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Preface

The IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide
provides an introduction to the Application Programming Interfaces (APIs) provided
for each Distributed Computing Environment (DCE) component.

Audience
This IBM® guide is written for application programmers with AIX®, Solaris, or UNIX®

operating system and C language experience who want to develop and write
applications to run on DCE. It does not assume that you have prior knowledge of,
or experience with, designing and writing distributed applications using the Open
Software Foundation’s (OSF) DCE services. Ideally, you should be able to perform
the following:

v Edit, browse, and copy AIX and Solaris files

v Print files

v Write, compile, link, debug, and run C programs on AIX and Solaris.

A good working knowledge and understanding of the following would also be
helpful:

v Structured programming techniques

v Computer communications over a network using Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP)

v Concepts behind a distributed application.

Some exposure to the AIX, Solaris, or UNIX operating systems is helpful but not
essential to use this guide

Applicability
This revision applies to the IBM DCE 3.2 for AIX and Solaris offering and related
updates. See your software license for details.

Purpose
The purpose of this guide is to introduce you to designing, writing, compiling,
linking, and running distributed applications on IBM AIX and Solaris operating
systems. It is for use specifically with the IBM DCE for AIX and Solaris products
running on AIX and Solaris machines.

Document Usage
The IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide
consists of three books, as follows:

v IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Introduction and Style Guide

v IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide—Core
Components

v IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Directory Services

© Copyright IBM Corp. 1990, 2001 xi



Related Documents
For additional information about the Distributed Computing Environment, refer to the
following documents:

v IBM DCE Version 3.2 for AIX and Solaris: Introduction to DCE

v IBM DCE Version 3.2 for AIX and Solaris: Administration Commands Reference

v IBM DCE Version 3.2 for AIX and Solaris: Application Development Reference

v IBM DCE Version 3.2 for AIX and Solaris: Administration Guide

v OSF DCE GDS Administration Guide and Reference

v OSF DCE/File-Access Administration Guide and Reference

v OSF DCE/File-Access User’s Guide

v IBM DCE Version 3.2 for AIX and Solaris: Problem Determination Guide

v OSF DCE Testing Guide

v OSF DCE/File-Access FVT User’s Guide

v Application Environment Specification/Distributed Computing

v OSF DCE Technical Supplement

v IBM DCE Version 3.2 for AIX: Release Notes

v IBM DCE Version 3.2 for Solaris: Release Notes

For a detailed description of DCE 3.2 for AIX and Solaris documentation, see the
IBM DCE Version 3.2 for AIX and Solaris: Introduction to DCE.

Typographic and Keying Conventions
This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[ ] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

dcelocal
The OSF variable dcelocal in this document equates to the AIX and Solaris
value /opt/dcelocal.

dceshare
The OSF variable dceshare in this document equates to the AIX and Solaris
value /opt/dcelocal.

This guide uses the following keying conventions:
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<Ctrl-x> or | x
The notation <Ctrl-x> or | x followed by the name of a key indicates a
control character sequence. For example, <Ctrl-c> means that you hold
down the control key while pressing <c> key.

<Enter>
The <Enter> notation refers to the key on your terminal or workstation that
is labeled with the word Enter or Return, or with a left arrow.

Entering commands
When instructed to enter a command, type the command name and then
press the <Enter> key. For example, the instruction ″Enter the IDL
command″ means that you type the IDL command and then press the
<Enter> key.

Terminology Used in This Book
Although every attempt has been made to conform to Systems Application
Architecture® (SAA®) terminology guidelines, you must keep in mind that the DCE
technology has been developed from the UNIX environment.

Notes:

1. Throughout this document, the terms API, call, and routine all refer to the same
AIX and Solaris application programming interface that is referenced. For
example, rpc_binding_free API, rpc_binding_free call, and rpc_binding_free
routine, all refer to the same rpc_binding_free API.

2. Throughout this document, all references to individual DCE components (such
as RPC) refer to that component with the AIX and Solaris product. For example,
references to RPC, DCE RPC, and IBM DCE for AIX and Solaris RPC all refer
to the RPC component of IBM DCE for AIX and Solaris.

Pathnames of Directories and Files in DCE Documentation
For a list of the pathnames for directories and files referred to in this guide, see the
IBM DCE Version 3.2 for AIX and Solaris: Administration Guide—Introduction and
OSF DCE Testing Guide.
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Chapter 1. Introduction to DCE Application Programming

The majority of this first chapter consists of a fairly detailed overview of each of the
separate steps that a developer usually has to perform (or have the application
perform) from the beginning of coding to the end of execution of a successful DCE
application.

Before you begin a serious study of the contents of any part of this guide, or indeed
of any other book in the DCE documentation set, you should read the IBM DCE
Version 3.2 for AIX and Solaris: Introduction to DCE. It contains clear and
comprehensive overviews, with illustrations, of all the DCE components and of the
integrated DCE as a whole; many concepts and details are explained there that are
necessary to a full understanding of what is described here.

If you do not find information about topics you are interested in either in this guide
or in the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Reference, you should also look in the IBM DCE Version 3.2 for AIX and Solaris:
Administration Guide and the IBM DCE Version 3.2 for AIX and Solaris:
Administration Commands Reference. For example, the DCE Cell Directory Service
(CDS) is not accessed directly by applications (except through DCE RPC NSI or
through XDS) so most of the discussion of CDS as a separate component is found
in the administration documentation. Although the DCE Security Service is
documented in the development books, certain aspects of it important to application
developers (for example, adding new principals to the security registry database)
are found only in the administration books.

Several key methods underlie the successful development of DCE applications
programs. These methods, explained in this chapter, are as follows:

v A set of tools for distinguishing the component applications programs, for
describing how they work together, and for manipulating and managing DCE
components both locally and remotely.

v A method for establishing the interface between the component parts.

v Methods to install and register a server, so that clients can use it.

v Methods to set up clients so they can use servers.

Development Overview
Most of the effort of developing a DCE application usually lies in the familiar steps
of planning, writing and compiling the necessary C code, linking the result with the
DCE library and other modules, and executing it (perhaps repeatedly). However,
there is an important preliminary task which must be performed before you write
any other code. Before you can implement the application’s client and server, you
must write and compile an interface definition file in which you define the
application’s client/server interface.

This interface, defined in the DCE Interface Definition Language (IDL), consists of a
set of prototypes for the remote procedure calls your client(s) will be requesting
your server(s) to execute. After you have written this file, you compile it with the
DCE IDL compiler. The final output of IDL compilation is a pair of object files, one
for the server module and one for the client, which you must later link with the
compiled output of your server and client implementation code. These two IDL
output files contain the server and client stub code, where all the details of remote
execution, data transfer, and so on, are managed (in conjunction with the DCE
runtime).
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The IDL compiler also generates a header file for inclusion in the server and client
source files. It contains all the declarations that result from the IDL file definitions.
Among these are, for example, the interface specification identifier, which will be
used at runtime to describe the interface being defined in the programs.

Once you have linked the stub files (and the DCE library) to their respective client
and server modules, the IDL-generated stubs make the client and server seem to
communicate directly through the operation signatures you defined in the original
.idl file, although in actuality client/server communications pass back and forth
through layers of stub and runtime processing, which are necessary to send and
receive the data over the network. Figure 1 illustrates how the combination of IDL
(by means of the stubs it generates) and the RPC runtime routines shields both
client and server from the details of network communications.

Once the work of defining an interface has been completed, the task of
implementing the interface (that is, coding the operations, along with the rest of the
necessary initialization and management routines, in some programming language)
begins. The rest of this chapter consists of detailed explanations of the DCE
application development steps from start to finish.

For the complete code for a generic sample application that illustrates the
recommended policies, see path /opt/dcelocal/examples/demo/generic_app. The
code is as generic as possible in the sense that it demonstrates things most servers
need to do. This generic server code is located in the sample_server.c and
sample_server.h modules. The application—specific portion consists of a set of
examples to illustrate various styles of RPC data usage, including: pointers, pipes,
and context handlers. These illustrations are located in the following files:

v sample_manager.c (the serverside, illustrated “Sample_manager.c” on page
230)

v sample_client.c (the client side, illustrated “Sample_client.c” on page 234)

Calling code

RPC interface RPC interface

Client stub Server stub

RPC runtime RPC runtime

Remote procedure

RPC Client RPC Server

return
data

input arguments
Actual path of data

apparent path
of data

due to IDL
and RPC

Figure 1. The Combined Effect of IDL and the RPC Runtime

2 IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide — Introduction and Style



The sample.idl contains a set of sample interface definitions for the illustrated
usages.

The generic server implemented by sample_server.c demonstrates a variety of
tasks most servers need to carry out, such as exporting bindings, creating an
authentication identity, establishing an ACL manager, and handling asynchronous
signals. As often as possible, the bulk of each task is implemented as one or more
separate functions. This modularity makes it easier to understand the requirements
for coding each task because each function or related set of functions can be
studied separately. Also, because the tasks performed are fairly generic, the
functions should be reusable by many servers in something close to the form
presented in the sample application. Each of the DCE components (with the
exception of CDS, accessed through the RPC NS API) is discussed in depth in
separate parts of this guide.

Each of the DCE components (with the exception of CDS, which is accessed
through the RPC NS API) is discussed in depth in separate parts of this guide. You
should also refer often to the IBM DCE Version 3.2 for AIX and Solaris: Application
Development Reference, which contains reference pages for all of the DCE library
routines mentioned in the following sections.

Overview of DCE Application Development Steps
The rest of this chapter consists of a step-by-step checklist of every single one of
the decisions that a programmer must make in developing a typical DCE
application. Each set of decisions or choices is combined into one step. The
combination of all these steps takes you from the initial coding stages into and
through the normal course of execution of the application itself. The underlying
intention of this arrangement is to give you a useful mental model of the overall
code development process.

The four basic phases of DCE application development are as follows:

A. CLIENT and SERVER: Define the IDL interface [Steps A1 to A4]

B. SERVER: Set up and listen [Steps B1 to B8]

C. CLIENT: Bind to and invoke the server [Steps C1 to C4]

D. SERVER: Service request(s) [Steps D1 to D5]

Following is an overview list of all 21 steps, separated into the four main phases
previously described. Each step’s numeral is followed by a / (slash) and the terms
Client and/or Server to indicate whether it applies to the application’s server or
client, or both.

A. CLIENT and SERVER: Define the IDL interface

A1/Client and Server:
Generate the interface UUID

A2/Client and Server:
Write the .idl file

A3/Client and Server:
Write the .acf file (optional)

A4/Client and Server:
Process the files with the IDL compiler

B. SERVER: Initialization
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B1/Server:
Set up for serviceability

B2/Server:
Set up the server’s objects

B3/Server:
Set up security

B4/Server:
Define the manager entry point vectors

B5/Server:
Register the server

B6/Server:
Specify multithreadedness

B7/Server:
Listen for incoming service requests

B8/Server:
Clean up when server terminates

C. CLIENT: Bind to and invoke the server

C1/Client:
Multithreaded client design

C2/Client:
Import the binding information from the namespace (CDS)

C3/Client:
Annotate the binding handle for security

C4/Client:
Invoke an RPC interface operation

D. SERVER: Service the request

D1/Server:
Get the client’s credentials

D2/Server:
Get the object’s access control list

D3/Server:
Make the authorization decision

D4/Server:
Service the request

D5/Server:
Return the results to the client and resume listening

Environment Variables
Environment variables are variables used by DCE that customers can set
themselves. See the IBM DCE Version 3.2 for AIX and Solaris: Application
Development Guide—Core Components for more comprehensive information of
DCE environment variables.
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DCE Application Development Tools
The following DCE tools allow developers to define and manage a set of programs
intended to run in a DCE environment.

v Unique identification

Because DCE involves the interaction of many distinct programs, operating on
several processors that may be quite remote from each other, every entity (such
as programs, interface definitions, and so forth) needs a unique identifier. This
identifier is provided by the UUID generator.

v Interface definition language

Applications programs that are to work within DCE can be written in any of
several programming languages. The two halves of a client/server pair need not
be in the same language. In order to permit this flexibility, each application’s
client/server interface uses a common language, called IDL. It is supported by an
IDL Compiler.

v Attribute configuration language

To allow developers to control the interface between local applications code and
the RPC interface, there is an optional attribute configuration language supported
by the IDL compiler.

v Remote DCE management

A host daemon (dced) and a control program (dcecp) provide capabilities for
management of a host and its servers.

The DCE UUID Generator
The UUID generator uuidgen is an interactive utility that creates UUIDs (universal
unique identifiers). A UUID is a hexadecimal number that contains information that
makes it unique from all other UUIDs. Applications use UUIDs to identify many
kinds of entities, including interface definitions. Consequently, application
developers typically use the UUID generator when they are creating their interface
definition files.

To run the UUID generator, issue the uuidgen command. This command offers
several options, including an option to create a template interface definition file (an
.idl file) containing a newly generated interface UUID. For complete information
about generating UUIDs and template interface definition files, see the IBM DCE
Version 3.2 for AIX and Solaris: Application Development Guide—Core
Components. See this volume also for a discussion of UUIDs and their use in DCE
applications. Refer to the uuidgen(1rpc) reference page for a description of the
uuidgen utility and its options.

DCE Interface Definition Language
As was mentioned earlier in this chapter, developing a DCE application involves
writing and compiling an interface definition, which defines the application’s
client/server interface. Application developers use IDL to write the interface
definition. IDL is a high-level descriptive language whose syntax resembles that of
ANSI C. IDL is a declarative, not a procedural, language. Some of the important
attributes specified with IDL are the following:

v For interfaces

uuid Specifies the interface’s UUID.

version
Specifies the interface major and minor version number.
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v For parameters

in

Signifies a parameter whose value is passed from the client to the
server.

out

Signifies a parameter whose value is passed from the server to the
client.

v For data types

handle
Specifies a customized binding handle. Chapter 4 (on “Binding Handles”
on page 95) discusses binding handles and binding methods in more
detail.

context_handle

Specifies a context handle, which is a pointer to state information that the
server uses and which is maintained across RPC invocations. An
example of a context handle is a file pointer. For more information about
context handles, see the IBM DCE Version 3.2 for AIX and Solaris:
Application Development Guide—Core Components.

IDL’s operation attributes include specifiers for execution semantics: whether the
operation can be safely executed more than once, whether a response is expected,
and so on. The default is that operations can be executed at-most-once.
Parameters (the arguments supplied by the client when it makes the remote call)
can be specified as input to the server, output to the client, or both. See the IBM
DCE Version 3.2 for AIX and Solaris: Application Development Guide—Core
Components for a complete description of IDL syntax and usage.

The DCE IDL Compiler
The DCE IDL compiler idl processes interface definitions written in IDL and
generates header files and stub object code. (The compiler generates source code
for the stubs in ANSI C.) The code generated from an interface definition by the
compiler includes client and server stubs.

The compiler also generates a data structure called the interface specification,
which contains identifying and descriptive information about the compiled interface,
and creates a companion global variable, the interface handle, which is a reference
to the interface specification. Each header file generated by the IDL compiler
contains the reference the application code needs to access the interface handle.
The interface handle allows the application code to refer to the interface
specification in calls to the RPC runtime. Runtime operations obtain required
information about the interface, such as its UUID and version numbers, directly from
the interface specification.

You run the IDL compiler by issuing the idl command. See the idl(1rpc) reference
page for a description of the idl command and its options.

The Attribute Configuration File
Application developers can use an optional attribute configuration file to tailor how
an RPC interface appears to local application code and how the local application
code interacts with the RPC interface. The attribute configuration file is written in
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the attribute configuration language, which is a companion language to IDL. When
the IDL compiler is invoked, it searches for an attribute configuration file in addition
to processing the interface definition file.

An attribute configuration file modifies how the IDL compiler interprets an interface
definition. For example, an attribute configuration file can specify a subset of
operations declarations for a client stub so that the client stub contains declarations
for only the operations that the client application code needs for its remote
procedure calls. Limiting the client’s access to the remote procedures offered by
servers reduces the size of the client stub. Another action you can control with an
attribute configuration file is defining how a client establishes a binding with a server
that implements the called interface.

For complete information on the set of attribute configuration file attributes, see the
IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide—Core
Components.

The DCE Host Daemon
For full DCE configurations, each DCE host runs a DCE host daemon (dced) to
provide remote DCE management services for a host and its servers. The dced
provides remote management of DCE-related host and server data, it provides
remote control of a host’s servers, and it maintains host-specific state for DCE such
as the host’s login identity. For the slim client, no dced runs, therefore a slim client
configuration cannot be used on a machine that is to be an application server. From
the server’s perspective, dced is a central point where all servers can consistently
inform their host about themselves. From the host’s perspective, dced gives clients,
management applications, and DCE administrators (via dcecp) a focal point from
which to find out about (and even control) servers.

The most important feature of the dced is that it provides the endpoint mapper
service. This service maintains the host’s local endpoint map for local RPC servers
and looks up endpoints for RPC clients. An endpoint is the address of a specific
instance of a server that is executing in a particular address space on a given host.
Each endpoint can be used on a host by only one server at a time. The endpoint
map is the system-specific database on each host, in which servers register their
endpoints and associated addressing information (information about communication
protocols, objects, and so on). A server registers separate endpoints for each of its
RPC interfaces and any objects the server offers with the interface.

Other remote services of dced include host data management, server control,
security validation, and key table management. These are described in detail in the
IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide—Core
Components.

The DCE API
DCE provides a wide range of application programming interface routines. All of the
following are available:

v A set of general DCE routines provide the means for configuration, handling
messages, using the backing store, and managing the DCE daemon, as well as
other purposes.

v The DCE thread routines provide thread control, including thread creation,
conditional waiting, priorities, and locks.

v The DCE remote procedure call routines provide tools to establish and manage
servers, and also include utilities for use by clients and by servers.
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v The DCE directory service routines are a set of X/OPEN directory service
routines that provide access to the Cell Directory Service (CDS).

v The DCE distributed time service routines obtain timestamps, translate between
timestamp formats, and perform time calculations. The routines can be used from
server or clerk systems to determine event sequencing, duration, and scheduling.

v The DCE security service routines allow developers to create network services
with complete access to all the authentication and authorization capabilities of
DCE Security Service and facilities.

The DCE Control Program
Although the DCE control program, dcecp, is intended as an administrator’s tool,
developers will find it invaluable for examining and modifying many aspects of the
DCE environment. It can be used in constructing installation scripts, as in the
following examples:

v For exporting binding information to a namespace, instead of putting C code in
your application to call the NSI routines, rpc_ns_ *( ), you could write a dcecp
script that calls rpcentry export and its related commands.

v For installation, you might need to create a principal name and/or set an access
control list (ACL) on it. Instead of writing C code in your application’s initialization
section to call sec_rgy_pgo_ *( ) and sec_acl_ *( ), you could ship a dcecp
script that includes the following:

principal create ...
acl mod /.:/sec/principal/...

v It is recommended that you have dced start your application by using server
configuration information. It is generally better to do this by writing a dcecp script
that sets up the server configuration information (the arguments to start the
executable) rather than doing it with C code that calls the dced_server_create()
API.

In general, dcecp scripts for server configuration allow better flexibility than
embedded C code. Furthermore, unlike embedded code, the script does not persist
after configuration is done.

The DCE control program can also be useful for debugging, as the following
examples show:

v You can check exported information in the namespace with rpcentry show or
rpcgroup, rpcprofile show.

v You can use server ping to see if your server is running and receiving requests.

v If your server was set up to be started by dced, you can start it by using the
server start command and can view the startup parameters by using server
show -executing.

The Interface Definition
Once you have designed your DCE application and have decided which procedures
are needed, and which will be remote procedures, the next step in developing the
application is to write one or more interface definitions that describe the remote
procedures your application’s clients will be requesting your application’s servers to
run.

To create an interface definition, use the following steps:

1. Generate an interface UUID and a skeleton .idl file with the uuidgen utility.
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2. Write your interface operation declarations in IDL, using the skeleton .idl file you
generated with uuidgen as a base.

3. Write the attribute configuration file. This is an optional step that you take only if
you want to alter the IDL output in various ways.

4. Compile the completed interface definition file with the IDL compiler.

The following sections describe these steps in more detail.

Generating the Interface UUID
Interfaces, like most other objects and entities in DCE, are identified by associating
each one with a 128-bit universal unique identifier (UUID). An interface’s UUID
serves to identify it far and wide throughout DCE. Every interface in a DCE
application must have a UUID assigned to it.

When you define a new interface, you must generate a UUID for it. Consequently,
the first step in developing an interface definition is to run the uuidgen utility to
generate a UUID for the interface.

Typically, you run the uuidgen command with the -i option when generating an
interface UUID. The command line has the following syntax:

uuidgen -i > your_interface_name.idl

where your_interface_name is the name you have given your interface, and .idl is
the suffix that all interface definitions use by convention. The uuidgen utility
generates a file named your_interface_name.idl, that contains a skeleton of an
interface definition and includes the newly generated UUID for the interface. See
the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Core Components for more information about the contents of this skeleton
file. Refer to the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Reference for a complete description of uuidgen.

Writing the Interface Definition File
The .idl file is where the set of remote operations that constitute the interface are
defined. The .idl file defines and characterizes the interfaces to the server
implementations of the remote operations (which you write, in C source code, then
compile and link to the stub code output by the IDL compiler). Thus, an .idl file’s
contents is like a set of network prototypes for a set of operations. The IDL
definitions in the interface definition file determine not only how the operations
“look” to client and server (that is, the operations’ call signatures, parameter types,
and so on), but also what the data looks like when it is transmitted back and forth
between clients and servers in a distributed application.

An interface definition file consists of the following two basic components:

v An interface header

An interface header contains an interface UUID, interface version numbers, and
an interface name. An interface name is an easy-to-read local name that is not
guaranteed to be unique; it is merely a convenience. It is helpful if the interface
name reflects the nature or purpose of the interface.

v An interface body

An interface body declares any application-specific data types and constants, and
contains directives for including data types and constants from other interfaces.
The interface body also contains the operation declaration of each remote
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procedure to be accessed through the interface. An operation declaration
identifies the parameters of a procedure in terms of their data types, access
method, and call order, and declares the data type of the return value (if any).

The skeletal interface definition produced by the uuidgen utility provides an
interface header that contains the newly generated UUID for the interface, a version
number, and a dummy string INTERFACENAME. Replace this dummy string with
the name of your interface, then add any additional interface header attributes your
application requires. (See the IBM DCE Version 3.2 for AIX and Solaris: Application
Development Guide—Core Components for a complete description of interface
header attributes).

The skeletal interface definition file also provides an interface body, which consists
solely of { }, that is, an empty pair of braces. You fill in the space between the
braces with your RPC interface’s import, constant, type, and operation declarations,
written in IDL. The IBM DCE Version 3.2 for AIX and Solaris: Application
Development Guide—Core Components explains this process in more detail. In
addition, the same volume for a complete description of the IDL syntax for
specifying import, constant, type, and operation declarations.

Note that a server can implement more than one interface. In this case, you define
each interface in a separate .idl file and compile it separately with the IDL compiler.
You then link the implemented interface operations in various source code files with
the IDL output.

Writing the Attribute Configuration File
The attribute configuration file (.acf) is an optional additional input file to the IDL
compiler, that, if present, affects the IDL compiler’s output in various ways. The
difference between the purpose of the .idl and an .acf file is that while the .idl file
defines how the network communications between the client and server are
handled, the .acf file, if one is present, affects only the interaction between the stub
code modules and the developer code that they support. In other words, changing
the contents of an .acf file has no effect on the network communications between
the client and server.

Nevertheless, some of the features offered by an .acf file are very important, and
they cannot be obtained by any other means. For example, The comm_status
attribute configuration file attribute allows the status code of a communications
failure that occurs in an RPC to be stored as a parameter or returned as a result,
rather than being raised to the caller code as an exception. This attribute can only
be declared in an .acf file; it cannot be declared in an .idl file. Another very
important function of the .acf file is the specification of a binding method to be used
by remote clients of the application. Three methods are available, as follows:

v auto_handle

v implicit_handle

v explicit_handle (the default)

These binding methods are described in “Chapter 4. Binding” on page 89 of this
guide. The binding method you choose determines how much attention your
server’s clients will have to devote to the upkeep of their binding handles.

See the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Core Components for a description of the attribute configuration file
attributes available for use in attribute configuration files.
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Processing the Files with the IDL Compiler
IDL’s input is an xxx.idl and (optionally) an xxx.acf file. Its default output is a
header ( xxx.h) file, that contains definitions and declarations derived from the input
for general use in the development source code, and two stub files, one for the
client and one for the server, which contain runtime code for marshalling and
unmarshalling, message handling, and all the other details of managing network
communications. The stub files are output as object code ( xxx_cstub.o and
xxx_sstub.o) suitable for linking with the developer’s compiled code. The IDL
compiler generates C source code as an intermediate step in the compilation
process, and the output of this step can also be saved in a pair of files (
xxx_cstub.c and xxx_sstub.c).

In order for a pair of client and server stubs to interoperate, they should be
generated from the same interface definition (.idl) file, but they do not have to be
generated with the same attribute configuration file (.acf). The compatibility rules for
interface version numbers also apply (see the IBM DCE Version 3.2 for AIX and
Solaris: Application Development Guide—Core Components ).

For further information on the IDL compiler, see the idl(1rp) reference page.

Server Initialization
Servers must initialize some data and notify various DCE services about
themselves prior to servicing RPC requests. At a minimum, servers must register
with DCE and then go into a wait state listening for remote procedure calls. In
addition to these minimum tasks, your application may first parse the input
arguments, obtain information about how it was started using dced API calls, and
establish the proper message tables and locale for internationalization.

DCE applications should be started in such a way that they can be controlled by
dced. When the server is installed, the dcecp server create operation (or a custom
made server management application) is commonly used to establish the server’s
configuration with its host dced. This configuration data includes among other
things the program name and its arguments, the CDS entry name to use for
exporting to the name service, and the valid starting methods. Installing your
servers in this way does not compromise their security because dced operations
are protected with ACLs, and the major advantages include the following:

v You do not have write any complex management code for each server

v Your servers are like other DCE servers in that they can all be managed
consistently

Depending on how the server is configured, the dced can start it in the following
ways:

v At boot time when the DCE daemon itself starts

v Explicitly via the dcecp server start operation (or from another application that
called dced_server_start( ))

v Automatically when a remote procedure call comes in for the server

v After a failure of the server it can be restarted

If dced did not start the server, it cannot control it. Therefore, one of the first things
your server should do is to verify that dced started it by obtaining the configuration
information, as in the following:
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server_t *server_conf;
.
.
.
dce_server_inq_server(&server_conf, &status);
if(status != error_status_ok) {

.

.

.

Additional routines, such as dce_server_inq_uuids( ) and
dce_server_inq_attr( ), are also useful for obtaining information from dced about
the running server.

Robust servers usually perform some or all of the following initialization tasks:

v Set up for serviceability which includes establishing message routing, debug
levels, and internal message tables.

v Set up the server’s objects. This includes creating and storing UUIDs for all
necessary objects and object types, and grouping objects by type.

v Set up the security environment which includes setting authentication information,
establishing the server’s principal identity, and creating ACL managers for each
type of ACL object.

v Define manager entry point vectors (EPVs) for each set of interface operations.

v Register the server with DCE. This includes the following: registering the
interfaces and the associated EPVs for the operations, establishing the network
protocol sequences and endpoints on which the server will listen, registering
endpoints and other binding information in the endpoint mapper service, and
exporting binding information to the CDS namespace.

v Specify how the server will be multithreaded.

v Listen for incoming requests for remote procedure calls.

v Clean up the program state and environment affected by the server prior to the
server’s termination.

Setting Up for Serviceability
Serviceability standardizes the server messages displayed or logged. It acts on a
set of standard message catalogs and application-specific catalogs generated from
the sams utility. Some of the obvious advantages the serviceability facility gives
servers over using the standard C library routines such as printf( ) and fprintf( )
include the following:

v Messages do not need to be hard-coded into applications

v Message routing can be better controlled

The following routine shows how a server can report a status code returned from an
API routine:

void
print_server_error(
char *caller, /* Routine that received the error. */
error_status_t status) /* Status we want to print the message for. */
{

dce_error_string_t error_string;
int print_status;
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dce_error_inq_text(status, error_string, &print_status);
dce_svc_printf(SERVER_ERROR_MSG, caller, error_string);

}

The dce_error_inq_text( ) routine looks up the status number in a standard table
and returns a string of text that describes the error status. The serviceability routine
dce_svc_printf( ) then displays the message, logs it to one or more files, or both.

The following code shows some typical tasks when setting up the server for
serviceability:
/* The following calls set up default routing of serviceability */
/* messages. */
for (i = 0, route_error = FALSE; (i < MAX_DEFAULT_ROUTES)
&& (!route_error); i++)
{

printf("Setting default route %s ...\n", default_routes[i]);
dce_svc_routing(default_routes[i], &status);
if (status != svc_s_ok)
{

print_server_error("dce_svc_routing(default_routes[i])", status);
}

}

/* Get serviceability handle... */
smp_svc_handle = dce_svc_register(smp_svc_table,
(idl_char*)"smp", &status);
if (status != error_status_ok)
{

print_server_error("dce_svc_register()", status);
exit(1);

}

/* Set the default serviceability debug level and route... */
dce_svc_debug_routing(default_debug_route, &status);

/* Set up in-memory serviceability message table... */
dce_msg_define_msg_table(smp__table,
sizeof smp__table / sizeof smp__table[0],
&status);
if (status != error_status_ok)
{

print_server_error("dce_msg_define_msg_table()", status);
exit(1);

}

dce_svc_printf(SIGN_ON_MSG);
.
.
.

DCE_SVC_DEBUG((smp_svc_handle,
smp_s_server,
svc_c_debug4,
"Calling dce_server_sec_begin()");

Setting Up the Server’s Objects
The term object is a very general term that has meaning specific to each
application. DCE uses object UUIDs to uniquely identify any object. The creation of
object UUIDs, the determination of what (if anything) constitutes an object for a
server application, and the association of these objects’ UUIDs into collective types
are all your application design decisions.
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Object UUIDs have a double use in the routing of RPCs, and you may at first find
this a bit confusing. One use of object UUIDs is in the DCE RPC binding
mechanism so that clients can distinguish between specific resources, and another
use of object UUIDs in routing involves grouping objects into types so that a server
can support different implementations of the same interface. (DCE servers also use
type UUIDs to associate objects for each ACL manager.)

If an application makes use of object UUIDs in bindings, it makes them accessible
to clients by exporting them with its bindings when a server registers with DCE.

The following shows sample code to create UUIDs for server objects and how to
store them using the backing store API:

.

.

.
/* A "well-known" residual name for the management "object": */
#define MGMT_OBJ_NAME "server_mgmt"
/* */
/* A residual name for a sample object: */
#define SAMPLE_OBJECT_NAME "sample_object"
.
.
.
/* These are the backing store database handles: */
dce_db_handle_t db_acl, db_object, db_name;
.
.
.
/* A UUID for a sample object: */
uuid_t sample_object_uuid = {/* 00415371-f29a-1d3d-b8c8-0000c0d4de56 */

0x00415371, 0xf29a, 0x1d3d, 0xb8, 0xc8, 0x00, 0x00, 0xc0, 0xd4,
0xde, 0x56 };

.

.

.
uuid_create(&server_uuid, &status);
..
..
..
dce_db_store_by_uuid(db_object, object_uuid, (void *)&sample_data,

status);
if (*status != error_status_ok)
{

print_server_error("dce_db_store_by_uuid()", *status);
return;

}

/* Finally, store the object UUID keyed by the object */
/* ("residual") name... */

dce_db_store_by_name(db_name, (char *)object_name, object_uuid,
status);

.

.

.

Names are established so that applications can refer to objects in a way other than
through the cumbersome UUID. Object UUIDs are generated in the following two
ways:

v The uuidgen -s command generates the C-structure form of a UUID that can
then be hard-coded into applications
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v The uuid_create( ) routine generates a UUID “on-the-fly.”

After creating backing store headers (if desired) and opening the backing store
databases, UUIDs are stored by calling the dce_db_store_by_uuid( ) routine. To
store names associated with the UUIDs, call the dce_db_store_by_name( )
routine.

Object UUIDs in Bindings
Object UUIDs are often used in the DCE RPC binding mechanism. The details of
RPC binding are explained in “Registering the Server” on page 17 and more
thoroughly in “Chapter 4. Binding” on page 89. It all comes down to this: clients
import only partial bindings from the namespace. These will carry them only as far
as the endpoint mapper service of the dced on the destination server’s host; it is
dced’s job to resolve the binding with a dynamic endpoint.

This means that some registration of bindings must be done by a server with the
endpoint mapper. The minimum two items that have to be registered are interface
UUIDs and bindings (the latter of which contains the server’s dynamically allocated
endpoints). With this information available, the endpoint mapper can inspect the
incoming RPCs interface UUIDs, select one of the endpoints that was registered
under them, and resolve the partial bindings. In addition, a server can register its
object UUIDs with its endpoint mapper. This allows lookups of endpoints by object
UUID rather than interface UUID; the advantage is that object UUIDs are much
more specific than interface UUIDs, which may be registered by multiple servers at
the same host.

Making Object-UUID/Type-UUID Associations
To group together objects into types, the server makes an RPC library call
repeatedly to associate whatever objects it expects will appear in incoming RPCs
with a type UUID. The association is made between each of the expected incoming
object UUIDs and the type UUID. The following is an example:

rpc_object_set_type(obj_uuid, type_uuid, &status);

A type UUID is nothing but a special kind of object UUID. Type in this context refers
to a group of ordinary object UUIDs that have all been associated with another
specially generated common object UUID, which can then be used to identify that
group of objects collectively.

The type UUIDs in turn are associated with the entry points of manager modules in
the server when the server registers with DCE. An incoming RPC with a typed
object UUID in its binding will be automatically vectored by the server’s runtime to
the appropriate associated type manager.

Note that it is not necessary to call rpc_object_set_type( ) at all if you intend to
register only one set of manager routine implementations per interface.

Summary of Mechanisms that Rely on Object UUIDs
The type UUIDs and the type manager vectoring mechanism have nothing to do
with the use of the object UUIDs themselves as lookups for the host endpoint
mapper. The type manager vectoring occurs after object UUID binding happens, at
the server. Note also that object UUID binding happens only once in an
uninterrupted client/server session; after the partial binding is completed,
communications proceed directly between the client and server. Type manager
vectoring, on the other hand, occurs every time an incoming RPC contains an
object UUID.
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The very different nature of the two mechanisms just discussed is somewhat
obscured by the order in which they are initialized in the steps in this chapter. The
following list shows the relevant server steps, with an indication in each instance to
which mechanism they are related:

1. When setting up the server’s objects, groups of object UUIDs are associated
under type UUIDs in the RPC runtime related to the type vectoring mechanism.

2. When defining the manager EPVs, each type UUID is associated with a
manager EPV (in the RPC runtime) related to the type vectoring mechanism.

3. When registering the server, object UUIDs and server endpoints are registered
with the server’s endpoint mapper and the server bindings (containing the object
UUIDs) are exported into the namespace. These are related to the endpoint
mapping mechanism.

Setting Up Security
To set up the security environment, the server makes the following DCE library call:

dce_server_sec_begin(dce_server_c_login | \
dce_server_c_manage_key, &status);

The flags in the first parameter represent the following security issues:

v Establish the server principal identity

When first invoked, a server process uses the login context of the user who
invoked it, until it assumes its own identity by accessing its secret key, which is
analogous to a user’s password, and using it to get its own login context. Of
course, it is possible for a server to simply continue using its inherited login
context. In that case, all it needs to do is use the security login routines to obtain
its principal name and explicitly get its login context.

v Manage the server key

When a server has its own identity, it takes on responsibility for the upkeep of its
password using the security key management routines.

The decision whether or not to use authenticated remote procedure calls is
something of a cooperative matter between the client and the server. When the
client calls rpc_binding_set_auth_info( ) , it registers its preferences about the
same things. The client’s and server’s choices are not required to agree in order for
the client to successfully reach the server. If the client’s authentication and
authorization choices do not agree with what the server expects, it is up to the
server to decide whether or not to go ahead with the operations, and how far to
cooperate with client requests.

To control access to the server’s objects, ACL managers are also set up.

Defining the Manager Entry Point Vectors for Each Set of Operations
Manager is the DCE term for the part of a server that actually implements a set of
interface operations (the remote procedures), as distinguished from the more or
less generic server initialization code described here.(See
/opt/dcelocal/examples/demo/generic_app/sample_manager.c or the illustration
“Sample_manager.c” on page 230 for an example of manager code). A manager
EPV is the data structure in which is recorded the entry addresses of the
application routines that implement the server’s operations, as offered through an
interface. The server’s stub code uses the EPV to dispatch incoming RPCs to the
requested operations. For each interface the server supports, a default manager
EPV is generated automatically by the IDL compiler. In order for the RPC runtime to
properly dispatch remote procedure calls to the correct procedure, the server
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initialization code must declare the default EPVs and then register them with the
runtime, as shown in the following example:

extern rdaclif_v1_0_epv_t dce_acl_v1_0_epv;
extern sample_bind_v1_0_epv_t sample_bind_epv;

We will later describe registering the EPVs with the RPC runtime.

If more than one version of the same interface is to be supported by the same
server, another EPV is needed for each additional interface version. Interface
version numbers are specified by the version attribute in the .idl file. Additional
EPVs are also required if the application implements the procedures in more than
one way. For example, some applications invoke the same remote procedure to
operate on different types of objects. Different objects would likely require different
implementations, and thus more than one manager procedure would be coded. The
type manager RPC runtime mechanism, properly utilized, allows a server to declare
multiple EPVs under the same interface, and to have the RPC runtime vector
(direct) the incoming remote calls to the correct implementation code.

Registering the Server
To register the server with DCE, the server calls the following:

dce_server_register(
dce_server_c_ns_export, /* flag says register */
server_conf, /* server with CDS */
&register_data,
&server_handle,
&status

);

The dce_server_register( ) routine affects a number of components and services
in DCE including the RPC runtime, the local endpoint mapper service, and if the
dce_server_c_ns_export flag is set, even the CDS namespace. The server_conf
structure is obtained with a call to the dce_server_inq_server( ) routine and
represents the configuration dced used to start the server. This contains information
needed to register the server too. The register_data structure contains data about
the server’s interfaces, entry point vectors, and type UUIDs.

The following subsections describe the details about what happens when you
register a server.

Registering the Interface, Type UUID, and EPV with RPC Runtime
Earlier we described how to establish an EPV for each set of operations provided
by interfaces. Remember that an EPV is a list of pointers to procedures. The first
affect of registering the server is to register the services offered (represented by IDL
interfaces) and the associated EPVs with the RPC runtime. Registering interfaces
with their associated EPVs allow the RPC runtime to use the EPVs to direct an
incoming remote procedure call to the correct procedure implemented in the
server’s manager code.

We also described earlier the type manager mechanism which uses a type UUID to
group together object UUIDs. With this mechanism, a different EPV can be
associated with each type UUID so that different manager code can be called,
depending on an object’s type UUID. After these EPVs are registered with the
runtime, incoming RPC binding that contain a typed object can be routed by the
runtime to the correct manager code.
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The data structure the server uses to establish its services is of type
dce_server_register_data_t. This data structure is initialized prior to the
dce_server_register( ) routine call as in the following example:

dce_server_register_data_t register_data[2];
.
.
.
register_data.ifhandle[0] = rdaclif_v1_0_s_ifspec;
register_data.epv[0] = NULL; /* use the default epv */
register_data[0].num_types = 0;
register_data[0].types = NULL;
register_data.ifhandle[1] = sample_bind_v1_0_s_ifspec;
register_data.epv[1] = NULL; /* use the default epv */
register_data[1].num_types = 0;
register_data[1].types = NULL;

The dce_server_register( ) routine usually establishes all the services for a server
at once. This is a reasonable approach for most applications, but some interfaces
for services may have dependencies on the order in which they are enabled. After
the server calls dce_server_register( ), it can use a series of calls to
dce_server_disable_service( ) and dce_server_enable_service( ) to disable and
then later reenable any interface offered by the server.

Telling RPC Runtime What Protocol Sequences to Use
The second thing registering the server does is it obtains a set of endpoints and
associates them with the desired protocol sequences. Endpoints are the host’s
address numbers on which the server can receive incoming calls. This begins the
process of actually setting up the information that the server’s clients will need in
order to bind to it.

The endpoints are usually dynamically generated each time the server starts.
However, some applications may use well-known endpoints that are the same every
time the server starts. If well-known endpoints are used, they are typically defined in
the interface definition with the endpoint attribute.

In the default case, all valid protocol sequences are used when the
dce_server_register( ) routine is called. The dce_server_c_no_protseq flag can
be passed in the first argument to the routine in cases where dynamic assignment
of endpoints is not desired; for example, when well-known endpoints (specified in
the IDL definition) are being used.

Registering the Binding Information with the Endpoint Mapper
Service
After server registration obtains the endpoints, the endpoints, protocol sequences,
and object UUIDs are registered with the endpoint mapper service of the local
host’s dced.

Typically the server has received a certain number of endpoints dynamically
allocated on its host machine. However, when prospective clients import binding
information from the namespace, they get partial bindings. When they first try to
contact their server, the partial binding will get them only as far as the server’s
endpoint mapper service. The purpose of registering endpoints is to let the endpoint
mapper know what endpoints belong to the server so that it can fill in the partial
bindings as they arrive and route the incoming remote calls on their proper ways.
Subsequent remote calls executed with the same bindings will go straight to the
server, since the bindings are now complete.
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The purpose of registering endpoints together with object UUIDs is to account for all
possible incoming object UUIDs (that is, object UUIDs that could appear in
incoming partial bindings arriving at the endpoint mapper), and to associate with
each of them one of the server’s allocated endpoints. Then the endpoint mapper
can simply look up the object UUID, find an endpoint, insert it into the binding, and
send the RPC on to its destination.

An incoming RPC always has an interface UUID associated with it; therefore, if a
server registers all of its endpoints with the interface it is offering, this will usually be
sufficient for the endpoint mapper to send the incoming requests to one of the
servers that offer the desired interface, even if there is more than one such server
active on the machine. However, if the application is designed in such a way that
the binding operation should not be generalized to the interface but must be made
more specific (in other words, this server’s clients should always bind to this server
and no other, even if some other server happens to offer the same interface), then
object UUIDs must be used to accomplish this. Generic interfaces offered by an
application (such as the remote ACL or the DCE serviceability interface) require an
object UUID in order to distinguish the application’s instance of them; unique
interfaces, however, do not require an object UUID.

Of course, the server’s interface UUID must also be included in each object
UUID/endpoint mapping, since no RPC will pass the endpoint mapper if it does not
have a matching interface UUID for its destination server. Therefore, the endpoint
mapper takes either two or three types of item to be registered, namely

v Endpoints

v Interface UUID

v Object UUIDs (optionally)

It then generates a cross-product table of all possible combinations of all values of
the items. This allows it to find a valid endpoint for every possible valid object
UUID/interface UUID combination.

The endpoint mapper is the first point of decision for an incoming RPC with a partial
binding. The mapper makes its decision solely on the basis of the contents of its
endpoint map. The object/type and manager EPV registrations that were done
earlier have no effect on the endpoint mapper. Only after a client request arrives at
the server does the server’s runtime routines dispatch the request among multiple
managers, if type managers have been registered by the server. The endpoint
mapper knows nothing about registered object types.

Exporting the Binding Information to the Namespace
The final task of server registration (if the dce_server_c_ns_export flag is set in
the dce_server_register( ) call) is to export the binding information to the
namespace. In the usual case, where the server’s endpoints have been dynamically
allocated to it, the endpoint information will not be included in the exported handles.
Instead, this information will be filled in by the host’s endpoint mapper as the
partially bound handles arrive at the host in incoming RPCs. However, if the
endpoints are well-known, they will be included in the exported binding handles,
and clients will thus import fully bound handles.

If you wish, you can use the lower level RPC routine rpc_ns_binding_export( ) to
export individual services to the namespace, but in this case you should first be
sure the flag dce_server_c_ns_export is not set in the dce_server_register( )
routine.
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As a final note, a client must have a binding handle in order to reach a server, but it
does not have to get the handle from the name service. However, the name service
is the recommended way for clients and servers to find each other because it is a
convenient and easy to use service built into DCE.

Specifying Multithreadedness
The application may also spawn an additional thread for a signal handler. An
example follows:

if (pthread_create(&sigcatcher,
pthread_attr_default,
(pthread_startroutine_t)signal_handler,
(void*)0))

{
dce_svc_printf(NO_SIGNAL_CATCHER_MSG);
exit(1);

}

The max_calls_exec parameter to the rpc_server_listen( ) routine specifies the
number of operations that the server can perform concurrently in response to client
requests. The max_calls_exec parameter is also used to derive the size of a buffer
(the call request buffer) for incoming client requests that cannot be immediately
executed. max_calls_exec specifies the upper limit for the number of RPC threads
that will be spawned by the RPC runtime to handle incoming remote procedure
calls. Thus, an important side effect of rpc_server_listen( ), when the specified
concurrency is greater than 1, is to create multiple threads of execution in the
server.

The threads are automatically spawned to handle whatever operation is requested
by the client. If the maximum number of manager threads is already active and
more incoming calls arrive, the RPC runtime buffers them in a call request buffer.
The size of the call request buffer depends on the max_calls_exec parameter; the
larger the parameter, the bigger the buffer. Incoming calls beyond the call request
buffer capacity are rejected (with an error code) by the RPC runtime.

Although the execution threads are automatically managed by the RPC runtime, the
developer is responsible for coding the manager routines according to thread-safe
guidelines so that the threads will execute properly. For further information on
thread-safe programming practices, see “Chapter 2. Threads” on page 33.

Listening for Incoming Service Requests
In order to begin listening for incoming remote procedure calls, the server calls the
following RPC library routine:

rpc_server_listen(max_calls_exec, &status);

The max_calls_exec parameter specifies the number of concurrent remote
procedure calls the server can execute. This call normally begins a ”semi-infinite”
loop, execution of which is terminated only by one of the following events:

v One of the server’s manager routines calls rpc_mgmt_stop_server_listening( )

v One of the server’s clients makes a remote call using the routine
rpc_mgmt_stop_server_listening( ). (Note that the server can intercept such a
remote call and either allow or prevent it by installing a function with
rpc_mgmt_set_authorization_fn( )).
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v A management application makes a remote procedure call using the routine
dced_server_stop( )

v An administrator (or administrative script) uses the dcecp server stop
server_name operation

v A signal or exception occurs

From the point of view of the server, the call to rpc_server_listen( ) blocks until
the rpc_mgmt_stop_server_listening( ) routine is called. When this happens, the
RPC runtime stops accepting incoming client requests to the server, and when all
the currently executing operations are completed, the call to rpc_server_listen( )
returns.

Server operations can also be terminated by an exception or signal. DCE Threads
defines all exceptions as terminating, which means that execution must be caught
by an exception handler (if one exists) and then be resumed there, or the process
will be terminated. Certain signals are defined by DCE Threads as exceptions,
which means that these signals have the same general characteristics as
exceptions. For more information on the DCE Threads exception handling interface,
see “Chapter 2. Threads” on page 33.

Cleaning Up Code When the Server Terminates
If (or when) the server terminates execution, it should undo its initialization that
affected other facilities and services of DCE. Facilities affected include the CDS
namespace, the endpoint mapper service, and backing store databases such as
those used for ACL managers. For the most part, API routines that cause these
kinds of effects have a corresponding API routine to undo them. The following
sections describe the series of routines typically used to clean up after an
application.

Unregistering the Server
Two important aspects of registering the server is that it registered the interfaces
and EPVs with the RPC runtime, and it established the endpoints (or addresses) on
which the server listened for requests. If the endpoint map contains stale data, it
can create for a client a fully bound binding that is not valid. Even though the
endpoint mapper service does its own housecleaning periodically, there is the
possibility that these invalid bindings could be created and used. Therefore, it is a
good idea to call the following routine:

dce_server_unregister(server_handle, &status);

In addition to unregistering the server’s address information from the local endpoint
mapper’s database, this routine unregisters all the services (interfaces and EPVs)
from the RPC runtime as well.

If your application requires a partial shutdown or a particular order to the shutdown
of services, you can use more specific routines such as rpc_ep_unregister( ) and
dce_server_disable_service( ).

Unexporting from the Namespace
If the server is going to be out of service for an extended period, it should unexport
any information it previously caused to be placed in the namespace. This will
prevent future prospective clients from being misled into attempting to reach the
server when it does not exist, and also will help to conserve resources in the
namespace.
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Unexporting is automatic when dce_server_unregister( ) is called if the
dce_server_c_ns_export flag was set when the corresponding
dce_server_register( ) was called. For more specific control, an individual service
previously exported is removed from the namespace with the following routine:

rpc_ns_binding_unexport(entry_name_syntax, \
entry_name, if_handle, obj_uuid_vector, &status);

The CDS namespace is designed to store location data for extended periods of
time.

Cleaning Up Security Information
A call to the dce_server_sec_begin( ) routine should have a corresponding call to
the dce_server_sec_done( ) routine to release resources allocated. In addition,
your code should close any backing store databases used for ACL management.

The Client Binding and RPC Invocation
To use RPC, a client must first establish a binding to the server. The following steps
cover bindings and binding handles.

The programmer designing clients must decide whether or not to use threads, and
should have an understanding of multithreaded clients. DCE provides a set of tools
for multithreaded programming; these are described in “Chapter 1. Introduction to
DCE Application Programming” on page 1.

Importing the Binding Information from the Namespace
The first important thing that the client does is to acquire a binding to the server it
wants to request services from. From the client’s point of view, there are several
binding choices to be made.

The first choice is in regard to the binding method to be used; however, this is
determined and implemented as part of the development coding process (the .acf
file). The binding method chosen has an effect both on what the client has to do in
the present step to acquire bindings, and subsequently on what it must do to
maintain them. In this step, it will be assumed that either the explicit or implicit
method was chosen. If auto-binding were chosen, there would be no need for a
discussion, since the client would then have nothing to do.

Getting a Handle
The second choice involves how to get a binding handle. Again, this is a choice that
is at least partially dependent on decisions already made. The client can always
generate a binding handle for itself; the problem is where to get the information that
belongs in it. There are two general solutions, as follows:

v The client imports from the namespace binding handles that already contain the
necessary information, or

v The client receives the information in string form from user input, from a file, from
another server, or from any other source. It then converts the string into a binding
by calling rpc_binding_from_string_binding( ).

The normal way for a server to make its location known to clients is to export its
binding information into the namespace. The client can then call the following RPC
name service library routines to import one or more bindings from the specified
namespace entry:

22 IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide — Introduction and Style



rpc_ns_binding_import_begin(entry_name_syntax, entry_name, \
if_handle, obj_uuid, &import_context, &status);

rpc_ns_binding_import_next(import_context, &binding_handle, \
&status);

rpc_ns_binding_import_done(import_context, &status);

The name service sees to it that only compatible bindings exported under the
specified interface, with the optionally specified object UUID, will be returned to the
client. (Note that the interface specification is not contained in the binding, although
it is exported to the namespace entry where it is used by the name service for
matching entries to prospective importers.) The object UUID specified by obj_uuid is
contained in the binding, if it is present. This is the object UUID that was (optionally)
registered under a type UUID in an earlier step. Even if obj_uuid is not specified in
the import call, it will be returned in the binding handle(s) if it was exported by the
server.

Determining the Entry Name
To determine how the client knows the entry name to import from, the simplest
method is to have the user type it in on the command line.

Binding Compatibility
The protocol sequence used must be supported by both the RPC runtime and the
operating system on the client’s machine. However, the RPC runtime implicitly takes
care of binding compatibility when it returns bindings to importing clients; only
compatible bindings are returned.

The rpc_network_inq_protseqs( ) and rpc_network_is_protseq_valid( )
routines can be used to return all supported protocol sequences and to determine
whether a specified protocol is supported, respectively.

To find out what protocol sequence is used in a binding handle, make the following
series of calls:

rpc_binding_to_string_binding(binding, &string_binding, &status);

rpc_string_binding_parse(string_binding, NULL, &protseq, \
NULL, NULL, NULL, &status);

Annotating the Binding Handle for Security
Now that the client has a binding, it is almost ready to begin RPC operations. One
last preliminary task remains; namely, to specify various security-related parameters
to the RPC runtime, which will govern the (security) conduct of the ensuing
client/server relationship. If the client does not require authentication, it can skip this
step completely. The result will be that no authentication will take place between the
client and server. It will then be up to the server to decide how far to go with an
unauthenticated client.

Preparation
What the client essentially wants to do now is call the routine
rpc_binding_set_auth_info( ) in order to specify all the necessary security
parameters. However, when it does this, it should be able to specify its server’s
principal name, so that the server it binds to can be authenticated to the client. (The
server’s principal name is the name by which the server is known to the DCE
Security Service.) The client must also supply a handle to its own login context
when it calls rpc_binding_set_auth_info( ).
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There are several ways to determine the server’s principal name, as follows:

v The server’s principal name could be hardcoded in the client. This is not
recommended practice for reasons of robustness and flexibility.

v The client can be handed the name as input from the command line when it is
invoked.

v The principal name can be the same as the name entry (binding information)
name.

v The client can query the server’s principal name by calling
rpc_mgmt_inq_princ_name( ). It can then check group membership by calling
sec_rgy_pgo_is_member( ), using a known tested group.

The reason for checking group membership has to do with authorization-related
decisions that the client may need to consider. It is not necessarily enough to know
that a server has a certain identity; it may also be necessary that it belong to a
certain group in order for it to be fully authorized, from the client’s point of view, to
receive the data that the client will send. In other words, the client may need to
make a decision about the server similar in nature to that which the server makes
about the client, when it checks the client’s authorization, via ACLs, to do the things
it wants to do. Security can be just as important for the client as for the server; this
is the justification for having to make the extra calls described here.

The client retrieves its login context with the following security library routine:

sec_login_get_current_context(&login_context, &status);

However, this is not usually necessary. The client can, by passing a NULL value to
rpc_binding_set_auth_info( ), simply use its default login context.

In any case, note that this login context already exists; the client merely retrieves it.
(The client inherited its login context from the user principal who executed it.) The
client can now set up for authenticated RPC.

Setting Up for Authenticated RPC
The client makes the following call in order to set up the security characteristics of
the communications it is about to enter into with the server:

rpc_binding_set_auth_info(binding, \
server_princ_name, protect_level, authn_svc, login_context, \
authz_svc, &status);

The security parameters specified here include protect_level for level of protection
performed (for example, authenticate only at the beginning of each RPC, or
authenticate everything received by the server), authn_svc for the authentication
service (including “none”), and authz_svc for the type of client authorization
information that will be supplied to the server.

The usual practice is to pass NULL for login_context here, and thus use the default
context.

Note that it is the client who chooses whether or not to use authenticated RPC, as
well as the level of authentication, and how much authorization information about
itself to send. It is then up to the server to accept this arrangement or reject it, or to
allow some limited operation with the client, or whatever else it might decide. The
server decides which authentication to use. The client also specifies an
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authentication service (in authn_svc), but if this differs from what the server
specified, the call to rpc_binding_set_auth_info( ) will fail and an error will be
returned to the client.

There is an important difference between the rationales of authentication and
authorization. Authentication is performed by the RPC runtime and is only indirectly
felt by client and server; authorization, however, is for the most part implemented
explicitly in the server code if it is implemented at all. This difference is the reason
for the larger number of authentication-related arguments that have to be specified
in this step.

For further information about authenticated RPC, see the IBM DCE Version 3.2 for
AIX and Solaris: Application Development Guide—Core Components.

Invoking Remote Procedure Calls
This step is the culmination of all the foregoing steps; here the client makes its first
remote call to the server. This call, which will obviously be application specific (its
definition was specified in the application’s .idl file, and possibly modified by the
.acf file), will look something like the following:

my_rpc_op(binding_handle, arg1, arg2, arg3);

Note that the presence of the binding handle as a parameter means that explicit
binding handles are being used.

Note also that after all the preceding talk about interfaces, no interface handle
appears in the parameter list. The RPC runtime takes care internally of making sure
that the interface offered by the server exactly matches what the client expects. The
my_rpc_op( ) routine was (or should have been) defined as part of the
application’s interface. When the client calls my_rpc_op( ) in the present step, the
client stub code (which was generated during the IDL compilation step) will include
the correct UUID for the interface the routine is associated with in the data sent out
on the network. The RPC runtime uses the interface specification included with
each RPC as a “fingerprint” to ensure that the operation being requested of a
server is in fact implemented by that server. This ensures that interface compatibility
is never dependent on the vagaries of application code.

The Possibility of Binding Failure
Perhaps the most important thing to mention about this step is that it may not at
first succeed. Remember that the client imported a partial binding to the server.
Completion of the binding, and therefore of the remote call, depends on the
endpoint mapper’s being able to successfully complete the incoming binding with a
good endpoint for either the specified server (if one is specified) or for one of its
own choosing. This in turn depends on the up-to-dateness of the host’s endpoint
database, and that depends on such things as other servers’ being conscientious
about unregistering themselves when terminating, and so on. Even the target host
specified may not be valid when the call is made because of any one of the various
network problems that can occur.

In other words, the client should regard an unused binding not as a firm promise
that comes directly from the server, but rather as a well-meant expression of intent
passed on by the name service and based on circumstances not entirely under
anyone’s control. This is the reason for the series of binding import calls described
earlier. The prudent thing for a client to do after importing a binding is, therefore, to
assume that it will have to perform one or more times a series of steps something
like the contents of the following loop:
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1. Annotate the binding handle for security.

2. Try it out: attempt a remote call with it.

3. If the call succeeds, discard the binding import context and proceed to step 5 in
this loop.

4. Otherwise, if the call fails, import the next binding and return to step 1 in this
loop.

5. Proceed with remote operations until finished.

If all imported bindings happen to fail, this could be because the client’s cache of
bindings has become stale. The client could then try calling
rpc_ns_mgmt_handle_set_exp_age( ) with a low timeout value, and then retry
the previous loop. A last resort could be to allow the user to type in a string binding.

Note that if you are using the auto-binding method and the binding becomes
unusable for some reason, the RPC runtime will rebind under most conditions.

The Result of Successful Binding
If my_rpc_op( ) or its equivalent does succeed, the binding will as a result be
complete (even if it was partial before), and the information in it can be regarded
with much more assurance from then on. Subsequent remote procedure calls by
the client to the same server will go straight to the bound-to server.

The Server’s Manager of RPC Requests
As was explained, server threads are automatically spawned by the RPC runtime in
the server manager to handle incoming remote procedure calls from clients. The
number of calls that can be concurrently handled depends on the value of the
max_calls_exec parameter specified in the call to rpc_server_listen( ). The thread
is created by the RPC runtime and begins execution in the operation requested.
When the operation is completed, the thread is automatically terminated (by the
RPC runtime).

See also the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Core Components and the IBM DCE Version 3.2 for AIX and Solaris:
Application Development Reference for a comprehensive discussion of DCE
threads.

Getting the Client’s Credentials
As mentioned in the previous step, authentication, if it was specified by the client,
has already occurred if the client’s request is received by the server manager. If the
client fails to authenticate itself to the server runtime, its remote procedure call fails
before reaching the server’s RPC code.

Authentication, if specified by the client and offered by the server, is performed by
the RPC runtime; it is not a responsibility of the application code. However, it is up
to the application to formulate its own security policy with regard to the client, based
on the following:

v The level at which the client has been authenticated.

v The client’s authorization; that is, whether the client should be allowed to access
resources it may request.

