
Communications Server for Windows, Version 6.1

Personal Communications for Windows, Version 5.9

Client/Server Communications

Programming

SC31-8479-09

���

Communications Server for Windows, Version 6.1

Personal Communications for Windows, Version 5.9

Client/Server Communications

Programming

SC31-8479-09

���

Note

Before using this information and the product it supports, read the general information in Appendix G, “Notices,” on page

367.

Tenth Edition (July 2006)

This level applies to Version 6.1 of IBM Communications Server for Windows, Version 5.9 of IBM Personal

Communications for Windows (program number: 5639–I70), and to all subsequent releases and modifications until

otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

About This Book xi

Who Should Read This Book xii

How to Use This Book xii

Icons xiii

Number Conventions xiii

Double-Byte Character Set Support xiv

Where to Find More Information xiv

Part 1. APPC API 1

Chapter 1. Introducing APPC 3

SNA Communications Support 3

SNA LU Type 6.2 Support 4

Chapter 2. Fundamental APPC Concepts 5

What Is a Transaction Program? 5

APPC Transaction Programs 5

CPI Communications Transaction Programs . . . 6

Client Transaction Programs 6

Server Transaction Programs 6

What Is a Logical Unit? 7

LU Types 7

Dependent and Independent LUs 7

What Is an LU Name? 7

What Is a Session? 8

What Is a Conversation? 8

Relationships among Sessions, Conversations,

and LUs 10

Conversation Types 11

Mapped Conversations 11

Basic Conversations 12

Examples of APPC Operations 12

Types of APPC Conversations 13

One-Way Conversation 13

Confirmed-Delivery Conversation 13

Inquiry Conversation 14

Database Update Conversation 14

Conversations That Have Errors 15

Summary 15

Chapter 3. Using the Attach Manager 17

Differentiating between an Application and a

Transaction Program 18

Transaction Program Definitions 19

Identifying the Transaction Program Name on Both

Machines 19

Defining Conversation Attributes 20

Synchronization Level 20

Conversation Type and Style 20

Conversation Styles 21

Conversation Security for an Incoming Allocation

Request 22

Conversation Security for an Outgoing Allocation

Request 22

Using the Attach Manager on Personal

Communications 22

Starting the Attach Manager 22

Starting Programs with the Attach Manager . . 23

Matching Incoming Allocation Requests with

RECEIVE_ALLOCATE Verbs 23

Nonqueued Programs 24

Queued Programs 24

Using the Attach Manager on Communications

Server SNA API Clients 26

Defining Transaction Programs for SNA API

Clients 26

Starting the SNA API Client Attach Manager . . 27

Chapter 4. Writing a Transaction

Program 29

Application Protocols 29

Available Program LU 6.2 Services 29

Choosing a Conversation Type 32

Consistency of Conversation Type 32

Sending Data 32

Receiving Data 33

Reporting Errors and Abnormal Termination . . 33

Sending an Error Log Data Record 34

Abnormally Terminating because of a Timeout . 34

Requesting Confirmation 34

Choosing between Half-Duplex and Full-Duplex

Conversations 35

Choosing a Transaction Program Name 35

Using the Security Features 35

Partner LU Verification (Session-Level Security) 35

End-User Verification (Conversation-Level

Security) 35

Converting between EBCDIC and ASCII 36

Chapter 5. Implementing APPC

Transaction Programs 37

Writing Transaction Programs 37

Option Sets Supported 37

Full-Duplex VCBs 38

Queue-Level Nonblocking 39

Default Local LU 41

Chapter 6. Implementing CPI-C

Programs 43

Writing CPIC Programs 43

CPI-C Versions 43

CPI-C Conformance Class Support 44

CPI-C Functions 46

Specifying Service TP Names 48

© Copyright IBM Corp. 1994, 2006 iii

Additional Options for Setting Local_LU 49

Chapter 7. APPC Entry Points 51

APPC 52

WinAsyncAPPC() 53

WinAsyncAPPCEx() 55

WinAPPCCancelAsyncRequest() 57

WinAPPCCancelBlockingCall() 58

WinAPPCCleanup() 59

WinAPPCIsBlocking() 60

WinAPPCStartup() 61

WinAPPCSetBlockingHook() 62

WinAPPCUnhookBlockingHook() 63

GetAppcConfig() 64

GetAppcReturnCode() 65

Chapter 8. APPC Verbs 67

Verb Control Blocks 67

Common Fields 67

APPC API Support 68

Verbs Supported 68

GET_TP_PROPERTIES 69

GET_TYPE 71

RECEIVE_ALLOCATE 73

SET_TP_PROPERTIES 76

TP_ENDED 79

TP_STARTED 81

[MC_]ALLOCATE 83

[MC_]CONFIRM 89

[MC_]CONFIRMED 93

[MC_]DEALLOCATE 95

[MC_]FLUSH 100

[MC_]GET_ATTRIBUTES 102

[MC_]PREPARE_TO_RECEIVE 105

[MC_]RECEIVE_AND_POST 108

[MC]RECEIVE_AND_WAIT 113

[MC_]RECEIVE_EXPEDITED_DATA 118

[MC_]RECEIVE_IMMEDIATE 122

[MC_]REQUEST_TO_SEND 127

[MC_]SEND_CONVERSATION 129

[MC_]SEND_DATA 134

[MC_]SEND_ERROR 138

[MC_]SEND_EXPEDITED_DATA 142

[MC_]TEST_RTS 145

[MC_]TEST_RTS_AND_POST 147

Part 2. LUA API 149

Chapter 9. Fundamental Concepts of

the IBM Conventional LU Application . 151

Understanding LUA and SNA 151

Connection Capabilities 151

LUA Application Programs 151

LUA Verbs 152

LUs, Local LUs, and Partner LUs 152

System Services Control Point (SSCP) 152

SNA Layers 152

Data Link Control Layer 153

Path Control Layer 153

Transmission Control Layer 153

Data Flow Control Layer 153

Presentation Services Layer 153

Using SNA Sessions 154

Prerequisites to an SNA Session 154

Starting Sessions 154

Transferring Data on an LU-LU Session . . . 155

Stopping Sessions 155

Disconnecting the Host Link 156

Message Numbers 156

Restarting and Resynchronizing a Session 157

Using Protocols to Control Requests and Responses 157

Using the Pacing Protocol 157

Using the Half-Duplex Contention/Flip-Flop

Protocol 158

Using the Bracket Protocol 158

Using the Data-Chaining Protocol 159

Data Exchange Control Methods 159

Flow Protocols 159

Response Modes 160

LUA Correlation Tables 160

Exception Response Requests (RQEs) 160

Session Profiles 161

TS Profiles 161

FM Profiles 162

Using RUI LUA Verbs 162

Verb Summary 162

RUI Sessions 163

Issuing RUI Verbs 163

Asynchronous Verb Completion 164

Sample LUA Communication Sequence 164

BIND Checking 166

Negative Responses and SNA Sense Codes . . 166

Pacing 167

Segmentation 167

Courtesy Acknowledgments 167

Purging Data to End of Chain 168

Configuration 168

LUA LU Pool (Optional) 168

SNA API Client Considerations 169

Chapter 10. Features of the RUI LUA

Verbs 171

Handling Exception Requests 171

Changing the Verb Record 171

Handling Bracket Bid Reject 172

Minimizing LAN Traffic 172

Reducing RUI_BID Usage 172

Dealing with Suspensions 172

Canceling RUI_INIT 173

Canceling RUI_WRITE 173

Canceling RUI_READ 173

Compressing Data 173

Rules for Negotiating Data Compression Per

Session 173

Recovering from Session Failure 174

Chapter 11. Implementing LUA

Programs 177

Writing LUA Programs 177

iv Client/Server Communications Programming

Calling LUA Services 177

Understanding Verb Record Contents 178

Multiple Processes 178

Multiple Threads 178

LUA Verb Postings 178

Converting to EBCDIC from ASCII 179

Chapter 12. RUI LUA Entry Points . . 181

RUI() 182

WinRUI 183

WinRUICleanup() 184

WinRUIGetLastInitStatus() 185

WinRUIStartup() 187

GetLuaReturnCode() 188

Chapter 13. RUI Verbs 189

LUA Verb Control Block Format 189

Common Verb Header 189

RUI_BID Data Structure 193

RUI_BID 194

RUI_INIT 199

RUI_PURGE 203

RUI_READ 206

RUI_TERM 212

RUI_WRITE 215

Chapter 14. SLI Entry Points 221

SLI() 222

WinSLI() 223

WinSLICleanup() 224

WinSLIStartup() 225

Chapter 15. SLI Verbs 227

SLI_BID 228

SLI_CLOSE 233

SLI_OPEN 236

SLI_PURGE 242

SLI_RECEIVE 244

SLI_SEND 249

SLI_BIND_ROUTINE 253

SLI_STSN_ROUTINE 255

SLI_SDT_ROUTINE 257

Part 3. Common Services API . . . 259

Chapter 16. Common Services Entry

Points 261

Writing Common Services Programs 261

ACSSVC() 262

WinCSV() 263

WinCSVCleanup() 264

WinAsyncCSV() 265

WinCSVStartup() 266

GetCsvReturnCode() 267

Chapter 17. Common Services Verbs

(CSV) 269

GET_CP_CONVERT_TABLE 270

CONVERT 274

TrnsDt 277

Part 4. EHNAPPC API 281

Chapter 18. EHNAPPC Application

Program Interface 283

Writing EHNAPPC Programs 283

EHNAPPC Routines 283

EHNAPPC_Allocate 283

EHNAPPC_Confirm 284

EHNAPPC_Confirmed 285

EHNAPPC_Deallocate 285

EHNAPPC_ExtendedAllocate 286

EHNAPPC_Flush 287

EHNAPPC_GetAttributes 287

EHNAPPC_GetCapabilities 288

EHNAPPC_GetDefaultSystem 288

EHNAPPC_IsRouterLoaded 289

EHNAPPC_PrepareToReceive 289

EHNAPPC_QueryConfiguredSystems 290

EHNAPPC_QueryConvState 290

EHNAPPC_QueryFullSystems 291

EHNAPPC_QueryUserid 291

EHNAPPC_QuerySystems 291

EHNAPPC_ReceiveAndWait 292

EHNAPPC_ReceiveImmediate 293

EHNAPPC_RemoteProgramStart 294

EHNAPPC_RqsToSend 294

EHNAPPC_SendData 295

EHNAPPC_SendError 295

EHNAPPC_StartHostProgram 296

EHNAPPC Structures 297

AS400_SYS 297

appcrtrcap_hdr 297

appcrtrcap_mult 297

appcrtrcap_query 298

Return Codes for the EHNAPPC API 298

Running 16-Bit EHNAPPC Programs 300

Chapter 19. Data Transform Windows

Application Program Interface 301

Data Transform Windows API Routines 301

EHNDT_ANSIToEBCDIC 301

EHNDT_ASCIIToEBCDIC 302

EHNDT_EBCDICToANSI 303

EHNDT_EBCDICToASCII 303

Part 5. Java Programming

Interfaces 305

Chapter 20. Introduction to the Host

Access Class Library for Java 307

What Is HACL? 307

HACL Concepts 308

Sessions 308

Container Objects 308

List Objects 308

Contents v

Events 308

Error Handling 309

Addressing (Rows, Columns, Positions) . . . 309

Installing HACL on the Communications Server for

Windows Server 310

Installing HACL on the Communications Server

32–Bit Windows Client 310

Setting the Classpath 311

HACL Codepage Converters 311

HACL Samples 311

Chapter 21. Using CPIC-C for Java 313

What is CPI-C for Java? 313

Installing CPI-C for Java (Communications Server) 313

CPI-C for Java Samples 314

Client Sample 314

Server Sample 316

Part 6. Appendixes 319

Appendix A. APPC Common Return

Codes 321

Appendix B. LUA Verb Return Codes 325

Primary Return Codes 325

Secondary Return Codes 326

Appendix C. APPC Conversation State

Transitions 343

Appendix D. Communications Server

Service Location Protocol 349

Discovery and Load Balancing APIs 349

Structure 349

Scenarios 350

DA-Discovery Timeout 356

SA Multicast Timeout 356

Administrator Help information 356

Scope 356

How Is Scope Used? 356

Load Balancing Weight Factor 357

Appendix E. Service Templates 359

Commserver Service Template 359

Commserver Service Registration Message . . . 359

Dependent LU Service Template 359

Dependent LU Service Registration Message . . . 360

TN3270 Service Template 360

TN3270 Service Registration Message 361

TN5250 Service Template 362

TN5250 Service Registration Message 363

LU 6.2 Service Template 364

LU 6.2 Service Registration Message 364

Appendix F. DLL Version Information 365

32–Bit Windows DLLs 365

Appendix G. Notices 367

Trademarks 368

Index 371

vi Client/Server Communications Programming

Figures

1. Personal Communications or Communications

Server APPC Implementation 3

2. A Session between Two LUs 8

3. Parts of a Conversation 9

4. A Conversation between Two Transaction

Programs 9

5. Parallel Sessions between LUs 10

6. Relationships between Programs and LUs 11

7. Attach Manager Function in APPC 18

© Copyright IBM Corp. 1994, 2006 vii

viii Client/Server Communications Programming

Tables

 1. LU 6.2 Operations 12

 2. Actions in One-Way Conversation 13

 3. Actions in Confirmed-Delivery Conversation 13

 4. Actions in Inquiry Conversation 14

 5. Actions in Database Update Conversation 14

 6. Inquiry Conversation with Error 15

 7. Verb Processing and Transaction Program

Name Configuration 26

 8. Header Files and Libraries for APPC 37

 9. Header Files and Libraries for CPIC 43

10. Personal Communications Client Support of

CPI-C Functions 47

11. Clearing of RQEs 161

12. TS Profile Characteristics 161

13. FM Profile Characteristics 162

14. RUI Verb Conditions 164

15. Header Files and Libraries for RUI APIs 177

16. Header Files and Libraries for SLI APIs 177

17. Parameter Settings Based on Message Type 251

18. Header Files and Libraries for Operating

Systems 261

19. TrnsDT Code Page Conversion Support —

China 277

20. TrnsDT Code Page Conversion Support —

Japan 277

21. TrnsDT Code Page Conversion Support —

Korea 277

22. TrnsDT Code Page Conversion Support —

Taiwan 277

23. Header Files and Libraries for Operating

Systems 283

24. Return Codes 298

25. Events for HACL 308

26. APPC Half-Duplex Conversation State

Transitions 343

27. APPC Full-Duplex Conversation State

Transitions 345

28. Service Type/Port Information 351

29. CM_CSLIST_GETII Primitive 353

30. CM_CSLIST_GETII Primitive 353

31. Flags values (from cmi.h) 354

32. AgentType values (from csobjtyp.h) 354

33. FilterList_t (if Flags = CMCsListFlag_LBPool) 354

34. FilterList_t (if Flags = zero | Flags =

CMCsListFlag_LBFilters) 354

35. Filter_t 355

36. FilterType values (from cmi.h) 355

37. CM_CSLIST_GETII_ACK Primitive 355

38. Server Information structure in

CM_CSLIST_GETII_ACK Primitive 355

39. Valid dev_types for LU Pool Names 360

© Copyright IBM Corp. 1994, 2006 ix

x Client/Server Communications Programming

About This Book

This book is for users of client and server applications provided by IBM®

Communications Server for Windows® and IBM Personal Communications for

Windows. Client APIs are provided for Windows 2000, Windows Server 2003, and

Windows XP (hereafter termed Win32 client APIs).

IBM Communications Server for Windows is a communications services platform.

This platform provides a wide range of services for workstations that communicate

with host computers and with other workstations. Communications Server users

can choose from among a variety of remote connectivity options.

IBM Personal Communications for Windows is a full-function emulator. In

addition to host terminal emulation, it provides these useful features:

v File transfer

v Dynamic configuration

v An easy-to-use graphical interface

v APIs for SNA-based client applications

v An API allowing TCP/IP-based applications to communicate over an SNA-based

network

In most instances, developing programs for Personal Communications and

Communications Server and their clients is very similar in that they each support

many of the same verbs. However, there are some differences. These differences are

denoted in this book with special icons; see “Icons” on page xiii for specific details.

Throughout this book, Personal Communications and Communications Server

program names are used when information applies to both. When only the

Personal Communications program or only the Communications Server program

applies, then the specific program name is used.

This book is divided into the following parts.

v Part 1, “APPC API,” describes how to develop programs that use the Personal

Communications and Communications Server advanced program-to-program

communications (APPC) interface. APPC refers to an implementation of Systems

Network Architecture (SNA) for logical unit (LU) type 6.2. Throughout this

book, unless otherwise noted, APPC represents the Personal Communications

and Communications Server implementation of APPC.

APPC provides a distributed transaction processing capability in which two or

more programs cooperate to carry out some processing function. This capability

involves communication between the programs so they can share resources, such

as processor cycles, databases, work queues, and physical interfaces such as

keyboards and displays.

v Part 2, “LUA API,” describes how to develop programs that use the IBM

conventional logical unit application (LUA) interface (in this book LUA also

refers to request unit interface {RUI}), which gives access to SNA LU types 0, 1,

2, and 3.

v Part 3, “Common Services API,” includes the verbs that make up the Common

Services API.

v Part 4, “EHNAPPC API,” includes the functions, structures, and return codes for

the Enhanced APPC Interface.

© Copyright IBM Corp. 1994, 2006 xi

v Part 5. Java™ Programming Interfaces, describes the IBM Host Access Class

Library (HACL) for Java as it relates to 3270 and 5250 applications.

In this book, Windows refers to Windows 2000, Windows Server 2003, and

Windows XP. Throughout this book, workstation refers to all supported personal

computers. When only one model or architecture of the personal computer is

referred to, only that type is specified.

Who Should Read This Book

This book is intended for programmers and developers who are writing either

APPC or LUA applications.

This book assumes the reader is familiar with SNA Transaction Programmer’s

Reference Manual for LU Type 6.2.

How to Use This Book

v Chapter 1, “Introducing APPC,” describes advanced program-to-program

communications (APPC).

v Chapter 2, “Fundamental APPC Concepts,” describes APPC transaction

programs.

v Chapter 3, “Using the Attach Manager,” describes how to use the attach

manager.

v Chapter 4, “Writing a Transaction Program,” describes how to write a transaction

program.

v Chapter 5, “Implementing APPC Transaction Programs,” describes the APPC

extensions.

v Chapter 6, “Implementing CPI-C Programs,” describes CPI-C programs.

v Chapter 7, “APPC Entry Points,” describes the procedure entry points for the

APPC API.

v Chapter 8, “APPC Verbs,” describes the syntax of each APPC verb. A copy of the

structure that holds the information for each verb is included and each entry is

described, followed by a list of possible return codes.

v Chapter 9, “Fundamental Concepts of the IBM Conventional LU Application,”

describes the fundamental LUA programming concepts in this book.

v Chapter 10, “Features of the RUI LUA Verbs,” describes the features of LUA

verbs.

v Chapter 11, “Implementing LUA Programs,” describes some of the aspects of

writing LUA application programs.

v Chapter 12, “RUI LUA Entry Points,” describes procedure entry points for LUA.

v Chapter 13, “RUI Verbs,” describes details for each LUA verb.

v Chapter 14, “SLI Entry Points,” describes the procedure entry points for SLI.

v Chapter 15, “SLI Verbs,” describes details for each SLI verb.

v Chapter 16, “Common Services Entry Points,” describes procedure entry points.

v Chapter 17, “Common Services Verbs (CSV),” describes common services verbs.

v Chapter 18, “EHNAPPC Application Program Interface,” describes the

EHNAPPC API.

v Chapter 19, “Data Transform Windows Application Program Interface,” describes

data transform Windows APIs.

xii Client/Server Communications Programming

v Chapter 20, “Introduction to the Host Access Class Library for Java,” describes

the Host Access Class Library for Java and its relationship to both 3270 and 5250

using Java classes.

v Chapter 21, “Using CPIC-C for Java,” describes the CPI-C for Java API.

v Appendix A, “APPC Common Return Codes,” contains descriptions of the

common return codes.

v Appendix B, “LUA Verb Return Codes,” contains descriptions of the LUA

common return codes.

v Appendix C, “APPC Conversation State Transitions,” describes the conversation

states in which each APPC verb can be issued, and the state change that occurs

on completion of the verb.

v Appendix D, “Communications Server Service Location Protocol,” describes how

the application program developer can now locate services and load balance

among services using the TCP/IP protocol.

v Appendix E, “Service Templates,” describes details of commserver service types.

v Appendix F, “DLL Version Information,” contains 32-bit Windows DLL version

information.

Icons

This book uses icons in the text to help you find different types of information.

This icon represents information that applies to basic APPC verbs. See

Chapter 8, “APPC Verbs” for more information on basic verbs.

This icon represents information that applies to mapped APPC verbs. See

Chapter 8, “APPC Verbs” for more information on mapped verbs.

This icon represents a note, important information that can affect the

operation of Personal Communicationsor Communications Server, or the

completion of a task.

This icon appears when the information applies only to the Personal

Communications program.

This icon appears when the information applies only to the

Communications Server program.

Number Conventions

 Binary numbers Represented as BX'xxxx xxxx' or BX'x' except in certain

instances where they are represented with text (“A value of

binary xxxx xxxx is...”).

Bit positions Start with 0 at the rightmost position (least significant bit).

Decimal numbers Decimal numbers over 4 digits are represented in metric style.

A space is used rather than a comma to separate groups of 3

digits. For example, the number sixteen thousand, one hundred

forty-seven is written 16 147.

About This Book xiii

Hexadecimal numbers Represented in text as hex xxxx or X'xxxx' (“The address of the

adjacent node is hex 5D, which is specified as X'5d'”)

Double-Byte Character Set Support

Personal Communications and Communications Server support double-byte

character sets (DBCS), in which each character is represented by 2 bytes.

Languages such as Japanese, Chinese, and Korean, which contain more symbols

than can be represented by 256 code points, require double-byte character sets.

Because each character requires 2 bytes, the typing, displaying, and printing of

DBCS characters require hardware and programs that support DBCS.

Where information applies specifically to DBCS, it is noted in this information unit.

ASCII refers to PC single-byte code in this book. ASCII should be considered as

JISCII in Japan.

Where to Find More Information

For more information, refer to Quick Beginnings, which contains a

complete description of both the Communications Server library and

related publications.

To view a specific book after Communications Server has been installed,

use the following path from your desktop:

1. Programs

2. IBM Communications Server

3. Documentation

4. Choose from the list of books

The Communications Server books are in Portable Document Format

(PDF), which is viewable with the Adobe Acrobat Reader. If you do not

have a copy of this program on your machine, you can install it from

the Documentation list.

The Communications Server home page on the Internet has general

product information as well as service information about APARs and

fixes. To get the home page, using an Internet browser such as IBM

Web Explorer, go to the following URL:

http://www.ibm.com/software/network/commserver

xiv Client/Server Communications Programming

For more information, refer to Quick Beginnings, which contains a

complete description of both the Personal Communications library and

related publications.

The Personal Communications books are included on the CD-ROM in

Portable Document Format (PDF). Books can be accessed directly from

the Personal Communications CD-ROM or from the Install Manager

welcome panel.

To view the Personal Communications documentation using Install

Manager, select View Documentation from the main panel of the Install

Manager on the CD-ROM. Clicking View Documentation invokes

Adobe Acrobat Reader from your system to view the books. If Acrobat

Reader is not detected on your system, you are given the opportunity

to install it at this time. After installation of Acrobat Reader is complete,

a window opens displaying the books available on the CD-ROM.

Notes:

1. You can copy the book files from the CD-ROM to a local or network

drive to view at a later time.

2. Quick Beginnings in HTML format is installed during installation of

Personal Communications.

The Personal Communications home page on the Internet has general

product information as well as service information about APARs and

fixes. To get the home page, using an Internet browser such as IBM

Web Explorer, go to the following URL:

http://www.ibm.com/software/network/pcomm/

The complete IBM Dictionary of Computing is available on the World

Wide Web at http://www.ibm.com/networking/nsg/nsgmain.htm.

About This Book xv

xvi Client/Server Communications Programming

Part 1. APPC API

© Copyright IBM Corp. 1994, 2006 1

2 Client/Server Communications Programming

Chapter 1. Introducing APPC

Personal Communications and Communications Server provide Advanced

Peer-to-Peer Networking® (APPN®) end-node support for workstations, enabling

them to communicate more flexibly with other systems in the network.

Personal Communications and Communications Server provide advanced

program-to-program communications (APPC) to support communications between

distributed processing programs, called transaction programs (TPs). APPN extends

this capability to a networking environment. The transaction programs can be

located at any node in the network that provides APPC.

Personal Communications and Communications Server improve APPC throughput

in local area network (LAN) environments and supports APPC over various

protocols such as: IBM Token-Ring Network, Synchronous Data Link Control

(SDLC), Twinaxial, and Ethernet.

Note: Included in the chapters of Part 1 of this book is information on the APPC

API provided by the following systems:

v Communications Server running on Windows

v SNA API clients for Windows that are delivered with Communications

Server

v Personal Communications for Windows

When there are differences between the support provided by these systems,

it is noted.

Figure 1 illustrates the functional structure of an implementation of APPC for

either Personal Communications or Communications Server.

SNA Communications Support

Personal Communications and Communications Server support Systems Network

Architecture (SNA) type 2.1 nodes (including SNA type 2.0 and SNA type 2.1

support for logical units [LUs] other than SNA LU 6.2). This support lets you write

programs to communicate with many other IBM SNA products.

LAN X.25

PU 2.1/2.0

LU 6.2

SDLC •• •

Figure 1. Personal Communications or Communications Server APPC Implementation

© Copyright IBM Corp. 1994, 2006 3

You can write programs without knowing the details of the underlying network.

All you need to know is the name of the partner LU; you do not need to know its

location. SNA determines the partner LU location and the best path for routing

data. A change to the underlying network, the addition of a new adapter, or the

relocation of a machine, does not affect APPC programs. A program might,

however, need to establish link connections over switched SDLC connections.

When Personal Communications or Communications Server starts, it establishes

local LU and logical link definitions, which are stored in a configuration file. The

system management application programming interface (API) provides functions

that control configuration definition and adapter and link activation. Refer to

System Management Programming for information about these functions. Users can

use the configuration and node operations functions while runs. Refer to Quick

Beginnings and System Management Programming for more information about

configuration and node operations.

SNA LU Type 6.2 Support

LU 6.2 is an architecture for program-to-program communications. Personal

Communications and Communications Server support all base LU 6.2 functions.

Some of the optional SNA LU 6.2 functions are:

v Basic and mapped conversations

v Half-duplex or full-duplex conversation styles

v Synchronization level of confirm

v Security support at session and conversation levels

v Multiple LUs

v Parallel sessions, including the ability to use a remote system to change the

number of sessions

4 Client/Server Communications Programming

Chapter 2. Fundamental APPC Concepts

This chapter describes the APPC API supported by Personal Communications. Its

purpose is to provide:

v A brief overview of the structure of the APPC API

v Reference information about the specific syntax of the verbs that flow across the

interface

What Is a Transaction Program?

A transaction program is a block of code, or part of an application program, that

uses APPC communications functions. Application programs use these functions to

communicate with application programs on other systems that support APPC. A

transaction program has a 64-byte name (tp_name).

Your transaction program can obtain LU 6.2 services through either of the

following APIs:

v APPC—Advanced Program-to-Program Communication allows transaction

programs to exchange information across an IBM SNA network using the syntax

and verbs defined by IBM for using an LU 6.2 session.

v CPI-C—Common Programming Interface for Communications (CPI-C) allows

transaction programs to exchange information across an IBM SNA network

using the syntax, defined by IBM in the Common Programming Interface

component of the SAA®, for using an LU 6.2 session. Because this API is

implemented for many platforms, CPI-C applications can be easily ported.

Transaction programs issue APPC verbs to invoke APPC functions. See Chapter 5,

“Implementing APPC Transaction Programs,” on page 37, for details about how

transaction programs issue APPC verbs. Transaction programs can issue CPI

Communications calls to invoke CPI Communications functions. The CPI

Communications calls let application programs take advantage of the consistency

that SAA provides. See “CPI Communications Transaction Programs” on page 6 for

information about the CPI Communications calls.

Programs do not need to be written to the same LU 6.2 API in order to

communicate with each other. In particular, a transaction program written to the

APPC API can communicate with a transaction program written to CPI-C.

APPC Transaction Programs

An APPC transaction program is not an application; it is a section of an

application. A single application can contain many transaction programs. Every

transaction program has a unique 8-byte identification number (tp_id).

APPC supplies verbs that start and stop transaction programs within applications.

APPC also supplies a full set of conversation verbs that you can use to implement

the function of your transaction program.

A transaction program issues a request to APPC, in the form of a verb, to perform

some action for an application program. A verb is a formatted request that a

transaction program issues and APPC executes. A program uses APPC verb

© Copyright IBM Corp. 1994, 2006 5

sequences to communicate with another program. Two programs that communicate

with each other can be located at different systems or on the same system.

When a transaction program exchanges data with another transaction program,

they are called partner transaction programs.

CPI Communications Transaction Programs

A CPI Communications transaction program is similar to an APPC transaction

program; both types of transaction programs use APPC support. Rather than

issuing verbs, however, a CPI Communications transaction program invokes each

CPI Communications function with a call to the function that passes the

appropriate parameters on the call.

Most CPI Communications calls correspond to APPC verbs. For example, the calls

that allocate outbound conversations and accept (receive) conversations, and the

calls that send and receive data on the conversation, provide functions that are

similar to those of the corresponding APPC verbs. The exceptions are the calls that

initialize a conversation before allocating the conversation and the calls that set

and extract individual conversation characteristics.

Refer to CPI Communications Reference for details about the support that

Communications Server provides for CPI Communications programs.

Client Transaction Programs

Typically, a program begins a conversation because it requires a service from

another program. This program is called a client transaction program. The client

transaction program requests the conversation through the LU 6.2 API.

Often the client transaction program is started by a human user; however, the

client transaction program could actually be a server transaction program

responding to another program’s request. In any conversation, the client

transaction program is always running before the conversation begins. The client

transaction program startup and termination are not directly related to the

conversation. The client transaction program initiates the conversation, and it can

continue to run after the conversation is over.

Server Transaction Programs

The server transaction program delivers the service that is requested by the client

transaction program.

The server transaction program can run continuously, waiting for clients to begin

conversations with it. But frequently, the server transaction program handles a

single transaction, and is started by the APPC API to handle one specific

conversation. The server transaction program begins execution when a

conversation is requested, and it terminates when the conversation is finished.

An important feature of the LU 6.2 architecture is that it can start server

transaction programs when client transaction programs request them. You can

design your server programs according to this model and arrange for them to be

started on demand.

6 Client/Server Communications Programming

What Is a Logical Unit?

Every transaction program gains access to an SNA network through a logical unit

(LU). An LU is SNA software that accepts verbs from your programs and acts on

those verbs. A transaction program issues APPC verbs to its LU. These verbs cause

commands and data to flow across the network to a partner LU. An LU also acts

as an intermediary between the transaction programs and the network to manage

the exchange of data between transaction programs. A single LU can provide

services for multiple transaction programs. Multiple LUs can be active

simultaneously.

LU Types

Personal Communications and Communications Server support LU types 0, 1, 2, 3,

and 6.2. LU types 0, 1, 2, and 3 support communication between host application

programs and different kinds of devices, such as terminals and printers. Refer to

Part 2, “LUA API,” for details on writing these programs.

LU 6.2 supports communication between two programs located at type 5 subarea

nodes, type 2.1 peripheral nodes, or both, and between programs and devices.

APPC is an implementation of the LU 6.2 architecture, which is described in this

part of the book.

Communication occurs only between LUs of the same LU type. For example, an

LU 2 communicates with another LU 2; it does not communicate with an LU 3.

Dependent and Independent LUs

A dependent LU depends on a system services control point (SSCP) to activate a

session. A dependent LU needs an active SSCP-LU session, which the dependent

LU uses to start an LU-LU session with an LU in a subarea node. A dependent LU

can have only one session at a time with the subarea LU. For communications with

a transaction program at a subarea node, each dependent LU can have only one

conversation at a time, and each dependent LU can support communications for

only one transaction program at a time.

An independent LU does not depend on an SSCP to activate a session. An

independent LU supports multiple concurrent sessions with other LUs in a subarea

node, so you can have multiple conversations and support multiple transaction

programs for communications with subarea transaction programs. LUs between

peripheral nodes also use this support.

The distinction between a dependent LU and an independent LU is meaningful

only when discussing a session between an LU in a peripheral node and an LU in

a subarea node. Otherwise, dependent and independent LUs both support multiple

concurrent sessions and conversations when communicating between type 2.1

peripheral nodes (for example, between two workstations). Personal

Communications or Communications Server LUs can support a single session with

a dependent LU or multiple sessions with an independent LU.

What Is an LU Name?

An LU is a point of access to the Systems Network Architecture (SNA) network.

An LU has a name and other characteristics that are configured (formally recorded)

throughout the SNA network. Sometimes this configuration is static, done by the

network administrator and recorded in configuration files. Sometimes the

configuration is dynamic, prepared by programs from file or user input.

Chapter 2. Fundamental APPC Concepts 7

To open a conversation, a client transaction program must specify both the name of

the server transaction program and the name of the LU where the server

transaction program can be reached. Sometimes these names are embedded in the

client transaction program. In other cases, the names are stored externally to the

client transaction program or are specified dynamically.

What Is a Session?

Before transaction programs can communicate with each other, their LUs must be

connected in a mutual relationship called a session. A session connects two LUs, so

it is called an LU-LU session. Figure 2 illustrates this communication relationship.

Multiple concurrent sessions between the same two LUs are called parallel LU-LU

sessions.

Sessions act as conduits that manage the movement of data between a pair of LUs

in an SNA network. Specifically, sessions deal with things such as the quantity of

data transmitted, data security, network routing, and traffic congestion.

 Sessions are maintained by their LUs. Normally, your transaction programs do not

deal with session characteristics. You define session characteristics when you:

v Configure your system

v Use the management verbs

What Is a Conversation?

The communication between transaction programs is called a conversation.

Conversations occur across LU-LU sessions. A conversation starts when a

transaction program issues an APPC verb or CPI Communications call that

allocates a conversation. The conversation style associated with the conversation

indicates the style of data transfer to be used, two-way alternate or two-way

simultaneous.

A conversation that specifies a two-way alternate style of data transfer is also

known as a half-duplex conversation. A conversation that specifies a two-way

simultaneous style of data transfer is referred to as a full-duplex conversation.

When a full-duplex conversation is allocated to a session, a send-receive

relationship is established between the transaction programs connected to the

conversation, and a two-way alternate data transfer occurs where information is

transferred in both directions, one direction at a time. Like a telephone

conversation, one transaction program calls the other, and they “converse”, one

transaction program talking at a time, until a transaction program ends the

conversation. One transaction program issues verbs to send data, and the other

transaction program issues verbs to receive data. When it finishes sending data, the

Figure 2. A Session between Two LUs

8 Client/Server Communications Programming

sending transaction program can transfer send control of the conversation to the

receiving transaction program. One transaction program decides when to end the

conversation and informs the other when it has ended.

When a duplex conversation is allocated to a session, both transaction programs

connected to the conversation are started in send-and-receive state, and a two-way

simultaneous data transfer occurs where information is transferred in both

directions at the same time. Both transaction programs can issue verbs to send and

receive data simultaneously with no transfer of send control required. The

conversation ends when both transaction programs indicate they are ready to stop

sending data, and each transaction program has received the data sent by the

partner. If an error condition occurs, one transaction program can decide to end

both sides of the conversation abruptly.

Figure 3 shows a conversation after it has been set up.

 Conversations can exchange control information and data. The transaction program

should select the conversation style best-suited for its application.

Figure 4 shows a conversation between two transaction programs as it occurs over

a session.

 A session can support only one conversation at a time, but one session can support

many conversations in sequence. Because multiple conversations can reuse

sessions, a session is a long-lived connection compared to a conversation.

When a program allocates a conversation and all applicable sessions are in use, the

LU puts the incoming Attach (allocation request) on a queue. It completes the

allocation when a session becomes available. See Chapter 3, “Using the Attach

Manager,” on page 17 for more information about Attach Manager.

TP2

LU5LU1

TP1

ConversationSession

LU6.2 API services

Transaction Program (TP)

Logical Unit (LU)

Figure 3. Parts of a Conversation

Figure 4. A Conversation between Two Transaction Programs

Chapter 2. Fundamental APPC Concepts 9

Two LUs can also establish parallel sessions with each other to support multiple

concurrent conversations.

Figure 5 shows three parallel sessions between two LUs; each session carries a

conversation.

 An APPC conversation is a half-duplex conversation. At any instant, only one of the

two partner transaction programs has the right to send data. That transaction

program is insend state. The other transaction program has the responsibility to

receive data. It is said to be in receive state. At specified times, the transaction

programs exchange these duties. When the conversation is first set up, the client

transaction is in send state and the server program is in receive state.

Relationships among Sessions, Conversations, and LUs

A connection between LUs is called a session. This connection can pass through

intermediate network nodes. However, LU 6.2 programs do not need to account

for the details of the connection. It makes no difference to the client transaction

program whether the server transaction program is in the same room or thousands

of miles away. The LU 6.2 API is responsible for starting and ending sessions

between LUs of type 6.2.

Though a session can carry only one conversation at a time, it can be reused for

another conversation when the first one is finished. The LU 6.2 software

determines whether to terminate a session when the conversation ends, or to keep

the session open and reuse it.

Some LUs can handle multiple, parallel sessions. Each session is independent.

Some possible relationships among machines, LUs, sessions, and transaction

programs are illustrated in Figure 6 on page 11.

Figure 5. Parallel Sessions between LUs

10 Client/Server Communications Programming

Figure 6 depicts two parallel sessions between LUA1 in System A and LUB1 in

System B. One session carries a conversation between client TPC1 and server TPS1.

The other session is not in use for a conversation at this time.

In System C, LUC1 also supports two parallel sessions. Both are in use by client

TPC3, which is carrying on a conversation with server TPS2 in System A. TPC3

also has a conversation in progress with TPC4 in System D. This figure illustrates

that a transaction program is not limited to a single conversation. The figure also

shows that a program can be both a client and a server. A possible scenario for the

conversations could be that program TPC4 started program TPC3 in order to

request a service. To deliver that service, TPC3 requested a service from TPS2.

Conversation Types

Personal Communications and Communications Server LU 6.2 supports two types

of conversations, mapped and basic, and therefore provides a separate set of verbs

for each. The conversation type you use depends on whether you need full access

to the SNA general data stream (GDS) as provided by basic conversations. The GDS

defines what is known as a GDS variable. A GDS variable consists of one or more

logical records. Each logical record begins with a logical length (LL) field that

specifies the overall length of the logical record (data). The first logical record of a

GDS variable also includes, immediately after the logical length field, an

identification (ID) field that specifies the type of GDS variable.

Mapped Conversations

Use mapped conversations for transaction programs that are the final users of the

data exchanged. A mapped conversation enables advanced program-to-program

communication in an easy-to-use record-level manner. Because a transaction

program using mapped conversations does not require GDS headers to describe

the data, the program does not have to build or interpret these headers. When the

transaction program uses mapped conversations, Personal Communications LU 6.2

builds and interprets GDS variables.

In a mapped conversation, the programs exchange records in whatever format you

design.

LUA1

LUA2

System A

TPC1

TPS2

TPC4

LUD2

System D

LUB1

System B

TPS1

LUC1

System C

TPC3

Figure 6. Relationships between Programs and LUs

Chapter 2. Fundamental APPC Concepts 11

v Each send operation takes a record of a specified length from 0 bytes to 65,535

bytes. Personal Communications and Communications Server formats the record

into a single GDS variable.

v A receive operation returns all or part of one sent record (GDS variable without

header fields), depending on how much buffer space the program allocates. The

return code indicates when the final part of a record sent by the partner

program has been received.

The APPC API takes full responsibility for the following tasks:

v Blocking and buffering multiple records

v Formatting data as SNA GDS variables

v Buffering at the receiving program

v Deblocking and delivery to the Receive operation

Basic Conversations

In a basic conversation, transaction programs exchange logical records from 0 to

32,765 bytes in length.

v Each send operation takes a buffer containing from 0 to 65,535 bytes of logical

records. The buffer can contain one or more logical records and parts of records.

Logical records can be broken across send calls.

v A receive operation can be used to accept either a single logical record or a

buffer filled with one or more logical records and parts of records.

Examples of APPC Operations

Table 1 describes possible LU 6.2 operations in abstract terms.

 Table 1. LU 6.2 Operations

Operation What the Operation Does

Send Sends a block of data to the other program.

Receive If currently in send state, transmits any buffered output data

and enters receive state. Waits for data to arrive and receives it.

Await confirmation Transmits any buffered output data. Waits until the partner

program confirms that it has received and processed all data.

Confirm Sends the partner program confirmation that all data has been

received and processed.

Error If in receive state, purges any buffered input data and enters

send state. If currently in send state, purges any buffered

output data. Causes the partner program’s current operation to

end with a special return code.

Close If currently in send state, transmits any buffered output data.

Ends the conversation.

Both LU 6.2 APIs offer these services (and others), and both offer services that

allow you to combine two or more of these basic operations to improve

performance. The following sections use these terms when discussing the types of

conversations to avoid contrasting the details of each API. For example, the term

Send used in Table 1 can represent the APPC verbs SEND_DATA, or

MC_SEND_DATA, or the CPI-C function CMSEND.

12 Client/Server Communications Programming

Types of APPC Conversations

This section discusses the types of APPC conversations.

v One-way

v Confirmed-delivery

v Inquiry

v Database update

One-Way Conversation

In the one-way conversation, the simplest type of conversation, the client

transaction program passes some data to the server and the server notes it, as

summarized in Table 2.

 Table 2. Actions in One-Way Conversation

Client Actions Server Actions

Send one or more records.

Close. Receive and process the records.

Close.

This minimal sort of conversation is used with data whose delivery is not critical;

for example, to periodically update a status display, to record usage levels, or log a

condition.

Confirmed-Delivery Conversation

In the next simplest type of conversation, the confirmed-delivery conversation, the

client transaction program sends a record and the server confirms its receipt, as

summarized in Table 3.

 Table 3. Actions in Confirmed-Delivery Conversation

Client Actions Server Actions

Send one or more records.

Await confirmation.

Receive and process the records.

Confirm the records.

Close. Close.

This type of conversation can be used in a credit-authorization system (the client

sends an account number and purchase amount, and the server’s confirmation

authorizes the sale) among its other uses. For example, the client transaction

program could send a database record of any kind, and the server could confirm

that the database had been updated. Because there is no upper limit on how much

data the client can send, this type of conversation could be used to send an entire

file of data in batch mode. In this type of conversation the client transaction

program receives only the confirmation; it needs no other data returned to it.

The difference between a Confirm operation and a Send is that Confirm transmits

only the shortest possible SNA message, the positive response that all data has

been received and processed.

Chapter 2. Fundamental APPC Concepts 13

Inquiry Conversation

In an inquiry conversation, the client sends one request for information and the

server generates one response, as summarized in Table 4. (Both the inquiry and the

response can comprise any number of logical records.) This type of conversation

appears in many kinds of data processing applications.

 Table 4. Actions in Inquiry Conversation

Client Actions Server Actions

Send one or more records.

Receive.

Receive and process the records.

Send a response consisting of one or more

records.

Continue to Receive until all response data

has arrived.

Close.

Close.

When you design transactions to this model, the server transaction programs are

very simple. Each handles one instance of one type of query and then terminates.

The client transaction program requests a conversation with the server transaction

program that can answer the desired type of query. The LU 6.2 API services locate

and start a copy of that server transaction program.

Database Update Conversation

In the database update conversation, the client transaction program requests a copy

of data, modifies it, and returns it to be stored. The server transaction program

locks the data for the client’s use until the update is complete. Table 5 summarizes

client and server actions.

 Table 5. Actions in Database Update Conversation

Client Actions Server Actions

Send a request for data (a record key).

Receive.

Receive the key value.

Fetch the record and lock it.

Send a copy of the record.

Receive.

Process the received record.

Send the updated record.

Await confirmation.

Update the database with the received

record.

Confirm the update.

Close. Close.

Refer to Table 1 on page 12 to clarify this process. When the client transaction

program first issues Receive, three things occur:

v LU 6.2 send buffer is flushed of any remaining logical records sent by the client.

14 Client/Server Communications Programming

v The client transaction program, that began in send state, switches to receive

state. The right to send passes to the server transaction program.

v The client transaction program waits until data arrives. (Nonblocking receive

operations are available also.)

Similarly, the second Receive issued by the server flushes its buffer and transfers

the right to send back to the client transaction program.

Conversations That Have Errors

Conversation errors are inevitable, and your transaction program must be prepared

to detect and respond to them. A transaction program uses the Report (Error)

operation, described in Table 1 on page 12, to signal the discovery of an error.

Table 6 summarizes an inquiry conversation in which the server finds a logical

error in the inquiry.

 Table 6. Inquiry Conversation with Error

Client Actions Server Actions

Send one or more records.

Receive.

Receive and process some of the inquiry

records. Find a mistake.

Report (Error).

Send diagnostic error message.

Return code to Receive indicates Report

(Error) by partner.

Close.

Receive diagnostic message, display to user

Close

The main purpose of the Report (Error) operation is to purge all data in transaction

program API buffers that was neither sent nor received. The Report (Error)

operation also gives the right to send to the transaction program which discovered

the error, so that the transaction program can transmit diagnostic data to its

partner. Your transaction program must specify the contents of the diagnostic

message and the operations that follow.

Summary

Two transaction programs use LU 6.2 to exchange data in a conversation. One, the

client transaction program, is typically started by a user. The other, the server

transaction program, can be started automatically to render a service to the client.

A transaction program uses one of two APIs: APPC, or CPI-C, which have different

styles and similar, but not identical, sets of services.

The conversation takes place over a session between two LUs. An LU represents a

point at which a transaction program can access the SNA network. A session

represents the connection between two LUs, without regard to their location or the

distance between them.

Chapter 2. Fundamental APPC Concepts 15

16 Client/Server Communications Programming

Chapter 3. Using the Attach Manager

An important LU 6.2 feature is the ability of a program in one node to start

corresponding programs in other nodes. The attach manager handles incoming

requests to start programs.

This chapter considers programs in your (local) workstation that start at the

request of partner programs. The local program is referred to as remotely started.

Workstation users and administrators want to control which programs can be

remotely started for security and resource control. Users at remote nodes should

not start programs that destroy data or use the local workstation’s memory at

critical times. The attach manager acts as a gate keeper, handling incoming

requests to start programs on the local workstation.

The attach manager takes its name from an SNA message, called an Attach, that

flows between a pair of LUs. An Attach flows when a program that uses the

partner LU initiates a conversation. The LU 6.2 component in the local workstation

passes any Attach it receives to its attach manager for handling. A received Attach

is called an incoming allocation request or incoming Attach. In this chapter, the phrase

incoming allocation request means that the SNA Attach is generated by a partner LU.

The attach manager does the following things:

v Enables remote nodes to start applications in the local workstation. Multiple

instances of a program can be started in series (queued) or in parallel

(nonqueued).

v Passes parameters to remotely started programs.

v Starts programs in Windows or in the background.

v Uses security guidelines to verify incoming allocation requests.
v Forwards the incoming allocation request to the client workstations.

v Checks the conversation type (that is, basic or mapped) and synchronization

level of incoming allocation requests.

v For server programs, specifies timeout values for holding incoming allocation

requests and locally issued APPC RECEIVE_ALLOCATE verbs or CPI

Communications Accept_Conversation or Accept_Incoming (CMACCP,

CMACCI) calls.

Figure 7 illustrates the attach manager function.

© Copyright IBM Corp. 1994, 2006 17

In a communicating pair of transaction programs, only the node that receives

allocation requests needs the attach manager. The attach manager manages three

kinds of input:

v Incoming allocation requests (Attaches) from partner transaction programs

v APPC RECEIVE_ALLOCATE verbs or CPI Communications CMACCP and

CMACCI calls from local programs

v Configuration definitions for transaction programs, user IDs, and passwords

The TP name is a key piece of information in an incoming allocation request. The

attach manager uses the transaction program name to decide which program to

start in the local workstation. Programmers and administrators at both nodes need

to agree on each transaction program name. A program that issues an allocation

request supplies a transaction program name as a parameter to the APPC

[MC_]ALLOCATE or [MC_]SEND_CONVERSATION verb.

When an Attach is received, the transaction program name in the Attach is

matched against transaction program names from the transaction definitions. If a

match is found, the executable name from that definition is started or routed to a

client workstation. If a match is not found, then the name of the executable is

assumed to be the same as that which is specified in the Attach appended with

.EXE.

Differentiating between an Application and a Transaction Program

The term transaction program has a special meaning in APPC. A transaction

program is not an application; it is a section of an application.

A transaction program starts either when an application successfully issues an

APPC RECEIVE_ALLOCATE or TP_STARTED verb. Both of these methods

identify the transaction program as a new transaction program that APPC needs to

know about. APPC reserves a group of memory blocks for the transaction program

and creates a unique transaction program identifier, tp_id, which it returns to the

calling program.

When an application issues a TP_ENDED verb, APPC clears its buffers for that

transaction program and marks the tp_id as not valid. When an application

terminates, APPC ends any active transaction programs associated with that

process.

Figure 7. Attach Manager Function in APPC

18 Client/Server Communications Programming

When the attach manager receives an allocation request and ensures it is valid, and

if a RECEIVE_ALLOCATE is not pending, it starts the application that

corresponds to the incoming transaction program name. Notice that it starts a

program, not a transaction program. Generally, the application then issues a verb

that establishes it as a transaction program. Given mutual consent between the

sending node and the local workstation, you can configure the attach manager to

start any application in the local workstation.

A transaction program must be established before a conversation can be allocated.

An application must supply a tp_id on all conversation verbs that it issues while it

is a part of that transaction program. Many conversations can use a single tp_id

concurrently (such as in multiple threads) or sequentially (where one conversation

follows another). When a transaction program ends, APPC deallocates any active

conversations.

Transaction Program Definitions

Personal Communications and Communications Server configuration uses two

naming levels to identify the remotely started program:

v The 64-character name of the local program known by the partner transaction

program (tp_name)

v The file specification of the local program to be started (filespec)

Using two names enables flexible reconfiguration that can increase the portability

of your APPC programs among workstations.

TP name

The name that a partner transaction program sends in the allocation

request to the attach manager in the local workstation.

 The partner transaction program and the local program must both know

the transaction program name. The transaction program name is a supplied

parameter for RECEIVE_ALLOCATE verbs in programs on local LUs.

Partner transaction programs supply a transaction program name with

APPC [MC_]ALLOCATE or [MC_]SEND_CONVERSATION verbs.

Path name

The transaction program file specification (path name) names the program

to start locally. The transaction program file specification contains the

executable file’s drive, path, file name, and extension.

 Multiple transaction program definitions can specify the same transaction

program file specification. The attach manager must determine whether to

run one or multiple instances of a program, so a given transaction program

file specification must be configured as either queued or nonqueued in all

definitions that name it. For example, if a definition that specifies

MYTP.EXE is configured as “queued—attach manager started”, MYTP.EXE

cannot be configured as nonqueued in another transaction program

definition. However, the transaction program filespec is case sensitive.

Identifying the Transaction Program Name on Both Machines

If the program identified by the attach manager cannot be started, the attach

manager rejects the allocation request; the program that issued an allocation

request is notified that the attach manager could not start the program.

Users or administrators define transaction programs during Personal

Communications configuration to build the list of defined transaction program

Chapter 3. Using the Attach Manager 19

names. Each unique transaction program name to be accepted from a partner

requires a transaction program definition in the local (accepting) workstation

unless you are willing to accept the default. The transaction program definition

contains information about the transaction program. Similarly, during

configuration, a list of security information (allowable passwords and user IDs) is

built from the LU 6.2 conversation security information. Refer to Quick Beginnings

configuration information. Following is a description of the configuration data that

must be specified to define a transaction program.

Defining Conversation Attributes

The conversation parameters sync_level, conv_type, and security_rqd do not

directly influence how the attach manager starts a program. However, the attach

manager uses the parameters to determine whether to reject an incoming allocation

request before queuing it, or checking for corresponding RECEIVE_ALLOCATE

verbs.

Synchronization Level

Specify whether your transaction program will support the verbs and parameters

for confirmation processing when you define sync_level. These APPC verbs are

[MC_]CONFIRM and [MC_]CONFIRMED. Certain parameters on the

[MC_]ALLOCATE, [MC_]SEND_CONVERSATION,

[MC_]PREPARE_TO_RECEIVE, and [MC_]DEALLOCATE are for confirmation

processing. For Common Programming Interface Communications (CPIC) users,

sync_level can be set by the Set_Sync_Level (CMSSL) call.

Incoming allocation requests contain a field that indicates whether a partner

transaction program issues verbs or parameters for confirmation processing. The

attach manager checks the field on the incoming allocation request against the

configured value in its list of transaction program definitions. If the values do not

match, attach manager rejects the incoming allocation request. The possible

configuration choices are:

NONE

The transaction program does not issue any verb that relates to

confirmation processing, in any of its conversations.

CONFIRM

The transaction program can perform confirmation processing on its

conversations. The transaction program can issue verbs and recognize

returned values that relate to confirmation. If the transaction program

contains any of the verbs for confirmation processing, define

sync_level(CONFIRM) to guarantee a compatible session.

EITHER

The transaction program can participate in conversations with partners that

do or do not specify confirmation processing. Do not pick EITHER if the

transaction program being configured requires confirmation processing.

Conversation Type and Style

The conv_type parameter is used to determine both the conversation type and

conversation style of the program to be started. The conversation type attribute

determines whether the program to be started supports basic or mapped records

when it sends and receives data. The conversation style attribute determines

20 Client/Server Communications Programming

whether the program to be started supports half-duplex conversations. The attach

manager checks whether a transaction program uses basic or mapped verbs and if

it uses half-duplex or full-duplex.

The conversation types are:

BASIC

The transaction program issues only basic conversation verbs for its

conversations.

MAPPED

The transaction program issues only mapped conversation verbs for its

conversations.

EITHER

The transaction program issues either basic or mapped conversation verbs

for a conversation, depending on what arrives on the incoming allocation

request.

The conversation styles are:

HALF The transaction program supports half-duplex conversations only.

FULL The transaction program supports full-duplex conversations only.

EITHER

The transaction program supports either full or half duplex conversations.

Conversation Styles

The conversation style associated with the conversation indicates the style of data

transfer to be used, two-way alternate or two-way simultaneous. A conversation

that specifies a two-way alternate style of data transfer is also known as a

half-duplex conversation. A conversation that specifies a two-way simultaneous style

of data transfer is referred to as a full-duplex conversation.

When a full-duplex conversation is allocated to a session, a send-receive

relationship is established between the transaction programs connected to the

conversation, and a two-way alternate data transfer occurs where information is

transferred in both directions, one direction at a time. Like a telephone

conversation, one transaction program calls the other, and they “converse”, one

transaction program talking at a time, until a transaction program ends the

conversation. One transaction program issues verbs to send data, and the other

transaction program issues verbs to receive data. When it finishes sending data, the

sending transaction program can transfer send control of the conversation to the

receiving transaction program. One transaction program decides when to end the

conversation and informs the other when it has ended.

On a half-duplex conversation, only one of the two partner transaction programs

has the right to send data at a time. That transaction program is in send state. The

other transaction program has the responsibility to receive data. It is said to be in

receive state. At specified times, the transaction programs exchange these duties.

When the conversation is first set up, the client transaction is in send state and the

server program is in receive state.

When a duplex conversation is allocated to a session, both transaction programs

connected to the conversation are started in send-and-receive state, and a two-way

simultaneous data transfer occurs where information is transferred in both

directions at the same time. Both transaction programs can issue verbs to send and

Chapter 3. Using the Attach Manager 21

receive data simultaneously with no transfer of send control required. The

conversation ends when both transaction programs indicate they are ready to stop

sending data, and each transaction program has received the data sent by the

partner. If an error condition occurs, one transaction program can decide to end

both sides of the conversation abruptly.

Conversation Security for an Incoming Allocation Request

A transaction program definition can specify that incoming allocation requests

must supply a password and user ID. The password and user ID are optional

parameters on the [MC_]ALLOCATE and [MC_]SEND_CONVERSATION verbs

or the CPIC calls Set_Conversation_Security_UserID (CMSCSU) and

Set_Conversation_Security_PassWord (CMSCSP). If a local transaction program

definition specifies conversation security, the attach manager validates the

password and user ID of incoming allocation requests. The attach manager rejects

the allocation request if a user ID and password are not present, or if they do not

match a valid combination of passwords and user IDs.

The attach manager checks the validity of any incoming allocation requests that

arrive with a password and user ID, even if the transaction program definition

specifies that conversation security is not required. The allocation request is

rejected if the password and user ID do not match a valid combination in the list.

Thus, if a password or user ID arrives in an allocation request, it is never ignored.

Conversation Security for an Outgoing Allocation Request

A remotely started transaction program (one started by another transaction

program) can validate a user ID and password before it allocates a conversation to

a third transaction program. In such a case, the security(SAME) parameter in the

[MC_]ALLOCATE and [MC_]SEND_CONVERSATION verbs can indicate that

the conversation security is already verified. The second Attach automatically gets

the user ID from the first Attach, that started the first conversation.

APPC can obtain the current user ID and send it, with an indicator that the user

ID was validated. In the Attach for a locally started transaction program that uses

the security(SAME) parameter in either the [MC_]ALLOCATE or the

[MC_]SEND_CONVERSATION verb, the partner must be able to accept the

already validated indication.

Refer to System Management Programming for more information about using the

user ID and password.

Using the Attach Manager on Personal Communications

The following sections describe how to start programs located on either the

Personal Communications or Communications Server machine.

Starting the Attach Manager

Users can start and stop the attach manager while the SNA node is active. Each

time the attach manager starts, it begins to process incoming Attaches. When the

attach manager stops, it purges any queued Attaches. Refer to System Management

Programming for the applicable verbs.

The attach manager needs to be started only in nodes that run remotely started

transaction programs. The attach manager does not need to be started in a node if

22 Client/Server Communications Programming

all transaction programs in the node initiate conversations (that is, they all issue

APPC [MC_]ALLOCATE or [MC_]SEND_CONVERSATION verbs). Personal

Communications and Communications Server node operations facility enables

authorized users to start or stop the attach manager at any time. Authorized

programs issue the Enable Attach Manager and Disable Attach Manager node

operations verbs to start or stop the attach manager.

Starting Programs with the Attach Manager

When the attach manager starts a program on a workstation, it uses the load_type

field in the defined transaction program list to decide how to run the program. A

remotely started program can be configured to start in one of the following ways:

Console

An application that displays a window or runs as a full DOS application.

Background

The program starts in a background (detached) process. A background

process should not issue any input or output calls to the keyboard, the

mouse, or the display. If your program is completely debugged and

requires no interactive user input, this option provides the fastest

performance.

If the attach manager cannot start the program (for example, Personal

Communications and Communications Server cannot provide sufficient memory),

the attach manager rejects the incoming allocation request.

If a transaction program issues a RECEIVE_ALLOCATE call and specifies a

transaction program name that has not previously been defined, the system

performs an implicit definition of the transaction program and assigns default

values to the parameters.

The defaults used are:

 Attach timeout = 0 (no timeout is applied)

Receive Allocate timeout = 0 (no timeout is applied)

Attach Manager dynamically

loaded

= Yes (the transaction program can

be loaded by the attach

manager)

These defaults mean that if you issue a call to RECEIVE_ALLOCATE as

previously described, it will not complete until an attempt is made to attach to the

named transaction program, or you can cancel the call.

Matching Incoming Allocation Requests with RECEIVE_ALLOCATE

Verbs

A remotely started program in a local workstation normally issues an APPC

RECEIVE_ALLOCATE verb to start both a transaction program and a

conversation. The APPC RECEIVE_ALLOCATE verb specifies the same transaction

program name that the remote transaction program specified in its APPC

[MC_]ALLOCATE or [MC_]SEND_CONVERSATION verb. APPC passes the

RECEIVE_ALLOCATE verb to the attach manager for processing. When the attach

manager sees a RECEIVE_ALLOCATE verb that matches a received Attach (and

Chapter 3. Using the Attach Manager 23

the attach manager performs several cross-checks), it signals APPC that a

conversation can begin. At this point, the attach manager ends its involvement in

the conversation.

During transaction program configuration, you have two choices for handling

multiple incoming allocation requests for the same program. You can run multiple

instances of the same program concurrently in the local workstation (nonqueued

operation), or you can run one instance of the same program at a time (queued

operation). These values are configured in the queued and dynamic load

parameters, that have the following options:

v Nonqueued—attach manager started

v Queued—attach manager started

v Operator started

Nonqueued Programs

When a program is configured as nonqueued, each incoming allocation request

causes the attach manager to load and execute another instance of the program

associated with the incoming transaction program name.

The attach manager holds valid incoming allocation requests indefinitely, waiting

for a matching RECEIVE_ALLOCATE verb from the program it started. If that

program fails to issue a RECEIVE_ALLOCATE verb (for example, it loops in the

code that precedes the RECEIVE_ALLOCATE verb), the attach manager holds the

allocation request until the process terminates.

Queued Programs

Queued programs can start in one of two ways:

Attach manager started

The program is started by the attach manager.

Operator started

The program is to be started by another program in the workstation or by

an operator.

The attach manager maintains two queues for each queued transaction program

name in the defined transaction program list. One queue is for incoming allocation

requests; the other is for RECEIVE_ALLOCATE verbs. For example, when an

incoming allocation request arrives, the attach manager starts the corresponding

local program or sends a message to the operator. The node holds the incoming

allocation request until the program that the attach manager started issues a

matching RECEIVE_ALLOCATE verb or until a timeout occurs. The node uses the

value configured for the incoming_alloc_timeout parameter to determine when

time-outs occur. Other allocation requests can arrive for that transaction program

or for another transaction program. The other programs wait in their respective

queues until a matching RECEIVE_ALLOCATE verb is issued, or until they time

out.

Local programs can issue RECEIVE_ALLOCATE verbs before any matching

allocation request arrives. The attach manager holds the RECEIVE_ALLOCATE

verb on its respective queue and waits for an allocation request to arrive from a

partner LU. Each queue has a timeout value; the rcv_alloc_timeout parameter

specifies how long a RECEIVE_ALLOCATE verb can wait on a queue before the

verb times out. The attach manager returns queued RECEIVE_ALLOCATE verbs

to the associated programs with an ALLOCATE_NOT_PENDING return code. The

24 Client/Server Communications Programming

timeout value for RECEIVE_ALLOCATE verbs can be 0 to enable programs to

check whether any allocation requests are queued, and, if not, to continue other

processing.

The RECEIVE_ALLOCATE verb can be issued as a nonblocking verb. This enables

the transaction program to service multiple conversations from a single thread in a

single process.

When RECEIVE_ALLOCATE is issued as a nonblocking verb, the attach manager

returns control to the transaction program immediately; the transaction program

need not remain in a wait state while waiting for the matching incoming allocation

request to arrive. Instead, the transaction program can perform other work, and

choose when to wait for the matching incoming allocation request.

The transaction program can queue multiple nonblocking RECEIVE_ALLOCATE

verbs for different conversations. The maximum number of verbs that can be

queued is limited only by resource constraints. A nonblocking

RECEIVE_ALLOCATE verb will remain on the attach manager’s

RECEIVE_ALLOCATE verb queue until either the matching allocation request

arrives or the verb times out, that is, the rcv_alloc_timeout value has been reached.

The attach manager saves the information that identifies the transaction program

when a queued program issues a valid RECEIVE_ALLOCATE verb call for a

transaction program. When the queued program ends, the attach manager

examines the queue of allocation requests for that transaction program. If the

queue is not empty, the attach manager starts a new instance of the program, or

sends a message that directs the operator to start the program.

You should configure the maximum size of the incoming allocation request queue

for each transaction program. Resource constraints limit the number of queued

RECEIVE_ALLOCATE verbs.

The following two cases summarize queued operations:

Case 1:

One or more incoming allocation requests arrive before a

RECEIVE_ALLOCATE verb or CPI Communications CMACCP call is

issued for a given transaction program. The attach manager queues the

incoming allocation requests (for a time specified by a configured timeout

value) until a RECEIVE_ALLOCATE verb is issued. The first incoming

allocation request satisfies the RECEIVE_ALLOCATE verb.

Case 2:

A RECEIVE_ALLOCATE verb is issued before an incoming allocation

request arrives for a given transaction program. The attach manager

queues the RECEIVE_ALLOCATE verb (for a time specified by a

configured timeout value) until an incoming allocation request arrives. In

certain cases, more than one RECEIVE_ALLOCATE verb might be issued

and queued before an incoming allocation request arrives. Each new

incoming allocation request satisfies the next RECEIVE_ALLOCATE verb

in the queue.

Table 7 on page 26 provides a summary of the verbs and incoming allocation

requests associated with queued and dynamic load parameter values.

Chapter 3. Using the Attach Manager 25

Table 7. Verb Processing and Transaction Program Name Configuration

Verb Processing

Transaction Program Operation

Nonqueued—attach

manager started Operator started

Queued—attach manager

started

Incoming allocation request

with pending

RECEIVE_ALLOCATE

verb.

Cannot occur; no queue of

pending

RECEIVE_ALLOCATE

verbs.

OK RECEIVE_ALLOCATE

verb.

OK RECEIVE_ALLOCATE

verb.

Incoming allocation request

without pending

RECEIVE_ALLOCATE

verb.

Load and execute another

program instance.

Hold incoming allocation

request.

Wait for

RECEIVE_ALLOCATE

verb.

Put incoming allocation

request on queue unless

queue is full.

Wait for

RECEIVE_ALLOCATE

verb or for allotted time to

expire.

If program is not started,

load and execute it.

Put incoming allocation

request on queue unless

queue is full.

Wait for

RECEIVE_ALLOCATE

verb or for allotted time to

expire.

RECEIVE_ALLOCATE

verb with incoming

allocation request pending.

