_sets[] array. (Note
that this number may be inaccurate if the target server allows updates between
successive queries.) To obtain all of the remaining attribute sets, set the size of the
attr_sets[] array so that it is large enough to hold the number of attributes listed in
num_left.

Permissions Required

The sec_rgy_attr_lookup_no_expand() routine requires the query permission set
for each attribute type identified in the attr_keys[] array. These permissions are
defined as part of the ACL manager set in the schema entry of each attribute type.

Files
/usr/include/dce/sec_rgy_attr.idl

The idl file from which dce/sec_rgy_attr.h was derived.

sec_rgy_attr_lookup_no_expand(3sec)

Chapter 6. DCE Security Service 1397

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

invalid/unsupported attribute type

registry server unavailable

unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_lookup_by_id(3sec) ,
sec_rgy_attr_lookup_by_name(3sec) .

sec_rgy_attr_lookup_no_expand(3sec)

1398 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_aclmgr_strings

Purpose

Returns printable ACL strings associated with an ACL manager protecting a schema
object

Synopsis
#include <dce/dce_attr_base.h>

void sec_rgy_attr_sch_aclmgr_strings(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
uuid_t *acl_mgr_type
unsigned32 size_avail
uuid_t *acl_mgr_type_chain
sec_acl_printstring_t *acl_mgr_info
boolean32 *tokenize
unsigned32 *total_num_printstrings
unsigned32 *size_used
sec_acl_printstring_t permstrings[]
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

acl_manager_type
A pointer to the UUID identifying the type of the ACL manager in question.
There may be more than one type of ACL manager protecting the schema
object whose ACL is bound to the input handle. Use this parameter to
distinguish them. Use sec_rgy_attr_sch_get_acl_mgrs() to acquire a list
of the manager types protecting a given schema object.

size_avail
An unsigned 32-bit integer containing the allocated length of the
permstrings[] array.

Output
acl_mgr_type_chain

If the target object ACL contains more than 32 permission bits, chains of
manager types are used: each manager type holds one 32-bit segment of
permissions. The UUID returned in acl_mgr_type_chain refers to the next
ACL manager in the chain. If there are no more ACL managers in the chain,
uuid_nil is returned.

acl_mgr_info
A pointer to a printstring that contains the ACL manager type’s name, help
information, and set of supported of permission bits.

Chapter 6. DCE Security Service 1399

tokenize
A pointer to a variable that specifies whether or not printstrings will be
passed separately:

v TRUE indicates that the printstrings must be printed or passed
separately.

v FALSE indicates that the printstrings are unambiguous and can be
concatenated when printed without confusion.

total_num_printstrings
A pointer to an unsigned 32-bit integer containing the total number of
permission entries supported by this ACL manager type.

size_used
A pointer to an unsigned 32-bit integer containing the number of permission
entries returned in the permstrings[] array.

permstrings[]
An array of printstrings of type sec_acl_printstring_t . Each entry of the
array is a structure containing the following three components:

printstring
A character string of maximum length sec_acl_printstring_len
describing the printable representation of a specified permission.

helpstring
A character string of maximum length
sec_acl_printstring_help_len containing some text that can be
used to describe the specified permission.

permissions
A sec_acl_permset_t permission set describing the permissions
that are represented with the companion printstring.

The array consists of one such entry for each permission supported by the
ACL manager identified by acl_mgr_type.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_aclmgr_strings() routine returns an array of printable
representations (called printstrings) for each permission bit or combination of
permission bits the specified ACL manager supports. The ACL manager type
specified by acl_mgr_type must be one of the types protecting the schema object
bound to by h.

In addition to returning the printstrings, this routine also returns instructions about
how to print the strings in the tokenize variable. If this variable is set to FALSE, the
printstrings can be concatenated. If it is set to TRUE, the printstrings cannot be
concatenated. For example a printstrings of r or w could be concatenated as rw
without any confusion. However, printstrings in a form of read or write , should not
be concatenated.

ACL managers often define aliases for common permission combinations. By
convention, simple entries appear at the beginning of the printstrings[] array, and
combinations appear at the end.

sec_rgy_attr_sch_aclmgr_strings(3sec)

1400 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

The sec_rgy_attr_sch_scl_mgr_strings() routine requires the r permission on the
attr_schema object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_no_memory

sec_attr_svr_unavailable

sec_attr_unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_get_acl_mgrs(3sec) .

sec_rgy_attr_sch_aclmgr_strings(3sec)

Chapter 6. DCE Security Service 1401

sec_rgy_attr_sch_create_entry

Purpose

Creates a schema entry

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_create_entry(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
sec_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

schema_entry
A pointer to a sec_attr_schema_entry_t that contains the schema entry
values for the schema in which the entry is to be created.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_create_entry() routine creates schema entries that define
attribute types.

Permissions Required

The sec_rgy_attr_sch_create_entry() routine requires i permission on the
attr_schema object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_bad_acl_mgr_set

1402 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_attr_bad_acl_mgr_type

sec_attr_bad_bind_authn_svc

sec_attr_bad_bind_authz_svc

sec_attr_bad_bind_info

sec_attr_bad_bind_prot_level

sec_attr_bad_bind_svr_name

sec_attr_bad_comment

sec_attr_bad_encoding_type

sec_attr_bad_intercell_action

sec_attr_bad_name

sec_attr_bad_permset

sec_attr_bad_scope

sec_attr_bad_uniq_query_accept

sec_attr_name_exists

sec_attr_no_memory

sec_attr_svr_read_only

sec_attr_svr_unavailable

sec_attr_trig_bind_info_missing

sec_attr_type_id_exists

sec_attr_unauthorized

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_delete_entry(3sec) ,
sec_rgy_attr_sch_update(3sec) .

sec_rgy_attr_sch_create_entry(3sec)

Chapter 6. DCE Security Service 1403

sec_rgy_attr_sch_cursor_alloc

Purpose

Allocates resources to a cursor used with sec_rgy_attr_sch_scan

Synopsis
void sec_rgy_att_sch_cursor_alloc(

dce_attr_cursor_t *cursor
error_status_t *status);

Parameters

Output
cursor A pointer to a sec_attr_cursor_t .

status A pointer to the completion status. On successful completion, the call
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_cursor_alloc() call allocates resources to a cursor used
with the sec_rgy_attr_sch_scan() call. This routine, which is a local operation,
does not initialize cursor.

The sec_rgy_attr_sch_cursor_init() routine, which makes a remote call, allocates
and initializes the cursor. In addition, sec_rgy_attr_sch_cursor_init() returns the
total number of entries found in the schema as an output parameter;
sec_rgy_attr_sch_cursor_alloc() does not.

Permissions Required

None.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.id was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_no_memory

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_cursor_init(3sec) ,
sec_rgy_attr_sch_cursor_release(3sec) , sec_rgy_attr_sch_scan(3sec).

1404 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_cursor_init

Purpose

Initializes and allocates a cursor used with sec_rgy_attr_sch_scan

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_cursor_init(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
unsigned32 *cur_num_entries
sec_attr_cursor_t *cursor
error_status_t status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

Output
cur_num_entries

A pointer to an unsigned 32-bit integer that specifies the total number of
entries contained in the schema at the time of this call.

cursor A pointer to a sec_attr_cursor_t that is initialized to the first entry in the
schema.

status A pointer to the completion status. On successful completion, the call
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_cursor_init() call initializes and allocates resources to a
cursor used with the sec_rgy_attr_sch_scan call. This call makes remote calls to
initialize the cursor.

To limit the number of remote calls, use the sec_rgy_attr_sch_cursor_alloc() call
to allocate cursor, but not initialize it. Be aware, however, that the
sec_rgy_attr_sch_cursor_init() call supplies the total number of entries found in
the schema as an output parameter; the sec_rgy_attr_sch_cursor_alloc() call
does not.

If the cursor iunput to sec_rgy_attr_sch_scan has not been initialized, the
sec_rgy_attr_sch_scan call will initialize it; if it has been initialized,
sec_rgy_attr_sch_scan advances it.

Permissions Required

None.

Chapter 6. DCE Security Service 1405

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_no_memory

sec_attr_svr_unavailable

sec_attr_unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) ,
sec_rgy_attr_sch_cursor_alloc(3sec),sec_rgy_attr_sch_cursor_release(3sec) ,
sec_rgy_attr_sch_scan(3sec).

sec_rgy_attr_sch_cursor_init(3sec)

1406 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_cursor_release

Purpose

Releases states associated with a cursor used by sec_rgy_attr_sch_scan

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_cursor_release(
sec_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor A pointer to a sec_attr_cursor_t . As an input parameter, cursor must have

been initialized to the first entry in a schema. As an output parameter,
cursor is uninitialized with all resources releases.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_cursor_init() routine releases the resources allocated to
the cursor used by the sec_rgy_attr_sch_scan routine. This call is a local
operation and makes no remote calls.

Permissions Required

None.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_cursor_allocate(3sec) ,
sec_rgy_attr_sch_cursor_init(3sec) , sec_rgy_attr_sch_scan(3sec) .

Chapter 6. DCE Security Service 1407

sec_rgy_attr_sch_cursor_reset

Purpose

Resets a cursor that has been allocated

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void dce_attr_cursor_reset(
sec_attr_cursor_t *cursor
error_status_t *status);

Parameters

Input/Output
cursor A pointer to a sec_attr_cursor_t . As an input parameter, an initialized

cursor. As an output parameter, cursor is reset to the first attribute in the
schema.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_cursor_reset() routine resets a dce_attr_cursor_t that has
been allocated by either a sec_rgy_attr_sch_cursor_init() or
sec_rgy_attr_sch_cursor_alloc() . The reset cursor can then be used to process a
new sec_rgy_attr_sch_scan query by reusing the cursor instead of releasing and
reallocating it. This is a local operation and makes no remote calls.

Permissions Required

None.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_bad_cursor

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_cursor_alloc(3sec) ,
sec_rgy_attr_sch_cursor_init(3sec) , sec_rgy_attr_sch_scan(3sec) .

1408 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_delete_entry

Purpose

Deletes a schema entry

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_delete_entry(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
uuid_t *attr_id
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

attr_id A pointer to a uuid_t that identifies the schema entry to be deleted.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_delete_entry() routine deletes a schema entry. Because
this is a radical operation that invalidates any existing attributes of this type on
objects dominated by the schema, access to this operation should be severely
limited.

Permissions Required

The sec_rgy_attr_sch_delete_entry() routine requires the d permission on the
attr_schema object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_no_memory

Chapter 6. DCE Security Service 1409

sec_attr_sch_entry_not_found

sec_attr_svr_read_only

sec_attr_svr_unavailable

sec_attr_unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_create_entry(3sec) ,
sec_rgy_attr_sch_update_entry(3sec) .

sec_rgy_attr_sch_delete_entry(3sec)

1410 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_get_acl_mgrs

Purpose

Retrieves the manager types of the ACLs protecting the objects dominated by a
named schema

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_get_acl_mgrs(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
unsigned32 size_avail
unsigned32 *size_used
unsigned32 *num_acl_mgr_types
uuid_t acl_mgr_types[]
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

size_avail
An unsigned 32-bit integer containing the allocated length of the
acl_manager_types[] array.

Output
size_used

An unsigned 32-bit integer containing the number of output entries returned
in the acl_mgr_types[] array.

num_acl_mgr_types
An unsigned 32-bit integer containing the number of types returned in the
acl_mgr_types[] array. This may be greater than size_used if there was not
enough space allocated by size_avail for all the manager types in the
acl_manager_types[] array.

acl_mgr_types[]
An array of the length specified in size_avail to contain UUIDs (of type
uuid_t) identifying the types of ACL managers protecting the target object.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_get_acl_mgrs() routine returns a list of the manager types
protecting the schema object identified by context.

Chapter 6. DCE Security Service 1411

ACL editors and browsers can use this operation to determine the ACL manager
types protecting a selected schema object. Then, using the
sec_rgy_attr_sch_aclmgr_strings() routine, they can determine how to format for
display the permissions supported by that ACL manager type.

Permissions Required

The sec_rgy_attr_sch_get_acl_mgrs() routine requires the r permission on the
attr_schema object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_no_memory

sec_attr_svr_unavailable

sec_attr_unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_aclmgr_strings(3sec) .

sec_rgy_attr_sch_get_acl_mgrs(3sec)

1412 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_lookup_by_id

Purpose

Reads a schema entry identified by UUID

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_lookup_by_id(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
uuid_t *attr_id
sec_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

attr_id A pointer to a uuid_t that identifies a schema entry.

Output
schema_entry

A sec_attr_schema_entry_t that contains an entry identified by attr_id.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_lookup_by_id() routine reads a schema entry identified by
attr_id. This routine is useful for programmatic access.

After a successful call, use the sec_attr_util_sch_ent_free_ptrs() routine to free
the resources allocated by this routine for the schema_entry parameter.

Permissions Required

The sec_rgy_attr_sch_lookup_by_id() routine requires the r (read) permission on
the attr_schema object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Chapter 6. DCE Security Service 1413

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_sch_entry_not_found

sec_attr_svr_unavailable

sec_attr_unauthorized

sec_attr_no_memory

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_lookup_by_name(3sec) ,
sec_rgy_attr_sch_scan(3sec) .

sec_rgy_attr_sch_lookup_by_id(3sec)

1414 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_lookup_by_name

Purpose

Reads a schema entry identified by name

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_lookup_by_name(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
char *attr_name
sec_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

attr_name
A pointer to a character string that identifies the schema entry.

Output
schema_entry

A sec_attr_schema_entry_t that contains the schema entry identified by
attr_name.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_lookup_by_name() routine reads a schema entry identified
by name. This routine is useful for use with an interactive editor.

After a successful call, use the sec_attr_util_sch_ent_free_ptrs() routine to free
the resources allocated by this routine for the schema_entry parameter.

Permissions Required

The sec_rgy_attr_sch_lookup_by_name() routine requires the r (read)
permission on the attr_schema object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Chapter 6. DCE Security Service 1415

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_bad_name

sec_attr_no_memory

sec_attr_sch_entry_not_found

sec_attr_svr_unavailable

sec_attr_unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_lookup_by_id(3sec) ,
sec_rgy_attr_sch_scan(3sec) .

sec_rgy_attr_sch_lookup_by_name(3sec)

1416 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_scan

Purpose

Reads a specified number of schema entries

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_scan(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
sec_attr_cursor_t *cursor
unsigned32 num_to_read
unsigned32 *num_read
sec_attr_schema_entry_t schema_entries[]
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

num_to_read
An unsigned 32-bit integer specifying the size of the schema_entries[]
array and the maximum number of entries to be returned.

Input/Output
cursor A pointer to a sec_attr_cursor_t . As input cursor must be allocated and

can be initialized. If cursor is not initialized, sec_rgy_attr_sch_scan will
initialized. As output, cursor is positioned at the first schema entry after the
returned entries.

Output
num_read

A pointer an unsigned 32-bit integer specifying the number of entries
returned in schema_entries[].

schema_entries[]
A sec_attr_schema_entry_t that contains an array of the returned schema
entries.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_scan() routine reads schema entries. The read begins at
the entry at which the input cursor is positioned and ends after the number of
entries specified in num_to_read.

Chapter 6. DCE Security Service 1417

The input cursor must have been allocated by either the
sec_rgy_attr_sch_cursor_init() or the sec_rgy_attr_sch_cursor_alloc() call. If
the input cursor is not initialzed, sec_rgy_attr_sch_scan() initializes it; if cursor is
initialized, sec_rgy_attr_sch_scan() simply advances it.

To read all entries in a schema, make successive sec_rgy_attr_sch_scan() calls.
When all entries have been read, the call returns the message no_more_entries .

This routine is useful as a browser.

Permissions Required

The sec_rgy_attr_sch_scan() routine requires r permission on the attr_schema
object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_bad_cursor

sec_attr_no_memory

sec_attr_svr_unavailable

sec_attr_unauthorized

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_cursor_alloc(3sec) ,
sec_rgy_attr_sch_cursor_init(3sec) , sec_rgy_attr_sch_cursor_release(3sec) .

sec_rgy_attr_sch_scan(3sec)

1418 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_sch_update_entry

Purpose

Updates a schema entry

Synopsis
#include <dce/sec_rgy_attr_sch.h>

void sec_rgy_attr_sch_update_entry(
sec_rgy_handle_t context
sec_attr_component_name_t schema_name
sec_attr_schema_entry_parts_t modify_parts
sec_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

schema_name
Reserved for future use.

modify_parts
A value of type sec_attr_schema_entry_parts_t that identifies the fields in
schema_entry that can be modified.

schema_entry
A pointer to a sec_attr_schema_entry_t that contains the schema entry
values for the schema entry to be updated.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_sch_update_entry() routine modifies schema entries. Only
those schema entry fields set to be modified in the
sec_attr_schema_entry_parts_t data type can be modified.

Some schema entry components can never be modified. Instead to make any
changes to these components, the schema entry must be deleted (which deletes all
attribute instances of that type) and recreated.

The schema entry components that can never be modified are as follows:

v Attribute name

v Reserved flag

v Apply defaults flag

v Intercell action flag

v Trigger types

Chapter 6. DCE Security Service 1419

v Comment

Fields that are arrays of structures (such as acl_mgr_set and trig_binding) are
completely replaced by the new input array. This operation cannot be used to add a
new element to the existing array.

Permissions Required

The sec_rgy_attr_sch_update_entry() routine requires the M (Member_list)
permission on the attr_schema object.

Files
/usr/include/dce/sec_rgy_attr_sch.idl

The idl file from which dce/sec_rgy_attr_sch.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_attr_field_no_update

sec_attr_bad_name

sec_attr_bad_acl_mgr_set

sec_attr_bad_acl_mgr_type

sec_attr_bad_permset

sec_attr_bad_intercell_action

sec_attr_trig_bind_info_missing

sec_attr_bad_bind_info

sec_attr_bad_bind_svr_name

sec_attr_bad_bind_prot_level

sec_attr_bad_bind_authn_svc

sec_attr_bad_bind_authz_svc

sec_attr_bad_uniq_query_accept

sec_attr_bad_comment

sec_attr_name_exists

sec_attr_sch_entry_not_found

sec_attr_unauthorized

sec_attr_svr_read_only

sec_attr_svr_unavailable

sec_attr_no_memory

error_status_ok

sec_rgy_attr_sch_update_entry(3sec)

1420 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_sch_create_entry(3sec) ,
sec_rgy_attr_sch_delete_entry(3sec) .

sec_rgy_attr_sch_update_entry(3sec)

Chapter 6. DCE Security Service 1421

sec_rgy_attr_test_and_update

Purpose

Updates specified attribute instances for a specified object only if a set of control
attribute instances match the object’s existing attribute instances

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_test_and_update (
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
unsigned32 num_to_test
sec_attr_t test_attrs[]
unsigned32 num_to_write
sec_attr_t update_attrs[]
signed32 *failure_index
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in
which the object specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A character string of type sec_rgy_name_t specifying the name of the
person, group, or organization to which the attribute is attached.

num_to_test
An unsigned 32-bit integer that specifies the number of elements in the
test_attrs[] array. This integer must be greater than 0 (zero).

test_attrs[]
An array of values of type sec_attr_t that specifies the control attributes.
The update takes place only if the types and values of the control attributes
exactly match those of the attribute instances on the named registry object.
The size of the array is determined by num_to_test.

num_to_write
A 32-bit integer that specifies the number of attribute instances returned in
the update_attrs[] array.

1422 IBM DCE for AIX, Version 2.2: Application Development Reference

update_attrs[]
An array of values of type sec_attr_t that specifies the attribute instances
to be updated. The size of the array is determined by num_to_write.

Output
failure_index

In the event of an error, failure_index is a pointer to the element in the
update_attrs[] array that caused the update to fail. If the failure cannot be
attributed to a specific attribute, the value of failure_index is −1.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_test_and_update() routine updates an attribute only if the set of
control attributes specified in the test_attrs[] match attributes that already exist for
the object.

This update is an atomic operation: if any of the control attributes do not match
existing attributes, none of the updates are performed, and if an update should be
performed, but the write cannot occur for whatever reason to any member of the
update_attrs[] array, all updates are aborted. The attribute causing the update to
fail is identified in failure_index. If the failure cannot be attributed to a given
attribute, failure_index contains -1.

If an attribute instance already exists which is identical in both attr_id and attr_value
to an attribute specified in in_attrs[], the existing attribute information is overwritten
by the new information. For multivalued attributes, every instance with the same
attr_id is overwritten with the supplied values.

If an attribute instance does not exist, it is created.

If you specify an attribute set for updating, the update applies to the set instance,
the set itself, not the members of the set. To update a member of an attribute set,
supply the UUID of the set member.

If an input attribute is associated with an update attribute trigger server, the attribute
trigger server is invoked (by the sec_attr_trig_update() function) and the in_attr[]
array is supplied as input. The output attributes from the update attribute trigger
server are stored in the registry database and returned in the out_attrs[] array.
Note that the update attribute trigger server may modify the values before they are
used to update the registry database. This is the only circumstance under which the
values in the out_attrs[] array differ from the values in the in_attrs[] array.

Permissions Required

The sec_rgy_attr_test_and_update() routine routine requires the test permission
and the update permission set set for each attribute type identified in the
test_attrs[] array. These permissions are defined as part of the ACL manager set in
the schema entry of each attribute type.

Files
/usr/include/dce/sec_rgy_attr.idl

The idl file from which dce/sec_rgy_attr.h was derived.

sec_rgy_attr_test_and_update(3sec)

Chapter 6. DCE Security Service 1423

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

control attribute has changed

database read only

invalid encoding type

invalid/unsupported attribute type

server unavailable

site read only

trigger server unavailable

unauthorized

value not unique

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_delete(3sec) ,
sec_rgy_attr_update(3sec) .

sec_rgy_attr_test_and_update(3sec)

1424 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_attr_update

Purpose

Creates and updates attribute instances for a specified object

Synopsis
#include <dce/sec_rgy_attr.h>

void sec_rgy_attr_update (
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
unsigned32 num_to_write
unsigned32 space_avail
sec_attr_t in_attrs[]
unsigned32 *num_returned
sec_attr_t out_attrs[]
unsigned32 *num_left
signed32 *failure_index
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
A value of type sec_rgy_domain_t that identifies the registry domain in
which the object specified by name resides. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

This parameter is ignored if name is policy or replist .

name A character string of type sec_rgy_name_t specifying the name of the
person, group, or organization to which the attribute is attached.

num_to_write
A 32-bit unsigned integer that specifies the number of elements in the
in_attrs[] array. This integer must be greater than 0 (zero).

space_avail
Set this parameter to zero. It is a 32-bit unsigned integer that specifies the
size of the out_attrs[] array. Use of this parameter and its associated
out_attrs[] array is reserved for future use by update trigger servers.

in_attrs[]
An array of values of type sec_attr_t that specifies the attribute instances
to be updated. The size of the array is determined by num_to_write.

Chapter 6. DCE Security Service 1425

Output
num_returned

A pointer to an unsigned 32-bit integer that specifies the number of attribute
instances returned in the out_attrs[] array.

out_attrs[]
Reserved for future use by update trigger servers.

num_left
A pointer to an unsigned 32-bit integer that supplies the number of
attributes that could not be returned because of space constraints in the
out_attrs[] buffer. To ensure that all the attributes will be returned, increase
the size of the out_attrs[] array by increasing the size of space_avail and
num_returned.

failure_index
In the event of an error, failure_index is a pointer to the element in the
in_attrs[] array that caused the update to fail. If the failure cannot be
attributed to a specific attribute, the value of failure_index is −1.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_attr_update() routine creates new attribute instances and updates
existing attribute instances attached to a object specified by name and registry
domain. The instances to be created or updated are passed as an array of
sec_attr_t data types. This is an atomic operation: if the creation of any attribute in
the in_attrs[] array fails, all updates are aborted. The attribute causing the update
to fail is identified in failure_index. If the failure cannot be attributed to a given
attribute, failure_index contains -1.

The in_attrs[] array, which specifies the attributes to be created, contains values of
type sec_attr_t . These values are as follows:

attr_id A Universal Unique Identifier (UUID) that identifies the attribute type

attr_value
Values of sec_attr_value_t that specify the attribute’s encoding type and
values.

If an attribute instance already exists which is identical in both attr_id and attr_value
to an attribute specified in in_attrs[], the existing attribute information is overwritten
by the new information. For multivalued attributes, every instance with the same
attr_id is overwritten with the supplied values.

If an attribute instance does not exist, it is created.