In order to find out the client’s authentication and authorization information, the
server calls the following RPC library routine:
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rpc_binding_inq_auth_caller(binding_handle,
privs, server_princ_name, \

protect_level, authn_svc, authz_svc, &status);

The parameters in this call are analogous to the similarly named parameters in the
registration routines. The server can learn what level of authentication, what
authentication service, and what server principal name the client specified. Of most
interest, however, are the privs and authz_svc parameters. The privs parameter is a
pointer to whatever information the client is willing to let the server know about its
privilege attributes; authz_svc tells what this information is. It could be any one of
the following:

v The client’s privilege attribute certificate (PAC), containing the client’s principal
and group UUIDs. These can be used to look up the client’s privilege attributes in
ACLs, whose entries are keyed by principal and group UUID.

v The client’s principal name (a string). This also can be used to look through
ACLs, provided that the lists have been annotated with such name strings.

v Nothing. The client chooses not to provide any authorization information.

From now on, it is the server’s decision, as implemented by the developer, how to
respond to the client’s requests for services and resources, depending on the
security information the server has learned about it. A non-ACL-based strategy may
be implemented using the client’s principal name string for lookups. The ACL-based
strategy, which is supported by a DCE interface, is described further in the next
step.

Getting the Object’s ACL
This step is reached if the client requests access to any object, resource, or service
that is managed by the server, to which ACLs are attached. As previously
mentioned, the application must implement its own ACL manager if it wants to use
ACLs to control access to its resources. For further details on how to go about
creating an ACL manager, see “ACL Managers” on page 66.

In order to allow applications to as easily as possible offer an ACL interface that is
uniform with that used by the DCE components themselves, the remote ACL
interface has been built into the DCE library, and client applications can perform
operations on ACLs through another interface, also part of the DCE library, which
calls through the remote interface to the appropriate manager. The remote interface,
consisting of rdacl_ *( ) calls, must be implemented by the server application;
clients execute the local sec_acl_ *( ) routines, which are linked to every DCE
application as part of libdce.

For the client, all that is necessary is to possess a binding to the object whose ACL
is to be operated on. As long as the application exposes the resources it manages
as accessible objects (via the namespace), then the DCE ACL interface provides for
a client’s being able to bind to the object by calling sec_acl_bind( ). (In fact, this
kind of object-oriented binding model can be very useful, and is discussed in further
detail in “Chapter 4. Binding” on page 89.) Note that the sec_acl_ * ( ) routines use
an ACL handle to specify the object whose ACL is to be accessed, so
sec_acl_bind( ) must always be called to obtain this handle, even if the client is
already bound to the object’s server.

There is a user interface into the ACL operations, embodied in the acl_edit
command. For further information, see the IBM DCE Version 3.2 for AIX and
Solaris: Administration Commands Reference.
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Server applications can use the DCE ACL library routines to implement ACL
managers. The DCE ACL library is an implementation of the remote ACL (rdacl)
interface, designed in such a way as to allow any DCE application to use it instead
of having to implement the interface itself. In DCE 1.0, applications that wished to
use the DCE ACL functionality had to implement the full remote interface
themselves; in DCE 1.1 this is no longer necessary. For further information, see
“Chapter 3. Security” on page 49.

Making the Authorization Decision
In this step, the server’s ACL manager inspects the ACL of the resource (object)
under question, determines whether the client is authorized for the requested
access, and takes the appropriate action.

The application may choose to implement more than one type of ACL (reflecting the
different kinds of objects and resources to be protected), thus resulting in several
ACL type managers.

Although it is up to the application to implement its own ACL storage, testing
algorithms and manager types, there are certain DCE-wide design conventions that
should be kept in mind and departed from only for good reason. Among these are
the following:

v Standard DCE ACL entry types: the kinds of entry that can occur in an ACL (for
example, user, group, and so on).

v Standard privileges: the kinds of access that a principal can have to a protected
object (for example, read, write, and so on).

v Standard inheritance rules: these rules govern the default characteristics of ACLs
created for newly created objects.

v Standard access algorithm: the order in which a client’s credentials are matched
against the various possible entry types.

Information about these topics for application developers designing their own ACL
model can be found in the IBM DCE Version 3.2 for AIX and Solaris: Application
Development Guide—Core Components, in which all the DCE authorization
conventions are described in detail.

Servicing the RPC Request
If the client’s request is determined to be properly authorized, then the requested
operation can proceed.

Note that this step and steps D3 and D4 are somewhat intertwined. Something like
the following could occur:

1. The server wakes up in some routine defined in its manager code. For example,
if the client executed the call my_rpc_op( ), then the server will wake up in the
routine that implements this remote call.

2. Execution of the my_rpc_op( ) routine requires the insert privilege for the
application’s database my_database. So my_rpc_op( ) begins by checking the
client’s relevant privilege attribute by making an internal call to the application’s
ACL manager.

3. If the client is found to have the requisite privilege, my_rpc_op( ) proceeds.

The remote procedure executed in this step is written by the application developer.
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Returning the Results and Resuming Listening
At the completion of the operation, the RPC thread that was automatically spawned
to execute it is terminated by the RPC runtime. As far as the server is concerned, it
is still blocking on the call to rpc_server_listen( ) which was made earlier. If
max_calls_exec was specified to be greater than 1 in that call, other threads may
still be executing at this time in response to other requests that have been received
from other clients. In any case, the call to rpc_server_listen( ) will not return until
one of the server’s own management routines, or a client, makes a successful call
to rpc_mgmt_stop_server_listening( ) . If this happens, the RPC runtime will stop
accepting incoming client requests to the server. When all the currently executing
operations have been completed, the call to rpc_server_listen( ) will return.

The other way that execution can be thrown out of the rpc_server_listen( ) call is
as a result of a signal or exception.

From the server’s point of view, the result of completing the remotely called routine
is that it reenters the listen loop, waiting for further remote calls. The server’s
runtime handles all the communications details of actually sending any requested
data to the client.

From the client’s point of view, the server’s return at the end of its remotely called
routine results in the client’s returning from a seemingly locally executed routine.

Continuing
The client now goes on about its business, which may include performing other
remote procedure calls.

Note that there is no housekeeping burden placed on the client with regard to the
termination of the relationship with a server. However, a long-lived client might want
to make use of the rpc_binding_free( ) routine to free memory that was allocated
for no-longer-used handles. The client should also call
rpc_ns_binding_import_done( ) to clean up the resources used by the NSI
routines. If another binding handle will be needed later on, then
rpc_ns_binding_import_begin( ) will be recalled.

About DCE Programming Style
The IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Introduction and Style Guide (hereafter, the Style Guide) attempts to bridge
a gap. On one side stands the tutorial and reference material provided by the rest
of the IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide
and by the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Reference. In theory, this material provides complete documentation of the
mechanisms of DCE application programming. In particular, it documents the syntax
and semantics of every DCE API interface and IDL construct and provides a
service-by-service guide to their use.

On the other side stands the formal application portability specification provided by
the AES/DC. This provides a policy guide of a specific kind: if applications wish to
be portable among DCE implementations, they need to follow the AES guidelines.

Between these two poles of DCE documentation, there is still a great deal of room
to maneuver. The DCE application programming facilities provide such a large
number of mechanisms, so many possible ways of doing things, that it is often
difficult for the programmer to decide among them. The guidelines provided by the
AES/DC are limited to only one (albeit an important one) policy issue: portability.
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The DCE programmer is still left with many decisions about issues that do not arise
in the typical local programming environment: how to use the name services, which
security services to employ, how many threads to use, and so on.

The Style Guide attempts to answer many of these questions or at least to provide
the grounds upon which an application programmer can base decisions. Of course,
the coverage in these relatively few pages in not exhaustive. The number of
implementation issues raised by the available DCE application programming
mechanisms is potentially unlimited. The Style Guide attempts to cover the major
issues that are likely to confront most programmers at some stage in DCE
application design and development.

Aside from attempting to anticipate your questions, the Style Guide may also raise
issues that you may not even have considered. DCE covers a great deal of ground
that is probably unfamiliar to most application developers, such as multithreading
and distributed security. When moving in such unfamiliar territory, it is easy to
overlook potential problems. The Style Guide attempts to alert you to major
stumbling blocks in each area.

Mechanism, Policy, and Style
The Style Guide is based on what is, to some degree, a fiction: that application
development issues can be nicely divided between mechanism on one hand and
policy and style on the other. In theory, the mechanisms of DCE programming refer
to the syntax and semantics required by APIs, IDL constructs, services, and the like.
These are the things about which the programmer has no choice: they must either
be done according to the documentation or not done at all. Policy and style, on the
other hand, are supposed to refer to the things about which the programmer can
make a choice: specifically, which mechanisms to use in given circumstances.

In practice, the distinction between mechanism and policy/style is often vague. The
other parts of the DCE application development documentation set contain much
that could be considered policy and style guidance. And, for reasons discussed in
some detail in the next section, the Style Guide often contains descriptions of the
mechanisms of DCE programming.

Nevertheless, the Style Guide does attempt to keep to the ground of policy and
style issues. It assumes that you already know what mechanisms are available and
attempts to provide guidance about the choices you have in using those
mechanisms. One result is that the Style Guide is not a tutorial; it often assumes
knowledge of terms and concepts that are explained elsewhere in the programmer’s
documentation.

On the other hand, the Style Guide does in many cases provide high-level
discussions of the organization and principals of DCE services, such as the security
services. The assumption is that you may already know many of the details but may
lack an overall framework. Often, such a general model is just what you need to be
able to make rational policy decisions.

The distinction between policy and style is itself somewhat vague. In general, policy
refers to the things you should do in an application program. You can usually
identify a policy recommendation because the words “should,” “must” or
“recommended” appear. Style is a more general term that includes policy (hence “
Style Guide”), but that also covers a variety of other suggestions about how you
might do things. Much of the sample code included in the Style Guide embodies not
only the recommended policies, but also provides illustrations of possible styles of
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usage. Such suggestions are intended to be helpful, but unless they are couched in
the language of policy, should be considered entirely optional.

Policy and Style Issues
Remote application programming, using DCE, imposes some special requirements
on applications that are not relevant to most local applications. A DCE application is
a multicomponent system in which the various components interact dynamically as
the program operates. Obviously, the application developer is concerned with
creating two major types of components, servers and clients, but these application
specific components also enter into relationships with other DCE components. For
example, most applications will be clients of naming and security services. Server
applications that provide ACL managers may act, in turn, as servers to dcecp ACL
commands. Many similar client/server relationships may be created during the
operation of a distributed application.

Furthermore, even components that do not communicate directly share common
resources, such as directory and security services. Components use these services
to exchange specific kinds of data, such as bindings, and such exchanges can
succeed only when they are made according to the correct protocols. For example,
a server needs to organize the way it exports bindings to a name service so that
clients can succeed in finding them. Similarly, clients and servers can only succeed
at authenticated communications if the correct registry and ACL data has been
created and if each follows the correct incantations to make use of this data.

A particular constraint on DCE applications is that they must take into account the
administrative overhead of a distributed system. Servers need to consider such
issues as the location and availability of the services they need, the structure of the
namespace into which they export their bindings, the DCE identity and privileges
under which the server must run, and many similar issues. A successful server will
be one that interacts correctly with other components while imposing a minimal load
on the DCE environment and, most important, can be successfully and easily
administered.

To meet these requirements, application components must interact with each other
and with other DCE components in a consistent and well-behaved manner. In this
context, one can think of DCE applications as having to meet application-level and
administrative interoperability requirements. The Style Guide is, in part, a guide to
such requirements. Given the enormous variety of programming and administrative
mechanisms that DCE makes available to the programmer, the Style Guide
provides a set of policy recommendations for the use of those mechanisms that will
maximize the application-level and administrative interoperability of DCE
applications.

In addition to being complex, DCE application programming involves elements that
are likely to be unfamiliar to many programmers, such as remote parameter
passing, name services, and distributed security services. Another goal of the Style
Guide is to suggest wise uses for these tools, since many of the familiar local
programming models are inadequate. These recommended policies are especially
important in the area of security: an application that fails to follow them is likely to
be insecure. Recommended policies in some other areas, such as execution
semantics and locking, may also fundamentally affect the integrity of a distributed
application and should not be lightly ignored. Other policies, such as those relating
to parameter passing affect mainly application performance.
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The simple unfamiliarity of many of the concepts can make the actual coding of an
RPC application a daunting task. In traditional C programming you can usually
begin with familiar models—often, with existing code—but with RPC you are
unlikely to have such starting points. Therefore, this guide also provides extensive
examples that illustrate the basic uses of many important elements. For example, in
developing an ACL manager, you may well be able to use the sample ACL manager
as a starting point.

The sample code is intended to suggest certain styles of usage that will probably
prove useful in many situations. Obviously, these styles are only suggestions: you
will certainly develop your own DCE programming style as you develop DCE
applications.

General Policies
The Style Guide embodies a variety of basic assumptions. These form the basis for
a set of high-level policy recommendations that cross the boundaries of the specific
services discussed in later chapters. These are as follows:

v Servers are generalized providers of the services specified by their published
(IDL) interfaces. That is, servers should encapsulate the services they provide in
such a way that naive clients, with no knowledge of the specifics of server
implementation, can successfully make use of these services via the remote
interfaces. In this sense, servers are much like libraries. One should not assume
that clients will be written by someone with knowledge of server internals. Where
appropriate, define wrapper routines for the IDL operations to shield developers
from binding handles and other RPC peculiarities.

v Servers should make their resources known to clients using standard
mechanisms. In particular, they should export their bindings according to the
recommended service models, use name and endpoint services rather than fixed
bindings and well-known endpoints, and associate exported objects with UUIDs.

v Clients and servers should be portable, using DCE provided mechanisms
instead of operating system and transport-dependent mechanisms. For example,
data streams should be communicated via the RPC pipe mechanism rather than
socket calls. The AES/DC is the definitive guide to application portability using
the DCE mechanisms.

v Distributed applications make greater administrative demands than nondistributed
ones. Clients and servers need to be written with an eye to minimizing and
simplifying administrative tasks. This means, for example, that

– Applications need to be as configuration and location independent as
possible. In particular, this means giving careful thought to the use of name
services for advertising and finding resources.

– Applications require both local and DCE identities and privileges. They should
follow the recommended models for acquiring and maintaining these privileges
and identities.

– Servers should be administratively interoperable; that is, they should behave
like the standard DCE servers, exporting the recommended management
interfaces, exporting ACL managers, logging errors and messages, and
providing for the standard startup and shutdown mechanisms.

v Distributed security is inherently more complex than local system security (you
can’t just “lock the door”). Applications should follow the recommended security
policies rigorously.

v Clients and servers should follow the recommended internationalization
guidelines to ensure character set interoperability.
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Chapter 2. Threads

Threads as used specifically in DCE applications raise several obvious policy issues
which may be summarized, roughly, as follows:

v When to use multiple threads

v How many threads to use

v What scheduling and priority attributes to apply

These issues are covered in “Thread Use Policy” on page 34.

Beyond these obvious policy questions, however, threads raise a tricky issue for a
programming policy guide because it is not always clear where the line between
mechanism and policy lies. Multithreaded programming in general requires a
number of practices that are likely to be unfamiliar and unintuitive to many
programmers, and errors arising from failure to follow these practices can be
obscure, infrequent, and difficult to reproduce. One result is that an incorrect
program can easily appear to be correct.

A typical case is a program that performs the following sequence of steps:

pthread_create(&thread . . .);
pthread_setprio(thread . . .);

From the point of view of a single thread, this may seem like a logical sequence of
steps, yet it contains a fundamental error: the spawned thread may well have begun
to execute, or even have terminated, by the time the call to pthread_setprio( )
occurs. The result is a program whose behavior is indeterminate, and which may
fail unpredictably. The correct procedure is to use a thread attributes object to set
the thread’s priority when it is created.

Strictly speaking, this is really a programming mechanism issue, since the failure to
follow the rule results in an incorrect program. However, errors of this type can be
obscure: in fact, the resulting program might never fail due to this error. There are
many such error possibilities in a multithreaded program that can result in all kinds
of deadlocks, race conditions, and data corruption. Yet these errors can sometimes
be so obscure as to be extremely difficult to analyze a priori, and failures may occur
so rarely as to be virtually unreproducible.

As a result, correct use of threads mechanisms requires following a set of general
rules designed to avoid errors that may or may not occur in specific cases. For
example, locks must be taken and released in the same strict order. Rules like this
are not enforced by the thread programming mechanisms, and failure to follow them
will not always result in program failures. In fact, failure to obey these rules may not
always be a programming error: depending on the program, it is certainly possible
that there is no possible execution path where failure to follow a rule would result in
an error (although this might be difficult to establish a priori).

As a result, such rules have in some sense the flavor of policy recommendations:
they are a set of disciplines for avoiding certain classes of problems which threads
programmers can assume to exist, in general, even though they might not arise in
specific cases. Because of this, and because these rules may be unfamiliar to many
programmers, it seems wise to repeat them in summary form in this policy guide.
Moreover, because DCE client and server applications are implicitly multithreaded,
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even when the application itself makes no thread related calls, it is also important to
identify when application code must be thread safe. These issues are covered in
“Thread Safety” on page 36.

The remaining sections of this chapter cover a variety of specific policy and usage
issues relating to DCE threads. Thread handles and thread-private data are
discussed in “Thread Handles” on page 38 and “Storage for Thread Specific Data”
on page 38.

Cancels and signals introduce a number of specific semantic issues that
applications must be aware of when programming in a multithreaded environment.
These are covered in “Canceling Threads” on page 39 and “Signals” on page 43
respectively. Finally, DCE introduces the concept of an RPC thread. This is intended
to extend the semantics of a local thread of execution across two address spaces in
the course of an RPC. However, the extension is not entirely transparent, and
applications need to be aware of the semantic peculiarities of RPC threads. These
are covered in “RPC Threads and RPC Cancel Semantics” on page 46.

Thread Use Policy
Thread use policy questions arise in the following two ways:

v Server manager code is multithreaded by default, and applications can specify
the degree of multithreading.

v Client code can be made multithreaded by making threads API calls.

Choosing to Thread
The choice of multithreading is really a question of specific application design, and
only general guidelines can be supplied here. Application programmers need to be
aware that, depending on the threads implementation and the underlying hardware,
concurrency may be more apparent than real for many applications. If threads are
being time-sliced on a single processor, nonblocking activities will not go any faster
because they are multithreaded. In fact, given the extra overhead of a given threads
implementation, they may be slower. Even on a multiprocessor, with the DCE
user-space threads implementation, all threads in a single process contend for the
same processor.

On the other hand, if multiple threads are carrying out activities that may
block—and this includes making RPCs to remote hosts—then multithreading will
probably be beneficial. For example, multiple concurrent RPCs to several hosts may
allow a local client to achieve true parallelism. Note however, that concurrent RPCs
to a single server instance may not be any more efficient if the server itself cannot
get any real benefit from multithreading of the manager code.

RPC servers are multithreaded by default, since multithreading is an obvious way
for servers to simultaneously handle multiple calls. Even if the manager code and
underlying implementation do not permit true parallelism, manager multithreading
may at least allow a fairer distribution of processing time among competing clients.
For example, a client that makes a call that can complete in a short time may not
have to wait for a client that is using a lot of processor time to complete. For this to
occur, threads must make use of one of the time-sliced scheduling policies
(including the default policy). On the other hand, if all calls make use of
approximately similar resources, then multithreading may become simply an
additional, possibly expensive, form of queueing unless the application or the
environment permits real parallelism.
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In summary, the developer must consider the following questions in order to decide
whether an application will benefit from multithreading:

v Are the threaded operations likely to block, for example, because they make
blocking I/O calls or RPCs? If so, then multithreading is likely to be beneficial in
any implementation or hardware environment.

v Can the underlying hardware and RPC implementation support threads on more
than one processor within a single process? If not, then multithreading cannot
achieve real parallelism for processor intensive operations. The DCE user-space
threads implementation restricts all threads of a single process to contend for a
single processor and so cannot provide real parallelism for processor intensive
operations.

v Even if the answer to both of the first two questions is yes, will the use of a
time-slicing thread scheduling policy permit fairer distribution of server resources
among contending clients? If so, then server manager multithreading may be
beneficial.

Even if, according to these criteria, multithreading is likely to benefit an application,
the programmer still needs to consider the cost, in terms of additional complexity, of
writing multithreaded code. In general, most server manager code will probably
benefit from multithreading, which is provided by default by DCE. Most server
applications will therefore choose to be multithreaded and incur the extra costs of
creating thread-safe code. Whether client code will find the extra complexity of
multithreading worthwhile really depends on a careful assessment of the listed
criteria for each program design. There is no way to predict what a “typical” client
will do.

Specifying the Number of Threads
The RPC runtime allows server applications to specify the number of manager
threads available to handle concurrent RPCs via the max_calls_exec parameter of
the rpc_server_listen( ) routine. The runtime also allows applications to specify
the number of unhandled calls that can be queued via the max_call_requests
parameters of the rpc_server_use_ * protseq *( ) routines. In theory, these two
values should be set in conjunction, but in practice, the interpretation of the
max_calls_requests parameter is highly dependent on protocol and implementation.

For example, in a connection-oriented protocol based on Berkeley sockets, the
socket backlog—the number of connections which may be queued on a socket
pending acceptance—typically has a value of five.

Portable applications should therefore not rely on max_calls_requests as anything
more than a hint to the runtime about the number of queued calls desired. Note well
that the max_call_requests parameter does not set the number of calls that can be
handled concurrently. That is strictly a function of the number of call threads, as
specified by max_calls_exec. The max_call_requests parameter simply specifies (as
a hint) the number of calls that can be queued prior to being picked up by call
threads.

Scheduling Policies
The default thread scheduling policy provides round robin time-slicing and
guarantees that even low priority threads will get to run. For servers, this policy will
provide at least the benefit of fair access to server processing time for multiple
callers, even when no real parallelism is provided by multiple threads of execution.
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Thread Safety
Thread safety involves two issues. The first is blocking behavior. Blocking I/O
should block just the thread doing the I/O, not the entire process. The following
scenario illustrates the kind of problem that can occur when an application fails to
observe this rule:

1. The client side of the application executes a blocking I/O call such as a read( )
from the keyboard.

2. The read( ) sleeps for an indeterminate amount of time. All threads in the client
process are blocked.

3. A timer thread in the client RPC runtime, which manages the client side of the
RPC protocol, is among the blocked threads. Eventually the server side times
out the connection, even though the client application is still running.

The second thread safety issue is reentrancy. Routines that operate on shared
objects must have appropriate locking in place. A typical reentrancy problem is as
follows:

1. The application invokes a nonreentrant malloc( ).

2. DCE threads interrupts the malloc( ) and the interrupt handler executes a
properly reentrant malloc( ). The reentrant malloc( ) examines a lock and
incorrectly infers that nobody else is currently doing a malloc( ).

3. Global data governing memory allocation for the process becomes corrupted.

These thread safety issues arise in the following two contexts for DCE applications:

v Even when application code is not itself multithreaded (for example, client code
that does not make any explicit pthread API calls), both client and server
applications are still multithreaded as a result of threads created by the RPC
runtime. While such single-threaded application code need not itself be reentrant,
it must still avoid blocking the entire process, and it must take care that any
library routines that it calls, which may also be called by runtime-created threads,
are reentrant.

v When application code is itself multithreaded (which is the default for server
manager code), it must, in addition to obeying the rules above, also be reentrant;
all access to shared objects must be protected by locks.

Obviously, providing for the second condition in explicitly multithreaded code is the
application’s responsibility. The pthread API provides a set of facilities that can be
used for this purpose. To provide for the first condition, which applies to all
application code, DCE implementations provide a mechanism to make system and
library calls thread-safe. This may be implemented either by providing a set of
wrappers for unsafe calls or by providing reentrant libraries and a nonblocking
kernel threads implementation. Applications must always be built using either the
appropriate wrapped calls or linked to the appropriate reentrant libraries.

DCE implementations provide, at the least, via wrappers or some other mechanism,
the set of thread-safe calls provided by the operating system.

Applications should not assume that a call to any routine not on this list is
necessarily thread-safe. Whether other routines are safe to call from a DCE
applications depends on the following factors:

v Application code that is single threaded (that has not explicitly created any
application threads via calls to the pthread API) need not concern itself about
reentrancy of routines not on this list, since all library and system calls made by
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RPC created threads are included in this list. However, such application code
must still take care that no calls it makes will block the entire process.

v Application code that is multithreaded must exercise caution when making any
call not on this list. Non-reentrant library calls may be wrapped by the application
using pthread_lock_global_np( ), although this practice is discouraged since
this call is not portable. The global lock can be used only in limited
circumstances; the approach will work only if all threads in an application follow
the same rule. Failure to observe these restrictions can lead to deadlocks. Note
also that this approach will not work with any call that could block the whole
process, for example by making a blocking I/O call.

Note: For thread-safe calls, refer to AIX and Solaris operating system documents.

What follows is a summary of the thread-safety rules that should be followed when
using the pthread facilities. The list is by no means comprehensive; it describes the
places where multithreaded applications most frequently go wrong.

v Access to all shared objects should be protected by the appropriate
synchronization mechanisms. The pthread global lock is not appropriate for such
synchronization.

v Mutexes should be used only to protect resources held for a short period of time.
In particular, note that pthread_mutex_lock( ) is not a cancellation point.
Resources needing to be held exclusively for a long time should be protected by
condition variables rather than mutexes, as this will not inhibit cancelability (see
“Cancellation Points” on page 40 ).

v A shared object should be protected by only one mutex.

v Be sure to use the available thread-safe library calls. These may be available as
wrapped routines, via the pthread.h header file, or your implementation may
supply reentrant libraries which must be linked with DCE applications.

v Avoid nonwrapped process-blocking system calls, such as wait( ).

v When threads need to acquire more than one mutex at a time, create a locking
sequence and require that all threads follow the sequence.

v Do not make any assumptions about the atomicity of operations, as these are
unlikely to be portable.

v In general, to avoid priority inversion, when three or more threads of different
priorities access a lock, associate a priority with the lock and force any thread to
raise its priority to the lock priority before acquiring the lock. Note that the default
scheduling policy (SCHED_OTHER) mitigates the effects of priority inversion by
giving low-priority threads a chance to execute (and thus release held locks)
even when higher-priority threads are eligible to run.

v You may be able to use the global locking call pthread_lock_global_np( ) when
calling into libraries not known to be thread safe.

v Use the atfork( ) routine to keep the state of mutexes consistent across calls to
fork( ). Note, however, that this routine is not considered portable. Try to create
threads rather than processes whenever possible.

v Call pthread_cond_wait( ) from within a predicate loop, as in the following
example:

while (test_condition)
pthread_cond_wait();

v Set thread attributes via a pthread attributes object before thread creation.
Changes to a thread attribute object after a thread has been created will not
affect the thread’s attributes. A thread can straightforwardly change its own
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scheduling attributes by calling pthread_set_scheduler( ) and
pthread_set_prio( ), but cannot reliably change the attributes of another thread
once it has been created.

See “Canceling Threads” on page 39 and “Signals” on page 43 for specific
guidelines relating to cancels and signals.

Threads Programming Topics
The subsections that follow contain discussions of the following aspects of
multithreaded DCE application development:

v Thread handles and their use

v Storage for thread specific data

v Canceling threads

v Signals

Thread Handles
The pthread package provides thread handles to identify threads; these are
returned as the thread argument to pthread_create( ). Applications supply thread
handles as thread identifiers to the routines pthread_join( ), pthread_detach( ),
and pthread_cancel( ). Thread handles should be treated as opaque data; they
may be compared by calling pthread_equal( ), but any other operations on thread
handles are likely to be nonportable and are thus discouraged.

Storage for Thread Specific Data
The pthread package provides the ability to allocate per-thread global storage
using per-thread data keys. That is, an application can create storage that has
global scope within a thread but which is private to each instance of that thread. To
do this, the application creates a global data key by calling pthread_keycreate( ).
Each thread then typically allocates storage of the required type and associates this
instance with the global key by calling pthread_setspecific( ). Routines that need
to access the per-thread storage do so by calling pthread_getspecific( ), which
returns the address of the thread’s private instance.

The following code fragments show a sample model of per-thread-data key use:

/* Declare global data key storage */

pthread_key_t key;

main()
{

.

.

.

/* Create exactly one instance of the key. You could also use */
/* a pthread_once() routine... */

status = pthread_keycreate(&key, (pthread_destructor_t) destroy);
.
.
.

/* Start some threads... */
.
.
.
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}

/* The following routines are called in each of the threads. */
/* They access the thread's private instance of the "global" */
/* value. */

/* The following routine sets the value to a thread-specific */
/* value... */

void write_global(mytype value)
{

mytype *global_var;

global_var = (mytype*) malloc(sizeof(mytype));
pthread_setspecific(key, (pthread_addr_t)global_var);
*global_var = value;

}
/* The following routine returns the thread-specific value ... */

mytype read_global()
{

mytype *global_var;

/* Note the extra indirection; pthread_getspecific() returns */
/* the address of the thread's private instance of the */
/* storage... */

pthread_getspecific(key, (pthread_addr_t*)&global_var);
return (*global_var);

}

Canceling Threads
In order to program correctly for cancels, applications must be aware of the precise
semantics of cancels in a DCE threads environment. The DCE threads package
provides for per thread cancellation. Thread cancellation allows a thread to attempt
to terminate a thread in the same process in an orderly manner. The basic model is
that a cancel is generated for a thread at an unpredictable time as a result of some
external event (typically, another thread calling pthread_cancel( )). Whether and
when the canceled thread acts on a generated cancel depends on the thread’s
cancelability state, which may be one of the following:

disabled
No cancellation takes place.

deferred
Cancellation is deferred to cancellation points.

asynchronous
Cancellation may occur at any time.

The default action for DCE threads on cancellation is that the thread calls any
cancel cleanup routines that have been established and then terminates. In DCE
threads a canceled thread receives a cancel as an exception, so a thread may
establish a nondefault action by providing an exception handler.

However, this behavior is not recommended for two reasons. First, the exception
handling mechanism is not itself portable. Second, the cancel mechanism is
intended to provide for orderly thread termination. It is not designed as a
generalized thread synchronization mechanism. (There is, for example, only one
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kind of cancel.) Threads should use condition variables for this purpose. (For the
same reason, the use of pthread_signal_to_cancel_np( ) is not recommended.)

Cancelability State
A thread’s cancelability state is determined by the combination of two substates:
general cancelability and asynchronous cancelability. These substates can be set to
either CANCEL_ON or CANCEL_OFF by calls to the routines
pthread_setcancel( ) and pthread_setasynccancel( ) respectively. A thread’s
cancelability state is determined by its general and asynchronous cancelability
substates, as shown in Table 1.

Table 1. Cancelability State

General Asynchronous Cancelability

Cancelability Cancelability State

CANCEL_OFF CANCEL_OFF disabled

CANCEL_OFF CANCEL_ON disabled

CANCEL_ON CANCEL_OFF deferred

CANCEL_ON CANCEL_ON asynchronous

One awkwardness introduced by this mechanism for setting cancelability state is
that threads cannot easily determine their current cancelability state, although
pthread_setcancel( ) and pthread_setasynccancel( ) return the previous
substates. When a thread is created, the default cancelability state is deferred
(general cancelability set to CANCEL_ON, asynchronous cancelability set to
CANCEL_OFF). A thread that needs to discover its current cancelability state
should explicitly maintain this state in some place where it can be easily queried.

Cancellation Points
Applications need to be aware of where cancellation may actually occur when
cancelability state is set to deferred. Cancellation points are points inside certain
functions where a thread must act upon any pending cancellation request when
cancelability state is deferred if the function would block indefinitely. If cancelability
state is asynchronous, then every point is a cancellation point; that is, the thread
may be canceled at any time.

If cancelability state is deferred then cancellation may occur at the following points:

v While waiting on a condition variable; that is, within pthread_cond_wait( ) or
pthread_cond_timedwait( ).

v While awaiting the termination of another thread (within pthread_join( ).)

v When pthread_testcancel( ) is called.

v When sigwait( ) is called.

v When a thread is waiting within pthread_delay_np( ) (not a portable routine).

v During the timeslice interruption.

v Within the DCE threads I/O wrappers for system calls that block. These are as
follows:

– read( )

– readv( )

– select( )

– write( )

– writev( )

– accept( )
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– connect( )

– recv( )

– recvmsg( )

– recvfrom( )

– send( )

– sendmsg( )

– sendto( )

v When pthread_setasynccancel( ) is called, and either of the following apply:

– It has set the cancelability state to asynchronous (general cancelability and
asynchronous cancelability are both enabled), it hasn’t yet returned, and a
cancel is pending.

– It was called to disable asynchronous cancelability state, but hasn’t yet done
so, and a cancellation request has been asynchronously delivered.

One important blocking routine that is not a cancellation point is
pthread_mutex_lock( ), as this would create a domino effect so that every routine
calling it would also become a cancellation point. Thus, mutexes should be used
only to protect resources held for a short period of time so that noncancelability will
not be a problem. Resources needing to be held exclusively should be protected by
condition variables rather than mutexes, as this will not inhibit cancelability.

If a thread has not set disabled cancelability state, a cancellation request has been
made to that thread, and the thread executes pthread_testcancel( ), the
cancellation request must be acted upon. Similarly, if a thread has not set disabled
cancelability state, a cancellation request has been made to that thread, and the
thread is blocked at a cancellation point waiting for an event to occur, then that
thread must act upon the cancellation request. However, if a thread is suspended at
a cancellation point and the event for which it is waiting has completed before a
cancellation request is received and acted upon, the thread may resume normal
execution and the cancellation request remains pending.

Cancellation Side Effects
Cancellation ordinarily involves cleanup in order to leave resources in an orderly
state. Any side effects of acting upon a cancellation request occur before the first
cleanup routine is called.

There are no side effects of acting upon a cancellation request while executing
pthread_join( ).

The side effects of acting upon a cancellation request while in a condition variable
wait are as follows:

v The mutex is reacquired before calling the first cleanup routine.

v In addition, while the thread is no longer considered to be waiting for the
condition, no signals directed at the condition variable are consumed by the
target thread if there are other threads blocked on the condition variable.

Using pthread_cancel( ) to Terminate a Thread: The pthread_cancel( ) routine
allows a thread to cancel itself or another thread. The routine is fully described in
the pthread_cancel(3thr) reference page. Its use is straightforward, but if you use
it to cancel a thread that makes use of mutexes or condition variables, you should
keep in mind the following aspect of its operation.

The canceled thread receives the cancel in the form of an exception. If the thread
has not disabled its cancelability by a call to pthread_setcancel( ), its effect is to
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immediately terminate the thread. However, if the thread happens to have acquired
a mutex (including the global lock) when it is canceled, the mutex will remain in its
locked state and no other thread will be able to acquire it. Moreover, the data that
was protected by the mutex may be in an inconsistent state as a result of the
thread’s having been canceled in the middle of its operation on the data.

The easiest way to prevent this is simply to disable cancels before entering code for
which access has been restricted by a mutex. If this is undesirable, you can
explicitly handle a cancel by coding an exception-handling block.

This same possibility exists with condition variables, since the variable is protected
by a mutex. An example of handling a cancel (or any other exception) while using a
condition variable follows.

#include <pthread_exc.h>

<...>

/* First, lock the mutex that protects the condition variable */
/* and the predicate... */
pthread_mutex_lock(some_object.mutex);

/* Add this thread to the total number of threads waiting for */
/* the condition... */
some_object.num_waiters = some_object.num_waiters + 1;

/* Enter the exception handling block... */
TRY

/* Test the predicate condition... */
while (! some_object.data_available)

/* If the desired condition is not yet true, wait for */
/* it to become true. This next call also auto- */
/* matically releases the mutex... */
pthread_cond_wait(some_object.condition, some_object.mutex);

/* Code to access data_available goes here */

<...>

/* If a "cancel" exception occurs during the call to */
/* pthread_cond_wait(), the thread will resume */
/* execution in the FINALLY block following... */
FINALLY

/* Remove this thread from the total number of threads */
/* waiting for the condition... */
some_object.num_waiters = some_object.num_waiters - 1;

/* Release the mutex, and then continue with the */
/* exception --that is, cancel ... */
pthread_mutex_unlock(some_object.mutex);

ENDTRY

Note that in order to handle the cancel as an exception, you must #include the
pthread_exc.h header file rather than pthread.h; this allows you to use the DCE
Threads exception interface.

Thread Cleanup
Each thread maintains a list of cleanup routines (handlers). The routines are placed
on and removed from the list by the pthread_cleanup_push( ) and
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pthread_cleanup_pop( ) functions, respectively. These functions must appear as
statements and in pairs within the same lexical scope.

When a cancellation request is acted upon, the routines on the list are invoked in
the last in, first out (LIFO) order with cancellation disabled (cancelability state of
deferred) until the last cleanup routine returns. When the last cleanup routine
returns, thread execution is terminated. If other routines are joining with the target
of the cancellation, a status of (void*) -1 is made available to them.

Cleanup routines are also invoked when the thread calls pthread_exit( ). Cleanup
routines should never exit via longjmp( ) or siglongjmp( ).

Asynchronous Cancel Safety
A function is said to be asynchronous cancel safe if it is written in such a way that
entering the function with the cancelability state of asynchronous will not cause
any invariants to be violated if cancellation should occur at any (arbitrary)
instruction. Such functions are often written in such a manner that they need
acquire no resources, and variables which they write that are visible outside their
process are strictly limited.

Any routines that acquire a resource can not be made asynchronous safe. This
unfortunately includes most routines that do useful work. The only function that is
guaranteed to be asynchronous cancel safe is pthread_cancel( ). In general, no
other library functions should be called with cancelability state set to asynchronous.

Cancel Rules Summary
The following summarizes a set of cancel-related rules that should always be
adhered to when programming with cancels:

v Applications should not use cancels as a synchronization mechanism. Condition
variables should be used instead.

v pthread_mutex_lock( ) is not a cancellation point. Resources needing to be
held exclusively for a long time should be protected by condition variables rather
than mutexes, as this will not inhibit cancelability.

v A condition wait (via pthread_cond_wait( ) or pthread_cond_timedwait( )) is
a cancellation point. A side effect of acting on a cancellation request while in a
condition wait is that the mutex is (in effect) reacquired. The effect is as if the
thread were unblocked, allowed to execute up to the point of returning from the
wait, but at that point notices the cancellation request and handles it instead of
returning.

v In general, most library calls cannot be assumed to be asynchronous cancel
safe, and hence must not be called with cancelability state set to asynchronous.

v Cleanup routines should never exit via longjmp( ) or siglongjmp( ).

In addition to the material covered in this section, “RPC Threads and RPC Cancel
Semantics” on page 46 covers the additional semantics of cancels as applied to
RPC threads.

Signals
Application developers must be aware of significant differences in the handling of
signals between DCE threads and typical single-threaded environments. In DCE
threads, some signals are handled on a per-process basis, and some are handled
on a per-thread basis. This section explains the semantic details of DCE thread
signal handling.
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A signal is said to be generated for a process or thread when the event that causes
the signal first occurs. Each process or thread has an action to be taken in
response to each signal supported by the system or implementation. A signal is said
to be delivered when the appropriate signal action for the process or thread is
taken. A signal can be blocked (or masked) by a thread or process by establishing
a signal mask containing the signal to be blocked.

The delivery of a blocked signal is deferred until it is unblocked. (Note that if the
action specified for a signal is to ignore it, the signal effectively remains blocked.)
During the time between its generation and delivery a signal is said to be pending.

Signals can be classified into the following two types, with differing semantics:

v Synchronous signals are generated by a specific thread and delivered to the
same thread. Threads can establish nondefault per-thread signal handlers for
synchronous signals by calling sigaction( ). Synchronous signals can be
blocked on a per-thread basis by establishing per-thread signal masks.

v Asynchronous signals are generated by external events, not identifiable with a
single thread. Asynchronous signals are handled on a per-process basis. An
asynchronous signal is delivered exactly once to some thread in a process. All
threads in a process share the same signal mask. Per-process handling of
asynchronous signals can be established by calling sigwait( ).

DCE threads applications must handle synchronous and asynchronous signals
differently.

Signal Masking
Signal masks can be examined and changed with the sigprocmask( ) function.
When a synchronous signal is masked via a call to sigprocmask( ) it is masked for
the calling thread. When an asynchronous signal is masked via a call to
sigprocmask( ) it is masked for the entire process.

Care must be taken when a thread unblocks an asynchronous signal. If another
thread has blocked and is, or is will be, waiting for the same signal, the results can
be unpredictable and may result in the other thread waiting forever. This problem
can be avoided by having all handling of asynchronous signals occur in a single
thread, as described in “Asynchronous Signal Handling” .

Synchronous Signal Handling
Threads should call sigaction( ) to establish per-thread handlers for synchronous
signals. The DCE Threads sigaction( ) function only modifies the signal action
behavior for the calling thread and only works for synchronous signals. Threads
must not use sigaction( ) for asynchronous signals.

Signal handlers should be careful in the actions they perform. In general,
synchronous signal handlers should attempt to clean up and allow the thread to
terminate. It is not advisable to attempt to continue after errors such as a segment
violation, illegal instruction, and the like.

In general, the threads routines cannot safely be called within a signal handler.
Furthermore, runtime libraries cannot reliably be used in signal handlers.

Asynchronous Signal Handling
Applications should handle asynchronous signals by having one thread (or possibly
a few specific threads) call sigwait( ). The waited-for signals must be blocked
before waiting. The recommended procedure is to establish a “signal catcher”
thread that calls sigprocmask( ) to establish the per-process mask for
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asynchronous signals and then calls sigwait( ) to wait for the set of blocked
signals. The following code fragment shows an example of a signal catcher thread
start routine:
/*
* This is run by the signal catcher thread to handle async signals.
* We don't use sigaction() here because it won't work with
* async signals. Note that signals must be blocked prior to being
* waited for.
*/

void signal_catcher(char *arg)
{

sigset_t signals;
int sig;

sigemptyset(&signals);
/* In this sample, we'll catch only SIGINT... */

sigaddset(&signals, SIGINT);
sigprocmask(SIG_BLOCK, &signals, NULL);
while(1)
{

sig = sigwait(&signals);
switch(sig)
{

case SIGINT:

/* SIGINT specific actions here. */
.
.
.

break;
default:

/* Not reached. If we were waiting on other */
/* signals. this would establish a default action */
/* to exit ... */

continue;
}
break;

}
sigprocmask(SIG_UNBLOCK, &signals, NULL);

/* Do termination clean up here. */
.
.
.

exit(1);
}

Signal Rules
The following rules summarize correct signal handing practices for multithreaded
programs.

v Signals must be blocked prior to being waited for. The sigwait( ) routine waits
for blocked (masked) signals.

v In order to avoid unpredictable behavior, all asynchronous signal handling should
be confined to one signal catcher thread. This may be extended to a set of signal
catcher threads.

v The pthread_cond_signal( ) routine cannot safely be used in a signal handler
that is invoked asynchronously. In general, mutexes and condition variables are
not suitable for releasing a waiting thread in response to a signal handler. When
a thread must wait for an asynchronous signal, use sigwait( ) instead.
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v Signal handlers should not call the pthread routines. In general, runtime libraries
cannot reliably be used in signal handlers.

Forking in a Threaded Application
The fork( ) system call causes the creation of an exact clone of the caller’s
address space, resulting in the execution by two address spaces of the same code.
In order to avoid the problems that would arise in a threaded environment when
one thread, possibly without the others’ knowledge, executes a fork( ), the POSIX
model defines fork( ) to result in the propagation of the calling thread only. Any
other active threads are immediately terminated without notice.

The abrupt destruction of the other threads means that any mutexes they may have
been holding at the time of the fork( ) will persist in the locked (and therefore
unacquirable) state. On the other hand, assuming that the call to fork( ) is followed
by a call to exec( ), then the outstanding mutexes will remain so only until exec( )
is called, when the new process space will be reinitialized.

Thus, “out-of-state” mutexes are a problem for the forked thread only in the interval
between the fork( ) and the exec( ). Even so, as long as no calls occur here to
routines outside the application, you can determine whether the thread is going to
encounter any mutexes that could have been locked by the destroyed threads.
However, it is impossible to be sure of this if calls into other libraries, which may
have hidden interdependencies, occur in this interval.

Aside from these considerations, there is also the question of what happens when
exec( ) fails and execution returns to the original forking (and now lone) thread,
which is left with an address space that may contain out-of-state mutexes (as well
as an inconsistent state in the data protected by the mutexes) as a result of the
fork( ).

DCE does not support the “simple” fork( ); it supports only the fork( ) and exec( )
sequence. For cases where forking in the presence of threads is felt to be
necessary, DCE threads provides a mechanism, the atfork( ) call, which allows you
to install “fork handler” routines for an application or a library. These routines will be
automatically run as follows:

v A routine that will be run just prior to the fork in the parent process; that is, just
before all of the other threads are terminated

v A routine that will be run in the child process just after the fork occurs; that is,
just after all the other threads are terminated

v A routine that will be run in the parent process just after the fork occurs; that is,
just before the parent (forking) thread resumes execution

RPC Threads and RPC Cancel Semantics
Each RPC occurs in the context of a thread. A thread is a single sequential flow of
control with one point of execution at any instant. When an application thread
extends across client and server execution contexts via the DCE RPC mechanism,
the local execution contexts are joined by an abstraction known as an RPC thread.
The RPC thread attempts to extend local thread semantics to the situation in which
execution is extended over two or more local contexts. Specifically, the RPC
mechanism tries to make RPC cancels look to the application as much like local
cancels as possible.

The semantics of cancels across RPCs are slightly different from the semantics
across local (procedure) calls. The differences can be summed up as follows:
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1. If the cancel state is disabled when an RPC is made, then, regardless of what
is done to the cancellation state on the remote procedure, no cancels will be
seen by the remote procedure.

This is because a cancel must be noticed in the client-side runtime in order for it
to be forwarded to the server. However, if the cancellation state has been set to
disabled when an RPC is issued, then since the client-side runtime does not
enable cancels, the client-side runtime will never notice if a cancel has been
issued against the calling thread; subsequently, the cancel remains pending and
unnoticed by the client-side runtime, even if the server side has changed the
cancellation state (for instance, to deferred).

Furthermore, since lexical scoping of changes to the cancellation state is
enforced by RPC, the cancellation state in effect at the time of the RPC call is
restored upon completion of the call. Thus, any state changes made on the
server side of the call are lost. Any issued cancels remain pending as the
server-side state change is “undone” by the client-side runtime prior to returning
to the calling thread. In this instance, if a cancel arrives after the callee returns,
the cancel will not be acted upon.

This behavior contrasts with the local procedure call case: if cancel state is
disabled when a local procedure call is made, and the callee sets the
cancellation state to deferred, then if a cancel arrives and the callee hits a
cancellation point, the cancel will be acted upon. Furthermore, if the cancel
arrives after the callee returns, the cancel will be acted upon when a
cancellation point is arrived at in the caller.

2. If cancelability state is deferred, then cancellation requests will be sent to the
server where they will be handled according to the server’s setting of the
cancelability state for the application thread extension (that is, the call thread) in
the server. If ignored at the server, the client side would then effect the cancel
upon return from the RPC, so the cancel would not be lost or incorrectly
handled. In particular, the timeslice interrupt (context switch) is a cancellation
point in DCE threads, so that even if a cancel were ignored by the server side,
when the RPC returns, the thread will be at a cancellation point.

3. If cancelability state is asynchronous, then cancellation can happen at any
time. In general, this state is not recommended across the scope of an RPC in
line with the rule that most routines that do useful work are not asynchronous
cancel safe and thus should not be called with asynchronous cancelability state.
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Chapter 3. Security

For the purposes of the discussion in this chapter, the security services provided by
DCE are assumed to consist of three elements: authentication, access control, and
data protection. (The DCE Audit Service, which is also a part of DCE security, is
described in the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Core Components.)

The roles of these three elements can be broadly defined as follows (rigorous
definitions can be found in the AES/DC Security volume, which is the definitive
exposition of DCE security):

v Authentication establishes whether service requestors are who they say they are.

v Access control provides mechanisms that applications can use to establish
whether a given requester is permitted to perform some operation.

v Data protection guarantees the secrecy and integrity of data exchanged between
clients and servers.

As with other DCE services, use of the security services raise two kinds of policy
questions. At one level, application programmers must decide which services and
levels of service to employ. At a second level, once a service has been chosen, the
application programmer must make many decisions about how to use it. This
chapter covers both levels of policy, although it focuses mainly on the lower-level
policy issues specific to each service. This emphasis is due both to the fact that the
higher-level issues are relatively few—mainly whether to use a given service or
not—and to the belief that it is far easier to understand the general issues once the
specifics are clear.

Security is an especially complex area from the policy point of view. Security
systems must anticipate threats both from human ingenuity and random accident,
and it can be difficult—perhaps impossible—to be confident that no serious threat is
being overlooked. DCE security provides an extensive security model that
applications can incorporate in a few well-integrated chunks. Thus applications can
get the benefit of the DCE security design—and the extensive, specialized analysis
that went into it—with relatively little effort. Applications should avoid creating
security solutions ad hoc and should stick closely to the solutions provided by DCE
security. Unless the programmer is a security specialist, it is extremely unlikely that
an application-specific solution will provide better security than the DCE security
services, and it is practically guaranteed that such solutions will contain unforeseen
weaknesses.

The Basic Security Model
At a high level, the DCE security model is as follows. Servers specify the
authentication service they use (currently either none or DCE secret key). Clients
request an authentication service (which may be none) when making a call. When a
server specifies an authentication service, it is specifying the service it will use if
authentication is requested by the client. This allows a server to permit both
authenticated and unauthenticated access. When a client requests authentication
and the server provides it, authentication is carried out silently by the runtime as
part of the RPC protocol. The runtime will fail the call if the client cannot be
authenticated. When no authentication is requested, none is performed. If the client
requests authentication and the server does not provide it, the runtime will fail the
call.
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Table 2 shows how client and server authentication actions affect RPC calls. Clients
specify an authentication service for a binding handle by calling
rpc_binding_set_auth_info( ). Servers register an authentication service by calling
rpc_server_register_auth_info( ). The possible values are rpc_c_authn_none for
no authentication and rpc_c_authn_dce_secret (or rpc_c_authn_default) for DCE
secret key authentication.

Table 2. Authentication
Client Specifies Server Registers Authentication

rpc_c_authn_none rpc_c_authn_none No authentication
performed

rpc_c_authn_none rpc_c_authn_dce_secret No authentication
performed

rpc_c_authn_dce_secret rpc_c_authn_none Call rejected by
RPC runtime

rpc_c_authn_dce_secret rpc_c_authn_dce_secret Authentication
performed

Authentication establishes only that each of the parties is a principal known to the
authentication service, and that each party knows who the other is. Servers typically
make an explicit authorization decision using one of the DCE authorization services,
to decide whether a given authenticated principal should in fact be granted access
to some operation or resource. In most cases, clients will not be satisfied with the
mere assurance that they are communicating with an authenticated principal.
Clients must then check the authenticated identity of the server to be sure that it is
one with which they are willing to communicate. Note that this kind of server identity
check is normally made at a low level of granularity: typically once per client-server
session. Server authorization of clients is usually much more specific: typically once
per remote operation.

Authorization is based on the identity of the caller, which may be expressed either
as a principal name or as a set of privilege attributes. What the RPC authentication
model provides to the server are, essentially, guarantees as to the authenticity of
the identity, and possibly, the privilege attributes of the caller. Since an identity
without such guarantees would be useless for access checking, authorization is
supported only for authenticated RPCs. If the client chooses to call unauthenticated,
the runtime permits the call and does not provide any authentication information.

It is entirely up to the application manager code to make an access decision based
on any authentication and authorization data provided by the runtime for a client.
Clients specify an authorization service for each binding: either none
(rpc_c_authz_none), client principal name-based authentication
(rpc_c_authz_name), or DCE credential-based authentication (rpc_c_authz_dce).
When a server manager operation is invoked (implying either that no authentication
was performed or that authentication was performed and succeeded), the
application can retrieve any authorization information by calling
rpc_binding_inq_auth_caller( ).

The application manager must then make an access decision based on the
retrieved information. The DCE ACL facility provides application support for
ACL-based authorization using the client credentials. This is the recommended
authorization scheme.

In addition to authentication and authorization, the DCE security services can also
provide various levels of data secrecy and integrity guarantees. The basic model is
that the client application requests the minimum acceptable protection level. The
runtime then provides the lowest supported protection level that is at least as high
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as the one requested by the client. If the runtime cannot provide at least the
requested level, it fails the call. Supported levels as well as the services provided
by each level depend on the authentication service in use, so clients must take care
to request a level that is meaningful for the authentication service they have
specified.

Application Roles
Each of the elements of DCE security makes very different demands on the
application. In the case of data protection, the application need only specify a
protection level. The RPC runtime takes care of data protection transparently and
the guarantees provided are fairly easily understood.

In the case of authentication, clients and servers have to do more work to establish
the required state for authentication to take place. The required steps are described
in detail in “Authentication Model” . Once this initialization is taken care of, the RPC
runtime provides authentication transparently.

The authorization component of DCE security requires the most work from the
application. Essentially, DCE provides applications with a set of mechanisms for
access control. These include the following:

v The authenticated identity and privilege attributes (in the form of credentials) of
service requesters, provided by the RPC runtime to servers.

v ACLs which servers may associate with objects they control.

v A default mechanism for determining a service requestor’s privileges from an
ACL and the requestor’s credentials.

v Tools for administering ACLs.

Servers that use the DCE ACL-based authorization services must do a fair amount
of initialization to create an ACL manager. Each protected operation must then
explicitly call the ACL manager to make an authorization decision for each protected
operation. A set of ACL management APIs is provided to make these tasks easier,
but the work required remains nontrivial. The steps are covered in detail in
“Authorization” on page 62.

Authentication Model
The DCE authentication model is currently based on the Kerberos shared secret
key protocol. In theory, the application-level interface to authentication is sufficiently
abstract that an alternative authentication protocol can be implemented. However,
given that none so far has been implemented, it would be difficult to define
protocol-independent authentication policies based on a realistic understanding of
the behavior of alternate authentication services or the as yet unspecified
programmer’s interface to such services. The policy recommendations of this
section do, therefore, make the assumption that Kerberos is the underlying
authentication protocol. No guarantees can be given as to their appropriateness if
an alternative authentication protocol is implemented.

The DCE Authentication Model
The authentication mechanism is based on two fundamental constructs: principal
identities and secrets (keys). These are, in a sense, the fundamental data of
authentication. The basic authentication policy issues therefore have to do with how
applications manipulate this data: how they acquire their principal identities and how
they maintain the security of their secret keys. This section discusses these
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questions. The following discussion assumes an understanding of the basic
transactions of the Kerberos protocol as implemented by DCE. That is, it assumes
that you understand such concepts as conversation keys, tickets, a trusted
computing base, and the like, as described in the AES/DC Security volume. It does
not assume that you know anything about the details of protocol encoding,
encryption mechanisms, and so on.

At a very general level, authentication (Kerberos)-related activity takes place in
three stages:

1. Before any application can make use of the authentication service, some
administrative actions are required, mainly to establish the required principal
identities and related secret keys.

2. Some application-level actions are then required of the client and server
principals: fundamentally, the client must obtain validated credentials, and the
server must point the RPC runtime to the storage for its keys. Note that, strictly
speaking, the server need not itself obtain any credentials, as these are only
used by the client of the Kerberos exchange. However, since servers typically
must also act as clients (of the name service, for example), they will normally
also need to acquire credentials.

In the case of the client, the application-level actions required to obtain
credentials are normally carried out by a login program before the client is run,
and the client inherits valid credentials. Therefore, this stage of activity is not
usually carried out explicitly by clients. In the case of the server, these activities
are usually carried out by the server explicitly. The reasons for this difference
are one of the topics covered in the discussion that follows.

3. Authentication related RPC protocol activity is then carried out transparently by
the RPC runtime during each call.

In addition, server application code needs to make authorization decisions based on
the assumption that authentication has been carried out, but these belong more
properly to the realm of authorization, as described in “Authorization” on page 62.

Note that the application code proper need only concern itself with item 2 in the
above list. This item is therefore the appropriate realm for policy recommendations
about application-level authentication. Item 1 is an administrative task required for
the installation and maintenance of the application. Nevertheless, the required
administrative actions depend on how the application treats authentication and are,
therefore, indirectly a policy concern for the application programmer. What this
policy guide recommends is essentially a standard application security model that
results in a standard administrative task. Note that, once the administrative and
application setup covered by items 1 and 2 have been performed, item 3 is handled
transparently by the RPC runtime.

Application-Level Authentication
One of the obvious conclusions to be drawn from the general discussion of DCE
authentication is that application-level client and server authentication
responsibilities are highly asymmetrical:

v Clients typically inherit identities, while servers assume them implicitly.

v Clients are concerned with credentials while servers are concerned with keys.

The reasons for these asymmetries have to do both with the underlying asymmetry
of the Kerberos model and with an underlying model of RPC client and server
behavior that is also asymmetrical.
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From the Kerberos point of view, the basic model is that a client acquires and holds
tickets (credentials), valid for some period of time. These function as temporary
proxies for the client’s secret. The server, on the other hand, makes use of no such
proxy: it needs constant access to its secrets in order to decrypt new client requests
and discover the applicable conversation keys.

From the RPC point of view, the basic model is that servers are persistent entities
in the sense that they normally perform services on behalf of more than one client
principal session. This may mean that servers are persistent in time: that is, that
they run for a long time, possibly for as long as the machine they are running on is
up and running. But even servers that are invoked on demand (and therefore that
run for a short period of time) can be invoked by multiple clients and, during their
short lives, may well perform services for clients other than the invoker.

Clients, on the other hand, will typically be invoked by an interactive principal to run
within the scope of a single principal login session. Such clients can therefore
usefully acquire their credentials from the principal who invoked them. Note,
however, that there is nothing to require clients to behave in this manner. A
persistent client can easily be written that assumes its own identity, manages keys,
and acquires and updates credentials. The basic authentication policies described
here can be easily extended to cover this case.

For a client that runs with an inherited identity, the principal security problem—the
maintenance of its secrets—is reduced to the problem of maintaining the security of
its credentials while they are valid. The client is basically passive in this respect,
depending on the local operating system to prevent unauthorized access to the
credential cache of the DCE principal that initiates the client application. Direct
management and discovery of keys (for example, reading them from a configuration
file) is not required of such clients. Typically, such an application can do nothing
about the security of the principal’s keys used to acquire credentials, since all the
authentication-related state is inherited. The client’s real security responsibility is
therefore negative: not to take any action outside of the specified authentication
policy model that could compromise security for the identity with which it runs (for
example, indiscriminately giving other processes access to its credentials).

1 Clients may or may not be concerned with the identities of the servers they call.
The Kerberos authentication exchange is mutual in the sense that both clients and
servers must have genuine authentication identities to participate successfully.
However, a client may not trust a server simply because it can successfully
authenticate to the client. The client may want to make RPCs only to servers with
specific principal identities that it trusts. In this case, the client has the additional
security task of safely maintaining a list of acceptable server identities with which it
is willing to communicate.

For the server, the basic authentication problem imposed by the DCE secret key
authentication protocol is the maintenance of keys. This depends on local operating

1. This is another of the basic asymmetries of the Kerberos-based security mechanism. Servers can control client access by
demanding that the client be authenticated and then making authorization decisions based on the client’s authenticated privilege
attributes. Clients can only require that the servers they call be authenticated. This leaves the client with three server
authentication options:

1. The client doesn’t care about the identity of the server.

2. The client demands that the server be authenticated, but does not care which authenticated identity the server uses.

3. The client only trusts principal identities known to it directly or indirectly, such as by being a member of a trusted group.

Application steps for checking authenticated server identity are discussed in “Authentication Model” on page 51.
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system access control to the key storage (typically a so-called keytab file) for the
DCE principal identity used by the server. However, since servers normally also
need to acquire credentials (in order to behave as clients of other services),
application programmers need to think carefully about how the server identity is
acquired. In general, it is not satisfactory to have servers run with credentials
inherited from human logins. For one thing, this requires the server to share keys
with human users. This means that the server either needs to have access to the
default key storage used by human principals (typically the default keytab file,
probably owned by root) or it needs to keep separate copies of user keys in local
storage. Both of these schemes decrease the security of keys, and the latter makes
key management difficult.

