

OS/390 TCP/IP Open Edition ÉÂÔ

Programmer's Reference

 SC31-8308-00

OS/390 TCP/IP Open Edition ÉÂÔ

Programmer's Reference

 SC31-8308-00

Note:

Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices” on page 115.

First Edition (June 1997)

This edition applies to OS/390 (5645-001) and OS/390 TCP/IP OpenEdition. See the “Summary of Changes” for a description of the
changes made in this edition. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be at the back of this publication. If the form has been removed,
you may send your comments to the following address:

International Business Machines Corporation
 Department CGMD

P.O. Box 12195
Research Triangle Park, North Carolina 27709

 USA

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada): 1-800-227-5088

Internet e-mail: usib2hpd@vnet.ibm.com

World Wide Web: http://www.s390.ibm.com/os390

IBMLink: CIBMORCF at RALVM13

IBM Mail Exchange: USIB2HPD at IBMMAIL

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1989, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . ix
How to Use this Book . ix
Who Should Use This Book . ix
Where to Find Related Information on the Internet ix
How to Contact IBM Service . x

Summary of Changes . xi

Chapter 1. General Programming Information 1

Chapter 2. Simple Network Management Protocol Agent Distributed
Protocol Interface . 3

SNMP Agents and Subagents . 4
SNMP DPI Version 2.0 Library . 5
Compiling and Linking . 6
DPI 1.x Base Code Considerations . 7
SNMP DPI API Version 1.1 Considerations . 8
Subagent Programming Concepts . 10
Specifying the SNMP DPI API . 11
Connect Processing . 12
OPEN Request . 12
REGISTER Request . 13
GET Processing . 14
SET Processing . 15
GETNEXT Processing . 16
GETBULK Processing Request . 17
TRAP Request . 17
ARE_YOU_THERE Request . 18
UNREGISTER Request . 18
CLOSE Request . 18
Multi-threading Programming Considerations . 19
Functions, Data Structures, and Constants . 20
Basic DPI API Functions . 21
The DPIdebug() Function . 21
The DPI_PACKET_LEN() Macro . 22
The fDPIparse() Function . 23
The fDPIset() Function . 24
The mkDPIAreYouThere() Function . 25
The mkDPIclose() Function . 26
The mkDPIopen() Function . 27
The mkDPIregister() Function . 30
The mkDPIresponse() Function . 31
The mkDPIset() Function . 33
The mkDPItrap() Function . 35
The mkDPIunregister() Function . 37
The pDPIpacket() Function . 38
Transport-Related DPI API Functions . 39
The DPIawait_packet_from_agent() Function . 39
The DPIconnect_to_agent_TCP() Function . 41
The DPIconnect_to_agent_UNIXstream() Function 42

 Copyright IBM Corp. 1989, 1997 iii

The DPIdisconnect_from_agent() Function . 43
The DPIget_fd_for_handle() Function . 44
The DPIsend_packet_to_agent() Function . 45
The lookup_host() Function . 47
DPI Structures . 48
Character Set Selection . 56
Constants, Values, Return Codes, and Include File 57
DPI CLOSE Reason Codes . 58
DPI Packet Types . 58
DPI RESPONSE Error Codes . 59
DPI UNREGISTER Reason Codes . 60
DPI SNMP Value Types . 60
Value Representation . 61
Value Ranges and Limits . 62
Return Codes from DPI Transport-Related Functions 62
The snmp_dpi.h Include File . 63
A DPI Subagent Example . 64
Overview of Subagent Processing . 64
Connecting to the Agent . 67
Registering a Sub-tree with the Agent . 69
Processing Requests from the Agent . 71
Processing a GET Request . 74
Processing a GETNEXT Request . 77
Processing a SET/COMMIT/UNDO Request . 81
Processing an UNREGISTER Request . 84
Processing a CLOSE Request . 85
Generating a TRAP . 86

Chapter 3. Sample SNMP DPI Client Program 89
Using the Sample Program . 89
Compiling and Linking the dpi_mvs_sample.c Source Code 89
dpiSample Table MIB Descriptions . 90

Chapter 4. X Window System and OSF/Motif Interface for the
OpenEdition Environment . 91

HFS Files . 92
OpenEdition Application Resource File . 92
Identifying the Target Display in OpenEdition . 92
Programming Considerations . 93
X Window System Environment Variables . 93
EBCDIC/ASCII Translation in MVS OE X Windows 94

Chapter 5. RPC in the OpenEdition Environment 99
Deviations from Sun RPC 4.0 . 99
Using OE RPC . 100

Appendix A. Well-Known Port Assignments 101
Well-Known UDP Port Assignments . 102

Appendix B. Related Protocol Specifications (RFCs) 105

Appendix C. Abbreviations and Acronyms 111

Appendix D. Notices . 115

iv Programmer's Reference

Trademarks . 115

Bibliography . 117
IBM TCP/IP Publications . 117
IBM Operating System Publications . 119
IBM Software Publications . 121
IBM Hardware Publications . 123
Other TCP/IP-Related Publications . 124
Network Architecture Publications . 125

Index . 127

 Contents v

vi Programmer's Reference

 Tables

1. Components of DPI 2.0 . 5
2. TCP Well-Known Port Assignments . 101
3. Well-Known UDP Port Assignments . 102

 Copyright IBM Corp. 1989, 1997 vii

viii Programmer's Reference

About This Book

This book describes the syntax and semantics of a set of high-level application
functions that you can use to program your own applications in a TCP/IP environ-
ment. These functions provide support for application facilities, such as user
authentication, distributed databases, distributed processing, network management,
and device sharing.

The function included in this version of this book is limited to the Simple Network
Management Protocol (SNMP) agent distributed protocol interface (DPI), the X
Window Interface, and RPC for Open Edition.

For information about other function, refer to TCP/IP for MVS: Programmer's Refer-
ence, which supports the previous level of this product.

Please use the Reader’s Comment Form located at the back of this book for
instructions about how to submit your comments by mail, fax, or electronically.

OS/390 TCP/IP OpenEdition is an integral part of the OS/390 family of products.
For an overview and mapping of the documentation available for OS/390, see the
OS/390 Information Roadmap.

How to Use this Book
This book is a companion to TCP/IP for MVS: Programmer's Reference
(SC31-7135-02), which describes high-level application functions that you can use
to program your own applications in a TCP/IP environment. These functions involve
user authentication, distributed data bases, distributed processing, network man-
agement, and device sharing.

Who Should Use This Book
This book is intended for use by an experienced programmer familiar with MVS, the
IBM Multiple Virtual Storage (MVS) operating system commands, and the TCP/IP
protocols.

Before using this book, you should be familiar with the MVS operating system and
the IBM Time Sharing Option (TSO).

Depending on the design and function of your application, you should be familiar
with the C programming language.

In addition,OS/390 TCP/IP OpenEdition and any required programming products
should already be installed and customized for your network.

Where to Find Related Information on the Internet
You may find the following information helpful.

For current updates to the TCP/IP Version 3 Release 2 for MVS documentation
described in “Bibliography” on page 117, check out the TCP/IP for MVS home
page :

 Copyright IBM Corp. 1989, 1997 ix

http://www.networking.ibm.com/tcm/tcmprod.html

To keep in close touch with OS/390, we suggest you look at the OS/390 home
page :

http://www.s390.ibm.com/os390

To keep abreast of new products and technologies from IBM Networking, take a
look at the IBM Networking home page :

http://www.networking.ibm.com/

The IBM Networking Software Glossary is now available in HTML format as well as
PDF. You can access it directly at the following URL:

http://www.networking.ibm.com/nsg/nsggls.htm

How to Contact IBM Service
For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

x Programmer's Reference

Summary of Changes

Summary of Changes
for SC31–8308–00

This is the first edition of this book. It contains information previously presented in
TCP/IP for MVS: Programmer's Reference (SC31-7135-02), which supports TCP/IP
Version 3 Release 2 for MVS. This book is new for OS/390 TCP/IP OpenEdition,
which provides OpenEdition function for TCP/IP in the OS/390 environment. For
information about previously available TCP/IP function, continue to use the TCP/IP
Version 3 Release 2 for MVS library.

This book describes:

¹ DPI support in an OpenEdition environment.

¹ Information on running X Windows in an OpenEdition environment.

¹ Information on running RPC in an OpenEdition environment.

 Copyright IBM Corp. 1989, 1997 xi

xii Programmer's Reference

Chapter 1. General Programming Information

For the fundamental, technical information you need to know before you attempt to
work with the application program interfaces (APIs) provided with TCP/IP, please
be sure you read the “before you begin” information in the TCP/IP for MVS: Appli-
cation Programming Interface Reference.

 Copyright IBM Corp. 1989, 1997 1

2 Programmer's Reference

Chapter 2. Simple Network Management Protocol Agent
Distributed Protocol Interface

The Simple Network Management Protocol (SNMP) agent Distributed Protocol
Interface (DPI) permits you to dynamically add, delete, or replace management var-
iables in the local Management Information Base (MIB). The SNMP DPI protocol is
also supported with the SNMP agent on OS/2, VM, and AIX. This makes it easier
to port subagents between those platforms and OS/390 as well as connect agents
and subagents across these platforms.

The SNMP agent DPI Application Programming Interface (API) is for the DPI suba-
gent programmer.

The following RFCs are related to SNMP and will be helpful when you are program-
ming an SNMP API:

¹ RFC1592 is the SNMP DPI 2.0 RFC.
¹ RFC1901 through RFC1908 are the SNMP Version 2 RFCs.

The primary goal of RFC 1592 is to specify the SNMP DPI. This is a protocol by
which subagents can exchange SNMP related information with an agent.

To provide an environment that is generally platform independent, RFC 1592
strongly suggests that you also define a DPI API. There is a sample DPI API avail-
able in the RFC. The document describes the same sample API as the IBM sup-
ported DPI Version 2.0 API, see A DPI Subagent Example (see page 64).

The information about DPI is divided into the following topics:

Introduction Includes:

¹ Agents and Subagents

¹ SNMP DPI Version 2.0

¹ SNMP DPI Version 1.1

Understanding DPI ¹ Subagent Programming Concepts

¹ How to Specify the DPI API

¹ Multi-threading Programming Consid-
erations

Functions, Structures, and Values ¹ Basic functions

 ¹ Transport-related functions

 ¹ Data Structures

¹ Constants and Values

Example The DPI Subagent Example

 Copyright IBM Corp. 1989, 1997 3

SNMP Agents and Subagents
SNMP agents are primarily responsible for responding to SNMP operation requests.
An operation request can originate from any entity that supports the management
portion of the SNMP protocol. An example of this is the OE SNMP command,
osnmp, shipped with this version of TCP/IP. Examples of SNMP operations are
GET, GETNEXT, and SET. An operation is performed on a MIB object.

A subagent extends the set of MIB objects provided by the SNMP agent. With the
subagent, you define MIB objects useful in your own environment and register them
with the SNMP agent.

When the agent receives a request for a MIB object, it passes the request to the
subagent. The subagent then returns a response to the agent. The agent creates
an SNMP response packet and sends the response to the remote network manage-
ment station that initiated the request. The existence of the subagent is transparent
to the network management station.

To allow the subagents to perform these functions, the agent provides for subagent
connections through:

¹ A TCP connection

¹ A AF_UNIX streams connection

For the TCP connections, the agent binds to an arbitrarily chosen TCP port and
listens for connection requests. A well-known port is not used. Every invocation of
the SNMP agent could potentially use a different TCP port.

For Unix streams connections, the agent is within the same machine. AF_UNIX
connections should be used if possible, since they do not pass into TCP/IP, but
flow only within OpenEdition and hence require fewer system resources.

A DPI SNMP Subagent does not have to directly retrieve a dpiMIB object or
objects, but instead uses either DPIconnect_to_agent_TCP() or
DPIconnect_to_agent_UNIXstream(). DPIconnect_to_agent_TCP automatically
retrieves the object dpiPortForTCP from the dpiMIB through a SNMP agent.
DPIconnect_to_agent_TCP then establishes an AF_INET TCP socket connection
with the SNMP agent.

The query_DPI_port() function issued in Version 1.1 is implicitly run by the
DPIconnect_to_agent_TCP() function. The DPI subagent programmer would
normally use the DPIconnect_to_agent_TCP() function to connect to the agent, and
hence does not need to explicitly retrieve the value of the DPI TCP port.

Conversely, DPIconnect_to_agent_UNIXstream retrieves the value of the object
dpiPathNameForUnixStream from the dpiMIB in order to establish an AF_UNIX
connection with the SNMP agent.

After a successful connection to the SNMP agent the subagent registers the MIB
tree(s) for the set of variables it supports with the SNMP agent. When all variable
classes are registered, the subagent waits for requests from the SNMP agent.

4 Programmer's Reference

DPI Agent Requests
The SNMP agent can initiate several DPI requests:

 ¹ GET
 ¹ GETNEXT
¹ SET, COMMIT, and UNDO

 ¹ UNREGISTER
 ¹ CLOSE

The GET, GETNEXT, and SET requests correspond to the SNMP requests that a
network management station can make. The subagent responds to a request with a
response packet. The response packet can be created using the mkDPIresponse()
library routine, which is part of the DPI API library.

The GETBULK requests are translated into multiple GETNEXT requests by the
agent. According to RFC 1592, a subagent may request that the GETBULK be
passed to it, but the MVS version of DPI does not yet support that request.

The COMMIT, UNDO, UNREGISTER, and CLOSE are specific SNMP DPI
requests.

The subagent normally responds to a request with a RESPONSE packet. For the
CLOSE and UNREGISTER request, the subagent does not need to send a
RESPONSE.

 Related Information
¹ Overview of Subagent Processing (see page 64)
¹ Connecting to the Agent (see page 67)
¹ Registering a Sub-tree with the Agent (see page 69)
¹ Processing Requests from the Agent (see page 71)
¹ Processing a GET Request (see page 74)
¹ Processing a GETNEXT Request (see page 16)
¹ Processing a SET/COMMIT/UNDO Request (see page 81)
¹ Processing an UNREGISTER Request (see page 18)
¹ Processing an CLOSE Request (see page 18)
¹ Generating a TRAP (see page 17)

SNMP DPI Version 2.0 Library
OS/390 TCP/IP OpenEdition provides the following DPI library routines:

Table 1. Components of DPI 2.0

Name Contents Location

snmp_dpi.h header file /usr/lpp/tcpip/snmp/include

 snmp_lDPI.o

 snmp_mDPI.o

 snmp_qDPI.o

¹ OE object files

¹ DPI 2.0 library func-
tions

/usr/lpp/tcpip/snmp/build/libdpi20

dpi_mvs_sample.c SNMP DPI 2.0 C sample
source

/usr/lpp/tcpip/samples

dpiSimpl.mi2 SNMP DPI 2.0 sample
MIB definitions

/usr/lpp/tcpip/samples

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 5

SNMP DPI Version 2.0 API
DPI 2.0 is intended for use with OpenEdition sockets and is not for use with other
socket libraries. A DPI Subagent must include the snmp_dpi.h header in any C part
that intends to use DPI. The HFS path for snmp_dpi.h is
/usr/lpp/tcpip/snmp/include. By default, when you include the snmp_dpi.h include
file, you will be exposed to the DPI 2.0 API. For a list of the functions provided,
read more about the snmp_dpi.h include file on page 63 . This is the recommended
use of the SNMP DPI API. .

When you prelink your object code into an executable file, you must use the DPI
2.0 functions as provided in the snmp_lDPI.o, snmp_mDPI.o, snmp_qDPI.o object
files in /usr/lpp/tcpip/snmp/build/libdpi20.

Usage Notes:

1. The object files are only located in OE HFS. HFS files can be accessed from
JCL using the path parameter on an explicit DD definition.

2. Together the snmp_dpi.h include file and the dpi_mvs_sample.c file comprise
an example of the DPI 2.0 API.

3. Debugging information (resulting from the DPIdebug function) is routed to
SYSLOGD. Ensure the SYSLOG daemon is active.

For more information about SYSLOGD, seeOS/390 TCP/IP OpenEdition Con-
figuration Guide.

4. Compile your subagent code using the DEF(MVS) compiler option.

5. Waiting for a DPI packet depends on the platform and how the chosen trans-
port protocol is implemented. In addition, some subagents want to control the
sending of and waiting for packets themselves, because they may need to be
driven by other interrupts as well.

6. There is a set of DPI transport-related functions that are implemented on all
platforms to hide the platform-dependent issues for those subagents that do not
need detailed control for the transport themselves.

For more information about SNMP, see the OS/390 TCP/IP OpenEdition Configura-
tion Guide or the OS/390 TCP/IP OpenEdition User's Guide.

Compiling and Linking
DPI 2.0 is installed in HFS only. You can build a subagent for either the
OpenEdition shell (using HFS and c89) or MVS (using JCL).

Refer to the documentation provided by your C compiler for exact details of building
a C application. The information provided in the following sections is intended as
general guidance.

From an OE Environment
Use c89 to compile a DPI subagent under the OpenEdition shell. Every C file using
DPI functions must include the DPI header file (snmp.dpi.h) from
/usr/lpp/tcpip/snmp/include. Also include the three DPI library object files
(snmp_qDPI.o, snmp_lDPI.o, and snmp_mDPI.o) from
/usr/lpp/tcpip/snmp/build/libdpi20.

6 Programmer's Reference

The following is an example of how c89 is called to compile and build
dpi_mvs_sample.c:

c89 -o dpi_mvs_sample -I /usr/lpp/tcpip/snmp/include \
/usr/lpp/tcpip/samples/dpi_mvs_sample.c \
usr/lpp/tcpip/snmp/build/libdpi20/snmp_lDPI.o\
usr/lpp/tcpip/snmp/build/libdpi20/snmp_mDPI.o\
usr/lpp/tcpip/snmp/build/libdpi20/snmp_qDPI.o\

Use the - I option to add the HFS directory where snmp_dpi.h resides to the com-
piler's include search path.

See the OS/390 OpenEdition Programming: Assembler Callable Services Refer-
ence for information about building an application.

From an MVS Environment
C programs that use DPI must:

¹ Compile with the longname compiler option

¹ Include snmp_dpi.h from /usr/lpp/tcpip/snmp/include

Add #include to the source code. You must inform the compiler that
/usr/lpp/tcpip/snmp/include should be searched for include files. Use either a
SYSLIB DD with a PATH parameter pointing to the HFS directory, or use the
SEARCH compiler parameter.

Prelink DPI subagent to resolve longnames. In the prelink JCL, define three DDs
pointing to each DPI object file, and then include each, such as:

DPI1 DD PATH='/usr/lpp/tcpip/snmp/build/libdpi20/snmp_lDPI.o
DPI2 DD PATH='/usr/lpp/tcpip/snmp/build/libdpi20/snmp_mDPI.o
DPI2 DD PATH='/usr/lpp/tcpip/snmp/build/libdpi20/snmp_qDPI.o

INCLUDE DPI1
INCLUDE DPI2
INCLUDE DPI3

Then linkedit the prelink output as usual.

DPI 1.x Base Code Considerations
Use the DPI 1.1 API as described in the TCP/IP for MVS: Programmer's
Reference.

The DPI 2.0 API provided with OS/390 TCP/IP OpenEdition is for OE (POSIX)
sockets use only. Earlier versions of DPI were supported on C sockets.

See “Migrating Your SNMP DPI Subagent to Version 2.0” on page 8 for more detail
about the changes that you must make to your DPI 1.x source.

If you want to convert to DPI 2.0, which prepares you also for SNMP Version 2,
you must make changes to your code.

You can keep your existing DPI 1.1 subagent and communicate with a DPI capable
agent that supports DPI 1.1 in addition to DPI 2.0. For example, the MVS agent for

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 7

TCP/IP provides support for multiple versions of DPI, namely Version 1.0, Version
1.1 and Version 2.0.

SNMP DPI API Version 1.1 Considerations

Migrating Your SNMP DPI Subagent to Version 2.0
The information presented in this section must be taken as guidelines and not
exact procedures . Your specific implementation will vary from the guidelines pre-
sented.

When you want to change your DPI 1.x based subagent code to the DPI 2.0 level
use these guidelines for the required actions and the recommended actions.

 Required Actions
¹ Add a mkDPIopen() call and send the created packet to the agent. This opens

your "DPI connection" with the agent. Wait for the response and ensure that the
open is accepted. You need to pass a subagent ID (Object Identifier) which
must be a unique ASN.1 OID.

See The mkDPIopen() Function (see page 27) for more information.

¹ Change your mkDPIregister() calls and pass the parameters according to the
new function prototype. You must also expect a RESPONSE to the REGISTER
request.

See The mkDPIregister() Function (see page 30) for more information.

¹ Change mkDPIset() and/or mkDPIlist() calls to the new mkDPIset() call. Bas-
ically all mkDPIset() calls are now of the DPI 1.1 mkDPIlist() form.

See The mkDPIset() Function (see page 33) for more information.

¹ Change mkDPItrap() and mkDPItrape() calls to the new mkDPItrap() call. Bas-
ically all mkDPItrap() calls are now of the DPI 1.1 mkDPItrape() form.

See The mkDPItrap() Function (see page 35) for more information.

¹ Add code to recognize DPI RESPONSE packets, which should be expected as
a result of OPEN, REGISTER, UNREGISTER requests.

¹ Add code to expect and handle the DPI UNREGISTER packet from the agent.
It may send such packets if an error occurs or if a higher priority subagent reg-
isters the same sub-tree as you have registered.

¹ Add code to unregister your sub-tree(s) and close the "DPI connection" when
you want to terminate the subagent.

See The mkDPIunregister() Function (see page 37) and The mkDPIclose()
Function (see page 26) for more information.

¹ Change your code to use the new SNMP Version 2 error codes as defined in
the snmp_dpi.h include file.

¹ When migrating DPI 1.1 subagents to DPI 2.0, remove the include for
manifest.h.

¹ Change your code that handles a GET request. It should return a varBind with
SNMP_TYPE_noSuchObject value or SNMP_TYPE_noSuchInstance value
instead of an error SNMP_ERROR_noSuchName if the object or the instance

8 Programmer's Reference

do not exist. This is not considered an error any more. Therefore, you should
return an SNMP_ERROR_noError with an error index of zero.

¹ Change your code that handles a GETNEXT request. It should return a varBind
with SNMP_TYPE_endOfMibView value instead of an error
SNMP_ERROR_noSuchName if you reach the end of your MIB or sub-tree.
This is not considered an error any more. Therefore, you should return an
SNMP_ERROR_noError with an error index of zero.

¹ Change your code that handles SET requests to follow the two phase
SET/COMMIT scheme as described in SET Processing (see page 15) .

See the sample handling of SET/COMMIT/UNDO in Processing a
SET/COMMIT/UNDO Request (see page 81) .

 Recommended Actions
¹ Do not reference the object ID pointer (object_p) in the snmp_dpi_xxxx_packet

structures anymore. Instead start using the group_p and instance_p pointers.
The object_p pointer may be removed in a future version of the DPI API.

¹ Check Transport-Related DPI API Functions (see page 39) to see if you want
to use those functions instead of using your own code for those functions.

¹ Consider using more than 1 varBind per DPI packet. You can specify this on
the REGISTER request. You must then be prepared to handle multiple
varBinds per DPI packet. The varBinds are chained via the various
snmp_dpi_xxxx_packet structures.

See The mkDPIopen() Function (see page 27) for more information.

¹ Consider specifying a time out when you issue a DPI OPEN or DPI REG-
ISTER.

See The mkDPIopen() Function (see page 27) and The mkDPIregister() Func-
tion (see page 30) for more information.

¹ Ensure SYSLOGD is active. The result of using DPIdebug is routed to
SYSLOGD. For information on how to configure SYSLOGD, see OS/390
TCP/IP OpenEdition Configuration Guide.

DPI 2.0 recognizes mkDPIlist, however, 2.0 subagents should use mkDPIset
instead.

 Name Changes
A number of field names in the snmp_dpi_xxxx_packet structures have changed so
that the names are now more consistent throughout the DPI code.

The new names indicate if the value is a pointer (_p) or a union (_u). The names
that have changed and that affect the subagent code are listed in the table below.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 9

There is no clean approach to make this change transparent. You probably will
have to change the names in your code. You may want to try a simple set of
defines like:

#define packet_body data_u
#define dpi_get get_p
#define dpi_set set_p
#define dpi_next next_p
#define dpi_response resp_p
#define dpi_trap trap_p
#define group_id group_p
#define object_id object_p
#define value value_p
#define type value_type
#define next next_p
#define enterprise enterprise_p

However, the names may conflict with other definitions that you have, in which case
you must change your code.

Old Name New Name Data Structure(XXXX)

group_id group_p getnext
object_id object_p get, getnext, set
value value_p set
type value_type set
next next_p set
enterprise enterprise_p trap
packet_body data_u dpi_hdr
dpi_get get_p hdr (packet_body)
dpi_getnext next_p hdr (packet_body)
dpi_set set_p hdr (packet_body)
dpi_trap trap_p hdr (packet_body)

Subagent Programming Concepts
When implementing a subagent use the DPI Version 2 approach.

¹ Use the SNMP Version 2 error codes only, even though there are definitions for
the SNMP Version 1 error codes.

¹ Implement the SET, COMMIT, UNDO processing properly.

¹ Use the SNMP Version 2 approach for GET requests, and pass back
noSuchInstance value or noSuchObject value if appropriate. Continue to
process all remaining varBinds.

VarBinds, or variable binding(s) refer to the number of objects specified in the
SNMP PDU with respect to the requested operation. For example, using the
SNMP Command Line Interface (CLI), a user can request the retrieval of mul-
tiple objects in the same request (GET or GETNEXT). The varBind portion of
the PDU sent would include multiple object identifiers (OIDs). From the suba-
gent perspective, it tells the agent via the max_varBinds parm on the
mkDPIopen call on what its limitations are. When the subagent receives a
request from the agent, it needs to handle multiple OIDs per request if it speci-
fied a max_varBinds value other than 1.

10 Programmer's Reference

¹ Use the SNMP Version 2 approach for GETNEXT, and pass back
endOfMibView value if appropriate. Continue to process all remaining varBinds.

¹ Specify the timeout period in the OPEN and REGISTER packets, when you are
processing a request from the agent (GET, GETNEXT, SET, COMMIT, or
UNDO).

If you fail to respond within the timeout period, the agent will probably close
your DPI connection and then discard your RESPONSE packet if it comes in
later. If you can detect that the response is not going to be received in the time
period, then you might decide to stop the request and return an
SNMP_ERROR_genErr in the RESPONSE.

¹ Issue an SNMP DPI ARE_YOU_THERE request periodically to ensure that the
agent is still "connected" and still knows about you.

¹ OS/2 runs on an ASCII-based machine. However, when you are running a sub-
agent on an EBCDIC based machine and you use the (default) native character
set, then all OID strings and all variable values of type OBJECT_IDENTIFIER
or DisplayString objects that are known by the agent (in its compiled MIB) will
be passed to you in EBCDIC format. OID strings include the group ID, instance
ID, Enterprise ID, and subagent ID. You should structure your response with
the EBCDIC format.

¹ If you receive an error RESPONSE on the OPEN packet, you will also receive
a DPI CLOSE packet with an SNMP_CLOSE_openError code. In this situation,
the agent closes the "connection".

¹ The DisplayString is only a textual convention. In the SNMP PDU (SNMP
packet), the type is just an OCTET_STRING.

When the type is OCTET_STRING, it is not clear if this is a DisplayString or
any arbitrary data. This means that the agent can only know about an object
being a DisplayString if the object is included in some sort of a compiled MIB. If
it is, the agent will use SNMP_TYPE_DisplayString in the type field of the
varBind in a DPI SET packet. When you send a DisplayString in a RESPONSE
packet, the agent will handle it as such.