For multivalued attributes, because every instance of the multivalued attribute is
identified by the same UUID, every instance is overwritten with the supplied value.
To change only one of the values, you must supply the values that should be
unchanged as well as the new value.

To create instances of multivalued attributes, create individual sec_attr_t data types
to define each multivalued attribute instance and then pass all of them in in the
input array.

sec_rgy_attr_update(3sec)

1426 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

The sec_rgy_attr_update() routine requires the U (Update) permission set for
each attribute type identified in the in_attrs[] array. These permissions are defined
as part of the access control list (ACL) manager set in the schema entry of each
attribute type.

Files
/usr/include/dce/sec_rgy_attr.idl

The idl file from which dce/sec_rgy_attr.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

unauthorized

database read only

server unavailable

invalid/unsupported attribute type

invalid encoding type

value not unique

attribute instance already exists

trigger server unavailable

site read only

error_status_ok

Related Information

Functions: sec_intro(3sec) , sec_rgy_attr_delete(3sec) ,
sec_rgy_attr_test_and_update(3sec) .

sec_rgy_attr_update(3sec)

Chapter 6. DCE Security Service 1427

sec_rgy_auth_plcy_get_effective

Purpose

Returns the effective authentication policy for an account

Synopsis
#include <dce/policy.h>

void sec_rgy_auth_plcy_get_effective(
sec_rgy_handle_t context
sec_rgy_login_name_t *account
sec_rgy_plcy_auth_t *auth_policy
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

account
A pointer to the account login name (type sec_rgy_login_name_t). A login
name is composed of three character strings, containing the principal,
group, and organization (PGO) names corresponding to the account. If all
three fields contain empty strings, the authentication policy returned is that
of the registry.

Output
auth_policy

A pointer to the sec_rgy_plcy_auth_t structure to receive the
authentication policy. The authentication policy structure contains the
maximum lifetime for an authentication ticket, and the maximum amount of
time for which one can be renewed.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_auth_plcy_get_effective() routine returns the effective authentication
policy for the specified account. The authentication policy in effect is the more
restrictive of the registry and the account policies for each policy category. If no
account is specified, the registry’s authentication policy is returned.

Permissions Required

The sec_rgy_auth_plcy_get_effective() routine requires the r (read) permission
on the policy object from which the data is to be returned. If an account is specified
and an account policy exists, the routine also requires the r (read) permission on
the account principal.

1428 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_auth_plcy_get_info(3sec) ,
sec_rgy_auth_plcy_set_info(3sec) .

sec_rgy_auth_plcy_get_effective(3sec)

Chapter 6. DCE Security Service 1429

sec_rgy_auth_plcy_get_info

Purpose

Returns the authentication policy for an account

Synopsis
#include <dce/policy.h>

void sec_rgy_auth_plcy_get_info(
sec_rgy_handle_t context
sec_rgy_login_name_t *account
sec_rgy_plcy_auth_t *auth_policy
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

account
A pointer to the account login name (type sec_rgy_login_name_t). A login
name is composed of three character strings, containing the principal,
group, and organization (PGO) names corresponding to the account.

Output
auth_policy

A pointer to the sec_rgy_plcy_auth_t structure to receive the
authentication policy. The authentication policy structure contains the
maximum lifetime for an authentication ticket, and the maximum amount of
time for which one can be renewed.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_auth_plcy_get_info() routine returns the authentication policy for the
specified account. If no account is specified, the registry’s authentication policy is
returned.

Permissions Required

The sec_rgy_auth_plcy_get_info() routine requires the r (read) permission on the
policy object or account principal from which the data is to be returned.

Notes

The actual policy in effect will not correspond precisely to what is returned by this
call if the overriding registry authentication policy is more restrictive than the policy
for the specified account. Use sec_rgy_auth_plcy_get_effective() to return the
policy currently in effect for the given account.

1430 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
No account with the given login name could be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_auth_plcy_get_effective(3sec) ,
sec_rgy_auth_plcy_set_info(3sec) .

sec_rgy_auth_plcy_get_info(3sec)

Chapter 6. DCE Security Service 1431

sec_rgy_auth_plcy_set_info

Purpose

Sets the authentication policy for an account

Synopsis
#include <dce/policy.h>

void sec_rgy_auth_plcy_set_info(
sec_rgy_handle_t context
sec_rgy_login_name_t *account
sec_rgy_plcy_auth_t *auth_policy
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

account
A pointer to the account login name (type sec_rgy_login_name_t). A login
name is composed of three character strings, containing the principal,
group, and organization (PGO) names corresponding to the account. All
three names must be completely specified.

auth_policy
A pointer to the sec_rgy_plcy_auth_t structure containing the
authentication policy. The authentication policy structure contains the
maximum lifetime for an authentication ticket, and the maximum amount of
time for which one can be renewed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_auth_plcy_set_info() routine sets the indicated authentication policy
for the specified account. If no account is specified, the authentication policy is set
for the registry as a whole.

Permissions Required

The sec_rgy_auth_plcy_set_info() routine requires the a (auth_info) permission on
the policy object or account principal for which the data is to be set.

Notes

The policy set on an account may be less restrictive than the policy set for the
registry as a whole. In this case, the change in policy has no effect, since the
effective policy is the most restrictive combination of the principal and registry
authentication policies. (See the sec_rgy_auth_plcy_get_effective() routine).

1432 IBM DCE for AIX, Version 2.2: Application Development Reference

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
No account with the given login name could be found.

sec_rgy_not_authorized
The user is not authorized to update the specified record.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_auth_plcy_get_effective(3sec) ,
sec_rgy_auth_plcy_get_info(3sec) .

sec_rgy_auth_plcy_set_info(3sec)

Chapter 6. DCE Security Service 1433

sec_rgy_cell_bind

Purpose

Binds to a registry in a cell

Synopsis
#include <dce/binding.h>

void sec_rgy_cell_bind(
unsigned_char_t cell_name
sec_rgy_bind_auth_info_t *auth_info
sec_rgy_handle_t *context
error_status_t *status);

Parameters

Input
cell_name

A character string (type unsigned_char_t) containing the name of the cell
in question. Upon return, a security server for that cell is associated with
context, the registry server handle. The cell must be specified completely
and precisely. This routine offers none of the pathname resolving services
of sec_rgy_site_bind() .

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the
authentication protocol, protection level, and authorization protocol to use in
establishing the binding. (See the rpc_binding_set_auth_info() routine).

Output
context

A pointer to a sec_rgy_handle_t variable. Upon return, this contains a
registry server handle indicating (bound to) the desired registry site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_cell_bind() routine establishes a relationship with a registry site at an
arbitrary level of security. The cell_name parameter identifies the target cell.

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

1434 IBM DCE for AIX, Version 2.2: Application Development Reference

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_bind(3sec) .

sec_rgy_cell_bind(3sec)

Chapter 6. DCE Security Service 1435

sec_rgy_cursor_reset

Purpose

Resets the registry database cursor

Synopsis
#include <dce/misc.h>

void sec_rgy_cursor_reset(
sec_rgy_cursor_t *cursor);

Parameters

Input/Output
cursor A pointer into the registry database.

Description

The sec_rgy_cursor_reset() routine resets the database cursor to return the first
suitable entry. A cursor is a pointer into the registry. It serves as a place holder
when returning successive items from the registry.

A cursor is bound to a particular server. In other words, a cursor that is in use with
one replica of the registry has no meaning for any other replica. If a calling program
attempts to use a cursor from one replica with another, the cursor is reset and the
routine for which the cursor was specified returns the first item in the database.

A cursor that is in use with one call cannot be used with another. For example, you
cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Files
/usr/include/dce/misc.idl

The idl file from which dce/misc.h was derived.

Examples

The following example illustrates use of the cursor within a loop. The initial
sec_rgy_cursor_reset() call resets the cursor to point to the first item in the
registry. Successive calls to sec_rgy_pgo_get_next() return the next PGO item
and update the cursor to reflect the last item returned. When the end of the list of
PGO items is reached, the routine returns the value sec_rgy_no_more_entries in
the status parameter.
sec_rgy_cursor_reset(&cursor);
do {

sec_rgy_pgo_get_next(context, domain, scope, &cursor,
&item, name &status);

if (status == error_status_ok) {
/* Print formatted PGO item info */

}
}while (status == error_status_ok);

1436 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_get_projlist(3sec) ,
sec_rgy_acct_lookup(3sec) , sec_rgy_pgo_get_by_id(3sec) ,
sec_rgy_pgo_get_by_name(3sec) , sec_rgy_pgo_get_by_unix_num(3sec) ,
sec_rgy_pgo_get_members(3sec) , sec_rgy_pgo_get_next(3sec) .

sec_rgy_cursor_reset(3sec)

Chapter 6. DCE Security Service 1437

sec_rgy_enable_nsi

Purpose

Enables and disables Name Service Interface (NSI) bindings.

Format
#include <dce/binding.h>

boolean32 sec_rgy_enable_nsi(
boolean32 flag);

Parameters

Input
flag As input, a boolean32 flag that contains the code to enable or disable the

use of NSI binding by the security code. Upon return, flag contains the
previous state of this flag. When TRUE, NSI is enabled; when FALSE, NSI
is disabled.

Usage

Enable or disable the use of NSI for security binding operations to prevent security
from attempting to access the namespace while connecting to the registry server.

Context
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

1438 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_login_get_effective

Purpose

Returns the effective login data for an account

Synopsis
#include <dce/misc.h>

void sec_rgy_login_get_effective(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_rgy_acct_key_t *key_parts
sec_rgy_sid_t *sid
sec_rgy_unix_sid_t *unix_sid
sec_rgy_acct_user_t *user_part
sec_rgy_acct_admin_t *admin_part
sec_rgy_plcy_t *policy_data
signed32 max_number
signed32 *supplied_number
uuid_t id_projlist[]
signed32 unix_projlist[]
signed32 *num_projects
sec_rgy_name_t cell_name
uuid_t *cell_uuid
sec_override_fields_t *overridden
error_status_t *status);

Parameters

Input
context

The registry server handle.

max_number
The maximum number of projects to be returned by the call. This must be
no larger than the allocated size of the projlist[] arrays.

Input/Output
login_name

A pointer to the account login name. A login name is composed of the
names for the account’s principal, group, and organization (PGO) items.

Output
key_parts

A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

sid A pointer to a sec_rgy_sid_t structure to receive the returned subject
identifier (SID) for the account. This structure consists of the UUIDs for the
account’s PGO items.

unix_sid
A pointer to a sec_rgy_unix_sid_t structure to receive the returned UNIX
subject identifier (SID) for the account. This structure consists of the UNIX
numbers for the account’s PGO items.

Chapter 6. DCE Security Service 1439

user_part
A pointer to a sec_rgy_acct_user_t structure to receive the returned user
data for the account.

admin_part
A pointer to a sec_rgy_acct_admin_t structure to receive the returned
administrative data for the account.

policy_data
A pointer to a sec_rgy_policy_t structure to receive the policy data for the
account. The policy data is associated with the account’s organization, as
identified in the login name.

supplied_number
A pointer to the actual number of projects returned. This will always be less
than or equal to the max_number supplied on input.

id_projlist[]
An array to receive the UUID of each project returned. The size allocated
for the array is given by max_number. If this value is less than the total
number of projects in the account project list, multiple calls must be made
to return all of the projects.

unix_projlist[]
An array to receive the UNIX number of each project returned. The size
allocated for the array is given by max_number. If this value is less than the
total number of projects in the account project list, multiple calls must be
made to return all of the projects.

num_projects
A pointer indicating the total number of projects in the specified account’s
project list.

cell_name
The name of the account’s cell.

cell_uuid
The UUID for the account’s cell.

overridden
A pointer to a 32-bit set of flags identifying the local overrides, if any, for the
account login information.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_login_get_effective() routine returns effective login information for
the specified account. Login information is extracted from the account’s entry in the
registry database. Effective login information is a combination of the login
information from the registry database and any login overrides defined for the
account on the local machine.

The overridden parameter indicates which, if any, of the following local overrides
have been defined for the account:

v The UNIX user ID

v The group ID

v The encrypted password

v The account’s miscellaneous information (gecos) field

sec_rgy_login_get_effective(3sec)

1440 IBM DCE for AIX, Version 2.2: Application Development Reference

v The account’s home directory

v The account’s login shell

Local overrides for account login information are defined in the
/etc/passwd_override file and apply only to the local machine.

Files
/usr/include/dce/misc.idl

The idl file from which dce/misc.h was derived.

/etc/passwd_override
The file that defines local overrides for account login information.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy__object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_add(3sec) ,
sec_rgy_login_get_info(3sec) .

Files: passwd_override(5sec) .

sec_rgy_login_get_effective(3sec)

Chapter 6. DCE Security Service 1441

sec_rgy_login_get_info

Purpose

Returns login information for an account

Synopsis
#include <dce/misc.h>

void sec_rgy_login_get_info(
sec_rgy_handle_t context
sec_rgy_login_name_t *login_name
sec_rgy_acct_key_t *key_parts
sec_rgy_sid_t *sid
sec_rgy_unix_sid_t *unix_sid
sec_rgy_acct_user_t *user_part
sec_rgy_acct_admin_t *admin_part
sec_rgy_plcy_t *policy_data
signed32 max_number
signed32 *supplied_number
uuid_t id_projlist[]
signed32 unix_projlist[]
signed32 *num_projects
sec_rgy_name_t cell_name
uuid_t *cell_uuid
error_status_t *status);

Parameters

Input
context

The registry server handle.

max_number
The maximum number of projects to be returned by the call. This must be
no larger than the allocated size of the projlist[] arrays.

Input/Output
login_name

A pointer to the account login name. A login name is composed of the
names for the account’s principal, group, and organization (PGO) items.

Output
key_parts

A pointer to the minimum abbreviation allowed when logging in to the
account. Abbreviations are not currently implemented and the only legal
value is sec_rgy_acct_key_person .

sid A pointer to a sec_rgy_sid_t structure to receive the UUID’s representing
the account’s PGO items.

unix_sid
A pointer to a sec_rgy_unix_sid_t structure to receive the UNIX numbers
for the account’s PGO items.

user_part
A pointer to a sec_rgy_acct_user_t structure to receive the returned user
data for the account.

1442 IBM DCE for AIX, Version 2.2: Application Development Reference

admin_part
A pointer to a sec_rgy_acct_admin_t structure to receive the returned
administrative data for the account.

policy_data
A pointer to a sec_rgy_policy_t structure to receive the policy data for the
account. The policy data is associated with the account’s organization, as
identified in the login name.

supplied_number
A pointer to the actual number of projects returned. This will always be less
than or equal to the max_number supplied on input.

id_projlist[]
An array to receive the UUID of each project returned. The size allocated
for the array is given by max_number. If this value is less than the total
number of projects in the account project list, multiple calls must be made
to return all of the projects.

unix_projlist[]
An array to receive the UNIX number of each project returned. The size
allocated for the array is given by max_number. If this value is less than the
total number of projects in the account project list, multiple calls must be
made to return all of the projects.

num_projects
A pointer indicating the total number of projects in the specified account’s
project list.

cell_name
The name of the account’s cell.

cell_uuid
The UUID for the account’s cell.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_login_get_info() routine returns login information for the specified
account. This information is extracted from the account’s entry in the registry
database. To return any local overrides for the account’s login data, use
sec_rgy_login_get_effective() .

Permissions Required

The sec_rgy_login_get_info() routine requires the r (read) permission on the
account principal from which the data is to be returned.

Files
/usr/lib/dce/misc.idl

The idl file from which dce/misc.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_login_get_info(3sec)

Chapter 6. DCE Security Service 1443

sec_rgy_object_not_found
The specified account could not be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_add(3sec) ,
sec_rgy_login_get_effective(3sec) .

sec_rgy_login_get_info(3sec)

1444 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_add

Purpose

Adds a PGO item to the registry database

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_add(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
sec_rgy_pgo_item_t *pgo_item
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

name A pointer to a sec_rgy_name_t character string containing the name of the
new PGO item.

pgo_item
A pointer to a sec_rgy_pgo_item_t structure containing the data for the
new PGO item. The data in this structure includes the PGO item’s name,
UUID, UNIX number (if any), and administrative data, such as whether the
item may have (or belong to) a concurrent group set.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_add() routine adds a PGO item to the registry database.

The PGO data consists of the following:

v The universal unique identifier (UUID) of the PGO item. Specify NULL to have
the registry server create a new UUID for an item.

Chapter 6. DCE Security Service 1445

v The UNIX number for the PGO item. Since the registry uses embedded UNIX
IDs (where a subset of the UUID bits represent the UNIX ID), the specified ID
must match the UUID, if both are specified.

v The quota for subaccounts allowed for this item entry.

v The full name of the PGO item.

v Flags (in the sec_rgy_pgo_flags_t format) indicating whether

– A principal item is an alias.

– The PGO item can be deleted from the registry.

– A principal item can have a concurrent group set.

– A group item can appear in a concurrent group set.

Permissions Required

The sec_rgy_pgo_add() routine requires the i (insert) permission on the parent
directory in which the the PGO item is to be created.

Notes

An account can be added to the registry database only when all its constituent PGO
items are already in the database, and the appropriate membership relationships
between them are established. For example, to establish an account with principal
name tom , group name writers , and organization name hp , all three names must
exist as independent PGO items in the database. Furthermore, tom must be a
member of writers , which must be a member of hp . (See sec_rgy_acct_add() to
add an account to the registry.)

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to add the specified PGO item.

sec_rgy_name_exists
A PGO item already exists with the name given in name.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_add(3sec) ,
sec_rgy_pgo_delete(3sec) , sec_rgy_pgo_rename(3sec) ,
sec_rgy_pgo_replace(3sec) .

sec_rgy_pgo_add(3sec)

1446 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_add_member

Purpose

Adds a principal to a group or organization

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_add_member(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t go_name
sec_rgy_name_t principal_name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

go_name
A character string (type sec_rgy_name_t) containing the name of the group
or organization to which the specified principal will be added.

principal_name
A character string (type sec_rgy_name_t) containing the name of the
principal to be added to the membership list of the group or organization
specified by go_name. You must use fully qualified names to add foreign
principals as members of a group. (Only local principals can be added as
members of an organization.)

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_add_member() routine adds a member to the membership list
of a group or organization in the registry database. For this call to succeed when
adding a principal from a foreign cell to a group, the Security Server (secd) must
be running in the foreign cell.

Chapter 6. DCE Security Service 1447

Permissions Required

The sec_rgy_pgo_add_member() routine requires the M (Member_list)
permission on the group or organization item specified by go_name. If go_name
specifies a group, the routine also requires the g (groups) permission on the
principal identified by principal_name.

Notes

An account can be added to the registry database only when all its constituent PGO
items are already in the database, and the appropriate membership relationships
between them are established. For example, to establish an account with principal
name tom , group name writers , and organization name hp , all three names must
exist as independent PGO items in the database. Furthermore, tom must be a
member of writers , which must be a member of hp . (See the sec_rgy_acct_add()
routine to add an account to the registry.)

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to add members to the specified group
or organization.

sec_rgy_bad_domain
An invalid domain was specified. A member can be added only to a group
or organization, not a principal.

sec_rgy_object_not_found
The registry server could not find the specified name.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_delete_member(3sec) , sec_rgy_pgo_get_members(3sec) ,
sec_rgy_pgo_is_member(3sec) .

sec_rgy_pgo_add_member(3sec)

1448 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_delete

Purpose

Deletes a PGO item from the registry database

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_delete(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of principal, group, or organization (PGO)
item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

name A pointer to a sec_rgy_name_t character string containing the name of the
PGO item to be deleted.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_delete() routine deletes a PGO item from the registry database.
Any account depending on the deleted PGO item is also deleted.

Permissions Required

The sec_rgy_pgo_delete() routine requires the following permissions:

v The d (delete) permission on the parent directory that contains the the PGO
item to be deleted.

v The D (Delete_object) permission on the PGO item itself.

Chapter 6. DCE Security Service 1449

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to delete the specified item.

sec_rgy_object_not_found
The registry server could not find the specified item.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) .

sec_rgy_pgo_delete(3sec)

1450 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_delete_member

Purpose

Removes a member from a group or organization

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_delete_member(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t go_name
sec_rgy_name_t principal_name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

go_name
A character string (type sec_rgy_name_t) containing the name of the group
or organization from which the specified principal will be removed.

principal_name
A character string (type sec_rgy_name_t) containing the name of the
principal to be removed from the membership list of the group or
organization specified by go_name. You must use fully-qualified names to
remove foreign principals from groups. (Only local principals can be
members of an organization.)

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_delete_member() routine removes a member from the
membership list of a group or organization. The principal to be removed from a
group can be in the local or a foreign cell. (Only local principals can be members of
an organization.)

Chapter 6. DCE Security Service 1451

Permissions Required

The sec_rgy_pgo_delete_member() routine requires the M (Member_list)
permission on the group or organization item specified by go_name.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to remove the specified member.

sec_rgy_bad_domain
An invalid domain was specified. Members can exist only for groups and
organizations, not for principals.

sec_rgy_object_not_found
The specified group or organization was not found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_add_member .

sec_rgy_pgo_delete_member(3sec)

1452 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_get_by_eff_unix_num

Purpose

Returns the name and data for a PGO item identified by its effective UNIX number

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_eff_unix_num(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t scope
signed32 unix_id
boolean32 allow_aliases
sec_rgy_cursor_t *item_cursor
sec_rgy_pgo_item_t *pgo_item
sec_rgy_name_t name
boolean32 *overridden
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The UNIX number identifies a principal.

sec_rgy_domain_group
The UNIX number identifies a group.

Note that this function does not support the value sec_rgy_domain_org .

scope A character string (type sec_rgy_name_t) containing the scope of the
desired search. The registry database is designed to accommodate a
tree-structured name hierarchy. The scope of a search is the name of the
branch under which the search takes place. For example, all names in a
registry might start with /alpha , and be divided further into /beta or
/gamma . To search only the part of the database under /beta , the scope of
the search would be /alpha/beta , and any resulting PGO items would have
names beginning with this string. Note that these naming conventions need
not have anything to do with group or organization PGO item membership
lists.

unix_id
The UNIX number of the desired registry PGO item.

allow_aliases
A boolean32 value indicating whether to search for a primary PGO item, or
whether the search can be satisfied with an alias. If TRUE, the routine
returns the next entry found for the PGO item. If FALSE, the routine returns
only the primary entry.

Chapter 6. DCE Security Service 1453

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_pgo_get_next() routine returns the PGO item
indicated by item_cursor, and advances the cursor to point to the next item
in the database. When the end of the list of entries is reached, the routine
returns the value sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset() to reset the cursor.

Output
pgo_item

A pointer to a sec_rgy_pgo_item_t structure to receive the data for the
returned PGO item. The data in this structure includes the PGO item’s
name, UUID, UNIX number (if any), and administrative data, such as
whether the item, if a principal, may have a concurrent group set. The data
is as it appears in the registry, for that UNIX number, even though some of
the fields may have been overridden locally.

name A pointer to a sec_rgy_name_t character string containing the returned
name for the PGO item. This string might contain a local override value if
the supplied UNIX number is found in the passwd_override or
group_override file.

overridden
A pointer to a boolean32 value indicating whether or not the supplied UNIX
number has an entry in the local override file (passwd_override or
group_override).

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_get_by_eff_unix_num() routine returns the name and data for a
PGO item. The desired item is identified by its type (domain) and its UNIX number.

This routine is similar to the sec_rgy_pgo_get_by_unix_num() routine. The
difference between the routines is that sec_rgy_pgo_get_by_eff_unix_num() first
searches the local override files for the respective name_domain for a match with
the supplied UNIX number. If an override match is found, and an account or group
name is found in that entry, then that name is used to obtain PGO data from the
registry and the value of the overridden parameter is set to TRUE.