A straightforward scheme that meets these requirements is to have the server
identity supplied by the invoker (or a configuration file) and have the server assume
this identity via a series of security service calls. The only administrative overhead
is in establishing at least one principal and the required keytab file. This is typically
handled through dced facilities.

Obtaining an Authentication Identity
DCE clients normally inherit valid credentials from the logged-in principal who
invokes them. DCE servers normally need to establish an identity explicitly. The
steps they take, and their relation to the Kerberos protocol, are described in this
section.

In actual practice, clients want to obtain a privilege ticket granting ticket (PTGT),
since they want to prove not only their identities to servers, but also to provide their
certified privileges (in the form of credentials). However, from the point of view of
authentication, the principle is the same: the client needs some kind of TGT. For
simplicity’s sake, the following discussion pays little attention to the distinction
between TGTs and PTGTs (as well as the many extra protocol steps involved.)

The terms credentials, authentication identity, and login context are often used to
mean vaguely the same thing. Here however, we will use credential to mean a
ticket held by an application. An application’s credentials at any point typically
consist of a number of cached tickets, including a TGT, PTGT, and a variety of
service tickets. (Also, an application may have acquired more than one principal
identity, in which case it will have credentials for each.) We will use authentication
identity to mean the set of authentication-related data—including
credentials—referred to by a login context. Finally, we will use login context to mean
the opaque handle to authentication-related data that applications use.

An instance of authentication identity data in its various states is represented to an
application as an opaque login context (sec_login_handle_t). An application
obtains an authentication identity by calling sec_login_setup_identity( ), which
returns a login context containing the TGT data. An application validates the identity
by passing the login context to sec_login_validate_identity( ). Parts of the TGT
obtained by sec_login_setup_identity( ) are encrypted using the requesting
principal’s key, obtained from the registry. The sec_login_validate_identity( )
routine requires the principal’s key (from the keytab) to perform the decryption.
Once this has occurred, the client runtime also performs the further steps necessary
to acquire a PTGT and other tickets.

The setup and validation operations are separate in order to minimize the amount
of time that the application needs to maintain the principal’s key in its address
space. Applications obtain the principal’s key by calling
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sec_key_mgmt_get_key( ). The call to sec_login_validate_identity( ) destroys
the key in place before returning. Applications should not violate the intention of this
design by keeping the key in memory longer than necessary. That is, they should
make the required calls strictly in the sequence illustrated in the following code
fragment:

sec_login_setup_identity(prin_name, sec_login_no_flags,
&login_context, status);

sec_key_mgmt_get_key(rpc_c_authn_dce_secret, keytab,
prin_name, 0, (void**)&keydata,status);

sec_login_validate_identity(login_context, keydata,
&reset_pwd, &auth_src, status);

These calls are bundled into the dce_server_sec_begin( ) routine.

Once an authentication identity has been obtained and validated, an application that
intends to use the identity for authenticated RPC normally turns it into the default
login context by calling sec_login_set_context( ). As the default login context, an
authentication identity is implicitly available to authenticated RPC calls made within
the same process. An application, such as a client, that inherits an authentication
identity inherits it as the default login context.

The Authenticated RPC Call
Once an application has either inherited or established a validated authentication
context, it establishes authentication for RPCs by annotating the binding handles on
which those calls are made. Clients do this by calling
rpc_binding_set_auth_info( ). No further action is required of the application:
when an RPC is made on such a binding handle, all further authentication is carried
out silently by the RPC runtime.

The call to rpc_binding_set_auth_info( ) requires three pieces of
authentication-related state:

1. The authentication service to use: either DCE secret key or none.

2. The login context to use. Most applications will specify the default login context
(by setting the auth_identity parameter to NULL).

3. A principal name for the server being called.

Note that applications may need to establish a default login context even if they do
not explicitly call rpc_binding_set_auth_info( ) to set this context for a specific
binding handle. In particular, access to name and other services involves
authenticated RPC calls made by the runtime on the application’s behalf. In these
cases, the application does not have a chance to call
rpc_binding_set_auth_info( ) explicitly. These implicit calls therefore use the
default identity for authentication purposes. It is mainly for this reason that servers
need to establish a validated authentication identity for the principal under which
they run and make this the default login context.

The principal name specified to rpc_binding_set_auth_info( ) establishes the
principal for which Kerberos service tickets will be requested for RPCs on the
binding handle. An application making RPC calls may or may not care about who
the server principal is. The client may be satisfied to call any server that provides
the service it wants, or the client may need to trust the server and thus require a
trusted server principal identity.
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Typically, a client learns the principal identity of a server by calling
rpc_mgmt_inq_server_princ_name( ). If the client is willing to call any server, the
returned principal name may be passed to rpc_binding_set_auth_info( ) without
further checks. If the client must trust the server, then the client needs to check the
returned principal identity against a list of (one of more) acceptable values. The
client needs to obtain this list by some application-specific means.

Note that it is not the call to rpc_mgmt_inq_server_princ_name( ) or any
subsequent checks on the returned name that actually authenticates the server to
the client. A malicious server could certainly arrange to return a false principal
name. However, a false name would be useless for authentication since the false
server would not have access to the secrets (keys) of this identity. However, the
client does need to protect its list of acceptable server identities to prevent a
malicious server from modifying the list to include its own identity.

Managing Keys
An application that wishes to perform the server side of the Kerberos protocol
exchange is principally concerned with managing its keys. Keys are normally stored
in keytab files which must be in the local host file system. The server needs local
system permission to read and write them, and they must be protected from any
access by other local identities.

Note: Keytab files are normally created by administrative action. Be aware that the
local identity or the process running rgy_edit determines the initial local
ownership of files created by ktadd.

This means that the server needs its own local identity too, to correspond to its
DCE identity. Keytab files should be owned by this local identity. The programmer or
installer must arrange for the server to run under this local identity, and only a
locally privileged user should have execute permission for the server. On UNIX
systems this can be arranged by having the server run setuid( ) to the chosen
local identity and giving execute permission only to specific local users.

Because the degree of integration between local and DCE login varies with DCE
implementations, it is difficult to give more general advice about local identities. As
the following paragraphs explain, however, it is generally not a good idea for the
server to run with the DCE identity of a human user. If DCE and local identities are
the same, the same guideline must be applied to local identities. That is, the
server’s local identity should not be that of a human user.

When a server is initialized, it will get its key from its keytab file. The keys installed
in keytab files should not be tied to some human readable password: that is, they
should be randomly generated and updated frequently (as enforced by
administrative policy). This means that servers do not have DCE passwords;
passwords should be used for human login only.

In general, the domains of human and nonhuman users should be separate. For
example, a human user needs a password from a restricted domain (typeable on
the keyboard), hence keys tied to passwords are generally less secure than keys
not tied to passwords. Furthermore, when keys are tied to passwords, key
management is much harder.

Servers therefore should acquire their own nonhuman, server-specific identities.
Requiring a small amount of administrative overhead to set up a DCE identity for a
server-specific principal is not an onerous task for a server that is not frequently
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installed. In an identity-based security system, the server’s principal name is the
essential persistent security datum for a server. Its importance is in some ways
equivalent to that of the server’s bindings.

One might complain that keeping keys in a keytab file places all of the server
security burden on the local operating system, and this is correct. But an alternative
scheme, such as requiring a user password to start a server, does nothing to
improve on this. Indeed, it is the cardinal fact of DCE security that, on any local
system, it is only as secure as the local operating system upon which it runs. It is
therefore a sound policy to make this dependency explicit rather than erecting an
illusory layer of DCE security on top of it.

Default Server Authentication Steps
The default model for server authentication consists of the following steps:

1. The server specifies a server-specific keytab file and server-specific principal
name when it calls rpc_server_register_auth_info( ).

2. The server acquires valid credentials for its server-specific identity via a series
of sec API calls.

3. The server does periodic key management by establishing a separate thread
that calls sec_key_mgmt_manage_key( ). This keeps the server’s key up to
date according to local key management policies and thus prevents the server
from becoming inoperable because of an expired key.

4. The server contains code to check and, if necessary, revalidate and recertify its
credentials when undertaking operations that require valid credentials (such as
name service export and unexport operations).

The following sample functions, reproduced from the sample_server.c file of the
sample DCE application in /opt/dcelocal/examples/demo/generic_app and
illustrated “Sample_server.c” on page 180, implement credential acquisition,
credential revalidation, and key management.

In order to save space and to improve the readability of the text, the code shown
below has been slightly edited: all status checks, and all calls to the DCE
serviceability interface (to print or log status or informational messages), have been
removed.

The managekey Routine
The managekey( ) routine manages the server principal’s key, making sure that it
never expires.

/******
*
* managekey -- Make sure the server principal's key is changed before
* it expires.
*
* The key management thread which runs this function is created
* in server_get_identity(), below.
*
*
******/

void managekey(char *prin_name){ /* Server principal name */
unsigned32 status;

status = error_status_ok;

sec_key_mgmt_manage_key(
rpc_c_authn_dce_secret, /* Authentication protocol */
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KEYTAB, /* Local key file */
(idl_char *)prin_name, /* Principal name */
&status);

}

The server_get_identity Routine
The server_get_identity( ) routine sets up a new server identity.

/******
*
* server_get_identity -- Establish a new server identity with valid
* credentials. This includes setting up a key
* management thread.
*
*
* Called from main().
*
******/

void server_get_identity(
unsigned_char_p_t prin_name, /* Server principal name. */
sec_login_handle_t *login_context, /* Returns server's login context. */
unsigned_char_p_t keytab, /* Local key file. */
unsigned32 *status)
{

pthread_t keymgr;
sec_passwd_rec_t *keydata;
sec_login_auth_src_t auth_src;
boolean32 reset_pwd;

*status = error_status_ok;

/* Spin off thread to manage key for specified principal... */
if (pthread_create(&keymgr, /* Thread handle. */

pthread_attr_default, /* Specifies default thread */
/* attributes. */

(pthread_startroutine_t)managekey, /* Start rou- */
/* tine; see above. */

(void*)prin_name)) /* Argument to pass to start */
/* routine: serverprinci- */
/* pal name. */

{
dce_svc_printf(CANNOT_MANAGE_KEYS_MSG);
return;

}

/* Create a context and get the login context... */
sec_login_setup_identity(prin_name,

sec_login_no_flags,
login_context,
status);

/* Get secret key from the keytab file... */
sec_key_mgmt_get_key(rpc_c_authn_dce_secret,

keytab,
prin_name,
0,
(void**)&keydata,
status);

/* Validate the login context... */
sec_login_validate_identity(*login_context,

keydata,
&reset_pwd,
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&auth_src,
status);

/* Finally, set the context... */
sec_login_set_context(*login_context, status);

}

The server_renew_identity Routine
The server_renew_identity( ) routine makes sure that the server’s credentials are
valid.

/******
*
* server_renew_identity -- Make sure that credentials are still valid, and
* renew them if they are not.
*
*
* This routine is called (with the current credentials) whenever a task
* is about to be attempted that requires valid credentials. For an ex-
* ample, see the cleanup code in "main()" above. A valid credential will
* nevertheless be considered invalid if it will expire within time_left
* seconds. This gives a margin of time between the validity check that
* occurs here and the actual use of the credential.
*
* Called from main() (but can be called from elsewhere).
*
******/

void server_renew_identity(
unsigned_char_p_t prin_name, /* Server's principal name. */
sec_login_handle_t login_context, /* Server's login context. */
unsigned_char_p_t keytab, /* Local key file. */
unsigned32 time_left, /* Amount of "margin" -- see above. */
unsigned32 *status) /* To return status. */
{

signed32 expiration;
time_t current_time;
sec_passwd_rec_t *keydata;
sec_login_auth_src_t auth_src;
boolean32 reset_pwd;

*status = error_status_ok;

/* Get the lifetime for the server's Ticket-Granting-Ticket (TGT). */
/* Note that sec_login_get_expiration() returns a nonzero */
/* status for an uncertified login context. This is not */
/* an error. Hence the special error checking... */
sec_login_get_expiration(login_context,

&expiration,
status);

/* Get current time... */
time(&current_time);

/* Now, if the expiration time is sooner than the desired "time */
/* left"... */
if (expiration < (current_time + time_left))
{

/* Refresh the server's authenticated identity... */
sec_login_refresh_identity(login_context,

status);

/* Get key from local file... */
sec_key_mgmt_get_key(rpc_c_authn_dce_secret,

keytab,
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prin_name,
0,
(void**)&keydata,
status);

/* Validate the login context... */
sec_login_validate_identity(login_context,

keydata,
&reset_pwd,
&auth_src,
status);

}

}

The server initialization code need then only make the following calls to establish
server authentication and obtain valid credentials:

/* Register server authentication information... */
rpc_server_register_auth_info(server_principal_name,

rpc_c_authn_dce_secret,
NULL,
KEYTAB,
&status);

/* Assume new identity... */
server_get_identity(server_principal_name,

&login_context,
(unsigned_char_p_t)KEYTAB,

&status);

Once the server has been running for a while, so that credentials may have
expired, the server calls server_renew_identity( ) before undertaking any task that
requires valid credentials. For example, a server typically needs to call this
operation before attempting to clean up its name space before shutting down.

Default Client Authentication Steps
Once a client has inherited or created a validated identity, the only step required is
to call rpc_binding_set_auth_info( ). The client must supply a server principal
name as an argument to this call.

Clients can inquire for the principal identity of a server by calling
rpc_mgmt_inq_server_princ_name( ). If the client does not care about the
principal identity of the server, the returned value can be supplied to
rpc_binding_set_auth_info( ) without further ado. If the client will only accept
certain server identities, then it needs to check the returned value against the
acceptable ones.

The list of acceptable values must be obtained and maintained by the client by
some means of its own choosing: for example, a principal name could be obtained
from an environment variable. The only security issue here is that the client must be
sure that the list of acceptable values is a legitimate one. For example, it must not
be stored in such a way that a false server can modify it.

The task of maintaining a list of acceptable principal names can be simplified
somewhat by having all acceptable principals belong to a single group that is
maintained by some trusted authority, such as a system administrator. The client
then needs to maintain only the name of the group, rather than the whole list of
principal names. To be sure that the server is authentic, the client need only check
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the principal name returned by rpc_mgmt_inq_server_princ_name( ) against the
group by calling sec_rgy_pgo_is_member( ).

The following code fragment demonstrates this scheme.

The is_valid_principal Routine
The is_valid_principal( ) routine checks the group membership of the specified
principal.

/******
*
*
* is_valid_principal -- Find out whether the specified principal is a
* member of the group he's supposed to be.
*
*
******/

boolean32 is_valid_principal(
unsigned_char_t *princ_name, /* Full name of principal to test. */
unsigned_char_t *group, /* Group we want principal to bein. */
unsigned32 *status)
{

unsigned_char_t *local_name; /* For principal's local name. */
char *cell_name; /* Local cell name. */
sec_rgy_handle_t rhandle; /* Local registry binding. */
boolean32 is_valid; /* To hold result of registry call. */

fprintf(stdout, "sample_client: Initial principal name == %s",princ_name);
fprintf(stdout, "sample_client: Initial group name == %s",group);

/* Find out the local cell name... */
dce_cf_get_cell_name(&cell_name, status);

/* Now bind to the local cell registry... */
sec_rgy_site_open(cell_name, &rhandle, status);

/* Free the cellname string space... */
free(cell_name);

/* Get the specified principal's local (cell-relative) name... */
local_name = malloc(strlen((char *)princ_name));

sec_id_parse_name(rhandle, /* Handle to the registry server. */
princ_name, /* Global (full) name of the principal. */
NULL, /* Principal's home cell name returned here. */
NULL, /* Pointer to UUID of above returned here. */
local_name, /* Principal local name returned here. */
NULL, /* Pointer to UUID of above returned here. */
status);

fprintf(stdout, "sample_client: Full principal name == %s",princ_name);
fprintf(stdout, "sample_client: Local principal name == %s",local_name);

/* And finally, find out from the registry whether that principal */
/* is a valid member of the specified group... */
is_valid = sec_rgy_pgo_is_member(rhandle,

sec_rgy_domain_group,
group,
local_name,
status);

/* Free the principal name string area... */
free(local_name);
return(is_valid);
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}

<. . . . .>

/* Resolve the partial binding... */
rpc_ep_resolve_binding(binding_h,

sample_v1_0_c_ifspec,
&status);

/* Find out what the server's principal name is... */
rpc_mgmt_inq_server_princ_name(binding_h,

rpc_c_authn_dce_secret,
&server_princ_name,
&status);

/* And now find out if it's a valid member of our sample_servers */
/* group... */
if (is_valid_principal(server_princ_name, (unsigned_char_t*)SGROUP, &status))
{

rpc_binding_set_auth_info(binding_h,
server_princ_name,
rpc_c_protect_level_pkt_integ,
rpc_c_authn_dce_secret,
NULL,
rpc_c_authz_dce,
&status);

}

Authorization
Assuming either that authentication has taken place and succeeded, or that no
authentication has taken place, some server manager operation will then be
invoked by the RPC runtime to handle an RPC call. This operation should, as its
first duty, make an authorization decision.

A server manager operation calls rpc_binding_inq_auth_client( ) to extract any
authentication information for the calling client and then makes a series of
decisions. The usual model is that the server establishes a set of access criteria
and rejects the call if all criteria are not met. This is implemented as a series of
tests, the server rejecting the call at the first failed test. The possible tests are as
follows:

1. Does the client binding provide any authentication information? For this
purpose, the application should check status after the call to
rpc_binding_inq_auth_client( ). If no authentication information is provided
(the status returned is rpc_s_binding_has_no_auth), the authorization function
must decide whether this is acceptable. The authorization function may make its
decision based on the unauthenticated ACL type, as noted later in this section.

If authentication information is provided, then the application should go on to
ask:

2. Is the authentication service acceptable to the server? The application checks
the authn_svc parameter. Currently this check is redundant, since the only
authentication service available is DCE secret key (the authn_svc returned is
rpc_c_authn_dce_secret 2 ).

2. There is considerable asymmetry in the use of the authn_svc values on the client call to rpc_binding_set_auth_info( ) and the
server call to rpc_binding_inq_auth_client( ). If the client specifies rpc_c_authn_none, the server sees a status of
rpc_s_binding_has_no_auth, and no meaningful value is returned for the authn_svc parameter. Furthermore, given that the
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The server may of course, simply be satisfied that the client is authenticated
and check no further. Or the server can do one or both of the following two
things:

3. Check that the protection level is acceptable. This too is a matter for negotiation
between the client and server applications, but it is important to begin by
considering the runtime’s mediation of the protection level request. Recall that
the client specifies a specific protection level for a binding, whereas the server,
when it registers its authentication information, specifies only the authentication
service it will use.

The chosen (agreed upon by the client and server) authentication service may
not support all protection levels for all protocols. Therefore, the runtime adopts
the policy of translating the client’s protection level request to the next highest
protection level actually supported by the authentication service and protocol in
use. This means that the server application will see a protection level greater
than or equal to the one requested by the client.

Most server applications will establish a policy for the minimum acceptable
protection level. In this case, if the level returned by the server application when
it calls rpc_binding_inq_auth_client( ) is below the standard, the server
manager fails the access request. It is perfectly possible, however, for a server
to require a lower level of protection. For example, a server may want to avoid
the considerable overhead of full data encryption and thus refuse to service
requests for this level.

4. Check that the authorization service is acceptable. Once again, this is a matter
for negotiation between the client and server applications. The server
application provides an access testing mechanism for authorization services it
supports. There are three possibilities:

v Authorization based on the client’s principal name (rpc_c_authz_name).

v Authorization based on the client’s credentials (rpc_c_authz_dce). This
involves checking the client identity’s permission set (extracted from an ACL
associated with the object the client is attempting to access) against the
required permissions for the requested operation. The client’s identity is
extracted from its credentials, contained in its binding.

v The server may permit access without authorization checking
(rpc_c_authz_none).

Name-based authorization is straightforward, but of very limited utility. In the
simplest form, the application compares the extracted name string with a set of
permitted names. However, the application is entirely responsible for maintaining
and manipulating the set of permitted names securely, which is a nontrivial task.
For example, the application must provide for some administrative way to
update the set of permitted users. Typically, this will require maintenance of a
restricted access file in some application-specific format. This is the kind of
administrative overhead that applications should be designed to avoid.

If the server application is willing to permit access by group and organization, it
can somewhat offset this difficulty by making a group or organization
membership check for the specified principal name. However, the basic
objection remains that an application doing name-based authorization must
maintain and administer a private security namespace (consisting of principals,
groups, and organizations associated with access privileges). Since the

default authentication service is DCE secret key, if the client specifies rpc_c_authn_default, the server returns
rpc_c_authn_dce_secret from authn_svc. In other words, while the client can specify three different values for authn_svc, the
server can return only one.
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credential-based (ACL) method is designed to provide a general solution to this
problem, it is much to be preferred. ACL based access checking is described in
the following sections.

If the authorization service requested is acceptable, the server application
makes the appropriate access tests as described in step 6.

5. Check that the server principal name specified by the client is acceptable. This
check is useful for a server that is running with more than one principal identity.
The server may only want to allow the operation under a specific principal
identity. If the server is running with only one principal identity, this check is
redundant.

6. Extract the client privileges and perform the appropriate access testing. The
form of the client privileges depends on the authorization service. The
application needs to extract the privileges in the correct format and pass them
to the appropriate access tests.

Client Credentials
A client’s credentials may be implicitly passed on to an ACL manager via a call to
dce_acl_is_client_authorized( ). See the sample_call() function in the
sample_manager.c code, illustrated “Sample_manager.c” on page 230.

Null credentials are not the same thing as anonymous credentials. Anonymous
credentials are simply credentials for the well-known anonymous user UUID. They
are tested in the normal way by the ACL manager against permissions for the
anonymous user in the relevant ACL.

The following code fragment shows the necessary steps:

rpc_authz_handle_t pac;

/* Get the client's credentials... */
rpc_binding_inq_auth_client(. . . &pac . . &status);

/* If there is no authentication information, set up a set of null */
/* credentials... */

if (status == rpc_s_binding_has_no_auth)
{

pac = (rpc_authz_handle_t)0;
}

/* And now test the client's possession of the required permissions */
/* by passing its credentials (along with other pertinent data) to */
/* the following call... */
sec_acl_mgr_is_authorized(. . . (sec_id_pac_t*)pac . ..);

Access Control Lists
Authorization decisions depend on the following information:

privilege attributes

A set of principal and group names qualified by the cell name in which the
principals and groups exist.

This information comes from the entity (client) that is attempting to perform
the operation in question.

ACL privilege attribute entries
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This is the ACL. It consists of a list of entries, each of which consists of an
entry type, a key, and a permissions set, which taken together describe
what permissions a particular entity possesses for the object to which the
ACL is attached.

The ACL is looked up by the server through which the client is trying to
perform the operation.

ACL mask entries

These consist of two entry_type: permissions_set pairs.

requested permissions
A permission set which describes the permissions that a client must
possess in order to perform the requested operation. The server itself
calculates this information.

There are two levels of semantics/policy to be considered here. One is the
semantics of privilege attributes, for which we specify a strict (POSIX compliant)
policy in the form of an access checking algorithm. This is embodied in the default
access checking algorithm provided by the ACL library. The second is the semantics
of permissions. Ultimately these depend on the ACL manager and the kinds of
objects it protects. However, some recommendations for keeping permissions as
intuitive and consistent across applications as possible are offered in the following
subsection.

Permissions Semantics Recommendations
The basic model used for access checking is to iterate through a sequence of ACL
privilege attribute entries for each member of the requested permissions set, looking
for the first match with a privilege attribute (and possibly ANDing the result with the
appropriate ACL mask entries ( mask_obj and unauthenticated). Entry types are
checked in essentially the following order:

v [user_obj]

v user

v foreign_user

v [ group_obj], group, foreign_group

v other_obj

v foreign_other

v any_other

In actual practice, the bracketed [user_obj] and [group_obj] entry types are ignored
by the access checking algorithm implemented by the DCE ACL library. The
reasons for this will be explained shortly. The access check is made at the first
match, effectively giving precedence to the most specific match. The group entries
are unordered so the match is made against the union of all group entries. This
precedence allows explicit inclusion and exclusion of permissions depending on
whether a more restrictive set of permissions is matched before or after a less
restrictive set.

Except for the user_obj and group_obj entry types, the ACL entry types have
semantics clearly defined according to the specificity and the cell of the principals
referred to. In the local cell, user is the most specific, referring to some specific
local principal. The group entry type refers to a specific set of principals. The
other_obj type refers to other local principals not accounted for by user and group
entries.
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The user and group entries are extended to foreign cells by foreign_user and
foreign_group. These are user and group identifiers that include a cell name. Strictly
speaking, this distinction between the local and foreign cells is not required, since
user and group entries implicitly contain global names (that is, the global name of
the local cell is implicitly known.) The user and group entries are therefore really an
implementation convenience for principals and groups in the local cell.

The other_obj entry is extended by foreign_other, which is a list of cell names.

Finally, principals that do not meet any of the above criteria can be authorized as
any_other. The other_obj, any_other, and foreign_other types are distinguished by
cells: other_obj applies to the local cell, foreign_obj applies to specified foreign
cells, any_other applies to any cell.

The user_obj and group_obj types have less straightforward semantics. They refer
to a special principal and group that must be known to the ACL manager “out of
band”: that is, they cannot be determined from the ACL entry itself. The semantics
of the mask_obj, which is applied to everything except the user_obj and other_obj
entries, are also complicated. The mask_obj is implemented to permit POSIX ACLs
to more or less maintain UNIX semantics for 000 permissions.

In general, the use of user_obj and group_obj is deprecated: they unnecessarily
create a special user, thus complicating the otherwise straightforward semantics of
ACLs. Unless you are implementing a file system, you probably do not need these
types. (The other_obj type is unobjectionable since it has well defined semantics.)
Similarly, the use of mask_obj is deprecated because of its awkward semantics.

Thus it is recommended that you use only types from the following subset of entry
types:

v user

v group

v other_object

v foreign_user

v foreign_group

v foreign_other

v any_other

These types allow for the most specific to the most general principals, both for
local, specific foreign cells, and for unspecified foreign cells.

The DCE ACL library ignores user_obj and group_obj, because there is no generic
way to determine the user and group owners of an arbitrary ACL protected object:
the semantics of ownership are application-specific. However, since these types are
not recommended for general use anyway, their absence should not be a serious
limitation for most applications that use the DCE ACL library.

ACL Managers
DCE entities expect to be able to access other DCE entities’ objects’ ACLs through
a standard set of DCE routines, knowing nothing more than the names of the
objects. The names of the objects are in the form of CDS pathnames.

The DCE ACL library is an implementation of the remote ACL (rdacl) interface,
designed in such a way as to allow any DCE application to use it instead of having
to implement the interface itself. In DCE 1.0, applications that wished to use the
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DCE ACL functionality had to implement the full remote interface themselves; in
DCE 1.1 this is no longer true. Once an application has registered certain
information with the ACL library (see “The Requirements” on page 68 ), its ACL
management information will be hooked into the remote ACL implementation
routines that make up the DCE ACL library.

Of course, an application still must take care of the details of storing and retrieving
its ACLs (though these tasks are now made much easier by the DCE backing store
library routines), setting up definitions that determine how its ACLs are interpreted,
and so on. Practical examples of how to do these things can be found in the DCE
sample application (located on /opt/dcelocal/examples/acl_mgr/acl_rpc_server.c),
which is explained in the following sections.

Note: The DCE rdacl interface does not support user object and group object
entries.

For more detailed information about the interfaces mentioned below, see the IBM
DCE Version 3.2 for AIX and Solaris: Application Development Guide—Core
Components.

Who Does What?
In a properly-setup application ACL manager, who does what? That is, what does
the application code have to do about ACLs, and what is left up to the ACL library?

The DCE Security Service ACL API consists of the following routines:

v sec_acl_bind( )

v sec_acl_bind_to_addr( )

v sec_acl_calc_mask( )

v sec_acl_get_access( )

v sec_acl_get_error_info( )

v sec_acl_get_manager_types( )

v sec_acl_get_mgr_types_semantics( )

v sec_acl_get_printstring( )

v sec_acl_lookup( )

v sec_acl_replace( )

v sec_acl_test_access( )

v sec_acl_test_access_on_behalf( )

As their names suggest (full descriptions can be found in the IBM DCE Version 3.2
for AIX and Solaris: Application Development Reference), these routines are what
DCE clients call to use and manipulate ACLs, namely: bind to an object’s ACL;
retrieve an ACL; replace (that is, write to) an ACL; test (via its ACL) access to an
object, and so on.

A properly-set-up DCE application does not have to implement any of these
operations; they are all taken care of by the remote ACL implementations in the
DCE ACL library. The only exception to this statement involves the binding
operation. The application must register a routine that can be called by the ACL
library whenever necessary to make up a complete binding to a specific ACL (this
involves returning an ACL UUID, as will be seen below). This is the application’s
hook into the ACL library implementations: the registered routine will always be
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called during a binding operation on any of the application’s ACLs, and once it has
given the library a binding to the desired ACL, the library routines can perform any
requested operation with it.

The application is thus not responsible for implementing any ACL interface
operations. What the application is responsible for is the following:

v Setting up the necessary ACL data types and descriptions.

v Supplying a routine that resolves object names into ACL UUIDs.

v Setting up persistent databases in which the ACLs can be stored and retrieved.

v Initializing the ACLs for all existing objects.

The purpose of the following sections is to describe how these requirements can be
fulfilled.

The Requirements
In order for a DCE application to use the ACL library routines for ACL management,
the following things must be true of its server code:

1. There must be a procedure that can take the valid name of an object and return
that object’s ACL UUID to a caller. This typically is accomplished by (first)
looking up an object UUID in a name-indexed database and then (secondly)
extracting the ACL UUID from the object state information, which was looked up
in a database indexed by object UUIDs. The databases, of course, must be set
up and maintained by the application. Clients to bind to the objects through a
CDS junction at the server’s entry.

2. The application’s object name resolver has to be registered into the DCE
runtime remote ACL (rdacl) interface mechanism, so that the DCE routines
(such as sec_acl_bind( )) and the dcecp command can access it.

This is the server object name resolution procedure described in item 1. The
dcecp accepts a (CDS entry) name which it expects to be able to resolve into
an object that has an ACL it can access. For this to happen, the application
server must register a routine (with the rdacl interface UUID) which, when
called by dcecp with an object name, returns to dcecp the information it needs
(that is, a UUID) to get the ACL itself. In other words, the routine must be able
to turn an object name into an ACL UUID.

3. A persistent database in which to store the ACLs must be created. (The
database must be compatible with the interface that the security routines use;
that is it must be created with the DCE backing store library routines.)

4. The ACL database must be registered (together with a manager type UUID and
a name-to-ACL UUID resolver procedure) with the ACL library.

5. An object type (that is, manager type) UUID must be created to identify each of
the application’s ACL categories (that is, the kind of object the ACL applies to,
and hence the kind of ACL itself: what permissions it can contain, and what they
mean in regard to the object they protect). (The manager type will also serve as
an identifier for the ACL database that the ACLs themselves are stored in—this
however is internal to the ACL library.)

6. UUIDs to identify the objects must be created.

7. The ACLs themselves on the relevant objects must be created.

8. The ACLs must be stored, indexed by UUID, in the backing store database.

Setting up an ACL manager is a matter of making these eight things happen. The
sample application located on /opt/dcelocal/examples/acl_mgr/acl_rpc_server.c
shows the easiest way of accomplishing this, namely by using the DCE ACL library.
See in particular the routine server_acl_mgr_setup( ) in sample_server.c.
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Note, by the way, that discussing the details of setting up an ACL manager without
first considering the representation and management of the objects themselves is a
very artificial thing to do. The excuse for doing it here is that ACL managers are the
subject of this section. However, keep in mind that ACLs are only an adjunct to the
objects they guard access to. In a real application one would never put the cart
before the horse by working out the details of ACL management before settling on
the way object management itself was to be done.

What is an Object?
Network operations are like grammatical sentences: they must have a subject (the
client performing some operation), a predicate (the operation itself), and an object
(the “thing” on which the operation is performed). Although meaningful sentences
can sometimes omit some of its grammatical elements, a network operation must
always have all three of its elements.

In any application, distributed or not, an object is any externally accessible resource
which is under the application’s control. Objects can be anything: printers, files,
other machines, data—it all depends on the application. What these things have in
common is that they must be accessed through the application itself. Entities in a
distributed application request the use of these resources, via clients, from the
application server; and the server normally decides whether or not to grant use of a
resource to an entity by examining the object’s ACLs.

The object can have an existence quite independent of the application that
manages it. On the other hand, the state information associated with the object,
which the application must have access to in order to manage the object in a
reasonable way, is maintained by the application and is useful only to it. This
information is stored in a backing store database, where each separate record
normally contains the state information for a single object. An object’s ACLs qualify
as state information for the purposes of this discussion.

In the sample application located on
/opt/dcelocal/examples/acl_mgr/acl_rpc_server.c, the object’s state information is
practically identical to the objects themselves, since the latter seem not to exist at
all except as the information stored in the backing databases. However, this is only
partly true. The sample_object object is indeed a dummy and exists only as a
pretext for showing how ACLs on objects are set up and manipulated. The server
management object (server_mgmt), however, is different: it really has a purpose,
although it is an abstraction (that is, access to an interface). It is used whenever a
client attempts to execute a remote management operation on the server. In the
sample application this happens when the client is invoked with the “kill” option.

Why Three Databases?
You might think that only one database would be required to hold the object state
information described above. Why, then, are three backing store databases
employed in the sample application? The answer to this question has two parts.

First: It is true that only one database is needed to hold the object state information
itself. The need for a second database arises from the necessity of organizing the
object information in more than one way, so that it can be retrieved both by name
and by object UUID. The object information is stored directly in a database indexed
by object UUIDs, and that is how it must be retrieved. However, application users
will specify resources by names, not UUIDs. In order to make this work, the
application stores its objects’ UUIDs in a separate database indexed by their
names. Thus any object’s information can be retrieved, if the object’s name is
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known, by means of a two-step process involving (first) looking up an object UUID
from the name-indexed database, and (second) looking up the object information
from the object UUID-indexed database.

Secondly: There is a third database to hold only the objects’ ACLs. Theoretically
speaking, there is no reason why the ACLs couldn’t be held with the rest of the
objects’ information, in the object UUID-indexed database. However, the
application’s ACLs must be accessible to the DCE ACL library routines, and these
routines expect a database, indexed by ACL UUIDs, containing only ACLs.

This allows us, for example, to call a DCE routine such as
dce_acl_is_client_authorized( ) (see the sample_mgmt_auth( ) callback routine
in sample_server.c), passing the ACL manager type UUID and the ACL UUID, and
get back an answer to some query about permissions—the library routine is able to
go into the database and access and read the ACL; we don’t have to bother with
that. It also allows the rdacl implementations in the ACL library to do the same
thing, since they have a full ACL binding (which includes a handle to the database
in which the ACL is stored).

Object Name Resolution Routine
Our application’s name-to-ACL UUID resolution routine uses the following algorithm:

1. Take the object name that has been passed to it and use it to look up the UUID
that identifies the object itself (in the name-indexed database).

2. Use the object UUID to retrieve the object information, which contains (among
many other things) the UUID that identifies the object’s ACL (in the object
UUID-indexed database).

3. Use the retrieved ACL UUID to retrieve the ACL itself (from the ACL
UUID-indexed database). If the manager types match, return the ACL UUID
extracted in step 2 to the caller.

The caller is usually some routine in the ACL library. All it needs from the resolution
routine is the ACL UUID; with this it can retrieve the ACL itself and proceed to do
whatever needs to be done with (or to) it.

What is an ACL Manager?
A lot is said here and elsewhere about ACL managers, but you will not find in the
sample application any specific routine or block of code with that name. So where
exactly is our sample ACL manager? What does it consist of?

Conceptually, ACL manager is a way of referring comprehensively to the code and
data present in an application to support ACLs. Practically speaking, the ACL
manager in the sample application consists of all the places in the code where
dce_acl_is_client_authorized( ) is called to check a requestor’s authorization.
This is done in sample_mgmt_auth( ) (in sample_server.c) and sample_call( )
(in sample_manager.c).

Note that there are actually two ACL managers in the sample application. In
sample_call( ), the client’s access to the sample_object is being checked, and the
ACL manager type UUID passed to the call is sample_acl_mgr_uuid. In
sample_mgmt_auth( ), on the other hand, the client’s access to the server_mgmt
object is being checked, so the ACL manager type UUID passed there is
mgmt_acl_mgr_uuid.

Why Two ACL Managers?
The application has two ACL managers because it uses two different kinds of
object. This circumstance is a little obscured by the fact there are only two objects
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used in the application (in a real application, we might have expected many
instances of sample_object, although there would still of course be only one
server_mgmt object). Still, sample_object and server_mgmt are very different
kinds of object, and having access to one means something quite different from
having access to the other. sample_object is a dummy object with no independent
meaning, but server_mgmt represents access to the server’s remote management
routines, which involves such things as being able to kill the server.

A practical sense of what this means can be had from looking at the two managers’
ACL printstrings, near the top of the sample_server.c file. These strings, which
contain text representations of the full range of permissions supported by the
respective managers, show that there are many permissions that are unique to a
single manager. For example, there is a m_inq_if permission (permission to
execute the rpc_mgmt_inq_if_ids( ) routine against the server). This permission
makes sense only in the context of the server_mgmt object. A manager type
identifies what set of permissions applies to a given set of objects.

How the ACL Library Routines Extract and Evaluate ACLs
One way of using ACLs to evaluate an entity’s authorization to do something is by
making a call to the DCE library routine dce_acl_is_client_authorized( ). For
example, there are two places in the sample application where this is done to check
client access to the application’s own objects:

v In sample_call( ) (in sample_manager.c)

This is an interface operation, called by the client.

v In sample_mgmt_auth( ) (in sample_server.c)

This is the remote management callback function.

Similar routines are called remotely through the sec_acl_ *( ) routines.

Evaluation takes the form of a call to the procedure, passing (among other things)

v The client (that is requestor’s) binding

v The ACL manager type UUID

v The ACL UUID

v The desired permission set

The routine, given these parameters, is able to find and open the correct ACL
database in which the ACL is held, extract the ACL, find the requestor’s permission
set (it determines who the requestor is from the credentials buried in the client
binding), and compare it with the set of required permissions. If the latter can be
found among the former, the routine will return a Yes answer; if not, it will return a
No.

How does the library routine (especially when it is called, not from inside the
application, as noted at the beginning of this section, but, say, by dcecp) know how
to access the correct ACL database from which to extract and examine the ACL
identified by the ACL UUID? The answer is that the application’s database will have
become known to the caller in the course of establishing a binding to the server.

This is done by calling the application’s registered resolver routine; the library finds
the right resolver routine by calling all the resolvers that have been registered with it
until it gets a successful return. It finds the ACL manager type in the same way,
since it calls each attempted resolver passing the manager type UUID that was
registered with it. See the sample_resolve_by_name( ) function in the
sample_server.c file.
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Backing Store Database Items and Headers
Note that although backing stores are necessary in implementing an ACL manager,
their use is not limited to ACL management. Backing stores are designed to be
used for all kinds of persistent storage of distributed data. For more information, see
the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Core Components.

As mentioned earlier, backing store databases are necessary for storing any
information about the application’s objects that must be preserved between
application server sessions. The sample application uses three such databases, as
described in “Object Name Resolution Routine” on page 70.

From the point of view of the application that uses it, a database is characterized in
the following two ways:

v How it is indexed

v What kind of data item (record) can be stored in it

The former is specified by a flag passed to dce_db_open( ) when the database is
first created; the latter is determined by the declarations you make in an .idl file.

An example of defining a backing store database item can be seen in the
sample_db.idl and sample_db.acf files (note that the dce/database.idl file must
be imported into the .idl file). A server stub and a header file is generated from
these files when the application is compiled. The purpose of the .idl definitions is to
establish the routine that will handle the transmission of the data items across the
wire. Note that we don’t implement the conversion routine; we just declare it in the
.idl file: IDL itself does the rest, generating the necessary code in the client stub.

As has already been mentioned, the sample application uses three databases. The
most complex of these is the object-indexed store (its handle is db_object). The
other two, name-indexed (db_name) and ACL UUID-indexed (db_acl), are much
simpler. Each of the three is briefly described in the following sections.

Object-Indexed Store
The sample application maintains objects whose data consists of a simple text
string; however, the data type is also defined to contain a standard header. The
standard header is a structure defined in dce/database.idl. Mostly it contains fields
for a set of UUIDs that identify

v The object itself

v The owner of the object

v The owner’s group

v The object’s ACL

v The default object ACL

v The default container ACL

The standard header is a convenient means of keeping track of all the object’s
associated UUIDs, without having to define fields for them in one’s own data
structure. It is initialized by a call to the dce_db_std_header_init( ) routine.

This is the only database whose data type is explicitly defined in the .idl file,
because it’s the only database whose data type contains an application-defined field
(that is, s_data). The data type is also complex: that is, it contains both a header
part and a data part. The other two databases have record types that contain only
(simple) data, no headers.
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Name-Indexed Store
The name-indexed store contains only object UUIDs, indexed by the object names
that they are stored (and looked up) by. Note that there is no place where we
actually declare the data type of this database; all we do is declare the conversion
routine (uu_convert( ), in the IDL file). The database is created without a header
(the default), so all it will hold is UUIDs.

If, for some reason, we did want to declare a header, then we would have to go
through the steps of declaring a separate complex data type for the store in the .idl
file, wherein would be declared the header type and the UUID type.

ACL UUID-Indexed Store
The ACL database contains only ACLs; its records have no headers. The records
are indexed by ACL UUIDs. Here we do not even explicitly declare the conversion
routine (rdacl_convert); it is generated by IDL (from a definition in dce/dceacl.idl).
All we have to do is pass the routine’s name to the dce_db_open( ) call that opens
this database.

Note that this is the database that the ACL library has to have access to; this
access is set up by a call to dce_acl_register_object_type( ), which registers a
manager type plus database plus resolver routine combination. The registration
then allows the ACL library to derive any or all of these three things from an object
name (the application’s resolver routine has to help out in this, of course).

ACL Manager Coding Example
The following subsections contain extracts from the DCE sample application located
in /opt/dcelocal/examples/acl_mgr/acl_rpc_server.c. The subsections below
contain only the ACL manager code portions of the server application.

In order to save space and to improve the readability of the text, the code shown
below has been slightly edited: all status checks, and all calls to the DCE
serviceability interface (to print or log status or informational messages), have been
removed.

Data Definitions
The following code consists of all ACL manager-related data and other definitions
for the sample server application.

#define mgmt_perm_inq_if sec_acl_perm_unused_00000080
#define mgmt_perm_inq_pname sec_acl_perm_unused_00000100
#define mgmt_perm_inq_stats sec_acl_perm_unused_00000200
#define mgmt_perm_ping sec_acl_perm_unused_00000400
#define mgmt_perm_kill sec_acl_perm_unused_00000800

/* The constants below come from aclbase.h (aclbase.idl)... */
#define OBJ_OWNER_PERMS sec_acl_perm_read | sec_acl_perm_write \

| sec_acl_perm_delete |
sec_acl_perm_test \

| sec_acl_perm_control |
sec_acl_perm_execute

#define ALL_MGMT_PERMS mgmt_perm_inq_if | mgmt_perm_inq_pname \
| mgmt_perm_inq_stats | mgmt_perm_ping \
| mgmt_perm_kill | sec_acl_perm_test \
| sec_acl_perm_control

/* These two UUIDs could be treated as "well known": that is
applications */
/* that use the same ACL manager for mgmt operations can use these... */
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uuid_t mgmt_acl_mgr_uuid = {/* 0060f928-bbf3-1d35-8d7d-0000c0d4de56 */
0x0060f928, 0xbbf3, 0x1d35, 0x8d, 0x7d, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56

};

uuid_t mgmt_object_uuid = {/* 00573b0e-bcc2-1d35-a73e-0000c0d4de56 */
0x00573b0e, 0xbcc2, 0x1d35, 0xa7, 0xe3, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56

};

/* These UUIDs are specific to this server... */
/* Some ACL UUIDs that will be globally used: */
uuid_t mgmt_acl_uuid;
uuid_t sample_acl_uuid;

/* The UUID of the sample ACL manager: */
uuid_t sample_acl_mgr_uuid = { /* 001a15a9-3382-1d23-a16a-0000c0d4de56 */

0x001a15a9, 0x3382, 0x1d23, 0xa1, 0x6a, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56
};

/* A UUID for a sample object: */
uuid_t sample_object_uuid = {/* 00415371-f29a-1d3d-b8c8-0000c0d4de56 */

0x00415371, 0xf29a, 0x1d3d, 0xb8, 0xc8, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56
};

/* The mgmt printstrings could be treated as standard for */
/* a standard mgmt ACL manager... */
sec_acl_printstring_t mgmt_info = {"mgmt", "Management Interface"};

sec_acl_printstring_t mgmt_printstr[] = {
{ "i", "m_inq_if", mgmt_perm_inq_if },
{ "n", "m_inq_pname", mgmt_perm_inq_pname },
{ "s", "m_inq_stats", mgmt_perm_inq_stats },
{ "p", "m_ping", mgmt_perm_ping },
{ "k", "m_kill", mgmt_perm_kill },
{ "c", "control", sec_acl_perm_control },
{ "t", "test", sec_acl_perm_test }

};

sec_acl_printstring_t sample_info = {"sample", "Sample RPC Program"};

sec_acl_printstring_t sample_printstr[] = {
{ "r", "read", sec_acl_perm_read },
{ "w", "write", sec_acl_perm_write },
{ "d", "delete", sec_acl_perm_delete },
{ "c", "control", sec_acl_perm_control },
{ "t", "test", sec_acl_perm_test },
{ "x", "execute", sec_acl_perm_execute }

};

/* These are the two entry point vectors that are explicitly initialized: */
extern rdaclif_v1_0_epv_t dce_acl_v1_0_epv;

The server_get_local_principal_id Routine
The server_get_local_principal_id( ) routine retrieves a principal’s UUID from the
local cell registry.

/******
*
* server_get_local_principal_id -- Get (from the local cell registry) the
* UUID corresponding to a principal name.
*
*
* Called from server_create_acl() and server_acl_mgr_setup().
*
******/

void server_get_local_principal_id(
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unsigned_char_t *p_name, /* Simple principal name. */
uuid_t *p_id, /* UUID returned here. */
unsigned32 *status) /* Status returned here. */

{

char *cell_name; /* For local cell name. */
sec_rgy_handle_t rhandle; /* For registry server handle. */

/* First, get the local cell name... */
dce_cf_get_cell_name(&cell_name, status);

/* Now bind to the cell's registry... */
sec_rgy_site_open(cell_name, &rhandle, status);

/* Free the string space we got the cell name in... */
free(cell_name);

/* Now get from the registry the UUID associated with the principal */
/* name we got in the first place... */
sec_rgy_pgo_name_to_id(rhandle,

sec_rgy_domain_person,
p_name,
p_id,
status);

}

The server_create_acl Routine
The server_create_acl( ) routine creates an ACL for a specified principal.

/******
*
* server_create_acl -- Create an ACL with some specified set of permissions
* assigned to some principal user.
*
*
* Called from server_acl_mgr_setup().
*
******/

void server_create_acl(
uuid_t mgr_type_uuid, /* Manager type of ACL to create. */
sec_acl_permset_t perms, /* Permission set for ACL. */
unsigned_char_t *user, /* Principal name for new entry. */
sec_acl_t *acl, /* To return the ACL entry in. */
uuid_t *acl_uuid, /* To return the ACL's UUID in. */
unsigned32 *status) /* To return status in. */

{

uuid_t u; /* For the principal's UUID (from the registry). */

*status = error_status_ok;

/* Create a UUID for the ACL... */
/* Note that the new UUID doesn't get associated with the entry in */
/* this routine. It must happen in server_acl_mgr_setup()... */
uuid_create(acl_uuid, status);

/* Create an initial ACL object with default permissions for the */
/* designated user principal identity... */
dce_acl_obj_init(&mgr_type_uuid, acl, status);

/* Get the specified principal's UUID... */
server_get_local_principal_id(user, &u, status);
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/* Now add the user ACL entry to the ACL... */
dce_acl_obj_add_user_entry(acl, perms, &u, status);

}

The server_store_acl Routine
The server_store_acl( ) routine stores an ACL and its related information in the
appropriate backing store databases.

/******
*
* server_store_acl -- Store ACL-related data.
*
*
* The data is stored in databases that support a
* name->object_uuid->acl_uuid style of ACL lookup.
*
*
* Called from server_acl_mgr_setup().
*
******/

#include "Engmsg.h" //This is just an example. It could be a
//header file from any language.

#define msg1 "THIS IS AN OFFICIAL SAMPLE OBJECT TEXT!"
#define msg2 "THIS IS AN OFFICIAL MGMT OBJECT SAMPLE TEXT!"
#define msg3 "I DON'T KNOW WHAT THIS IS!"

void server_store_acl(
dce_db_handle_t db_acl, /* ACL (UUID)-indexed store. */
dce_db_handle_t db_object, /* Object (UUID)-indexed store. */
dce_db_handle_t db_name, /* Name-indexed store. */
sec_acl_t *acl, /* The ACL itself. */
uuid_t *acl_uuid, /* ACL UUID. */
uuid_t *object_uuid, /* Object UUID. */
unsigned_char_t *object_name, /* The name of the object. */
void *object_data, /* The actual object data contents. */

/* NOTE: NOT USED NOW. */
boolean32 is_container, /* Are we storing a container ACL? */
unsigned32 *status) /* To return status. */

{

/* These two variables are used to hold UUIDs for the ACLs we will */
/* need to create if we have a container ACL on our hands... */
uuid_t def_object, def_container;
sample_data_t sample_data;

*status = error_status_ok;

/* Null the contents of the object_data variable... */
bzero(object_data, sizeof object_data);

/* If we have a container ACL, then we have to create and store the */
/* special stuff associated with it-- namely, the container ACL */
/* itself, and a default object ACL to go with it... */
if (is_container)
{

/* Create a UUID for the default object ACL... */
uuid_create(&def_object, status);

/* Create a UUID for the default container ACL... */
uuid_create(&def_container, status);

/* Store the default object ACL into UUID-indexed store... */
dce_db_store_by_uuid(db_acl, &def_object, acl,status);
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/* Store the default container ACL into UUID-indexed */
/* store... */
dce_db_store_by_uuid(db_acl, &def_container, acl, status);

}

/* Store the plain object ACL into ACL UUID-indexed store... */
dce_db_store_by_uuid(db_acl, acl_uuid, acl, status);

/* Store the ACL UUID(s) into a standard object header... */
dce_db_std_header_init(

db_object, /* Object database. */
&(sample_data.s_hdr), /* Object data hdr. */
object_uuid, /* Object UUID. */
acl_uuid, /* ACL UUID. */
&def_object, /* Default object ACL. */
&def_container, /* Default container ACL. */
0, /* Reference count. */
status);

/* Now store the object data keyed by object UUID... */
if (strcmp(object_name, SAMPLE_OBJECT_NAME) == 0)

strcpy(sample_data.s_data.message,
//Msg1 is a variable depending on the language specified.
//Here is the English version: "THIS IS AN OFFICIAL SAMPLE
// OBJECT TEXT!");

"Msg1");

else if (strcmp(object_name, MGMT_OBJ_NAME) == 0)
strcpy(sample_data.s_data.message,

//Msg2 is a variable depending on the language specified.
//Here is the English version: "THIS IS AN OFFICIAL MGMT
// OBJECT SAMPLE TEXT!");

"Msg2");

else
strcpy(sample_data.s_data.message,

//Msg3 is a variable depending on the language specified.
//Here is the English version: "I DON'T KNOW WHAT THIS IS !"

"Msg3");

dce_db_store_by_uuid(db_object, object_uuid, (void*)&sample_data, status);

/* Finally, store the object UUID keyed by the object("residual") */
/* name... */

dce_db_store_by_name(db_name, (char *)object_name, object_uuid, status);

}

The server_acl_mgr_setup Routine
The server_acl_mgr_setup( ) routine performs all the steps necessary to set up
ACL databases for the two object types used by the sample application.

/******
*
* server_acl_mgr_setup -- Open and, if necessary, create the ACL-related
* databases, that is:
*
* 1. Set up a default ACL manager for the management interface.
*
* 2. Create an initial ACL. For servers that dynamically create
* objects, this ACL is intended to be used as the ACL on the
* "container" in which objects are created. If the server
* manages static objects, this ACL can be used for some other
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* purpose.
*
*
* Called from main().
*
******/

void server_acl_mgr_setup(
unsigned_char_t *db_acl_path, /* Pathname for databases. */
dce_acl_resolve_func_t resolver, /* sample_resolve_by_name. */
uuid_t acl_mgr_uuid, /* ACL manager UUID. */
uuid_t object_uuid, /* Object UUID. */
unsigned_char_t *object_name, /* Object name. */
sec_acl_permset_t owner_perms, /* Owner permission set. */
unsigned_char_t *owner, /* Owner name. */
boolean32 is_container, /* Is this a container object? */

/* == TRUE from main(). */
/* [out] parameters: */

dce_db_handle_t *db_acl, /* ACL-indexed store handle. */
dce_db_handle_t *db_object, /* Object-indexed store handle. */
dce_db_handle_t *db_name, /* Name-indexed store handle. */
uuid_t *object_acl_uuid, /* Object ACL UUID. */
uuid_t *mgmt_acl_uuid, /* Mgmt ACL UUID. */
unsigned32 *status)

{
sec_acl_t new_acl;
uuid_t machine_princ_id;
unsigned_char_t machine_principal[MAXHOSTNAMELEN + 20];
unsigned_char_t *uuid_string;
boolean32 need_init;
unsigned32 dbflags;
static sample_data_t datahdr;
unsigned_char_t *acl_path_string;
sec_acl_permset_t permset = (sec_acl_permset_t) 0;

*status = error_status_ok;
bzero(&datahdr, sizeof datahdr);

uuid_create_nil(object_acl_uuid, status);

need_init = 0;

/* Build the full pathname string for the db_acl database... */
acl_path_string = malloc(MAX_ACL_PATH_SIZE);
strcpy(acl_path_string, db_acl_path);
strcat(acl_path_string, (unsigned_char_t *)"/");
strncat(acl_path_string, "db_acl", strlen("db_acl"));

/* If the thing doesn't exist yet, then we need to do some init- */
/* ialization... */
if (access((char *)acl_path_string, R_OK) != 0)

if (errno == ENOENT)
need_init = 1;

/********************************************************************/

/* Create the indexed-by-UUID databases. There are two of these: */
/* One for the ACL UUID-indexed store, and */
/* One for the Object UUID-indexed store... */

dbflags = db_c_index_by_uuid;
if (need_init)

dbflags |= db_c_create;

/* Open (or create) the "db_acl" ACL UUID-indexed backing store... */
dce_db_open(
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(char *)acl_path_string, /* Filename of backing store. */
NULL, /* Backing store "backend type" default == hash. */
dbflags, /* We already specified index by UUID for this. */
(dce_db_convert_func_t)dce_rdacl_convert, /* Serialization */

/* function (generated by IDL). */
db_acl, /* The returned backing store handle. */
status);

/* Set the global variable that records whether we actually have */
/* opened the databases; this enables us to avoid calling the */
/* dce_db_close() routine for unopened databases, which will cause */
/* a core dump... */
databases_open = TRUE;

/* For the object database, we need standard backing store headers */
dbflags |= db_c_std_header;
if (need_init)

dbflags |= db_c_create;

/* Now open (or create) the "db_object" store... */
/* Build the full pathname string for the database... */
free(acl_path_string);
acl_path_string = malloc(MAX_ACL_PATH_SIZE);
strcpy(acl_path_string, db_acl_path);
strcat(acl_path_string, (unsigned_char_t *)"/");
strncat(acl_path_string, "db_object", strlen("db_object"));

dce_db_open(
(char *)acl_path_string, /* Filename of backing store. */
NULL, /* Backing store "backend type" default == hash. */
dbflags, /* Specifies index by UUID, and include standard */

/* headers. */
(dce_db_convert_func_t)sample_data_convert, /*Serializa- */

/* tion function for object data. */
db_object, /* The returned backing store handle. */
status);

/* Create the indexed-by-name database... */
dbflags = db_c_index_by_name;
if (need_init)

dbflags |= db_c_create;

/* Build the full pathname string for the database... */
free(acl_path_string);
acl_path_string = malloc(MAX_ACL_PATH_SIZE);
strcpy(acl_path_string, db_acl_path);
strcat(acl_path_string, (unsigned_char_t *)"/");
strncat(acl_path_string, "db_name", strlen("db_name"));

dce_db_open(
(char *)acl_path_string, /* Filename of backing store. */
NULL, /* Backing store "backend type" default == hash. */
dbflags, /* Specifies index by name. */
(dce_db_convert_func_t)uu_convert, /* Serialization func- */

/* tion for name data. */
db_name, /* The returned backing store handle. */
status);

free(acl_path_string);

/********************************************************************/

/* Now register our ACL manager's object types with the ACL */
/* library... */

/* Register for the mgmt ACL... */
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dce_acl_register_object_type(
*db_acl, /* Backing store where ACLs are to be stored. */
&mgmt_acl_mgr_uuid, /* Type of ACL manager: this one is */

/* for mgmt ACL operations; the UUID is defined */
/* globally at the top of this file. */
/* Why do we need this parameter? Well, the way */
/* that the ACL library keeps track of the differ- */
/* ent "sets" of ACL databases is by manager UUID. */
/* The manager UUID is what the library will use */
/* to figure out which ACL database to open and */
/* retrieve a requested ACL's contents from. */
/* Essentially what we are doing here is setting */
/* up things so that calls to the library routine */
/* dce_acl_is_client_authorized() can be made to */
/* check our ACLs, giving only the ACL UUID and a */
/* manager UUID to get the desired result. */

sizeof mgmt_printstr/sizeof mgmt_printstr[0], /* Number of */
/* items in mgmt_printstr array. */

mgmt_printstr, /* An array of sec_acl_printstring_t struc- */
/* tures containing the printable repre- */
/* sentation of each specified permission. */

&mgmt_info, /* A single sec_acl_printstring_t contain- */
/* ing the name and short description for */
/* the given ACL manager. */

sec_acl_perm_control, /* Permission set needed to change */
/* an ACL. Constants like these are defined */
/* in <dce/aclbase.h>. */

sec_acl_perm_test, /* Permission set needed to test an ACL. */

resolver, /* Server function to get ACL UUID for a given */
/* object; for us it's the */
/* sample_resolve_by_name() call, below. */
/* This routine is for the use of acl_edit: */
/* it allows acl_edit to receive an object */
/* name and come up with the ACL UUID; at */
/* least that's what I think it's for. */

NULL, /* Argument to pass to resolver function. */
0, /* Flags -- none here. */
status);

/* Now register for the regular ACL... */
dce_acl_register_object_type(

*db_acl, /* Backing store where ACLs are to be stored. */
&sample_acl_mgr_uuid, /* Hard-coded at the top of this */

/* file. */
sizeof sample_printstr/sizeof sample_printstr[0], /* Number */

/* of items in our printstring array. */
sample_printstr, /* An array of sec_acl_printstring_t */

/* structures containing the printable rep- */
/* resentation of each specified permis- */
/* sion set. */

&sample_info, /* A single sec_acl_printstring_t contain- */
/* ing the name and short description for */
/* the manager we're registering. */

sec_acl_perm_control, /* Permission set needed to change an */
/* ACL. */

sec_acl_perm_test, /* The permission you need to test an */
/* ACL maintained by this manager. */

resolver, /* Application server function that gives */
/* the ACL UUID for a given object, when */
/* presented with that object's name; for */
/* us it's the sample_resolve_by_name() */
/* routine, below. */

NULL, /* Argument to pass to resolver routine; */
/* identified as the "resolver_arg" in the */
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/* code to that function below. */
0, /* Flags -- none here. */
status);

/* If we're initializing, then we have to create all this stuff... */
if (need_init)
{

dce_svc_printf(NO_ACL_DBS_MSG);
/* Create the mgmt interface ACL... */
server_create_acl(

mgmt_acl_mgr_uuid, /* Create mgmt manager type ACL. */
ALL_MGMT_PERMS, /* Permission set for new ACL. */
owner, /* Principal name for new entry. */
&new_acl, /* This will contain the new ACL. */
mgmt_acl_uuid, /* This will contain the ACL UUID. */
status);

/************************************************************/
/* For the management ACL we must add a default entry for */
/* the machine principal so dced can manage the server. */

/* Construct the name entry string... */
strcpy(machine_principal, "hosts/");
gethostname((char *)(machine_principal + 6), MAXHOSTNAMELEN + 1);
strcat(machine_principal, "/self");

/* Get the machine principal's UUID... */
server_get_local_principal_id(

machine_principal,
&machine_princ_id,
status);

/* Add a user entry for the machine principal to the new */
/* ACL... */
permset = ALL_MGMT_PERMS;
dce_acl_obj_add_user_entry(

&new_acl,
permset,
&machine_princ_id,
status);

/* By default everybody must be able to get the principal */
/* name. They should be able to ping too. So add an appro- */
/* priate unauthenticated permissions entry to the ACL... */
permset = mgmt_perm_inq_pname | mgmt_perm_ping;
dce_acl_obj_add_unauth_entry(

&new_acl,
permset,
status);

/* Add permissions for the any_other entry in the ACL... */
permset = mgmt_perm_inq_pname | mgmt_perm_ping;
dce_acl_obj_add_any_other_entry(

&new_acl,
permset,
status);

/* Store the mgmt ACL... */
server_store_acl(

*db_acl, /* The ACL UUID-indexed store. */
*db_object, /* The object UUID-indexed store. */
*db_name, /* The name ("residual")-indexed store. */
&new_acl, /* The ACL itself. */
mgmt_acl_uuid, /* The mgmt ACL UUID. */
&mgmt_object_uuid, /* The mgmt object UUID. */
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(unsigned_char_t *)MGMT_OBJ_NAME, /* The mgmt ob- */
/* ject name. */

/* (void*) */ &datahdr, /* The data header = object */
/* contents. */

0, /* Not a container ACL. */
status);

/********************************************************************/
/* Object ACL creation code... */

/* Now create the object ACL... */
server_create_acl(

sample_acl_mgr_uuid, /* Create an ACL with this */
/* manager type. */

owner_perms, /* Give it these permissions. */
owner, /* Make this the principal name. */
&new_acl, /* This will contain new ACL. */
object_acl_uuid, /* This will contain new ACL UUID. */
status);

/* Null the data header... */
bzero(&datahdr, sizeof datahdr);

/* Store the object ACL... */
server_store_acl(

*db_acl, /* The ACL UUID-indexed store. */
*db_object, /* The object UUID-indexed store. */
*db_name, /* The name ("residual")-indexed store. */
&new_acl, /* The ACL itself. */
object_acl_uuid, /* The object ACL UUID. */
&object_uuid, /* The object UUID. */
object_name, /* The object name. */
/* (void*) */ &datahdr, /* The data header = object */

/* contents. */
/* is_container */ 0, /* Is this a container */

/* ACL? */
status);

/* Finally, free the space we were using... */
dce_acl_obj_free_entries(&new_acl, status);

/* ...end of object ACL creation code. */

/********************************************************************/
}
else /* ACL databases already exist; get the two ACL UUIDs... */
{

/* This is a call to sample_resolve_by_name() (see below); */
/* it gives us the UUID of the ACL of the object whose */
/* name we pass it... */
(*resolver)(

NULL, /* No client bind handle; local call. */
object_name, /* Object whose ACL UUID we want. */
0, /* Type of ACL we want UUID of. */
&sample_acl_mgr_uuid, /* Object's manager type. */
0, /* Ignored as far as we'reconcerned. */
NULL, /* "resolver_arg"; unused. */
object_acl_uuid, /* Will contain object ACL UUID. */
status);

(*resolver)(
NULL, /* No client bind handle; localcall. */
(sec_acl_component_name_t)MGMT_OBJ_NAME, /* We want */

/* mgmt object's ACL UUID. */
0, /* Type of ACL we want UUID of. */
&mgmt_acl_mgr_uuid, /* Object's manager type=mgmt. */
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0, /* Ignored as far as we're concerned. */
NULL, /* "resolver_arg"; ignored. */
mgmt_acl_uuid, /* Will contain mgmt ACL UUID. */
status);

}

/* Set up remote management authorization to use the ACL manager. */
/* Note that the first parameter to this call is the address of a */
/* management authorization callback routine, which is defined */
/* later in this file... */
rpc_mgmt_set_authorization_fn(sample_mgmt_auth, status);

/* Finally, register the rdacl interface with the runtime... */
rpc_server_register_if(

rdaclif_v1_0_s_ifspec, /* Interface to register. */
NULL, /* Manager type UUID. */
(rpc_mgr_epv_t) &dce_acl_v1_0_epv, /* Entry point */

/* vector. */
status);

}

The server_acl_mgr_close Routine
The server_acl_mgr_close( ) routine closes the ACL databases.