 Related Information
A DPI Subagent Example (see page 64)

Specifying the SNMP DPI API
The following section describes each type of DPI processing in this order:

 1. Connect

 2. Open

 3. Register

4. Get, Set, Next, Trap, Are You There

 5. Unregister

 6. Close

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 11

 Connect Processing
There are various connect functions that allow connections through either TCP or
UNIXstream. Determine which is appropriate for you by evaluating whether you are
connecting to the same machine or a different machine. If the agent and the suba-
gent are using the same machine, use the UNIXstream connection for better per-
formance. If the agent and the subagent are using different machines, you must
use the TCP connection. There are two connect processing parameters:

¹ hostname—name or the IP address of the agent

¹ community name—password that allows the DPI connect function to obtain the
port (for TCP) or path name (for UNIX) that allows the socket connect to occur.

 Related Information
Connecting to the Agent (see page 67)

 OPEN Request
Next, the DPI subagent must open a "connection" with the agent. To do so, it must
send a DPI OPEN packet in which these parameters must be specified:

¹ The maximum timeout value in seconds. The agent is requested to wait this
long for a response to any request for an object being handled by this suba-
gent.

The agent may have an absolute maximum timeout value which will be used if
the subagent asks for too large a timeout value. A value of zero can be used to
indicate that the agent's own default timeout value should be used. A subagent
is advised to use a reasonably short interval of a few seconds or so. If a spe-
cific sub-tree needs a (much) longer time, a specific REGISTER can be done
for that sub-tree with a longer timeout value.

¹ The maximum number of varBinds that the subagent is prepared to handle per
DPI packet. Specifying 1 would result in DPI Version 1 behavior of one varBind
per DPI packet that the agent sends to the subagent. A value of zero means
the agent will try to combine up to as many varBinds as are present in the
SNMP packet that belongs to the same sub-tree.

¹ The character set you want to use. The default 0 value is the native character
set of the machine platform where the agent runs. Because the subagent and
agent normally run on the same system or platform, use the native character
set, which is EBCDIC on MVS.

If your platform is EBCDIC based, using the native character set of EBCDIC
makes it easy to recognize the string representations of the fields, such as the
group ID and instance ID. At the same time, the agent translates the value from
ASCII NVT to EBCDIC and vice versa for objects that it knows from a compiled
MIB to have a textual convention of DisplayString. This fact cannot be deter-
mined from the SNMP PDU encoding because in the PDU the object is only
known to be an OCTET_STRING.

If your subagent runs on an ASCII-based platform and the agent runs on an
EBCDIC-based platform (or the other way around), you can specify that you
want to use the ASCII character set. The agent and subagent programmers
know how to handle the string-based data in this situation.

12 Programmer's Reference

¹ The subagent ID. This is an ASN.1 Object Identifier that uniquely identifies the
subagent. This OID is represented as a null terminated string using the
selected character set.

For example: 1.3.5.1.2.3.4.5

¹ The subagent description. This is a DisplayString describing the subagent.
This is a character string using the selected character set.

For example: "DPI sample subagent Version 2.0"

Once a subagent has sent a DPI OPEN packet to an agent, it should expect a DPI
RESPONSE packet that informs the subagent about the result of the request. The
packet ID of the RESPONSE packet should be the same as that of the OPEN
request to which the RESPONSE packet is the response. See DPI RESPONSE
Error Codes (see page 59) for a list of valid codes that may be expected.

If you receive an error RESPONSE on the OPEN packet, you will also receive a
DPI CLOSE packet with an SNMP_CLOSE_openError code. In this situation, the
agent closes the "connection".

If the OPEN is accepted, the next step is to REGISTER one or more MIB sub-
trees.

 Related Information
Connecting to the Agent (see page 67)

 REGISTER Request
Before a subagent will receive any requests for MIB objects, it must first register
the variables or sub-tree it supports with the SNMP agent. The subagent must
specify a number of parameters in the REGISTER request:

¹ The sub-tree to be registered. This is a null terminated string in the selected
character set. The sub-tree must have a trailing dot.

For example: "1.3.6.1.2.3.4.5."

¹ The requested priority for the registration. The values are:

-1 Request for the best available priority.

0 Request for the next best available priority than the highest (best) pri-
ority currently registered for this sub-tree.

NNN Any other positive value requests that specific priority if available or
the next best priority that is available.

¹ The maximum timeout value in seconds. The agent is requested to wait this
long for a response to any request for an object in this sub-tree. The agent may
have an absolute maximum timeout value which will be used if the subagents
asks for too large a timeout value. A value of zero can be used to indicate that
the DPI OPEN value should be used for timeout.

Once a subagent has sent a DPI REGISTER packet to the agent, it should expect
a DPI RESPONSE packet that informs the subagent about the result of the request.
The packet ID of the RESPONSE packet should be the same as that of the REG-
ISTER packet to which the RESPONSE packet is the response.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 13

If the response is successful, the error_index field in the RESPONSE packet con-
tains the priority that the agent assigned to the sub-tree registration. See DPI
RESPONSE Error Codes (see page 59) for a list of valid codes that may be
expected.

Error Code: higherPriorityRegistered

The response to a REGISTER request may return the error code
"higherPriorityRegistered". This may be caused by:

¹ Another subagent already registered the same sub-tree at a better priority than
what you are requesting.

¹ Another subagent already registered a sub-tree at a higher level (at any pri-
ority). For instance, if a registration already exists for sub-tree 1.2.3.4.5.6 and
you try to register for sub-tree 1.2.3.4.5.6.<anything> then you will get
"higherPriorityRegistered" error code.

If you receive this error code, your sub-tree will be registered, but you will not see
any requests for the sub-tree. They will be passed to the sub-agent which regis-
tered with a better priority. If you stay connected, and the other sub-agent goes
away, then you will get control over the sub-tree at that point in time.

 Related Information
Registering a Sub-tree with the Agent (see page 69)

 GET Processing
The DPI GET packet holds one or more varBinds that the subagent has taken
responsibility for.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
sets the error_index to the position of the varBind at which the error occurs. The
first varBind is index 1, the second varBind is index 2, and so on. No name, type,
length, or value information needs to be provided in the packet because, by defi-
nition, the varBind information is the same as in the request to which this is a
response and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (zero) and error_index is set to zero.
The packet must also include the name, type, length, and value of each varBind
requested.

When you get a request for a non-existing object or a non-existing instance of an
object, you must return a NULL value with a type of SNMP_TYPE_noSuchObject or
SNMP_TYPE_noSuchInstance respectively. These two values are not considered
errors, so the error_code and error_index should be zero.

The DPI RESPONSE packet is then sent back to the agent.

14 Programmer's Reference

 Related Information
Processing a GET Request (see page 74)
The mkDPIresponse() Function (see page 31)

 SET Processing
A DPI SET packet contains the name, type, length, and value of each varBind
requested, plus the value type, value length, and value to be set.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
an error_index listing the position of the varBind at which the error occurs. The first
varBind is index 1, the second varBind is index 2, and so on. No name, type,
length, or value information needs to provided in the packet because, by definition,
the varBind information is the same as in the request to which this is a response
and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (zero) and error_index is set to zero.
No name, type, length, or value information is needed because the RESPONSE to
a SET should contain exactly the same varBind data as the data present in the
request. The agent can use the values it already has.

This suggests that the agent must keep state information, and that is the case. It
needs to do that anyway in order to be able to later pass the data with a DPI
COMMIT or DPI UNDO packet. Since there are no errors, the subagent must have
allocated the required resources and prepared itself for the SET. It does not yet
carry out the set, that will be done at COMMIT time.

The subagent sends a DPI RESPONSE packet, indicating success or failure for the
preparation phase, back to the agent. The agent will issue a SET request for all
other varBinds in the same original SNMP request it received. This may be to the
same subagent or to one or more different subagents.

Once all SET requests have returned a "no error" condition, the agent starts
sending DPI COMMIT packets to the subagent(s). If any SET request returns an
error, the agent sends DPI UNDO packets to those subagents that indicated suc-
cessful processing of the SET preparation phase.

When the subagent receives the DPI COMMIT packet, all the varBind information
will again be available in the packet. The subagent can now carry out the SET
request.

If the subagent encounters an error while processing the COMMIT request, it
creates a DPI RESPONSE packet with value SNMP_ERROR_commitFailed in the
error_code field and an error_index that lists at which varBind the error occurs. The
first varBind is index 1, and so on. No name, type, length, or value information is
needed. The fact that a commitFailed error exists does not mean that this error
should be returned easily. A subagent should do all that is possible to make a
COMMIT succeed.

If there are no errors and the SET and COMMIT have been carried out with
success, the subagent creates a DPI RESPONSE packet in which the error_code is

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 15

set to SNMP_ERROR_noError (zero) and error_index is set to zero. No name,
type, length, or value information is needed.

So far we have discussed a successful SET and COMMIT sequence. However,
after a successful SET, the subagent may receive a DPI UNDO packet. The suba-
gent must now undo any preparations it made during the SET processing, such as
free allocated memory.

Even after a COMMIT, a subagent may still receive a DPI UNDO packet. This will
occur if some other subagent could not complete a COMMIT request. Because of
the SNMP requirement that all varBinds in a single SNMP SET request must be
changed "as if simultaneous", all committed changes must be undone if any of the
COMMIT requests fail. In this case the subagent must try and undo the committed
SET operation.

If the subagent encounters an error while processing the UNDO request, it creates
a DPI RESPONSE packet with value SNMP_ERROR_undoFailed in the error_code
field and an error_index that lists at which varBind the error occurs. The first
varBind is index 1, and so on. No name, type, length, or value information is
needed. The fact that an undoFailed error exists does not mean that this error
should be returned easily. A subagent should do all that is possible to make an
UNDO succeed.

If there are no errors and the UNDO has been successful, the subagent creates a
DPI RESPONSE packet in which the error_code is set to SNMP_ERROR_noError
(zero) and error_index is set to zero. No name, type, length, or value information is
needed.

 Related Information
Processing a SET/COMMIT/UNDO Request (see page 81)

 GETNEXT Processing
The DPI GETNEXT packet contains the object(s) on which the GETNEXT operation
must be performed. For this operation, the subagent is to return the name, type,
length, and value of the next variable it supports whose (ASN.1) name
lexicographically follows the one passed in the group ID (sub-tree) and instance ID.

In this case, the instance ID may not be present (NULL) in the incoming DPI packet
implying that the NEXT object must be the first instance of the first object in the
sub-tree that was registered.

It is important to realize that a given subagent may support several discontinuous
sections of the MIB tree. In that situation, it would be incorrect to jump from one
section to another. This problem is correctly handled by examining the group ID in
the DPI packet. This group ID represents the "reason" why the subagent is being
called. It holds the prefix of the tree that the subagent had indicated it supported
(registered).

If the next variable supported by the subagent does not begin with that prefix, the
subagent must return the same object instance as in the request, for example the
group ID and instance ID with a value of SNMP_TYPE_endOfMibView (implied
NULL value). This endOfMibView is not considered an error, so the error_code and

16 Programmer's Reference

error_index should be zero. If required, the SNMP agent will call upon the subagent
again, but pass it a different group ID (prefix). This is illustrated in the discussion
below.

Assume there are two subagents. The first subagent registers two distinct sections
of the tree: A and C. In reality, the subagent supports variables A.1 and A.2, but it
correctly registers the minimal prefix required to uniquely identify the variable class
it supports.

The second subagent registers section B, which appears between the two sections
registered by the first agent.

If a management station begins browsing the MIB, starting from A, the following
sequence of queries of the form get-next (group ID, instance ID) would be
performed:

Subagent 1 gets called:
get-next(A,none) = A.1

 get-next(A,1) = A.2
 get-next(A,2) = endOfMibView

Subagent 2 is then called:
get-next(B,none) = B.1

 get-next(B,1) = endOfMibView

Subagent 1 gets called again:
get-next(C,none) = C.1

 Related Information
 None.

GETBULK Processing Request
You must ask the agent to translate GETBULK requests into multiple GETNEXT
requests. This is basically the default and is specified in the DPI REGISTER
packet. The majority of DPI subagents will run on the same machine as the agent,
or on the same physical network. Therefore, repetitive GETNEXT requests remain
local, and, in general, should not be a problem.

Note: Currently, MVS SNMP does not support GETBULK protocol between agent
and subagent. These requests are translated into multiple GETNEXT
requests.

 Related Information
Processing a GETNEXT Request (see page 16)

 TRAP Request
A subagent can request that the SNMP agent generates a trap for it. The subagent
must provide the desired values for the generic and specific parameters of the trap.
It may optionally provide a set of one or more name, type, length, or value parame-
ters that will be included in the trap packet.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 17

It may optionally specify an Enterprise ID (Object Identifier) for the trap to be gener-
ated. If a NULL value is specified for the Enterprise ID, the agent will use the suba-
gent Identifier from the DPI OPEN packet as the Enterprise ID to be sent with the
trap.

 Related Information
Generating a TRAP (see page86).

 ARE_YOU_THERE Request
A subagent can send an ARE_YOU_THERE packet to the agent. If the "con-
nection" is in a healthy state, the agent responds with a RESPONSE packet with
SNMP_ERROR_DPI_noError. If the "connection" is not in a healthy state, the agent
may respond with a RESPONSE packet with an error indication, but the agent
might not react at all. In this situation, you would timeout while waiting for a
response.

 UNREGISTER Request
A subagent may unregister a previously registered sub-tree. The subagent must
specify a few parameters in the UNREGISTER request:

¹ The sub-tree to be unregistered. This is a null terminated string in the selected
character set. The sub-tree must have a trailing dot.

For example: "1.3.6.1.2.3.4.5."

¹ The reason for the unregister. See DPI UNREGISTER Reason Codes (see
page 60) for a list of valid reason codes.

Once a subagent has sent a DPI UNREGISTER packet to the agent, it should
expect a DPI RESPONSE packet that informs the subagent about the result of the
request. The packet ID of the RESPONSE packet should be the same as that of
the REGISTER packet to which the RESPONSE packet is the response. See DPI
RESPONSE Error Codes (see page 59) for a list of valid codes that may be
expected.

A subagent should also be prepared to handle incoming DPI UNREGISTER
packets from the agent. In this situation, the DPI packet will contain a reason code
for the UNREGISTER. A subagent does not have to send a response to an
UNREGISTER request. The agent just assumes that the subagent will handle it
appropriately. The registration is removed regardless of what the subagent returns.

 Related Information
Processing an UNREGISTER request (see page84).

 CLOSE Request
When a subagent is finished and wants to end processing, it should first UNREG-
ISTER its sub-trees and then close the "connection" with the agent. To do so, it
must send a DPI CLOSE packet, which specifies a reason for the closing. See DPI
CLOSE Reason Codes (see page 58) for a list of valid codes. You should not
expect a response to the CLOSE request.

18 Programmer's Reference

A subagent should also be prepared to handle an incoming DPI CLOSE packet
from the agent. In this case, the packet will contain a reason code for the CLOSE
request. A subagent does not have to send a response to a CLOSE request. The
agent just assumes that the subagent will handle it appropriately. The close takes
place regardless of what the subagent does with it.

 Related Information
Processing a CLOSE request (see page85).

Multi-threading Programming Considerations
The DPI Version 2.0 program does not support multi-threaded subagents.

There are several static buffers in the DPI code. For compatibility reasons, that
cannot be changed. Real multi-thread support will probably mean several potentially
incompatible changes to the DPI 2.0 API.

Use a Locking Mechanism

Because the DPI API is not reentrant, to use your subagent in a multi-threaded
process you should use some locking mechanism of your own around the static
buffers. Otherwise, one thread may be writing into the static buffer while another is
writing into the same buffer at the same time. There are two static buffers. One
buffer is for building the serialized DPI packet before sending it out and the other
buffer is for receiving incoming DPI packets.

Basically, all DPI functions that return a pointer to an unsigned character are the
DPI functions that write into the static buffer to create a serialized DPI packet:

mkDPIAreYouThere()
mkDPIopen()
mkDPIregister()
mkDPIunregister()
mkDPItrap()
mkDPIresponse()
mkDPIpacket()
mkDPIclose ()

After you have called the DPIsend_packet_to_agent() function for the buffer, which
is pointed to by the pointer returned by one of the preceeding functions, it is free to
use again.

There is one function that reads the static input buffer:

pDPIpacket()

The input buffer gets filled by the DPIawait_packet_from_agent() function. Upon
return from the await, you receive a pointer to the static input buffer. The
pDPIpacket() function parses the static input buffer and returns a pointer to dynam-
ically allocated memory. Therefore, after the pDPIpacket() call the buffer is avail-
able for use again.

The DPI internal handle structures and control blocks used by the underlying code
to send and receive data to and from the agent are also static data areas. Ensure
that you use your own locking mechanism around the functions that add, change,

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 19

or delete data in those static structures. The functions that change those internal
static structures are:

DPIconnect_to_agent_TCP() /* everyone has this one */
DPIconnect_to_agent_UNIXstream() /* supported */
DPIdisconnect_from_agent() /* everyone has this one */

The following are other functions that access those static structures which must be
assured that the structure is not being changed while they are referencing it during
their execution are:

DPIawait_packet_from_agent()
DPIsend_packet_to_agent()
DPIget_fd_for_handle()

While the last three functions can be executed concurrently in different threads, you
must ensure that no other thread is adding or deleting handles during this process.

Functions, Data Structures, and Constants
Use these lists to locate the descriptions for the functions, data structures, and con-
stants.

Basic DPI Functions:

The DPIdebug() Function (see page 21)
The DPI_PACKET_LEN() macro (see page 22)
The fDPIparse() Function (see page 23)
The fDPIset() Function (see page 24)
The mkDPIAreYouThere() Function (see page 25)
The mkDPIclose() Function (see page 26)
The mkDPIopen() Function (see page 27)
The mkDPIregister() Function (see page 30)
The mkDPIresponse() Function (see page 31)
The mkDPIset() Function (see page 33)
The mkDPItrap() Function (see page 35)
The mkDPIunregister() Function (see page 37)
The pDPIpacket() Function (see page 38)

DPI Transport-Related Functions:

The DPIawait_packet_from_agent() Function (see page 39)
The DPIconnect_to_agent_TCP() Function (see page 41)
The DPIconnect_to_agent_UNIXstream() Function (see page 42)
The DPIdisconnect_from_agent() Function (see page 43)
The DPIget_fd_for_handle() Function (see page 44)
The DPIsend_packet_to_agent() Function (see page 45)
The lookup_host() Function (see page 47)

Data Structures:

The snmp_dpi_close_packet structure (see page 48)
The snmp_dpi_get_packet structure (see page 49)
The snmp_dpi_next_packet structure (see page 51)
The snmp_dpi_hdr structure (see page 50)
The snmp_dpi_resp_packet structure (see page 52)
The snmp_dpi_set_packet structure (see page 53)

20 Programmer's Reference

The snmp_dpi_ureg_packet structure (see page 55)
The snmp_dpi_u64 structure (see page 56)

Constants and Values:

DPI CLOSE Reason Codes (see page 58)
DPI Packet Types (see page 58)
DPI RESPONSE Error Codes (see page 59)
DPI UNREGISTER Reason Codes (see page 60)
DPI SNMP Value Types (see page 60)
Value Representation (see page 61)

Related Information:

Character Set Selection (see page 56)
The snmp_dpi.h Include File (see page 63)

Basic DPI API Functions
This section describes each of the basic DPI functions that are available to the DPI
subagent programmer.

The Basic DPI Functions are:

¹ The DPIdebug() Function (see page 21)
¹ The DPI_PACKET_LEN() Macro (see page 22)
¹ The fDPIparse() Function (see page 23)
¹ The fDPIset() Function (see page 24)
¹ The mkDPIAreYouThere() Function (see page 25)
¹ The mkDPIclose() Function (see page 26)
¹ The mkDPIopen() Function (see page 27)
¹ The mkDPIregister() Function (see page 30)
¹ The mkDPIresponse() Function (see page 31)
¹ The mkDPIset() Function (see page 33)
¹ The mkDPItrap() Function (see page 35)
¹ The mkDPIunregister() Function (see page 37)
¹ The pDPIpacket() Function (see page 38)

The DPIdebug() Function

 Syntax

#include <snmp_dpi.h>

void DPIdebug(int level);

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 21

 Parameters
level If this value is zero, tracing is turned off. If it has any other value, tracing

is turned on at the specified level. The higher the value, the more detail.
A higher level includes all lower levels of tracing. Currently there are two
levels of detail:

1 Display packet creation and parsing.

2 Display hex dump of incoming and outgoing DPI packets.

 Description
The DPIdebug() function turns DPI internal debugging/tracing on or off.

 Examples
 #include <snmp_dpi.h>

 DPIdebug(2);

 Related Information
The snmp_dpi.h Include File (see page 63)

The DPI_PACKET_LEN() Macro

 Syntax

#include <snmp_dpi.h>

int DPI_PACKET_LEN(unsigned char *packet_p)

 Parameters
packet_p A pointer to a serialized DPI packet.

 Return Values
An integer representing the total DPI packet length.

 Description
The DPI_PACKET_LEN macro generates C code that returns an integer repres-
enting the length of a DPI packet. It uses the first two octets in network byte order
of the packet to calculate the length.

 Examples

22 Programmer's Reference

 #include <snmp_dpi.h>
unsigned char *pack_p;

 int length;

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
if (pack_p) {

length = DPI_PACKET_LEN(pack_p);
/* send packet to agent */

} /* endif */

The fDPIparse() Function

 Syntax

#include <snmp_dpi.h>

void fDPIparse(snmp_dpi_hdr *hdr_p);

 Parameters
hdr_p A pointer to the parse tree. The parse tree is represented by an

snmp_dpi_hdr structure.

 Description
The fDPIparse() function frees a parse tree that was previously created by a call to
pDPIpacket(). The parse tree may have been created in other ways too. After
calling fDPIparse(), no further references to the parse tree can be made.

A complete or partial DPI parse tree is also implicitly freed by call to a DPI function
that serializes a parse tree into a DPI packet. The section that describes each func-
tion tells you if this is the case. An example of such a function is mkDPIresponse().

 Examples
 #include <snmp_dpi.h>
 snmp_dpi_hdr *hdr_p;
unsigned char *pack_p; /* assume pack_p points to */

/* incoming DPI packet */
hdr_p = pDPIpacket(pack_p);

/* handle the packet and when done do the following */
if (hdr_p) fDPIparse(hdr_p);

 Related Information
The snmp_dpi_hdr Structure (see page 50)
The pDPIpacket() Function (see page 38)
The snmp_dpi.h Include File (see page 63)

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 23

The fDPIset() Function

 Syntax

#include <snmp_dpi.h>

void fDPIset(snmp_dpi_set_packet *packet_p);

 Parameters
packet_p A pointer to the first snmp_dpi_set_packet structure in a chain of

such structures.

 Description
The fDPIset() function is typically used if you must free a chain of one or more
snmp_dpi_set_packet structures. This may be the case if you are in the middle of
preparing a chain of such structures for a DPI RESPONSE packet, but then run
into an error before you can actually make the response.

If you get to the point where you make a DPI response packet to which you pass
the chain of snmp_dpi_set_packet structures, then the mkDPIresponse() function
will free the chain of snmp_dpi_set_packet structures.

 Examples

24 Programmer's Reference

#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p, *first_p;
long int num1 = 0, num2 = 0;

hdr_p = pDPIpacket(pack_p); /* assume pack_p */
/* analyze packet and assume all OK */ /* points to the */
/* now prepare response; 2 varBinds */ /* incoming packet */

set_p = mkDPIset(snmp_dpi_NULL_p, /* create first one */
"1.3.6.1.2.3.4.5.","1.0", /* OID=1, instance=0 */

 SNMP_TYPE_Integer32,
 sizeof(num1), &num1);
if (set_p) { /* if success, then */

first_p = set_p; /* save ptr to first */
 set_p = mkDPIset(set_p, /* chain next one */

"1.3.6.1.2.3.4.5.","1.1", /* OID=1, instance=1 */
 SNMP_TYPE_Integer32,
 sizeof(num2), &num2);

if (set_p) { /* success 2nd one */
pack_p = mkDPIresponse(hdr_p, /* make response */

SNMP_ERROR_noError, /* It will also free */
0L, first_p); /* the set_p tree */

/* send DPI response to agent */
} else { /* 2nd mkDPIset fail */

fDPIset(first_p); /* must free chain */
} /* endif */

} /* endif */

 Related Information
The fDPIparse() Function (see page 23)
The snmp_dpi_set_packet Structure (see page 53)
The mkDPIresponse() Function (see page 31)

The mkDPIAreYouThere() Function

 Syntax

#include <snmp_dpi.h>

unsigned char *mkDPIAreYouThere(void);

 Parameters
none

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 25

 Return Values
If successful, a pointer to a static DPI packet buffer is returned. The first two
bytes of the buffer in network byte order contain the length of the remaining
packet. The macro DPI_PACKET_LEN can be used to calculate the total length
of the DPI packet.
If not successful,a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() func-
tions that create a serialized DPI packet.

 Description
The mkDPIAreYouThere() function creates a serialized DPI ARE_YOU_THERE
packet that can be sent to the DPI peer, which is normally the agent.

A subagent connected via TCP or UNIXstream, probably does not need this func-
tion because, normally when the agent breaks the "connection", you will receive an
EOF on the file descriptor.

If your "connection" to the agent is still healthy, the agent will send a DPI
RESPONSE with SNMP_ERROR_DPI_noError in the error code field and zero in
the error index field. The RESPONSE will have no varBind data. If your "con-
nection" is not healthy, the agent may send a response with an error indication, or
may just not send a response at all.

 Examples
 #include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIAreYouThere();
if (pack_p) {

/* send the packet to the agent */
} /* endif */
/* wait for response with DPIawait_packet_from_agent() */
/* normally the response should come back pretty quickly, */
/* but it depends on the load of the agent */

 Related Information
The snmp_dpi_resp_packet Structure (see page 52)
The DPIawait_packet_from_agent() Function (see page 39)

The mkDPIclose() Function

 Syntax

#include <snmp_dpi.h>

unsigned char *mkDPIclose(char reason_code);

26 Programmer's Reference

 Parameters
reason_code The reason for closing the DPI connection. See DPI CLOSE

Reason Codes (see page 58) for a list of valid reason codes.

 Return Values
If successful, a pointer to a static DPI packet buffer is returned. The first two
bytes of the buffer in network byte order contain the length of the remaining
packet. The macro DPI_PACKET_LEN can be used to calculate the total length
of the DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() func-
tions that create a serialized DPI packet.

 Description
The mkDPIclose() function creates a serialized DPI CLOSE packet that can be sent
to the DPI peer. As a result of sending the packet, the DPI connection will be
closed.

Sending a DPI CLOSE packet to the agent implies an automatic DPI UNREG-
ISTER for all registered sub-trees on the connection being closed.

 Examples
 #include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
if (pack_p) {

/* send the packet to the agent */
} /* endif */

 Related Information
The snmp_dpi_close_packet Structure (see page 48)
DPI CLOSE Reason Codes (see page 58)

The mkDPIopen() Function

 Syntax

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 27

#include <snmp_dpi.h>

unsigned char *mkDPIopen(/* Make a DPI open packet */
char *oid_p, /* subagent Identifier (OID) */
char *description_p, /* subagent descriptive name */
unsigned long timeout, /* requested default timeout */

 unsigned long max_varBinds, /* max varBinds per DPI packet*/
char character_set, /* selected character set */
#define DPI_NATIVE_CSET 0 /* 0 = native character set */
#define DPI_ASCII_CSET 1 /* 1 = ASCII character set */

 unsigned long password_len, /* length of password (if any)*/
unsigned char *password_p); /* ptr to password (if any) */

 Parameters
oid_p A pointer to a NULL terminated character string representing

the OBJECT IDENTIFIER which uniquely identifies the suba-
gent. The OID valued pointed to by oid_p must be in the
EBCDIC character set when communicating with a TCP/IP
OpenEdition SNMP agent. The agent will add the OID
passed in the mkDPIopen call to the sysORTable as
sysORID in a corresponding new entry. By convention,
sysORID should match a capabilities statement's OID to refer
to the MIBs supported by the subagent.