OK RECEIVE_ALLOCATE

verb.

OK RECEIVE_ALLOCATE

verb.

OK RECEIVE_ALLOCATE

verb.

RECEIVE_ALLOCATE

verb with no pending

incoming allocation request.

Cannot occur; pending

allocation requests for

nonqueued operations

cannot run out of time.

Hold

RECEIVE_ALLOCATE

verb.

Wait for incoming

allocation request or for

allotted time to expire.

Hold

RECEIVE_ALLOCATE

verb.

Wait for incoming

allocation request or for the

allotted time to expire.

Transaction program

operation ends.

Nothing happens. Nothing happens. If there is a pending

allocation request, reload

the program; otherwise,

reload on the next

incoming allocation request.

Using the Attach Manager on Communications Server SNA API Clients

 This is only available on the Communications Server SNA API

clients.

 The following sections describe how to start programs that are located on

Communications Server SNA API client machines.

Defining Transaction Programs for SNA API Clients

The SNA API Client Attach Manager only supports operator started or nonqueued

attach manager started programs.

Transaction programs located at client machines require transaction program

definitions on both Communications Server and client machines in order to be

remotely started. Following is the transaction program information required on the

server:

26 Client/Server Communications Programming

v Transaction program name

v Conversation type

v Conversation style

v Synchronization level

v Whether or not conversation security is required

Communications Server will verify this information when the incoming allocate

arrives. In addition, the local LU that receives the incoming allocation request must

be enabled to route the request to the client machine.

The client attach manager must have a transaction program defined so that it

knows how to start the requested program. Following is the transaction program

information required on the client:

v Transaction program name

v The local LU that receives the incoming allocation request

v The path name of the program

v Any parameters that need to be passed to the transaction program

Once these definitions are complete and the client attach manager is started,

incoming allocates for transaction programs located on client machines will be

routed to the client for processing.

The default local LU alias for each user can be assigned using the appropriate

configuration utility, either INI configuration or LDAP.

Attach manager started programs can also choose to use a default local LU alias

rather than specify one directly. When the local_LU_alias field is left blank in the

attach manager record, the attach manager uses the configured default local LU

alias when processing incoming conversation requests.

Starting the SNA API Client Attach Manager

Users can start and stop the client attach manager while the SNA node is active.

The client attach manager needs to be started only in clients that run remotely

started transaction programs. The attach manager does not need to be started in a

node if all transaction programs in the node initiate conversations (that is, they all

issue APPC [MC_]ALLOCATE or [MC_]SEND_CONVERSATION verbs).

To start the client attach manager, click the attach manager icon located in

Communications Server for SNA client folder. This will connect the attach manager

to the configured Communications Server and send the list of transaction

definitions that have been defined for that client.

The Attach Manager Panel displays the list of configured transaction programs and

the name of the configured Communications Server. To stop the attach manager,

select Quit.

Notes:

1. If you have the Windows taskbar active, please note the attach manager icon

(Attach Manager indicator) in the right corner next to the clock. A double

left-click displays the Attach Manager Panel; a single right-click hides the

Attach Manager Panel to reduce clutter from the screen. When the Attach

Manager is stopped, the indicator icon disappears.

Chapter 3. Using the Attach Manager 27

2. You can also start the attach manager from an MS-DOS prompt with one of the

following command line options to control whether the Attach Manager Panel

is displayed, and whether the Attach Manager indicator is displayed:

v The -i option causes the attach manager to start without the Attach Manager

Panel being displayed.

v The -h option causes the attach manager to start without the Attach Manager

Panel being displayed. The indicator is not provided, so only use this option

when your connectivity is good and you want to prevent others from using

the Attach Manager Panel.

v The -q option causes the Attach Manager to exit. This option is most useful

when the Attach Manager is started with the -h option.

28 Client/Server Communications Programming

Chapter 4. Writing a Transaction Program

This chapter describes issues to consider when planning and writing transaction

programs to APPC. When developing a transaction program, you must choose

between certain design alternatives. The following list describes the design issues

to consider:

v Choosing either basic or mapped conversations

v Choosing either half-duplex or full-duplex conversations

v Deciding whether to start conversations with or without confirmation

v Using the security features

v Providing for conversion of ASCII names and data (if necessary)

The first part of this chapter provides background information on the application

protocols, conversation states, Personal Communications support tasks, and data

formats. The rest of this chapter describes specific requirements for developing a

transaction program.

Note: Throughout this chapter, LU 6.2 refers to both Personal Communications

and Communications Server.

Application Protocols

The LU 6.2 enables program-to-program communication. The design of your

program depends on the protocols that you define and the communication that

your program must accomplish.

In addition to any rules that you define for your program, LU 6.2 defines rules

that your program must follow when using a conversation. To enforce these rules,

LU 6.2 manages the state of your conversation and allows your program to

perform certain operations only when the conversation is in the correct state. For

example:

v Your program cannot send data unless it has permission to send.

v Your program cannot receive data unless the partner program has permission to

send.

v Your program cannot use a conversation after it has been deallocated.

For more information, see the conversation state tables in Appendix C, “APPC

Conversation State Transitions,” on page 343 or refer to Common Programming

Interface Communications CPI-C Reference Version 2.0 (SC26–4399) for a complete list

of states and permissible operations.

Available Program LU 6.2 Services

This section describes the LU 6.2 services that your transaction program can use to

communicate with another transaction program.

Allocate a Conversation

Requests the local LU to start a conversation with a partner transaction program in

a partner LU.

© Copyright IBM Corp. 1994, 2006 29

Corresponding APPC verbs: ALLOCATE, and MC_ALLOCATE,

SEND_CONVERSATION, and MC_SEND_CONVERSATION.

Corresponding CPI-C call: CMALLC.

Send Data

Sends data to the partner program.

Corresponding APPC verbs: SEND_DATA and MC_SEND_DATA.

Corresponding CPI-C call: CMSEND.

Force Data in the Internal Buffers to Be Sent

Forces the LU to send to the partner program all data it is holding in an internal

buffer.

Note: You do not normally have to use this service to cause the LU to send the

data. The LU automatically sends the data it stores in an internal buffer

when the buffer is full or when it determines that your program has

finished sending.

Corresponding APPC verbs: FLUSH and MC_FLUSH.

Corresponding CPI-C call: CMFLUS.

Receive Data

Receives data from the partner program.

Corresponding APPC verbs: RECEIVE_AND_WAIT, RECEIVE_IMMEDIATE,

MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

Corresponding CPI-C call: CMRCV.

Send Expedited Data

Sends expedited data to the partner program.

Corresponding APPC verbs: SEND_EXPEDITED_DATA and

MC_SEND_EXPEDITED_DATA.

Corresponding CPI-C call: CMSNDX.

Receive Expedited Data

Receives expedited data to the partner program.

Corresponding APPC verbs: RECEIVE_EXPEDITED_DATA and

MC_RECEIVE_EXPEDITED_DATA.

Corresponding CPI-C call: CMRCVX.

Request Permission to Send

30 Client/Server Communications Programming

Requests from the partner program permission to send data.

Corresponding APPC verbs: REQUEST_TO_SEND and MC_REQUEST_TO_SEND.

Corresponding CPI-C call: CMRTS.

Grant Permission to Send

Gives the partner program permission to send data.

Corresponding APPC verbs: PREPARE_TO_RECEIVE and

MC_PREPARE_TO_RECEIVE.

Corresponding CPI-C call: CMPTR.

Request Confirmation

Requests the partner program to confirm that all data has been received and

processed successfully.

Corresponding APPC verbs: CONFIRM and MC_CONFIRM.

Corresponding CPI-C call: CMCFM.

Accept or Reject Confirmation

Sends a reply to a confirmation request.

Corresponding APPC verbs: CONFIRMED, MC_CONFIRMED, SEND_ERROR, and

MC_SEND_ERROR.

Corresponding CPI-C calls CMCFMD and CMSERR.

Request to Be Posted When Information Is Available

Requests that the LU post an event when the conversation has information

available to be received.

Corresponding APPC verb: RECEIVE_AND_POST.

Report an Error

Reports that an error has occurred.

Corresponding verbs: SEND_ERROR and MC_SEND_ERROR.

Corresponding CPI-C call: CMSERR.

Obtain Conversation Attributes

Obtains the attributes of a conversation. These attributes include

v Name of the local LU

v Name of the partner LU

v Name of the session’s transmission service mode

v Type of confirmation protocols supported by the conversation

v Type of conversation

Chapter 4. Writing a Transaction Program 31

Corresponding verbs: GET_ATTRIBUTES, MC_GET_ATTRIBUTES, and GET_TYPE.

Deallocate a Conversation

Ends a conversation with the partner program.

Corresponding verbs: DEALLOCATE and MC_DEALLOCATE.

Choosing a Conversation Type

This section discusses issues you should consider when choosing between basic

and mapped conversations.

Consistency of Conversation Type

The conversation type you use, designated by the ALLOCATE verb, must be

consistent for the entire conversation. You cannot use basic conversation verbs for

some requests and mapped conversation verbs for other requests. LU 6.2 rejects

the verbs if you change from one type of verb to another within a conversation. A

remotely initiated transaction program can issue the GET_TYPE verb to determine

the conversation type.

A program can issue only basic conversation verbs for a basic conversation. A

program using a mapped conversation can issue either basic or mapped verbs. It

must, however, issue verbs of only one format, either basic or mapped.

You can provide your own mapped conversation support using only basic

conversation verbs for a conversation designated as mapped. If you choose to

provide your own mapped conversation support, your program must conform to

the mapped conversation formats and protocols.

See the SNA Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2

and the Systems Network Architecture LU 6.2 Reference: Peer Protocols for more

information on mapped conversation formats and protocols.

Sending Data

Use a basic conversation when you need to optimize your program’s performance

by sending the data from a buffer that contains more than one logical record or a

partial logical record. Basic conversations can improve your program’s execution

efficiency by enabling your program to send several logical records with one

request.

To use the basic conversation, your program must provide a 2-byte logical length

field (LL field) at the beginning of every logical record where

v The last 15 bits of the LL field contain a binary value equal to the length of the

logical record, including the 2-byte length field. The 15-bit limit restricts the

value to a maximum of 32,767 (32,765 bytes of user data plus the 2-byte length

field). If you use a value larger than 32,767, LU 6.2 cannot detect the error and

uses the last 15 bits of the LL field anyway.

The smallest value possible is 2 (the LL field followed by no data). If you use a

value that is less than 2, LU 6.2 indicates an error.

v LU 6.2 ignores the first bit of the LL field. This bit is a concatenation indicator.

If the concatenation indicator is set, the transaction program must append the

data from the following logical record to the data received up to that point. This

concatenation process should continue until the transaction program receives a

32 Client/Server Communications Programming

record in which the concatenation indicator is not set. This definition allows you

to use higher level records (GDS variables) that are longer than 32,767 bytes.

v You must manage the reversal of byte values in your PC.

The PC stores all numeric 16- or 32-bit values with the low-order (least

significant) byte stored in the lower numbered address. Therefore, if a

transaction program computes the length of a logical message and stores that

value as the LL field, the 2 bytes appear in memory with the low-order byte

first, and your PC will send the bytes in this order (incorrectly) over the

communication line.

The transaction program is responsible for putting all transaction-level data,

including LL fields, in the correct order (high-order byte first).

Use a mapped conversation if you do not need to send partial logical records or

more than one logical record. When you send data with the mapped conversation

verbs, LU 6.2 assumes that the buffer contains exactly one complete higher level

record (GDS variable). The mapped conversation support automatically provides

length fields in the correct byte-reversed order and uses concatenated logical

records as needed.

Receiving Data

Use a basic conversation when you need to receive more than one logical record in

one buffer. This option can improve your program’s execution efficiency by

enabling it to receive several logical records with one request (the BUFFER option).

When you use this basic conversation feature, LU 6.2 places the logical records in

your buffer with the 2-byte LL fields intact. The bytes are reversed from normal

IBM-compatible PC order.

Your program must examine the returned fields of the verb to determine if it has

received a complete logical record and, if so, where the next logical record begins.

LU 6.2 provides the rest of an incomplete logical record after a subsequent request

to receive data.

If you want to receive one higher/user level record with a single request, use a

mapped conversation. As you receive data with the mapped conversation verbs,

LU 6.2 ends the receive operation when your program receives a complete

higher/user level record or when your buffer is full. LU 6.2 supplies a return code

when it fills your buffer before your program has received a complete logical

record.

Your program can receive the rest of the higher/user level record by issuing a

subsequent request to receive data. The LU 6.2 mapped conversation support

removes any length fields and automatically concatenates logical records as

necessary.

Reporting Errors and Abnormal Termination

Use a basic conversation for the following reasons:

v To distinguish between errors detected by your program and errors detected by

an application that is using your program

v To distinguish between an abnormal termination caused by your program and

one caused by an application using your program

When reporting an error or when abnormally terminating a conversation with an

LU service program, the basic conversation verbs enable you to indicate which

Chapter 4. Writing a Transaction Program 33

program detected the error. When the partner LU reports the error to the partner

program with a return code, the value of the return code indicates where LU 6.2

detected the error.

If you do not need to distinguish between errors detected by your program and

errors detected by other applications, use a mapped conversation. The mapped

conversation verbs assume that your program detected the error.

Sending an Error Log Data Record

Use a basic conversation to send a log record when you detect an error or

abnormally terminate a conversation. The basic conversation verbs enable you to

specify an error log GDS variable when you report an error or abnormally

terminate a conversation. LU 6.2 sends this log record to the local log and to the

partner LU to be recorded in that log. This feature is useful when your program

detects a critical or unrecoverable error and you want the program to record the

event to help determine the problem.

If you send an error log GDS variable, the format of the record must conform to

the formats defined by SNA. See the IBM Systems Network Architecture Formats for

more information on the error log GDS variable format.

Use a mapped conversation if you do not need to send a log record when you

detect an error or abnormally terminate a conversation. The mapped conversation

verbs assume that your program does not need to record error data in the log to

help determine the problem.

Abnormally Terminating because of a Timeout

To indicate that your program has abnormally terminated the conversation because

of a timeout, use a basic conversation. When abnormally terminating your

conversation, the basic conversation verbs enable you to indicate that your

program is abnormally terminating the conversation because the partner program

has not done the necessary processing in the time allowed. When LU 6.2 reports

the error to the partner transaction program, the return code value indicates that a

timeout caused the abnormal termination.

If you do not need to report the cause of an abnormal termination, use a mapped

conversation. The mapped conversation verbs assume that your program requested

the abnormal termination because of a critical or unrecoverable error.

Requesting Confirmation

Requesting confirmation is an efficient way to determine that the partner program

has received all the data sent so far. If you plan to request confirmation during the

conversation, the allocation transaction must indicate this fact when you request

the allocation of the conversation.

If you use conversation verbs that do not request confirmation, you should not

request the allocation of a conversation supporting confirmation services.

You can write a transaction program to participate in conversations that use

confirmation requests and in conversations that do not use confirmation requests.

34 Client/Server Communications Programming

Choosing between Half-Duplex and Full-Duplex Conversations

On a half-duplex conversation, only one program has the right to send data at a

time. The right to send data must be transferred to the partner program when the

program has finished sending and is ready to receive data. On a full-duplex

conversation, both programs have the right to send data at the same time and can

therefore send and receive data simultaneously. For example, the inquiry and

database update types of conversation are naturally half-duplex.

Use a half-duplex conversation if the data that your program receives next

depends on the partner program’s processing of the data your program is currently

sending. For example, the inquiry and database update types of conversations are

naturally half-duplex.

Use a half-duplex conversation if your program uses confirmation services.

Confirmation is not supported on full-duplex conversations.

Use a full- duplex if the data that your program sends is independent of the data

that the partner program sends. For example, an industrial process control

program that continuously sends information from sensory devices (for example,

temperature, pressure, concentration level) and simultaneously receives and

processes operational instructions from a manager program, should use a

full-duplex conversation.

You can write a transaction program to participate in conversations that use

confirmation requests and in conversations that do not use confirmation requests.

Choosing a Transaction Program Name

When you name a transaction program, choose a name that has a first character

with an EBCDIC code greater than an EBCDIC blank (X’40’). Transaction program

names containing first characters with EBCDIC codes less than X’40’ are reserved

for service transaction programs. Transaction program names can include up to 64

characters.

Using the Security Features

LU 6.2 provides one of two types of security functions: partner LU verification and

end-user verification.Partner LU verification is a session-level security protocol that

takes place at the time the session is activated. End-user verification is a

conversation-level security protocol that takes place at the time a conversation is

started.

Partner LU Verification (Session-Level Security)

Partner LU verification is performed by an exchange of security information

between the two LUs. This exchange is called session-level security. This level of

security is generally required when the communications network is not physically

secure. The local LU and the remote LU each provide a password, and LU 6.2

performs encryption for password verification.It is recommended, but not required,

that each LU pair have a unique password.

End-User Verification (Conversation-Level Security)

End-user verification is used to enable the requested application subsystem to

verify the identity of the requester before providing access to the requested

transaction program and its resources. The security information exchanged can

Chapter 4. Writing a Transaction Program 35

include a user ID and a password. The user IDs provided by conversation-level

security can also be used for auditing and accounting purposes.

In conversation-level security, the requesting transaction program provides the

security information on the ALLOCATE verb, and the remote application

subsystem performs the verification. If the requesting transaction program has not

supplied the correct user ID and password, the remote application subsystem

rejects the request.

An intermediate transaction program (one started by another transaction program)

that requires conversation-level security can be used to access an additional

transaction program that requires conversation-level security. In this case, an

already-verified indicator is set in the allocation request for the additional

transaction program. The user ID saved from the first request, which initiated the

intermediate transaction program, is automatically supplied in the second request.

Converting between EBCDIC and ASCII

LU 6.2 assumes that the interface between it and the transaction program (or the

application subsystem) uses EBCDIC characters where specified by the verb. These

values include the transaction program name, the partner LU name supplied on

ALLOCATE, the mode name, the user ID, and the user password. If your program

stores the incoming names in ASCII, it must be prepared to perform conversions

between ASCII and EBCDIC.

Whether a transaction program needs to translate data depends on a private

agreement between the partner transaction programs. If your program is

communicating with a node that normally uses EBCDIC, you should convert data

to EBCDIC as appropriate.

As a convenience, LU 6.2 provides the CONVERT verb, which converts ASCII

codes to EBCDIC or EBCDIC codes to ASCII. For more information, see

“CONVERT” on page 274.

36 Client/Server Communications Programming

Chapter 5. Implementing APPC Transaction Programs

This chapter describes the implementation of APPC Transaction Programs using

the dynamic link library (DLL) file provided.

The implementation of APPC is designed to be binary compatible with Microsoft®

NT SNA Server on Windows machines, and similar to the implementation of the

APPC interface of OS/2® Communications Manager/2 Version 1.0.

Writing Transaction Programs

A dynamic link library (DLL) file is provided that handles APPC verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL

concurrently.

APPC verbs have a straightforward language interface. Your program fills in fields

in a block of memory called a verb control block (VCB). Then it calls the APPC DLL

and passes a pointer to the verb control block. When its operation is complete,

APPC returns, having used and then modified the fields in the VCB. Your program

can then read the returned parameters from the verb control block.

Table 8 shows source module usage of supplied header files and libraries needed

to compile and link APPC programs. Some of the header files may include other

required header files.

 Table 8. Header Files and Libraries for APPC

Operating

System Header File Library DLL Name

WIN32 WINAPPC.H WAPPC32.LIB WAPPC32.DLL

Option Sets Supported

Personal Communications and Communications Server support the following

APPC option sets. Refer to SNA Transaction Programmer’s Reference for LU type 6.2

for a fuller description of each option set.

101 Flush the LU send buffer.

102 Get attributes.

103 Post on receipt with test for posting (through the RECEIVE_AND_POST

verb).

104 Post on receipt with wait (through the RECEIVE_AND_POST verb).

105 Prepare to receive.

106 Receive immediate.

109 Get transaction program name and instance identifier.

110 Get conversation type.

112 Full-duplex conversation and expedited data.

113 Nonblocking support.

© Copyright IBM Corp. 1994, 2006 37

201 Queued allocation of a contention-winner session.

203 Immediate allocation of a session.

204 Conversations between programs located at the same LU.

205 Queued allocation or when session is free.

211 Session level LU-LU verification.

212 User ID verification.

213 Program-supplied user ID and password.

214 User ID authorization.

241 Send PIP data.

242 Receive PIP data.

243 Accounting.

244 Long locks.

245 Test for request-to-send received.

247 User control data.

251 Extract translation and conversation correlator.

290 Logging of data in a system log.

291 Mapped conversation LU services component.

401 Reliable one-way brackets.

501 CHANGE_SESSION_LIMIT verb.

502 ACTIVATE_SESSION verb.

504 DEACTIVATE_SESSION verb.

505 LU-definition verb.

601 MIN_CONWINNERS_TARGET parameter.

602 RESPONSIBLE(TARGET) parameter.

603 DRAIN_TARGET(NO) parameter.

604 FORCE parameter.

605 LU-LU session limit.

606 Locally known LU names.

607 Uninterpreted LU names.

610 Maximum RU size bounds.

612 Contention winner automatic activation limit.

613 Local maximum (LU, mode) session limit.

616 CPSVCMG mode name support.

Full-Duplex VCBs

To identify definitions for the format 1 VCB that are needed for full-duplex

conversations and to send and receive expedited data, the transaction program

must define a compiler constant called WINAPPC_FORMAT_1 before including

the WINAPPC.H header file. This can be achieved in C language as follows:

38 Client/Server Communications Programming

#define WINAPPC_FORMAT_1

#include <winappc.h>

If this constant is not defined, only the format zero versions of the VCBs will be

accessible from the application.

Queue-Level Nonblocking

Personal Communications and Communications Server APPC API support

queue-level nonblocking. This support is provided through the APPC entry point.

Nonblocking operation enables control to be returned to the application if

processing of a verb cannot be completed immediately, so that the application can

continue other processing until it is notified that the outstanding verb has

completed. Queue-level nonblocking means that the application can issue

nonblocking verbs for different queues and have the verbs processed

simultaneously by Personal Communications. The application can also issue a

succession of nonblocking verbs for a given queue without waiting for any of the

verbs to complete.

Personal Communications and Communications Server maintain six queues for

nonblocking verbs:

v An allocate queue (one for each active transaction program)

v A send/receive queue (one per conversation, half-duplex only)

v A send queue (one per full-duplex conversation)

v A receive queue (one per full-duplex conversation)

v A send-expedited queue (one per conversation)

v A receive-expedited queue (one per conversation)

All six queue types can hold an unlimited number of verbs. Nonblocking verbs are

queued if another (blocking or nonblocking) verb is being processed by either the

Personal Communicationsor Communications Server program. Verbs in an allocate

queue are processed concurrently, whereas verbs in the other queues are processed

one at a time, in the order in which they are received by either program.

The application notifies Personal Communications or Communications Server that

it wants a verb to be processed in nonblocking mode by setting a flag in the opext

field, AP_NON_BLOCKING. The application can supply an event handle with

any nonblocking verb that is used to notify the application of asynchronous verb

completion. This handle is passed to Personal Communications in the

SECONDARY_RC field. If no handle is specified, the application is notified that

the verb has completed when the next verb on that queue specifies that a handle

completes.

It is guaranteed that all preceding verbs with no handle are complete when the

event is signaled after completion of a verb on the same queue that does not

specify a handle.

When a nonblocking verb returns the flag

AP_OPERATION_INCOMPLETE_FLAG, it is set in the opext field.

The APPC verbs that can be issued in nonblocking mode on the allocate queue are:

 (MC_)ALLOCATE

 (MC_)SEND_CONVERSATION

Chapter 5. Implementing APPC Transaction Programs 39

The APPC verbs that can be issued in nonblocking mode on the send/receive

queue are:

 (MC_)CONFIRM

 (MC_)CONFIRMED

 (MC_)DEALLOCATE

 (MC_)FLUSH

 (MC_)PREPARE_TO_RECEIVE

 (MC_)RECEIVE_AND_WAIT

 (MC_)RECEIVE_IMMEDIATE

 (MC_)SEND_DATA

 (MC_)SEND_ERROR

The APPC verbs that can be issued in nonblocking mode on the send queue (for

full-duplex conversations) are:

 (MC_)DEALLOCATE

 (MC_)FLUSH

 (MC_)SEND_DATA

 (MC_)SEND_ERROR

The APPC verbs that can be issued in nonblocking mode on the receive queue (for

full-duplex conversations) are:

 (MC_)RECEIVE_AND_WAIT

 (MC_)RECEIVE_IMMEDIATE

The APPC verb that can be issued in nonblocking mode on the receive-expedited

queue (for full-duplex conversations) is:

 (MC_)RECEIVE_EXPEDITED_DATA

The APPC verbs that can be issued in nonblocking mode on the send-expedited

queue are:

 (MC_)REQUEST_TO_SEND

 (MC_)SEND_EXPEDITED_DATA

The following APPC verbs are always processed asynchronously but are not

associated with any queue:

 (MC_)RECEIVE_AND_POST

 (MC_)TEST_RTS_AND_POST

Personal Communications and Communications Server APPC verbs that cannot be

issued in nonblocking mode (and are processed in blocking mode if the application

sets the nonblocking flag) are:

 (MC_)GET_ATTRIBUTES

 GET_TP_PROPERTIES

 GET_TYPE

 RECEIVE_ALLOCATE

 TEST_RTS

 TP_ENDED

 TP_STARTED

 CNOS

An application cannot issue verbs in nonblocking mode for the send/receive queue

or the send-expedited queue until an ALLOCATE or RECEIVE_ALLOCATE verb

has returned successfully (Personal Communications returns

AP_PARAMETER_CHECK, and AP_BAD_CONV_ID).

40 Client/Server Communications Programming

A nonblocking verb issued for the send/receive queue or the send-expedited

queue, with another (blocking or nonblocking) verb currently outstanding on the

same queue, is added to that queue, and is only processed when the outstanding

verb has completed.

A blocking verb issued when any other verb (for the same conversation) is

outstanding, is rejected by Personal Communications (with primary_rc

AP_TP_BUSY). Note that RECEIVE_AND_POST is treated as a blocking verb in

this respect, but TEST_RTS_AND_POST can be issued with other verbs

outstanding on the same conversation (and is not placed in any of the nonblocking

verb queues). A blocking verb issued when there are no verbs on the same queue

is processed as normal even though there may be verbs on other queues. Note that

TEST_RTS, GET_ATTRIBUTES, GET_STATE and GET_TYPE are not associated

with a queue and may be executed at any time and will never return

AP_TP_BUSY.

Default Local LU

Personal Communications and Communications Server support default local LUs

for both dependent and independent LU 6.2. The default LU is used when the

TP_STARTED verb (see “TP_STARTED” on page 81) is issued with a blank

lu_alias field. For independent LU 6.2, the default LU is the control point LU.

Personal Communications also allows the specification of a default local LU to be

used instead of the control point LU. For dependent LU 6.2, a local LU pool is

used. Refer to System Management Programming for details on the

DEFINE_LOCAL_LU verb. Personal Communications choose an LU from the

default pool, or use the control point LU, as follows:

v If LUs have been configured as members of the default local LU pool, Personal

Communications choose an LU from the pool that is not in use. If all the LUs in

the pool are in use, the TP_STARTED verb fails.

v If no LUs have been configured as members of the default local LU pool,

Personal Communications use the control point LU.

v For Personal Communications, a default Local LU can be specified. Refer to

Configuration File Reference for details.

 The following information only applies to Communications Server

Windows SNA API clients.

 The default local LU alias for each user can be assigned using the appropriate

configuration utility, either INI configuration or LDAP.

APPC programs can choose to use a default local LU alias rather than specify one

directly. When an APPC program issues a TP_START verb with the local LU alias

field set to binary zeroes, the APPC API uses the configured default local LU alias.

Chapter 5. Implementing APPC Transaction Programs 41

42 Client/Server Communications Programming

Chapter 6. Implementing CPI-C Programs

This chapter documents the details of the Personal Communications support for

the CPI-C interface. It covers these main areas:

v Techniques for compiling and linking CPI-C programs

v Methods of preparing and executing CPI-C programs

v Features of the CPI-C versions supported by Personal Communications

The Personal Communications implementation of CPIC is designed to be binary

compatible with Microsoft NT SNA Server on Windows machines, and similar to

the implementation of the CPIC interface of OS/2 Communications Manager/2

and Communications Server/2.

Note: Included in this chapter is information on the CPIC API provided by the

following systems:

v Communications Server running on Windows

v SNA Win32 API clients platforms that are delivered with the

Communications Server product

v Personal Communications for Windows

When there are differences between the support provided by these systems,

it is noted.

Writing CPIC Programs

Personal Communications provide a dynamic link library (DLL) file that handles

CPIC calls.

The DLL is reentrant; multiple application processes and threads can call the DLL

concurrently.

Table 9 shows source module usage of supplied header files and libraries needed

to compile and link CPIC programs. Some of the header files may include other

required header files.

 Table 9. Header Files and Libraries for CPIC

Operating System Header File Library DLL Name

WIN32 WINCPIC.H WCPIC32.LIB WCPIC32.DLL

CPI-C Versions

The CPI-C interface has gone through several version changes and extensions. You

should be aware of these versions for two reasons:

v If you are maintaining or porting an existing program, you need to know which

function calls are portable and which you might need to change if you change

versions.

v If you are writing a new program, you need to be aware when you are writing

code that is dependent on a particular version.

© Copyright IBM Corp. 1994, 2006 43

CPI-C Conformance Class Support

The following CPI-C 2.1 conformance classes are supported as defined by the IBM

document Common Programming Interface Communications CPI-C Reference Version

2.1 (SC26-4399-08).

For details on which classes are not supported by Communications Server clients,

see the notepad icon throughout this chapter.

 This icon denotes important information.

The conversation conformance class allows programs to start and end half-duplex

conversations.

 Starter Set calls:

CMACCP

Accept_Conversation

CMALLC

Allocate

CMDEAL

Deallocate

CMINIT

Initialize_Conversation

CMRCV

Receive

CMSEND

Send_Data
 Advanced Function Calls:

CMCFM

Confirm

CMCFMD

Confirmed

CMECS

Extract_Conversation_State

CMECT

Extract_Conversation_Type

CMEMBS

Extract_Maximum_Buffer_Size

CMEMN

Extract_Mode_Name

CMESL

Extract_Sync_Level

CMFLUS

Flush

CMPTR

Prepare_To_Receive

CMRTS

Request_To_Send

CMSERR

Send_Error

CMSCT

Set_Conversation_Type

CMSDT

Set_Deallocate_Type

44 Client/Server Communications Programming

CMSF Set_Fill

CMSLD

Set_Log_Data

CMSMN

Set_Mode_Name

CMSPTR

Set_Prepare_To_Receive_Type

CMSRT

Set_Receive_Type

CMSRC

Set_Return_Control

CMSST

Set_Send_Type

CMSSL

Set_Sync_Level

 Required sync_level values:

 CM_NONE or CM_CONFIRM

CMSTPN

Set_TP_Name

CMTRTS

Test_Request_To_Send_Received

LU 6.2 conformance class allows a program to use LU 6.2 specific services:

CMEPLN

Extract_Partner_LU_Name

CMSED

Set_Error_Direction

CMSPLN

Set_Partner_LU_Name

The conversation-level non-blocking conformance class allows a program to

regain control if a call cannot complete immediately.

CMCANC

Cancel_Conversation

CMSPM

Set_Processing_Mode

CMWAIT

Wait_For_Conversation

The server conformance class allows a program to register multiple transaction

program names with CPI-C, to accept multiple incoming conversations, and to

manage contexts for different clients.

CMACCI

Accept_Incoming

CMECTX

Extract_Conversation_Context
CMETPN

Extract_TP_Name

CMRLTP

Release_Local_TP_Name

CMINIC

Initialize_For_Incoming

CMSLTP

Specify_Local_TP_Name

Chapter 6. Implementing CPI-C Programs 45

The data conversion conformance class routine allows a program to call local

routines to change the encoding of a character string from the local encoding to

EBCDIC, or vice versa.

CMCNVI

Convert_Incoming

CMCNVO

Convert_Outgoing

The security conformance class allows a program to establish conversations that

use access security information in side information or set directly by the program.

CMESUI

Extract_Security_User_ID

CMSCSP

Set_Conversation_Security_Password

CMSCST

Set_Conversation_Security_Type

 Required conversation_security_type values:

 CM_SECURITY_NONE

 CM_SECURITY_PROGRAM

 CM_SECURITY_PROGRAM_STRONG

 CM_SECURITY_SAME

CMSCSU

Set_Conversation_Security_User_ID

Queue-Level Non-Blocking for regain of control if a call cannot complete.

CMCANC

Cancel_Conversation

CMSQPM

Set_Queue_Processing_Mode

CMWCMP

Wait_For_Completion

Callback Function for regaining control if a call cannot complete.

CMCANC

Cancel_Conversation

CMSQCF

Set_Queue_Callback_Function

Secondary Information allows you to extract secondary error return information.

CMESI

Extract_Secondary_Information

The following Conformance Classes are not supported.

 OSI TP services

 Recoverable Transactions (for resource recovery interface)

 Unchained Transactions (for recoverable transactions)

 Distributed Security (user security services of distributed security server)

 Directory (user designated information stored in a distributed directory)

CPI-C Functions

All the CPI-C functions supported by Personal Communications are listed in

Table 10 on page 47. Use this table for reference when you are maintaining an old

program or when you are writing a new program that must remain compatible

with some existing system.

46 Client/Server Communications Programming

Note: When writing a CPI-C application for the MS Windows SNA API client,

specify the local transaction program via the Specify_Local_TP-Name

(cmsltp) call before accepting an incoming conversation via the

Accept_Conversation (cmaccp) call.

 Table 10. Personal Communications Client Support of CPI-C Functions

Function Long Name

Win32

Clients

cmaccp Accept_Conversation x

cmacci Accept_Incoming x

cmallc Allocate x

cmcanc Cancel_Conversation x

cmcfm Confirm x

cmcfmd Confirmed x

cmcnvi Convert_Incoming x

cmcnvo Convert_Outgoing x

cmdeal Deallocate x

xcmdsi Delete_CPIC_Side_Information x

cmectx Extract_Conversation_Context x

xcecst Extract_Conversation_Security_Type x

cmecst Extract_Conversation_Security_Type x

cmecs Extract_Conversation_State x

cmect Extract_Conversation_Type x

xcmesi Extract_CPIC_Side_Information x

cmembs Extract_Maximum_Buffer_Size x

cmemn Extract_Mode_Name x

cmepln Extract_Partner_LU_Name x

cmesi Extract_Secondary_Information x

cmesui Extract_Security_User_ID x

cmecsu Extract_Security_User_ID x

xcecsu Extract_Security_User_ID x

cmesrm Extract_Send_Receive_Mode x

cmesl Extract_Sync_Level x

xceti Extract_TP_ID x

cmetpn Extract_TP_Name x

cmflus Flush x

cminit Initialize_Conversation x

xcinct Initialize_Conversation_For_TP x

cminic Initialize_For_Incoming x

cmptr Prepare_To_Receive x

cmrcv Receive x

cmrcvx Receive_Expedited x

cmrltp Release_Local_TP_Name x

cmrts Request_To_Send x

cmsend Send_Data x

cmsndx Send_Expedited x

cmserr Send_Error x

cmscsp Set_Conversation_Security_Password x

xcscsp Set_Conversation_Security_Password x

cmscst Set_Conversation_Security_Type x

xcscst Set_Conversation_Security_Type x

cmscsu Set_Conversation_Security_User_ID x

xcscsu Set_Conversation_Security_User_ID x

cmsct Set_Conversation_Type x

xcmssi Set_CPIC_Side_Information x

Chapter 6. Implementing CPI-C Programs 47

Table 10. Personal Communications Client Support of CPI-C Functions (continued)

Function Long Name

Win32

Clients

cmsdt Set_Deallocate_Type x

cmsed Set_Error_Direction x

cmsf Set_Fill x

cmsld Set_Log_Data x

cmsmn Set_Mode_Name x

cmspln Set_Partner_LU_Name x

cmsptr Set_Prepare_To_Receive_Type x

cmspm Set_Processing_Mode x

cmsqcf Set_Queue_Callback_Function x

cmsqpm Set-Queue_Processing_Mode x

cmsrt Set_Receive_Type x

cmsrc Set_Return_Control x

cmssrm Set_Send_Receive_Mode x

cmsst Set_Send_Type x

cmssl Set_Sync_Level x

cmstpn Set_TP_Name x

cmsltp Specify_Local_TP_Name x

xchwnd* Specify_Windows_Handle x

xcstp Start_TP x

cmtrts Test_Request_To_Send_Received x

cmwcmp Wait_For_Completion x

cmwait Wait_For_Conversation x

xcendt End_TP x

WinCPICCleanup* x

WinCPICIsBlocking* -

WinCPICSetBlockingHook* -

WinCPICStartup* x

WinCPICUnhookBlockingHook* -

* indicates: WOSA function for Microsoft Windows

x indicates: Supported function

- indicates: Unsupported function

Specifying Service TP Names

 This function is only supported for Communications Server SNA

API clients.

 You must use special conventions when specifying a service transaction program

name with the CMSTPN and CMSLTP functions. Usually, you specify standard TPs

with the CPI-C functions. Service transaction programs are specialized transaction

programs that provide common network and system services to other programs or

users. Examples of service transaction programs include scheduler programs,

directory services, and spoolers.

The conventions for specifying a service transaction program name with the

CMSTPN and CMSL transaction program functions are

48 Client/Server Communications Programming

v Specify the name with from two to five bytes of ASCII characters.

v Specify the first byte of the name, for example, 0x23, with two bytes of ASCII

characters.

– Split the first byte of the name into two nibbles, for example, 2 and 3, and

specify them in the low- order nibble of each ASCII byte.

– Set the high-order nibble of each ASCII byte to 1, which indicates that you are

specifying a service TP name. Continuing with the example, the first two

bytes specified are 0x12 and 0x13.
v Specify the remaining zero to three bytes of the name as ASCII characters. For

example, 007.

Therefore, specify a service transaction program name of 0x23 007, as 0x12 0x13

007.

Additional Options for Setting Local_LU

CPI-C applications rely on the DEFAULT_LOCAL_LU for use with TP_STARTED.

Unless set otherwise, this is always the LOCAL_LU which matches the LOCAL_CP

CP_NAME. This is not always what is desired.

Any defined LOCAL_LU can be used in place of the DEFAULT_LOCAL_LU by

specifying the LOCAL_LU_ALIAS name of a defined LOCAL_LU in the CPI-C

Side Information definition. The LOCAL_LU and CPI-C Side Information

configuration’s LOCAL_LU_ALIAS names must match exactly. They are

case-sensitive and length-sensitive.

Personal Communications also supports the use of the system environment

APPCLLU which may be used to refer to any defined LOCAL_LU. The value for

APPCLLU must match the LOCAL_LU_ALIAS exactly. It is case-sensitive and

length-sensitive (blanks are also counted in the length). CPI-C functions use this

value for any Operator_Started TP.

Chapter 6. Implementing CPI-C Programs 49

50 Client/Server Communications Programming

Chapter 7. APPC Entry Points

The following sections describe the procedure entry points for APPC.

Note: Included in the chapters of Part 1 of this book is information on the APPC

API provided by the following systems:

v Communications Server running on Windows

v SNA API clients for Win32 platforms that are delivered with the

Communications Server product

v Personal Communications for Windows

When there are differences between the support provided by these systems,

it is noted.

© Copyright IBM Corp. 1994, 2006 51

APPC

You can use this as a synchronous entry point for all of the APPC verbs.

Alternatively, you can use this entry point to issue nonblocking verbs by putting

an event handle in the secondary return code field and setting the queue-level

nonblocking flag in the opext field (AP_NON_BLOCKING).

Syntax

void WINAPI APPC(long)

Input is a pointer to a verb control block.

Returned Values

Examine the primary return code and secondary return code for any errors.

Usage Notes

See also: “WinAsyncAPPCEx()” on page 55.

APPC

52 Client/Server Communications Programming

WinAsyncAPPC()

This is an asynchronous entry point for all of the APPC verbs. An application uses

this entry point if it chooses to be notified of completion through a Windows

message. Personal Communications and Communications Server provide this entry

point for compatibility with existing applications.

Syntax

HANDLE WINAPI WinAsyncAPPC(HWND hWnd,long vcb)

Parameters

hwnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values

The return value specifies whether the asynchronous request completed

successfully. If the request was successful, the actual return value is a handle. If the

function was not successful, Personal Communications returns a 0.

Usage Notes

APPC verbs that can block are as follows:

v [MC_]ALLOCATE

v [MC_]CONFIRM

v [MC_]CONFIRMED

v [MC_]DEALLOCATE

v [MC_]FLUSH

v [MC_]PREPARE_TO_RECEIVE

v RECEIVE_ALLOCATE

v [MC_]RECEIVE_AND_WAIT

v [MC_]RECEIVE_EXPEDITED_DATA

v [MC_]REQUEST_TO_SEND

v [MC_]SEND_CONVERSATION

v [MC_]SEND DATA

v [MC_]SEND_ERROR

v [MC_]SEND_EXPEDITED_DATA

v TP_ENDED

v TP_STARTED

The WinAsyncAPPC entry point permits the verb to be canceled, but does not

support queue-level nonblocking. The APPC entry point supports queue-level

nonblocking, but does not permit the application to cancel the verb.

This entry point does not support queue-level nonblocking. If the queue-level

nonblocking flag AP_NON_BLOCKING is specified on the asynchronous interface,

Personal Communications ignores it. When using the asynchronous entry point, an

application can have only one outstanding function in progress on a conversation

at a time. An attempt to initiate a second function results in the error code

AP_CONV_BUSY. If an application needs to be notified of asynchronous

completion through an event handle, it can use either the WinAsyncAPPCEx or

WinAsyncAPPC()

Chapter 7. APPC Entry Points 53

APPC entry point. The exceptions to the previous paragraph are

RECEIVE_AND_POST and RECEIVE_AND_WAIT. To enable full use to be made

of the asynchronous support, Personal Communications alters asynchronously

issued RECEIVE_AND_WAIT verbs to act like the RECEIVE_AND_POST verb.

Specifically, while an asynchronous RECEIVE_AND_POST or

RECEIVE_AND_WAIT is outstanding, an application can issue the following

verbs on the same conversation:

v REQUEST_TO_SEND

v GET_TYPE

v GET_ATTRIBUTES

v TEST_RTS

v DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

v SEND_ERROR

v TP_ENDED

This enables an application, such as a server, to use an asynchronous

RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST or

RECEIVE_AND_WAIT is outstanding, the application can still use SEND_ERROR

and REQUEST_TO_SEND.

When the asynchronous operation is complete, the application’s window hWnd

receives the message returned by RegisterWindowMessage with

“WinAsyncAPPC” as the input string. The wParam argument contains the

asynchronous task handle returned by the original function call. The IParam

argument contains the original VCB pointer and can be used to determine the final

return code.

WinAPPCCancelAsyncRequest permits an application to cancel any asynchronous

APPC action, but terminates the related conversation or transaction program as

appropriate. Any outstanding operations return with AP_CANCELLED as the

return code.

If the function returns successfully, Personal Communications posts a

WinAsyncAPPC() message to the application when the operation completes or the

conversation is canceled.

See also:

 “WinAsyncAPPCEx()” on page 55.

 “WinAPPCCancelAsyncRequest()” on page 57.

WinAsyncAPPC()

54 Client/Server Communications Programming

WinAsyncAPPCEx()

This is an asynchronous entry point for all of the APPC verbs. Use this call to

enable multiple sessions to be handled on the same thread.

Use this entry point if you want the application to be notified of completion

through an event and your application requires the ability to cancel outstanding

verbs; otherwise, use the APPC queue-level nonblocking entry point.

Syntax

HANDLE WINAPI WinAsyncAPPCEx(HANDLE handle,long vcb);

Parameters

handle

Handle of the event that the application will wait on.

vcb Pointer to verb control block.

Returned Values

The return value specifies whether the asynchronous request was successful. If the

function was successful, the actual return value is a handle. If the function was not

successful, Personal Communications returns a 0.

Usage Notes

This verb is intended for use with WaitForMultipleObjects in the Win32 API.

APPC verbs that can block are as follows:

v [MC_]ALLOCATE

v [MC_]CONFIRM

v [MC_]CONFIRMED

v [MC_]DEALLOCATE

v [MC_]FLUSH

v [MC_]PREPARE_TO_RECEIVE

v RECEIVE_ALLOCATE

v [MC_]RECEIVE_AND_WAIT

v [MC_]REQUEST_TO_SEND

v [MC_]SEND_CONVERSATION

v [MC_]SEND_DATA

v [MC_]SEND_ERROR

v TP_ENDED

v TP_STARTED

This entry point does not support queue-level nonblocking. If the queue-level

nonblocking flag AP_NON_BLOCKING is specified on the asynchronous interface,

Personal Communications ignores it. When using the asynchronous entry point, an

application can have only one outstanding function in progress on a conversation

at a time. An attempt to initiate a second function results in the error code

AP_CONV_BUSY.

WinAsyncAPPCEx()

Chapter 7. APPC Entry Points 55

The WinAsyncAPPCEx entry point permits the verb to be canceled, but does not

support queue-level nonblocking. The APPC entry point supports queue-level

nonblocking, but does not permit the application to cancel the verb. The exceptions

to the previous paragraph are RECEIVE_AND_POST and RECEIVE_AND_WAIT.

To enable full use to be made of the asynchronous support, Personal

Communications alters asynchronously issued RECEIVE_AND_WAIT verbs to act

like the RECEIVE_AND_POST verb. Specifically, while an asynchronous

RECEIVE_AND_POST or RECEIVE_AND_WAIT is outstanding, an application

can issue the following verbs on the same conversation:

v REQUEST_TO_SEND

v GET_TYPE

v GET_ATTRIBUTES

v TEST_RTS

v DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

v SEND_ERROR

v TP_ENDED

This enables an application, and in particular, a server application, to use an

asynchronous RECEIVE_AND_WAIT to receive data. While the

RECEIVE_AND_POST or RECEIVE_AND_WAIT is outstanding, the application

can still use SEND_ERROR and REQUEST_TO_SEND.

When the asynchronous operation is complete, Personal Communications notifies

the application by the signaling of the event. When the application receives the

signal, it examines the primary return code and secondary return code for any

error conditions.

See also:

 “WinAsyncAPPC()” on page 53.

 “WinAPPCCancelAsyncRequest()” on page 57.

 “APPC” on page 52.

WinAsyncAPPCEx()

56 Client/Server Communications Programming

WinAPPCCancelAsyncRequest()

This function cancels an outstanding WinAsyncAPPC-based request.

Syntax

int WINAPI WinAPPCCancelAsyncRequest(HANDLE handle);

Parameters

handle

Supplied parameter; specifies the handle of the request to be canceled.

Returned Values

The return value specifies whether the asynchronous request was canceled. If the

value is 0, Personal Communications canceled the request. Otherwise, the value is

one of the following error codes:

WAPPCINVALID

The specified asynchronous task ID was not valid.

WAPPCALREADY

The asynchronous routine to be canceled has already completed.

Usage Notes

An application program can cancel an asynchronous task that was previously

issued with one of the WinAsyncAPPC functions prior to completion, by issuing

the WinAPPCCancelAsyncRequest() call, and specifying the asynchronous event

as returned by the initial function in the handle.

If the outstanding verb relates to a conversation (for example, SEND_DATA or

RECEIVE_AND_WAIT), Personal Communications purges the verb and

deactivates the session. If the verb relates to a transaction program (for example,

RECEIVE_ALLOCATE or TP_STARTED), Personal Communications ends the

transaction program. In both cases, although Personal Communications deactivates

conversations and sessions as cleanly as possible, it does not flush send buffers or

waiting-for-confirmations or other pending actions. This call is synchronous. After

the previously described processing is complete, Personal Communications posts a

completion message for the canceled verb.

If an attempt to cancel an existing asynchronous WinAsyncAPPC routine fails with

an error code of WAPPCALREADY, the original routine has already completed.

Either the application has dealt with the resulting notification, or the application

has not dealt with the completion notification. It is not possible to cancel an

asynchronous verb issued through the APPC queue-level nonblocking entry point.

See also: “WinAsyncAPPC()” on page 53.

WinAPPCCancelAsyncRequest()

Chapter 7. APPC Entry Points 57

WinAPPCCancelBlockingCall()

This function cancels any outstanding blocking operation for its thread. If Personal

Communications cancels an outstanding blocked call, it generates an error code of

AP_CANCELLED. Use this call only from within a blocking hook function.

Personal Communications and Communications Server provides this function for

backward compatibility with existing applications.

Syntax

Int WINAPI WINAPPCCancelBlockingCall(void);

Returned Values

The return value specifies whether the cancellation request was successful. If the

value is 0, Personal Communications canceled the request. Otherwise, the value is

the following error code:

WAPPCINVALID

There is no outstanding blocking call.

Usage Notes

If the outstanding verb relates to a conversation (for example, SEND_DATA or

RECEIVE_AND_WAIT), Personal Communications purges the verb and

deactivates the session. If the verb relates to a transaction program (for example,

RECEIVE_ALLOCATE or TP_STARTED), Personal Communications ends the

transaction program. In both cases, although Personal Communications deactivates

conversations and sessions as cleanly as possible, it does not flush send buffers or

waiting-for-confirmations or other pending actions. This call is synchronous. After

the previously described processing is complete, the function is finished.

A multithreaded application can have multiple blocking operations outstanding,

but only one per thread. To distinguish between multiple outstanding calls,

WinAPPCCancelBlockingCall() cancels the outstanding operation on the current,

or calling, application thread if one exists; otherwise, it fails. APPC suspends the

calling application thread while an operation is outstanding. As a result, the thread

on which the blocking operation was initiated does not regain control (and

therefore, is not be able to issue a call to WinAPPCCancelBlockingCall()) unless

the application has previously registered a blocking hook for the thread by using

WinAPPCSetBlockingHook.

 This is not supported for Win32 SNA API clients.

WinAPPCCancelBlockingCall()

58 Client/Server Communications Programming

WinAPPCCleanup()

This function terminates and deregisters an application from the APPC API.

Syntax

BOOL WINAPI WinAPPCCleanup(void);

Returned Values

The return value specifies whether the deregistration was successful. If the value is

not 0, Personal Communications have successfully deregistered the application. If

Personal Communications have not deregistered the application, it returns a value

of 0.

Usage Notes

Use WinAPPCCleanup() to deregister Personal Communications application from

the APPC API.

Personal Communications and Communications Server terminates conversations

that are still active and ends transaction programs. This function is equivalent to

issuing TP_ENDED(HARD) on all transaction programs owned by the application.

See also: “WinAPPCStartup()” on page 61.

WinAPPCCleanup()

Chapter 7. APPC Entry Points 59

WinAPPCIsBlocking()

This function determines if a thread is executing while waiting for a previous

blocking call to finish. Personal Communications and Communications Server

provides this function for backward compatibility with existing applications.

Syntax

BOOL WlNAPI WinAPPCIsBlocking(void);

Returned Values

The return value specifies the outcome of the function. If the value is not 0, an

outstanding blocking call is awaiting completion. A value of 0 means there is no

outstanding blocking call.

Usage Notes

Personal Communications and Communications Server DLL prohibits more than

one blocking call per thread; it returns AP_THREAD_BLOCKING if this occurs. A

thread that is executing a blocking call is not reentered unless a blocking hook

function has been set. In this case, WinAPPClsBlocking returns true only from

within a blocking hook function.

See also:

 “WinAPPCCancelBlockingCall()” on page 58.

 “WinAPPCSetBlockingHook()” on page 62.

 “WinAPPCUnhookBlockingHook()” on page 63.

 This is not supported for Win32 SNA API clients.

WinAPPCIsBlocking()

60 Client/Server Communications Programming

WinAPPCStartup()

This function enables an application to specify the version of Personal

Communications required and to retrieve version information from Personal

Communications. This call is not required.

Syntax

int WINAPI WinAPPCStartup(WORD wVersionRequired,

 LPWAPPCDATA wappcdata);

Parameters

wVersionRequired

Specifies the version of Personal Communications support required. The

high-order byte specifies the minor version (revision) number; the

low-order byte specifies the major version number.

wappcdata

Returns the version of APPC API and a description of API implementation.

Returned Values

The return value specifies whether Personal Communications successfully

registered the application and whether it can support the specified version number.

If the value is 0, Personal Communications supports the specified version and it

successfully registers the application. Otherwise, one of the following values is

returned:

WAPPCSYSNOTREADY

The underlying network subsystem is not ready for network

communication.

WAPPCVERNOTSUPPORTED

This particular Personal Communicationsor Communications Server

implementation does not support the version of Personal

Communicationsor Communications Server support requested.

WAPPCINVALID

Personal Communications and Communications Server could not

determine the specified version.

Usage Notes

WinAPPCStartup() is intended to help with compatibility of future releases of the

API. This DLL supports Version 1.0.

See also: “WinAPPCCleanup()” on page 59.

WinAPPCStartup()

Chapter 7. APPC Entry Points 61

WinAPPCSetBlockingHook()

This function enables an APPC implementation of the APPC API to block APPC

function calls.

Personal Communications and Communications Server provides this function for

compatibility with existing applications.

Syntax

FARPROC WINAPI WinAPPCSetBlockingHook(FARPROC IpBlockFunc);

Parameters

IpBlockFunc

Specifies the procedure instance address of the blocking function to be

installed.

Returned Values

The return value points to the procedure instance of the previously installed

blocking function. The application or library that calls the SetBlockingHook

function should save this return value so that it can be restored if needed. (If

nesting is not important, the application can simply discard the value returned by

WinAPPCSetBlockingHook() and eventually use WinAPPCUnhookBlockingHook

to restore the default mechanism.)

Usage Notes

A blocking function returns FALSE if it receives a WM_QUIT message so that

Personal Communications can return control to the application to process the

message and terminate gracefully. Otherwise, the function returns TRUE.

No default blocking hook is implemented. If an application does not set a blocking

hook, the application thread waits indefinitely for the blocking call to return.

If the blocking hook function does not return TRUE, returns the blocking verb to

the application with the primary return code AP_CANCELLED.

This function is implemented by thread. It provides for a particular thread to

replace the blocking mechanism without affecting other threads.

See also:

 “WinAPPCCancelBlockingCall()” on page 58.

 “WinAPPCIsBlocking()” on page 60.

 “WinAPPCUnhookBlockingHook()” on page 63.

 This is not supported for Win32 SNA API clients.

WinAPPCSetBlockingHook()

62 Client/Server Communications Programming

WinAPPCUnhookBlockingHook()

This function removes any previous blocking hook that has been installed.

Personal Communications and Communications Server provides this function for

backward compatibility with existing applications.

Syntax

BOOL WINAPI WinAPPCUnhookBlockingHook (void);

Returned Values

The return value specifies the outcome of the function. It is not 0 if Personal

Communications successfully reinstalled the default mechanism. The value is 0 if

Personal Communications did not reinstall the default mechanism.

Usage Notes

After the function is called, this application thread waits indefinitely for all future

blocking calls to complete.

See also: “WinAPPCSetBlockingHook()” on page 62.

 This is not supported for Win32 SNA API clients.

WinAPPCUnhookBlockingHook()

Chapter 7. APPC Entry Points 63

GetAppcConfig()

This function is not implemented. However, an entry point is provided for

backward compatibility. If a valid set of parameters is specified, Personal

Communications returns APPC_CFG_SUCESS_NO_DEFAULT_REMOTE and puts

a NULL terminator in the first byte of the RemLu buffer.

In many cases this call is not necessary because Personal Communications are

APPN capable nodes. The partner LU name can be specified on ALLOCATE and a

search for the LU will be initiated. However, applications can use the Node

Operator Facility (NOF) interface to retrieve this information. For information on

using the NOF interface, refer to System Management Programming.

GetAppcConfig()

64 Client/Server Communications Programming

GetAppcReturnCode()

This function converts the primary and secondary return codes in the VCB to a

printable string. It provides a standard set of error strings for use by APPC

applications.

Syntax

int WINAPI GetAppcReturnCode (struct appc_hdr *vcb,

 UINT buffer_length,

 unsigned char *buffer_addr);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

buffer_length

Supplied parameter; specifies the length of the buffer pointed to by

buffer_addr. The recommended length is 256.

buffer_addr

Supplied/returned parameter; specifies the address of the buffer that will

hold the formatted, null-terminated string. Length of the string in the

specified buffer.

Returned Values

0x20000001

The parameters are not valid; the function could not read from the

specified verb control block or could not write to the specified buffer.

0x20000002

The specified buffer is too small.

Usage Notes

The descriptive error string returned in buffer_addr does not terminate with a new

line character (\n).

GetAppcReturnCode()

Chapter 7. APPC Entry Points 65

GetAppcReturnCode()

66 Client/Server Communications Programming

Chapter 8. APPC Verbs

This chapter documents the syntax of each verb passed across the APPC API, and

describes the parameters passed in and returned for each verb.

This chapter also provides reference information for the APPC basic and mapped

conversation verbs that are provided for APPC duplex and half-duplex

conversations. As you read through this chapter, you will discover that the basic

and mapped verbs are very similar and that is why they have been combined into

one chapter. However, there are some differences. Those differences are denoted as

follows:

 This symbol appears when information applies only to a basic

verb.

 This symbol appears when information applies only to a mapped

verb.

When the conversation verb can be basic or mapped, it is denoted as follows:

 [MC_]VERBNAME

Note: Included in chapters of Part 1 of this book is information on the APPC API

provided by the following systems:

v Communications Server running on Windows

v SNA API clients for Win32 platforms that are delivered with

Communications Server

v Personal Communications for Windows

When there are differences between the support provided by these systems,

it is noted.

Verb Control Blocks

This section contains a general description of the fields and indications for each

verb.

Common Fields

Each VCB has a number of common fields, as follows:

opcode

Verb operation code: an identifying field containing the name of the verb.

format

Identifies the format of the VCB. The value that this field must be set to in

order to specify the current version of the VCB is documented individually

under each verb.

© Copyright IBM Corp. 1994, 2006 67

primary_rc

Primary return code. Possible values for each verb are listed in the

following sections.

secondary_rc

Secondary return code. This supplements the information provided by the

primary return code. Possible values for each verb are listed in the

following sections. Some VCBs also contain the following fields.

opext Verb extension code. This supplements the information provided by the

verb operation code. If the verb signal is to be processed in nonblocking

mode, the flag AP_NON_BLOCKING must be set. In the signals described

below these common fields are included, but not explained individually.

TP Identifiers

An 8-byte transaction program identifier is assigned to each active

transaction program. This identifier is assigned by Personal

Communications.

 The transaction program identifier is used to route TP_ENDED verbs and

as a correlator on conversation verbs.

The verb control blocks for each signal are described in the following section.

APPC API Support

Verbs Supported

Personal Communications supports the following verbs at the APPC API.

Type Independent Verbs

GET_TP_PROPERTIES

GET_TYPE

RECEIVE_ALLOCATE

SET_TP_PROPERTIES

TP_ENDED

TP_STARTED

Conversation Verbs

[MC_]ALLOCATE

[MC_]CONFIRM

[MC_]CONFIRMED

[MC_]DEALLOCATE

[MC_]FLUSH

[MC_]GET_ATTRIBUTES

[MC_]PREPARE_TO_RECEIVE

[MC_]RECEIVE_AND_POST

[MC_]RECEIVE_AND_WAIT

[MC_]RECEIVE_EXPEDITED_DATA

[MC_]RECEIVE_IMMEDIATE

[MC_]REQUEST_TO_SEND

[MC_]SEND_CONVERSATION

[MC_]SEND_DATA

[MC_]SEND_ERROR

[MC_]SEND_EXPEDITED_DATA

[MC_]TEST_RTS

[MC_]TEST_RTS_AND_POST

GET_TP_PROPERTIES

68 Client/Server Communications Programming

GET_TP_PROPERTIES

GET_TP_PROPERTIES returns attributes associated with the transaction program.

VCB Structure

typedef struct get_tp_properties

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned char reserv2[2] /* verb format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned char tp_name[64]; /* TP name */

 unsigned char lu_alias[8]; /* LU alias */

 luw_id_overlay luw_id; /* LUW identifier */

 unsigned char fqlu_name[17]; /* fully qualified LU name */

 unsigned char reserv3[10]; /* reserved */

 unsigned char user_id[10]; /* user id */

} GET_TP_PROPERTIES;

typedef struct luw_id_overlay

{

 unsigned char fqlu_name_len; /* fully qualified LU name length */

 unsigned char fqlu_name[17]; /* fully qualified LU name */

 unsigned char instance[6]; /* instance number */

 unsigned char sequence[2]; /* sequence number */

} LUW_ID_OVERLAY;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_GET_TP_PROPERTIES

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

opext AP_BASIC_CONVERSATION

format

Identifies the format of the VCB. Set this field to one to specify the version

of the VCB listed above.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

tp_name

Name of the local transaction program, that is, the transaction program

issuing this verb. Personal Communications does not check the character

set of this field.

GET_TP_PROPERTIES

Chapter 8. APPC Verbs 69

lu_alias

Alias of the local LU associated with the transaction program. This is an

8-byte string in a locally displayable character set. All 8 bytes are

significant and must be set.

The luw_id field is a Logical Unit of Work identifier associated with unprotected

conversations (conversations with sync_level of AP_NONE or

AP_CONFIRM_SYNC_LEVEL). The luw_id_overlay contains the following

parameters:

luw_id_overlay.fqlu_name_len

Length of fully qualified LU name associated with Logical Unit of Work.

luw_id_overlay.fqlu_name

Fully qualified LU name associated with Logical Unit of Work. This name

is up to 17 bytes long and is right-padded with EBCDIC blanks. It is

composed of two type-A EBCDIC character strings concatenated by an

EBCDIC dot. (Each name can have a maximum length of 8 bytes with no

embedded blanks. If the network ID is not present, then omit the dot.) If

the name length is less than 17 bytes, instance and sequence immediately

follow the name (note that this means the fields of the LUW_ID_OVERLAY

structure cannot be used to access either instance or sequence).

luw_id_overlay.instance

Logical unit of work instance number. This is a binary string of length 6

bytes.

luw_id_overlay.sequence

Logical unit of work sequence number. This is a binary string of length 2

bytes.

If luw_id_overlay.fqlu_name_len is less than 17, luw_id_overlay is right padded

with EDCDIC blanks (after instance and sequence).

fqlu_name

Fully qualified name of the local LU associated with the transaction

program. This name is 17 bytes long and is right-padded with EBCDIC

blanks. It is composed of two type-A EBCDIC character strings

concatenated by an EBCDIC dot. (Each name can have a maximum length

of 8 bytes with no embedded blanks. If the network ID is not present, then

omit the dot.)

user_id

User ID of the initiator of the transaction. This is a 10-byte type-AE

EBCDIC character string, padded to the right with EBCDIC spaces.

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_TP_ID

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

GET_TP_PROPERTIES

70 Client/Server Communications Programming

GET_TYPE

The GET_TYPE verb returns the conversation type (basic or mapped) of a

particular conversation.

VCB Structure

typedef struct get_type

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char conv_type; /* conversation type */

 unsigned char conv_style; /* conversation style */

} GET_TYPE;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_GET_TYPE

opext AP_BASIC_CONVERSATION

format

Identifies the format of the VCB. Set this field to one to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id

Conversation identifier. The value of this parameter was returned by the

ALLOCATE verb in the invoking transaction program or by

RECEIVE_ALLOCATE in the invoked transaction program.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

conv_type

Conversation type of the conversation identified by conv_id.

AP_BASIC_CONVERSATION

AP_MAPPED_CONVERSATION

conv_style

Conversation style of the conversation identified by conv_id. This field

requires the format 1 version of the VCB. See “Full-Duplex VCBs” on page

38 for more details on accessing format 1 VCBs.

GET_TYPE

Chapter 8. APPC Verbs 71

AP_HALF_DUPLEX

AP_FULL_DUPLEX

 If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_TP_ID

AP_BAD_CONV_ID

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

GET_TYPE

72 Client/Server Communications Programming

RECEIVE_ALLOCATE

The RECEIVE_ALLOCATE verb requests information needed to establish a new

transaction program for a conversation with a partner transaction program that has

issued an ALLOCATE or MC_ALLOCATE verb.

VCB Structure

typedef struct receive_allocate

{

 unsigned shor opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned shor primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_name[64]; /* TP name */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char sync_level; /* sync Level */

 unsigned char conv_type; /* conversation type */

 unsigned char user_id[10]; /* user ID */

 unsigned char lu_alias[8]; /* LU alias */

 unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char mode_name[8]; /* mode name */

 unsigned char reserv3[2]; /* reserved */

 unsigned long conv_group_id; /* conversation group ID */

 unsigned char fqplu_name[17]; /* fully qualified partner LU name */

 unsigned char pip_incoming; /* received PIP data */

 unsigned char conversation_style; /* conversation style */

 unsigned char reserv4[3]; /* reserved */

 unsigned char password[10]; /* security password */

 unsigned char reserv5[2]; /* reserved */

 unsigned char dload_id[8]; /* user ID */

} RECEIVE_ALLOCATE;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_RECEIVE_ALLOCATE

opext AP_BASIC_CONVERSATION

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_name

Name of the transaction program. Personal Communications does not

check the character set of this field.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

tp_id Identifier for the local transaction program. This value is assigned by

RECEIVE_ALLOCATE

Chapter 8. APPC Verbs 73

Personal Communications to the transaction program. The transaction

program passes this identifier to Personal Communications on all

subsequent APPC verbs.

conv_id

Conversation identifier. This value identifies the conversation established

between the two transaction programs.

sync_level

Synchronization level of the conversation.

 AP_CONFIRM_SYNC_LEVEL

AP_NONE

conv_type

Conversation type of the conversation identified by conv_id.

AP_BASIC_CONVERSATION

AP_MAPPED_CONVERSATION

user_id

User ID supplied by the partner transaction program. This is a 10-byte

type-AE EBCDIC character string, padded to the right with EBCDIC

spaces.

lu_alias

Alias by which the local LU is known. This is an 8-byte string in a locally

displayable character set. All 8 bytes are significant and must be set.

plu_alias

Alias by which the partner LU is known to the local transaction program.