/******
*
* server_acl_mgr_close -- Called at cleanup time to close
* the three ACL databases.
*
*
* Called from main().
*
******/

void server_acl_mgr_close(
dce_db_handle_t *db_acl, /* ACL UUID-indexed database. */
dce_db_handle_t *db_object, /* Object UUID-indexed database. */
dce_db_handle_t *db_name, /* Name-indexed database. */
unsigned32 *status)
{

*status = error_status_ok;

/* Close the ACL UUID-indexed database... */
dce_db_close(db_acl, status);

/* Close the Object UUID-indexed database... */
dce_db_close(db_object, status);

/* Close the name-indexed database... */
dce_db_close(db_name, status);

}

The server_rdacl_export Routine
The server_rdacl_export( ) routine registers the remote ACL interface in the local
endpoint map.

/******
*
* server_rdacl_export -- Make the rdacl interface available
* for ACL editors.
*
*
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* Note that we don't export to the namespace. Instead, the ACL editor
* will typically bind to the server via some other entry that holds
* the application-specific interface bindings. This must hold at least
* one object UUID, and the same UUID must be put into the endpoint map
* too. If not, ACL editors will have no way to distinguish the end-
* points of this server from those of other servers on the same host
* that also export the rdacl interface.
*
* Called from main().
*
******/

void server_rdacl_export(
rpc_binding_vector_t *binding_vector, /* Binding handles from RPC runtime. */
uuid_vector_t *object_uuid_vector, /* Server instance UUID(s). */
unsigned32 *status)
{

uuid_vector_t my_uuids;

*status = error_status_ok;

/* Register the server's endpoints with the rdacl interface at the */
/* local endpoint map... */
rpc_ep_register(rdaclif_v1_0_s_ifspec,

binding_vector, /* Our binding handles from RPC runtime. */
object_uuid_vector, /* Server instance UUID (only one). */
(unsigned_char_p_t) "rdacl interface", /* Annotation. */
status);

}

The server_rdacl_cleanup Routine
The server_rdacl_cleanup( ) routine removes the remote ACL interface
information from the local endpoint map.

/******
*
* server_rdacl_cleanup -- Called at cleanup time to
* unregister the rdacl interface.
*
*
* Called from main().
*
******/

void server_rdacl_cleanup(
rpc_binding_vector_t *binding_vector, /* Binding handles from RPC runtime. */
uuid_vector_t *object_uuid_vector, /* Server instance UUID(s). */
unsigned32 *status)
{

*status = error_status_ok;

rpc_ep_unregister(rdaclif_v1_0_s_ifspec,
binding_vector,
object_uuid_vector,
status);

}

The sample_mgmt_auth Routine
The sample_mgmt_auth( ) routine assesses the authorization of any client
attempting to execute a remote management operation on the sample application
server.
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/******
*
* sample_mgmt_auth -- Management authorization callback function.
*
* This is the routine that is implicitly called to test authorization
* whenever someone tries to use the mgmt interface to tinker with us
* or our ACLs.
*
* The callback is set up by a call to rpc_mgmt_set_authorization() in
* server_acl_mgr_setup().
*
******/

boolean32 sample_mgmt_auth(
rpc_binding_handle_t client_binding, /* Client's binding, whoever he is. */
unsigned32 requested_mgmt_operation, /* What client is attempting to do. */
unsigned32 *status)
{

boolean32 authorized = 0;
sec_acl_permset_t perm_required;
unsigned_char_t *uuid_string;

*status = error_status_ok;

/* Discover what permission is required in order to do what the */
/* client is trying to do... */
switch (requested_mgmt_operation)
{

case rpc_c_mgmt_inq_if_ids:
perm_required = mgmt_perm_inq_if;
break;

case rpc_c_mgmt_inq_princ_name:
perm_required = mgmt_perm_inq_pname;
break;

case rpc_c_mgmt_inq_stats:
perm_required = mgmt_perm_inq_stats;
break;

case rpc_c_mgmt_is_server_listen:
perm_required = mgmt_perm_ping;
break;

case rpc_c_mgmt_stop_server_listen:
perm_required = mgmt_perm_kill;
break;

default:
/* This should never happen, but just in case... */

return(0);
}

/* Okay, now check whether the client is authorized or not... */
dce_acl_is_client_authorized(

client_binding, /* Client's binding handle. */
&mgmt_acl_mgr_uuid, /* ACL manager type UUID. */
&mgmt_acl_uuid, /* The ACL UUID. */
NULL, /* Pointer to owner's UUID. */
NULL, /* Pointer to owner's group's UUID. */
perm_required, /* The desired privileges. */
&authorized, /* Will be TRUE or FALSE on return. */
status);

/* Return the result to the caller... */
return(authorized);

}

The sample_resolve_by_name Routine
The sample_resolve_by_name( ) routine derives the ACL UUID of an object from
its name.
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/******
*
* sample_resolve_by_name -- take the name of an object, and return the
* UUID of the object's ACL.
*
* The address of this function is passed (via the call to
* server_acl_mgr_setup()) to the dce_acl_register_object_type() call. So
* it gets implicitly called anytime someone tries to retrieve the ACL of
* an object managed by the ACL manager we've set up.
*
*
* Basically, the most a server needs is one resolve-by-name routine and
* one resolve-by-UUID routine; the former gets you the desired object's
* UUID; and the latter then will get you the object data itself (the way
* this works can be seen in the body of this routine below). In most
* cases, these routines will share the same name and UUID databases; if
* they don't, the resolver_arg can be used to point to the correct other
* database. Typically, the only difference between the managers is that
* they use different print strings.
*
*
* For the official statement of the signature of a dce_acl_resolve_func_t,
* see the dce_acl_resolve_by_uuid() reference page; that routine has the same
* type.
*
*
*******/

dce_acl_resolve_func_t sample_resolve_by_name(
handle_t h, /* Client binding handle passed into the */

/* server stub. sec_acl_bind() is used to */
/* create this handle. */

sec_acl_component_name_t name, /* The object whose ACL's UUID we want. */
sec_acl_type_t sec_acl_type, /* The type of ACL whose UUID we want. */
uuid_t *manager_type, /* The object's manager type. */

/* NOTE that this parameter isn't used be- */
/* low. */

boolean32 writing, /* "This parameter is ignored in OSF'sim- */
/* plementation" (from the reference page */
/* for dce_acl_resolve_by_uuid()). */

void *resolver_arg, /* This is the app-defined argument passed */
/* to dce_acl_register_object_type(); it */
/* should be a handle for a backing store */
/* indexed by UUID. Note that it isn't */
/* used here though. */

uuid_t *acl_uuid, /* To return ACL's UUID in. */
error_status_t *st /* To return status in. */
)
{

uuid_t u, *up; /* To hold the retrieved object UUID, and to */
/* take a pointer to it. */

unsigned_char_t *uuid_string;
sec_acl_t retrieved_acl;

/* The definition of the following is in the sample.idl file. */
/* */
/* See the "Examples" section in the dce_db_open() ref page, */
/* where the skeleton IDL interface for a server's backing */
/* store is given. The data type definition (which is what */
/* sample_data_t is) is there prescribed as consisting of a */
/* dce_db_header_t, plus whatever server-specific data is */
/* quired, all in a single structure. */
/* */
/* Essentially it's a dce_db_header_t structure (with an */
/* application-defined message string tacked on); this is */
/* the object header data structure that is returned, such as, */
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/* by dce_db_header_fetch(); in other words, this is the */
/* thingie that actually contains the data "in" an object */
/* held in an object store. */
sample_data_t dataheader;

*st = error_status_ok;

/* Check for nonexistence of object name... */
if (!name || !*name)
{

dce_svc_printf(CANNOT_RESOLVE_NAME_MSG);
return;

}

/* Get the object's UUID, which will be the key that we will use to */
/* fetch this particular object's data in the call following this */
/* one... */
dce_db_fetch_by_name(db_name, (char *)name, /* (void *) */ &u, st);

up = &u; /* ...take the pointer to the key. */

/* Using the UUID "key" that we just retrieved, get the dataheader */
/* for the desired object (note that the data that one retrieves */
/* with this routine can be anything; it depends on what we are */
/* using the backing store for)... */
dce_db_fetch_by_uuid(db_object, up, /* (void *) */ &dataheader, st);

/* Now, depending on the kind of ACL we're hunting for (that is ob- */
/* ject, container, etc.), extract its UUID from the object's */
/* header structure... */
switch (sec_acl_type)
{

case 1:
*acl_uuid = dataheader.s_hdr.tagged_union.h.def_object_acl;
break;

case 2:
*acl_uuid = dataheader.s_hdr.tagged_union.h.def_container_acl;
break;

default:
*acl_uuid = dataheader.s_hdr.tagged_union.h.acl_uuid;

}

/* Here it might be interesting to try retrieving the ACL itself, */
/* and e.g seeing what its manager type is... */
dce_db_fetch_by_uuid(db_acl,

acl_uuid,
&retrieved_acl,
st);

/* We are handling two ACL managers through this function, so we */
/* have to make sure that we've extracted from the single ACL */
/* database the correct ACL: that is, one whose manager type UUID is */
/* identical to the manager_type parameter we were passed: this is */
/* the manager whose ACL the runtime is trying to bind to. So... */
if ((manager_type != NULL) &&

(!uuid_equal(manager_type, &(retrieved_acl.sec_acl_manager_type), st)))
{

/* Return a bad status... */
*st = acl_s_bad_manager_type;
/* And no ACL UUID... */
acl_uuid = NULL;
return(0);

}

}
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Chapter 4. Binding

Binding is the process by which an RPC client establishes a relationship with a
server that supports an interface, object, or some other resource the client is
interested in. Since clients operate on server-held resources by making RPCs, you
can think of binding, specifically, as creating the state required for an RPC to be
made. In practice, the work of binding clients to servers normally involves name and
endpoint mapping services. Strictly speaking, however, neither of these services is
required for binding, since well-known bindings and endpoints can be used (in the
form of string bindings). This chapter discusses the underlying binding model, apart
from the use of name and endpoint services. It forms an essential introduction for
the discussion of name and endpoint services that follows in “Chapter 5. Using the
DCE Name Service” on page 101 .

The Binding Model
Binding refers to the establishment of a relationship between a client and a server
that permits the client to make a remote procedure call to the server. The term
binding usually refers specifically to a protocol relationship between a client and
either the server host or a specific endpoint on the server host, and binding
information means the set of protocol and addressing information required to
establish such a binding. But, for a remote procedure call, such a binding occurs in
a context that involves other important elements, paralleling the notion of a binding
in a local procedure call. In order for an RPC to occur, a relationship must be
established that ties a specific procedure call on the client side with the manager
code that it invokes on the server side. This requires both the binding information
itself and a number of additional elements (see Figure 2 on page 90. The complete
list is as follows:

v A protocol sequence that identifies the RPC and underlying transport protocols

v An RPC protocol version identifier

v A transfer syntax identifier

v A server host network address

v An endpoint of a server instance on the host

v An object UUID that can optionally be used for selection among servers and/or
manager routines

v An interface UUID that identifies the interface to which the called routine belongs

v An interface version number that defines compatibility between interface versions

v An operation number that identifies a specific operation within the interface
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The binding information itself covers the first five elements of the list—the protocol
and address information required for RPC communications to occur between a
client and server. (“Chapter 5. Using the DCE Name Service” on page 101 also
shows the object UUID as part of the binding information. This applies to clients, as
explained in “Client Binding Model” on page 93.) In RPC terminology, such a
binding can be partial or full. A partial binding is one that contains the first four
elements of the list, but lacks an endpoint. A full binding contains an endpoint as
well. The distinction is that a partial binding is sufficient to establish communications
between a client and a server host, whereas a full binding allows communications
to a specific endpoint on the server host.

In order to complete an RPC call, all of the elements listed in Figure 2 must be
present. The binding process consists of a series of steps taken by the client and
server to create, make available, and assemble all the necessary information,
followed by the actual RPC, which creates the final binding and routing using the
elements established by the previous steps.

Server Binding Model
Figure 3 on page 92 shows the set of relationships that a server must establish to
receive remote procedure calls. As Figure 3 on page 92 indicates, these are
maintained in several places:

v By the server runtime

v In the stub and application code

v By the endpoint mapper

v By a name service

Binding Information

Protocol Sequence

Protocol Version

Transfer Syntax

Host Address

Endpoint

Object UUID

Other Information

Operation Number

Interface UUID

Interface Version

Partial
Binding

Interface Identifier

Full
Binding May Be Referred to

by Binding Handle

Figure 2. Information Required to Complete an RPC
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Stub and Application Code Maintained by Server Runtime
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The steps that server applications take to establish these mappings are not
discussed here since they are fully documented in the IBM DCE Version 3.2 for AIX
and Solaris: Application Development Guide—Core Components. Once established,
this set of relationships allows the server runtime to construct a complete binding,
with routing to a specific server operation, for a call that contains the following
information:

v Full or partial binding information

v An interface identifier

v An object UUID, which may be nil

v An operation number

Note that the server runtime itself maintains only a very limited set of relationships:
interface identifier/type UUID/manager EPV and object UUIDs/type UUIDs. It is
especially worth noting that the runtime maintains no relationships between the
protocol-address bindings it has created and any of the other information. The
server merely advertises the relationships it wants to export in a name service and
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Figure 3. Server Binding Relationships
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registers them in the endpoint map. Bindings are exported and registered along with
interface identifiers and, possibly object UUIDs.

When the exported and registered information is used by clients to find the server,
client calls arriving at the server endpoints should contain interface identifier/object
UUID pairs that the server can, in fact, service, although the RPC mechanism itself
can provide no guarantee of this. This means that name service and endpoint map
operations, while they are not, strictly speaking, a required part of an RPC call,
usually play an important role in constructing bindings.

The indirect mapping from object UUID to type UUID to EPV (and hence to the
manager called) also gives the server some flexibility in organizing its resources
based on object UUIDs. This is explained in “Call Routing” .

Client Binding Model
To make a call, the client needs a compatible binding: that is, one that offers the
interface and version desired, uses a mutually supported protocol sequence, and if
requested, is associated with a specific object UUID.

Clients typically find compatible bindings by making calls to RPC API routines that
search the name service. Typically, the client specifies the interface and object
UUIDs desired, and the runtime takes responsibility for finding bindings with
protocol sequences that it can use.

For each binding that the client imports, the runtime provides a server binding
handle that refers to the binding information maintained by the client runtime. This
includes the protocol sequence and address information for the server host and
possibly includes an object UUID.

Once the client has found a compatible binding, it makes a call using the binding
handle for that binding. When the call is made, the client runtime has available to it
the binding information and any object UUID referred to by the binding handle. Also
available in the stub code are the interface identifier of the interface on which the
call was made, and the operation number of the routine being called. Recall that the
last three items of this information—the object UUID/interface identifier/operation
number—are precisely what the server needs to route the call to a specific manager
operation.

Call Routing
Once the server and client have taken all the necessary steps to set up server and
client side relationships, the call mechanism can use them to construct a complete
binding and call routing when the call is made. When the client makes a call with a
binding that lacks an endpoint (typically the case for bindings imported from the
name service), the endpoint is acquired from the endpoint mapper on the target
host. The endpoint mapper finds a suitable endpoint by searching the local endpoint
map for a binding that provides the requested interface UUID, and if requested,
object UUID.

The endpoint map interface and protocol information must match in order for an
endpoint to be found, but an object UUID match may not be required. A server can
provide a default UUID match by registering the nil UUID. Calls with a nil or
unmatched object UUID will get the default endpoint.

Once an endpoint is selected, a call can be routed to one of the endpoints being
used by a compatible server instance. The server can unambiguously select the
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correct interface and operation by using the interface identifier and operation
number contained in the call. Recall, however, that the RPC mechanism makes it
possible for a server to implement multiple managers for an interface. Hence it may
be necessary to select the correct manager. Manager selection is based on the
object UUID contained in the call. The selection mechanism depends on two of the
relationships established by the server: the object UUID/type UUID mapping and
the interface ID/type UUID/manager UUID mapping.

For routing, the server provides a default path by registering a default manager for
the nil type UUID. Calls containing the nil object UUID, or any UUID for which the
server has not set another type UUID, will be directed to the default manager.

Once the manager is selected, the call is dispatched via the selected manager EPV
using the operation number contained in the call.

Routing Policy
There are many ways in which clients and servers can arrange the details of
binding among themselves, including: how bindings are exported and imported,
whether object UUIDs are used, and how object-type mappings are established.
High-level resource policy issues relating to the name service and endpoint mapper
are discussed in “Chapter 5. Using the DCE Name Service” on page 101. In the
present chapter, some of the lower-level routing policy questions that arise from the
binding model itself will be discussed. These, in fact, have a substantial impact on
how the namespace is used by applications.

The most important issues concern the role of UUIDs in the binding model.
Interface identifiers, which consist of a UUID and version number, have a
well-defined and unambiguous role. But object UUIDs are somewhat overloaded by
the binding model. An object UUID may be used to select bindings from the name
service, to select endpoints from the endpoint mapper, and to map a call to the
correct manager type within the server. Furthermore, a server may use object
UUIDs in some application-specific way to identify and manipulate the objects it
manages.

There is great potential for conflict between the use of object UUIDs to select
bindings and endpoints and their use to identify objects and routes to manager
types. This conflict is particularly evident in the case of servers that provide
so-called ubiquitous interfaces, such as the rdacl interface. Because many servers
on a host are likely to export such an interface, it is essential to have an object
UUID to identify the correct endpoint in the endpoint map. Without an object UUID,
the endpoint mapper can only return the endpoint of some server that exports the
requested interface, very likely the wrong one.

An alternative strategy does exist: a client can call rpc_ep_resolve_binding( )
using a nonubiquitous interface that it knows the server of interest does export. The
call to the ubiquitous interface can then be made with the resolved binding. Clients
often use this technique to call the remote pc_mgmt_ * routines. Nevertheless, the
objection remains that it is still impossible to select among endpoints of servers or
server instances that export the same nonubiquitous interface.

The most straightforward solution is for a server to export a UUID to the
namespace where it functions as an unambiguous tag for the servers’ endpoints.
Clients can find this UUID either by importing it from a named entry or it may be
made well-known, effectively becoming a stable, well-known tag for the server’s
volatile endpoints. When endpoint UUIDs are well-known, they become useful for
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finding servers even when the client is interested in a nonubiquitous interface.
Exactly how servers export and clients find these UUIDs depends on the resource
model adopted, as discussed in “Chapter 5. Using the DCE Name Service” on
page 101 .

This obvious use of UUIDs as endpoint identifiers, however, potentially conflicts with
their use as object identifiers. According to the RPC binding model, when clients
import bindings based on object UUIDs, these UUIDs are incorporated into call
bindings where they may used for endpoint selection, for manager selection, and
possibly for some application-specific purpose. If an application exports its object
UUIDs to the namespace, then they are used both to identify objects and to identify
endpoints. This means that, at a minimum, a server would need to maintain a
potentially large number of mappings to the same endpoints.

Moreover, especially when servers manage many objects or create them
dynamically, clients will typically know objects by names rather than by UUIDs.
Servers can provide such mappings via the namespace itself by exporting each
object UUID to a different namespace entry, but this even further complicates the
server’s job of maintaining its exports and mappings.

The obvious solution to these problems is to have servers maintain their object
UUIDs and name-to-object UUID mappings internally. The basic RPC binding
mechanism does not provide much support for this approach: there is no generic
way for servers to make objects or names available to clients except through the
name service. Also, a UUID used to identify a server endpoint is probably useless
for call routing to a manager type within a server. However, the higher-level object
management interfaces discussed in “Chapter 5. Using the DCE Name Service” on
page 101 provide this functionality.

This leads to two important recommendations:

v Servers should export to the namespace at least one UUID as a tag for its
endpoints, and should register the UUID with the endpoint map.

v Servers which support multiple objects should also support the object
management interface(s) discussed in “Chapter 5. Using the DCE Name Service”
on page 101, instead of exporting multiple object UUIDs to the namespace.

Binding Handles
Binding handles, although they appear as parameters of RPCs, are in fact purely
local to the server or client applications that use them. A binding handle is simply a
reference to binding information that is cached by the local runtime. The runtime
uses this binding information to construct its side of a client-server association.
Even when a binding handle appears as an explicit parameter of an RPC, it is not
marshalled or unmarshalled as call data in the same way as other call parameters.

On the client side, a binding handle parameter simply permits an application to
indicate explicitly to the runtime which cached binding should be used for the call.

On the server side, a binding handle parameter provides a manager operation with
a reference to cached binding information for the calling client so that the manager
can, for example, extract authorization information about the client.

In calls to ubiquitous interfaces, such as the rpc_mgmt interface, partial bindings
without an object UUID are rarely adequate, since the endpoint mapper cannot
know which server supporting the ubiquitous interface is of interest to the client.
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The usual model is that the ubiquitous interface is not exported to the name space.
Instead, the client imports bindings based either on another interface supported by
the server or an object UUID. If servers follow the recommendation to export at
least one UUID with their bindings, no additional preparation will be necessary to
allow their clients to successfully call the ubiquitous interfaces the offer. If they do
not export the UUID, they will have to adopt the rpc_ep_resolve_binding( )
method described in “Routing Policy” on page 94.

Binding Methods
In view of what was said earlier about binding handles, the binding method chosen
also will be a purely local matter for the client application and stubs. For example, it
is perfectly feasible for a server manager to make explicit use of binding information
via a binding handle parameter in a remote call, even though the client does not
use an explicit handle for the call.

DCE RPC provides the automatic, implicit, and explicit methods for clients to
manage bindings for remote procedure calls:

v Automatic method

This is the simplest method of managing the binding for remote procedure calls
of an entire interface. With the automatic method, the server exports its binding
information to a namespace, and the client stub automatically manages a binding
for the application code.

The automatic method completely hides binding management from client
application code. The stub imports the binding information and maintains a
binding handle. The stub passes the binding handle to the runtime with the
remote procedure call, and the runtime uses the binding handle to retrieve the
associated binding information. If the client makes a series of remote procedure
calls to the same interface, the stub passes the same binding handle with each
call.

With the automatic method, a disrupted call can sometimes be automatically
rebound. The automatic rebinding requires either that the remote procedure
never begins to execute or that the operation is idempotent. If the call meets
either of these requirements, the RPC runtime automatically tries to rebind the
client to another server (if one is available).

v Implicit method

This is a relatively simple method of managing a binding for an entire interface.
With the implicit method, prior to making any remote procedure calls, the client
application code obtains server binding information from a namespace or a string
binding. The client assigns a server binding handle to a global variable in the
client application (for each interface using this method). When calling a remote
procedure using the implicit method, the client stub passes the specific
interface’s global binding handle to the runtime.

Note: Multithreaded clients must be careful not to allow one thread to change
the value of the shared global binding handle while another thread is
using it.

v Explicit method

This is a more complex yet more flexible method of managing a binding. As with
the implicit method, the explicit method requires that the client application code
call runtime routines to initialize a binding handle. In the explicit method,
however, this binding handle is supplied by the application code as a parameter
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to the remote procedure call. By allowing a client to manage bindings for
individual calls, the explicit method enables clients to meet specialized binding
requirements.

Figure 4 shows the distribution of responsibility for binding management in
applications for each of the three methods. The top portion of each box represents
the client application code written by the developer. The bottom portion of each box
represents the client stub code generated from an IDL interface definition.

You can see from this figure that with the automatic method, binding management
belongs completely to the client-stub code generated by the DCE IDL compiler. The
implicit method provides the application developer with some control over binding
management without having to pass a binding handle as a call argument. With the
explicit method, the application developer is completely responsible for binding
management. The automatic method requires the server to store binding
information in server entries in a namespace; the implicit and explicit methods work
with any source of binding information.

A client can use a combination of methods, even for an individual interface or if it
uses more than one interface. for example, one interface might use the automatic
method, another interface could use the implicit method, and a third could use the
explicit method. In addition, some procedures for the interfaces that use automatic
or implicit methods could use the explicit method instead. The method(s) of binding
management for an interface is specified using the interface definition, the attribute
configuration file (ACF), or both. In the interface definition, the explicit method can
be specified for the whole interface, or for an operation by declaring a binding
handle (using the IDL type handle_t) as the first parameter of the operation
declaration.

The automatic and implicit methods are interface-wide and therefore mutually
exclusive; that is, for a given interface, a client can use only one of these
interface-wide methods. A client that uses either the automatic or implicit method for
an interface can also use the explicit method for some or all of the remote
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procedure calls to that interface. If the remote procedure call has a binding handle
parameter, the explicit method takes precedence over either the automatic or
implicit methods of managing bindings.

Explicit and implicit binding both give the client application means to select and
modify the binding information used by calls. Explicit binding allows the client to
specify binding information per call. This method may be established either by
declaring a binding handle parameter as the first parameter for a call in the IDL, or
by applying the [explicit_binding] attribute in the associated ACF, either to the
interface as a whole, or to specific operations.

Implicit binding allows the client to establish a default binding for an interface. When
the [implicit_binding] attribute is applied to a data item in the ACF, then each call
that does not specify an explicit binding parameter (either in the IDL or via the
[explicit_binding] attribute in the ACF) uses the default binding information
referenced by the implicit binding data item.

With automatic binding, the client stub finds a useable binding for each RPC.
Automatic binding is the default for any operation when the following three things
are true:

v Implicit or explicit binding has not been specified in the ACF for the interface

v The call does not specify an explicit binding handle parameter

v The ACF does not specify explicit binding for the call

The semantics of automatic binding may differ between the first and subsequent
calls on an interface. When the runtime does not have a cached compatible
binding, the stub will perform a namespace search to find and import one. The
imported binding will be cached for use in subsequent calls. If the client-server
connection for the cached binding fails, the client stub will attempt to find a new
binding. Therefore, it is possible that later calls will not be made on the same
binding, and possibly will even be made to a different server.

A server binding handle that the runtime provides directly to an application is a
primitive binding handle. To declare a primitive binding handle, application code
uses the predefined RPC binding handle data type rpc_binding_handle_t, and an
interface definition uses the IDL data type handle_t. Primitive binding handles offer
a simple means of referring to binding information, which works in most cases. The
automatic method of binding management always uses primitive binding handles.

Applications that use the implicit or explicit methods of binding management can
choose to store primitive binding handles in an application-specific data structure
known as a customized binding handle. Customized binding handles enable
application developers to manage binding information to meet the special needs of
a specific application. For example, a customized binding handle can be the handle
of a file whose records contain the information required to construct a string
binding.

Using customized binding handles requires the application developer to perform
several special tasks. The RPC interface definition must include a declaration of the
customized binding handle as a data structure with a handle data type; this is done
by using the handle attribute. The client application code must contain specialized
procedures that the client stub calls to obtain a primitive binding handle from the
customized handle and to release any resources, such as memory, used for the
customized handle.
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When a customized binding handle is used with the explicit method, responsibility
for setting the binding handle shifts to the client stub. The client code provides
procedures for obtaining the primitive binding handle from the customized handle
and for freeing the primitive binding handle after the call completes. However, it is
the stub that calls these procedures to set and free the primitive binding handle.

Calls made with a context handle and no explicit binding handle also have
automatic binding semantics. That is, such calls will use the cached binding
associated with the context handle. Of course, this binding may have been
constructed by the client application and passed, either as an explicit or implicit
binding, to the call that returned the context handle. Also, the stub will not attempt
to renew such a cached binding if the client-server connection fails. Even if the
server is still running and the connection could be reestablished, the server will
have rundown the context it is holding for the client, so that the context handle will
no longer be valid. When implicit binding is in effect, a call made with a context
handle and without an explicit binding parameter will use the cached binding
associated with the context handle rather than the implicit binding.

The following table summarizes the binding semantics applied to a client operation:

Table 3. Binding Semantics

ACF ACF ACF ACF/IDL IDL Binding

auto_handle
attribute?

implicit_handle
attribute?

explicit_handle
attribute on
interface?

explicit_handle
attribute on
operation?

context handle? Semantics

No No No No No Auto

No No No No Yes Auto (context
handle)

No No No Yes No Explicit

No No No Yes Yes Explicit

Yes No No No No Auto

Yes No No Yes No Explicit

Yes No No No Yes Auto (context
handle)

Yes No No Yes Yes Explicit

No Yes No No No Implicit

No Yes No Yes No Explicit

No Yes No No Yes Auto (context
handle)

No Yes No Yes Yes Explicit

No No Yes No No Explicit

No No Yes Yes No Explicit

No No Yes No Yes Explicit

No No Yes Yes Yes Explicit

When a binding handle is selected automatically by the client stub, there is no way
for the application to specify authentication data. In principle, it would be possible to
have the client authenticate itself to the server in such a case, although a client that
does not care about which server it calls obviously cannot authenticate the server.
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In practice, calls made with automatic bindings are simply unauthenticated.
Therefore, if your application cares about authentication, it should avoid using
automatic binding.
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Chapter 5. Using the DCE Name Service

Correct use of the DCE RPC Name Service Interface (NSI) is essential to the
operation of a distributed application, since NSI is the medium through which the
application’s distributed parts must find each other. NSI works with named database
entries which are hierarchically organized into subdirectories and referenced by the
familiar pathname convention.

Introduction to Using NSI
It is important to remember that names and objects are separate things in DCE.
Consider, for example, these two DCE names:

/.../tinseltown.org/dce/printers/macmillan

/.../tinseltown.org/dce/employees/goethe

These strings are not filenames or file directory names; if you attempt to execute
the ls command on them, you will only get an error message. They are pathnames
that identify entries in the DCE Directory Service, which is DCE’s database for
storing distributed information. This database is often informally referred to as the
namespace.

The most important type of distributed information stored in the namespace is
information that enables RPC clients to rendezvous with RPC servers; it is called
binding information. The directory service can be used to hold other kinds of data
too, but the main subject of the following discussions will be its use as a binding
repository.

The set of binding name entries is like a huge data structure of pointers from object
names to object locations, and the directory service is used mostly as a public DCE
locational database, enabling servers to advertise themselves and the objects and
resources that they manage, and clients in turn to find and access them. You
should never confuse objects with their names; the two are separate things. In
particular, the directory service data associated with a name is held in one place
(namely, the directory server’s database), while the data associated with the object
named is held in other place (namely, the object server’s database).

How then, you might ask, are filenames represented in DCE? Here are two
examples of remote filenames:

/.../tinseltown.org/fs/doc/jones/app.gd/chap2.ps

/.../tinseltown.org/fs/doc/tolstoy/novels/war_and_peace/chap2.ps

As you may have guessed, these two are namespace entries, but the entries in this
case refer to remote files, and the entry name as a whole is the remote filename.
What makes these names different from the other two names given earlier is their
third element, fs/, which identifies a junction from the DCE Directory Service’s
namespace into the DCE Distributed File Service’s own, separately maintained,
namespace.

What happens is that /.../tinseltown.org/fs is the DFS™ file server’s DCE
namespace entry, and any attempt by a file service client to access a file object
whose name begins with /.../tinseltown.org/fs will implicitly bind to this server,
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which will then be responsible for finding, in its own namespace, the file object
referred to by doc/jones/app.gd/chap2.ps or
doc/tolstoy/novels/war_and_peace/chap2.ps and performing the requested
operations on it.

The UUID
Thus, it is a mistake to suppose that a name is identical to an object. The name
merely points in the direction of the object it names. Objects do, however, have
identifiers. These are the 128-bit universal unique identifier (UUID) data structures,
which are the identities that the DCE components recognize. They are not usually
seen by users, although they play a part in the object-finding process.

UUIDs are used within DCE to identify all sorts of things. From the standpoint of the
application programmer, they have two main uses: to identify objects and to identify
interfaces.

Object UUIDs
Although object is necessarily a rather vague term, a reasonable definition would be
the following: an object is any DCE entity that can be accessed by a client, and
which can be represented by a namespace entry and identified therein by a UUID.
This category can include servers, devices, and other resources. UUIDs that are
used in this way are called object UUIDs in order to distinguish them from the other
main use of UUIDs, namely to identify interfaces ( interface UUIDs). The difference
between these two uses consists only in the way the UUIDs are interpreted by the
name service and RPC runtime. Note that it follows from this discussion that an
interface is usually not an object. Clients do not normally access an interface as
such; the interface is rather a description of the rules of access.

As far as the DCE RPC and name service mechanisms are concerned, it is enough
if a client is brought into contact with some server, as long as that server offers the
service the client is looking for; in other words, as long as the server offers the
interface the client wants to use. To accomplish this rendezvous, interface UUIDs
are sufficient. They are also mandatory. There cannot be a client/server relationship
without an interface, and the entire RPC runtime mechanism is dependent on the
concept of interfaces.

Object UUIDs are different. The RPC runtime usually does not care if they are
present or not. But if they are present, they activate various runtime mechanisms
that allow clients and servers to be much more specific (always within the bounds
of a given interface) about what servers are bound to, and/or what resources the
servers will use to fulfill the clients’ requests. How this works is explained later in
this chapter.

Interface UUIDs
Every IDL-compiled interface specification has its own UUID associated with it, and
the IDL-generated stub routines include this interface UUID with every operation
request or return sent over the network by clients and servers. In this way receiving
stubs ensure that they and the sending stubs are sharing exactly the same
interface. If the interface UUIDs are different, or are not present, then the remote
call will not be completed. But interface UUIDs, although they are required, play
only a secondary role in a client’s finding the interface (that is, finding a server that
offers the interface); the main tool for this is NSI, which makes use of the DCE
Directory Service, as explained later in this part of the chapter.
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Summary: Names and UUIDs
Both names and UUIDs identify objects. But names are separable from the objects
they identify, and are only as trustworthy as the binding information their entries
contain. UUIDs, on the other hand, are inalienable identifiers. Once the desired
binding information for an interface or an interface/object combination has been
found and used, the name that was used to retrieve it can be forgotten; it is of no
further use. This is not true of either interface or object UUIDs.

Note that names become completely unnecessary only if clients have some other
means of obtaining valid binding information for the desired service, such as string
bindings.

The following figure illustrates how the information a client finds through a name is
turned into network contact with the object named.

Binding to an Object
The difference between, for example, reading a local file on a single machine and
performing the same read on a remote file in DCE is like the difference between
reading information from a phone book yourself and dialing an operator for the
same information. The remote operation requires the addition of another active
entity that can be requested to perform it, since you cannot. Associated with every
piece of remote data available on a network is a remote server to manage that data
and make it available. The user may not see the server; even the client may be
unaware of it, but it is there.

The DCE documentation often speaks of “binding to an object.” In reality, clients
can bind only to servers, which then may be requested to perform operations on
objects that are under their management. However, it is possible for a server to put
bindings into namespace entries that are named for the objects that it manages.
Furthermore, these exported bindings can be tagged with object UUIDs in such a
way that incoming remote calls from clients can be applied by the server to the
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Figure 5. How a Name Turns into an Object
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object whose name entry the binding was read from (the details of this technique
are described later in this chapter). When an application uses this kind of binding
model, it is reasonable to say that the client is logically bound to the object,
although it is physically always bound to the server that manages the object.

Junctions
Namespace junctions are another example of the hidden server effect. The
following remote filename was discussed earlier:

/.../tinseltown.org/fs/doc/jones/app.gd/chap2.ps

There it was explained that doc/jones/app.gd/chap2.ps is an entry in DCE DFS’s
own namespace, while /.../tinseltown.org/fs is a DCE namespace entry. Suppose a
user enters the following:

ls -l /.../tinseltown.org/fs/doc/jones/app.gd

The clerk agent program (called as a result of the user’s entering ls) will bind to the
remote file server via its /.../tinseltown.org/fs DCE namespace entry, and pass to it
the residual DFS entry name doc/jones/app.gd along with other parameters. The
ls command behaves this way because the underlying (VFS+ layer) system calls
are coded that way. The DFS server then performs the request (note that the details
of interaction within DFS are somewhat more complex than implied by this
description). The user only types the command line; the rest is done by DCE, and a
directory listing appears on the user’s screen.

Because the VFS+ system routines, which are used by all possible clients of DFS
services (for example, commands like ls and rm, library routines like fopen( ) and
fclose( )), know about the remote file server at /.../tinseltown.org/fs and bind to it
correctly, the transition from the DCE to the DFS namespace is completely
transparent to users. And this is how junctions work. As long as all possible clients
behave correctly with a name that includes a junction, the junction will not be
perceptible to the clients’ users.

A Junction Example
The next figure illustrates the principle of junctions. A junction server, which is
reached normally through binding information in the DCE namespace, maintains its
own namespace of named objects. The junction server’s clients allow users to refer
to these objects by actually concatenating the server’s entry name and an object’s
internal name. The client then in effect breaks this string apart by contacting the
server named in the first part of the string, and passing to it the second part, which
is a valid name within the server’s namespace. The client’s user seems to access
the object directly.
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The dashed lines in the above figure show the progress of the client’s efforts to get
access to the desired object, which involves acquiring a binding to the junction
server, making contact with it, and passing to it the object’s name. The solid line
shows the apparent direct access to the object that the client’s user seems to enjoy.
The dotted lines show other possible paths of access to the other objects that the
server manages.

Junction protocol is generally a private matter between an application’s clients and
servers. However, the acl_edit command uses a generalized protocol.

Junctions and the ACL Editor
The binding routines that acl_edit uses are discriminating enough to detect a
junction anywhere in an entry name that is passed to it. This allows a distributed
application to have its own namespace for objects with ACLs on them, rather than
burdening the DCE namespace by separately exporting binding information for
every one of these objects. The separate objects have to be made publicly
accessible somehow because entities should be able to access ACLs directly,
regardless of whether they happen to already be in contact with the server that
manages the ACL’ed object, and indeed regardless of whether or not they happen
to be a client of the particular server to which the objects belong.

Suppose, for example, a user enters the following in order to interactively edit the
ACL for the printer object cotta, where the namespace entry for a print server is
/.../tinseltown.org/dce/dce_print, and there is no
/.../tinseltown.org/dce/dce_print/cotta entry in the DCE namespace:

acl_edit /.../tinseltown.org/dce/dce_print/cotta

The binding routine, sec_acl_bind( ), which is called internally by acl_edit,
receives an error when it tries to bind to the object cotta. However, the DCE
Directory Service also tells it how much of the name it passed is valid. The
sec_acl_bind( ) routine then retries the binding operation, this time through the
valid entry name /.../tinseltown.org/dce/dce_print and passes the residual part of
the name (cotta) as a parameter. Now it is up to the application ACL manager to
interpret the residual name correctly and find the requested ACL.

object object object

binding

object object

name name name

name

name name

junction
server

client

Figure 6. A Namespace Junction
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Name Service Terminology
DCE RPC NSI is an RPC-based interface that uses the DCE Cell Directory Service
(CDS) as its database. The NSI routines do not constitute a general interface into
CDS as such; they are a set of specialized routines whose purpose is simply to
provide ways for RPC servers to advertise themselves to RPC clients, and for
clients to find and bind to them.

In fact there is no public general application programming interface (API) to CDS.
There is a general CDS interface that is used internally by the DCE components,
but applications normally access CDS through NSI. Applications can get full access
to CDS, if necessary, by using the XDS interface.

CDS Entries
NSI uses a subset of the many possible kinds of CDS entry in order to accomplish
its tasks. CDS entries are characterized by the CDS attributes they have; each
entry can have one or more such attributes. Each separate attribute defines that
entry’s ability to contain one or more items of a particular kind of simple or complex
information.

The name service creates and uses CDS entries that use only the following four
attributes:

binding
The entry has a field that can contain one or more sets of binding
information. When the field is read, a binding handle that contains the
necessary information from one of these sets is returned, in no particular
order.

object The entry has a field that can contain one or more object UUIDs. When the
field is read, one of the UUIDs is returned, in no particular order.

group The entry has a field that can contain a pool of one or more references to
other (independently existing) NSI entries; each time the field is read, one
of these entries is returned. Different entries are returned on successive
reads, but the order of return is undefined.

Note that the other NSI entries referred to in the group can themselves be
server or group entries. As a result, the act of reading from a group attribute
can, depending on the actual API routine called, lead to a series of nested
operations. Any nesting is transparent to the client application, however,
which seems to perform a simple read and to receive the contents of a
single entry in return.

profile
The entry has a field that can contain one or more prioritized elements,
each of which consists of a reference to another (independently existing)
NSI entry. When the field is read, the elements are read in a specified
order. The entry referred to in the element may itself be a server or a group
or a profile. As a result, any element may in fact, depending on the actual
API routine called, resolve on access to a nested path of referred-to entries.
As with group entries, this is transparent to the client application.

Although a single entry could contain both group and profile attributes (and for that
matter, binding and object attributes as well), it is not a good idea to mix attributes
in this way because the results of importing (reading) from such an entry are too
indeterminate.
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The typical name service entries are as follows:

server entry
Contains a binding and an object attribute, making it suitable for containing
the necessary binding information for a single server.

group entry
Contains a group attribute.

profile entry
Contains a profile attribute.

There are no official names for hybrid entries that contain other combinations of
attributes, which is perhaps another reason for not creating such entries.

The general name for entries that contain any of these attributes is NSI entries,
since they are a by-product and tool of the NSI DCE RPC library routines.

CDS Entry Attributes
Within the DCE Directory Service, entry attributes such as the four previously
described attributes are identified by object identifiers (OIDs). This is an exception
to the general rule that things in DCE are identified by UUID.

OIDs are not seen by applications that restrict themselves to using only the name
service routines (rpc_ns_ * ( )), but these identifiers are important for applications
that use the X/Open Directory Services (XDS) interface to create new attributes for
use with namespace entries.

As was seen in the immediately preceding sections, the name service makes use of
only four different entry attributes in various application-specified or
administrator-specified combinations. CDS, however, contains definitions for many
more than these, and attributes from this supply of already existing ones can be
added by applications to NSI entries through the XDS interface. Attributes that
already exist are already properly identified, so applications that use these attributes
do not have to concern themselves with the OIDs, except to the extent of making
sure that they handle them properly.

A further possibility is that an application requires new attributes for use with
namespace entries. Such attributes can be created using the XDS interface. When
it creates new attributes, the application is responsible for tagging them with new,
properly allocated OIDs.

Unlike UUIDs, OIDs are not generated by command or function call. They originate
from the International Organization for Standardization (ISO), which allocates them
in hierarchically organized blocks to recipients. Each recipient (typically an
organization of some kind) is then responsible for ensuring that the OIDs it received
are used uniquely.

For example, the following OID identifies the NSI profile entry attribute. This number
was assigned by the Open Software Foundation out of a block of numbers,
beginning with the digits 1.3.22, which was allocated to it by ISO, and OSF is
responsible for making sure that 1.3.22.1.1.4 is not used to identify any other
attribute.

1.3.22.1.1.4
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When applications have occasion to handle OIDs, they do so directly, since the
numbers do not change and should not be reused. However, for users’
convenience, CDS also maintains a file (whose name is
/opt/dcelocal/etc/cds_attributes) that lists string equivalents for all the OIDs in use
in a cell, in entries like the following:

1.3.22.1.1.4 RPC_Profile byte

This allows users to see RPC_Profile in output, rather than the mysterious
1.3.22.1.1.4. Further details about the cds_attributes file and OIDs can be found in
the IBM DCE Version 3.2 for AIX and Solaris: Administration Guide—Core
Components .

Broadly speaking, the procedure you should follow to create new attributes on CDS
entries consists therefore of three steps:

1. Request and receive, from your locally designated authority, OIDs for the
attributes you intend to create.

2. Update the cds_attributes file with the new attributes’ OIDs and labels; that is,
if you want your application to be able to use string name representations for
OIDs in output.

3. Using XDS, write the routines to create, add, and access the attributes.

Non-NSI attributes on NSI entries can be very useful, even though you cannot
access the extra attributes through the name service routines but must use XDS
instead.

Binding
In order to highlight the essentials of name lookup and storage and the
management of binding information, many details of DCE RPC operation are either
greatly simplified in the following descriptions or omitted altogether.

A binding is a package of information that describes how a client can contact and
communicate with a particular server. Although the underlying protocol that
implements the communication can be connectionless or connection-oriented, the
relationship itself is still expressed as a binding.

Importing and Exporting Bindings
The name service exists to store server binding information into the cell
namespace, and to retrieve that information for clients. Using NSI, servers export
their binding information to be stored under meaningful names, and clients import
these bindings by looking up those names. Thus, the locations of the servers can
change, but clients can continue to use the same names to get bindings to the
servers. The following figure shows how client and server use the name service.
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When a prospective client attempts to import binding information from a namespace
entry that it looks up by name, the binding is checked by NSI for compatibility with
the client. This is done by comparing interface UUIDs. The client presents an
interface UUID when it begins the binding import operation; the UUID of the
interface being offered is exported to the name entry, but not in the binding handle
itself, by the server. If these interface UUIDs match, then the binding handle
contained in the entry is considered compatible by the RPC runtime and is returned
to the client. If more than one handle is contained in the entry (this is often the
case), they are returned one by one on successive imports. NSI also checks for
protocol compatibility.

The import routines will return only client-compatible bindings, but a client can sift
through the returned bindings and make its own choice as to which ones to use,
based on its own criteria. The technique by which this is done consists of
converting the bindings into string bindings, and then inspecting (or comparing) the
strings.

Note that binding handles do not include an interface UUID. Binding handles do
contain a host address, an endpoint, and an optional object UUID, among other
things. The interface UUID is associated with the interface’s stub code, which
inserts it into outgoing RPCs and checks it in incoming ones, thus guaranteeing
client/server operational compatibility. This allows binding handles to be used very
flexibly: once a client has successfully bound to a server, it can utilize any of the
interfaces that server offers, simply by making the desired remote call.

Summary
The mapping from name to server that occurs when bindings are imported from the
namespace is indirect because binding is a two-step process: first the binding
handle is obtained by lookup from a named entry, and then the handle is used to
reach a server. The crucial point is that the imported handle will not usually contain
a complete binding to a specific server (namely, the one that happened to export it).
Completion of the partial binding occurs later, when the client makes its first remote
procedure call; the RPC runtime uses UUIDs, not names, to determine how it
should complete a binding.

CDS Namespace

Client Server

RPC
Runtime

RPC
Runtime

import
binding

export
bindings

Figure 7. Client and Server Use of the Name Service
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Partial Binding and the Endpoint Mapper
Binding handles imported by clients from the namespace normally contain only
partial binding information. The exported binding information is sufficient to locate
the DCE host daemon on the server’s host (the machine the server resides on), but
it does not yet include a specific endpoint (UDP or TCP port number) for the
desired service on that host.

The reason for omitting dynamic endpoint information in exported binding handles is
to avoid unnecessary multiplication of accesses to the namespace. Since
dynamically generated endpoints are necessarily reassigned every time a server
starts up, entering them into the namespace (and thus forcing CDS to propagate
the new information throughout the various directory replicas) would greatly
increase namespace housekeeping chores.

Thus, the last step in the binding process is obtaining an endpoint. The step is
performed transparently as far as the client is concerned. It is accomplished by the
endpoint mapper service of the DCE host daemon, dced, when the client makes its
first call to the partially bound-to server. The endpoint mapper service manages its
own private database of server endpoints for the host on which it is located. The
endpoints are registered by the servers as part of their startup routine.

The binding information that accompanies a prospective client’s first remote
procedure call takes that call to the well-known endpoint of dced on the exporting
server’s host machine. The endpoint mapper now takes over. It looks up a valid
endpoint for the requested service, copies it into the binding handle, and transfers
the call to that endpoint. Subsequent calls from the client, which now has a binding
with one of the server’s endpoints, will bypass the endpoint mapper.

The endpoint mapper picks an appropriate endpoint for an incoming partial binding
by matching interface UUIDs by default. Any endpoint that has been registered
under an interface UUID that matches the incoming interface UUID, which identifies
the interface requested by the prospective client, is eligible for selection. This
mapping process is called forwarding when it occurs with connectionless protocols,
and mapping when it occurs with connection-oriented protocols.

The following figure shows the endpoint mapper service completing a binding.
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There is an exception to this scheme. Some servers are designed to occupy
well-known addresses. The DCE host daemon itself, dced, is reached in this way,
making its accessibility independent of whether or not the namespace is accessible.
The endpoint(s) of a well-known address do not change; they are usually specified
in the application’s interface specification (contained in its .idl file). Bindings to
servers that use well-known endpoints are already complete at the time of import;
the endpoint mapper never sees these bindings.

Interface Ambiguity and Partial Bindings
The interface UUID, which was generated by the IDL compiler, uniquely identifies
the set of operations that the client will access through that interface. In short, it
identifies the interface. An interface UUID may also happen to identify a server
which offers that interface. But if more than one server on the same host offers the
same interface (which could easily be the case), the interface UUID alone will not
be sufficient to identify a specific server. The result is that if a remote call comes in
with such an ambiguous interface and a partial binding, the endpoint mapper will
have to randomly choose any one of its eligible registered endpoints, complete the
binding with it, and send the call on to that server.

Imagine several print servers residing on the same machine (see Figure 9 on
page 112 ). Each server manages a group of printers that share a common physical
location. All the printers in room A are managed by the A print server, all the printers
in room B by the B print server, and so on. Now suppose each of these servers has
a separate entry in the namespace. The following figure shows the sequence of
events that occurs.
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Figure 8. The Endpoint Mapper Service Completes a Binding
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The following steps describe the sequence of events shown in the above figure:

1. The client imports a partial binding to the printer interface from the entry A in the
namespace.

2. The client makes its first call with the binding it imported from A.

3. The endpoint mapper at print server A’s host, when it receives the call from the
client, has no way of knowing which of the four print servers it should map the
call to, since all four servers have registered their endpoints under the same
interface. It therefore picks one at random to complete the binding.

The entry names are different, but the partial binding information contained in the
entries is identical, since the servers’ host machine is the same. The interface UUID
included in the call is no help, since that same interface is offered by all the
servers. A client seeking a print server may not care to which server (and thus to
which printer) its request goes, but then again, it may care. If it does, there is a way
it can specify a server so that the endpoint mapper can select an appropriate
endpoint to complete the partial binding.

Using Object UUIDs to Avoid Binding Ambiguity
Binding handles can contain, besides host address and endpoint information, an
object UUID as well. The endpoint mapper will try to match an object UUID
contained in a binding handle with one of the object UUIDs associated with its map
of registered endpoints. This allows even a partial binding to specify a target more
precisely than just by host machine. Since object UUIDs are generated by the
uuid_create( ) function call (see the IBM DCE Version 3.2 for AIX and Solaris:
Application Development Reference), servers can create as many of them as they
need.
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For the print server example discussed in the previous section, the namespace
entries for the servers could be set up as shown in the following figure.

The following steps describe the sequence of events shown in the preceding figure:

1. The client imports a partial binding to the printer interface from the entry A in the
namespace.

2. The client makes its first call with the binding it imported from A.

3. This time the endpoint mapper at print server A’s host is able to match the call
with A’s registered endpoints, because the endpoints have been registered with
both the printer interface and print server A’s object UUID, and the incoming
call’s partial binding also contains print server A’s object UUID.

Each server has exported a set of partial bindings that differs from all other servers’
by its object UUID (which thus becomes, in effect, a server ID). If, for example,
server A has properly registered its endpoints with the same object UUID as the
one it exported its bindings with, the endpoint mapper will make sure that a partial
binding exported from server A’s name entry will result in a full binding to server A.

Now suppose that each print server sets up a separate namespace entry for each
printer it manages. The printers themselves would, in effect, be identified by their
own object UUIDs. The following figure illustrates this.
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Now a client will be able to access a specific printer by importing a binding handle
from that printer’s name entry. The endpoint mapper at the target host would
compare the object UUID in the partial binding with the object UUIDs registered by
the print servers, and select an appropriate server. The server in turn would also
use the object UUID to select the correct printer for the request, if it managed more
than one printer. A namespace set up in this way with a separate entry that contains
a unique object UUID for each accessible service resource is called an
object-oriented namespace.

An Object-Oriented Namespace
Object-specific entries are namespace entries that each contain binding information
only for one specific object or resource, as demonstrated in the last printer service
shown in the last previous figure. Object can mean any of several things, depending
on what kind of service the application’s servers are offering. Here are some
examples.
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Table 4. Some Examples of Objects

Service Object(s)

Printing A specific printer

Process Server A specific server

Queue Service The print queue, the kill queue, the backup
queue

Thus, for a client that wants to have a file printed, it is natural to allow it to specify a
printer as a destination. Therefore, the client would bind to the print server through
a name entry that specifies a printer. To send something to a different printer, the
client would import a binding from the name entry for that other printer. The server
may (or may not) be identical, but the object UUID in the binding handle returned
would uniquely specify the one printer represented by that entry.

On the other hand, consider an application that returns statistics about the
processes currently active on a group of machines. In this case it would be
reasonable to regard the server as the object. In the namespace entries for such an
application, each entry would uniquely represent one server. A client would import a
binding from the name entry for the server it wanted to work with.

In other words, object is a handy way of saying “the thing that clients will want to
access” in order to accomplish the task set for the application. If the namespace is
organized correctly, clients will be able to import bindings from these objects’
entries.

Setting Up an Object-Oriented Namespace
Once you have distinguished the objects your application uses, you must decide on
an appropriate set of names for the entries themselves. The entries can be created
either by the application (server), if it has the necessary privileges, or by a system
administrator using the rpccp command interface.

After the entries have been created, each server must do the following:

1. Create an object UUID for each object managed by the server under an
interface, insert it into the binding handle(s) for that object, and export the
handle(s) for each object to a separate entry in the namespace.

Note that the object UUID should be generated and exported in general only
once per created namespace entry, and not each time the server starts up (see
the example that follows of how to do this). When a newly restarted server
exports its partial bindings, nothing actually happens in the namespace because
the partial binding information remains the same (unless the server has moved
to a different machine). However, if the object UUIDs are regenerated, then the
change in exported information will force needless update activity in CDS, which
is where the entries exist.

2. Register with the endpoint mapper the full bindings (including endpoints)
obtained for the interface; rpc_ep_register( ) performs this operation.