The item_cursor parameter specifies the starting point for the search through the
registry database. It provides an automatic place holder in the database. The
routine automatically updates this variable to point to the next PGO item after the
returned item. The returned cursor location can be supplied on a subsequent
database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_eff_unix_num() routine requires the r (read)
permission on the PGO item to be viewed.

sec_rgy_pgo_get_by_eff_unix_num(3sec)

1454 IBM DCE for AIX, Version 2.2: Application Development Reference

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,
you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to renew a cursor for use with another call or for
another server.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

group_override
The local group override file.

passwd_override
The local password override file.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_cursor_reset(3sec) ,
sec_rgy_pgo_add(3sec) , sec_rgy_pgo_get_by_id(3sec) ,
sec_rgy_pgo_get_by_name(3sec) , sec_rgy_pgo_get_by_unix_num(3sec) ,
sec_rgy_pgo_get_next(3sec) , sec_rgy_pgo_id_to_name(3sec) ,
sec_rgy_pgo_id_to_unix_num(3sec) , sec_rgy_pgo_name_to_id(3sec) ,
sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_get_by_eff_unix_num(3sec)

Chapter 6. DCE Security Service 1455

sec_rgy_pgo_get_by_id

Purpose

Returns the name and data for a PGO item identified by its UUID

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_id(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t scope
uuid_t *item_id
boolean32 allow_aliases
sec_rgy_cursor_t *item_cursor
sec_rgy_pgo_item_t *pgo_item
sec_rgy_name_t name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The UUID identifies a principal.

sec_rgy_domain_group
The UUID identifies a group.

sec_rgy_domain_org
The UUID identifies an organization.

scope A character string (type sec_rgy_name_t) containing the scope of the
desired search. The registry database is designed to accommodate a
tree-structured name hierarchy. The scope of a search is the name of the
branch under which the search takes place. For example, all names in a
registry might start with /alpha , and be divided further into /beta or
/gamma . To search only the part of the database under /beta , the scope of
the search would be /alpha/beta , and any resulting PGO items would have
names beginning with this string. Note that these naming conventions need
not have anything to do with group or organization PGO item membership
lists.

item_id
A pointer to the uuid_t variable containing the UUID (Unique Universal
Identifier) of the desired PGO item.

allow_aliases
A boolean32 value indicating whether to search for a primary PGO item, or

1456 IBM DCE for AIX, Version 2.2: Application Development Reference

whether the search can be satisfied with an alias. If TRUE, the routine
returns the next entry found for the PGO item. If FALSE, the routine returns
only the primary entry.

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_pgo_get_by_id() routine returns the PGO item
indicated by item_cursor, and advances the cursor to point to the next item
in the database. When the end of the list of entries is reached, the routine
returns sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset() to reset the cursor.

Output
pgo_item

A pointer to a sec_rgy_pgo_item_t structure to receive the data for the
returned PGO item. The data in this structure includes the PGO item’s
name, UUID, UNIX number (if any), and administrative data, such as
whether the item, if a principal, may have a concurrent group set.

name A pointer to a sec_rgy_name_t character string containing the returned
name for the PGO item.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_get_by_id() routine returns the name and data for a PGO item.
The desired item is identified by its type (domain) and its UUID.

The item_cursor parameter specifies the starting point for the search through the
registry database. It provides an automatic place holder in the database. The
routine automatically updates this variable to point to the next PGO item after the
returned item. The returned cursor location can be supplied on a subsequent
database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_id() routine requires the r (read) permission on the
PGO item to be viewed.

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,
you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to renew a cursor for use with another call or for
another server.

sec_rgy_pgo_get_by_id(3sec)

Chapter 6. DCE Security Service 1457

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_cursor_reset(3sec) ,
sec_rgy_pgo_add(3sec) , sec_rgy_pgo_get_by_name(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_get_next(3sec) ,
sec_rgy_pgo_id_to_name(3sec) , sec_rgy_pgo_id_to_unix_num(3sec) ,
sec_rgy_pgo_name_to_id(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_get_by_id(3sec)

1458 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_get_by_name

Purpose

Returns the data for a named PGO item

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_name(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t pgo_name
sec_rgy_cursor_t *item_cursor
sec_rgy_pgo_item_t *pgo_item
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string (type sec_rgy_name_t) containing the name of the
principal, group, or organization to search for.

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_pgo_get_by_name() routine returns the PGO item
indicated by item_cursor, and advances the cursor to point to the next item
in the database. When the end of the list of entries is reached, the routine
returns the value sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset() to reset the cursor.

Output
pgo_item

A pointer to a sec_rgy_pgo_item_t structure to receive the data for the
returned PGO item. The data in this structure includes the PGO item’s
name, UUID, UNIX number (if any), and administrative data, such as
whether the item, if a principal, may have a concurrent group set.

Chapter 6. DCE Security Service 1459

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_get_by_name() routine returns the data for a named PGO item
from the registry database. The desired item is identified by its type (name_domain)
and name.

The item_cursor parameter specifies the starting point for the search through the
registry database. It provides an automatic place holder in the database. The
routine automatically updates this variable to point to the next PGO item after the
returned item. The returned cursor location can be supplied on a subsequent
database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_name() routine requires the r (read) permission on the
PGO item to be viewed.

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,
you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to renew a cursor for use with another call or for
another server.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

sec_rgy_pgo_get_by_name(3sec)

1460 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: sec_intro(3sec) , sec_rgy_cursor_reset(3sec) ,
sec_rgy_pgo_add(3sec) , sec_rgy_pgo_get_by_id(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_get_next(3sec) ,
sec_rgy_pgo_id_to_name(3sec) , sec_rgy_pgo_id_to_unix_num(3sec) ,
sec_rgy_pgo_name_to_id(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_get_by_name(3sec)

Chapter 6. DCE Security Service 1461

sec_rgy_pgo_get_by_unix_num

Purpose

Returns the name and data for a PGO item identified by its UNIX ID

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_get_by_unix_num(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t scope
signed32 unix_id
boolean32 allow_aliases
sec_rgy_cursor_t *item_cursor
sec_rgy_pgo_item_t *pgo_item
sec_rgy_name_t name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The UNIX number identifies a principal.

sec_rgy_domain_group
The UNIX number identifies a group.

sec_rgy_domain_org
The UNIX number identifies an organization.

scope A character string (type sec_rgy_name_t) containing the scope of the
desired search. The registry database is designed to accommodate a
tree-structured name hierarchy. The scope of a search is the name of the
branch under which the search takes place. For example, all names in a
registry might start with /alpha , and be divided further into /beta or
/gamma . To search only the part of the database under /beta , the scope of
the search would be /alpha/beta , and any resulting PGO items would have
names beginning with this string. Note that these naming conventions need
not have anything to do with group or organization PGO item membership
lists.

unix_id
The UNIX number of the desired registry PGO item.

allow_aliases
A boolean32 value indicating whether to search for a primary PGO item, or
whether the search can be satisfied with an alias. If TRUE, the routine
returns the next entry found for the PGO item. If FALSE, the routine returns
only the primary entry.

1462 IBM DCE for AIX, Version 2.2: Application Development Reference

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_pgo_get_by_unix_num() routine returns the PGO
item indicated by item_cursor, and advances the cursor to point to the next
item in the database. When the end of the list of entries is reached, the
routine returns the value sec_rgy_no_more_entries in the status
parameter. Use sec_rgy_cursor_reset() to reset the cursor.

Output
pgo_item

A pointer to a sec_rgy_pgo_item_t structure to receive the data for the
returned PGO item. The data in this structure includes the PGO item’s
name, UUID, UNIX number (if any), and administrative data, such as
whether the item, if a principal, may have a concurrent group set.

name A pointer to a sec_rgy_name_t character string containing the returned
name for the PGO item.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_get_by_unix_num() routine returns the name and data for a
PGO item. The desired item is identified by its type (domain) and its UNIX number.

The item_cursor parameter specifies the starting point for the search through the
registry database. It provides an automatic place holder in the database. The
routine automatically updates this variable to point to the next PGO item after the
returned item. The returned cursor location can be supplied on a subsequent
database access call that also uses a PGO item cursor.

Permissions Required

The sec_rgy_pgo_get_by_unix_num() routine requires the r (read) permission on
the PGO item to be viewed.

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,
you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to renew a cursor for use with another call or for
another server.

sec_rgy_pgo_get_by_unix_num(3sec)

Chapter 6. DCE Security Service 1463

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_object_not_found
The specified PGO item was not found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_cursor_reset(3sec) ,
sec_rgy_pgo_add(3sec) , sec_rgy_pgo_get_by_id(3sec) ,
sec_rgy_pgo_get_by_name(3sec) , sec_rgy_pgo_get_next(3sec) ,
sec_rgy_pgo_id_to_name(3sec) , sec_rgy_pgo_id_to_unix_num(3sec) ,
sec_rgy_pgo_name_to_id(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_get_by_unix_num(3sec)

1464 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_get_members

Purpose

Returns the membership list for a specified group or organization or returns the set
of groups in which the specified principal is a member

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_get_members(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t go_name
sec_rgy_cursor_t *member_cursor
signed32 max_members
sec_rgy_member_t member_list[]
signed32 *number_supplied
signed32 *number_members
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a secd server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable specifies whether go_name identifies a principal, group, or
organization. The valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

sec_rgy_domain_person
The go_name parameter identifies an principal.

go_name
A character string (type sec_rgy_name_t) that contains the name of a
group, organization, or principal. If go_name is the name of a group or
organization, the call returns the group’s or organization’s member list. If
go_name is the name of a principal, the call returns a list of all groups in
which the principal is a member. (Contrast this with the
sec_rgy_acct_get_proj call, which returns only those groups in which the
principal is a member and that have been marked to be included in the
principal’s project list.)

max_members
A signed32 variable containing the allocated dimension of the
member_list[] array. This is the maximum number of members or groups
that can be returned by a single call.

Chapter 6. DCE Security Service 1465

Input/Output
member_cursor

An opaque pointer to a specific entry in the membership list or list of
groups. The returned list begins with the entry specified by member_cursor.
Upon return, the cursor points to the next entry after the last one returned.
If there are no more entries, the routine returns the value
sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset() to reset the cursor to the beginning of the list.

Output
member_list[]

An array of character strings to receive the returned member or group
names. The size allocated for the array is given by max_number. If this
value is less than the total number of members or group names, multiple
calls must be made to return all of the members or groups. For groups, fully
qualified names are returned for foreign principals and local names for local
principals. (Only local principals can be members of an organization.)

number_supplied
A pointer to a signed32 variable to receive the number of members or
groups actually returned in member_list[].

number_members
A pointer to a signed32 variable to receive the total number of members or
groups. If this number is greater than number_supplied, multiple calls to
sec_rgy_pgo_get_members() are necessary. Use the member_cursor
parameter to coordinate successive calls.

status A pointer to the completion status. On successful completion, status is
assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_get_members() routine returns a list of the members in the
specified group or organization, or a list of groups in which a specified principal is a
member.

The member_cursor parameter specifies the starting point for the search through
the registry database. It provides an automatic place holder in the database. The
routine automatically updates member_cursor to point to the next member or group
(if any) after the returned list. If not all of the members or groups are returned, the
updated cursor can be supplied on successive calls to return the remainder of the
list.

Permissions Required

The sec_rgy_pgo_get_members() routine requires the r (read) permission on the
group, organization, or principal object specified by go_name.

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,

sec_rgy_pgo_get_members(3sec)

1466 IBM DCE for AIX, Version 2.2: Application Development Reference

you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to renew a cursor for use with another call or for
another server.

Return Values

The routine returns

v The names of the groups or members in member_list[]

v The number of members or groups returned by the call in number_supplied

v The total number of members in the group or organization, or the total number of
groups in which the principal is a member in number_members

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor points to the end of the membership list for a group or
organization or to the end of the list of groups for a principal.

sec_rgy_object_not_found
The specified group, organization, or principal could not be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_acct_get_proj(3sec) ,
sec_rgy_cursor_reset(3sec) , sec_rgy_pgo_add_member(3sec) ,
sec_rgy_pgo_is_member(3sec) .

sec_rgy_pgo_get_members(3sec)

Chapter 6. DCE Security Service 1467

sec_rgy_pgo_get_next

Purpose

Returns the next PGO item in the registry database

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_get_next(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t scope
sec_rgy_cursor_t *item_cursor
sec_rgy_pgo_item_t *pgo_item
sec_rgy_name_t name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
Returns the next principal item.

sec_rgy_domain_group
Returns the next group item.

sec_rgy_domain_org
Returns the next organization item.

scope A character string (type sec_rgy_name_t) containing the scope of the
desired search. The registry database is designed to accommodate a
tree-structured name hierarchy. The scope of a search is the name of the
branch under which the search takes place. For example, all names in a
registry might start with /alpha , and be divided further into /beta or
/gamma . To search only the part of the database under /beta , the scope of
the search would be /alpha/beta , and any resulting PGO items would have
names beginning with this string. Note that these naming conventions need
not have anything to do with group or organization PGO item membership
lists.

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_pgo_get_next() routine returns the PGO item
indicated by item_cursor, and advances the cursor to point to the next item
in the database. When the end of the list of entries is reached, the routine
returns the value sec_rgy_no_more_entries in the status parameter. Use
sec_rgy_cursor_reset() to reset the cursor.

1468 IBM DCE for AIX, Version 2.2: Application Development Reference

Output
pgo_item

A pointer to a sec_rgy_pgo_item_t structure to receive the data for the
returned PGO item. The data in this structure includes the PGO item’s
name, UUID, UNIX number (if any), and administrative data, such as
whether the item, if a principal, may have a concurrent group set.

name A pointer to a sec_rgy_name_t character string containing the name of the
returned PGO item.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_get_next() routine returns the data and name for the PGO in
the registry database indicated by item_cursor. It also advances the cursor to point
to the next PGO item in the database. Successive calls to this routine return all the
PGO items in the database of the specified type (given by name_domain), in
storage order.

The PGO data consists of the following:

v The universal unique identifier (UUID) of the PGO item.

v The UNIX number for the PGO item.

v The quota for subaccounts.

v The full name of the PGO item.

v Flags indicating whether

– A principal item is an alias.

– The PGO item can be deleted.

– A principal item can have a concurrent group set.

– A group item can appear on a concurrent group set.

Permissions Required

The sec_rgy_pgo_get_next() routine requires the r (read) permission on the PGO
item to be viewed.

Cautions

There are several different types of cursors used in the registry application
programmer interface (API). Some cursors point to PGO items, others point to
members in a membership list, and others point to account data. Do not use a
cursor for one sort of object in a call expecting another sort of object. For example,
you cannot use the same cursor on a call to sec_rgy_acct_get_projlist() and
sec_rgy_pgo_get_next() . The behavior in this case is undefined.

Furthermore, cursors are specific to a server. A cursor pointing into one replica of
the registry database is useless as a pointer into another replica.

Use sec_rgy_cursor_reset() to renew a cursor for use with another call or for
another server.

sec_rgy_pgo_get_next(3sec)

Chapter 6. DCE Security Service 1469

Return Values

The routine returns the data for the returned PGO item in pgo_item and the name
in name.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The cursor is at the end of the list of PGO items.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_cursor_reset(3sec) ,
sec_rgy_pgo_add(3sec) , sec_rgy_pgo_get_by_id(3sec) ,
sec_rgy_pgo_get_by_name(3sec) , sec_rgy_pgo_get_by_unix_num(3sec) ,
sec_rgy_pgo_id_to_unix_num(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_get_next(3sec)

1470 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_id_to_name

Purpose

Returns the name for a PGO item identified by its UUID

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_id_to_name(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
uuid_t *item_id
sec_rgy_name_t pgo_name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The item_id parameter identifies a principal.

sec_rgy_domain_group
The item_id parameter identifies a group.

sec_rgy_domain_org
The item_id parameter identifies an organization.

item_id
A pointer to the uuid_t variable containing the input UUID (unique universal
identifier).

Output
pgo_name

A character string (type sec_rgy_name_t) containing the name of the
principal, group, or organization with the input UUID.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_id_to_name() routine returns the name of the PGO item having
the specified UUID.

Permissions Required

The sec_rgy_pgo_id_to_name() routine requires at least one permission of any
kind on the PGO item to be viewed.

Chapter 6. DCE Security Service 1471

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
No item with the specified UUID could be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_get_by_id(3sec) , sec_rgy_pgo_get_by_name(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_id_to_unix_num(3sec) ,
sec_rgy_pgo_name_to_id(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_id_to_name(3sec)

1472 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_id_to_unix_num

Purpose

Returns the UNIX number for a PGO item identified by its UUID

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_id_to_unix_num(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
uuid_t *item_id
signed32 *item_unix_id
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The item_id parameter identifies a principal.

sec_rgy_domain_group
The item_id parameter identifies a group.

sec_rgy_domain_org
The item_id parameter identifies an organization.

item_id
A pointer to the uuid_t variable containing the input UUID (unique universal
identifier).

Output
item_unix_id

A pointer to the signed32 variable to receive the returned UNIX number for
the PGO item.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_id_to_unix_num() routine returns the UNIX number for the
PGO item having the specified UUID.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Chapter 6. DCE Security Service 1473

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
No item with the specified UUID could be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_get_by_id(3sec) , sec_rgy_pgo_get_by_name(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_id_to_name(3sec) ,
sec_rgy_pgo_name_to_id(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_id_to_unix_num(3sec)

1474 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_is_member

Purpose

Checks group or organization membership

Synopsis
#include <dce/pgo.h>

boolean32 sec_rgy_pgo_is_member(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t go_name
sec_rgy_name_t principal_name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_group
The go_name parameter identifies a group.

sec_rgy_domain_org
The go_name parameter identifies an organization.

go_name
A character string (type sec_rgy_name_t) containing the name of the group
or organization whose membership list is in question.

principal_name
A character string (type sec_rgy_name_t) containing the name of the
principal whose membership in the group or organization specified by
go_name is in question. For groups, use fully-qualified names for foreign
principals. (Only local principals can be members of an organization.)

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_is_member() routine tests whether the specified principal is a
member of the named group or organization.

Permissions Required

The sec_rgy_pgo_is_member() routine requires the t (test) permission on the
group or organization item specified by go_name.

Chapter 6. DCE Security Service 1475

Return Values

The routine returns TRUE if the principal is a member of the named group or
organization. If the principal is not a member, the routine returns FALSE.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
The named group or organization was not found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add_member(3sec) ,
sec_rgy_pgo_get_members(3sec) .

sec_rgy_pgo_is_member(3sec)

1476 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_name_to_id

Purpose

Returns the UUID for a named PGO item

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_name_to_id(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t pgo_name
uuid_t *item_id
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string (type sec_rgy_name_t) containing the name of the
principal, group, or organization whose UUID is desired.

Output
item_id

A pointer to the uuid_t variable containing the UUID (unique universal
identifier) of the resulting PGO item.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_name_to_id() routine returns the UUID associated with the
named PGO item.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Chapter 6. DCE Security Service 1477

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
The specified PGO item could not be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_get_by_id(3sec) , sec_rgy_pgo_get_by_name(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_id_to_name(3sec) ,
sec_rgy_pgo_id_to_unix_num(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_name_to_id(3sec)

1478 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_name_to_unix_num

Purpose

Returns the UNIX number for a PGO item identified by its name

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_name_to_unix_num(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t pgo_name
signed32 *item_unix_id
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string containing the name of the PGO item in question.

Output
item_unix_id

A pointer to the signed32 variable to receive the returned UNIX number for
the PGO item.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_name_to_unix_num() routine returns the UNIX number for the
PGO item having the specified name.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Chapter 6. DCE Security Service 1479

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
No item with the specified UUID could be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_get_by_id(3sec) , sec_rgy_pgo_get_by_name(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_id_to_name(3sec) ,
sec_rgy_pgo_name_to_id(3sec) , sec_rgy_pgo_unix_num_to_id(3sec) .

sec_rgy_pgo_name_to_unix_num(3sec)

1480 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_rename

Purpose

Changes the name of a PGO item in the registry database

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_rename(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t old_name
sec_rgy_name_t new_name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

old_name
A pointer to a sec_rgy_name_t character string containing the existing
name of the PGO item.

new_name
A pointer to a sec_rgy_name_t character string containing the new name
for the PGO item.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_rename() routine renames a PGO item in the registry database.

Permissions Required

If the sec_rgy_pgo_rename() routine is performing a rename within a directory, it
requires the n (name) permission on the old name of the PGO item. If the routine
is performing a move between directories, it requires the following permissions:

Chapter 6. DCE Security Service 1481

v The d (delete) permission on the parent directory that contains the PGO item.

v The n (name) permission on the old name of the PGO item.

v The i (insert) permission on the parent directory in which the PGO item is to be
added under the new name.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to change the name of the specified
PGO item.

sec_rgy_object_not_found
The registry server could not find the specified PGO item.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_replace(3sec) .

sec_rgy_pgo_rename(3sec)

1482 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_replace

Purpose

Replaces the data in an existing PGO item

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_replace(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
sec_rgy_name_t pgo_name
sec_rgy_pgo_item_t *pgo_item
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The name identifies a principal.

sec_rgy_domain_group
The name identifies a group.

sec_rgy_domain_org
The name identifies an organization.

pgo_name
A character string (type sec_rgy_name_t) containing the name of the
principal, group, or organization whose data is to be replaced.

pgo_item
A pointer to a sec_rgy_pgo_item_t structure containing the new data for
the PGO item. The data in this structure includes the PGO item’s name,
UUID, UNIX number (if any), and administrative data, such as whether the
item, if a principal, may have a concurrent group set.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_replace() routine replaces the data associated with a PGO item
in the registry database.

The UNIX ID and UUID of a PGO item cannot be replaced. To change the UNIX ID
or UUID, the existing PGO item must be deleted and a new PGO item added in its

Chapter 6. DCE Security Service 1483

place. The one exception to this rule is that the UNIX ID can be replaced in the
PGO item for a cell principal. The reason for this exception is that the UUID for a
cell principal does not contain an embedded UNIX ID.

Permissions Required

The sec_rgy_pgo_replace() routine requires at least one of the following
permissions:

v The m (mgmt_info) permission on the PGO item, if quota or flags is being set.

v The f (fullname) permission on the PGO item, if fullname is being set.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The client program is not authorized to replace the specified PGO item.

sec_rgy_object_not_found
No PGO item was found with the given name.

sec_rgy_unix_id_changed
The UNIX number of the PGO item was changed.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) , sec_rgy_pgo_delete(3sec) ,
sec_rgy_pgo_rename(3sec) .

sec_rgy_pgo_replace(3sec)

1484 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_unix_num_to_id

Purpose

Returns the UUID for a PGO item identified by its UNIX number

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_unix_num_to_id(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
signed32 item_unix_id
uuid_t *item_id
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
This variable identifies the type of the principal, group, or organization
(PGO) item identified by the given name. The valid values are as follows:

sec_rgy_domain_person
The item_unix_id parameter identifies a principal.

sec_rgy_domain_group
The item_unix_id parameter identifies a group.

sec_rgy_domain_org
The item_unix_id parameter identifies an organization.

item_unix_id
The signed32 variable containing the UNIX number for the PGO item.

Output
item_id

A pointer to the uuid_t variable containing the UUID (unique universal
identifier) of the resulting PGO item.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_unix_num_to_id() routine returns the universal unique identifier
(UUID) for a PGO item that has the specified UNIX number.

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Chapter 6. DCE Security Service 1485

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
No item with the specified UNIX number could be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_get_by_id(3sec) , sec_rgy_pgo_get_by_name(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_id_to_name(3sec) ,
sec_rgy_pgo_id_to_unix_num(3sec) , sec_rgy_pgo_name_to_id(3sec) .

sec_rgy_pgo_unix_num_to_id(3sec)

1486 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_pgo_unix_num_to_name

Purpose

Returns the name for a PGO item identified by its UNIX number

Synopsis
#include <dce/pgo.h>

void sec_rgy_pgo_unix_num_to_name(
sec_rgy_handle_t context
sec_rgy_domain_t name_domain
signed32 item_unix_id
sec_rgy_name_t pgo_name
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name_domain
The type of the principal, group, or organization (PGO) item identified by
item_unix_id. Valid values are as follows:

sec_rgy_domain_person
The item_unix_id parameter identifies a principal.

sec_rgy_domain_group
The item_unix_id parameter identifies a group.

sec_rgy_domain_org
The item_unix_id parameter identifies an organization.

item_unix_id
The signed32 variable containing the UNIX number for the PGO item.

Output
pgo_name

A character string containing the name of the PGO item in question.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_pgo_unix_num_to_name() routine returns the name for a PGO item
that has the specified UNIX number.

Permissions Required

The sec_rgy_pgo_unix_num_to_name() routine requires at least one permission
of any kind on the PGO item identified by item_unix_id.

Chapter 6. DCE Security Service 1487

Files
/usr/include/dce/pgo.idl

The idl file from which dce/pgo.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
No item with the specified UNIX number could be found.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_pgo_add(3sec) ,
sec_rgy_pgo_get_by_id(3sec) , sec_rgy_pgo_get_by_name(3sec) ,
sec_rgy_pgo_get_by_unix_num(3sec) , sec_rgy_pgo_id_to_name(3sec) ,
sec_rgy_pgo_id_to_unix_num(3sec) , sec_rgy_pgo_name_to_id(3sec) .

sec_rgy_pgo_unix_num_to_name(3sec)

1488 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_plcy_get_effective

Purpose

Returns the effective policy for an organization

Synopsis
#include <dce/policy.h>

void sec_rgy_plcy_get_effective(
sec_rgy_handle_t context
sec_rgy_name_t organization
sec_rgy_plcy_t *policy_data
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

organization
A character string (type sec_rgy_name_t) containing the name of the
organization for which the policy data is to be returned. If this string is
empty, the routine returns the registry’s policy data.