This is an 8-byte string in a locally displayable character set. All 8 bytes are

significant and must be set.

mode_name

Name of a set of networking characteristics defined during configuration.

This is an 8-byte alphanumeric type-A EBCDIC string (starting with a

letter), padded to the right with EBCDIC spaces.

conv_group_id

Conversation group identifier for the session being used by this

conversation.

fqplu_name

Fully qualified LU name for the partner LU. This name is 17 bytes long

and is right-padded with EBCDIC blanks. It is composed of two type-A

EBCDIC character strings concatenated by an EBCDIC dot. (Each name can

have a maximum length of 8 bytes with no embedded blanks. If the

network ID is not present, omit the dot.)

pip_incoming

Specifies whether the partner transaction program-supplied Program

Initialization Parameters (PIP) on the [MC_]ALLOCATE request. Set to

AP_YES or AP_NO. If AP_YES, the PIP data will be received on the first

[MC_]RECEIVE_* verb issued on this conversation.

conversation_style

Conversation style of the conversation identified by conv_id.

AP_HALF_DUPLEX

AP_FULL_DUPLEX

RECEIVE_ALLOCATE

74 Client/Server Communications Programming

password

Password associated with user_id. This is a 10-byte type-AE EBCDIC

character string, padded to the right with EBCDIC spaces. This is required

if Security=Program (AP_PGM or AP_PGM_STRONG); otherwise, it is

optional.

dload_id

This field can only be set if the format field is set to 1. If the

RECEIVE_ALLOCATE is issued in response to a

DYNAMIC_LOAD_INDICATION, then this field can be used to correlate

the two signals in the following ways.

 The RECEIVE_ALLOCATE will only be correlated with the

DYNAMIC_LOAD_INDICATION if the dload_id is set to one of the

following:

v All zeros

v The dload_id field on the DYNAMIC_LOAD_INDICATION.

Note: This parameter is not supported on the SNA API clients.

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_UNDEFINED_TP_NAME

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

 AP_UNEXPECTED_SYSTEM_ERROR

RECEIVE_ALLOCATE

Chapter 8. APPC Verbs 75

SET_TP_PROPERTIES

SET_TP_PROPERTIES sets attributes associated with the TP.

VCB Structure

typedef struct set_tp_properties

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned char set_prot_id; /* set protected LUW identifier */

 unsigned char new_prot_id; /* new protected LUW identifier */

 unsigned char prot_id[26]; /* protected LUW identifier */

 unsigned char set_unprot_id; /* set unprotected LUW identifier */

 unsigned char new_unprot_id; /* new unprotected LUW identifier */

 unsigned char unprot_id[26]; /* unprotected LUW identifier */

 unsigned char set_user_id; /* */

 unsigned char set_password; /* */

 unsigned char user_id[10]; /* */

 unsigned char new_password[10];/* */

} SET_TP_PROPERTIES;

Supplied Parameters

The TP supplies the following parameters to Personal Communications:

opcode

AP_SET_TP_PROPERTIES

tp_id Identifier for the local TP. The value of this parameter was returned by the

TP_STARTED verb in the invoking TP or by RECEIVE_ALLOCATE in the

invoked TP.

opext AP_BASIC_CONVERSATION

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

set_prot_id

Specifies whether the protected Logical Unit of Work identifier should be

set.

 AP_YES

 AP_NO

new_prot_id

Specifies whether Personal Communications should generate a new

protected Logical Unit of Work identifier. Otherwise, prot_id is used to set

the protected LUW identifier. Reserved if set_prot_id is set to AP_NO.

 AP_YES

 AP_NO

The prot_id structure specifies the new protected LUW identifier if

set_prot_id is set to AP_YES and new_prot_id is set to AP_NO. Otherwise

this structure is reserved.

set_unprot_id

Specifies whether the unprotected Logical Unit of Work identifier should

be set.

SET_TP_PROPERTIES

76 Client/Server Communications Programming

AP_YES

 AP_NO

new_unprot_id

Specifies whether Personal Communications should generate a new

unprotected Logical Unit of Work identifier. Otherwise, unprot_id is used

to set the protected LUW identifier. Reserved if set_unprot_id is set to

AP_NO.

 AP_YES

 AP_NO

The unprot_id structure specifies the new unprotected LUW identifier if

set_unprot_id is set to AP_YES and new_unprot_id is set to AP_NO.

Otherwise this structure is reserved.

set_user_id

Specifies whether the user_id field should be set.

 AP_YES

 AP_NO

set_password

Specifies whether the new_password field should be set.

 AP_YES

 AP_NO

user_id

If set_user_id is set to AP_YES, it specifies the new user id. Otherwise this

field is reserved.

new_password

If set_password is set to AP_YES, it specifies the new password. Otherwise

this field is reserved.

 Note: If an ALLOCATE or SEND_CONVERSATION specifies a security

type of NAP_SAME, but does not specify a user ID and password

specified on a previous SET_TP_PROPERTIES verb (if any) are used. If the

ALLOCATE or SEND_CONVERSATION do carry a user ID and password,

then these are always used in preference to any which may have been

specified on the SET_TP_PROPERTIES verb.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_TP_ID

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

 AP_TP_BUSY

SET_TP_PROPERTIES

Chapter 8. APPC Verbs 77

AP_UNEXPECTED_SYSTEM_ERROR

SET_TP_PROPERTIES

78 Client/Server Communications Programming

TP_ENDED

The TP_ENDED verb notifies Personal Communications that a specified

transaction program has ended.

VCB Structure

typedef struct tp_ended

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned char type; /* type of TP ended */

} TP_ENDED;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_TP_ENDED

opext AP_BASIC_CONVERSATION

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb for an invoking transaction

program, or by the RECEIVE_ALLOCATE verb for an invoked transaction

program.

type Type of TP_ENDED.

AP_HARD

AP_SOFT

AP_ABEND

AP_CANCEL

If type is AP_ABEND, Personal Communications does not reply to the TP_ENDED

signal.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameter:

primary_rc

AP_OK

Returned Parameters

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

TP_ENDED

Chapter 8. APPC Verbs 79

secondary_rc

AP_BAD_TP_ID

AP_BAD_TYPE

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

TP_ENDED

80 Client/Server Communications Programming

TP_STARTED

The TP_STARTED verb notifies Personal Communications that a program has

requested resources for a transaction program initiated as a result of a local

command, rather than an incoming allocation request.

VCB Structure

typedef struct tp_started

{

 unsigned short opcode; /* verb operation */

 unsigned char opext; /* verb extension */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char lu_alias[8]; /* LU alias */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned char tp_name[64]; /* TP name */

} TP_STARTED;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_TP_STARTED

opext AP_BASIC_CONVERSATION

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

lu_alias

Alias by which the local LU is known. If it is set to zero, Communications

Server uses the control point LU. This is an 8-byte string in a locally

displayable character set. For Personal Communications, use the default

local LU, if specified, otherwise use the control point LU. This is an 8–byte

string in a locally displayable character set. All 8 bytes are significant and

must be set. A blank lu_alias field is accepted. In this case

Communications Server uses the control point LU and Personal

Communications uses the default local LU, if specified, otherwise Personal

Communications uses the control point LU.

 The following information only applies on the

Communications Server Win32 SNA API clients.

The default local LU alias for each user can be assigned using the

appropriate configuration utility, either INI configuration or LDAP.

 APPC programs can choose to use a default local LU alias rather than

specify one directly. When an APPC program issues a TP_START verb

with the local_LU_alias field set to binary zeroes, the APPC API uses the

configured default local LU alias.

TP_STARTED

Chapter 8. APPC Verbs 81

tp_name

Name of the transaction program. Personal Communications does not

check the character set of this field.

Returned Parameters

If the verb was executed successfully, Personal Communications returns the

following parameters:

primary_rc

AP_OK

tp_id Identifier for the local transaction program. This value is assigned by

Personal Communications to the transaction program. The transaction

program passes this identifier to Personal Communications on all

subsequent APPC verbs.

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_LU_NAME

AP_INVALID_ENABLE_POOL

The conditions generating the following possible primary return code (primary_rc)

are described in Appendix A, “APPC Common Return Codes,” on page 321.

 AP_UNEXPECTED_SYSTEM_ERROR

TP_STARTED

82 Client/Server Communications Programming

[MC_]ALLOCATE

The [MC_]ALLOCATE verb is issued by the invoking transaction program. This

verb allocates a session between the local LU and the partner LU and then (in

conjunction with the RECEIVE_ALLOCATE verb) establishes a conversation

between the invoking transaction program and the invoked transaction program.

The ALLOCATE verb can establish either a basic or mapped conversation. Using

the ALLOCATE verb to establish a mapped conversation enables the transaction

program to use basic conversation verbs to communicate with a mapped

conversation partner transaction program.

Personal Communications generates a conversation identifier (conv_id) when this

verb executes successfully. This identifier is a parameter that is required for all

other APPC conversation verbs.

VCB Structure

typedef struct allocate

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char conv_type; /* conversation type */

 unsigned char sync_level; /* sync level */

 unsigned char reserv3[2]; /* reserved */

 unsigned char rtn_ctl; /* return control */

 unsigned char conversation_style; /* conversation style */

 unsigned long conv_group_id; /* conversation group identifier */

 unsigned long sense_data; /* sense data */

 unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char mode_name[8]; /* mode name */

 unsigned char tp_name[64]; /* partner TP name */

 unsigned char security; /* security level */

 unsigned char reserv5[11]; /* reserved */

 unsigned char pwd[10]; /* security password */

 unsigned char user_id[10]; /* security user_id */

 unsigned short pip_dlen; /* PIP data length */

 unsigned char *pip_dptr; /* pointer to PIP data */

 unsigned char reserv5a; /* reserved */

 unsigned char fqplu_name[17]; /* fully qualified partner LU */

 /* name */

 unsigned char reserv6[8]; /* reserved */

} ALLOCATE;

typedef struct mc_allocate

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char reserv3; /* reserved */

 unsigned char sync_level; /* sync level */

 unsigned char reserv4[2]; /* reserved */

 unsigned char rtn_ctl; /* return control */

 unsigned char conversation_style; /* conversation style */

 unsigned long conv_group_id; /* conversation group identifier */

[MC_]ALLOCATE

Chapter 8. APPC Verbs 83

unsigned long sense_data; /* sense data */

 unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char mode_name[8]; /* mode name */

 unsigned char tp_name[64]; /* partner TP name */

 unsigned char security; /* security level */

 unsigned char reserv6[11]; /* reserved */

 unsigned char pwd[10]; /* security password */

 unsigned char user_id[10]; /* security user_id */

 unsigned short pip_dlen; /* PIP data length */

 unsigned char *pip_dptr; /* pointer to PIP data */

 unsigned char reserv6a; /* reserved */

 unsigned char fqplu_name[17]; /* fully qualified partner LU */

 /* name */

 unsigned char reserv7[8]; /* reserved */

} MC_ALLOCATE;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_ALLOCATE

 AP_M_ALLOCATE

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb for an

invoking transaction program, or by the RECEIVE_ALLOCATE verb for

an invoked transaction program.

conv_type

 Type of conversation to allocate.

AP_BASIC_CONVERSATION

AP_MAPPED_CONVERSATION

If the ALLOCATE verb establishes a mapped conversation, the local

transaction program must issue basic-conversation verbs and provide its

own mapping layer to convert data records to logical records and logical

records to data records. The partner transaction program can issue

basic-conversation verbs and provide the mapping layer, or it can use

mapped-conversation verbs (if the implementation of APPC that the

partner transaction program is using supports mapped-conversation verbs).

For further information, refer to IBM Systems Network Architecture: LU 6.2

Reference: Peer Protocols.

sync_level

Synchronization level of the conversation.

[MC_]ALLOCATE

84 Client/Server Communications Programming

AP_CONFIRM_SYNC_LEVEL

AP_NONE

rtn_ctl Specifies when the local LU acting on a session request from the local

transaction program is to return control to the local transaction program.

AP_IMMEDIATE

AP_WHEN_SESSION_ALLOCATED

AP_WHEN_SESSION_FREE

AP_WHEN_CONV_GROUP_ALLOC

AP_WHEN_CONWINNER_ALLOC

AP_WHEN_CONLOSER_ALLOC

conversation_style

Conversation style of the conversation identified by conv_id

AP_HALF_DUPLEX

AP_FULL_DUPLEX

conv_group_id

Conversation group identifier for the session to be allocated. This

parameter is only supplied if rtn_ctl is set to

AP_WHEN_CONV_GROUP_ALLOC.

plu_alias

Alias by which the partner LU is known to the local transaction program.

This is an 8-byte string in a locally displayable character set. All 8 bytes are

significant and must be set. This name must match the name of a partner

LU established during configuration. If this field is set to all zeros,

Personal Communications uses the fqplu_name field to specify the

required partner LU.

 The following information only applies to Communications

Server Win32 SNA API clients.

The default partner LU alias for each user can be assigned using the

appropriate configuration utility, either INI configuration or LDAP.

 APPC programs can choose to use a default partner LU alias rather than

specify one directly. When an APPC program issues an ALLOCATE verb

with the partner_LU_alias field and the fully_qualified_partner_LU field

set to binary zeroes, the APPC API uses the configured default partner LU

alias.

mode_name

Name of a set of networking characteristics usually defined during

configuration. This is an 8-byte alphanumeric type-A EBCDIC string

(starting with a letter), padded to the right with EBCDIC spaces.

tp_name

Name of the invoked transaction program. Personal Communications does

not check the character set of this field. The value of tp_name specified by

the ALLOCATE verb in the invoking transaction program must match the

value of tp_name specified by the RECEIVE_ALLOCATE verb in the

invoked transaction program.

[MC_]ALLOCATE

Chapter 8. APPC Verbs 85

security

Specifies the information the partner LU requires in order to validate

access to the invoked transaction program.

AP_NONE

 The invoked transaction program uses no conversation security.

AP_PGM

 The invoked transaction program uses conversation security, which

requires a user ID and password.

AP_SAME

 The invoked transaction program uses conversation security and is

configured to accept an already-verified indicator. The user ID will be sent

with an already-verified indicator, informing the invoked transaction

program that no password is required.

AP_PGM_STRONG

 Same as AP_PGM, but the ALLOCATE will only succeed if the session to

the partner LU supports password substitution.

Note: If the [MC_]ALLOCATE specifies a security type of AP_SAME but

does not specify a user ID and password, the user ID and password

specified on a previous SET_TP_PROPERTIES verb (if any) are used.

If the [MC_]ALLOCATE does carry a user ID and password, then

these are always used in place of any that may have been specified

on the SET_TP_PROPERTIES verb.

pwd Password associated with user_id. This is a 10-byte type-AE EBCDIC

character string, padded to the right with EBCDIC spaces. This is required

if Security=Program (AP_PGM or AP_PGM_STRONG); otherwise, it is

optional.

user_id

User ID required to access the partner transaction program. This is a

10-byte type-AE EBCDIC character string, padded to the right with

EBCDIC spaces. This is required if Security=Program (AP_PGM or

AP_PGM_STRONG); otherwise, it is optional.

pip_dlen

Length of the program initialization parameters (PIP) to be passed to the

partner transaction program. Range: 0–32767

pip_dptr

Address of buffer containing PIP data. Use this parameter only if pip_dlen

is greater than zero.

fqplu_name

Fully qualified LU name for the partner LU. This name is 17 bytes long

and is right-padded with EBCDIC blanks. It is composed of two type-A

EBCDIC character strings concatenated by an EBCDIC dot. (Each name can

have a maximum length of 8 bytes with no embedded blanks. If the

network ID is not present, then omit the dot.) This field is only significant

if the plu_alias field is set to all zeros.

[MC_]ALLOCATE

86 Client/Server Communications Programming

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

conv_id

Conversation identifier. This value identifies the conversation established

between the two transaction programs.

conv_group_id

Conversation group identifier of the session allocated to the conversation.

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the rtn_ctl parameter was set to AP_IMMEDIATE, and no session is available

immediately, Personal Communications returns the following parameter:

primary_rc

AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_TYPE

 AP_BAD_DUPLEX_TYPE

 AP_BAD_RETURN_CONTROL

 AP_BAD_SECURITY

 AP_BAD_SYNC_LEVEL

 AP_CONFIRM_INVALID_FOR_FDX

 AP_NO_USE_OF_SNASVCMG_CPSVCMG

 AP_BAD_TP_ID

 AP_PIP_LEN_INCORRECT

 AP_UNKNOWN_PARTNER_MODE

sense_data

Provides additional information on the reason the [MC_]ALLOCATE

failed.

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_FDX_NOT_SUPPORTED_BY_LU

[MC_]ALLOCATE

Chapter 8. APPC Verbs 87

AP_SEC_REQUESTED_NOT_SUPPORTED

AP_TP_BUSY

AP_UNSUCCESSFUL

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

If the primary_rc is set to AP_ALLOCATION_ERROR, the sense_data field carries

more information on the failure.

[MC_]ALLOCATE

88 Client/Server Communications Programming

[MC_]CONFIRM

The CONFIRM verb sends the contents of the local LUs send buffer and a

confirmation request to the partner transaction program. In response to the

CONFIRM verb, the partner transaction program normally issues the

CONFIRMED verb to confirm that it has received the data without error. (If the

partner transaction program encounters an error, it issues the SEND_ERROR verb

or abnormally deallocates the conversation.)

The transaction program can issue the CONFIRM verb only if the conversation’s

synchronization level, established by the ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

VCB Structure

typedef struct confirm

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

#ifdef WINAPPC_FORMAT_1

 unsigned char expd_data_rcvd; /* expedited data received */

#endif

} CONFIRM;

typedef struct mc_confirm

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

#ifdef WINAPPC_FORMAT_1

 unsigned char expd_data_rcvd; /* expedited data received */

#endif

} MC_CONFIRM;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_CONFIRM

 AP_M_CONFIRM

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

[MC_]CONFIRM

Chapter 8. APPC Verbs 89

format

Identifies the format of the VCB. Set this field to one to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id

Conversation identifier. The value of this parameter was returned by the

ALLOCATE verb in the invoking transaction program or by

RECEIVE_ALLOCATE in the invoked transaction program.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator.

AP_YES

AP_NO

 expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES

AP_NO

This field requires the format 1 version of the VCB. See “Full-Duplex

VCBs” on page 38 for more details on accessing format 1 VCBs.

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters;

primary_rc

AP_OPERATION_INCOMPLETE

opext If the verb is nonblocking and has not completed, Personal

Communications returns the following parameters:

 AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_CONFIRM_INVALID_FOR_FDX

AP_CONFIRM_ON_SYNC_LEVEL_NONE

[MC_]CONFIRM

90 Client/Server Communications Programming

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_CONFIRM_BAD_STATE

 AP_CONFIRM_NOT_LL_BDY

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY

AP_CONV_FAILURE_RETRY

 AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_TIMER

AP_PROG_ERROR_PURGING

 AP_SVC_ERROR_PURGING

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_TP_BUSY

AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]CONFIRM verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing. If there is a

[MC_]CONFIRM

Chapter 8. APPC Verbs 91

[MC_]SEND_DATA error return code, it is returned on the

[MC_]CONFIRM verb. See “[MC_]SEND_DATA” on page 134 for a list of

error return codes.

[MC_]CONFIRM

92 Client/Server Communications Programming

[MC_]CONFIRMED

The CONFIRMED verb replies to a confirmation request from the partner

transaction program. It informs the partner transaction program that the local

transaction program has not detected an error in the received data.

Because the transaction program issuing the confirmation request waits for a

confirmation, the CONFIRMED verb synchronizes the processing of the two

transaction programs.

VCB Structure

typedef struct confirmed

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

} CONFIRMED;

typedef struct mc_confirmed

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

} MC_CONFIRMED;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_CONFIRMED

 AP_M_CONFIRMED

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id

Conversation identifier. The value of this parameter was returned by the

ALLOCATE verb in the invoking transaction processor or by

RECEIVE_ALLOCATE in the invoked transaction processor.

[MC_]CONFIRMED

Chapter 8. APPC Verbs 93

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameter:

primary_rc

AP_OK

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_CONFIRMED_INVALID_FOR_FDX

If the conversation is in the wrong state when the transaction processor issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_CONFIRMED_BAD_STATE

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_CONVERSATION_TYPE_MIXED

[MC_]CONFIRMED

94 Client/Server Communications Programming

[MC_]DEALLOCATE

The DEALLOCATE verb deallocates a conversation between two transaction

programs. Before deallocating the conversation, this verb performs the equivalent

of one of the following verbs:

v The FLUSH verb, which sends the contents of the local LU’s send buffer to the

partner LU (and transaction processor).

v The CONFIRM verb, which sends the contents of the local LU’s send buffer and

a confirmation request to the partner transaction programs.

After this verb has successfully executed, the conversation ID is no longer valid.

For half-duplex conversation:

v Deallocates the specified conversation from the transaction program, it can

include the function of the FLUSH or CONFIRM verb.

For full-duplex conversation

v DEALLOCATE with TYPE(FLUSH) closes the local program’s send queue. Both

the local and remote programs must close their send queues independently

therefore, two DEALLOCATE TYPE(FLUSH) verbs are required to end the

conversation. Notification that the partner has closed its send queue is given to

the receive queue in the form of a DEALLOCATE_NORMAL return code.

v DEALLOCATE with TYPE(ABEND) is an abrupt termination that will close

both sides of the conversation simultaneously. This notification is returned to the

remote program’s send queue as an ERROR_INDICATION return code, and to

remote program’s receive queue as a DEALLOCATE_ABEND return code.

VCB Structure

typedef struct deallocate

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

#ifdef WINAPPC_FORMAT_1

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned char reserv3; /* reserved */

#endif

 unsigned char dealloc_type; /* deallocate type */

 unsigned short log_dlen; /* log data length */

 unsigned char *log_dptr; /* pointer to log data */

} DEALLOCATE;

typedef struct mc_deallocate

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

#ifdef WINAPPC_FORMAT_1

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned char reserv3; /* reserved */

#endif

[MC_]DEALLOCATE

Chapter 8. APPC Verbs 95

unsigned char dealloc_type; /* deallocate type */

 unsigned char reserv4[2]; /* reserved */

 unsigned char reserv5[4]; /* reserved */

} MC_DEALLOCATE;

Supplied Parameters

The transaction programs supplies the following parameters to Personal

Communications:

opcode

AP_B_DEALLOCATE

 AP_M_DEALLOCATE

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

 On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Identifies the format of the VCB. Set this field to one to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

processor or by RECEIVE_ALLOCATE in the invoked transaction

program.

conv_id

Conversation identifier. The value of this parameter was returned by the

ALLOCATE verb in the invoking transaction program or by

RECEIVE_ALLOCATE in the invoked transaction program.

dealloc_type

Specifies how to perform the deallocation.

 AP_ABEND

 AP_ABEND_PROG

 AP_ABEND_SVC

 AP_ABEND_TIMER

 AP_FLUSH

 AP_SYNC_LEVEL

 The following values apply to basic only.

 AP_TP_NOT_AVAIL_NO_RETRY

 AP_TP_NOT_AVAIL_RETRY

 AP_TPN_NOT_RECOGNIZED

 AP_PIP_DATA_NOT_ALLOWED

 AP_PIP_DATA_INCORRECT

 AP_RESOURCE_FAILURE_NO_RETRY

 AP_CONV_TYPE_MISMATCH

 AP_SYNC_LVL_NOT_SUPPORTED

[MC_]DEALLOCATE

96 Client/Server Communications Programming

AP_SECURITY_PARAMS_INVALID

log_dlen

 Number of bytes of data to be sent to the error log file.

 Range: 0–32767

 The application can append data to the end of the VCB, in which case this

field will be greater than zero and log_dptr must be set to NULL. (A

length of zero indicates that there is no error log data.)

log_dptr

 Address of data buffer containing error information. The application can

append data to the end of the VCB, in which case log_dptr must be set to

NULL.

 This data is sent to the local error log and to the partner LU. The

transaction processor must format the error data as a General Data Stream

(GDS) error log variable. For further information, refer to IBM Systems

Network Architecture: LU 6.2 Reference: Peer Protocols.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameter:

primary_rc

AP_OK

expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

 This field requires the format 1 version of the VCB. See “Full-Duplex

VCBs” on page 38 for more details on accessing format 1 VCBs.

AP_YES

AP_NO

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

 AP_BAD_CONV_ID

 AP_BAD_TP_ID

 AP_DEALLOC_BAD_TYPE

 AP_DEALLOC_LOG_LL_WRONG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters (for mapped only):

[MC_]DEALLOCATE

Chapter 8. APPC Verbs 97

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the conversation is in the wrong state when the transaction processor issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

 AP_DEALLOC_CONFIRM_BAD_STATE

 AP_DEALLOC_FLUSH_BAD_STATE

 AP_DEALLOC_NOT_LL_BDY

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED
 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_PROG_ERROR_PURGING

 AP_SVC_ERROR_PURGING

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_DUPLEX_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

AP_ERROR_INDICATION

 AP_ALLOCATION_ERROR_PENDING

 AP_DEALLOC_ABEND_PROG_PENDING

 AP_DEALLOC_ABEND_SVC_PENDING

 AP_DEALLOC_ABEND_TIMER_PENDING

 AP_UNKNOWN_ERROR_TYPE_PENDING

[MC_]DEALLOCATE

98 Client/Server Communications Programming

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]DEALLOCATE verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing. If there is a

[MC_]SEND_DATA error return code, it is returned on the

[MC_]DEALLOCATE verb. See “[MC_]SEND_DATA” on page 134 for a list

of error return codes.

[MC_]DEALLOCATE

Chapter 8. APPC Verbs 99

[MC_]FLUSH

The FLUSH verb sends the contents of the local LU’s send buffer to the partner LU

(and transaction program). If the send buffer is empty, no action takes place.

VCB Structure

typedef struct flush

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

} FLUSH;

typedef struct mc_flush

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

} MC_FLUSH;

Supplied Parameters

The transaction processor supplies the following parameters to Personal

Communications:

opcode

AP_B_FLUSH

 AP_M_FLUSH

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

 On full-duplex conversation, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id

Conversation identifier. The value of this parameter was returned by the

ALLOCATE verb in the invoking transaction program or by

RECEIVE_ALLOCATE in the invoked transaction program.

[MC_]FLUSH

100 Client/Server Communications Programming

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameter:

primary_rc

AP_OK

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_FLUSH_NOT_SEND_STATE

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_DUPLEX_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_ERROR_INDICATION

 AP_ALLOCATION_ERROR_PENDING

 AP_DEALLOC_ABEND_PROG_PENDING

 AP_DEALLOC_ABEND_SVC_PENDING

 AP_DEALLOC_ABEND_TIMER_PENDING

 AP_UNKNOWN_ERROR_TYPE_PENDING

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]FLUSH verb is issued, the [MC_]SEND_DATA is

forwarded to the server for processing. If there is a [MC_]SEND_DATA

error return code, it is returned on the [MC_]FLUSH verb. See

“[MC_]SEND_DATA” on page 134 for a list of error return codes.

[MC_]FLUSH

Chapter 8. APPC Verbs 101

[MC_]GET_ATTRIBUTES

The GET_ATTRIBUTES verb returns the attributes of the conversation.

VCB Structure

typedef struct get_attributes

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* verb format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char reserv3; /* reserved */

 unsigned char sync_level; /* sync_level */

 unsigned char mode_name[8]; /* mode name */

 unsigned char net_name[8]; /* network name of local LU */

 unsigned char lu_name[8]; /* local LU name */

 unsigned char lu_alias[8]; /* local LU alias */

 unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char plu_un_name[8];

 /* partner LU uninterpreted name */

 unsigned char reserv4[2]; /* reserved */

 unsigned char fqplu_name[17];

 /* fully qualified partner LU */

 /* name */

 unsigned char reserv5; /* reserved */

 unsigned char user_id[10]; /* user identifier */

 unsigned long conv_group_id; /* conversation group identifier */

 unsigned char conv_corr_len; /* conversation correlator */

 /* length */

 unsigned char conv_corr[8]; /* conversation correlator */

 unsigned char reserv6[13]; /* reserved */

} GET_ATTRIBUTES;

typedef struct mc_get_attributes

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* verb format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char reserv3; /* reserved */

 unsigned char sync_level; /* sync_level */

 unsigned char mode_name[8]; /* mode name */

 unsigned char net_name[8]; /* network name of local LU */

 unsigned char lu_name[8]; /* local LU name */

 unsigned char lu_alias[8]; /* local LU alias */

 unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char plu_un_name[8]; /* partner LU uninterpreted name */

 unsigned char reserv4[2]; /* reserved */

 unsigned char fqplu_name[17]; /* fully qualified partner LU */

 /* name */

 unsigned char reserv5; /* reserved */

 unsigned char user_id[10]; /* user identifier */

 unsigned long conv_group_id; /* conversation group identifier */

 unsigned char conv_corr_len; /* conversation correlator */

 /* length */

 unsigned char conv_corr[8]; /* conversation correlator */

 unsigned char reserv6[13]; /* reserved */

} MC_GET_ATTRIBUTES;

[MC_]GET_ATTRIBUTES

102 Client/Server Communications Programming

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_GET_ATTRIBUTES

 AP_M_GET_ATTRIBUTES

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

 On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the ALLOCATE verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

sync_level

Synchronization level of the conversation.

AP_CONFIRM_SYNC_LEVEL

AP_NONE

mode_name

Name of the set of networking characteristics associated with the session

allocated to the conversation. This is an 8-byte alphanumeric type-A

EBCDIC string (starting with a letter), padded to the right with EBCDIC

spaces.

net_name

Name of the network containing the local LU. This is an 8-byte

alphanumeric type-A EBCDIC string (starting with a letter), padded to the

right with EBCDIC spaces.

lu_name

Name of the local LU. This is an 8-byte alphanumeric type-A EBCDIC

string (starting with a letter), padded to the right with EBCDIC spaces.

[MC_]GET_ATTRIBUTES

Chapter 8. APPC Verbs 103

lu_alias

Alias by which the local LU is known to the local transaction program.

This is an 8-byte string in a locally displayable character set. All 8 bytes are

significant and must be set.

plu_alias

Alias by which the partner LU is known to the local transaction program.

This is an 8-byte string in a locally displayable character set. All 8 bytes are

significant and must be set.

plu_un_name

Uninterpreted name of partner LU, that is, the name of the partner LU as

defined at the system services control point (SSCP). This is an 8-byte

type-A EBCDIC character string.

fqplu_name

Fully qualified name of the partner LU. This name is 17 bytes long and is

right-padded with EBCDIC blanks. It is composed of two type-A EBCDIC

character strings concatenated by an EBCDIC dot. (Each name can have a

maximum length of 8 bytes with no embedded blanks. If the network ID is

not present, then omit the dot.)

user_id

User ID sent by the invoking transaction program through the ALLOCATE

verb to access the invoked transaction program (if applicable). This is a

10-byte type-AE EBCDIC character string, padded to the right with

EBCDIC spaces.

conv_group_id

The conversation group identifier of the session allocated to the

conversation.

conv_corr_len

Always set to 0.

 Range: 0–8

conv_corr

Always set to 0.

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

 AP_TP_BUSY

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_UNEXPECTED_SYSTEM_ERROR

[MC_]GET_ATTRIBUTES

104 Client/Server Communications Programming

[MC_]PREPARE_TO_RECEIVE

The PREPARE_TO_RECEIVE verb changes the state of the conversation for the

local transaction program from SEND or SEND_PENDING to RECEIVE.

Before changing the conversation state, this verb performs the equivalent of one of

the following verbs:

v The FLUSH verb, which sends the contents of the local LU’s send buffer to the

partner LU (and transaction program).

v The CONFIRM verb, which send the contents of the local LU’s send buffer and

a confirmation request to the partner transaction program.

After this verb has successfully executed, the local transaction program can receive

data.

VCB Structure

typedef struct prepare_to_receive

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char ptr_type; /* prepare to receive type */

 unsigned char locks; /* prepare to receive locks */

} PREPARE_TO_RECEIVE;

typedef struct mc_prepare_to_receive

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char ptr_type; /* prepare to receive type */

 unsigned char locks; /* prepare to receive locks */

} MC_PREPARE_TO_RECEIVE;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_PREPARE_TO_RECEIVE

 AP_M_PREPARE_TO_RECEIVE

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

[MC_]PREPARE_TO_RECEIVE

Chapter 8. APPC Verbs 105

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the ALLOCATE verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

ptr_type

Specifies how to perform the state change.

AP_FLUSH

AP_SYNC_LEVEL

AP_P_TO_R_CONFIRM

locks Specifies when Personal Communications is to return control to the local

transaction processor.

 AP_LONG

 AP_SHORT

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameter:

primary_rc

AP_OK

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters;

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_P_TO_R_INVALID_FOR_FDX

AP_P_TO_R_INVALID_TYPE

If the conversation is in the wrong state when the transaction processor issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

 AP_TO_R_NOT_LL_BDY

[MC_]PREPARE_TO_RECEIVE

106 Client/Server Communications Programming

AP_P_TO_R_NOT_SEND_STATE

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED
 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_PROG_ERROR_PURGING

 AP_SVC_ERROR_PURGING

 AP_TP_BUSY

 AP_CONVERSATION_TYPE_MIXED

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]PREPARE_TO_RECEIVE verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing. If there is a

[MC_]SEND_DATA error return code, it is returned on the

[MC_]PREPARE_TO_RECEIVE verb. See “[MC_]SEND_DATA” on page 134

for a list of error return codes.

[MC_]PREPARE_TO_RECEIVE

Chapter 8. APPC Verbs 107

[MC_]RECEIVE_AND_POST

The RECEIVE_AND_POST verb receives application data and status information

asynchronously. This enables the transaction program to proceed with processing

while data is still arriving at the local LU. This verb can only be issued through the

APPC entry point.

VCB Structure

typedef struct receive_and_post

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned short what_rcvd; /* what received */

 unsigned char rtn_status; /* return status with data */

 unsigned char fill; /* data fill */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

 unsigned long *sema; /* post handle for verb */

 unsigned char reserv5; /* reserved */

} RECEIVE_AND_POST;

typedef struct mc_receive_and_post

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned short what_rcvd; /* what received */

 unsigned char rtn_status; /* return status with data */

 unsigned char reserv4; /* reserved */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

 unsigned long *sema; /* post handle for verb */

 unsigned char reserv6; /* reserved */

} MC_RECEIVE_AND_POST;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_RECEIVE_AND_POST

[MC_]RECEIVE_AND_POST

108 Client/Server Communications Programming

AP_M_RECEIVE_AND_POST

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the ALLOCATE verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

rtn_status

Indicates whether status information and data can be returned on the same

verb.

 AP_YES

 AP_NO

fill

 Indicates the manner in which the local transaction program receives data.

 AP_BUFFER

 AP_LL

max_len

Maximum number of bytes of data the local transaction program can

receive.

 Range: 0–65535

 This value must not exceed the length of the buffer to contain the received

data.

dptr Address of the buffer to contain the data received by the local LU. The

application can append data to the end of the VCB in which case dptr

must be set to NULL.

sema Handle of the event that the application will wait on. This verb is intended

for use with WaitForMultipleObjects in the Win32 API.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

AP_DEALLOC_NORMAL

what_rcvd

Status information received with the incoming data. If rtn_status is set to

AP_NO, this field always contains a value from the following list:

[MC_]RECEIVE_AND_POST

Chapter 8. APPC Verbs 109

AP_NONE

 AP_CONFIRM_DEALLOCATE

 AP_CONFIRM_SEND

 AP_CONFIRM_WHAT_RECEIVED

 AP_DATA

 AP_DATA_COMPLETE

 AP_DATA_INCOMPLETE

 AP_SEND

 AP_USER_CONTROL_DATA_COMPLETE

 AP_USER_CONTROL_DATA_INCMP

 AP_PS_HEADER_COMPLETE

 AP_PS_HEADER_INCOMPLETE

 AP_DATA_CONFIRM

 AP_DATA_COMPLETE_CONFIRM

 AP_DATA_CONFIRM_DEALLOCATE

 AP_DATA_COMPLETE_CONFIRM_DEALL

 AP_DATA_CONFIRM_SEND

 AP_DATA_COMPLETE_CONFIRM_SEND

 AP_DATA_SEND

 AP_DATA_COMPLETE_SEND

If rtn_status is set to AP_YES, this field can contain any value from either

the previous list or the following list.

 The following parameters are for mapped only:

 AP_UC_DATA_COMPLETE_CONFIRM

 AP_UC_DATA_COMPLETE_CNFM_DEALL

 AP_UC_DATA_COMPLETE_CNFM_SEND

 AP_UC_DATA_COMPLETE_SEND

 AP_PS_HDR_COMPLETE_CONFIRM

 AP_PS_HDR_COMPLETE_CNFM_DEALL

 AP_PS_HDR_COMPLETE_CNFM_SEND

 AP_PS_HDR_COMPLETE_SEND

rts_rcvd

Request-to-send-received indicator.

 AP_YES

 AP_NO

expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

 AP_YES

 AP_NO

This format field requires the format 1 version of the VCB. See

“Full-Duplex VCBs” on page 38 for more details on accessing format 1

VCBs.

dlen Number of bytes of data received (the data is stored in the buffer specified

[MC_]RECEIVE_AND_POST

110 Client/Server Communications Programming

by the dptr parameter). A length of zero indicates that no data was

received. This parameter is only used if the what_rcvd parameter indicates

that data was received.

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

 AP_BAD_RETURN_STATUS_WITH_DATA

 AP_BAD_TP_ID

 AP_RCV_AND_POST_BAD_FILL

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_RCV_AND_POST_BAD_STATE

 AP_RCV_AND_POST_NOT_LL_BDY

If the verb did not execute because it was canceled by another verb issued by the

transaction program, Personal Communications returns the following parameter:

primary_rc

AP_CANCELLED

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED
 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

[MC_]RECEIVE_AND_POST

Chapter 8. APPC Verbs 111

AP_DEALLOC_NORMAL

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_PROG_ERROR_TRUNC

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING

 AP_SVC_ERROR_TRUNC

 AP_TP_BUSY

 AP_CONVERSATION_TYPE_MIXED

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]RECEIVE_AND_POST verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing. If there is a

[MC_]SEND_DATA error return code, it is returned on the

[MC_]RECEIVE_AND_POST verb. See “[MC_]SEND_DATA” on page 134

for a list of error return codes.

[MC_]RECEIVE_AND_POST

112 Client/Server Communications Programming

[MC]RECEIVE_AND_WAIT

The RECEIVE_AND_WAIT verb receives any data that is currently available from

the partner transaction program. If no data is currently available, the local

transaction program waits for data to arrive.

For half-duplex conversations:

The program can issue this verb when the conversation is in send state. In

this case, the LU flushes its send buffer, sending all buffered information

and the SEND indication to the remote program. This changes the

conversation to receive state. The LU then waits for information to arrive.

The remote program can send data to the local program after it receives

the SEND indication.

For full-duplex conversations:

If the send buffer contains the conversation allocation request, it will be

flushed; otherwise, this verb will not cause the LU to flush its send buffer.

If it is important that the data remaining in the send buffer be transmitted

before receiving data, the local program should issue a FLUSH before

issuing this verb.

VCB Structure

typedef struct receive_and_wait

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned short what_rcvd; /* what received */

 unsigned char rtn_status; /* return status with data */

 unsigned char fill; /* data fill */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

 unsigned char reserv5[5]; /* reserved */

} RECEIVE_AND_WAIT;

typedef struct mc_receive_and_wait

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned short what_rcvd; /* what received */

 unsigned char rtn_status; /* return status with data */

 unsigned char reserv4; /* reserved */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

[MC_]RECEIVE_AND_WAIT

Chapter 8. APPC Verbs 113

/* data */

 unsigned char *dptr; /* pointer to data buffer */

 unsigned char reserv6[5]; /* reserved */

} MC_RECEIVE_AND_WAIT;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_RECEIVE_AND_WAIT

 AP_M_RECEIVE_AND_WAIT

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

 On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the ALLOCATE verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

rtn_status

Indicates whether status information and data can be returned on the same

verb.

 AP_YES

 AP_NO

fill

 Indicates the manner in which the local transaction program receives data.

 AP_BUFFER

 AP_LL

max_len

Maximum number of bytes of data the local transaction program can

receive.

 Range: 0–65535

 This value must not exceed the length of the buffer to contain the received

data.

[MC_]RECEIVE_AND_WAIT

114 Client/Server Communications Programming

dptr Address of the buffer to contain the data received by the local LU. The

application can append data to the end of the VCB, in which case dptr

must be set to NULL.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

AP_DEALLOC_NORMAL

what_rcvd

Status information received with the incoming data. If rtn_status is set to

AP_NO, this field always contains a value from the following list:

 AP_NONE

 AP_CONFIRM_DEALLOCATE

 AP_CONFIRM_SEND

 AP_CONFIRM_WHAT_RECEIVED

 AP_DATA

 AP_DATA_COMPLETE

 AP_DATA_INCOMPLETE

 AP_SEND

 AP_USER_CONTROL_DATA_COMPLETE

 AP_USER_CONTROL_DATA_INCMP

 AP_PS_HEADER_COMPLETE

 AP_PS_HEADER_INCOMPLETE

 AP_DATA_CONFIRM

 AP_DATA_COMPLETE_CONFIRM

 AP_DATA_CONFIRM_DEALLOCATE

 AP_DATA_COMPLETE_CONFIRM_DEALL

 AP_DATA_CONFIRM_SEND

 AP_DATA_COMPLETE_CONFIRM_SEND

 AP_DATA_SEND

 AP_DATA_COMPLETE_SEND

If rtn_status is set to AP_YES, this field can contain any value from either

the previous list or the following list.

 The following parameters apply to mapped only:

 AP_UC_DATA_COMPLETE_CONFIRM

 AP_UC_DATA_COMPLETE_CNFM_DEALL

 AP_UC_DATA_COMPLETE_CNFM_SEND

 AP_UC_DATA_COMPLETE_SEND

[MC_]RECEIVE_AND_WAIT

Chapter 8. APPC Verbs 115

AP_PS_HDR_COMPLETE_CONFIRM

 AP_PS_HDR_COMPLETE_CNFM_DEALL

 AP_PS_HDR_COMPLETE_CNFM_SEND

 AP_PS_HDR_COMPLETE_SEND

rts_rcvd

Request-to-send-received indicator.

 AP_YES

 AP_NO

This format of the following verb is the format 1 version of the VCB. See

“Full-Duplex VCBs” on page 38 for more details on accessing format 1

VCBs.

expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

 AP_YES

 AP_NO

dlen This parameter is only used if the what_rcvd parameter indicates that data

was received. Number of bytes of data received (the data is stored in the

buffer specified by the dptr parameter). A length of zero indicates that no

data was received.

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters;

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

 AP_BAD_RETURN_STATUS_WITH_DATA

 AP_BAD_TP_ID

 AP_RCV_AND_WAIT_BAD_FILL

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_RCV_AND_WAIT_BAD_STATE

 AP_RCV_AND_WAIT_NOT_LL_BDY

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

[MC_]RECEIVE_AND_WAIT

116 Client/Server Communications Programming

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED
 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_NORMAL

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_TP_BUSY

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_CANCELLED

The following parameters apply to basic only:

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PROG_ERROR_TRUNCL

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]RECEIVE_AND_WAIT verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing. If there is a

[MC_]SEND_DATA error return code, it is returned on the

[MC_]RECEIVE_AND_WAIT verb. See “[MC_]SEND_DATA” on page 134

for a list of error return codes.

[MC_]RECEIVE_AND_WAIT

Chapter 8. APPC Verbs 117

[MC_]RECEIVE_EXPEDITED_DATA

The [MC_]RECEIVE_EXPEDITED_DATA verb receives any expedited data that is

currently available from the partner TP. If expedited data is currently available, the

local transaction program receives it without waiting; otherwise, the behavior is

governed by the rtn_ctl field.

VCB Structure

typedef struct receive_expedited_data

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char return_control; /* when to return control */

 unsigned char reserv1[3]; /* reserved */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

} RECEIVE_EXPEDITED_DATA

typedef struct mc_receive_expedited_data

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char return_control; /* when to return control */

 unsigned char reserv1[3]; /* reserved */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

} MC_RECEIVE_EXPEDITED_DATA

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_RECEIVE_EXPEDITED_DATA

 AP_M_RECEIVE_EXPEDITED_DATA

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

[MC_]RECEIVE_EXPEDITED_DATA

118 Client/Server Communications Programming

On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the ALLOCATE verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

return_control

Specifies when to return control to the transaction program.

 AP_WHEN_EXPD_RECEIVED

 AP_IMMEDIATE

max_len

Maximum number of bytes of data the local transaction program can

receive.

 Range: 0–86

 This value must not exceed the length of the buffer to contain the received

data.

dptr Address of the buffer to contain the data received by the local LU. The

application can append data to the end of the VCB, in which case dptr

must be set to NULL.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator.

 AP_YES

 AP_NO

expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

AP_YES

AP_NO

dlen Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of zero indicates that no data was

received. Note that any data received is unformatted. No 2-byte length

field (LL) is present.

[MC_]RECEIVE_EXPEDITED_DATA

Chapter 8. APPC Verbs 119

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because the remote LU does not support expedited

data, Personal Communications returns the following parameter:

primary_rc

AP_EXPD_NOT_SUPPORTED_BY_LU

If no data is immediately available from the partner transaction program and the

rtn_ctl flag is AP_IMMEDIATE, Personal Communications returns the following

parameter:

primary_rc

AP_UNSUCCESSFUL

If the data buffer provided by the transaction program is not large enough to

contain all of the expedited data available at the LU, no data is returned and

Personal Communications returns the following parameters:

primary_rc

AP_BUFFER_TOO_SMALL

dlen Number of bytes expedited data that the LU has available to receive.

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_EXPD_BAD_RETURN_CONTROL

AP_RCV_EXPD_INVALID_LENGTH

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_EXPD_DATA_BAD_CONV_STATE

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

[MC_]RECEIVE_EXPEDITED_DATA

120 Client/Server Communications Programming

AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY

AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_DEALLOC_NORMAL

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_DUPLEX_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

AP_ERROR_INDICATION

[MC_]RECEIVE_EXPEDITED_DATA

Chapter 8. APPC Verbs 121

[MC_]RECEIVE_IMMEDIATE

The [MC_]RECEIVE_IMMEDIATE verb receives any data or status information

that is currently available from the partner transaction program. If none is

currently available, the local transaction program returns immediately and does

not wait.

VCB Structure

typedef struct receive_immediate

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned short what_rcvd; /* what received */

 unsigned char rtn_status; /* return status with data */

 unsigned char fill; /* data fill */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

 unsigned char reserv5[5]; /* reserved */

} RECEIVE_IMMEDIATE;

typedef struct mc_receive_immediate

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned short what_rcvd; /* what received */

 unsigned char rtn_status; /* return status with data */

 unsigned char reserv4; /* reserved */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short max_len; /* maximum length of received */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

 unsigned char reserv6[5]; /* reserved */

} MC_RECEIVE_IMMEDIATE;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_RECEIVE_IMMEDIATE

 AP_M_RECEIVE_IMMEDIATE

[MC_]RECEIVE_IMMEDIATE

122 Client/Server Communications Programming

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

 On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb

in the invoking transaction program or by RECEIVE_ALLOCATE in the

invoked transaction program.

rtn_status

Indicates whether status information and data can be returned on the same

verb.

 AP_YES

 AP_NO

fill

 Indicates the manner in which the local transaction program receives data.

 AP_BUFFER

 AP_LL

max_len

Maximum number of bytes of data the local transaction program can

receive.

 Range: 0–65535

 This value must not exceed the length of the buffer to contain the received

data.

dptr Address of the buffer to contain the data received by the local LU. The

application can append data to the end of the VCB, in which case dptr

must be set to NULL.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

AP_DEALLOC_NORMAL

[MC_]RECEIVE_IMMEDIATE

Chapter 8. APPC Verbs 123

what_rcvd

Status information received with the incoming data. If rtn_status is set to

AP_NO, this field always contains a value from the following list:

 AP_NONE

 AP_CONFIRM_DEALLOCATE

 AP_CONFIRM_SEND

 AP_CONFIRM_WHAT_RECEIVED

 AP_DATA

 AP_DATA_COMPLETE

 AP_DATA_INCOMPLETE

 AP_SEND

 AP_USER_CONTROL_DATA_COMPLETE

 AP_USER_CONTROL_DATA_INCMP

 AP_PS_HEADER_COMPLETE

 AP_PS_HEADER_INCOMPLETE

 AP_DATA_CONFIRM

 AP_DATA_COMPLETE_CONFIRM

 AP_DATA_CONFIRM_DEALLOCATE

 AP_DATA_COMPLETE_CONFIRM_DEALL

 AP_DATA_CONFIRM_SEND

 AP_DATA_COMPLETE_CONFIRM_SEND

 AP_DATA_SEND

If rtn_status is set to AP_YES, this field can contain any value from either

the previous list or the following list.

 The following parameters apply to mapped only:

 AP_DATA_COMPLETE_SEND

 AP_UC_DATA_COMPLETE_CONFIRM

 AP_UC_DATA_COMPLETE_CNFM_DEALL

 AP_UC_DATA_COMPLETE_CNFM_SEND

 AP_UC_DATA_COMPLETE_SEND

 AP_PS_HDR_COMPLETE_CONFIRM

 AP_PS_HDR_COMPLETE_CNFM_DEALL

 AP_PS_HDR_COMPLETE_CNFM_SEND

 AP_PS_HDR_COMPLETE_SEND

expd_data_rcvd

Expedited-data-received indicator.

 AP_YES

 AP_NO

rts_rcvd

Request-to-send-received indicator.

 AP_YES

 AP_NO

dlen This parameter is only used if the what_rcvd parameter indicates that data

[MC_]RECEIVE_IMMEDIATE

124 Client/Server Communications Programming

was received. Number of bytes of data received (the data is stored in the

buffer specified by the dptr parameter). A length of zero indicates that no

data was received.

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameter.

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_BASIC_CONVERSION or AP_MAPPED_CONVERSATION ORed

together with

AP_NON_BLOCKING ORed together with

AP_OPERATION_INCOMPLETE_FLAG

If no data is immediately available from the partner transaction program, Personal

Communications returns the following parameter.

primary_rc

AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

 AP_BAD_RETURN_STATUS_WITH_DATA

 AP_BAD_TP_ID

 AP_RCV_IMMD_BAD_FILL

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_RCV_IMMD_BAD_STATE

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED

[MC_]RECEIVE_IMMEDIATE

Chapter 8. APPC Verbs 125

AP_CONV_FAILURE_NO_RETRY

AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_DEALLOC_NORMAL

AP_PROG_ERROR_NO_TRUNC

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_DUPLEX_TYPE_MIXED

AP_CANCELLED

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]RECEIVE_IMMEDIATE verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing. If there is a

[MC_]SEND_DATA error return code, it is returned on the

[MC_]RECEIVE_IMMEDIATE verb. See “[MC_]SEND_DATA” on page 134

for a list of error return codes.

[MC_]RECEIVE_IMMEDIATE

126 Client/Server Communications Programming

[MC_]REQUEST_TO_SEND

The [MC_]REQUEST_TO_SEND verb notifies the partner transaction program

that the local transaction program wants to send data.

VCB Structure

typedef struct request_to_send

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

} REQUEST_TO_SEND;

typedef struct mc_request_to_send

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

} MC_REQUEST_TO_SEND;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_REQUEST_TO_SEND

 AP_M_REQUEST_TO_SEND

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb

in the invoking transaction program or by RECEIVE_ALLOCATE in the

invoked transaction program.

[MC_]REQUEST_TO_SEND

Chapter 8. APPC Verbs 127

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameter:

primary_rc

AP_OK

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If [MC_]REQUEST_TO_SEND is issued in nonblocking mode (see “Queue-Level

Nonblocking” on page 39), and the conversation ends while processing a verb on

the send/receive queue, Personal Communications returns the following

parameter:

primary_rc

AP_CONVERSATION_ENDED

The application should not issue any more verbs for this conversation.

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_R_T_S_INVALID_FOR_FDX

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_R_T_S_BAD_STATE

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

[MC_]REQUEST_TO_SEND

128 Client/Server Communications Programming

[MC_]SEND_CONVERSATION

The [MC_]SEND_CONVERSATION verb allocates a conversation to a session

between the local LU and partner LU (causing a transaction program on the

partner LU to start), sends a single data record on this conversation, then

deallocates the conversation without waiting for confirmation. It is equivalent to an

[MC_]ALLOCATE, [MC_]SEND_DATA, [MC_]DEALLOCATE (FLUSH) sequence

of verbs (commonly termed a single one-way bracket).

VCB Structure

typedef struct send_conversation

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned char reserv3[8]; /* reserved */

 unsigned char rtn_ctl; /* return control */

 unsigned char reserv4; /* reserved */

 unsigned long conv_group_id; /* conversation group identifier */

 unsigned long sense_data; /* sense data */

 unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char mode_name[8]; /* mode name */

 unsigned char tp_name[64]; /* TP name */

 unsigned char security; /* security */

 unsigned char reserv5[11]; /* reserved */

 unsigned char pwd[10]; /* security password */

 unsigned char user_id[10]; /* security user_id */

 unsigned short pip_dlen; /* PIP data length */

 unsigned char *pip_dptr; /* pointer to PIP data */

 unsigned char reserv5a; /* reserved */

 unsigned char fqplu_name[17]; /* fully qualified partner LU */

 /* name */

 unsigned char reserv6[8]; /* reserved */

 unsigned short dlen; /* data length */

 unsigned char *dptr; /* pointer to data buffer */

} SEND_CONVERSATION;

typedef struct mc_send_conversation

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned char reserv3[8]; /* reserved */

 unsigned char rtn_ctl; /* return control */

 unsigned char reserv4; /* reserved */

 unsigned long conv_group_id; /* conversation group identifier */

 unsigned long sense_data; /* sense data */

 unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char mode_name[8]; /* mode name */

 unsigned char tp_name[64]; /* TP name */

 unsigned char security; /* security */

 unsigned char reserv6[11]; /* reserved */

 unsigned char pwd[10]; /* security password */

 unsigned char user_id[10]; /* security user_id */

 unsigned short pip_dlen; /* PIP data length */

 unsigned char *pip_dptr; /* pointer to PIP data */

 unsigned char reserv6a; /* reserved */

 unsigned char fqplu_name[17]; /* fully qualified partner LU */

[MC_]SEND_CONVERSATION

Chapter 8. APPC Verbs 129

/* name */

 unsigned char reserv7[8]; /* reserved */

 unsigned short dlen; /* data length */

 unsigned char *dptr; /* pointer to data buffer */

} MC_SEND_CONVERSATION;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_SEND_CONVERSATION

 AP_M_SEND_CONVERSATION

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb for an

invoking transaction program, or by the RECEIVE_ALLOCATE verb for

an invoked transaction program.

rtn_ctl Specifies when the local LU acting on a session request from the local

transaction processor is to return control to the local transaction program.

AP_IMMEDIATE

AP_WHEN_SESSION_ALLOCATED

AP_WHEN_SESSION_FREE

AP_WHEN_CONV_GROUP_ALLOC

AP_WHEN_CONWINNER_ALLOC

AP_WHEN_CONLOSER_ALLOC

conv_group_id

The conversation group identifier for the session to be allocated. This

parameter is only supplied if rtn_ctl is set to

AP_WHEN_CONV_GROUP_ALLOC.

plu_alias

Alias by which the partner LU is known to the local transaction program.

This is an 8-byte string in a locally displayable character set. All 8 bytes are

significant and must be set. This name must match the name of a partner

LU established during configuration.

 If this field is set to all zeros, Personal Communications uses the

fqplu_name field to specify the required partner LU.

mode_name

Name of a set of networking characteristics defined during configuration.

This is an 8-byte alphanumeric type-A EBCDIC string (starting with a

letter), padded to the right with EBCDIC spaces.

tp_name

Name of the invoked transaction program. Personal Communications does

[MC_]SEND_CONVERSATION

130 Client/Server Communications Programming

not check the character set of this field. The value of tp_name specified by

the ALLOCATE verb in the invoking transaction program must match the

value of tp_name specified by the RECEIVE_ALLOCATE verb in the

invoked transaction program.

security

Specifies the information the partner LU requires in order to validate

access to the invoked transaction program.

 AP_NONE

 AP_PGM

 AP_SAME

 AP_PGM_STRONG

pwd Password associated with user_id. This is a 10-byte type-AE EBCDIC

character string, padded to the right with EBCDIC spaces. This is required

if Security=Program (AP_PGM or AP_PGM_STRONG); otherwise, it is

optional.

user_id

User ID required to access the partner transaction program. This is a

10-byte type-AE EBCDIC character string, padded to the right with

EBCDIC spaces. This is required if Security=Program (AP_PGM or

AP_PGM_STRONG); otherwise, it is optional.

pip_dlen

Length of the program initialization parameters (PIP) to be passed to the

partner transaction program.

 Range: 0–32767

pip_dptr

Address of buffer containing PIP data. Use this parameter only if pip_dlen

is greater than zero.

fqplu_name

The fully qualified LU name for the partner LU. This name is 17 bytes long

and is right-padded with EBCDIC blanks. It is composed of two type-A

EBCDIC character strings concatenated by an EBCDIC dot. (Each name can

have a maximum length of 8 bytes with no embedded blanks. If the

network ID is not present, then omit the dot.) This field is only significant

if the plu_alias field is set to all zeros.

dlen Number of bytes of data to send.

 Range: 0–65535

dptr Address of the buffer containing the data to send. The application can

append data to the end of the VCB, in which case dptr must be set to

NULL.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

conv_group_id

The conversation group identifier of the session allocated to the

conversation.

[MC_]SEND_CONVERSATION

Chapter 8. APPC Verbs 131

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameter:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the rtn_ctl parameter was set to AP_IMMEDIATE, and no session is available

immediately, Personal Communications returns the following parameters:

primary_rc

AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

 AP_BAD_TP_ID

AP_BAD_LL

AP_BAD_RETURN_CONTROL

AP_BAD_SECURITY

AP_PIP_LEN_INCORRECT

AP_NO_USE_OF_SNASVCMG

AP_UNKNOWN_PARTNER_MODE

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_UNSUCCESSFUL

AP_ALLOCATION_ERROR

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_SEC_REQUESTED_NOT_SUPPORTED

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

[MC_]SEND_CONVERSATION

132 Client/Server Communications Programming

If the primary_rc is set to AP_ALLOCATION_ERROR, the sense_data field carries

more information on the failure.

[MC_]SEND_CONVERSATION

Chapter 8. APPC Verbs 133

[MC_]SEND_DATA

The [MC_]SEND_DATA verb puts data in the local LU’s send buffer for

transmission to the partner transaction program.

VCB Structure

typedef struct send_data

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short dlen; /* data length */

 unsigned char *dptr; /* pointer to data */

 unsigned char type; /* send data type */

 unsigned char reserv4; /* reserved */

} SEND_DATA;

typedef struct mc_send_data

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

#ifdef WINAPPC_FORMAT_1

 unsigned char expd_data_rcvd; /* expedited data received */

#else

 unsigned char data_type; /* data type received */

#endif

 unsigned short dlen; /* data length */

 unsigned char *dptr; /* pointer to data */

 unsigned char type; /* send data type */

#ifdef WINAPPC_FORMAT_1

 unsigned char data_type; /* data type received */

#else

 unsigned char reserv4; /* reserved */

#endif

} MC_SEND_DATA;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_SEND_DATA

 AP_M_SEND_DATA

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

[MC_]SEND_DATA

134 Client/Server Communications Programming

On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Format of the VCB. Set this to one to get the format listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb

in the invoking transaction program or by RECEIVE_ALLOCATE in the

invoked transaction program.

dlen Number of bytes of data to be put in the local LU’s send buffer.

 Range: 0–65535

dptr Address of the buffer containing the data to be put in the local LU’s send

buffer. The application can append data to the end of the VCB, in which

case dptr must be set to NULL.

type Specifies whether to perform the function of another verb in addition to

SEND_DATA.

AP_NONE

AP_SEND_DATA_CONFIRM

AP_SEND_DATA_FLUSH

AP_SEND_DATA_P_TO_R_FLUSH

AP_SEND_DATA_P_TO_R_SYNC_LEVEL

AP_SEND_DATA_P_TO_R_CONFIRM

AP_SEND_DATA_DEALLOC_FLUSH

AP_SEND_DATA_DEALLOC_SYNC_LEVE

AP_SEND_DATA_DEALLOC_CONFIRM

AP_SEND_DATA_DEALLOC_ABEND

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]SEND_DATA verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing.

If there is a SEND_DATA error return code, it is returned on the subsequent

verb.

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator.

 AP_YES

 AP_NO

[MC_]SEND_DATA

Chapter 8. APPC Verbs 135

expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

 AP_YES

 AP_NO

If the verb does not execute due to a parameter error, Personal Communications

returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_BAD_LL

AP_SEND_DATA_INVALID_TYPE

AP_SEND_DATA_CONFIRM_SYNC_NONE

AP_SEND_TYPE_INVALID_FOR_FDX

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_SEND_DATA_NOT_SEND_STATE

 AP_SEND_DATA_NOT_LL_BDY

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY

AP_CONV_FAILURE_RETRY

[MC_]SEND_DATA

136 Client/Server Communications Programming

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PROG_ERROR_PURGING

 AP_SVC_ERROR_PURGING

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

AP_ERROR_INDICATION

 AP_ALLOCATION_ERROR_PENDING

 AP_DEALLOC_ABEND_PROG_PENDING

 AP_DEALLOC_ABEND_SVC_PENDING

 AP_DEALLOC_ABEND_TIMER_PENDING

 AP_UNKNOWN_ERROR_TYPE_PENDING

[MC_]SEND_DATA

Chapter 8. APPC Verbs 137

[MC_]SEND_ERROR

The [MC_]SEND_ERROR verb notifies the partner transaction program that the

local transaction program has encountered an application-level error.

VCB Structure

typedef struct send_error

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char err_type; /* error type */

 unsigned char err_dir; /* error direction */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short log_dlen; /* log data length */

 unsigned char *log_dptr; /* pointer to log data */

} SEND_ERROR;

typedef struct mc_send_error

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char err_type; /* error type */

 unsigned char err_dir; /* error direction */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned char reserv5[2]; /* reserved */

 unsigned char reserv6[4]; /* reserved */

} MC_SEND_ERROR;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_SEND_ERROR

 AP_M_SEND_ERROR

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

 On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

[MC_]SEND_ERROR

138 Client/Server Communications Programming

The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb

in the invoking transaction program or by RECEIVE_ALLOCATE in the

invoked transaction program.

err_type

 Indicates the type of the error being reported: application program or

service program.

AP_PROG

AP_SVC

err_dir

Indicates whether the error being reported is in the data received from the

partner transaction program, or in the data the local transaction program

was about to send.

 This parameter is used only when the SEND_ERROR verb is being issued

in SEND_PENDING state.

 AP_RCV_DIR_ERROR

 AP_SEND_DIR_ERROR

log_dlen

 Number of bytes of data to be sent to the error log file.

 Range: 0–32767

 The application can append data to the end of the VCB, in which case this

field will be greater than zero and log_dptr must be set to NULL. (A

length of zero indicates that there is no error log data.)

log_dptr

 Address of data buffer containing error information. The application can

append data to the end of the VCB, in which case log_dptr must be set to

NULL.

 This data is sent to the local error log and to the partner LU. This

parameter is used by the SEND_ERROR verb if log_dlen is greater than

zero.

 The transaction program must format the error data as a General Data

Stream (GDS) error log variable. For further information, refer to IBM

Systems Network Architecture: LU 6.2 Reference: Peer Protocols.

[MC_]SEND_ERROR

Chapter 8. APPC Verbs 139

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator.

 AP_YES

 AP_NO

expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

 AP_YES

 AP_NO

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

 AP_BAD_CONV_ID

 AP_BAD_ERROR_DIRECTION

 AP_BAD_TP_ID

 AP_SEND_ERROR_BAD_TYPE

 AP_SEND_ERROR_LOG_LL_WRONG

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_SEND_ERROR_BAD_STATE

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

Verb Issued in Any Permitted State

The following return codes can be generated when the [MC_]SEND_ERROR verb

is issued in any permitted state:

AP_CONV_FAILURE_NO_RETRY

AP_CONV_FAILURE_RETRY

[MC_]SEND_ERROR

140 Client/Server Communications Programming

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_DUPLEX_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

AP_ERROR_INDICATION

 AP_ALLOCATION_ERROR_PENDING

 AP_DEALLOC_ABEND_PROG_PENDING

 AP_DEALLOC_ABEND_SVC_PENDING

 AP_DEALLOC_ABEND_TIMER_PENDING

 AP_UNKNOWN_ERROR_TYPE_PENDING

Verb Issued in SEND State: The following return codes can be generated only if

the [MC_]SEND_ERROR verb is issued in SEND state:

 AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_PROG_ERROR_PURGING

 AP_SVC_ERROR_PURGING

Verb Issued in RECEIVE State: The following return code can be generated only

if the verb is issued in RECEIVE state:

AP_DEALLOC_NORMAL

Note: For performance reasons, the SNA API client can return a successful return

code on the [MC_]SEND_DATA verb without forwarding it to the server.

When a subsequent [MC_]SEND_ERROR verb is issued, the

[MC_]SEND_DATA is forwarded to the server for processing.

If there is a [MC_]SEND_DATA error return code, it is returned on the

[MC_]SEND_ERROR verb. See “[MC_]SEND_DATA” on page 134 for a list

of error return codes.

[MC_]SEND_ERROR

Chapter 8. APPC Verbs 141

[MC_]SEND_EXPEDITED_DATA

The [MC_]SEND_EXPEDITED_DATA verb puts data in the local LU’s expedited

send buffer for transmission to the partner transaction program. This data can

arrive at the partner transaction program before non-expedited data that was sent

earlier.