One way of avoiding unnecessary regeneration of object UUIDs would be to have a
restarted server check the namespace for the presence of its previously exported
object UUIDs, as demonstrated in the following code fragment. Refer to the IBM
DCE Version 3.2 for AIX and Solaris: Application Development Reference for further
information on the function calls.
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have_object = false;

/* Create an inquiry context for inspecting the object */
/* UUIDs exported to "my_entry_name"... */
rpc_ns_entry_object_inq_begin(my_entry_name_syntax,

my_entry_name,
&context, &st);

/* If we successfully created context, look at */
/* object UUIDs... */
if (st == rpc_s_ok)
{

/* Try to get one object UUID from the entry... */
rpc_ns_entry_object_inq_next(context, &obj, &st);

/* If an object UUID is there already, we don't */
/* need to generate another one... */
have_object = (st == rpc_s_ok)

/* Delete the inquiry context... */
rpc_ns_entry_object_inq_done(&context, &st);

/* If there were no object UUIDs in the entry, */
/* generate one now... */
if (! have_object)
{

uuid_create(&obj, &st);

/* Put it in an object UUID vector... */
objvec.count = 1;
objvec.id[0] = &uuid;

}

/* Export bindings. If an object UUID was generated, */
/* export it too... */
rpc_ns_binding_export( my_entry_name_syntax,

my_entry_name,
my_interface_spec,
my_bindings,
have_object ? NULL : &objvec, &st);

Whenever you want to offer more than one instance of the same interface on the
same host, you must distinguish by object UUID the binding information in the
name entries exported by the servers, if it is important to distinguish among the
servers when binding to them. Otherwise, the endpoint mapper’s selection of an
endpoint with which to complete the binding from among all the servers on that host
that offer the appropriate interface will be random.

The next figure illustrates what such an object-oriented namespace should look like.
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Each entry has a name denoting the object represented, although the names are
not shown in this figure.

Under this model, clients bind to servers via named objects in the namespace, each
of which contains enough specific information in its partial binding to allow the
endpoint mapper at the destination host to choose an appropriate endpoint for the
incoming RPC.

By setting a namespace up this way, however, you do not necessarily restrict
yourself to this one model for accessing binding information. Through the use of two
other types of entry, groups and profiles, which can be superimposed on the simple
object model, you can set up models where clients bind to abstractions such as
services, or directly to the servers themselves. These techniques are described in
the next section.

Nevertheless, at this point you have enough information to set up a namespace that
consists of an entirely flat expanse of separate resource entries. Bindings can be
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imported by clients by looking up specific names. If the client has no specific name
to look up, or if the lookup on the name(s) it has fails, it has no alternative way of
binding to a server.

Groups and Profiles
Name lookups can be made more flexible with two other types of entry; namely,
groups and profiles.

Group Entries
A group entry consists essentially of multiple independent other entries whose
names are also associated under the group name. These other entries can be
simple (single-name) entries, or they may themselves be group entries. Doing an
import from the group entry will return the contents (the binding handles) of its
included entries (which are called members), but the selection is made by the DCE
RPC runtime, and from the client’s point of view is undefined and implementation
dependent.

In practice, the way this works with the usual binding import operations is as
follows. Clients normally import bindings by first calling
rpc_ns_binding_import_begin( ) to set up an import context. Once this is done,
successive calls to rpc_ns_binding_import_next( ) will return binding handles
from namespace entries until the handles have all been returned or the client
decides to stop; the client decides which handle(s) to use based on its own criteria.
When it is finished importing, it calls rpc_ns_binding_import_done( ) to free the
context.

The kind of entry the information is returned from is usually unknown to the client,
which needs to know only a name to look up and the interface UUID by which it
wants to bind. If the name is that of a simple server entry, then the bindings
contained in that entry only will be returned. If the name is of a group entry, then
bindings will be returned from members (single entries) of the group, selected (by
the RPC runtime) in an undefined order. If one or more members of the group are
themselves groups, then the same thing happens recursively whenever these
lower-level groups are accessed.

Note that the group entry and its members are separate things. The group entry
can be deleted, but its former members will continue to exist as independent
entries, unless they too are explicitly deleted. Thus, you can implement a
namespace organization where the same bindings can be imported through
individual simple entries or through group entries, depending on how the client is
coded.

Profiles
A profile entry specifies a search path or hierarchy of search paths to be followed
through the namespace in order to obtain a binding to a server that offers a
specified interface.

When a client imports from an entry that happens to be a profile, successive
imports (accomplished by calling rpc_ns_binding_import_next( )) return the
contents of entries that are read as a result of following the specified path through
the namespace. All this is transparent to the client, which sees only the bindings
returned. Profiles can be used to set up default paths and groups of paths for
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users. The RPC_DEFAULT_ENTRY_NAME environment variable, which is the
default entry name used by the name service in import operations, usually contains
the name of a profile.

As with groups, the entries contained in profiles, which are called elements, exist
independently of the profile entry itself.

A very important property of profiles is that they allow clients to know little or
nothing about the organization of the namespace itself. Using the default case as
an example, consider the following: if the profile at RPC_DEFAULT_ENTRY_NAME
has been set up with elements containing entries for all possible active servers for a
particular application, clients can simply import from this name and trust the profile
mechanism to walk through the various compatible possibilities and return binding
handles via successive calls to rpc_ns_binding_import_next( ). (Note that a
profile entry is not limited to containing entries for just one interface; thus,
RPC_DEFAULT_ENTRY_NAME could be set up to contain all the defaults for a
cell.)

Summary of Namespace Entry Types
Clients access binding information in the namespace by looking up (by name) one
of three different kinds of entry:

v A server entry

v A group entry, which contains other entries whose contents are returned to the
caller when it reads the group entry

v A profile entry, which specifies a path of entries to be searched whose contents
are returned to the caller when it reads the profile entry

Lookups behave differently depending on the kind of entry read. If an entry is a
simple server entry, then the search begins and ends right there, whether
successful or not. If the entry is a group, then the lookup is more complicated. A
binding will be returned from among those that are found to be compatible by the
name service, but within that category the selection is undefined. If the entry is a
profile, then a specified path of entries is searched. The entries in this path may
themselves be other profiles, or groups, or simple entries. The search continues
until either a compatible binding is found, or the entire path has been
unsuccessfully traversed.

Three Models for Accessing Binding Information
By adding groups and profiles to the object-specific namespace organization
originally described, you can implement any or all of the following three basic
models for accessing binding information:

v Clients bind to services

v Clients bind to servers

v Clients bind to resources or objects

Each of the three models is described in the following sections.

Access By Services
Servers have separate namespace entries; each server distinguishes the bindings it
exports with its own identifier; that is, an object UUID that it generates for itself the
first time it starts up. These separate server entries are also members of group
namespace entries, which represent services. The criterion for membership in a
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service group is that all the servers in it export the interface that identifies that
service. (They may happen to export other interfaces as well.)

Clients, in effect, bind to services by importing their binding handles from the group
entries. Note, however, that the server-specific entries still exist independently and
are accessible to lookup.

This model is appropriate for applications where clients do not care which server
they happen to bind to or where that server is located as long as it offers the
desired service. The eligible servers are pooled into a group entry from which
bindings to one of them are selected in an undefined order and returned whenever
a client performs an import operation from the group entry.

Access By Servers
In this model, distinct servers have separate and distinct name entries, and clients
import bindings directly from the server entries. Hence, an application using this
kind of binding model will own just as many simple entries in the namespace as
there are active servers.

Since the client in this model is looking for a specific server, imports will be done
directly from the server entries. The only exception to this rule would be where two
or more instances of a server were active on the same host, and it was indifferent
to the client as to which one it is bound to. The entries for the multiple same-host
servers then could be put into a group entry, and binding imports done from the
group.

Access By Objects
Servers operate on or manage multiple objects. Clients use these objects (via the
servers) as resources. For each such resource, the server creates a separate
namespace entry and exports its binding information there, distinguishing each
object entry with its (the object’s) own object UUID.

An example of this model is the printer service that was previously described.
Clients will import directly from the name entry of the resource they want to use.
For this kind of application, there will generally be more namespace entries than
active servers, since each server presumably manages more than one object. If the
name entries have been set up correctly and the servers have properly registered
the object UUIDs they created, there will be no difficulty in routing any partial
binding to the correct server (namely, the server that manages the object or
resource specified).

Summary of Binding Models
Although the name service allows other approaches, we recommend that whenever
possible you use the object-oriented scheme to organize your namespace entries.
There are at least two good reasons for doing so. First, it is easy to administer; at
the simple entry level, things really are simple. Second, this is the most flexible
foundation for building other more complicated access models using group entries
and profiles.

The separate name entries in your namespace should contain bindings that will
unambiguously resolve to specific server instances. Since interface UUIDs are often
offered by more than one server, more information than just an interface UUID is
needed in order to give an RPC with a partial binding the required specificity. Object
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UUIDs provide this extra information. When using object UUIDs to distinguish
bindings in this way, servers must take care to preserve their uniqueness across
name entries.

Finally, profile entries allow clients to walk through a specified search path of
namespace entries and yet be completely ignorant of the actual names themselves.
While name independence may not be desirable for an object-based or
resource-based distributed application, it can be a powerful mechanism when used
with other models.

As you are setting up the namespace organization for your application, remember
that there is not a direct exact mapping from names to bound servers. Different
names, once imported from, may resolve to identical bindings if the partial bindings
were exported on the same interface, from the same host, and not otherwise
distinguished from each other by object UUIDs. It is the application developer’s
responsibility to tailor an application’s export and import procedures so that this
mapping behaves as intended.

Models Based on Non-CDS Databases
The three models previously described are not mutually exclusive; if the namespace
is set up correctly, all three can coexist at the same time. All three of the models
are implemented through the functionality of the DCE RPC name service.

Although the emphasis in this discussion has been placed on the storage and
retrieval of binding information, the namespace entries can be used to store
additional states for objects. In order to do this, an application would have to create
additional attributes on the CDS entries it intended to use because the name
service recognizes only the four NSI attributes: binding, object, group, and profile.

Such additional entry attributes would be created and accessed through XDS.
However, whenever you find yourself contemplating extending the name service in
this manner, you should carefully consider whether the name service (and,
consequently, CDS) is the best mechanism for doing what you want to do.

In the preceding example, where an object-oriented namespace containing separate
entries for individual printers was described, only the identifier for the printer (the
object UUID) and the binding for the server that managed it were stored in the CDS
entry. Other information, such as what jobs are currently queued for the printer, who
owns the jobs, and so on, was maintained by the server. This data could be stored
in CDS only by creating new attributes to put it in, but it would be changing too
quickly for CDS to efficiently keep up with it anyway. The performance of both the
application and CDS would suffer from such an arrangement.

It is possible to imagine distributed applications whose resources (the objects they
are managing) are of such a nature that they could be more efficiently managed
through a private application-implemented database. Suppose the number of
managed objects is very large, or that the state of the objects is volatile. It would
certainly be a bad idea to try to use CDS to store this kind of information, which
would be changing much more rapidly than CDS’s ability to propagate the updates.

Example of a Privately Managed Database
As an example of such a privately managed database, consider a print service
where jobs are submitted not to individual printers, but rather to a generic printer
service. The client, lpr, binds (probably through a group entry) to some certain print
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server, and sends the job to be printed to that server, which then, after some
thought, sends the job to one of the printers that it manages.

Consider, for example, what happens if a user invokes the client cancel sometime
later to stop a job. If, for example, the original command was

lpr War_and_Peace.ps

and the subsequent request to cancel is

cancel War_and_Peace.ps

then how does the server that cancel binds to find the right job to delete? There is
no guarantee that cancel will bind to the same server that happened to receive the
original print request, so having each print server keep track of its own jobs would
not be the answer.

One way to keep track of jobs queued would be to have a dedicated job location
server as part of the application. Each time a print server queued a job to a printer
it would record the fact (with all the pertinent details) with the location server.
Whenever a job completed, the server would again notify the location server to
remove its record of that job from its database. A client cancel then binds first to
the location service, where it receives the name of the print server associated with
the job it wants to cancel. It then looks up that name, binds to the right print server,
and sends the cancel request. In effect, the location server has become a name
service for cancel.

This method of organizing activity results in a split-model database. The print
servers’ binding information is managed through CDS, as usual, and the location
server manages other more volatile information associated with those same
servers.

Another way a server could maintain its own database of named objects would be
by implementing a junction.

Combining Models
In designing a binding access model for an application, consider also whether it
may be appropriate to combine some of the models previously discussed. In the
print service application, it may be desirable for servers to also offer a management
interface to specific servers rather than to specific objects; for example, lpr, lpq,
and lprm are generic application clients, so it is appropriate for them to bind to
printer objects, but if lpr_mgmt is supposed to manage characteristics of a whole
service, then it should bind to servers.

An Object-Oriented Model with Grouped Binding Information
The following variation on the object-oriented binding model shows how the group
attribute can be used in object entries. In this model, each of the object entries
contains, as before, an object UUID that will uniquely identify (either to the endpoint
mapper on the exporting server’s machine, and/or to the server itself) the object
referred to by that entry. However, the object entries do not contain any binding
information. Instead, a group attribute in each object entry refers clients’ import
operations back to the server’s own separate entry, which contains the binding
information for that server.
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The namespace ingredients of this model are the following:

v A single namespace entry for the server, which contains a binding attribute and,
possibly, an object attribute. Thus, this entry contains all the binding information
that is exported to the namespace by the server.

v One namespace entry for each object that the server offers. Each entry contains
an object attribute that contains that object’s UUID, and a group attribute that
refers back to the exporting server’s namespace entry.

Note that the object entries consist of a combination of attributes not encountered
before (object and group). Although unorthodox combinations of attributes are not
generally recommended, they can sometimes be useful, as in this example.

The advantages of this scheme are twofold:

v It greatly reduces the amount of server-provoked export activity into the
namespace.

v It allows the server application to associate a people-readable name (that is, the
name of each object’s namespace entry) with a UUID.

When the server is first activated it creates all the namespace entries, exports the
objects’ UUIDs into the object entries, and initializes the group attributes to refer to
the server entry. It exports its binding information into the server entry only. From
then on, whenever it is restarted, all the server needs to do is reexport its binding
information into the single server entry. Everything else remains the same; that is,
the objects’ UUIDs have not changed, nor has the name of the server entry to
which the object entries’ group attributes refer. Thus, instead of exporting bindings
to every one of its object entries on subsequent startups, the server exports to only
one entry.

Of course, if the system were restarted or the namespace reinitialized, then the
original start-up process would have to be repeated.

The slight disadvantage of this scheme occurs on the client side, where the import
process becomes somewhat more complicated than it would be if all necessary
information (both binding and object UUID) could be read in from the same entry.

Server and Client Steps
The following subsections describe in detail, from both the server’s and the client’s
side, how this model works.

Server Export
This section lists the steps that the server must perform to set up and initialize its
namespace. Each step consists of the NSI function that must be called to perform
the operation.

1. uuid_create( )

To create an object UUID for each object that the server intends to export.

2. rpc_server_register_if( )

To register interface(s) and EPVs with the RPC runtime. (This is also where
manager types, if any, are registered.)

3. rpc_server_use_all_protseqs( )

To request bindings from the RPC runtime for each object.

4. rpc_server_inq_bindings( )
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To get the binding handles for each object.

5. rpc_ns_binding_export( )

To export the binding information of the objects’ common server and the object
UUIDs for each of the namespace objects to the server’s own separate name
entry. This step is performed only once for each collection of objects managed
by the same server.

The final three steps set up the grouped collection of service objects. Note that
the next two steps are executed once for each object managed by the server:

6. rpc_ns_binding_export( )

To export each object’s object UUID to its own name entry. A NULL is passed
as the binding_vec parameter to specify that only an object UUID, and no
bindings are being exported.

Note that each object UUID must be exported to both the object name entry and
the server entry; hence the need for this export operation in addition to the
operation described in Step 5 above.

7. rpc_ns_group_mbr_add( )

To add the server’s name entry (created in the first step) as the sole member of
an NSI group attribute in each of the separate objects’ name entries created in
the second step.

8. rpc_ep_register( )

To register each object’s UUID with the server’s host machine’s endpoint
mapper. Note that rpc_ep_register( ) takes an object UUID vector as an
argument, and generates from this all the necessary relationships between
UUIDs and bindings; thus the call is made only once.

The point of this step is to make sure that when presented with an object UUID
in an incoming RPC, the endpoint mapper can look that UUID up in its database
and find an endpoint that has been registered with it. Registering the server’s
bindings (that is, endpoints) with all object UUIDs will accomplish this.

Step 6 above is made necessary by the way the ACL editor’s binding mechanism
works. (Applications gain access to the ACLs that an application maintains on its
objects through the client agent acl_edit, which uses a standard DCE-wide
interface for ACL operations.) The acl_edit mechanism contains code that allows it
to bind to the server that implements the ACL manager responsible for the object
whose ACL is desired. However, these generalized binding routines necessarily
conform to certain fixed ways of doing things. If the acl_edit binding mechanism
obtains an exported object’s object UUID from the object entry, it will use that object
UUID in its subsequent import through the group attribute.

Thus, the object UUID will be contained in the handle structure that the client
presents to the rpc_ns_binding_import_next( ) call, expecting it to be filled in with
binding information. However, the RPC runtime always tries to match such an input
object UUID with a UUID contained in the entry that the caller is trying to import
from. If no matching object UUID is found, no binding information will be returned.
Thus, all the single object UUIDs separately exported to the object entries must be
exported to the server entry as well, if the exported objects are to have ACLs
accessible through the acl_edit mechanism.

The following figure illustrates the resulting namespace arrangement.
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This generic server manages four objects, called simply A, B, C, and D. One entry
is created for each of these objects, and a separate entry is created for the server
itself, where the binding information is held.

The result of all this is that there is now one more namespace entry for a given
service instance than there would have been with the object-oriented model
discussed earlier. The group attribute in each entry is a level of indirection that
allows the server to dispense with exporting many copies of the same thing.

If a directory with the proper permissions has been set up for it in the namespace
by the system administrator, a server should be able to create the object entries
simply by making the calls described here.

Client Import
To bind to an object managed by the server as previously described, a client
performs the following series of library calls:

v rpc_ns_entry_object_inq_begin( )

To set up an object inquiry context; the client application here specifies the name
of the desired namespace object entry.

v rpc_ns_entry_object_inq_next( )

To return the object UUID that the server exported to the object’s entry.

This UUID (which will be passed to the rpc_ns_binding_import_begin( )
routine, below) will enable the server host’s endpoint mapper to accurately map
the incoming remote procedure call to the server that exported this entry.

The UUID may also be used by the server itself to determine which object the
client wants to access. Note that although this set of library routines is designed
to accommodate schemes in which multiple object UUIDs have been exported to
the same entry, the model described here requires that only one object UUID
(the unique identifier of the object to bind to) be exported.

v rpc_ns_entry_object_inq_done( )

To delete the object inquiry context.

v rpc_ns_binding_import_begin( )
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To set up a binding import context.

Note that the object UUID that was returned by the call to
rpc_ns_entry_object_inq_next( ) must be passed to
rpc_ns_binding_import_begin( ); as a result of this the import operation
(rpc_ns_binding_import_next( )) will return only a binding with that object
UUID.

An alternative to using the binding import routines would be to use the group
member inquiry (rpc_ns_group_mbr_inq_ * ( )) routines to learn the name of
the entry referred to in the group attribute, and then to do a direct import from
that entry.

The reason for using the rpc_ns_group_mbr_inq_ * ( ) routines, rather than the
normal import functions (rpc_ns_binding_ * ( )), would be to make sure that the
group (and not some other) attribute in the entry is read. The
rpc_ns_binding_import_next( ) routine is defined to successively exhaust the
contents of an entry’s

– binding attribute

– group attribute

– profile attribute

Since the model described here employs object entries with only group attributes
and no binding or profile attributes, using the normal import routine should work
fine.

v rpc_ns_binding_import_next( )

To read the entry’s group attribute.

The name service’s access to (and return of the binding handle from) the entry’s
group attribute is transparent and unerring because there is only one set of
binding information associated with a given entry in this scheme, and that
information is found only in the group attribute. Note that if there had been more
than one member in the group, which in fact is generally the case when group
attributes are used, then the order of return would be random. Or if there had
been binding information associated with both attributes, then here also the order
in which binding handles would be returned would be random; that is, the caller
might get a handle from the simple name attribute first, and then the handles
exported to the group members, or it might get one or more of the group’s
member’s handles, then one or more of the simple entry’s handles, and so on.

v rpc_ns_binding_import_done( )

To delete the binding import context.

The next figure illustrates this activity.
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The client shown in the figure imports a binding for object A. This becomes (through
the group attribute) a referral back to the server’s entry where the bindings are held,
and a binding is indirectly imported from the server entry. The object UUID for A is
read, in a separate operation, directly from the object’s entry. With this information
in its binding handle, the client makes its first remote call through the server’s
interface. The call finds its way to the endpoint mapper via the partial binding
information, and the endpoint mapper completes the binding by looking up the
object UUID, which was registered there by the server.

Global Organization of the Namespace
Since DCE is designed to support very large namespaces, it uses a hierarchical
service for binding. The global scale is separated into cells whose boundaries are
administratively defined. For example, a company using DCE might have a cell
containing its employees and local services. The cell namespace administrator
could decide to put all the service entries in a single directory if the cell were small.

Both the import and export name service operations support default values derived
from environment variables; for example, RPC_DEFAULT_ENTRY_NAME. The
environment variables can be set by start-up files to the name of a well-known
directory within the cell. The only remaining decision then will be how to name the
actual entries within the directory. One easy method is to use mnemonic names, or
names of interfaces such as binop, spm_library, and so on. If these entries are
only being accessed by clients through profiles, their names will not be directly
visible to the client anyway.

But now imagine a larger organization. The administrator will want to define some
naming hierarchy based on geography, organization, or other criteria. Somewhere
within this hierarchy some writable directories (or parent directories) would be
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created, which could contain server entries, profiles, and so on. If clients are using
only profiles to access bindings, then this organization will still be transparent to
them. If clients want to bind to specific servers or objects, then more attention must
be paid to the names given the servers’ or objects’ entries. The names should in
some way reflect the organization, geography, or other relevant aspects of the
server or object.

In summary, the important points to keep in mind are the following:

v The model should be appropriate for the organization and permit efficient
administration of the namespace.

v There should be simple guidelines for naming objects and services so that users
have a good chance of guessing the right answer.
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Chapter 6. RPC Parameters

The RPC mechanism attempts to provide a data model as close as possible to the
familiar local call model. For example, you can pass data by reference—by passing
a pointer to a data item—despite the fact that client and server do not share an
address space. Nevertheless, there are significant differences in both the syntax
and semantics of RPC parameter data compared with C language local call data.
For example, RPC provides directional attributes, conformant arrays, discriminated
unions, and pipes, constructs which have no equivalents in C. Each requires an IDL
specific syntax and has new semantics. Also, familiar constructs, such as pointers,
closely mimic their local C language counterparts, but nevertheless must behave
differently in some circumstances.

The DCE RPC programmer is thus confronted with a number of unfamiliar style and
policy issues. The policy issues have mainly to do with which data types to use in
given circumstances: for example, would you be better off using an array or a pipe
to transfer a large block of data? This chapter contains recommendations that
should help you make such choices. The style issues arise from the rich and
unfamiliar syntax for RPC parameters which can make the mechanics of using
many of the RPC data types seem rather daunting. This chapter contains numerous
examples of basic data passing styles.

Execution Semantics
Before we begin to discuss the RPC data types themselves, a slight digression is
necessary. Whatever data you pass, all RPCs must deal with the unreliable nature
of remote network connections. A call may not complete due to a network failure,
possibly leaving the call operations in an indeterminate state. For this reason, the
IDL provides execution semantics attributes that applications can use to request
certain (limited) guarantees about call completeness.

Ideally, in order for an application to behave in a determinate fashion, each
operation needs to be invoked exactly once each time it is invoked. This
requirement can be relaxed somewhat for idempotent operations: those which have
the same effect when they are invoked one or more times. In this case, an
application can settle for at-least-once semantics.

Unfortunately, with a remote procedure call, there is no way to guarantee either
exactly once or at-least-once call semantics. Instead, RPC provides at-most-once
and idempotent semantics. When a call completes and returns to the client, then
at-most-once semantics is equivalent to exactly-once semantics, and idempotent
semantics is equivalent to at-least-once. When a call fails to return to the
client—either because of a server or communications failure—the semantics make
the following guarantees:

at-most-once
The call was invoked on the server either 0 or 1 times. If the call was
invoked, it may or may not have completed execution.

idempotent
The call was invoked on the server 0 or more times. If the call was invoked,
it may or may not have completed execution for any invocation.

In reality, idempotent semantics provides no guarantee for calls that fail to return to
the client. In fact, DCE provides no guarantee about how idempotent semantics are
actually implemented. It is perfectly correct to implement idempotency by using
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at-most-once semantics, and depending on protocol and implementation, this may
be the case. Idempotent semantics is therefore really a hint from the application
that a call is a candidate to be retried if the implementation uses a retry strategy.

These characteristics lead to two kinds of policy guidelines for call semantics. The
first has to do with the behavior required of idempotent operations. An operation is
a good candidate for idempotent semantics if it either changes no state on the
server (such as, a read operation), or if the server state will be the same even if the
same call is invoked more than once (such as, a call that writes the same record)
with the same [in] data. Note that in either of these cases, the result returned by a
call may not be the same on each retry, since some other thread or process may
have modified server state. A server that allows simultaneous reads and writes
provides a good example. However, the runtime does guarantee commutativity of
operations on the same association: an idempotent call will not be retried if a later
call on the same association has been invoked.

The second policy issue has to do with how applications respond to call failures.
The issues are the same for idempotent and at-most-once calls. In neither case can
the client know whether the server manager operation was invoked, and, if it was
invoked, whether it was completed. This leads to three possible failure states:

1. The manager operation was not invoked.

2. The manager operation was invoked but did not complete.

3. The manager operation was invoked and completed, but failed to return to the
client.

The burden of determining which state applies, and implementing recovery actions
rests almost entirely with the application. The RPC mechanism provides limited
support for cleanup in the case of applications that use context handles to maintain
state between calls. Application provided context rundown routines will be called on
behalf of the application if a communications failure is detected. Beyond this rather
elementary mechanism, DCE RPC does not provide any internal support for
transaction processing, roll-back, or other recovery mechanisms. For applications
where error recovery and maintenance of consistent state is essential, these must
be implemented by the application programmer. The topic is beyond the realm of
this policy guide.

IDL also provides two execution semantic attributes of somewhat more limited use:
broadcast and maybe. Broadcast semantics may be used with connectionless
transports when there are multiple servers on the local network that can handle a
call. The client broadcasts the call request to all servers, and completes the call
with one of them. Maybe semantics provides a calling style that may be used when
a call has no [out] or [in, out] parameters. The call is attempted once, and no
response is returned. Both broadcast and maybe semantics implictly require that
the operation be idempotent.

Parameter Semantics
RPC calls and the RPC API specify directional attributes for their parameters, even
though such attributes are not formally supported by C. As a general rule, an [in]
parameter is one that must be passed with a meaningful value and an [out]
parameter is one whose value will be changed by the call. An [in,out] parameter is
therefore one which must have a meaningful value on input and which may be
changed on output.
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The following table summarizes parameter semantics:

Table 5. Parameter Semantics

Semantics Meaningful value input Changed on output

[in] yes no

[out] no yes

[in,out] yes yes

An [out] or( [in,out]) parameter is one whose value is changed by the call, so it
must be passed by reference, that is, as a pointer to the datum of interest. RPCs
and the RPC APIs therefore always specify output parameters as pointers. The
address passed must always point to valid storage. For example, the ubiquitous
status parameter may be declared in the IDL as follows:

[out] error_status_t *status

The application code then needs to declare a variable such as the following, and
pass it as &st to each RPC:

error_status_t st;

When a call allocates storage for an output parameter, it is declared as a pointer to
a pointer. For example:

rpc_binding_vector_t **binding_vector

The application follows the same rule as in the status case, declaring a variable
such as the following, and then passing this as &binding_vec:

rpc_binding_vector_t *binding_vec

This obeys all the rules for output parameters: the address passed to the call points
to valid storage, but the contents of that storage need not contain a meaningful
value (in this case, need not be a valid pointer). A simple rule of thumb for output
parameters is to declare a variable with one less asterisk than contained in the IDL
(or RPC API) declaration and pass its address when calling the operation.

Parameter Memory Management
RPC attempts to extend local procedure call parameter memory management
semantics to a situation in which the calling and called procedure no longer share
the same memory space. In effect, parameter memory has to be allocated twice,
once on the client side, once on the server side. Stubs do as much of the extra
allocation work as possible so that the complexities of parameter allocation are
transparent to applications. In some cases, however, applications may have to
manage parameter memory in a way that differs from the usual local procedure call
semantics.

For the purposes of memory allocation, three classes of parameters must to be
considered:

v Nonpointer types

v Reference pointers

v Full pointers
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For all types, the client application supplies parameters to the client stub, which
marshals them for transmission to the server. The client application is entirely
responsible for managing the memory occupied by the passed parameters. On the
server side, the server stub allocates and frees all memory required for the received
parameters themselves.

In the case of the pointer types, however, the application and stubs must manage
memory not only for the parameters themselves, but also for the pointed-to nodes.
In this case, the memory management requirements depend both on the pointer
type and on the parameter’s directional attributes.

The rules are described in the following sections.

Client Side Allocation
in parameters

For all pointer types, the client application must allocate memory for the
pointed-to nodes.

out parameters
For reference pointers, the client application must allocate memory for the
pointed-to nodes, unless the pointer is part of a data structure created by
server manager code. For parameters containing full pointers, the stub
allocates memory for the pointed-to nodes.

in, out parameters
For reference pointers, the client application must allocate memory for the
pointed-to nodes. For full pointers, on making the call, the client application
must allocate memory for the pointed-to node. On return, the stub keeps
track of whether each parameter is the original full pointer passed by the
client, or a new pointer allocated by the server. If a pointer is unchanged,
the returned data overwrites the existing pointed-to node. If a pointer is
new, the stub allocates memory for the pointed-to node. When a parameter
contains pointers, such as an element in a linked list, the stub keeps track
of the chain of references, allocating nodes as necessary.

It is the client application’s responsibility to free any memory allocated by
the stub for new nodes. Clients can call the routine rpc_sm_client_free( )
for this purpose.

If the server deletes or eliminates a reference to a pointed to node, an
orphaned node may be created on the client side. It is the client
application’s responsibility to keep track of memory that it has allocated for
pointed-to nodes and to deal with any nodes for which the server no longer
has references.

Server Side Allocation
in parameters

For all pointer types, the stub manages all memory for pointed-to nodes.

out parameters
For reference pointers, the stub allocates memory for the pointed-to nodes
as long as the size of the targets can be determined at compile time. When
the manager routine is entered, such reference pointers point to valid
storage. For parameters that contain full pointers, the server manager code
must allocate memory for pointed-to nodes. Servers can call the routine
rpc_sm_allocate( ) for this purpose.
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in, out parameters
For reference pointers, the stub allocates memory for pointed-to nodes if
either the size of the pointed to nodes can be determined at compile time or
the reference pointers point to values received from the client. When the
manager routine is entered, such reference pointers point to valid storage.
For full pointers, the stub allocates memory for the original pointed-to
nodes. The server manager code must allocate memory if it creates new
references. Servers can call the routine rpc_sm_allocate( ) for this
purpose.

The server stub automatically frees all memory allocated with rpc_sm_allocate( ).

RPC Data Types
IDL provides both a number of primitive data types—such as various sizes of
integers and floats, bytes, and booleans—as well as pointers and a variety of
constructed types based on the primitive types. The use of the primitive types is
quite straightforward. The only important policy issues have to do with IDL data type
to C data type mappings and with character handling. Pointers and the constructed
types raise many more policy and style issues, and the bulk of this chapter is
devoted to describing them.

IDL to C Type Mappings
Many of the primitive C data types represent items of different sizes on different
machines. For example, an int may be 16 bits on one machine and 32 bits on
another. These ambiguities can cause portability problems for some C programs,
and they are intolerable for RPC programs. A parameter to an RPC call must
represent the same size data item on both the client and server machine, whatever
the machine architectures.

This means that when IDL declarations are compiled to generate C language
headers and stubs, a given IDL type must always be declared in the corresponding
C code as a C type of a specific length, no matter what machine the IDL
compilation is done on.

To achieve this, the following must be true:

1. Each IDL primitive type is always represented in the generated C files, by a
specific defined C type

2. Each of the specific defined C types is defined by the local implementation of
DCE so that it represents a data type of the correct length.

For example, a parameter declared in the IDL as a short, will be declared in the
IDL generated header file as the defined type idl_short_int. Each implementation
of DCE then defines the idl_shor_int type correctly for the local C compiler and
machine architecture to be an integer 16 bits long. For example, on a 32-bit
machine, the idl_short_int type is typically defined as a short int.

When you write application code that refers to a parameter declared in the IDL, you
must use a type that declares a data item of the same length. The safest policy is
to use the same specific defined C type used in the headers and stubs. For
example, your IDL file might declare the following:

void my_op([in,out] short var);
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In this case, your server manager code would contain an function that looks
something like this:

void my_op(idl_short_int var)
{

.

.

.
}

On a 32-bit machine, your code could probably use a short safely (since that is
how your implementation probably defines idl_short_int, but such usage is not
portable to other machine types and is therefore not recommended.

The following table shows the IDL to C type mappings for the IDL primitive types.

Table 6. IDL/NDR/C Type Mappings: Part 1

IDL Type NDR Type Defined C Type C Type

boolean boolean idl_boolean unsigned char

char character idl_char unsigned char

byte uninterpreted octet idl_byte unsigned char

small small idl_small_int char

short short idl_short_int short int

long long idl_long_int long int

hyper hyper idl_hyper_int 16-Bit or 32-Bit
Machines: Big
Endian: struct { long
high; unsigned long
low; } Little Endian:
struct { unsigned
long low; long high;
} 64-Bit Machines:
long

unsigned small unsigned small idl_usmall_int unsigned char

unsigned short unsigned short idl_ushort_int unsigned short int

unsigned long unsigned long idl_ulong_int unsigned long int

unsigned hyper unsigned hyper idl_uhyper_int 16-Bit or 32-Bit
Machines: Big
Endian: struct {
unsigned long high;
unsigned long low;
} Little Endian: struct
{ unsigned long
low; unsigned long
high; } 64-Bit
Machines: unsigned
long

Table 7. IDL/NDR/C Type Mappings: Part 2

IDL Type NDR Type Defined C Type C Type

float float idl_float float

double double idl_double double

handle_t not transmitted handle_t void *

134 IBM DCE Version 3.2 for AIX and Solaris: Application Development Guide — Introduction and Style



Table 7. IDL/NDR/C Type Mappings: Part 2 (continued)

error_status_t unsigned long idl_ulong_int unsigned long int

ISO_LATIN_1 uninterpreted octet ISO_LATIN_1 byte

ISO_MULTI_LINGUAL (Note 1.) ISO_MULTI_LINGUAL struct{ byte row;
byte column; }

ISO_UCS (Note 1.) ISO_UCS struct{ byte group;
byte plane; byte
row; byte column; }

In addition to the IDL primitive type mappings defined in the table, implementations
provide a set of convenient typedefs that map the listed defined types into types
that explicitly name amounts of storage. These are defined in IDL as follows:

typedef unsigned small unsigned8; /* positive 8-bit integer */
typedef unsigned short unsigned16; /* positive 16-bit integer */
typedef unsigned long unsigned32; /* positive 32-bit integer */
typedef small signed8; /* signed 8-bit integer */
typedef short signed16; /* signed 16-bit integer */
typedef long signed32; /* signed 32-bit integer */
typedef unsigned32 boolean32; /* a 32-bit boolean */

They are defined in C as follows:

typedef idl_usmall_int unsigned8;
typedef idl_ushort_int unsigned16;
typedef idl_ulong_int unsigned32;
typedef idl_small_int signed8;
typedef idl_short_int signed16;
typedef idl_long_int signed32;
typedef unsigned32 boolean32;

As a matter of programming style, these types have the advantage that the size of
the declared data items is explicitly stated. For this reason their use in both IDL
declarations and application C code is recommended. Note also that the following
IDL and C typedefs are also made available by implementations a convenient
portable declaration for status parameters:

typedef unsigned long error_status_t;

typedef idl_ulong_int error_status_t;

Character Handling
When passed as an RPC parameter, the IDL char type is automatically subject to
ASCII-EBCDIC conversion, depending on the character encodings used by the
client and server machines. Therefore, the contents of a char type may not be the
same for the sender and receiver. This allows clients and servers to maintain the
same semantics when passing characters between machines that use different
encodings. For example, the character a is represented by a byte with the value
61h on an ASCII machine, and a byte with the value 81h on an EBCDIC machine.
RPC automatically makes the conversion so that a character parameter that prints
as a on the client machine also prints as a when received by the server.

However, if what your application really intends is to pass a byte with the value 61h
from client to server, such translation is clearly not what you want. To avoid this
potential problem, when passing byte data with noncharacter semantics, use the
IDL byte type.
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Also note that IDL provides three international character types for use with
nonASCII, nonEBCDIC character sets: ISO_LATIN_1, ISO_MULTI_LINGUAL, and
ISO_UCS. To ensure portability, your application should use these types to declare
character data in one of these sets.

Pointers
RPC pointers differ from local pointers in one key respect: there is no shared
address space between client and server. This means that the stubs need to
marshall the pointed-to data itself. To do so, the stubs must be able to dereference
any pointer passed as a parameter. This means that a pointer, even if it does not
point at useful data, must be initialized either to NULL or to a valid address before it
is passed as a parameter. This behavior may be counter-intuitive for programmers
used to local procedure calls, where pointers may be freely passed whether they
have been initialized or not, and is a common source of programming grief for
remote procedure calls.

To be able to marshall pointer referents, the stubs need to know, either at compile
time or at runtime, how much data to transmit; that is, they need to know the size of
the pointed to object. This can require a good deal of work on the part of the stubs
in the case of varying or conformant arrays and objects like linked lists.

One effect of this is that pointers only reference the marshalled data itself; that is,
data of the size determined by the stub. For example, passing an idl_char *
parameter causes the stub to marshall a single idl_char, since that is the size of
the object pointed to by an idl_char *. Typically, a local procedure call passes a
char * type in order to pass the address of an array of characters, not a single
char; but a remote routine that tries to move such a pointer beyond the transmitted
char will very likely find itself pointing to invalid storage and certainly not to the
intended string.

A similar case is illustrated in the sample code: a client passes an array and an [in,
out, ptr] pointer to an array element. If the server sets the pointer to point to some
element of the passed array, then it will point to memory holding a copy of that
element when the call returns to the client. It will not point to any part of the
passed-in array itself, and any attempt to increment or decrement the pointer on the
client side will leave it pointing to an invalid location.

This is one example of the fact that you cannot assume that the results of pointer
arithmetic will be the same for a local and remote procedure call. To give another
example, suppose a call passes two parameters: a data structure and a pointer to
the type of the data structure, set to NULL. If the server application then sets the
pointer to point to the data structure, the client stub will allocate new storage for the
returned data structure and set the returned pointer to point to it. As a result, the
returned pointer will not point to the original structure, but to a copy of it in stub
maintained memory.

This may seem like an IDL limitation, but in fact, the real issue is that the client and
server address spaces are different, and some operations in one address space
cannot be reflected in the other. Specifically, the server application cannot
meaningfully interpret an address in the client address space, and vice versa. So,
as in the last example, the server cannot set a pointer to point to a structure in the
client address space; it can only ask the client stub to mirror any changes made at
the server.
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Memory Allocation Routines
The stubs will do their best to allocate any new memory required for marshalled
pointed-to nodes so that the marshalling is transparent to the application. On the
server side, stub allocated memory exists for the scope of the manager routine call.
The stub frees such memory once the nodes have been marshalled. On the client
side, however, the stubs obviously cannot free the memory they have marshalled
since they are returning the data to the client application. Therefore, in order to
avoid memory leaks, when a client makes an RPC that results in the client stub
allocating memory, the client application needs to call rpc_sm_client_free( ) to
free the pointed-to memory.

When a server manager routine needs to allocate new memory for a pointed-to
node, it can do so either statically or by making a call to a memory allocation
routine. In the latter case, however, the manager cannot deallocate the memory it
has allocated, since the pointer must be valid when the call returns (so that the
stubs can marshall the data.) Only the stub can free such memory. In order to
permit this, server managers need to call rpc_sm_allocate( ) to allocate memory
for parameters. The stubs free all memory allocated by rpc_sm_allocate( ) once
they have marshalled the required data, thus avoiding memory leaks.

Pointer Types
For reasons of efficiency, IDL distinguishes between reference [ref], full [ptr], and
unique [unique] pointers. As we saw above, even though pointers are used by
applications to pass data by reference, the lack of shared address space means
that the stubs have to pass the data by value and provide the receiver with a
reference to the passed data.

In the simplest case, a pointer always points to the same memory: that is, its value
does not change. In such a case the stubs always marshall the passed value from
and to the same memory location on the sender and receiver respectively. This
style of marshalling is provided by [ref] pointers.

When the value of a pointer changes during a call, the stubs have a more complex
task. Suppose, for example, an [in, out] pointer is NULL before an RPC and is set
by the server application to point to some data structure allocated by the server. As
in the [ref] pointer case, the server stub needs to marshall the (new) referent and
the client to unmarshall it, but the client stub also needs to do two more things: it
needs to allocate space for the unmarshalled referent, and it needs to point the
previously NULL pointer to it. Similarly, for a pointer that initially points to one
memory location and is changed during an RPC to point to another, the client stub
needs to allocate new memory to hold the unmarshalled value of the new referent
and to change the pointer value accordingly. Not all of the extra work is confined to
the client stub either. Obviously, the client stub needs to find out that the value of
the pointer has changed, so the server has to marshall, and the RPC protocol to
transmit, extra data to indicate this. This style of marshalling is provided by full
([ptr]) pointers, and it obviously requires more overhead than reference pointer
marshalling.

Unique pointers provide for an intermediate case: a pointer that always points either
to a single memory location or is NULL. Such a pointer may change from NULL to a
nonnull value or from a nonnull value to NULL, but never has more than one
nonnull value. Such a pointer is marshalled more efficiently than a full pointer, but
not as efficiently as a reference pointer.
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Applications should consider the [ref] and [unique] pointer types as optimizations.
A full [ptr] pointer can always be used. The [ref] and [unique] pointer types may
be used whenever the application is guaranteed to meet the restrictive conditions
under which these types work.

As a guide to using the pointer types, there are a few general rules and a number
of special cases, having mainly to do with embedded pointers and data of variable
size. The rules are as follows:

v In passing parameters, you need to distinguish carefully between top-level and
lower-level pointers. A top-level pointer is a pointer passed as an argument to a
call. A lower-level pointer is one contained in the referent of a top-level pointer.
The directional semantics [out] and [in, out] both require parameters to be
passed by reference and hence always require a top-level pointer.

The model is, essentially, that the client provides a container into which the
returned value is written. In the [out] parameter case, the contents of the
container are assumed to be unimportant on input and are not marshaled by the
client stub. In the [in, out] case, the contents are assumed to be meaningful and
are passed to the server.

The top-level pointer is thus the address of the parameter container, and
obviously, this value should not change during the course of the call. If it did, the
return value would be written to some undetermined place in the client address
space. Hence, the top level of [out] and [in, out] parameters have reference
pointer semantics. The IDL compiler enforces this for [out] parameters by
permitting only the [ref] attribute. It does not force this for [in, out] parameters,
but the behavior is exactly the same. Remember, the actual parameters of an
RPC call are always passed by value: hence a call cannot change the value of a
top-level pointer. It can only change the value of something passed by reference.

v To pass an [in] parameter by reference, you can pass its address as a pointer of
either style. The server stub will allocate and deallocate the required memory for
the pointer referent. Since an [in] pointer has no reason to change its value, it is
at least slightly more efficient to use a reference pointer in this case.

v Since [out] semantics do not consider the contents of such storage to be
meaningful, an [out] parameter is not marshalled on the call. The server stub will
allocate memory to hold the referent as long as the size of the referent is known
at compile time. The stub obviously cannot allocate memory for referents whose
size is determined arbitrarily by the server application. For such parameters
(such as linked lists) the server application must allocate space.

One tricky case to consider is a linked list. The server stub allocates space for
the head element, since it knows the size of such an element. The server
manager then allocates space for the remaining elements and marshalls them
back to the client. The client stub will allocate all necessary space for the
server-created receive parameters.

A server-created structure may contain reference pointers which the server may
then set to point to objects it also allocates. All of this will be mirrored by the
client stub. Note that this does not violate the rules for reference pointers, since
the contained pointers do not change value during the call; they are created by
the server application and passed back to the client exactly the same way that
top-level reference pointers are created by clients and passed to servers.

When an application wishes to have the callee allocate space for an [out]
parameter, it needs to use two levels of indirection: a reference pointer to a full
pointer to the data structure to be allocated. The client allocates the full pointer,
setting it to NULL, and passes its address to the call. The server application then
allocates the data structure and sets the full pointer to point to it. The client stub
will then allocate space for the data structure on the return.
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v An [in, out] reference pointer behaves exactly like the [out] reference pointer
case, except that the server stub may be able to allocate space for a referent
even if its size is not known at compile time. This will be the case when the client
application creates an instance of a variable sized referent, such as a linked list.
In such a case, the server stub will allocate sufficient space for the referent
supplied by the client.

v You must take care when a server deallocates a [ptr] pointer referent. For an [in,
out] parameter, the client-side stub does not deallocate the client-side referent,
but the application should treat the referent as undefined, as if, in effect, the
deallocated pointer referent had been unmarshalled by the client stub. By default,
in the case of an [in] parameter, the value of the pointer referent remains
unchanged on the client side. However, this default behavior can be modified by
applying the [reflect_deletions] attribute to the operation. In this case, the
client-side stub will deallocate the pointer referent. The client and server must
use the rpc_sm_ * routines to allocate and free memory for this reflection of
deletions to work.

v For an [in, out] parameter which is a [ptr] pointer, if the server sets the
parameter value to NULL, the client will no longer be able to dereference the
pointer on return. If the client has no other means to reference the original
pointed-to node, the node is said to be orphaned: the client will be unable to free
it.

Pointer Examples
The following sample code demonstrates the basic properties of pointers. The first
example demonstrates pointer arithmetic and how changes in the server address
space can be reflected back to the client using full pointers. In the .idl file we
declare a type that is an array of three integers, and a type that is a pointer to an
integer. The operation takes the array as an [in] parameter and the pointer as an
[in, out] parameter.

const unsigned32 ARRAY_SIZE = 3;

typedef unsigned32 num_array[ARRAY_SIZE];
typedef [ptr] unsigned32 *num_ptr;

void ptr_test1(
[in] handle_t handle,
[in, out] num_ptr *client_ptr,
[in ] num_array client_array,
[out] error_status_t *status

);

The server manager code to implement this points the client pointer to the
beginning of the array and then increments it once:

void
ptr_test1(

handle_t h,
num_ptr *client_ptr,
num_array client_array,
error_status_t *status

)
{

*status = 0;
*client_ptr = client_array;
++(*client_ptr);

}
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On return, the client’s version of the pointer will point to memory that holds the
second element of the array. It will not point to the array itself, however. The client
code demonstrates this:

num_ptr client_ptr = NULL;
num_array client_array = {25, 50, 75};

ptr_test1(binding_h, &client_ptr, client_array, &status);

/*
* The test function pointed the client pointer to the
* second array element. On return, this points to memory
* that holds this value.
*/

printf("Client pointer points to %i", *client_ptr);

/* However, if we now increment the pointer, it
* points to unintialized memory. This shows the
* limits of mirroring.
* *** WARNING: You may dump core here !! ***
*/

client_ptr++;
printf("Client pointer now points to %i", *client_ptr);

What happens here is that the client stub allocates space for the new referent of
client_ptr when the call returns. This space now holds the value in the second
element of the array. The pointer no longer points to the original array but to this
newly allocated space. You can see this clearly when the client attempts to
increment the pointer. Instead of pointing to the third element of the array, it points
to some undetermined place in memory, and the client may fail when it tries to
dereference the pointer.

As an exercise, you could change the code to declare a pointer to the num_array
defined type rather than to an integer. Then you could have the server manager
point this to the input array and return it without incrementing the pointer. The
returned pointer will now reference a copy of the original client array with all its
elements. It will not, however reference the original array itself.

The second pointer example illustrates passing a linked list. The .idl declaration is
as follows:

typedef struct link {
unsigned32 value;
[ptr] struct link *next;

} link_t;

void ptr_test2(
[in] handle_t handle,
[in, out, ref] link_t *head,
[out] error_status_t *status

);

The server manager code is as follows:

void
ptr_test2(

handle_t handle,
link_t *head,
error_status_t *status

)
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{
link_t *element;

if (head)
{

element = head;
while (element->next)

element = element->next;

/* Add another element to the list... */
element->next = (link_t*) rpc_sm_allocate(sizeof(link_t), status);
element->next->value = element->value * 2;
element->next->next = NULL;

}
*status = error_status_ok;

};

The manager operation adds a new element to the end of the linked list. Note that
the head parameter has [in, out] semantics here: we must pass in a pointer to a
valid element. (The next example shows how to implement an [out] parameter that
is allocated by the operation.)

In this and the following example, we use rpc_sm_allocate( ) to allocate data on
the server side. This gives the semantics you probably want for a dynamically
allocated referent for a pointer parameter: on return, the data is automatically
deallocated on the server, and further manager operations that access this data do
so via a pointer parameter passed by the client. Memory leaks on the server are
thus avoided.

An application must be very cautious if it attempts to use pointer parameters in a
way that contradicts such semantics: for example, by returning a pointer to static
global storage on the server. In such a case, the server and client versions of such
storage can easily become inconsistent. A context handle, which the client must not
modify, is typically what you want in such a case.

The client code for the linked list test is as follows:

link_t first, *element;
int i;
first.value = 2;
first.next = NULL;

for (i = 0; i < 8; i++)
ptr_test2(binding_h, &first, &status);

element = &first;
while (element->next)
{

printf("%i", ", element->value);
element = element->next;

}
printf("%i", element->value);

The client passes in the head element, and then calls the server several times to
add more elements to the list. Finally, the client prints out the list.

The next pointer example illustrates how the stubs automatically allocate memory
for an [out] parameter. The client application allocates a NULL pointer to the data
structure of interest and passes the address of this pointer as the [out] parameter.
The server manager allocates a structure, and on return the client stub allocates it
too, automatically.
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The .idl declaration is as follows:

typedef struct {
[ref] unsigned32 *value;

} number;

typedef [ptr] number *number_ptr;

void ptr_test3(
[in] handle_t handle,
[out, ref] number_ptr *client_ptr,
[out] error_status_t *status

);

The server manager operation is then as follows:

void
ptr_test3(

handle_t handle,
number_ptr *client_ptr,
error_status_t *status

)
{

number_ptr nptr;
unsigned32 *nval;
nptr = (number_ptr) rpc_sm_allocate(sizeof(number), status);
nval = (unsigned32 *) rpc_sm_allocate(sizeof(unsigned32), status);
*nval = 256;
nptr->value = nval;
*client_ptr = nptr;
*status = error_status_ok;

};

The client test code looks like this:

number_ptr client_ptr = NULL;

ptr_test3(binding_h, &client_ptr, &status);
printf("Value = %i", (unsigned32)* (client_ptr->value));

Note the use of [ref] pointers here. The top-level [ref] pointer (the one passed as a
parameter to the call) must point to valid storage when the call is made even
though the pointer is not marshalled when the call is made. This follows the rules
for [ref] pointers: they may not be NULL and may not change value during a call.
The returned structure also contains a [ref] pointer, and the client stub does
automatically allocate space for its referent when the call returns. This is an
exception to the rule that an [out] [ref] pointer must point to valid storage when the
call is made. In this case, the pointer is embedded in a structure which is created
by the server. As long as the top-level pointer points to valid storage (to hold the
returned structure), the client stub will allocate space for the referents of any
newly-created [ref] pointers that it contains.

The final example illustrates node deletion. The .idl declaration is as follows:

[reflect_deletions] void ptr_test4(
[in] handle_t handle,
[in, out, ptr] unsigned32 *number,
[out] error_status_t *status);

The server code to implement this operation frees the memory pointed to by the
input pointer and returns the pointer:
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void
ptr_test4(

handle_t h,
unsigned32 *number,
error_status_t *status

)
{

*number = 32;
rpc_sm_free(number, status);
*status = error_status_ok;

};

The client code is as follows:

unsigned32 *num;

rpc_sm_enable_allocate(&status);
num = (unsigned32*) rpc_sm_allocate(sizeof(unsigned32), &status);
*num = 64;
ptr_test4(binding_h, num,
&status);

There are so many ways to use (and misuse) IDL pointers that it would be
impossible to give a complete set of examples. The section on arrays contains
more pointer examples.

Context Handles
Context handle semantics vary according to the application role. On the server side,
the semantics are those of a full pointer. To the client application, a context handle
has similar semantics to a fully bound server binding handle, except that the client
may not perform any operations to modify it. To the client it represents a binding to
context maintained by a specific a server instance. Because the context handle may
also specify an object UUID, it may also bind to a specific type manager in the
server instance; that is, a context handle refers to context maintained by a specific
type manager in a specific server instance. It is valid over a series of calls within
this scope. To enforce this, a context handle is intended to be passed as an explicit
binding parameter for each operation that refers to the maintained context. Any
attempt to use a context handle outside this scope will fail. Context handles are
described in more detail in the IBM DCE Version 3.2 for AIX and Solaris:
Application Development Guide—Core Components.

Arrays
Array parameters provide an efficient way to pass contiguous blocks of data with
little application overhead. The stubs take care of serializing and reassembling the
passed data transparently to the application. When an application is interested in
passing an entire buffer or some contiguous portion of a buffer synchronously—so
that all of the data is made available to the receiver at the same time—arrays
provide the most efficient mechanism. Pipes provide no advantage unless the data
is to be processed asynchronously.

Arrays may be passed as RPC parameters, but, as in the case of other RPC data,
the stubs need to know the size of data to be marshalled. The simple solution is to
declare arrays of fixed size in the IDL. This can be inefficient however, since array
sizes may vary at runtime, and since not all data in an array may need to be
passed on every call. Therefore, IDL provides a variety of field attributes (max_is,
min_is, size_is, last_is, first_is, and length_is) to permit the size and bounds of
the marshalled data to be determined at runtime. Note that passing a pointer to an
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array is not any more efficient as a way to deal with the problem of varying array
sizes. Remember that marshalling a pointer requires marshalling the pointer’s
referent, so the array data will be marshalled anyway. Note also that the IDL
language does not permit declaring a pointer to a varying array.

The size of the array data marshalled is determined in one of two ways. In a
conformant array, the size of the array is not declared in the IDL declaration, and
one of the max_is or size_is attributes is used to determine the size of the
marshalled data at runtime. In a varying array, the size of the array is declared in
the .idl file, but one or more of the other field attributes determines what range of
elements is actually marshalled. Arrays may be both conformant and varying at the
same time.

Each field attribute is associated with some variable whose value is known at
runtime. The scope of this association is within either an operation declaration or a
structure declaration. That is, when the array is a parameter of an operation, the
field attribute variables must also be parameters of the same operation. Similarly,
when the array is a member of a structure, the field attribute variables must be
members of the same structure.

The following samples show a series of array declarations using some of the many
possible forms:

/* An array of fixed size */

typedef char char5array[5];
typedef char5array *char5ptr;

void array_test1(
[in] handle_t handle,
[in] char5ptr a_pointer,
[out] error_status_t *status);

/* A conformant array: the size is determined at runtime */

void array_test2(
[in] handle_t handle,
[in] unsigned32 size,
[in, size_is(size)] char an_array[],
[out] error_status_t *status);

/*
* A varying array: the portion of the array transmitted is
* determined at runtime
*/

typedef struct{
unsigned32 first;
unsigned32 length;
[first_is(first), length_is(length)] char array[0..10];

}v_struct;

void array_test3(
[in] handle_t handle,
[in] v_struct v_array,
[out] error_status_t *status);

/*
* A conformant and varying array: both size and the portion
* transmitted are determined at runtime
*/
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typedef struct{
unsigned32 size;
unsigned32 first;
unsigned32 length;
[size_is(size), first_is(first), length_is(length)] char array[0..*];

}cv_struct;

void array_test4(
[in] handle_t handle,
[in] cv_struct *cv_array,
[out] error_status_t *status);

The examples show clearly how field attribute variables are related to array
declarations.

In the second operation declaration, a conformant array is declared as an operation
parameter ( an_array), so that the field attribute variable ( size) must also be a
parameter of the interface. In the third and fourth operations, varying and
conformant-varying arrays are declared within structures, so that the field attribute
variables ( size, first, and length) must also be members of the same structures.

The server manager sample code to test these declarations is as follows:

void array_test1(
handle_t handle,
char5ptr a_pointer,
error_status_t *status

)
{

printf("Array test 1");
printf("%c %c ", (*a_pointer)[0],(*a_pointer)[1]);
*status = error_status_ok;

};

void array_test2(
handle_t handle,
unsigned32 size,
idl_char an_array[],
error_status_t *status

)
{

unsigned32 i;

printf("Array test 2");
for ( i = 0; i < size; i++)
{

printf("%c ",an_array[i]);
printf("");

}
*status = error_status_ok;

}

void array_test3(
handle_t handle,
v_struct v_array,
error_status_t *status

)
{

unsigned32 i;

printf("Array test 3");
for ( i = v_array.first; i < v_array.first + v_array.length; i++)

printf("subscript %i value %c", i, v_array.array[i]);
*status = error_status_ok;

}
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void array_test4(
handle_t handle,
cv_struct *cv_array,
error_status_t *status

)
{

unsigned32 i;

printf("Array test 4");
for (i = (*cv_array).first; i < (*cv_array).first +

(*cv_array).length; i++)
printf("subscript %i value %c", i, (*cv_array).array[i]);

*status = error_status_ok;
}

The client sample code is as follows:

char5array fixed_array = {'a','b','c','d','e'};

v_struct varying_array = {3,4,{'a','b','c','d','e','f','g','h','i','j'}};

struct {
unsigned32 size;
unsigned32 first;
unsigned32 length;
char array[10];

}cv_array = {10, 4, 5, {'a','b','c','d','e','f','g','h','i','j'}};

array_test1(binding_h, &fixed_array, &status);

array_test2(binding_h, 5, fixed_array, &status);

array_test3(binding_h, varying_array, &status);

array_test4(binding_h, &cv_array, &status);

The server output will look like this:

Array test 1
a b
Array test 2
a
b
c
d
e
Array test 3
subscript 3 value d
subscript 4 value e
subscript 5 value f
subscript 6 value g
Array test 4
subscript 4 value e
subscript 5 value f
subscript 6 value g
subscript 7 value h
subscript 8 value i

Note that for the last test, the declared structure contains a conformant and varying
array. The C language does not provide any intrinsic support for conformant arrays,
and the actual IDL-generated header declaration for the type cv_struct looks as
follows:
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typedef struct {
unsigned32 size;
unsigned32 first;
unsigned32 length;
idl_char array[1];

} cv_struct;

The declared structure contains an array only one element in length. When creating
an instance of this type, the application must allocate a data structure of the correct
size, either statically, as in the sample client code (the data item cv_array), or
dynamically. The recipient of such a data structure (in this case, the server manager
code), can then determine the actual size of the marshalled data by examining
relevant field attribute variables (in this case, the structure’s size member). Note
also that IDL requires a structure containing a conformant array to be passed by
reference; that is, as a pointer referent.

Conformant and varying arrays provide a way to pass blocks of contiguous data of
varying sizes and ranges. However, there is no intrinsic mechanism for passing
sparse arrays efficiently. Applications may, however, supply their own mechanisms
for compressing and passing large, sparse arrays using the [transmit_as]
mechanism.

There are a number of complications that can arise when using arrays of pointers.
For example, an [out] or [in, out] conformant array of pointers, accompanied by an
[out] or [in, out] field attribute variable, could potentially be of any size when
returned to a caller. For [ref] pointers, which may not be NULL, the client must
therefore ensure that all possible returned pointers in such an array actually point to
valid storage. You can easily avoid such complications by sticking to the more
straightforward array usages discussed here. However, if you find your application
needs to use arrays in some more esoteric way, you should refer to the AES/DC -
RPC Volume, Chapter 4, which contains a complete set of array and pointer usage
rules.

Structures and Unions
There are no important policy issues relating to structures and unions as RPC
parameters. Pointers and arrays as members of structures and unions are
sometimes treated differently from separately declared types. By embedding
pointers and arrays in structures and unions, you can sometimes achieve behavior
that cannot be obtained by passing them as separate parameters.