Output
policy_data

A pointer to the sec_rgy_plcy_t structure to receive the authentication
policy. This structure contains the minimum length of a user’s password, the
lifetime of a password, the expiration date of a password, the lifetime of the
entire account, and some flags describing limitations on the password
spelling.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_plcy_get_effective() routine returns the effective policy for the
specified organization.

The effective policy data is the most restrictive combination of the registry and the
organization policies.

The policy data consists of the following:

v The password expiration date. This is the date on which account passwords will
expire.

v The minimum length allowed for account passwords.

v The period of time (life span) for which account passwords will be valid.

v The period of time (life span) for which accounts will be valid.

v Flags indicating whether account passwords can consist entirely of spaces or
entirely of alphanumeric characters.

Chapter 6. DCE Security Service 1489

Permissions Required

The sec_rgy_plcy_get_effective() routine requires the r (read) permission on the
policy object from which the data is to be returned. If an organization is specified,
the routine also requires the r (read) permission on the organization.

Notes

If no organization is specified, the routine returns the registry’s policy data. To return
the effective policy, an organization must be specified. This is because the routine
compares the registry’s policy data with that of the organization to determine which
is more restrictive.

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
The registry server could not find the specified organization.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_plcy_get_info(3sec) ,
sec_rgy_plcy_set_info(3sec) .

sec_rgy_plcy_get_effective(3sec)

1490 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_plcy_get_info

Purpose

Returns the policy for an organization

Synopsis
#include <dce/policy.h>

void sec_rgy_plcy_get_info(
sec_rgy_handle_t context
sec_rgy_name_t organization
sec_rgy_plcy_t *policy_data
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

organization
A character string (type sec_rgy_name_t) containing the name of the
organization for which the policy data is to be returned. If this string is
empty, the routine returns the registry’s policy data.

Output
policy_data

A pointer to the sec_rgy_plcy_t structure to receive the authentication
policy. This structure contains the minimum length of a user’s password, the
lifetime of a password, the expiration date of a password, the lifetime of the
entire account, and some flags describing limitations on the password
spelling.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_plcy_get_info() routine returns the policy data for the specified
organization. If no organization is specified, the registry’s policy data is returned.

The policy data consists of the following:

v The password expiration date. This is the date on which account passwords will
expire.

v The minimum length allowed for account passwords.

v The period of time (life span) for which account passwords will be valid.

v The period of time (life span) for which accounts will be valid.

v Flags indicating whether account passwords can consist entirely of spaces or
entirely of alphanumeric characters.

Chapter 6. DCE Security Service 1491

Permissions Required

The sec_rgy_plcy_get_info() routine requires the r (read) permission on the
policy object or organization from which the data is to be returned.

Notes

The returned policy may not be in effect if the overriding registry authorization policy
is more restrictive. (See the sec_rgy_auth_plcy_get_effective() routine.)

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_object_not_found
The registry server could not find the specified organization or the
organization exists, but policy has not been set for the the specified
organizaton.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_plcy_get_effective_info(3sec) ,
sec_rgy_plcy_set_info(3sec) .

sec_rgy_plcy_get_info(3sec)

1492 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_plcy_get_override_info

Purpose

Collects the information to be overridden from the policy.

Format
#include <dce/policy.h>

void sec_rgy_plcy_get_override_info(
sec_rgy_handle_t context,
sec_rgy_name_t policy_category,
boolean32 *exclude_passwd,
boolean32 *root_passwd,
boolean32 *other_passwd,
boolean32 *custom_data,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open to
acquire a bound handle.

policy_category
A charcater string containing the name of the category of the policy data.

Output
exclude_passwd

A pointer to the exclude password.

root_passwd
A pointer to the root password.

other_passwd
A pointer to other passwords.

custom_data
A pointer to custom data.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Usage

The sec_rgy_plcy_get_override_info routine collects information from the policy
that will be overridden if their respective flags are set to true.

Context
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Comments

Functions: sec_rgy_plcy_set_override_info(3sec) , sec_rgy_site_open(3sec) .

Chapter 6. DCE Security Service 1493

sec_rgy_plcy_set_info

Purpose

Sets the policy for an organization

Synopsis
#include <dce/policy.h>

void sec_rgy_plcy_set_info(
sec_rgy_handle_t context
sec_rgy_name_t organization
sec_rgy_plcy_t *policy_data
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

organization
A character string (type sec_rgy_name_t) containing the name of the
organization for which the policy data is to be returned. If this string is
empty, the routine sets the registry’s policy data.

policy_data
A pointer to the sec_rgy_plcy_t structure containing the authentication
policy. This structure contains the minimum length of a user’s password, the
lifetime of a password, the expiration date of a password, the lifetime of the
entire account, and some flags describing limitations on the password
spelling.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_plcy_set_info() routine sets the authentication policy for a specified
organization. If no organization is specified, the registry’s policy data is set.

Policy data can be returned or set for individual organizations and for the registry as
a whole.

Permissions Required

The sec_rgy_plcy_set_info() routine requires the m (mgmt_info) permission on
the policy object or organization for which the data is to be set.

Notes

The policy set on an account may be less restrictive than the policy set for the
registry as a whole. In this case, the changes in policy have no effect, since the

1494 IBM DCE for AIX, Version 2.2: Application Development Reference

effective policy is the most restrictive combination of the organization and registry
authentication policies. (See the sec_rgy_auth_plcy_get_effective() routine.)

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The user is not authorized to perform this operation.

sec_rgy_object_not_found
The registry server could not find the specified organization.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_plcy_get_effective(3sec) ,
sec_rgy_plcy_get_info(3sec) .

sec_rgy_plcy_set_info(3sec)

Chapter 6. DCE Security Service 1495

sec_rgy_plcy_set_override_info

Purpose

Writes the information collected by sec_rgy_plcy_get_override_info .

Format
#include <dce/policy.h>

void sec_rgy_plcy_set_override_info(
sec_rgy_handle_t context,
sec_rgy_name_t policy_category,
boolean32 x_passwd; /* [in] */
boolean32 root_passwd; /* [in] */
boolean32 other_passwd; /* [in] */
boolean32 custom_data; /* [in] */
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open to
acquire a bound handle.

policy_category
A character string containing the name of the category of the policy data.

exclude_passwd
A boolean value for the exclude password.

root_passwd
A boolean value for the root password.

other_passwd
A boolean value for other passwords.

custom_data
A boolean value for the custom data.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Usage

The sec_rgy_plcy_set_override_info routine writes the information collected by
the sec_rgy_plcy_get_override_info routine.

Context
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Comments

Functions: sec_rgy_plcy_get_override_info(3sec) .

1496 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_properties_get_info

Purpose

Returns registry properties

Synopsis
#include <dce/policy.h>

void sec_rgy_properties_get_info(
sec_rgy_handle_t context
sec_rgy_properties_t *properties
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

Output
properties

A pointer to a sec_rgy_properties_t structure to receive the returned
property information. A registry’s property information contains information
such as the default and minimum lifetime and other restrictions on privilege
attribute certificates, the realm authentication name, and whether or not this
replica of the registry supports updates.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_properties_get_info() routine returns a list of the registry properties.

The property information consists of the following:

read_version
A stamp specifying the earliest version of the registry server software that
can read from this registry.

write_version
A stamp specifying the earliest version of the registry server software that
can write to this registry.

minimum_ticket_lifetime
The minimum period of time for which an authentication ticket remains
valid.

default_certificate_lifetime
The default period of time for which an authentication certificate
(ticket-granting ticket) remains valid. A process can request an
authentication certificate with a longer lifetime. Note that the maximum
lifetime for an authentication certificate cannot exceed the lifetime
established by the effective policy for the requesting account.

Chapter 6. DCE Security Service 1497

low_unix_id_person
The lowest UNIX ID that can be assigned to a principal in the registry.

low_unix_id_group
The lowest UNIX ID that can be assigned to a group in the registry.

low_unix_id_org
The lowest UNIX ID that can be assigned to an organization in the registry.

max_unix_id
The maximum UNIX ID that can be used for any item in the registry.

realm A character string naming the cell controlled by this registry.

realm_uuid
The UUID of the cell controlled by this registry.

flags Flags include the following:

sec_rgy_prop_readonly
If TRUE, the registry database is read-only.

sec_rgy_prop_auth_cert_unbound
If TRUE, privilege attribute certificates can be generated for use at
any site.

sec_rgy_prop_shadow_password
If FALSE, passwords can be distributed over the network. If this flag
is TRUE, passwords will be stripped from the returned data to the
sec_rgy_acct_lookup() , and other calls that return an account’s
encoded password.

sec_rgy_prop_embedded_unix_id
All registry UUIDs contain embedded UNIX IDs. This implies that
the UNIX ID of any registry object cannot be changed, since UUIDs
are immutable.

Permissions Required

The sec_rgy_properties_get_info() routine requires the r (read) permission on
the policy object from which the property information is to be returned.

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_properties_set_info(3sec) .

sec_rgy_properties_get_info(3sec)

1498 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_properties_set_info

Purpose

Sets registry properties

Synopsis
#include <dce/policy.h>

void sec_rgy_properties_set_info(
sec_rgy_handle_t context
sec_rgy_properties_t *properties
error_status_t *status);

Parameters

Input
context

The registry server handle. An opaque handle bound to a registry server.
Use sec_rgy_site_open() to acquire a bound handle.

properties
A pointer to a sec_rgy_properties_t structure containing the registry
property information to be set. A registry’s property information contains
information such as the default and minimum lifetime and other restrictions
on privilege attribute certificates, the realm authentication name, and
whether or not this replica of the registry supports updates.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_properties_set_info() routine sets the registry properties.

The property information consists of the following:

read_version
A stamp specifying the earliest version of the registry server software that
can read from this registry.

write_version
A stamp specifying the earliest version of the registry server software that
can write to this registry.

minimum_ticket_lifetime
The minimum period of time for which an authentication ticket remains
valid.

default_certificate_lifetime
The default period of time for which an authentication certificate
(ticket-granting ticket) remains valid. A process can request an
authentication certificate with a longer lifetime. Note that the maximum
lifetime for an authentication certificate cannot exceed the lifetime
established by the effective policy for the requesting account.

Chapter 6. DCE Security Service 1499

low_unix_id_person
The lowest UNIX ID that can be assigned to a principal in the registry.

low_unix_id_group
The lowest UNIX ID that can be assigned to a group in the registry.

low_unix_id_org
The lowest UNIX ID that can be assigned to an organization in the registry.

max_unix_id
The maximum UNIX ID that can be used for any item in the registry.

realm A character string naming the cell controlled by this registry.

realm_uuid
The UUID of the cell controlled by this registry.

flags Flags include the following:

sec_rgy_prop_readonly
If TRUE, the registry database is read-only.

sec_rgy_prop_auth_cert_unbound
If TRUE, privilege attribute certificates can be generated for use at
any site.

sec_rgy_prop_shadow_password
If FALSE, passwords can be distributed over the network. If this flag
is TRUE, passwords will be stripped from the returned data to the
sec_rgy_acct_lookup() , and other calls that return an account’s
encoded password.

sec_rgy_prop_embedded_unix_id
All registry UUIDs contain embedded UNIX IDs. This implies that
the UNIX ID of any registry object cannot be changed, since UUIDs
are immutable.

Permissions Required

The sec_rgy_properties_set_info() routine requires the m (mgmt_info)
permission on the policy object for which the property information is to be set.

Files
/usr/include/dce/policy.idl

The idl file from which dce/policy.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_not_authorized
The user is not authorized to change the registry properties.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

sec_rgy_properties_set_info(3sec)

1500 IBM DCE for AIX, Version 2.2: Application Development Reference

Related Information

Functions: sec_intro(3sec) , sec_rgy_properties_get_info(3sec) .

sec_rgy_properties_set_info(3sec)

Chapter 6. DCE Security Service 1501

sec_rgy_rep_admin_become_master

Purpose

Converts a slave replica into a master replica.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_become_master(
sec_rgy_handle_t context,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server. Use the
sec_rgy_site_open routine to acquire a bound handle.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_become_master routine is a drastic operation used to
make the slave replica become the master replica because the master replica died.
Normally the sec_rgy_rep_admin_change_master routine is used to designate a
new master.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Comments

Functions: sec_rgy_rep_admin_change_master(3sec) ,
sec_rgy_site_open(3sec) .

1502 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_rep_admin_become_slave

Purpose

Converts a master replica into a slave replica.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_become_slave(
sec_rgy_handle_t context,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_become_slave routine converts the master replica into a
slave replica.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Chapter 6. DCE Security Service 1503

sec_rgy_rep_admin_change_master

Purpose

Changes the master replica to a different master replica.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_change_master(
sec_rgy_handle_t context,
uuid_p_t new_master_id,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server.

new_master_id
The UUID of the new master replica.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_change_master routine changes the master replica to
new_master_id. The original master replica passes its replica list state and the
propagation queue to the new master.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Comments

Functions: sec_rgy_admin_become_master(3sec) .

1504 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_rep_admin_destroy

Purpose

Destroys a replica’s database.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_destroy(
sec_rgy_handle_t context,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server to be destroyed.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_destroy routine tells a replica to destroy its databases
and to exit.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Chapter 6. DCE Security Service 1505

sec_rgy_rep_admin_get_sw_vers

Purpose

Retrieves software version information.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_get_sw_vers(
sec_rgy_handle_t context,
unsigned32 *num_sw_vers,
rs_replica_sw_vers_info_t **sw_vers_info,
unsigned32 *current_sw_vers_offset,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server.

Output
num_sw_vers

A count of the number of elements in the array pointed to by sw_vers_info.

sw_vers_info
A pointer to an array that contains the software versions supported.

current_sw_vers_offset
An index into the sw_vers_info array. It identifies the element containing the
replica’s current operating software version.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

Usage

The sec_rgy_rep_admin_get_sw_vers routine retrieves the software version of
the security registry server specified in the context parameter.

Memory is allocated for the array pointed to by sw_vers_info. This memory must be
freed by a call to dce_free .

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Comments

Functions: dce_free(3dce) .

1506 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_rep_admin_info

Purpose

Retrieves replica information.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_info(
sec_rgy_handle_t context,
rs_replica_sw_info_t *rep_info,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server.

Output
rep_info

A pointer to the rs_replica_info_t structure containing the replica’s
information.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

Usage

The sec_rgy_rep_admin_info routine retrieves a replica’s information.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Chapter 6. DCE Security Service 1507

sec_rgy_rep_admin_info_vers

Purpose

Obtains information about a replica.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_info_vers(
sec_rgy_handle_t context,
rs_replica_info_t *rep_info,
rs_replica_twr_vec_p_t *rep_twrs,
rs_replica_twr_vec_p_t *master_twrs,
unsigned32 *num_sw_vers,
rs_replica_sw_vers_info_t **sw_vers_info[],
unsigned32 *current_sw_vers_offset,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server.

Output
rep_info

A pointer to a rs_replica_info_t structure containing the replica’s
information.

rep_twrs
A pointer to a rs_replica_twr_vec_p_t containing the replica’s protocol
towers.

master_twrs
A pointer to a rs_replica_tw_vec_p_t structure containing the master’s
protocol towers.

num_sw_vers
A count of the number of elements in the array pointed to by sw_vers_info.

sw_vers_info[]
A pointer to an array of numeric_to_printstring software version mapping.

current_sw_vers_offset
An index into the sw_vers_info array. This index identifies the element that
contains the software version at which the replica is currently operating.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

Usage

The sec_rgy_rep_admin_info_vers routine gets complete information about a
replica such as its state, uuid, protocol towers, latest update sequence number and
timestamp, and whether it is the master. This routine also gets the replica’s
information about the master’s uuid, protocol towers, and the sequence number
when the master was designated.

1508 IBM DCE for AIX, Version 2.2: Application Development Reference

Context
/usr/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

sec_rgy_rep_admin_info_vers(3sec)

Chapter 6. DCE Security Service 1509

sec_rgy_rep_admin_init_replica

Purpose

Initializes a replica.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_init_replica(
sec_rgy_handle_t context,
uuid_p_t rep_id,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server.

rep_id A variable of type uuid_p_t containing the UUID of the slave replica.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_init_replica routine initializes the slave replica identified
by rep_id.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

1510 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_rep_admin_maint

Purpose

Puts a replica into or out of maintenance mode.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_maint(
sec_rgy_handle_t context,
boolean32 in_maintenance,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to the registry server.

in_maintenance
Set to TRUE when the replica is in maintenance mode; set to FALSE when
the replica is not in maintenance mode.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_maint routine puts a replica into or out of maintenance
mode.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Chapter 6. DCE Security Service 1511

sec_rgy_rep_admin_mkey

Purpose

Changes the master key and encrypts the database again.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_mkey(
sec_rgy_handle_t context,
error_status_t *status);

Parameters

Input
context

An opaque handle to the registry server. This is the register that will get a
new master key.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_mkey routine changes the master key and encrypts
again the database pointed to by context.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

1512 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_rep_admin_set_sw_vers

Purpose

Sets the software version.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_set_sw_vers(
sec_rgy_handle_t context,
unsigned32 sw_rev,
error_status_t *status);

Parameters

Input
context

An opaque handle to the registry server.

sw_rev
The current version specification that describes the range of software
versions supported by the server.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_set_sw_vers routine sets the cell-wide software version.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

Chapter 6. DCE Security Service 1513

sec_rgy_rep_admin_stop

Purpose

Stop the replica.

Format
#include <dce/repadm.h>

void sec_rgy_rep_admin_stop(
sec_rgy_handle_t context,
error_status_t *status);

Parameters

Input
context

An opaque handle to the registry server to be stopped.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok .

Usage

The sec_rgy_rep_admin_stop routine stops the replica identified by the context
handle.

Context
/user/include/dce/repadm.idl

The idl file from which dce/repadm.h was derived.

1514 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_bind

Purpose

Binds to a registry site

Synopsis
#include <dce/binding.h>

void sec_rgy_site_bind(
unsigned_char_t *site_name
sec_rgy_bind_auth_info_t *auth_info
sec_rgy_handle_t *context
error_status_t *status);

Parameters

Input
site_name

A character string (type unsigned_char_t) specifying the security server to
bind to in one of the following forms:

v To bind to an arbitrary security server site in a named cell, specify a cell
name (for example, /.../r_d.com) or /.: for the local cell.

v To bind to a specific security server site in a specific cell, specify either
the cell name and the server name (for example,
/.../r_d.com/subsys/dce/sec/rs_server_250_2) or the server’s network
address (for example, ncadg_ip_udp:15.22.144.248). If the server
name is not valid, the routine binds to an arbitrary security site in the
named cell.

Note that the routine ignores anything after the cell name that does not
refer to an item in the Cell Directory Service (CDS) namespace. If the
specified CDS namespace item does not resolve to a security server, the
call fails.

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the
authentication protocol, protection level, and authorization protocol to use in
establishing the binding. (See the rpc_binding_set_auth_info(3rpc)
reference page.) If the sec_rgy_bind_auth_info_t structure specifies
authenticated RPC, the caller must have established a valid network identity
for this call to succeed.

Output
context

A pointer to a sec_rgy_handle_t variable. Upon return, this contains a
registry server handle indicating (′′bound to’’) the desired registry site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Chapter 6. DCE Security Service 1515

Description

The sec_rgy_site_bind() call binds to a registry site at the security level specified
by the auth_info parameter. The site_name parameter identifies the registry to use.
If site_name is NULL, or a zero-length string, a registry site in the local cell is
selected by the client agent.

Note:

Like the sec_rgy_site_bind_query() routine, this routine binds arbitrarily to
either an update or query site. Although update sites can accept queries,
query sites cannot accept updates. To specifically select an update site, use
sec_rgy_site_bind_update() .

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_cell_bind(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_site_bind(3sec)

1516 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_bind_query

Purpose

Binds to a registry query site

Synopsis
#include <dce/binding.h>

void sec_rgy_site_bind_query(
unsigned_char_t *site_name
sec_rgy_bind_auth_info_t *auth_info
sec_rgy_handle_t *context
error_status_t *status);

Parameters

Input
site_name

A character string (type unsigned_char_t) specifying the security server to
bind to in one of the following forms:

v To bind to an arbitrary security server site in a named cell, specify a cell
name (for example, /.../r_d.com) or /.: for the local cell.

v To bind to a specific security server site in a specific cell, specify either
the cell name and the server name (for example,
/.../r_d.com/subsys/dce/sec/rs_server_250_2) or the server’s network
address (for example, ncadg_ip_udp:15.22.144.248). If the server
name is not valid, the routine binds to an arbitrary security site in the
named cell.

Note that the routine ignores anything after the cell name that does not
refer to an item in the Cell Directory Service (CDS) namespace. If the
specified CDS namespace item does not resolve to a security server, the
call fails.

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the
authentication protocol, protection level, and authorization protocol to use in
establishing the binding. (See the rpc_binding_set_auth_info(3rpc)
reference page.) If the sec_rgy_bind_auth_info_t structure specifies
authenticated RPC, the caller must have established a valid network identity
for this call to succeed.

Output
context

A pointer to a sec_rgy_handle_t variable. Upon return, this contains a
registry server handle indicating (′′bound to’’) the desired registry site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_bind_query() routine binds to a registry query site at an
arbitrary level of security. A registry query site is a satellite server that operates on a

Chapter 6. DCE Security Service 1517

periodically updated copy of the main registry database. To change the registry
database, it is necessary to change a registry update site, which then automatically
updates its associated query sites. No changes can be made directly to a registry
query database.

The site_name parameter identifies the query site to use. If site_name is NULL, or
a zero-length string, a query site in the local cell is selected by the client agent.

The handle for the associated registry server is returned in context.

Note:

Like sec_rgy_bind_open() routine, this routine binds arbitrarily to either an
update or query site. Although update sites can accept queries, query sites
cannot accept updates. To specifically select an update site, use
sec_rgy_site_bind_update() .

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_bind(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_site_bind_query(3sec)

1518 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_bind_update

Purpose

Binds to a registry update site

Synopsis
#include <dce/binding.h>

void sec_rgy_site_bind_update(
unsigned_char_t *site_name
sec_rgy_bind_auth_info_t *auth_info
sec_rgy_handle_t *context
error_status_t *status);

Parameters

Input
site_name

A character string (type unsigned_char_t) containing the name of the
security server to bind to. Supply this name in any of the following forms:

v To bind to the update site in a named cell, specify a cell name (for
example, /.../r_d.com) or /.: for the local cell.

v To start the search for the update site at a specific replica in the replica’s
cell, specify either the cell name and the server name (for example,
/.../r_d.com/subsys/dce/sec/rs_server_250_2) or the server’s network
address (for example, ncadg_ip_udp:15.22.144.248). If the server
name is not valid, the routine starts the search at an arbitrary security
site in the named cell.

Note that the routine ignores anything after the cell name that does not
refer to an item in the Cell Directory Service (CDS) namespace. If the
specified CDS namespace item does not resolve to a security server, the
call fails.

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the
authentication protocol, protection level, and authorization protocol to use in
establishing the binding. (See the rpc_binding_set_auth_info(3rpc)
reference page.) If the sec_rgy_bind_auth_info_t structure specifies
authenticated RPC, the caller must have established a valid network identity
for this call to succeed.

Output
context

A pointer to a sec_rgy_handle_t variable. Upon return, this contains a
registry server handle indicating (bound to) the desired registry site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_bind_update() routine binds to a registry update site. A registry
update site is a master server that may control several satellite (query) servers. To

Chapter 6. DCE Security Service 1519

change the registry database, it is necessary to change a registry update site,
which then automatically updates its associated query sites. No changes can be
made directly to a registry query database.

The site_name parameter identifies either the cell in which to find the update site or
the replica at which to start the search for the update site. If site_name is NULL, or
a zero-length string, an update site in the local cell is selected by the client agent.

The handle for the associated registry server is returned in context. The handle is to
an update site. Use this registry context handle in subsequent calls that update or
query the the registry database (for example, the sec_rgy_pgo_add() or
sec_rgy_acct_lookup() calls).