VCB Structure

typedef struct send_expedited_data

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 unsigned short dlen; /* data length */

 unsigned char *dptr; /* pointer to data */

 unsigned char reserve4[2]; /* TP identifier */

} SEND_EXPEDITED_DATA;

typedef struct mc_send_expedited_data

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char rts_rcvd; /* request to send received */

 unsigned char expd_data_rcvd; /* expedited data received */

 /* transaction plan */

 /* data */

 unsigned short dlen; /* actual length of received */

 /* data */

 unsigned char *dptr; /* pointer to data buffer */

 unsigned char reserv4[2]; /* reserved */

} MC_SEND_EXPEDITED_DATA

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_SEND_EXPEDITED_DATA

 AP_M_SEND_EXPEDITED_DATA

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION. For

nonblocking operation, this flag can be ORed together with

AP_NON_BLOCKING.

 On full-duplex conversations, this flag must be ORed together with

AP_FULL_DUPLEX_CONVERSATION.

[MC_]SEND_EXPEDITED_DATA

142 Client/Server Communications Programming

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb

in the invoking transaction program or by RECEIVE_ALLOCATE in the

invoked transaction program.

dlen Number of bytes of data to be put in the local LU’s send buffer.

 Range: 1–86

dptr Address of data buffer containing error information. The application can

append data to the end of the VCB, in which case dptr must be set to

NULL.

 Note that the data is unformatted—no 2-byte length field (LL) is present.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameters:

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator.

 AP_YES

 AP_NO

expd_data_rcvd

Expedited-data-received indicator. This indication continues to be set to

AP_YES until a RECEIVE_EXPEDITED_DATA is issued.

 AP_YES

 AP_NO

If the verb is nonblocking and has not completed, Personal Communications

returns the following parameters:

primary_rc

AP_OPERATION_INCOMPLETE

opext AP_OPERATION_INCOMPLETE_FLAG

If the verb does not execute because the remote LU does not support expedited

data, Personal Communications returns the following parameter:

primary_rc

AP_EXPD_NOT_SUPPORTED_BY_LU

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

[MC_]SEND_EXPEDITED_DATA

Chapter 8. APPC Verbs 143

primary_rc

AP_PARAMETER_CHECK

secondary_rc

 AP_BAD_CONV_ID

 AP_BAD_TP_ID

 AP_SEND_EXPD_INVALID_LENGTH

 AP_RCV_EXPD_INVALID_LENGTH

If the conversation is in the wrong state when the transaction program issues this

verb, Personal Communications returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_EXPD_DATA_BAD_CONV_STATE

The conditions generating the following possible primary return codes

(primary_rc) and indented secondary return codes (secondary_rc) are described in

Appendix A, “APPC Common Return Codes,” on page 321.

AP_ALLOCATION_ERROR

 AP_SECURITY_NOT_VALID

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

 AP_TP_NAME_NOT_RECOGNIZED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_SYNC_LEVEL_NOT_SUPPORTED

AP_CONV_FAILURE_NO_RETRY

AP_CONV_FAILURE_RETRY

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_DUPLEX_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

[MC_]SEND_EXPEDITED_DATA

144 Client/Server Communications Programming

[MC_]TEST_RTS

The [MC_]TEST_RTS verb determines whether a request-to-send notification has

been received from the partner transaction program.

VCB Structure

typedef struct test_rts

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char reserv3; /* reserved */

} TEST_RTS;

typedef struct mc_test_rts

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char reserv3; /* reserved */

} MC_TEST_RTS;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_TEST_RTS

 AP_M_TEST_RTS

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program. The value of this parameter

was returned by the TP_STARTED verb in the invoking transaction

program or by RECEIVE_ALLOCATE in the invoked transaction program.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb

in the invoking transaction program or by RECEIVE_ALLOCATE in the

invoked transaction program.

Returned Parameters

If the verb executes successfully, Personal Communications returns the following

parameter:

[MC_]TEST_RTS

Chapter 8. APPC Verbs 145

primary_rc

Indicates whether a request-to-send notification has been received from the

partner transaction program.

 AP_OK

 AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_TEST_INVALID_FOR_FDX

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

AP_TP_BUSY

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

[MC_]TEST_RTS

146 Client/Server Communications Programming

[MC_]TEST_RTS_AND_POST

The [MC_]TEST_RTS_AND_POST verb asynchronously determines whether a

request-to-send notification has been received from the partner transaction

program. A transaction program can issue a [MC_]TEST_RTS_AND_POST at any

time, even when there is another verb outstanding on the conversation.

[MC_]TEST_RTS_AND_POST returns when a request-to-send notification is

received, or when the conversation ends, or when a conversation failure is

detected.

This verb can only be issued through the APPC entry point.

VCB Structure

typedef struct test_rts_and_post

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char reserv3; /* reserved */

 unsigned long sema; /* post handle for verb */

} TEST_RTS_AND_POST;

typedef struct mc_test_rts_and_post

{

 unsigned short opcode; /* verb operation code */

 unsigned char opext; /* verb extension code */

 unsigned char format; /* format */

 unsigned short primary_rc; /* primary return code */

 unsigned long secondary_rc; /* secondary return code */

 unsigned char tp_id[8]; /* TP identifier */

 unsigned long conv_id; /* conversation identifier */

 unsigned char reserv3; /* reserved */

 unsigned long sema; /* post handle for verb */

} MC_TEST_RTS_AND_POST;

Supplied Parameters

The transaction program supplies the following parameters to Personal

Communications:

opcode

AP_B_TEST_RTS_AND_POST

 AP_M_TEST_RTS_AND_POST

opext AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION

format

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

tp_id Identifier for the local transaction program.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking transaction program or by RECEIVE_ALLOCATE in the invoked

transaction program.

[MC_]TEST_RTS_AND_POST

Chapter 8. APPC Verbs 147

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb

in the invoking transaction program or by RECEIVE_ALLOCATE in the

invoked transaction program.

sema Handle of the event that the application will wait on. This verb is intended

for use with WaitForMultipleObjects in the Win32 API. For more

information about this function, see the programming documentation for

the Win32 API.

Returned Parameters

If the verb executes successfully (that is, a request-to-send notification is received),

Personal Communications return the following parameter:

primary_rc

AP_OK

If the verb returns because the conversation has ended or a conversation failure

has been detected, Personal Communications returns the following parameter:

primary_rc

AP_UNSUCCESSFUL

If the verb does not execute because of a parameter error, Personal

Communications returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_BAD_CONV_ID

AP_BAD_TP_ID

AP_TEST_INVALID_FOR_FDX

The conditions generating the following possible primary return codes

(primary_rc) are described in Appendix A, “APPC Common Return Codes,” on

page 321.

AP_CONVERSATION_TYPE_MIXED

AP_UNEXPECTED_SYSTEM_ERROR

AP_CANCELLED

[MC_]TEST_RTS_AND_POST

148 Client/Server Communications Programming

Part 2. LUA API

© Copyright IBM Corp. 1994, 2006 149

150 Client/Server Communications Programming

Chapter 9. Fundamental Concepts of the IBM Conventional LU

Application

This chapter describes the IBM conventional logical unit application (LUA) access

method and describes its relationship to Systems Network Architecture (SNA).

Note: Included in the chapters of Part 2 of this book is information on the LUA

API provided by the following systems:

v Communications Server running on Windows

v SNA API clients for Win32 platforms that are delivered with the

Communications Server product

v Personal Communications for Windows

When there are differences between the support provided by these systems,

it is noted.

Understanding LUA and SNA

The IBM LUA access method provides an application programming interface (API)

for secondary dependent logical units (LUs). LUA consists of system software and

interfaces that supply input/output (I/O) service routines to support

communications using LU types 0, 1, 2, and 3 SNA protocols. The RUI and SLI

interface of LUA is supported.

The Communications Server is designed to be binary compatible with Microsoft

NT SNA Server and similar to the implementation of Communications Server/2.

The services that LUA provides to application programs include only those that

support data communications; LUA does not provide any device emulation

facilities. However, LUA does provide a unique subset of presentation services

layer functions.

Communications Server must be installed and configured before an LUA

application program can run on the workstation. Refer to Quick Beginnings for

information about installing and configuring Communications Server.

Connection Capabilities

The main objective of any communications system is to connect with other

systems. The goal of SNA is to supply common protocols that give universal

connectivity. LUA communication and connectivity requirements include the

System/370™ (S/370™) connections.

LUA Application Programs

In this book, the term LUA application program means an application program, or a

portion of an application program, that uses LUA communications functions.

Application programs use these functions to communicate with application

programs on other systems that support LU types 0, 1, 2, or 3.

© Copyright IBM Corp. 1994, 2006 151

As a local LUA application program runs, it exchanges data with a remote host

application program. The local and remote application programs are called partner

application programs.

LUA Verbs

A verb is a formatted request that is processed by LUA. An application program

issues a verb to request that LUA take some action. LUA verbs are coded as

control blocks. Each verb control block has a precisely defined format. To use the

LUA facilities, an application program supplies verb control blocks to the LUA

API.

An LUA verb always returns immediately to its caller. If the return code is

IN_PROGRESS, the application needs to wait for completion of the verb, using the

posting method specified in the verb request. See Chapter 12, “RUI LUA Entry

Points,” on page 181 for a description of LUA verb postings.

Verb control block layouts are available in the INCLUDE directory. You can use the

verb control block layouts and sample programs to help you write LUA

application programs.

LUs, Local LUs, and Partner LUs

A logical unit (LU) manages the exchange of data between application programs.

Every LUA application program gains access to an SNA network through an LU,

which acts as an intermediary between the LUA application program and the SNA

network.

In LUA, there is a one-to-many relationship between LUA application program

processes and LUs. One LUA application program process can own multiple LUs

simultaneously, but a given LU can be owned by only one LUA application

program process simultaneously. Before a second application program process can

use an LU, the first application program must release the LU.

An LUA application program issues LUA verbs to its local LU. These verbs cause

commands and data to flow across the network to the partner LU.

Note: You need to define your local LU only once for each machine, as described

in Quick Beginnings.

System Services Control Point (SSCP)

The system services control point (SSCP) component in a host system is

responsible for starting host applications, for associating host applications with

dependent LUs, and for creating and terminating the connections between LUs.

SNA Layers

SNA is a hierarchical structure that consists of seven well-defined layers. Each

layer in the architecture performs a specific function. Understanding the layered

structure of SNA helps in understanding the various functions that LUA supplies.

The following descriptions of the five highest-level SNA layers show the

relationship between LUA and SNA.

152 Client/Server Communications Programming

Data Link Control Layer

The data link control (DLC) layer consists of the elements that provide an interface

to the hardware. The DLC elements supply support for various DLC protocols,

such as Synchronous Data Link Control (SDLC) and the IBM Token-Ring Network.

The DLC layer supplies a common link appearance to the elements in the path

control (PC) layer. The DLC layer is common to all Personal Communications LU

implementations, including LUA.

Path Control Layer

The path control (PC) layer of SNA in a peripheral node supplies basic functions,

such as routing to and from multiple half-sessions within its node. SNA permits

the PC layer to route to and from only one data link at a time. The PC layer is

common to all Personal Communications LU implementations, including LUA.

Transmission Control Layer

The transmission control (TC) layer of SNA supplies the connection-point-manager

function and the session-control function for each locally supported half-session.

The connection-point-manager function controls sequence-number checking,

pacing, and other support functions that relate to half-session data flows. The

session-control function supplies session-specific support for starting, pacing,

enciphering, deciphering, and other support functions that relate to session-related

data flows. LUA contains an implementation of the TC layer for LU types 0, 1, 2,

and 3 within Personal Communications.

Data Flow Control Layer

The data flow control (DFC) layer of SNA controls the flow of function

management data (FMD) requests and FMD responses between FMD pairs that are

in sessions and between sessions. The data flow control layer supplies various

functions, such as request/response formatting, data-chaining protocol,

request/response correlation, send- and receive-mode protocols, bracket protocol,

error-recovery protocol, stop-bracket-initiation protocol, and queued-response

protocol. LUA contains an implementation of the data flow control layer for LU

types 0, 1, 2, and 3 within Personal Communications.

Presentation Services Layer

The presentation services (PS) layer of SNA contains the function that presents the

communications data interface to the user. The presentation services layer is

defined in the architecture for all LU types except LU 0. LUA contains a unique

subset of the presentation services layer within Personal Communications. For

more information about the presentation services layer, refer to Systems Network

Architecture Concepts and Products.

The LU services functions are a part of the SNA-session message flow layers.

These functions supply support before session establishment, build session

structures, and take down session structures. LUA functions interface with

common Personal Communications and Communications Server support to define

LUs and to start and stop SNA sessions.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 153

Using SNA Sessions

Before an LUA application program can communicate with a partner host

application program, the respective LUs must be connected in a mutual

relationship called a session. An SNA session is a logical connection that enables

two network addressable units (NAUs) to communicate with each other; an LU is

one kind of NAU. Because the session connects two LUs, it is called an LU-LU

session. LU-LU sessions enable end users to exchange data.

A session manages how data moves between a pair of LUs in an SNA network.

Therefore, sessions are concerned with such things as the quantity of data being

transmitted, data security, network routing, data loss, and traffic congestion.

Session characteristics are determined by the SNA BIND command originating

from the primary LU, when the secondary LU accepts the BIND command.

Prerequisites to an SNA Session

An LU-LU session consists of communication between a primary logical unit (PLU)

and a secondary logical unit (SLU). The SLU is implemented by the LUA

application program. Before data can be transferred between a PLU and an SLU on

an LU-LU session, the following events must occur:

1. Personal Communications and Communications Server activate the data link.

2. When the data link is ready, the system services control point (SSCP)

establishes a session between itself and a physical unit (SSCP-PU session) by

sending an Activate Physical Unit (ACTPU) command and reading a positive

response from either the Personal Communications or Communications Server

program. Then either program sends a positive response if the PU address from

the ACTPU command corresponds to the configuration information.

3. The SSCP establishes a session between itself and the logical unit (SSCP-LU

session) by sending an Activate Logical Unit (ACTLU) command and reading a

positive response from either the Personal Communications or Communications

Server program. Then either program sends a positive response if the LU

address from the ACTLU command corresponds to the configuration

information.

Starting Sessions

Either the SLU or the PLU can start an LU-LU session.

Starting an LU-LU Session from an SLU

After the SSCP-LU session is established, the SLU program can request an LU-LU

session by sending the Initiate Self (INITSELF) command to the SSCP. The SSCP

receives the INITSELF command and checks whether the named host application

program is valid. A host application program is valid if it is known and active. If

the host application program is valid, the SSCP sends a positive response to the

SLU, and the PLU starts the session. If the host application program is not valid,

the SSCP sends a negative response to the SLU, and the PLU does not start the

session.

If the SSCP sends a positive response to an INITSELF command but the session

cannot be established, the SSCP sends a Network Services Procedure Error (NSPE)

command to the SLU to stop the attempt to establish a session. The SLU can

reissue the INITSELF command after the NSPE command.

154 Client/Server Communications Programming

Starting an LU-LU Session from a PLU

The PLU program can start unsolicited LU-LU sessions. The PLU starts sessions by

generating a BIND command. A subsequent positive response establishes the

agreement to communicate. A data field that is associated with the BIND

command contains the name of the PLU application program and the session

BIND parameters. For more information about the format of this data field, refer

to Systems Network Architecture: Formats.

For nonnegotiable BINDs, the SLU returns a positive response if the parameters

are acceptable. If the parameters are unacceptable, the SLU returns a negative

response with sense data to the PLU.

The negotiable BIND command permits the SLU to return a positive response with

a minimum of 26 bytes of updated session parameters indicating compatibility

with the PLU parameters. If the PLU finds the returned parameters acceptable, it

sends a Start Data Traffic (SDT) command. If the returned parameters are

unacceptable, the PLU sends an UNBIND command that indicates unacceptable

negotiable BIND command parameters from the SLU.

Transferring Data on an LU-LU Session

After the LU-LU session is established and the SLU program responds to the SDT

command, data transfer can begin. For a data transmission operation, a message

moves from end-user storage to Personal Communications or Communications

Server storage until it is transmitted. For a data-reception operation, either

program would place a message in its own storage and then move the message

into end-user storage.

Quiesce protocols suspend the transfer of data in an LU-LU session. The PLU or

the SLU can send the following Quiesce protocol commands:

v Quiesce at End of Chain (QEC). This command requests that the receiver of this

command stop sending data after sending the last part in a data chain. A data

chain is a series of related messages. For more information about data chaining,

see “Using the Data-Chaining Protocol” on page 159.

v Quiesce Complete (QC). This command notifies a QEC command that data

transfer is suspended. When the SLU sends the QC command, either Personal

Communications or Communications Server prevents the SLU from sending any

normal-flow messages until the Release Quiesce (RELQ) command is received.

v Release Quiesce (RELQ). This command notifies the receiver that data can again

be transferred.

Stopping Sessions

When all data has been transferred and verified, the session can end. An SLU must

end one session before it can begin a different session with either the same or

another PLU.

Stopping an LU-LU Session by an SLU

An SLU can end an LU-LU session in either of two ways:

v By sending a Terminate-Self (TERMSELF) command or an UNBIND command.

Either command results in an immediate ending.

v By sending a Request Shutdown (RSHUTD) command. This command solicits

an UNBIND from the PLU.

To end a session immediately, the SLU sends the TERMSELF command to the

SSCP, which checks whether the named LUA application program is the one

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 155

participating in this session. If it is, the SSCP sends a positive, nondata response.

Depending on the host SNA version being used, the SSCP can send a CLEAR

command, which purges all messages from the LU-LU session, and can then send

an UNBIND command to end the session. Alternatively, the SLU can send an

UNBIND command to the PLU.

Stopping an LU-LU Session by a PLU

A PLU can end an LU-LU session in either of two ways:

v By sending a CLEAR command and then an UNBIND command, or an

UNBIND command only. Either method results in an immediate ending.

v By sending the Shutdown (SHUTD) command. This command results in an

orderly session termination. The SLU and PLU have a dialog that tells each to

stop sending data and that ensures that data already sent is received.

Ending the LU-LU session has no effect on the SSCP-LU session.

Stopping an SSCP-LU Session and an SSCP-PU Session

The SSCP-LU session ends when the host sends the Deactivate Logical Unit

(DACTLU) command to the SLU. When the last SSCP-LU session for Personal

Communications ends, the SSCP can end the SSCP-PU session by sending a

Deactivate Physical Unit (DACTPU) command.

Disconnecting the Host Link

When the host receives the response to the DACTPU command, it returns a

command to Personal Communications such as the Set Disconnect Response Mode

(SDRM) command when using SDLC protocol. The SSCP can also disconnect

immediately at any time by sending the same command to Personal

Communications, which ends all sessions. When sessions are ended in this manner,

all SLUs that were active earlier receive a loss-of-contact indication.

Message Numbers

All normal-flow messages that are transmitted between the SLU and the PLU

during an LU-LU session are numbered in sequence. The SLU maintains a

sequence number for normal-flow messages from the SLU to the PLU and another

sequence number for normal-flow messages from the PLU to the SLU. Each

normal-flow message gets a sequence number one greater than the sequence

number of the preceding normal-flow message. There is one pair of sequence

numbers for each session that is established between an SLU and a PLU.

For LU-LU expedited-flow messages and for all SSCP-LU and SSCP-PU messages,

unsequenced identifiers are used instead of sequence numbers.

When a session is reestablished or a CLEAR command is sent, the PLU and the

SLU set their sequence numbers to 0. The PLU can change the sequence numbers

with the Set and Test Sequence Numbers (STSN) command. This enables correct

sequence numbering when a session is recovered or restarted.

When the SLU encounters a sequence number error, it sends a negative response to

the PLU if a response was requested. When the SLU reads a response, the SLU

uses the response sequence number to correlate the response with the original

request. When the SLU writes a response, the SLU must supply the sequence

number of the original request.

156 Client/Server Communications Programming

Restarting and Resynchronizing a Session

If the PLU or the SLU encounters an unrecoverable error, such as a line failure,

you might need to resynchronize the LU-LU session after restarting it.

Resynchronizing the LU-LU session includes reprocessing recoverable messages

and (optionally) resetting the message sequence numbers. The application

programs can include routines to retransmit lost messages.

When a session is restarted and resynchronized, the PLU sends the BIND, the

STSN, and the SDT commands. When the STSN command is sent, a dialog can

occur to establish the sequence numbers that are acceptable to both the PLU and

the SLU. This dialog consists of a series of STSN messages and positive responses.

If the SLU determines that resynchronization is required, the SLU can send a

Request Recovery (RQR) command, a negative response, or an LU-Status

command (LUSTAT) with a description of the failure in the user sense bytes. If the

PLU discovers the failure or receives an RQR command from the SLU, the PLU

sends a CLEAR command to purge all LU-LU messages from the network, an

STSN command to establish new sequence numbers, and then an SDT command.

Using Protocols to Control Requests and Responses

Various protocols can control the sequencing rules for requests and responses. This

section describes some of the protocols used for managing the SNA network,

transferring data, and synchronizing the states of network components.

Using the Pacing Protocol

To avoid a message-flow rate that is too fast for Personal Communications or the

host, you can specify pacing in the BIND command. Pacing applies to the LU-LU

normal flow only. While pacing, Personal Communications permits a specified

number of messages to flow and waits for a response before permitting additional

messages to be sent. You can specify pacing on Personal Communications-to-host

flow, the host-to-Personal Communications flow, or both. Once the LU-LU session

starts, LUA handles all pacing with no participation by the application program.

Receive-Pacing Protocol

Receive-pacing protocol gives the PLU control over the number and the frequency

of messages sent from the SLU on an LU-LU session. When the SLU receives

pacing values in the BIND command, Personal Communications automatically

enforces pacing for each SLU that communicates with the host.

During a positive response to a negotiable BIND command, you can change the

pacing values to any number except 0. When the SLU sends the first message of a

sequence, Personal Communications set a bit in the request/response header (RH)

that indicates a pacing response is to be returned. If the pacing count is exhausted

before either program receives a pacing response from the PLU, neither program

can send additional data messages. If the application program issues a write

operation and no pacing response is received, Personal Communications defer the

write operation.

Send-Pacing Protocol

The SLU automatically controls the send-pacing protocol. If the pacing indicator is

set on in a message from the PLU to the SLU, the SLU issues a pacing response

when the application program reads the message. The message response can

contain the pacing indicator or, if no response is required for the received message,

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 157

the pacing response can be an isolated pacing response (IPR). The PLU can then

send another pacing window of messages.

Using the Half-Duplex Contention/Flip-Flop Protocol

The change-direction (CD) indicator is used with both of the following protocols:

v Half-duplex contention protocol, which is a normal-flow send/receive mode in

which either half-session can send normal-flow requests at the beginning of the

session or after sending or receiving the last request of a chain.

v Half-duplex flip-flop protocol, which is a normal-flow send/receive mode in

which one half-session sets the CD indicator in the response header (RH) on an

end-of-chain to enable the other half-session to begin sending.

A CD indicator tells the receiver that transmitting can begin.

For example, if the SLU initiates a transaction, the SLU begins by sending the

messages that completely describe the transaction. On the last message, the SLU

sets the CD indicator to tell the PLU that it can begin transmitting a reply. If the

PLU needs additional information to complete the transaction, it sends an inquiry

and sets the CD indicator. The dialog proceeds in this half-duplex mode until the

transaction is complete. During a half-duplex dialog, the SLU can use the SIG

command to tell the PLU to stop sending data and to change the direction of the

data flow.

Using the Bracket Protocol

Bracket protocol gives the SLU and the PLU context control of the data

transmission, indicating that a session concerns a single transaction. Bracket

protocol protects a current session from interruption by a concurrent transaction. A

bracket encompasses the duration of a transaction.

The first message in the bracket contains a begin-bracket (BB) indicator, and the

last message in the bracket contains an end-bracket (EB) indicator. A single

message can be a bracket if it contains both indicators.

For a bracket session, the BIND command specifies one LU as the first speaker,

and the other LU as the bidder. The first speaker can begin a bracket without

permission from the other LU. The bidder, however, must request and receive

permission from the first speaker to begin a bracket.

A BID command is a normal-flow request that is issued by the bidder to request

permission to begin a bracket. A positive response to a BID command indicates

that the first speaker will not begin a bracket but will wait for the bidder to begin

a bracket. A negative response to a BID command indicates that the first speaker

denies permission for the bidder to begin a bracket. The first speaker can send a

Ready-to-Receive (RTR) command when permission is granted to start a bracket.

The first speaker indicates a negative response to a BID command with one of two

response codes:

Bracket-Bid-Reject-RTR-Forthcoming

Indicates that an RTR command for that BID command will be sent later

(granting permission to start a bracket). The bidder can wait for the RTR

command or send the BID command again.

158 Client/Server Communications Programming

Bracket-Bid-Reject-No-RTR-Forthcoming

Indicates that no RTR command for that BID command will be sent later.

The bidder must send the BID command again if the bidder still wants to

begin a bracket.

Instead of sending a BID command followed by a first-in-chain FMD with a BB

indicator, the bidder can attempt to initiate a bracket by sending a first-in-chain

FMD with a BB indicator. The first speaker can grant the attempt with a positive

response or it can refuse the attempt with a negative response that indicates either

of the negative response codes. However, if the bidder stops the chain that carries

the BB indicator by sending the CANCEL command, the bracket is not initiated,

regardless of the response. The RTR command can be issued by the first speaker

either to grant permission to the bidder to begin a bracket or to find out if the

bidder wants to begin a bracket.

A positive response to an RTR command indicates that the bidder will initiate the

next bracket. If the bidder does not want to initiate a bracket, the bidder issues a

negative response with the RTR-Not-Required sense code.

Using the Data-Chaining Protocol

Data chaining is an optional protocol for transmitting a group of related messages.

To send chained messages from the SLU, the SLU sets to 1 the begin-chain (BC)

indicator for the message to indicate the first message in a chain. For all messages

between the first and the last in the chain, the SLU sets the BC and the end-chain

(EC) indicators to 0. For the last message in the chain, the EC is set to 1 again.

When the SLU receives messages, it tests the chaining indicator to determine if the

messages are chained.

The data-chaining protocol comprises three types of chains, as follows:

v No-response chain. Each request in the chain is marked no response.

v Exception-response chain. Each request in the chain is marked exception response.

v Definite-response chain. The last request in the chain is marked definite response;

all other requests in the chain are marked exception response.

When sending a message chain to the PLU, the SLU can send a CANCEL

command if the SLU or the PLU finds a message error. If the SLU sends a

CANCEL command to the PLU, the PLU discards all messages in the chain that it

has received. If the PLU sends a negative response to any element of a chain, the

SLU ends the chain normally or sends a CANCEL command.

Data Exchange Control Methods

An SNA session is conducted under rules for orderly exchange of data.

Flow Protocols

At the transport level, data is exchanged through either a half-duplex (HDX)

protocol or a full-duplex (FDX) protocol.

When a half-duplex protocol is used, data flows in only one direction at a time,

with one LU sending only and the other receiving only. In a half-duplex flip-flop

protocol, both LUs recognize which LU has the right to send and which to receive.

At specified times the partner LUs agree to change the direction so that the

receiver can send and the sender can receive.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 159

When a full-duplex protocol is used, data can flow in either direction at any time.

Both LUs can send and receive without constraint.

Response Modes

Each SNA message is either a request or a response. Every request from one LU

elicits a matching response from the partner LU. Because the response carries the

same transmission sequence number as the request, responses and requests can be

matched by their sequence numbers.

When your application has received a request whose RH specifies a mandatory

response, your application must generate and send a response message. The

response mode rule determines when the response must be sent.

Under immediate response mode, your application must send a response to a

request before it sends any request of its own. Under delayed response mode,

however, responses can be sent at any time after a request is received.

LUA Correlation Tables

LUA keeps track of the sequence numbers of incoming and outgoing requests until

they receive responses, until the application issues a response to an incoming

request, or until the PLU responds to an outgoing request. These numbers are

recorded in Personal Communications and Communications Server areas called

correlation tables.

Under immediate response mode, only a few outstanding requests can be

generated in a session, typically one at most. Under delayed response mode, the

number can be larger.

The LUA correlation tables are managed dynamically. LUA can record any number

of responses. If a very large number of responses accumulate (probably due to a

program logic error), the server runs low on memory and Personal

Communications might shut down.

Exception Response Requests (RQEs)

In most cases, LUA can correlate requests and responses automatically, without any

help from your program. LUA observes the request and response RUs as they flow

in the session. LUA can tell when a request needs a response, and when the

response has been sent. However, there is one case in which LUA cannot tell if a

response will be sent, and your program must tell it.

Bit fields in the RH of a request specify whether a response is mandatory, not

wanted, or optional. When no response is wanted, LUA need not store the request

number in its correlation table. A mandatory response must be sent as the next

message on that flow. LUA enters the message in the correlation table, but it will

quickly be cleared because the response must come next.

The error response indicator (ERI) in the RH specifies that a response is optional,

required only if the receiving LU cannot accept or process the RU. This

optional-response RU is called an exception response request (abbreviated RQE).

LUA cannot always manage its correlation table automatically in the presence of

RQEs. Table 11 summarizes the instances in which LUA can clear a received RQE

automatically from its correlation table, and those in which LUA must wait for a

signal from the application before clearing a received RQE.

160 Client/Server Communications Programming

Table 11. Clearing of RQEs

Immediate

Response Mode Delayed Response Mode

Verbs HDX FDX HDX FDX

RUI_READ Automatic Automatic Application

response

Application

response

RUI_WRITE Automatic Application

response

Application

response

Application

response

In immediate response mode on either an HDX or FDX session, LUA can discard

the number of an RQE as soon as the application requests input (uses RUI_READ),

because, in immediate response mode, a response must be sent before another

request can be issued. Also, in immediate response mode on an HDX connection,

LUA can discard the number of an RQE as soon as the application requests output

(uses RUI_WRITE)—because the output will either be the RQE response, or no

response is going to be sent.

In all other instances, LUA cannot be sure whether a response to the RQE will be

produced. The application must format and send a positive response to an RQE,

not for the benefit of the PLU (which wants only negative responses) but to inform

LUA that the RQE was accepted and will not be generating a negative response.

LUA can then clear the RQE from its table. Because the response is a positive one

and the PLU wanted only negative ones, LUA does not transmit the application’s

response on the network.

In short, simply to assist LUA, your application must treat received RQE RUs as if

they were definite-response RUs.

Session Profiles

The specific SNA protocols and conventions that can be used on a given session,

taken together, comprise the profile of the session. Two profiles, the transmission

services (TS) profile and the function management (FM) profile, can be bound to

the session. The choice of profiles is made at BIND time.

TS Profiles

Five TS profiles, numbered 1, 2, 3, 4, and 7 are defined by SNA. However, because

TS profile 1 is used only between the SSCP and the PU, only profiles 2, 3, 4, and 7

are applicable to an LUA application. They differ in the SNA commands that can

be issued, as shown in Table 12.

 Table 12. TS Profile Characteristics

Profile Pacing Use CLEAR CRV RQR SDT STSN

2 Always Used Not used Not used Not used Not used

3 Always Used Optional Not used Used Not used

4 Always Used Optional Used Used Used

7 Optional Not used Optional Not used Not used Not used

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 161

FM Profiles

Eight FM profiles, numbered 0, 2, 3, 4, 6, 7, 18, and 19 are defined by SNA.

However, because profiles 0 and 6 are used only by the SSCP, and profile 19 is

used only with LU type 6.2, five profiles can be applicable to an LUA application.

Each profile differs in the SNA facilities that are restricted.

An approximate summary of the FM profiles is shown in Table 13. In the table, a

blank cell means that the SNA facility is not restricted in this profile—it can have

any use that can be specified in the BIND parameters.

The LUA RUI supports FM profiles 2, 3, 4, 7, and 18.

 Table 13. FM Profile Characteristics

SNA Facility FMP 2 FMP 3 FMP 4 FMP 7 FMP 18

Request mode SLU uses delayed

Response mode SLU uses immediate Immediate Immediate Immediate Immediate

RU chains Single RU chains

only

Length-checked

compression

LU 0 only

FMH-1 session

control block (SCB)

compression

Not allowed

Data flow control

RUs allowed

None v CANCEL

v SIGNAL

v LUSTAT (SLU

only)

v CHASE

v SHUTD

v SHUTC

v RSHUTD

v BID, RTR

v CANCEL

v SIGNAL

v LUSTAT

v QEC

v QC

v RELQ

v CHASE

v SHUTD

v SHUTC

v RSHUTD

v BID, RTR

v CANCEL

v SIGNAL

v LUSTAT

v RSHUTD

v CANCEL

v SIGNAL

v LUSTAT

v CHASE

v BIS, SBI

v BID, RTR

FM Headers Not allowed

Brackets Restricted use

Flow protocol FDX

Recovery By PLU only

Using RUI LUA Verbs

An application accesses LUA through LUA verbs. Each verb supplies parameters to

LUA, which performs the desired function and returns parameters to the

application.

Verb Summary

The following is a brief summary of the seven LUA verbs that an application can

use. (For a detailed explanation of each verb, see Chapter 13, “RUI Verbs.”)

RUI_BID

Enables the application to determine when information from the host is

available to be read.

162 Client/Server Communications Programming

RUI_INIT

Sets up the LU-SSCP session for an LUA application.

RUI_PURGE

Cancels an outstanding RUI_READ verb.

RUI_READ

Receives data or status information sent from the host to the LUA

application’s LU, on either the LU-SSCP session or the LU-LU session.

RUI_TERM

Ends the LU-SSCP session for an LUA application. It also brings down the

LU-LU session if it is active.

RUI_WRITE

Sends data to the host on either the LU-SSCP session or the LU-LU session.

RUI Sessions

An RUI session consists of the ownership of an LU for a period of time

determined by the application, which can include establishing a session between

an SSCP and an LU (called an SSCP-LU session). An RUI session can also include

establishing one or more non-overlapped LU-LU sessions. If the SSCP-LU session

fails because of a loss-of-contact or another reset condition, the RUI session ends.

An RUI session begins with an RUI_INIT verb and ends normally with an

RUI_TERM verb.

Issuing RUI Verbs

Table 14 on page 164 shows the valid conditions under which an RUI application

program can issue verbs to the RUI API for a given LU. The entries in the leftmost

column represent incoming verbs. The entries in the first row represent verbs that

are in progress. If an entry in the table is OK, the combination of verbs represents

a valid condition. If an entry in the table is Error, the combination of verbs

represents an incorrect condition and an error code is returned to the LUA

application program.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 163

Table 14. RUI Verb Conditions

In-Progress Commands

Incoming

 Commands

No Current

Session

RUI_INIT RUI_TERM RUI_WRITE RUI_READ RUI_PURGE RUI_BID

RUI_INIT OK Error Error Error Error Error Error

RUI_TERM Error OK Error OK OK OK OK

RUI_WRITE Error Error Error OK

(See Note 1)

OK OK OK

RUI_READ Error Error Error OK OK

(See Note 2)

OK OK

RUI_PURGE Error Error Error OK OK Error OK

RUI_BID Error Error Error OK OK OK Error

Note:

1. The RUI permits a maximum of two active RUI_WRITE verbs per session at the same time. The active

RUI_WRITE verbs must be for different session flows. Four session flows are possible:

v SSCP-LU expedited

v SSCP-LU normal

v LU-LU expedited

v LU-LU normal

2. The RUI permits a maximum of four active RUI_READ verbs per session at the same time. The active

RUI_READ verbs must be for different session flows.

Asynchronous Verb Completion

Some LUA verbs complete quickly, after some local processing (for example the

RUI_PURGE verb); however, most verbs take some time to complete because they

require messages to be sent to and received from the host application. Because of

this, LUA is implemented as an asynchronous interface; control can be returned to

the application while a verb is still in progress, so the application is free to

continue with further processing (including issuing other LUA verbs).The way that

LUA returns control to the application is by way of an event handle in the verb.

If Personal Communications’s verb response signal is delayed (for example,

because it needs to wait for information from the remote node), then the stub

should return the verb asynchronously. The API does this by setting the primary

return code to LUA_IN_PROGRESS, and the lua_flag2 to LUA_ASYNC. The

application can now either perform other processing, or wait for notification from

the API that the verb has completed. When the verb completes, the application is

notified by the setting of the primary return code in the VCB to its final value, and

leaving the lua_flag2 set to LUA_ASYNC.

Sample LUA Communication Sequence

The following is an example of an LUA communication sequence. It shows the

LUA verbs used to start a session, exchange data, and end the session, and the

SNA messages sent and received. The arrows indicate the direction in which SNA

messages flow.

The following abbreviations are used:

SSCP norm

LU-SSCP session, normal flow

164 Client/Server Communications Programming

LU norm

LU-LU session, normal flow

LU exp

LU-LU session, expedited flow

+rsp Positive response to the indicated message

BC Begin chain

MC Middle of chain

EC End chain

CD Change direction indicator set

RQD Definite response required

 Verb issued by

LUA application

SNA message Flow direction

Application Host

RUI_INIT (ACTLU) <-----

 (ACTLU +rsp) ----->

RUI_WRITE (SSCP norm) INITSELF ----->

RUI_READ (SSCP norm) INITSELF +rsp <-----

RUI_READ (LU exp) BIND <-----

RUI_WRITE (LU exp) BIND +rsp ----->

RUI_READ (LU exp) SDT <-----

RUI_WRITE (LU exp) SDT +rsp ----->

RUI_WRITE (LU norm) data, BC ----->

RUI_WRITE (LU norm) data, MC ----->

RUI_WRITE (LU norm) data, EC, CD, RQD ----->

RUI_READ (LU norm) data +rsp <-----

RUI_READ (LU norm) data, BC <-----

RUI_READ (LU norm) data, MC <-----

RUI_READ (LU norm) data, EC, RQD <-----

RUI_WRITE (LU norm) data +rsp ----->

RUI_READ (LU exp) UNBIND <-----

RUI_WRITE (LU exp) UNBIND +rsp ----->

RUI_TERM (NOTIFY) ----->

 (NOTIFY +rsp) <-----

In this example, the application performs the following steps:

1. Issues the RUI_INIT verb to establish the LU-SSCP session. (The RUI_INIT

verb does not complete until Personal Communications programs have received

an ACTLU message from the host and sent a positive response; however, these

messages are handled by each program and not exposed to the LUA

application.)

2. Sends an INITSELF message to the SSCP to request a BIND, and reads the

response.

3. Reads a BIND message from the host, and writes the response. This establishes

the LU-LU session.

4. Reads an SDT message from the host, which indicates that initialization is

complete and data transfer can begin.

5. Sends a chain of data consisting of three RUs (the last indicates that a definite

response is required), and reads the response.

6. Reads a chain of data consisting of three RUs, and writes the response.

7. Reads an UNBIND message from the host, and writes the response. This

terminates the LU-LU session.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 165

8. Issues the RUI_TERM verb to terminate the LU-SSCP session. (Personal

Communications programs send a NOTIFY message to the host and waits for a

positive response; however, these messages are handled by each program and

are not exposed to the LUA application.)

BIND Checking

During initialization of the LU-LU session, the host sends a BIND message to the

Personal Communications LUA application that contains information such as RU

sizes to be used by the LU-LU session. Personal Communications returns this

message to the LUA application on an RUI_READ verb. It is the responsibility of

the LUA application to check that the parameters specified on the BIND are

suitable. The application has the following options:

v Accept the BIND as it is, by issuing an RUI_WRITE verb containing an OK

response to the BIND. No data needs to be sent on the response.

v Try to negotiate one or more BIND parameters (this is only permitted if the

BIND is negotiable). To do this, the application issues an RUI_WRITE verb

containing an OK response, but including the modified BIND as data.

v Reject the BIND by issuing an RUI_WRITE verb containing a negative response,

using an appropriate SNA sense code as data.

See Chapter 13, “RUI Verbs,” on page 189, for more information on the

RUI_WRITE verb.

Note: Validation of the BIND parameters, and ensuring that all messages sent are

consistent with them, is the responsibility of the LUA application. However,

the following two restrictions apply:

v Personal Communications and Communications Server reject any

RUI_WRITE verb that specifies an RU length greater than the size

specified on the BIND.

v Personal Communications and Communications Server require the BIND

to specify that the secondary LU is the contention winner, and that error

recovery is the responsibility of the contention loser.

Negative Responses and SNA Sense Codes

SNA sense codes may be returned to an LUA application in the following cases:

v When the host sends a negative response to a request from the LUA application,

this includes an SNA sense code indicating the reason for the negative response.

This is reported to the application on a subsequent RUI_READ verb, as follows:

– The primary return code is LUA_OK.

– The Request/Response Indicator, Response Type Indicator, and Sense Data

Included Indicator are all set to 1, indicating a negative response which

includes sense data.

– The data returned by the RUI_READ verb is the SNA sense code.
v When Personal Communications receive incorrect data from the host, it

generally sends a negative response to the host and does not pass the incorrect

data to the LUA application. This is reported to the application on a subsequent

RUI_READ or RUI_BID verb, as follows:

– The primary return code is LUA_NEGATIVE_RSP.

– The secondary return code is the SNA sense code sent to the host.
v In some cases, Personal Communications detect that data supplied by the host is

not valid, but cannot determine the correct sense code to send. In this case, it

166 Client/Server Communications Programming

passes the incorrect data in an Exception Request (EXR) to the LUA application

on an RUI_READ verb in the following way:

– The Request/Response Indicator is set to zero, indicating a request.

– The Sense Data Included Indicator is set to one, indicating that sense data is

included (this indicator is normally used only for a response).

– The message data is replaced by a suggested SNA sense code.
The application must then send a negative response to the message; it may use

the sense code suggested by Personal Communications, or may alter it.

v Personal Communications and Communications Server may send a sense code

to the application to indicate that data supplied by the application was not valid.

This is reported to the application on the RUI_WRITE verb that supplied the

data, as follows:

– The primary return code is LUA_UNSUCCESSFUL.

– The secondary return code is the SNA sense code.

Distinguishing SNA Sense Codes from Other Secondary Return

Codes

For a secondary return code which is not a sense code, the first two bytes of this

value are always zero. For an SNA sense code, the first two bytes are non-zero; the

first byte gives the sense code category, and the second identifies a particular sense

code within that category. (The third and fourth bytes may contain additional

information, or may be zero.)

Information on SNA Sense Codes

If you need information on a returned sense code, refer to IBM Systems Network

Architecture: Formats. The sense codes are listed in numeric order by category.

Pacing

Pacing is handled by LUA; an LUA application does not need to control pacing,

and should never set the Pacing Indicator flag.

If pacing is being used on data sent from the LUA application to the host (this is

determined by the BIND), an RUI_WRITE verb may take some time to complete.

This is because Personal Communications must wait for a pacing response from

the host before it can send more data.

If an LUA application is used to transfer large quantities of data in one direction,

either to the host or from the host (for example, a file transfer application), then

the host configuration should specify that pacing is used in that direction; this is to

ensure that the node receiving the data is not flooded with data and does not run

out of data storage.

Segmentation

Segmentation of RUs is handled by LUA. LUA always passes complete RUs to the

application, and the application should pass complete RUs to LUA.

Courtesy Acknowledgments

Personal Communications and Communications Server keep a record of requests

received from the host in order to correlate any response sent by the application

with the appropriate request.When the application sends a response, the Personal

Communications programs correlate this with the data from the original request,

and can then free the storage associated with it.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 167

If the host specifies exception response only (a negative response may be sent, but

a positive response should not be sent), Personal Communications must still keep a

record of the request in case the application subsequently sends a negative

response. If the application does not send a response, the storage associated with

this request cannot be freed.

Because of this, Personal Communications enable the LUA application to issue a

positive response to an exception-response-only request from the host (this is

known as a courtesy acknowledgment). The response is not sent to the host, but is

used by Personal Communications to clear the storage associated with the request.

Purging Data to End of Chain

When the host sends a chain of request units to an LUA application, the

application may wait until the last RU in the chain is received before sending a

response, or it may send a negative response to an RU which is not the last in the

chain. If a negative response is sent mid-chain, Personal Communications purge all

subsequent RUs from this chain, and do not send them to the application.

When Personal Communications receive the last RU in the chain, it indicates this

to the application by setting the primary return code of an RUI_READ or

RUI_BID verb to LUA_NEGATIVE_RSP with a zero secondary return code.

Note: The host may terminate the chain by sending a message such as CANCEL

while in mid-chain. In this case, the CANCEL message is returned to the

application on an RUI_READ verb, and the LUA_NEGATIVE_RSP return

code is not used.

Configuration

Each LU used by an LUA application must be configured using Personal

Communications NOF verbs or through the SNA Node Configuration program.

(Refer to System Management Programming for more information.) In addition, the

configuration may include LUA LU pools.A pool is a group of LUs with similar

characteristics, such that an application can use any free LU from the group. This

can be used to allocate LUs on a first-come, first-served basis when there are more

applications than LUs available, or to provide a choice of LUs on different links.

LUA LU Pool (Optional)

If required, you can configure more than one LUA LU for use by the application,

and group the LUs into a pool. This means that an application can specify the pool

rather than a specific LU when attempting to start a session, and will be assigned

the first available LU from the pool.

An LUA application indicates to Personal Communications that it wants to start a

session by issuing an RUI_INIT verb with an LU name. This name must match the

name of an LUA LU or LU pool that has previously been defined in System

Management Programming. Personal Communications and Communications Server

use this name as follows:

v If the name supplied is the name of an LU that is not in a pool, a session will be

assigned using that LU if it is available (that is, if it is not already in use by an

LUA application).

v If the name supplied is the name of an LU pool, or the name of a specific LU

within the pool that is already in use, then a session will be assigned using the

first available LU in the pool (if one is available).

168 Client/Server Communications Programming

Note: This may not be the LU whose name was specified on the RUI_INIT

verb.

SNA API Client Considerations

If your LUA application resides on a client workstation, an LUA session should

also be defined on the local workstation. This LUA session name can contain

multiple communication servers and LUA definitions, thus allowing the SNA client

code to roll over to new servers when connections become unavailable.

Chapter 9. Fundamental Concepts of the IBM Conventional LU Application 169

170 Client/Server Communications Programming

Chapter 10. Features of the RUI LUA Verbs

This chapter covers the following special cases and usage tips for the LUA verbs.

v Handling exception requests—requests from LUA for your program to issue a

negative response

v Minimizing LAN traffic through program design

v Dealing with indefinite suspensions of LUA verbs

v Recovering from session failure

Handling Exception Requests

Both the RUI and SLI monitor the state of several protocols and validate the

format of RUs. When the interface detects an improper RU coming from the

primary logical unit (PLU), it must issue a negative response. LUA notifies your

application of this detected error by formatting the incoming RU as an exception

request (EXR). An EXR is delivered to your program on either a bid verb

(RUI_BID or SLI_BID) or on an input verb (RUI_READ or SLI_RECEIVE). An

EXR is indicated by the following conditions in the request header (RH):

v lua_rh.rri set to 0 (RU is a request unit)

v lua_rh.sdi set to 1 (sense data included)

This is an abnormal combination of RH bits. Sense data is normally the contents of

a response RU, not a request RU. LUA uses this abnormal combination to alert

your program to the abnormal fact that the PLU has apparently made an error. A

4-byte sense code is part of the EXR; it specifies the error detected. In addition to

the sense data, LUA returns up to three bytes of the original RU.

Changing the Verb Record

Your application must format the EXR as a negative response and send it to the

PLU using either RUI_WRITE, depending on the API in use. To convert an EXR

input to a response output, make the following changes in the verb record:

v Set lua_rh.rri to 1 to show this is a response.

v Set lua_rh.ri to 1, indicating a negative response.

v Set the appropriate data-flow flag in lua_flag1 based on the values in lua_flag2.

v Set lua_message_type to LUA_MESSAGE_TYPE_0.

v Set lua_opcode to LUA_OPCODE_RUI_WRITE, depending on the API in use.

v Set lua_data_length to 4, the length of the sense data.

v Set lua_data_ptr to the address of the sense data, whose location depends on the

verb that detected the EXR-if the verb was RUI_BID, the sense data is in the

″peek buffer″ in the verb record; if the verb was RUI_READ, the sense data is in

the input buffer.

v Set lua_max_length to 0.

Your program can now use the verb record and buffer for the EXR to initiate the

RUI_WRITE to send the negative response.

© Copyright IBM Corp. 1994, 2006 171

Handling Bracket Bid Reject

In all but one case, the sense code provided by LUA in an EXR is the only

appropriate one to return to the PLU. When bracketing is in use, however, and the

PLU asks to become speaker, your application has a choice of sense codes:

v LUA can reject a BID command from the PLU. To reject the BID, LUA formats

an EXR containing the sense code LUA_BB_REJECT_NO_RTR, stating that the

bracket bid is rejected and no RTR command will be issued later. The numeric

value of this sense code is 0x00001308L (in Intel, or byte-swapped, form, as you

would code it in a C program).

v Your application can accept the BID command if it supports bracketing and can

issue an RTR command later. To notify the PLU that its BID can now be

accepted, you can change the sense code to LUA_BB_REJECT_RTR (value

0x00001408L), the sense code that states an RTR will be forthcoming. At some

later time your application must format and send an RTR message.

Minimizing LAN Traffic

If your application must run on a client workstation, you can design it to minimize

the overhead of the LAN traffic by reducing the use of bid logic.

Reducing RUI_BID Usage

The verb RUI_BID waits until a data unit is available at the server and then

completes. The completion of RUI_BID notifies your program that data is ready, on

a particular flow, and has a particular length. Your program can then allocate a

buffer and issue an RUI_READ verb for the data.

When you issue a bid verb followed by an input verb, the following four LAN

messages are generated:

v A message to initiate the RUI_BID

v A message to notify the workstation the bid is complete

v A message to initiate the RUI_READ

v A message returning data to the workstation

However, RUI_READ can do the same job in one step. If you simply initiate the

RUI_READ verb and wait for it to complete, two LAN messages are eliminated.

The only benefit of bid logic is that you find out the size of a message before you

receive it. This allows you to defer allocating a data buffer until you know how

large a buffer you need. When you use only input verbs, you must know the

maximum buffer size in advance, rather than allocating a buffer after the bid

completes.

Dealing with Suspensions

The completion of an RUI verb depends on the actions of the PLU application, the

host system, the network, and Personal Communications. If any one of these

responds slowly or fails to respond, a verb can be suspended indefinitely. When

designing your program, you can anticipate suspensions by giving the user or the

program a way of terminating suspended verbs.

172 Client/Server Communications Programming

Canceling RUI_INIT

The RUI_INIT verb suspends until the host activates the assigned LU. Normally

the host will have sent an ACTLU command before the application starts up, but it

is not required to do so. When the application starts up, the mainframe might be

down or still initializing.

If your program needs to cancel a suspended RUI_INIT, it can issue an RUI_TERM

verb.

Canceling RUI_WRITE

When pacing is in use, output can be suspended. If the host temporarily stops

reading data or fails to transmit a pacing response, RUI_WRITE can be suspended

waiting for the pacing window to open.

If your program needs to cancel a suspended RUI_WRITE, it must close the

session with RUI_TERM.

Canceling RUI_READ

An input verb is normally suspended until input arrives on the flow that the verb

specified. Your program can cancel a pending RUI_READ using RUI_PURGE.

Closing the session also cancels pending input verbs.

Compressing Data

Data compression is supported for both the RUI and SLI API interfaces. The use of

data compression is negotiated per session by the BIND and BIND response. If

compression is negotiated for use on the session, then LZ9 or run-length encoding

(RLE) compression algorithms are accepted inbound from the primary LU (PLU)

and RLE will be used for sending data to the PLU.

For both the RUI and SLI APIs, data compression can be handled by either of the

following:

v The application compresses and decompresses data

v Communications Server compresses and decompresses data with the host, but

delivers and accepts uncompressed data to and from the application.

Rules for Negotiating Data Compression Per Session

Following are rules for negotiating data compression for both RUI and SLI APIs

per session.

RUI Rules

1. To allow the RUI application to handle the compression and decompression of

data:

v The RUI application receives the BIND request that has bits 6 and 7 of Byte

25 set to indicate compression is offered or requested.

v The RUI application should return the positive BIND response with bits 6

and 7 of Byte 25 set to indicate ″offered or mandated compression accepted″.
2. To allow Communications Server to handle compression on behalf of the RUI

application:

v Use the Communications Server SNA Node Configuration utility to indicate

that the node supports compression by doing the following:

– Select Configure Node

Chapter 10. Features of the RUI LUA Verbs 173

– Select Advanced

– Set maximum compression level supported by node to RLE
v The RUI application receives the BIND response with bits 6 and 7 of Byte 25

set to indicate compression is offered or requested.

v The RUI application returns the positive BIND response with bits 6 and 7 of

Byte 25 set to indicate ″no compression″. Communications Server intercepts

and modifies the BIND response, then compresses and decompresses the

data to the host.

SLI Rules

1. To allow the SLI application to handle the compression and decompression of

data:

v The SLI application must supply a BIND Callback routine when it issues the

SLI_OPEN verb.

v When the SLI application’s BIND callback routine is started, SLI receives the

BIND request that has bits 6 and 7 of Byte 25 set to indicate compression is

offered or requested.

v The SLI application should return the BIND response with bits 6 and 7 of

Byte 25 set to indicate ″offered or mandated compression accepted″.
2. To allow Communications Server to handle compression on behalf of SLI:

v Use the Communications Server SNA Node Configuration utility to indicate

that the node supports compression by doing the following:

– Select Configure Node

– Select Advanced

– Set maximum compression level supported by node to RLE
v If the application did not supply a BIND callback routine on the SLI_OPEN

verb, SLI will by default set the BIND response to indicate that

Communications Server will compress and decompress the data for SLI.

v If the application did supply a BIND callback routine:

– When the BIND callback routine is started, it receives the BIND request

that has bits 6 and 7 of Byte 25 set to indicate compression is offered or

requested.

– The SLI application returns the BIND response with bits 6 and 7 of Byte

25 set to indicate ″no compression″. Communications Server intercepts and

modifies the BIND response, and compresses and decompresses the data

to the host.

Recovering from Session Failure

There are two instances in which an LUA session has been closed due to an error:

v When an LUA verb completes with the primary return code

LUA_SESSION_FAILURE, or

v When an LUA verb, after RUI_INIT completes successfully, completes with the

primary return code LUA_STATE_CHECK and with the secondary return code

LUA_NO_RUI_SESSION.

The session can often be reconstructed. LUA will attempt recovery if your program

requests it.

When your program receives an LUA session closed due to an error, it should do

the following if it wants to recover:

174 Client/Server Communications Programming

v Avoid closing the session; the session is already closed.

v Reopen the session using the verb originally used to open the session

(RUI_INIT). If this verb completes with a nonzero primary return code, the

session cannot be restarted at this time.

v Notify the interactive user when recovery is underway, because the recovery

might take some time. The state of the user’s work will depend on the design of

the PLU application.

Chapter 10. Features of the RUI LUA Verbs 175

176 Client/Server Communications Programming

Chapter 11. Implementing LUA Programs

This chapter describes some of the aspects of implementing and writing LUA

programs. It includes the following topics:

v Calling and sequencing LUA services

v Writing LUA programs

v Using the asynchronous completion and callback functions

v Compiling and linking on different platforms

The Communications Server implementation of LUA is designed to be binary

compatible with Microsoft NT SNA Server and similar to the implementation of

the RUI and SLI interface of OS/2 Communications Manager/2 Version 1.0 LUA.

Writing LUA Programs

The LUA contains one main DLL, for RUI verbs and for SLI verbs. An LUA

application program calls this DLL to issue verbs.

The LUA application program sets selected fields in a verb control block and calls

the RUI or SLI, passing a pointer to the verb control block. The fields in the verb

control block define the requested action to the LUA. The LUA modifies fields in

the verb control block to indicate the results of the action before the LUA returns

control to the application program. The application program can then use the

returned parameters from the verb control block in subsequent processing.

Table 15 and Table 16 show source module usage of supplied header files and

libraries needed to compile and link RUI and SLI programs.

 Table 15. Header Files and Libraries for RUI APIs

Operating

System Header File Library DLL Name

WINNT WINLUA.H WINRUI32.LIB WINRUI32.DLL

 Table 16. Header Files and Libraries for SLI APIs

Operating

System Header File Library DLL Name

WIN32 WINLUA.H WINSLI32.LIB WINSLI32.DLL

Note: SLI API is supported on the server and is not supported by the

Communications Server clients.

Calling LUA Services

Your program invokes LUA services by calling a designated entry point and

passing a single parameter — the address of a data structure called a verb record.

The record contains the input parameters for a particular function. LUA updates

the record with the output parameters resulting from the operation.

© Copyright IBM Corp. 1994, 2006 177

Understanding Verb Record Contents

Although structured differently, the three types of verb records all provide fields

for the following parameters:

Operation

A number specifying the particular operation to be done. Symbolic names

for operations are declared in the “_cons.h” include files.

Verb record length

The size of the verb record, which can vary from operation to operation,

and which LUA needs in order to process the record.

Session identifier

In communication and service verbs, a number to identify the session or

the name of the session.

Primary return code

A number returned by LUA to indicate general success or failure.

Secondary return code

A number returned by LUA on a failure to indicate the specific problem.

Correlator

A long integer that your application can use to relate the verb record to

other data, or to identify the verb record during an asynchronous

completion.

Post handle

The event handle to be posted when the verb completes asynchronously.

Most of these fields have the identical data type and are at the identical offset in

every verb record in which they appear. The operation code and verb-length fields

have different characteristics, however.

Multiple Processes

An LUA application program is restricted to a single process. However, a single

process can be comprised of multiple LUA application programs, each with its

own LUA LU.

Multiple Threads

A single LUA application program can use multiple threads to issue verbs. This

lets you issue multiple verbs simultaneously from a single LUA application

program. Different instances of the same LUA application program can start in

different threads, but each application program can use a different LUA LU.

Note: After an LUA application program issues a verb, it should not change any

part of the verb control block until the verb is complete. The RUI uses only

the application copy of the verb control block. See “LUA Verb Postings” for

additional information.

LUA Verb Postings

LUA verbs complete synchronously or asynchronously. Synchronous verb

completion means that when the RUI returns to the LUA application program after

a call to LUA, all processing for that verb is finished and the asynchronous posting

method is not used. Because of timing conditions, a verb can complete

asynchronously, but all processing is completed by the time LUA returns to the

178 Client/Server Communications Programming

LUA application program. Asynchronous verb completion means that LUA uses

the posting method to notify the application program when processing completes,

either successfully or unsuccessfully.

An LUA application program can be notified in one of the following ways when a

verb completes asynchronously:

v The LUA application program uses the lua_flag2_async and lua_prim_rc

parameters to determine the verb processing state.

v The application specifies an event in the lua_post_handle parameter. This is set

when the verb is complete.

Converting to EBCDIC from ASCII

Typically, all messages sent to the host are in EBCDIC, and the PLU assumes that

the messages are in EBCDIC. For example, a PLU name that appears in a BIND

should be an EBCDIC string. An LUA application program that stores strings in

ASCII should convert the strings to EBCDIC before the strings are sent in SNA

messages.

Whether an LUA application program needs to convert application data depends

on a private agreement between the partner application programs. If your LUA

application program communicates with a node that normally uses EBCDIC, you

should convert your ASCII data to EBCDIC where appropriate.

Conversion of ASCII to EBCDIC (or vice versa) can be done by the convert verbs

described in Chapter 17, “Common Services Verbs (CSV),” on page 269.

Chapter 11. Implementing LUA Programs 179

180 Client/Server Communications Programming

Chapter 12. RUI LUA Entry Points

This chapter describes the procedure entry points for LUA.

The RUI DLL defines the following procedure entry points:

Note: This chapter includes information on the LUA API provided by the

following systems:

v Communications Server running on Windows

v SNA API clients for Win32 platforms that are delivered with the

Communications Server product

v Personal Communications for Windows

When there are differences between the support provided by these systems,

it is noted.

© Copyright IBM Corp. 1994, 2006 181

RUI()

Provides event notification for all RUI verbs.

Syntax

void WINAPI RUI (LUA_VERB_RECORD* vcb);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

Returned Values

The value returned in lua_flag2.async indicates whether asynchronous notification

will occur. If the flag is set (nonzero), asynchronous notification will occur through

event signaling. If the flag is not set, the request completed synchronously.

Examine the primary return code and secondary return code for any error

conditions.

Usage Notes

The application must provide a handle to an event in the lua_post_handle parameter

of the verb control block. The event must be in the not-signaled state.

When the asynchronous operation is complete, the application is notified by the

signaling of the event. Upon signaling of the event, examine the primary return

code and secondary return code for any error conditions. See also: “WinRUI” on

page 183.

RUI()

182 Client/Server Communications Programming

WinRUI

Provides asynchronous message notification for all RUI verbs.

Syntax

int WINAPI WinRUI (HWND hWnd,LUA_VERB_RECORD* vcb);

Parameters

hWnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values

The function returns a value indicating whether the request was accepted by the

RUI for processing. A returned value of 0 indicates that the request was accepted

and will be processed. A value other than 0 indicates an error. Possible error codes

are as follows:

WLUAINVALIDHANDLE

The window handle provided is not valid.

The value returned in lua_flag2.async indicates whether asynchronous notification

will occur. If the flag is set (nonzero), asynchronous notification will occur through

a message posted to the application’s message queue. If the flag is not set, the

request completed synchronously. Examine the primary return code and secondary

return code for any error conditions.

Usage Notes

Upon completion of the verb, the application’s window hWind receives the

message returned by RegisterWindowMessage with WinRUI as the input string.

The lParam argument contains the address of the VCB being posted as complete.

The wParam argument is undefined. It is possible for the request to be accepted for

processing (the function call returns 0), but rejected later with a primary return

code and secondary return code set in the VCB. Examine the primary return code

and secondary return code for any error conditions.

If the application calls WinRUI without first initializing the session using

WinRUIStartup, an error is returned.

See also: “RUI()” on page 182.

WinRUI

Chapter 12. RUI LUA Entry Points 183

WinRUICleanup()

Terminates and deregisters an application from the RUI API.

Syntax

BOOL WINAPI WinRUICleanup (void);

Returned Values

The return value indicates success or failure of the deregistration. If the value is

not 0, the application was successfully deregistered. If the value is 0, the

application was not deregistered.

Usage Notes

Use WinRUICleanup to deregister the RUI API, for example, to free up resources

allocated to the specific application.

If WinRUICleanup is called while LUs are in session (RUI_TERM not issued), the

cleanup code issues RUI_TERM close type ABEND for the application for all open

sessions. See also: “WinRUIStartup()” on page 187.

WinRUICleanup()

184 Client/Server Communications Programming

WinRUIGetLastInitStatus()

This function provides a way for an application to determine the status of an

RUI_INIT so that the application can determine whether the RUI_INIT should be

timed out. Use this call to initiate the reporting of status, terminate the reporting of

status, or find the current status. For details, see the Usage Notes section.

Syntax

int WINAPI WinRUIGetLastInitStatus (DWORD dwSid,

 HANDLE hStatusHandle,

 DWORD dwNotifyType,

 BOOL bClearPrevious);

Parameters

dwSid Session identifier of the session for which status will be determined. If the

value is 0, hStatusHandle is used to report status on all sessions. The lua_sid

parameter in the RUI_INIT VCB is valid as soon as the call to RUI() or

WinRUI() for the RUI_INIT returns.

hStatusHandle

A handle used for signaling the application that the status for the session

has changed. Can be a window handle, an event handle, or NULL;

dwNotifyType must be set accordingly:

v If hStatusHandle is a window handle, status is sent to the application

through a window message. The program obtains the message from

RegisterWindowMessage using the string WinRUI. The parameter

wParam contains the session status (see Return Values). Depending on

the value of dwNotifyType, lParam contains either the RUI session ID of

the session, or the value of lua_correlator from the RUI_INIT verb.

v If hStatusHandle is an event handle, when the status for the session

specified by dwSid changes, the event is put into the signaled state. The

application must then make a further call to WinRUIGetLastInitStatus()

to find out the new status. The event should not be the same as one

used for signaling completion of any RUI verb.

v If hStatusHandle is NULL, the status of the session specified by dwSid is

returned in the return code. In this case, dwSid must not be 0 unless

bClearPrevious is TRUE. If hStatusHandle is NULL, dwNotifyType is

ignored.

dwNotifyType

The type of indication required. This determines the contents of the lParam

of the window message and how WinRUIGetLastInitStatus() interprets

hStatusHandle. Permitted values are:

WLUA_NTFY_EVENT

The hStatusHandle parameter contains an event handle.

WLUA_NTFY_MSG_CORRELATOR

The hStatusHandle parameter contains a window handle and the

lParam of the returned window message should contain the LUA

correlator and RUI.

WLUA_NTFY_MSG_SID

The hStatusHandle parameter contains a window handle and the

lParam of the returned window message should contain the LUA

session identifier.

WinRUIGetLastInitStatus()

Chapter 12. RUI LUA Entry Points 185

bClearPrevious

If TRUE, status messages are no longer sent for the session identified by

dwSid. If dwSid is 0, status messages are no longer sent for any session. If

bClearPrevious is TRUE, hStatusHandle and dwNotifyType are ignored.

Usage Notes

This function is intended to be used either with a window handle or an event

handle to enable asynchronous notification of status changes, but it can also be

used on its own to find out the current status of a session.

To use this function with a window handle, you can implement it in one of two

ways as follows:

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_CORRELATOR,FALSE);

or

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_SID,FALSE);

With this implementation, changes in status are reported by a window message

sent to the window handle specified. If WLUA_NTFY_MSG_CORRELATOR is

specified, the lParam field in the window message contains the lua_correlator field

for the session. If WLUA_NFTY_MSG_SID is specified, the lParam field in the

window message contains the LUA session identifier for the session.

When the function has been used with a window handle, use the following

command to cancel the reporting of status:

WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

For this implementation, note that if Sid is nonzero, status is only reported for that

session. If Sid is 0, status is reported for all sessions.

To use this function with an event handle, implement it as follows:

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NOTIFY_EVENT,FALSE);

The event whose handle is given will be signaled when a change in state occurs.