Structures and unions can be used wherever they would be used in a non-RPC
application. IDL structures differ from C language structures in one important
respect: they may contain conformant arrays, which are not supported by C. A
structure that contains a conformant array is itself conformant; that is, the size of
the structure may not be determined until runtime. Applications need to do some
extra work to determine the size of, and allocate, conformant structures. When
structures are used to create linked lists and trees, the stubs do considerable work
to insure that server allocated data is reflected back to the client.

IDL union syntax is quite different from C syntax, since IDL unions must be
discriminated so that stubs can determine which of the contained data types to
marshal. As with conformant and varying arrays, which use a field attribute variable
to determine array size and bounds at runtime, IDL unions use a discriminator
variable to determine which data type is marshalled.
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IDL unions may be encapsulated or non-encapsulated. In an encapsulated union,
the IDL compiler packages the union type and the discriminator in a structure. In a
nonencapsulated union, the IDL switch_is] attribute is used to identify a
discriminator variable. In this case, as in the case of array field attribute variables,
the application must declare the discriminator and the union together, either as
members of a structure or as parameters of an operation.

When a union is passed as a parameter, the value of the discriminator must either
match one of the constants declared in the switch construct, or the switch must
contain a default case. Otherwise, a stub marshalling error will occur.

Following are several examples of IDL union syntax. They are accompanied by the
resulting IDL generated C header file declarations, and show how applications must
refer to the union constructs declared in the IDL. The first example shows a set of
declarations for an encapsulated union. The union holds either of two structures,
one containing UUIDs, the other unsigned integers.

typedef struct two_uuid_s_t {
uuid_t uuid1;
uuid_t uuid2;

} two_uuid_t;

typedef struct two_uint_s_t {
unsigned32 uint1;
unsigned32 uint2;

} two_uint_t;

typedef enum {
uuids,
uints

} union_contents;

typedef union switch (union_contents type){
case uuids:

two_uint_t integers;
case uints:

two_uuid_t ids;
} test_union_t;

The resulting IDL generated C header declarations look like as follows:

typedef struct two_uuid_s_t{
uuid_t uuid1;
uuid_t uuid2;

}two_uuid_t;

typedef struct two_uint_s_t{
unsigned32 uint1;
unsigned32 uint2;

}two_uint_t;

typedef enum{
uuids,
uints

}union_contents;

typedef struct{
union_contents type;
union {

/* case(s): 0 */
two_uint_t integers;
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/* case(s): 1 */
two_uuid_t ids;

} tagged_union;
}test_union_t;

The IDL compiler packages the encapsulated union as a structure with the
discriminant as the first member. To pass the union as an [in] or [in, out]
parameter, the calling application must set the type field of this structure to either of
the enumeration values integers or ids. To return the union as an [out] or [in, out]
parameter, the callee must similarly be sure that the value of the type field is
correctly set. To discover which data type was marshalled, the recipient can check
the value of the type field.

The following is an example of non-encapsulated union usage. The .idl declaration
is as follows:

typedef
[switch_type(long)] union {

[case (1,3)] float a_float;
[case (2)] short b_short;
[default]; /* An empty arm */

} n_e_union_t;

The C header declaration of the non-encapsulated union generated by the IDL
compiler is as follows:

typedef
union {

float a_float;
short b_short;

} n_e_union_t;

In this case, the discriminant must be separately declared in order for the union to
be marshalled. The IDL [switch_is] attribute identifies the discriminant for an
instance of the declared union type. Two examples of such .idl declarations follow:

/*
* A structure that includes the union declared above and a member
* that is used as the discriminant. This structure can be passed
* as an RPC parameter.
*/

typedef
struct {

long a;
[switch_is(a)] n_e_union_t b;

} a_struct;

/*
* An operation declaration that passes the declared union type
* along with a discriminant.
*/

void op1 (
[in] handle_t h,
[in, switch_is (s)] n_e_union_t u,
[in] long s

);
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Pipes
Pipes allow application-level optimization of bulk data transfer, by allowing the
communication and processing of data to overlap. The actual data communications
occur at about the same speed as arrays. However, pipes can reduce latency (how
soon the application sees each “chunk” of data) and memory utilization. The intent
is that the pipe routines should actually process the data and then get rid of it (for
example, summarize it; write it to a file; pass it to another thread) rather than
merely write it into an array. If an application desires to pass all of a stream of data
and process it synchronously, then an array will probably be more efficient, since it
entails considerably less processing overhead, as well as being simpler to program.
For more on pipes as a topic in RPC application development, see the IBM DCE
Version 3.2 for AIX and Solaris: Application Development Guide—Core
Components.

The transmit_as Attribute
The [transmit_as] attribute provides applications a way to do their own marshalling
of data types. This is primarily useful as a way to deal with data structures that the
stubs cannot marshall efficiently, such as sparse arrays. Following is an example of
code to compress and reconstruct a large array by removing and then replacing all
the zero-valued elements:

The .idl declarations are as follows:

/*
* Transmit_as example: Here we turn a large sparse array into
* a small conformant array for transmission. The server is able
* to reconstitute the sparse array.
*/

const long int S_ARRAY_SIZE = 32;

typedef struct{
unsigned32 value;
unsigned32 subscript;

} a_element;

typedef struct{
unsigned32 size;
[size_is(size)] a_element array[];

}compact_array_t;

typedef [transmit_as(compact_array_t)] unsigned32 sparse_array_t[S_ARRAY_SIZE];

void ship_array(
[in] handle_t handle,
[in] sparse_array_t *array,
[out] error_status_t *status

);

All the callback routines are placed in a single module that is linked with both client
and server (in this case, for the test interface). As an alternative, the appropriate
callbacks could be declared separately within the client and server modules:

/*
* test_xmit.c:
*
* The routines required to implement a [transmit_as] type.
*/

#include "test.h"
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/* The to_xmit routine must allocate all space for the transmitted
* type. In general, the stubs have no way to determine how to allocate
* space for the transmitted type. Here, for example, the to_xmit
* routine determines the size of a conformant array.
*/

void sparse_array_t_to_xmit(sparse_array_t *s_array,
compact_array_t **c_array

)
{

unsigned32 i,j;
unsigned32 csize;

/* Count up the number of nonzero elements in the sparse array */

for (i = 0, csize = 0; i < S_ARRAY_SIZE; i++)
{

if ((*s_array)[i] != 0)
{

csize++;
}

}

/* Allocate a structure to hold the compact array */

*c_array = (compact_array_t *)calloc(csize*2 + 1, sizeof(unsigned32));
((compact_array_t)**c_array).size = csize;

/* Fill in the compact array from the nonzero elements */

for (i = 0, j = 0; i < S_ARRAY_SIZE; i++)
{

if ((*s_array)[i] != 0)
{

((compact_array_t)**c_array).array[j].value = (*s_array)[i];

((compact_array_t)**c_array).array[j++].subscript = i;
}

}
}

/*
* The from_xmit routine may not have to allocate any space for the
* presented type. The presented type is always of a definite size
* (conformant, varying, etc. types are not permitted), so the stub
* provides an instance of the top level of the presented type. In
* this case, for example, s_array points to an instance of a sparse
* array. If the presented type contains any pointers, the from_xmit
* routine needs to allocate space for the referents and the free_inst
* routine needs to free them.
*/

void sparse_array_t_from_xmit(compact_array_t *c_array,
sparse_array_t *s_array)

{
unsigned32 i,j;
for (i = 0; i < ((compact_array_t) * c_array).size; i++)
{

j = ((compact_array_t)*c_array).array[i].subscript;
(*s_array)[j] = ((compact_array_t)*c_array).array[i].value;

}
}

/* This routine is called to free anything allocated by the
* to_xmit routine.
*/
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void sparse_array_t_free_xmit(compact_array_t *c_array)
{

free(c_array);
}

/* This routine is called to free anything allocated by the
* from_xmit routine. Since from_xmit doesn't allocate anything
* this is a null routine.
*/

void sparse_array_t_free_inst(sparse_array_t *s_array)
{

}

The client code to exercise the sparse array transmitted type is as follows:

sparse_array_t test_array;

/* Create a sparse array with only three nonzero members */

memset(test_array,0,sizeof(unsigned32)*S_ARRAY_SIZE);
test_array[0] = 2;
test_array[20] = 4;
test_array[31] = 8;

/*
* When compressed, this array requires 7 32-bit integers, as opposed
* 32 32-bit integers for the uncompressed array. If you don't care
* about reconstructing the sparse array on the server side, you can
* get even more efficiency.
*/

ship_array(binding_h, &test_array, &status);

The server manager code is as follows:

void ship_array(
handle_t binding_h,
sparse_array_t *array,
error_status_t *status

)
{

int i;

/*
* Print the elements of the sparse array.
*/

for (i = 0; i < S_ARRAY_SIZE; i++)
{

printf("%i", (*array)[i]);
}
*status = error_status_ok;

}

Note that the free_inst routine will not be needed if the transmitted type does not
contain pointers. However, the routine is called by the stub automatically in any
case, so at least a null routine must be provided. As an exercise, you might add
printf( )s to each callback to see when it is called. You could also add code to
show the format of the transmitted array before it is reconstructed by the from_xmit
routine. Finally, you can create an even more efficient compression by not
attempting to reconstruct the original array on the server side.
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Chapter 7. Errors and Messaging

Applications should adopt a consistent and portable error handling style. This
includes methods for returning errors from remote procedure calls, generation of
application-specific status codes, and the generation and display of error text. This
chapter recommends a set of techniques for handling all of these issues. The
chapter also makes recommendations about error logging for applications that
choose to use the logging facilities.

Error Handling
By default, the RPC runtime generates exceptions for RPC remote and
communications errors. However, the default exception handler dumps core, which
is not a very useful client response to such errors as failure to connect with a server
that is down. Although the default error handling model attempts to treat an RPC
call as a single continuous thread, propagating server errors back to the client, it
will probably be more useful for most applications to contain the effects of server
errors on the server side of the application. In this model, the client will output an
error message when, for example, the server dumps core.

Thus, it is recommended that applications establish some explicit error handling
mechanism for RPC calls. The AES/DC recommends the use of status returns as
being a more portable way of handling errors than using exceptions. This
recommendation is also consistent with the error-handling model for the RPC API.

You can have remote calls’ communications and remote runtime errors reported
through a status parameter by specifying the [comm_status] and [fault_status]
attributes for the calls in the application’s .acf file. The IDL compiler does not
require that a status parameter be explicitly declared in the interface declaration,
since it will add such a parameter implicitly. The comm_status and fault_status
parameters are not really part of the remote interface: they are supplied by the
client stub as one way of handling remote exceptions.

However, server managers need to report application-specific errors as well.
Although such errors can be reported through function return values or a separate
application error status parameter, the most consistent method is to use a single
status parameter to report all errors. In this way a client need not concern itself with
two or three separate error parameters, and can use a consistent error handling
scheme for both API and application RPC errors. In order to return
application-specific errors, such a status parameter must be part of the IDL
specification of the interface. The recommended method is therefore to declare a
status parameter as part of the application’s .idl file declarations, and then add the
[com_status] and [fault_status] attributes to the parameter by declarations in the
.acf file.

Of course, if application and DCE runtime errors are to share the same status
parameter, they must use disjoint error number spaces. The DCE messaging
facilities provide a means to do this.
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Messaging Facilities
The need to acquire an error number space is related to the larger issue of
messaging in general. Applications typically need messages both for error reporting
and for other status reporting and informational purposes. The recommended
practice is to use messages catalogs for all messaging.

Message catalogs permit applications to deal with messages as numerical
constants and to keep all associated text separate from the application itself. This is
especially important for internationalization requirements; applications deal only with
generic error numbers; locale-specific message text is kept in separate catalogs.

Message numbers are partitioned by technology, component, and code. The
technology and component fields select a message catalog, and the code indexes
messages within a catalog. The requirement to have a unique application-specific
error number space can be met by adopting a unique component field within a
given technology. To facilitate this, OSF makes component numbers available in two
ways.

1. Within the dce technology (the default core component technology field used by
DCE implementations), OSF sets aside two components guaranteed not to be
used by DCE implementations.

2. OSF sets aside an ISV technology and maintains a registry of component
numbers which may be assigned to ISVs.

This makes two levels of uniqueness available to applications. An unregistered
application can guarantee that its message number space does not conflict with that
of DCE implementations or of any registered ISV components by using one of the
reserved component numbers within the dce technology space. This does not, of
course, guarantee that the application’s message number space does not conflict
with that of other unregistered applications. This is a sufficient guarantee only for
applications that do not communicate or share application-specific message
catalogs with other unregistered applications. For example, the client side of an
unregistered application may encounter error number conflicts if it makes RPCs to
the server side of an application that uses an overlapping error number space.

Note: A related restriction on such non-registered applications is that they must
install their message catalogs in some application-specific place. Since
message catalog names depend on component numbers, other applications
may be using the same message catalog names.

Applications that need to guarantee a unique error number space among all DCE
applications should use a registered component number obtained from OSF. This is
the recommended procedure for applications that have public interfaces that are
likely to be called by other applications.

DCE Errors and DCE Messages
An application that wishes to use the DCE message facilities must organize all of its
message text into a separate file which is compiled by the sams utility to generate
a message catalog. The result of the sams compilation is that a set of
DCE-consistent, application-specific codes for all the messages (not only errors) is
generated. Use of the DCE facilities thus guarantees that application-specific status
codes will be disjoint from those used by DCE for fault and comm status values,
and for API calls. The application can then use exactly the same error handling and
reporting strategy for application RPC calls as for API calls.
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Of course, generating the message catalogs is only one aspect of using the DCE
facilities. The DCE routines that access the message catalogs to output the
messages must also be used.

DCE Application Message APIs
Message generation by distributed programs can be divided into two broad kinds:

v Normal (often user-prompted, client-generated) messages

v Server event messages, containing information about server activity, either
normal or extraordinary

Similarly, DCE makes available to applications two messaging APIs:

v The DCE messaging interface

v The DCE serviceability interface

The DCE serviceability interface is designed specifically to output messages of the
second (server event) type. Messages in the first category can be output using the
DCE general purpose application messaging routines.

Although the two interfaces, broadly speaking, do the same general thing (that is,
write messages), their functionality was designed to serve different needs, both of
which occur in most distributed applications. Nevertheless, either interface can be
used more or less exclusively of the other, if desired. Both interfaces use message
catalogs (for the most part) to generate output; the catalogs themselves are
generated by sams during compilation, as mentioned earlier.

The following sections describe some aspects of using the serviceability interface.
Full discussions of both interfaces can be found in the IBM DCE Version 3.2 for AIX
and Solaris: Application Development Guide—Core Components.

Serviceability and Logging
The DCE serviceability facilities allow server applications to display or log
messages, to control message routing, and to associate actions with messages. A
remote serviceability interface also makes it possible to control server message
routing and filtering via dcecp or from application management clients.

The serviceability mechanism is designed to be used mainly for server informational
and error messaging—that is, for messages that are of interest to those who are
concerned with server maintenance and administration (in the broadest sense of
these terms). The essential idea of the mechanism is that all server events that are
significant for maintaining or restoring normal operation should be reported in
messages that are made to be self-documenting, so that (provided all significant
events have been correctly identified and reported) users and administrators will by
definition always be able to learn what action they should take whenever anything
out of the ordinary occurs. User-prompted, interactive, client-generated messaging
should be handled through the DCE messaging interface.

Serviceability is also used by the DCE components (for example, DTS, CDS, and
so forth) themselves. Consistent use of the same message mechanism by DCE
implementations and applications should result in simplified DCE administration.

DCE components use the serviceability facilities according to the following
guidelines; it is recommended that DCE applications use them also.
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v All servers should report when they are started, and when they have completed
their initialization and are ready to perform work. They should also indicate when
they are going off-line.

v All program exits should be reported as fatal errors. Similarly, all calls to abort( )
should be replaced by calls to dce_svc_printf( ) with the svc_c_action_abort
action attribute specified.

v Errors which make it impossible for the application to proceed should be reported
as close as possible to the point of occurrence. This includes such conditions as:
failure to allocate memory, failure to open a configuration file for reading, or a log
file for writing, and so on.

v Conditions which may indicate system-level malfunction or poor performance
must be reported.

v Routine administrative actions should be reported as informational messages.
This includes: creation, modification and deletion of tickets, threads, files,
sockets, RPC endpoints, or other objects; message transfer, including name
lookup, binding, and forwarding; and database maintenance, including replication
or synchronization.

The severity level attribute for each message can be determined according to the
following criteria:

v Fatal error exit (svc_c_sev_fatal_error). An unrecoverable error has occurred
requiring special manual recovery actions to take place, such as database
restoration. The program usually terminates immediately.

v Error detected (svc_c_sev_error). An unexpected event that is nonterminal or is
correctable via human intervention has occurred, such as a timeout. The program
continues although some functions or services may not be available. This may
also be used to indicate that a particular request or action could not be
completed.

v Correctable error (svc_c_sev_warning). An error occurred that was
automatically corrected, such as a configuration file was not found so that
defaults were used. This may also be used to indicate a condition that may be an
error if the effects are undesirable, such as removing all files when a nonempty
directory is removed. This may also be used to indicate a condition that if not
corrected will eventually result in an error, such as when a printer is running out
of paper.

v Informational notice (svc_c_sev_notice). A predetermined major event has
occurred, such as a server started.

v Verbose information notice (svc_c_sev_notice_verbose). A predetermined event
has occurred, such as a directory entry was removed.

v Debug level 1 (svc_c_debug1) through debug level 9 (svc_c_debug9).
Messages in the nine debug levels would not normally appear in production
code.

An appropriate action may be associated with an error message by ORing one of
the svc_c_action. . . values with the message attribute. Note that the
svc_c_action_abort action, which results in a call to abort( ), does not provide
any reliable means to clean up and should only be used where the default abort( )
action, which is typically to dump core, is appropriate. Cleanup for the
svc_c_action_exit action can implemented by supplying an atexit( ) handler.

In addition to these guidelines, a persistent server application that does message
logging should consider exporting the remote serviceability interface as a means to
simplify server administration.
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Sample Code
The sample server application source compiles a message catalog as well as the
required auxiliary .c and .h files from a sams file. In part, the file looks like the
following (for the full file, see
/opt/dcelocal/examples/demo/generic_app/smp.sams or the sample smp.sams
“Sample smp.sams” on page 247):

# Part I
component smp
table smp__table
technology dce
####################################################################
# Part II
serviceability table smp_svc_table handle smp_svc_handle
start

subcomponent smp_s_server "server" smp_i_svc_server
subcomponent smp_s_manager "manager" smp_i_svc_manager
subcomponent smp_s_binder "binder" smp_i_svc_binder

end

####################################################################
# Part III
# Note that defining the "sub-component" and "attributes" fields
# will result in a convenience macro's being generated for the
# message in question...

start
code sign_on
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Starting up"
explanation ""
action "None required."
end

start
code cleanup
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Cleaning up"
explanation "Starting server cleanup"
action "None required."
end

start
code server_exit
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Exiting"
explanation ""
action "None required."
end

start
code signal_catcher
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Spawning signal handler thread"
explanation ""
action "None required."
end

start
code no_signal_catcher
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subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Spawn signal handler failed"
explanation "RPC runtime error. pthread_create() failed."
action ""
end

start
code bad_entryname_count
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Bad entryname count"
explanation "Count of entrynames doesn't match count of object uuids"
action ""
end

start
code cannot_resolve_name
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Can't resolve name"
explanation "ACL manager resolver failed to resolve name"
action "The ACL databases may be corrupt and need to be regenerated."
end

start
code cannot_manage_keys
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Can't spawn key management thread."
explanation "RPC runtime error."
action ""
end

start
code no_acl_dbs
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "ACL databases not found, creating them from scratch"
explanation ""
action "None required."
end

start
code exporting_to
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Exporting to %s"
explanation "Exporting to CDS entry"
action "None required."
end

start
code unexporting_from
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Unexporting from %s"
explanation "Unexporting from CDS entry"
action "None required."
end

start
code importing_from
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Importing from %s"
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explanation "Importing from CDS entry"
action "None required."
end

start
code auth_set_client
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Beginning client authentication setup"
explanation ""
action "None required."
end

start
code bindings_received
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Nr of %s bindings received == %d"
explanation "Server diagnostic message."
action "None required."
end

start
code full_binding
subcomponent smp_s_server
attributes "svc_c_sev_notice"
text "Full %s binding in string form == %s"
explanation "Server diagnostic message."
action "None required."
end

start
code server_error
subcomponent smp_s_server
attributes "svc_c_sev_fatal"
text "%s: %s"
explanation "general error message"
action "?"
end

start
code no_permissions
subcomponent smp_s_manager
attributes "svc_c_sev_notice"
text "No permissions"
explanation "Client does not have permissions for operation"
action "None required."
end

start
code object_not_found
subcomponent smp_s_manager
attributes "svc_c_sev_error"
text "Object not found"
explanation "object was not found in UUID-indexed database"
action "None required."
end

start
code manager_error
subcomponent smp_s_manager
attributes "svc_c_sev_fatal"
text "%s: %s"
explanation "general error message"
action "?"
end
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start
code binder_error
subcomponent smp_s_binder
attributes "svc_c_sev_fatal"
text "%s: %s"
explanation "general error message"
action "?"
end

####################################################################
# Part IIIa
# Messages for serviceability table
#
# Note that there has to be one of these for each of
# the subcomponents declared in the second part of
# the file (above)...

start !intable undocumented
code smp_i_svc_server
text "Sample server"
end

start !intable undocumented
code smp_i_svc_binder
text "Sample object binder"
end

start !intable undocumented
code smp_i_svc_manager
text "Sample manager"
end

The server main() function then establishes the required serviceability context and
defines a message table with the following calls:

/* Set the program name for serviceability messages... */
dce_svc_set_progname(argv[0], &status);

/* Get serviceability handle... */
smp_svc_handle = dce_svc_register(smp_svc_table,

(idl_char*)"smp",
&status);

/* Set up in-memory serviceability message table... */
dce_msg_define_msg_table(smp__table,

sizeof smp__table / sizeof smp__table[0],
&status);

The following fragments illustrate remote error handling using a common status
parameter. The .idl file for the sample interface includes the following declarations:

void sample_call(
[in] handle_t binding,
[out] long *status,
[in,out] error_status_t

*remote_status);

This is matched in the .acf file by the following:

interface sample
{

sample_call([comm_status,fault_status] remote_status);
}
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Then, for example, the server implementation of the sample_call( ) remote call can
return the smp_s_no_perms status code on authorization failure:

void
sample_call(

rpc_binding_handle_t binding, /* Client binding. */
idl_long_int *status,
error_status_t *remote_status)

{

extern uuid_t sample_acl_mgr_uuid, sample_acl_uuid;
boolean32 authorized = 0;

/* We have to explicitly initialize the remote status value; */
/* otherwise, if no error occurs in the transmission (which */
/* would cause the runtime to assign an error value to this */
/* variable), its value will be whatever it happened to be */
/* when the RPC was made by the client... */
*remote_status = rpc_s_ok;

DCE_SVC_DEBUG((smp_svc_handle,
smp_s_manager,
svc_c_debug6,
"Entering sample_call()..."));

/* Check whether client is authorized or not... */
DCE_SVC_DEBUG((smp_svc_handle,

smp_s_manager,
svc_c_debug6,
"Calling dce_acl_is_client_authorized()..."));

dce_acl_is_client_authorized(
binding, /* Client's binding handle. */
&sample_acl_mgr_uuid, /* ACL manager type UUID. */
&sample_acl_uuid, /* The ACL UUID. */
NULL, /* Pointer to owner's UUID. */
NULL, /* Pointer to owner's group's UUID.*/
sec_acl_perm_read, /* The desired privileges. */
&authorized, /* Will be TRUE or FALSE on return. */
remote_status);

if (*remote_status != error_status_ok)
{

print_manager_error("dce_acl_is_client_authorized()",
*remote_status);

return;
}

if (authorized)
{

DCE_SVC_DEBUG((smp_svc_handle,
smp_s_manager,
svc_c_debug8,
"Call authorized"));

/* HERE'S WHERE WE SHOULD ACTUALLY DO SOMETHING! */

*status = error_status_ok;
}
else
{

DCE_SVC_DEBUG((smp_svc_handle,
smp_s_manager,
svc_c_debug8,
"Call not authorized"));

/* Return no permissions status to client */
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*status = no_permissions;
}

DCE_SVC_DEBUG((smp_svc_handle,
smp_s_manager,
svc_c_debug6,
"Successfully exiting sample_call()"));

}

The client making the sample_call( ) remote call can then check both RPC comm
and fault status and application-specific status and display any error messages with
the same code:

sample_call(binding_h, &rpc_status, &rpc_remote_status);
if (rpc_remote_status != error_status_ok)
{

print_error("sample_call()", rpc_remote_status);
exit(1);

}
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Chapter 8. Object-Oriented Applications with Distributed
Objects

The DCE Interface Definition Language (IDL) compiler includes support for C++
language syntax features that provide a distributed object framework. This chapter
describes some terms and techniques for developing object-oriented DCE
applications. Before you start developing your applications, read this chapter and
then see the IBM DCE Version 3.2 for AIX and Solaris: Application Development
Guide—Core Components for more information.

In general, using C++ for your DCE applications should be easier than using C
because the DCE mechanisms can be better hidden from the developer. The
following are some examples:

v The C++ compiler forces the server implementation of all interface operations.
Although all DCE applications must do this to work properly, there is nothing to
prevent you from writing an incomplete server in C. An added benefit of C++ is
that the IDL compiler automatically generates the manager class with all the
function signatures defined.

v The DCE function table known as an entry point vector (EPV) is generated
automatically in object code by a C++ compiler, rather than in C code by the IDL
compiler. In addition, you never have to construct a manager EPV as you might
in your C code.

v C++ automatically provides a mechanism for grouping objects into types with its
class data structure. This means it is unnecessary to use the DCE
rpc_object_set_type() routine and associated routines.

v For DCE servers, interfaces are automatically registered with the DCE runtime.

These and other features make for easier and faster development.

DCE supplies exception-handling macros to use in distributed applications. You
should use the DCE macros in your applications, instead of the standard C++
macros, to be sure exceptions are propagated correctly from servers to clients.

Distributed applications traditionally use the client/server model, in which a client
application binds to a server and makes a request, to which the server responds. In
this model, the distinction between a client and server is strong from both a
development and runtime perspective. The client/server model is still convenient
when developing and describing distributed, object-oriented applications, but an
application is not distinctly a client or server. Whether an application is a client or
server is more a condition of its execution than a characteristic of its development.
It is convenient to say that a client requests the use of a distributed object and that
objects are maintained by servers. However, clients also create and maintain their
own objects that may be used by other applications, and servers may need to use
objects maintained by other applications.

Kinds of Objects
In addition to the local objects that servers and clients each have, there are two
major kinds of distributed objects: dynamic objects and named objects. Distributed
objects exist in the server’s memory space, and clients refer to them via a pointer
data structure known as an object reference.
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Distributed dynamic objects are created on a server by a client request for the
exclusive use of the invoking client. These objects reside on the server, but clients
initiate the object’s creation using an object creator function defined in the interface.
In C++, dynamic objects are simply local objects created at runtime. In the context
of DCE, we use the term dynamic objects to mean distributed dynamic objects.
Dynamic objects are typically short-lived; that is, in the life span of the client rather
than that of the server.

Well-known objects represent specific resources supported by one or more servers
and are called named objects when they are identified by a name stored in a name
service. Each server that supports the resource creates and maintains its own
object representing the resource.

Clients control dynamic objects and servers control named objects. The server can
give out a dynamic object reference only to the initiating client and cannot give out
the reference to any other client. However, the client that initiated the creation of a
dynamic object can become a server to another client and give out a reference to
the dynamic objects it owns. Servers do not automatically delete dynamic objects
when a client exits (unlike other RPC features such as a context handle). This
allows clients to pass object references to other programs to use. This also means
that it is the responsibility of the clients to delete all their dynamic object references,
thereby causing remote procedure calls to delete the object on the server. On the
other hand, a server may pass object references for named objects to more than
one client, and the server has control over when a named object is deleted. Clients
delete only their local reference to named distributed objects; they cannot delete the
actual object on the server.

Persistent objects are known objects (usually named) whose characteristics are
maintained independently from a specific server, usually on disk.

Reference Counting: How Objects Keep Track of Multiple Clients
Reference counting is simply a record that each dynamic object maintains internally
of how many clients have a reference to it. Dynamic object reference counting on a
server is handled for you by DCE. Reference counting is maintained so that a
server knows when to finally release the resources of an object. An object’s
reference count increases when the client passes a dynamic object to another
application, and an object’s reference count decreases when each object reference
is deleted. This is why we have stressed that it is the responsibility of clients to
delete their object references.

In addition, if one client passes a dynamic object to another and the original client
then exits or dies, the second client’s object is perfectly valid with respect to the
server.

With the volatility of a distributed environment, even well-designed clients could lose
a connection or exit unexpectedly, leaving the reference count in an incorrect state.
Robust servers can delete any dynamic objects they wish, but they run the risk of
causing an unexpected failure on clients. Depending on the application, this may be
acceptable. For example, in a trading system where dynamic objects may be valid
only during a single day, nightly purging of stale objects makes sense.
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Using Interface Definitions to Design Classes
Since RPC is the mechanism DCE clients and servers use to become distributed
applications, this mechanism must be introduced into C++ applications in an
object-oriented way. When IDL compiles an interface definition, it generates a class
hierarchy for clients and one for servers that provide the transition from RPCs to
object-oriented applications. This is shown in the following figure.

At the top of each RPC hierarchy is a DCE-supplied class called
rpc_object_reference. This DCE base class encapsulates the RPC mechanisms
and provides a framework for identifying, distributing, and tracking objects. It is used
by the generated stubs and not directly by your application code.

The IDL compiler also generates an interface class derived from the DCE base
class. The interface class contains the public member functions specified in the
interface definition. The interface class provides the link between the RPC
mechanisms of the DCE base class and your application.

Although the interface class is the same for both the client and server hierarchy, the
client and server must implement these functions quite differently. The server
implements application-specific functions that operate on the actual object, while the
client uses idl-generated functions that provide the distributed mechanisms.
Polymorphism provides the capability to hide the implementation details of the
interface class. In C++, this flexibility is easily provided by creating the interface
class as an abstract class with all pure virtual functions. This means that none of
the functions of an interface class are implemented directly, so no objects of the
interface class can be created directly. This apparent restriction simply means that
to implement the member functions, another class must be derived from the
interface class.

rpc_object_reference
supplied by DCE

Classes generated
by IDL compiler

KEY:  Arrow points to inherited class

Server's
RPC Class Hierarchy

Client's
RPC Class Hierarchy

DCE
base
class

interface
class

manager
class

interface
proxy
class

Figure 15. The RPC Class Hierarchy

Chapter 8. Object-Oriented Applications with Distributed Objects 165



At this point, the client and server RPC hierarchies diverge. In the client, the IDL
compiler automatically derives a proxy class from the interface class. The proxy
class implements in the client stub all the pure virtual member functions of the
interface class. These functions handle all the underlying RPC code necessary for
your client to access distributed objects. Thus, when a client calls the interface
class’s member functions, the polymorphic behavior of the C++ class hierarchy
causes automatic invocation of the appropriate proxy class function in the stub. In
the server, the IDL compiler automatically generates a manager class with empty
function bodies.

You can choose to implement the server’s interface operations in two ways:

v Implement the functions in the generated header file. However, be aware that
under normal circumstances, a new IDL compilation of the interface will overwrite
the header file with empty functions. (You can override this IDL compiler behavior
with the -no_cxxmgr option.

v Derive a new implementation class from the automatically generated manager
class.

Using Static Functions in Interface Design
Your IDL interfaces must be designed to make it clear which functions are static,
because it may not be intuitive to first-time users. If something is static it doesn’t
move or change; it retains its state. In C++ the term static has a little more meaning
than this. C++ uses the term to restrict the definition of a variable or function to
within a specific scope of a program, and it causes values to be retained when
program execution comes back to that scope. A variable or function that is static is
like a refined global variable or function. Both static and global variables give a
program a convenient way for one part to easily communicate with another without
using parameters, but a static variable’s scope is confined to a portion of the
program, rather than the scope of the entire program. A static class member is a
data member or member function that is in the scope of all objects of a particular
class, but not in the scope of any other class objects or code of the program. A
class’s objects use static members to share data and functionality in a way that
saves storage. A static data member acts as a class-global variable because there
is only one instance of it, no matter how many instances of the class exist.

Programs and interfaces can declare a member function as static. Unlike nonstatic
class members, static class members can be accessed or invoked directly, even if
an instance of the class doesn’t exist. For this reason, it is useful to developers if
the interface designer identifies all operations in the interface that are to be static
member functions by doing all of the following:

v Identifying static operations with comments in the IDL file.

v Grouping static operations together in the IDL file.

v Specifying static operations in the interface by using the static keyword. This
will self-document the static member functions. However, this imposes a
restriction that requires that the interface be compiled for C++ only and that
servers implement the member function as static. If you do not want to impose
this in the interface definition, use the cxx_static attribute in an Attribute
Configuration File (ACF) to specify a static member function.

Adding an Interface Rather than Changing One
An interface can inherit the features of another interface; thus not only do you have
class hierarchies, but you also can have interface hierarchies as well. We suggest
that you add more interfaces rather than change an existing one, even though IDL
provides for different interface versions. Reasons for this include the following:
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v Adding an interface will self document new features. There is no way for a
developer to know which operations are old and which are new unless they
compare the old and new interfaces or the interface designer has documented
where the new operations begin.

v Adding an interface will not break the interface hierarchy. Adding additional
operations to a base class can be a problem for applications.

v Adding an interface allows you to bypass the tedious procedure for changing an
interface and its version numbers.

Binding to Distributed Objects Rather than Servers
When binding to objects, binding information is hidden from the application by
encapsulating it in the rpc_object_reference base class that every DCE object
inherits. An application refers to a distributed object via an object reference. An
application initially obtains an object reference by calling an appropriate operation
defined in an interface definition or a special bind( ) function generated when the
interface definition is compiled. Once an object reference is obtained, the
application refers to the distributed object by calling its member functions, which are
other operations defined in the interface definition. Since the location of the object
(binding information) is already known and completely hidden, it is not appropriate
to use explicit binding handles on these member functions.

Traditional DCE RPC object models limit what an object represents. In these
models, objects represent resources on various servers or multiple servers on
individual hosts. These models do not allow for objects to represent many different
things in a single application. In addition, these models use a mechanism to group
objects into types so that different sets of manager routines can be implemented,
but this mechanism is unnecessary because it is built in with the C++ features of
IDL. Using the object-oriented model with C++ instead is an elegant way to
accomplish these things.

Clients Manipulate Objects Maintained on Servers
The following figure simplifies the relationship between an object-oriented
application and a remote procedure call.
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A client first obtains an object reference to the remote object (manager object). An
object reference is in the client’s address space to act as a proxy for the remote
object in the server’s address space. In fact, an object reference is an instance of
the client’s proxy class.

When a member function is called, the function in the client stub executes to handle
the RPC. The stub of the server managing the object receives the RPC and
dispatches the call to the appropriate manager object code and its member function
implementation. The actual object is an instance of the manager class.

Naming Objects
This section discusses the model used to advertise named objects. The model
stores binding information for the object’s hosts in the name service (for example,
the Cell Directory Service, CDS). The model also stores the object’s server location
information in the endpoint map of each host that has one of the running servers.

There are many ways to use the name service to store information. Typical servers
create and export information to a name service entry representing the server itself.
In the named object model, an additional name service entry is also created for
each named object. Thus, as the following figure shows, if five persistent objects
are supported by two servers, there are a total of seven entries in the namespace.
These allow clients a choice to bind by way of server entry names or objects
names.

Client Server

Proxy
class

Manager
class

object
reference

Manager
object

server
support
functions

Stub Stub

member
functions

member
functions

RPC

Figure 16. Distributed Objects and a Remote Procedure Call
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The object name is application specific, and each server exports its binding
information to both its server entry and the object entries it supports. The name
service entries for each object associate the object name with the combination of
interface class ID, binding information (protocol sequence and host name) for each
supported server, and object identifier (a UUID).

Object entries are different than server entries. It is important to understand that
object entries represent objects, not servers. A server entry should contain binding
information for only one server because it represents that server. On the other
hand, object entries contain binding information for one (or more) servers because
multiple servers may support the object.

As the number of named objects for an interface grows, management of the name
service may become necessary. This could be done in the code of each server, but
a more consistent and practical approach is to create scripts that use dcecp, or
management applications that use the name service application programming
interface routines. For example, the performance of the name service may degrade
as the number of entries in a directory becomes very large. Place object names in a
directory structure appropriate for the application.

If the application allows all clients to know the object names, the practical number
of objects may be limited. However, an application can be designed to name a
service object that clients look up, and pass in the specific object name (or
identifying number). In this case, the servers can implement (and even later
change) the object name location any way preferred: by using CDS, a commercial
database, or an application-specific database.

Interface class ID
host1 binding information

Interface class ID
host1 binding information

Server_host1

Server_host2

Server Entries Named Object Entries

Interface class ID
host1 Binding
host2 BInding
Object_A's UUID

object_A
Interface class ID
host1 Binding
host2 BInding
Object_B's UUID

object_B

Interface class ID
host1 Binding
host2 BInding
Object_C's UUID

object_C
Interface class ID
host1 Binding
host2 BInding
Object_D's UUID

object_D
Interface class ID
host1 Binding
host2 BInding
Object_E's UUID

object_E

Figure 17. Server and Object Names in the Name Service
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Chapter 9. Server Management

Every DCE server requires some management. At a minimum, servers need to be
started and stopped. In addition, servers usually provide generic server information
such as the server principal name and an indication that the server is listening for
remote calls. Servers may also permit other kinds of management operations while
they are running; it is perfectly feasible to have a server reinitialize or even
unregister and reregister endpoints while it is running.

From the management perspective, servers are thought of as either on-demand or
persistent. In the on-demand model, a server only starts (thus occupying system
resources) when it is needed. When an on-demand server is installed, a startup
configuration is also installed with dced. Such a server would then use the
configuration (obtained by a call to the dce_server_inq_server() routine) when it
is auto-started by dced on receipt of an RPC request for an interface, operation, or
object registered for that server.

A persistent server is one that runs continuously. Starting, stopping and otherwise
managing such a server are typically considered privileged operations. In general, a
robust persistent server should provide a separate application control program that
calls the DCE management interfaces (APIs for dced, RPC, and the like) and the
application’s own management interface (if one is provided). Of course, a server
cannot start itself, but an application control client program can start the server via
the dced. The model looks something like that shown in the following figure:

In addition to starting and stopping the server, dced’s management routines provide
other control operations. For example, the control program can use
dced_server_disable_if( ) and dced_server_enable_if( ) to disable and reenable
specific interfaces offered by the server. Application-specific management
operations can be used to exert even finer control than is possible with the
DCE-provided services.

Application Control
Client

Application Server

dced_server_start(...);

/*application-specific-control*/

dced_server_stop(...);

Figure 18. Managing a Server with a Control Client
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Application Support for Server Management
Applications can support server management at three levels. At a minimum, every
server automatically supports the RPC management API (routines the begin with
rpc_mgmt_). By attaching an authorization function to the management interface
(via a call to rpc_mgmt_set_authorizaton_fn( )), a server can set nondefault
access to the generic management functions. Although these routines give a
management program some control of the server, some of these routines only work
locally, so the controlling client must run on the same host as the server.

At the second level, all servers should permit themselves to be managed from
remote hosts via the dced. The requirements in the server’s initialization code are
minimal:

v The server should establish a security state using the dce_server_sec_begin( )
call. This call establishes the server’s identity with the RPC runtime such that
clients can make authenticated remote procedure calls to it. The call also
establishes with the security service the server’s identity so that it can make
authenticated remote procedure calls to other servers.

Server writers should also give the dced (which runs with the host’s principal
identity) permission to control the server. Since the default is to disable remote
control, the server must provide a nondefault authorization function that gives the
machine principal access. An example of such an authorization function is given
in “Chapter 3. Security” on page 49.

v The server must register as a DCE server using the dce_server_register( ) call.
This call fulfills the majority of the server initialization tasks including creating
bindings, registering interfaces with the RPC runtime, registering endpoints with
dced’s endpoint mapper service, and advertising in the name service.

All servers should take these steps to operate correctly in DCE.

Finally, applications can provide application-specific server management. This would
typically be done for a persistent server that provides access to some shared
resource such as a database. Such a server can provide a set of privileged
management operations—such as database maintenance—as a separate
application-specific management interface. Such an interface can be accessed by
an application management client that can also call the DCE management
interfaces. This type of management client is shown in the previous figure.

Manager Initialization
Server initialization tasks can typically be divided between essentially generic
initialization—creating bindings, establishing security state, exporting to a name
service, and listening for calls, among other things—and manager-specific
initialization. (Remember that management refers to a set of tasks to control a
server while a manager is a server’s implementation of a set of operations from one
or more interfaces.)

Once the server has called rpc_server_listen( ), the manager operations may be
called asynchronously. The application may, however, need to perform some
initialization before any manager operations are performed. For example, the
sample storage manager (code example context_manager.c) needs to initialize its
tables before any storage can be allocated out of them. An application has three
choices about manager initialization policy:

1. The server can perform manager initialization before calling
rpc_server_listen( ).
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2. The server can have the first instance of a manager operation thread perform
manager initialization, using the pthread_once( ) facility. Although initializing
everything prior to listening for remote procedure calls is more straight-forward
programming, some applications might benefit from this threaded approach. For
example, those operations that do not need the initialization could forgo use of
the pthread_once( ) facility. This is the approach demonstrated in the sample
storage manager.

3. The server can export manager initialization operations as part of its
application-specific management interface, and have a management client
perform the initialization.

Options 1 and 2 have similar effects and are appropriate for most servers. Option 3
might be appropriate for a persistent server where reinitialization of the running
server is a useful operation. Such an operation is a perfect candidate for inclusion
in an application-specific management interface for a persistent server.
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Chapter 10. A Sample Application

This chapter presents the complete code for a generic sample application that
illustrates the recommended policies. The code is as generic as possible in the
sense that it demonstrates things that most servers need to do. This generic server
code is contained in the sample_server.c and sample_server.h modules. The
application-specific portion consists of a set of simple examples to illustrate various
styles of RPC data usage, including pointers, pipes, and context handles. These
illustrations are contained in sample_manager.c (the server side) and
sample_client.c (the client side). sample.idl contains a set of sample interface
definitions for the illustrated usages.

The Generic Server
The generic server implemented by sample_server.c demonstrates a variety of
tasks that most servers need to carry out, such as exporting bindings, creating an
authentication identity, establishing an ACL manager, and handling asynchronous
signals. As much as possible, the bulk of each task is implemented as one or more
separate functions. This modularity makes it easier to understand the requirements
for coding each task since each function or related set of functions can be studied
separately. Also, because the tasks performed are fairly generic, the functions
should be reusable in something close to the form presented here by many servers.

The IDL file sample.idl is included here mainly to demonstrate the data type
declarations used for the ACL manager. A more complete IDL file is given in “Object
Bind Interface” on page 227 to show how the illustrated RPC data types are
declared.

Sample.idl

/****************************************************************************/
/* */
/* sample.idl */
/* */
/****************************************************************************/

[
uuid(002d70b2-671b-1d24-a1da-0000c0d4de56),
version(1.0)
]
interface sample
{

const long int TEXT_SIZE = 100;

void sample_call(
[in] handle_t binding,
[out] long *status,
[in,out] error_status_t *remote_status);

void sample_get_text(
[in] handle_t binding,
[in] uuid_t object_uuid,
[in,out,string] char text[TEXT_SIZE],
[out] long *status,
[in,out] error_status_t *remote_status);
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void sample_put_text(
[in] handle_t binding,
[in] uuid_t object_uuid,
[in,out,string] char text[TEXT_SIZE],
[out] long *status,
[in,out] error_status_t *remote_status);

}

Sample.acf

/****************************************************************************/
/* */
/* sample.acf */
/* */
/****************************************************************************/

interface sample
{

sample_call([comm_status,fault_status] remote_status);

sample_get_text([comm_status,fault_status] remote_status);

sample_put_text([comm_status,fault_status] remote_status);

}

The IDL file sample_db.idl and the ACF file sample_db.idl are required to
generate a server-only stub for the database serialization routines used by the ACL
manager.

Sample_db.idl

/****************************************************************************/
/* */
/* sample_db.idl -- Here we declare a "serialization" function for the */
/* sample object */
/* */
/* */
/* This file contains the declarations for the data type that will contain */
/* the data that we will be storing "in" our sample objects. */
/* */
/* The declarations are done in an IDL file because the data is sent */
/* across the wire by the ACL and Backing Store routines. */
/* */
/* */
/* */
/* */
/* The instructions for how to set up the IDL and ACF files to generate */
/* serialization procedures for backing store data types can be found in */
/* the dce_db_open.3dce manpage. This file and its accompanying .acf file */
/* are written in conformance with the examples there. */
/* */
/* */
/****************************************************************************/
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[ uuid(00312933-403d-1d3d-a469-0000c0d4de56),
version(1.0) ]

interface sampledb
{
import "dce/database.idl";
import "sample.idl";

/*** FROM dce/database.idl: *************************************************/
/* This is the standard header for each "object" in the database. */
/* IMPORTANT: */
/* The header struct cannot have any variable-length data */
/* (e.g., char *). This is because when fetching (and un- */
/* marshalling) just the header, the variable part is at the */
/* end of the application's entire data object, not at the end */
/* of the header. */

/*
THE FOLLOWING IS FILLED IN BY A CALL TO dce_db_std_header_init().

For an example of how these fields are accessed, see the routine
sample_resolve_by_name() in sample_server.c. Note that the fields
are automatically filled in by the ACL library; we only have to
read them.

typedef struct dce_db_dataheader_s_t {
uuid_t uuid; [...Object UUID.]
uuid_t owner_id;
uuid_t group_id;
uuid_t acl_uuid;
uuid_t def_object_acl;
uuid_t def_container_acl;
unsigned32 ref_count;
THE FOLLOWING FIELDS ARE PRIVATE TO THE LIBRARY:
utc_t created;
utc_t modified;
unsigned32 modified_count;

} dce_db_dataheader_t;

typedef enum {
dce_db_header_std,
dce_db_header_acl_uuid,
dce_db_header_none

} dce_db_header_type_t;

WHICH ONE OF THE FOLLOWING YOU GET DEPENDS ON A FLAG PASSED TO
THE dce_db_open() ROUTINE...
typedef union switch (dce_db_header_type_t type) tagged_union {

case dce_db_header_none: NONE ;
case dce_db_header_std: dce_db_dataheader_t h;
case dce_db_header_acl_uuid: uuid_t acl_uuid;

} dce_db_header_t;

*/
/*** ...END OF FROM dce/database.idl ****************************************/

typedef struct sample_record_s_t {
[string] char message[TEXT_SIZE];
} sample_record_t;

typedef struct sample_data_s_t {
dce_db_header_t s_hdr;

sample_record_t s_data;
} sample_data_t;
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void sample_data_convert(
[in] handle_t h,
[in,out] sample_data_t *data,
[in,out] error_status_t *st
);

void uu_convert(
[in] handle_t h,
[in,out] uuid_t *u,
[in,out] error_status_t *st
);

}

Sample_db.acf

/****************************************************************************/
/* */
/* sample_db.acf */
/* */
/****************************************************************************/

interface sampledb {
[encode,decode] sample_data_convert();
[encode,decode] uu_convert();
}

The generic server is then implemented by sample_server.h and sample_server.c.

Sample_server.h

/****************************************************************************/
/* */
/* sample_server.h -- */
/* */
/* */
/****************************************************************************/
/* */
/* The following is passed via server_acl_mgr_setup() to the calls to */
/* server_create_acl(), where it is used to get a UUID to put in the */
/* ACLs we are creating, which will identify a user. In other words, at */
/* present the application is set up in such a way as to allow only the */
/* Cell Administrator principal to be a user with any kind of permissions */
/* at all on the objects we are creating. That's why the client can only */
/* be run successfully by a user dce_login'd as "cell_admin". The reason */
/* for doing things this way is that it allows us to have a user principal */
/* we can always rely on being present, and thus avoid having to set up */
/* some user principals ourselves. */
#define SAMPLE_OWNER "cell_admin"

/* Keytab file name: */
#define KEYTAB "FILE:/tmp/sample_keytab"

/* Default leaf name and length for the server entry: */
#define NAMELEN 20
#define DEFNAME "sample_server_entry"

#define IF_ANNOTATION "Sample interface, version 1.0"

/* At present we set up only two objects... */
/* A "well-known" residual name for the management "object": */
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#define MGMT_OBJ_NAME "server_mgmt"
/* */
/* A residual name for a sample object: */
#define SAMPLE_OBJECT_NAME "sample_object"

/* Relative pathname at which to locate newly-created backing store */
/* databases. Note that this is interpreted as the name of a subdirectory: */
#define ACL_DB_PATH "db_sample_acl"
/* Maximum length of a database pathname string... */
#define MAX_ACL_PATH_SIZE 50

/* Time allowed for cleanup of name space: */
#define CLEANUPTIME 60

/* Maximum number of serviceability routings allowed: */
#define MAX_ROUTES 10

/* Maximum number of separate debug levels allowed: */
#define MAX_LEVELS 9

/* Data structure for holding server entry names to pass to */
/* server_export_objects(): */
typedef struct {
unsigned32 count;
unsigned_char_t *name[1];
} entryname_vector_t;

/* Handle for serviceability calls */
#if defined ( SAMPLE_SERVER_MAIN )
dce_svc_handle_t smp_svc_handle;
#else
extern dce_svc_handle_t smp_svc_handle;
#endif

/* Sample server-specific definitions: */

/* Used by remote bind interface... */
/* These are the backing store database handles: */
#if defined ( SAMPLE_SERVER_MAIN )
dce_db_handle_t db_acl, db_object, db_name;
#else
extern dce_db_handle_t db_acl, db_object, db_name;
#endif

#define mgmt_perm_inq_if sec_acl_perm_unused_00000080
#define mgmt_perm_inq_pname sec_acl_perm_unused_00000100
#define mgmt_perm_inq_stats sec_acl_perm_unused_00000200
#define mgmt_perm_ping sec_acl_perm_unused_00000400
#define mgmt_perm_kill sec_acl_perm_unused_00000800

/* The constants below come from aclbase.h (aclbase.idl)... */
#define OBJ_OWNER_PERMS sec_acl_perm_read | sec_acl_perm_write \
| sec_acl_perm_delete | sec_acl_perm_test \
| sec_acl_perm_control | sec_acl_perm_execute

#define ALL_MGMT_PERMS mgmt_perm_inq_if | mgmt_perm_inq_pname \
| mgmt_perm_inq_stats | mgmt_perm_ping \
| mgmt_perm_kill | sec_acl_perm_test \
| sec_acl_perm_control
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/* These are the two entry point vectors that are explicitly initialized: */
extern rdaclif_v1_0_epv_t dce_acl_v1_0_epv;

extern sample_bind_v1_0_epv_t sample_bind_epv;

/* This global boolean records whether the backing store databases have */
/* actually been opened or not. This allows us to avoid calling the */
/* server_acl_mgr_close() routine when there are no open databases; call- */
/* the dce_db_close() routine on an unopened database will result in a */
/* core dump. */
#if defined ( SAMPLE_SERVER_MAIN )
boolean32 databases_open;
#else
extern boolean32 databases_open;
#endif

Sample_server.c

/****************************************************************************/
/* */
/* sample_server.c -- Main program for "sample" server: initialization */
/* and cleanup. */
/* */
/* Note that no remote calls are defined in this file; for those, refer */
/* to either sample_manager.c or sample_bind.c. */
/* */
/****************************************************************************/

#define DCE_DEBUG

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <pthread.h>
#include <errno.h>
#include <signal.h>

#ifndef IBMOS2
#include <malloc.h>
#include <unistd.h>
#include <sys/param.h>
#endif

#include <dce/dce.h>
#include <dce/dce_cf.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>
#include <dce/sec_login.h>
#include <dce/keymgmt.h>
#include <dce/uuid.h>
#include <dce/exc_handling.h>
#include <dce/dce_msg.h>
#include <dce/dbif.h>
#include <dce/aclif.h>
#include <dce/dceacl.h>
#include <dce/pgo.h>
#include <dce/binding.h>
#include <dce/dced.h>

#include <dce/dcesvcmsg.h>
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#include <dce/svcremote.h>
#include "dcesmpsvc.h"
#include "dcesmpmsg.h"
#include "dcesmpmac.h"

/* sample-specific includes: */
#include "sample.h"
#include "sample_db.h"
#include "sample_bind.h"
#define SAMPLE_SERVER_MAIN
#include "sample_server.h"
#undef SAMPLE_SERVER_MAIN

#if defined ( __BORLANDC__ )
#undef SIGTERM
#undef SIGINT
#define SIGTERM 4
#define SIGINT 6
#endif

/****************************************************************************/
/* ANSI-C style prototypes for functions private to this module... */

int do_command_line(int,
char **,
unsigned_char_t **,
entryname_vector_t *);

void signal_handler(char *);

void server_register_get_bindings(rpc_if_handle_t,
rpc_binding_vector_t **,
unsigned32 *);

void server_export_objects(rpc_if_handle_t,
rpc_binding_vector_t *,
uuid_vector_t *,
entryname_vector_t *,
unsigned_char_t *,
unsigned32 *);

void server_cleanup_objects(rpc_if_handle_t,
rpc_binding_vector_t *,
uuid_vector_t *,
entryname_vector_t *,
unsigned32 *);

void managekey(char *);

void server_get_identity(unsigned_char_p_t,
sec_login_handle_t *,
unsigned_char_p_t,
unsigned32 *);

void server_renew_identity(unsigned_char_p_t,
sec_login_handle_t,
unsigned_char_p_t,
unsigned32,
unsigned32 *);

void server_create_dflt_acl(dce_db_handle_t,
unsigned_char_t *,
void(*)(),
boolean32,
sec_acl_t *,
uuid_t *,
unsigned32 *);
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void server_get_local_principal_id(unsigned_char_t *,
uuid_t *,
unsigned32 *);

void server_create_acl(uuid_t,
sec_acl_permset_t,
unsigned_char_t *,
sec_acl_t *,
uuid_t *,
unsigned32 *);

void server_store_acl(dce_db_handle_t,
dce_db_handle_t,
dce_db_handle_t,
sec_acl_t *,
uuid_t *,
uuid_t *,
unsigned_char_t *,
void *,
boolean32,
unsigned32 *);

void server_acl_mgr_setup(unsigned_char_t *,
dce_acl_resolve_func_t,
uuid_t,
uuid_t,
unsigned_char_t *,
sec_acl_permset_t,
unsigned_char_t *,
boolean32,
dce_db_handle_t *,
dce_db_handle_t *,
dce_db_handle_t *,
uuid_t *,
uuid_t *,
unsigned32 *);

void server_acl_mgr_close(dce_db_handle_t *,
dce_db_handle_t *,
dce_db_handle_t *,
unsigned32 *);

void server_rdacl_export(rpc_binding_vector_t *,
uuid_vector_t *,
unsigned32 *);

void server_rdacl_cleanup(rpc_binding_vector_t *,
uuid_vector_t *,
unsigned32 *);

void server_bind_cleanup(rpc_binding_vector_t *,
uuid_vector_t *,
unsigned32 *);

boolean32 sample_mgmt_auth(rpc_binding_handle_t,
unsigned32,
unsigned32 *);

dce_acl_resolve_func_t sample_resolve_by_name(handle_t,
sec_acl_component_name_t,
sec_acl_type_t,
uuid_t *,
boolean32,
void *,
uuid_t *,
error_status_t *);
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void sample_bind_export(rpc_binding_vector_t *,
uuid_vector_t *,
unsigned32 *);

void create_server_uuid(uuid_t *,
uuid_vector_t *);

void print_server_error(char *,
error_status_t);

extern void bzero(char *,
int);

/****************************************************************************/

/* Default routing information: */
#define SAMPLE_SVC_FATAL_DEFAULT_ROUTE 0
#define SAMPLE_SVC_ERROR_DEFAULT_ROUTE 1
#define SAMPLE_SVC_WARNING_DEFAULT_ROUTE 2
#define SAMPLE_SVC_NOTICE_DEFAULT_ROUTE 3
#define SAMPLE_SVC_VERBOSE_NOTICE_DEFAULT_ROUTE 4
#define MAX_DEFAULT_ROUTES 5
unsigned_char_t *default_routes[MAX_DEFAULT_ROUTES] =

{(unsigned_char_t *)"FATAL:STDERR:",
(unsigned_char_t *)"ERROR:STDERR:",
(unsigned_char_t *)"WARNING:STDERR:",
(unsigned_char_t *)"NOTICE:STDERR:",
(unsigned_char_t *)"NOTICE_VERBOSE:STDERR:"};

/* or, you could send *all* notices/errors to the same file
{"FATAL:TEXTFILE:/tmp/smp_svc_%ld",
"ERROR:TEXTFILE:/tmp/smp_svc_%ld",
"WARNING:TEXTFILE:/tmp/smp_svc_%ld",
"NOTICE:TEXTFILE:/tmp/smp_svc_%ld",
"NOTICE_VERBOSE:/tmp/smp_svc_%ld"};

*/

/* Default debug level and route... */
unsigned_char_t *default_debug_route = (unsigned_char_t *)"smp:*.9:STDERR:-";
unsigned_char_t *default_debug_level = (unsigned_char_t *)"*.9";

/* */
/* The debug level scheme is at present roughly as follows: */
/* */
/* svc_c_debug1 -- not used. */
/* svc_c_debug2 -- not used. */
/* svc_c_debug3 -- not used. */
/* svc_c_debug4 -- messages announcing calls to system (DCE or OS) */
/* routines. */
/* svc_c_debug5 -- messages announcing calls to local routines. */
/* svc_c_debug6 -- messages announcing entry/exit to/from server remote */
/* routines (e.g., remote bind, remote svc, sample in- */
/* terface operations, etc.). This is also the level */
/* for enabling announcements of library calls from */
/* within these routines. */
/* svc_c_debug7 -- messages announcing entry/exit to/from server local- */
/* ly called routines. */
/* svc_c_debug8 -- messages displaying various debugging information. */
/* svc_c_debug9 -- not used. */
/* */

int routes_G[MAX_ROUTES];

int debug_routes_G[MAX_LEVELS];

int debug_levels_G[MAX_LEVELS];
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/* These two UUIDs could be treated as "well known": i.e. applications */
/* that use the same ACL manager for mgmt operations can use these... */

uuid_t mgmt_acl_mgr_uuid = {/* 0060f928-bbf3-1d35-8d7d-0000c0d4de56 */
0x0060f928, 0xbbf3, 0x1d35, 0x8d, 0x7d, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56};

uuid_t mgmt_object_uuid = {/* 00573b0e-bcc2-1d35-a73e-0000c0d4de56 */
0x00573b0e, 0xbcc2, 0x1d35, 0xa7, 0xe3, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56};

/* These UUIDs are specific to this server... */
/* Some ACL UUIDs that will be globally used: */
uuid_t mgmt_acl_uuid;
uuid_t sample_acl_uuid;

/* The UUID of the sample ACL manager: */
uuid_t sample_acl_mgr_uuid = { /* 001a15a9-3382-1d23-a16a-0000c0d4de56 */

0x001a15a9, 0x3382, 0x1d23, 0xa1, 0x6a, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56};

/* A UUID for a sample object: */
uuid_t sample_object_uuid = {/* 00415371-f29a-1d3d-b8c8-0000c0d4de56 */

0x00415371, 0xf29a, 0x1d3d, 0xb8, 0xc8, 0x00, 0x00, 0xc0, 0xd4, 0xde, 0x56};