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_bind(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_site_bind_update(3sec)

1520 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_binding_get_info

Purpose

Returns information from the registry binding handle

Synopsis
#include <dce/binding.h>

void sec_rgy_site_binding_get_info(
sec_rgy_handle_t context
unsigned_char_t **cell_name
unsigned_char_t **server_name
unsigned_char_t **string_binding
sec_rgy_bind_auth_info_t *auth_info
error_status_t *status);

Parameters

Input
context

A sec_rgy_handle_t variable that contains a registry server handle
indicating (bound to) the desired registry site. To obtain information on the
default binding handle, initialize context to sec_rgy_default_handle . A valid
login context must be set for the process if context is set to
sec_rgy_default_handle ; otherwise the error
sec_under_login_s_no_current_context is returned.

Output
cell_name

The name of the home cell for this registry.

server_name
The name of the node on which the server is resident. This name is either a
global name or a network address, depending on the form in which the
name was input to the call that bound to the site.

string_binding
A string containing binding information from sec_rgy_handle_t .

auth_info
A pointer to the sec_rgy_bind_auth_info_t structure that identifies the
authentication protocol, protection level, and authorization protocol to use in
establishing the binding. (See the rpc_binding_set_auth_info() routine).

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_binding_get_info() routine returns the site name and
authentication information associated with the context parameter. If the context is
the default context, the information for the default binding is returned. Passing in a
NULL value for any of the output values (except for status) will prevent that value
from being returned. Memory is allocated for the string returned in the cell_name,
server_name, and string_binding parameters. The application calls the
rpc_string_free() routine to deallocate that memory.

Chapter 6. DCE Security Service 1521

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_under_login_s_no_current_context

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_bind(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_site_binding_get_info(3sec)

1522 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_close

Purpose

Frees the binding handle for a registry server

Synopsis
#include <dce/binding.h>

void sec_rgy_site_close(
sec_rgy_handle_t context
error_status_t *status);

Parameters

Input
context

An opaque handle indicating (bound to) a registry server. Use
sec_rgy_site_open() to acquire a bound handle.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_close() routine frees the memory occupied by the specified
handle and destroys its binding with the registry server.

Notes

A handle cannot be used after it is freed.

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_get(3sec) ,
sec_rgy_site_is_readonly(3sec) , sec_rgy_site_open(3sec) ,
sec_rgy_site_open_query(3sec) , sec_rgy_site_open_update(3sec) .

Chapter 6. DCE Security Service 1523

sec_rgy_site_get

Purpose

Returns the string representation for a bound registry site

Synopsis
#include <dce/binding.h>

void sec_rgy_site_get(
sec_rgy_handle_t context
unsigned_char_t **site_name
error_status_t *status);

Parameters

Input
context

An opaque handle indicating (bound to) a registry server. Use
sec_rgy_site_open() to acquire a bound handle. To obtain information on
the default binding handle, initialize context to sec_rgy_default_handle . A
valid login context must be set for the process if context is set to
sec_rgy_default_handle ; otherwise the error
sec_under_login_s_no_current_context is returned.

Output
site_name

A pointer to a character string (type unsigned_char_t) containing the
returned name of the registry site associated with context, the given registry
server handle.

The name is either a global name or a network address, depending on the
form in which the name was input to the call that bound to the site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_get() routine returns the name of the registry site associated
with the specified handle. If the handle is the default context, the routine returns the
name of the default context’s site. Memory is allocated for the string returned in the
site_name parameter. The application calls the rpc_string_free() routine to
deallocate that memory.

Notes

To obtain binding information, the use of the sec_rgy_site_binding_get_info() call
is recommended in place of this call.

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

1524 IBM DCE for AIX, Version 2.2: Application Development Reference

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_under_login_s_no_current_context

sec_rgy_server_unavailable
The requested registry server is not available.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_site_get(3sec)

Chapter 6. DCE Security Service 1525

sec_rgy_site_is_readonly

Purpose

Checks whether a registry site is read-only

Synopsis
#include <dce/binding.h>

boolean32 sec_rgy_site_is_readonly(
sec_rgy_handle_t context);

Parameters

Input
context

An opaque handle indicating (bound to) a registry server. Use
sec_rgy_site_open() to acquire a bound handle.

Description

The sec_rgy_site_is_readonly() routine checks whether the registry site
associated with the specified handle is a query site or an update site. A query site is
a read-only replica of a master registry database. The update site accepts changes
to the registry database, and duplicates the changes in its associated query sites.

Return Values

The routine returns

v TRUE, if the registry site is read-only or if there was an error using the specified
handle

v FALSE, if the registry site is an update site

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_open(3sec) ,
sec_rgy_site_open_query(3sec) .

1526 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_open

Purpose

Binds to a registry site

Synopsis
#include <dce/binding.h>

void sec_rgy_site_open(
unsigned_char_t *site_name
sec_rgy_handle_t *context
error_status_t *status);

Parameters

Input
site_name

A character string (type unsigned_char_t) specifying the security server to
bind to in one of the following forms:

v To bind to an arbitrary security server site in a named cell, specify a cell
name (for example, /.../r_d.com) or /.: for the local cell.

v To bind to a specific security server site in a specific cell, specify either
the cell name and the server name (for example,
/.../r_d.com/subsys/dce/sec/rs_server_250_2) or the server’s network
address (for example, ncadg_ip_udp:15.22.144.248). If the server
name is not valid, the routine binds to an arbitrary security site in the
named cell.

Note that the routine ignores anything after the cell name that does not
refer to an item in the Cell Directory Service (CDS) namespace. If the
specified CDS namespace item does not resolve to a security server, the
call fails.

Output
context

A pointer to a sec_rgy_handle_t variable. Upon return, this contains a
registry server handle indicating (bound to) the desired registry site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_open() routine binds to a registry site at the level of security
specified in the rpc_binding_set_auth_info() call. The site_name parameter
identifies the registry to use. If site_name is NULL, or a zero-length string, a registry
site in the local cell is selected by the client agent. The caller must have established
a valid network identity for this call to succeed.

Note:

To bind to a registry site, the use of the sec_rgy_site_bind() call is
recommended in place of this call.

Chapter 6. DCE Security Service 1527

Like sec_rgy_site_open_query() routine, this routine binds arbitrarily to
either an update or query site. Although update sites can accept queries,
query sites cannot accept updates. To specifically select an update site, use
sec_rgy_site_open_update() .

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The requested registry server is not available.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_close(3sec) ,
sec_rgy_site_is_readonly(3sec) , sec_rgy_site_open_query(3sec) ,
sec_rgy_site_open_update(3sec) .

sec_rgy_site_open(3sec)

1528 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_open_query

Purpose

Binds to a registry query site

Synopsis
#include <dce/binding.h>

void sec_rgy_site_open_query(
unsigned_char_t *site_name
sec_rgy_handle_t *context
error_status_t *status);

Parameters

Input
site_name

A character string (type unsigned_char_t) specifying the security server to
bind to in one of the following forms:

v To bind to an arbitrary security server site in a named cell, specify a cell
name (for example, /.../r_d.com) or /.: for the local cell.

v To bind to a specific security server site in a specific cell, specify either
the cell name and the server name (for example,
/.../r_d.com/subsys/dce/sec/rs_server_250_2) or the server’s network
address (for example, ncadg_ip_udp:15.22.144.248). If the server
name is not valid, the routine binds to an arbitrary security site in the
named cell.

Note that the routine ignores anything after the cell name that does not
refer to an item in the Cell Directory Service (CDS) namespace. If the
specified CDS namespace item does not resolve to a security server, the
call fails.

Output
context

A pointer to a sec_rgy_handle_t variable. Upon return, this contains a
registry server handle indicating (bound to) the desired registry site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_open_query() routine binds to a registry query site. A registry
query site is a satellite server that operates on a periodically updated copy of the
main registry database. To change the registry database, it is necessary to change
a registry update site, which then automatically updates its associated query sites.
No changes can be made directly to a registry query database.

The site_name parameter identifies the query site to use. If site_name is NULL, or
a zero-length string, a query site in the local cell is selected by the client agent.

The handle for the associated registry server is returned in context.

Chapter 6. DCE Security Service 1529

The caller must have established a valid network identity for this call to succeed.

Note:

To bind to a registry query site, the use of the sec_rgy_site_bind_query()
call is recommended in place of this call.

Like sec_rgy_site_open() routine, this routine binds arbitrarily to either an
update or query site. Although update sites can accept queries, query sites
cannot accept updates. To specifically select an update site, use
sec_rgy_site_open_update() .

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_close(3sec) , sec_rgy_site_get(3sec) ,
sec_rgy_site_is_readonly(3sec) , sec_rgy_site_open(3sec) ,
sec_rgy_site_open_update(3sec) .

sec_rgy_site_open_query(3sec)

1530 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_site_open_update

Purpose

Binds to a registry update site

Synopsis
#include <dce/binding.h>

void sec_rgy_site_open_update(
unsigned_char_t *site_name
sec_rgy_handle_t *context
error_status_t *status);

Parameters

Input
site_name

A character string (type unsigned_char_t) specifying the security server to
bind to in one of the following forms:

v To bind to the update site in a named cell, specify a cell name (for
example, /.../r_d.com) or /.: for the local cell.

v To start the search for the update site at a specific replica in the replica’s
cell, specify either the cell name and the server name (for example,
/.../r_d.com/subsys/dce/sec/rs_server_250_2) or the server’s network
address (for example, ncadg_ip_udp:15.22.144.248). If the server
name is not valid, the routine binds to an arbitrary security site in the
named cell.

Note that the routine ignores anything after the cell name that does not
refer to an item in the Cell Directory Service (CDS) namespace. If the
specified CDS namespace item does not resolve to a security server, the
call fails.

Output
context

A pointer to a sec_rgy_handle_t variable. Upon return, this contains a
registry server handle indicating (bound to) the desired registry site.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_site_open_update() routine binds to a registry update site. A registry
update site is a master server that may control several satellite (query) servers. To
change the registry database, it is necessary to change a registry update site,
which then automatically updates its associated query sites. No changes can be
made directly to a registry query database.

The site_name parameter identifies either the cell in which to find the update site or
the replica at which to start the search for the update site. If site_name is NULL, or
a zero-length string, an update site in the local cell is selected by the client agent.

Chapter 6. DCE Security Service 1531

The handle for the associated registry server is returned in context. The handle is to
an update site. Use this registry context handle in subsequent calls that update or
query the the registry database (for example, the sec_rgy_pgo_add() or
sec_rgy_acct_lookup() calls). The caller must have established a valid network
identity for this call to succeed.

Note:

To bind to a registry update site, the use of the sec_rgy_site_bind_update()
call is recommended in place of this call.

Files
/usr/include/dce/binding.idl

The idl file from which dce/binding.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_login_s_no_current_context
The caller does not have a valid network login context.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) , sec_rgy_site_close(3sec) , sec_rgy_site_get(3sec) ,
sec_rgy_site_is_readonly(3sec) , sec_rgy_site_open(3sec) ,
sec_rgy_site_open_query(3sec) .

sec_rgy_site_open_update(3sec)

1532 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_unix_getgrent

Purpose

Returns a UNIX-style group entry.

Format
#include <dce/rgybase.h>
#include <dce/unix.h>

void sec_rgy_unix_getgrent (
sec_rgy_handle_t context,
signed32 max_num_members,
sec_rgy_cursor_t *marker,
sec_rgy_unix_group_t *group_entry,
signed32 *num_members[],
sec_rgy_member_t member_list,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open to
acquire a bound handle.

max_num_members
The maximum number of members to be returned by the routine. This must
be no larger than the allocated size of the member_list array, and must not
be negative. If you specify a negative value for this parameter the routine
uses 0 (zero).

Input/Output
marker

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_unix_getgrent routine returns information about
the group item to which marker is pointing, and advances the cursor to
point to the next item in the database. When the end of the list of entries is
reached, the routine returns sec_rgy_no_more_entries . Use
sec_rgy_cursor_reset to refresh the cursor.

Output
group_entry

A UNIX-style group structure containing information obtained from the PGO
item pointed to by marker at the beginning of the call.

num_members
A signed 32-bit integer containing the total number of member names
returned in the member_list array.

member_list
An array of character strings to receive the returned member names. The
size allocated for the array is given by max_num_members. If this value is
less than the total number of members in the membership list, multiple calls
must be made to return all of the members.

Chapter 6. DCE Security Service 1533

status On successful completion, the routine returns error_status_ok . Otherwise,
it returns one of the following errors:

sec_rgy_no_more_entries
The end of the list of entries has been reached.

sec_rgy_server_unavailable
The registry server cannot be reached.

Usage

The sec_rgy_unix_getgrent routine returns a UNIX group structure containing
information obtained from the PGO item pointed to by the cursor into the registry
database. The group structure is in the form:
typedef struct sec_rgy_unix_group_t {

sec_rgy_name_t name;
signed32 gid;
sec_rgy_member_buf_t members;

} sec_rgy_unix_group_t;

The structure includes:

v The name of the group.

v The UNIX ID of the group.

v A string containing the names of the group members. This string is limited in size
by the size of the sec_rgy_member_buf_t type defined in rgybase.idl .

The routine also returns an array of member names, limited in size by the
max_num_members parameter.

This routine does not recognize implicit members of a group. It does recognize
those members of a group who have been added explicitly (using the dcecp
command). When an account is first defined, the principal is assigned an
organization and a group as part of its account name. The principal therefore
becomes a member of that group without being explicitly defined as such. This
routine does not list any members that have been implicitly defined. To get all
members of a group, including the implicit members, you can use the
sec_rgy_pgo_get_members routine.

Context
/include/dce/rgybase.idl

The idl file from which dce/rgybase.h was derived.

/include/dce/unix.idl
The idl file from which dce/unix.h was derived.

Comments

Functions: sec_rgy_unix_getgrgid(3sec) , sec_rgy_unix_getgrnam(3sec) ,
sec_rgy_cursor_reset(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_unix_getgrent(3sec)

1534 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_unix_getgrgid

Purpose

Returns a UNIX style group entry for the account matching the specified group ID

Synopsis
#include <dce/rgynbase.h>

void sec_rgy_unix_getgrgid(
sec_rgy_handle_t context
signed32 gid
signed32 max_number
sec_rgy_cursor_t *item_cursor
sec_rgy_unix_group_t *group_entry
signed32 *number_members
sec_rgy_member_t member_list[]
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

gid A 32-bit integer specifying the group ID to match.

max_number
The maximum number of members to be returned by the call. This must be
no larger than the allocated size of the member_list[] array.

Input/Output
item_cursor

An opaque pointer indicating a specific principal, group, and organization
(PGO) item entry in the registry database. The sec_rgy_unix_getgrgid()
routine returns the PGO item indicated by item_cursor, and advances the
cursor to point to the next item in the database. When the end of the list of
entries is reached, the routine returns sec_rgy_no_more_entries . Use
sec_rgy_cursor_reset() to refresh the cursor.

Output
group_entry

A UNIX style group entry structure returned with information about the
account matching gid.

number_members
A signed 32-bit integer containing the total number of member names
returned in the member_list[] array.

member_list[]
An array of character strings to receive the returned member names. The
size allocated for the array is given by max_number. If this value is less
than the total number of members in the membership list, multiple calls
must be made to return all of the members.

status On successful completion, the routine returns error_status_ok . Otherwise,
it returns an error.

Chapter 6. DCE Security Service 1535

Description

The sec_rgy_unix_getgrgid() routine returns the next UNIX group structure that
matches the input UNIX group ID. The structure is in the following form:
typedef struct {

sec_rgy_name_t name;
signed32 gid;
sec_rgy_member_buf_t members;

} sec_rgy_unix_group_t;

The structure includes the following:

v The name of the group

v The group’s UNIX ID

v A string containing the names of the group members. This string is limited in size
by the size of the sec_rgy_member_buf_t type defined in rgynbase.idl .

The routine also returns an array of member names, limited in size by the
number_members parameter.

This call is supplied in source code form.

Files
/usr/include/dce/rgynbase.idl

The idl file from which dce/rgybase.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_nomore_entries
The end of the list of entries has been reached.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_rgy_unix_getgrgid(3sec)

1536 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_unix_getgrnam

Purpose

Returns a UNIX style group entry for the account matching the specified group
name

Synopsis
#include <dce/rgynbase.h>

void sec_rgy_unix_getgrnam(
sec_rgy_handle_t context
sec_rgy_name_t name
signed32 name_length
signed32 max_num_members
sec_rgy_cursor_t *item_cursor
sec_rgy_unix_group_t *group_entry
signed32 *number_members
sec_rgy_member_t member_list[]
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

name A character string (of type sec_rgy_name_t) specifying the group name to
be matched.

name_length
An signed 32-bit integer specifying the length of name in characters.

max_num_members
The maximum number of members to be returned by the call. This must be
no larger than the allocated size of the member_list[] array.

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_unix_getgrnam() routine returns the PGO item
indicated by item_cursor, and advances the cursor to point to the next item
in the database. When the end of the list of entries is reached, the routine
returns sec_rgy_no_more_entries . Use sec_rgy_cursor_reset() to
refresh the cursor.

Output
group_entry

A UNIX style group entry structure returned with information about the
account matching name.

number_members
An signed 32-bit integer containing the total number of member names
returned in the member_list[] array.

member_list[]
An array of character strings to receive the returned member names. The

Chapter 6. DCE Security Service 1537

size allocated for the array is given by max_number. If this value is less
than the total number of members in the membership list, multiple calls
must be made to return all of the members.

status On successful completion, the routine returns error_status_ok . Otherwise,
it returns an error.

Description

The sec_rgy_unix_getgrnam() routine looks up the next group entry in the registry
that matches the input group name and returns the corresponding UNIX style group
structure. The structure is in the following form:
typedef struct {

sec_rgy_name_t name;
signed32 gid;
sec_rgy_member_buf_t members;

} sec_rgy_unix_group_t;

The structure includes the following:

v The name of the group.

v The group’s UNIX ID.

v A string containing the names of the group members. This string is limited in size
by the size of the sec_rgy_member_buf_t type defined in rgynbase.idl .

The routine also returns an array of member names, limited in size by the
number_members parameter. Note that the array contains only the names explicitly
specified as members of the group. A principal that was made a member of the
group because that group was assigned as the principal’s primary group will not
appear in the array.

This call is provided in source code form.

Files
/usr/include/dce/rgynbase.idl

The idl file from which dce/rgybase.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The end of the list of entries has been reached.

sec_rgy bad_data
The name supplied as input was too long.

error_status_ok
The call was successful.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

Related Information

Functions: sec_intro(3sec) .

sec_rgy_unix_getgrnam(3sec)

1538 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_unix_getpwent

Purpose

Returns a UNIX-style password entry.

Format
#include <dce/rgybase.h>
#include <dce/unix.h>

void sec_rgy_unix_getpwent (
sec_rgy_handle_t context,
sec_rgy_cursor_t *marker,
sec_rgy_unix_passwd_t *passwd_entry,
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open to
acquire a bound handle.

Input/Output
marker

An opaque pointer that indicates a specific PGO item entry in the registry
database. The sec_rgy_unix_getpwent routine returns information about
the item to which marker is pointing, and advances the cursor to point to
the next item in the database. When the end of the list of entries is
reached, the routine returns sec_rgy_no_more_entries . Use
sec_rgy_cursor_reset to refresh the cursor.

Output
passwd_entry

A UNIX-style password structure containing information obtained from the
PGO item pointed to by marker at the beginning of the routine.

status On successful completion, the routine returns error_status_ok . Otherwise,
it returns one of the following errors:

sec_rgy_no_more_entries
The end of the list of entries has been reached.

sec_rgy_server_unavailable
The registry server cannot be reached.

Usage

The sec_rgy_unix_getpwent routine returns a UNIX password structure containing
information obtained from the PGO item pointed to by the cursor into the registry
database. The password structure is in the form:
typedef struct sec_rgy_unix_passwd_t {

sec_rgy_unix_login_name_t name;
sec_rgy_unix_passwd_buf_t passwd;
signed32 uid;
signed32 gid;

Chapter 6. DCE Security Service 1539

signed32 oid;
sec_rgy_unix_gecos_t gecos;
sec_rgy_pname_t homedir;
sec_rgy_pname_t shell;

} sec_rgy_unix_passwd_t;

The structure includes:

v The account’s login name.

v The account’s password.

v The account’s UNIX ID.

v The UNIX ID of the group and organization associated with the account.

v The account’s GECOS information.

v The account’s home directory.

v The account’s login shell.

Context
/usr/include/dce/rgybase.idl

The idl file from which dce/rgybase.h was derived.

/usr/include/dce/unix.idl
The idl file from which dce/unix.h was derived.

Comments

Functions: sec_rgy_unix_getpwuid(3sec) , sec_rgy_unix_getpwnam(3sec) ,
sec_rgy_cursor(3sec) , sec_rgy_site_open(3sec) .

sec_rgy_unix_getpwent(3sec)

1540 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_unix_getpwnam

Purpose

Returns a UNIX style passwd entry for account matching the specified name

Synopsis
#include <dce/rgynbase.h>

void sec_rgy_unix_getpwnam (
sec_rgy_handle_t context
sec_rgy_name_t name
unsigned32 name_len
sec_rgy_cursor_t *item_cursor
sec_rgy_unix_passwd_t *passwd_entry
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open to
acquire a bound handle.

name A character string (of type sec_rgy_name_t) containing the name of the
person, group, or organization whose name entry is desired.

name_len
A 32-bit integer representing the length of the name in characters.

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_unix_getpwnam routine returns the PGO item
indicated by item_cursor, and advances the cursor to point to the next item
in the database. When the end of the list of entries is reached, the routine
returns sec_rgy_no_more_entries . Use sec_rgy_cursor_reset to refresh
the cursor.

Output
passwd_entry

A UNIX style passwd structure returned with information about the account
matching name.

status On successful completion, the routine returns error_status_ok . Otherwise,
it returns an error.

Description

The sec_rgy_unix_getpwnam routine returns the next UNIX passwd structure that
matches the input name. The structure is in the following form:
typedef struct {

sec_rgy_unix_login_name_t name;
sec_rgy_unix_passwd_buf_t passwd;
signed32 uid;
signed32 gid;
signed32 oid;

Chapter 6. DCE Security Service 1541

sec_rgy_unix_gecos_t gecos;
sec_rgy_pname_t homedir;
sec_rgy_pname_t shell;

} sec_rgy_unix_passwd_t;

The structure includes the following:

v The account’s login name.

v The account’s password.

v The account’s UNIX ID.

v The UNIX ID of group and organization associated with the account.

v The account’s GECOS information.

v The account’s home directory.

v The account’s login shell

This call is provided in source code form.

Files
/usr/include/dce/rgynbase.idl

The idl file from which rgynbase.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy bad_data
The name supplied as input was too long.

error_status_ok
The call was successful.

sec_rgy_no_more_entries
The end of the list of entries has been reached.

Related Information

Functions: sec_intro(3sec) .

sec_rgy_unix_getpwnam(3sec)

1542 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_unix_getpwuid

Purpose

Returns a UNIX style passwd entry for the account matching the specified UID

Synopsis
#include <dce/rgynbase.h>

void sec_rgy_unix_getpwuid(
sec_rgy_handle_t context
signed32 uid
sec_rgy_cursor_t *item_cursor
sec_rgy_unix_passwd_t *passwd_entry
error_status_t *status);

Parameters

Input
context

An opaque handle bound to a registry server. Use sec_rgy_site_open() to
acquire a bound handle.

uid A 32-bit integer UNIX ID.

Input/Output
item_cursor

An opaque pointer indicating a specific PGO item entry in the registry
database. The sec_rgy_unix_getpwuid() routine returns the PGO item
indicated by item_cursor, and advances the cursor to point to the next item
in the database. When the end of the list of entries is reached, the routine
returns sec_rgy_no_more_entries . Use sec_rgy_cursor_reset() to
refresh the cursor.

Output
passwd_entry

A UNIX style password structure returned with information about the
account matching uid.

status On successful completion, the routine returns error_status_ok . Otherwise,
it returns an error.

Description

The sec_rgy_unix_getpwuid() routine looks up the next passwd entry in the
registry that matches the input UNIX ID and returns the corresponding
sec_rgy_passwd structure. The structure is in the following form:
typedef struct {

sec_rgy_unix_login_name_t name;
sec_rgy_unix_passwd_buf_t passwd;
signed32 Vuid;
signed32 Vgid;
signed32 oid;
sec_rgy_unix_gecos_t gecos;
sec_rgy_pname_t homedir;
sec_rgy_pname_t shell;

} sec_rgy_unix_passwd_t;

Chapter 6. DCE Security Service 1543

The structure includes the following:

v The account’s login name.

v The account’s password.

v The account’s UNIX ID.

v The UNIX ID of group and organization associated with the account.

v The account’s GECOS information.

v The account’s home directory.

v The account’s login shell

Files
/usr/include/dce/rgynbase.idl

The idl file from which dce/rgynbase.h was derived.