For a list of MIB variables, refer to theOS/390 TCP/IP
OpenEdition User's Guide.

description_p A pointer to a NULL terminated character string, which is a
descriptive name for the subagent. This can be any
DisplayString.

timeout The requested timeout for this subagent. An agent often has
a limit for this value and it will use that limit if this value is
larger. A timeout of zero has a special meaning in the sense
that the agent will use its own default timeout value.

max_varBinds The maximum number of varBinds per DPI packet that the
subagent is prepared to handle. It must be a positive number
or zero.

¹ If a value greater than 1 is specified, the agent will try to
combine as many varBinds which belong to the same
sub-tree per DPI packet as possible up to this value.

¹ If a value of zero is specified, the agent will try to
combine up to as many varBinds as are present in the
SNMP packet and belong to the same sub-tree; there is
no limit on the number of varBinds present in the DPI
packet.

character_set The character set that you want to use for string-based data
fields in the DPI packets and structures. The choices are:

28 Programmer's Reference

DPI_NATIVE_CSET Specifies that you want to use the
native character set of the platform
on which the agent that you connect
to is running.

See Character Set Selection (see page 56) for more informa-
tion.

password_len The length in octets of an optional password. It depends on
the agent implementation if a password is needed.

If coded, this parameter is ignored with the MVS agent.

password_p A pointer to an octet string representing the password for this
subagent. A password may include any character value,
including the NULL character. If the password_len is zero,
this can be a NULL pointer.

If coded, this parameter is ignored with the MVS agent.

 Return Values
If successful, a pointer to a static DPI packet buffer is returned. The first two
bytes of the buffer in network byte order contain the length of the remaining
packet. The macro DPI_PACKET_LEN can be used to calculate the total length
of the DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() func-
tions that create a serialized DPI packet.

 Description
The mkDPIopen() function creates a serialized DPI OPEN packet that can then be
sent to the DPI peer which is a DPI capable SNMP agent.

Normally you will want to use the native character set, which is the easiest for the
subagent programmer. However, if the agent and subagent each run on their own
platform and those platforms use different native character sets, you must select
the ASCII character set, so that you both know exactly how to represent string-
based data that is being sent back and forth.

Currently, if you specify a password parameter, it will be ignored. You do not need
to specify a password to connect to the MVS SNMP agent; you can pass a length
of zero and a NULL pointer for the password.

 Examples
 #include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIopen("1.3.6.1.2.3.4.5",
"Sample DPI subagent"
0L,2L, DPI_NATIVE_CSET, /* max 2 varBinds */

 0,(char *)0);
if (pack_p) {

/* send packet to the agent */
} /* endif */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 29

 Related Information
Character Set Selection (see page 56)

The mkDPIregister() Function

 Syntax

#include <snmp_dpi.h>

unsigned char *mkDPIregister(/* Make a DPI register packet */
unsigned short timeout, /* in seconds (16-bit) */
long int priority, /* requested priority */
char *group_p, /* ptr to group ID (sub-tree) */
char bulk_select);/* Bulk selection (GETBULK) */
#define DPI_BULK_NO 0 /* map GETBULK into GETNEXTs */

 */

 Parameters
timeout The requested timeout in seconds. An agent often has a limit for

this value and it will use that limit if this value is larger. The
value zero has special meaning in the sense that it tells the
agent to use the timeout value that was specified in the DPI
OPEN packet.

priority The requested priority. This field may contain any of these
values:

-1 Requests the best available priority.

0 Requests a better priority than the highest priority currently
registered. Use this value to obtain the SNMP DPI Version
1 behavior.

nnn Any positive value. You will receive that priority if available,
otherwise the next best priority that is available.

group_p A pointer to a NULL terminated character string that represents
the sub-tree to be registered. This group ID must have a trailing
dot.

bulk_select Specifies if you want the agent to pass GETBULK on to the sub-
agent or to map them into multiple GETNEXT requests. The
choices are:

DPI_BULK_NO Do not pass any GETBULK requests, but
instead map a GETBULK request into mul-
tiple GETNEXT requests.

30 Programmer's Reference

 Return Values
If successful, a pointer to a static DPI packet buffer is returned. The first two
bytes of the buffer in network byte order contain the length of the remaining
packet. The macro DPI_PACKET_LEN can be used to calculate the total length
of the DPI packet.
If not failure, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() func-
tions that create a serialized DPI packet.

 Description
The mkDPIregister() function creates a serialized DPI REGISTER packet that can
then be sent to the DPI peer which is a DPI capable SNMP agent.

Normally, the SNMP agent sends a DPI RESPONSE packet back. This packet
identifies if the register was successful or not.

The agent returns the assigned priority in the error index field of the response
packet.

 Examples
 #include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIregister(0,0L,"1.3.6.1.2.3.4.5."
 DPI_BULK_NO);
if (pack_p) {

/* send packet to agent and await response */
} /* endif */

 Related Information
The snmp_dpi_resp_packet Structure (see page 52)

The mkDPIresponse() Function

 Syntax

#include <snmp_dpi.h>

unsigned char *mkDPIresponse(/* Make a DPI response packet*/
snmp_dpi_hdr *hdr_p, /* ptr to packet to respnd to*/
long int error_code, /* error code: SNMP_ERROR_xxx*/
long int error_index, /* index to varBind in error */
snmp_dpi_set_packet *packet_p);/* ptr to varBinds, a chain */

/* of dpi_set_packets */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 31

 Parameters
hdr_p A pointer to the parse tree of the DPI request to which this DPI

packet will be the response. The function uses this parse tree to
copy the packet_id and the DPI version and release, so that the
DPI packet is correctly formatted as a response.

error_code The error code.

See DPI RESPONSE Error Codes (see page 59) for a list of
valid codes.

error_index Specifies the first varBind in error. Counting starts at 1 for the
first varBind. This field should be zero if there is no error.

packet_p A pointer to a chain of snmp_dpi_set_packet structures. This
partial parse tree will be freed by the mkDPIresponse() function.
So upon return you cannot reference it anymore. Pass a NULL
pointer if there are no varBinds to be returned.

 Return Values
If successful, a pointer to a static DPI packet buffer is returned. The first two
bytes of the buffer in network byte order contain the length of the remaining
packet. The macro DPI_PACKET_LEN can be used to calculate the total length
of the DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() func-
tions that create a serialized DPI packet.

 Description
The mkDPIresponse() function is used at the subagent side to prepare a DPI
RESPONSE packet to a GET, GETNEXT, SET, COMMIT or UNDO request. The
resulting packet can be sent to the DPI peer, which is normally a DPI capable
SNMP agent.

 Examples

32 Programmer's Reference

 #include <snmp_dpi.h>
 unsigned char *pack_p;
 snmp_dpi_hdr *hdr_p;
 snmp_dpi_set_packet *set_p;
 long int num;

hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it's in pack_p */

if (hdr_p) {
/* analyze packet, assume GET, no error */
set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

 "1.3.6.1.2.3.4.5.", "1.0",
 SNMP_TYPE_Integer32,
 sizeof(num), &num);

if (set_p) {
pack_p = mkDPIresponse(hdr_p,

SNMP_ERROR_noError, 0L, set_p);
if (pack_p) {

/* send packet to agent */
} /* endif */

} /* endif */
} /* endif */

 Related Information
The pDPIpacket() Function (see page 38)
The snmp_dpi_hdr Structure (see page 50)
The snmp_dpi_set_packet Structure (see page 53)

The mkDPIset() Function

 Syntax

#include <snmp_dpi.h>

snmp_dpi_set_packet *mkDPIset(/* Make DPI set packet tree */
snmp_dpi_set_packet *packet_p, /* ptr to SET structure */
char *group_p, /* ptr to group ID(sub-tree)*/
char *instance_p,/* ptr to instance OIDstring*/
int value_type,/* value type: SNMP_TYPE_xxx*/
int value_len, /* length of value */
void *value_p); /* ptr to value */

 Parameters
packet_p A pointer to a chain of snmp_dpi_set_packet structures. Pass a

NULL pointer if this is the first structure to be created.

group_p A pointer to a NULL terminated character string that represents
the registered sub-tree that caused this GET request to be
passed to this DPI subagent. The sub-tree must have a trailing
dot.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 33

instance_p A pointer to a NULL terminated character string that represents
the rest, which is the piece following the sub-tree part, of the
OBJECT IDENTIFIER of the variable instance being accessed.
Use of the term instance_p here should not be confused with an
OBJECT instance because this string may consist of a piece of
the OBJECT IDENTIFIER plus the INSTANCE IDENTIFIER.

value_type The type of the value.

See DPI SNMP Value Types (see page 60) for a list of currently
defined value types.

value_len This is the value that specifies the length in octets of the value
pointed to by the value field. The length may be zero if the value
is of type SNMP_TYPE_NULL.

The maximum value is 64K -1. However, the implementation
often makes the length significantly less.

value_p A pointer to the actual value. This field may contain a NULL
pointer if the value is of implicit or explicit type
SNMP_TYPE_NULL.

 Return Values
If successful and a chain of one or more packets was passed in the packet_p
parameter, the same pointer that was passed in packet_p is returned. A new
dynamically allocated structure has then been added to the end of that chain of
snmp_dpi_get_packet structures.
If successful and a NULL pointer was passed in the packet_p parameter, a
pointer to a new dynamically allocated structure is returned.
If not successful, a NULL pointer is returned.

 Description
The mkDPIset() function is used at the subagent side to prepare a chain of one or
more snmp_dpi_set_packet structures. This chain is used to create a DPI
RESPONSE packet by a call to mkDPIresponse() which can be sent to the DPI
peer, which is normally a DPI capable SNMP agent.

The chain of snmp_dpi_set_packet structures can also be used to create a DPI
TRAP packet that includes varBinds as explained in The mkDPItrap() Function (see
page 35) .

For the value_len, the maximum value is 64K -1. However, the implementation
often makes the length significantly less. For example the SNMP PDU size may be
limited to 484 bytes at the SNMP manager or agent side. In this case, the total
response packet cannot exceed 484 bytes, so a value_len is limited by that. You
can send the DPI packet to the agent, but the manager will never see it.

 Examples

34 Programmer's Reference

 #include <snmp_dpi.h>
 unsigned char *pack_p;
 snmp_dpi_hdr *hdr_p;
 snmp_dpi_set_packet *set_p;
 long int num;

hdr_p = pDPIpacket(pack_p) /* parse incoming packet */
/* assume it's in pack_p */

if (hdr_p) {
/* analyze packet, assume GET, no error */
set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

 "1.3.6.1.2.3.4.5.", "1.0",
 SNMP_TYPE_Integer32,
 sizeof(num), &num);

if (set_p) {
pack_p = mkDPIresponse(hdr_p,

 SNMP_ERROR_noError,
 0L, set_p);
 if (pack_p)

/* send packet to agent */
} /* endif */

} /* endif */
} /* endif */

If you must chain many snmp_dpi_set_packet structures, be sure to note that the
packets are chained only by forward pointers. It is recommended that you use the
last structure in the existing chain as the packet_p parameter. Then, the underlying
code does not have to scan through a possibly long chain of structures in order to
chain the new structure at the end.

 Related Information
The pDPIpacket() Function (see page 38)
The mkDPIresponse() Function (see page 31)
The mkDPItrap() Function (see page 35)
The snmp_dpi_hdr Structure (see page 50)
The snmp_dpi_set_packet Structure (see page 53)
DPI SNMP Value Types (see page 60)
Value Representation (see page 61)

The mkDPItrap() Function

 Syntax

#include <snmp_dpi.h>

unsigned char *mkDPItrap(/* Make a DPI trap packet */
long int generic, /* generic traptype (32 bit)*/
long int specific, /* specific traptype (32 bit)*/
snmp_dpi_set_packet *packet_p, /* ptr to varBinds, a chain */

/* of dpi_set_packets */
char *enterprise_p); /* ptr to enterprise OID */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 35

 Parameters
generic The generic trap type. The range of this value is 0-6, where 6,

which is enterprise specific, is the type that is probably used
most by DPI subagent programmers. The values 0-5 are well
defined standard SNMP traps.

specific The enterprise specific trap type. This can be any value that is
valid for the MIB sub-trees that the subagent implements.

packet_p A pointer to a chain of snmp_dpi_set_structures, representing
the varBinds to be passed with the trap. This partial parse tree
will be freed by the mkDPItrap() function so you cannot refer-
ence it anymore upon completion of the call. A NULL pointer
means that there are no varBinds to be included in the trap.

enterprise_p A pointer to a NULL terminated character string representing
the enterprise ID (OBJECT IDENTIFIER) for which this trap is
defined. A NULL pointer can be used. In this case, the suba-
gent Identifier, as passed in the DPI OPEN packet, will be used
when the agent receives the DPI TRAP packet.

 Return Values
If successful, a pointer to a static DPI packet buffer is returned. The first two
bytes of the buffer in network byte order contain the length of the remaining
packet. The macro DPI_PACKET_LEN can be used to calculate the total length
of the DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() func-
tions that create a serialized DPI packet.

 Description
The mkDPItrap() function is used at the subagent side to prepare a DPI TRAP
packet. The resulting packet can be sent to the DPI peer, which is normally a DPI
capable SNMP agent.

 Examples
 #include <snmp_dpi.h>
 unsigned char *pack_p;
 snmp_dpi_set_packet *set_p;
 long int num;

set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
 "1.3.6.1.2.3.4.5.", "1.0",
 SNMP_TYPE_Integer32,
 sizeof(num), &num);
if (set_p) {

pack_p = mkDPItrap(6,1,set_p, (char *)0);
if (pack_p) {

/* send packet to agent */
} /* endif */

} /* endif */

36 Programmer's Reference

 Related Information
The mkDPIset() Function (see page 33)

The mkDPIunregister() Function

 Syntax

#include <snmp_dpi.h>

unsigned char *mkDPIunregister(/* Make DPI unregister packet */
char reason_code; /* unregister reason code */
char *group_p); /* ptr to group ID (sub-tree) */

 Parameters
reason_code The reason for the unregister.

See DPI UNREGISTER Reason Codes (see page page 60) for
a list of the currently defined reason codes.

group_p A pointer to a NULL terminated character string that represents
the sub-tree to be unregistered. The sub-tree must have a
trailing dot.

 Return Values
If successful, a pointer to a static DPI packet buffer is returned. The first two
bytes of the buffer in network byte order contain the length of the remaining
packet. The macro DPI_PACKET_LEN can be used to calculate the total length
of the DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx() func-
tions that create a serialized DPI packet.

 Description
The mkDPIunregister() function creates a serialized DPI UNREGISTER packet that
can be sent to the DPI peer, which is a DPI capable SNMP agent.

Normally, the SNMP peer then sends a DPI RESPONSE packet back. This packet
identifies if the unregister was successful or not.

 Examples
 #include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIunregister(
 SNMP_UNREGISTER_goingDown,
 "1.3.6.1.2.3.4.5.");
if (pack_p) {

/* send packet to agent and await response */
} /* endif */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 37

 Related Information
The snmp_dpi_ureg_packet Structure (see page 55)

The pDPIpacket() Function

 Syntax

#include <snmp_dpi.h>

snmp_dpi_hdr *pDPIpacket(unsigned char *packet_p);

 Parameters
packet_p A pointer to a serialized DPI packet.

 Return Values
If successful, a pointer to a DPI parse tree (snmp_dpi_hdr) is returned.
Memory for the parse tree has been dynamically allocated, and it is the callers
responsibility to free it when no longer needed. You can use the fDPIparse()
function to free the parse tree.
If not successful, a NULL pointer is returned.

 Description
The pDPIpacket() function parses the buffer pointed to by the packet_p parameter.
It ensures that the buffer contains a valid DPI packet and that the packet is for a
DPI version and release that is supported by the DPI functions in use.

 Examples
 #include <snmp_dpi.h>
 unsigned char *pack_p;
 snmp_dpi_hdr *hdr_p;

hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it's in pack_p */

if (hdr_p) {
/* analyze packet, and handle it */

 }

 Related Information
The snmp_dpi_hdr Structure (see page 50)
The snmp_dpi.h Include File (see page 63)
The fDPIparse() Function (see page 23)

38 Programmer's Reference

Transport-Related DPI API Functions
This section describes each of the DPI transport-related functions that are available
to the DPI subagent programmer. These functions try to hide any platform specific
issues for the DPI subagent programmer so that the subagent can be made as
portable as possible. If you need detailed control for sending and awaiting DPI
packets, you may have to do some of the transport-related code yourself.

The transport-related functions are basically the same for any platform, except for
the initial call to set up a connection. MVS currently supports the TCP transport
type as well as UNIXstream.

The Transport-Related DPI API Functions are:

¹ The DPIawait_packet_from_agent() Function (see page 39)
¹ The DPIconnect_to_agent_TCP() Function (see page 41)
¹ The DPIconnect_to_agent_UNIXstream() Function (see page 42)
¹ The DPIdisconnect_from_agent() Function (see page 43)
¹ The DPIget_fd_for_handle() Function (see page 44)
¹ The DPIsend_packet_to_agent() Function (see page 45)
¹ The lookup_host() Function (see page 47)

The DPIawait_packet_from_agent() Function

 Syntax

#include <snmp_dpi.h>

int DPIawait_packet_from_agent(/* await a DPI packet */
int handle, /* on this connection */
int timeout, /* timeout in seconds */
unsigned char **message_p, /* receives ptr to data */
unsigned long *length); /* receives length of data */

 Parameters
handle A handle as obtained with a DPIconnect_to_agent_xxxx() call.

timeout A timeout value in seconds. There are two special values:

-1 Causes the function to wait forever until a packet arrives.

0 Means that the function will only check if a packet is
waiting. If not, an immediate return is made. If there is a
packet, it will be returned.

message_p The address of a pointer that will receive the address of a static DPI
packet buffer or, if there is no packet, a NULL pointer.

length The address of an unsigned long integer that will receive the length
of the received DPI packet or, if there is no packet, a zero value.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 39

 Return Values
If successful, a zero (DPI_RC_OK) is returned. The buffer pointer and length of
the caller will be set to point to the received DPI packet and to the length of
that packet.
If not successful, a negative integer is returned, which indicates the kind of
error that occurred. See Return Codes from DPI Transport-Related Functions
(62) for a list of possible error codes.

DPI_RC_NOK This is a return code indicating the DPI code is
out of sync or has a bug.

DPI_RC_EOF End of file on the connection. The connection has
been closed.

DPI_RC_IO_ERROR An error occurred with an underlying select() or
recvfrom() call, or a DPI packet was read that was
less than 2 bytes. DPI uses the first 2 bytes to get
the packet length.

DPI_RC_INVALID_HANDLE A bad handle was passed as input. Either the
handle is not valid, or it describes a connection
that has been disconnected.

DPI_RC_TIMEOUT No packet was received during the specified
timeout period.

DPI_RC_PACKET_TOO_LARGE The packet received was too large.

 Description
The DPIawait_packet_from_agent() function is used at the subagent side to await a
DPI packet from the DPI capable SNMP agent. The programmer can specify how
long to wait.

 Examples
 #include <snmp_dpi.h>
 int handle;
 unsigned char *pack_p;
 unsigned long length;

handle = DPIconnect_to_agent_TCP("localhost", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
 exit(1);
} /* endif */
/* do useful stuff */
rc = DPIawait_packet_from_agent(handle, -1,

 &pack_p, &length);
if (rc) {

printf("Error %d from await packet\n");
 exit(1);
} /* endif */
/* handle the packet */

40 Programmer's Reference

 Related Information
The DPIconnect_to_agent_TCP() Function (see page 41)
The DPIconnect_to_agent_UNIXstream() Function (see page 42)

The DPIconnect_to_agent_TCP() Function

 Syntax

#include <snmp_dpi.h>

int DPIconnect_to_agent_TCP(/* Connect to DPI TCP port */
char *hostname_p, /* target hostname/IP address */
char *community_p); /* community name */

 Parameters
hostname_p A pointer to a NULL terminated character string representing the

host name or IP address in dot notation of the host where the
DPI capable SNMP agent is running.

community_p A pointer to a NULL terminated character string representing the
community name that is required to obtain the dpiPort from the
SNMP agent via an SNMP GET request.

 Return Values
If successful, a non-negative integer that represents the connection is returned.
It is to be used as a handle in subsequent calls to DPI transport-related func-
tions.
If not successful, a negative integer is returned, which indicates the kind of
error that occurred. See Return Codes from DPI Transport-Related Functions
(see page 62) for a list of possible error codes.

DPI_RC_NO_PORT Unable to obtain the dpiPort number. There are many
reasons for this, for example bad host name, bad com-
munity name, default timeout (9 seconds) before a
response from the agent.

DPI_RC_IO_ERROR An error occurred with an underlying select(), or DPI
wasn't able to set up a socket (could be due to an error
on a socket(), bind(), connect() call, or other internal
errors).

 Description
The DPIconnect_to_agent_TCP() function is used at the subagent side to set up a
TCP connection to the DPI capable SNMP agent.

As part of the connection processing, the DPIconnect_to_agent_TCP() function
sends an SNMP GET request to the SNMP agent to retrieve the port number of the
DPI port to be used for the TCP connection. By default, this SNMP GET request is
sent to the well— known SNMP port 161. If the SNMP agent is listening on a port
other than well— known port 161, the SNMP_PORT environment variable can be

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 41

set to the port number of the SNMP agent prior to issuing the
DPIconnect_to_agent_TCP(). Use setenv() to override port 161 before using this
function.

 Examples
 #include <snmp_dpi.h>
 int handle;

handle = DPIconnect_to_agent_TCP("localhost", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
 exit(1);
} /* endif */

 Related Information
Return Codes from DPI Transport-Related Functions (see page 62)
The DPIconnect_to_UNIXstream() Function (see page 42)

The DPIconnect_to_agent_UNIXstream() Function

 Syntax

#include <snmp_dpi.h>

int DPIconnect_to_agent_UNIXstream(/* Connect to DPI UNIXstream */
char *hostname_p, /* target hostname/IP address */
char *community_p); /* community name */

 Parameters
hostname_p A pointer to a NULL terminated character string representing the

local host name or IP address in dot notation of the local host
where the DPI capable SNMP agent is running.

community_p A pointer to a NULL terminated character string representing the
community name that is required to obtain the UNIX path name
from the SNMP agent via an SNMP GET request.

 Return Values
If successful, a non-negative integer that represents the connection is returned.
It is to be used as a handle in subsequent calls to DPI transport-related func-
tions.
If not successful, a negative integer is returned, which indicates the kind of
error that occurred. See Return Codes from DPI Transport-Related Functions
(see page 62) for a list of possible error codes.

DPI_RC_NO_PORT Unable to obtain the UNIX path name. There are many
reasons for this, for example bad host name, bad com-
munity name, default timeout (9 seconds) before a
response from the agent.

42 Programmer's Reference

DPI_RC_IO_ERROR An error occurred with an underlying select(), or DPI
wasn't able to set up a socket (could be due to an error
on a socket(), bind(), connect() call, or other internal
errors).

 Description
The DPIconnect_to_agent_UNIXstream() function is used at the subagent side to
set up an AF_UNIX connection to the DPI capable SNMP agent.

As part of the connection processing, the DPIconnect_to_agent_UNIXstream() func-
tion will send an SNMP GET request to the SNMP agent to retrieve the pathname
to be used for the UNIX streams connection. By default, this SNMP GET request is
sent to the well —known SNMP port 161. If the SNMP agent is listening on a port
other than well— known port 161, the SNMP_PORT environment variable can be
set to the port number of the SNMP agent prior to issuing the
DPIconnect_to_agent_UNIXstream(). Use setenv() to override port 161 before using
this function.

Establishing Permission

This function uses a path name in the HFS as the name of the socket for connect.
This path name is available at the snmp agent via the MIB object
1.3.6.1.4.1.2.2.1.1.3, which has the name dpiPathNameForUnixStream. The MVS
snmp agent has a default name that it uses (/tmp/dpi_socket) if you do not supply
another name in the agent's startup parameter (-s). Whatever name is chosen, it
has to live in the HFS as a character special file.

To run a user-written subagent from a non-privileged userid, set the permission bits
for the character special file to write access. Otherwise, a subagent using this
function will have to be run from a superuser or other user with appropriate privi-
leges.

 Examples
 #include <snmp_dpi.h>
 int handle;

handle = DPIconnect_to_agent_UNIXstream("localhost", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
 exit(1);
} /* endif */

 Related Information
Return Codes from DPI Transport-Related Functions (see page 62)
The DPIconnect_to_agent_TCP() Function (see page 41)

The DPIdisconnect_from_agent() Function

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 43

 Syntax

#include <snmp_dpi.h>

void DPIdisconnect_from_agent(/* disconnect from DPI (agent)*/
int handle); /* close this connection */

 Parameters
handle A handle as obtained with a DPIconnect_to_agent_xxxx() call.

 Description
The DPIdisconnect_from_agent() function is used at the subagent side to terminate
a connection to the DPI capable SNMP agent.

 Examples
 #include <snmp_dpi.h>
 int handle;

handle = DPIconnect_to_agent_TCP("localhost", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
 exit(1);
} /* endif */
/* do useful stuff */

 DPIdisconnect_from_agent(handle);

 Related Information
The DPIconnect_to_agent_TCP() Function (see page 41)
The DPIconnect_to_UNIXstream() Function (see page 42)

The DPIget_fd_for_handle() Function

 Syntax

#include <snmp_dpi.h>

int DPIget_fd_for_handle(/* get the file descriptor */
int handle); /* for this handle */

 Parameters
handle A handle that was obtained with a DPIconnect_to_agent_xxxx()

call.

44 Programmer's Reference

 Return Values
If successful, a positive integer representing the file descriptor associated with
the specified handle.
If not successful, a negative integer is returned, which indicates the error that
occurred. See Return Codes from DPI Transport-Related Functions (see page
62) for a list of possible error codes.

DPI_RC_INVALID_HANDLE A bad handle was passed as input. Either the handle
is not valid, or it describes a connection that has been
disconnected.

 Description
The DPIget_fd_for_handle function is used to obtain the file descriptor for the
handle, which was obtained with a DPIconnect_to_agent_TCP() call or a
DPIconnect_to_agent_UNIXstream() call.

Using this function to retrieve the file descriptor associated with your DPI con-
nections enables you to use either the select or selectex socket calls. Using
selectex enables your program to wait for ECBs (event control blocks), in addition
to a read condition. This is one example of how an MVS application can wait for
notification of the receipt of a modify command (via and ECB post) or DPI packet at
the same time.

 Examples
#include <snmp_dpi.h>
#include /* other include files for BSD sockets and such */
int handle;
int fd;

handle = DPIconnect_to_agent_TCP("localhost","public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
 exit(1);
}
fd = DPIget_fd_for_handle(handle);
if (fd <0) {

printf("Error %d from get_fd\n",fd);
 exit(1);
}

 Related Information
The DPIconnect_to_agent_TCP() Function (see page 41)
The DPIconnect_to_UNIXstream() Function (see page 42)

The DPIsend_packet_to_agent() Function

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 45

 Syntax

#include <snmp_dpi.h>

int DPIsend_packet_to_agent(/* send a DPI packet */
int handle, /* on this connection */
unsigned char *message_p, /* ptr to the packet data */
unsigned long length); /* length of the packet */

 Parameters
handle A handle as obtained with a DPIconnect_to_agent_xxxx() call.

message_p A pointer to the buffer containing the DPI packet to be sent.

length The length of the DPI packet to be sent. The DPI_PACKET_LEN
macro is a useful macro to calculate the length.