/* The mgmt printstrings could be treated as standard for */
/* a standard mgmt ACL manager... */
sec_acl_printstring_t mgmt_info = {"mgmt", "Management Interface"};

/* Note that we don't need to use the unused bits here; */
/* it's just less confusing this way... */

sec_acl_printstring_t mgmt_printstr[] = {
{ "i", "m_inq_if", mgmt_perm_inq_if },
{ "n", "m_inq_pname", mgmt_perm_inq_pname },
{ "s", "m_inq_stats", mgmt_perm_inq_stats },
{ "p", "m_ping", mgmt_perm_ping },
{ "k", "m_kill", mgmt_perm_kill },
{ "c", "control", sec_acl_perm_control },
{ "t", "test", sec_acl_perm_test }

};

sec_acl_printstring_t sample_info = {"sample", "Sample RPC Program"};

sec_acl_printstring_t sample_printstr[] = {
{ "r", "read", sec_acl_perm_read },
{ "w", "write", sec_acl_perm_write },
{ "d", "delete", sec_acl_perm_delete },
{ "c", "control", sec_acl_perm_control },
{ "t", "test", sec_acl_perm_test },
{ "x", "execute", sec_acl_perm_execute }

};

/***************
*
*
* main --
*
*
*
*
**************/
int
main(
int argc,
char *argv[]
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)
{

unsigned32 status; /* For status returned from library calls. */
rpc_binding_vector_t *binding_vector; /* For bindings from RPC run- */

/* time. */
unsigned_char_t *server_principal_name; /* Our server principal */

/* name, read from command line. */
unsigned_char_t *uuid_string; /* For UUID string conversions. */
entryname_vector_t entryname_vector; /* List of server entry names, */

/* read from command line. */
sec_login_handle_t login_context; /* Our login context, for server- */

/* assumed identity. */
pthread_t sigcatcher; /* Handle to signal catcher thread. */
uuid_vector_t server_uuid_v; /* Array of server instance UUIDs. */

/* At present there is only one of these, */
/* and it is generated dynamically at the */
/* beginning of the program. This ends up */
/* being used as an object UUID for the */
/* server's exported bindings and regis- */
/* tered mappings. */

int i; /* Utility index variable. */
int route_error; /* Condition variable for setting up de- */

/* fault serviceability routings. Not used */
/* yet, however. */

uuid_t server_uuid; /* The UUID that identifies this server in- */
/* stance; i.e., the object UUID that */
/* identifies our server's bindings. It is */
/* created by us, in create_server_uuid(), */
/* and goes into server_entry_ptr->id in */
/* make_server_entry(). It actually ends */
/* up being identical to the configuration */
/* UUID, if one is created (by calling the */
/* dced_server_create() routine). */

dce_error_string_t error_string; /* Used to directly retrieve er- */
/* ror message strings in cases where the */
/* serviceability call can't be used, be- */
/* cause the svc table hasn't been regis- */
/* tered yet. */

int print_status; /* Used to return status from the */
/* dce_error_inq_text() routine. */

databases_open = FALSE;

/* Process the command line... */
do_command_line(argc,

argv,
&server_principal_name ,
&entryname_vector);

/* The following calls set up default routing of serviceability */
/* messages. Note that these must be called before */
/* dce_svc_register()... */
for (i = 0, route_error = FALSE; (i < MAX_DEFAULT_ROUTES) && (!route_error); i++)
{

fprintf(stdout, " Setting default route %s ...\n",
default_routes[i]);

dce_svc_routing(default_routes[i], &status);
if (status != svc_s_ok)
{

print_server_error("dce_svc_routing(default_routes[i])",
status);

status = svc_s_ok;
}

}
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/* Set the default serviceability debug level and route... */
dce_svc_debug_routing(default_debug_route, &status);

if (status != error_status_ok)
{

dce_error_inq_text(status, error_string, &pprint_status);
fprintf(stdout, "dce_svc_routing(): %s\n", error_string);
exit(1);

}

/* Get serviceability handle... */
smp_svc_handle = dce_svc_register(smp_svc_table,

(idl_char*)"smp",
&status);

if (status != error_status_ok)
{

print_server_error("dce_svc_register()", status);
exit(1);

}

/* Set up in-memory serviceability message table... */
dce_msg_define_msg_table(smp__table,

sizeof smp__table / sizeof smp__table[0],
&status);

if (status != error_status_ok)
{

print_server_error("dce_msg_define_msg_table()", status);
exit(1);

}

dce_svc_printf(SIGN_ON_MSG);

/* Create an object UUID for this server instance... */
create_server_uuid(&server_uuid, &server_uuid_v);

/* Register the interface and get bindings... */

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,
"Calling server_register_get_bindings()"));

server_register_get_bindings(sample_v1_0_s_ifspec,
&binding_vector,
&status);

if (status != error_status_ok)
{

print_server_error("server_register_get_bindings()",
status);

exit(1);
}

/* Register server authentication information... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_server_register_auth_info()"));
rpc_server_register_auth_info(server_principal_name,

rpc_c_authn_dce_secret,
NULL,
KEYTAB,
&status);

if (status != error_status_ok)
{

print_server_error("rpc_server_register_auth_info()",
status);

exit(1);
}

/* Assume new identity... */
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DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,
"Calling server_get_identity()"));

server_get_identity(server_principal_name,
&login_context,
(unsigned_char_p_t)KEYTAB,
&status);

if (status != error_status_ok)
{

print_server_error("server_get_identity()", status);
exit(1);

}

/* Spin off a thread to wait for signals... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Spawning signal handler thread"));
if (pthread_create(&sigcatcher,

pthread_attr_default,
(pthread_startroutine_t)signal_handler,
(void*)0))

{
dce_svc_printf(NO_SIGNAL_CATCHER_MSG);
exit(1);

}

/* Export objects to namespace and register them in end- */
/* point map... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_export_objects()"));
server_export_objects(sample_v1_0_s_ifspec,

binding_vector,
&server_uuid_v,
&entryname_vector,
(unsigned_char_t *)IF_ANNOTATION,
&status);

if (status != error_status_ok)
{

print_server_error("server_export_objects()", status);
goto CLEANUP_EXIT;

}

/* Register the remote binding interface... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling sample_bind_export()"));
sample_bind_export(binding_vector, &server_uuid_v, &status);
if (status != error_status_ok)
{

print_server_error("sample_bind_export()", status);
exit(1);

}

/* Create a default ACL manager... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_acl_mgr_setup()"));
server_acl_mgr_setup(

(unsigned_char_t *)ACL_DB_PATH, /* Pathname for */
/* database files. */

(dce_acl_resolve_func_t)sample_resolve_by_name,
/* Our name->ACL UUID resolution */
/* function. */

sample_acl_mgr_uuid, /* UUID of our ACL manager; */
/* hard-coded at top of this file. */

sample_object_uuid, /* UUID of our sample object; */
/* hard-coded at top of this file. */

(unsigned_char_t *)SAMPLE_OBJECT_NAME, /* Name of */
/* our sample object. */

OBJ_OWNER_PERMS, /* Owner's permissions on sample */
/* object. */
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(unsigned_char_t *)SAMPLE_OWNER, /* Principal */
/* name of sample object owner. */

0, /* TRUE => object is a container. */
&db_acl, /* Will contain ACL UUID store handle. */
&db_object, /* Will contain obj UUID store handle. */
&db_name, /* Will contain name store handle. */
&sample_acl_uuid, /* Will contain object ACL UUID. */
&mgmt_acl_uuid, /* Will contain mgmt ACL UUID. */
&status);

if (status != error_status_ok)
{

print_server_error("server_acl_mgr_setup()", status);
goto CLEANUP_EXIT;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_to_string()"));

uuid_to_string(&mgmt_acl_uuid, &uuid_string, &status);
if (status != uuid_s_ok)
{

print_server_error("uuid_to_string()", status);
exit(1);

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,
"String form of mgmt_acl_uuid == %s", uuid_string));

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_string_free()"));

rpc_string_free(&uuid_string, &status);
if (status != rpc_s_ok)
{

print_server_error("rpc_string_free()", status);
exit(1);

}

/* Register the remote ACL interface (at the endpoint map, */
/* but not in the namespace)... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_rdacl_export()"));
server_rdacl_export(binding_vector, &server_uuid_v, &status);
if (status != error_status_ok)
{

print_server_error("server_rdacl_export()", status);
goto CLEANUP_EXIT;

}

/* Start listening for calls... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_server_listen()"));
rpc_server_listen(rpc_c_listen_max_calls_default, &status);
if (status != error_status_ok)
{

print_server_error("rpc_server_listen()", status);
exit(1);

}

CLEANUP_EXIT:

/********************************************************************/
/* */
/* Cleanup code -- Reached either because the server listen */
/* returned, or because we never got to listen in */
/* the first place due to some runtime error. */
/* */
/* */
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/********************************************************************/

/* Close the ACL databases... */
if (databases_open)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,
"Calling server_acl_mgr_close()"));

server_acl_mgr_close(&db_acl, &db_object, &db_name, &status);
if (status != error_status_ok)
{

print_server_error("server_acl_mgr_close()", status);
}

}

/* Be sure credentials are still valid before we try to */
/* cleanup... */
dce_svc_printf(CLEANUP_MSG);
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_renew_identity()"));
server_renew_identity(server_principal_name,

login_context,
(unsigned_char_p_t)KEYTAB,
CLEANUPTIME,
&status);

if (status != error_status_ok)
{

print_server_error("server_renew_identity()", status);
}

/* Unexport server objects from namespace and from endpoint */
/* map... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_cleanup_objects()"));
server_cleanup_objects(sample_v1_0_s_ifspec,

binding_vector,
&server_uuid_v,
&entryname_vector,
&status);

if (status != error_status_ok)
{

print_server_error("server_cleanup_objects()", status);
exit(1);

}

/* Unregister the remote ACL interface from the endpoint */
/* map... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_rdacl_cleanup()"));
server_rdacl_cleanup(binding_vector, &server_uuid_v, &status);
if (status != error_status_ok)
{

print_server_error("server_rdacl_cleanup()", status);
}

/* Unregister the remote bind interface from the endpoint */
/* map... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_bind_cleanup()"));
server_bind_cleanup(binding_vector, &server_uuid_v, &status);
if (status != error_status_ok)
{

print_server_error("server_bind_cleanup()", status);
}

/* Print server exit message... */
dce_svc_printf(SERVER_EXIT_MSG);
return(0);
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}

/******
*
* do_command_line -- Get and interpret arguments and options from the
* command line, and do other setup related to the
* command line's contents.
*
* Returns 0 if normal invocation, 1 if setup.
*
* Called from main().
*
******/

int do_command_line(
int argc,
char *argv[],
unsigned_char_t **server_principal_name,
entryname_vector_t *entryname_vector
)
{

dce_error_string_t error_string;
int print_status;
unsigned32 status;

/* Note that the code expects you to type as the second argument */
/* a slash-terminated full CDS directory name, to which it will */
/* then concatenate the entryname. It is this name that is then */
/* passed to the server_export_objects() routine later on. */

/* Check the command line... */
if ( (argc == 2) && (( strcmp(argv[1], "setup") == 0) || ( strcmp(argv[1],

"unsetup") == 0)) )
return 1;

else if (argc < 3)
{

fprintf(stdout, "\n Usage:\n");
fprintf(stdout, " %s /\n\n", argv[0]);
exit(1);

}

/* Get the server's principal name from the command line... */
*server_principal_name = (unsigned_char_p_t)malloc(strlen(argv[1]));
strcpy((char *)*server_principal_name, (char *)argv[1]);

/* Get the list of server entry names from the command line... */
entryname_vector->count = 1;
entryname_vector->name[0] = (unsigned_char_p_t)malloc(strlen(argv[2]) + NAMELEN);
strcpy((char *)entryname_vector->name[0], argv[2]);
strcat((char *)entryname_vector->name[0], DEFNAME);

/* Set the program name for serviceability messages... */
dce_svc_set_progname(argv[0], &status);
if (status != error_status_ok)
{

dce_error_inq_text(status, error_string, &print_status);
fprintf(stdout, "dce_svc_set_progname(): %s\n", error_string);
exit(1);

}

return 0;
}
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/******
*
* server_register_get_bindings -- Register an interface:
*
* Set up only one type manager
* Use all protocol sequences
* Return the bindings
*
* Called from main().
*
******/

void server_register_get_bindings(
rpc_if_handle_t interface, /* Interface to register. */
rpc_binding_vector_t **binding_vector, /* To return bindings. */
unsigned32 *status) /* To return status. */
{

unsigned_char_t *string_binding;
int i;

*status = error_status_ok;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_register_get_bindings()"));

/* Register the default interface, default epv, and nil type */
/* UUID... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_server_register_if()"));
rpc_server_register_if(interface, NULL, NULL, status);
if (*status != error_status_ok)
{

print_server_error("rpc_server_register_if()", *status);
return;

}

/* Use all available protocol sequences... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_server_use_all_protseqs()"));
rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default,

status);
if (*status != error_status_ok)
{

print_server_error("rpc_server_use_all_protseqs()", *status);
return;

}

/* Get the binding handles generated by the runtime... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_server_inq_bindings()"));
rpc_server_inq_bindings(binding_vector, status);
if (*status != error_status_ok)
{

print_server_error("rpc_server_inq_bindings()", *status);
return;

}

/********************************************************************
*
* The following shows how to convert a vector of bindings into
* string bindings, and to print them out...
*
*
*****/
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dce_svc_printf(BINDINGS_RECEIVED_MSG, "sample",
(**binding_vector).count);

for (i = 0; i < (**binding_vector).count; i++)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_binding_to_string_binding()"));

rpc_binding_to_string_binding((**binding_vector).binding_h[i],
&string_binding,
status);

if (*status != rpc_s_ok)
{

print_server_error("rpc_binding_to_string_binding()",
*status);

exit(1);
}

dce_svc_printf(FULL_BINDING_MSG, "sample", string_binding);

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_string_free()"));

rpc_string_free(&string_binding, status);
if (*status != rpc_s_ok)
{

print_server_error("rpc_string_free()", *status);
exit(1);

}

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_register_get_bindings()"));

}

/******
*
*
* server_export_objects -- Set up a simple object-based binding scheme
* for the server, i.e.:
*
* Register bindings and objects in the endpoint map,
* Then export each object to a separate name space entry.
*
* The function uses a vector of entry names that correspond one-to-one
* with the objects in the object uuid vector. The server must have
* export permission to CDS in order to successfully execute this
* function.
*
* Called from main().
*
******/
void server_export_objects(
rpc_if_handle_t interface, /* The interface specification. */
rpc_binding_vector_t *binding_vector, /* The server's binding handles. */
uuid_vector_t *object_uuid_vector, /* Server instance UUID, created in */

/* main. */
entryname_vector_t *entryname_vector, /* Server entry names, from command */

/* line. */
unsigned_char_t *annotation, /* Annotation string for endpoint */

/* map entry. */
unsigned32 *status) /* To return status */
{
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uuid_vector_t object_uuid; /* Used to hold object UUIDs to be */
/* passed to rpc_ns_binding_export(). */

int i; /* Index variable. */

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_export_objects()"));

*status = error_status_ok;
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_ep_register()"));
rpc_ep_register(interface, binding_vector, object_uuid_vector,

annotation, status);
if (*status != error_status_ok)
{

print_server_error("rpc_ep_register()", *status);
return;

}

if (object_uuid_vector)
{

if (entryname_vector->count != object_uuid_vector->count)
{

dce_svc_printf(BAD_ENTRYNAME_COUNT_MSG);
return;

}

object_uuid.count = 1;

/* Export objects one at a time to CDS entries... */
for (i = 0; i < entryname_vector->count; i++)
{

dce_svc_printf(EXPORTING_TO_MSG, entryname_vector->name[i]);
object_uuid.uuid[0] = object_uuid_vector->uuid[i];
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_ns_binding_export()"));
rpc_ns_binding_export(rpc_c_ns_syntax_default,

entryname_vector->name[i],
interface,
binding_vector,
(uuid_vector_t*)&object_uuid,
status);

if (*status != error_status_ok)
{

print_server_error("rpc_ns_binding_export()",
*status);

return;
}

}
}
else
{

dce_svc_printf(EXPORTING_TO_MSG, entryname_vector->name[0]);
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_ns_binding_export()"));
rpc_ns_binding_export(rpc_c_ns_syntax_default,

entryname_vector->name[0],
interface,
binding_vector,
NULL,
status);

if (*status != error_status_ok)
{

print_server_error("rpc_ns_binding_export()",
*status);

return;
}
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}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_export_objects()"));

}

/******
*
* server_cleanup_objects -- Unexport and unregister all server objects.
*
* The server must have valid credentials for this routine to
* successfully execute.
*
* Called from main().
*
******/

void server_cleanup_objects(
rpc_if_handle_t interface, /* Interface to unregister. */
rpc_binding_vector_t *binding_vector, /* Server bindings to delete. */
uuid_vector_t *object_uuid_vector, /* Server instance UUID(s). */
entryname_vector_t *entryname_vector, /* Server entry names. */
unsigned32 *status) /* To return status. */
{

struct {
unsigned32 count;
uuid_t *uuid[1];

} object_uuid;

int i;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_cleanup_objects()"));

*status = error_status_ok;

/* Get rid of the endpoints... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_ep_unregister()"));
rpc_ep_unregister(interface, binding_vector, object_uuid_vector,

status);
if (*status != error_status_ok)
{

print_server_error("rpc_ep_unregister()", *status);
return;

}

/* Get rid of the server instance UUID(s). However, note that at */
/* present there is only one of these, and it's hard-coded below. */
if (object_uuid_vector)
{

if (entryname_vector->count != object_uuid_vector->count)
{

dce_svc_printf(BAD_ENTRYNAME_COUNT_MSG);
return;

}
object_uuid.count = 1;

/* Unexport objects one at a time from CDS entries... */
for (i = 0; i < entryname_vector->count; i++)
{

dce_svc_printf(UNEXPORTING_FROM_MSG,
entryname_vector->name[i]);
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object_uuid.uuid[0] = object_uuid_vector->uuid[i];
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_ns_binding_unexport()"));
rpc_ns_binding_unexport(rpc_c_ns_syntax_default,

entryname_vector->name[i],
interface,
(uuid_vector_t*)&object_uuid,
status);

if (*status != error_status_ok)
{

print_server_error("rpc_ns_binding_unexport()",
*status);

return;
}

}
}
else
/* I.e., there is only one server instance to unexport... */
{

dce_svc_printf(UNEXPORTING_FROM_MSG, entryname_vector->name[0]);
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_ns_binding_unexport()"));
rpc_ns_binding_unexport(rpc_c_ns_syntax_default,

entryname_vector->name[0],
interface,
NULL,
status);

if (*status != error_status_ok)
{

print_server_error("rpc_ns_binding_unexport()",
*status);

return;
}

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_cleanup_objects()"));

}

/******
*
* managekey -- Make sure the server principal's key is changed before
* it expires.
*
* The key management thread which runs this function is created
* in server_get_identity(), below.
*
*
******/

void managekey(char *prin_name){ /* Server principal name */
unsigned32 status;

status = error_status_ok;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering managekey()"));

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling sec_key_mgmt_manage_key()"));

sec_key_mgmt_manage_key(
rpc_c_authn_dce_secret, /* Authentication protocol. */
KEYTAB, /* Local key file. */
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(idl_char *)prin_name, /* Principal name. */
&status);

if (status != error_status_ok)
print_server_error("sec_key_mgmt_manage_key()", status);

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting managekey()"));

}

/******
*
* server_get_identity -- Establish a new server identity with valid
* credentials. This includes setting up a key
* management thread.
*
*
* Called from main().
*
******/

void server_get_identity(
unsigned_char_p_t prin_name, /* Server principal name. */
sec_login_handle_t *login_context, /* Returns server's login context. */
unsigned_char_p_t keytab, /* Local key file. */
unsigned32 *status)
{

pthread_t keymgr;
sec_passwd_rec_t *keydata;
sec_login_auth_src_t auth_src;
boolean32 reset_pwd;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_get_identity()"));

*status = error_status_ok;

/* Spin off thread to manage key for specified principal... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling pthread_create()"));
if (pthread_create(&keymgr, /* Thread handle. */

pthread_attr_default, /* Specifies default thread */
/* attributes. */

(pthread_startroutine_t)managekey, /* Start rou- */
/* tine; see above. */

(void*)prin_name)) /* Argument to pass to start */
/* routine: server princi- */
/* pal name. */

{
dce_svc_printf(CANNOT_MANAGE_KEYS_MSG);
return;

}

/* Create a context and get the login context... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_login_setup_identity()"));
sec_login_setup_identity(prin_name,

sec_login_no_flags,
login_context,
status);

if (*status != error_status_ok)
{

print_server_error("sec_login_setup_identity()", *status);
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return;
}

/* Get secret key from the keytab file... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_key_mgmt_get_key()"));
sec_key_mgmt_get_key(rpc_c_authn_dce_secret,

keytab,
prin_name,
0,
(void**)&keydata,
status);

if (*status != error_status_ok)
{

print_server_error("sec_key_mgmt_get_key()", *status);
return;

}

/* Validate the login context... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_login_validate_identity()"));
sec_login_validate_identity(*login_context,

keydata,
&reset_pwd,
&auth_src,
status);

if (*status != error_status_ok)
{

print_server_error("sec_login_validate_identity()", *status);
return;

}

/* Certify identity information... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,
"Calling sec_login_certify_identity()"));
sec_login_certify_identity(*login_context, status);
if (*status != error_status_ok)
{

print_server_error("sec_login_certify_identity()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling sec_login_set_context()"));

sec_login_set_context(*login_context, status);
if (*status != error_status_ok)
{

print_server_error("sec_login_set_context()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_get_identity()"));

}

/******
*
* server_renew_identity -- Make sure that credentials are still valid, and
* renew them if they are not.
*
*
* This routine is called (with the current credentials) whenever a task
* is about to be attempted that requires valid credentials. For an ex-
* ample, see the cleanup code in "main()" above. A valid credential will
* nevertheless be considered invalid if it will expire within time_left
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* seconds. This gives a margin of time between the validity check that
* occurs here and the actual use of the credential.
*
* Called from main() (but can be called from elsewhere).
*
******/

void server_renew_identity(
unsigned_char_p_t prin_name, /* Server's principal name. */
sec_login_handle_t login_context, /* Server's login context. */
unsigned_char_p_t keytab, /* Local key file. */
unsigned32 time_left, /* Amount of "margin" -- see above. */
unsigned32 *status) /* To return status. */
{

signed32 expiration;
time_t current_time;
sec_passwd_rec_t *keydata;
sec_login_auth_src_t auth_src;
boolean32 reset_pwd;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_renew_identity()"));

*status = error_status_ok;

/* Get the lifetime for the server's Ticket-Granting-Ticket (TGT). */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_login_get_expiration()"));
sec_login_get_expiration(login_context,

&expiration,
status);

if (*status != error_status_ok)
{

print_server_error("sec_login_validate_identity()", *status);
return;

}

/* Get current time... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling time()"));
time(&current_time);

/* Now, if the expiration time is sooner than the desired "time */
/* left"... */
if (expiration < (current_time + time_left))
{

/* Refresh the server's authenticated identity... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_login_refresh_identity()"));
sec_login_refresh_identity(login_context,

status);
if (*status != error_status_ok)
{

print_server_error("sec_login_refresh_identity()", *status);
return;

}

/* Get key from local file... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_key_mgmt_get_key()"));
sec_key_mgmt_get_key(rpc_c_authn_dce_secret,

keytab,
prin_name,
0,
(void**)&keydata,
status);

if (*status != error_status_ok)
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{
print_server_error("sec_key_mgmt_get_key()", *status);
return;

}

/* Validate the login context... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_login_validate_identity()"));
sec_login_validate_identity(login_context,

keydata,
&reset_pwd,
&auth_src,
status);

if (*status != error_status_ok)
{

print_server_error("sec_login_validate_identity()", *status);
return;

}
}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Successfully exiting server_renew_identity()"));

}

/******
*
* server_create_dflt_acl -- Create a default ACL; i.e., get the initial
* container ACL and copy it (instead of con-
* structing an ACL whole, as below), and create
* a UUID for the ACL.
*
*
******/

void server_create_dflt_acl(
dce_db_handle_t db_acl, /* Backing store handle. */
unsigned_char_t *container, /* Object we want the ACL of. */
void (*resolver)(), /* ACL name-to-UUID resolver function; */

/* i.e., sample_resolve_by_name(). */
boolean32 is_container, /* Is the object a container? */
sec_acl_t *acl, /* ACL will be returned here. */
uuid_t *acl_uuid, /* ACL's UUID will be returned here. */
unsigned32 *status)

{

sec_acl_type_t sec_acl_type; /* To contain ACL type specifier. */
uuid_t iacl_uuid; /* To contain initial container */

/* ACL's UUID. */

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_create_dflt_acl()"));

/* Create the UUID for the new ACL... */
*status = error_status_ok;
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling uuid_create()"));
uuid_create(acl_uuid, status);
if (*status != error_status_ok)
{

print_server_error("uuid_create()", *status);
return;

}

if (is_container)
sec_acl_type = 2;
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else
sec_acl_type = 1;

/* Now get the initial container's ACL UUID. */
/* This is a call to sample_resolve_by_name(); see below... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling (*resolver)()"));
(*resolver)(NULL, /* No client binding handle; this isn't a re- */

/* mote call. */
container, /* The object whose ACL's UUID we want; */

/* here, the initial container. */
sec_acl_type, /* Type of ACL we want UUID for. */
NULL, /* No manager type specified. */
0, /* Dummy parameter for us. */
NULL, /* No need to specify a special backing */

/* store handle. */
&iacl_uuid, /* Initial container ACL's UUID is re- */

/* turned here. */
status);

if (*status != error_status_ok)
{

print_server_error("resolver function(*)", *status);
return;

}

/* Now get the initial container ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_fetch_by_uuid()"));
dce_db_fetch_by_uuid(db_acl, /* ACL UUID-indexed database. */

&iacl_uuid, /* The initial container ACL UUID. */
acl, /* The ACL is returned here. */
status);

if (*status != error_status_ok)
{

print_server_error("dce_db_fetch_by_uuid()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_create_dflt_acl()"));

}

/******
*
* server_get_local_principal_id -- Get (from the local cell registry) the
* UUID corresponding to a principal name.
*
*
* Called from server_create_acl() and server_acl_mgr_setup().
*
******/

void server_get_local_principal_id(
unsigned_char_t *p_name, /* Simple principal name. */
uuid_t *p_id, /* UUID returned here. */
unsigned32 *status) /* Status returned here. */

{

char *cell_name; /* For local cell name. */
sec_rgy_handle_t rhandle; /* For registry server handle. */

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_get_local_principal_id()"));
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/* First, get the local cell name... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_cf_get_cell_name()"));
dce_cf_get_cell_name(&cell_name, status);
if (*status != error_status_ok)
{

print_server_error("dce_cf_get_cell_name()", *status);
return;

}

/* Now bind to the cell's registry... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_rgy_site_open()"));
sec_rgy_site_open((unsigned_char_t *)cell_name, &rhandle, status);
if (*status != error_status_ok)
{

print_server_error("sec_rgy_site_open()", *status);
return;

}

/* Free the string space we got the cell name in... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling free()"));
free(cell_name);

/* Now get from the registry the UUID associated with the principal */
/* name we got in the first place... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sec_rgy_pgo_name_to_id()"));
sec_rgy_pgo_name_to_id(rhandle,

sec_rgy_domain_person,
p_name,
p_id,
status);

if (*status != error_status_ok)
{

print_server_error("sec_rgy_pgo_name_to_id()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_get_local_principal_id()"));

}

/******
*
* server_create_acl -- Create an ACL with some specified set of permissions
* assigned to some principal user.
*
*
* Called from server_acl_mgr_setup().
*
******/

void server_create_acl(
uuid_t mgr_type_uuid, /* Manager type of ACL to create. */
sec_acl_permset_t perms, /* Permission set for ACL. */
unsigned_char_t *user, /* Principal name for new entry. */
sec_acl_t *acl, /* To return the ACL entry in. */
uuid_t *acl_uuid, /* To return the ACL's UUID in. */
unsigned32 *status) /* To return status in. */

{
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static uuid_t u; /* For the principal's UUID (from the registry). */

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_create_acl()"));

*status = error_status_ok;

/* Create a UUID for the ACL... */
/* Note that the new UUID doesn't get associated with the entry in */
/* this routine. It must happen in server_acl_mgr_setup()... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling uuid_create()"));
uuid_create(acl_uuid, status);
if (*status != error_status_ok)
{

print_server_error("uuid_create()", *status);
return;

}

/* Create an initial ACL object with default permissions for the */
/* designated user principal identity... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_obj_init()"));
dce_acl_obj_init(&mgr_type_uuid, acl, status);
if (*status != error_status_ok)
{

print_server_error("dce_acl_obj_init()", *status);
return;

}

/* Get the specified principal's UUID... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_get_local_principal_id()"));
server_get_local_principal_id(user, &u, status);
if (*status != error_status_ok)
{

print_server_error("server_get_local_principal_id()", *status);
return;

}

/* Now add the user ACL entry to the ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_obj_add_user_entry()"));
dce_acl_obj_add_user_entry(acl, perms, &u, status);
if (*status != error_status_ok)
{

print_server_error("dce_acl_obj_add_user_entry()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_create_acl()"));

}

/******
*
* server_store_acl -- Store ACL-related data.
*
*
* The data is stored in databases that support a
* name->object_uuid->acl_uuid style of ACL lookup.
*
*
* Called from server_acl_mgr_setup().
*
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******/
/****************************************************************************/
/* */
/* There are three databases (this can be seen also in the */
/* server_acl_mgr_close() routine): */
/* */
/* db_acl:ACL (UUID)-indexed: (used to store the ACLs themselves) */
/* db_object:Object (UUID)-indexed: (used to store the object data */
/* itself) */
/* db_name:Name ("Residual")-indexed: (used to store the simple names of */
/* the objects) */
/* */
/* */
/* */
/****************************************************************************/

void server_store_acl(
dce_db_handle_t db_acl, /* ACL (UUID)-indexed store. */
dce_db_handle_t db_object, /* Object (UUID)-indexed store. */
dce_db_handle_t db_name, /* Name-indexed store. */
sec_acl_t *acl, /* The ACL itself. */
uuid_t *acl_uuid, /* ACL UUID. */
uuid_t *object_uuid, /* Object UUID. */
unsigned_char_t *object_name, /* The name of the object. */
void *object_contents, /* The actual object data contents. */

/* NOTE: NOT USED NOW. */
boolean32 is_container, /* Are we storing a container ACL? */
unsigned32 *status) /* To return status. */

{

/* These two variables are used to hold UUIDs for the ACLs we will */
/* need to create if we have a container ACL on our hands... */
static uuid_t def_object, def_container;
static sample_data_t object_data;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_store_acl()"));

*status = error_status_ok;

/* Null the contents of the object_data variable... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling bzero()"));
bzero((char *)&object_data, sizeof object_data);

/* If we have a container ACL, then we have to create and store the */
/* special stuff associated with it-- namely, the container ACL */
/* itself, and a default object ACL to go with it... */
if (is_container)
{

/* Create a UUID for the default object ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling uuid_create()"));
uuid_create(&def_object, status);
if (*status != error_status_ok)
{

print_server_error("uuid_create()", *status);
return;

}
/* Create a UUID for the default container ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling uuid_create()"));
uuid_create(&def_container, status);
if (*status != error_status_ok)
{

print_server_error("uuid_create()", *status);
return;
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}

/* Store the default object ACL into UUID-indexed store... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_store_by_uuid()"));
dce_db_store_by_uuid(db_acl, &def_object, acl, status);
if (*status != error_status_ok)
{

print_server_error("dce_db_store_by_uuid()", *status);
return;

}

/* Store the default container ACL into UUID-indexed */
/* store... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_store_by_uuid()"));
dce_db_store_by_uuid(db_acl, &def_container, acl, status);
if (*status != error_status_ok)
{

print_server_error("dce_db_store_by_uuid()", *status);
return;

}

}

/* Store the plain object ACL into ACL UUID-indexed store... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_store_by_uuid()"));
dce_db_store_by_uuid(db_acl, acl_uuid, acl, status);
if (*status != error_status_ok)
{

print_server_error("dce_db_store_by_uuid()", *status);
return;

}

/* Store the ACL UUID(s) into a standard object header... */

/* The following call sets up */
/* some general info in the object-indexed database that is asso- */
/* ciated with the Object and ACL UUIDs passed. This is where the */
/* ACL on an object actually gets connected with that object. Up */
/* above the information connected with the ACL UUID was stored */
/* in a sec_acl_t structure, but it's the following call that ac- */
/* tually associates this structure with some object. Afterward */
/* the object data itself (what is being "ACL'd") gets stored via */
/* the dce_db_store_by_uuid() call, and finally the object UUID */
/* itself is stored by name via the dce_db_store_by_name() call. */
/* So the reverse process (beginning with the name) will be: */
/* */
/* 1. Look up the object UUID by name by calling */
/* dce_db_fetch_by_name(). */
/* */
/* 2. Look up the data (i.e., object data) for the object */
/* by calling dce_db_fetch_by_uuid(). */
/* */
/* 3. Extract the ACL UUID from the correct field in the object */
/* data structure. */
/* */
/* ...These steps can be seen in sample_resolve_by_name(), the */
/* purpose of which is to return an ACL UUID when given an object */
/* name; the permission lists in effect for the object can then be */
/* accessed and checked against some set of permissions presented */
/* by a prospective accessor. */
/* */
/* Once the ACL library has gotten from us the UUID that identifies */
/* the ACL on the object it wants to investigate the permissions */
/* on, it's up to it to go on to retrieve the ACL itself, using */
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/* the UUID to do so. It is able to do this because we have reg- */
/* istered our ACL database via the dce_acl_register_object_type() */
/* call (this is also, by the way, where our *(resolver)() routine */
/* is registered). So the runtime can extract the ACL information, */
/* compare it with the permissions presented by the entity that's */
/* trying to access the object in question, and allow, or not al- */
/* low, the operation to proceed accordingly. */
/* */
/* The way to test whether our sample ACLs have been set up cor- */
/* rectly or not would be to try to do various things to them via */
/* acl_edit. */
/* */
/* Note that the registration procedures described here are only to */
/* set up an application's ACL manager so that it is accessible */
/* via acl_edit (and, I suppose, dced and dcecp). In situations */
/* where a client in contact with the application server itself is */
/* trying to perform some operation, it is the responsibility of */
/* the application code itself to check the client's authorization */
/* and make the correct decision as to access. Note though that it */
/* does this through the dce_acl_is_client_authorized() call, */
/* which again can work only if you have correctly registered the */
/* application's manager. For an example of using this call see */
/* the sample_call() code in sample_manager.c; it is also called */
/* by sample_mgmt_auth(), below in this file. */
/* */
/* */
/* In summary, there are basically three avenues of access */
/* that an application has to provide for when setting up an ACL */
/* manager: */
/* */
/* 1. Access by clients to the server via the remote mgmt */
/* interface. This is handled by setting up a mgmt call- */
/* back routine that will be automatically invoked by the */
/* runtime whenever a remote mgmt access is attempted. Our */
/* callback routine is sample_mgmt_auth(), below, and it is */
/* registered by a call to rpc_mgmt_set_authorization(). */
/* */
/* 2. Access by entities of any kind via acl_edit. This is */
/* handled by the mechanisms described above, which are */
/* set up by the call to dce_acl_register_object_type(). */
/* */
/* 3. Access by clients in contact with the server. This is */
/* handled by the server code itself, as described above. */
/* */
/* */
/* */
/* Note that the use of the three databases given here is necessar- */
/* ily true only of the ACL databases we are setting up here. The */
/* object data stored in databases is strictly up to the applica- */
/* tion; that is why this parameter is defined as (void *). */
/* In other words, the backing store library can be used for any- */
/* thing. */
/* */
/* In the sample_db.idl file can be seen the object data type de- */
/* fined for this sample application, which is stored in the ob- */
/* ject UUID-indexed database... */

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling dce_db_std_header_init()"));

dce_db_std_header_init(
db_object, /* Object database. */
&(object_data.s_hdr), /* Object data hdr. */
object_uuid, /* Object UUID. */
acl_uuid, /* ACL UUID. */
&def_object, /* Default object ACL. */
&def_container, /* Default container ACL. */
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0, /* Reference count. */
status);

if (*status != error_status_ok)
{

print_server_error("dce_db_std_header_init()", *status);
return;

}

/* Now store the object data keyed by object UUID... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_store_by_uuid()"));

/* This is perhaps a not very nice way to do this, but it will have */
/* to serve for the time being... */
if (strcmp((char *)object_name, SAMPLE_OBJECT_NAME) == 0)

strcpy((char *)object_data.s_data.message,
"THIS IS AN OFFICIAL SAMPLE OBJECT TEXT!");

else if (strcmp((char *)object_name, MGMT_OBJ_NAME) == 0)
strcpy((char *)object_data.s_data.message,

"THIS IS AN OFFICIAL MGMT OBJECT SAMPLE TEXT!");
else

strcpy((char *)object_data.s_data.message,
"I DON'T KNOW WHAT THIS IS!");

dce_db_store_by_uuid(db_object,
object_uuid,
(void *)&object_data,
status);

if (*status != error_status_ok)
{

print_server_error("dce_db_store_by_uuid()", *status);
return;

}

/* Finally, store the object UUID keyed by the object ("residual") */
/* name... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_store_by_name(%s)", object_name));
dce_db_store_by_name(db_name, (char *)object_name, object_uuid, status);
if (*status != error_status_ok)
{

print_server_error("dce_db_store_by_name()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_store_acl()"));

}

/******
*
* server_acl_mgr_setup -- Open and, if necessary, create the ACL-related
* databases, i.e.:
*
* 1. Set up a default ACL manager for the management interface.
*
* 2. Create an initial ACL. For servers that dynamically create
* objects, this ACL is intended to be used as the ACL on the
* "container" in which objects are created. If the server
* manages static objects, this ACL can be used for some other
* purpose.
*
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* Note that all the container-related code is actually in the
* server_store_acl() routine above.
*
* Called from main().
*
******/

void server_acl_mgr_setup(
unsigned_char_t *db_acl_path, /* Pathname for databases. */
dce_acl_resolve_func_t resolver, /* sample_resolve_by_name. */
uuid_t acl_mgr_uuid, /* ACL manager UUID. */
uuid_t object_uuid, /* Object UUID. */
unsigned_char_t *object_name, /* Object name. */
sec_acl_permset_t owner_perms, /* Owner permission set. */
unsigned_char_t *owner, /* Owner name. */
boolean32 is_container, /* Is this a container object? */

/* == TRUE from main(). */
/* [out] parameters: */

dce_db_handle_t *db_acl, /* ACL-indexed store handle. */
dce_db_handle_t *db_object, /* Object-indexed store handle. */
dce_db_handle_t *db_name, /* Name-indexed store handle. */
uuid_t *object_acl_uuid, /* Object ACL UUID. */
uuid_t *mgmt_acl_uuid, /* Mgmt ACL UUID. */
unsigned32 *status)

{

uuid_t machine_princ_id;
char *machine_principal;
unsigned_char_t *uuid_string;
sec_acl_t *new_obj_acl, *new_mgmt_acl;
boolean32 need_init;
unsigned32 dbflags;
static sample_data_t object_data;
unsigned_char_t *acl_path_string;
sec_acl_permset_t permset = (sec_acl_permset_t) 0;

#ifdef IBMOS2
FILE *checkfile; /* Check existence of db files */

#endif

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_acl_mgr_setup()"));

new_obj_acl = (sec_acl_t *)malloc(sizeof(sec_acl_t));
new_mgmt_acl = (sec_acl_t *)malloc(sizeof(sec_acl_t));

*status = error_status_ok;
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling bzero()"));
bzero((char *)&object_data, sizeof object_data);

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_create_nil()"));

uuid_create_nil(object_acl_uuid, status);
if (*status != error_status_ok)
{

print_server_error("uuid_create_nil()", *status);
return;

}

need_init = 0;

/* Build the full pathname string for the db_acl database... */
acl_path_string = malloc(MAX_ACL_PATH_SIZE);
strcpy((char *)acl_path_string, (char *)db_acl_path);
strcat((char *)acl_path_string, (char *)"/");
strncat((char *)acl_path_string, "db_acl", strlen("db_acl"));
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/* Find out if the database already exists... */
#ifndef IBMOS2

if (access((char *)acl_path_string, R_OK) != 0)
if (errno == ENOENT)

need_init = 1;
#else

if ((checkfile = fopen((char *)acl_path_string, "r+")) == NULL)
need_init = 1;

else
fclose(checkfile);

#endif /* IBMOS2 */

/********************************************************************/
/* Create the indexed-by-UUID databases. There are two of these: */
/* One for the ACL UUID-indexed store, and */
/* One for the Object UUID-indexed store... */

dbflags = db_c_index_by_uuid;

/* If the thing doesn't exist yet, then we need to do some init- */
/* ialization... */
if (need_init)

dbflags |= db_c_create;

/* Open (or create) the "db_acl" ACL UUID-indexed backing store. */
/* Note that no header type is specified among the dbflags, so the */
/* database will be created with no header-- that's the default... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_open()"));

dce_db_open(
(char *)acl_path_string, /* Filename of backing store. */
NULL, /* Backing store "backend type" default == hash. */
dbflags, /* We already specified index by UUID for this. */
(dce_db_convert_func_t)dce_rdacl_convert, /* Serialization */

/* function (generated by IDL). */
db_acl, /* The returned backing store handle. */
status);

if (*status != error_status_ok)
{

print_server_error("dce_db_open()", *status);
free(acl_path_string);
return;

}
/* Set the global variable that records whether we actually have */
/* opened the databases; this enables us to avoid calling the */
/* dce_db_close() routine for unopened databases, which will cause */
/* a core dump... */
databases_open = TRUE;

/* For the object database, we need standard backing store headers */
/* to hold UUIDs for all the various ACLs... */
dbflags |= db_c_std_header;
if (need_init)

dbflags |= db_c_create;

/* Now open (or create) the "db_object" store... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_open()"));

/* Build the full pathname string for the database... */
free(acl_path_string);
acl_path_string = malloc(MAX_ACL_PATH_SIZE);
strcpy((char *)acl_path_string, (char *)db_acl_path);
strcat((char *)acl_path_string, (char *)"/");
strncat((char *)acl_path_string, "db_object", strlen("db_object"));
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dce_db_open(
(char *)acl_path_string, /* Filename of backing store. */
NULL, /* Backing store "backend type" default == hash. */
dbflags, /* Specifies index by UUID, and include standard */

/* headers. */
(dce_db_convert_func_t)sample_data_convert, /* Serializa- */

/* tion function for object data. */
db_object, /* The returned backing store handle. */
status);

if (*status != error_status_ok)
{

print_server_error("dce_db_open()", *status);
free(acl_path_string);
return;

}

/* Create the indexed-by-name database... */

dbflags = db_c_index_by_name;
if (need_init)

dbflags |= db_c_create;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling dce_db_open()"));

/* Build the full pathname string for the database... */
free(acl_path_string);
acl_path_string = malloc(MAX_ACL_PATH_SIZE);
strcpy((char *)acl_path_string, (char *)db_acl_path);
strcat((char *)acl_path_string, (char *)"/");
strncat((char *)acl_path_string, "db_name", strlen("db_name"));

dce_db_open(
(char *)acl_path_string, /* Filename of backing store. */
NULL, /* Backing store "backend type" default == hash. */
dbflags, /* Specifies index by name. */
(dce_db_convert_func_t)uu_convert, /* Serialization func- */

/* tion for name data. */
db_name, /* The returned backing store handle. */
status);

if (*status != error_status_ok)
{

print_server_error("dce_db_open()", *status);
free(acl_path_string);
return;

}
free(acl_path_string);

/********************************************************************/

/* Now register our ACL manager's object types with the ACL */
/* library... */

/* Register for the mgmt ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_register_object_type()"));
dce_acl_register_object_type(

*db_acl, /* Backing store where ACLs are to be stored. */
&mgmt_acl_mgr_uuid, /* Type of ACL manager: this one is */

/* for mgmt ACL operations; the UUID is defined */
/* globally at the top of this file. */
/* Why do we need this parameter? Well, the way */
/* that the ACL library keeps track of the differ- */
/* ent "sets" of ACL databases is by manager UUID. */
/* The manager UUID is what the library will use */
/* to figure out which ACL database to open and */
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/* retrieve a requested ACL's contents from. */
/* Essentially what we are doing here is setting */
/* up things so that calls to the library routine */
/* dce_acl_is_client_authorized() can be made to */
/* check our ACLs, giving only the ACL UUID and a */
/* manager UUID to get the desired result. */

sizeof mgmt_printstr/sizeof mgmt_printstr[0], /* Number of */
/* items in mgmt_printstr array. */

mgmt_printstr, /* An array of sec_acl_printstring_t struc- */
/* tures containing the printable repre- */
/* sentation of each specified permission. */

&mgmt_info, /* A single sec_acl_printstring_t contain- */
/* ing the name and short description for */
/* the given ACL manager. */

sec_acl_perm_control, /* Permission set needed to change */
/* an ACL. Constants like these are defined */
/* in . */

sec_acl_perm_test, /* Permission set needed to test an ACL. */

resolver, /* Server function to get ACL UUID for a given */
/* object; for us it's the */
/* sample_resolve_by_name() call, below. */
/* This routine is for the use of acl_edit: */
/* it allows acl_edit to receive an object */
/* name and come up with the ACL UUID; at */
/* least that's what I think it's for. */

NULL, /* Argument to pass to resolver function. */
0, /* Flags -- none here. */
status);

if (*status != error_status_ok)
{

print_server_error("dce_acl_register_object_type()", *status);
return;

}

/* Now register for the regular ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_register_object_type()"));
dce_acl_register_object_type(

*db_acl, /* Backing store where ACLs are to be stored. */
&sample_acl_mgr_uuid, /* Hard-coded at top of this file. */
sizeof sample_printstr/sizeof sample_printstr[0], /* Number */

/* of items in our printstring array. */
sample_printstr, /* An array of sec_acl_printstring_t */

/* structures containing the printable rep- */
/* resentation of each specified permis- */
/* sion set. */

&sample_info, /* A single sec_acl_printstring_t contain- */
/* ing the name and short description for */
/* the manager we're registering. */

sec_acl_perm_control, /* Permission set needed to change an */
/* ACL. */

sec_acl_perm_test, /* The permission you need to test an */
/* ACL maintained by this manager. */

resolver, /* Application server function that gives */
/* the ACL UUID for a given object, when */
/* presented with that object's name; for */
/* us it's the sample_resolve_by_name() */
/* routine, below. */

NULL, /* Argument to pass to resolver routine; */
/* identified as the "resolver_arg" in the */
/* code to that function below. */

0, /* Flags -- none here. */
status);

if (*status != error_status_ok)
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{
print_server_error("dce_acl_register_object_type()", *status);
return;

}

/* If we're initializing, then we have to create all this stuff... */
if (need_init)
{

dce_svc_printf(NO_ACL_DBS_MSG);
/* Create the mgmt interface ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_create_acl()"));
server_create_acl(

mgmt_acl_mgr_uuid, /* Create mgmt manager type ACL. */
ALL_MGMT_PERMS, /* Permission set for new ACL. */
owner, /* Principal name for new entry. */
new_mgmt_acl, /* This will contain the new ACL. */
mgmt_acl_uuid, /* This will contain the ACL UUID. */
status);

if (*status != error_status_ok)
{

print_server_error("server_create_acl()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_to_string()"));

uuid_to_string(mgmt_acl_uuid, &uuid_string, status);
if (*status != uuid_s_ok)
{

print_server_error("uuid_to_string()", *status);
}
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"String form of mgmt_acl_uuid == %s",
uuid_string));

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_string_free()"));

rpc_string_free(&uuid_string, status);
if (*status != rpc_s_ok)
{

print_server_error("rpc_string_free()", *status);
}

/************************************************************/
/* For the management ACL we must add a default entry for */
/* the machine principal so dced can manage the server. */
/* Construct the name entry string... */
dce_cf_get_host_name(&machine_principal, status);
if (*status != error_status_ok)
{

print_server_error("dce_cf_get_host_name()",
*status);

return;
}
strcat((char *)machine_principal, "/self");

/* Get the machine principal's UUID... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_get_local_principal_id()"));
server_get_local_principal_id((unsigned_char_t *)machine_principal,

&machine_princ_id,
status);

if (*status != error_status_ok)
{

print_server_error("server_get_local_principal_id()",
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*status);
return;

}

/* Add a user entry for the machine principal to the new */
/* ACL... */
permset = ALL_MGMT_PERMS;
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_obj_add_user_entry()"));
dce_acl_obj_add_user_entry(new_mgmt_acl,

permset,
&machine_princ_id,
status);

if (*status != error_status_ok)
{

print_server_error("dce_acl_obj_add_user_entry()",
*status);

return;
}

/* By default everybody must be able to get the principal */
/* name. They should be able to ping too. So add an appro- */
/* priate unauthenticated permissions entry to the ACL... */
permset = mgmt_perm_inq_pname | mgmt_perm_ping;
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_obj_add_unauth_entry()"));
dce_acl_obj_add_unauth_entry(

new_mgmt_acl,
permset,
status);

if (*status != error_status_ok)
{

print_server_error("dce_acl_obj_add_unauth_entry()",
*status);

return;
}

/* Add permissions for the any_other entry in the ACL... */
permset = mgmt_perm_inq_pname | mgmt_perm_ping;
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_obj_add_any_other_entry()"));
dce_acl_obj_add_any_other_entry(

new_mgmt_acl,
permset,
status);

if (*status != error_status_ok)
{

print_server_error("dce_acl_obj_add_any_other_entry()",
*status);

return;
}

/* Store the mgmt ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_store_acl()"));
server_store_acl(

*db_acl, /* The ACL UUID-indexed store. */
*db_object, /* The object UUID-indexed store. */
*db_name, /* The name ("residual")-indexed store. */
new_mgmt_acl, /* The ACL itself. */
mgmt_acl_uuid, /* The mgmt ACL UUID. */
&mgmt_object_uuid, /* The mgmt object UUID. */
(unsigned_char_t *)MGMT_OBJ_NAME, /* The mgmt ob- */

/* ject name. */
/* (void*) */ &object_data, /* The object contents. */
0, /* Not a container ACL. */
status);
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if (*status != error_status_ok)
{

print_server_error("server_store_acl()", *status);
return;

}

/********************************************************************/
/* Object ACL creation code... */

/* Now create the object ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_create_acl()"));
server_create_acl(

sample_acl_mgr_uuid, /* Create an ACL with this */
/* manager type. */

owner_perms, /* Give it these permissions. */
owner, /* Make this the principal name. */
new_obj_acl, /* This will contain new ACL. */
object_acl_uuid, /* This will contain new ACL UUID. */
status);

if (*status != error_status_ok)
{

print_server_error("server_create_acl()", *status);
return;

}

/* Null the data header... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling bzero()"));
bzero((char *)&object_data, sizeof object_data);

/* Store the object ACL... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling server_store_acl()"));
server_store_acl(

*db_acl, /* The ACL UUID-indexed store. */
*db_object, /* The object UUID-indexed store. */
*db_name, /* The name ("residual")-indexed store. */
new_obj_acl, /* The ACL itself. */
object_acl_uuid, /* The object ACL UUID. */
&object_uuid, /* The object UUID. */
object_name, /* The object name. */
/* (void*) */ &object_data, /* The object contents. */
/* is_container */ 0, /* Is this a container ACL? */
status);

if (*status != error_status_ok)
{

print_server_error("server_store_acl()", *status);
return;

}

/* Finally, free the space we were using... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_obj_free_entries()"));
dce_acl_obj_free_entries(new_obj_acl, status);
if (*status != error_status_ok)
{

print_server_error("dce_acl_obj_free_entries()",
*status);

return;
}

/* ...end of object ACL creation code. */
/********************************************************************/
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}
else /* ACL databases already exist; get the two ACL UUIDs... */

{

/* This is a call to sample_resolve_by_name() (see below); */
/* it gives us the UUID of the ACL of the object whose */
/* name we pass it... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,

"Calling (*resolver)()"));
(*resolver)(

NULL, /* No client bind handle; local call. */
object_name, /* Object whose ACL UUID we want. */
0, /* Type of ACL we want UUID of. */
&sample_acl_mgr_uuid, /* Object's manager type. */
0, /* Ignored as far as we're concerned. */
NULL, /* "resolver_arg"; unused. */
object_acl_uuid, /* Will contain object ACL UUID. */
status);

if (*status != error_status_ok)
{

print_server_error("resolver function (*)", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug5,
"Calling (*resolver)()"));

(*resolver)(
NULL, /* No client bind handle; local call. */
(sec_acl_component_name_t)MGMT_OBJ_NAME, /* We want */

/* mgmt object's ACL UUID. */
0, /* Type of ACL we want UUID of. */
&mgmt_acl_mgr_uuid, /* Object's manager type=mgmt. */
0, /* Ignored as far as we're concerned. */
NULL, /* "resolver_arg"; ignored. */
mgmt_acl_uuid, /* Will contain mgmt ACL UUID. */
status);

if (*status != error_status_ok)
{

print_server_error("resolver function (*)", *status);
return;

}

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_to_string()"));

uuid_to_string(mgmt_acl_uuid, &uuid_string, status);
if (*status != uuid_s_ok)
{

print_server_error("uuid_to_string()", *status);
}
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"String form of mgmt_acl_uuid == %s", uuid_string));
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_string_free()"));
rpc_string_free(&uuid_string, status);
if (*status != rpc_s_ok)
{

print_server_error("rpc_string_free()", *status);
}

/* Set up remote management authorization to use the ACL manager. */
/* Note that the first parameter to this call is the address of a */
/* management authorization callback routine, which is defined */
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/* later in this file... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_mgmt_set_authorization_fn()"));
rpc_mgmt_set_authorization_fn(sample_mgmt_auth, status);
if (*status != error_status_ok)
{

print_server_error("rpc_mgmt_set_authorization_fn()", *status);
return;

}

/* Finally, register the rdacl interface with the runtime... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_server_register_if()"));
rpc_server_register_if(

rdaclif_v1_0_s_ifspec, /* Interface to register. */
NULL, /* Manager type UUID. */
(rpc_mgr_epv_t) &dce_acl_v1_0_epv, /* Entry point */

/* vector. */
status);

if (*status != error_status_ok)
{

print_server_error("rpc_server_register_if()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_acl_mgr_setup()"));

}

/******
*
* server_acl_mgr_close -- Called at cleanup time to close
* the three ACL databases.
*
*
* Called from main().
*
******/

void server_acl_mgr_close(
dce_db_handle_t *db_acl, /* ACL UUID-indexed database. */
dce_db_handle_t *db_object, /* Object UUID-indexed database. */
dce_db_handle_t *db_name, /* Name-indexed database. */
unsigned32 *status)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_acl_mgr_close()"));

*status = error_status_ok;

/* Close the ACL UUID-indexed database... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_close()"));
dce_db_close(db_acl, status);
if (*status != error_status_ok)
{

print_server_error("dce_db_close()", *status);
return;

}

/* Close the Object UUID-indexed database... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_close()"));
dce_db_close(db_object, status);

Chapter 10. A Sample Application 215



if (*status != error_status_ok)
{

print_server_error("dce_db_close()", *status);
return;

}

/* Close the name-indexed database... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_close()"));
dce_db_close(db_name, status);
if (*status != error_status_ok)
{

print_server_error("dce_db_close()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_acl_mgr_close()"));

}

/******
*
* server_rdacl_export -- Make the rdacl interface available
* for ACL editors.
*
*
* Note that we don't export to the namespace. Instead, the ACL editor
* will typically bind to the server via some other entry that holds
* the application-specific interface bindings. For our application,
* that entry is:
*
* /.:/sample_server_entry
*
* ...This entry (the "junction" to the object "entries") must hold at
* least one object UUID, and the same UUID must be put into the end-
* point map too. If not, ACL editors will have no way to distinguish
* the endpoints of this server from those of other servers on the same
* host that also export the rdacl interface.
*
* Called from main().
*
******/

void server_rdacl_export(
rpc_binding_vector_t *binding_vector, /* Binding handles from RPC runtime. */
uuid_vector_t *object_uuid_vector, /* Server instance UUID(s). */
unsigned32 *status)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_rdacl_export()"));

*status = error_status_ok;

/* Register the server's endpoints with the rdacl interface at the */
/* local endpoint map... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_ep_register()"));
rpc_ep_register(rdaclif_v1_0_s_ifspec,

binding_vector, /* Our binding handles from RPC runtime. */
object_uuid_vector, /* Server instance UUID (only one). */
(unsigned_char_p_t) "rdacl interface", /* Annotation. */
status);

if (*status != error_status_ok)
{
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print_server_error("rpc_ep_register()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_rdacl_export()"));

}

/******
*
* server_rdacl_cleanup -- Called at cleanup time to
* unregister the rdacl interface.
*
*
* Called from main().
*
******/

void server_rdacl_cleanup(
rpc_binding_vector_t *binding_vector, /* Binding handles from RPC runtime. */
uuid_vector_t *object_uuid_vector, /* Server instance UUID(s). */
unsigned32 *status)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering server_rdacl_cleanup()"));

*status = error_status_ok;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_ep_unregister()"));

rpc_ep_unregister(rdaclif_v1_0_s_ifspec,
binding_vector,
object_uuid_vector,
status);

if (*status != error_status_ok)
{

print_server_error("rpc_ep_unregister()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_rdacl_cleanup()"));

}

/******
*
* server_bind_cleanup -- Called at cleanup time to
* unregister the remote bind interface.
*
*
* Called from main().
*
******/

void server_bind_cleanup(
rpc_binding_vector_t *binding_vector, /* Binding handles from RPC runtime. */
uuid_vector_t *object_uuid_vector, /* Server instance UUID(s). */
unsigned32 *status)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
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"Entering server_bind_cleanup()"));

*status = error_status_ok;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_ep_unregister()"));

rpc_ep_unregister(sample_bind_v1_0_s_ifspec,
binding_vector,
object_uuid_vector,
status);

if (*status != error_status_ok)
{

print_server_error("rpc_ep_unregister()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting server_bind_cleanup()"));

}

/****************************************************************************/
/* End of server init and cleanup functions */
/****************************************************************************/

/******
*
* signal_handler -- Thread to handle asynchronous interrupts.
*
* Catch and handle SIGINT and SIGTERM. Note that we
* don't use sigaction() here because it won't work with
* asynchronous signals. Also note that signals must be
* blocked prior to being waited for.
*
*
* The thread that runs this function is started in main().
*
******/

void signal_handler(char *arg)
{

sigset_t signals; /* Set of signals available to the application. */
int sig;
unsigned32 status;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering signal_handler()"));

status = error_status_ok;

/* Initialize the signal set... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sigemptyset()"));
sigemptyset(&signals);

/* Add SIGINT to signal set... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sigaddset()"));
sigaddset(&signals, SIGINT);
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/* Add SIGTERM to signal set... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sigaddset()"));
sigaddset(&signals, SIGTERM);

/* Set the current signal mask... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sigprocmask()"));
sigprocmask(SIG_BLOCK, &signals, NULL);

/* And now wait for the signals... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sigwait()..."));
while (1)
{

sig = sigwait(signals);
switch (sig)
{

case SIGINT:
case SIGTERM:

/* SIGNAL-SPECIFIC ACTIONS GO HERE... */
break;

default:
continue;

}
break;

}

/* Unset the signal mask... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling sigprocmask()"));
sigprocmask(SIG_UNBLOCK, &signals, NULL);

/* Terminate server: cause the main thread listen loop to return */
/* and go to cleanup. Obviously, if we're not listening yet, this */
/* will fail... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_mgmt_stop_server_listening()"));
rpc_mgmt_stop_server_listening(NULL, &status);
if (status != error_status_ok)
{

print_server_error("rpc_mgmt_stop_server_listening()", status);
exit(1);