This call is provided in source code form.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_no_more_entries
The end of the list of entries has been reached.

sec_rgy_server_unavailable
The DCE registry server is unavailable.

error_status_ok
The call was successful.

Related Information

Functions: sec_intro(3sec) .

sec_rgy_unix_getpwuid(3sec)

1544 IBM DCE for AIX, Version 2.2: Application Development Reference

sec_rgy_wait_until_consistent

Purpose

Blocks the caller while prior updates are propagated to the registry replicas

Synopsis
#include <dce/misc.h>

boolean32 sec_rgy_wait_until_consistent(
sec_rgy_handle_t context
error_status_t *status);

Parameters

Input
context

The registry server handle associated with the master registry.

Output
status A pointer to the completion status. On successful completion, status is

assigned error_status_ok . Otherwise, it returns an error.

Description

The sec_rgy_wait_until_consistent() routine blocks callers until all prior updates
to the master registry have been propagated to all active registry replicas.

Return Values

The routine returns TRUE when all active replicas have received the prior updates.
It returns FALSE if at least one replica did not receive the updates.

Files
/usr/include/dce/misc.idl

The idl file from which dce/misc.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

sec_rgy_server_unavailable
The server for the master registry is not available.

sec_rgy_read_only
Either the master site is in maintenance mode or the site associated with
the handle is a read-only (query) site.

error_status_ok
The call was successful.

Chapter 6. DCE Security Service 1545

Related Information

Functions: sec_intro(3sec) .

sec_rgy_wait_until_consistent(3sec)

1546 IBM DCE for AIX, Version 2.2: Application Development Reference

Chapter 7. DCE Event Management Service API

© Copyright IBM Corp. 1992, 1998 1547

ems_intro

Purpose

Introduction to the DCE event management service routines.

Description

The DCE Event Management Service (EMS) manages event services in a DCE
cell. EMS consists of three parts:

v The event supplier interface

Provides support for suppliers. A supplier can be any DCE-based user application
that emits event data.

v The EMS daemon (emsd)

Responsible for the following tasks:

– Authenticating and authorizing event suppliers and consumers

– Keeping databases of event types, event filters, and consumers

– Associating an event filter group with each event consumer

– Ensuring reliable delivery of events to interested consumers

v The event consumer interface

Provides support for the steps required to implement an event consumer. An
event consumer performs the following tasks:

– Query EMS for supported event types

– Get a list of existing filter names

– Construct event filters for each event type

– Add event filters to its event filter group.

Note: The event consumer must be registered with EMS and must set up event
filter groups before it can receive events.

The EMS API provides the following structures and interfaces:

EMS Data Structures

EMS Registration Routines

EMS Event Type Routines

EMS Supplier Routine

EMS Event Filter Routines

EMS Consumer Routines

EMS Management Routines

EMS Data Structures

The data structures for EMS are grouped by function. The groups include the
following:

v “EMS Event Attributes” on page 1549

v “EMS Event Structure” on page 1550

v “Event Types” on page 1552

v “EMS Event Filters” on page 1553

1548 IBM DCE for AIX, Version 2.2: Application Development Reference

v “EMS Consumer Data Structures” on page 1555

v “EMS Server Data Structure” on page 1556

EMS Event Attributes:

ems_attr_type_t
An unsigned16 integer that is used to specify the data type of an event
attribute. The attribute type specifies the format of the data in the event
attribute value union (ems_attr_value_t). An event attribute type can be
one of those in the following table:

Table 36. Event Attribute Type Specifiers

Attribute Type Data Type Tagged Union Field Name

ems_c_attr_small_int idl_small_int small_int

ems_c_attr_short_int idl_short_int short_int

ems_c_attr_long_int idl_long_int long_int

ems_c_attr_hyper_int idl_hyper_int hyper_int

ems_c_attr_usmail_int idl_usmall_int usmall_int

ems_c_attr_ushort_int idl_ushort_int ushort_int

ems_c_attr_ulong_int idl_ulong_int ulong_int

ems_c_attr_uhyper_int idl_uhyper_int uhyper_int

ems_c_attr_short_float idl_short_float short_float

ems_c_attr_long_float idl_long_float long_float

ems_c_attr_boolean idl_boolean bool

ems_c_attr_uuid uuid_t uuid

ems_c_attr_utc utc_t * utc

ems_c_attr_severity ems_severity_t severity

ems_c_attr_acl sec_acl_t* acl

ems_c_attr_byte_string idl_byte* byte_string

ems_c_attr_char_string idl_char* char_string

ems_c_attr_bytes ems_bytes_t bytes

Byte strings and character strings are terminated with a 0 (zero) byte. The
pickling service of the IDL compiler can be used to encode complex data
types into byte strings that are to be included in an EMS event.

ems_bytes_t
A data type to define data stored as bytes. This type contains two fields:

size An integer of type unsigned32 that indicates the size of the byte
data.

data The byte data.

ems_attr_value_t
A self-defining data structure that has an attribute type specifier (format)
that tells what type of data is in the union, and then appropriate union
members to hold the value of the data specified. The format field is of type
ems_attr_type_t and can contain only one tagged union field.

ems_intro(3ems)

Chapter 7. DCE Event Management Service API 1549

ems_attribute_t
A structure that contains an event attribute name/type pair that defines an
event attribute. The ems_event_t data type contains an array of
ems_attribute_t structures. Event attributes can be used in defining the
event types in event type schemas, and in defining event filters in event
filter expressions. The ems_attribute_t data type contains two fields:

attr_name
A name of type ems_string that specifies the attribute name

attr_type
A value of type ems_attr_value_t that specifies the format of the
attribute value

EMS Event Structure:

The following data types define an event:

ems_event_type_t
A variable that defines the type of event. Events can have one of three
default types:

ems_c_generic_type
Generic

ems_c_svc_type
SVC

Events of type generic do not have event type schemas associated
with them, and can only be filtered by expressions with header
attributes in them. This is a uuid_t data type. To examine the value
in this variable, use the uuid_compare routine.

ems_c_audit_type
Audit

ems_eventid_t
A structure that contains the unique identifier for an event. The event
identifier contains the following fields:

type An event type of ems_event_type_t

id An identifier of type uuid_t that is unique to a specific event.

ems_netname_t
A structure containing the network name of a given host machine.

ems_nameservice_t
An enumerated data type that specifies the name service that recognizes
the given network name. The possible values are:

ems_ns_other
The name service is other than listed.

ems_ns_dns
DNS name service.

ems_ns_dce
DCE CDS name Service, the only value supported in this release.

ems_ns_x500
X500.

ems_ns_nis
NIS.

ems_intro(3ems)

1550 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_ns_sna
SNA network.

ems_netaddr_t
A structure that contains the network name. The name is interpreted
according to the name service specified in ems_nameservice_t . The
ems_netaddr_t structure contains the following fields:

len An unsigned short integer containing the length of the address

name The name, in an appropriate format. The name is of type
ems_octet_t , and is of length len. The ems_octet_t data type is
char .

For a DCE hostname, the following example sets the ems_netname_t
structure called netname:
static char * dce_hostname = "/.:/hosts/eagle.austin.ibm.com";
ems_netname_t netname;

netname.service = ems_ns_dce;
netname.netaddr->len = strlen(dce_hostname)+1;
netname.netaddr->name = (char *)malloc(netname.netaddr->len);
strcpy(netname.netaddr->name, dce_hostname);

ems_origin_t
A structure that indicates where the event originated; that is, the name of
the host where the supplier is running, the name of the supplier, and the
supplier process identification. These values might not be valid for all hosts.
This structure contains the following fields:

netname
The network name of the originator host, of type ems_netname_t .

descname
The descriptive name of the supplier, of type char * .

pid The process ID of the originator, of type unsigned32 . This ID is
operating system-dependent.

uid The user ID of the originator, of type unsigned32 . This ID is
operating system-dependent.

gid The group ID of the originator, of type unsigned32 . This ID is
operating system-dependent.

ems_severity_t
An enumerated variable that specifies the severity of the event. The names
have a one-to-one correspondence to DCE SVC severity attribute values.
The event severity can have one of the following values:

ems_sev_info
Information event.

ems_sev_fatal
Fatal event.

ems_sev_error
Alert event.

ems_sev_warning
Warning event.

ems_sev_notice
Notice event.

ems_intro(3ems)

Chapter 7. DCE Event Management Service API 1551

ems_sev_notice_verbose
Notice Verbose event.

ems_sev_debug
Debug event.

ems_hdr_t
A structure containing the header of the ems_event_t data structure. The
header contains the following fields:

eventid
The event identifier, of type ems_eventid_t .

origin The event origin, of type ems_origin_t .

severity
The event severity, of type ems_severity_t .

received
A timestamp indicating the time the event was received. This
timestamp is of type utc_t and is set by the EMS daemon.

delivered
A timestamp indicating the time the event was delivered to the
consumer. This timestamp is of type utc_t and is set by the
consumer.

A set of filter attributes are provided for event header filtering. The following
names can be used for the filter attribute in an event filter expression.

Attribute Name Attribute Type

eventid.id ems_c_attr_uuid
eventid.type ems_c_attr_uuid
origin.netname.service ems_c_attr_ulong
origin.netname.netaddr ems_c_attr_bytes
origin.descname ems_c_attr_char_string
origin.pid ems_c_attr_ulong
origin.uid ems_c_attr_ulong
origin.gid ems_c_attr_ulong
severity ems_c_attr_ulong
received ems_c_attr_utc

ems_event_t
A structure containing a fixed header and a variable array. The fields are as
follows:

header
The event header, a structure of type ems_hdr_t .

count An integer of type unsigned32 , which contains the number of data
items in the item array.

item An array of size count, containing ems_attribute_t attributes. Each
data item is a self-defining value that contains an attribute type and
attribute data.

Event Types:

The EMS event type structures are used to define the EMS event types.

ems_intro(3ems)

1552 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_event_type_schema_t
A structure that is used to define an event type. The event type schema
specifies only the fixed part of an event. Although the fixed part of an event
must match the event type schema, the event can have additional attributes
that are unnamed in the schema. The ems_event_type_schema_t
structure contains the following list of attributes:

type A structure of type ems_event_type_t containing an event type ID.

name A pointer to a character string that specifies the name of the event
type.

size A long integer that contains the number of attributes in the attribute
array.

attribute
An array of event type attributes of type ems_attribute_t describing
the format of this event type. This array has size elements.

ems_event_type_list_t
A structure that contains a list of event type schemas. The structure
contains the following fields:

size A long integer containing the number of event type schemas.

schema
An array of size size of type ems_schema_ptr_t , which is defined
as:
typedef [ptr] ems_event_schema_t *ems_schema_ptr_t;

EMS Event Filters:

The event filter data structures allow the definition of both event filters and event
filter lists.

ems_attr_op_t
The attribute operator part of an event filter expression. Attribute operators
define the boolean operation to perform on the attribute name and attribute
value in an event filter expression. The possible attribute operators are:

Attribute Operator Description

ems_c_attr_op_eq The attr_name is equal (==) to attr_value.
ems_c_attr_op_gt The attr_name is greater than (>) attr_value.
ems_c_attr_op_lt The attr_name is less than (<) attr_value.
ems_c_attr_op_ge The attr_name is greater than or equal(>=)

attr_value.
ems_c_attr_op_le The attr_name is less than or equal(<=) attr_value.
ems_c_attr_op_ne The attr_name is not equal (<>) to attr_value.
ems_c_attr_op_substr The attr_name contains the string value specified

by attr_value.
ems_c_attr_op_bitand The attr_name that is bitwise ANDed with

attr_value is greater than 0.

ems_filter_exp_t
A structure containing an event filter expression. This structure contains the
elements that are used to build an event filter. Event filter expressions
contain an attribute name, an operator, and a value that define a boolean
filter expression. The fields are:

ems_intro(3ems)

Chapter 7. DCE Event Management Service API 1553

attr_name
A pointer to a character string that contains the attribute name.

attr_operator
An attribute operator of type ems_attr_op_t .

attr_value
An attribute value of type ems_attr_value_t .

The following table describes what filter operators are valid with each
attribute type.

Table 37. Filter Expression Operator Table

data type eq gt lt ge le ne bitand substr

small int YES YES YES YES YES YES

short int YES YES YES YES YES YES

long int YES YES YES YES YES YES

hyper int YES YES YES YES YES YES

usmall int YES YES YES YES YES YES

ushort int YES YES YES YES YES YES

ulong int YES YES YES YES YES YES

uhyper int YES YES YES YES YES YES

short float YES YES YES YES YES YES

long float YES YES YES YES YES YES

boolean YES YES

uuid YES YES YES YES YES YES

utc YES YES YES YES YES YES

severity YES YES

acl YES YES

byte string YES YES YES

char string YES YES YES YES YES YES YES

bytes YES YES YES

ems_filter_exp_list_t
A structure containing a list of event filter expressions. This structure groups
filter expressions together in a list to form an ANDed filter expression used
to define an event filter. The structure contains the following fields:

size A long integer indicating the number of filter expressions in the
filter_exps array.

filter_exps
An array of filter expressions of type ems_filter_exp_t .

ems_filter_t
An event filter specifies a series of event filter expressions that will be
ANDed together to perform a filter operation. The event filter structure
contains the following fields:

ems_intro(3ems)

1554 IBM DCE for AIX, Version 2.2: Application Development Reference

filter_name
The event filter name, which will be entered in the CDS name
space. This name is of type ems_string_t .

type A structure of type ems_event_type_t that contains the type of
event filter.

filter_exp_list
A list of filter expressions of type ems_filter_exp_list_t .

Filters with an event type of generic can only have filter expressions with
header attribute names in them. (See the event header attributes listed in
ems_hdr_t .)

The following example illustrates how to create a filter:
/*--*
* Create a filter that specifies all the events *
* received between 1 and 2 AM GMT. *
--/
ems_filter_exp_list_t * el = (ems_filter_exp_list_t *)
malloc(sizeof(ems_filter_exp_list_t)+(1*sizeof(ems_filter_exp_t));
el->size = 0;
el->filllter_exps[el->size].attr_name = (unsigned char *)"received.tod";
el->filter_exps[el->size].attr_operator = ems_c_attr_op_le;
el->filter_exps[el->size].attr_value.format = ems_c_attr_char_string;
el->filter_exps[el->size].attr_value.tagged_union.char_string = "0200";
el->size++;
el->filter_exps[el->size].attr_name = (unsigned char *)"received.tod";
el->filter_exps[el->size].attr_operator = ems_c_attr_op_gt;
el->filter_exps[el->size].attr_value.format = ems_c_attr_char_string;
el->filter_exps[el->size].attr_value.tagged_union.char_string = "0100";
el->size++;

ems_string_t
A pointer to a character string used to describe filter names.

ems_filtername_list_t
A structure containing a list of event filter names. This event filter list
contains the following fields:

size A long integer that contains the number of names in the
filter_names array.

filter_names
An array containing event filter names of type ems_string_t .

ems_filter_list_t
A structure that contains an event filter list. The structure contains the
following fields:

size A long integer that contains the number of event filters in the filters
array.

filters An array of pointers to ems_filter_t structures that describe filters.

EMS Consumer Data Structures:

These data structures make up the Consumer database in EMS.

ems_consumer_t
A structure that defines an EMS consumer. Each consumer has the
following fields:

name A character string containing the DCE name of the consumer, which
is entered in CDS.

ems_intro(3ems)

Chapter 7. DCE Event Management Service API 1555

hostname
The DCE host name where the consumer is running, of type
ems_netname_t .

uuid A uuid_t identifier unique to that consumer.

ems_consumer_list_t
A structure that contains a list of consumer entries. The structure has the
following fields:

size A long integer containing the number of entries in the consumer
array.

consumer
An array of ems_consumer_t structures that contain consumer
information.

EMS Server Data Structure:

ems_attrlist_t
The attribute list data structure defines a list of server attributes. Each
attribute is a value maintained by an emsd server. The attribute list can be
used to query those values. The attribute list contains the following fields:

size A long integer describing the number of attributes in the attr array.

attr An array of event type attributes of type ems_attribute_t .

EMS Registration Routines

The EMS API allows event suppliers and consumers to register with the EMS
daemon. The EMS registration step provides a handle that is used for all future
EMS operations. The registration step is required for all event suppliers and
management applications. The following routines allow suppliers and management
applications to register with the EMS daemon:

ems_register
Obtains an EMS handle for future calls to EMS routines.

ems_unregister
Frees the resources obtained by a call to ems_register .

EMS Event Type Routines

The EMS API allows event suppliers and consumers to get a list of event types
from the EMS daemon. All events processed by the event service have an event
type. Event types can be either generic or defined by an event type schema. The
formats of EMS event types are defined by event type schemas, and are kept in the
EMS Event Type database.

A consumer can request a list of supported event types, and select the event types
it wants to receive by using the event type schemas to construct event filters, and
to map event data according to attribute names. For example, an event consumer
can reconstruct an SVC message by using the attribute names to find the correct
data items.

Suppliers use event type schemas to define new event types that they intend to
produce. EMS uses the event type schemas to apply event filters to events.

ems_intro(3ems)

1556 IBM DCE for AIX, Version 2.2: Application Development Reference

The event service keeps a database of event types that consists of event type
schemas. The following routines allow you to manipulate the event types in the
event type database:

ems_event_type_add
Adds an event type.

ems_event_type_delete
Deletes an event type.

ems_event_type_get
Gets an event type.

ems_event_type_free_list
Frees the list of event type schemas.

ems_event_type_get_list
Gets a list of event type schemas from the Event Type Database.

EMS Supplier Routine

The following routine allows event suppliers to send events to the EMS daemon:

ems_supplier_send
Sends an event to EMS.

EMS Event Filter Routines

Filters are the mechanism used by suppliers and consumers to control which events
are sent through the event channel. Filtering is applied by the EMS daemon before
forwarding events to consumers. The EMS API supports filtering by allowing event
suppliers, consumers, and system administrators to manipulate the EMS Event
Filter database. The event filter routines are as follows:

ems_filter_add
Adds a filter to the Event Filter Database.

ems_filter_append
Appends filter expressions to the Event Filter Database.

ems_filter_get
Gets the contents of an event filter.

ems_filter_delete
Deletes a filter from the Event Filter Database.

ems_filter_get_namelist
Gets a list of the names of all filters in the Event Filter Database.

ems_filter_free
Frees an event filter.

ems_filter_free_namelist
Frees a list of event filter names.

ems_filter_get_list
Gets a list of all the filters in the Event Filter Database.

ems_filter_free_list
Frees the list of filters.

ems_intro(3ems)

Chapter 7. DCE Event Management Service API 1557

EMS Consumer Routines

All event consumers must call the EMS event consumer setup routines before
receiving EMS events. In DCE terms, EMS event consumers are both clients and
servers. The following steps are required to implement an event consumer:

1. Set up as a DCE server.

2. Register an event handler with the EMS daemon to receive events.

3. Register with the EMS daemon.

4. Create filters to control the events forwarded from the daemon.

5. Start listening for events.

The EMS daemon maintains a consumer database to keep track of all registered
consumers. Registering and unregistering with the EMS daemon adds and deletes
consumers to and from the database.

The following routines set up the consumers using DCE RPC, and set up the event
handler routines.

ems_add_filter_to_group
Adds a filter name to a consumers event filter group.

ems_consumer_handler_register
Registers a consumers event handler.

ems_consumer_register
Registers a consumer with EMS.

ems_consumer_start
Starts an event consumer.

ems_consumer_stop
Stops an event consumer.

ems_consumer_unregister
Unregisters a consumer with EMS.

ems_delete_filter_from_group
Deletes a filter name from a consumers event filter group.

ems_get_filter_group
Gets the list of filter names that comprise a consumers event filter group.

EMS Management Routines

The EMS Management interface provides a means to manage various aspects of
EMS. Using this interface, applications can manage event consumers, event filters,
and the EMS event log. System administrators can also use dcecp to manage the
same set of resources.

EMS also offers an interface to the EMS event log. This interface allows
management applications to manipulate event logs. The log interface is a local
interface only, and can only be run on the machine that runs the emsd server.

The EMS event log is used to store events in case of EMS failures. EMS writes all
events to the event log, and deletes the event record once the event has been
transmitted to all consumers that are supposed to get the event. The event log is
kept in a file on the machine where emsd is running. Routines are provided to
examine local event logs.

ems_intro(3ems)

1558 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_mgmt_list_attributes
Lists attributes for a specific emsd .

ems_mgmt_free_attributes
Frees a list of emsd server attributes.

ems_mgmt_delete_consumer
Deletes a consumer from the Consumer Database.

ems_mgmt_list_consumers
Lists consumers registered with EMS.

ems_mgmt_free_consumers
Frees a list of consumers obtained from ems_mgmt_list_consumers .

ems_mgmt_list_ems
Lists all hosts running emsd s.

ems_mgmt_free_ems
Frees a list of EMS host names obtained from ems_mgmt_list_ems .

ems_mgmt_add_filter_to_group
Adds a filter name to a consumers filter group.

ems_mgmt_delete_filter_from_group
Deletes a filter name from a consumers filter group.

ems_mgmt_get_filter_group
Gets the list of names in a consumers filter group.

ems_log_open
Opens an EMS event log.

ems_log_read
Reads events from an EMS event log.

ems_log_rewind
Rewinds an EMS event log.

ems_log_close
Closes an EMS event log.

ems_intro(3ems)

Chapter 7. DCE Event Management Service API 1559

ems_add_filter_to_group

Purpose

Adds an event filter to a group.

Synopsis
#include <dce/ems.h>

void ems_add_filter_to_group
(ems_handle_t handle,
ems_filtername_list_t *event_filters,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from

ems_consumer_register .

event_filters
A pointer to a list of one or more event filter names to add to this
consumer’s event filter group. Consumers can use the names of new event
filters after building them with the ems_filter_add routine, or existing filters
that can be obtained by using the ems_filter_get_namelist routine.

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, the routine returns one of the following
error codes:

ems_s_insufficient_permission
The routine does not have permission to perform the operation.

ems_s_filter_list_empty
event_filters contains no event filter names.

ems_s_filtername_exists
An event filter in event_filters already exists in the consumer’s
event filter group.

ems_s_no_memory
Error allocating memory

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_add_filter_to_group routine is used by EMS event consumers to add
event filter names to a consumer’s event filter group. This routine can be called
multiple times for each consumer.

1560 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

(w) on /.:/hosts/dce_hostname/ems-server/consumers

ems_add_filter_to_group(3ems)

Chapter 7. DCE Event Management Service API 1561

ems_consumer_handler_register

Purpose

Registers a consumer event handler.

Synopsis
#include <dce/ems.h>

void ems_consumer_handler_register(
ems_handler_t hfunc,
error_status_t *status);

Parameters

Input
hfunc Specifies the name of the event handler function. The handler’s signature

should be:
typedef void (*ems_handler_t) (ems_event_t *event,

error_status_t *status);

Output
status A pointer to the completion status. On successful completion, the routine

returns error_status_ok . Otherwise, the routine returns one of the following
error codes:

ems_s_no_memory
Error allocating memory.

ems_s_mutex_init
Error initializing event queue.

ems_s_cond_variable_init
Error initializing event queue.

ems_s_pthread_create
Error initializing event queue.

ems_s_consumer_not_started
Event consumer has not been started.

Description

The ems_consumer_handler_register routine declares the event consumer’s
event handler. The event consumer developer is responsible for providing the
handler to process events.

This routine does not make any RPC calls to EMS.

1562 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_consumer_register

Purpose

Registers a consumer.

Synopsis
#include <dce/ems.h>

void ems_consumer_register(
ems_netname_t *dce_hostname,
ems_filtername_list_t *filter_group,
ems_handle_t *handle,
error_status_t *status); /* register status */

Parameters

Input
dce_hostname

A pointer to the name of the DCE host machine where emsd is running. If
the DCE host name is NULL, then the local host is assumed.

Note: dce_hostname is case sensitive.

filter_group
A pointer to a list of event filter names that define this consumer’s initial
event filter group. If filter_group is empty, no filter group is specified, and
EMS will not forward any events to this consumer until the consumer makes
a call to ems_add_event_to_group .