 Return Values
If successful, a zero (DPI_RC_OK) is returned.
If not successful, a negative integer is returned, which indicates the kind of
error that occurred. See Return Codes from DPI Transport-Related Functions
(see page 62) for a list of possible error codes.

DPI_RC_NOK This is a return code, but it really means the DPI code
is out of sync or has a bug.

DPI_RC_IO_ERROR An error occurred with an underlying send(), or the
send() failed to send all of the data on the socket
(incomplete send).

DPI_RC_INVALID_ARGUMENT The message_p parameter is NULL or the length
parameter has a value of 0.

DPI_RC_INVALID_HANDLE A bad handle was passed as input. Either the handle
is not valid, or it describes a connection that has been
disconnected.

 Description
The DPIsend_packet_to_agent() function is used at the subagent side to send a
DPI packet to the DPI capable SNMP agent.

 Examples

46 Programmer's Reference

 #include <snmp_dpi.h>
 int handle;
 unsigned char *pack_p;

handle = DPIconnect_to_agent_TCP("localhost", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
 exit(1);
} /* endif */
pack_p = mkDPIopen("1.3.6.1.2.3.4.5",

"Sample DPI subagent"
 0L,2L,,DPI_NATIVE_CSET,
 0,(char *)0);
if (pack_p) {

rc = DPIsend_packet_to_agent(handle,pack_p,
 DPI_PACKET_LEN(pack_p));

if (rc) {
printf("Error %d from send packet\n");

 exit(1);
} /* endif */

} else {
printf("Can't make DPI OPEN packet\n");

 exit(1);
} /* endif */
/* await the response */

 Related Information
The DPIconnect_to_agent_TCP() Function (see page 41)
The DPIconnect_to_UNIXstream() Function (see page 42)
The DPI_PACKET_LEN() Macro (see page 22)

The lookup_host() Function

 Syntax

#include <snmp_dpi.h>

unsigned long lookup_host(/* find IP address in network */
char *hostname_p); /* byte order for this host */

 Parameters
hostname_p A pointer to a NULL terminated character string representing the

host name or IP address in dot notation of the host where the
DPI capable SNMP agent is running.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 47

 Return Values
If successful, the IP address is returned in network byte order, so it is ready to
be used in a sockaddr_in structure.
If not successful, a value of 0 is returned.

 Description
The lookup_host() function is used to obtain the IP address in network byte order of
a host or IP address in dot notation. This function is implicitly executed by both
DPIconnect_to_agent_TCP and DPIconnect_to_agent UNIXstream.

 Related Information
The DPIconnect_to_agent_TCP() Function (see page 41)

 DPI Structures
This section describes each data structure that is used in the SNMP DPI API.

The Data Structures are:

¹ The snmp_dpi_close_packet Structure (see page 48)
¹ The snmp_dpi_get_packet Structure (see page 49)
¹ The snmp_dpi_next_packet Structure (see page 51)
¹ The snmp_dpi_hdr Structure (see page 50)
¹ The snmp_dpi_resp_packet Structure (see page 52)
¹ The snmp_dpi_set_packet Structure (see page 53)
¹ The snmp_dpi_ureg_packet Structure (see page 55)
¹ The snmp_dpi_u64 Structure (see page 56)

The snmp_dpi_close_packet Structure

 Structure Definition

struct dpi_close_packet {
char reason_code; /* reason for closing */

};
typedef struct dpi_close_packet snmp_dpi_close_packet;
#define snmp_dpi_close_packet_NULL_p ((snmp_dpi_close_packet*)0)

 Structure Members
reason_code The reason for the close.

See DPI CLOSE Reason Codes (see page 58) for a list of valid
reason codes.

 Description
The snmp_dpi_close_packet structure represents a parse tree for a DPI CLOSE
packet.

The snmp_dpi_close_packet structure may be created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_CLOSE.

48 Programmer's Reference

The snmp_dpi_hdr structure then contains a pointer to a snmp_dpi_close_packet
structure.

An snmp_dpi_close_packet_structure is also created as a result of a mkDPIclose()
call, but the programmer never sees the structure since mkDPIclose() immediately
creates a serialized DPI packet from it and then frees the structure.

It is recommended that DPI subagent programmer uses mkDPIclose() to create a
DPI CLOSE packet.

 Related Information
The pDPIpacket() Function (see page 38)
The mkDPIclose() Function (see page 26)
The snmp_dpi_hdr Structure (see page 50)

The snmp_dpi_get_packet Structure

 Structure Definition

struct dpi_get_packet {
char *object_p; /* ptr to OID string */
char *group_p; /* ptr to sub-tree(group)*/
char *instance_p; /* ptr to rest of OID */
struct dpi_get_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_get_packet snmp_dpi_get_packet;
#define snmp_dpi_get_packet_NULL_p ((snmp_dpi_get_packet *)0)

 Structure Members
object_p A pointer to a NULL terminated character string that represents

the full OBJECT IDENTIFIER of the variable instance that is
being accessed. It basically is a concatenation of the fields
group_p and instance_p. Using this field is not recommended
because it is only included for DPI Version 1 compatibility and it
may be withdrawn in a later version.

group_p A pointer to a NULL terminated character string that represents
the registered sub-tree that caused this SET request to be
passed to this DPI subagent. The sub-tree must have a trailing
dot.

instance_p A pointer to a NULL terminated character string that represents
the rest which is the piece following the sub-tree part of the
OBJECT IDENTIFIER of the variable instance being accessed.

Use of the term instance_p here should not be confused with an
OBJECT instance because this string may consist of a piece of
the OBJECT IDENTIFIER plus the INSTANCE IDENTIFIER.

next_p A pointer to a possible next snmp_dpi_get_packet structure. If
this next field contains the NULL pointer, this is the end of the
chain.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 49

 Description
The snmp_dpi_get_packet structure represents a parse tree for a DPI GET packet.

At the subagent side, the snmp_dpi_get_packet structure is normally created as a
result of a call to pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GET. The snmp_dpi_hdr structure then contains a pointer to a chain of
one or more snmp_dpi_get_packet structures.

The DPI subagent programmer uses this structure to find out which variables
instances are to be returned in a DPI RESPONSE.

 Related Information
The pDPIpacket() Function (see page 38)
The snmp_dpi_hdr Structure (see page 50)

The snmp_dpi_hdr Structure

 Structure Definition

struct snmp_dpi_hdr {
unsigned char proto_major; /* always 2: SNMP_DPI_PROTOCOL*/
unsigned char proto_version; /* DPI version */
unsigned char proto_release; /* DPI release */
unsigned short packet_id; /* 16-bit, DPI packet ID */
unsigned char packet_type; /* DPI packet type */

 union {
 snmp_dpi_reg_packet *reg_p;
 snmp_dpi_ureg_packet *ureg_p;
 snmp_dpi_get_packet *get_p;
 snmp_dpi_next_packet *next_p;
 snmp_dpi_next_packet *bulk_p;
 snmp_dpi_set_packet *set_p;
 snmp_dpi_resp_packet *resp_p;
 snmp_dpi_trap_packet *trap_p;
 snmp_dpi_open_packet *open_p;
 snmp_dpi_close_packet *close_p;
 unsigned char *any_p;
 } data_u;
};
typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

 Structure Members
proto_major The major protocol. For SNMP DPI, it is always 2.

proto_version The DPI version.

proto_release The DPI release.

packet_id This field contains the packet ID of the DPI packet. When
you create a response to a request, the packet ID must be
the same as that of the request. This is taken care of if you
use the mkDPIresponse() function.

50 Programmer's Reference

packet_type The type of DPI packet (parse tree) which you are dealing
with.

See DPI Packet Types (see page 58) for a list of currently
defined DPI packet types

data_u A union of pointers to the different types of data structures
that are created based on the packet_type field. The
pointers themselves have names that are self-explanatory.

The fields proto_major, proto_version, proto_release, and packet_id are basically
for DPI internal use. So the DPI programmer normally does not need to be con-
cerned about them.

 Description
The snmp_dpi_hdr structure is the anchor of a DPI parse tree. At the subagent
side, the snmp_dpi_hdr structure is normally created as a result of a call to
pDPIpacket().

The DPI subagent programmer uses this structure to interrogate packets.
Depending on the packet_type, the pointer to the chain of one or more packet_type
specific structures that contain the actual packet data can be picked.

The storage for a DPI parse tree is always dynamically allocated. It is the responsi-
bility of the caller to free this parse tree when it is no longer needed. You can use
the fDPIparse() function to do that.

Note: Some mkDPIxxxx functions do free the parse tree that is passed to them.
An example is the mkDPIresponse() function.

 Related Information
The fDPIparse() Function (see page 23)
The pDPIpacket() Function (see page 38)
The snmp_dpi_close_packet Structure (see page 48)
The snmp_dpi_get_packet Structure (see page 49)
The snmp_dpi_next_packet Structure (see page 51)
The snmp_dpi_resp_packet Structure (see page 52)
The snmp_dpi_set_packet Structure (see page 53)
The snmp_dpi_ureg_packet Structure (see page 55)

The snmp_dpi_next_packet Structure

 Structure Definition

struct dpi_next_packet {
char *object_p; /* ptr to OID (string) */
char *group_p; /* ptr to sub-tree(group)*/
char *instance_p;/* ptr to rest of OID */
struct dpi_next_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_next_packet snmp_dpi_next_packet;
#define snmp_dpi_next_packet_NULL_p ((snmp_dpi_next_packet *)0)

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 51

 Structure Members
object_p A pointer to a NULL terminated character string that represents

the full OBJECT IDENTIFIER of the variable instance that is
being accessed. It basically is a concatenation of the fields
group_p and instance_p. Using this field is not recommended
because it is only included for DPI Version 1 compatibility and it
maybe withdrawn in a later version.

group_p A pointer to a NULL terminated character string that represents
the registered sub-tree that caused this GETNEXT request to be
passed to this DPI subagent. This sub-tree must have a trailing
dot.

instance_p A pointer to a NULL terminated character string that represents
the rest which is the piece following the sub-tree part of the
OBJECT IDENTIFIER of the variable instance being accessed.

Use of the term instance_p here should not be confused with an
OBJECT instance because this string may consist of a piece of
the OBJECT IDENTIFIER plus the INSTANCE IDENTIFIER.

next_p A pointer to a possible next snmp_dpi_next_packet structure. If
this next field contains the NULL pointer, this is the end of the
chain.

 Description
The snmp_dpi_next_packet structure represents a parse tree for a DPI GETNEXT
packet.

At the subagent side, the snmp_dpi_next_packet structure is normally created as a
result of a call to pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GETNEXT. The snmp_dpi_hdr structure then contains a pointer to a
chain of one or more snmp_dpi_next_packet structures.

The DPI subagent programmer uses this structure to find out which variables
instances are to be returned in a DPI RESPONSE.

 Related Information
The pDPIpacket() Function (see page 38)
The snmp_dpi_hdr Structure (see page 50)

The snmp_dpi_resp_packet Structure

 Structure Definition

struct dpi_resp_packet {
char error_code; /* like: SNMP_ERROR_xxx */
unsigned long int error_index;/* 1st varBind in error */
#define resp_priority error_index /* if respons to register*/
struct dpi_set_packet *varBind_p; /* ptr to varBind, chain */

/* of dpi_set_packets */
};
typedef struct dpi_resp_packet snmp_dpi_resp_packet;
#define snmp_dpi_resp_packet_NULL_p ((snmp_dpi_resp_packet *)0)

52 Programmer's Reference

 Structure Members
error_code The return code or the error code.

See DPI RESPONSE Error Codes (see page page 59) for a
list of valid codes.

error_index Specifies the first varBind in error. Counting starts at 1 for the
first varBind. This field should be zero if there is no error.

resp_priority This is a redefinition of the error_index field. If the response
is a response to a DPI REGISTER request and the
error_code is equal to SNMP_ERROR_DPI_noError or
SNMP_ERROR_DPI_higherPriorityRegistered, then this field
contains the priority that was actually assigned. Otherwise,
this field is set to zero for responses to a DPI REGISTER..

varBind_p A pointer to the chain of one or more
snmp_dpi_set_structures, representing varBinds of the
response. This field contains a NULL pointer if there are no
varBinds in the response.

 Description
The snmp_dpi_resp_packet structure represents a parse tree for a DPI
RESPONSE packet.

The snmp_dpi_resp_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_RESPONSE.
The snmp_dpi_hdr structure then contains a pointer to a snmp_dpi_resp_packet
structure.

At the DPI subagent side, a DPI RESPONSE should only be expected at initializa-
tion and termination time when the subagent has issued a DPI OPEN, DPI REG-
ISTER or DPI UNREGISTER request.

The DPI programmer is advised to use the mkDPIresponse() function to prepare a
DPI RESPONSE packet.

 Related Information
The pDPIpacket() Function (see page 38)
The mkDPIresponse() Function (see page 31)
The snmp_dpi_set_packet Structure (see page 53)
The snmp_dpi_hdr Structure (see page 50)

The snmp_dpi_set_packet Structure

 Structure Definition

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 53

struct dpi_set_packet {
char *object_p; /* ptr to Object ID (string) */
char *group_p; /* ptr to sub-tree (group) */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* value type: SNMP_TYPE_xxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to the value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

 Structure Members
object_p A pointer to a NULL terminated character string that represents

the full OBJECT IDENTIFIER of the variable instance that is
being accessed. It basically is a concatenation of the fields
group_p and instance_p. Using this field is not recommended
because it is only included for DPI Version 1 compatibility and it
maybe withdrawn in a later version.

group_p A pointer to a NULL terminated character string that represents
the registered sub-tree that caused this SET, COMMIT, or
UNDO request to be passed to this DPI subagent. The sub-tree
must have a trailing dot.

instance_p A pointer to a NULL terminated character string that represents
the rest, which is the piece following the sub-tree part, of the
OBJECT IDENTIFIER of the variable instance being accessed.

Use of the term instance_p here should not be confused with an
OBJECT instance because this string may consist of a piece of
the OBJECT IDENTIFIER plus the INSTANCE IDENTIFIER.

value_type The type of the value.

See DPI SNMP Value Types (see page 60) for a list of currently
defined value types.

value_len This is an unsigned 16-bit integer that specifies the length in
octets of the value pointed to by the value field. The length may
be zero if the value if of type SNMP_TYPE_NULL.

value_p A pointer to the actual value. This field may contain a NULL
pointer if the value if of type SNMP_TYPE_NULL.

See Value Representation (see page 61) for information on how
the data is represented for the various value types.

next_p A pointer to a possible next snmp_dpi_set_packet structure. If
this next field contains the NULL pointer, this is the end of the
chain.

54 Programmer's Reference

 Description
The snmp_dpi_set_packet structure represents a parse tree for a DPI SET request.

The snmp_dpi_set_packet structure may be created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_SET,
SNMP_DPI_COMMIT or SNMP_DPI_UNDO. The snmp_dpi_hdr structure then con-
tains a pointer to a chain of one or more snmp_dpi_set_packet structures.

This structure can also be created with a mkDPIset() call, which is typically used
when preparing varBinds for a DPI RESPONSE packet.

 Related Information
The pDPIpacket() Function (see page 38)
The mkDPIset() Function (see page 33)
DPI SNMP Value Types (see page 60)
Value Representation (see page 61)
The snmp_dpi_hdr Structure (see page 50)

The snmp_dpi_ureg_packet Structure

 Structure Definition

struct dpi_ureg_packet {
char reason_code;/* reason for unregister */
char *group_p; /* ptr to sub-tree(group)*/
struct dpi_ureg_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_ureg_packet snmp_dpi_ureg_packet;
#define snmp_dpi_ureg_packet_NULL_p ((snmp_dpi_ureg_packet *)0)

 Structure Members
reason_code The reason for the unregister.

See DPI UNREGISTER Reason Codes (see page page 60) for
a list of the currently defined reason codes.

group_p A pointer to a NULL terminated character string that represents
the sub-tree to be unregistered. This sub-tree must have a
trailing dot.

next_p A pointer to a possible next snmp_dpi_ureg_packet structure. If
this next field contains the NULL pointer, this is the end of the
chain. Currently we do not support multiple unregister requests
in one DPI packet, so this field should always be zero.

 Description
The snmp_dpi_ureg_packet structure represents a parse tree for a DPI UNREG-
ISTER request.

The snmp_dpi_ureg_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_UNREGISTER. The snmp_dpi_hdr structure then contains a pointer to
a snmp_dpi_ureg_packet structure.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 55

The DPI programmer is advised to use the mkDPIunregister() function to create a
DPI UNREGISTER packet.

 Related Information
The pDPIpacket() Function (see page 38)
The mkDPIunregister() Function (see page 37)
The snmp_dpi_hdr Structure (see page 50)

The snmp_dpi_u64 Structure

 Structure Definition

struct snmp_dpi_u64 { /* for unsigned 64-bit int */
unsigned long high; /* - high order 32 bits */
unsigned long low; /* - low order 32 bits */

};
typedef struct snmp_dpi_u64 snmp_dpi_u64;

Note: This structure is supported only in SNMP Version 2.

 Structure Members
high The high order, most significant, 32 bits

low The low order, least significant, 32 bits

 Description
The snmp_dpi_u64 structure represents an unsigned 64-bit integer as need for
values with a type of SNMP_TYPE_Counter64.

The snmp_dpi_u64 structure may be created as a result of a call to pDPIpacket().
This is the case if the DPI packet is of type SNMP_DPI_SET and one of the values
has a type of SNMP_TYPE_Counter64. The value_p pointer of the
snmp_dpi_set_packet structure will then point to an snmp_dpi_u64 structure.

The DPI programmer must also use an snmp_dpi_u64 structure as the parameter
to a mkDPIset() call if you want to create a value of type SNMP_TYPE_Counter64.

 Related Information
The pDPIpacket() Function (see page 38)
The snmp_dpi_set_packet Structure (see page 53)
DPI SNMP Value Types (see page 60)
Value Representation (see page 61)

Character Set Selection
The version of DPI 2.0 shipped with TCP/IP for MVS requires use of the EBCDIC
character set. Any DisplayString MIB objects known to the agent (in its compiled
MIB) supplied with TCP/IP for MVS will have ASCII conversion handled by the
agent. The subagent will always deal with the values of these objects in EBCDIC.
Any portion of an instance identifier that is a DisplayString must be in ASCII. The
agent does not handle instance IDs.

56 Programmer's Reference

When the DPI subagent sends a DPI OPEN packet, it must specify the character
set that it wants to use. The subagent here needs to know or determine in an
implementation dependent manner if the agent is running on a system with the
same character set as the subagent. If you connect to the agent at loopback,
localhost, or your own machine, you might assume that you are using the same
character set.

The DPI subagent has two choices:

DPI_NATIVE_CSET Specifies that you want to use the native character set of
the platform on which the agent that you connect to is
running.

DPI_ASCII_CSET Specifies that you want to use the ASCII character set.
The agent will not translate between ASCII and the native
character set.

Although you can specify ASCII, the MVS agent does not
support it.

The DPI packets have a number of fields that are represented as strings. The
fields that must be represented in the selected character set are:

¹ The null terminated string pointed to by the description_p, enterprise_p,
group_p, instance_p, and oid_p parameters in the various mkDPIxxxx(...) func-
tions.

¹ The string pointed to by the value_p parameter in the mkDPIset(...) function,
that is if the value_type parameter specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

¹ The null terminated string pointed to by the description_p, enterprise_p,
group_p, instance_p, and oid_p pointers in the various snmp_dpi_xxxx_packet
structures.

¹ The string pointed to by the value_p pointer in the snmp_dpi_set_packet struc-
ture, that is if the value_type field specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

 Related Information
The mkDPIopen() Function (see page 27)

Constants, Values, Return Codes, and Include File
This section describes all the constants and names for values as they are defined
in the snmp_dpi.h include file (see page 63) .

The Constants and Values are:

DPI CLOSE Reason Codes (see page 58)
DPI Packet Types (see page 58)
DPI RESPONSE Error Codes (see page 59)
DPI UNREGISTER Reason Codes (see page 60)
DPI SNMP Value Types (see page 60)
Value Representation (see page 61)
Value Ranges and Limits (see page 62)
Return Codes from DPI Transport-Related Functions (see page 62)

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 57

DPI CLOSE Reason Codes
The currently defined DPI CLOSE reason codes as defined in the snmp_dpi.h
include file are:

 #define SNMP_CLOSE_otherReason 1
 #define SNMP_CLOSE_goingDown 2
 #define SNMP_CLOSE_unsupportedVersion 3
 #define SNMP_CLOSE_protocolError 4
 #define SNMP_CLOSE_authenticationFailure 5
 #define SNMP_CLOSE_byManager 6
 #define SNMP_CLOSE_timeout 7
 #define SNMP_CLOSE_openError 8

These codes are used in the reason_code parameter for the mkDPIclose() function
and in the reason_code field in the snmp_dpi_close_packet structure.

 Related Information

The snmp_dpi_close_packet Structure (see page 48)
The mkDPIclose() Function (see page 26)

DPI Packet Types
The currently defined DPI packet types as defined in the snmp_dpi.h include file
are:

 #define SNMP_DPI_GET 1
#define SNMP_DPI_GET_NEXT 2 /* old DPI 1.x style */

 #define SNMP_DPI_GETNEXT 2
 #define SNMP_DPI_SET 3
 #define SNMP_DPI_TRAP 4
 #define SNMP_DPI_RESPONSE 5
 #define SNMP_DPI_REGISTER 6
 #define SNMP_DPI_UNREGISTER 7
 #define SNMP_DPI_OPEN 8
 #define SNMP_DPI_CLOSE 9
 #define SNMP_DPI_COMMIT 10
 #define SNMP_DPI_UNDO 11
 #define SNMP_DPI_GETBULK 12
#define SNMP_DPI_TRAPV2 13 /* reserved, not */
#define SNMP_DPI_INFORM 14 /* reserved, implemented */

 #define SNMP_DPI_ARE_YOU_THERE 15

These packet types are used in the type parameter for the packet_type field in the
snmp_dpi_hdr structure.

 Related Information
The snmp_dpi_hdr Structure (see page 50)

58 Programmer's Reference

DPI RESPONSE Error Codes
In case of an error on an SNMP request like GET, GETNEXT, SET, COMMIT, or
UNDO, the RESPONSE can have one of these currently defined error codes. They
are defined in the snmp_dpi.h include file:

 #define SNMP_ERROR_noError 0
 #define SNMP_ERROR_tooBig 1
 #define SNMP_ERROR_noSuchName 2
 #define SNMP_ERROR_badValue 3
 #define SNMP_ERROR_readOnly 4
 #define SNMP_ERROR_genErr 5
 #define SNMP_ERROR_noAccess 6
 #define SNMP_ERROR_wrongType 7
 #define SNMP_ERROR_wrongLength 8
 #define SNMP_ERROR_wrongEncoding 9
 #define SNMP_ERROR_wrongValue 10
 #define SNMP_ERROR_noCreation 11
 #define SNMP_ERROR_inconsistentValue 12
 #define SNMP_ERROR_resourceUnavailable 13
 #define SNMP_ERROR_commitFailed 14
 #define SNMP_ERROR_undoFailed 15
 #define SNMP_ERROR_authorizationError 16
 #define SNMP_ERROR_notWritable 17
 #define SNMP_ERROR_inconsistentName 18

In case of an error on a DPI only request (OPEN, REGISTER, UNREGISTER,
ARE_YOU_THERE), the RESPONSE can have one of these currently defined error
codes. They are defined in the snmp_dpi.h include file:

 #define SNMP_ERROR_DPI_noError 0
 #define SNMP_ERROR_DPI_otherError 101
 #define SNMP_ERROR_DPI_notFound 102
 #define SNMP_ERROR_DPI_alreadyRegistered 103
 #define SNMP_ERROR_DPI_higherPriorityRegistered 104
 #define SNMP_ERROR_DPI_mustOpenFirst 105
 #define SNMP_ERROR_DPI_notAuthorized 106
 #define SNMP_ERROR_DPI_viewSelectionNotSupported 107
#define SNMP_ERROR_DPI_getBulkSelectionNotSupported 108

 #define SNMP_ERROR_DPI_duplicateSubAgentIdentifier 109
 #define SNMP_ERROR_DPI_invalidDisplayString 110
 #define SNMP_ERROR_DPI_characterSetSelectionNotSupported 111

These codes are used in the error_code parameter for the mkDPIresponse() func-
tion and in the error_code field in the snmp_dpi_resp_packet structure.

 Related Information
The snmp_dpi_resp_packet Structure (see page 52)
The mkDPIresponse() Function (see page 31)

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 59

DPI UNREGISTER Reason Codes
These are the currently defined DPI UNREGISTER reason codes. They are define
in the snmp_dpi.h include file:

 #define SNMP_UNREGISTER_otherReason 1
 #define SNMP_UNREGISTER_goingDown 2
 #define SNMP_UNREGISTER_justUnregister 3
 #define SNMP_UNREGISTER_newRegistration 4
 #define SNMP_UNREGISTER_higherPriorityRegistered 5
 #define SNMP_UNREGISTER_byManager 6
 #define SNMP_UNREGISTER_timeout 7

These codes are used in the reason_code parameter for the mkDPIunregister()
function and in the reason_code field in the snmp_dpi_ureg_packet structure.

 Related Information
The snmp_dpi_ureg_packet Structure (see page 55)
The mkDPIunregister() Function (see page 37)

DPI SNMP Value Types
These are the currently defined value types as as defined in the snmp_dpi.h
include file:

#define SNMP_TYPE_MASK 0x7f /* mask to isolate type*/
#define SNMP_TYPE_Integer32 (128|1) /* 32-bit INTEGER */
#define SNMP_TYPE_OCTET_STRING 2 /* OCTET STRING */
#define SNMP_TYPE_OBJECT_IDENTIFIER 3 /* OBJECT IDENTIFIER */
#define SNMP_TYPE_NULL 4 /* NULL, no value */
#define SNMP_TYPE_IpAddress 5 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_Counter32 (128|6) /* 32-bit Counter */
#define SNMP_TYPE_Gauge32 (128|7) /* 32-bit Gauge */
#define SNMP_TYPE_TimeTicks (128|8) /* 32-bit TimeTicks in */

/* hundredths of a sec */
#define SNMP_TYPE_DisplayString 9 /* DisplayString (TC) */
#define SNMP_TYPE_BIT_STRING 10 /* BIT STRING */
#define SNMP_TYPE_NsapAddress 11 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_UInteger32 (128|12) /* 32-bit INTEGER */
#define SNMP_TYPE_Counter64 13 /* 64-bit Counter */
#define SNMP_TYPE_Opaque 14 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_noSuchObject 15 /* IMPLICIT NULL */
#define SNMP_TYPE_noSuchInstance 16 /* IMPLICIT NULL */
#define SNMP_TYPE_endOfMibView 17 /* IMPLICIT NULL */

These value types are used in the value_type parameter for the mkDPIset() func-
tion and in the value_type field in the snmp_dpi_set_packet structure.