Because no information is returned when an event is signaled, the following call

must be issued to find out the status:

Statu = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

In this case, a Sid must be specified.

When the function has been used with an event handle, use the following

command to cancel the reporting of status:

WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

To use this function to query the current status of a session, it is not necessary to

use an event or window handle. Instead, use the following command:

Status = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

Note: WinRUIGetLastInitStatus is not supported on the Communications Server

SNA API clients.

WinRUIGetLastInitStatus()

186 Client/Server Communications Programming

WinRUIStartup()

Enables an application to specify the required version of the RUI API and to

retrieve details of the API.

Syntax

int WINAPI WinRUIStartup (WORD wVersionRequired,

 LPWLUADATA* luadata);

Parameters

wVersionRequired

Specifies the version of RUI API support required. The high-order byte

specifies the minor version (revision) number; the low-order byte specifies

the major version number.

luadata

Returns version of RUI implementation.

Returned Values

The return value specifies whether the application was registered successfully and

whether the RUI API can support the specified version number. If the value is 0, it

was registered successfully and the specified version can be supported. Otherwise,

the return value is one of the following values:

WLUAVERNOTSUPPORTED

The version of RUI API support requested is not provided by this

particular RUI API.

WLUAINVALID

The version requested could not be determined.

Usage Notes

This call is intended to aid in compatibility with future versions of the API. The

current version is 1.0. See also “WinRUICleanup()” on page 184.

WinRUIStartup()

Chapter 12. RUI LUA Entry Points 187

GetLuaReturnCode()

Converts the primary and secondary return codes in the VCB to a printable string.

This function provides a standard set of error strings for use by LUA applications.

Syntax

int WINAPI GetLuaReturnCode (lua_common* vcb,

 UINT buffer_length,

 unsigned char* buffer_addr);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

buffer_length

Supplied parameter; specifies the length (in bytes) of the buffer pointed to

by buffer_addr. The recommended length is 256.

buffer_addr

Supplied/returned parameter; specifies the address of the buffer that will

hold the formatted, null-terminated string; the length of the string in the

specified buffer.

Usage

The descriptive error string returned in buffer_addr does not terminate with a new

line character (/n).

Examples

The following example shows how to call WINRUI32.DLL. The header file for this

DLL is WINLUA.H. This example calls the RUI DLL to issue an RUI verb from a

program:

 #include "WINLUA.H" /* LUA C include file for

 the LUA Application. */

 . . .

 . . .

 example()

 {

 LUA_VERB_RECORD VerbRecord; /* Declare VerbRecord as a verb

 control block using the

 TYPEDEF in WINLUA.H */

 . . .

 WINRUI((LUA_VERB_RECORD *) &VerbRecord); /* Call the RUI API */

 . . .

 }

GetLuaReturnCode()

188 Client/Server Communications Programming

Chapter 13. RUI Verbs

This chapter contains the following information:

v Details of the LUA common control block structure

v A description of each LUA verb for all LUA verbs and the LUA verb records

The following information is provided for each LUA verb:

v The purpose of the verb.

v Parameters supplied to and returned by LUA. The description of each parameter

includes information on the valid values for that parameter, and any additional

information necessary.

v Interactions with other verbs.

v Additional information describing the use of the verb.

Note: Parameters marked as reserved should always be set to zero.

LUA Verb Control Block Format

The verb control block consists of:

v lua_common, used for all verbs and described in “Common Verb Header.”

v specific, used only for the RUI_BID verb (described in “RUI_BID Data

Structure” on page 193).

The structure is defined as follows:

typedef struct lua_verb_record

{

 LUA_COMMON common; /* The common verb header */

 union

 {

 unsigned char lua_peek_data[12]; /* field specific to RUI_BID */

 }

} LUA_VERB_RECORD;

Common Verb Header

The Personal Communications LUA uses a generic common verb header to transport

all incoming and outgoing data. The fields in the verb control block are defined as

follows:

typedef struct lua_common

{

 unsigned short lua_verb; /* LUA_VERB_RUI */

 unsigned short lua_verb_length; /* VCB length */

 unsigned short lua_prim_rc; /* primary return code */

 unsigned long lua_sec_rc; /* secondary return code */

 unsigned short lua_opcode; /* verb opcode */

 unsigned long lua_correlator; /* verb correlator */

 unsigned char lua_luname[8]; /* local LU name */

 unsigned short lua_extension_list_offset;

 /* reserved */

 unsigned short lua_cobol_offset; /* reserved */

 unsigned long lua_sid; /* session ID */

 unsigned short lua_max_length; /* max buffer length */

 unsigned short lua_data_length; /* actual data length */

 unsigned char *lua_data_ptr; /* data pointer */

 unsigned long lua_post_handle; /* post handle */

© Copyright IBM Corp. 1994, 2006 189

LUA_TH lua_th; /* TH structure */

 unsigned char lua_rh; /* message RH */

 unsigned char lua_flag1; /* application message flag */

 unsigned char lua_message_type; /* SNA message type */

 unsigned char lua_flag2; /* LUA message flag */

 unsigned char lua_resv56[7]; /* reserved */

 unsigned char lua_encr_decr_option;/* cryptography */

} LUA_COMMON;

typedef struct lua_th

{

 unsigned char flags; /* TH flags */

 unsigned char reserv1; /* reserved */

 unsigned char daf; /* DAF */

 unsigned char oaf; /* OAF */

 unsigned char snf[2]; /* SNF */

} LUA_TH;

lua_verb

Identifies this as an LUA verb: always set to LUA_VERB_RUI.

lua_verb_length

Length of the verb control block.

lua_prim_rc

Primary return code set by LUA.

lua_sec_rc

Secondary return code set by LUA.

lua_opcode

Verb operation code, which identifies the LUA verb being issued.

lua_correlator

A 4-byte correlator, which you can use to correlate this verb with other

processing in your application. LUA does not use this parameter.

lua_luname

The local LU name used by the LUA session (in ASCII). This can be an LU

name or an LU pool name; see “RUI_INIT” on page 199 for more

information.

lua_sid

The session ID of the LUA session on which this verb is issued.

lua_max_length

The length of the buffer used to receive data.

lua_data_length

The length of the data to be sent, or the actual length of data received.

lua_data_ptr

A pointer to the data to be sent, or the data buffer to receive data.

lua_post_handle

This is a 4–byte handle that is used to post the completion of asynchronous

verbs.

lua_th.flags

Specifies the flags set in the transmission header. (Refer to Systems Network

Architecture: Formats for more information.) It can be one or more of the

following values ORed together:

LUA_FID

Format identification type 2

190 Client/Server Communications Programming

LUA_MPF

Segmenting mapping field

LUA_BBIU

Begin BIU

LUA_EBIU

End BIU

LUA_ODAI

OAF-DAF assignor Indicator

LUA_EFI

Expedited Flow Indicator

lua_th.daf

DAF (Destination address field).

lua_th.oaf

OAF (Originating address field).

lua_th.snf

Sequence number field.

lua_rh Specifies the request/response header (RH) of the message sent or

received. (Refer to Systems Network Architecture: Formats for more

information.) This can be one or more of the following values ORed

together:

LUA_RRI

Request-response indicator

LUA_RH_FMD

RU category: FMI data segment

LUA_RH_NC

RU category: Network control

LUA_RH_DFC

RU category: Data flow control

LUA_RH_SC

RU category: Session control

LUA_FI

Format indicator

LUA_SDI

Sense data included indicator

LUA_BCI

Begin chain indicator

LUA_ECI

End chain indicator

LUA_DR1I

Definite Response 1 indicator

LUA_DR2I

Definite Response 2 indicator

LUA_RI

Exception response indicator (for a request), or response type

indicator (for a response)

Chapter 13. RUI Verbs 191

LUA_QRI

Queued Response indicator

LUA_PI

Pacing indicator

LUA_BBI

Begin Bracket indicator

LUA_EBI

End Bracket indicator

LUA_CDI

Change Direction indicator

LUA_CSI

Code Selection indicator

LUA_EDI

Enciphered Data indicator

LUA_PDI

Padded Data indicator

lua_flag1

Specifies flags for messages supplied by the application. (Refer to Systems

Network Architecture: Formats for more information.) The flags can be one or

more of the following values ORed together:

LUA_BID_ENABLE

Bid Enable indicator

LUA_NOWAIT

No Wait for Data flag

LUA_SSCP_EXP

SSCP expedited flow

LUA_SSCP_NORM

SSCP normal flow

LUA_LU_EXP

LU expedited flow

LUA_LU_NORM

LU normal flow

LUA_CLOSE_ABEND

LUA_RESERVE1

lua_message_type

The type of SNA message received by an RUI_READ verb (or indicated to

an RUI_BID verb). This can be one the following values:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIND

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_CLEAR

 LUA_MESSAGE_TYPE_CRV

192 Client/Server Communications Programming

LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RQR

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SHUTD

 LUA_MESSAGE_TYPE_SIGNAL

 LUA_MESSAGE_TYPE_SDT

 LUA_MESSAGE_TYPE_STSN

 LUA_MESSAGE_TYPE_UNBIND

lua_flag2

Specifies flags for messages returned by LUA. (Refer to Systems Network

Architecture: Formats for more information.) The flags can be one or more of

the following values ORed together:

LUA_BID_ENABLE

Bid Enable indicator

LUA_ASYNC

Asynchronous verb completion flag

LUA_SSCP_EXP

SSCP expedited flow

LUA_SSCP_NORM

SSCP normal flow

LUA_LU_EXP

LU expedited flow

LUA_LU_NORM

LU normal flow

lua_encr_decr_option

Cryptography option.

RUI_BID Data Structure

The following parameter is specific to and only supplied on the RUI_BID verb:

lua_peek_data

Up to 12 bytes of data waiting to be read.

RUI_BID

Chapter 13. RUI Verbs 193

RUI_BID

The RUI_BID verb is used by the application to indicate when a received message

is waiting to be read. This enables the application to determine what data, if any, is

available before issuing the RUI_READ verb. When a message is available, the

RUI_BID verb returns with details of the message flow on which it was received,

the message type, the TH and RH of the message, and up to 12 bytes of message

data. The main difference between RUI_BID and RUI_READ is that RUI_BID

enables the application to check the data without removing it from the incoming

message queue, so it can be left and accessed at a later stage. RUI_READ removes

the message from the queue, so once the application has read the data it must

process it.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record. Set this to

 sizeof(struct LUA_COMMON) + 12.

lua_opcode

LUA_OPCODE_RUI_BID

lua_correlator

Optional. A 4-byte value, which you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the local LU used by the session. This must match

the LU name of an active LUA session.

 This parameter is required only if the lua_sid parameter is zero. If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if

the name is shorter than 8 characters.

lua_sid

The session ID of the session. This must match a session ID returned on a

previous RUI_INIT verb. This parameter is optional; if you do not specify

the session ID, you must specify the LU name for the session in the

lua_luname parameter.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

Returned Parameters

The following parameter will always be returned:

lua_flag2

This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

RUI_BID

194 Client/Server Communications Programming

If the verb completed successfully, the following parameters are returned:

lua_prim_rc

LUA_OK

lua_sid

If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

lua_max_length

The number of bytes of data in the received message.

lua_data_length

The number of bytes of data returned in the lua_peek_data parameter;

from 0 to 12.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received

message.

lua_message_type

Message type of the received message, which will be one of the following

values:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIND

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_CLEAR

 LUA_MESSAGE_TYPE_CRV

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SHUTD

 LUA_MESSAGE_TYPE_SIGNAL

 LUA_MESSAGE_TYPE_SDT

 LUA_MESSAGE_TYPE_STSN

 LUA_MESSAGE_TYPE_UNBIND

lua_flag2

One of the following flags will be set to indicate which message flow the

data was received on:

LUA_SSCP_EXP

SSCP expedited flow

LUA_LU_EXP

LU expedited flow

LUA_SSCP_NORM

SSCP normal flow

LUA_LU_NORM

LU normal flow

RUI_BID

Chapter 13. RUI Verbs 195

lua_peek_data

The first 12 bytes of the message data (or all of the message data if it is

shorter than 12 bytes).

The following return codes indicate that the verb did not complete successfully

because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED An RUI_TERM verb was issued while this verb was

pending.

The following return codes indicate that the verb did not complete successfully

because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values:

LUA_BID_ALREADY_ENABLED

The RUI_BID verb was rejected because a previous RUI_BID verb

was already outstanding. Only one RUI_BID can be outstanding at

a time.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the

length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in

which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION

 An RUI_INIT verb has not yet completed successfully for this session, or a

session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but

the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS

 The application instance that issued this verb was not the same as the one

that issued the RUI_INIT verb for this session.

The following return code indicates that Personal Communications detected an

error in the data received from the host. Instead of passing the received message to

RUI_BID

196 Client/Server Communications Programming

the application on an RUI_READ verb, Personal Communications discards the

message (and the rest of the chain if it is in a chain), and sends a negative response

to the host. LUA informs the application on a subsequent RUI_READ or RUI_BID

verb that a negative response was sent.

lua_prim_rc

LUA_NEGATIVE_RSP

lua_sec_rc

The secondary return code contains the sense code sent to the host on the

negative response. See “SNA Layers” on page 152 for information on

interpreting the sense code values that can be returned.

 A zero secondary return code indicates that, following a previous

RUI_WRITE of a negative response to a message in the middle of a chain,

Personal Communications has now received and discarded all messages

from this chain.

The following primary and secondary return codes indicate that the verb did not

complete successfully for other reasons:

lua_prim_rc

LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc

Possible values:

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following things:

v The host system has violated SNA protocols.

v An internal error was detected within LUA.

Attempt to reproduce the problem with tracing active, and check that the

host is sending correct data.

lua_prim_rc

LUA_INVALID_VERB

 Either the lua_verb parameter or the lua_opcode parameter was not valid.

The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

 An operating system error occurred, such as resource shortage.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Comments

The RUI_INIT verb must complete successfully before this verb can be issued.

Only one RUI_BID can be outstanding at any one time. After the RUI_BID verb

has completed successfully, it can be reissued by setting the lua_flag1 to

RUI_BID

Chapter 13. RUI Verbs 197

LUA_BID_ENABLE on a subsequent RUI_READ verb. If the verb is to be reissued

in this way, the application program must not free or modify the storage associated

with the RUI_BID verb record.

If a message arrives from the host when an RUI_READ and an RUI_BID are both

outstanding, the RUI_READ completes and the RUI_BID is left in progress.

Usage Notes

Each message that arrives will only be bid once. Once an RUI_BID verb has

indicated that data is waiting on a particular session flow, the application should

issue the RUI_READ verb to receive the data. Any subsequent RUI_BID will not

report data arriving on that session flow until the message that was bid has been

accepted by issuing an RUI_READ verb.

In general, the lua_data_length parameter returned on this verb indicates only the

length of data in lua_peek_data, not the total length of data on the waiting

message (except when a value of less than 12 is returned). The lua_max_length

parameter returns the number of bytes in the received message. The application

should ensure that the data length on the RUI_READ verb that accepts the data is

sufficient to contain the message.

RUI_BID

198 Client/Server Communications Programming

RUI_INIT

The RUI_INIT verb establishes the SSCP-LU session for a given LUA LU.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record. Set this to sizeof(struct

LU_COMMON).

lua_opcode

LUA_OPCODE_RUI_INIT

lua_correlator

Optional. A 4-byte value, which you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the local LU or LU pool that you want to start the

session. This must match a configured LUA LU name or LU pool name.

For applications on the Personal Communications, the name is used as

follows:

 If the name is the name of an LU that is not in a pool, Personal

Communications attempts to start the session using this LU.

 If the name is the name of an LU pool, or the name of an LU within a

pool, Personal Communications attempts to start the session using the first

avaliable LU from the pool. This field is an 8-byte ASCII string, padded

with trailing space (0x20) characters if necessary.

 For applications on an SNA API client, the name should match a

configured LUA Session Name.

 The following information only applies to Communications

Server Win32 SNA API clients.

 The default LUA session name for each user can be assigned using the

appropriate configuration utility, either INI configuration or LDAP.

 LUA programs, such as 3270 emulators, can choose to use a default LUA

session name rather than specify one directly. When an LUA program

issues an RUI_INIT verb with the lua_name field set to binary zeroes, or

ASCII blanks, the RUI API uses the configured default LUA session name.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

lua_flag1

The application should set this to LUA_ASYNC_STATUS.

RUI_INIT

Chapter 13. RUI Verbs 199

lua_encr_decr_option

Session-level cryptography option. Personal Communications accepts the

following two values:

 0 Session-level cryptography is not used.

128 Encryption and decryption are performed by the

 application program.

Any other value will result in the return code

LUA_ENCR_DECR_LOAD_ERROR.

Returned Parameters

The following parameter will always be returned:

lua_flag2

This is only set to LUA_ASYNC if the verb completed asynchronously.

Note: RUI_INIT will always complete asynchronously, unless it returns an

error such as LUA_PARAMETER_CHECK.

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

lua_sid

A session ID for the new session. This can be used by subsequent verbs to

identify this session.

lua_luname

The name of the local LU used by the session. This is required if the

application specified an LU pool and needs to know which LU in the pool

has been used.

The following return codes indicate that the verb did not complete successfully

because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

 An RUI_TERM verb was issued before the RUI_INIT had completed.

The following return codes indicate that the verb did not complete successfully

because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values:

LUA_INVALID_LUNAME

The lua_luname parameter could not be found. Check that the LU

RUI_INIT

200 Client/Server Communications Programming

name or LU pool name was defined in Personal Communications

System Management Programming API.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the

length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in

which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_DUPLICATE_RUI_INIT

 The lua_luname parameter specified an LU name or LU pool name that is

already in use by this application (or for which this application already has

an RUI_INIT verb in progress).

The following return codes indicate that the verb record supplied was valid, but

the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values:

LUA_COMMAND_COUNT_ERROR

The verb specified the name of an LU pool, or the name of an LU

in a pool, but all LUs in the pool are in use.

LUA_ENCR_DECR_LOAD_ERROR

The verb specified a value for lua_encr_decr_option other than 0

or 128.

LUA_INVALID_PROCESS

The LU specified by the lua_luname parameter is in use by

another process.

LUA_LINK_NOT_STARTED

The link to the host has not been started.

The following values for lua_sec_rc are Personal Communications sense codes, and

can be returned if lua_prim_rc is LUA_UNSUCCESSFUL (these values reflect the

state of the LU):

X10020000

ACTPU has not been received. RUI_INIT will not activate the PU.

X10100000

ACTPU has not been received. RUI_INIT will activate the PU.

X10110000

ACTPU has been received. ACTLU has not been received. SSCP does not

support self-defining dependent LU (SSDLU). RUI_INIT will activate the

LU.

RUI_INIT

Chapter 13. RUI Verbs 201

X10120000

ACTPU has been received. ACTLU has not been received. SSCP does

support SSDLU. RUI_INIT will activate the LU.

The following primary and secondary return codes indicate that the verb did not

complete successfully for other reasons:

lua_prim_rc

LUA_SESSION_FAILURE

 The session has been brought down.

lua_sec_rc

LUA_LU_COMPONENT_DISCONNECTED

 The LUA session has failed because of a problem with the communications

link or with the host LU.

lua_prim_rc

LUA_INVALID_VERB

 Either the lua_verb parameter or the lua_opcode parameter was not valid.

The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

 An operating system error occurred, such as resource shortage.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Comments

This verb must be the first LUA verb issued for the session. Until this verb has

completed successfully, the only other LUA verb that can be issued for this session

is RUI_TERM (which will terminate a pending RUI_INIT). All other verbs issued

on this session must identify the session using one of the following parameters

from this verb.

v The session ID is returned to the application in the lua_sid parameter.

v The LU name is supplied by the application in the lua_luname parameter.

Usage Notes

The RUI_INIT verb completes after an ACTLU is received from the host. If

necessary, the verb waits indefinitely. If an ACTLU has already been received prior

to the RUI_INIT verb, LUA sends a NOTIFY to the host to inform it that the LU is

ready for use.

Note: Neither the ACTLU nor NOTIFY is visible to the LUA application.

Once the RUI_INIT verb has completed successfully, this session uses the LU for

which the session was started. No other LUA session (from this or any other

application) can use the LU until the RUI_TERM verb is issued.

RUI_INIT

202 Client/Server Communications Programming

RUI_PURGE

The RUI_PURGE verb cancels a previous RUI_READ. An RUI_READ can wait

indefinitely if it is sent without setting lua_flag1 to LUA_NO WAIT (the

immediate return option), and no data is available on the specified flow;

RUI_PURGE forces the waiting verb to return (with the primary return code

CANCELLED).

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record. Set this to sizeof(struct

LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_PURGE

lua_correlator

Optional. A 4-byte value, which you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the local LU used by the session. This must match

the LU name of an active LUA session.

 This parameter is required only if the lua_sid parameter is zero. If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if

the name is shorter than 8 characters.

lua_sid

The session ID of the session. This must match a session ID returned on a

previous RUI_INIT verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_data_ptr

A pointer to the RUI_READ LUA_VERB_RECORD that is to be purged.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

Returned Parameters

The following parameter will always be returned:

lua_flag2

This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

If the verb completed successfully, the following parameters are returned:

RUI_PURGE

Chapter 13. RUI Verbs 203

lua_prim_rc

LUA_OK

lua_sid

If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

The following return codes indicate that the verb did not complete successfully

because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

 An RUI_TERM verb was issued while this verb was pending.

The following return codes indicate that the verb did not complete successfully

because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter was set to zero.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the

length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in

which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

Possible values:

LUA_SEC_RC_OK

A previous RUI_PURGE verb is still in progress on this session.

LUA_NO_RUI_SESSION

An RUI_INIT verb has not yet completed successfully for this

session, or a session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but

the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values:

RUI_PURGE

204 Client/Server Communications Programming

LUA_INVALID_PROCESS

The application instance that issued this verb was not the same as

the one that issued the RUI_INIT verb for this session.

LUA_NO_READ_TO_PURGE

Either the lua_data_ptr parameter did not contain a pointer to an

RUI_READ LUA_VERB_RECORD or the RUI_READ verb

completed before the RUI_PURGE verb was issued.

The following primary and secondary return codes indicate that the verb did not

complete successfully for other reasons:

lua_prim_rc

LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc

Possible values:

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following things:

v The host system has violated SNA protocols.

v An internal error was detected within LUA.

Attempt to reproduce the problem with tracing active, and check

that the host is sending correct data.

lua_prim_rc

LUA_INVALID_VERB

 Either the lua_verb parameter or the lua_opcode parameter was not valid.

The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

 An operating system error occurred, such as resource shortage.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Comments

This verb can only be used when an RUI_READ has been issued and is pending

completion (that is, the primary return code is IN_PROGRESS). This verb should

not be issued while another RUI_PURGE is in progress on this session.

RUI_PURGE

Chapter 13. RUI Verbs 205

RUI_READ

The RUI_READ verb receives data or status information sent from the host to the

application’s LU. You can specify a particular message flow (LU normal, LU

expedited, SSCP normal, or SSCP expedited) from which to read data, or you can

specify more than one message flow. You can have multiple RUI_READ verbs

outstanding, provided that no two of them specify the same flow.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record. Set this to sizeof(struct

LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_READ

lua_correlator

Optional. A 4-byte value, which you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the local LU used by the session. This must match

the LU name of an active LUA session.

 This parameter is required only if the lua_sid parameter is zero. If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if

the name is shorter than 8 characters.

lua_sid

The session ID of the session. This must match a session ID returned on a

previous RUI_INIT verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_max_length

The length of the buffer supplied to receive the data (see lua_data_ptr).

lua_data_ptr

A pointer to the buffer supplied to receive the data.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

lua_flag1

The flags can be one or more of the following values ORed together:

v Set LUA_NOWAIT if you want the RUI_READ verb to return

immediately whether or not data is available to be read, or do not set it

if you want the verb to wait for data before returning.

v Set LUA_BID_ENABLE to reenable the most recent RUI_BID verb

(equivalent to issuing RUI_BID again with exactly the same parameters

as before), or do not set it if you do not want to reenable RUI_BID.

RUI_READ

206 Client/Server Communications Programming

Note: Reenabling the previous RUI_BID reuses the

LUA_VERB_RECORD originally allocated and does not permit

the LUA_VERB_RECORD to be freed or modified.

v Set one or more of the following flags to indicate which message flow to

read data from:

LUA_SSCP_EXP

SSCP expedited flow

LUA_LU_EXP

LU expedited flow

LUA_SSCP_NORM

SSCP normal flow

LUA_LU_NORM

LU normal flow
If more than one flag is set, the highest-priority data available will be

returned. The order of priorities (highest to lowest) is as follows:

1. SSCP expedited

2. LU expedited

3. SSCP normal

4. LU normal
The equivalent flag will be set in lua_flag2 to indicate which flow the

data was read from (see “Returned Parameters”).

Returned Parameters

The following parameters will always be returned:

lua_flag2

LUA_ASYNC is set if the verb completes asynchronously (and not set if

the verb completes synchronously).

 LUA_BID_ENABLE is set if an RUI_BID was successfully reenabled (and

not set if it was not reenabled).

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

If the verb executes successfully, LUA also returns the following parameters:

lua_prim_rc

LUA_OK

The following parameters are returned if the verb completes successfully. They are

also returned if the verb returns with truncated data because the lua_data_length

parameter supplied was too small.

lua_sid

If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

lua_data_length

The length of the data received. LUA places the data in the buffer specified

by lua_data_ptr.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received

message.

RUI_READ

Chapter 13. RUI Verbs 207

lua_message_type

Message type of the received message, which will be one of the following

values:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIND

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_CLEAR

 LUA_MESSAGE_TYPE_CRV

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SHUTD

 LUA_MESSAGE_TYPE_SIGNAL

 LUA_MESSAGE_TYPE_SDT

 LUA_MESSAGE_TYPE_STSN

 LUA_MESSAGE_TYPE_UNBIND

lua_flag2 parameters

This will be set to one of the following values, to indicate which message

flow the data was received on:

LUA_SSCP_EXP

SSCP expedited flow

LUA_LU_EXP

LU expedited flow

LUA_SSCP_NORM

SSCP normal flow

LUA_LU_NORM

LU normal flow

The following return codes indicate that the verb did not complete successfully

because it was canceled by another verb or by an internal error:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

Possible values:

LUA_PURGED

This RUI_READ verb has been canceled by an RUI_PURGE verb.

LUA_TERMINATED

An RUI_TERM verb was issued while this verb was pending.

The following return codes indicate that the verb did not complete successfully

because a supplied parameter was in error:

RUI_READ

208 Client/Server Communications Programming

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter contained an incorrect value.

LUA_BID_ALREADY_ENABLED

The lua_flag1 was set to LUA_BID_ENABLE to reenable an

RUI_BID verb, but the previous RUI_BID verb was still in

progress.

LUA_DUPLICATE_READ_FLOW

The flow flags on lua_flag1 specified one or more session flows for

which an RUI_READ verb was already outstanding. Only one

RUI_READ at a time can be waiting on each session flow.

LUA_INVALID_FLOW

None of the lua_flag1 flow flags was set. At least one of these flags

must be set to indicate which flow or flows to read from.

LUA_NO_PREVIOUS_BID_ENABLED

The lua_flag1 was set to LUA_BID_ENABLE, to reenable an

RUI_BID verb, but there was no previous RUI_BID verb that

could be enabled. (See “Comments” on page 211 for more

information.)

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the

length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in

which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION

 An RUI_INIT verb has not yet completed successfully for this session, or a

session outage has occurred.

The following primary return code indicates one of the following two cases, which

can be distinguished by the secondary return code:

v Personal Communications detected an error in the data received from the host.

Instead of passing the received message to the application on an RUI_READ

verb, Personal Communications discards the message (and the rest of the chain

if it is in a chain), and sends a negative response to the host. LUA informs the

application on a subsequent RUI_READ or RUI_BID verb that a negative

response was sent.

v The LUA application previously sent a negative response to a message in the

middle of a chain. Personal Communications has purged subsequent messages

in this chain, and is now reporting to the application that all messages from the

chain have been received and purged.

RUI_READ

Chapter 13. RUI Verbs 209

lua_prim_rc

LUA_NEGATIVE_RSP

lua_sec_rc

A nonzero secondary return code contains the sense code sent to the host

on the negative response. This indicates that Personal Communications

detected an error in the host data, and sent a negative response to the host.

See “SNA Layers” on page 152 for information on interpreting the sense

code values that can be returned.

 A zero secondary return code indicates that, following a previous

RUI_WRITE of a negative response to a message in the middle of a chain,

Personal Communications has now received and discarded all messages

from this chain.

The following return codes indicate that the verb record supplied was valid, but

the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values:

LUA_DATA_TRUNCATED

The lua_data_length parameter was smaller than the actual length

of data received on the message. Only lua_data_length bytes of

data were returned to the verb; the remaining data was discarded.

Additional parameters are also returned if this secondary return

code is obtained.

LUA_NO_DATA

The lua_flag1 was set to LUA_NOWAIT to indicate immediate

return without waiting for data, and no data was currently

available on the specified session flow or flows.

LUA_INVALID_PROCESS

The application instance that issued this verb was not the same as

the one that issued the RUI_INIT verb for this session.

The following primary and secondary return codes indicate that the verb did not

complete successfully for other reasons.

lua_prim_rc

LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc

Possible values:

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following things:

v The host system has violated SNA protocols.

v An internal error was detected within LUA.

Try to reproduce the problem with tracing active, and check that

the host is sending correct data.

RUI_READ

210 Client/Server Communications Programming

lua_prim_rc

LUA_INVALID_VERB

 Either the lua_verb parameter or the lua_opcode parameter was not valid.

The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Comments

The RUI_INIT verb must have completed successfully before this verb can be

issued. While an existing RUI_READ is pending, you can issue another

RUI_READ only if it specifies a different session flow or flows from pending

RUI_READs; that is, you cannot have more than one RUI_READ outstanding for

the same session flow.

The lua_flag1 can only be set to LUA_BID_ENABLE if all of the following things

are true:

v An RUI_BID has already been issued successfully and has completed.

v The storage allocated for the RUI_BID verb has not been freed or modified.

v No other RUI_BID is pending.

Usage Notes

If the data received is longer than the lua_max_length parameter, it will be

truncated; only lua_max_length bytes of data will be returned. The primary and

secondary return codes LUA_UNSUCCESSFUL and LUA_DATA_TRUNCATED

will also be returned.

Once a message has been read using the RUI_READ verb, it is removed from the

incoming message queue and cannot be accessed again.

Note: The RUI_BID verb can be used as a nondestructive read; that is, the

application can use it to check the type of data available, but the data

remains on the incoming queue and need not be used immediately.

Pacing can be used on the primary-to-secondary half-session (this is specified in

the host configuration) to protect the Personal Communications node from being

flooded with messages. If the LUA application is slow to read messages, Personal

Communications delays the sending of pacing responses to the host in order to

slow it down.

RUI_READ

Chapter 13. RUI Verbs 211

RUI_TERM

The RUI_TERM verb ends both the LU-LU session and the LU-SSCP session for a

given LUA LU.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record. Set this to size of (struct

LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_TERM

lua_correlator

Optional. A 4-byte value, which you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the local LU used by the session. This must match

the LU name of an active LUA session (or the LU name specified on an

outstanding RUI_INIT verb).

 This parameter is required only if the lua_sid parameter is zero. If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if

the name is shorter than 8 characters.

lua_sid

The session ID of the session. This must match a session ID returned on a

previous RUI_INIT verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

Returned Parameters

The following parameter will always be returned:

lua_flag2

This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

If the verb executes successfully, LUA also returns the following parameter:

lua_prim_rc

LUA_OK

RUI_TERM

212 Client/Server Communications Programming

The following return codes indicate that the verb did not complete successfully

because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values:

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the

length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in

which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION

 An RUI_INIT verb has not yet completed successfully for this session, or a

session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but

the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values:

LUA_COMMAND_COUNT_ERROR

An RUI_TERM was already pending when the verb was issued.

LUA_INVALID_PROCESS

The application instance that issued this verb was not the same as

the one that issued the RUI_INIT verb for this session.

The following primary and secondary return codes indicate that the verb did not

complete successfully for other reasons.

lua_prim_rc

LUA_SESSION_FAILURE

The session has been brought down.

lua_sec_rc

Possible values:

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following things:

v The host system has violated SNA protocols.

RUI_TERM

Chapter 13. RUI Verbs 213

v An internal error was detected within LUA.

Try to reproduce the problem with tracing active, and check that

the host is sending correct data.

lua_prim_rc

LUA_INVALID_VERB

 Either the lua_verb parameter or the lua_opcode parameter was not valid.

The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Comments

This verb can be issued at any time after the RUI_INIT verb has been issued

(whether or not it has completed). If any other LUA verb is pending when

RUI_TERM is issued, no further processing on the pending verb will take place,

and it will return with a primary return code of LUA_CANCELLED.

After this verb has completed, no other LUA verb can be issued for this session.

RUI_TERM

214 Client/Server Communications Programming

RUI_WRITE

The RUI_WRITE verb sends an SNA request or response unit from the LUA

application to the host, over either the LU-LU session or the LU-SSCP session.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record. Set this to sizeof(struct

LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_WRITE

lua_correlator

Optional. A 4-byte value, which you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the local LU used by the session. This must match

the LU name of an active LUA session.

 This parameter is required only if the lua_sid parameter is zero. If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be 8 bytes long; pad on the right with spaces, 0x20, if

the name is shorter than 8 characters.

lua_sid

The session ID of the session. This must match a session ID returned on a

previous RUI_INIT verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_data_length

The length of the supplied data (see lua_data_ptr). When sending data on

the LU normal flow, the maximum length is as specified in the BIND

received from the host; for all other flows the maximum length is 256

bytes.

 When sending a positive response, this parameter is normally set to zero.

LUA will complete the response based on the supplied sequence number

(see lua_th.snf). In the case of a positive response to a BIND or STSN, an

extended response is permitted, so a nonzero value can be used.

 When sending a negative response, set this parameter to the length of the

SNA sense code (4 bytes), which is supplied in the data buffer (see

lua_data_ptr).

lua_data_ptr

A pointer to the buffer containing the supplied data.

 For a request, or a positive response that requires data, the buffer should

contain the entire RU. The length of the RU must be specified in

data_length.

RUI_WRITE

Chapter 13. RUI Verbs 215

For a negative response, the buffer should contain the SNA sense code.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

lua_th.snf

Required only when sending a response. The sequence number of the

request to which this is the response.

lua_rh When sending a request, most of the lua_rh flags must be set to

correspond to the RH (request header) of the message to be sent. Do not

set LUA_PI and LUA_QRI; these will be set by LUA.

 When sending a response, only the following two lua_rh flags are set:

LUA_RRI

Is set to indicate a response.

LUA_RI

Is not set for a positive response, or set for a negative response.

lua_flag1

Set one of the following flags to indicate which message flow the data is to

be sent on:

LUA_LU_EXP

LU expedited flow

LUA_SSCP_NORM

SSCP normal flow

LUA_LU_NORM

LU normal flow

One and only one of the flags must be set.

Note: Personal Communications does not permit applications to send data

on the SSCP expedited flow (LUA_SSCP_EXP).

Returned Parameters

The following parameter will always be returned:

lua_flag2

This is only set to LUA_ASYNC if the verb completed asynchronously.

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

If the verb executes successfully, LUA also returns the following parameters:

lua_prim_rc

LUA_OK

lua_sid

If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

lua_th The completed TH of the message written, including the fields filled in by

LUA. You might need to save the value of lua_th.snf (the sequence

number) for correlation with responses from the host.

RUI_WRITE

216 Client/Server Communications Programming

lua_rh The completed RH of the message written, including the fields filled in by

LUA.

lua_flag2

This will be set to one of the following values to indicate which message

flow the data was received on:

LUA_SSCP_EXP

SSCP expedited flow

LUA_LU_EXP

LU expedited flow

LUA_SSCP_NORM

SSCP normal flow

LUA_LU_NORM

LU normal flow

The following return codes indicate that the verb did not complete successfully

because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

The verb was canceled because an RUI_TERM

verb was issued for this

session.

The following return codes indicate that the verb did not complete successfully

because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter contained an incorrect value.

LUA_DUPLICATE_WRITE_FLOW

An RUI_WRITE was already outstanding for the session flow

specified on this verb (the session flow is specified by setting one

of the lua_flag1 flow flags). Only one RUI_WRITE at a time can

be outstanding on each session flow.

LUA_INVALID_FLOW

lua_flag1 was set to LUA_SSCP_EXP, indicating that the message

should be sent on the SSCP expedited flow. Personal

Communications does not permit applications to send data on this

flow.

LUA_MULTIPLE_WRITE_FLOWS

More than one of the lua_flag1 flow flags was set. One and only

one of these flags must be set to indicate which session flow the

data is to be sent on.

LUA_REQUIRED_FIELD_MISSING

This return code indicates one of the following cases:

RUI_WRITE

Chapter 13. RUI Verbs 217

v None of the lua_flag1 flow flags was set. One and only one of

these flags must be set.

v The RUI_WRITE verb was used to send a response, and the

response required more data than was supplied.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the

length of the verb record required for this verb.

The following return codes indicate that the verb was issued in a session state in

which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

Possible values:

LUA_MODE_INCONSISTENCY

The SNA message sent on the RUI_WRITE was not valid at this

time. This is caused by trying to send data on the LU-LU session

before the session is bound. Check the sequence of SNA messages

sent.

LUA_NO_RUI_SESSION

An RUI_INIT verb has not yet completed successfully for this

session, or a session outage has occurred.

The following return codes indicate that the verb record supplied was valid, but

the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values:

LUA_FUNCTION_NOT_SUPPORTED

This return code indicates one of the following cases:

v lua_rh was set to LUA_FI (Format Indicator), but the first byte

of the supplied RU was not a recognized request code.

v lua_rh was set to LUA_RH_NC (RU category specified the

Network Control (NC) category); Personal Communications does

not permit applications to send requests in this category.

LUA_INVALID_PROCESS

The application instance that issued this verb was not the same as

the one that issued the RUI_INIT verb for this session.

LUA_INVALID_SESSION_PARAMETERS

The application used RUI_WRITE to send a positive response to a

BIND message received from the host. However, the Personal

Communications node cannot accept the BIND parameters as

specified, and has sent a negative response to the host. See “SNA

Layers” on page 152 for more information on the BIND profiles

accepted by Personal Communications.

RUI_WRITE

218 Client/Server Communications Programming

LUA_RSP_CORRELATION_ERROR

When using RUI_WRITE to send a response, the lua_th.snf

parameter (which indicates the sequence number of the received

message being responded to) did not contain a valid value.

LUA_RU_LENGTH_ERROR

The lua_data_length parameter contained an incorrect value. When

sending data on the LU normal flow, the maximum length is as

specified in the BIND received from the host; for all other flows

the maximum length is 256 bytes.

(any other value)

Any other secondary return code here is an SNA sense code

indicating that the supplied SNA data was not valid or could not

be sent. See “SNA Layers” on page 152 for information on

interpreting the SNA sense codes that can be returned.

The following primary and secondary return codes indicate that the verb did not

complete successfully for other reasons:

lua_prim_rc

LUA_SESSION_FAILURE

 The session has been brought down.

lua_sec_rc

Possible values:

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following things: The host

system has violated SNA protocols. An internal error was detected

within LUA.

Attempt to reproduce the problem with tracing active, and check that the

host is sending correct data.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode

parameter was not valid.

The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred, such as resource shortage.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Comments

The RUI_INIT verb must be issued successfully before this verb can be issued.

While an existing RUI_WRITE is pending, you can issue a second RUI_WRITE

RUI_WRITE

Chapter 13. RUI Verbs 219

only if it specifies a different session flow from the pending RUI_WRITE; that is,

you cannot have more than one RUI_WRITE outstanding for the same session

flow.

The RUI_WRITE verb can be issued on the SSCP normal flow at any time after a

successful RUI_INIT verb. RUI_WRITE verbs on the LU expedited or LU normal

flows are permitted only after a BIND has been received, and must abide by the

protocols specified on the BIND.

Usage Notes

The successful completion of RUI_WRITE indicates that the message was queued

successfully to the data link; it does not necessarily indicate that the message was

sent successfully, or that the host accepted it. Pacing can be used on the

secondary-to-primary half-session (this is specified on the BIND) to prevent the

LUA application from sending more data than the local or remote LU can handle.

If this is the case, an RUI_WRITE on the LU normal flow can be delayed by LUA

and can take some time to complete.

Note: Personal Communications does not permit applications to send data on the

SSCP expedited flow (LUA_SSCP_EXP).

RUI_WRITE

220 Client/Server Communications Programming

Chapter 14. SLI Entry Points

This chapter describes the procedure entry points for SLI.

© Copyright IBM Corp. 1994, 2006 221

SLI()

Provides event notification for all SLI verbs.

Syntax

void WINAPI SLI (LUA_VERB_RECORD* vcb);

Parameters

vcb Supplied parameter; specifies the address of the verb control block.

Returned Values

The value returned in lua_flag2.async indicates whether asynchronous notification

will occur. If the flag is set (nonzero), asynchronous notification will occur through

event signaling. If the flag is not set, the request completed synchronously.

Examine the primary return code and secondary return code for any error

conditions.

Usage Notes

The application must provide a handle to an event in the lua_post_handle parameter

of the verb control block. The event must be in the not-signaled state.

When the asynchronous operation is complete, the application is notified by the

signaling of the event. Upon signaling of the event, examine the primary return

code and secondary return code for any error conditions. See also: “WinSLI()” on

page 223.

SLI()

222 Client/Server Communications Programming

WinSLI()

Provides asynchronous message notification for all SLI verbs.

Syntax

int WINAPI WinSLI (HWND hWnd,LUA_VERB_RECORD* vcb);

Parameters

hWnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values

The function returns a value indicating whether the request was accepted by the

SLI for processing. A returned value of 0 indicates that the request was accepted

and will be processed. A value other than 0 indicates an error. Possible error codes

are as follows:

WLUAINVALIDHANDLE

The window handle provided is not valid.

The value returned in lua_flag2.async indicates whether asynchronous notification

will occur. If the flag is set (nonzero), asynchronous notification will occur through

a message posted to the application’s message queue. If the flag is not set, the

request completed synchronously. Examine the primary return code and secondary

return code for any error conditions.

Usage Notes

Upon completion of the verb, the application’s window hWind receives the

message returned by RegisterWindowMessage with WinSLI as the input string.

The lParam argument contains the address of the VCB being posted as complete.

The wParam argument is undefined. It is possible for the request to be accepted for

processing (the function call returns 0), but rejected later with a primary return

code and secondary return code set in the VCB. Examine the primary return code

and secondary return code for any error conditions.

See also: “SLI()” on page 222.

WinSLI()

Chapter 14. SLI Entry Points 223

WinSLICleanup()

Terminates and deregisters an application from the SLI API.

Syntax

BOOL WINAPI WinSLICleanup (void);

Returned Values

The return value indicates success or failure of the deregistration. If the value is

not 0, the application was successfully deregistered. If the value is 0, the

application was not deregistered.

Usage Notes

Use WinSLICleanup to deregister the SLI API, for example, to free up resources

allocated to the specific application.

Using WinSLICleanup is not required.

WinSLICleanup()

224 Client/Server Communications Programming

WinSLIStartup()

Enables an application to specify the required version of the SLI API and to

retrieve details of the API.

Syntax

int WINAPI WinSLIStartup (WORD wVersionRequired,

 LUADATA* luadata);

Parameters

wVersionRequired

Specifies the version of SLI API support required. The high-order byte

specifies the minor version (revision) number; the low-order byte specifies

the major version number.

luadata

Returns version of SLI implementation.

Returned Values

The return value specifies whether the application was registered successfully and

whether the SLI API can support the specified version number. If the value is 0, it

was registered successfully and the specified version can be supported. Otherwise,

the return value is one of the following values:

WLUAVERNOTSUPPORTED

The version of SLI API support requested is not provided by this particular

SLI API.

WLUAINVALID

The version requested could not be determined.

Usage Notes

Using WinSLIStartup is not required.

WinSLIStartup()

Chapter 14. SLI Entry Points 225

WinSLIStartup()

226 Client/Server Communications Programming

Chapter 15. SLI Verbs

This chapter contains the following information for each SLI verb:

v The purpose of the verb.

v Parameters supplied to and returned by SLI. The description of each parameter

includes information on the valid values for that parameter, and any additional

information necessary.

v Interactions with other verbs.

v Additional information describing the use of the verb.

© Copyright IBM Corp. 1994, 2006 227

SLI_BID

This verb tells an SLI application program that a message is pending to be read by

SLI_RECEIVE or that status is presented. SLI_BID is used to preview the pending

data so the application can formulate a strategy for receiving the data. When data

or status arrives for the SLI application program, SLI_BID is posted if an eligible

SLI_RECEIVE is not active. The application program issues an SLI_BID verb after

the session opens successfully (or during the SLI_OPEN if the initiation type is

primary with SSCP access) to indicate that the application program will use the bid

mechanism.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block. This number must equal the length

expected by the SLI for the SLI_BID verb.

lua_opcode

LUA_OPCODE_SLI_BID

 The operation code for the verb.

lua_correlator

A value that links the verb with other user-supplied information. This

parameter is not used by the LUA interface.

lua_luname

The local LU name in ASCII. If the name contains fewer than 8 characters,

you must pad it with blanks. LUA examines this parameter only if lua_sid

is 0. Using the lua_luname parameter on all verbs helps make debugging

easier, especially when multiple LUs are configured.

lua_sid

The session ID returned by SLI_OPEN that identifies the session to be

used. If this parameter is 0, the lua_luname parameter is used for

identification.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

Returned Parameters

If the verb completed successfully, the following parameters are returned:

lua_prim_rc

The primary return code, set by the verb function.

lua_sec_rc

The secondary return code, set by the verb function.

lua_data_length

The length of the peek data received.

SLI_BID

228 Client/Server Communications Programming

lua_peek_data

This parameter contains up to the first 12 bytes of RU data to be read. The

length of the data returned in this parameter is in the lua_data_length

parameter.

lua_th A 6-byte parameter that contains the SNA transmission header (TH) for the

message.

lua_rh A 3-byte parameter that contains the SNA request/response header (RH)

for the message.

lua_message_type

The type of SNA data and commands. The valid message types follow:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIND

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SIGNAL

 LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the

LUA interface extension routines.

 LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA

commands.

lua_flag2

A 1-byte flag that contains bits used as output parameters. At verb

completion, all bits that are not described by value are reserved and must

be set to 0. The flag in the high-order half-byte follows:

lua_flag2.async

A flag that indicates that this verb completes asynchronously

 The low-order half-byte contains flags that describe the message session

and flow. One of the following flags is returned:

lua_flag2.sscp_exp

Specifies SSCP-expedited flow

lua_flag2.sscp_norm

Specifies SSCP-normal flow

lua_flag2.lu_exp

Specifies LU-expedited flow

lua_flag2.lu_norm

Specifies LU-normal flow

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

SLI_BID

Chapter 15. SLI Verbs 229

lua_sec_rc

The secondary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

Usage Notes

Only one SLI_BID can be active for each session. The application program can be

bid once for each flow if the SLI_BID is reactivated, even if the data is not read. If

the application program does not read the bid data, it is not bid again for that

specific flow.

Issuing the SLI_BID verb initially enables the bid function. After the SLI_BID verb

posts complete, the bid function is disabled. The bid function can be reenabled in

one of two ways:

v By calling the SLI again with the address of an SLI_BID verb control block.

v By issuing an SLI_RECEIVE with the lua_flag1.bid_enable parameter set to 1. If

SLI_RECEIVE with lua_flag1.bid_enable is issued, the SLI uses the address of

the last-accepted SLI_BID verb control block as the active bid.

Notes:

1. If multiple flows have data available when the SLI_BID is issued, the data

returned by the SLI_BID is from the highest priority flow that has data. From

highest to lowest, the priorities are:

v SSCP–expedited

v LU–expedited

v SSCP–normal

v LU–normal
2. If, following SLI_BID completion, the LUA application issues an SLI_RECEIVE

with multiple lua_flag1 flow flags set, the data read could be for a different

flow from the data returned by the SLI_BID. This could happen if higher

priority data arrived from the host between the time that the SLI_BID

completed and the SLI_RECEIVE was issued.

The LUA application can, however, guarantee that an SLI_RECEIVE reads the

data for which it was just bid. It does so by setting only one of the lua_flag1

flow flags in the control block for the SLI_RECEIVE verb, specifying the same

flow as that returned in the lua_flag2 field of the completed SLI_BID.

The SLI_BID completes as soon as an RU arrives. This RU could be the only

RU in a chain, or it could be the first RU in a multiple-RU chain. At SLI_BID

completion, a single element chain is the only time a complete chain is bid to

the application.

If the SLI_BID completes with the first RU of a multiple-RU chain and the

subsequent SLI_RECEIVE specifies the lua_flag1.nowait option, the

lua_flag1.nowait option is ignored. The SLI_RECEIVE verb returns in progress

and will complete asynchronously after all RUs in the chain arrive.

If status is available, the application must read it. Until the application reads the

status by issuing an SLI_BID or SLI_RECEIVE, all other operations are rejected,

except for:

v SLI_SEND verbs on the SSCP flow

v SLI_CLOSE

When the primary return code is STATUS, the only SLI_BID parameters returned

are lua_prim_rc, lua_sec_rc, and lua_sid. If SLI_BID and SLI_RECEIVE are both

SLI_BID

230 Client/Server Communications Programming

active when status becomes available, only the SLI_BID is posted with the status.

When the application program is bid for status, all information is presented and no

SLI_RECEIVE is required.

When the value of the primary return code is STATUS, the possible values for the

secondary return code are:

v READY

Indicates the SLI session is now ready for processing all additional commands.

The READY status is issued after a prior NOT_READY status was received.

v NOT_READY

Indicates that a CLEAR command or an UNBIND command with a type value

of X’02’ or X’01’ was received from the host. The SLI session is suspended.

– When a CLEAR arrives, the session is suspended until an SDT command is

received.

– When an SNA UNBIND type X’02’ (UNBIND with BIND forthcoming)

arrives, the session is suspended until BIND, optional CRV and STSN, and

SDT commands are received. Any user extension routines must be reentrant.

– When an UNBIND type X’01’ (UNBIND normal) arrives and the SLI_OPEN

verb for this session specified an lua_session_type of

LUA_SESSION_TYPE_DEDICATED, the session is suspended until BIND,

optional CRV and STSN, and SDT commands are received. User extension

routines provided to process these commands must be reentrant.

After the CLEAR, UNBIND type X’02’, or UNBIND type X’01’ arrives, the

application can send SSCP data before reading the NOT_READY status, and

can both send and receive SSCP data after reading the NOT_READY status.
v SESSION_END_REQUESTED

Indicates that a SHUTD command was received from the host. The host is

requesting that the SLI application end the session as soon as convenient.

When the application is ready to end the session, it should issue an SLI_OPEN.

v INIT_COMPLETE

Indicates that an RUI_INIT verb completed during SLI_OPEN processing. This

status is returned only when the SLI_OPEN lua_init_type parameter is

LUA_INIT_TYPE_PRIM_SSCP.

After this status is received, the application can send and receive data on the

SSCP-normal flow.

In addition to the return codes, additional SNA sense data can be returned if a

request unit sent by the host application has been converted into an exception

request (EXR). An EXR is indicated by having the SLI_BID complete with the

following returned verb parameters values:

Parameters

lua_prim_rc OK (X'0000')

lua_sec_rc OK (X'00000000')

lua_rh.rri bit off (request unit)

lua_rh.sdi bit on (sense data included)

Under these conditions, the request has been converted into an EXR and up to 7

bytes of information is returned in the lua_peek_data verb parameter. The format

of the information in the lua_peek_data parameter is as follows:

SLI_BID

Chapter 15. SLI Verbs 231

v Bytes 0—3 contain sense data defining the error detected. If LUA converted the

request into an EXR, the sense data is one of the following values:

 Sense Data Value of byes 0 - 3

LUA_MODE_INCONSISTENCY X'08090000'

LUA_BRACKET_RACE_ERROR X'080B0000'

LUA_BB_REJECT_NO_RTR X'08130000'

LUA_RECEIVER_IN_TRANSMIT_MODE X'081B0000'

LUA_CRYPTOGRAPHY_FUNCTION_INOP X'08480000'

LUA_SYNC_EVENT_RESPONSE X'10010000'

LUA_RU_DATA_ERROR X'10020000'

LUA_RU_LENGTH_ERROR X'10020000'

LUA_INCORRECT_SEQUENCE_NUMBER X'20010000'

The information returned to bytes 4 through 6 in lua_peek_data contain up to the

first 3 bytes of the original request unit.

SLI_BID

232 Client/Server Communications Programming

SLI_CLOSE

This verb closes the SNA session. SLI_CLOSE terminates the connection with the

host application program and frees the resources that were used. The posting of

SLI_CLOSE signifies that the LU-LU and the SSCP-LU communications have

ended.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block. This number must equal the length

expected by the SLI for the SLI_CLOSE verb.

lua_opcode

LUA_OPCODE_SLI_CLOSE

 The operation code for SLI_CLOSE.

lua_correlator

A value that an LUA application program can supply to help correlate this

verb with other information that the program supplies. This parameter is

not used by the LUA interface.

lua_luname

The local LU name in ASCII. If the name contains fewer than 8 characters,

you must pad it with blanks. LUA examines this parameter only if lua_sid

is 0. Using the lua_luname parameter on all verbs helps make debugging

easier, especially when multiple LUs are configured.

lua_sid

The session ID returned by a successfully completed SLI verb that

identifies the session to be used. If this parameter is 0, the lua_luname

parameter is used for identification.

lua_post_handle

This is a 4-byte handle that is used to post the completion of asynchronous

verbs.

lua_flag1.close_abend

Specifies whether the close is a close immediate (on) or a normal close

(off).

Returned Parameters

If the verb completed successfully, the following parameters are returned:

lua_flag2.async

A flag that indicates that this verb completes asynchronously.

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

lua_sec_rc

The secondary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

SLI_CLOSE

Chapter 15. SLI Verbs 233

Usage Notes

There are two types of SLI_CLOSE: close normal and close abend.

v Close Normal

The close normal is identified when the lua_flag1.close_abend parameter is set

to 0. The close sequence can be secondary initiated or primary initiated. The

close normal uses a SHUTD command for a primary initiated or primary

initiated. The close normal uses a SHUTD command for a primary initiated close

and sends an RSHUTD command for a secondary initiated close.

If the host sends an UNBIND type X’02’ (UNBIND with BIND forthcoming)

during a primary or secondary initiated SLI_CLOSE normal, the session is not

closed. The SLI_CLOSE verb completes with the CANCELED primary return

code, RECEIVED_UNBIND_HOLD secondary return code. The application

program should issue an SLI_BID or SLI_RECEIVE verb to return STATUS.

If the host sends UNBIND type X’01’ (normal UNBIND) during a primary or

secondary initiated SLI_CLOSE Normal and the SLI_OPEN verb for this session

specified and lua_session_type of LUA_SESSION_TYPE_DEDICATED, the

session is not closed. The SLI_CLOSE verb completes with the CANCELED

primary return code and the RECEIVED_UNBIND_NORMAL secondary return

code. The application program should issue SLI_BID or SLI_RECEIVE to return

STATUS.

v Close Abend

The close abend is identified when the lua_flag.close_abend parameter is set to

1. The CLOSE_ABEND option tells the SLI to end the session immediately.

The following SNA commands can flow during the different types of close

processing:

v SLI_CLOSE Normal

– Secondary Initiated Close

After the SLI application program issues an SLI_CLOSE verb with

lua_flag.close_abend set to 0, the SLI performs the following processing:

Writes the RSHUTD command

Reads and processes the RSHUTD command response

Reads and processes the CLEAR command (if required)

Writes the CLEAR command response (if required)

Reads and processes the UNBIND command

Writes the UNBIND command response

Stops the RUI session

– Primary Initiated Close

Reads the SHUTD command and gives the application

SESSION_END_REQUESTED status.

After the SLI application program issues SLI_CLOSE with

lua_flag.close_abend set to 0, the SLI performs the following processing:

Writes the CHASE command

Reads and processes the CHASE command response

Writes the Shutdown Complete (SHUTC) command

Reads and processes the SHUTC command response

Reads and processes the CLEAR command (if required)

Writes the CLEAR command response (if required)

SLI_CLOSE

234 Client/Server Communications Programming

Reads and processes the UNBIND command

Writes the UNBIND command response

Stops the RUI session

– SLI_CLOSE Abend

- After the SLI application program issues an SLI_CLOSE verb with

lua_flag1.close_abend set to 1, the SLI stops the RUI session.

The completion of the SLI_CLOSE verb implies that the LU-LU session is

unbound and that the SSCP was notified of no-session capability for the LU. After

the SLI_CLOSE verb completes successfully, no other SLI command can be issued

for the session except another SLI_OPEN . All pending commands are terminated

when the SLI_CLOSE verb is received.

Notes:

1. Do not use this function to close sessions that are established using the RUI.

2. Before you issue an SLI_CLOSE normal, be certain that all owed responses

have been sent to the host. The SLI automatically changes the CLOSE type to

ABEND if responses are owed.

The CLOSE type might be automatically changed to ABEND if the LUA

application program ignores data. It is good programming practice to use the

SLI_RECEIVE verb to receive all data from the host. Otherwise, the SLI might

assume that a response is owed, even if the data was an exception request, and

change the CLOSE type to ABEND.

SLI_CLOSE

Chapter 15. SLI Verbs 235

SLI_OPEN

This verb opens an SNA session for an application program that is requesting

session-level communications on the link. The session-level function issues SNA

commands on behalf of the application program to open the session. The LUA

application program is simplified because SLI functions perform multiple RUI

functions to establish the LU-LU session.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block. This number must equal the length

expected by the SLI for the SLI_OPEN verb.

lua_opcode

LUA_OPCODE_SLI_OPEN

lua_correlator

A value that an LUA application program can supply to help correlate this

verb with other information that the program supplies. This parameter is

not used by the Windows LUA interface.

lua_luname

The local LU name in ASCII. If the name contains fewer than 8 characters,

you must pad it with blanks.

 This parameter is required by SLI_OPEN. Other verbs require this

parameter only if the lua_sid parameter is zero; however, using the

lua_luname parameter on all verbs helps make debugging easier,

especially when multiple LUs are configured.

 The following information only applies to Communications

Server Win32 SNA API clients.

 The default LUA session name for each user can be assigned using the

appropriate configuration utility, either INI configuration or LDAP.

 LUA programs, such as 3270 emulators, can choose to use a default LUA

session name rather than specify one directly. When an LUA program

issues an SLI_OPEN verb with the lua_name field set to binary zeroes, or

ASCII blanks, the SLI API uses the configured default LUA session name.

lua_data_length

The length of the unformatted LOGON or INITSELF data being sent.

lua_data_ptr

A pointer to the data buffer of the application. Because this buffer is used

for data and SNA commands, the contents of the buffer are usually in

EBCDIC.

 This data buffer contains one of the following things:

SLI_OPEN

236 Client/Server Communications Programming

v The user’s SNA INITSELF request unit (RU) with all of the required

application program data filled in if the lua_init_type parameter specifies

secondary initiated with INITSELF. The INITSELF contains user

information, such as the mode name and the PLU name. For more

information, refer to Systems Network Architecture Network Product

Formats.

v The LOGON message that is sent on the SSCP-normal flow when the

lua_init_type parameter specifies secondary initiated with an

unformatted LOGON message.

v If the session is primary initiated, this buffer is not used and the

lua_data_ptr parameter must be 0.

lua_post_handle

If asynchronous notification is to be accomplished by events,

lua_post_handle contains the handle of the event to be signaled.

lua_encr_decr_option

Cryptography is not supported.

lua_init_type

Defines how the LU-LU session is initialized by the Windows LUA

interface. Valid values are:

LUA_INIT_TYPE_SEC_IS

Secondary-initiated; send the INITSELF command that is supplied

in the data buffer of the OPEN

LUA_INIT_TYPE_SEC_LOG

Secondary-initiated with an unformatted LOGON message

specified in the data buffer of the OPEN

LUA_INIT_TYPE_PRIM

Primary-initiated; wait on BIND

LUA_INIT_TYPE_PRIM_SSCP

Primary-initiated with SSCP access

lua_session_type

A value that defines how the SLI processes UNBIND type X’01’, UNBIND

normal. The valid values follow:

LUA_SESSION_TYPE_NORMAL

When an UNBIND normal is received from the primary logical

unit, the SLI sends a positive response and issues RUI_TERM

which causes a NOTIFY disabled to flow to the SSCP. The

SSCP-LU flow is disabled. This is the default value for this

parameter.

LUA_SESSION_TYPE_DEDICATED

When an UNBIND normal is received from the primary logical

unit, the SLI sends a positive response and the SLI session is

suspended until a new BIND, optional CRV and STSN, and SDT

commands are received. In this case, the SLI does not issue

RUI_TERM and NOTIFY disabled does not flow to the SSCP.

 LUA_SESSION_TYPE_DEDICATED is not

supported by SNA API clients.

SLI_OPEN

Chapter 15. SLI Verbs 237

lua_wait

The number of seconds (up to a maximum of 65 535) for the SLI to wait

before automatically retrying the transmission of the INITSELF or the

LOGON message after the host sends any one of these messages:

v A negative response to the INITSELF or LOGON message and the

secondary return code is one of the following values:

– RESOURCE_NOT_AVAILABLE (X'08010000')

– SESSION_LIMIT_EXCEEDED (X'08050000')

– SSCP_LU_SESS_NOT_ACTIVE (X'0857nnnn' where nnnn is X'0002')

– SESSION_SERVICE_PATH_ERROR (X'087Dnnnn' where nnnn is

X'0000')
v A Network Services Procedure Error (NSPE) message

v A NOTIFY command, which indicates a procedure error

If the value of lua_wait is 0, no retries occur. This parameter applies only

to sessions initiated by the SLU. If the PLU initiates the session, lua_wait is

ignored.

lua_extension_list_offset

Specifies the offset from the start of the verb control block to the extension

list of user-supplied DLLs. The value must be the beginning of a word

boundary. If there is no extension list, the value must be set to zero.

lua_routine_type

The type of routine of the following module and procedure name. The

valid entries follow:

lua_routine_type_bind

Bind routine

lua_routine_type_crv

Cryptography vector routine

Note: Encryption is not currently supported.

lua_routine_type_sdt

Start data traffic (SDT) routine

 lua_routine_type_sdt is not supported by SNA API

clients.

lua_routine_type_stsn

Set and test sequence numbers (STSN) routine

lua_routine_type_end

Ending delimiter for list of routines.

lua_module_name

Provides the user-supplied ASCII module name. The parameter can be up

to eight characters in length, with the remaining bytes set to X'00'.

lua_procedure_name

Provides the user-supplied DLL procedure name, in ASCII. The parameter

can be up to 32 characters in length, with the remaining bytes set to X'00'.

SLI_OPEN

238 Client/Server Communications Programming

Returned Parameters

If the verb completed successfully, the following parameters are returned:

lua_flag2.async

A flag that indicates that this verb completes asynchronously.

lua_sid

The session ID that subsequent verbs use to identify the session to be used.

The value of this parameter is valid only if the primary return code is OK

or IN_PROGRESS. If the SLI_OPEN fails after having returned

IN_PROGRESS, the session ID is no longer valid.

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

lua_sec_rc

The secondary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

Usage Notes

The SLI can perform the following session initialization tasks:

v Start the RUI session

v Write an INITSELF or an unformatted logon message (secondary initialization

only).

v Read and process an INITSELF response or the response to the logon message

(secondary initialization only).

v Read and verify a BIND command from the host.

v Write a BIND response.

v Read and process an UNBIND type X'02' or an UNBIND type X'01' if one is sent

by the host.

v Write the UNBIND response and prepare to receive the subsequent BIND.

v Read and process the STSN command (if required).

v Write the STSN response (if required).

v Read and process the SDT command.

v Write the SDT response.

v Go to user routines to process BIND, STSN, and SDT commands when they are

specified by the application program in the SLI_OPEN verb.

The SLI_OPEN verb handles all SNA message traffic through the response to the

SDT command.

An application program issues an SLI_OPEN verb to select a particular defined

LUA LU in the lua_luname parameter. This field is an ASCII string that should be

padded with blanks.

The lua_init_type parameter tells the SLI how to establish the LU session. The

following list describes the initialization options:

v Secondary Initialization with INITSELF

Set the lua_init_type parameter to LUA_INIT_TYPE_SEC_IS for this option.

With this option, the application program must supply the INITSELF command

used in the SLI_OPEN verb because the INITSELF contains all of the

session-specific information needed by the host, such as the mode name and the

SLI_OPEN

Chapter 15. SLI Verbs 239

PLU name. The lua_data_ptr parameter gives the address of the INITSELF, and

the lua_data_length parameter gives its length.

v Secondary Initialization with an Unformatted LOGON Message

Set the lua_init_type parameter to LUA_INIT_TYPE_SEC_LOG for this option.

In secondary initialization with an unformatted LOGON message, the

lua_data_ptr parameter contains the address of the user’s EBCDIC LOGON

message of the length that is specified in the lua_data_length parameter.

v Primary Initialization

Set the lua_init_type parameter to LUA_INIT_TYPE_PRIM for this option. In

primary initialization, the SLU does nothing to start the session with the host.

The SLI_OPEN remains IN_PROGRESS until the host starts the session with a

BIND command and a subsequent SDT command.

v Primary Initialization with SSCP Access

Set the lua_init_type parameter to LUA_INIT_TYPE_PRIM_SSCP for this option.

In primary initialization with SSCP access, the SLI does not send commands to

the host to start the session. Instead, the SLI allows the application program to

issue SLI_SEND and SLI_RECEIVE verbs for SSCP-normal flow data to send

INITSELF commands or LOGON messages and to receive their responses. With

this option, the application program is not limited to one INITSELF or LOGON

message as it is for the secondary initialization types. This is the only

SLI_OPEN type that allows the application program to issue SLI verbs before

the SLI_OPEN completes. After the SLI_OPEN verb is issued, the application

program can issue an SLI_BID or an SLI_RECEIVE to get INIT_COMPLETE

status. This status tells the application program that it can begin to issue the

SLI_SEND and SLI_RECEIVE verbs for SSCP-normal flow data.