Output
handle Returns an EMS handle that can be used on subsequent calls to EMS

routines.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns one of the following status
codes:

ems_s_no_memory
Error allocating memory.

ems_no_consumer_handler
Error calling ems_consumer_register before an event handler was
registered with ems_consumer_handler_register .

ems_s_already_registered
Consumer with this name already registered.

ems_s_mutex_init
Error initializing event queue.

ems_s_cond_variable_init
Error initializing event queue.

ems_s_pthread_create
Error initializing event queue.

ems_s_insufficient_permission
No permission to perform the requested operation.

Chapter 7. DCE Event Management Service API 1563

ems_s_consumer_not_started
Event consumer has not been started.

ems_s_unsupported_nameservice
Nameservice is not supported.

Description

The ems_consumer_register routine is used by EMS event consumers to register
with EMS. This routine should be called once for each DCE host from which this
consumer wants to receive events. This routine must be called after a call to
ems_consumer_start .

Permissions Required

(i) on /.:/hosts/dce_hostname/ems-server/consumers

ems_consumer_register(3ems)

1564 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_consumer_start

Purpose

Starts a consumer.

Synopsis
#include <dce/ems.h>

void ems_consumer_start(
char *consumer,
unsigned32 flags,
error_status_t *status);

Parameters

Input
consumer

A pointer to the consumer name. This name must be unique, and is
registered in the CDS namespace under
/.:/hosts/ dce_hostname/ems/consumers . The name is used by the
administrative interface to refer to this consumer.

flags Reserved for future use.

Output
status A pointer to the completion status. Upon successful completion, the routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_no_memory
Error allocating memory.

ems_s_consumer_already_started
consumer already started.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_consumer_start routine should be called at the beginning of each event
consumer before making any register calls. It creates an object UUID to uniquely
identify this event consumer and register its endpoint so that EMS can send this
consumer event data.

This routine does not make any RPCs to EMS.

Chapter 7. DCE Event Management Service API 1565

ems_consumer_stop

Purpose

Stops a consumer.

Synopsis
#include <dce/ems.h>

void ems_consumer_stop(
error_status_t *status);

Parameters

Output
status A pointer to the completion status. On successful completion the routine

returns error_status_ok . Otherwise, it returns
ems_s_consumer_not_started , which indicates that the specified event
consumer has not been started.

Description

The ems_consumer_stop routine should be called at the end of each event
consumer after a call to ems_s_consumer_start . It unregisters the endpoint of this
event consumer and kills the thread that was created by the consumer’s event
handler interface to receive all events from EMS.

This routine does not make any RPCs to EMS.

1566 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_consumer_unregister

Purpose

Unregisters a consumer.

Synopsis
#include <dce/ems.h>

void ems_consumer_unregister(
ems_handle_t *handle,
error_status_t *status);

Parameters

Input
handle A handle returned from a call to ems_consumer_register . This routine

frees memory used by handle, and sets handle to NULL.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_unknown_consumer
Tried to unregister a consumer that was not registered.

ems_s_consumer_not_started
Consumer has not been started.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

Description

The ems_consumer_unregister routine is used by EMS event consumers to
unregister with EMS. This routine should be called once for each call to
ems_consumer_register . The event consumer should call this routine before
calling the ems_consumer_stop routine.

Permissions Required

(d) on /.:/hosts/dce_hostname/ems-server/consumers

Chapter 7. DCE Event Management Service API 1567

ems_delete_filter_from_group

Purpose

Deletes an event filter from a group.

Synopsis
#include <dce/ems.h>

void ems_delete_filter_from_group(
ems_handle_thandle,
ems_filtername_list_t *filter_name,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from

ems_consumer_register .

filter_name
A pointer to the event filter names to delete from the consumer’s event filter
group.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_filter_list_empty
No filter names were specified for deletion.

ems_s_filtername_not_there
Specified filter name to delete not in group.

ems_s_no_memory
Error allocating memory.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_delete_filter_from_group routine is used by EMS event consumers to
delete event filter names from consumer event filter groups.

Permissions Required

(w) on /.:/hosts/dce_hostname/ems-server/consumers

1568 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_event_type_add

Purpose

Adds an event type.

Synopsis
#include <dce/ems.h>

void ems_event_type_add(
ems_handle_t handle, /* EMS handle */
ems_event_schema_t *schema, /* event type schema to add */
error_status_t *status); /* request status */

Parameters

Input
handle A handle returned from a call to ems_register call.

schema
An EMS event type schema that describes the format of an event type.

Output
status Returns the status code from this routine, which indicates whether the

routine completed successfully or not. Possible status codes include:

error_status_ok
Indicates success.

ems_s_invalid_handle
Handle parameter is not valid.

ems_s_eventtype_exists
The event type already exists.

ems_s_insufficient_permission
The caller does not have permission to perform this operation.

ems_s_invalid_event_type
The event schema is not valid.

Description

This routine is used by an event supplier to add new event types to the EMS event
type Database. A supplier can add a new event type, and then start producing that
event type by transmitting events to EMS.

Permissions Required

(i) on /.:/hosts/hostname/ems-server/event-types

Chapter 7. DCE Event Management Service API 1569

ems_event_type_delete

Purpose

To delete an event type.

Synopsis
#include <dce/ems.h>

void ems_event_type_delete(
ems_handle_t handle, /* EMS handle */
char *type_name, /* event type name */
error_status_t *status) ; /* request status */

Parameters

Input
handle A handle returned from a call to ems_register().

type_name
The name of an EMS event type.

Output
status Returns the status code from this routine, which indicates whether the

routine completed successfully or not. Possible status codes include:

error_status_ok
Indicates success.

ems_s_invalid_handle
Handle parameter is not valid.

ems_s_insufficient_permission
The caller does not have permission to perform this operation.

ems_s_event_type_not_found
The specified event type was not found.

ems_s_invalid_name
The event type name specified an name that is not valid.

Description

This routine is used by an event supplier to delete an event type in the EMS event
type Database.

Permissions Required

(d) on /.:/hosts/hostname/ems-server/event-types,

or

(d) on /.:/hosts/hostname/ems-server/event-types/type_name

1570 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_event_type_free_list

Purpose

Frees an event type list.

Synopsis
#include <dce/ems.h>

void ems_event_type_free_list(
ems_event_type_list_t **type_list,
error_status_t *status);

Parameters

Input
type_list

A pointer to an event type list as returned by ems_event_type_get_list .
This routine sets type_list to NULL.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok .

Description

The ems_event_type_free_list routine is used by callers of
ems_event_type_get_list to free the storage used by an event type list.

Chapter 7. DCE Event Management Service API 1571

ems_event_type_get

Purpose

Gets an event type

Synopsis
#include <dce/ems.h>

void ems_event_type_get(
ems_handle_t handle, /* EMS handle */
char *type_name, /* event type name */
ems_event_schema_t**schema, /* event type schema */
error_status_t *status); /* request status */

Parameters

Input
handle Should be the handle returned from a call to ems_consumer_register call ().

type_name
The event type name to retrieve from the event type database.

Output
schema

Returns the requested event type schema.

status Returns the status code from this routine, which indicates whether the
routine completed successfully or not. Possible status codes include:

error_status_ok
Indicates success.

ems_s_invalid_handle
Handle parameter is not valid.

ems_s_insufficient_permission
The caller does not have permission to perform this operation.

ems_s_invalid_name
The event type name specified a name that is not valid.

ems_s_event_type_not_found
The requested event type was not found.

Description

This routine is used to retrieve event type schemas from the event type Database.

1572 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_event_type_get_list

Purpose

Gets an event types list.

Synopsis
#include <dce/ems.h>

void ems_event_type_get_list(
ems_handle_t handle,
ems_event_type_list_t **type_list,
error_status_t *status);

Parameters

Input
handle The handle returned from a call to ems_consumer_register .

Output
type_list

Returns the list of available event types.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_no_type_list
There is no event type list available.

ems_s_no_memory
Error allocating memory.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

Description

The ems_event_type_get_list routine is used by EMS event consumers to find out
what event types are available to register for. The consumer can then set up filters
for attributes in one of the available event types.

Permissions Required

(r) on /.:/hosts/dce_hostname/ems-server/event-types

Chapter 7. DCE Event Management Service API 1573

ems_filter_add

Purpose

Adds an event filter.

Synopsis
#include <dce/ems.h>

void ems_filter_add(
ems_handle_t handle,
ems_string_t filter_name,
ems_event_type_t type,
ems_filter_exp_list_t *exp_list
error_status_t *status);

Parameters

Input
handle A handle returned from a call to ems_consumer_register .

filter_name
Specifies the event filter name for this event filter. This name can be used
to add the event filter to a consumer’s event filter group.

type Specifies the event type that this filter is applied against.

exp_list
Pointer to a list of filter expressions that are part of the event filter
filter_name.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise it returns one of the following error
codes:

ems_s_filter_exists
The given filter name already exists.

ems_s_invalid_filter
The input parameter specifies an invalid filter.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_filter_add routine is used to add a new event filter to the EMS Event
Filter Database.

1574 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

(i) on /.:/hosts/dce_hostname/ems-server/filters

ems_filter_add(3ems)

Chapter 7. DCE Event Management Service API 1575

ems_filter_append

Purpose

Appends to an event filter.

Synopsis
#include <dce/ems.h>

void ems_filter_append(
ems_handle_t handle,
ems_string_t filter_name,
ems_filter_exp_list_t *exp_list,
error_status_t *status);

Parameters

Input
handle The handle returned from a call to ems_consumer_register .

filter_name
Specifies the name of the event filter to add the filter expressions to.

exp_list
A list of filter expressions that will be added to the end of event filter
filter_name.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_filter
The input parameter specifies an invalid filter.

ems_s_filter_not_found
The specified filter was not found.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_filter_append routine is used to add filter expressions to an event filter.
The filter expressions are added to the end of the current list of filter expressions in
the event filter.

Permissions Required

(w) on /.:/hosts/dce_hostname/ems-server/filters/filter_name

1576 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_filter_delete

Purpose

Deletes an event filter.

Synopsis
#include <dce/ems.h>

void ems_filter_delete(
ems_handle_t handle,
ems_string_t filter_name,
error_status_t *status);

Parameters

Input
handle The handle returned from a call to ems_consumer_register .

filter_name
Specifies the name of the event filter to delete.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_filter_not_found
The specified filter name was not found in the filter database.

ems_s_filter_in_use
The specified filter name appears in a consumer’s event filter
group.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_filter_delete routine is used to delete an event filter from the Event Filter
Database. The name filter_name cannot appear in any consumer’s event filter
group when this routine is called.

Permissions Required

(d) on /.:/hosts/dce_hostname/ems-server/filters/filter_name, or (d) on
/.:/hosts/dce_hostname/ems-server/filters

Chapter 7. DCE Event Management Service API 1577

ems_filter_free

Purpose

Frees an event filter.

Synopsis
#include <dce/ems.h>

void ems_filter_free(
ems_filter_exp_list_t **exp_list,
error_status_t *status);

Parameters

Input
exp_list

A pointer to a list of filter expressions to free.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns an error.

Description

The ems_filter_free routine is used to free a list of event filter expressions obtained
by a call to the ems_filter_get routine.

1578 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_filter_get_namelist

Purpose

Lists event filter names.

Synopsis
#include <dce/ems.h>

void ems_filter_get_namelist(
ems_handle_t handle,
ems_filtername_list_t **name_list,
error_status_t *status);

Parameters

Input
handle The handle returned from a call to ems_consumer_register .

Output
name_list

A pointer to a list of all the event filter names in the Event Filter Database.
The routine ems_event_filter_get can be used to find out the contents of
each event filter.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_empty_filter_db
No filters in database.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

Description

The ems_filter_get_namelist routine is used to get a list of the names of the event
filters in the Event Filter Database.

Permissions Required

(r) on /.:/hosts/dce_hostname/ems-server/filters

Chapter 7. DCE Event Management Service API 1579

ems_filter_free_list

Purpose

Frees an event filter list.

Synopsis
#include <dce/ems.h>

void ems_filter_free_list(
ems_filter_list_t **filter_list,
error_status_t *status);

Parameters

Input/Output
filter_list

A pointer to a list of event filters that make up the Event Filter Database as
returned by the routine ems_filter_get_list . On output, filter_list is set to
NULL.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok .

Description

The ems_filter_free_list routine is used by callers of
ems_get_event_filter_database to free the storage used by an Event Filter
Database (ems_filter_db_t) structure.

1580 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_filter_free_namelist

Purpose

Frees a list of event filter names.

Synopsis
#include <dce/ems.h>

void ems_filter_free_namelist(
ems_filtername_list_t **name_list,
error_status_t *status);

Parameters

Input
name_list

A pointer to a list of filter names to free.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns an error.

Description

The ems_filter_free_namelist routine is used to free a list of filter names returned
by various routines. The routines that return a list of filter names are:

ems_filter_get_namelist

ems_get_filter_group

ems_mgmt_get_filter_group

Chapter 7. DCE Event Management Service API 1581

ems_filter_get

Purpose

Gets an event filter.

Synopsis
#include <dce/ems.h>

void ems_filter_get(
ems_handle_t handle,
ems_string_t filter_name,
ems_event_type_t *filter_type,
ems_filter_exp_list_t **exp_list,
error_status_t *status);

Parameters

Input
handle The handle returned from a call to ems_consumer_register .

filter_name
Specifies the name of the event filter to get.

Output
filter_type

Specifies the event type of the filter.

exp_list
A pointer to the list of filter expressions that are part of event filter
filter_name.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_filter_not_found
The specified filter name was not found in the filter database.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_filter_get routine is used to get the filter expressions in an event filter.

Permissions Required

(r) on /.:/hosts/dce_hostname/ems-server/filters

1582 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_filter_get_list

Purpose

Gets event filter list.

Synopsis
#include <dce/ems.h>

void ems_filter_get_list(
ems_handle_t handle,
ems_filter_list_t **filter_list,
error_status_t *status);

Parameters

Input
handle A handle returned from a call to ems_consumer_register .

Output
filter_list

A pointer to a list of all the event filters in the Event Filter Database.

status A pointer to the completion code. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_empty_filter_db
No filters in database.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_handle
The handle is not valid.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_filter_get_list routine is used to get a list of the event filters in the Event
Filter Database. This list should be freed using ems_filter_free_list .

Permissions Required

(r) on /.:/hosts/dce_hostname/ems-server/filters/filter_name

Chapter 7. DCE Event Management Service API 1583

ems_get_filter_group

Purpose

Gets a filter group.

Synopsis
#include <dce/ems.h>

void ems_get_filter_group(
ems_handle_t handle,
ems_filtername_list_t **filter_group,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from

ems_consumer_register .

Output
filter_group

A pointer to the list of event filter names that are in the consumer’s event
filter group.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
Invalid handle.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_consumer_not_found
The specified consumer is not registered.

Description

The ems_get_filter_group routine returns a list of event filter names that comprise
the consumer’s event filter group. It is up to the requesting consumer to free the
storage allocated for filter_group.

Permissions Required

(r) on /.:/hosts/dce_hostname/ems-server/consumers

1584 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_log_close

Purpose

Closes event log.

Synopsis
#include <dce/ems.h>

void ems_log_close(
ems_log_file_t *handle,
error_status_t *status);

Parameters

Input/Output
handle Specifies the event log file to close. On output handle is set to NULL.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns ems_s_invalid_log_handle ,
which indicates that an invalid log file handle was passed in.

Description

The ems_log_close routine closes an event log file.

Chapter 7. DCE Event Management Service API 1585

ems_log_open

Purpose

Opens event log.

Synopsis
#include <dce/ems.h>

void ems_log_open(
ems_log_file_t *log_file,
char *log_dir,
error_status_t *status);

Parameters

Input
log_dir Directory where log directory is located. If NULL, the environment variable

EMS_EVENTLOG_DIR is checked. If EMS_EVENTLOG_DIR is not set, the
default directory is used.

Output
log_file

Log handle to use in other ems_log_* routines.

status A pointer to the completion code. If the routine completes successfully it
returns error_status_ok . Otherwise it returns one the following error codes:

ems_s_no_event_log
Event log not found.

ems_s_no_log_entries
No event log entries.

ems_s_no_memory
Error allocating memory.

Description

The ems_log_open routine opens an EMS event log and locks the event log
database until the ems_log_close routine is called.

1586 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_log_read

Purpose

Read event log.

Synopsis
#include <dce/ems.h>

void ems_log_read(
ems_log_file_t handle,
ems_event_t **event,
error_status_t *status);

Parameters

Input
handle Specifies the open event log to read from.

Output
event A pointer to the next event in the event log.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_log_handle
Invalid log file handle passed in.

ems_s_no_more_events
No more events to read in log file.

Description

The ems_log_read routine reads an event from the EMS event log.

Chapter 7. DCE Event Management Service API 1587

ems_log_rewind

Purpose

Rewinds event log.

Synopsis
#include <dce/ems.h>

void ems_log_rewind(
ems_log_file_t handle,
error_status_t *status);

Parameters

Input
handle Specifies the event log file to rewind.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_log_handle
An invalid log file handle was passed in.

ems_s_no_log_entries
No event log entries.

Description

The ems_log_rewind routine rewinds an event log. This allows the event log to be
rewound to the beginning. This function is equivalent to calling ems_log_close ,
then ems_log_open again.

1588 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_mgmt_add_filter_to_group

Purpose

Adds a list of event filter names to an event filter group.

Synopsis
#include <dce/ems.h>

void ems_mgmt_add_filter_to_group(
ems_handle_t handle,
char *consumer,
uuid_t *uuid,
ems_filtername_list_t *filter_name,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from the ems_register

routine.

consumer
Specifies the consumer whose event filter group is being updated.

uuid Specifies the consumer UUID that uniquely identifies the consumer to clear.
If this parameter is NULL, then only one consumer can exist with the name
consumer.

filter_name
Specifies the list of event filter names to add.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
An invalid handle was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_mgmt_add_filter_to_group routine adds event filter names to a
consumer’s event filter group.

Permissions Required

(i) on /.:/hosts/dce_hostname/ems-server/consumers

Chapter 7. DCE Event Management Service API 1589

ems_mgmt_delete_consumer

Purpose

Deletes consumers.

Synopsis
#include <dce/ems.h>

void ems_mgmt_delete_consumer(
ems_handle_t handle,
char *consumer,
uuid_t *uuid,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from the ems_register

routine.

consumer
A pointer to the consumer name to clear. This name is the name returned in
the ems_consumer_list_t data structure after calling
ems_mgmt_list_consumers or the name used on the
ems_consumer_start routine.

uuid Specifies the consumer UUID that uniquely identifies the consumer to clear.
If this parameter is NULL, only one consumer can exist with the name
consumer.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
An invalid handle was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_mgmt_delete_consumer routine clears all information stored in EMS
about the specified consumer. This means clearing the consumer’s filters, then
unregistering the consumer. The consumer receives notification that it is being
deleted.

1590 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

(d) on /.:/hosts/dce_hostname/ems-server/consumers

ems_mgmt_delete_consumer(3ems)

Chapter 7. DCE Event Management Service API 1591

ems_mgmt_delete_filter_from_group

Purpose

Deletes event filter name from event filter group.

Synopsis
#include <dce/ems.h>

void ems_mgmt_delete_filter_from_group(
ems_handle_t handle,
char *consumer,
uuid_t *uuid,
ems_filtername_list_t *filter_name,
error_status_t *status);

Parameters

Output
handle Must contain a valid consumer handle obtained from the ems_register

routine.

consumer
A pointer to the consumer whose event filter group is being updated.

uuid A pointer to the consumer UUID that uniquely identifies the consumer to
clear. If this parameter is NULL, then only one consumer can exist with the
name consumer .

filter_name
A pointer to the names of the filters to delete from the consumer’s filter
group.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
An invalid handle was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_mgmt_delete_filter_from_group routine deletes the specified event filter
names from a consumer’s event filter group.

1592 IBM DCE for AIX, Version 2.2: Application Development Reference

Permissions Required

(w) on /.:/hosts/dce_hostname/ems-server/consumers

ems_mgmt_delete_filter_from_group(3ems)

Chapter 7. DCE Event Management Service API 1593

ems_mgmt_free_attributes

Purpose

Frees a list of emsd server attributes.

Synopsis
#include <dce/ems.h>**

void ems_mgmt_free_attributes(
ems_attrlist_t list,
error_status_t *status);

Parameters

Input
list A pointer to the list of attributes to free.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns an error.

Description

The ems_mgmt_free_attributes routine frees a list of emsd server attributes
obtained by the ems_mgmt_list_attributes routine.

1594 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_mgmt_free_consumers

Purpose

Frees a list of consumers obtained from ems_mgmt_list_consumers .

Synopsis
#include <dce/ems.h>

void ems_mgmt_free_consumers(
ems_consumer_list_t **list,
error_status_t *status);

Parameters

Input
list A pointer to a list of consumers to free.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns an error.

Description

The ems_mgmt_free_consumers routine frees a list of consumers obtained from
ems_mgmt_list_consumers .

Chapter 7. DCE Event Management Service API 1595

ems_mgmt_free_ems

Purpose

Frees a list of hosts obtained from ems_mgmt_list_ems .

Synopsis
#include <dce/ems.h>

void ems_mgmt_free_ems(
char ***host_list,
error_status_t *status);

Parameters

Input
host_list

A pointer to a list of hosts to free.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns an error.

Description

The ems_mgmt_free_ems routine frees a list of consumers obtained from
ems_mgmt_list_ems .

1596 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_mgmt_get_filter_group

Purpose

Gets a list of event filter names in an event filter group.

Synopsis
#include <dce/ems.h>

void ems_mgmt_get_filter_group(
ems_handle_t handle,
char *consumer,
uuid_t *uuid,
ems_filtername_list_t **filter_group,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from the ems_register

routine.

consumer
A pointer to the consumer’s event filter group to return. The consumer
name is the name given to the ems_start_consumer routine, or the name
returned in the ems_consumer_list_t data structure from the routine
ems_mgmt_list_consumers .

uuid A pointer to the consumer UUID that uniquely identifies the consumer to
clear. If this parameter is NULL, only one consumer can exist with the name
consumer.

Output
filter_group

A pointer to the list of event filter names in the specified consumer’s event
filter group.

status A pointer to the completion code. Upon successful completion this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
An invalid handle was passed.

ems_s_consumer_not_found
The specified consumer is not registered.

ems_s_insufficient_permission
No permission for the requested operation.

ems_s_invalid_name
A filter, consumer, or filter attribute name that contains characters
that are not valid was specified.

Description

The ems_mgmt_get_filter_group routine returns a list of event filter names in a
consumer’s event filter group.

Chapter 7. DCE Event Management Service API 1597

Permissions Required

(i) on /.:/hosts/dce_hostname/ems-server/consumers

ems_mgmt_get_filter_group(3ems)

1598 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_mgmt_list_attributes

Purpose

Lists emsd attributes.

Synopsis
#include <dce/ems.h>

void ems_mgmt_list_attributes(
ems_handle_t handle,
ems_attrlist_t **list,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from the ems_register

routine.

Output
list A pointer to the list of emsd attributes.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
An invalid handle was passed.

ems_s_no_memory
Error allocating memory.

Description

The ems_mgmt_list_attributes routine lists emsd server attributes. Free this list
using the ems_mgmt_free_attributes routine.

Permissions Required

(r) on /.:/hosts/dce&ushostname/ems-server

Chapter 7. DCE Event Management Service API 1599

ems_mgmt_list_consumers

Purpose

Lists consumers.

Synopsis
#include <dce/ems.h>

void ems_mgmt_list_consumers(
ems_handle_t handle,
ems_consumer_list_t **list,
error_status_t *status);

Parameters

Input
handle Must contain a valid consumer handle obtained from the ems_register

routine.

Output
list A pointer to the list of consumers.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise it returns one of the following error
codes:

ems_s_no_memory
Error allocating memory.

ems_s_no_consumers
No consumers registered.

ems_s_insufficient_permission
No permission to perform the requested operation.

ems_s_invalid_handle
An invalid handle was passed.

Description

The ems_mgmt_list_consumers routine lists consumers registered with EMS.

Permissions Required

(r) on /.:/hosts/dce_hostname/ems-server/consumers

1600 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_mgmt_list_ems

Purpose

Lists EMS hosts.

Synopsis
#include <dce/ems.h>

void ems_mgmt_list_ems(
char ***host_list,
error_status_t *status);

Parameters

Output
host_list

A pointer to the list of hosts running emsd .

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns ems_no_memory , which
indicates that there was an error allocating memory.

Description

The ems_mgmt_list_ems routine lists hosts running emsd . Use free to free
memory used by host_list.

Chapter 7. DCE Event Management Service API 1601

ems_register

Purpose

Registers with EMS.