 Related Information
The snmp_dpi_set_packet Structure (see page 53)
The mkDPIset() Function (see page 33)
Value Representation (see page 61)
Value Ranges and Limits (see page 62)

60 Programmer's Reference

 Value Representation
Values in the snmp_dpi_set_packet structure are represented as follows:

¹ 32-bit integers are defined as long int or unsigned long int. We assume that a
long int is 4 bytes.

¹ 64-bit integers are represented as an snmp_dpi_u64.

We only deal with unsigned 64 bit integers in SNMP. In a structure that has two
fields, the high order piece and the low order piece, each is of type unsigned
long int. We assume these are 4-bytes.

¹ Object Identifiers are NULL terminated strings in the selected character set,
representing the OID in ASN.1 dotted notation. The length includes the termi-
nating NULL.

An ASCII example:

'312e332e362e312e322e312e312e312e3000'h

represents "1.3.6.1.2.1.1.1.0" which is sysDescr.0.

An EBCDIC example:

'f14bf34bf64bf14bf24bf14bf14bf14bf000'h

represents "1.3.6.1.2.1.1.1.0" which is sysDescr.0.

¹ DisplayStrings are in the selected character set. The length specifies the length
of the string.

An ASCII example:

'6162630d0a'h

represents "abc\r\n", no NULL.

An EBCDIC example:

'8182830d25'h

represents "abc\r\n", no NULL.

¹ IpAddress and Opaque are implicit OCTET_STRING, so they are a sequence
of octets/bytes. This means, for instance, that the IP address is in network byte
order.

¹ NULL has a zero length for the value, no value data, so a NULL pointer in the
value_p field.

¹ noSuchObject, noSuchInstance, and endOfMibView are implicit NULL and
represented as such.

¹ BIT_STRING is an OCTET_STRING of the form uubbbb...bb, where the first
octet (uu) is 0x00-0x07 and indicates the number of unused bits in the last
octet (bb). The bb octets represent the bit string itself, where bit zero (0) comes
first and so on.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 61

 Related Information
Value Ranges and Limits (see page 62)

Value Ranges and Limits
The following rules apply to object IDs in ASN.1 notation:

¹ The object ID consists of 1 to 128 subIDs, which are separated by dots.

¹ Each subID is a positive number. No negative numbers are allowed.

¹ The value of each number cannot exceed 4294967295 (4,294,967,295). This
value is 2 to the power of 32 minus 1.

¹ The valid values of the first subID are: 0, 1, or 2.

¹ If the first subID has a value of 0 or 1, the second subID can only have a value
of 0 through 39.

The following rules apply to DisplayString:

¹ A DisplayString (Textual Convention) is basically an OCTET STRING in SNMP
terms.

¹ The maximum size of a DisplayString is 255 octets/bytes.

More information on the DPI SNMP value types can be found in the SNMP SMI
(Structure of Management Information) and SNMP TC (Textual Conventions) RFCs.
At the time of this publication, these two RFCs are RFC1902 and RFC1903.

Return Codes from DPI Transport-Related Functions
These are the currently defined values for the return codes from DPI transport-
related functions. They are defined in the snmp_dpi.h include file:

#define DPI_RC_OK 0 /* all OK, no error */
#define DPI_RC_NOK -1 /* some other error */
#define DPI_RC_NO_PORT -2 /* can't determine DPIport */
#define DPI_RC_NO_CONNECTION -3 /* no connection to DPIagent*/
#define DPI_RC_EOF -4 /* EOF receivd on connection*/
#define DPI_RC_IO_ERROR -5 /* Some I/O error on connect*/
#define DPI_RC_INVALID_HANDLE -6 /* unknown/invalid handle */
#define DPI_RC_TIMEOUT -7 /* timeout occurred */
#define DPI_RC_PACKET_TOO_LARGE -8 /* packed too large, dropped*/
#define DPI_RC_UNSUPPORTED_DOMAIN -9 /*unsupported domain for connect*/
#define DPI_RC_INVALID_ARGUMENT -10 /*invalid argument passed*/

These values are used as return codes for the transport-related DPI functions.

 Related Information
The DPIconnect_to_agent_TCP() Function (see page 41)
The DPIconnect_to_agent_UNIXstream() Function (see page 42)
The DPIawait_packet_from_agent() Function (see page 39)
The DPIsend_packet_to_agent() Function (see page 45)

62 Programmer's Reference

The snmp_dpi.h Include File

#include <snmp_dpi.h>

 Parameters
None

 Description
The snmp_dpi.h include file defines the SNMP DPI API to the DPI subagent pro-
grammer. It has all the function prototype statements, and it also has the definitions
for the snmp_dpi structures.

The same include file is used at the agent side, so you will see some definitions
which are unique to the agent side. Also there may be other functions or prototypes
of functions not implemented on MVS. Therefore, you should only use the API as
far as it is documented in this manual.

 Related Information
Macros, functions, structures, constants and values defined in the snmp_dpi.h
include file are:

¹ The DPIawait_packet_from_agent() Function (see page 39)

¹ The DPIconnect_to_agent_TCP() Function (see page41)

¹ The DPIconnect_to_agent_UNIXstream() Function (see page42)

¹ The DPIdebug() Function (see page 21)

¹ The DPIdisconnect_from_agent() Function (see page 43)

¹ The DPI_PACKET_LEN() Macro (see page 22)

¹ The DPIsend_packet_to_agent() Function (see page 45)

¹ The fDPIparse() Function (see page 23)

¹ The fDPIset() Function (see page 24)

¹ The mkDPIAreYouThere() Function (see page 25)

¹ The mkDPIclose() Function (see page 26)

¹ The mkDPIopen() Function (see page 27)

¹ The mkDPIregister() Function (see page 30)

¹ The mkDPIresponse() Function (see page 31)

¹ The mkDPIset() Function (see page 33)

¹ The mkDPItrap() Function (see page 35)

¹ The mkDPIunregister() Function (see page 37)

¹ The pDPIpacket() Function (see page 38)

¹ The snmp_dpi_close_packet Structure (see page 48)

¹ The snmp_dpi_get_packet Structure (see page 49)

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 63

¹ The snmp_dpi_next_packet Structure (see page 51)

¹ The snmp_dpi_hdr Structure (see page 50)

¹ The lookup_host() Function (see page 47)

¹ The snmp_dpi_resp_packet Structure (see page 52)

¹ The snmp_dpi_set_packet Structure (see page 53)

¹ The snmp_dpi_ureg_packet Structure (see page 55)

¹ DPI CLOSE Reason Codes (see page 58)

¹ DPI Packet Types (see page 58)

¹ DPI RESPONSE Error Codes (see page 59)

¹ DPI UNREGISTER Reason Codes (see page 60)

¹ DPI SNMP Value Types (see page 60)

¹ Character Set Selection (see page 56)

A DPI Subagent Example
This is an example of a DPI subagent. The code is called dpi_mvs_sample.c in the
/usr/lpp/tcpip/samples directory.

Note: The example code in this document was copied from the sample file at the
time of the publication. There may be differences in the code presented and
the code that is shipped with the product. Always use the code provided in
the/usr/lpp/tcpip/samples directory as the authoritative sample code.

The DPI subagent example includes:

¹ Overview of Subagent Processing (see page 64)
¹ Connecting to the Agent (see page 67)
¹ Registering a Sub-tree with the Agent (see page 69)
¹ Processing Requests from the Agent (see page 71)
¹ Processing a GET Request (see page 74)
¹ Processing a GETNEXT Request (see page 77)
¹ Processing a SET/COMMIT/UNDO Request (see page 81)
¹ Processing an UNREGISTER Request (see page 84)
¹ Processing an CLOSE Request (see page 85)
¹ Generating a TRAP (see page 86)

Related Information

Subagent Programming Concepts (see page 10)

Overview of Subagent Processing
This overview assumes that the subagent communicates with the agent over a TCP
connection. Other connection implementations are possible and, in that case, the
processing approach may be a bit different.

We also take a simple approach in the sense that we will request the agent to send
us at most one varBind per DPI packet, so we do not need to loop through a list of
varBinds. Potentially, you may gain performance improvements if you allow for mul-
tiple varBinds per DPI packet on GET, GETNEXT, SET requests, but to do so, your

64 Programmer's Reference

code will have to loop through the varBind list and so it becomes somewhat more
complicated. We assume that the DPI subagent programmer can handle that once
you understand the basics of the DPI API.

The following are the supported MIB variable definitions for DPI_SIMPLE:

DPISimple-MIB DEFINITIONS ::= BEGIN

 IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, snmpModules, enterprises

 FROM SNMPv2-SMI
 DisplayString
 FROM SNMPv2-TC

ibm OBJECT IDENTIFIER ::= { enterprises 2 }
 ibmDPI OBJECT IDENTIFIER ::= { ibm 2 }

dpi20MIB OBJECT IDENTIFIER ::= { ibmDPI 1 }

-- dpiSimpleMIB MODULE-IDENTITY
-- LAST-UPDATED "9401310000Z"
-- ORGANIZATION "IBM Research - T.J. Watson Research Center"
-- CONTACT-INFO " Bert Wijnen
-- Postal: IBM International Operations
-- Watsonweg 2
-- 1423 ND Uithoorn
-- The Netherlands
-- Tel: +31 2975 53316
-- Fax: +31 2975 62468
-- E-mail: wijnen@vnet.ibm.com
-- (IBM internal: wijnen at nlvm1)"
-- DESCRIPTION
-- "The MIB module describing DPI Simple Objects for
-- the dpi_samp.c program"
-- ::= { snmpModules x }

dpiSimpleMIB OBJECT IDENTIFIER ::= { dpi20MIB 5 }

 dpiSimpleInteger OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION

"A sample integer32 value"
::= { dpiSimpleMIB 1 }

 dpiSimpleString OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION

"A sample Display String"
::= { dpiSimpleMIB 2 }

 dpiSimpleCounter32 OBJECT-TYPE
SYNTAX Counter -- Counter32 is SNMPv2

 ACCESS read-only
 STATUS mandatory
 DESCRIPTION

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 65

"A sample 32-bit counter"
::= { dpiSimpleMIB 3 }

 dpiSimpleCounter64 OBJECT-TYPE
SYNTAX Counter -- Counter64 is SNMPv2,

-- No SMI support for it yet
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION

"A sample 64-bit counter"
::= { dpiSimpleMIB 4 }

END

To make the code more readable, we have defined the following names in our
dpi_mvs_sample.c source file.

#define DPI_SIMPLE_SUBAGENT "1.3.6.1.4.1.2.2.1.5"
#define DPI_SIMPLE_MIB "1.3.6.1.4.1.2.2.1.5."
#define DPI_SIMPLE_INTEGER "1.0" /* dpiSimpleInteger.0 */
#define DPI_SIMPLE_STRING "2.0" /* dpiSimpleString.0 */
#define DPI_SIMPLE_COUNTER32 "3.0" /* dpiSimpleCounter32.0 */
#define DPI_SIMPLE_COUNTER64 "4.0" /* dpiSimpleCounter64.0 */

In addition, we have defined the following variables as global variable in our
dpi_mvs_sample.c source file.

static int handle; /* handle has global scope */
static long int value1 = 5;
#define value2_p cur_val_p /* writable object */
#define value2_len cur_val_len /* writable object */
static char *cur_val_p = (char *)0;
static char *new_val_p = (char *)0;
static char *old_val_p = (char *)0;
static unsigned long cur_val_len = 0;
static unsigned long new_val_len = 0;
static unsigned long old_val_len = 0;
static unsigned long value3 = 1;
static snmp_dpi_u64 value4 = {0x80000000,1L};

66 Programmer's Reference

Connecting to the Agent
Before a subagent can receive or send any DPI packets from/to the SNMP DPI
capable agent, it must "connect" to the agent and identify itself to the agent.

The following example code returns a response. We assume that there are no
errors in the request, but proper code should do the checking for that. We do
proper checking for lexicographic next object, but we do no checking for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and dots).
If we get to the end of our dpiSimpleMIB, we must return an endOfMibView as
defined by the SNMP Version 2 rules. You will need to specify:

¹ A host name or IP address in dot notation that specifies where the agent is
running. Often the name "loopback" or "localhost" can be used if the subagent
runs on the same system as the agent.

¹ A community name which is used to obtain the dpi TCP port from the agent.
Internally that is done by sending a regular SNMP GET request to the agent. In
an open environment, we probably can use the well known community name
"public".

The function returns a negative error code if an error occurs. If the connection
setup is successful, it returns a handle which represents the connection and which
we must use on subsequent calls to send or await DPI packets.

The second step is to identify the subagent to the agent. This is done by making a
DPI-OPEN packet, sending it to the agent, and then awaiting the response from the
agent. The agent may accept or deny the OPEN request. Making a DPI-OPEN
packet is done by calling mkDPIopen() which expects the following parameters:

¹ A unique subagent identification (an Object Identifier).

¹ A description which can be the NULL string ("").

¹ Overall subagent timeout in seconds. The agent uses this value as a timeout
value for a response when it sends a request to the subagent. The agent may
have a maximum value for this timeout that will be used if you exceed it.

¹ The maximum number of varBinds per DPI packet that the subagent is willing
or is able to handle.

¹ The character set we want to use. In most cases you want to use the native
character set.

¹ Length of a password. A zero means no password.

¹ Pointer to the password or NULL if no password. It depends on the agent if
subagents must specify a password to open up a connection.

The function returns a pointer to a static buffer holding the DPI packet if successful.
If it fails, it returns a NULL pointer.

Once the DPI-OPEN packet has been created, you must send it to the agent. You
can use the DPIsend_packet_to_agent() function which expects the following
parameters:

¹ The handle of a connection from DPIconnect_to_agent_TCP.

¹ A pointer to the DPI packet from mkDPIopen.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 67

¹ The length of the packet. The snmp_dpi.h include file provides a macro
DPI_PACKET_LEN that calculates the packet length of a DPI packet.

This function returns DPI_RC_OK (value zero) if successful. Otherwise, an appro-
priate DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

Now we must wait for a response to the DPI-OPEN. To await such a response, you
call the DPIawait_packet_from_agent() function which expects the following
parameters:

¹ The handle of a connection from DPIconnect_to_agent_TCP.

¹ A timeout in seconds, which is the maximum time to wait for response.

¹ A pointer to a pointer, which will receive a pointer to a static buffer containing
the awaited DPI packet. If the system fails to receive a packet, a NULL pointer
is stored.

¹ A pointer to a long integer (32-bit), which will receive the length of the awaited
packet. If it fails, it will be set to zero.

This function returns DPI_RC_OK (value zero) if successful. Otherwise, an appro-
priate DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

The last step is to ensure that we received a DPI-RESPONSE back from the agent.
If we did, then we must ensure that the agent accepted us as a valid subagent.
This will be shown by the error_code field in the DPI response packet.

The following example code establishes a connection and "opens" it by identifying
yourself to the agent.

static void do_connect_and_open(char *hostname_p, char *community_p)
{

unsigned char *packet_p;
 int rc;
 unsigned long length;
 snmp_dpi_hdr *hdr_p;

#ifdef INCLUDE_UNIX_DOMAIN_FOR_DPI
 handle = DPIconnect_to_agent_UNIXstream(hostname_p,
 community_p);
#else
 handle =

DPIconnect_to_agent_TCP(/* (TCP) connect to agent */
hostname_p, /* on this host */
community_p); /* snmp community name */

#endif /* INCLUDE_UNIX_DOMAIN_FOR_DPI */
} /* endif */

if (handle < 0) exit(1); /* If it failed, exit */

packet_p = mkDPIopen(/* Make DPI-OPEN packet */
DPI_SIMPLE_SUBAGENT, /* Our identification */
"Simple DPI subAgent", /* description */
10L, /* Our overall timeout */
1L, /* max varBinds/packet */
DPI_NATIVE_CSET, /* native character set */
0L, /* password length */
(unsigned char *)0); /* ptr to password */

68 Programmer's Reference

if (!packet_p) exit(1); /* If it failed, exit */

rc = DPIsend_packet_to_agent(/* send OPEN packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

rc = DPIawait_packet_from_agent(/* wait for response */
handle, /* on this connection */
10, /* timeout in seconds */

 &packet_p, /* receives ptr to packet */
&length); /* receives packet length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

hdr_p = pDPIpacket(packet_p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p) /* If we fail to parse it */

exit(1); /* then exit */

if (hdr_p->packet_type != SNMP_DPI_RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;
if (rc != SNMP_ERROR_DPI_noError) exit(1);

} /* end of do_connect_and_open() */

Registering a Sub-tree with the Agent
After we have setup a connection to the agent and after we have identified our-
selves, we must register one or more MIB sub-trees for which we want to be
responsible to handle all SNMP requests.

To do so, the subagent must create a DPI-REGISTER packet and send it to the
agent. The agent will then send a response to indicate success or failure of the
register request.

To create a DPI-REGISTER packet, the subagent uses a call to the
mkDPIregister() function, which expects these parameters:

¹ A timeout value in seconds for this sub-tree. If you specify zero, your overall
timeout value that was specified in DPI-OPEN is used. You can specify a dif-
ferent value if you expect longer processing time for a specific sub-tree.

¹ A requested priority. Multiple subagents may register the same sub-tree at dif-
ferent priorities. For example, 0 is better than 1 and so on. The agent considers
the subagent with the best priority to be the active subagent for the sub-tree. If
you specify -1, you are asking for the best priority available. If you specify 0,
you are asking for a better priority than any existing subagent may already
have.

¹ The MIB sub-tree which you want to control. You must specify this parameter
with a trailing dot.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 69

¹ You have no choice in GETBULK processing. You must ask the agent to map
a GETBULK into multiple GETNEXT packets.

The function returns a pointer to a static buffer holding the DPI packet if successful.
If it fails, it returns a NULL pointer.

Now we must send this DPI-REGISTER packet to the agent with the
DPIsend_packet_to_agent() function. This is similar to sending the DPI_OPEN
packet. We then wait for a response from the agent. Again, we use the
DPIawait_packet_from_agent() function in the same way as we awaited a response
on the DPI-OPEN request. Once we have received the response, we must check
the return code to ensure that registration was successful.

The following code example demonstrates how to register one MIB sub-tree with
the agent.

static void do_register(void)
{

unsigned char *packet_p;
 int rc;
 unsigned long length;
 snmp_dpi_hdr *hdr_p;

packet_p = mkDPIregister(/* Make DPIregister packet */
timeout, /* timeout in seconds */

 0, /* requested priority */
DPI_SIMPLE_MIB, /* ptr to the subtree */
DPI_BULK_NO); /* Map GetBulk into GetNext*/

if (!packet_p) exit(1); /* If it failed, exit */

rc = DPIsend_packet_to_agent(/* send REGISTER packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

rc = DPIawait_packet_from_agent(/* wait for response */
handle, /* on this connection */
10, /* timeout in seconds */

 &packet_p, /* receives ptr to packet */
&length); /* receives packet length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

hdr_p = pDPIpacket(packet_p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p) /* If we fail to parse it */

exit(1); /* then exit */

if (hdr_p->packet_type != SNMP_DPI_RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;
if (rc != SNMP_ERROR_DPI_noError) exit(1);

} /* end of do_register() */

70 Programmer's Reference

Processing Requests from the Agent
After we have registered our sample MIB sub-tree with the agent, we must expect
that SNMP requests for that sub-tree will be passed for processing by us. Since the
requests will arrive in the form of DPI packets on the connection that we have
established, we go into a while loop to await DPI packets from the agent.

Since the subagent cannot know in advance which kind of packet arrives from the
agent, we await a DPI packet (forever), then we parse the packet, check the packet
type, and process the request based on the DPI packet type. A call to pDPIpacket,
which expects as parameter a pointer to the encoded/serialized DPI packet, returns
a pointer to a DPI parse tree. The pointer points to a snmp_dpi_hdr structure which
looks as follows:

struct snmp_dpi_hdr {
 unsigned char proto_major;
 unsigned char proto_version;
 unsigned char proto_release;
unsigned short packet_id;

 unsigned char packet_type;
 union {
 snmp_dpi_reg_packet *reg_p;
 snmp_dpi_ureg_packet *ureg_p;
 snmp_dpi_get_packet *get_p;
 snmp_dpi_next_packet *next_p;
 snmp_dpi_next_packet *bulk_p;
 snmp_dpi_set_packet *set_p;
 snmp_dpi_resp_packet *resp_p;
 snmp_dpi_trap_packet *trap_p;
 snmp_dpi_open_packet *open_p;
 snmp_dpi_close_packet *close_p;
 unsigned char *any_p;
 } data_u;
};
typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

With the DPI parse tree, we decide how to process the DPI packet. The following
code example demonstrates the high level process of a DPI subagent.

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 71

#include <snmp_dpi.h> /* DPI 2.0 API definitions */
static int handle; /* handle has global scope */

main(int argc, char *argv[], char *envp[
{
unsigned char *packet_p;
int rc = 0;

 unsigned long length;
 snmp_dpi_hdr *hdr_p;

if (argc>1) { /* if use passed one parm */
if (strcmp(argv[1],"-d")==0) /* being -d, then we */

DPIdebug(2); /* turn on DPI debugging */
} /* endif */ /* which shows us things */

do_connect_and_open(); /* connect and DPI-OPEN */

do_register(); /* register our sub-tree */

while (rc == 0) { /* do forever */
rc = DPIawait_packet_from_agent(/* wait for a DPI packet */

handle, /* on this connection */
-1, /* wait forever */
&packet_p, /* receives ptr to packet */
&length); /* receives packet length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

hdr_p = pDPIpacket(packet_p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p)/* If we fail to parse it */

exit(1); /* then exit */

switch(hdr_p->packet_type) { /* handle by DPI type */
 case SNMP_DPI_GET:

rc = do_get(hdr_p,
 hdr_p->data_u.get_p);
 break;
 case SNMP_DPI_GETNEXT:

rc = do_next(hdr_p,
 hdr_p->data_u.next_p);
 break;

72 Programmer's Reference

 case SNMP_DPI_SET:
 case SNMP_DPI_COMMIT:
 case SNMP_DPI_UNDO:

rc = do_set(hdr_p,
 hdr_p->data_u.set_p);
 break;
 case SNMP_DPI_CLOSE:

rc = do_close(hdr_p,
 hdr_p->data_u.close_p);
 break;
 case SNMP_DPI_UNREGISTER:

rc = do_unreg(hdr_p,
 hdr_p->data_u.ureg_p);
 break;
 default:

printf("Unexpected DPI packet type %d\n",
 hdr_p->packet_type);

rc = -1;
} /* endswitch */
if (rc) exit(1);
} /* endwhile */

 return(0);
} /* end of main() */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 73

Processing a GET Request
When the DPI packet is parsed, the snmp_dpi_hdr structure will show in the
packet_type that this is a SNMP_DPI_GET packet. In that case, the packet_body
contains a pointer to a GET-varBind, which is represented in an
snmp_dpi_get_packet structure:

struct dpi_get_packet {
char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
struct dpi_get_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_get_packet snmp_dpi_get_packet;
#define snmp_dpi_get_packet_NULL_p ((snmp_dpi_get_packet *)0)

Assuming we have registered example sub-tree 1.3.6.1.4.1.2.2.1.5 and a GET
request comes in for one variable 1.3.6.1.4.1.2.2.1.5.1.0 so that it is object 1
instance 0 in our sub-tree, the fields in the snmp_dpi_get_packet would have
pointers to:

 object_p -> "1.3.6.1.4.1.2.2.1.5.1.0"
 group_p -> "1.3.6.1.4.1.2.2.1.5."
 instance_p -> "1.0"
 next_p -> snmp_dpi_get_packet_NULL_p

If there are multiple varBinds in a GET request, each one is represented in a
snmp_dpi_get_packet structure and all the snmp_dpi_get_packet structures are
chained via the next pointer. As long as the next pointer is not the
snmp_dpi_get_packet_NULL_p pointer, there are more varBinds in the list.

Now we can analyze the varBind structure for whatever checking we want to do.
Once we are ready to make a response that contains the value of the variable, we
prepare a SET-varBind which is represented in an snmp_dpi_set_packet structure:

struct dpi_set_packet {
char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

We can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

¹ A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or the only varBind
in the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

¹ A pointer to the sub-tree that we registered.

¹ A pointer to the rest of the OID; in other words, the piece that follows the sub-
tree.

74 Programmer's Reference

¹ The value type of the value to be bound to the variable name. This must be
one of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

¹ The length of the value. For integer type values, this must be a length of 4.
Work with 32-bit signed or unsigned integers except for the Counter64 type.
For the Counter64 type, point to an snmp_dpi_u64 structure and pass the
length of that structure.

¹ A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. So
upon return we can dispose of our own pointers and allocated memory as we
please. If the call is successful, a pointer is returned as follows:

¹ To a new snmp_dpi_set_packet if it is the first or only varBind.

¹ To the existing snmp_dpi_set_packet that we passed on the call. In this case,
the new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

Once we have prepared the SET-varBind data, we can create a DPI RESPONSE
packet using the mkDPIresponse() function which expects these parameters:

¹ A pointer to an snmp_dpi_hdr. We should use the header of the parsed
incoming packet. It is used to copy the packet_id from the request into the
response, such that the agent can correlate the response to a request.

¹ A return code which is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value zero). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.

A request for a non-existing object or instance is not considered an error.
Instead, we must pass a value type of SNMP_TYPE_noSuchObject or
SNMP_TYPE_noSuchInstance respectively. These two value types have an
implicit value of NULL, so we can pass a zero length and a NULL pointer for
the value in this case.

¹ The index of the varBind in error starts counting at 1. Pass zero if no error
occurred, or pass the proper index of the first varBind for which an error was
detected.

¹ A pointer to a chain of snmp_dpi_set_packets (varBinds) to be returned as
response to the GET request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. We assume that there are no
errors in the request, but proper code should do the checking for that. For instance,
we return a noSuchInstance if the instance is not exactly what we expect and a
noSuchObject if the object instance_ID is greater than 3. However, there might be
no instance_ID at all and we should check for that too.

static int do_get(snmp_dpi_hdr *hdr_p, snmp_dpi_get_packet *pack_p)
{
 unsigned char *packet_p;
 int rc;
 snmp_dpi_set_packet *varBind_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 75

if (pack_p->instance_p &&
(strcmp(pack_p->instance_p,"1.0") == 0))

 {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
&value1); /* ptr to value */

} else if (pack_p->instance_p &&
(strcmp(pack_p->instance_p,"2.0") == 0))

 {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

} else if (pack_p->instance_p &&
(strcmp(pack_p->instance_p,"3.0") == 0))

 {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
&value3); /* ptr to value */

#ifndef EXCLUDE_SNMP_V2_SUPPORT
} else if (pack_p->instance_p && /* *Apr23*/

(strcmp(pack_p->instance_p,"4.0") == 0))
 {

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
&value4); /* ptr to value *Apr23*/

} else if (pack_p->instance_p &&
 (strcmp(pack_p->instance_p,"4")>0))
 {
#else

} else if (pack_p->instance_p &&
 (strcmp(pack_p->instance_p,"3")>0))
 {
#endif /* ndef EXCLUDE_SNMP_V2_SUPPORT */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_noSuchObject, /* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

76 Programmer's Reference

} else {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_noSuchInstance,/* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

} /* endif */

if (!varBind_p) return(-1); /* If it failed, return */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
SNMP_ERROR_noError, /* all is OK, no error */
0L, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_get() */

Processing a GETNEXT Request
When a DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is a SNMP_DPI_GETNEXT packet, and so the packet_body
contains a pointer to a GETNEXT-varBind, which is represented in an
snmp_dpi_next_packet structure:

struct dpi_next_packet {
char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
struct dpi_next_packet *next_p; /* ptr to next in chain*/

};
typedef struct dpi_next_packet snmp_dpi_next_packet;
#define snmp_dpi_next_packet_NULL_p ((snmp_dpi_next_packet *)0)

Assuming we have registered example sub-tree dpiSimpleMIB and a GETNEXT
arrives for one variable, dpiSimpleInteger.0, so that is object 1 instance 0 in our
sub-tree, the fields in the snmp_dpi_get_packet structure would have pointers to:

object_p -> "1.3.6.1.4.1.2.2.1.5.1.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "1.0"
next_p -> snmp_dpi_next_packet_NULL_p

If there are multiple varBinds in a GETNEXT request, each one is represented in a
snmp_dpi_next_packet structure and all the snmp_dpi_next_packet structures are

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 77

chained via the next pointer. As long as the next pointer is not the
snmp_dpi_next_packet_NULL_p pointer, there are more varBinds in the list.