The optional lu_session_type parameter tells the SLI how to process UNBIND type

X’01’, UNBIND normal. This parameter takes effect after the SLI_OPEN verb

passes initial parameter checking and stays in effect until SLI_CLOSE abend is

issued or until the SLI issues RUI_TERM. The following list describes standard

UNBIND and dedicated UNBIND processing:

v Standard UNBIND Normal Processing SLI_CLOSE Normal

Set the lua_session_type parameter to LUA_SESSION_TYPE_NORMAL for this

option. This is the default value. With this option, the SLI sends a positive

response to an UNBIND Normal sent by the primary LU and issues

RUI_TERM, which causes a NOTIFY Disabled to flow to the SSCP. These

actions do the following things:

– End the LU-LU session.

– Indicate to the SSCP and the PLU that the SLU is unable to process new

BINDs. New BINDs that are received are rejected.

– Prevent data from flowing on the SSCP-LU session.

The SLI will issue RUI_TERM when it receives any UNBIND except type

X'02' (UNBIND with BIND forthcoming).

– Dedicated UNBIND Normal Processing

Set the lua_session_type parameter to LUA_SESSION_TYPE_DEDICATED for

this option. With this option, the SLI sends a positive response to an UNBIND

normal sent by the primary logical unit. However, the SLI does not issue

RUI_TERM. The status of the SSCP-LU session is not changed (enabled). The

SLI session is suspended until BIND, optional CRV and STSN, and SDT

commands are received. An SLI session that is waiting for a new BIND can be

terminated by issuing an SLI_CLOSE Abend.

SLI_OPEN

240 Client/Server Communications Programming

The SLI issues RUI_TERM when it receives any UNBIND except type X'02' or

type X'01'.

This option is useful when the primary LU is unable to send an UNBIND

with BIND forthcoming, but expects this type of behavior when UNBIND

normal is sent.

Application-Supplied BIND, SDT, or STSN Routines

v If the application program supplies BIND, SDT, or STSN routines, the DLL

module names and procedure entry points are passed in the SLI_OPEN

extension routine list. If the corresponding SNA request is received, these

routines are called during the SLI_OPEN. If no BIND routine is supplied, the

SLI does a limited amount of BIND checking and responds as needed. If an

STSN routine is not supplied and an STSN request is received, the SLI issues a

positive response to indicate that no information is available. If an SDT routine

is not supplied and an SDT request is received, the SLI issues a positive

response.

Posting

v The posting of the SLI_OPEN with OK in the lua_prim_rc parameter means that

the SLI_OPEN completed successfully and that an LU-LU data flow session was

established. After the session is opened successfully, the application program can

issue SLI_SEND, SLI_RECEIVE, SLI_PURGE, SLI_BID , or SLI_CLOSE verbs.

Session Recovery

v The SLI supplies limited session recovery for the application program. When

any SLI verb completes with SESSION_FAILURE in the lua_prim_rc parameter,

the application program must reissue the SLI_OPEN. In this situation, the

program does not have to issue an SLI_CLOSE verb before it issues a new

SLI_OPEN verb.

Terminating a Pending SLI_OPEN

v To terminate a pending SLI_OPEN, issue an SLI_CLOSE with

lua_flag1.close_abend parameter set to 1.

SLI_OPEN

Chapter 15. SLI Verbs 241

SLI_PURGE

This verb purges an outstanding SLI_RECEIVE. SLI_PURGE might be needed by

an application program that uses an SLI_RECEIVE verb with the WAIT option.

For example, if the SLI_RECEIVE verb does not complete in a specified interval of

time, the application program can issue SLI_PURGE. The application program

supplies the address of the SLI_RECEIVE verb control block in the lua_data_ptr

parameter to specify which SLI_RECEIVE to purge.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block. This number must equal the length

expected by the SLI for the SLI_PURGE verb.

lua_opcode

LUA_OPCODE_SLI_PURGE

 The operation code for the verb.

lua_correlator

A value that an LUA application program can supply to help correlate this

verb with other information that the program supplies. This parameter is

ignored by the LUA interface.

lua_luname

The local LU name in ASCII. If the name contains fewer than 8 characters,

you must pad it with blanks. LUA examines this parameter only if lua_sid

is 0. Using the lua_luname parameter on all verbs helps make debugging

easier, especially when multiple LUs are configured.

lua_sid

The session ID, returned by SLI_OPEN, that identifies the session to be

used. If this parameter is 0, the lua_luname parameter is used for

identification.

lua_data_ptr

 A pointer to the application program SLI_RECEIVE verb control block to

be purged.

lua_post_handle

If asynchronous notification is to be accomplished by events,

lua_post_handle contains the handle of the event to be signaled.

Returned Parameters

If the verb completes successfully, the following parameters are returned:

lua_flag2.async

A flag that indicates that this verb completes asynchronously.

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

SLI_PURGE

242 Client/Server Communications Programming

lua_sec_rc

The secondary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

Usage Notes

If SLI_RECEIVE is purged successfully, SLI_RECEIVE ends with the CANCELED

primary return code and the SLI_PURGE completes with the OK primary return

code.

SLI_PURGE

Chapter 15. SLI Verbs 243

SLI_RECEIVE

This verb transfers data or a status code to the application program. SLI_RECEIVE

also provides the current status of the session to the Windows LUA application.

An SLI_RECEIVE verb for an LU-LU session flow can only be issued on an

opened session. If the SLI_OPEN initiation type is primary with SSCP access, the

application program can issue an SLI_RECEIVE verb for SSCP-LU normal flow

data even when an SLI_OPEN verb is pending.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block. This number must equal the length

expected by the SLI for the SLI_RECEIVE verb.

lua_opcode

LUA_OPCODE_SLI_RECEIVE

lua_correlator

A value that an LUA application program can supply to help correlate this

verb with other information that the program supplies. This parameter is

ignored by the LUA interface.

lua_luname

The local LU name in ASCII. If the name contains fewer than 8 characters,

you must pad it with blanks. LUA examines this parameter only if lua_sid

is 0. Using the lua_luname parameter on all verbs helps make debugging

easier, especially when multiple LUs are configured.

lua_sid

The session ID returned by SLI_OPEN that identifies the session to be

used. If this parameter is 0, the lua_luname parameter is used for

identification.

lua_max_length

The length of the buffer used to receive data.

lua_data_ptr

A pointer to the buffer where the SLI places data received from the host

application. Because this buffer is used for data and SNA commands, the

contents of the buffer are usually in EBCDIC.

lua_post_handle

If asynchronous notification is to be accomplished by events,

lua_post_handle contains the handle of the vent to be signaled.

lua_flag1.bid_enable

A flag that specifies whether the LUA should reuse the SLI_BID verb

control block on behalf of the LUA application program.

lua_flag1.nowait

A flag that tells the SLI to post the SLI_RECEIVE verb with the return code

NO_DATA when there is no data to be read. If the first RU of a

multiple-RU chain arrives and the lua_flag1.nowait option has been

SLI_RECEIVE

244 Client/Server Communications Programming

selected, the lua_flag1.nowait option is ignored. The SLI_RECEIVE verb

returns IN_PROGRESS and completes asynchronously after all RUs of the

chain arrive. If chaining is allowed, the lua_flag1.nowait option should not

be used.

The lower-order half-byte of lua_flag1 contains flags that describe the message

session and flow. The flow flags describe the flow or flows on which the LUA

application program can accept a message. At least one of the following flags must

be set, but the set flags must not overlap flags that are set in another active

SLI_RECEIVE verb.

lua_flag1.sscp_exp

A flag that specifies SSCP-expedited flow.

lua_flag1.sscp_norm

A flag that specifies SSCP-normal flow.

lua_flag1.lu_exp

A flag that specifies LU-expedited flow

lua_flag1.lu_norm

A flag that specifies LU-normal flow.

Returned Parameters

If the verb completed successfully, the following parameters are returned:

lua_data_length

The length of the data being received.

lua_th A 6-byte parameter that contains the SNA transmission header (TH) for the

message.

lua_rh A 3–byte parameter that contains the SNA request/response header (RH)

for the message.

lua_message_type

The type of SNA data and commands. When the SLI application program

wants to send data, the application program must set this parameter. The

valid message types follow:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SIGNAL

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA

commands.

lua_flag2.async

A flag that specifies that this verb completes asynchronously.

SLI_RECEIVE

Chapter 15. SLI Verbs 245

lua_flag2.sscp_exp

A flat that specifies SSCP-expedited flow.

lua_flag2.sscp_norm

A flag that specifies SSCP-normal flow.

lua_flag2.lu_exp

A flag that specifies LU-expedited flow.

lua_flag2.lu_norm

A flag that specifies LU-normal flow.

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

lua_sec_rc

The secondary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

Usage Notes

SLI_RECEIVE receives responses, SNA commands, and request unit data from the

host. SLI_RECEIVE also provides the status of the session to the Windows LUA

application. An SLI_OPEN request must complete before SLI_RECEIVE can be

issued. However, if SLI_OPEN is issued with lua_init_type set to

LUA_INIT_TYPE_PRIM_SSCP, an SLI_RECEIVE over the SSCP normal flow may

be issued as soon as SLI_OPEN returns an IN_PROGRESS.

Data is received by the application in one of four session flows. The four session

flows, from highest to lowest priority are:

v SSCP expedited

v LU expedited

v SSCP normal

v LU normal

The data flow type that SLI_RECEIVE verb will process is specified in lua_flag1.

The application can also specify whether it wants to look at more than one type of

data flow. When multiple flow bits are set, the highest priority is received first.

When SLI_RECEIVE completes processing, lua_flag2 indicates the specific type of

flow for which data has been received by the Windows LUA application.

If SLI_BID successfully completes before SLI_RECEIVE is issued, the Windows

LUA interface can be instructed to reuse the last SLI_BID’s verb control block. To

do this, issue SLI_RECEIVE with the lua_flag1.bid_enable parameter set to 1.

When using lua_flag1.bid_enable parameter, the SLI_BID storage must not be

freed because the last SLI_BID verb’s verb control block is used. Also, when using

the lua_flag1.bid_enable parameter, the successful completion of SLI_BID will be

posted.

If SLI_RECEIVE is issued with lua_flag1.nowait when no data is available to

receive, LUA_NO_DATA will be the secondary return code set by the Windows

LUA interface.

If status is available, the application must read it. Until the application reads the

status by issuing an SLI_BID or SLI_RECEIVE, all other operations are rejected,

except for:

SLI_RECEIVE

246 Client/Server Communications Programming

v SLI_SEND verbs on the SSCP flow

v SLI_CLOSE

When the primary return code is STATUS, the only SLI_RECEIVE parameters

returned are lua_prim_rc, lua_sec_rc, and lua_sid. An active SLI_RECEIVE verb

can be posted with the STATUS return code only when there is no active SLI_BID

verb.

When the value of the primary return code is STATUS, the possible values for the

secondary return code are:

v READY

Indicates the SLI session is now ready for processing all additional commands.

The READY status is issued after a prior NOT_READY status was received.

v NOT_READY

Indicates that a CLEAR command or an UNBIND command with a type value

of X’02’ or X’01’ was received from the host. The SLI session is suspended.

– When a CLEAR arrives, the session is suspended until an SDT command is

received.

– When an UNBIND type X’02’ (UNBIND with BIND forthcoming) arrives, the

session is suspended until BIND, optional CRV and STSN, and SDT

commands are received. Any user extension routines must be reentrant.

– When an UNBIND type X’01’ (UNBIND normal) arrives and the SLI_OPEN

verb for this session specified an lua_session_type of

LUA_SESSION_TYPE_DEDICATED, the session is suspended until BIND,

optional CRV and STSN, and SDT commands are received. User extension

routines provided to process these commands must be reentrant.

After the CLEAR, UNBIND type X’02’, or UNBIND type X’01’ arrives, the

application can send SSCP data before reading the NOT_READY status, and

can both send and receive SSCP data after reading the NOT_READY status.
v SESSION_END_REQUESTED

Indicates that a SHUTD command was received from the host. The host is

requesting that the SLI application end the session as soon as convenient.

When the application is ready to end the session, it should issue an SLI_CLOSE

or an SLI_CLOSE Normal.

v INIT_COMPLETE

Indicates that an RUI_INIT verb completed during SLI_OPEN processing. This

status is returned only when the SLI_OPEN lua_init_type parameter is

LUA_INIT_TYPE_PRIM_SSCP.

After this status is received, the application can send and receive data on the

SSCP-normal flow.

In addition to the return codes, additional SNA sense data can be returned if a

request unit sent by the host application has been converted into an exception

request (EXR). An EXR is indicated by having the SLI_RECEIVE complete with

the following returned verb parameters values:

Parameters

lua_prim_rc OK (X'0000')

lua_sec_rc OK (X'00000000')

lua_rh.rri bit off (request unit)

lua_rh.sdi bit on (sense data included)

SLI_RECEIVE

Chapter 15. SLI Verbs 247

Under these conditions, the request has been converted into an EXR and up to 7

bytes of information is returned in the application buffer. The format of the

information in the data buffer is:

v Bytes 0—3 contain sense data defining the error detected. If LUA converted the

request into an EXR, the sense data is one of the following values:

 Sense Data Value of byes 0 - 3

LUA_MODE_INCONSISTENCY X'08090000'

LUA_BRACKET_RACE_ERROR X'080B0000'

LUA_BB_REJECT_NO_RTR X'08130000'

LUA_RECEIVER_IN_TRANSMIT_MODE X'081B0000'

LUA_CRYPTOGRAPHY_FUNCTION_INOP X'08480000'

LUA_SYNC_EVENT_RESPONSE X'10010000'

LUA_RU_DATA_ERROR X'10020000'

LUA_RU_LENGTH_ERROR X'10020000'

LUA_INCORRECT_SEQUENCE_NUMBER X'20010000'

LUA_LCC_NOT_SUPPORTED X'20010000'

The information returned to bytes 4 through 6 in lua_peek_data contain up to the

first 3 bytes of the original request unit.

SLI_RECEIVE

248 Client/Server Communications Programming

SLI_SEND

This verb transfers, from the LUA application program to the communication link,

user data, an SNA command, or an SNA response. SLI_SEND for an LU-LU

session flow can only be issued on a previously opened session. If the SLI_OPEN

initiation type is primary with SSCP access and INIT_COMPLETE status is

achieved, the application program can issue SLI_SEND to transmit data on the

SSCP-LU normal flow.

An LUA application can have two active SLI_SEND verbs simultaneously for each

defined LUA LU. The two verbs can be for any two discrete flows.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block. This number must equal the length

expected by the SLI for the SLI_SEND verb.

lua_opcode

LUA_OPCODE_SLI_SEND

 The operation code for this verb.

lua_correlator

A value that an LUA application program can supply to help correlate this

verb with other information that the program supplies. SLI ignores this

parameter.

lua_luname

The local LU name in ASCII. If the name contains fewer than 8 characters,

you must pad it with blanks. LUA examines this parameter only if lua_sid

is 0. Using the lua_luname parameter on all verbs helps make debugging

easier, especially when multiple LUs are configured.

lua_sid

The session ID returned by SLI_OPEN that identifies the session to be

used. If this parameter is 0, the lua_luname parameter is used for

identification.

lua_data_length

The length of the data being sent.

lua_data_ptr

A pointer to the application program data that is to be sent to the host

application. Because this buffer is used for data and SNA commands, the

contents of the buffer are usually in EBCDIC.

lua_post_handle

A 4-byte handle that is used to post the completion of asynchronous verbs.

lua_th.snf

The sequence number of the RU.

lua_rh A 3-byte parameter that contains the SNA request/response header (RH)

for the message.

SLI_SEND

Chapter 15. SLI Verbs 249

lua_message_type

The type of SNA data and commands. When the SLI application program

wants to send data, the application program must set this parameter. For

more information about the SNA commands, refer to Systems Network

Architecture Network Product Formats. The valid message types are as

follows:

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RQR

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SSCP_DATA

lua_flag1.sscp_exp

Specifies SSCP-expedited flow

lua_flag1.sscp_norm

Specifies SSCP-normal flow

lua_flag1.lu_exp

Specifies LU-expedited flow

lua_flag1.lu_norm

Specifies LU-normal flow

Returned Parameters

If the verb executes successfully, LUA returns the following parameters:

lua_data_length

The length of the peek data received.

lua_th A 6-byte parameter that contains the SNA transmission header (TH) for the

message.

lua_flag2.async

A flag that indicates that this verb completes asynchronously.

lua_flag2.sscp_exp

Specifies SSCP-expedited flow.

lua_flag2.sscp_norm

Specifies SSCP-normal flow.

lua_flag2.lu_exp

Specifies LU-expedited flow.

lua_flag2.lu_norm

Specifies LU-normal flow.

lua_sequence_number

The sequence number of the first-in-chain or the only-in-chain RU for the

SLI_SEND verb. It is not byte-reversed.

SLI_SEND

250 Client/Server Communications Programming

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

lua_sec_rc

The secondary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

Usage Notes

SLI_SEND performs special processing based on the lua_message_type parameter,

such as setting RH and TH bits and flow flags. For example, if the application sets

the lua_message_type parameter to X'84' (CHASE), the SLI component

automatically sets the lua_rh parameter to X'4B8000'. Table 17 shows the

parameters that the application program should set if it is appropriate to do so,

given the current program state.

 Table 17. Parameter Settings Based on Message Type

Value of lua_message_type parameter

SLI_SEND

parameter

LU_DATA

SSCP_DATA

RSP BID, BIS,

RTR

CHASE

QC

QEC, RELQ,

SBI, SIG

RQR LUSTAT_LU

LUSTAT_SSCP

lua_rh FI, DR1I,

DR2I, RI,

BBI, EBI,

CDI, CSI,

EDI

RI SDI, QRI SDI, QRI,

EBI, CDI

SDI 0 SDI, QRI, DR1I,

DR2I, RI, BBI,

EBI, CDI

lua_th 0 SNF 0 0 0 0 0

lua_data_ptr Required (0

if no data)

Required

(0 if no

data)

0 0 0 0 Required

lua_data_length Required Required

(0 if no

data)

0 0 0 0 Required

lua_flag1 flow

flags

0 Required

(set one)

0 0 0 0 0

An SLI_SEND verb transfers data from the location specified in the lua_data_ptr

parameter for the length specified in the lua_data_length. The SLI chains data as

needed. SLI_SEND can complete synchronously or asynchronously. When the

application program returns from the call to the SLI, the lua_flag2.async flag

indicates how the verb completes. When lua_flag2.async is set to ON, an

IN_PROGRESS primary return code indicates that the verb was received and is in

progress. A primary return code of OK indicates that the data or the command was

written to the RUI. The application program receives the sequence number of the

last chain element successfully sent using RUI_WRITE with synchronous return

from the call to the SLI. After all chain elements are written, the application

program receives the final return code and ending sequence number in the TH.

These sequence numbers will differ if, for example, the SLI is sending a chain and

has to wait for a pacing response from the host before the SLI_SEND operation

can be completed.

When the SLI sends a response, the information required on the SLI_SEND verb

depends on the type of response. For all responses, the application program must

perform the following steps:

v Set the lua_message_type parameter to LUA_MESSAGE_TYPE_RSP

SLI_SEND

Chapter 15. SLI Verbs 251

v Supply the sequence number (lua_th.snf) that corresponds to the request being

responded to

v Set the selected lua_flag1 flow flag

The rules for supplying additional parameters follow:

v For positive responses that require only the request code, the application

program must also supply the following parameters:

– lua_rh.ri set to 0

– lua_data_length set to 0

The SLI refers to the supplied sequence number to fill in the request code.

v For negative responses, the application program must also supply the following

parameters:

– lua_rh.ri set to 1

– lua_data_ptr set to the address of an SNA sense code

– lua_data_length set to the length of the SNA sense code (4 bytes).

The SLI fills in the request code following the sense data.

SLI_SEND

252 Client/Server Communications Programming

SLI_BIND_ROUTINE

This verb tells an SLI application program that an SNA BIND request arrived from

the host and allows the application program to examine the session protocols. The

SLI_BIND_ROUTINE is passed to a programmer-supplied DLL specified in the

SLI_OPEN extension list bind routine field.

Supplied Parameters

The following parameters for SLI_BIND_ROUTINE are supplied by the SLI:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block.

lua_opcode

LUA_OPCODE_SLI_BIND_ROUTINE

 The operation code for the routine.

lua_luname

The local LU name in ASCII.

lua_sid

The session ID returned by SLI_OPEN that identifies the session to be used.

lua_data_length

The length of the BIND RU.

lua_data_ptr

A pointer to the BIND RU. The BIND RU might contain EBCDIC characters

such as the PLU name.

lua_th

The BIND TH.

lua_rh

The BIND RH.

Returned Parameters

If the verb completes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

lua_data_length

The length of the BIND response being sent.

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

Usage Notes

The verb control block is built in the storage that is allocated by the SLI. The

contents of the lua_th and lua_rh parameters are placed in the

SLI_BIND_ROUTINE verb control block. The lua_data_ptr parameter contains the

address of the BIND RU, and the lua_data_length parameter contains the length of

the RU.

SLI_BIND_ROUTINE

Chapter 15. SLI Verbs 253

The SLI_BIND_ROUTINE is completed when the extension routine returns with

the lua_prim_rc and the lua_data_length parameters set in the

SLI_BIND_ROUTINE verb control block. Overwrite the BIND RU with the BIND

response. A primary return code of OK indicates that the BIND was accepted. If

the routine rejects the BIND, set the primary return code to NEGATIVE_RSP and

put the negative sense code in the BIND buffer. Do not modify the lua_data_ptr

parameter.

Note: A negative response from this routine cancels the SLI_OPEN verb. The SLI

returns a primary return code of SESSION_FAILURE and a secondary return

code of NEG_RSP_FROM_BIND_ROUTINE.

SLI_BIND_ROUTINE

254 Client/Server Communications Programming

SLI_STSN_ROUTINE

This verb tells an SLI application program that an SNA STSN request arrived from

the host and allows the application program to examine the STSN RU and prepare

a response. TheSLI_STSN_ROUTINE is passed to a programmer-supplied DLL

that is specified in the SLI_OPEN extension list bind routine field.

Supplied Parameters

The following parameters for SLI_STSN_ROUTINE are supplied by the SLI:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block.

lua_opcode

LUA_OPCODE_SLI_STSN_ROUTINE

 The operation code for the routine.

lua_luname

The local LU name in ASCII.

lua_sid

The session ID returned by SLI_OPEN that identifies the session to be used.

lua_data_length

The length of the STSN RU.

lua_data_ptr

A pointer to the STSN RU.

lua_th

The STSN TH.

lua_rh

The STSN RH.

Returned Parameters

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

lua_data_length

The length of the STSN response being sent.

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

Usage Notes

The verb control block is built in the storage that is allocated by the SLI. The

contents of the lua_th and lua_rh parameters are placed in the

SLI_STSN_ROUTINE verb control block. The lua_data_ptr parameter contains the

address of the STSN RU, and the lua_data_length parameter contains the length

of the RU.

SLI_STSN_ROUTINE

Chapter 15. SLI Verbs 255

The SLI_STSN_ROUTINE is completed when the extension routine returns with

the lua_prim_rc and the lua_data_length parameters set in the

SLI_STSN_ROUTINE verb control block. Overwrite the STSN RU with the STSN

response. A primary return code of OK indicates that the STSN was accepted. If

the routine rejects the STSN, set the primary return code to NEGATIVE_RSP and

put the negative sense code in the STSN buffer. Do not modify the lua_data_ptr

parameter.

Note: A negative response from this routine cancels the SLI_OPEN verb. The SLI

returns a primary return code of SESSION_FAILURE, and a secondary

return code of NEG_RSP_FROM_STSN_ROUTINE.

SLI_STSN_ROUTINE

256 Client/Server Communications Programming

SLI_SDT_ROUTINE

This verb tells an SLI application program that an SNA SDT request arrived from

the host and allows the application program to examine the SDT RU and prepare a

response. The SLI_SDT_ROUTINE is passed to a programmer-supplied DLL that

is specified in the SLI_OPEN extension list bind routine field.

 SLI_SDT_ROUTINE is not supported by SNA API clients.

Supplied Parameters

The following parameters for SLI_SDT_ROUTINE are supplied by the SLI:

lua_verb

LUA_VERB_SLI

 The verb-code indicator for the LUA verbs.

lua_verb_length

The length of the verb control block.

lua_opcode

LUA_OPCODE_SLI_SDT_ROUTINE

 The operation code for the routine.

lua_luname

The local LU name in ASCII.

lua_sid

The session ID returned by SLI_OPEN that identifies the session to be used.

lua_data_length

The length of the SDT RU.

lua_data_ptr

A pointer to the SDT RU.

lua_th

The SDT TH.

lua_rh

The SDT RH.

Returned Parameters

Following is a list of the parameters for SLI_SDT_ROUTINE that the extension

routine must return:

lua_prim_rc

LUA_OK

lua_data_length

The length of the SDT response being sent.

lua_prim_rc

The primary return code, set by the verb function. For details, see

Appendix B, “LUA Verb Return Codes,” on page 325.

SLI_SDT_ROUTINE

Chapter 15. SLI Verbs 257

Usage Notes

The verb control block is built in the storage that is allocated by the SLI. The

contents of the lua_th and lua_rh parameters are placed in the

SLI_SDT_ROUTINE verb control block. The lua_data_ptr parameter contains the

address of the SDT RU, and the lua_data_length parameter contains the length of

the RU.

The SLI_SDT_ROUTINE is completed when the extension routine returns with

the lua_prim_rc and the lua_data_length parameters set in the

SLI_SDT_ROUTINE verb control block. Overwrite the SDT RU with the SDT

response. A primary return code of OK indicates that the SDT was accepted. If the

routine rejects the SDT, set the primary return code to NEGATIVE_RSP and put the

negative sense code in the STSN buffer. Do not modify the lua_data_ptr parameter.

Note: A negative response from this routine cancels the SLI_OPEN verb. The SLI

returns a primary return code of SESSION_FAILURE, and a secondary

return code of NEG_RSP_FROM_SDT_ROUTINE.

SLI_SDT_ROUTINE

258 Client/Server Communications Programming

Part 3. Common Services API

© Copyright IBM Corp. 1994, 2006 259

260 Client/Server Communications Programming

Chapter 16. Common Services Entry Points

Personal Communications and Communications Server provide a common services

programming interface. This API consists of common services verbs (CSVs) that

can be used by application programs that use Personal Communications APIs.

Any Personal Communications and Communications Server application program

can use these common services verbs to do one or more of the following things:

v Maintain a code page translation table for single byte languages

(GET_CP_CONVERT_TABLE)

v Convert an ASCII string to EBCDIC or EBCDIC to ASCII (CONVERT)

v Convert a double byte character string from one code page to another

(TRNSDT)

Note: Included in the chapters of Part 3 of this book is information on the

Common Services API provided by the following systems:

v Communications Server running on Windows

v SNA API clients for Win32 platforms that are delivered with the

Communications Server product

v Personal Communications for Windows

When there are differences between the support provided by these systems,

it is noted.

Writing Common Services Programs

The table below shows source module usage of supplied header files and libraries

needed to compile and link Common Services programs.

 Table 18. Header Files and Libraries for Operating Systems

Operating

System Header File Library DLL Name

WIN32 WINCSV.H WINCSV32.LIB WINCSV32.DLL

The following sections describe the entry points for common services.

© Copyright IBM Corp. 1994, 2006 261

ACSSVC()

This is a synchronous entry point for all CSV verbs. Personal Communications and

Communications Server provide this entry point for compatibility with existing

applications.

Syntax

void ACSSVC (long)

Input is a verb control block pointer.

Returned Values

Check the primary and secondary return codes for returned values.

ACSSVC()

262 Client/Server Communications Programming

WinCSV()

This function provides a synchronous entry point for the CSV API.

Syntax

void WINAPI WinCSV(long vcb)

Parameters

vcb Pointer to verb control block.

Returned Values

No return value. The primary_rc and secondary_rc fields in the verb control block

indicate any error.

Note: See also WinAsyncCSV() on page “WinAsyncCSV()” on page 265.

WinCSV()

Chapter 16. Common Services Entry Points 263

WinCSVCleanup()

This function terminates and deregisters an application from the CSV API.

Syntax

BOOL WINAPI WinCSVCleanup(void);

Returned Values

The return value specifies whether the deregistration was successful. If the value is

not 0, Personal Communications successfully deregistered the application .

Personal Communications and Communications Server did deregister the

application if the value is 0.

Usage Notes

Use WinCSVCleanup() to deregister a CSV API application from the CSV API, for

example, to free resources allocated to the specific application.

WinCSVCleanup()

264 Client/Server Communications Programming

WinAsyncCSV()

The function provides an asynchronous entry point for TRANSFER_MS_DATA

only. If an application uses this function for any other verb, the behavior is

synchronous.

Syntax

HANDLE WlNAPI WinAsyncCSV(HWND hWnd,

 long vcb);

Parameters

hWnd Window handle to receive completion message.

vcb Pointer to verb control block.

Returned Values

The return value indicates whether the verb request was successful. If the function

was successful, the actual return value is an asynchronous task handle. If the

function was not successful, Personal Communications returns a 0.

Usage Notes

Upon completion of the asynchronous operation, the application’s window hWnd

receives the message returned by RegisterWindowMessage with WinAsyncCSV as

the input string. The wParam argument contains the asynchronous task handle

returned by the original function call. The IParam argument contains the original

VCB pointer and can be dereferenced to determine the final return code.

If the function returns successfully, Personal Communications posts a

WinAsyncCSV() message to the application when the operation completes or the

conversation is canceled.

WinAsyncCSV()

Chapter 16. Common Services Entry Points 265

WinCSVStartup()

This function allows an application to specify the version of the Common Services

Verbs API required and to retrieve details of the specific CSV API. This call is not

required, but if used, the WinCSVCleanup call should be used also.

Syntax

int WINAPI WinCSVStartup (WORD wVersion,

 LPWCSVDATA lpData);

Parameters

wVersion

Specifies the version of CSV API support required. The high-order byte

specifies the minor version (revision) number; the low-order byte specifies

the major version number.

lpData

Contains information about the underlying CSV API DLL.

Returned Values

The return value indicates whether the CSV API successfully registered the

application and whether it can support the provided version number. If the value

returned is 0, the CSV API does support the specified version and it successfully

registered the application. Otherwise, one of the following values is returned.

WCSVVERNOTSUPPORTED

This particular CSV API does not provide the version of CSV API support

requested.

WCSVINVALID

The CSV API could not determine the requested version.

Usage Notes

WinCSVStartup() is intended to help with compatibility with future releases of the

API. The current version supported is 1.0.

The following structure describes details of the actual CSV API implementation.

typedef struct tagWCSVDATA { WORD wVersion;

 char szDescription[WCSVDESCRIPTION_LEN+l];

 } WCSVDATA, FAR *LPWCSVDATA;

When an application has made its last CSV API call, it calls WinCSVCleanup().

WinCSVStartup()

266 Client/Server Communications Programming

GetCsvReturnCode()

Use this entry point to convert the primary and secondary return codes in the verb

to a printable string. It returns a standard set of error strings for use by application

programs.

Syntax

int WINAPI GetCsvReturnCode (struct csv_hdr *vcb,

 UINT buffer_length,

 unsigned char *buffer_addr);

Parameters

vcb The address of the verb control block.

buffer_length

The length of the buffer pointed to by buffer_addr. The recommended

length is 256.

buffer_addr

The address of the buffer that will hold the formatted, null-terminated

string (length of the string in the specified buffer).

Returned Values

0x20000001

The parameters are not valid; the function could not read from the

specified verb or could not write to the specified buffer.

0X20000002

The specified buffer is too small.

Usage Notes

The descriptive error string returned in buffer_addr does not terminate with a new

line character (\n).

GetCsvReturnCode()

Chapter 16. Common Services Entry Points 267

GetCsvReturnCode()

268 Client/Server Communications Programming

Chapter 17. Common Services Verbs (CSV)

Personal Communications and Communications Server provide the following verbs

for the Common Services API:

GET_CP_CONVERT_TABLE

CONVERT

TRNSDT

© Copyright IBM Corp. 1994, 2006 269

GET_CP_CONVERT_TABLE

This verb provides a utility service that builds a conversion table from one code

page to another. This verb returns a 256-byte conversion table that applications can

use to perform table lookups on characters to convert character strings.

A program might need to perform data conversion when it communicates with a

node that expects data encoded in a different code page.

struct get_cp_convert_table

 {

 unsigned short opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Reserved. */

 unsigned char reserv2; /* Reserved. */

 unsigned short primary_rc; /* Primary return code from verb. */

 unsigned long secondary_rc; /* Secondary (qualifying) return code. */

 unsigned short source_cp; /* Source code page for conversion table */

 unsigned short target_cp; /* Target code page for conversion table */

 unsigned char *conv_tbl_addr; /* Address to put conversion table at */

 unsigned char char_not_fnd; /* Character not found option: either */

 /* substitute character or round trip */

 unsigned char substitute_char; /* Substitute character to use. */

 } GET_CP_CONVERT_TABLE;

source_cp

The code page number from which the replacement characters are drawn.

The number for the code page can be one of the following numbers:

v ASCII code pages (in decimal)

– 437 US IBM PC

– 737 Greece

– 813 Greece

– 819 ANSI Standard

– 850 Multilingual

– 852 Czechoslovakia/Hungary/Poland/Yugoslavia

– 855 Cyrillic

– 857 Turkey

– 858 Multilingual

– 860 Portuguese

– 861 Iceland

– 862 Hebrew

– 863 Canada-French

– 864 Arabic

– 865 Nordic

– 866 Cyrillic

– 874 Thai

– 912 Latin 2

– 915 Cyrillic

– 916 Hebrew

– 920 Turkey

– 921 Latvia, Lithuania

– 922 Estonia

– 923 ANSI Standard

GET_CP_CONVERT_TABLE

270 Client/Server Communications Programming

– 1008 Arabic

– 1089 Arabic

– 1124 Ukraine

– 1125 Ukraine

– 1127 Arabic/French

– 1129 Vietnamese

– 1131 Belarus

– 1133 Lao

– 1250 Latin 2

– 1251 Cyrillic

– 1252 Latin 1

– 1253 Greece

– 1254 Turkey

– 1255 Hebrew

– 1256 Arabic

– 1257 Baltic (Latvia, Lithuania, Estonia)

– 1258 Vietnamese
v EBCDIC code pages (in decimal)

– 037 United States/Canada-French/Netherlands/Portugal/Brazil

– 273 Germany/Austria

– 275 Brazil

– 277 Denmark/Norway

– 278 Finland/Sweden

– 280 Italy

– 284 Latin America/Spain

– 285 United Kingdom

– 297 France

– 420 Arabic

– 424 Hebrew

– 500 Belgium/Switzerland-French/Switzerland-German

– 803 Hebrew

– 870 Czechoslovakia/Hungary/Poland/Yugoslavia

– 871 Iceland

– 875 Greece

– 924 Latin 1

– 1025 Cyrillic

– 1026 Turkey

– 1047 Latin 1

– 1112 Latvia, Lithuania

– 1122 Estonia

– 1123 Ukraine

– 1130 Vietnamese

– 1132 Lao

– 1140 United States/Canada/Netherlands/Portugal/Brazil/Australia/
New Zealand

GET_CP_CONVERT_TABLE

Chapter 17. Common Services Verbs (CSV) 271

– 1141 Germany/Austria

– 1142 Denmark/Norway

– 1143 Finland/Sweden

– 1144 Italy

– 1145 Latin America/Spain

– 1146 United Kingdom

– 1147 France

– 1148 Belgium/Switzerland

– 1149 Iceland

– 1153 Bosnia/Herzegovina (Latin), Croatia, Czech Republic, Hungary,

Poland, Romania (Moldava), Slovakia, Slovenia

– 1154 Cyrillic—Bulgaria, Belarus, FYR Macedonia, Serbia, Russia

– 1155 Turkey

– 1156 Latvia, Lithuania

– 1157 Estonia

– 1158 Ukraine

– 1160 Thailand

– 1164 Vietnam
v User defined code pages

– 65280 through 65534

– When using user-defined code pages, first define the registry entry

with the user-defined path to the CPT files as follows for Personal

Communications:

HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Personal

Communications /CurrentVersion/COMCPT

For Communications Server, define the registry entry with the

user-defined path to the CPT files as follows:

HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Communications

Server/CurrentVersion/COMCPT

Note: Only identical characters in the source and target code pages are

guaranteed to be converted into each other. Character pairs

designated in the standards that merely resemble each other are not

usually converted into each other.

target_cp

The code page number for the target strings to be converted. The number

can be any of those shown for source_code_page.

conv_tbl_addr

The address of the buffer that is to receive the 256-byte conversion table.

This buffer must be in a read/write segment.

char_not_fnd

The action to be taken if a character in the source code page does not exist

in the target code page. Specify one of the following values:

SV_ROUND_TRIP

This option causes the values to be stored in the conversion table

so that if a conversion table is generated by reversing the source

and target code pages, the result of a conversion from source to

target code page and back again results in the original character.

GET_CP_CONVERT_TABLE

272 Client/Server Communications Programming

You must select the ROUND_TRIP option for both table

generations for this option to run.

SV_SUBSTITUTE

Store the character specified in the parameter substitute_character

in the conversion table.

substitute_char

The byte stored in the conversion table if a character in the source code

page does not exist on the target code page and if the character_not_found

parameter is set to SV_SUBSTITUTE.

 The OK return code indicates that the GET_CP_CONVERT_TABLE verb ran

successfully.

The following parameter is returned when the return code is OK:

convert_table

The conversion table was built at the address specified by

CONV_table_addr.

primary_rc

SV_PARAMETER_CHECK

secondary_rc

SV_INVALID_CHAR_NOT_FOUND

SV_INVALID_DATA_SEGMENT

SV_INVALID_SOURCE_CODE_PAGE

SV_INVALID_TARGET_CODE_PAGE

GET_CP_CONVERT_TABLE

Chapter 17. Common Services Verbs (CSV) 273

CONVERT

This verb converts ASCII character strings to EBCDIC and EBCDIC character

strings to ASCII.

A program might perform data conversion when it communicates with a node that

expects EBCDIC data or when it must convert names to pass over an interface,

such as APPC, that requires EBCDIC names.

Note: The CONVERT verb is not supported by DBCS. You can use TrnsDt to

convert strings that have double-byte characters.

struct convert

 {

 unsigned short opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Reserved. */

 unsigned char reserv2; /* Reserved. */

 unsigned short primary_rc; /* Primary return code from verb. */

 unsigned long secondary_rc; /* Secondary (qualifying) return code. */

 unsigned char direction; /* Direction of conversion - ASCII to */

 /* EBCDIC or vice-versa. */

 unsigned char char_set; /* Character to use for the conversion */

 /* A, AE, or user-defined G. */

 unsigned short len; /* Length of string to be converted. */

 unsigned char *source; /* Pointer to string to be converted. */

 unsigned char *target; /* Address to put converted string at. */

 } CONVERT;

direction

The nature of the code conversion.

SV_ASCII_TO_EBCDIC

Converts ASCII characters to EBCDIC

SV_EBCDIC_TO_ASCII

Converts EBCDIC characters to ASCII

char_set

The set of characters permitted in the source string. You can specify three

types of ASCII/EBCDIC conversion tables for use by the CONVERT verb:

SV_A, SV_AE, and SV_G. The type-A and type-AE tables are defined

within Personal Communications.

 The format of a conversion table consists of 32 lines of 32 characters each.

Each line represents 16 printable hexadecimal characters followed by a

carriage return and line feed. The first 16 lines provide the information for

ASCII-to-EBCDIC conversion. The second 16 lines provide the information

for EBCDIC-to-ASCII conversion. The table must include all 32 lines.

 When Personal Communications performs a conversion, it uses the

numeric equivalent of each incoming character as a 0-origin index into the

conversion table. This index specifies the table location containing the

hexadecimal value of the converted character. For example, assume the

48th position in the table contains a value of X'F0' . Personal

Communications and Communications Server converts incoming characters

with a value of 48 (X'30') to a value of 240 (X'F0').

Table A

Table A converts uppercase letters A through Z, numeric characters

0 through 9, and special characters $, #, and @. The first character

of the source string must be either an uppercase letter or one of the

three special characters; if it is not, no conversion is done, and the

CONVERT

274 Client/Server Communications Programming

INVALID_FIRST_CHARACTER secondary return code is returned.

In the ASCII-to-EBCDIC direction, lowercase ASCII characters are

converted to uppercase EBCDIC characters.

 Trailing blanks (blanks at the end of the source string) are

converted to blanks in both directions. In contrast, embedded

blanks are converted to X'00'.

 If any source character is converted to X'00',

CONVERSION_ERROR is returned. However, the entire conversion

is completed.

Table AE

Table AE converts alphanumeric characters (A through Z, a

through z, 0 through 9), special characters $, #, and @, and the

period (.). There are no restrictions on the first character of the

string.

 Trailing blanks (blanks at the end of the source string) are

converted to blanks in either direction. In contrast, embedded

blanks are converted to X'00'.

 If any source character is converted to X'00',

CONVERSION_ERROR is returned. However, the entire conversion

is completed.

Table G

You can use a G table to convert from any character to any other

character (not just from ASCII to EBCDIC or EBCDIC to ASCII).

However, you must specify ASCII_TO_EBCDIC on the CONVERT

verb to use the top half of the table and specify

EBCDIC_TO_ASCII to use the bottom half.

 Personal Communications will look in the registry under

HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Personal Communications /

 CurrentVersion/COMTBLG

to get the full path name to the G table. Communications Server

will look in the registry under

HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Communications Server/

 CurrentVersion/COMTBLG

to get the full path name to the G table. For 32-bit Windows

clients, the location of the Table G path in the registry is:

HKEY_LOCAL_MACHINE/SOFTWARE/IBM/Comm.Server for NT SNA/Client/

 CurrentVersion/COMTBLG

len The number of characters to be converted.

 The length of the string must not extend beyond the segment size allocated

for source or target.

source The address of the character string converted.

target The address receiving the converted character string.

Note: If the application does not require preservation of the source string, it can

specify the same variable for source and target.

The OK return code indicates that the CONVERT verb ran successfully.

CONVERT

Chapter 17. Common Services Verbs (CSV) 275

The following shows the primary and secondary error return codes associated with

the CONVERT verb and the location of the return code’s description.

primary_rc

SV_PARAMETER_CHECK

secondary_rc

SV_INVALID_DIRECTION

SV_TABLE_ERROR

SV_INVALID_CHARACTER_SET

SV_INVALID_FIRST_CHARACTER

SV_CONVERSION_ERROR

SV_INVALID_DATA_SEGMENT

primary_rc

SV_UNEXPECTED_DOS_ERROR

CONVERT

276 Client/Server Communications Programming

TrnsDt

This function converts the SBCS and DBCS strings from one code page to another.

Personal Communications and Communications Server provide TrnsDt in the

TRNSDT.DLL file. TransDt is available only on a DBCS session.

Syntax

TrnsDt (PASSSTRUCT *passparm);

This function converts the SBCS and DBCS strings from one code page to another.

In the following table, a check mark (U) indicates that Personal Communications

supports the conversion between the pair of code pages; a hyphen (-) indicates that

neither program supports that conversion.

 Table 19. TrnsDT Code Page Conversion Support — China

Code Pages 1386 836 837 1388

1386 - U U U

836 U - - -

837 U - - -

1388 U - - -

 Table 20. TrnsDT Code Page Conversion Support — Japan

Code Pages 932/943 930 931 939 290 037 1027 1390 1399

932/943 - U U U U U U U U

930 U - - - - - - - -

931 U - - - - - - - -

939 U - - - - - - - -

290 U - - - - - - - -

037 U - - - - - - - -

1027 U - - - - - - - -

1390 U - - - - - - - -

1399 U - - - - - - - -

 Table 21. TrnsDT Code Page Conversion Support — Korea

Code Pages 949 833 834 933 1363 1364

949 - U U U - -

833 U - - - U -

834 U - - - - -

933 U - - - - -

1363 - U - - - U

1364 - - - - U -

 Table 22. TrnsDT Code Page Conversion Support — Taiwan

Code Pages 950 037 835 937 1370 1371 1159

950 - U U U - - -

037 U - - - - - -

TrnsDt

Chapter 17. Common Services Verbs (CSV) 277

Table 22. TrnsDT Code Page Conversion Support — Taiwan (continued)

Code Pages 950 037 835 937 1370 1371 1159

835 U - - - - - -

937 U - - - - - -

1370 - - - - - U U

1371 - - - - U - -

1159 - - - - U - -

Use the header file TRNSDT.H to compile, and use the TRNSDT.LIB file from

either program’s LIB subdirectory to link.

The passparm format is as follows:

WORD parm_length

Length of this structure (input)

WORD exit_code

Exit code (output)

0000H Normal end.

0001H Not supported conversion specified.

000CH

Exit_code field is not initialized to 0.

0080H The last character is the left half of a DCBS. Null character is filled

instead.

WORD in_length

Length of the source buffer (input)

LPBYTE in_addr

Source buffer address (input)

WORD out_length

Length of target buffer (input)

 If the specified length is too small to return all of the converted data, the

required length is returned.

LPBYTE out_addr

Target address buffer (input)

WORD trns_id

Reserved to zero (input)

WORD in_page

Source code page (input)

WORD out_page

Target code page (input)

WORD option

Option (input/output)

Input Input options are as follows;

Bits 15–9

Reserved to zero

Bit 8 Target string has SO/SI

Bits 7–3

Reserved to zero

TrnsDt

278 Client/Server Communications Programming

Bit 2 Use non-editable SBCS table

Bit 1 Source string starts with DBCS

Bit 0 Source string has SO/SI

Output

Output options are as follows:

4 End at DBCS

0 End at non-DBCS

Notes:

1. Bit 8 and Bit 0 should be set as follows:

 Conversion from PC to host Bit 8=1

 Conversion from PC to host Bit 0=0

 Conversion from host to PC Bit 8=0

 Conversion from host to PC Bit 0=1
2. Use SYSCTBL.EXE to specify the name of the customized table that TrnsDt

uses. To convert an SBCS string, TrnsDt uses the customized table with the

Option parameter bit 2 set to FALSE. TrnsDt uses the default table if bit 2 is set

but the name of the table is not specified. To convert a DBCS string when the

name of the table is specified using SYSCTBL.EXE, TrnsDt always uses the

customized table. In this case, the Option parameter for bit 2 is not used.

3. Generally, TrnsDt requires that the host data include SO/SI control characters

as a pair. However, to convert a part of a mixed data string, the data must start

with a double-byte character without an SO control character. In this case, data

does not identify the double-byte character. Bit 1 is useful in such a case. When

you set bit 1 to 1, TrnsDt processes the start of the buffer as a double-byte

character or SO control character.

0 NO_ERROR

2 ERROR_FILE_NOT_FOUND

TrnsDt cannot find the table used for converting the specified

code.

87 ERROR_INVALID_PARAMETER

Parameter is not valid.

111 ERROR_BUFFER_OVERFLOW

The target buffer is too small.

150 ERROR_MEMORY_ALLOCATE

Memory allocation error.

Even a small buffer can handle a large data conversion successfully by using the

exit code and option parameters of TrnsDt. First, start TrnsDt using a small source

buffer and a double- or triple-sized destination buffer (for cases from PC to host),

and see how the conversion ends, based on the exit code you receive. Then

proceed accordingly.

For example, when the conversion divides a double-byte character into two parts,

or it ends incompletely between SO and SI control characters, define the buffer

pointer and its position, then perform the next call.

The following example translates the host code 0x4040 to PC code.

#include "trnsdt.h"

PASSSTRUCT passparm;

TrnsDt

Chapter 17. Common Services Verbs (CSV) 279

char bufs[20], buft[20];

int rc;

//Setup the string to be translated

bufs[0] = 0x0e;

bufs[1] = 0x40;

bufs[2] = 0x40;

bufs[3] = 0x4f;

//Setup the parameter

passaparm.parm_length = 24;

passparm.exit_code = 0;

passaparm.in_length = 4;

passaparm.in_addr = Created by ActiveSystems. 02/11/97. Entity not defined[0];

passaparm.out_length = 20;

passaparm.out_addr = Created by ActiveSystems. 02/11/97. Entity not defined[0];

 passaparm.trns_id = 0;

 passaparm.in_page = 930;

 passaparm.out_page = 932;

 passaparm.option = 1;

//Translate the string via TrnsDt

if (rc = TrnsDt(&passaparm))

 printf("Error Return Code = %d\n\r", rc);

 printf("Exit Code = %d\n\r", passaparm.exit_code);

 exit(0);

else

TrnsDt

280 Client/Server Communications Programming

Part 4. EHNAPPC API

© Copyright IBM Corp. 1994, 2006 281

282 Client/Server Communications Programming

Chapter 18. EHNAPPC Application Program Interface

 This is only available on the Communications Server SNA API

clients.

 The EHNAPPC Communications API provides a method to write cooperative

processing applications between personal computers and iSeries™, eServer™ i5, or

System i5™ systems. It insulates the programmer from low-level communications

programming and hardware connectivity types. Application programmers need to

write both the iSeries, eServer i5, or System i5 programs and the PC programs

when using this API. Almost anything that can be accessed by the host application

can be extended to the partner PC application. This API can be used for

performance-critical applications.

This chapter describes the routines, data structures, and return codes that make up

the 32-bit EHNAPPC API for the Win32 Communications Server SNA API clients.

Writing EHNAPPC Programs

The table below shows source module usage of supplied header files and libraries

needed to compile and link EHNAPPC programs.

 Table 23. Header Files and Libraries for Operating Systems

Operating

System Header File Library DLL Name

WIN32 E32APPC.H E32APPC.LIB E32APPC.DLL

EHNAPPC Routines

The following discussions of each client Windows API routine describe in detail:

v Purpose

v Procedure declaration

v Parameters

v Return codes

EHNAPPC_Allocate

Purpose

This function starts a conversation with a partner transaction program.

Procedure Declaration

#include <WINDOWS.H>

include "E32APPC.H"

extern int EHNAPPC_Allocate

HWND hWnd,

unsigned nBufferLength,

ConversationType bType,

SyncLevelEnum bSynchLevel,

LPSTR lpszLocationName,

LPSTR lpszTpn,

© Copyright IBM Corp. 1994, 2006 283

int nPipLength,

LPVOID lpPipData,

LPDWORD lpdwConversation);

Parameters

hWnd identifies the current window of the application.

nBufferLength identifies the size of the buffer to be allocated by the router. It must

be at least 271. If it is less than 271, a 271–byte buffer will be allocated.

bType identifies the type of conversation to allocate. Possible values are:

 EHNAPPC_BASIC (0)

 EHNAPPC_MAPPED (1)

bSynchLevel identifies the synchronization level between the local and partner

programs. Possible values are:

 EHNAPPC_SYNCLEVELNONE (0)

 EHNAPPC_SYNCLEVELCONFIRM (1)

lpszLocationName points to a null-terminated character string that specifies the

host system name. If this pointer is set to NULL, the default system is used.

lpszTpn points to a null-terminated character string that specifies the partner

program name. If the first character is less than 0x40, then ASCII-to-EBCDIC

translation is not done.

nPipLength identifies the length of the program initialization parameters (PIP)

data. If this variable is 0, no PIP data is sent.

lpPipData points to the PIP data. The PIP data must be in GDS format, and must

be in EBCDIC.

lpdwConversation points to a doubleword variable that is used to return a handle

to be used on subsequent calls. The handle is a unique value for each conversation.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298

EHNAPPC_Confirm

Purpose

This function requests a confirmation that all data sent so far has been received by

the partner.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int far pascal EHNAPPC_Confirm(

HWND hWnd,

DWORD dwConversation,

LPBYTE lpRequestToSendRcvd);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

EHNAPPC Routines

284 Client/Server Communications Programming

lpRequestToSendRcvd points to a variable which is used to store whether the

partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE

indicates the partner transaction program issued a REQUEST_TO_SEND verb.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_Confirmed

Purpose

This function sends a confirmation to a partner that has requested confirmation.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int far pascal EHNAPPC_Confirmed(

 HWND hWnd,

 DWORD dwConversation);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_Deallocate

Purpose

This function deallocates an allocated conversation.

Procedure Declaration

#include "E32APPC.H"

extern int far pascal EHNAPPC_Deallocate(

 HWND hWnd,

 DWORD dwConversation,

 DeallocateEnum bType);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

bType identifies the type of deallocation the client is to perform. Possible values

are:

 EHNAPPC_DEALLOCATESYNCLEVEL (0)

 EHNAPPC_DEALLOCATEFLUSH (1)

 EHNAPPC_DEALLOCATEABEND (2)

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 285

EHNAPPC_ExtendedAllocate

Purpose

This function starts a conversation with a partner transaction program and may

override the security or mode specifications.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int EHNAPPC_ExtendedAllocate(

HWND hWnd,

unsigned nBufferLength,

ConversationType bType,

SyncLevelEnum bSynchLevel,

LPSTR lpszLocationName,

LPSTR lpszTpn,

LPSTR lpszModeName,

SecurityType bSecurityType,

LPSTR lpszUserId,

LPSTR lpszPassword,

in nPipLength,

LPVOID lpPipData,

LPDWORD lpdwConversation);

Parameters

hWnd identifies the current window of the application.

nBufferLength identifies the size of the buffer to be allocated by the router. It must

be at least 271. If it is less than 271, a 271–byte buffer will be allocated.

bType identifies the type of conversation to allocate. Possible values are:

 EHNAPPC_BASIC (0)

 EHNAPPC_MAPPED (1)

bSynchLevel identifies the synchronization level between the local and partner

programs. Possible values are:

 EHNAPPC_SYNCLEVELNONE (0)

 EHNAPPC_SYNCLEVELCONFIRM (1)

lpszLocationName points to a null-terminated character string that specifies the

host system name. If this pointer is set to NULL, the default system is used.

lpszTpn points to a null-terminated character string that specifies the partner

program name. If the first character is less than X’40’, then ASCII-to-EBCDIC

translation is not done.

lpszModeName Mode names are one to eight characters long. The first character

of each part must be an uppercase alphabetic character (A–Z), or on of the special

characters (@, #, $). The remaining characters can be uppercase alphabetic

characters (A–Z), numerals (0–9), or special characters (@, #, $).

bSecurityType identifies the security type to use. Possible values are:

 EHNAPPC_SECURITY_NONE (0)

 EHNAPPC_SECURITY_SAME (1)

 EHNAPPC_SECURITY_PGM (2)

lpszUserId points to a null-terminated character string containing the user ID. The

maximum length is 10 characters.

EHNAPPC Routines

286 Client/Server Communications Programming

lpszPassword points to a null-terminated character string containing the password.

The maximum length is 10 characters.

nPipLength identifies the length of the PIP data. If this variable is 0, no PIP data is

sent.

lpPipData points to the PIP data. The PIP data must be in GDS format, and must

be in EBCDIC.

lpdwConversation points to a doubleword variable which is used to return a

handle to be used on subsequent calls.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_Flush

Purpose

This function causes the client to send any data it may have in its buffers.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int EHNAPPC_Flush(

 HWND hWnd,

 DWORD dwConversation);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_GetAttributes

Purpose

Returns attributes of the specified conversation, including the LU names of the

local and partner transaction programs, the level of processing synchronization,

and any user ID provided for security.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned EHNAPPC_GetAttributes(

 HWND hWnd,

 DWORD dwConversation,

 LPBYTE lpbSyncLevel,

 LPSTR lpszModeName,

 LPSTR lpszLuName,

 LPSTR lpszPluName,

 LPSTR lpszUserId);

Parameters

hWnd identifies the current window of the application.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 287

dwConversation identifies the conversation handle returned by

EHNAPPC_Allocate or EHNAPPC_Extended Allocate.

lpbSyncLevel points to a byte variable that is used to return the synchronization

level.

lpszModeName points to a null-terminated character string that is used to return

the 8- character mode name.

lpszLuName points to a null-terminated character string that is used to return the

LU of the local trans action program.

lpszPluName points to a null-terminated character string that is used to return the

name of the partner LU.

lpszUserId points to a null-terminated character string that is used to return the

user ID that was used to establish this connection.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_GetCapabilities

Purpose

This function fills in a data structure indicating the capabilities of the client

currently loaded.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned EHNAPPC_GetCapabilities(

 HWND hWnd,

 LPSTR lpList);

Parameters

hWnd identifies the current window of the application.

lpList points to a capabilities list that is used to retrieve the capability information.

A capabilities list consists of a header followed by a variable number of capability

structures. On input, the list specifies the capabilities to be queried. On output, it

contains the capability information.

Note: For additional structure information, see “appcrtrcap_hdr” on page 297,

“appcrtrcap_mult” on page 297 and “appcrtrcap_query” on page 298.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_GetDefaultSystem

Purpose

This function returns the default system name that the client is connected to.

EHNAPPC Routines

288 Client/Server Communications Programming

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned pascal EHNAPPC_GetDefaultSystem(

 HWND hWnd,

 LPSTR lpszDefSysName);

Parameters

hWnd identifies the current window of the application.

lpszDefSysName points to a character buffer that is used to return the default

system name. The system name is stored in this buffer as a null- terminated

character string.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_IsRouterLoaded

Purpose

This function determines whether or not the client router is loaded in memory.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern bool EHNAPPC_IsRouterLoaded(

 HWND hWnd);

Parameters

hWnd identifies the current window of the application.

Return Codes

The return code is FALSE (0) if the Communications Server SNA client router is

not loaded. Otherwise, the return value is TRUE (1).

EHNAPPC_PrepareToReceive

Purpose

This function prepares the program to receive data. Using this function followed

by EHNAPPC_ReceiveImmediate is the same as using

EHNAPPC_ReceiveAndWait.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int EHNAPPC_PrepareToReceive(

 HWND hWnd,

 DWORD dwConversation);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 289

EHNAPPC_QueryConfiguredSystems

Purpose

This function returns the names of the systems configured on the communications

server.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned EHNAPPC_QueryConfiguredSystems(

 HWND hWnd,

 LPINT lpSysCount,

 LPSYSSTRUC lpSys);

Parameters

hWnd identifies the current window of the application.

lpSysCount points to an integer variable which is used to return the number of

systems connected.

lpSys points to an AS400_Sys structure that is used to return the names of the

systems. The default system is the first system in the structure. For a description of

the AS400_Sys structure, see “AS400_SYS” on page 297.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_QueryConvState

Purpose

This function returns the state of the specified conversation.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned pascal EHNAPPC_QueryConvState(

 HWND hWnd,

 DWORD dwConversation);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes

The return value indicates the current state of the conversation. Possible values are:

 EHNAPPC_RESET_STATE (0)

 EHNAPPC_SEND_STATE (1)

 EHNAPPC_RECEIVE_STATE (2)

 EHNAPPC_RCVD_CONF_STATE (3)

 EHNAPPC_RCVD_CONF_SEND_STATE (4)

 EHNAPPC_RCVD_CONF_DEALL_STATE (5)

 EHNAPPC_PEND_DEALLOCATE_STATE (6)

 EHNAPPC_INVALID_STATE (7)

EHNAPPC Routines

290 Client/Server Communications Programming

EHNAPPC_QueryFullSystems

Purpose

This function returns the names and network names of the systems the client is

connected to.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned EHNAPPC_QueryFullSystems(

 HWND hWnd,

 LPINT lpSysCount,

 LPFULLSYSSTRUC lpSys);

Parameters

hWnd identifies the current window of the application.

lpSysCount points to an integer variable which is used to return the number of

systems connected.

lpSys points to an AS400_Sys structure that is used to return the names of the

systems.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_QueryUserid

Purpose

This function returns the user ID used to connect to the specified system.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned EHNAPPC_QueryUserId(

 HWND hWnd,

 LPSTR lpszLocationName,

 LPSTR lpszUserId);

Parameters

hWnd identifies the current window of the application.

lpszLocationName points to a null-terminated character string containing the

system name to be queried. Specify NULL to query the user ID for the default

system. lpszUserId points to a null-terminated character string that is used to

return the user ID for the specified system.

lpszUserId points to a null-terminated character string containing the user ID for

the specified system.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_QuerySystems

Purpose

This function returns the names of the systems the client is connected to.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 291

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned EHNAPPC_QuerySystems(

 HWND hWnd,

 LPINT lpSysCount,

 LPSYSSTRUC lpSys);

Parameters

hWnd identifies the current window of the application.

lpSysCount points to an integer variable which is used to return the number of

systems connected.

lpSys points to an AS400_Sys structure that is used to return the names of the

systems. The default system is the first system in the structure. For a description of

the AS400_Sys structure, see “AS400_SYS” on page 297.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_ReceiveAndWait

Purpose

This function waits for information to arrive on the conversation, then receives the

information.

Procedure Declaration

#include "E32APPC.H"

extern int EHNAPPC_ReceiveAndWait(

 HWND hWnd,

 DWORD dwConversation,

 FillEnu bFill,

 int nMaxLength,

 LPVOID lpReceiveData,

 LPBYTE lpWhatReceived,

 LPBYTE lpRequestToSendRcvd,

 LPWORD lpReceiveDataLength);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

bFill indicates the form in which the program is to receive data. Possible values

are:

 EHNAPPC_BUFFER (0) (fill the buffer)

 EHNAPPC_LL (1) (receive a complete or truncated logical record)

nMaxLength indicates the largest amount of data that can be accepted.

lpReceiveData points to a buffer where the data is to be received.

lpWhatReceived indicates what has been received by the client. Possible values

are:

 EHNAPPC_DATA (0)

 EHNAPPC_DATACOMPLETE (1)

EHNAPPC Routines

292 Client/Server Communications Programming

EHNAPPC_DATAINCOMPLETE (2)

 EHNAPPC_RECEIVEDCONFIRM (3)

 EHNAPPC_RECEIVEDCONFIRMSEND (4)

 EHNAPPC_RECEIVEDCONFIRMDEALLOC (5)

 EHNAPPC_RECEIVEDSEND (6)

lpRequestToSendRcvd points to a variable that is used to store whether the

partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE

(1) indicates the partner transaction program issued a REQUEST_TO_SEND verb.

lpReceiveDataLength points to a variable that is used to return the amount of data

received by the client.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_ReceiveImmediate

Purpose

This function checks to see if something has been received. If so, the data is

returned.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int EHNAPPC_ReceiveImmediate(

 HWND hWnd,

 DWORD dwConversation,

 FillEnum bFill,

 int nMaxLength,

 LPVOID lpReceiveData,

 LPBYTE lpWhatReceived,

 LPBYTE lpRequestToSendRcvd,

 LPWORD lpReceiveDataLength);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

bFill indicates the form in which the program is to receive data. Possible values

are:

 EHNAPPC_BUFFER (0) (fill the buffer)

 EHNAPPC_LL (1) (receive a complete or truncated logical record)

nMaxLength indicates the largest amount of data that can be accepted.

lpReceiveData points to a buffer where the data is to be received.

lpWhatReceived identifies what has been received by the client. Possible values

are:

 EHNAPPC_DATA (0)

 EHNAPPC_DATACOMPLETE (1)

 EHNAPPC_DATAINCOMPLETE (2)

 EHNAPPC_RECEIVEDCONFIRM (3)

 EHNAPPC_RECEIVEDCONFIRMSEND (4)

 EHNAPPC_RECEIVEDCONFIRMDEALLOC (5)

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 293

EHNAPPC_RECEIVEDSEND (6)

lpRequestToSendRcvd points to a variable which is used to store whether the

partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE

(1) indicates the partner transaction program issued a REQUEST_TO_SEND verb.

lpReceiveDataLength points to a variable that is used to return the amount of data

received by the client.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_RemoteProgramStart

Purpose

This function allows Windows applications to start a program on a remote iSeries,

eServer i5, or System i5.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern word EHNAPPC_RemoteProgramStart(

 HWND hWnd,

 LPSTR lpszHostSystemName,

 LPSTR lpszHostProgramName,

 LPSTR lpszHostLibraryName,

 char FAR *lpchPipData,

 WORD wPipDataLength);

Parameters

hWnd identifies the current window of the application.

lpszHostSystemName points to a null-terminated character string that contains the

name of the remote system. The maximum length of this string is 8 characters. If

this pointer is null, the default system name is used.

lpszHostProgramName points to a null-terminated character string that contains

the name of the host program to be started.

lpszHostLibraryName points to a null-terminated character string that contains the

library path of the host program. If this pointer is null, the library list of the user is

searched.

lpchPipData points to the program initialization parameter (PIP) data area for the

host program. If this pointer is null, no PIP data is sent.

wPipDataLength contains the length of the PIP data.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_RqsToSend

Purpose

This function requests that the partner give up control of the conversation. The

client places the conversation in send state when the local transaction program

EHNAPPC Routines

294 Client/Server Communications Programming

subsequently receives EHNAPPC_RECEIVEDSEND (6) in the lpWhatReceived

parameter of a Receive verb from the partner transaction program.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int EHNAPPC_RqsToSend(

 HWND hWnd,

 DWORD dwConversation);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_SendData

Purpose

This function sends data to the partner transaction program.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int EHNAPPC_SendData(

 HWND hWnd,

 DWORD dwConversation,

 int nSendDataLength,

 LPVOID lpSendDataBuffer,

 LPBYTE lpRequestToSendRcvd);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

nSendDataLength identifies the length of the data in the send buffer.

lpSendDataBuffer identifies the address of the send buffer.

lpRequestToSendRcvd points to a variable that is used to store whether the

partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE

indicates the partner trans action program issued a REQUEST_TO_SEND verb.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_SendError

Purpose

This function indicates to the partner transaction program that some error has been

found. After using this function, the local program is in receive state.

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 295

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern int EHNAPPC_SendError(

 HWND hWnd,

 DWORD dwConversation,

 LPBYTE lpRequestToSendRcvd);

Parameters

hWnd identifies the current window of the application.

dwConversation identifies the conversation handle returned from either

EHNAPPC_Allocate or EHNAPPC_ExtendedAllocate.

lpRequestToSendRcvd points to a variable that is used to store whether the

partner transaction program issued a REQUEST_TO_SEND verb. A value of TRUE

indicates the partner trans action program issued a REQUEST_TO_SEND verb.