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting signal_handler()"));

}

/******
*
* sample_mgmt_auth -- Management authorization callback function.
*
* This is the routine that is implicitly called to test authorization
* whenever someone tries to use the mgmt interface to tinker with us
* or our ACLs.
*
*
*
* The callback is set up by a call to rpc_mgmt_set_authorization() in
* server_acl_mgr_setup().
*
******/
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boolean32 sample_mgmt_auth(
rpc_binding_handle_t client_binding, /* Client's binding, whoever he is. */
unsigned32 requested_mgmt_operation, /* What client is attempting to do. */
unsigned32 *status)
{

boolean32 authorized = 0;
sec_acl_permset_t perm_required;
unsigned_char_t *uuid_string;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering sample_mgmt_auth()"));

*status = error_status_ok;

/* Discover what permission is required in order to do what the */
/* client is trying to do... */
switch (requested_mgmt_operation)
{

case rpc_c_mgmt_inq_if_ids:
perm_required = mgmt_perm_inq_if;
break;

case rpc_c_mgmt_inq_princ_name:
perm_required = mgmt_perm_inq_pname;
break;

case rpc_c_mgmt_inq_stats:
perm_required = mgmt_perm_inq_stats;
break;

case rpc_c_mgmt_is_server_listen:
perm_required = mgmt_perm_ping;
break;

case rpc_c_mgmt_stop_server_listen:
perm_required = mgmt_perm_kill;
break;

default:
/* This should never happen, but just in case... */
return(0);;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_to_string()"));

uuid_to_string(&mgmt_acl_uuid, &uuid_string, status);
if (*status != uuid_s_ok)
{

print_server_error("uuid_to_string()", *status);
return(0);;

}
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"String form of mgmt_acl_uuid == %s", uuid_string));
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_string_free()"));
rpc_string_free(&uuid_string, status);
if (*status != rpc_s_ok)
{

print_server_error("rpc_string_free()", *status);
return(0);

}

/* Okay, now check whether the client is authorized or not... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_acl_is_client_authorized()"));
dce_acl_is_client_authorized(

client_binding, /* Client's binding handle. */
&mgmt_acl_mgr_uuid, /* ACL manager type UUID. */
&mgmt_acl_uuid, /* The ACL UUID. */
NULL, /* Pointer to owner's UUID. */
NULL, /* Pointer to owner's group's UUID. */
perm_required, /* The desired privileges. */
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&authorized, /* Will be TRUE or FALSE on return. */
status);

if (*status != error_status_ok)
{

print_server_error("dce_acl_is_client_authorized()", *status);
return(0);

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting sample_mgmt_auth()"));

if (authorized)
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"AUTHORIZED!"));
else

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,
"NOT AUTHORIZED!"));

/* Return the result to the caller... */
return(authorized);

}

/******
*
* sample_resolve_by_name -- take the name of an object, and return the
* UUID of the object's ACL.
*
* The address of this function is passed (via the call to
* server_acl_mgr_setup()) to the dce_acl_register_object_type() call. So
* it gets implicitly called anytime someone tries to retrieve the ACL of
* an object managed by the ACL manager we've set up.
*
* Basically, the most a server needs is one resolve-by-name routine and
* one resolve-by-UUID routine; the former gets you the desired object's
* UUID; and the latter then will get you the object data itself (the way
* this works can be seen in the body of this routine below). In most
* cases, these routines will share the same name and UUID databases; if
* they don't, the resolver_arg can be used to point to the correct other
* database. Typically, the only difference between the managers is that
* they use different print strings.
*
* For the official statement of the signature of a dce_acl_resolve_func_t,
* see the dce_acl_resolve_by_uuid() manpage; that routine has the same
* type.
*
* NOTE that all this routine really has to do is look up the object
* UUID, get the ACL UUID from the object header, then extract the
* ACL and check its manager type with the manager_type passed, and,
* if the manager types match, return the ACL UUID; otherwise, return
* an error.
*
*******/

dce_acl_resolve_func_t sample_resolve_by_name(
handle_t h, /* Client binding handle passed into the */

/* server stub. sec_acl_bind() is used to */
/* create this handle. */

sec_acl_component_name_t name, /* The object whose ACL's UUID we want. */
sec_acl_type_t sec_acl_type, /* The type of ACL whose UUID we want. */
uuid_t *manager_type, /* The object's manager type. */

/* NOTE that this parameter isn't used be- */
/* low. */

boolean32 writing, /* "This parameter is ignored in OSF's im- */
/* plementation" (from the manpage for */
/* dce_acl_resolve_by_uuid()). */
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void *resolver_arg, /* This is the app-defined argument passed */
/* to dce_acl_register_object_type(); it */
/* should be a handle for a backing store */
/* indexed by UUID. Note that it isn't */
/* used here though. */

uuid_t *acl_uuid, /* To return ACL's UUID in. */
error_status_t *st /* To return status in. */
)
{

uuid_t u, *up; /* To hold the retrieved object UUID, and to */
/* take a pointer to it. */

unsigned_char_t *uuid_string;
sec_acl_t retrieved_acl;
uuid_t owner_uuid, group_uuid;

/* The definition of the following is in the sample.idl file. */
/* */
/* See the "Examples" section in the dce_db_open() manpage, */
/* where the skeleton IDL interface for a server's backing */
/* store is given. The data type definition (which is what */
/* sample_data_t is) is there prescribed as consisting of a */
/* dce_db_header_t, plus whatever server-specific data is */
/* quired, all in a single structure. */
/* */
/* Essentially it's a dce_db_header_t structure (with an */
/* application-defined message string tacked on); this is */
/* the object header data structure that is returned, e.g., */
/* by dce_db_header_fetch(); in other words, this is the */
/* thing that actually contains the data "in" an object */
/* held in an object store. */
sample_data_t object_data;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering sample_resolve_by_name()"));

*st = error_status_ok;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,
"Object name == %s", name));

/* Check for non-existence of object name... */
if (!name || !*name)
{

dce_svc_printf(CANNOT_RESOLVE_NAME_MSG);
return((void *)NULL);

}

/* Get the object's UUID, which will be the key that we will use to */
/* fetch this particular object's data in the call following this */
/* one... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_fetch_by_name()"));
dce_db_fetch_by_name(db_name, (char *)name, /* (void *) */ &u, st);
if (*st != error_status_ok)
{

print_server_error("dce_db_fetch_by_name()", *st);
return((void *)NULL);

}

up = &u /* ...take the pointer to the key. */

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_to_string()"));

uuid_to_string(up, &uuid_string, st);
if (*st != uuid_s_ok)
{
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print_server_error("uuid_to_string()", *st);
return((void *)NULL);

}
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"String form of retrieved key UUID == %s",
uuid_string));

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_string_free()"));

rpc_string_free(&uuid_string, st);
if (*st != rpc_s_ok)
{

print_server_error("rpc_string_free()", *st);
return((void *)NULL);

}

/* Using the UUID "key" that we just retrieved, get the object_data */
/* for the desired object (note that the data that one retrieves */
/* with this routine can be anything; it depends on what we are */
/* using the backing store for)... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling dce_db_fetch_by_uuid()"));
dce_db_fetch_by_uuid(db_object, up, /* (void *) */ &object_data, st);
if (*st != error_status_ok)
{

print_server_error("dce_db_fetch_by_uuid()", *st);
return((void *)NULL);

}

/* Now, depending on the kind of ACL we're hunting for (i.e. ob- */
/* ject, container, etc.), extract its UUID from the object's */
/* header structure... */
switch (sec_acl_type)
{

case 1:
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"Case == 1"));
*acl_uuid = object_data.s_hdr.tagged_union.h.def_object_acl;
break;

case 2:
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"Case == 2"));
*acl_uuid = object_data.s_hdr.tagged_union.h.def_container_acl;
break;

default:
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"Case == default"));
*acl_uuid = object_data.s_hdr.tagged_union.h.acl_uuid;

}

/* Find out some other interesting stuff... */

owner_uuid = object_data.s_hdr.tagged_union.h.owner_id;
group_uuid = object_data.s_hdr.tagged_union.h.group_id;

uuid_to_string(&owner_uuid, &uuid_string, st);
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"Owner UUID == %s", uuid_string));
rpc_string_free(&uuid_string, st);

uuid_to_string(&group_uuid, &uuid_string, st);
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"Group UUID == %s", uuid_string));
rpc_string_free(&uuid_string, st);

/* Here it might be interesting to try retrieving the ACL itself, */
/* and e.g seeing what its manager type is... */
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DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling dce_db_fetch_by_uuid()"));

dce_db_fetch_by_uuid(db_acl,
acl_uuid,
&retrieved_acl,
st);

if (*st != error_status_ok)
{

print_server_error("dce_db_fetch_by_uuid()", *st);
return((void *)NULL);

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_to_string()"));

uuid_to_string(&(retrieved_acl.sec_acl_manager_type), &uuid_string, st);
if (*st != uuid_s_ok)
{

print_server_error("uuid_to_string()", *st);
return((void *)NULL);

}
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"sec_acl_manager_type == %s", uuid_string));
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_string_free()"));
rpc_string_free(&uuid_string, st);
if (*st != rpc_s_ok)
{

print_server_error("rpc_string_free()", *st);
}

/* We are handling two ACL managers through this function, so we */
/* have to make sure that we've extracted from the single ACL */
/* database the correct ACL: i.e., one whose manager type UUID is */
/* identical to the manager_type parameter we were passed: this is */
/* the manager whose ACL the runtime is trying to bind to. The */
/* point is that the ACL library is going to call all its regis- */
/* tered resolvers successively with the SAME ACL UUID, until it */
/* finds one that works. If we just return the ACL UUID without */
/* checking whether the right manager_type is being asked for, */
/* we'll only cause an error in the ACL library when it discovers */
/* that the types don't match up. This will prevent acl_edit from */
/* working. So do the checking here... */
if ((manager_type != NULL) && (!uuid_equal(manager_type,

&(retrieved_acl.sec_acl_manager_type),
st)))

{
/* Return a bad status... */
*st = acl_s_bad_manager_type;
/* And no ACL UUID... */
acl_uuid = NULL;
return((void *)NULL);

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling uuid_to_string()"));

uuid_to_string(acl_uuid, &uuid_string, st);
if (*st != uuid_s_ok)
{

print_server_error("uuid_to_string()", *st);
return((void *)NULL);

}
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"sec_acl_type == %d", (int)sec_acl_type));
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug8,

"String form of retrieved ACL UUID == %s",
uuid_string));
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DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_string_free()"));

rpc_string_free(&uuid_string, st);
if (*st != rpc_s_ok)
{

print_server_error("rpc_string_free()", *st);
}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting sample_resolve_by_name()"));

return((void *)NULL);
}

/******
*
* sample_bind_export -- Register the interface specification
* and endpoints for the remote binding inter-
* face.
*
* Called from main().
*
******/

void sample_bind_export(
rpc_binding_vector_t *binding_vector,
uuid_vector_t *uuid_vec,
unsigned32 *status)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Entering sample_bind_export()"));

*status = error_status_ok;

/* Register sample_bind interface... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,

"Calling rpc_server_register_if()"));
rpc_server_register_if(sample_bind_v1_0_s_ifspec,

NULL,
(rpc_mgr_epv_t) &sample_bind_epv,
status);

if (*status != error_status_ok)
{

print_server_error("rpc_server_register_if()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug4,
"Calling rpc_ep_register()"));

rpc_ep_register(sample_bind_v1_0_s_ifspec,
binding_vector,
uuid_vec,
(unsigned_char_p_t) "sample_bind interface",
status);

if (*status != error_status_ok)
{

print_server_error("rpc_ep_register()", *status);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_server, svc_c_debug7,
"Exiting sample_bind_export()"));

}
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/*****
*
* create_server_uuid -- Create server instance UUID.
*
*
* Called from main(), make_server_entry().
*
*****/

void
create_server_uuid(
uuid_t *server_uuid,
uuid_vector_t *server_uuid_v
)
{

unsigned32 status;
dce_error_string_t error_string;
int print_status;

/********************************************************************/
/* Create a UUID to identify this server instance; this will go in- */
/* to the namespace and endpoint map so that clients of such gen- */
/* eric interfaces as rdacl can find this server's endpoints. */
/* Without such a UUID, these clients can't distinguish among */
/* servers on the same host that also export the generic inter- */
/* faces. This could be a well-known UUID, but here we will */
/* generate one on the fly. Clients binding to us by name will get */
/* this UUID without having to know what it is. */
/* */
/********************************************************************/

fprintf(stdout, "Entering create_server_uuid()...\n");

/* Create and save server instance UUID... */
fprintf(stdout, "Calling uuid_create()...\n");
uuid_create(server_uuid, &status);
if (status != error_status_ok)
{

dce_error_inq_text(status, error_string, &print_status);
fprintf(stdout, "uuid_create(): %s\n", error_string);
exit(1);

}

server_uuid_v->uuid[0] = server_uuid;
server_uuid_v->count = 1;

fprintf(stdout, "...Exiting create_server_uuid()\n");
}

/*****
*
* print_server_error-- Server version. Prints text associated with
* bad status code.
*
*
*****/

void
print_server_error(
char *caller, /* Routine that received the error. */
error_status_t status) /* Status we want to print the message for. */
{
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dce_error_string_t error_string;
int print_status;

dce_error_inq_text(status, error_string, &print_status);
dce_svc_printf(SERVER_ERROR_MSG, caller, error_string);

}

Note that the server code contained in these files is nearly all generic. In the ACL
manager, the only application specific elements are the type of data stored in the
object database, declared in sample.idl, and the name and object UUID for the
initial object created during ACL manager setup. The export objects operation uses
application-specific names and object uuids. The signal catcher thread installs
application-specific handling for asynchronous signals, although the actual signal
handling code simply causes the listen loop to return and invoke the generic
cleanup operations.

Object Bind Interface

Sample_bind.c

/****************************************************************************/
/* */
/* sample_bind.c -- The remote binding interface implementation */
/* code. */
/* */
/* */
/* */
/* The code below is built and linked into the server object; meanwhile */
/* the sample_bind.idl file is processed and the output of that is */
/* a set of client and server stubs for the implementation. The server stub */
/* is generated with the -no_mepv option, which allows us to call our im- */
/* plementation by our own names, and explicitly initialize the entry point */
/* vector structure with it (see the end of this file for how that hap- */
/* pens). The client of course calls the routines by its standard name, */
/* as generated in the client stub from sample_bind.idl. */
/* */
/* In order to make the call remotely accessible, the server has to go */
/* through the steps of registering the sample_bind interface (sep- */
/* arately from all other interfaces, of course) with the name service, */
/* and of registering its endpoints with the sample_bind interface (and */
/* the "sample_bind_epv" vector) with the runtime. Then the client */
/* has to import bindings to the sample_bind interface separately as */
/* well. How all this is done can be seen in sample_client.c and */
/* sample_server.c. */
/* */
/* */
/* */
/****************************************************************************/

#define DCE_DEBUG
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <pthread.h>
#include <errno.h>
#include <signal.h>

#ifndef IBMOS2
#include <malloc.h>
#include <unistd.h>
#include <sys/param.h>
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#endif

#include <dce/dce.h>
#include <dce/dce_cf.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>
#include <dce/sec_login.h>
#include <dce/keymgmt.h>
#include <dce/uuid.h>
#include <dce/exc_handling.h>
#include <dce/dce_msg.h>
#include <dce/dbif.h>
#include <dce/aclif.h>
#include <dce/dceacl.h>
#include <dce/pgo.h>

#include <dce/dcesvcmsg.h>
#include <dce/svcremote.h>

/* Serviceability sams-generated header files... */
#include "dcesmpsvc.h"
#include "dcesmpmsg.h"
#include "dcesmpmac.h"

/* Following is our IDL-generated header... */
#include "sample_bind.h"

#include "sample_server.h"

/* Declaration of the bind interface's routines' entry point vector. The */
/* actual addresses are filled in at the bottom of this file... */
struct sample_bind_v1_0_epv_t sample_bind_epv;

/******
*
* name_to_object -- The remote bind operation implementation code:
* receives a name, returns an object UUID.
*
* Essentially what this routine is is a remote operation that doesn't
* actually "do" anything; it just returns a given object's UUID.
*
*
******/
void
name_to_object(handle_t binding_h, /* The binding that got us here. */
unsigned_char_t *component, /* The backing store's key. */
uuid_t *object_uuid, /* For the UUID we will return. */
uuid_t *mgr_type_uuid, /* Type Manager UUID. */
unsigned32 *st /* Status. */
)
{

dce_error_string_t error_string;
int print_status;

*st = error_status_ok;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_binder, svc_c_debug6,
"Entering name_to_object()..."));

if (!component || !*component)
{

dce_svc_printf(CANNOT_RESOLVE_NAME_MSG);
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return;
}

/* dce_db_fetch_by_name() retrieves data from the string-indexed */
/* backing store identified by the handle parameter, which was */
/* obtained from dce_db_open(). It is a specialized retrieval */
/* routine for backing stores that are indexed by string, as sel- */
/* ected by the db_c_index_by_name bit in the flags parameter to */
/* dce_db_open() when the backing store was created. */
/* Here it's the object_uuid that is to be returned... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_binder, svc_c_debug6,

"Calling dce_db_fetch_by_name()..."));
dce_db_fetch_by_name(

db_name, /* Name-indexed database, globally-known handle. */
(char *)component, /* Pointer to the key we're using, i.e. */

/* the name. */
object_uuid, /* What we're hoping to get, i.e. object UUID. */
st);

if (*st != error_status_ok)
{

dce_error_inq_text(*st, error_string, &print_status);
dce_svc_printf(BINDER_ERROR_MSG, "dce_db_fetch_by_name()",

error_string);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_binder, svc_c_debug6,
"Successfully exiting name_to_object()"));

}

/* The bind interface's routines' entry point vector. Here the actual ad- */
/* dresses are filled in... */
sample_bind_v1_0_epv_t sample_bind_epv = {

name_to_object
};

Sample_bind.idl

/****************************************************************************/
/* */
/* sample_bind.idl */
/* */
/****************************************************************************/

[
uuid(006868ca-6064-1d49-9829-0000c0d4de56),
version(1.0)
]
interface sample_bind
{

void rs_bind_to_object(
[in] handle_t binding,
[in, string] char *component,
[out] uuid_t *object_uuid,
[out] uuid_t *mgr_type_uuid,
[out] error_status_t *status
);
}

Chapter 10. A Sample Application 229



Sample_bind.acf

/****************************************************************************/
/* */
/* sample_bind.acf */
/* */
/****************************************************************************/

interface sample_bind
{
rs_bind_to_object([comm_status,fault_status] status);
}

Manager and Client Illustrations
Most of the application-specific server code is contained in sample_manager.c.
Since generic client tasks are so simple, the whole client is contained in
sample_client.c.

Sample_manager.c

/****************************************************************************/
/* */
/* sample_manager.c -- Implementation of "sample" interface. */
/* */
/* Routines in this file consist only of remote calls or routines that */
/* are internal to those calls. */
/* */
/****************************************************************************/

#define DCE_DEBUG
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <pthread.h>
#include <errno.h>
#include <signal.h>

#ifndef IBMOS2
#include <malloc.h>
#include <unistd.h>
#include <sys/param.h>
#endif

#include <dce/nbase.h>
#include <dce/dce.h>
#include <dce/dce_cf.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>
#include <dce/sec_login.h>
#include <dce/keymgmt.h>
#include <dce/uuid.h>
#include <dce/exc_handling.h>
#include <dce/dce_msg.h>
#include <dce/dbif.h>
#include <dce/aclif.h>
#include <dce/dceacl.h>
#include <dce/pgo.h>

#include <dce/dcesvcmsg.h>
#include <dce/svcremote.h>
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#include "dcesmpsvc.h"
#include "dcesmpmsg.h"
#include "dcesmpmac.h"

#include "sample.h"
#include "sample_db.h"
#include "sample_bind.h"
#include "sample_server.h"

void DCEAPI sample_call(rpc_binding_handle_t,
idl_long_int *,
error_status_t *);

void DCEAPI sample_get_text(rpc_binding_handle_t,
uuid_t,
idl_char *,
idl_long_int *,
error_status_t *);

void DCEAPI sample_put_text(rpc_binding_handle_t,
uuid_t,
idl_char *,
idl_long_int *,
error_status_t *);

void DCEAPI print_manager_error(char *,
error_status_t);

/******
*
* sample_call -- This could be extended to suit your purpose.
*
*
*
*
******/
/****************************************************************************/
void DCEAPI
sample_call(

rpc_binding_handle_t binding, /* Client binding. */
idl_long_int *status,
error_status_t *remote_status)

{

extern uuid_t sample_acl_mgr_uuid, sample_acl_uuid;
boolean32 authorized = 0;

/****************************************************************************/
/* We have to explicitly initialize the remote status value; */
/* otherwise, if no error occurs in the transmission (which */
/* would cause the runtime to assign an error value to this */
/* variable), its value will be whatever it happened to be */
/* when the RPC was made by the client... */
*remote_status = rpc_s_ok;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
"Entering sample_call()..."));

/* Check whether client is authorized or not... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,

"Calling dce_acl_is_client_authorized()..."));
dce_acl_is_client_authorized(

binding, /* Client's binding handle. */
&sample_acl_mgr_uuid, /* ACL manager type UUID. */
&sample_acl_uuid, /* The ACL UUID. */
NULL, /* Pointer to owner's UUID. */
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NULL, /* Pointer to owner's group's UUID. */
sec_acl_perm_read, /* The desired privileges. */
&authorized, /* Will be TRUE or FALSE on return. */
remote_status);

if (*remote_status != error_status_ok)
{

print_manager_error("dce_acl_is_client_authorized()",
*remote_status);

return;
}

if (authorized)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug8,
"Call authorized"));

/* HERE'S WHERE WE SHOULD ACTUALLY DO SOMETHING! */

*status = error_status_ok;
}
else
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug8,
"Call not authorized"));

/* Return no_permissions status to client... */
*status = no_permissions;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
"Successfully exiting sample_call()"));

}

/******
*
* sample_get_text -- Extracts and returns an object's text information.
*
*
* Called from the client using its "object-bound" handle.
*
******/
void DCEAPI sample_get_text(
rpc_binding_handle_t h, /* Client binding handle passed into the */

/* server stub. sec_acl_bind() is used to */
/* create this handle. */

uuid_t object_uuid, /* Desired object's UUID. */
idl_char text[TEXT_SIZE], /* To return extracted text information. */
idl_long_int *status,
error_status_t *remote_st /* To return status. */
)
{

/* Our backing store data type. For a full explanation, see the */
/* body of sample_resolve_by_name(), in sample_server.c. */
sample_data_t data;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
"Entering sample_get_text()..."));

*remote_st = rpc_s_ok;

/* Get the object's data header... */
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DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
"Calling dce_db_fetch_by_uuid()..."));

dce_db_fetch_by_uuid(db_object, &object_uuid, (void *)&data, remote_st);
if (*remote_st != error_status_ok)
{

dce_svc_printf(OBJECT_NOT_FOUND_MSG);
return;

}

/* Copy the text, if any, into the return parameter... */
if (data.s_data.message)
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug8,
"Text exists"));

strcpy((char *)text, (char *)data.s_data.message);
}
else
{

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug8,
"No text"));

strcpy((char *)text, "-No text-");
}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug8,
"Recovered text == %s", data.s_data.message));

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug8,
"Message == %s", text));

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
"Successfully exiting sample_get_text()"));

}

/******
*
* sample_put_text -- Puts some text information "into" an object.
*
*
*
******/

void DCEAPI sample_put_text(
rpc_binding_handle_t h, /* Client binding handle passed into the */

/* server stub. sec_acl_bind() is used to */
/* create this handle. */

uuid_t object_uuid, /* Desired object's UUID. */
idl_char text[TEXT_SIZE], /* Text information to put. */
idl_long_int *status,
error_status_t *remote_st /* To return status. */
)
{

/* Our backing store data type. For a full explanation, see the */
/* body of sample_resolve_by_name(), in sample_server.c. See also */
/* the contents of sample_db.idl. */
sample_data_t data;

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
"Entering sample_put_text()..."));

*remote_st = rpc_s_ok;

/* Get the object's data header... */
DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
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"Calling dce_db_fetch_by_uuid()..."));
dce_db_fetch_by_uuid(db_object, &object_uuid, (void *)&data, remote_st);
if (*remote_st != error_status_ok)
{

dce_svc_printf(OBJECT_NOT_FOUND_MSG);
return;

}

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug8,
"Storing text in object database"));

/* Now insert the text and stick it back in the backing store... */
strcpy((char *)data.s_data.message, (char *)text);
DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,

"Calling dce_db_store_by_uuid()..."));
dce_db_store_by_uuid(db_object, &object_uuid, (void *)&data, remote_st);

DCE_SVC_DEBUG((smp_svc_handle, smp_s_manager, svc_c_debug6,
"Successfully exiting sample_put_text()"));

}

/******
*
* print_manager_error-- Manager version. Prints text associated with bad
* status code.
*
*
******/
void DCEAPI
print_manager_error(
char *caller, /* String identifying the routine that received the error. */
error_status_t status) /* the status we want to print the message for. */
{

dce_error_string_t error_string;
int print_status;

dce_error_inq_text(status, error_string, &print_status);
dce_svc_printf(MANAGER_ERROR_MSG, caller, error_string);

}

Sample_client.c

/****************************************************************************/
/* */
/* sample_client.c -- Client of "sample" interface. */
/* */
/****************************************************************************/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <dce/dce_error.h>
#include <dce/nbase.h>
#include <dce/rpc.h>
#include <dce/dce_msg.h>
#include <dce/dbif.h>
#include <dce/dce.h>
#include <dce/dce_cf.h>
#include <dce/dcesvcmsg.h>
#include <dce/svcremote.h>
#include <dce/sec_login.h>
#include <dce/binding.h>
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#include <dce/pgo.h>
#include <dce/secidmap.h>

#include "sample.h"
#include "sample_bind.h"

/* Data structure for holding object entry names... */
typedef struct {
unsigned32 count;
unsigned_char_t *name[1];
} objectname_vector_t;

/* ANSI-C style prototypes for functions private to this module... */

int do_client_command_line(int,
char **,
unsigned32 *,
objectname_vector_t *);

boolean32 is_valid_principal(unsigned_char_t *_1,
unsigned_char_t *_2,
unsigned32 *_3);

void bind_to_object(unsigned_char_t *,
rpc_if_handle_t,
uuid_t *,
handle_t *,
uuid_t *,
uuid_t *,
unsigned_char_t **,
unsigned_char_t **,
error_status_t *);

void print_error(char *_1,
error_status_t _2);

#define SGROUP "sample_servers"

/******
*
*
* main
*
*
******/

int
main(
int argc,
char *argv[]
)
{
rpc_ns_handle_t import_context; /* Context for importing bindings. */
rpc_binding_handle_t binding_h; /* Our binding handle. */
error_status_t status; /* For DCE library error returns. */
error_status_t rpc_remote_status; /* For remote error returns. */
idl_long_int rpc_status; /* Application-returned status from re- */
/* mote calls. */
unsigned_char_t *string_binding; /* For string binding conversions. */
unsigned_char_t *server_princ_name;
handle_t object_handle; /* For binding we get through junction. */
uuid_t object_uuid, mgr_uuid; /* Various UUIDs. */
unsigned_char_t *u_string; /* For converting UUIDs to strings. */
objectname_vector_t objectname_vector; /* For entry names read from */
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/* command line. */
unsigned32 kill_server = FALSE; /* TRUE => invoker requested "kill */
/* server" option. */
idl_char server_message[TEXT_SIZE]; /* For message string returned */
/* from the server to us. */
unsigned_char_t *entry_name = NULL; /* Object entry name from */
/* bind_to_object(). */
unsigned_char_t *object_name = NULL; /* Residual object name from */
/* bind_to_object(). */

/* Process the command line... */
do_client_command_line(argc, argv, &kill_server, &objectname_vector);

/* Start importing servers. Note that the contents of the environ- */
/* ment variable RPC_DEFAULT_ENTRY are used to determine the entry */
/* to import from... */
fprintf(stdout,
"sample_client: Calling rpc_ns_binding_import_begin()...\n");
rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default,
NULL, /* Use the RPC_DEFAULT_ENTRY. */
sample_v1_0_c_ifspec,
NULL,
&import_context,
&status);
if (status != rpc_s_ok)
{
print_error("rpc_ns_binding_import_begin()", status);
exit(1);
}

/* Import the first server (we could iterate here, but we'll just */
/* take the first one)... */
fprintf(stdout,
"sample_client: Calling rpc_ns_binding_import_next()...\n");
rpc_ns_binding_import_next(import_context, &binding_h, &status);
if (status != rpc_s_ok)
{
print_error("rpc_ns_binding_import_next()", status);
exit(1);
}

/* Free the import context... */
fprintf(stdout,
"sample_client: Calling rpc_ns_binding_import_done()...\n");
rpc_ns_binding_import_done(&import_context, &status);
if (status != rpc_s_ok)
{
print_error("rpc_ns_binding_import_done()", status);
exit(1);
}

/* Resolve the partial binding... */
fprintf(stdout,
"sample_client: Calling rpc_ep_resolve_binding()...\n");
rpc_ep_resolve_binding(binding_h,
sample_v1_0_c_ifspec,
&status);

if (status != rpc_s_ok)
{
print_error("rpc_ep_resolve_binding()", status);
exit(1);
}

/* Convert the binding to a readable string... */
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fprintf(stdout,
"sample_client: Calling rpc_binding_to_string_binding()...\n");
rpc_binding_to_string_binding(binding_h, &string_binding, &status);
if (status != rpc_s_ok)
{
print_error("rpc_binding_to_string_binding()", status);
exit(1);
}

/* Print it... */
fprintf(stdout,
"sample_client: Imported resolved binding == %s\n",
string_binding);

/* Free the string binding space... */
fprintf(stdout, "sample_client: Calling rpc_string_free()...\n");
rpc_string_free(&string_binding, &status);
if (status != rpc_s_ok)
{
print_error("rpc_string_free()", status);
exit(1);
}

/* Find out what the server's principal name is... */
fprintf(stdout,
"sample_client: Calling rpc_mgmt_inq_server_princ_name()...\n");
rpc_mgmt_inq_server_princ_name(binding_h,
rpc_c_authn_dce_secret,
&server_princ_name,
&status);
if (status != rpc_s_ok)
{
print_error("rpc_mgmt_inq_server_princ_name()", status);
}
fprintf(stdout, "sample_client: Principal name returned == %s\n",
server_princ_name);

/* And now find out if it's a valid member of our sample_servers */
/* group... */
fprintf(stdout, "sample_client: Calling is_valid_principal()...\n");
if (is_valid_principal(server_princ_name, (unsigned_char_t *)SGROUP, &status))
{
fprintf(stdout,
"sample_client: Calling rpc_binding_set_auth_info()...\n");
rpc_binding_set_auth_info(binding_h,
server_princ_name,
rpc_c_protect_level_pkt_integ,
rpc_c_authn_dce_secret,
NULL,
rpc_c_authz_dce,
&status);

}
if (status != rpc_s_ok)
{
print_error("rpc_binding_set_auth_info()", status);
exit(1);
}

/********************************************************************/
/* Everything's okay, so do some remote stuff. There are currently */
/* two possibilities: Either stop the server via the remote mgmt */
/* interface, or actually bind to an object and call a couple of */
/* remote operations. */

/* First alternative: Kill the server via the mgmt interface... */
if (kill_server)
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{
fprintf(stdout,
"sample_client: Kill server option enacted...\n");
fprintf(stdout,
"sample_client: Calling rpc_ep_resolve_binding()...\n");
rpc_ep_resolve_binding(binding_h,
sample_v1_0_c_ifspec,
&status);
if (status != rpc_s_ok)
{
print_error("rpc_ep_resolve_binding()", status);
exit(1);
}

fprintf(stdout,
"sample_client: Calling rpc_mgmt_stop_server_listening()...\n");
rpc_mgmt_stop_server_listening(binding_h, &status);
if (status != rpc_s_ok)
{
print_error("rpc_mgmt_stop_server_listening()", status);
exit(1);
}

fprintf(stdout, "sample_client: Server successfully killed.\n\n");

}
/* Second alternative: Do remote operations... */
else
{
/* This is a local call... */
fprintf(stdout,
"sample_client: Remote call option enacted...\n");
fprintf(stdout,
"sample_client: Preparing to bind to object %s\n",
(char *)objectname_vector.name[0]);
fprintf(stdout,
"sample_client: Calling bind_to_object()...\n");
bind_to_object(
(unsigned_char_t *)objectname_vector.name[0],
/* ...Name of object to bind to. */
NULL, /* Interface spec "hint". */
NULL, /* Object UUID "hint". */
&object_handle, /* Here's where binding will be. */
&object_uuid, /* Here's where object UUID will be. */
&mgr_uuid /* Type manager UUID will be here. */
&entry_name, /* Full entry name returned here. */
&object_name, /* "Unresolved", i.e. object name. */
&status);
if (status != error_status_ok)
{
fprintf(stdout, "Can't bind to object %s\n",
objectname_vector.name[0]);
return;
}

/* Display the binding, just for fun... */
fprintf(stdout, "View object %s:\n",
(char *)objectname_vector.name[0]);
fprintf(stdout, " Via junction: %s\n Object name: %s\n",
entry_name, object_name);

/* Convert to string form... */
fprintf(stdout,
"sample_client: Calling rpc_binding_to_string_binding()...\n");
rpc_binding_to_string_binding(object_handle,
&string_binding,
&status);
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if (status != rpc_s_ok)
{
print_error("rpc_binding_to_string_binding()", status);
exit(1);
}

/* Show it... */
fprintf(stdout, " Binding: %s\n", string_binding);

/* Now convert the type manager UUID to a string... */
fprintf(stdout, "sample_client: Calling uuid_to_string()...\n");
uuid_to_string(&mgr_uuid, &u_string, &status);
if (status != uuid_s_ok)
{
print_error("uuid_from_string()", status);
exit(1);
}

/* Show it... */
fprintf(stdout, " Manager Type UUID: %s\n", u_string);

/* Convert the object UUID to string form... */
fprintf(stdout, "sample_client: Calling uuid_to_string()...\n");
uuid_to_string(&object_uuid, &u_string, &status);
if (status != uuid_s_ok)
{
print_error("uuid_to_string()", status);
exit(1);
}

/* And show it... */
fprintf(stdout, " Object UUID: %s\n", u_string);

/* Now free the space... */
rpc_string_free(&string_binding, &status);
if (status != rpc_s_ok)
{
print_error("rpc_string_free()", status);
exit(1);
}
rpc_string_free(&u_string, &status);
if (status != rpc_s_ok)
{
print_error("rpc_string_free()", status);
exit(1);
}

/* Make call on returned handle to get object data... */
fprintf(stdout,
"sample_client: Calling [remote] sample_get_text()...\n");
sample_get_text(object_handle,
object_uuid,
server_message,
&rpc_status
&rpc_remote_status);
fprintf(stdout, " Object Text: %s\n", server_message);

/* Call the sample_call() operation... */
/* First, get rid of the object UUID... */
rpc_binding_set_object(
binding_h,
NULL,
&status);
if (status != error_status_ok)
{
print_error("rpc_binding_set_object()", status);
return;
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}

/* Then display the binding... */
/* Convert to string form... */
fprintf(stdout,
"sample_client: Calling rpc_binding_to_string_binding()...\n");
rpc_binding_to_string_binding(binding_h, &string_binding, &status);
if (status != rpc_s_ok)
{
print_error("rpc_binding_to_string_binding()", status);
exit(1);
}

/* Show it... */
fprintf(stdout,
"sample_client: Binding about to be used == %s\n",
string_binding);

/* Free it... */
rpc_string_free(&string_binding, &status);
if (status != rpc_s_ok)
{
print_error("rpc_string_free()", status);
exit(1);
}

fprintf(stdout,
"sample_client: Calling [remote] sample_call()...\n");
sample_call(binding_h, &rpc_status, &rpc_remote_status);
if (rpc_remote_status != error_status_ok)
{
print_error("sample_call()", rpc_remote_status);
exit(1);
}

fprintf(stdout,
"sample_client: Remote call option successfully completed.\n\n");

}

fprintf(stdout, "sample_client: Calling rpc_string_free()...\n");
rpc_string_free(&server_princ_name, &status);
if (status != rpc_s_ok)
{
print_error("rpc_string_free()", status);
exit(1);
}

return;

}

/******
*
* do_client_command_line -- Get and interpret arguments and options from
* the command line, and do other setup related to the
* command line's contents.
*
* Called from main().
*
******/

int do_client_command_line(
int argc,
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char *argv[],
unsigned32 *kill_server,
objectname_vector_t *objectname_vector
)
{
unsigned32 status;

/* Check the command line... */

/* The "Usage" message requires some explanation. There are two */
/* modes for running the client: you can either specify that */
/* the server be killed, or you can specify a single object to */
/* bind to. It is possible that the object name is not a namespace */
/* entry (for example, I suppose, if it's the management object, */
/* whatever its name is). That is when things get interesting, be- */
/* cause the application in effect implements a junction located */
/* at its server entry in the namespace, and clients are supposed */
/* to be able to bind to objects under the junction. Essentially */
/* this is done as follows. The client tries to bind to the over- */
/* qualified CDS entry formed by concatenating the specified ob- */
/* ject name to the server entry name; it ends up getting a part- */
/* ial binding to the server; and it then makes a */
/* call to the remote bind operation with that binding, ostensibly */
/* to get the object UUID of the object whose name was specified */
/* (to bind to) when the client was invoked. These objects are */
/* held in a backing store database. The remote call makes its way */
/* by the familiar procedure to the server; the name_to_object() */
/* routine then simply looks up the desired object UUID by access- */
/* ing the name-indexed backing store. When the remote call com- */
/* pletes, the client finds itself with a full binding and the de- */
/* sired object UUID. It is pointed out below that remote calls */
/* are not routed by object UUID, so this is actually useless in */
/* regard to further operations, and can be discarded. */
/* */
/* If the object binding option is specified, the following things */
/* should happen: */
/* */
/* 1. The message "View object " is dis- */
/* played. */
/* */
/* 2. The message "Via junction: */
/* Object name: " */
/* is displayed. */
/* */
/* 3. The message "Binding: " is dis- */
/* played. */
/* */
/* 4. The message "Manager Type ID: " is */
/* displayed. */
/* */
/* 5. The message "Object ID: " is dis- */
/* played. */
/* */
/* 6. The message "Object Text: " is displayed. */
/* */
/* 7. --And this should be followed by some serviceability in- */
/* formational messages, from the server. */
/* */
/* ...This is all assuming, of course, that no errors occur. */

fprintf(stdout, "sample_client: Entering do_client_command_line()...\n");

if (argc < 2)
{
fprintf(stdout, "\n Usage:\n");
fprintf(stdout, " %s { | kill}\n\n", argv[0]);
fprintf(stdout, "Note that the client imports via RPC_DEFAULT_ENTRY!\n\n");
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exit(1);
}

if ((argc == 2) && !strcmp("kill", argv[1]))
{
fprintf(stdout, "sample_client: Kill server option selected.\n");
*kill_server = TRUE;
}
else
{
fprintf(stdout, "sample_client: Remote call option selected.\n");

/* Get the list of object entry names from the command */
/* line... */
objectname_vector->count = 1;
objectname_vector->name[0] = (unsigned_char_p_t)malloc(strlen(argv[1])+1);
strcpy((char *)objectname_vector->name[0], argv[1]);
fprintf(stdout,
"sample_client: objectname_vector->name == %s\n",
objectname_vector->name[0]);
}

return 0;
}

/******
*
*
* is_valid_principal -- Find out whether the specified principal is a
* member of the group he's supposed to be.
*
*
******/

boolean32 is_valid_principal(
unsigned_char_t *princ_name, /* Full name of principal to test. */
unsigned_char_t *group, /* Group we want principal to be in. */
unsigned32 *status)
{

unsigned_char_t *local_name; /* For principal's local name. */
char *cell_name; /* Local cell name. */
sec_rgy_handle_t rhandle; /* Local registry binding. */
boolean32 is_valid; /* To hold result of registry call. */

fprintf(stdout, "sample_client: Entering is_valid_principal()...\n");
fprintf(stdout, "sample_client: Initial principal name == %s\n", princ_name);
fprintf(stdout, "sample_client: Initial group name == %s\n", group);

/* Find out the local cell name... */
fprintf(stdout, "sample_client: Calling dce_cf_get_cell_name()...\n");
dce_cf_get_cell_name(&cell_name, status);
if (*status != dce_cf_st_ok)
{
print_error("dce_cf_get_cell_name()", *status);
return 0;
}

/* Now bind to the local cell registry... */
fprintf(stdout, "sample_client: Calling sec_rgy_site_open()...\n");
sec_rgy_site_open((unsigned_char_t *)cell_name, &rhandle, status);
if (*status != error_status_ok)
{
free(cell_name);
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print_error("sec_rgy_site_open()", *status);
return 0;
}

/* Free the cellname string space... */
free(cell_name);
if (*status != rpc_s_ok)
{
print_error("free()", *status);
return 0;
}

/* Get the specified principal's local (cell-relative) name... */
local_name = malloc(strlen((char *)princ_name));

fprintf(stdout, "sample_client: Calling sec_id_parse_name()...\n");
sec_id_parse_name(rhandle, /* Handle to the registry server. */
princ_name, /* Global (full) name of the principal. */
NULL, /* Principal's home cell name returned here. */
NULL, /* Pointer to UUID of above returned here. */
local_name, /* Principal local name returned here. */
NULL, /* Pointer to UUID of above returned here. */
status);
if (*status != error_status_ok)
{
free(local_name);
print_error("sec_id_parse_name()", *status);
return 0;
}
else
{
fprintf(stdout,
"sample_client: Full principal name == %s\n",
princ_name);
fprintf(stdout,
"sample_client: Local principal name == %s\n",
local_name);
}

/* And finally, find out from the registry whether that principal */
/* is a valid member of the specified group... */
fprintf(stdout, "sample_client: Calling sec_rgy_pgo_is_member()...\n");
is_valid = sec_rgy_pgo_is_member(rhandle,
sec_rgy_domain_group,
group,
local_name,
status);
if (*status != error_status_ok)
{
free(local_name);
print_error("sec_rgy_pgo_is_member()", *status);
return 0;
}

/* Free the principal name string area... */
free(local_name);
return(is_valid);

}

/******
*
* bind_to_object -- Local client call to get UUID from object name.
*
* Illustrates how to implement a junction.
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*
* Called from main().
*
******/

void bind_to_object(
unsigned_char_t *object_name, /* The name of the object we're to bind to. */
rpc_if_handle_t if_hint, /* Interface specification; NULL from main(). */
uuid_t *id_hint, /* Presumably the object's UUID; NULL from main(). */
rpc_binding_handle_t *binding_h, /* Binding will be returned here. */
uuid_t *object_uuid, /* Object's object UUID will be returned here. */
uuid_t *mgr_type_uuid, /* Object's type manager UUID will be returned here. */
unsigned_char_t **entry_name, /* Full entry name (?) will be returned here. */
unsigned_char_t **residual, /* Unresolved (?) name part returned here. */
error_status_t *status)
{

unsigned_char_p_t resolved_name = NULL; /* To hold resolved part of */
/* object name. */
rpc_ns_handle_t import_context; /* For NSI import operations. */
unsigned_char_t *uuid_string; /* Not used. */
unsigned_char_t *string_binding; /* Not used. */

fprintf(stdout, "sample_client: Entering bind_to_object()...\n");

/* Attempt to resolve the entry (i.e., object) name we were */
/* given. The idea is that we are feeding this routine an over- */
/* qualified name, which it will be able to resolve only to a cer- */
/* tain depth. What's left should be only a simple name, i.e. of */
/* the object we want to bind to... */
fprintf(stdout, "sample_client: Object name == %s\n", object_name);
fprintf(stdout, "sample_client: Calling rpc_ns_entry_inq_resolution()...\n");
rpc_ns_entry_inq_resolution(
rpc_c_ns_syntax_dce, /* Syntax for object_name. */
object_name, /* Entry name to be resolved. */
&resolved_name, /* Pointer to resolved name returned here. */
residual, /* Pointer to unresolved name part returned here. */
status);
if (*status != rpc_s_ok)
{
print_error("rpc_ns_entry_inq_resolution()", *status);
}

/* Object name only, try default search path... [original note] */
/* (Apparently the assumption is that if we gave an incomplete */
/* name, that must mean that we were passed only a simple object */
/* name, which means that we must try to reconstruct the path to */
/* the "junction"... */
if (*status == rpc_s_incomplete_name)
{
fprintf(stdout,
"sample_client: Object name only given, trying default search path...\n");

/* Make the object name the "residual"... */
*residual = (unsigned_char_t *)malloc(strlen((char *)object_name));
strcpy((char *)*residual, (char *)object_name);

/* Try importing from the RPC_DEFAULT_ENTRY, with interface */
/* and object UUID specified, if any were given to us */
/* (which they weren't in the original call made from */
/* main())... */
fprintf(stdout, "sample_client: Calling rpc_ns_binding_import_begin()...\n");
rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default,
NULL,
if_hint,
id_hint,
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&import_context,
status);

/* If that didn't succeed, we're at a loss... */
if (*status != rpc_s_ok)
{
print_error("rpc_ns_binding_import_begin()", *status);
return;
}
fprintf(stdout, "sample_client: Found object.\n");
}

/* We either resolved the name completely, or we resolved every- */
/* thing but the simple object name part. But if the latter is */
/* the case, that's the same thing for us as having a full entry */
/* name to import from, since the whole point of this exercise is */
/* that the object part of the name isn't in the namespace in the */
/* the first place. So... */

/* Import a binding... */
else if (*status == rpc_s_partial_results || *status == error_status_ok)
{
fprintf(stdout, "sample_client: Binding to resolved name...\n");
fprintf(stdout, "sample_client: Calling rpc_ns_binding_import_begin()...\n");
rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default,
resolved_name, /* This should be a namespace leaf. */
if_hint, /* Interface we were originally given. */
id_hint, /* Object UUID we were originally given. */
&import_context,
status);

/* If this has failed, one possible reason is that we sup- */
/* plied an id_hint and this wasn't in the junction. We */
/* could try to import with the nil-UUID at this point and */
/* then put the id_hint into the returned binding. That */
/* way, we would succeed if the correct UUID was in the */
/* endpoint map. For now, though, we'll just fail. */
/* [--original note] */
/* */
if (*status != error_status_ok)
{
print_error("rpc_ns_binding_import_begin()", *status);
return;
}

}

fprintf(stdout, "sample_client: Calling rpc_ns_binding_import_next()...\n");
rpc_ns_binding_import_next(
import_context,
(rpc_binding_handle_t*)binding_h,
status);
if (*status != error_status_ok)
{
print_error("rpc_ns_binding_import_next()", *status);
return;
}

fprintf(stdout, "sample_client: Calling rpc_ns_binding_import_done()...\n");
rpc_ns_binding_import_done(&import_context, status);
if (*status != error_status_ok)
{
print_error("rpc_ns_binding_import_done()", *status);
return;
}
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/* We succeeded in importing a (partial) binding. */
/* Note that this is only for the purpose of returning the name */
/* to the caller; we have no further use for it here... */
fprintf(stdout, "sample_client: Imported partial binding.\n");
fprintf(stdout, "sample_client: Calling rpc_ns_binding_inq_entry_name()...\n");
rpc_ns_binding_inq_entry_name(
(rpc_binding_handle_t)*binding_h,
rpc_c_ns_syntax_default,
entry_name,
status);
if (*status != error_status_ok)
{
print_error("rpc_ns_binding_inq_entry_name()", *status);
return;
}

/* Note that at this point, we can only assume that the server */
/* has put at least one object UUID in the endpoint map and */
/* the name space. If id_hint was null, we got one of the object */
/* UUIDs from the namespace at random. If id_hint was supplied, */
/* we either got that UUID or failed. If no UUIDs were exported, */
/* then the binding contains none, so when we make the call */
/* we are only guaranteed to get to some server that supports */
/* the sample_bind interface on the bound-to host. It may */
/* well be the wrong one, in which case we will now fail... */

/* This is the "remote binding interface" call. What we are hoping */
/* to get from it is the object UUID of the object whose name is */
/* pretending (via a junction) to be in the namespace. These */
/* things, not being in the namespace, are held in a backing store */
/* database maintained by the server... */
fprintf(stdout, "sample_client: Calling [remote] rs_bind_to_object()...\n");
rs_bind_to_object(
*binding_h, /* The partial binding we just got. */
*residual, /* The backing store "key", i.e. object name. */
object_uuid, /* To return the object UUID. */
mgr_type_uuid, /* To return the type manager UUID. */
status);
if (*status != error_status_ok)
{
print_error("rs_bind_to_object()", *status);
return;
}

/* The binding handle is now fully bound. Our request for the ob- */
/* ject UUID was really only a pretext for doing the namespace */
/* lookup and getting the binding handle completed with a server */
/* endpoint. The object UUID is not used for routing within the */
/* server. So we can now clear out any UUID set by id_hint and re- */
/* place it with any type manager UUID returned from the server... */
fprintf(stdout, "sample_client: Fully bound to object.\n");
fprintf(stdout, "sample_client: Calling rpc_string_free()...\n");
rpc_string_free(&resolved_name, status);
if (*status != error_status_ok)
{
print_error("rpc_string_free()", *status);
return;
}

}

/******
*
* print_error-- Client version. Prints text associated with bad status code.
*
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*
*
******/

void
print_error(char *caller, /* Routine that received the error. */
error_status_t status) /* The status we want to print the message for. */
{
dce_error_string_t error_string;
int print_status;

dce_error_inq_text(status, error_string, &print_status);
fprintf(stderr," Client: %s: %s\n", caller, error_string);
}

Message (sams) File
The sample application’s sams file, which contains definitions for various messages
output by the serviceability interface routines, is as follows:

Sample smp.sams
##############################################################################
# #
# smp.sams -- sams input file for generic sample program. #
# #
# #
##############################################################################

# Part I
component smp
table smp__table
technology dce

##############################################################################
# Part II
serviceability table smp_svc_table handle smp_svc_handle
start

sub-component smp_s_server "server" smp_i_svc_server
sub-component smp_s_manager "manager" smp_i_svc_manager
sub-component smp_s_binder "binder" smp_i_svc_binder

end

##############################################################################
# Part III
# Note that defining the "sub-component" and "attributes" fields
# will result in a convenience macro's being generated for the
# message in question...

start
code sign_on
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Starting up"
explanation ""
action "None required."
end

start
code cleanup
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Cleaning up"
explanation "Starting server cleanup"
action "None required."
end
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start
code server_exit
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Exiting"
explanation ""
action "None required."
end

start
code signal_catcher
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Spawning signal handler thread"
explanation ""
action "None required."
end

start
code no_signal_catcher
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Spawn signal handler failed"
explanation "RPC runtime error. pthread_create() failed."
action ""
end

start
code bad_entryname_count
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Bad entryname count"
explanation "Count of entrynames doesn't match count of object uuids"
action ""
end

start
code cannot_resolve_name
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Can't resolve name"
explanation "ACL manager resolver failed to resolve name"
action "The ACL databases may be corrupt and need to be regenerated."
end

start
code cannot_manage_keys
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Can't spawn key management thread."
explanation "RPC runtime error."
action ""
end

start
code no_acl_dbs
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "ACL databases not found, creating them from scratch"
explanation ""
action "None required."
end

start
code exporting_to
sub-component smp_s_server
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attributes "svc_c_sev_notice"
text "Exporting to %s"
explanation "Exporting to CDS entry"
action "None required."
end

start
code unexporting_from
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Unexporting from %s"
explanation "Unexporting from CDS entry"
action "None required."
end

start
code importing_from
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Importing from %s"
explanation "Importing from CDS entry"
action "None required."
end

start
code auth_set_client
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Beginning client authentication setup"
explanation ""
action "None required."
end

start
code bindings_received
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Nr of %s bindings received == %d"
explanation "Server diagnostic message."
action "None required."
end

start
code full_binding
sub-component smp_s_server
attributes "svc_c_sev_notice"
text "Full %s binding in string form == %s"
explanation "Server diagnostic message."
action "None required."
end

start
code server_error
sub-component smp_s_server
attributes "svc_c_sev_fatal"
text "%s: %s"
explanation "general error message"
action "?"
end

start
code no_permissions
sub-component smp_s_manager
attributes "svc_c_sev_notice"
text "No permissions"
explanation "Client does not have permissions for operation"
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action "None required."
end

start
code object_not_found
sub-component smp_s_manager
attributes "svc_c_sev_error"
text "Object not found"
explanation "object was not found in UUID-indexed database"
action "None required."
end

start
code manager_error
sub-component smp_s_manager
attributes "svc_c_sev_fatal"
text "%s: %s"
explanation "general error message"
action "?"
end

start
code binder_error
sub-component smp_s_binder
attributes "svc_c_sev_fatal"
text "%s: %s"
explanation "general error message"
action "?"
end

##############################################################################
# Part IIIa
# Messages for serviceability table
#
# Note that there has to be one of these for each of
# the sub-components declared in the second part of
# the file (above)...

start !intable undocumented
code smp_i_svc_server
text "Sample server"
end

start !intable undocumented
code smp_i_svc_binder
text "Sample object binder"
end

start !intable undocumented
code smp_i_svc_manager
text "Sample manager"
end

Makefile
A generic Makefile suitable for building the sample code is as follows:

Makefile Sample

##############################################################################
# #
# Makefile: A generic makefile suitable for building the sample #
# application. #
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# #
##############################################################################

# Compiler:
# Uncomment the following line for AIX:
# CC = /usr/bin/xlc_r4
# Uncomment the following line for Solaris:
# CC = cc

# SAMS reference:
SAMS = sams

# IDL compiler:
IDLC = /usr/bin/idl

# Libraries:
LIBS = -ldce
LIBALL = $(LIBS)

# Include directories (some compilers need -I. to pick up local header files):
# Uncomment the following line for AIX:
# INC = -I.
# Uncomment the following line for Solaris:
# -I. -I/usr/include/dce

# CC flags:
# Uncomment the following line for AIX:
# CFLAGS = -g $(INC)
# Uncomment the following line for Solaris:
# CFLAGS = -g -mt $(INC)

# IDL compiler flags. There are two versions of this line because, for the
# sample_bind interface, we explicitly declare and initialize the entry-
# point vector ourselves, so we specify that no epv structure be generated
# by IDL for it; but for the sample interface itself, we want to use the
# default epv structure, so when processing its .idl file we let IDL go
# ahead and generate the structure. There actually is no particular reason
# for explicitly declaring the vector for sample_bind, but it is instructive
# to see the two ways this can be done.
#
# The "-keep all" option is specified in order to avoid having IDL continu-
# ally create and delete stub files. Doing it this way makes the build
# much shorter...

NO_EPV_IFLAGS = -v -no_mepv $(IDLCC) $(INC) -keep all
IFLAGS = -v $(IDLCC) $(INC) -keep all

# Interface name:
IF = sample

##############################################################################
# TARGETS:
# Executables...
CLIENT = $(IF)_client
SERVER = $(IF)_server

# Objects:
CLIENTO = $(IF)_client.o
SERVERO = $(IF)_server.o
CLIENTSO = $(IF)_cstub.o
SERVERSO = $(IF)_sstub.o
DBSO = $(IF)_db_cstub.o
MGRO = $(IF)_manager.o
SVCMSGO = dcesmpmsg.o
SVCSVCO = dcesmpsvc.o

# Remote bind interface:
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BIND_REMOTE = sample_bind
BIND_REMOTEC = $(BIND_REMOTE).c
BIND_REMOTEO = $(BIND_REMOTE).o

# Sams generated:
SVCH = dcesmpmsg.h dcesmpsvc.h dcesmpmac.h
SVCMSGC = dcesmpmsg.c
SVCSVCC = dcesmpsvc.c
FROMSAMS = $(SVCH) $(SVCC)

# IDL generated:
HDR = $(IF).h
DBHDR = $(IF)_db.h
SHDR = $(SERVER).h
CLIENTSC = $(IF)_cstub.c
SERVERSC = $(IF)_sstub.c
DBSC = $(IF)_db_cstub.c
FROMIDL = $(HDR) $(CLIENTSC) $(SERVERSC)
FROMDBIDL = $(DBHDR) $(DBSC)
FROMBINDIDL = sample_bind.h sample_bind_sstub.c sample_bind_cstub.c

##############################################################################
# DEPENDENCIES:

all: $(CLIENT) $(SERVER)

##############################################################################
# Executables (.o dependencies):

$(SERVER): $(SERVERSO) $(BIND_REMOTEO) $(DBSO) $(SERVERO) $(MGRO) \
$(SVCMSGO) $(SVCSVCO) sample_bind.h sample_bind_sstub.c
$(CC) $(CFLAGS) -o $@ $(SERVERSO) $(BIND_REMOTEO) \
$(DBSO) $(SERVERO) $(MGRO) $(SVCMSGO) $(SVCSVCO) \
sample_bind_sstub.o $(LIBALL)

$(CLIENT): $(CLIENTSO) $(CLIENTO) $(SVCMSGO) $(SVCSVCO) sample_bind.h \
sample_bind_cstub.c
$(CC) $(CFLAGS) -o $@ $(CLIENTSO) $(CLIENTO) \
sample_bind_cstub.o $(SVCMSGO) $(SVCSVCO) $(LIBALL)

##############################################################################
# Object files (.c and .h dependencies):
$(SERVERSO): $(SERVERSC) $(HDR) $(SHDR) sample_bind_sstub.c
$(CLIENTSO): $(CLIENTSC) $(HDR) sample_bind_cstub.c
$(DBSO): $(DBSC) $(DBHDR)
$(SERVERO): $(IF)_server.c $(HDR) $(SHDR) $(DBHDR) $(SVCH)
$(CLIENTO): $(IF)_client.c $(HDR) $(SVCH) $(FROMBINDIDL)
$(BIND_REMOTEO): sample_bind.c sample_bind.h $(SHDR) $(SVCH)
$(MGRO): $(IF)_manager.c $(HDR) $(SHDR) $(DBHDR) $(SVCH)
$(SVCMSGO): $(SVCMSGC)

$(SVCSVCO): $(SVCSVCC)

##############################################################################
# IDL generated files (.idl and .acf dependencies):IDL): $(IF).idl $(IF).acf
$(IDLC) $(IF).idl $(IFLAGS)

$(FROMDBIDL): $(IF)_db.idl $(IF)_db.acf
$(IDLC) $(IF)_db.idl $(IFLAGS)

$(FROMBINDIDL): sample_bind.idl sample_bind.acf
$(IDLC) sample_bind.idl $(NO_EPV_IFLAGS)

##############################################################################
# Sams generated files (.sams dependencies):

$(FROMSAMS): smp.sams
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$(SAMS) smp.sams

##############################################################################
clean:
rm -f $(FROMIDL) $(SERVERSO) $(SERVERO) $(DBSO) $(MGRO) $(UTILO) \
$(CLIENTSO) $(CLIENTO) $(UTILO) $(FROMSAMS) \(null\).idl \
dcesmp.cat dcesmp.msg dcesmpmsg.c dcesmpmsg.idx \
dcesmpmsg.man dcesmpmsg.sgm dcesmpsvc.c sample_bind.h \
sample_db.h dcesmpmsg.o dcesmpsvc.o sample_bind.o \
dcesmpmsg.sml sample_bind_cstub.o sample_bind_sstub.o .idl \
sample_bind_cstub.c sample_bind_sstub.c sample_db_cstub.c

rmtarget:
rm -f $(CLIENT) $(SERVER) core

clobber: clean rmtarget
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Appendix. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
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and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between
us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form
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without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1990, 2001. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both:

AIX
DFS
IBM
SAA

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.
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