Now we can analyze the varBind structure for whatever checking we want to do.
We must find out which OID is the one that lexicographically follows the one in the
request. It is that OID with its value that we must return as a response. Therefore,
we must now also set the proper OID in the response. Once we are ready to make
a response that contains the new OID and the value of that variable, we must
prepare a SET-varBind which is represented in an snmp_dpi_set_packet:

struct dpi_set_packet {
char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

We can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

¹ A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or only varBind in
the chain, we pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

¹ A pointer to the sub-tree that we registered.

¹ A pointer to the rest of the OID, in other words the piece that follows the sub-
tree.

¹ The value type of the value to be bound to the variable name. This must be
one of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

¹ The length of the value. For integer type values, this must be a length of 4.
Work with 32-bit signed or unsigned integers except for the Counter64 type.
For Counter 64 type, point to a snmp_dpi_u64 structure and pass the length of
that structure.

¹ A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. Upon
return, we can dispose of our own pointers and allocated memory as we please. If
the call is successful, a pointer is returned as follows:

¹ A new snmp_dpi_set_packet if it is the first or only varBind.

¹ The existing snmp_dpi_set_packet that we passed on the call. In this case, the
new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

Once we have prepared the SET-varBind data, we can create a DPI RESPONSE
packet using the mkDPIresponse() function, which expects these parameters:

78 Programmer's Reference

¹ A pointer to an snmp_dpi_hdr. We should use the header of the parsed
incoming packet. It is used to copy the packet_id from the request into the
response, such that the agent can correlate the response to a request.

¹ A return code which is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value zero). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.

A request for a non-existing object or instance is not considered an error.
Instead, we must pass the OID and value of the first OID that lexicographically
follows the non-existing object and/or instance.

Reaching the end of our sub-tree is not considered an error. For example, if
there is no NEXT OID, this is not an error. In this situation we must return the
original OID as received in the request and a value_type of
SNMP_TYPE_endOfMibView. This value_type has an implicit value of NULL,
so we can pass a zero length and a NULL pointer for the value.

¹ The index of the first varBind in error starts counting at 1. Pass zero if no error
occurred, or pass the proper index of the first varBind for which an error was
detected.

¹ A pointer to a chain of snmp_dpi_set_packet(s) (varBinds) to be returned as
response to the GETNEXT request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. We assume that there are no
errors in the request, but proper code should do the checking for that. We do
proper checking for lexicographic next object, but we do no checking for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and dots).
If we get to the end of our dpiSimpleMIB, we must return an endOfMibView as
defined by the SNMP Version 2 rules.

static int do_next(snmp_dpi_hdr *hdr_p, snmp_dpi_next_packet *pack_p)
{
 unsigned char *packet_p;
 int rc;

unsigned long subid; /* subid is unsigned */
unsigned long instance; /* same with instance */

 char *cp;
 snmp_dpi_set_packet *varBind_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (pack_p->instance_p) { /* we have an instance ID */
cp = pack_p->instance_p; /* pick up ptr */
subid = strtoul(cp, &cp, 10); /* convert subid (object) */
if (*cp == '.') { /* followed by a dot ? */

cp++; /* point after it if yes */
instance=strtoul(cp,&cp,10); /* convert real instance */

/* not that we need it, we */
subid++; /* only have instance 0, */

/* so NEXT is next object */
instance = 0; /* and always instance 0 */

} else { /* no real instance passed */
instance = 0; /* so we can use 0 */
if (subid == 0) subid++; /* if object 0, start at 1 */

} /* endif */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 79

} else { /* no instance ID passed */
subid = 1; /* so do first object */
instance = 0; /* instance 0 (all we have)*/

} /* endif */

/* we have set subid and instance such that we can basically */
/* process the request as a GET now. Actually, we don't even */
/* need instance, because all out object instances are zero. */

if (instance != 0) printf("Strange instance: %lu\n",instance);

switch (subid) {
 case 1:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
&value1); /* ptr to value */

 break;
 case 2:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

 break;
 case 3:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
&value3); /* ptr to value */

 break;
#ifndef EXCLUDE_SNMP_V2_SUPPORT
 case 4: /* *Apr23*/

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER64, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
&value4); /* ptr to value */

 break; /* *Apr23*/
#endif /* ndef EXCLUDE_SNMP_V2_SUPPORT */
 default:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_endOfMibView, /* value type */

 0L, /* length of value */
(unsigned char *)0); /* ptr to value */

80 Programmer's Reference

 break;
} /* endswitch */

if (!varBind_p) return(-1); /* If it failed, return */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
SNMP_ERROR_noError, /* all is OK, no error */
0L, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_next() */

Processing a SET/COMMIT/UNDO Request
These three requests can come in one of these sequences:

 ¹ SET, COMMIT
 ¹ SET, UNDO
¹ SET, COMMIT, UNDO

The normal sequence is SET and then COMMIT. When we receive a SET request,
we must make preparations to accept the new value. For example, check that it is
for an existing object and instance, check the value type and contents to be valid,
allocate memory, but we must not yet make the change.

If there are no SET errors, the next request we receive will be a COMMIT request.
It is then that we must make the change, but we must also keep enough informa-
tion such that we can UNDO the change later if we get a subsequent UNDO
request. The latter may happen if the agent discovers any errors with other suba-
gents while processing requests that belong to the same original SNMP SET
packet. All the varBinds in the same SNMP request PDU must be processed "as if
atomic".

When the DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is an SNMP_DPI_SET, SNMP_DPI_COMMIT, or
SNMP_DPI_UNDO packet. In that case, the packet_body contains a pointer to a
SET-varBind, represented in an snmp_dpi_set_packet structure. COMMIT and
UNDO have same varBind data as SET upon which they follow:

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 81

struct dpi_set_packet {
char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

Assuming we have registered example sub-tree dpiSimpleMIB and a SET request
comes in for one variable dpiSimpleString.0 so that is object 1 instance 0 in our
sub-tree, and also assuming that the agent knows about our compiled
dpiSimpleMIB so that it knows this is a DisplayString as opposed to just an arbitrary
OCTET_STRING, the pointers in the snmp_dpi_set_packet structure would have
pointers and values like:

object_p -> "1.3.6.1.4.1.2.2.1.5.2.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "2.0"
value_type -> SNMP_TYPE_DisplayString
value_len -> 8
value_p -> pointer to the value to be set
next_p -> snmp_dpi_get_packet_NULL_p

If there are multiple varBinds in a SET request, each one is represented in a
snmp_dpi_set_packet structure and all the snmp_dpi_set_packet structures are
chained via the next pointer. As long as the next pointer is not the
snmp_dpi_set_packet_NULL_p pointer, there are more varBinds in the list.

Now we can analyze the varBind structure for whatever checking we want to do.
Once we are ready to make a response that contains the value of the variable, we
may prepare a new SET-varBind. However, by definition, the response to a suc-
cessful SET is exactly the same as the SET request. So there is no need to return
any varBinds. A response with SNMP_ERROR_noError and an index of zero will
do. If there is an error, a response with the SNMP_ERROR_xxxx error code and an
index pointing to the varBind in error (counting starts at 1) will do.

The following code example returns a response. We assume that there are no
errors in the request, but proper code should do the checking for that. We also do
not check if the varBind in the COMMIT and/or UNDO is the same as that in the
SET request. A proper agent would make sure that that is the case, but a proper
subagent may want to verify that for itself. We only do one check that this is
dpiSimpleString.0, and if it is not, we return a noCreation. This may not be correct,
the mainline does not even return a response.

static int do_set(snmp_dpi_hdr *hdr_p, snmp_dpi_set_packet *pack_p)
{
 unsigned char *packet_p;
 int rc;
 int index = 0;
 int error = SNMP_ERROR_noError;
 snmp_dpi_set_packet *varBind_p;

varBind_p = /* init the varBind chain */

82 Programmer's Reference

snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (!pack_p->instance_p ||
(strcmp(pack_p->instance_p,"2.0") != 0))

 {

if (pack_p->instance_p &&
(strncmp(pack_p->instance_p,"1.",2) == 0))

 {
error = SNMP_ERROR_notWritable;

} else if (pack_p->instance_p &&
(strncmp(pack_p->instance_p,"2.",2) == 0))

 {
error = SNMP_ERROR_noCreation;

} else if (pack_p->instance_p &&
(strncmp(pack_p->instance_p,"3.",2) == 0))

 {
error = SNMP_ERROR_notWritable;

} else {
error = SNMP_ERROR_noCreation;

} /* endif */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
error, /* all is OK, no error */

 1, /* index is 1, 1st varBind */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
 }

switch (hdr_p->packet_type) {
 case SNMP_DPI_SET:

if ((pack_p->value_type != SNMP_TYPE_DisplayString) &&
(pack_p->value_type != SNMP_TYPE_OCTET_STRING))

{ /* check octet string in case agent has no compiled MIB */
error = SNMP_ERROR_wrongType;
break; /* from switch */

} /* endif */
if (new_val_p) free(new_val_p); /* free these memory areas */
if (old_val_p) free(old_val_p); /* if we allocated any */
new_val_p = (char *)0;
old_val_p = (char *)0;
new_val_len = 0;
old_val_len = 0;

new_val_p = /* allocate memory for */
malloc(pack_p->value_len); /* new value to set */

if (new_val_p) { /* If success, then also */
memcpy(new_val_p, /* copy new value to our */

pack_p->value_p, /* own and newly allocated */

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 83

pack_p->value_len); /* memory area. */
new_val_len = pack_p->value_len;

} else { /* Else failed to malloc, */
error = SNMP_ERROR_genErr; /* so that is a genErr */
index = 1; /* at first varBind */

} /* endif */
 break;
 case SNMP_DPI_COMMIT:

old_val_p = cur_val_p; /* save old value for undo */
cur_val_p = new_val_p; /* make new value current */
new_val_p = (char *)0; /* keep only 1 ptr around */
old_val_len = cur_val_len; /* and keep lengths correct*/
cur_val_len = new_val_len;
new_val_len = 0;
/* may need to convert from ASCII to native if OCTET_STRING */

 break;
 case SNMP_DPI_UNDO:

if (new_val_p) { /* free allocated memory */
 free(new_val_p);

new_val_p = (char *)0;
new_val_len = 0;

} /* endif */
if (old_val_p) {

if (cur_val_p) free(cur_val_p);
cur_val_p = old_val_p; /* reset to old value */
cur_val_len = old_val_len;
old_val_p = (char *)0;
old_val_len = 0;

} /* endif */
 break;

} /* endswitch */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
error, /* all is OK, no error */
index, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_set() */

Processing an UNREGISTER Request
An agent can send an UNREGISTER packet if some other subagent does a reg-
ister for the same sub-tree at a higher priority. An agent can also send an UNREG-
ISTER if, for example, an SNMP manager tells it to "invalidate" the subagent
connection or the registered sub-tree.

Here is an example of how to handle such a packet.

84 Programmer's Reference

static int do_unreg(snmp_dpi_hdr *hdr_p, snmp_dpi_ureg_packet *pack_p)
{

printf("DPI UNREGISTER received from agent, reason=%d\n",
 pack_p->reason_code);
 printf(" subtree=%s\n",pack_p->group_p);

if (pack_p->reason_code ==
 SNMP_UNREGISTER_higherPriorityRegistered)
 {

return(0); /* keep waiting, we may regain subtree later */
} /* endif */

 DPIdisconnect_from_agent(handle);
return(-1); /* causes exit in main loop */

} /* end of do_unreg() */

Processing a CLOSE Request
An agent can send a CLOSE packet if it encounters an error or for some other
reason. It can also do so if an SNMP MANAGER tells it to "invalidate" the subagent
connection.

Here is an example of how to handle such a packet.

static int do_close(snmp_dpi_hdr *hdr_p, snmp_dpi_close_packet *pack_p)
{

printf("DPI CLOSE received from agent, reason=%d\n",
 pack_p->reason_code);

 DPIdisconnect_from_agent(handle);
return(-1); /* causes exit in main loop */

} /* end of do_close() */

/*
\end{verbatim}
*/

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 85

Generating a TRAP
Issue a trap any time after a DPI OPEN was successful. To do so, you must create
a trap packet and send it to the agent. With the TRAP, you can pass different kinds
of varBinds, if you want. In this example, we pass three varBinds; one with integer
data, one with an octet string, and one with a counter. You can also pass an Enter-
prise ID, but with DPI 2.0, the agent will use your subagent ID as the enterprise ID
if you do not pass one with the trap. In most cases that will probably not cause
problems.

We must first prepare a varBind list chain that contains the three variables that we
want to pass along with the trap. To do so we must prepare a chain of three
snmp_dpi_set_packet structures, which looks like:

struct dpi_set_packet {
char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

We can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:

¹ A pointer to an existing snmp_dpi_set_packet structure if the new varBind must
be added to an existing chain of varBinds. If this is the first or the only varBind
in the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

¹ A pointer to the sub-tree that we registered.

¹ A pointer to the rest of the OID, in other words, the piece that follows the sub-
tree.

¹ The value type of the value to be bound to the variable name. This is must be
one of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.

¹ The length of the value. For integer type values, this must be a length of 4. We
always work with 32-bit signed or unsigned integers except for the Counter64
type. For the Counter64 type, we must point to a snmp_dpi_u64 structure and
pass the length of that structure.

¹ A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. Upon
return, we can dispose of our own pointers and allocated memory as we please. If
the call is successful, a pointer is returned as follows:

¹ To a new snmp_dpi_set_packet if it is the first or only varBind.

¹ To the existing snmp_dpi_set_packet that we passed on the call. In this case,
the new packed has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

86 Programmer's Reference

Once we have prepared the SET-varBind data, we can create a DPI TRAP packet.
To do so we can use the mkDPItrap() function which expects these parameters:

¹ The generic trap code. Use 6 for enterprise specific trap type.

¹ The specific trap type. This is a type that is defined by the MIB which we are
implementing. In our example we just use a 1.

¹ A pointer to a chain of varBinds or the NULL pointer if no varBinds need to be
passed with the trap.

¹ A pointer to the enterprise OID if we want to use a different enterprise ID than
the OID we used to identify ourselves as a subagent at DPI-OPEN time.

The following code creates an enterprise— specific trap with specific type 1 and
passes three varBinds. The first varBind with our object 1, instance 0, Integer32
value; the second varBind with our object 2, instance 0, Octet String; the third with
Counter32. We pass no enterprise ID.

static int do_trap(void)
{
 unsigned char *packet_p;
 int rc;
 snmp_dpi_set_packet *varBind_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
&value1); /* ptr to value */

if (!varBind_p) return(-1); /* If it failed, return */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

if (!varBind_p) return(-1); /* If it failed, return */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
&value3); /* ptr to value */

if (!varBind_p) return(-1); /* If it failed, return */

#ifndef EXCLUDE_SNMP_V2_SUPPORT

 Chapter 2. Simple Network Management Protocol Agent Distributed Protocol Interface 87

 /* *Apr23*/
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_COUNTER64, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
&value4); /* ptr to value */

if (!varBind_p) return(-1); /* If it failed, return */
 /* *Apr23*/

#endif /* ndef EXCLUDE_SNMP_V2_SUPPORT */

packet_p = mkDPItrap(/* Make DPItrap packet */
 6, /* enterpriseSpecific */
 1, /* specific type = 1 */

varBind_p, /* varBind data, and use */
(char *)0); /* default enterpriseID */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send TRAP packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_trap() */

88 Programmer's Reference

Chapter 3. Sample SNMP DPI Client Program

This section explains the sample SNMP DPI client program, dpi_mvs_sample.c,
installed in /usr/lpp/tcpip/samples. It can be run using the SNMP agents that
support the SNMP-DPI interface as described in RFC 1228.

It can be used to test agent DPI implementations because it provides variables of
all types and allows you to generate traps of all types.

The sample implements a set of variables in the dpiSample table, which consists of
a set of objects in the IBM Research tree (13.6.1.2.2.1.5). See “dpiSample Table
MIB Descriptions” on page 90 for the objectID and type of each object.

Using the Sample Program
The dpi_mvs_sample.c program accepts the following arguments:

? Explains the usage.

-d n Sets the debug at level n. The range is 0 (for no messages) to 2 (for
the most verbose). The default is 1, if you specify —d with no value.

0 no debug messages

1 packet creation debug messages.

2 packet creation debug messages, and traces of packets
sent and received. The debug output goes to syslogd
because the debug used is dpi.

-h hostname
Specifies the host name or IP address where an SNMP DPI-capable
agent is running. The default is localhost.

-c community_name
Specifies the community name for the SNMP agent, which is required
to get the dpiPort. The default is public.

The sample uses TCP as the default connect type. In order to get an AF_UNIX
connection, define INCLUDE_UNIX_DOMAIN_FOR _DPI before compiling the
sample.

Compiling and Linking the dpi_mvs_sample.c Source Code
The dpi_mvs_sample.c program is located in /usr/lpp/tcpip/samples.

You can specify the following compile time flags:

NO_PROTO
The dpi_mvs_sample.c code assumes that it is compiled with an
ANSI-C compliant compiler. It can be compiled without ANSI-C by
defining this flag.

MVS Indicates that compilation is for MVS, and uses MVS-specific includes.
Some MVS/VM-specific code is compiled.

 Copyright IBM Corp. 1989, 1997 89

dpiSample Table MIB Descriptions
The following shows the MIB descriptions for DPI sample table.

dpi_mvs_sample.c supports these variables as an SNMP DPI sample sub-agent
it also generates enterprise specific traps via DPI with these objects
Name OID Type Value
------------------ ----------------------- --------- --------

dpiSimpleInteger 1.3.6.1.4.1.2.2.1.5.1.0 integer 5
dpiSimpleString 1.3.6.1.4.1.2.2.1.5.2.0 string "Initial String"
dpiSimpleCounter32 1.3.6.1.4.1.2.2.1.5.3.0 counter32 1
dpiSimpleCounter64 1.3.6.1.4.1.2.2.1.5.4.0 counter64 X'8000000000000001'

Of the above, only dpiSimpleString can be changed with an SNMP SET
request.

90 Programmer's Reference

Chapter 4. X Window System and OSF/Motif Interface for the
OpenEdition Environment

This chapter describes the X Window System application program interface
(API)that allows you to write applications in the OpenEdition MVS environment.

There are three X Windows libraries:

 ¹ Non-OE (X11R4)

¹ Open Sockets (X11R4)

¹ OE Applications Feature (X11R6)

Use of the first two libraries is explained in TCP/IP for MVS: Programmer's Refer-
ence. Use of X11R6 is explained here. IBM recommends migration to X11R6.

The X Window System support includes the following APIs from the X Window
System Version 11, Release 6:

¹ X11 Core distribution routines (X11)

¹ Inter-Client Exchange routines (ICE)

¹ Session Manager routines (SM)

¹ X Window System extended routines (Xext) including:

– XC-MISC - Allows clients to get back ID ranges from the server

– Big-Requests - Allows large length value in protocol requests

– Shape - Allows non-rectangular windows

– Sync - Lets clients synchronize via the X Server

¹ Authentication functions (Xau)

¹ X10 compatibility routines (oldX)

¹ X Toolkit (Xt)

¹ Utility functions used by Xaw (Xmu)

¹ Athena Widget set (Xaw)

¹ PEX (PEX5) 3D Graphics

¹ Header files needed for compiling X clients

¹ Selection of standard MIT X clients

 ¹ Sample X demos

The X Window System support provided also includes the APIs based on
OSF/Motif Release 1.2.4:

¹ OSF/Motif-based widget set (Xm library)

¹ OSF/Motif Resource Manager (Mrm library)

¹ OSF/Motif User Interface language (uil library)

¹ OSF/Motif User Interface Language Compiler

¹ Header files needed for compiling clients using the OSF/Motif-based widget set

 Copyright IBM Corp. 1989, 1997 91

 HFS Files
The HFS files used by the X Window System and OSF/Motif and their location in
the HFS files are as follows:

¹ /usr/include/X11 — X Window System header files

¹ /usr/include — OSF/Motif header files

¹ /usr/X11 — uil

¹ /usr/man/C/cat1/uil.1 — This file contains the associated manual page (man
page) for the User Interface Language (uil) compiler. It provides online help for
the user.

 ¹ /usr/lib

– X Window System and OSF/Motif archive files

– locales and data files

OpenEdition Application Resource File
The X Window System allows you to modify certain characteristics of an applica-
tion at run time using application resources. Typically, application resources are set
to tailor the appearance and possibly the behavior of an application. The application
resources can specify information about an application’s window sizes, placement,
coloring, font usage, and other functional details.

In the OpenEdition environment, this information can be found in the file

/u/user_id/.Xdefaults

 where

/u/user_id

 is found from the environment variable HOME.

Identifying the Target Display in OpenEdition
The DISPLAY environment variable is used by the X Window System to identify
the host name of the target display.

The following is the format of the DISPLAY environment variable:

 host_name:target_server.target_screen

Value Description

host_name Specifies the host name or IP address of the host machine on
which the X Window System server is running.

target_server Specifies the number of the display server on the host machine.

target_screen Specifies the screen to be used on the target server.

92 Programmer's Reference

 Programming Considerations
The X Window System toolkit includes files that define two macros for obtaining the
offset of fields in an X Window System Toolkit structure, XtOffset, and XtOffsetOf.
Programs written for, or ported to, OpenEdition MVS must use the XtOffsetOf
macro for this purpose.

Using the X11R6 and OSF/Motif Libraries with DLLs
If the X11R6 and OSF/Motif libraries are used with applications utilizing DLLs, take
care to ensure that all references to X11R6 or OSF/Motif functions are made from
only one DLL.

Porting Motif Applications to OpenEdition MVS
Some OSF/Motif widget and gadget resources have the type 'KeySym'. In an
ASCII-based system the KeySym is the same as the ASCII character value. For
example, the character 'F' has the ASCII hexadecimal value 46 and a KeySym
hexadecimal value of 46.

However, on OpenEdition MVS the character value of 'F' is hexadecimal C6, while
the KeySym hexadecimal value is still 46. Remember to use true KeySym values
when specifying resources of type KeySym, whether in a defaults file or in a func-
tion call.

In some cases, an X Window System server may have clients that are not running
on OpenEdition MVS. If an OE MVS X Window System application sends non-
standard properties that contain text strings to the X Window System server, and
these properties might be accessed by clients that are not running on OpenEdition
MVS, the strings should be translated. The translation should be to the server
default character set before transmission to the server and to the appropriate host
character set when retrieved from the server.

This translation is an application responsibility.

X Window System Environment Variables
The following is a list of the environment variables examined by the OE MVS
support for X Window System Version 11, Release 6:

¹ DISPLAY - Contains the name of the display to be used. There is no default
value.

¹ XENVIRONMENT - Contains the full pathname of a file containing resource
defaults. There is no default value.

¹ XMODIFIERS - Used by the XSetLocaleModifiers function to specify additional
modifiers. There is no default value.

¹ RESOURCE_NAME - Used by XtOpenDisplay as an alternative specification of
an application name. There is no default value.

¹ XUSERFILEPATH - Used to specify the search paths for files containing appli-
cation defaults. There is no default value.

¹ XAPPLRESDIR - Used to specify the directory to search for files containing
application defaults. There is no default value.

 Chapter 4. X Window System and OSF/Motif Interface for the OpenEdition Environment 93

¹ XFILESEARCHPATH - Used by XtResolvePathname as a default path. There
is no default value.

¹ SESSION_MANAGER - If defined, causes a Session Shell widget to connect to
a session manager. There is no default value.

¹ XLOCALEDIR - Specifies the directory to be searched for locale files. The
default value is '/usr/lib/X11/locale'.

¹ XWTRACE - Controls the generation of traces of the socket level communi-
cations between Xlib and the X Window System server. It controls the traces
as follows:

– XWTRACE undefined or zero - No trace generated.

– XWTRACE=1 - Error messages

– XWTRACE>=2 - API function tracing for TRANS functions.

There is no default value. The output is sent to stderr.

¹ XWTRACELC - If defined, causes a trace of certain locale sensitive routines.
There is no default value. The output is sent to stderr.

EBCDIC/ASCII Translation in MVS OE X Windows
Because the X Window System was designed primarily for an ASCII-based envi-
ronment, and OpenEdition MVS uses EBCDIC, it is necessary to provide trans-
lations between these and also between locale-based coded character sets in
OpenEdition MVS and the coded character sets used at the X Window System
server. The following sections describe how this is accomplished.

Locale Independent Translation
All arguments for X Window System functions that are specified to be in the Host
Portable Character Set are translated between EBCDIC and ASCII by a translation
between code page IBM-1047 and code page ISO8859-1. All single byte character
set string arguments to X Window System function calls that are not locale
dependent (do not have names starting with Xmb or Xwc) are also translated
between EBCDIC and ASCII using code page IBM-1047 and ISO8859-1. In addi-
tion, properties of type STRING passed to XChangeProperty are translated to
ASCII before transmission to the server.

These translations are performed on data being transmitted to the server and on
data received from the server that is being returned to the application.

The arguments to X Window System functions of the type XChar2b are not trans-
lated. This includes such functions as XDraw16, XDrawText16, and
XTextExtents16.

Locale Dependent Translation
The string arguments to X Window System functions with names starting with Xmb
or Xwc are translated between the current MVS OE locale codeset (the value
returned by nl_info(CODESET)) and the current XLocale. The MVS OE locale is
mapped to the XLocale by an entry in /usr/lib/X11/locale/locale.alias. Properties
passed to XChangeProperty with a type of the locale encoding-name atom are
translated from the MVS OE locale coded character set to the XLocale coded char-
acter set.

94 Programmer's Reference

XTextProperty with COMPOUND_TEXT Encoding
The XTextProperty structure returned by XmbTextListToProperty and
XwcTextListToProperty has its property data translated from the MVS OE locale
coded character set to the XLocale coded character set if the XTextProperty
encoding is COMPOUND_TEXT. Similarly the reverse translation is performed for
XmbTextPropertyToTextList and XwcTextPropertyToTextList if the XTextProperty
has the encoding COMPOUND_TEXT.

Standard Clients Supplied with MVS OE X Window System Support
The following standard clients are provided in /usr/lpp/tcpip/ X11R6/Xamples/clients:

Client Description
appres Lists application resource database
atobm Bitmap conversion utility
bitmap Bitmap editor
bmtoa Bitmap conversion utility
editres Resouce editor
iceauth ICE authority file utility
oclock Displays time of day
xauth X authority file utility
xclipboard Clipboard utility
xcutsel Clipboard utility
clock Analog/digital clock for X
xdpyinfo Display information utility for X
xfd X font display utility
xlogo Displays X logo
xlsatoms Lists internned atoms defined on server
xlsclients Lists client applications running on a display
xmag Magnifies part of screen
xlsfonts Lists Server fonts
xprop Property displayer for X
xwininfo Window information utility for X
xwd Dumps an image of an X window
xwud Displays dumped image for X

Use the man command to display information about these clients as shown below:

 man -M /usr/lpp/tcpip/X11R6/Xamples/man client

Demo Programs Supplied with MVS OE X Window System Support
The following demo programs are supplied in /usr/lpp/tcpip/X11R6/ Xamples/demos:

xsamp1 Uses only Xlib
xsamp2 Uses Athena widget set
xsamp3 Uses OSF/Motif widget set
pexsamp Uses PEX5 library

Where Files are Located
The following diagram shows X Window System and OSF/Motif locations in the
HFS from a user perspective.