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC_StartHostProgram

Purpose

This function allows Windows applications to start a program on a remote iSeries,

eServer i5, or System i5, leaving the conversation active allowing the application to

confirm the host program is running. The application will have to use the

EHNAPPC_Deallocate function to end the conversation.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern word EHNAPPC_StartHostProgram(

 HWND hWnd,

 LPSTR lpszHostSystemName,

 LPSTR lpszHostProgramName,

 LPSTR lpszHostLibraryName,

 char FAR *lpchPipData,

 WORD wPipDataLength);

Parameters

hWnd identifies the current window of the application.

lpszHostSystemName points to a null-terminated character string that contains the

name of the remote system. The maximum length of this string is 8 characters. If

this pointer is null, the default system name is used.

lpszHostProgramName points to a null-terminated character string that contains

the name of the host program to be started.

lpszHostLibraryName points to a null-terminated character string that contains the

library path of the host program. If this pointer is null, the library list of the user is

searched.

lpchPipData points to the program initialization parameter (PIP) data area for the

host program. If this pointer is null, no PIP data is sent.

wPipDataLength contains the length of the PIP data.

EHNAPPC Routines

296 Client/Server Communications Programming

Return Codes

For return codes, see “Return Codes for the EHNAPPC API” on page 298.

EHNAPPC Structures

AS400_SYS

Purpose

This structure is used to store the names of the systems the client is connected to.

Procedure Declaration

struct AS400_sys

 (

unsigned char EHNAPPC_SysName¢EHNAPPC_MAX_SYSTEMS|

 ¢EHNAPPC_SYSNAME_SYSNAME_LENGTH|;

);

Parameters

EHNAPPC_SysName is used to store the name of a connected system. System

names are returned as null-terminated strings. The first system returned in the

array is the default system (EHNAPPC_MAX_SYSTEMS = 32 and

EHNAPPC_SYSNAME_SYSNAME_LENGTH = 10).

appcrtrcap_hdr

Purpose

This is the structure of the client capability list header.

Procedure Declaration

struct appcrtrcap_hdr

 (

 unsigned char rc;

 unsigned char opcode;

 unsigned int length;

);

Parameters

rc is used to store the overall return code of the capabilities request.

opcode signals the get capabilities request. Its value must be

EHNAPPC_OC_CAPABILITIES (0x17).

length identifies the length of the entire capabilities list. The length includes the

size of the header plus the size of each capability structure.

appcrtrcap_mult

Purpose

This is the capability structure used to determine the optimal communications

buffer multiplier.

Procedure Declaration

struct appcrtrcap_mult

 (

 unsigned int length;

EHNAPPC Routines

Chapter 18. EHNAPPC Application Program Interface 297

unsigned char identifier;

 unsigned char rc;

 unsigned int data;

);

Parameters

length identifies the length of this capability structure.

identifier signals the optimal communications buffer multiplier. Its value must be

EHNAPPC_CAP_OPTIMAL_COM_SIZE (X’02’).

rc is used to store the return code of this capability request.

data is used to return the optimal communications buffer multiplier.

appcrtrcap_query

Purpose

This is the capability structure used to query if the client supports the specified

capability.

Procedure Declaration

struct appcrtrcap_query

 (

 unsigned int length;

 unsigned char identifier;

 unsigned char rc;

 unsigned char data;

);

Parameters

length identifies the length of this capabilities structure.

identifier identifies the function to be queried. Possible values are:

 EHNAPPC_CAP_QUERY_CONV_STATE (3)

 EHNAPPC_CAP_EXT_ALLOCATE (4)

rc is used to store the return code of this capability request.

data is used to return whether or not the specified function is supported.

Return Codes for the EHNAPPC API

Functions in the client Windows API use the following return code constants

defined in E32APPC.H.

 Table 24. Return Codes

Return Code Hex Value Description

EHNAPPC_OK 0 Command completed successfully

ENHAPPC_DEALLOCNORMAL 1 Deallocation normal.

ENHAPPC_PROGRAMMERNOTRUNCATION 2 Program error; no truncation.

ENHAPPC_PROGRAMMERTRUNCATION 3 Program error; truncation.

ENHAPPC_PROGRAMMERPURGING 4 Program error; purging.

ENHAPPC_RESOURCEFAILURETRY 5 Resource failure retry.

ENHAPPC_RESOURCEFAILURENORETRY 6 Resource failure no retry.

EHNAPPC Structures

298 Client/Server Communications Programming

Table 24. Return Codes (continued)

Return Code Hex Value Description

ENHAPPC_UNSUCCESSFUL 7 Unsuccessful.

ENHAPPC_APPCBUSY 8 APPC busy.

ENHAPPC_PARMCHKINVALIDVERB 14 Parameter check; incorrect verb.

ENHAPPC_PARMCHKINVALIDCONVERID 15 Parameter check; incorrect

conversation ID.

ENHAPPC_PARMCHKBUFFERCROSSEG 16 Parameter check; buffer crossed

segment.

ENHAPPC_PARMCHKTPNAMELENGTH 17 Parameter check; transaction program

name length.

ENHAPPC_PARMCHKINVCONVERTYPE 18 Parameter check; incorrect

conversation type.

ENHAPPC_PARMCHKBADSYNCLVLALLOC 19 Parameter check; bad synchronization

level allocate.

ENHAPPC_PARMCHKBADRETURNCNTRL 1A Parameter check; bad return control.

ENHAPPC_ ENHAPPC_PARMCHKPIPTOOLONG 1B Parameter check: PIP data too long.

ENHAPPC_PARMCHKBADPARTNERNAME 1C Parameter check; bad partner name.

ENHAPPC_PARMCHKCONFNOTALLOWED 1D Parameter check; confirm not allowed.

ENHAPPC_PARMCHKBADDEALLOCTYPE 1E Parameter check; bad deallocation

type.

ENHAPPC_PARMCHKPREPTORCVTYPE 1F Parameter check; prepare to receive

type.

ENHAPPC_PARMCHKBADFILLTYPE 20 Parameter check; bad fill type.

ENHAPPC_PARMCHKRECMAXLEN 21 Parameter check; receive maximum

length.

ENHAPPC_PARMCHKUNKNOWNSECTYPE 22 Parameter check; reserved field not

zero.

ENHAPPC_PARMCHKRESFLDNOTZERO 23 Parameter check; reserved field not

zero.

ENHAPPC_STATECHKNOTINCONFSTAT 28 State check; not in confirmed state.

ENHAPPC_STATECHKNOTINRECEIVE 29 State check; not in receive.

ENAHAPPC_STATECHKREQSNDBADSTATN 2A State check; request to send bad state.

ENHAPPC_STATECHKSNDINBADSTATE 2B State check; send in bad state.

ENHAPPC_STATECHKSNDERRBADSTAT 2C State check; send error bad state.

ENHAPPC_ALLOCERRNORETRY 32 Allocation error; no retry.

ENHAPPC_ALLOCERRRETRY 33 Allocation error; retry.

ENHAPPC_ALLOCERROGMNOTAVAILNR 34 Allocation error; program not

available no retry.

ENHAPPC_ALLOCERRTPNNOTRECOG 35 Allocation error; transaction program

name not recognized.

ENHAPPC_ALLOCERRPGMNOTAVAILR 36 Allocation error; program no available

retry.

ENHAPPC_ALLOCERRSECNOTVALID 37 Allocation error; security not valid.

ENHAPPC_ALLOCERRCONVTYP 38 Allocation error; conversation type

mismatch.

Return Codes for the EHNAPPC API

Chapter 18. EHNAPPC Application Program Interface 299

Table 24. Return Codes (continued)

Return Code Hex Value Description

ENHAPPC_ALLOCERRPIPNOTALLOWED 39 Allocation error; PIP data not allowed.

ENHAPPC_ALLOCERRPIPNOTCORRECT 3A Allocation error; PIP data not correct.

ENHAPPC_ALLOCERRSYNCHLEVEL 3B Allocation error; synchronization level

not supported.

ENHAPPC_DEALLOCABENDPROGRAM 46 Deallocation abend program.

ENHAPPC_INSUFFICIENTMEMORY 47 Insufficient memory.

ENHAPPC_MEMORYALLOCERROR 47 Memory allocation error.

ENHAPPC_MEMORYALLCERROR 48 Memory allocation error.

ENHAPPC_TOOMANYCONVERSATIONS 4A Too many conversations.

ENHAPPC_CONVTABLEFULL 4B Conversion table full.

ENHAPPC_CLIENTNOTINSTALLED 4C Client not installed

ENHAPPC_CLIENTWRONGLEVEL 4C Client at wrong level.

ENHAPPC_PCSWINNOTLOADED 4D PSWIN not loaded.

ENHAPPC_PCSWINOUTOFMEMORY 4E PCSWIN out of memory.

ENHAPPC_INVALIDUSERIDLEN 4F Incorrect user ID length.

ENHAPPC_INVALIDPASSWORDLEN 50 Incorrect password length.

ENHAPPC_INVALIDUNAME 51 Incorrect LU length.

ENHAPPC_UNDEFINED 63 Undefined.

Running 16-Bit EHNAPPC Programs

Communications Server SNA API Win32 clients provide the capability of running

your existing 16-bit EHNAPPC programs on Windows. To do so, start the program

EHNAPPCD from your Communications Server SNA API client subdirectory

before you start any of your 16-bit EHNAPPC applications. This program provides

the necessary chunking to the 32-bit E32APPC.DLL.

Return Codes for the EHNAPPC API

300 Client/Server Communications Programming

Chapter 19. Data Transform Windows Application Program

Interface

 This is only available on the Communications Server SNA API

clients.

The data transform API provides the capability to convert data between the iSeries,

eServer i5, or System i5 format and the PC format. Translation may be needed

when sending and receiving data to and from the iSeries, eServer i5, or System i5.

The data transform API supports conversion of text and numerous numeric

formats.

This chapter describes the individual routines and return codes that make up the

data transform API.

Data Transform Windows API Routines

The following discussions of each data transform API routine describe in detail:

v Purpose

v Procedure declaration

v Parameters

v Return codes

EHNDT_ANSIToEBCDIC

Purpose

This function translates a string from the Windows ANSI code page to EBCDIC.

The router must be loaded so that this routine can access the ASCII-to-EBCDIC

translation table.

If the target string is not large enough to contain the translated string, the

translation stops at the end of the target string. If the target string is larger than

required, it is filled with blanks to the end of the string.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned int EHNDT_ANSIToEBCDIC(

 HWND hWnd,

 LPSTR lpsSource,

 LPSTR lpsTarget,

 unsigned in wSource,

 LPWORD lpwTarget);

Parameters

hWnd identifies the current window of the application.

lpsSource points to the source (ANSI) string to convert.

lpsTarget points to the target (translated) string.

© Copyright IBM Corp. 1994, 2006 301

wSource identifies the length of the source string in bytes.

lpwTarget points to a word variable containing the size of the target buffer. This

variable will be updated with the total number of translated characters in the

target buffer.

Return Codes

If the function is successful, EHNDT_SUCCESS (X’0000’) is returned. If the router

is not loaded, EHNDT_A2E_TABLE_NOT_FOUND (X’FFFC’) is returned. If an

error occurs while attempting to allocate a temporary buffer,

EHNDT_MEMALLOC (X’FFFF’) is returned. If incorrect data is found during

translation, the return code is the location of the first untranslated character plus

one.

EHNDT_ASCIIToEBCDIC

Purpose

This function translates a string from ASCII to EBCDIC. The router must be loaded

so that this routine can access the ASCII-to-EBCDIC translation table. If the target

string is not large enough to contain the translated string, the translation stops at

the end of the target string. If the target string is larger than required, it is blank

filled to the end of the string.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned int EHNDT_ASCIIToEBCDIC(

 HWND hWnd,

 LPSTR lpsTarget,

 LPSTR lpsSource,

 unsigned in wSource,

 LPWORD lpwTarget);

Parameters

hWnd identifies the current window of the application.

lpsTarget points to the target (translated) string.

lpsSource points to the source (ASCII) string to convert.

wSource identifies the length of the source string in bytes.

lpwTarget points to a word variable containing the size of the target buffer. This

variable will be updated with the total number of translated characters in the

target buffer.

Return Codes

If the function is successful, EHNDT_SUCCESS (X’0000’) is returned. If the router

is not loaded, EHNDT_A2E_TABLE_NOT_FOUND (X’FFFC’) is returned.

If incorrect data is found during translation, the return code is the location of the

first untranslated character plus one.

Data Transform Windows API Routines

302 Client/Server Communications Programming

EHNDT_EBCDICToANSI

Purpose

This function converts a string from EBCDIC to the Windows ANSI code page. The

router must be loaded so that this routine can access the ASCII-to-EBCDIC

translation table.

If the target string is not large enough to contain the translated string, the

translation stops at the end of the target string. If the target string is larger than

required, it is blank filled to the end of the string.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned int EHNDT_EBCDICToANSI(

HWND hWnd,

LPSTR lpsTarget,

LPSTR lpsSource,

unsigned int wSource,

LPWORD lpwTarget); :

Parameters

hWnd identifies the current window of the application.

lpsTarget points to the target (translated) string

lpsSource points to the source (EBCDIC) string to convert.

wSource identifies the length of the source string in bytes

lpwTarget points to a word variable containing the size of the target buffer. This

variable will be updated with the total number of translated characters in the

target buffer.

Return Codes

If the function is successful, EHNDT_SUCCESS (’0000’) is returned. If the router is

not loaded, EHNDT_E2A_TABLE_.NOT_FOUND (’FFFC’) is returned. If incorrect

data is found during translation, the return code is the location of the first

untranslated character plus one.

EHNDT_EBCDICToASCII

Purpose

This function converts a string from EBCDIC to ASCII. The router must be loaded

so that this routine can access the ASCII-to-EBCDIC translation table.

If the target string is not large enough to contain the translated string, the

translation stops at the end of the target string. If the target string is larger than

required, it is blank filled to the end of the string.

Procedure Declaration

#include <WINDOWS.H>

#include "E32APPC.H"

extern unsigned int EHNDT_EBCDICToASCII(

 HWND hWnd,

Data Transform Windows API Routines

Chapter 19. Data Transform Windows Application Program Interface 303

LPSTR lpsTarget,

 LPSTR lpsSource,

 unsigned int wSource,

 LPWORD lpwTarget);

Parameters

hWnd identifies the current window of the application.

lpsTarget points to the target (translated) string.

lpsSource points to the source (EBCDIC) string to convert.

wSource identifies the length of the source string in bytes.

lpwTarget points to a word variable containing the size of the target buffer. This

variable will be updated with the total number of translated characters in the

target buffer.

Return Codes

If the function is successful, EHNDT_SUCCESS (’0000’) is returned. If the router is

not loaded, EHNDT_.E2A_TABLE_NOT_FOUND (’FFFC’) is returned. If incorrect

data is found during translation, the return code is the location of the first

untranslated character plus one.

Data Transform Windows API Routines

304 Client/Server Communications Programming

Part 5. Java Programming Interfaces

© Copyright IBM Corp. 1994, 2006 305

306 Client/Server Communications Programming

Chapter 20. Introduction to the Host Access Class Library for

Java

This chapter describes the IBM Host Access Class Library (HACL) for Java as it

relates to 3270 and 5250 applications, including:

v A brief overview of the structure of HACL for Java

v What is installed for HACL

v What samples are available and how they work

What Is HACL?

The HACL for Java is a set of classes and methods that allow application

programmers to access host applications at the 3270 and 5250 data stream levels

easily and quickly. HACL implements the core host access function in a complete

class model that is independent of any graphical display and only requires a

Java-enabled browser or comparable Java environment to operate.

The class library represents a complete object-oriented abstraction of a host

connection, including:

v Reading and writing the host presentation space (screen)

v Enumerating the fields in the presentation space

v Reading the operator information area (OIA) for status information

v Transferring files

v Performing asynchronous notification of significant events

Application programmers can write Java applets that manipulate data from the

data stream presentation space (such as 3270 and 5250) without requiring applets

to reside on these machines. The presentation space represents an imaginary

terminal screen that contains both data and associated attributes presented by host

applications. After an interaction is complete, the applet can switch to other tasks

or simply close the session. The transaction can be completed without ever

showing host screens.

HACL Java applets can:

v Open a session to the host

v Wait for incoming host data

v Get specific strings from the imaginary screen

v Get associated attributes of the strings

v Set new string values

v Send data stream function keys back to the host

v Wait for the next host session

HACL is a significant improvement over client-specific, screen scraping application

programming interfaces like EHLLAPI in several ways, such as:

v HACL is platform independent

v HACL operates directly on the data stream rather than on the interpreted

emulator screen. This eliminates the overhead of interpreting and displaying the

datastream in a visual window.

© Copyright IBM Corp. 1994, 2006 307

v HACL does not require emulator software running on the local workstation,

reducing dependencies on platform-specific screen formats and keyboard

layouts.

v HACL is downloadable and executable on client workstations using standard

Web and Java technology. This provides significant maintenance and resource

savings.

HACL Concepts

The following sections describe several essential concepts of the HACL.

Understanding these concepts will aid you in making effective use of the library.

Sessions

In the context of the HACL, a session object (ECLSession) encapsulates the

connection to the host and the characteristics of that connection. A session object

also serves as a container for the other session-specific objects: ECLPS (presentation

space), ECLOIA (operator information area), and ECLXfer (file transfer).

A session object has no associated graphical user interface (GUI). In other words,

creating an instance of ECLSession does not cause an emulator screen to display.

Container Objects

Several of the HACL classes act as containers of other objects. The ECLSession

object contains an instance of the ECLPS, ECLOIA, and ECLXfer objects.

Containers provide methods to return a pointer to the contained object. The

ECLSession object has a GetOIA method, which returns a pointer to an OIA object.

Contained objects are not implemented as public members of the container’s class

but, rather, are accessed only through HACL methods.

List Objects

Several HACL classes provide list iteration capabilities. For example, the

ECLConnList class manages the list of connections. HACL list classes are not

asynchronously updated to reflect changes in the list content. The application must

explicitly call the Refresh method to update the contents of a list. This allows an

application to iterate a list without concern that the list may change during the

iteration.

Events

The HACL provides the capability of asynchronous notification of certain events.

An application can choose to be notified when specific events occur. For example,

the application can be notified when the status of a connection to a host changes.

Currently the HACL supports notification for the following events:

 Table 25. Events for HACL

Events Interface Used to Capture Events

Communications connect and disconnect ECLLCommNotify

Presentation space updates ECLPSNotify

Operator Information Area (OIA) updates ECLOIANotify

Event notification is defined by the respective HACL Notify interfaces. A separate

interface exists for each event type. To be notified of an event, the application must

define and create an object which implements the interface for the event type

308 Client/Server Communications Programming

requiring notification. That object must then be registered by calling the

appropriate HACL registration function. Once an application object is registered,

its NotifyEvent method is called whenever an event occurs.

Note: The application’s NotifyEvent method is called asynchronously on a

separate thread of execution. Therefore, the NotifyEvent method should be

entered again. Appropriate locking or synchronization should be used if

application resources are accessed.

Error Handling

In general, the HACL indicates errors to the application by the throwing ECLErr

objects. To catch errors, the application should enclose calls to the HACL objects in

a try/catch block such as:

try {

 int pos = ps.ConvertRowColToPos(row, col);

 //...possibly more references to HACL objects...

 } catch (ECLErr err) {

 System.out.println("ECL Error! " + err.GetMsgText());

 }

When an HACL error is detected, the application can call methods of the ECLErr

object to determine the exact cause of the error. The ECLErr object can also be

called to construct a complete language-sensitive error message.

Addressing (Rows, Columns, Positions)

The HACL provides two ways of addressing points (character positions) in the

host presentation space. The application can address characters by row/column

numbers, or by a single linear position value. Presentation space addressing is

always 1-based (not zero-based) irrespective of the addressing scheme.

The row and column addressing scheme is useful for applications that relate

directly to the physical screen presentation of the host data. The rectangular

coordinate system (with row 1, column 1 in the upper left corner) is a natural way

to address points on the screen. The linear positional addressing method (with

position 1 in the upper left corner, progressing from left to right, top to bottom) is

useful for applications that view the entire presentation space as a single array of

data elements or for applications ported from the EHLLAPI interface.

In general, the different addressing schemes are chosen by calling different

signatures for the same methods. For example, to move the host cursor to a given

screen coordinate, the application can call the ECLPS::SetCursorPos method in one

of two signatures:

ps.SetCusorPos(81);

ps.SetCursorPos(2, 1);

These statements have the same effect if the host screen is configured for 80

columns per row. This example also points out a subtle difference in the

addressing schemes. The linear position method can yield unexpected results if the

application makes assumptions about the number of characters per row of the

presentation space. For example, the first line of code in the example would put

the cursor at column 81 of row 1 in a presentation space configured for 132

columns. The second line of code would put the cursor at row 2, column 1

irrespective of the presentation space configuration.

Chapter 20. Introduction to the Host Access Class Library for Java 309

Installing HACL on the Communications Server for Windows Server

 This is only available for Communications Server Win32 SNA API

clients.

 After you have inserted the Communications Server for Windows CD-ROM and

followed the steps in the interface, you will be prompted to click on Setup to begin

the installation of the InstallShield® Wizard. Once installed, the wizard will guide

you through the rest of the installation procedures. Upon completion of the

installation of the wizard, a Welcome to IBM Communications Server window

appears. Click on Next to continue. The next series of panels will prompt you to

choose the setup type, the drive and directory where you want to install

Communications Server, the FTP directory for anonymous access for IBM Files

On-Demand, and the drive and directory where you want to install the HACL

class files.

This install provides the ability to access HACL Java class files from an applet

residing on the server, or to access HACL Java class files from a Java Application

residing on the server, HACL codepage converters, the documentation for HACL,

and sample Java applets and Java applications. (You do not need to install HACL

on the server in order to run as a Java application on the client.)

The following describes the HACL parts and their definitions:

\IBMCS\SDK\JAVA\HACL\EN\DOC*.* The on—line, HTML format,

 HACL documentation. The documentation

 is formatted to be accessed by a

 web-browser. It is recommended that you

 start at the file called

 "ECLReference.html".

\IBMCS\SDK\JAVA\HACL\TOOLKIT\HACL\SAMPLES*.* Sample programs.

\IBMCS\SDK\JAVA\HACL\TOOLKIT\JARS\habeans.jar This file is used to

 run HACL Java applets and

 applications from the server.

\IBMCS\jre*.* Java Runtime Environment that is

 compatible with the HACL files

 installed on the server.

Installing HACL on the Communications Server 32–Bit Windows Client

 This is only available for Communications Server Win32 SNA API

clients.

 If the HACL is installed on the client via the Typical or Custom client install

option, habeans.jar is installed along with a Java Runtime Environment (JRE) in the

CSNT client directory (for example, CSNTAPI). This enables a HACL Java

application to access the HACL Java classes located in the habeans.jar file. HACL is

not a complete application by itself. A Java application must be written which uses

the HACL Java classes to perform a desired set of functions. The client install of

310 Client/Server Communications Programming

HACL provides the level of functionality needed to run user-written HACL Java

applications. No additional HACL code needs to be installed on the server.

Due to size constraints, the habeans.jar file contains only the English codepage.

Other codepage converter classes can be obtained from the jar file, habeansnlv.jar,

installed on the server. Complete HACL documentation, sample Java applets and

Java applications, and the ability to run Java applets with HACL, can also be

installed on the server.

Setting the Classpath

When running a Java application or Java applet, set the environment variable

classpath equal to the full pathname of the location of the Java classes needed to

run the application or applet. For instance, if an HACL Java application is written

and copied into the SNA API client subdirectory (for example, C:\CSNTAPI), then:

v The classpath should be set to:

C:\CSNTAPI;C:\CSNTAPI\habeans.jar

v The command line should be:

set classpath=C:\CSNTAPI;C:\CSNTAPI\habeans.jar

If you are using the Java Runtime Environment (JRE), then the classpath

environment variable is not used, but the path to the Java classes can be specified

with the cp option when the JRE is invoked.

HACL Codepage Converters

HACL codepage converters support multiple languages. Due to size constraints,

the habeans.jar file contains only the English codepage. Other codepage converter

classes can be obtained from the file, habeansnlv.jar, installed on the server.

Habeansnlv.jar is a full replacement for habeans.jar and includes the converters for

other country code pages. These files can be copied to the machine running the

Java application. Be careful to preserve the Classpath (com\ibm...) where the files

are located.

In order to reduce the size of an HACL application or applet, you should copy

only those converter class files needed by the application or applet. Information on

implementing the codepage converter classes is described in the HACL

documentation.

HACL Samples

Sample programs and documentation are found in the IBMCS\SDK\JAVA\
HACL\TOOLKIT\HACL\SAMPLES subdirectory.

Chapter 20. Introduction to the Host Access Class Library for Java 311

312 Client/Server Communications Programming

Chapter 21. Using CPIC-C for Java

This chapter describes the Common Programming Interface for Communications

(CPI-C) for Java API and its usage, including the following:

v A brief overview of CPI-C for Java

v What is installed for CPI-C for Java

v What samples are available and how they work

Note: Personal Communications does not install support for CPIC-C for Java. The

toolkit is provided on the installation CD.

What is CPI-C for Java?

CPI-C for Java is a programming toolkit that allows developers to use the

Common Programming Interface for Communications (CPI-C) API in the Java

language. CPI-C is an open API for SNA LU 6.2. Refer to Common Programming

Interface Communications CPI-C Reference (SC26–4399), available on the IBM

Communications Server Version 6.1 for Windows NT® and Windows 2000

CD-ROM in PDF and HTML formats, for more details on the CPI-C API.

A primary goal of the toolkit is to ease the transition from traditional C to Java.

Because of this, the toolkit calls look quite similar to those used in C. CPI-C for

Java is provided as a layer above the native CPI-C API and this native code must

be installed in order for CPI-C to work.

The toolkit provides programmer reference documentation for every class, method,

and variable in the toolkit. The documentation is in HTML format, and provides

cross-references for ease of use.

This programming toolkit also provides a set of Java classes with objects to hold

CPI-C parameters as well as a CPIC class, which defines methods that map to the

CPI-C functions in C. You can run the sample application (JPing.class) included in

the toolkit, as well as write your own.

The CPI-C for Java binding allows a Java application to use an SNA network and

to use CPI-C as a networking API. These Java applications can connect to partners

that are:

v New CPI-C for Java applications

v New or existing non-Java CPI-C applications

v New or existing APPC applications

Installing CPI-C for Java (Communications Server)

For Communications Server, the following items are installed with the CPI-C for

Java toolkit. Personal Communications provides the toolkit on the installation CD,

but it is not installed automatically.

v CPICJAVA.JAR contains the Java classes used when writing CPI-C for Java

programs. This JAR file should be included in the user’s CLASSPATH

environment variable or should be specified explicitly when invoking a CPI-C

for Java application. The file is installed on the user’s workstation along with the

other API client files. The JAR file also contains JPing.class, a sample application.

© Copyright IBM Corp. 1994, 2006 313

v CPICJAVA.DLL is a platform-specific DLL which contains the linkage between

the CPI-C for Java classes and the native LU 6.2 support installed on the user’s

workstation. This file is installed on the workstation along with the other API

client DLLs.

v Jcpic001.htm is the root of the programmer’s reference documentation that

shows each CPI-C for Java class, method, and variable. It is installed in the

Communications Server IBMCS\SDK\JAVA\CPIC\DOC subdirectory at the

same time that Host Access Class Library (HACL) for Java is installed. This

documentation is used to develop custom applications.

v CPICJAVA.HTM is a brief introduction to the toolkit and sample application.

This HTML-formatted file is installed on the user’s workstation along with the

other API client files.

v JPing.java is the source file for the JPing.class sample application. The comments

in this file give hints and tips on programming with the toolkit. The JPing.java

file is installed in the subdirectory when the ECL for Java is installed.

CPI-C for Java Samples

The following sections describe the client and server samples for CPI-C for Java.

Client Sample

The sample included in the toolkit performs the same function as the APING client

utility. It sends data to a server process that echoes the data back to the APING

utility. The sample client has been compiled and placed into the CPICJAVA.JAR

file. The source file (JPing.java) is installed in the IBMCS\SDK\JAVA\CPIC\
SAMPLES subdirectory when the ECL for Java is installed.

The API is supplied as a Java package called COM.ibm.eNetwork.cpic. The first

line of code in the following sample is required in order to access the classes

supplied with the toolkit. The CPIC class is the main interface to the native CPI-C

code. The CPIC class contains many constants defined in CPI-C, such as, the

length of a conversation ID, along with methods that are passed through to the

native CPI-C calls.

You need only declare one CPIC object per class. Java will load the dynamic link

library (DLL) containing the native methods (CPICJAVA.DLL) when the CPIC

object is instantiated.

The following sample describes the CPI-C pipeline; it does not replicate the

information in the JPing.java source file.

Note: The following sample includes code interleaved with commentary.
/*---

 * Pipeline transaction, client side.

 ---/

import COM.ibm.eNetwork.cpic.*;

public class Pipe extends Object {

 public static void main(String args[]) {

 // Make a CPIC object

 CPIC cpic_obj = new CPIC();

Each type of parameter has its own class, and each of these classes has associated

constants defined as class variables. For example, the CPICReturnCode class has

the success return code, CM_OK, defined.

314 Client/Server Communications Programming

There are two major reasons for having a class for each type of parameter. Because

Java passes all parameters by value, there is no way to return data in simple types,

such as integer. If we pass an object as a parameter to a method, the method can

set a variable in that object, thus returning data to the caller. Secondly, the use of

objects encapsulates constants within the objects that understand those constants.

This is a standard information-hiding technique.

 // Return Code

 CPICReturnCode cpic_return_code =

 new CPICReturnCode(CPICReturnCode.CM_OK);

 // Request to send received?

 CPICControlInformationReceived rts_received =

 new CPICControlInformationReceived(

 CPICControlInformationReceived.CM_NO_CONTROL_INFO_RECEIVED);

The CPI-C send function expects a C-language buffer, that is, allocated space of no

specific type. Unlike C, Java has no facility to allocate untyped memory. Other than

primitives, everything in Java is an object. Whatever the program sends must be

converted from its object type into a C-style array of bytes.

Java provides methods that facilitate these conversions. For example, Java can

convert a string into a Java array of bytes. While an array of bytes is an object in

Java, Java allows you to extract the data from an array of bytes with a native

method.

 // String to Send

 String sendThis = "Test of the PipeLine Transaction";

 // Length of String to send

 CPICLength send_length = new CPICLength(sendThis.length());

 // Convert String to send to a Java array of bytes

 byte[] stringBytes = new byte[send_length.intValue()];

 sendThis.getBytes(0,send_length.intValue(),stringBytes,0);

Like buffer processing, the CPI-C native calls expect symbolic destination names to

be C-strings, not Java Strings. The toolkit automatically converts them from Java

strings to C-strings as necessary. In general, automatic conversion is possible when

the toolkit expects a specific Java type.

The conversation ID is a Java array of bytes which is converted automatically by

the toolkit to a C array consisting of a simple block of bytes.

 // this hardcoded sym_dest_name must

 // be 8 chars long & blank padded

 String sym_dest_name = "PIPE ";

 // Space to hold a conversation ID

 // (which is just a bunch of bytes)

 byte[] conversation_ID = new byte[CPIC.CM_CID_SIZE];

The program starts making CPI-C calls which are very similar to those used in C.

However, the method calls are prefixed with the name of the CPI-C object, and the

parameters are not prefixed by the pass-by-reference (&) symbol.

 //

 // Initialize CPI-C

 //

 cpic_obj.cminit(/* Initialize_Conversation */

 conversation_ID, /* O: returned conversation ID */

 sym_dest_name, /* I: symbolic destination name */

 cpic_return_code); /* O: return code from this call */

Chapter 21. Using CPIC-C for Java 315

//

 // ALLOCATE

 //

 cpic_obj.cmallc(/* Allocate Conversation */

 conversation_ID, /* I: conversation ID */

 cpic_return_code); /* O: return code from this call */

 //

 // SEND

 //

 cpic_obj.cmsend(/* Send_Data */

 conversation_ID, /* I: conversation ID */

 stringBytes, /* I: send this buffer */

 send_length, /* I: length to send */

 rts_received, /* O: was RTS received? */

 cpic_return_code); /* O: return code from this call */

 //

 // DEALLOCATE

 //

 cpic_obj.cmdeal(/* Deallocate */

 conversation_ID, /* I: conversation ID */

 cpic_return_code); /* O: return code from this call */

 } // end main method

} // end the class

Server Sample

The server initializes itself, accepts a conversation, receives data, and prints

diagnostic information. As in the client, we instantiate classes to hold the CPI-C

parameters, many of which have only an integer as instance data. By using objects,

we can mimic call by reference. We also allocate a byte array to hold the received

data.

Note: The following sample includes code interleaved with commentary.
 /*---

 * Pipeline transaction, server side.

 ---/

 import COM.ibm.eNetwork.cpic.*;

 import Java.io.IOException;

 public class PipeServer extends Object {

 public static void main(String args[]) {

 CPIC cpic_obj = new CPIC();

 // Space to hold the received data

 byte[] data_buffer;

 data_buffer = new byte[101];

 CPICLength requested_length = new CPICLength(101);

 CPICDataReceivedType data_received =

 new CPICDataReceivedType(0);

 CPICLength received_length = new CPICLength(0);

 CPICStatusReceived status_received =

 new CPICStatusReceived(0);

 CPICControlInformationReceived rts_received =

 new CPICControlInformationReceived(0);

 CPICReturnCode cpic_return_code =

 new CPICReturnCode(0);

 // Space to hold a conversation ID -- a bunch of bytes

 // The first line declares conversation_ID to be a reference to

 // a byte array object. The second line creates such an object,

316 Client/Server Communications Programming

// and assigns the reference to the byte array object.

 byte[] conversation_ID;

 conversation_ID = new byte[cpic_obj.CM_CID_SIZE];

The CPI-C receive call (cmrcv) returns a Java array of bytes while the pipe

transaction expects a string. The programmer can translate the array of bytes into a

string by using the string class-constructor that takes an array of bytes as an

argument.

 //

 // ACCEPT

 //

 cpic_obj.cmaccp(/* Accept_Conversation */

 conversation_ID, /* O: returned conversation ID */

 cpic_return_code); /* O: return code */

 //

 // RECEIVE

 //

 cpic_obj.cmrcv(/* Receive */

 conversation_ID, /* I: conversation ID */

 data_buffer, /* I: where to put received data */

 requested_length, /* I: maximum length to receive */

 data_received, /* O: data complete or not? */

 received_length, /* O: length of received data */

 status_received, /* O: has status changed? */

 rts_received, /* O: was RTS received? */

 cpic_return_code); /* O: return code from this call */

 //

 // Do some return code processing

 //

 System.out.println(" Data from Receive:");

 System.out.println(" cpic_return_code = " +

 cpic_return_code.intValue());

 System.out.println(" cpic_data_received = " +

 data_received.intValue());

 System.out.println(" cpic_received_length = " +

 received_length.intValue());

 System.out.println(" cpic_rts_received = " +

 rts_received.intValue());

 System.out.println(" cpic_status_received = " +

 status_received.intValue());

 // Create a Java String from the array of bytes that you received

 // and print it out.

 String receivedString = new String(data_buffer,0);

 System.out.println(

 " Recevied string = "

 + receivedString);

 //

 // BLOCK so that the Server Window doesn’t disappear

 //

 try{

 System.out.println("Press any key to continue");

 System.in.read();

 }

 catch

 (IOException e){ e.printStackTrace(); }

 }

 }

Chapter 21. Using CPIC-C for Java 317

318 Client/Server Communications Programming

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2006 319

320 Client/Server Communications Programming

Appendix A. APPC Common Return Codes

This appendix describes the primary (and, if applicable, secondary) return codes

that are common to several APPC verbs.

Verb-specific return codes are described in the documentation for the individual

verbs.

AP_ALLOCATION_ERROR

Personal Communications and Communications Server has failed to

allocate a conversation. The conversation state is set to RESET. This code

can be returned through a verb issued after ALLOCATE or

MC_ALLOCATE. The associated secondary return codes are as follows:

AP_ALLOCATION_FAILURE_NO_RETRY

The conversation cannot be allocated because of a permanent condition,

such as a configuration error or session protocol error. To determine the

error, the system administrator should examine the error log file. Do not

attempt to retry the allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

The conversation could not be allocated because of a temporary condition,

such as a link failure. The reason for the failure is logged in the system

error log. Retry the allocation, preferably after a timeout to permit the

condition to clear.

AP_CANCELLED

The verb returned because the conversation was canceled (the transaction

program issued a CANCEL_CONVERSATION verb).

AP_CONV_FAILURE_NO_RETRY

The conversation was terminated because of a permanent condition, such

as a session protocol error. The system administrator should examine the

system error log to determine the cause of the error. Do not retry the

conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

The conversation was terminated because of a temporary error. Restart the

transaction program to see if the problem occurs again. If it does, the

system administrator should examine the error log to determine the cause

of the error.

AP_CONVERSATION_TYPE_MISMATCH

The requested transaction program cannot support conversations of the

type (basic or mapped) specified in the allocation request. This indicates a

mismatch between the local and partner transaction programs.

AP_CONVERSATION_TYPE_MIXED

The transaction program has attempted to mix conversation verbs for

different conversation types on the same conversation. For example, the

transaction program issued an MC_ALLOCATE verb followed by a

CONFIRM verb.

AP_DEALLOC_ABEND

The conversation has been deallocated for one of the following reasons.

v The partner transaction program has issued the MC_DEALLOCATE

verb with dealloc_type set to AP_ABEND.

© Copyright IBM Corp. 1994, 2006 321

v The partner transaction program has ended abnormally, causing the

partner LU to send an MC_DEALLOCATE request.

AP_DEALLOC_ABEND_PROG

The conversation has been deallocated for one of the following reasons.

v The partner transaction program has issued the DEALLOCATE verb

with dealloc_type set to AP_ABEND_PROG.

v The partner transaction program has ended abnormally, causing the

partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

The conversation has been deallocated because the partner transaction

program issued the DEALLOCATE verb with dealloc_type set to

AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

The conversation has been deallocated because the partner transaction

program has issued the DEALLOCATE verb with dealloc_type set to

AP_ABEND_TIMER.

AP_DEALLOC_NORMAL

This return code does not indicate an error. The partner transaction

program issued the DEALLOCATE or MC_DEALLOCATE verb with

dealloc_type set to one of the following values.

v AP_FLUSH

v AP_SYNC_LEVEL with the synchronization level of the conversation

specified as AP_NONE

AP_DUPLEX_TYPE_MIXED

The transaction program has attempted to issue a conversation verb with a

different conversation duplex_type. For example, the transaction program

issued a half-duplex MC_FLUSH verb (without

AP_FULL_DUPLEX_CONVERSATION set in opext) on a full-duplex

conversation.

AP_ERROR_INDICATION

This return code is used on full-duplex conversations only. A send queue

operation has failed because the partner transaction program has

terminated the conversation. If the conversation state is send-only, the

conversation has now ended. If the conversation state is send-receive or

receive-only, the conversation will end when the appropriate return code is

returned to a receive queue verb. The associated secondary return codes

are:

AP_ALLOCATION_ERROR_PENDING

The remote LU rejected the allocation request.

AP_DEALLOC_ABEND_PROG_PENDING

The conversation has been deallocated for one of the following

reasons:

v The partner transaction program has issued the DEALLOCATE

verb with dealloc_type set to AP_ABEND_PROG.

v The partner transaction program has ended abnormally causing

the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC_PENDING

The conversation has been deallocated because the partner

transaction program issued the DEALLOCATE verb with

dealloc_type set to AP_ABEND_SVC.

322 Client/Server Communications Programming

AP_DEALLOC_ABEND_TIMER_PENDING

The conversation has been deallocated because the partner

transaction program issued the DEALLOCATE verb with

dealloc_type set to AP_ABEND_TIMER.

AP_UNKNOWN_ERROR_TYPE_PENDING

The conversation has been deallocated by the partner transaction

program, but the local LU does not recognize the reason.

AP_OPERATION_INCOMPLETE

The transaction program issued a nonblocking verb that started processing,

but did not complete. When verb processing completes, the final return

code will be set and the stub will notify the transaction program.

AP_PIP_NOT_ALLOWED

The requested transaction program cannot receive program initialization

parameters (PIP). This indicates a mismatch between the local and partner

transaction programs.

AP_PIP_NOT_SPECIFIED_CORRECTLY

The requested transaction program can receive program initialization

parameters (PIP), but detected an error in the supplied PIP. This indicates a

mismatch between the local and partner transaction programs.

AP_PROG_ERROR_NO_TRUNC

The partner transaction program has issued one of the following verbs

while the conversation was in SEND state.

v SEND_ERROR with err_type set to AP_PROG

v MC_SEND_ERROR

Data was not truncated.

AP_PROG_ERROR_PURGING

The partner transaction program issued one of the following verbs while in

RECEIVE, PENDING_POST, CONFIRM, CONFIRM_SEND, or

CONFIRM_DEALLOCATE state.

v SEND_ERROR with err_type set to AP_PROG.

v MC_SEND_ERROR

Data sent, but not yet received, is purged.

AP_PROG_ERROR_TRUNC

In SEND state, after sending an incomplete logical record, the partner

transaction program issued a SEND_ERROR verb with err_type set to

AP_PROG. The local transaction program might have received the first

part of the logical record through a RECEIVE verb.

AP_SEC_REQUESTED_NOT_SUPPORTED

The local LU is unable to allocate a conversation because the session with

the partner LU does not support Password Substitution. The security type

requested on the ALLOCATE or SEND_CONVERSATION is

AP_PGM_STRONG, that requires Password Substitution support.

AP_SECURITY_NOT_VALID

The user ID or password specified in the allocation request was not

accepted by the partner LU.

AP_SVC_ERROR_NO_TRUNC

While in SEND state, the partner transaction program (or partner LU)

issued a SEND_ERROR verb with err_type set to AP_SVC. Data was not

truncated.

Appendix A. APPC Common Return Codes 323

AP_SVC_ERROR_PURGING

The partner transaction program (or partner LU) issued a SEND_ERROR

verb with err_type set to AP_SVC while in RECEIVE, PENDING_POST,

CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data

sent to the partner transaction program might have been purged.

AP_SVC_ERROR_TRUNC

In SEND state, after sending an incomplete logical record, the partner

transaction program (or partner LU) issued a SEND_ERROR verb. The

local transaction program might have received the first part of the logical

record.

AP_SYNC_LEVEL_NOT_SUPPORTED

The requested transaction program cannot support conversations with the

sync_level (AP_NONE, AP_CONFIRM_SYNC_LEVEL or AP_SYNCPT)

specified in the allocation request. This indicates a mismatch between the

local and partner transaction programs.

AP_TP_BUSY

The local transaction program has issued a blocking verb to Personal

Communications while Personal Communications was processing another

verb for the same conversation.

AP_TP_NAME_NOT_RECOGNIZED

The transaction program name specified in the allocation request is not

recognized by the partner LU.

AP_TRANS_PGM_NOT_AVAIL_NO_RTRY

The remote LU rejected the allocation request because it was unable to

start the requested partner transaction program. The requested transaction

program (TP) is not available because of a permanent or semi-permanent

condition. The reason for the error might be logged on the remote node.

The condition will not clear itself without operator intervention. The

transaction program should not retry the conversation until the error

condition has been cleared.

AP_TRANS_PGM_NOT_AVAIL_RETRY

The remote LU rejected the allocation request because it was unable to

start the requested partner transaction program. The requested transaction

program (TP) is not available because of a transient condition, such as a

timeout. The reason for the error might be logged on the remote node. The

condition might clear itself without operator intervention. The transaction

program should retry the conversation, preferably after a timeout to permit

the condition to clear.

AP_UNEXPECTED_SYSTEM_ERROR

Personal Communications and Communications Server has encountered an

unexpected system error, and cannot complete the verb. Usually these

errors arise from a shortage of system resources (for example, memory),

and are usually transient. Check the system log for more details.

324 Client/Server Communications Programming

Appendix B. LUA Verb Return Codes

This appendix describes the primary (and, if applicable, secondary) return codes

that are common to several SLI verbs.

Verb-specific return codes are described in the documentation for the individual

verbs.

Primary Return Codes

The following section contains the LUA primary return codes:

LUA_OK

The LUA verb completed successfully.

LUA_PARAMETER_CHECK

The LUA feature detected an incorrect parameter.

LUA_STATE_CHECK

The session was in an incorrect state for the verb that was issued.

LUA_SESSION_FAILURE

 The session has been brought down. The specific reason is identified in the

secondary return code.

LUA_UNSUCCESSFUL

This verb did not successfully complete.

LUA_NEGATIVE_RESPONSE

One of the following conditions occurred:

v The end-of-chain arrived for a chain that was negatively responded to

by the LUA application program. The secondary return code is not set.

v LUA detected an error in a message from the primary LU and sent a

negative response. This error is returned when the end-of-chain is

received from the primary LU. The secondary return code contains the

sense data that was sent with the negative response.

LUA_CANCELED

The verb was canceled because of reasons specified in the secondary return

code.

LUA_IN_PROGRESS

 This synchronous code is returned when an asynchronous command is

received and has not completed.

LUA_STATUS

The SLI has status information for the application in the secondary return

code.

LUA_COMM_SUBSYSTEM_ABENDED

 Communications Server abnormally ended.

LUA_COMM_SUBSYSTEM_NOT_LOADED

 Communications Server was not loaded.

LUA_INVALID_VERB_SEGMENT

© Copyright IBM Corp. 1994, 2006 325

LUA could not process the verb because the entire verb control block is not

contained in the data segment. The address of the end of the verb control

block is beyond the end of the segment.

LUA_UNEXPECTED_DOS_ERROR

 An unexpected system error occurs after Communications Server issues a

system call, the verb is posted with the primary return code

UNEXPECTED_DOS_ERROR. The secondary return code contains the

unexpected system error.

LUA_STACK_TOO_SMALL

 The LUA application stack is too small for LUA to process the request.

LUA_INVALID_VERB

 LUA does not recognize the verb code or the verb operation code (or both)

in the verb control block it received.

Secondary Return Codes

The following section contains the LUA secondary return codes:

LUA_SEC_OK

Additional information is available for the primary return code associated

with this secondary return code.

LUA_INVALID_LUNAME

The verb specified an invalid lua_name.

LUA_BAD_SESSION_ID

The verb control block specified an incorrect value for the lua_sid

parameter.

LUA_DATA_TRUNCATED

The buffer length (as specified in lua_max_length) was not long enough

for the data received, so the data was truncated.

LUA_BAD_DATA_PTR

The command requires data to be supplied or returned, but the

lua_data_ptr parameter either contains an invalid pointer or does not point

to a read/write segment.

LUA_DATA_SEG_LENGTH_ERROR

One of the following conditions occurred:

v The data segment supplied on an RUI_READ or SLI_RECEIVE verb is

shorter than the length given in the lua_max_length parameter.

v The data segment was supplied on an RUI_WRITE or SLI_SEND verb

is shorter than the length given in the lua_data_length parameter.

v The data segment supplied on an RUI_READ, RUI_WRITE,

SLI_RECEIVE, or SLI_SEND verb is not a read/write data segment.

LUA_RESERVED_FIELD_NOT_ZERO

The command that was just issued has a reserved parameter that is not

zero.

LUA_INVALID_POST_HANDLE

A valid semaphore was not specified in the LUA verb control block. When

an LUA verb does not complete synchronously, a semaphore is needed to

signal the completion of the verb.

326 Client/Server Communications Programming

LUA_PURGED

An RUI_READ or an SLI_RECEIVE verb was canceled because an

RUI_PURGE or an SLI_PURGE was issued.

LUA_BID_VERB_SEG_ERROR

The buffer with the SLI_BID verb control block was released before the

SLI_RECEIVE with lua_flag1.bid_enable set to 1 was issued.

LUA_NO_PREVIOUS_BID_ENABLED

An RUI_BID or SLI_BID verb was not issued before an RUI_READ or

SLI_RECEIVE verb with lua_flag1.bid_enable was issued.

LUA_NO_DATA

An RUI_READ or SLI_RECEIVE verb was issued with the NO_WAIT

parameter and there was no data available to read.

LUA_BID_ALREADY_ENABLED

An RUI_BID or SLI_BID verb was active when an RUI_READ or

SLI_RECEIVE verb with lua_flag1.bid_enable was issued.

LUA_VERB_RECORD_SPANS_SEGMENTS

The LUA verb control block contains a length parameter that, when added

to the offset of the segment, goes past the end of the segment.

LUA_INVALID_FLOW

An LUA verb was issued with the lua_flag1 flow flags set in error. Check

that the correct number of lua_flag1 flow flags were set as follows:

v For RUI_READ or SLI_RECEIVE, at least one

v For RUI_WRITE, only one

v For SLI_SEND, only one lua_flag1 flow flag must be set when sending

an SNA response.

LUA_NOT_ACTIVE

An application program issued an LUA verb at a time that LUA was not

active within Communications Server.

LUA_VERB_LENGTH_INVALID

A verb was issued with an incorrect lua_verb_length parameter. The

length specified is not equal to the length that LUA expected.

LUA_REQUIRED_FIELD_MISSING

The issued RUI_WRITE verb either did not include a data pointer (if the

data count was not zero) or it did not include an lua_flag1flow flag.

LUA_READY

The SLI session is now ready to process additional commands. This status

is issued after a prior NOT_READY status was received, or after a

SLI_CLOSE verb completed with the primary return code CANCELED

and secondary return code RECEIVE_UNBIND_HOLD or

RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY

The SLI session is temporarily suspended for either of the following

reasons:

v A CLEAR command was received. The SLI session resumes when an

SDT command is received.

v An UNBIND command was received. The session is suspended until

BIND, optional STSN and SDT commands are received. Any user

extension routines that were supplied by the original SLI_OPEN verb

Appendix B. LUA Verb Return Codes 327

are called again; therefore, these routines must be reentrant. After the

SLI processes the SDT command, the SLI session resumes. Two types of

UNBIND commands are:

– UNBIND type X’02’, which means that a new BIND is coming

– UNBIND type X’01’, which means that the application specified an

lua_session_type of LUA_SESSION_TYPE_DEDICATED in the

SLI_OPEN verb that started this session.

LUA_INIT_COMPLETE

When the LUA interface initializes the session while SLI_OPEN is

processing, this status is returned on SLI_RECEIVE or SLI_BID verbs for

LUA applications that issue SLI_OPEN with the

LUA_INIT_TYPE_PRIM_SSCP parameter.

LUA_SESSION_END_REQUESTED

SLI received a SHUTD command from the host, indicating the host is

ready to shut down the session.

LUA_NO_SLI_SESSION

A command was issued when a session was not open, or a session is being

taken down because of an SLI_CLOSE verb or session failure. An

SLI_RECEIVE or SLI_SEND verb issued during the processing of an

SLI_OPEN verb returns this code when:

v The SLI_OPEN lua_init_type parameter is not set to

LUA_INIT_TYPE_PRIM_SSCP. An SLI_BID verb also returns this code

under these circumstances.

v The SLI_RECEIVE or SLI_SEND lua_flag1 parameter does not specify

lua_flag1.sscp_norm.

The SLI component is in SLI_OPEN processing after an UNBIND type

X’02’ command or UNBIND type X’01’

(LUA_SESSION_TYPE_DEDICATED) is received and until the SDT

command is processed. UNBIND type X’02’ indicates that a new BIND is

coming.

LUA_SESSION_ALREADY_OPEN

An SLI_OPEN verb was issued for an LU name that already has a session

open.

LUA_INVALID_OPEN_INIT_TYPE

An SLI_OPEN verb contained an incorrect value in the lua_init_type

parameter.

LUA_INVALID_OPEN_DATA

An SLI_OPEN verb was issued with the lua_init_type parameter set for

secondary initialization with INITSELF (LUA_INIT_TYPE_SEC_IS), and the

data buffer does not contain a valid INITSELF command.

LUA_UNEXPECTED_SNA_SEQUENCE

During SLI_OPEN processing, an unexpected command or data was

received from the host.

LUA_NEG_RSP_FROM_BIND_ROUTINE

The user-provided SLI_BIND routine generated a negative response to the

BIND. The SLI_OPEN verb ends unsuccessfully.

LUA_NEG_RSP_FROM_CRV_ROUTINE

The user-provided SLI_BIND routine generated a negative response to the

BIND. The SLI_OPEN verb ends unsuccessfully.

328 Client/Server Communications Programming

LUA_NEG_RSP_FROM_STSN_ROUTINE

The user-supplied SLI STSN routine responded negatively to the STSN.

SLI_OPEN ended unsuccessfully.

LUA_CRV_ROUTINE_REQUIRED

The user did not provide an SLI CRV routine, but a CRV was received

from the host. The SLI issues a negative response to the CRV, and the

SLI_OPEN verb ends unsuccessfully at this time.

LUA_NEG_RSP_FROM_SDT_ROUTINE

The user-provided SLI SDT routine generated a negative response to an

SDT. This condition causes the SLI_OPEN verb to end.

LUA_INVALID_OPEN_ROUTINE_TYPE

In the SLI_OPEN extension routine list, the lua_open_routine_type

parameter is not valid.

LUA_MAX_NUMBER_OF_SENDS

The application program issued more than two SLI_SEND verbs before

one completed.

LUA_SEND_ON_FLOW_PENDING

The application issued an SLI_SEND verb for an SNA flow

(SSCP-expedited, SSCP-normal, LU-expedited, LU-normal) that already has

an SLI_SEND verb outstanding.

LUA_INVALID_MESSAGE_TYPE

The SLI does not recognize the lua_message_type parameter.

LUA_RECEIVE_ON_FLOW_PENDING

The SLI application issued an SLI_RECEIVE verb for an SNA flow that

already has an SLI_RECEIVE verb outstanding.

LUA_DATA_LENGTH_ERROR

An SLI_OPEN command was issued that requires user data that the

application program did not supply. Data is required for a

secondary-initiated SLI_OPEN verb, and 4 bytes of status is required when

the application issues an SLI_SEND verb for an LUSTAT command.

LUA_CLOSE_PENDING

One of the following has occurred:

v A CLOSE_NORMAL was issued while a CLOSE_NORMAL or a

CLOSE_ABEND was pending.

v A CLOSE_ABEND was issued while another CLOSE_ABEND was

pending. The only valid reason to issue another CLOSE_ABEND is

when a CLOSE_NORMAL is pending.

LUA_NEGATIVE_RSP_CHASE

During SLI_CLOSE processing, the SLI received a negative response to a

CHASE command from the host. The session is stopped as requested by

the SLI_CLOSE.

LUA_NEGATIVE_RSP_SHUTC

During SLI_CLOSE processing, the SLI received a negative response to a

SHUTC command from the host. The session is stopped as requested by

the SLI_CLOSE.

LUA_NEGATIVE_RSP_SHUTD

During SLI_CLOSE processing, the SLI received a negative response to a

SHUTD command from the host. The session is stopped as requested by

the SLI_CLOSE.

Appendix B. LUA Verb Return Codes 329

LUA_NO_RECEIVE_TO_PURGE

An SLI_PURGE verb was issued when no SLI_RECEIVE verb was

outstanding. Two possible causes are as follows:

v The address contained in the lua_data_ptr parameter did not point to

the outstanding SLI_RECEIVE verb that was to be purged.

v The SLI_RECEIVE verb might have completed while the SLI_PURGE

verb was being processed. This is not an error condition. Code the

application program to handle this situation.

LUA_CANCEL_COMMAND_RECEIVED

While processing an SLI_RECEIVE verb, the host sent a CANCEL

command to cancel the chain of data being received.

LUA_RUI_WRITE_FAILURE

An RUI_WRITE verb posted with an unexpected error to the SLI.

LUA_INVALID_SESSION_TYPE

An SLI_OPEN verb contained a value that is not valid in the

lua_session_type.

LUA_SLI_BID_PENDING

An SLI verb was issued while a previously-issued SLI_BID is active. Only

one SLI_BID can be active at a time.

LUA_PURGE_PENDING

An SLI_PURGE verb was issued while a previously-issued SLI_PURGE is

active. Only one SLI_PURGE can be active at a time.

LUA_PROCEDURE_ERROR

An NSPE or NOTIFY message was received, indicating a host procedure

error occurred. The SLI_OPEN is posted with this return code (unless the

SLI_OPEN verb retry option is used). With lua_wait set to a nonzero

value, the INITSELF or LOGON message is retried until the host procedure

is available or the application issues an SLI_CLOSE.

LUA_INVALID_SLI_ENCR_OPTION

The lua_encr_decr_option parameter was set to 128 in the SLI_OPEN

verb. The SLI does not support 128 for the encryption or decryption

processing option.

LUA_RECEIVED_UNBIND

The SLI received an UNBIND command from the primary LU while there

was an active SLI session. The SLI session is stopped.

LUA_RECEIVED_UNBIND_HOLD

During primary- or secondary-initiated SLI_CLOSE normal processing, SLI

received an UNBIND type X'02'. Type X'02' means that a new BIND is

forthcoming. The session is suspended until BIND, optional CRV and

STSN, and SDT commands are received. Any user extension routines that

were supplied by the original SLI_OPEN verb are called again; these

routines must be reentrant. After the SLI processes the SDT command, the

SLI session resumes.

LUA_RECEIVED_UNBIND_NORMAL

During primary- or secondary-initiated SLI_CLOSE normal processing for

a session started with an SLI_OPEN verb that specified an

lua_session_type of LUA_SESSION_TYPE_DEDICATED, SLI received an

UNBIND type X'01'. The session is suspended until BIND, optional STSN

and SDT commands are received. Any user extension routines that were

330 Client/Server Communications Programming

supplied by the original SLI_OPEN verb are called again; these routines

must be reentrant. After the SLI processes the SDT command, the SLI

session resumes.

LUA_SLI_LOGIC_ERROR

The SLI detected an internal logic error.

LUA_TERMINATED

 A verb that was pending when an SLI_CLOSE or RUI_TERM verb was

issued has been canceled.

LUA_NO_RUI_SESSION

An RUI verb was issued for a session that has not been initialized (with

RUI_INIT) or a verb other than RUI_TERM was issued while an

RUI_INIT verb for the session was in progress.

 This return code can occur when a session outage occurs while no active

RUI verbs are outstanding. The next verb issued gets this return code. The

application program handles this return code as it would a

SESSION_FAILURE.

LUA_DUPLICATE_RUI_INIT

The application program issued an RUI_INIT verb for a session that is

already initialized or has an RUI_INIT verb in progress.

LUA_INVALID_PROCESS

An RUI verb was issued for a session that is already owned by another

process.

LUA_API_MODE_CHANGE

A non-SLI request was issued to the RUI on a session that was established

by the SLI.

LUA_COMMAND_COUNT_ERROR

The maximum number of issued RUI_READ or RUI_WRITE verbs was

exceeded, or an RUI_BID or RUI_TERM verb was issued while a

previously issued RUI_BID or RUI_TERM verb was still in progress.

LUA_NO_READ_TO_PURGE

An RUI_PURGE verb was issued when no RUI_READ verb was

outstanding. Two possible causes follow:

v The address contained in the lua_data_ptr parameter does not point to

the outstanding RUI_READ verb to be purged.

v The RUI_READ verb completed while the RUI_PURGE verb was being

processed. This is not an error condition. Code the application program

to handle this situation.

LUA_MULTPLE_WRITE_FLOWS

More than one flow flag was turned on in the FLAG1 issued to an

RUI_WRITE verb.

LUA_DUPLICATE_READ_FLOW

The application program issued an RUI_READ for a flow that already has

an RUI_READ pending.

LUA_DUPLICATE_WRITE_FLOW

The RUI_WRITE verb that was issued contained a FLAG1 flow flag that

showed a session flow for a previous RUI_WRITE verb that had not

completed.

Appendix B. LUA Verb Return Codes 331

LUA_LINK_NOT_STARTED

LUA could not start the data link during session initialization.

LUA_INVALID_ADAPTER

The DLC adapter configuration is incorrect or the configuration file has

been damaged.

LUA_ENCR_DECR_LOAD_ERROR

An unexpected error was received while attempting to load the

user-provided encryption or decryption dynamic link library.

LUA_ENCR_DECR_PROC_ERROR

An unexpected error was received while attempting to get the procedure

address within the user-provided encryption or decryption dynamic link

library.

LUA_LINK_NOT_STARTED_RETRY

An RUI_INIT or SLI_OPEN verb failed because the link could not be

activated. This return code implies that something is wrong at the partner

location or with the connection between the two machines.

LUA_NEG_NOTIFY_RSP

An RUI_INIT was issued that caused a notify request to be sent to the

SSCP to indicate the SLU can now be part of a session. The SSCP

responded negatively to this notify request. The intended half-session

component understood the supported request, but did not process it.

LUA_RUI_LOGIC_ERROR

An RUI internal logic error occurred.

LUA_LU_INOPERATIVE

A severe error occurred while the SLI was attempting to stop the session.

This LU is unavailable for any LUA requests until an ACTLU is received

from the host.

LUA_RESOURCE_NOT_AVAILABLE

The LU, PU, link station, or link specified in an RU is not available. The

SLI_OPEN verb cannot can be posted with this return code unless the

SLI_OPEN retry option is used. With lua_wait set to a nonzero value, the

INITSELF or LOGON message is retried until the host procedure is

available or the application issues an SLI_CLOSE verb.

LUA_SESSION_LIMIT_EXCEEDED

The requested session cannot be activated because one of the network

addressable units (NAUs) is at its session limit, such as the LU-LU session

limit or the LU mode session limit. This sense code applies to the

ACTCDRM, the INIT, the BID, and the CINIT requests.

 The SLI_OPEN verb can be posted with this return code unless the

SLI_OPEN verb retry option is used. With lua_wait set to a nonzero value,

the INITSELF or LOGON message is retried until the host procedure is

available or the application issues an SLI_CLOSE verb.

LUA_SLU_SESSION_LIMIT_EXCEEDED

If accepted, the request would cause the SLU session limit to be exceeded.

LUA_MODE_INCONSISTENCY

The present status does not permit the function to be performed. The

intended half-session component understood the supported request, but

did not process it. This code can also appear as a sense code in an EXR.

332 Client/Server Communications Programming

LUA_INSUFFICIENT_RESOURCES

Due to a temporary lack of resources, the receiver cannot act on the

request. The intended half-session component understood the supported

request, but did not process it.

LUA_RECEIVER_IN_TRANSMIT_MODE

A race condition exists. A normal-flow request was received while the

half-duplex contention state was not-receive, or while resources (such as

buffers) necessary for handling normal-flow data were unavailable.

 This code can also appear as a sense code in an exception request.

LUA_LU_COMPONENT_DISCONNECTED

An LU component is not available because of power-off or some other

disconnecting condition.

LUA_NEGOTIABLE_BIND_ERROR

A negotiable BIND was received. The SLI does not allow a negotiable

BIND unless there is a user-supplied SLI_BIND routine provided through

the SLI_OPEN verb.

LUA_BIND_FM_PROFILE_ERROR

An unsupported FM profile was detected on the BIND. The SLI supports

FM profiles 3 and 4 only.

LUA_BIND_TS_PROFILE_ERROR

An unsupported TS profile was detected on the BIND. The SLI supports

TS profiles 3 and 4 only.

LUA_BIND_LU_TYPE_ERROR

An unsupported LU type was detected. LUA supports LU 0, LU 1, LU 2

and LU 3 only.

LUA_SSCP_LU_SESSION_NOT_ACTIVE

The SSCP-LU session required for processing a request is not active. For

example, in processing an INITSELF request, the SSCP did not have an

active session with the target LU named in the INITSELF.

 Bytes 2 and 3 contain sense-code-specific information. The following

settings are allowed:

0000 No specific code applies.

0001 The SSCP-SLU session is being reactivated.

0002 The SSCP-PLU session is inactive. The SLI_OPEN verb can be

posted with this return code unless the SLI_OPEN retry option is

used. With lua_wait set to a nonzero value, the INITSELF or

LOGON message is retried until the host procedure is available or

the application issues an SLI_CLOSE verb.

0003 The SSCP-SLU session is inactive.

0004 The SSCP-SLU session is being reactivated.

LUA_REC_CORR_TABLE_FULL

The session receive correlation table for the flow requested reached its

capacity.

LUA_SEND_CORR_TABLE_FULL

The send correlation table for the flow requested reached its capacity.

Appendix B. LUA Verb Return Codes 333

LUA_SESSION_SERVICES_PATH_ERROR

A session services request cannot be rerouted along a path of SSCP-SSCP

sessions. This capability is required, for example, to set up a cross-network

LU-LU session.

 Bytes 2 and 3 contain sense-code-specific information. The following

settings are allowed:

0000 No specific code applies. The SLI_OPEN cannot be posted with

this return code unless the SLI_OPEN retry option is used. With

lua_wait set to a nonzero value, the INITSELF or LOGON message

is retried until the host procedure is available or the application

issues an SLI_CLOSE.

0001 An SSCP tried unsuccessfully to reroute a session services request

to its destination through one or more adjacent SSCPs. This value

is sent by a gateway SSCP when it has exhausted trial-and-error

rerouting.

 SSCP rerouting failed completely. An SSCP tried unsuccessfully to

a particular SSCP. For example, this code is associated with specific

SSCPs when information about a rerouting failure is displayed in

the node that was trying to reroute.

0002

 An SSCP is unable to reroute a session services request because a

necessary routing table is not available; that is, no adjacent SSCP

table corresponds to the rerouting key in the resource identifier

control vector.

0003

 This SSCP has no predefinition for an LU, but an adjacent SSCP

does not support dynamic definition in partner SSCPs. As a result,

this SSCP cannot both dynamically define the LU and reroute to

that adjacent SSCP.

0005

 Retired

0006

 Retired

0008

 The adjacent SSCP does not support the requested CDINIT

function (for example, notification of resource availability or XRF).