Synopsis
#include <dce/ems.h>

void ems_register(
ems_netname_t *dce_hostname,
ems_handle_t *handle,
error_status_t *status);

Parameters

Input
dce_hostname

A pointer to the name of the DCE host machine where emsd is running. If
the DCE host name is NULL, then the local host is assumed.

Note: dce_hostname is case sensitive.

Output
handle Returns an EMS handle to use for future calls to EMS routines.

status A pointer to the completion status. Upon successful completion, this routine
returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_no_memory
An EMS handle cannot be allocated.

ems_s_unsupported_nameservice
The dce_hostname contains an unsupported name service.

Description

The ems_register routine registers with EMS, and obtains an EMS binding handle.
This routine can be used by a management application that will be using the EMS
Management API or by event suppliers that want to add new event types.

1602 IBM DCE for AIX, Version 2.2: Application Development Reference

ems_supplier_send

Purpose

Sends supplier events to EMS.

Synopsis
#include <dce/ems.h>

void ems_supplier_send(
ems_handle_t handle,
ems_event_t *event,
error_status_t *status);

Parameters

Input
handle Should be the handle returned from a call to ems_register .

event A pointer to the event data. For the content of the event messages, see
“EMS Data Structures” on page 1548.

Output
status Pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns one of the following error
codes:

ems_s_invalid_handle
A handle that has not been initialized or that is invalid was used.

ems_s_no_memory
The EMS server received an error allocating memory.

ems_s_insufficient_permission
This supplier does not have permission to supply events.

Description

The ems_supplier_send routine is called by event suppliers to send events to
EMS.

Permissions Required

(w) on /.:/hosts/dce_hostname/ems-server/event-types/type_name

Chapter 7. DCE Event Management Service API 1603

ems_svc_connect_push_supplier

Purpose

Connects a push supplier to an event consumer so it can receive serviceability
events.

Synopsis
voidems_svc_connect_push_supplier(

char*bin_log,
char*filter_file,
char*time_file
int time_interval,
error_status_t *status)

Parameters

Input
bin_log

Specifies the name of the Serviceability binary log file to monitor.

filter_file
Specifies an event filter file. This file can contain zero or more severity
filters and zero or more message identifiers.

time_file
Specifies a unique timestamp file name.

time_interval
After reaching the end of the bin_log file, this API waits for time_interval
seconds before it checks for any new entries in the log file. If the
time_interval is set to 0, then the API returns immediately.

Output
status A pointer to the completion status. This API never returns unless one of the

following error conditions occurs:

ems_s_no_memory
an error occurred while allocating memory.

svc_s_cantopen
permission is denied or the file does not exist.

svc_s_at_end
no more entries in the bin_log file (only when the time_interval is 0).

Description

The ems_svc_connect_push_supplier routine is called by event consumers to
receive Serviceability (SVC) events previously routed to the bin_log file.

This routine operates independent of the EMS daemon, and uses the direct
supplier/consumer model. In this model, the consumer sets up the consumer
environment. The consumer then calls this API to directly connect to an event
supplier that delivers all events from the bin_log file.

1604 IBM DCE for AIX, Version 2.2: Application Development Reference

The event consumer provides the filter_file to specify what messages are of
interest. Each event in the binary log file is examined and the filters in the event
filter file are applied; if the event passes the filters, then it is forwarded to the event
consumer.

After each event is processed from the SVC bin_log file, the timestamp of that
event is recorded in the time_file file. If the consumer reinvokes this API, this
timestamp is checked to prevent resending of already sent events. If multiple
consumers are to be used, it is important to specify a unique file name. If a
non-unique timestamp file is used, then only those events that come in time after
the most recent timestamp are sent to all consumers, which results in the loss of
some events. If a NULL timestamp file is specified, no record is kept of what events
were already sent, and all events are then sent again.

After all events from the bin_log file have been read, this API waits for time_interval
seconds before it checks the log file for any new entries. Once the time_interval has
passed, the API processes the new entries until it reaches the end of the file again.
Therefore, the API never returns. If the user prefers that the API return once the
end of the bin_log file has been reached, then the time_interval should be set to 0.

The ems_consumer_handler_register routine must be called prior to calling this
routine to register an event handler, and to enable the processing of events.

ems_svc_connect_push_supplier(3ems)

Chapter 7. DCE Event Management Service API 1605

ems_unregister

Purpose

Unregisters with EMS.

Synopsis
#include <dce/ems.h>

void ems_unregister(
ems_handle_t *handle,
error_status_t *status);

Parameters

Input/Output
handle An EMS handle obtained from the ems_register routine. On output the

value of handle is set to NULL.

Output
status A pointer to the completion status. Upon successful completion, this routine

returns error_status_ok . Otherwise, it returns ems_s_invalid_handle ,
which indicates that an invalid handle was passed.

Description

The ems_unregister routine unregisters and frees up the resources used by an
EMS handle. This routine should be called with a handle obtained by the
ems_register routine.

1606 IBM DCE for AIX, Version 2.2: Application Development Reference

Appendix. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594

USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Department LZKS

11400 Burnet Road

Austin, Texas 78758

USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
IBM
OS/2
RISC System/6000
Systems Application Architecture
SAA

AFS and DFS are trademarks of Transarc Corporation, in the United States, or
other countries, or both.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are
registered trademarks of the Open Software Foundation, Inc.

© Copyright IBM Corp. 1992, 1998 1607

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

1608 IBM DCE for AIX, Version 2.2: Application Development Reference

Index

Special Characters
dce_aud_close() 1007
dce_aud_commit() 1008
dce_aud_discard() 1011
dce_aud_free_ev_info() 1016
dce_aud_free_header() 1017
dce_aud_get_ev_info() 1018
dce_aud_get_header() 1022
dce_aud_length() 1026
dce_aud_next() 1030
dce_aud_open() 1033
dce_aud_prev() 1036
dce_aud_print() 1039
dce_aud_reset() 1045
dce_aud_rewind() 1047
dce_aud_start() 1054
dce_aud_start_with_name() 1058
dce_aud_start_with_pac() 1062
dce_aud_start_with_server_binding() 1066
idl_void_p_t type 668, 672, 674, 687
pthread_create() 307
pthread_once_t data structure 334
rpc_codeset_mgmt_t data type 383
rpc_protseq_vector_t data type 390

A
abbreviations in routine names 370
Absolute Time 850
access control list

permissions for RPC NSI routines 394
access control list (ACL)

comparing to PAC 1187
configuring manager 1176
getting types 1180
getting types for object 1182
replacing 1192
searching for 1190

ACL
permissions for RPC NSI routines 394

Add Time 852
aliases 739
Any Time 854
Any Zone 856
API 738
API overview 368, 954
application program interface 738
Application Programming Interface 368, 954
ASCII Any Time 858
ASCII GMT Time 860
ASCII Local Time 861
ASCII Relative Time 863
asctime_r routine 361
atomic modification 741
attribute

priority 282, 287
scheduling 281, 285
scheduling policy 283, 289

attribute (continued)
stacksize 284, 291
type 817
types 778
value 837
value assertion 735

attributes object
creating 279

Audit
Application Programming Interface 954

Audit event information types 957

B
base object 753
BDC package 774
Binary Relative Time 864
Binary Time 866
binding

string 390
binding handle 379, 390

client 379
concurrency control 380
fully bound 379
partially bound 379
server 379

binding information 379
binding parameter 394
binding vector 381
boolean32 data type 382
Bound Time 867
broadcasting a wake-up 296

C
calls

sec_rgy_unix_getpwnam 1541
cancel

asynchronous delivery and exception handlers 341
delivery 292
enabling and disabling asynchronous delivery of

341
enabling and disabling delivery of 343
obtaining noncancelable versions of cancelable

routines 343
possible dangers of disabling 343
requesting delivery of 352
sending to a thread 292

cancelability
asynchronous 341
general 343

CDS 778
ACL permissions for NSI routines 394

Cell Directory Service 778
cell name 385
cell-relative name 385
character string

unsigned 393

© Copyright IBM Corp. 1992, 1998 1609

characteristics of created condition variable
specifying 305

characteristics of created mutex
specifying 329

characteristics of created object
specifying 279

class
instance 819

class definition 829
cleanup routine

establishing 295
executing 294

client 671, 688
context - reclaiming memory 671, 688
memory 677, 681, 694, 698

client binding handle 379
client entry point vector 388
commands

dced 369
idl 368
management 369
programmer 369
rpccp 369

Compare Interval Time 869
Compare Midpoint Times 872
comparing

PAC to ACL 1187
concurrency control 380, 388
condition variable

creating 298
definition of 298
definition of predicate 298
deleting 297
waiting for 303
waiting for a specified time 301

condition variable attributes object
creating 305
deleting 306

context
getting credential from 1122
setting 350

context handle
destroying 688
rpc_sm_destroy_client_context routine 671

control program
RPC 369

converting
date to string 361
time to string 361

creating
a condition variable 298
a mutex 324
condition variable attributes object 305
mutex attributes object 329
thread attributes object 279

creating a thread 307
inherit scheduling attribute 281, 285
priority attribute 282, 287
scheduling policy attribute 283, 289
stacksize attribute 284, 291

creating thread-specific data key value 320

credential
getting from GSSAPI security context 1122
getting PAC from 1121

ctime_r routine 361

D
daemon

DCE host 369
data

generating key value for 320
uses for 320

data structure
pthread_once_t 334

data structures
client entry point vector 388
interface identifier 386
interface identifier vector 387
manager entry point vector 387
protocol sequence vector 390
statistics vector 390
UUID vector 394

data types
rpc_if_id_vector_t 387
rpc_protseq_vector_t 390
boolean32 382
rpc_binding_handle_t 381
rpc_binding_vector_t 381
rpc_codeset_mgmt_t*O 383
rpc_cs_c_set_t*O 382
rpc_ep_inq_handle_t 384
rpc_if_handle_t 386
rpc_if_id_t 387
rpc_mgr_epv_t 388
rpc_ns_handle_t 388
rpc_stats_vector_t 390
unsigned_char_t 393
unsigned_char_t * 389
uuid_vector_t 394

data types and structures 379
dce_acl_is_unauthenticated routine 984
dce_attr_sch_aclmgr_strings routine 34
dce_aud_clean routine 1006
dce_aud_event_table routine 1012
dce_aud_first routine 1014
dce_aud_get_event routine 1020
dce_aud_last routine 1024
dce_aud_modify_sstrategy routine 1028
dce_aud_rename routine 1043
dce_aud_save routine 1049
dce_aud_set_local_cell_uuid routine 1051
dce_aud_set_trail_size_limit() 1052
dce_aud_start_with_uuid 1070
DCE Audit Application Programming Interface 954
DCE host

daemon 369
DCE RPC Application Programming Interface 368
DCE RPC management commands 369
DCE RPC runtime routines 369
DCE RPC runtime services 369
DCE status codes 396
dced command 369

1610 IBM DCE for AIX, Version 2.2: Application Development Reference

delaying execution of a thread 310
delete permission 394
deleting

condition variable attributes object 306
mutex attributes object 330

deleting a condition variable 297
deleting a mutex 323
deleting a thread 311
delivery of cancel

requesting 352
delivery of cancels

enabling and disabling 343
enabling and disabling asynchronous delivery of

341
destination 829
destination values 803
Directory

context 730, 735, 746, 751
Information Tree 730, 751

directory
operations on 364

Directory
session 749
System Agent 730

disabling asynchronous delivery of cancels 341
disabling memory 672, 689
DS_C_ATTRIBUTE_LIST 730
DS_C_AVA 735
DS_C_CONTEXT 730, 735, 739, 741, 744, 746, 749,

751
DS_C_ENTRY_MOD_LIST 741
DS_C_NAME 730, 735, 739, 741, 744, 746, 749, 751
DS_C_SESSIO N 749
DS_C_SESSION 730, 733, 735, 739, 741, 744, 746,

751
DS_DEFAULT_SESSION 733
DS_feature 757
DS_FILE_DESCRIPTOR 733
DS package 766
DSA 730
dynamic endpoint 379

E
enabling asynchronous delivery of cancels 341
enabling memory 673, 690
endpoint 379

dynamic 379
well-known 379

endpoint map inquiry handle 384
endpoint portion of a string binding 392
entry point vector

client 388
manager 387

environment variables
RPC_DEFAULT_ENTRY 378
RPC_DEFAULT_ENTRY_SYNTAX 378

error codes 396
error termination of a thread 307
exception codes 396
exceptions 396

for RPC applications 396

exceptions (continued)
rpc_x_nomemory 690

expiration time
obtaining 314

F
fast mutex 332
freeing memory 674, 691
frequently used routine parameters 394
fully bound binding handle 379

G
GDS package 781
generating

pseudorandom numbers 363
get_event_name_from_number routine 1074
get_event_number_from_name routine 1075
Get Time 874
Get User Time 875
getting

ACL types protecting object 1180
pointers to directories 364
POSIX semantics 1182
UNIX group entry 1533
UNIX-style password 1539

global mutex
locking 322
unlocking 353

global name 385
gmtime_r routine 361
Greenwich Mean Time 876
Greenwich Mean Time Zone 878
group

UNIX-style entry 1533
gss_accept_sec_context 1076
gss_acquire_cred 1080
gss_compare_name 1082
gss_context_time 1084
gss_delete_sec_context 1085
gss_display_name 1087
gss_display_status 1089
gss_import_name 1091
gss_indicate_mechs 1093
gss_init_sec_context 1094
gss_inquire_cred 1099
gss_process_context_token 1101
gss_release_buffer 1102
gss_release_cred 1103
gss_release_name 1104
gss_release_oid_set 1105
gss_seal 1106
gss_sign 1108
gss_unseal 1110
gss_verify 1113
gssdce_add_oid_set_member 1115
gssdce_create_empty_oid_set 1116
gssdce_cred_to_login_context 1117
gssdce_extract_creds_from_sec_context 1119
gssdce_extract_PAC_from_cred routine 1121
gssdce_extract_PAC_from_sec_context routine 1122

Index 1611

gssdce_login_context_to_cred 1123
gssdce_register_acceptor_identity 1125
gssdce_set_cred_context_ownership 1127
gssdce_test_oid_set_member 1129

H
handle

binding 379
endpoint map inquiry 384
IDL encoding service 385
interface 385
name service 388

I
identifier

comparing 312
interface 386

idl_ macros 368
IDL base types 368
idl command 368
IDL compiler 368
IDL encoding service handle 385
IDL-to-C mappings 368
idl_void_p_t type 683, 689, 691
idlbase.h 369
immediate subordinates 739
inherit scheduling attribute

obtaining 281
usefulness 285

initialization
one-time 334

initializing a condition variable 298
insert permission 394
interface

C workspace 839
Interface Definition Language compiler 368
interface handle 385
interface identifier 386
interface identifier data structure 386
interface identifier vector data structure 387
interface specification 385
ip protocol sequence 389

K
key

searching for ACL 1190
key value

generating for thread-specific data 320
obtaining thread-specific data for 317
setting thread-specific data for 350

L
leaf entry 730
local representation 830, 837
Local Time 880
Local Zone 882
localtime_r routine 361

locking a global mutex 322
locking a mutex 325, 327

M
macros

idl_ 368
Make Any Time 884
Make ASCII Relative Time 886
Make ASCII Time 888
Make Binary Relative Time 890
Make Binary Time 891
Make Greenwich Mean Time 893
Make Local Time 894
Make Relative Time 896
management commands 369
manager entry point vector 387
manager entry point vector data type 387
MDUP package 784
memory

allocating 668, 683
disabling 672, 689
enabling 673, 690
freeing 674, 687, 691
insufficient 690
management 675, 677, 679, 692, 694, 696
reclaiming client resources 671, 688
rpc_sm_allocate routine 668
rpc_sm_destroy_client_context routine 671
rpc_sm_disable_allocate routine 672
rpc_sm_enable_allocate routine 673
rpc_sm_free routine 674
rpc_sm_get_thread_handle routine 675
rpc_sm_set_client_alloc_free routine 677
rpc_sm_set_thread_handle routine 679
rpc_sm_swap_client_alloc_free routine 681
setting client 677, 694
swapping memory 681, 698

modify_entry 741
Multiply a Relative Time by a Real Factor 898
Multiply Relative Time by an Integer Factor 900
mutex

creating 324
definition of 324
deleting 323
fast 332
locking 325, 327
recursive 332
unlocking 328

mutex attributes object
creating 329
deleting 330

N
name

cell 385
cell-relative 385
global 385

name parameter 395
name service handle 388

concurrency control 388

1612 IBM DCE for AIX, Version 2.2: Application Development Reference

name service interface operations 369
name_syntax parameter 395
name syntaxes

valid 396
ncacn_ip_tcp protocol sequence 389
ncadg_ip_udp protocol sequence 389
network address portion of a string binding 392
Network Computing Architecture 389
new primitive routines 270
non-portable routines 270
nonlocal representation 830, 837
nonreentrant library packages

calling 322
normal termination of a thread 307, 313
np suffix 270
NSI

ACL permissions for routines 394
NSI operations 369

O
object

public copy 823
object UUID portion of a string binding 391
OM

attribute names 767, 782
class names 766, 782

P
parameters

frequently used routine 394
partial outcome qualifier 739
partially bound binding handle 379
password

getting UNIX-style 1539
permissions (ACL) for NSI routines 394
Point Time 902
POSIX threads 369
predicate 298

definition of 298
priority

obtaining for thread 315
setting for thread 345, 347

priority attribute 282, 287
priority inversion

avoiding 325
priv_attr_trig_query routine 1206
private object 730, 735, 749, 755, 815, 821, 829, 832,

834 , 836
privilege attribute certificate

comparing to ACL 1187
from GSSAPI credential 1121
reading 1178

processor
causing thread to release control of 354

programmer commands 369
protocol sequence 389
protocol sequence portion of a string binding 392
protocol sequence vector data structure 390
protocol sequences

valid 389

pthread_getunique_np routine 318
pthread_pseudo_thread_base_end 336
pthread_pseudo_thread_base_start 338
public object 802, 821, 829

R
rand_r routine 363
random number generator

pseudorandom numbers 363
Rdacl Interface for User-Written Back-end Code 1130
RDN 730
read permission 394
readdir_r routine 364
reading

pac 1178
reclaiming client resources 671, 688
recursive mutex 332
Relative Distinguished Name 730
Relative Time 903
replacing

ACL 1192
routines

Audit API support 954
DCE RPC runtime 369
RPC runtime 370

RPC
ACL permissions for NSI routines 394
Application Programming Interface 368
control program 369
data types and structures 379
exceptions 396
management commands 369
name service interface operations 369
runtime routines 369
runtime services 369
structures and data types 379

rpc_binding_handle_t data type 381
rpc_binding_vector_t data type 381
rpc_cs_c_set_t data type 382
RPC_DEFAULT_ENTRY 378
RPC_DEFAULT_ENTRY environment variable 395
RPC_DEFAULT_ENTRY_SYNTAX 378
RPC_DEFAULT_ENTRY_SYNTAX environment variable

396
rpc_ep_inq_handle_t data type 384
rpc_if_handle_t data type 386
rpc_if_id_t data type 387
rpc_if_id_vector_t data type 387
rpc_mgmt_set_call_timeout 520
rpc_mgr_epv_t data type 388
rpc_ns_handle_t data type 388
rpc_sm_allocate routine 668
rpc_sm_destroy_client_context routine 671
rpc_sm_disable_allocate routine 672
rpc_sm_enable_allocate routine 673
rpc_sm_free routine 674
rpc_sm_get_thread_handle routine 675
rpc_sm_set_client_alloc_free routine 677
rpc_sm_set_thread_handle routine 679
rpc_sm_swap_client_alloc_free routine 681
rpc_stats_vector_t data type 390

Index 1613

rpc_x_no_memory exception 690
rpccp command 369
runtime routines, DCE RPC 369
runtime services, DCE RPC 369

S
SA package 786
scheduling policy

obtaining for thread 316
setting for thread 347

scheduling policy attribute 289
obtaining 283

searching
ACL using key 1190

sec_acl_mgr_configure routine 1176
sec_acl_mgr_get_access routine 1178
sec_acl_mgr_get_manager_types routine 1180
sec_acl_mgr_get_printstring routine 1184
sec_acl_mgr_get_types_semantics routine 1182
sec_acl_mgr_is_authorized routine 1187
sec_acl_mgr_lookup routine 1190
sec_acl_mgr_replace routine 1192
sec_attr_util_sch_free_acl_mgrs routine 1219
sec_attr_util_sch_free_binding routine 1220
sec_cred_inq_auth_service_info routine 1242
sec_key_mgmt_generate_key 1264
sec_key_mgmt_get_nth_key routine 1272
sec_login_inq_pag routine 1311
sec_login_purge_context_exp routine 1319
sec_login_tkt_request_options routine 1332
sec_login_validate_cert_auth routine 1336
sec_rgy_enable_nsi routine 1438
sec_rgy_plcy_get_override_info routine 1493
sec_rgy_plcy_set_override_info routine 1496
sec_rgy_rep_admin_become_master 1502
sec_rgy_rep_admin_become_slave 1503
sec_rgy_rep_admin_change_master 1504
sec_rgy_rep_admin_destroy 1505
sec_rgy_rep_admin_info 1507
sec_rgy_rep_admin_info_vers routine 1508
sec_rgy_rep_admin_init_replica routine 1510
sec_rgy_rep_admin_maint 1511
sec_rgy_rep_admin_mkey 1512
sec_rgy_rep_admin_set_sw_vers 1513
sec_rgy_rep_admin_stop 1514
sec_rgy_rep_get_sw_vers 1506
sec_rgy_unix_getgrent routine 1533
sec_rgy_unix_getpwent routine 1539
sec_rgy_unix_getpwnam 1541
selecting

thread attributes object 280
semantics

getting for object 1182
server

remote procedure call completion time 520
server binding handle 379
server threads

memory management 675, 679, 692, 696
service control attribute 735
service interface 839
service interface (xom) 801

services, DCE RPC runtime 369
setting client memory 677, 694
signal

examine and change blocked 358
examine and change synchronous 355
examine pending signals 357
waiting for asynchronous 360

signaling a wake-up 300
Span Time 904
specification

interface 385
stack

changing minimum size of 291
obtaining mimimum size of 284

stacksize attribute 291
obtaining 284

statistics vector data structure 390
status codes 396
status parameter 396
string 817

printable ACL 1184
unsigned character 393

string binding 390
endpoint portion 392
network address portion 392
object UUID portion 391
option portion 393
protocol sequence portion 392

string parameter 396
string UUID 393
structures and data types 379
subclass 827
subobject 834
subobjects 802, 815
subroutine

asctime_r 361
ctime_r 361
gmtime_r 361
localtime_r 361
rand_r 363
readdir_r 364

Subtract Time 906
suffix

np 270
superclass 819
swapping client memory 681, 698
synchronization

mutex 324
syntaxes

valid name 396

T
target object 735, 739, 746, 749
termination

waiting for 319
termination of a thread

error 307
events that cause 307
normal 307, 313
premature successful completion 313

1614 IBM DCE for AIX, Version 2.2: Application Development Reference

termination of a thread (continued)
without returning from start routine 313

test permission 394
thread

canceling 292
canceling if signal is received by process 351
creating 307
delaying execution of 310
deleting 311
error termination 307
events that cause termination 307
normal termination 307, 313
obtaining current priority of 315
obtaining current scheduling policy of 316
obtaining identifier of 340
OS/2 336, 338
releasing processor 354
sequence number 318
setting current priority of 345
setting current scheduling policy and priority of 347
thread-specific data of 320
waiting for a mutex 325
waiting for the termination of 319
waking 296, 300
wrapper 336, 338
yielding processor to another thread 354

thread attributes object
creating 279
deleting 280

thread creation
inherit scheduling attribute 281, 285
priority attribute 282, 287
scheduling policy attribute 283, 289
stacksize attribute 284, 291

thread-specific data 317
generating key value for 320
obtaining 317
setting 350
uses for 320

threads 369, 380
memory management 675, 679, 692, 696

time
adding interval to current time 314
obtaining expiration 314
RPC timeout 520

U
unlocking a global mutex 353
unlocking a mutex 328
unsigned_char_t * data type 389
unsigned_char_t data type 393
unsigned character string 393
UUID

string 393
uuid parameter 396
UUID vector data structure 394
uuid_vector_t data type 394

V
value position 836

vector
client entry point 388
manager entry point 387

W
waiting for condition variable 301, 303
waking a thread 296, 300
well-known endpoint 379
workspace 738
write permission 394

Y
yielding to another thread 354

Index 1615

1616 IBM DCE for AIX, Version 2.2: Application Development Reference

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