 Chapter 4. X Window System and OSF/Motif Interface for the OpenEdition Environment 95

Figure 1. X-Window System and OSF/Motif HFS From a User Perspective

96 Programmer's Reference

Compiling and Linking OSF/Motif and X Window System Programs
Use the OS/390 OpenEdition 'c89' or 'make' commands to compile and link X
Window System and OSF/Motif programs. The following example shows how to
use the 'c89' command to compile an X Window System program, xxx, which uses
the Athena widget set, and creates the executable file xxx:

c89 -o xxx xxx.c -lXaw -lXmu -lXt -lSM -lICE -lX11 -lXau -loldX

The following example shows how to use the c89 command to compile an X
Window System program yyy, which uses the OSF/Motif widget set, and creates
the executable file, yyy.

c89 -o xxx xxx.c -lXm -lXt -lSM -lICE -lX11 -lXau -loldX

For examples of the input to the 'make' command examine the Makefile in each of
the subdirectories of /usr/lpp/tcpip/X11R6/Xamples/demos and
/usr/lpp/tcpip/X11R6/Xamples/clients. For more information on the OpenEdition
MVS 'c89' and 'make' commands, refer to the OS/390 OpenEdition MVS Command
Reference publication.

 Chapter 4. X Window System and OSF/Motif Interface for the OpenEdition Environment 97

98 Programmer's Reference

Chapter 5. RPC in the OpenEdition Environment

The HFS files used by OE RPC and their locations in the HFS are as follows:

¹ /usr/include/rpc — all header files are contained here

¹ /usr/lib/librpclib.a — rpc archive files

¹ orpcgen — ONC RPC protocol compiler

¹ orpcinfo — utility program for looking a portmaps of networked machines

¹ oportmap — network service program that maps ONC RPC program and
version numbers to transport-specific port numbers.

For information about library functions, see TCP/IP for MVS: Programmer's Refer-
ence.

Deviations from Sun RPC 4.0

 Source Margins
The source was modified to fit into 72 columns.

 Functions
xdr_enum()

In OE rpc xdr_enum() is a macro. This is a change identical to the changes in
TCP/IP Version 2 for MVS and VM, and Version 3.1 for MVS. It is necessary
because enumerations in C/370 may have a length of one, two, or four bytes.
enum_t is not defined, and xdr_enum() is replaced first by a call to _xdr_enum(),
which returns the entry to the appropriate XDR routine (xdr_char(), xdr_short(), or
xdr_long()) followed by a call to that routine. xdr_union() is also modified into a
macro, which separates the call for the discriminant from the remainder. The
discriminant is processed as an enumeration, and then passed as a value to
_xdr_union() to process the remaining union.

xdr_string()

As with previous 370 versions of TCP/IP, xdr_string() translates from EBCDIC to
ASCII or reverse. With OE the iconv() call is used, and data is translated directly
into or out of the XDR buffers if sufficient buffer is available as indicated by an
xdr_inline() call. With previous versions (or with OE if the entire string will not fit into
the buffer) it is necessary to allocate an additional buffer. While encoding, if the
length of the data changes in the translation, xdr_setpos() is used to adjust the
XDR buffer to reflect the actual amount of translated data. realloc() is used while
decoding or for the temporary buffer, which may be necessary while encoding.

The default translation is between ISO8859-1 and IBM-1047. This can be modified
by iconv_open() calls during initialization, by specifying the external iconv_t vari-
ables xdr_hton_cd and xdr_ntoh_cd.

xdr_float(), xdr_double()

 Copyright IBM Corp. 1989, 1997 99

The format for S/370 floating point data differs from the IEEE format specified for
XDR. The xdr_float() and xdr_double() routines are modified to make the necessary
conversions. For OE, these routines utilize the C/370 library routines frexp() and
ldexp() to extract and restore the exponent from the floating point number, rather
than private subroutines.

Using OE RPC
For RPC, a Sun ONC sample program is provided in /usr/lpp/tcpip/rpc/samples. To
run the sample, you can run the Makefile facility in the rpc samples directory.
Running make produces three executable files.

 ¹ printmsg

The command 'printmsg text' prints the message (text) on the local console. It
can be displayed by viewing the system log.

 ¹ msg_svc

msg_svc is an RPC server that enables the user at a remote station to put a
message on the console of the server. The command "msg_svc &" starts this
server.

 ¹ rprintmsg

The command 'rprintmsg rhost text' prints a message (text) on the console of
host "rhost".

To run make, use:

 – cd/usr/lpp/tcpip/rpc/samples

 – ./make

New cache call function for RPC

svcudp_enablecache(transp, size)
SVCXPRT *transp;
u_long size;

 where:

– transp is the UDP service transport for which caching is to be enabled.

– size is the number of entries to be provided in the cache.

– svcudp_enablecache enables the caching of replies to remote calls via
UDP. When a request due to a retry is received, and there is a reply to an
earlier attempt in the cache, the cached reply is immediately returned to the
client without calling the remote procedure.

When issuing "rpcgen" for a specification file that contains a "%#", the following
compiler error message may be displayed: "ERROR EDC0401 abc.x:n The
character is not valid," where "abc.x" is the name of the file and "n" is the line
number containing a "%#". This combination of characters is not accepted by the
compiler.

For a description of the RPC interface, see TCP/IP for MVS: Programmer's Refer-
ence, SC31-7135-02.

100 Programmer's Reference

Appendix A. Well-Known Port Assignments

This appendix lists the well-known port assignments for transport protocols TCP
and UDP, and includes port number, keyword, and a description of the reserved
port assignment. You can also find a list of these well-known port numbers in the
hlq.ETC.SERVICES data set.

Table 2 lists the well-known port assignments for TCP.

Table 2 (Page 1 of 2). TCP Well-Known Port Assignments

Port Number Keyword Assigned to Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 systat active users active users

13 daytime daytime daytime

15 netstat netstat who is up or netstat

19 chargen ttytst source character generator

21 ftp FTP File Transfer Protocol

23 telnet telnet telnet

25 smtp mail Simple Mail Transfer Protocol

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain name server domain name server

57 mtp private terminal access private terminal access

69 tftp TFTP Trivial File Transfer protocol

77 rje netrjs any private RJE service

79 finger finger finger

87 link ttylink any private terminal link

95 supdup supdup SUPDUP protocol

101 hostname hostname nic hostname server, usually from SRI-NIC

109 pop postoffice Post Office Protocol

111 sunrpc sunrpc Sun remote procedure call

113 auth authentication authentication service

115 sftp sftp Simple File Transfer Protocol

117 uucp-path UUCP path service UUCP path service

119 untp readnews untp USENET News Transfer Protocol

123 ntp NTP Network Time Protocol

160–223 reserved

 Copyright IBM Corp. 1989, 1997 101

Table 2 (Page 2 of 2). TCP Well-Known Port Assignments

Port Number Keyword Assigned to Services Description

712 vexec vice-exec Andrew File System authenticated service

713 vlogin vice-login Andrew File System authenticated service

714 vshell vice-shell Andrew File System authenticated service

2001 datasetsrv Andrew File System service

2106 venus.itc Andrew File System service, for the Venus
process

Well-Known UDP Port Assignments
Table 3 lists the well-known port assignments for UDP.

Table 3 (Page 1 of 2). Well-Known UDP Port Assignments

Port Number Keyword Assigned to Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 users active users active users

13 daytime daytime daytime

15 netstat Netstat Netstat

19 chargen ttytst source character generator

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain nameserver domain name server

69 tftp TFTP Trivial File Transfer Protocol

75 any private dial out service

77 rje netrjs any private RJE service

79 finger finger finger

111 sunrpc sunrpc Sun remote procedure call

123 ntp NTP Network Time Protocol

135 llbd NCS LLBD NCS local location broker daemon

160–223 reserved

531 rvd-control rvd control port

2001 rauth2 Andrew File System service, for the Venus
process

2002 rfilebulk Andrew File System service, for the Venus
process

102 Programmer's Reference

Table 3 (Page 2 of 2). Well-Known UDP Port Assignments

Port Number Keyword Assigned to Services Description

2003 rfilesrv Andrew File System service, for the Venus
process

2018 console Andrew File System service

2115 ropcons Andrew File System service, for the Venus
process

2131 rupdsrv assigned in pairs; bulk must be srv +1

2132 rupdbulk assigned in pairs; bulk must be srv +1

2133 rupdsrv1 assigned in pairs; bulk must be srv +1

2134 rupdbulk1 assigned in pairs; bulk must be srv +1

 Appendix A. Well-Known Port Assignments 103

104 Programmer's Reference

Appendix B. Related Protocol Specifications (RFCs)

 This appendix lists the related protocol specifications for TCP/IP for MVS. The
internet protocol suite is still evolving through Requests for Comments (RFC). New
protocols are being designed and implemented by researchers, and are brought to
the attention of the internet community in the form of RFCs. Some of these are so
useful that they become a recommended protocol. That is, all future implementa-
tions for TCP/IP are recommended to implement this particular function or protocol.
These become the de facto standards, on which the TCP/IP protocol suite is built.

Many features of TCP/IP for MVS are based on the following RFCs:

RFC Title and Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol: or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet Hard-
ware D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

862 Echo Protocol J.B. Postel

863 Discard Protocol J.B. Postel

864 Character Generator Protocol J.B. Postel

877 Standard for the Transmission of IP Datagrams over Public Data Networks
J.T. Korb

885 Telnet End of Record Option J.B. Postel

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C. Mogul, M.
Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl, E.J.
Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

 Copyright IBM Corp. 1989, 1997 105

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems Incorpo-
rated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell, J.S.
Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks J.B.
Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol Specifica-
tion K. Hardwick, J. Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L.
Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun Micro-
systems Incorporated

1058 Routing Information Protocol C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems Incor-
porated

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts—Communication Layers R.T. Braden

1123 Requirements for Internet Hosts—Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-based
Internets K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP), J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1179 Line Printer Daemon Protocol The Wollongong Group, L. McLaughlin III

1180 TCP/IP Tutorial, T.J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris, (Updates RFC 1034, RFC 1035)

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie, J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI Net-
works D. Katz

1198 FYI on the X Window System R.W. Scheifler

106 Programmer's Reference

1207 FYI on Questions and Answers:
 Answers to Commonly Asked :q.Experienced Internet User:eq. Questions
G.S. Malkin, A.N. Marine, J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II, K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program Inter-
face G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB IEEE 802 4 Token Bus MIB K. McCloghrie, R.
Fox

1231 IEEE 802.5 Token Ring MIB IEEE 802.5 Token Ring MIB K. McCloghrie, R.
Fox, E. Decker

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3)
S. Willis, J. Burruss

1270 SNMP Communications Services, F. Kastenholz, ed.

1325 FYI on Questions and Answers:
 Answers to Commonly Asked :q.New Internet User:eq. Questions G.S.
Malkin, A.N. Marine

1340 Assigned Numbers J.K. Reynolds, J.B. Postel

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D.
Robinson, R. Ullmann

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1388 RIP Version 2 — Carrying Additional Information G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

 Appendix B. Related Protocol Specifications (RFCs) 107

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol D. Haskin

1398 Definitions of Managed Objects for the Ethernet-like Interface Types F.
Kastenholz

1540 IAB Official Protocol Standards J.B. Postel

1901 Introduction to Community-based SNMPv2 J. Case, SNMP Research, Inc.;
K. McCloghrie, Cisco Systems, Inc.; M. Rose, Dover Beach Consulting, Inc.;
S. Waldbusser, International Network Services.

1902 Structure of Management Information J. Case, SNMP Research, Inc.; K.
McCloghrie, Cisco Systems, Inc.; M. Rose, Dover Beach Consulting, Inc.; S.
Waldbusser, International Network Services.

1903 Textual Conventions for Version 2 of the Simple Network Management Pro-
tocol (SNMP V2) J. Case, SNMP Research, Inc.; K. McCloghrie, Cisco
Systems, Inc.; M. Rose, Dover Beach Consulting, Inc.; S. Waldbusser, Inter-
national Network Services.

1904 Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMP V2) J. Case, SNMP Research, Inc.; K. McCloghrie, Cisco
Systems, Inc.; M. Rose, Dover Beach Consulting, Inc.; S. Waldbusser, Inter-
national Network Services.

1905 Protocol Operations for the Simple Network Management Protocol (SNMP
V2) J. Case, SNMP Research, Inc.; K. McCloghrie, Cisco Systems, Inc.; M.
Rose, Dover Beach Consulting, Inc.; S. Waldbusser, International Network
Services.

1906 Transport Mappings for Version 2 of the Simple Network Protocol (SNMPv2)
J. Case, SNMP Research, Inc.; K. McCloghrie, Cisco Systems, Inc.; M.
Rose, Dover Beach Consulting, Inc.; S. Waldbusser, International Network
Services.

1907 Management Information Base for Version 2 of the Simple Network
Managemetn Protocal (SNMP V2) J. Case, SNMP Research, Inc.; K.
McCloghrie, Cisco Systems, Inc.; M. Rose, Dover Beach Consulting, Inc.; S.
Waldbusser, International Network Services.

1908 Coexistence between Version 1 and Version 2 of the Internet-standard
Network Management Framework (SNMP V2) J. Case, SNMP Research,
Inc.; K. McCloghrie, Cisco Systems, Inc.; M. Rose, Dover Beach Consulting,
Inc.; S. Waldbusser, International Network Services.

1909 An Administration Infrastructure for SNMPv2 K. McCloghrie, Cisco Systems,
Inc.

1910 User-based Security Model for SNMPv2 G. Waters, Bell-Northern Research
Ltd.

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

108 Programmer's Reference

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or on a subscription basis. Online copies are available using
FTP from the NIC at nic.ddn.mil. Use FTP to download the files, using the fol-
lowing format:

RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Where:

nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript** format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

 Appendix B. Related Protocol Specifications (RFCs) 109

110 Programmer's Reference

Appendix C. Abbreviations and Acronyms

This appendix lists the abbreviations and acronyms used throughout this book.

AIX Advanced Interactive Executive

ANSI American National Standards Institute

API Application Program Interface

APPC Advanced Program-to-Program Communications

APPN Advanced Peer-to-Peer Networking

ARP Address Resolution Protocol

ASCII American National Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

AUI Attachment Unit Interface

BIOS Basic Input/Output System

BNC Bayonet Neill-Concelman

CCITT Comite Consultatif International Telegraphique et Telephonique. The
International Telegraph and Telephone Consultative Committee

CETI Continuously Executing Transfer Interface

CLAW Common Link Access to Workstation

CLIST Command List

CMS Conversational Monitor System

CP Control Program

CPI Common Programming Interface

CREN Corporation for Research and Education Networking

CSD Corrective Service Diskette

CTC Channel-to-Channel

CU Control Unit

CUA Common User Access

DASD Direct Access Storage Device

DBCS Double Byte Character Set

DLL Dynamic Link Library

DNS Domain Name System

DOS Disk Operating System

DPI Distributed Program Interface

EBCDIC Extended Binary-Coded Decimal Interchange Code

ELANS IBM Ethernet LAN Subsystem

EISA Enhanced Industry Standard Adapter

ESCON Enterprise Systems Connection

 Copyright IBM Corp. 1989, 1997 111

FAT File Allocation Table

FDDI Fiber Distributed Data Interface

FTAM File Transfer Access Management

FTP File Transfer Protocol

FTP API File Transfer Protocol Applications Programming Interface

GCS Group Control System

GDDM Graphical Data Display Manager

GDDMXD Graphics Data Display Manager Interface for X Window System

GDF Graphics Data File

HCH HYPERchannel device

HIPPI High Performance Parallel Interface

HPFS High Performance File System

ICAT Installation Configuration Automation Tool

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

ILANS IBM Token-Ring LAN Subsystem

IP Internet Protocol

IPL Initial Program Load

ISA Industry Standard Adapter

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

IUCV Inter-User Communication Vehicle

JES Job Entry Subsystem

JIS Japanese Institute of Standards

JCL Job Control Language

LAN Local Area Network

LAPS LAN Adapter Protocol Support

LCS IBM LAN Channel Station

LPD Line Printer Daemon

LPQ Line Printer Query

LPR Line Printer Client

LPRM Line Printer Remove

LPRMON Line Printer Monitor

LU Logical Unit

MAC Media Access Control

Mbps Megabits per second

112 Programmer's Reference

MBps Megabytes per second

MCA Micro Channel Adapter

MIB Management Information Base

MIH Missing Interrupt Handler

MILNET Military Network

MHS Message Handling System

MTU Maximum Transmission Unit

MVS Multiple Virtual Storage

MX Mail Exchange

NCP Network Control Program

NCS Network Computing System

NDIS Network Driver Interface Specification

NFS Network File System

NIC Network Information Center

NLS National Language Support

NSFNET National Science Foundation Network

OS/2 Operating System/2

OSF Open Software Foundation, Inc.

OSI Open Systems Interconnection

OSIMF/6000 Open Systems Interconnection Messaging and Filing/6000

OV/MVS OfficeVision/MVS

OV/VM OfficeVision/VM

PAD Packet Assembly/Disassembly

PC Personal Computer

PCA Parallel Channel Adapter

PDN Public Data Network

PDU Protocol Data Units

PING Packet Internet Groper

PIOAM Parallel I/O Access Method

POP Post Office Protocol

PROFS Professional Office Systems

PSCA Personal System Channel Attach

PSDN Packet Switching Data Network

PU Physical Unit

PVM Passthrough Virtual Machine

RACF Resource Access Control Facility

RARP Reverse Address Resolution Protocol

 Appendix C. Abbreviations and Acronyms 113

REXEC Remote Execution

REXX Restructured Extended Executor Language

RFC Request For Comments

RIP Routing Information Protocol

RISC Reduced Instruction Set Computer

RPC Remote Procedure Call

RSCS Remote Spooling Communications Subsystem

SAA System Application Architecture

SBCS Single Byte Character Set

SDLC Synchronous Data Link Control

SLIP Serial Line Internet Protocol

SMI Structure for Management Information

SMTP Simple Mail Transfer Protocol

SNA Systems Network Architecture

SNMP Simple Network Management Protocol

SOA Start of Authority

SPOOL Simultaneous Peripheral Operations Online

SQL IBM Structured Query Language

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TFTP Trivial File Transfer Protocol

TSO Time Sharing Option

TTL Time-to-Live

UDP User Datagram Protocol

VGA Video Graphic Array

VM Virtual Machine

VMCF Virtual Machine Communication Facility

VM/SP Virtual Machine/System Product

VM/XA Virtual Machine/Extended Architecture

VTAM Virtual Telecommunications Access Method

WAN Wide Area Network

XDR eXternal Data Representation

114 Programmer's Reference

 Appendix D. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM's valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other pro-
ducts, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594

 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 Site Counsel
 IBM Corporation

P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195

 USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the warran-
ties of merchantability and fitness for a particular purpose.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

 Copyright IBM Corp. 1989, 1997 115

The following terms are trademarks of other companies:

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trade-
marks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

 ACF/VTAM
 AD/Cycle
 AIX
 AIX/ESA
 BookManager
 C/370
 CICS
 DB2
 DFSMS
 DFSMS/MVS
 ESCON
 ES/9000
 EtherStreamer
 Extended Services
 GDDM

Hardware Configuration Definition
 IBM

 LANStreamer
 Library Reader
 MVS/ESA
 MVS/SP
 MVS/XA
 NetView
 OpenEdition
 OS/2
 OS/390
 PS/2
 RACF
 RISC System/6000
 RS/6000
 SAA
 System/370
 System/390
 VTAM
 3090

116 Programmer's Reference

 Bibliography

This bibliography lists the publications for IBM TCP/IP
products.

IBM TCP/IP Publications

The following sections describe the books associated
with IBM TCP/IP products.

OS/390 TCP/IP OpenEdition
Publications
¹ OS/390 TCP/IP OpenEdition Configuration Guide,

SC31-8304-00.

This book is for people who want to configure, cus-
tomize, administer, and maintain OS/390 TCP/IP
OpenEdition. Familiarity with MVS operating
system, TCP/IP protocols, and IBM Time Sharing
Option (TSO) is recommended.

¹ OS/390 TCP/IP OpenEdition Diagnosis Guide,
SC31-8492-00.

This book explains how to diagnose TCP/IP prob-
lems and how to determine whether a specific
problem is in the OS/390 TCP/IP OpenEdition
product code. It explains how to gather information
for and describe problems to the IBM Software
Support Center.

¹ OS/390 TCP/IP OpenEdition Messages and Codes,
SC31-8307-00.

This book explains the informational and error mes-
sages issued by OS/390 TCP/IP OpenEdition. It can
help users, operators, or system programmers to
diagnose and fix problems identified by error mes-
sages.

¹ OS/390 TCP/IP OpenEdition Planning and Release
Guide, SC31-8303-00.

This book is intended to help you plan for OS/390
TCP/IP OpenEdition whether you are migrating from
a previous version or installing TCP/IP for the first
time. This book also identifies the suggested and
required modifications needed to enable you to use
the enhanced functions provided with OS/390
TCP/IP OpenEdition.

¹ OS/390 TCP/IP OpenEdition Programmer's Refer-
ence, SC31-8308-00

This book describes the syntax and semantics of a
set of high-level application functions that you can
use to program your own applications in a TCP/IP
environment. These functions provide support for
application facilities, such as user authentication,

distributed databases, distributed processing,
network management, and device sharing.

This book is for people who want to use the sup-
plied interfaces while writing application programs
that access OS/390 TCP/IP OpenEdition. Famili-
arity with the MVS operating system, TCP/IP proto-
cols, and IBM Time Sharing Option (TSO) is
recommended.

¹ OS/390 TCP/IP OpenEdition User's Guide,
GC31-8305-00.

This book is for people who want to use OS/390
TCP/IP OpenEdition for data communication. Famili-
arity with MVS operating system and IBM Time
Sharing Option (TSO) is recommended.

TCP/IP for MVS Publications
¹ TCP/IP Version 3 for OpenEdition MVS: Applica-

tions Feature Guide, SC31-8069-00.

This book explains how to plan for, install, cus-
tomize, and use the OpenEdition MVS Applications
Feature. The Feature consists of applications and
interfaces for direct access to the OpenEdition MVS
environment. For example, users of the Feature can
use MVS, UNIX, or AIX commands to transfer files,
log in to the OpenEdition environment without going
through TSO, and run commands remotely. This
book also explains how to improve performance and
diagnose problems when using the Feature.

¹ TCP/IP for MVS: Application Programming Interface
Reference, SC31-7187-02.

This book describes the syntax and semantics of
program source code necessary to write your own
application programming interface (API) into
TCP/IP. You can use this interface as the communi-
cation base for writing your own client or server
application. You can also use this book to adapt
your existing applications to communicate with each
other using sockets over TCP/IP.

¹ TCP/IP for MVS: CICS TCP/IP Socket Interface
Guide and Reference, SC31-7131-02.

This book is for people who want to set up, write
application programs for, and diagnose problems
with the socket interface for CICS using TCP/IP for
MVS.

¹ TCP/IP for MVS: Customization and Administration
Guide, SC31-7134-03.

This book is for people who want to con customize,
administer, and maintain TCP/IP for MVS. Famili-
arity with MVS operating system, TCP/IP protocols,

 Copyright IBM Corp. 1989, 1997 117

and IBM Time Sharing Option (TSO) is recom-
mended.

¹ TCP/IP for MVS: Diagnosis Guide, LY43-0105-02.

This book explains how to diagnose TCP/IP prob-
lems and how to determine whether a specific
problem is in the IBM TCP/IP for MVS product
code. It explains how to gather information for and
describe problems to the IBM Software Support
Center.

¹ TCP/IP for MVS: IMS TCP/IP Application Develop-
ment Guide and Reference, SC31-7186-02.

This book is for programmers who want application
programs that use the IMS TCP/IP application
development services provided by IBM TCP/IP for
MVS.

¹ TCP/IP for MVS: Messages and Codes,
SC31-7132-03.

This book explains the informational a nd error mes-
sages issued by IBM TCP/IP for MVS. It can help
users, operators, or system programmers to diag-
nose and fix problems identified by TCP/IP for MVS
error messages.

¹ TCP/IP for MVS: Network Print Facility,
SC31-8074-03.

This book is for system programmers an d network
administrators who need to prepare their network to
route VTAM, JES2, or JES3 printer output to remote
printers using TCP/IP for MVS.

¹ TCP/IP for MVS: Offloading TCP/IP Processing,
SC31-7133-02.

This book is for people who want to install and con-
figure the Offload feature on IBM 3172 Model 3
Interconnect Controllers. This book is also for
people who want to use and customize the Offload
feature of TCP/IP for MVS.

¹ TCP/IP for MVS: Planning and Migration Guide,
SC31-7189-01.

This book is intended to help you plan for TCP/IP
for MVS whether you are migrating from a previous
version or installing TCP/IP for MVS for the first
time. This book also identifies the suggested and
required modifications needed to enable you to use
the enhanced functions provided with TCP/IP for
MVS.

¹ TCP/IP: Performance Tuning Guide, SC31-7188-02.

This book describes how to improve the perform-
ance of your network operations.

¹ TCP/IP for MVS: Programmer's Reference,
SC31-7135-02.

This book describes the syntax and semantics of a
set of high-level application functions that you can

use to program your own applications in a TCP/IP
environment. These functions provide support for
application facilities, such as user authentication,
distributed databases, distributed processing,
network management, and device sharing.

This book is for people who want to use the sup-
plied interfaces while writing application programs
that access TCP/IP for MVS. Familiarity with the
MVS operating system, TCP/IP protocols, and IBM
Time Sharing Option (TSO) is recommended.

¹ TCP/IP for MVS: User's Guide, SC31-7136-02.

This book is for people who want to use TCP/IP for
MVS for data communication. Familiarity with MVS
operating system and IBM Time Sharing Option
(TSO) is recommended.

TCP/IP for VM Publications

The following list describes books in the IBM TCP/IP for
VM library.

¹ IBM TCP/IP Version 2 Release 4 for VM: Mes-
sages and Codes, SC31-6151-03.

This book is for system programmers who want to
diagnose and fix problems identified by TCP/IP for
VM error messages.

¹ IBM TCP/IP Version 2 Release 4 for VM: Planning
and Customization, SC31-6082-03.

This book is for system programmers who want to
plan and customize the TCP/IP for VM environment.

¹ IBM TCP/IP Version 2 Release 4 for VM: Program-
mer's Reference, SC31-6084-03.

This book is for application and system program-
mers who want to write application programs that
use TCP/IP for VM. Application programmers
should know the VM operating system.

¹ IBM TCP/IP Version 2 Release 4 for VM: User's
Guide, SC31-6081-03.

This book is for people who want to use TCP/IP for
VM for data communication. Familiarity with VM
operating system, IBM Command Processor (CP),
and IBM Conversational Monitor System (CMS) is
recommended.

TCP/IP for OS/2 Publication

IBM TCP/IP Version 3.0 for OS/2: Programmer's Refer-
ence, SC31-6077.

This book provides application and system program-
mers with the information required to write application
programs that use TCP/IP for OS/2. Programmers
should know the OS/2 operating system.

118 Programmer's Reference

TCP/IP for DOS Publications

The following list describes books in the IBM TCP/IP for
DOS library.

¹ IBM TCP/IP Version 2.1.1 for DOS: Command Ref-
erence, SX75-0083.

This book is for people who use a workstation with
TCP/IP for DOS, such as end users and system
programmers. The people who use this book should
be familiar with DOS and the workstation, under-
stand DOS operating system concepts, and be
familiar with the IBM TCP/IP Version 2.1.1 for DOS:
User's Guide

¹ IBM TCP/IP Version 2.1.1 for DOS: Installation and
Administration, SC31-7047.

This book provides system programmers, network
administrars, and workstation users responsible for
installing TCP/IP for DOS with the information
required to plan and implement the installation of
TCP/IP for DOS. The topics include hardware and
software requirements, pre-installation system per-
formance considerations, instructions for installing
TCP/IP for DOS, instructions for customizing the
TCP/IP for DOS environment, and installation exam-
ples.

¹ IBM TCP/IP Version 2.1.1 for DOS: Programmer's
Reference, SC31-7046.

This book is for application and system program-
mers to aid them in writing application programs
that use TCP/IP for DOS on a workstation. Applica-
tion programmers should know the DOS operating
system and multitasking operating system concepts.
Application programmers should be knowledgeable
in the C programming language.

¹ IBM TCP/IP Version 2.1.1 for DOS: User's Guide,
SC31-745.

This book is for people who use a workstation with
TCP/IP for DOS, such as end users and system
programmers. The people who use this book should
be familiar with DOS and the workstation, and also
understand DOS operating system concepts.

TCP/IP for AIX (RS/6001, PS/2,
RT, 370) Publications

The following list shows books in the TCP/IP for AIX
library.

¹ AIX Operating System TCP/IP User's Guide,
SC23-2309.

¹ AIX PS/2 TCP/IP User's Guide, SC23-2047.

¹ TCP/IP for IBM X-Windows on DOS 2.1,
SC23-2349.

TCP/IP for AS/400 Publications

The following list shows books in the TCP/IP for AS/400
library.

¹ IBM AS/400 Communications:
 TCP/IP Guide, SC41-9875.

¹ IBM AS/400 Communications:
 User's Guide, SC21-9601.

Other IBM TCP/IP Publications

The following list shows other available IBM TCP/IP
books.

¹ IBM Local Area Network Technical Reference,
SC30-3383.

¹ IBM TCP/IP for VM and MVS:
 Diagnosis Guide, LY43-0013.

¹ TCP/IP and National Language Support,
GG24-3840.

¹ TCP/IP Introduction, GC31-6080.

¹ TCP/IP Tutorial and Technical Overview,
GG24-3376.

IBM Operating System
Publications

The following lists show books about various IBM oper-
ating systems.

 AIX Publications
¹ AIX Communications Concepts and Procedures for

IBM RISC System/6001, GC23-2203.

¹ AIX Communications Programming Concepts,
SC23-2206.

¹ IBM AIX Operating System Technical Reference,
Volume 1, SC23-2300.

¹ IBM AIX Operating System Technical Reference,
Volume 2, SC23-2301.

 AS/400 Publications
¹ IBM AS/400 CL Reference Manual Volume 1,

SC21-9775.

¹ IBM AS/400 CL Reference Manual Volume 2,
SC21-9776.

¹ IBM AS/400 CL Reference Manual Volume 3,
SC21-9777.

¹ IBM AS/400 CL Reference Manual Volume 4,
SC21-9778.

 Bibliography 119

¹ IBM AS/400 CL Reference Manual Volume 5,
SC21-9779.

¹ IBM AS/400 Communications: APPN Network
User's Guide, SC21-8188.

¹ IBM AS/400 Communications: Programmer's Guide,
SC21-9590.

¹ IBM AS/400 Communications: User's Guide,
SC21-9601.

¹ IBM AS/400 Device Configuration Guide,
SC21-8106.

¹ IBM AS/400 Programming: Command Reference
Summary, SC21-8076.

¹ IBM AS/400 Programming: Data Management
Guide, SC21-9658.

¹ IBM AS/400 System Operations: Database Coordi-
nator' Guide, SC21-8086.

¹ IBM AS/400 System Operations: Operator's Guide,
SC21-8082.

 DOS Publications
¹ DOS Getting Started Version 5.00, SA40-0637.

¹ DOS 5.02 Technical Reference, S16G-4559.

¹ DOS/Windows Client Getting Started, SC09-3001.

¹ PC DOS 6.1 Command Reference, S71G-3634.

 MVS Publications

For a complete description of the library for MVS/ESA
Version 5, see OS/390 Information Roadmap,
GC28-1727-02. See also “JES Publications” on
page 122.

 OS/2 Publications
¹ IBM OS/2 Warp Server Up and Running!,

S25H-8004

¹ IBM Official Guide to Using OS/2 Warp, ISBN
1-56884-466-2 (Karla Stagray and Linda S. Rogers;
Foster City, CA: An IBM Press Book published by
IDG Books Worldwide, Inc., 1995)

¹ IBM OS/2 Warp Internet Connection: Your Key to
Cruising the Internet and the World Wide Web,
ISBN 1-56884-465-4 (Deborah Morrison; Foster
City, CA: An IBM Press Book published by IDG
Books Worldwide, Inc., 1995)

 OS/390 Publications
¹ OS/390 Information Roadmap, GC28-1727-02

This book describes the documentation for the spe-
cific elements included in OS/390.

¹ OS/390 Planning for Installation Release 3,
GC28-1726-02

This book is intended to help you plan for the instal-
lation of OS/390. It describes migration, installation,
hardware and software requirements, and coexist-
ence considerations.

¹ OS/390 OpenEdition Introduction, GC28-1889-01.

¹ OS/390 OpenEdition Planning, SC28-1890-02.

¹ OS/390 OpenEdition User's Guide, SC28-1891-02.

¹ OS/390 OpenEdition Command Reference,
SC28-1892-02.

¹ OS/390 OpenEdition Messages and Codes,
SC28-1908-02.

¹ OS/390 Language Environment Programming
Guide, SC28-1939-02.

¹ OS/390 Language Environment Programming Ref-
erence, SC28-1940-02.

¹ OS/390 OpenEdition Programming: Assembler Call-
able Services Reference, SC28-1899-02.

¹ OS/390 Open Systems Adapter Support Facility
Users's Guide, SC28-1855.

¹ Planning for the System/390 Open Systems Adapter
Feature, GC23-3870.

 VM Publications
¹ VM/ESA CMS Command Reference Summary,

SX24-5249.

¹ VM/ESA CP Planning and Administration for 370,
SC24-5430.

¹ VM/ESA CP Programming Services for 370,
SC24-5435.

¹ VM/ESA Group Control System Reference for 370,
SC24-5426.

¹ VM/ESA: Library Guide and Master Index,
GC23-0367.

¹ VM/ESA: Master Index for 370, GC24-5436.

¹ VM/ESA Service Introduction and Reference,
SC24-5444.

¹ VM/SP CMS Command Reference, ST00-1981.

¹ VM/SP Group Control System Macro Reference,
SC24-5250.

¹ VM/SP Installation Guide, SC24-5237.

¹ VM/SP High Performance Option:

120 Programmer's Reference

 Library Guide and Master Index, GC23-0187.

¹ VM/SP System Facilities for Programming,
SC24-5288.

¹ VM/XA CP Programming Services, SC23-0370.

¹ VM/XA Diagnosis Reference, LY27-8054.

¹ VM/XA Installation and Service, SC23-0364.

¹ VM/XA SP Group Control System Command and
Macro Reference, SC23-0433.

IBM Software Publications

The following sections describe the books associated
with IBM software products.

 ACF/VTAM Publications

The following list shows books in the VTAM Version 4
Release 4 library.

¹ VTAM Installation and Migration Guide,
GC31-8367-00.

¹ VTAM Release Guide, GC31-6545-00.

¹ VTAM Network Implementation Guide,
SC31-8370-00.

¹ VTAM Resource Definition Reference,
SC31-8377-00.

¹ VTAM Resource Definition Samples, SC31-8378-00.

¹ VTAM Customization, LY43-0075-00.

¹ VTAM Operation, SC31-8372-00.

¹ VTAM Messages, GC31-8368-00.

¹ VTAM Codes, GC31-8369-00.

¹ VTAM Programming, SC31-8373-00.

¹ VTAM Guide to Programming for LU 6.2,
SC31-8374-00.

¹ VTAM Programming Reference for LU 6.2,
SC31-8375-00.

¹ VTAM Programming for CSM, SC31-8420-00.

¹ VTAM CMIP Services and Topology Agent Pro-
gramming Guide, SC31-8365-00.

¹ VTAM Diagnosis, LY43-0078-00.

¹ VTAM Data Areas for MVS/ESA Volume 1,
LY43-0076-00.

¹ VTAM Data Areas for MVS/ESA Volume 2,
LY40-0077-00.

¹ APPC Application Suite User's Guide,
SC31-6532-00.

¹ APPC Application Suite Administration,
SC31-6533-00.

¹ APPC Application Suite Programming,
SC31-6534-00.

¹ VTAM AnyNet Guide to Sockets over SNA,
SC31-8371-00.

¹ VTAM AnyNet Guide to SNA over TCP/IP,
SC31-8376-00.

¹ VTAM Glossary, GC31-8366-00.

¹ Planning for NetView, NCP, and VTAM,
SC31-8063-00.

¹ Planning for Integrated Networks, SC31-8062-00.

¹ VTAM Licensed Program Specifications,
GC31-8379-00.

¹ VTAM Operation Quick Reference, SX75-0208-00.

DATABASE 2 Publications

The following lists show books in the DATABASE 2
library.

DATABASE 2 Version 2

¹ IBM DATABASE 2 Version 2: Administration Guide,
SC26-4374.

¹ IBM DATABASE 2 Version 2: Application Program-
ming and SQL Guide, SC26-4377.

¹ IBM DATABASE 2 Version 2: Messages and
Codes, SC26-4379.

¹ IBM DATABASE 2 Version 2: Reference Summary,
SX26-3771.

¹ IBM DATABASE 2 Version 2: SQL Reference,
SC26-4380.

DATABASE 2 Version 3

¹ IBM DATABASE 2 Version 3: DB2 Administration
Guide, SC26-4888.

¹ IBM DATABASE 2 Version 3: DB2 Application Pro-
gramming and SQL Guide, SC26-4889.

¹ IBM DATABASE 2 Version 3: DB2 Messages and
Codes, SC26-4892.

¹ IBM DATABASE 2 Version 3: DB2 Reference
Summary, SX26-3801.

¹ IBM DATABASE 2 Version 3: DB2 SQL Reference,
SC26-4890.

 ISPF Publication

ISPF Dialog Management Guide and Reference,
SC34-4266.

 Bibliography 121

 JES Publications

¹ MVS/ESA Library Guide with JES2, GC28-1423.

¹ MVS/ESA Library Guide with JES3, SC28-1424

 MVS/DFP Publications
¹ MVS/DFP Version 3 Release 3: Customizing and

Operating the Network File System Server,
SC26-4832.

¹ MVS/DFP Version 3 Release 3: Macro Instructions
for Data Sets, S26-4747.

¹ MVS/DFP Version 3 Release 3: Using Data Sets,
SC26-4749.

¹ MVS/DFP Version 3 Release 3: Using the Network
File System Server, SC26-4732.

Network Control Program (NCP)
Publications
¹ ACF/NCP V7R1 IP Router Planning and Installation

Guide, GG24-3974.

¹ NCP and EP Reference, LY43-0029.

¹ NCP, SSP, and EP Generation and Loading Guide,
SC31-6221.

¹ NCP, SSP, and EP Resource Definition Guide,
SC31-6223.

¹ NCP, SSP, and EP Resource Definition Reference,
SC31-6224.

TME 10 NetView for OS/390
Publications

For a complete description of the TME 10 NetView for
OS/390 library, see the TME 10 NetView for OS/390
Library Reference, SC31-8249.

 Networking Systems
Cross-Product Library

The following list shows books in the Networking
Systems cross-product library.

¹ Planning Aids: Pre-Installation Planning Checklist
for NetView, NCP, and VTAM, SX75-0092.

¹ Planning for Integrated Networks, SC31-8062.

¹ Planning for NetView, NCP, and VTAM, SC31-8063.

OpenEdition MVS Publications

The following list shows selected books in the
OpenEdition MVS library.

¹ OS/390 OpenEdition Introduction, GC28-1889-01

¹ OS/390 OpenEdition Planning, SC28-1890-02

 Programming Publications

The following list shows books about various program-
ming applications.

¹ IBM C/370 Diagnosis Guide and Reference
LY09-1804 (feature 8082).

¹ IBM C/370 General Information Manual GC09-1386.

¹ IBM C/370 Installation and Customization Guide
Version 2 Release 1.0, GC09-1387.

¹ IBM C/370 Programming Guide, SC09-1384.

¹ IBM C/370 Reference Summary, SX09-1211.

¹ IBM C/370 User's Guide, SC09-1264.

¹ OS/390 C/C++ Run-Time Library Reference,
SC28-1663-01.

¹ IBM TSO Extensions CLISTs, SC28-1876.

¹ IBM TSO Extensions Command Language Refer-
ence GX23-0015.

¹ IBM TSO Extensions Interactive Data Transmission
Facility: User's Guide, SC28-1104.

¹ IMS/ESA V3R1 Application Programming: DL/I
Calls SC26-4274.

¹ HiPPI User's Guide and Programmer's Reference,
SA23-0369.

¹ Parallel I/O Access Methods Programmer's Guide,
SC26-4648.

¹ VS Pascal Application Programming Guide
SC26-4319.

¹ VS Pascal Diagnosis Guide and Reference
LY27-9525.

¹ VS Pascal General Information, GT00-2664.

¹ VS Pascal Installation and Customization for MVS
SC26-4321.

¹ VS Pascal Installation and Customization for VM
SC26-4342.

¹ VS Pascal Language Reference, SC26-4320.

122 Programmer's Reference

 RACF Publications

The following list shows books in the RACF library.

¹ IBM Resource Access Control Facility (RACF):
General Information Manual, GT00-2820.

¹ IBM Resource Access Control Facility (RACF):
User's Guide, SC28-1341.

¹ External Security Interface (RACROUTE) Macro
Reference, GC28-1366.

¹ RACF Publications Order Guide, GX22-0012.

¹ Resource Access Control Facility (RACF) Security
Administrator's Guide, SC28-1340.

¹ System Programming Library:
 RACF, SC28-1343.

 SMP/E Publications

The following list shows books in the SMP/E Release 8
library.

¹ SMP/E Diagnosis Guide, SC23-3130.

¹ SMP/E Messages and Codes, SC28-1107.

¹ SMP/E Reference, SC28-1107.

¹ SMP/E Reference Summary, SX22-0016.

¹ SMP/E User's Guide, SC28-1302.

 VSAM Publication

MVS/370 VSAM Administration Guide, GC26-4066.

X.25 NPSI Publications

The following list shows books in the X.25 NPSI library.

¹ X.25 Network Control Program Packet Switching
Interface Diagnosis, Customization, and Tuning
Version 3, LY30-5610.

¹ X.25 Network Control Program Packet Switching
Interface Host Programming, SC30-3502.

¹ X.25 Network Control Program Packet Switching
Interface Planning and Installation, SC30-3470.

IBM Hardware Publications

The following sections describe the books associated
with IBM hardware products.

System/370 and System/390
Publications

The following list shows the principles of operation
manuals for the System/370 and System/390
processors.

¹ IBM ESA/370 Principles of Operation, SA22-7200.

¹ IBM ESA/390 Principles of Operation, SA22-7201.

¹ IBM System/370 Extended Architecture Principles of
Operation, SA22-7085.

¹ IBM System/370 Principles of Operation,
GA22-7001.

¹ S/360, S/370, and S/390 I/O Interface Channel to
Channel Control Unit OEMI, GA22-6974.

3172 Interconnect Controller
Publications

The following list shows books in the IBM 3172 Inter-
connect Controller library.

¹ IBM Interconnect Controller Program User's Guide,
SC30-3525.

¹ IBM 3172 Interconnect Controller Installation and
Service Guide, GA27-3861.

¹ IBM 3172 Interconnect Controller Operator's Guide,
GA27-3860.

¹ IBM 3172 Interconnect Controller Planning Guide,
GA27-3867.

¹ IBM 3172 Interconnect Controller Status Codes,
GA27-3951.

3270 Information Display System
Publication

3270 Information Display System: 3270 Data Stream
Programmer's Reference, GA23-0059.

8232 LAN Channel Station
Publications

The following list shows books in the IBM 8232 LAN
Channel Station library.

¹ IBM LAN Channel Support Program: Version 1.0
User's Guide, SC30-3458.

¹ IBM 8232 LAN Channel Station:
 Installation and Testing, GA27-3796.

¹ IBM 8232 LAN Channel Station:
 Operating Guide, GA27-3785.

 Bibliography 123

 9370 Publications

The following list shows books in the 9370 library.

¹ IBM 9370 Information System:
 Using the X.25 Communications Subsystem,
SA09-1742.

¹ IBM 9370 Information System X.25 Communications
Subsystem Description, SA09-1743.

¹ VM/ESA: Connectivity Planning, Administration,
and Operation Release 1, SC24-5448.

 Other TCP/IP-Related
Publications

The following sections describe other books associated
with TCP/IP.

¹ The Art of Distributed Application:
 Programming Techniques for Remote Procedure
Calls John R. Corbin, Springer-Verlog, 1991.

¹ CAE Specification: X/Open Transport Interface
(XTI), X/Open Company Ltd., U. K., 1992,
SC31-8005.

¹ IEEE Network Magazine, July 1990.

¹ TCP/IP Illustrated Volume I: The Protocols, W.
Richard Stevens, Addison-Wesley Publishing
Company, Inc., 1994, SR28-5586.

¹ TCP/IP Illustrated Volume II: The Implementation,
Gary R. Wright and Richard Stevens, Addison-
Wesley Publishing Company, Inc., 1995,
SR28-5630.

¹ TCP/IP Illustrated Volume III, W. Richard Stevens,
Addison-Wesley Publishing Company, Inc., 1996,
SR23-7289

¹ Interoperability Report, Volume 3, No. 3, March
1989.

¹ “MIB II Extends SNMP Interoperability,” C.
Vanderberg, Data Communications, October 1990.

¹ “Network Management and the Design of SNMP,”
J.D. Case, J.R. Davin, M.S. Fedor, M.L. Schoffstall.

¹ “Network Management of TCP/IP Networks:
Present and Future,” A. Ben-Artzi, A. Chandna, V.
Warrier.

¹ The Simple Book: An Introduction to Management
of TCP/IP-based Internets, Marshall T Rose,
Prentice Hall, Englewood Cliffs, New Jersey,1993.

¹ “Special Issue: Network Management and Network
Security,” ConneXions-The Interoperability Report
Volume 4, No. 8, August 1990.

¹ UNIX Programmer's Reference Manual (4.3
Berkeley Software Distribution, Virtual VAX-11

Version). Department of Electrical Engineering and
Computer Science. University of California,
Berkeley, 1988.

 OSF/Motif Publications

The following list shows OSF/Motif books.

¹ OSF/Motif Application Environment Specifications
(AES), Open Software Foundation, Prentice Hall,
Inc., 1990, ISBN 0-13-640483-9.

¹ OSF/Motif Programmer's Guide Open Software
Foundation, Prentice Hall, Inc., 1990,
ISBN 0-13-640509-6.

¹ OSF/Motif Programmer's Reference Open Software
Foundation, Prentice Hall, Inc., 1990,
ISBN 0-13-640517-7.

¹ OSF/Motif Style Guide Open Software Foundation,
Prentice Hall, Inc., 1990, ISBN 0-13-640491-X.

¹ OSF/Motif User's Guide Open Software Foundation,
Prentice Hall, Inc., 1990, ISBN 0-13-640525-8.

Sun (RPC) Publications

The following list shows Sun Microsystems books.

¹ Networking on the Sun Workstation:
 Remote Procedure Call Programming Guide
(800-1324-03), Sun Microsystems, Inc.

¹ Network Programming (800-1779-10), Sun Micro-
systems, Inc.

X Window System Publications

The following list shows X Window System books.

¹ Introduction to the X Window System, Oliver Jones,
Prentice-Hall, 1988, ISBN 0-13-499997-5.

¹ PEXlib Specification and C Language Binding Jeff
Stevenson, Hewlett-Packard Company, 1992,
SR28-5116.

¹ The X Window System Series (6 volumes), O'Reilly
& Associates, 1988, 1989, 1990, ISBN
0-937175-40-4, 0-937175-27-7, 0-937175-28-5,
0-937175-35-6, 0-937175-33-1, 0-937175-35-8.

¹ X Protocol Reference Manual Adrian Nye, ed.
O'Reilly & Associates, Inc., 1990, ISBN
0-937175-50-1.

¹ X Window System: C Library and Protocol Refer-
ence Robert Scheifler, James Gettys, and Ron
Newman, DEC Press, 1988, ISBN 1-55558-012-2.

¹ X Window System: Programming and Applications
with Xt, Douglas A. Young, Prentice-Hall, 1989,
ISBN 0-13-972167-3.

124 Programmer's Reference

¹ X Window System: Programming and Applications
with Xt, OSF/Motif Edition Douglas A. Young,
Prentice-Hall, 1990, ISBN 0-13-497074-8.

¹ X Window System Technical Reference, Steven
Mikes, Addison-Wesley, 1990, ISBN 0-201-52370-1.

¹ X Window System User's Guide Valerie Quercia
and Tim O'Reilly, O'Reilly & Associates, Inc., 1990,
ISBN 0-937175-14-5.

 Network Architecture
Publications

The following sections list books associated with
network architecture.

Open Systems Interconnection
(OSI) Publication

Open Systems Interconnection, Z320-9757.

Systems Network Architecture
(SNA) Publications

The following list shows books in the SNA library.

¹ Systems Network Architecture: Sessions between
Logical Units, GC20-1868.

¹ Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic, SC30-3112.

¹ Systems Network Architecture Format and Protocol
Reference Manual: Management Services,
SC30-3346.

¹ Systems Network Architecture Formats GA27-3136.

¹ Systems Network Architecture Network Product
Formats, LY43-0081.

 Bibliography 125

126 Programmer's Reference

 Index

A
abbreviations and acronyms 111
about this book ix
agent distributed program interface (DPI) 3
applications, functions and protocols

SNMP DPI 3

C
Character Set Selection 56
compiling and linking

SNMP 6
connecting to an agent through UNIX 42

D
DPI_CLOSE_reason_codes 58
DPI_PACKET_LEN() 22
DPI_RC_values 62
DPI_UNREGISTER_reason_codes 60
DPI, packet types 58
DPI, value types 60
DPIawait_packet_from_agent() 39
DPIconnect_to_agent_TCP() 41
DPIconnect_to_agent_UNIXstream() 42
DPIdebug() 21
DPIdisconnect_from_agent() 43
DPIget_fd_for_handle() 44
DPIsend_packet_to_agent() 45

E
error code, DPI RESPONSE error codes 59

F
fDPIparse() 23
fDPIset() 24
Files, OSF/Motif, location 95
function, DPI_PACKET_LEN() 22
function, DPIawait_packet_from_agent() 39
function, DPIconnect_to_agent_TCP() 41
function, DPIdebug() 21
function, DPIdisconnect_from_agent() 43
function, DPIget_fd_for_handle() 44
function, DPIsend_packet_to_agent() 45
function, fDPIparse() 23
function, fDPIset() 24
function, lookup_host() 47
function, mkDPIAreYouThere() 25
function, mkDPIclose() 26

function, mkDPIopen() 27
function, mkDPIregister() 30
function, mkDPIresponse() 31
function, mkDPIset() 33
function, mkDPItrap() 35
function, mkDPIunregister() 37
function, pDPIpacket() 38

I
include, snmp_dpi.h 63
information, service information x
information, where to find more x

L
limits 62
lookup_host() 47

M
macro, DPI_PACKET_LEN() 22
management information base (MIB) 3
mkDPIAreYouThere() 25
mkDPIclose() 26
mkDPIopen() 27
mkDPIregister() 30
mkDPIresponse() 31
mkDPIset() 33
mkDPItrap() 35
mkDPIunregister() 37

P
pDPIpacket() 38
prerequisites ix

R
rc values, DPI_RC_values 62
reason code, DPI CLOSE reason codes 58
reason code, DPI UNREGISTER reason codes 60
reference sections

related protocol specifications 105
well-known port assignments 101

related protocal specifications 105
return code, DPI CLOSE reason codes 58
return code, DPI UNREGISTER reason codes 60

S
Selection, Character Set 56

 Copyright IBM Corp. 1989, 1997 127

simple network management protocol (SNMP) 3
SNMP

client program 89
compiling and linking 6

SNMP agents 4
SNMP subagents 4
SNMP_CLOSE_reason_codes 58
snmp_dpi_close_packet 48
snmp_dpi_get_packet 49
snmp_dpi_hdr 50
snmp_dpi_next_packet 51
SNMP_DPI_packet_types 58
snmp_dpi_resp_packet 52
snmp_dpi_set_packet 53
snmp_dpi_u64 56
snmp_dpi_ureg_packet 55
snmp_dpi.h 63
SNMP_ERROR_codes 59
SNMP_TYPE_value_types 60
SNMP_UNREGISTER_reason_codes 60
structure, snmp_dpi_close_packet 48
structure, snmp_dpi_get_packet 49
structure, snmp_dpi_hdr 50
structure, snmp_dpi_next_packet 51
structure, snmp_dpi_resp_packet 52
structure, snmp_dpi_set_packet 53
structure, snmp_dpi_u64 56
structure, snmp_dpi_ureg_packet 55

T
types, DPI packet types 58

U
UNIXstream function 42
using

OSF/Motif 95
X Window System 91

V
value ranges 62
value types, SNMP_TYPE_value_types 60

W
W Window System

using 91
well-known port assignments 101
who should use this book ix

128 Programmer's Reference

Communicating Your Comments to IBM

OS/390 TCP/IP Open Edition
Programmer's Reference

Publication No. SC31-8308-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088

¹ If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

 – Internet: USIB2HPD@VNET.IBM.COM

Make sure to include the following in your note:

¹ Title and publication number of this book
¹ Page number or topic to which your comment applies.

Help us help you!

OS/390 TCP/IP Open Edition
Programmer's Reference

Publication No. SC31-8308-00

If your concern is service related, you can reach Service at 1-800-992-4777 in the United States. Outside
the United States, please check your phone listing for the IBM Service Center nearest you.

We hope you find this publication useful, readable and technically accurate, but only you can tell us!
Please take a few minutes to let us know what you think by completing this form.

Specific Comments or Problems:

Please tell us how we can improve this book:

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to use the
information in any way you choose.

Your Internet Address:

Name Address

Company or Organization

Phone No.

Overall, how satisfied are you with the information in this book? Satisfied Dissatisfied

 Ø Ø

How satisfied are you that the information in this book is: Satisfied Dissatisfied

Accurate Ø Ø
Complete Ø Ø
Easy to find Ø Ø
Easy to understand Ø Ø
Well organized Ø Ø
Applicable to your task Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Help us help you!
SC31-8308-00 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Information Development
Department CGMD
International Business Machines Corporation
PO BOX 12195
RESEARCH TRIANGLE PARK NC 27709-9990

Fold and Tape Please do not staple Fold and Tape

SC31-8308-00

ÉÂÔÙ

File Number: S390-50
Program Number: 5645-001

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8308-00

S
pine inform

ation:

É
Â

Ô
O

S/390 T
C

P
/IP

 O
pen E

dition
P

rogram
m

er's R
eference