000A

 An SSCP is unable to reroute a session services request because the

request was routed through the same SSCP twice.

000B

 The DLU specified in the CDINIT is unknown to the receiving

SSCP, and the receiving SSCP cannot reroute the CDINIT.

LUA_RU_LENGTH_ERROR

The requested RU was too long or too short. The RU was delivered to the

intended half-session component, but it could not be interpreted or

processed. This condition represents a mismatch of half-session capabilities.

334 Client/Server Communications Programming

This code can also appear as a sense code in an EXR.

LUA_FUNCTION_NOT_SUPPORTED

The function that was requested is not supported by LUA. The function

may have been specified by a formatted request code, a parameter in an

RU, or a control character.

 Bytes 2 and 3 that follow the sense code are not used for user-defined data.

These bytes contain sense-code-specific information. The following setting

is allowed:

0000 The requested function is not supported by LUA.

The RU was delivered to the intended half-session component, but it could

not be interpreted or processed. This condition represents a mismatch of

half-session capabilities.

LUA_HDX_BRACKET_STATE_ERROR

A protocol machine determined that the current request could not be sent

under the existing state error.

LUA_RESPONSE_ALREADY_SENT

A protocol machine determined that the current request could not be sent

because a response for the chain had already been sent.

LUA_EXR_SENSE_INCORRECT

The application issued a negative response for a previously received

exception request. The sense code in the response was not acceptable.

 If the sense code in the exception request is X’0813000’, the sense code in

the negative response can be either X’08130000’ or X’08140000’. In all other

cases, the sense code in the negative response must be the same as the

sense code in the exception request.

LUA_RESPONSE_OUT_OF_ORDER

A protocol machine determined that the current response was not issued to

the oldest request.

LUA_CHASE_RESPONSE_REQUIRED

A protocol machine determined that the current request is being attempted

with an older CHASE request outstanding.

LUA_CATEGORY_NOT_SUPPORTED

A DFC, SC, NC, or FMD request was received by a half-session not

supporting any requests in that category, a network services (NS) request

byte 0 was not set to a defined value, or byte 1 was not set to an NS

category by the receiver.

LUA_CHAINING_ERROR

An error occurred in the sequence of the chain indicator settings, such as

first, middle, first. A request header or a request unit that is not allowed

for the receiver’s current session control or data flow control state was

detected. This error prevents delivery of the request to the intended

half-session component.

LUA_BRACKET

The sender did not enforce bracket rules for the session. A request header

or request unit that is not allowed for the receiver’s current session control

or data flow control state was detected. This error prevents delivery of the

request to the intended half-session component.

LUA_DIRECTION

A normal-flow request was received while the half-duplex flip-flop state

Appendix B. LUA Verb Return Codes 335

was NOT_RECEIVE. A request header or request unit that is not allowed

for the receiver’s current session control or data flow control state was

detected. This error prevents delivery of the request to the intended

half-session component.

LUA_DATA_TRAFFIC_RESET

An FMD or normal-flow DFC request was received by a half-session

whose session activation state was active, but whose data traffic state was

not active. A request header or a request unit that is not allowed for the

receiver’s current session control or data flow control state was detected.

This error prevents delivery of the request to the intended half-session

component.

LUA_DATA_TRAFFIC_QUIESCED

An FMD or a DFC request, received from a half-session that sent a QC

command or a SHUTC command, has not responded to a RELQ command.

A response header or request unit that is not allowed for the receiver’s

current session control or data flow control state was detected. This error

prevents delivery of the request to the intended half-session component.

LUA_DATA_TRAFFIC_NOT_RESET

A session control request was received while the data traffic state was not

reset. A request header or request unit that is not allowed for the receiver’s

current session control or data flow control state was detected. This error

prevents delivery of the request to the intended half-session component.

LUA_NO_BEGIN_BRACKET

A BID or an FMD request that specified BBI=BB was received after the

receiver had previously sent a positive response to a BIS command. A

request header or request unit that is not allowed for the receiver’s current

session control or data flow control state was detected. This error prevents

delivery of the request to the intended half-session component.

LUA_SC_PROTOCOL_VIOLATION

An SC protocol was violated. A request allowed only after a successful

exchange of an SC request and its associated positive response was

received before a successful exchange occurred. Byte 4 of the sense data

contains the request code. There is no user data associated with this sense

code. A request header or request unit that is not allowed for the receiver’s

current session control or data flow control state was detected. This error

prevents delivery of the request to the intended half-session component.

LUA_IMMEDIATE_REQ_MODE_ERROR

The immediate request mode protocol was violated by the request. An RH

or RU that is not allowed for the receiver’s current session control or data

flow control state was detected. This error prevents delivery of the request

to the intended half-session component.

LUA_QUEUED_RESPONSE_ERROR

The Queued Response protocol was violated by a request; for example,

QRI=¬ QR when an outstanding request has QRI=QR. An RH or an RU

that is not allowed for the receiver’s current session control or data flow

control state was detected. This error prevents delivery of the request to

the intended half-session component.

LUA_ERP_SYNC_EVENT_ERROR

The ERP synchronous event protocol was violated. An RH or an RU that is

not allowed for the receiver’s current session control or data flow control

state was detected. This error prevents delivery of the request to the

intended half-session component.

336 Client/Server Communications Programming

LUA_RSP_BEFORE_SENDING_REQ

An attempt was made in half-duplex (flip-flop or contention) send/receive

mode to send a normal-flow request when a response to a previously

received request has not yet been sent. An RH or an RU that is not allowed

for the receiver’s current session control or data flow control state was

detected. This error prevents delivery of the request to the intended

half-session component.

LUA_RSP_CORRELATION_ERROR

A response was received that cannot be correlated with a previously sent

request, or a response was sent that cannot be correlated with a previously

received request.

LUA_RSP_PROTOCOL_ERROR

A response was received from the primary half-session that violated the

response protocol, such as:

v A positive response (+RSP) was received for an RQE chain.

v Two responses were received for one chain.

LUA_INVALID_SC_OR_NC_RH

The RH of a session control (SC) or network control (NC) request was not

valid. For example, an SC RH with the pacing request indicator set to 1 is

not valid. The value of a parameter or combination of parameters in the

RH violates the architectural rules or previously selected LOGON options.

These errors prevent delivery of the request to the intended half-session

component and are independent of the current states of the session. These

errors might result from the sender’s failure to enforce session RU.

LUA_BB_NOT_ALLOWED

The begin bracket indicator (BB) was specified incorrectly; for example,

BBI=BB with BCI=¬BC. The value of a parameter or combination of

parameters in the RH violates the architectural rules or previously selected

LOGON options. These errors prevent delivery of the request to the

intended half-session component and are independent of the current states

of the session. These errors might result from the failure of the sender to

enforce session rules.

LUA_EB_NOT_ALLOWED

The end bracket indicator (EB) was specified incorrectly; for example, by

EBI=EB with BCI=¬BC, or by the primary half-session when only the

secondary can send an EB, or by the secondary half-session when only the

primary can send an EB. The value of a parameter or combination of

parameters in the RH violates the architectural rules or previously selected

LOGON options. These errors prevent delivery of the request to the

intended half-session component and are independent of the current states

of the session. These errors might result from the failure of the sender to

enforce session rules.

LUA_EXCEPTION_RSP_NOT_ALLOWED

An exception response was requested when it was not permitted. The

value of a parameter or combination of parameters in the RH violates the

architectural rules or previously selected LOGON options. These errors

prevent delivery of the request to the intended half-session component and

are independent of the current states of the session. These errors might

result from the failure of the sender to enforce session rules.

LUA_DEFINITE_RSP_NOT_ALLOWED

A definite response was requested when it was not permitted. The value of

a parameter or combination of parameters in the RH violates the

Appendix B. LUA Verb Return Codes 337

architectural rules or previously selected LOGON options. These errors

prevent delivery of the request to the intended half-session component and

are independent of the current states of the session. These errors might

result from the failure of the sender to enforce session rules.

LUA_PACING_NOT_SUPPORTED

The pacing indicator was set on a request, but the receiving half-session or

the boundary function half-session does not support pacing for this

session. The value of a parameter or combination of parameters in the RH

violates the architectural rules or previously selected LOGON options.

These errors prevent delivery of the request to the intended half-session

component and are independent of the current states of the session. These

errors might result from the failure of the sender to enforce session rules.

LUA_CD_NOT_ALLOWED

The change-direction indicator (CD) was specified incorrectly; for example,

CDI=CD with ECI=¬EC or CDI=CD with EBI=EB. The value of a

parameter or combination of parameters in the RH violates the

architectural rules or previously selected LOGON options. These errors

prevent delivery of the request to the intended half-session component and

are independent of the current states of the session. These errors might

result from the failure of the sender to enforce session rules.

LUA_NO_RESPONSE_NOT_ALLOWED

No-response was specified on a request when it was not permitted.

No-response is used only on EXR. The value of a parameter or

combination of parameters in the RH violates the architectural rules or

previously selected LOGON options. These errors prevent delivery of the

request to the intended half-session component and are independent of the

current states of the session. These errors might result from the failure of

the sender to enforce session rules.

LUA_CHAINING_NOT_SUPPORTED

The chaining indicators (BCI and ECI) were specified incorrectly; for

example, chaining bits other than BCI=BC and ECI=EC were indicated, but

multiple-request chains are not supported for the session or for the

category specified in the request header. The value of a parameter or

combination of parameters in the RH violates the architectural rules or

previously selected LOGON options. These errors prevent the delivery of

the request to the intended half-session component and are independent of

the current states of the session. These errors might result from the failure

of the sender to enforce session rules.

LUA_BRACKETS_NOT_SUPPORTED

The bracket indicators (BBI and EBI) were specified incorrectly; for

example, a bracket indicator was set (BBI=BB or EBI=EB), but brackets are

not used for the session. The value of a parameter or combination of

parameters in the RH violates the architectural rules or previously selected

LOGON options. These errors prevent delivery of the request to the

intended half-session component and are independent of the current states

of the session. These errors might result from the failure of the sender to

enforce session rules.

LUA_CD_NOT_SUPPORTED

The change-direction indicator was set, but is not supported. The value of

a parameter or combination of parameters in the RH violates the

architectural rules or previously selected LOGON options. These errors

prevent delivery of the request to the intended half-session component and

338 Client/Server Communications Programming

are independent of the current states of the session. These errors might

result from the failure of the sender to enforce session rules.

LUA_INCORRECT_USE_OF_FI

The format indicator (FI) was specified incorrectly; for example, the FI was

set with BCI=¬BC or the FI was not set on a DFC request. The value of a

parameter or combination of parameters in the RH violates the

architectural rules or previously selected LOGON options. These errors

prevent delivery of the request to the intended half-session component and

are independent of the current states of the session. These errors might

result from the failure of the sender to enforce session rules.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

The code selection indicator (CSI) was set when it was not supported for

the session. The value of a parameter or combination of parameters in the

RH violates the architectural rules or previously selected LOGON options.

These errors prevent delivery of the request to the intended half-session

component and are independent of the current states of the session. These

errors might result from the failure of the sender to enforce session rules.

LUA_INCORRECT_RU_CATEGORY

The RU category indicator was specified incorrectly; for example, an

expedited-flow request or a response was specified with the RU category

indicator = FMD. The value of a parameter or combination of parameters

in the RH violates the architectural rules or previously selected LOGON

options. These errors prevent delivery of the request to the intended

half-session component and are independent of the current states of the

session. These errors might result from the failure of the sender to enforce

session rules.

LUA_INCORRECT_REQUEST_CODE

The request code on a response does not match the request code on its

corresponding request. The value of a parameter or combination of

parameters in the RH violates the architectural rules or previously selected

LOGON options. These errors prevent delivery of the request to the

intended half-session component and are independent of the current states

of the session. These errors might result from the failure of the sender to

enforce session rules.

LUA_INCORRECT_SPEC_OF_SDI_RTI

The sense-data-included indicator (SDI) and the response-type indicator

(RTI) were not specified correctly on a response. The proper value pairs are

(SDI=SD, RTI=negative) and (SDI=¬SD, RTI=positive). The value of a

parameter or combination of parameters in the RH violates the

architectural rules or previously selected LOGON options. These errors

prevent delivery of the request to the intended half-session component and

are independent of the current states of the session. These errors might

result from the failure of the sender to enforce session rules.

LUA_INCORRECT_DR1I_DR2I_ERI

The definite response 1 indicator (DR1I), the definite response 2 indicator

(DR2I), and the exception response indicator (ERI) were specified

incorrectly. For example, a CANCEL request was not specified with

DR1I=DR1, DR2I=¬DR2, and ERI=¬ER. The value of a parameter or

combination of parameters in the RH violates the architectural rules or

previously selected LOGON options. These errors prevent delivery of the

request to the intended half-session component and are independent of the

current states of the session. These errors might result from the failure of

the sender to enforce session rules.

Appendix B. LUA Verb Return Codes 339

LUA_INCORRECT_USE_OF_QRI

The queued response indicator (QRI) was specified incorrectly; for

example, QRI=QR on an expedited-flow request. The value of a parameter

or combination of parameters in the RH violates the architectural rules or

previously selected LOGON options. These errors prevent delivery of the

request to the intended half-session component and are independent of the

current states of the session. These errors might result from the failure of

the sender to enforce session rules.

LUA_INCORRECT_USE_OF_EDI

The enciphered data indicator (EDI) was specified incorrectly; for example

EDI=ED on a DFC request. The value of a parameter or combination of

parameters in the RH violates the architectural rules or previously selected

LOGON options. These errors prevent delivery of the request to the

intended half-session component and are independent of the current states

of the session. These errors might result from the failure of the sender to

enforce session rules.

LUA_INCORRECT_USE_OF_PDI

The padded data indicator (PDI) was specified incorrectly, such as PDI=PD

on a DFC request. The value of a parameter or combination of parameters

in the RH violates the architectural rules or previously selected LOGON

options. These errors prevent delivery of the request to the intended

half-session component and are independent of the current states of the

session. These errors might result from the failure of the sender to enforce

session rules.

LUA_NAU_INOPERATIVE

The NAU is unable to process requests or responses. For example, the

NAU was disrupted by an abnormal end. The request could not be

delivered to the intended receiver, because of a path outage, an incorrect

sequence of activation requests, or one of the listed path information unit

(PIU) errors. A path error that is received while the session is active

generally indicates that the path to the session partner is lost.

LUA_NO_SESSION

No half-session is active in the receiving end node for the indicated

origin-destination pair or no boundary function half-session component is

active for the origin-destination pair in a node that provides the boundary

function. A session activation request is needed. The request could not be

delivered to the intended receiver because of a path outage or an incorrect

sequence of activation requests. A path error that is received while the

session is active generally indicates that the path to the session partner is

lost.

LUA_BRACKET_RACE_ERROR

A loss of contention within the bracket protocol occurred. When bracket

initiation or bracket termination by both NAUs occurs, contention is lost.

The intended half-session component understood the supported request,

but did not process it.

LUA_BB_REJECT_NO_RTR

A BID or a begin-bracket indicator was received while the first speaker

was in the in-bracket state or while the first speaker was in the

between-brackets state. The first speaker denied permission. No RTR

command will be sent. The intended half-session component understood

the supported request, but did not process it.

340 Client/Server Communications Programming

LUA_CRYPTOGRAPHY_INOPERATIVE

The receiver of a request was not able to decipher the request because of a

malfunction in its cryptography facility. The intended half-session

component understood the supported request, but did not process it.

LUA_SYNC_EVENT_RESPONSE

A negative response to a synchronizing request was received. The intended

half-session component understood the supported request, but did not

process it.

LUA_RU_DATA_ERROR

Data in the request RU is not acceptable to the receiving FMDS component.

For example, a character code is not in the set that is supported, a

formatted data parameter is not acceptable to presentation services, or a

required name in the request has been omitted. The RU was delivered to

the intended half-session component, but it could not be interpreted or

processed. This condition represents a mismatch of half-session capabilities.

LUA_INCORRECT_SEQUENCE_NUMBER

The sequence number that was received on a normal-flow request was not

greater than the last sequence number. A sequence number error or an RH

or RU that is not allowed for this receiver’s current session control or data

flow control state was detected. This error prevents the delivery of the

request to the intended half-session component.

Appendix B. LUA Verb Return Codes 341

342 Client/Server Communications Programming

Appendix C. APPC Conversation State Transitions

The following tables show the conversation states in which each APPC verb can be

issued, and the state change that occurs on completion of the verb. In some cases,

the state change depends on the primary_rc parameter returned to the verb; where

this applies, the applicable primary_rc values are listed in the Return codes

column.

Where no return codes are shown, the state changes are the same for all return

codes (except as described in Notes 2 and 3 following the table).

The possible conversation states are shown as column headings. Against each verb,

the following information is given under each heading to indicate the results of

issuing the verb in this state:

v X indicates that the verb cannot be issued in this state.

v The following markers indicate the state of the conversation after the verb has

completed:

– Send

– Send Pending

– Receive

– Confirm

– Confirm Send

– Confirm Deallocate

– Pending PoSt

– ReseT

v / indicates that it is not applicable to consider the previous state. This applies to

the [MC_]ALLOCATE and RECEIVE_ALLOCATE verbs; these verbs always

start a new conversation as though they were in Reset state, with no effect on

the conversation (if any) in which they were issued.

v A blank entry indicates that the return code shown cannot occur in this state.

For information on full-duplex conversation state transitions, see Table 27 on page

345.

 Table 26. APPC Half-Duplex Conversation State Transitions

Verb Return Codes T S SP R C CS CD PS

[MC_]ALLOCATE

 AP_OK S / / / / / / /

 (other) T

CANCEL_CONVERSATION X T T T T T T T

[MC_]CONFIRM X

 AP_OK S S X X X X X

 AP_ERROR R R

[MC_]CONFIRMED X X X X R S T X

[MC_]DEALLOCATE (Abend) X T T T T T T T

[MC_]DEALLOCATE (Other)

© Copyright IBM Corp. 1994, 2006 343

Table 26. APPC Half-Duplex Conversation State Transitions (continued)

Verb Return Codes T S SP R C CS CD PS

 AP_ERROR X R R X X X X X

 (other) T T

[MC_]FLUSH X S S X X X X X

[MC_]GET_ATTRIBUTES X S SP R C CS CD P

GET_STATE X S SP R C CS CD P

GET_TYPE X S SP R C CS CD P

[MC_]PREPARE_TO_ RECEIVE X R R X X X X X

RECEIVE_ALLOCATE R

 AP_OK T / / / / / / /

 (other)

[MC_]RECEIVE_AND_POST

(Note 4)

X P P P X X X X

[MC_]RECEIVE_AND_WAIT X Note 5 Note 5 Note 5 X X X X

[MC_]RECEIVE_IMMEDIATE X X X Note 5 X X X X

[MC_]REQUEST_TO_SEND X X X R C X X P

[MC_]SEND_DATA X

 AP_OK S S X X X X X

 AP_ERROR R

[MC_]SEND_ERROR X

 AP_OK S S S S S S S

 AP_ERROR R

[MC_]TEST_RTS X S S R C C C P

Notes:

1. In the Return codes column of the table, the abbreviation AP_ERROR is used

for the following return codes:

 AP_PROG_ERROR_TRUNC

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_SVC_ERROR_TRUNC

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING.
2. The conversation will always enter Reset state if any of the following return

codes are received:

 AP_ALLOCATION_ERROR

 AP_COMM_SUBSYSTEM_ABENDED

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_CONV_FAILURE_RETRY

 AP_CONV_FAILURE_NO_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_DEALLOC_NORMAL

344 Client/Server Communications Programming

3. The following non-OK return codes do not cause any state change. The

conversation always remains in the state in which the verb was issued:

 AP_CONVERSATION_TYPE_MIXED

 AP_PARAMETER_CHECK

 AP_STATE_CHECK

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_UNSUCCESSFUL
4. After [MC_]RECEIVE_AND_POST has been issued and received the initial

primary_rc of AP_OK, the conversation changes to Pending Post state. Once

the supplied callback routine has been called to indicate that the verb has

completed, the new conversation state depends on the primary_rc and

what_rcvd parameters as in Note 5.

5. The state change after one of the RECEIVE verbs depends on both the

primary_rc and what_rcvd parameters.

If the primary_rc parameter is AP_PROG_ERROR*, AP_SVC_ERROR*, or

([MC_]RECEIVE_IMMEDIATE only) AP_UNSUCCESSFUL, the new state is

RECEIVE.

If the primary_rc parameter is AP_DEALLOC*, the new state is RESET.

If the primary_rc parameter is AP_OK, the new state depends on the value of

the what_rcvd parameter:

Receive state

AP_DATA, AP_DATA_COMPLETE, AP_DATA_INCOMPLETE

Send state

AP_SEND

Send Pending state

AP_DATA_SEND, AP_DATA_COMPLETE_SEND

Confirm state

AP_CONFIRM_WHAT_RECEIVED, AP_DATA_CONFIRM,

AP_DATA_COMPLETE_CONFIRM

Confirm Send state

AP_CONFIRM_SEND, AP_DATA_CONFIRM_SEND,

AP_DATA_COMPLETE_CONFIRM_SEND

Confirm Deallocate state

AP_CONFIRM_DEALLOCATE, AP_DATA_CONFIRM_DEALLOCATE,

AP_DATA_COMPLETE_CONFIRM_DEALL

For information on half-duplex conversation state transitions, see Table 26 on page

343.

 Table 27. APPC Full-Duplex Conversation State Transitions

Verb Return Codes T SR S R

[MC_]ALLOCATE

 AP_OK SR / / /

 (other) T

CANCEL_CONVERSATION X T T T

[MC_]DEALLOCATE (Abend) X T T T

[MC_]DEALLOCATE (Flush) X R T X

[MC_]FLUSH X SR S X

Appendix C. APPC Conversation State Transitions 345

Table 27. APPC Full-Duplex Conversation State Transitions (continued)

Verb Return Codes T SR S R

[MC_]GET_ATTRIBUTES X SR S R

GET_STATE X SR S R

GET_TYPE X SR S R

RECEIVE_ALLOCATE

 AP_OK SR / / /

 (other) T

[MC_]RECEIVE_AND WAIT

 AP_OK X SR X R

 AP_ERROR X SR X R

 AP_DEALLOC_NORMAL X S X T

RECEIVE_EXPEDITED_DATA X SR S R

[MC_]RECEIVE_ IMMEDIATE

 AP_OK X SR X R

 AP_ERROR X SR X R

 AP_DEALLOC_NORMAL X S X T

[MC_]SEND_DATA

 AP_OK X SR S X

 AP_ERROR_INDICATION X SR T X

[MC_]SEND_ERROR

 AP_OK X SR S X

 AP_ERROR_INDICATION X SR T X

Notes:

1. In the Return codes column of the table, the abbreviation AP_ERROR is used

for the following return codes:

 AP_PROG_ERROR_TRUNC

 AP_PROG_ERROR_NO_TRUNC

 AP_SVC_ERROR_TRUNC

 AP_SVC_ERROR_NO_TRUNC
2. The conversation will always enter Reset state if any of the following return

codes are received:

 AP_ALLOCATION_ERROR

 AP_COMM_SUBSYSTEM_ABENDED

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_CONV_FAILURE_RETRY

 AP_CONV_FAILURE_NO_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER
3. The following non-OK return codes do not cause any state change. The

conversation always remains in the state in which the verb was issued:

 AP_CONVERSATION_TYPE_MIXED

 AP_PARAMETER_CHECK

 AP_STATE_CHECK

346 Client/Server Communications Programming

AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_UNSUCCESSFUL

Appendix C. APPC Conversation State Transitions 347

348 Client/Server Communications Programming

Appendix D. Communications Server Service Location

Protocol

Discovery and Load Balancing APIs

An IBM Communications Server for Windows application program developer can

locate services and load balance among those services using the TCP/IP protocol.

There are three basic methods that an application program can take advantage of

this new function:

Method 1:

Communications Server SNA APIs (LUx (RUI/SLI), APPC, CPIC). Using

the APIs will get the support basically for free if an existing application is

already written to an SNA API. With this method, no new code must be

written to take advantage of the location/load balancing functions. The

only constraint with this method is that API code expects the client’s

configuration data to reside in an INI file, or LDAP Communications

Server for Windows.

Method 2:

Service Location Protocol (SLP) User Agent (UA) API. An SLP UA DLL is

packaged with the product which provides support for Communications

Server service location and load-balancing over TCP/IP connections. This

method provides the greatest flexibility for the application developer in

terms of how to do the service location/load-balancing, where to obtain

client configuration, and how to present these functions to the end user.

Method 3:

Using a combination of UA (for location) and the QEL/MU

CM_CSLIST_GETII primitive for load-balancing (for 3270 and LU 6.2

applications only). This method is a hybrid of the first two in that it

reduces the amount of code needed to be written to only the location

function and gives maximum flexibility in terms of client configuration.

IBM recommends using the API client for location and load-balancing. If the

application developer is unable to do so or desires to support Telnet, method 2 is

provided. If support for QEL/MU is already provided then method 3 may be used.

Since the first method is really nothing new from the application developer’s

perspective, the following discussion applies to the last two methods.

Structure

The UA API is a general-purpose C language API modeled after the one presented

in the ″An API for Service Location″ Internet draft (dated 3/25/97). The following

characteristics apply to the service registrations:

v All registrations are made in US English.

v The character set is US-ASCII.

The API is packaged as the IBMSLP.DLL on Windows. Header files are provided in

this SDK that define relevant structures, constants, and function prototypes. The

DLL is installed when the API client is installed and can also be found on the

product CD-ROM with the SLP SDK files at \CSNT\SDK\SLP\BINARY\
IBMSLP.DLL.

© Copyright IBM Corp. 1994, 2006 349

Scenarios

In each scenario, the application program using the user agent API is called the

app. References to the end user (person using the app) are shortened to user.

Method 2: UA API to locate the least-loaded (or low-loaded)

service.

1. The application issues SL_Open to open a session with SLP.

2. If a scope is not configured or is not otherwise made available to the app, the

application issues an SL_GetAttrs API call for the desired service type with an

attribute tag filter of ’SCOPE’ to obtain valid, reachable scopes. Supplying a

service name of one of the administrated Communications Server services on

this API call will ensure that you will be returned only scopes that apply to the

supplied service type.

3. The application then issues SL_GetService specifying the desired service, one of

the obtained scope names, and the query string indicating which service

attributes are required. For illustration purposes the service attributes specified

in this example query would be LUPOOL, and LOAD. The Service reply will

contain either an indication the no matching services were located, or a list of

URLs that can provide the service, while satisfying the query string

requirements.

4. The application analyzes the returned list:

5. If no URLs are returned, the application either modifies and reissues the

original SL_GetService request illustrated in step 3 with a new LOAD criterion

range, or informs the end user that the service is not currently available.

6. If a single URL is returned, the analysis is done.

7. If a list of URLs is returned:

v Option 1 - ″least load″ location

a. The application issues SL_GetAttrs for each URL returned in the Service

Reply. It specifies the LOAD attribute in the select clause on each call.

The LOAD value is returned in the Get Attributes reply.

b. The application selects the URL with the lowest LOAD value.

c. The application connects to the server represented by the selected URL

and begins its SNA session.

d. The application issues SL_Close to close the SLP session.
v Option 2 - ″low load″ selection

a. Randomly select a URL from the returned list.

b. The application connects to the server represented by the selected URL

and begins its SNA session.

c. The application issues SL_Close to close the SLP session.

Note that there are two options presented for load-balancing among a large

number of servers. The key difference between the two options is this: option 1

guarantees that the least-loaded server is selected, but it generates more LAN

traffic than option 2. Option 2 guarantees only that a ″low-loaded″ server is

selected, but there is less potential line traffic on the LAN during the selection

process than option 1.

Retries: In many cases, connection retries by the application are necessary to

effect the maximum availability of resources for the user. One condition that

necessitates a connection retry by the application is when the application attempts

to connect to a URL returned on SL_GetService and then establish an SNA session

but no LU is available. This condition is possible due to the loose coupling

350 Client/Server Communications Programming

between what services are registered via SLP and what services are actually

available on the registering server. If the application fails to connect to a selected

service, it should retry to another returned service (for example, the next,

least-loaded server). If no more services are available, the application can either

retry from the initial SL_GetService or report the condition to the end-user.

URL Formats: The URLs advertised by Communications Server consist of two

parts: the dotted-decimal IP address and a port number.

A URL is an ASCII string with the following format:

<IP address>:<port number>

The IP address is the default IP address for the server. The port number depends

on the service type being advertised:

 Table 28. Service Type/Port Information

Service type Port

commserver well-known CommExec listening

port 1366

cs3270 well-known CommExec listening

port 1366

csappc well-known CommExec listening

port 1366

tn3270 Telnet port as obtained from ETC/SERVICES

file on server or configured to the Telnet

server

Ports

Communications Server currently supports multiple ports. Support for secure

encrypted Telnet sessions will also be provided, which will require a different port

number than the default port number, for the secure session. The emulator should

be able to use the port numbers that are returned from a SLP service discovery.

More information about the service types can be found in the TEMPLATE.HTM

file.

Example 1: An application provides 3270 emulation over Telnet. It needs to

connect to any LU available in its configured LU Pool of ACCOUNTS, and it needs

to connect through the lightest loaded server. No scopes are configured in the

network. The mainframe host supports dynamic device types so the application

does not need to specify a device type.

The application begins by issuing the following predicate for the SL_GetService

request to locate a server (in all examples ’\t’ is the TAB character):

tn3270//LUPOOL==ACCOUNTS*/

At this point, a list of three URLs (similar to these) is returned (the port number 23

is the standard port for Telnet connection requests):

service:tn3270://9.37.51.254:23

service:tn3270://9.37.51.260:23

service:tn3270://9.37.51.256:23

Appendix D. Communications Server Service Location Protocol 351

Being designed to perform least-load location, the application issues a series of

SL_GetAttrs calls directed to each URL to obtain the load measurement of each

server. It specifies a select clause similar to the one below to receive only load

information:

URL = service:tn3270://9.37.51.254:23

Attribute filter = LOAD

v The attribute LOAD is returned along with its value ″5″

v The application issues a second SL_GetAttrs for the second URL and its load is

returned, ″2″

v And finally the third server, which returns a load of ″10″

Since the load for the second server is lower, the application selects 9.37.52.260:23

as its connection target. The application tries to connect through 9.37.51.260, but

the connection fails since no LUs are available. It then tries to connect through

9.37.51.254 (the next least-loaded server) and this time, it succeeds.

Example 2: Another application provides TN3270 emulation. It needs to locate a

lightly-loaded server providing this service. The client’s configuration is obtained

from either an INI file or NDS: it’s scope is ENGINEERING, and it needs to find

an LU type 2 model 2 from the LU Pool SMITH_1.

The application begins by issuing an SL_GetAttrs call with the service type of

TN3270: and an attribute tag filter of ’SCOPE’. This returns a list of scope values

that the servers supporting TN3270 have been administrated for. For illustrative

purposes, assume that the scope value of ’ENGINEERING’ is returned on the

SL_GetAttrs call. Next the application builds the following predicate for the

SL_GetService request to locate a server within this scope, that satisfies its initial

LU device type, and load requirements (in all examples ’\t’ is the TAB character):

tn3270/ENGINEERING/LUPOOL==SMITH_1\t3270002,LOAD <= 10/

The application is designed to locate in load increments of 10, so if the initial

SL_GetService request returns an empty list, the application re-issues the

SL_GetService specifying the service again plus the new load attribute.

tn3270/ENGINEERING/LUPOOL==SMITH_1\t3270002,LOAD <= 20/

At this point, a list of two URLs (similar to these) is returned (the port number 23

is the standard port for Telnet connection requests) :

service:tn3270://9.37.51.254:23

service:tn3270://9.37.51.260:23

The application does not care that the absolute least-loaded server be selected as

long as its load is below 20%. Therefore, it selects one of the two returned URLs at

random:

URL = service:tn3270://9.37.51.260:23

The application selects 9.37.52.260:23 as its connection target, and the connection is

successful.

Method 3: UA for service location and CM_CSLIST_GETII for

load-balancing

The CM_CSLIST_GETII primitive is provided for QEL/MU emulators. The

primitive is extended to allow multiple filters to be supplied by the application.

The header file cmi.h contains structures and definitions for this method and is

included in this SDK. To use this method, the following procedure applies:

1. The application issues SL_Open to open a session with SLP.

352 Client/Server Communications Programming

2. If a scope is not configured or is not otherwise made available to the app, the

application issues an SL_GetAttrs API call for the ’cs3270’ service type with an

attribute tag filter of ’SCOPE’ to obtain valid, reachable scopes. This API

returns a list of scopes that correspond to service URLs of Communications

Server that can respond to the IP-version CM_CSLIST_GETII primitive.

3. The application issues SL_GetService specifying the ’cs3270’ service only, and a

valid scope. The Service reply contains a list of URLs of servers to which the

application can connect that can handle the CM_CSLIST_GETII primitive.

4. The application connects to the server represented by any selected URL in the

list.

5. The application issues SL_Close to close the SLP session.

6. The application builds a CM_CSLIST_GETII primitive to retrieve a

load-balanced list of servers. In it, the AgentType field is set to the desired

service, and the filter specification contains the scope and the LU Pool name (if

applicable).

7. A CM_CSLIST_GETII_ACK is returned containing a list of server TCP/IP

addresses in load-balanced order (least-loaded to highest).

8. The application selects the first server in the list and connects to it.

9. The application tries to establish an SNA session with the server. If

unsuccessful, it repeats the previous step with the next server in the returned

list (and so on) until it succeeds or the list is exhausted.

 Table 29. CM_CSLIST_GETII Primitive

Field name

Field

offset

(hex)

Field

length

(dec) Type Content and Use

PrimType x00 4 long int CM_CSLIST_GETII as in cmi.h.

UserParm x04 4 long int Any value you want returned in

the reply.

Reserved x08 4 long int zero

ServiceType x0c 4 long int 0x12B (for load balancing

support)

ProdVersion x10 4 long int -1 (indicates ″don’t care″)

NWVersion x14 4 long int -1 (indicates ″don’t care″)

Flags x18 4 long int See Table 31 on page 354.

AgentType x0c 4 long int See Table 32 on page 354.

FilterList x1c * FilterList_t See Table 33 on page 354 or

Table 34 on page 354 (value

depends on setting of flags).

 Table 30. CM_CSLIST_GETII Primitive

Constant Value Meaning

zero 0 Need an unordered list. No

filters are specified.

(Provided for backwards

compatibility.)

CMCsListFlags_LBPool 1 Need load-balanced list

specifying a load-balanced

pool name. (Value provided

for backwards compatibility.)

Appendix D. Communications Server Service Location Protocol 353

Table 30. CM_CSLIST_GETII Primitive (continued)

Constant Value Meaning

CMCsListFlags_LBAgent 2 Need load-balanced list.

AgentType is used for

load-balancing.

CMCsListFlags_LBFilter 3 Need load-balanced list. A

variable-length list of filters

follows.

 Table 31. Flags values (from cmi.h)

Constant Value Meaning

CSA_3270 0x126 Need an SNA Gateway agent

for LU Types 1/2/3

CSA_SAA 0x12B Need an SNA Gateway agent

for LU Type 6.2

 Table 32. AgentType values (from csobjtyp.h)

Field name

Field

offset

(hex)

Field

length

(dec) Type Content and Use

FilterNameLen x00 4 long int Length of following

load-balancing group (Pool)

name.

FilterName x04 * ASCII Load-balancing group (Pool)

name.

 Table 33. FilterList_t (if Flags = CMCsListFlag_LBPool)

Field name

Field

offset

(hex)

Field

length

(dec) Type Content and Use

FilterCount x00 4 long int Number of filter list name

structures that follow (0, if Flags

= zero).

FilterList x04 * Filter_t A list of filter list name

structures. Each structure has

variable length.

 Table 34. FilterList_t (if Flags = zero | Flags = CMCsListFlag_LBFilters)

Field name

Field

offset

(hex)

Field

length

(dec) Type Content and Use

FilterLength x00 4 long int Length of structure (plus this

length field).

FilterType x04 4 long int See Table 36 on page 355.

FilterName x08 * ASCII The filter name value.

354 Client/Server Communications Programming

Table 35. Filter_t

Constant Meaning

CMCsListFilter_LBPool A Load-balancing Pool name. Only one pool

may be specified per list. This filter is valid

only for AgentType CSA_3270.

CMCsListFilter_Scope An SLP Scope name. Only one scope may be

specified. If no scope is specified, then all

unscoped services are assumed.

 Table 36. FilterType values (from cmi.h)

Field name

Field

offset

(hex)

Field

length

(dec) Type Content and Use

PrimType x00 4 long int CM_CSLIST_GETII_ACK as in cmi.h.

UserParm x04 4 long int As passed in on CM_CSLIST_GETII.

Reserved x08 4 long int zero

ServiceType x0c 4 long int As passed in on CM_CSLIST_GETII.

Flags x10 4 long int As passed in on CM_CSLIST_GETII.

ServiceCount x14 4 long int Number of following server entries.

 Table 37. CM_CSLIST_GETII_ACK Primitive

Field name

Field

offset

(hex)

Field

length

(dec) Type Content and Use

ProdVersion x00 4 long int Version of product.

Platform x04 4 long int CMCsListPlatform_IWSAA

CSNameLen x08 4 long int Length of following server name.

CSName * * long int Name of server (null-terminated).

CSAddrLen * 4 long int Length of following IP address.

CSAddress * * ASCII The IP address of the server in the

form: dotted-decimal-IP-address:port.

NameLen * 4 long int Length of following agent name.

AgentName * * * Name of agent on server

(null-terminated).

 Table 38. Server Information structure in CM_CSLIST_GETII_ACK Primitive

Field name

Field

offset

(hex)

Field

length

(dec) Type Content and Use

PrimType x00 4 long int CM_CSLIST_GETII_ERR as in cmi.h.

UserParm x04 4 long int As passed in on CM_CSLIST_GETII.

Reserved x08 4 long int zero

Errno x0c 4 long int Error number

Appendix D. Communications Server Service Location Protocol 355

Configuration Considerations

Scope: There are two choices for how to obtain the scope value for client requests

for services.

Discovery

The scope value can be discovered using the SL_GetAttrs API (by issuing an

unscoped attribute request for a service type with an attribute filter of ″SCOPE″).

This API returns a list of scopes for services currently active in the network. The

list can be displayed for user selection.

Configuration

The scope value can be obtained by configuration on the client.

DA-Discovery Timeout

The DA-Discovery timeout value, a parameter on the SLP_Open API, is used to

control how long the SLP API must wait to discover Directory Agents (DAs) in the

network. The discovery request is a multicast, and the amount of time required to

gather all DA responses might vary depending on many factors. If there are no

DAs in the network, this timeout value can be set to zero to indicate that no DA

discovery is to be done. The timeout is expressed in milliseconds.

SA Multicast Timeout

The SA Multicast timeout value. A parameter on the SL_Open API is used to

control how long the SLP API must wait to discover services, attributes, or service

types in a network without at least one DA that supports the scope of the request.

In this situation, these requests are multicast and the SLP API waits the timeout

value to gather the multiple responses that are returned. The timeout is expressed

in milliseconds.

Administrator Help information

Scope

Scope is a parameter used to control and manage access by clients to servers in a

network. It is the same as the Service Location Protocol scope. The control scope

provides is necessary for two reasons:

v As your network, the number of clients, and the number of servers grow, it

becomes necessary to partition access to those servers by the growing number of

clients in order to reduce overall traffic on the network.

v It allows administrators to organize users and servers in to administrative

groups

The meaning of the values of scope are defined by the administrator of the

network. These values can represent any entity. Commonly, they fall along either

departmental, geographical, or organizational lines.

How Is Scope Used?

Each Communications Server server is assigned to a scope or scopes through their

respective configuration tools. Clients using these servers must be configured to

connect to servers within a single specific scope or unscoped servers. Different

scopes can be assigned for the configurable services: 3270 and APPC.

356 Client/Server Communications Programming

How Does Scope Relate to SLP?

Communications Server scope relates directly to SLP scope. Therefore, SLP Service

Agents and Directory Agents need to reside in the network that support these

configured scopes. If you plan to allow clients to locate services based on scopes,

keep in mind how scope relates to the network as a whole. If there are unscoped

services in a network where scopes are also used, then these services are eligible to

satisfy any scoped requests, which can potentially put a burden on those service

agents and directory agents that support the unscoped services. For this reason, we

recommend that every reachable server either have scope configured, or no server

has scope configured. If directory agents are to be used in the site network (for

upward scaling), then they should be configured to handle the same scopes as are

configured for the servers. In addition, if unscoped services are to be used in

networks with directory agents, at least one unscoped directory agent should be

set up.

Note: If the SNA API Client is configured to connect to unscoped servers, only

unscoped servers will reply.

Load Balancing Weight Factor

The load balancing weight factor gives the administrator the ability to modify or

weight the load balancing measurement for each communications server. The factor

can be different for each server. A load measurement is an integral number

between 0 and 100 and is meant to approximate the percentage load on the server

(100 being the highest). The weight factor gives the administrator an element in

this calculation.

The reason this factor is useful is that in some cases there are other factors that

might have an effect on server load that are not taken into account by the

Communications Server algorithm. For example, if a communications server is not

dedicated to only SNA gateway traffic.

The weight factor allows the administrator to bias the load measurement on that

server away from selecting the server or towards selecting the server.

Appendix D. Communications Server Service Location Protocol 357

358 Client/Server Communications Programming

Appendix E. Service Templates

Commserver Service Template

The following attributes are given in service template.

v Release = <version/release>

This is the version and release level of the commserver advertising services. Its

format is vv.rr.mm where ″vv″ is the major version number, ″rr″ is the minor

version number, and ″mm″ is the modification level. All numbers are padded on

the left with zeroes to two characters. Example: version 6, release 0, mod level 0

is ″06.00.00″

v Platform = <platform>

This is the network operating system platform underlying the advertising

service. The defined values are:

NT Server uses the Microsoft NT operating system

OS2 Server uses the OS2 operating system

AIX® Server uses the AIX operating system
v Protocol = <protocol>

Protocols supported by the server providing this service. The defined values are:

IP Server supports client connections over IP (TCP/IP or UDP/IP)

IPX Server supports client connections over IPX (SPX/IPX)
v Server name = <server name>

This is the name of the server that was configured during installation. This value

has meaning only for the IW platform.

Commserver Service Registration Message

URL:service:commserver://<addr-spec>:<port-number>

Attributes:

[(SCOPE=<string>),]

(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>)

Dependent LU Service Template

The commserver Dependent LU service provides 3270 gateway access to an SNA

network via server specific API’s and protocols. The attributes reflect the types of

3270 devices, LU Pools, and load information available on the server.

v Load = <server_load>:

This is the load balancing quantity to use in determining the least loaded

commserver to attach to for the service. The range of valid values is an integral

0 to 100 with 0 indicating the lowest possible load and 100 the highest.

v LU Pool = <pool_name>,

© Copyright IBM Corp. 1994, 2006 359

<pool_name>/t<dev-type>,

<pool_name>/t<dev_type>, ...

<pool_name>/t<dev-type>

This identifies the LU pool names of LU pools available for use on this service

with the associated device types supported in each pool. Each value is a record

where the first token is the pool name of the pool and the second token is a

device type supported in that pool. A pool name without a device type indicates

that LUs of unknown type are included in the pool. Records associated with a

given pool name are repeated for each supported device type. A given pool is

included in a registration request if any PU profile that contributes at least one

LU to the pool is active on the server. The valid values for dev_types are as

follows:

 Table 39. Valid dev_types for LU Pool Names

dev_type Meaning

3270002 Lu Type 2 Model 2

3270003 Lu Type 2 Model 3

3270004 Lu Type 2 Model 4

3270005 Lu Type 2 Model 5

3270DSC Printer LU

A given device type is included in the registration request if any LU configured as

the type is contained in an active PU profile on the server.

Dependent LU Service Registration Message

URL: service:cs3270://<addr-spec>:<port-number>

Attributes:

[(SCOPE=<string>),]

(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>),

(LOAD=<integer 0 to 100>),

[(LUPOOL=pool-name0/tANY,

pool-name1/tdevice_type1,

pool-name2/tdevice-type2, ...

pool-namen/tdevice-typen)]

TN3270 Service Template

The TN3270 service provides 3270 gateway access to an SNA network via the

TN3270 protocol. The attributes reflect the types of 3270 devices, LU Pools, and

load information available on the server. LU Pool and Load attributes are the same

as for service type cs3270.

v BIND, DATA, RESPONSES, SCS, SYSREQ

360 Client/Server Communications Programming

These keyword attributes describe the TN3270e functions supported by this

service. They are present in the service advertisement if the functions they

describe are available.

BIND The server supports the SNA bind image function

DATA The non-SNA 3270 data stream is supported by server

RESPONSES The server supports SNA response mode

SCS The server supports SNA 3270 SCS data stream

SYSREQ The SYSREQ keyboard key is supported on server
v Security = <security>

This field will contain the security technique supported by the server. The

defined values are:

NONE This server has no explicit security technique

SSLV3 This server supports Secure Socket Layer Version 3 standard
v Ciphersuites = <CipherSpec>,

<CipherSpec>, ...

<CipherSpec>

Identifies the cipher specifications supported by this server. The defined values

are:

– NULL_NULL

– NULL_MD5

– NULL_SHA

– RC4_MD5_EXPORT

– RC4_MD5_US

– RC4_SHA_US

– RC2_MD5_EXPORT

– DES_SHA_EXPORT

– TRIPLE_DES_SHA_US

v RFC1576, RFC1646, RFC1647

The RFC numbers that document features supported by the service. Current

RFC’s for TN3270 include 1576, 1646, and 1647.

TN3270 Service Registration Message

URL: service:tn3270://<addr-spec>:<port-number>

Attributes:

[(SCOPE=<string>),]

(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>),

(LOAD=<integer 0 to 100>),

[(LUPOOL=pool-name(0)/tANY,

pool-name1/tdevice_type1,

Appendix E. Service Templates 361

pool-name2/tdevice-type2, ...

pool-namen/tdevice-typen)]

BIND,

DATA,

RESPONSES,

SCS,

SYSREQ,

(SECURITY=NONE),

(SECURITY=<security>),

(CIPHERSUITES=<Spec1,Spec2,...Specn>),

RFC1576,

RFC1646,

RFC1647

TN5250 Service Template

The TN5250 service provides 5250 gateway access to an SNA network using the

TN5250 protocol. The attributes reflect the accessible iSeries, eServer i5, or System

i5 services and load information available on the server.

v Release = <release>

This is the Version and Release of the advertising commserver.

v Protocol = <protocol>

One or more protocols supported by the server providing this service. The

defined value is:

IP Server supports connections over IP (TCP/IP or UDP/IP)
v Platform = <platform>

This is the network operating system platform underlying the advertised service.

The defined values are:

NT Server uses the Microsoft NT Operating system
v Server Name = <server name>

This is the name of the server that was configured during installation.

v AS400 Name = <host name>

This is the name of the iSeries, eServer i5, or System i5 host to which this service

registration applies.

v Load = <INTEGER>

This is the load balancing quantity to use in determining the least loaded

communications server. The range of valid values is an integer 0 to 100.

v Security = <security>

This field will contain the security technique supported by the server. The actual

values are as follows:

NONE This server has no explicit security technique

SSLV3 This server supports Secure Socket Layer Version 3 standard

362 Client/Server Communications Programming

v Ciphersuites = <CipherSpec>,

<CipherSpec>, ...

<CipherSpec>

Identifies the cipher specifications supported by this server. The defined values

are:

– NULL_NULL

– NULL_MD5

– NULL_SHA

– RC4_MD5_EXPORT

– RC4_MD5_US

– RC4_SHA_US

– RC2_MD5_EXPORT

– DES_SHA_EXPORT

– TRIPLE_DES_SHA_US

v Function = <function>

This field will contain the TN5250 functions supported by the server. There are

no functions defined at the current time.

v RFC1205

The RFC numbers that document features supported by the service. Current

RFC’s for TN5250 include 1205.

TN5250 Service Registration Message

URL: service:tn5250://<addr-spec>:<port-number>

Attributes:

(SCOPE=<string>),

(PROTOCOL=<string>),

(RELEASE=<string>),

(PLATFORM=<string>),

(LOAD=<integer 0 to 100>),

(SECURITY=NONE),

(SECURITY=<security>),

(CIPHERSUITES=<Spec1,Spec2,...Specn>),

(FUNCTIONS=NONE),

(RFC1205),

(SERVERNAME=<string>),

(AS400NAME=<string>),

Appendix E. Service Templates 363

LU 6.2 Service Template

The csappc service type provides SNA APPC access. Configured local LU

definitions are registered with this service.

LLU = <llu1>,<llu2>,...,<llun>

Specifies the valid local LUs as configured on the commserver.

LU 6.2 Service Registration Message

URL: service:csappc://<addr-spec>:<port-number>

Attributes:

[(SCOPE=<string>),]

(RELEASE=06.00.00),

(PLATFORM=NT),

(PROTOCOL=IP),

(SERVERNAME=<string>),

(LOAD=<integer 0 to 100>)

[,(LLU=<llu1>,<llu2>,...,<llun>)]

364 Client/Server Communications Programming

Appendix F. DLL Version Information

32–Bit Windows DLLs

The following 32–bit Windows DLLs include information that you can use to

determine the version of the DLL:

v E32APPC.DLL

v WAPPC32.DLL

v WCPIC32.DLL

v WINCSV32.DLL

v WINMS32.DLL

v WINNOF32.DLL

v WINRUI32.DLL

v WINSLI32.DLL

The available keys are:

v CompanyName

v LegalCopyright

v LegalTrademarks

v ProductName

v ProductVersion

v FileDescription

v InternalName

v FileVersion

Note: All keys are a part of the ″\StringFileInfo\040904E4\″ version block, and are

not translated.

You can retrieve the information by using a program, or by using Windows

Explorer as follows:

1. Select the DLL with the right mouse button

2. Select Properties from the pop-up menu

3. Select the Version tab.

Using this information, you can write code to determine whether a DLL came from

IBM or another company (CompanyName), and whether the DLL is for the SNA

API Client or the server (ProductName). You can determine which version of the

DLL is installed (FileVersion), and which version of the product is installed

(ProductVersion).

The following sample C function determines if the named DLL was produced by

IBM:

//

// Function returns TRUE if and only if given pathname is a versioned IBM DLL

//

#include <winver.h>

#define CMPNY_KEY "\\StringFileInfo\\040904E4\\CompanyName"

BOOL bDllFromIBM(char *pcDllPathname)

© Copyright IBM Corp. 1994, 2006 365

{

 DWORD dwBufSize = 0, dwTemp = 0, dwReturnBytes = 0;

 LPVOID pReturnBuffer = NULL;

 VOID *pVInfoBuffer = NULL;

 BOOL bRC = FALSE;

 // verify parameters aren’t null

 if (!pcDllPathname || !*pcDllPathname)

 return FALSE;

 // get size of Version Info

 dwBufSize = GetFileVersionInfoSize(pcDllPathname, &dwTemp);

 // no version info implies bad parameters or not versioned IBM DLL

 if (!dwBufSize)

 return FALSE;

 // allocate a buffer for the version information (+50 for safety)

 pVInfoBuffer = malloc(dwBufSize + 50);

 // malloc failure

 if (!pVInfoBuffer)

 return FALSE;

 // get version buffer filled

 bRC = GetFileVersionInfo(pcDllName,dwTemp,dwBufSize,pVInfoBuffer);

 // call failed

 if (!bRC)

 return FALSE;

 // get the company name

 bRC = VerQueryValue(pVInfoBuffer, TEXT(CMPNY_KEY), ReturnBuffer, ReturnBytes);

 // not found or empty

 if (!bRC || !dwReturnBytes)

 return FALSE;

 // value should begin with "IBM"

 if (strncmp(pReturnBuffer, "IBM", strlen("IBM")) == 0)

 return TRUE;

 return FALSE;

}

366 Client/Server Communications Programming

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department TL3B/062

P.O. Box 12195

© Copyright IBM Corp. 1994, 2006 367

Research Triangle Park, NC 27709-2195

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copy notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. (c) Copyright IBM Corp. enter the year or years.

All rights reserved.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 Advanced Peer-to-Peer Networking

AIX

APPN

iSeries

IBM

SAA

S/370

System/370

System i5

Microsoft, Windows, and the Windows logo are trademarks of Microsoft

Corporation in the United States, other countries, or both.

368 Client/Server Communications Programming

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix G. Notices 369

370 Client/Server Communications Programming

Index

A
abnormal termination, reporting 33

ACSSVC 262

ACTLU 165

ACTLU message 173

ALLOCATE 83

AP_ALLOCATION_ERROR 321

AP_ALLOCATION_FAILURE_NO_RETRY 321

AP_ALLOCATION_FAILURE_RETRY 321

AP_CONV_FAILURE_NO_RETRY 321

AP_CONV_FAILURE_RETRY 321

AP_CONVERSATION_TYPE_MISMATCH 323

AP_CONVERSATION_TYPE_MIXED 321

AP_DEALLOC_ABEND 321

AP_DEALLOC_ABEND_PROGRAM 322

AP_DEALLOC_ABEND_SVC 322

AP_DEALLOC_ABEND_TIMER 322

AP_DEALLOC_NORMAL 322

AP_PIP_NOT_ALLOWED 324

AP_PIP_NOT_SPECIFIED_CORRECTLY 323

AP_PROG_ERROR_PURGING 323

AP_PROG_ERROR_TRUNC 323

AP_SECURITY_NOT_VALID 321

AP_SVC_ERROR_NO_TRUNC 323

AP_SVC_ERROR_PURGING 323

AP_SVC_ERROR_TRUNC 324

AP_SYNC_LEVEL_NOT_SUPPORTED 321

AP_TP_BUSY 324

AP_TP_NAME_NOT_RECOGNIZED 324

AP_TRANS_PGM_NOT_AVAIL_NO_RTRY 324

AP_TRANS_PGM_NOT_AVAIL_RETRY 323

AP_UNEXPECTED_SYSTEM_ERROR 324

APPC API support
default local LU pool 41

option sets supported 37

queue-level nonblocking 39

verbs supported 68

APPC entry points
APPC() 52

GetAppcConfig() 64

GetAppcReturnCode() 65

WinAPPCCancelAsyncRequest() 57

WinAPPCCancelBlockingCall() 58

WinAPPCCleanup() 59

WinAPPCIsBlocking() 60

WinAPPCSetBlockingHook() 62

WinAPPCStartup() 61

WinAPPCUnhookBlockingHook() 63

WinAsyncAPPC() 53

WinAsyncAPPCEx() 55

APPC() 52

application subsystem
converting 36

supporting passwords 35

translating 36

asynchronous verb completion 164

attach manager
description 17

identifying transition program name 19

matching incoming allocation requests
nonqueued programs 24

attach manager (continued)
matching incoming allocation requests (continued)

queued programs 24

starting programs 23

B
basic conversation 11, 12

basic conversation verb control blocks
ALLOCATE 83

CONFIRM 89

CONFIRMED 93

DEALLOCATE 95

FLUSH 100

GET_ATTRIBUTES 102

PREPARE_TO_RECEIVE 105

RECEIVE_AND_POST 108

RECEIVE_AND_WAIT 113

RECEIVE_IMMEDIATE 122

REQUEST_TO_SEND 127

SEND_CONVERSATION 129

SEND_DATA 134

SEND_ERROR 138

TEST_RTS 145

TEST_RTS_AND_POST 147

BID message 172

BIND message, specifies TS, FM profiles 161

BIND, negotiating parameters 166

bracketing, bid reject in EXR 172

C
CANCEL 168

canceling verbs 172

CMSLTP function, and service TP name 48

CMSTPN function, and service TP name 48

common data structure 189

common return codes
AP_ALLOCATION_ERROR 321

AP_ALLOCATION_FAILURE_NO_RETRY 321

AP_ALLOCATION_FAILURE_RETRY 321

AP_CONV_FAILURE_NO_RETRY 321

AP_CONV_FAILURE_RETRY 321

AP_CONVERSATION_TYPE_MISMATCH 323

AP_CONVERSATION_TYPE_MIXED 321

AP_DEALLOC_ABEND 321

AP_DEALLOC_ABEND_PROG 322

AP_DEALLOC_ABEND_SVC 322

AP_DEALLOC_ABEND_TIMER 322

AP_DEALLOC_NORMAL 322

AP_PIP_NOT_ALLOWED 324

AP_PIP_NOT_SPECIFIED_CORRECTLY 323

AP_PROG_ERROR_PURGING 323

AP_PROG_ERROR_TRUNC 323

AP_SECURITY_NOT_VALID 321

AP_SVC_ERROR_NO_TRUNC 323

AP_SVC_ERROR_PURGING 323

AP_SVC_ERROR_TRUNC 324

AP_SYNC_LEVEL_NOT_SUPPORTED 321

AP_TP_BUSY 324

© Copyright IBM Corp. 1994, 2006 371

common return codes (continued)
AP_TP_NAME_NOT_RECOGNIZED 324

AP_TRANS_PGM_NOT_AVAIL_NO_RTRY 324

AP_TRANS_PGM_NOT_AVAIL_RETRY 323

AP_UNEXPECTED_SYSTEM_ERROR 324

common services entry points
ACSSVC 262

GetCsvReturnCode 267

TrnsDt 277

WinCSV 263

WinCSVAsyncCSV 265

WinCSVCleanup 264

WinCSVStartup 266

common services verbs
CONVERT 274

GET_CP_CONVERT_TABLE 270

Communications Server LU 6.2
security features 35

services available to transaction programs 29, 32

configuration information 168

CONFIRM 89

confirmation, requesting 34

CONFIRMED 93

conversation
defining attributes 20

security for incoming allocation requests 22

security for outgoing allocation requests 22

Conversation
carried by session 10

choosing a type 32

confirmed delivery type 13

database update type 14

errors in 15

half-duplex 10

inquiry type 14

keeping type consistent 32

mapped 11

one-way type 13

receiving data 33

sending data 32, 33

conversation state transitions
non-OK return codes 345

pending post state 345

reset state 344

state change after RECEIVE verbs
primary_rc parameters 345

what_rcvd parameters 345

use of AP_ERROR 344

conversation states, of transaction programs 29

CONVERT 274

correlation of RQEs 160

correlation table 160

correlator 178

courtesy acknowledgment 167

CPI-C
function summary 46

versions of 43, 48

D
data

receiving 33

sending 32

DEALLOCATE 95

default local LU pool 41

E
end-user verification 35

Entry Points, SLI 221

error handling 15

errors
reporting 33

sending log records 34

exception response 160

F
flow protocols 159

FLUSH 100

FM
See function management profiles supported

function management profiles supported 162

G
GDS 11

general data stream 11

GET_ATTRIBUTES 102

GET_CP_CONVERT_TABLE 270

GET_TP_PROPERTIES 69

GET_TYPE 71

GetAppcConfig() 64

GetAppcReturnCode() 65

I
INITSELF 165

introduction 5

L
LL field 11

logical length 11

LU
configuring 7

dependent 7

description of 7

independent 7

multiple sessions 10

name 7

types 7

LU 6.2
abstract operations 12

error handling 15

manages sessions 10

LU pools 168

LU-SSCP session
establishing 165

LUA
application programs 151

architecture 161

compatibility 151

connection capabilities 151

FM profiles supported 162

LUs, local and partner 152

restarting and resynchronizing 157

RUI sessions 163

sample LUA communication sequence 164

SNA layers 152

TS profiles supported 161

understanding 151

372 Client/Server Communications Programming

LUA (continued)
using SNA sessions

disconnecting 156

prerequisites 154

starting 154

stopping 155

transferring data on an LU-LU session 155

verbs
asynchronous verb completion 164

summary 152, 162

using RUI LUA 162

M
mapped conversation 11, 12

mapped conversation verb control blocks
MC_ALLOCATE 83

MC_CONFIRM 89

MC_CONFIRMED 93

MC_DEALLOCATE 95

MC_FLUSH 100

MC_GET_ATTRIBUTES 102

MC_PREPARE_TO_RECEIVE 105

MC_RECEIVE_AND_POST 108

MC_RECEIVE_AND_WAIT 113

MC_RECEIVE_EXPEDITED_DATA 118

MC_RECEIVE_IMMEDIATE 122

MC_REQUEST_TO_SEND 127

MC_SEND_CONVERSATION 129

MC_SEND_DATA 134

MC_SEND_ERROR 138

MC_SEND_EXPEDITED_DATA 142

MC_TEST_RTS 145

MC_TEST_RTS_AND_POST 147

minimizing LAN traffic 172

N
negative response, from EXR verb 171

NOTIFY 166

O
options sets supported by Personal Communications 37

P
pacing

causes output suspension 173

general 167

partner LU verification 35

post handle 178

primary return code 178

protocols
bracket 158

data-chaining 159

half-duplex contention flip/flop 158

pacing 157

purging 168

Q
queue-level nonblocking support

explanation of 39

three types of queues 39

R
receive state 10

recovering session failure 174

reserved parameters 189

response mode 160

return code, primary 178

return code, secondary 178

RTR message 172

RUI
supports all FM profiles 161

supports all TS profiles 162

RUI verbs
common verb header 189

LUA verb control format 189

RUI_BID
error return codes 196

general 194

successful execution 195

RUI_BID data structure 193

RUI_BID verb, reducing use of 172

RUI_INIT
error return codes 200

general 199

successful execution 200

RUI_INIT verb
canceling 173

ends after SSCP-LU session set up 174

RUI_PURGE
error return codes 204

general 203

successful execution 203

RUI_PURGE verb, cancels RUI_READ 173

RUI_READ
error return codes 208

general 206

successful execution 207

truncated data 207

RUI_READ verb, canceling 173

RUI_TERM
general 212

successful execution 212

RUI_TERM verb
cancels RUI_INIT 173

cancels RUI_WRITE 173

RUI_WRITE
error return codes 217

general 215

successful execution 216

RUI_WRITE verb, canceling 173

S
sample LUA communication sequence 164

SDT 165

secondary return code 178

security protocols
conversation level 35

end-user verification 35

partner LU verification 35

session level 35

segmentation 167

send state 10

sense code
sense code 171

sense code for BID 172

sense code, in EXR 171

Index 373

service TP, specifying name 48

session
carries one conversation 10

failure recovery 174

general 8

reusable 10

session identifier 178

SLI Entry Points 221

SLI_BID
general 228

successful execution 228

SLI_BIND_ROUTINE
general 253

successful execution 253

SLI_CLOSE
general 233

successful execution 233

SLI_OPEN
general 236

successful execution 239

SLI_PURGE
general 242

successful execution 242

SLI_RECEIVE
general 244

successful execution 245

SLI_SDT_ROUTINE 257

SLI_SEND
general 249

successful execution 250

SLI_STSN_ROUTINE 255

SNA
communication support 3

general data stream 11

LU type 6.2 support 4

SNA messages, relationship to LUA verbs 164

SNA sense codes 166

specific data structure 189

suspensions, dealing with 172

T
termination, abnormal, reporting 34

TP
server started on demand 6

service 48

transaction program
choosing a name 35

compared to an application 18

conversation states 29

CPI Communications 6

default local LU pool 41

definitions 20

description of 5

developing 29, 36

queue-level nonblocking 39

supported option sets 37

writing 37

transmission services, profiles supported 161

TrnsDt 277

type independent verb control blocks
GET_TP_PROPERTIES 69

GET_TYPE 71

RECEIVE_ALLOCATE 73

SET_TP_PROPERTIES 76

TP_ENDED 79

TP_STARTED 81

U
UNBIND 165

V
verb

canceling 172

specifying conversation type 32

verb control block
structure 189

verb control blocks, common fields 67

verb record, contents 178

verb signals
basic conversation verb control blocks

ALLOCATE 83

CONFIRM 89

CONFIRMED 93

DEALLOCATE 95

FLUSH 100

GET_ATTRIBUTES 102

PREPARE_TO_RECEIVE 105

RECEIVE_AND_POST 108

RECEIVE_AND_WAIT 113

RECEIVE_EXPEDITED_DATA 118

RECEIVE_IMMEDIATE 122

REQUEST_TO_SEND 127

SEND_CONVERSATION 129

SEND_DATA 134

SEND_ERROR 138

SEND_EXPEDITED_DATA 142

TEST_RTS 145

TEST_RTS_AND_POST 147

mapped conversation verb control blocks
MC_ALLOCATE 83

MC_CONFIRMED 93

MC_DEALLOCATE 95

MC_FLUSH 100

MC_GET_ATTRIBUTES 102

MC_PREPARE_TO_RECEIVE 105

MC_RECEIVE_AND_POST 108

MC_RECEIVE_AND_WAIT 113

MC_RECEIVE_EXPEDITED_DATA 118

MC_RECEIVE_IMMEDIATE 122

MC_REQUEST_TO_SEND 127

MC_SEND_CONVERSATION 129

MC_SEND_DATA 134

MC_SEND_ERROR 138

MC_SEND_EXPEDITED_DATA 142

MC_TEST_RTS 145

MC_TEST_RTS_AND_POST 147

verb control blocks, common fields 67

verbs supported at the APPC API
mapped conversation verbs 68

type independent verbs 68

W
WinAPPCCancelAsynRequest() 57

WinAPPCCancelBlockingCall() 58

WinAPPCCleanup() 59

WinAPPCIsBlocking() 60

WinAPPCSetBlockingHook() 62

WinAPPCStartup() 61

WinAPPCUnhookBlockingHook() 63

WinAsyncAPPC() 53

WinAsyncAPPCEx() 55

374 Client/Server Communications Programming

WinAsyncCSV 265

WinCSV 263

WinCSVCleanup 264

WinCSVStartup 266

writing LUA APPC program
calling dynamic link libraries 177

procedure entry points 181

Index 375

376 Client/Server Communications Programming

����

Program Number: 5639–I70

Printed in USA

SC31-8479-09

	Contents
	Figures
	Tables
	About This Book
	Who Should Read This Book
	How to Use This Book
	Icons
	Number Conventions

	Double-Byte Character Set Support
	Where to Find More Information

	Part 1. APPC API
	Chapter 1. Introducing APPC
	SNA Communications Support
	SNA LU Type 6.2 Support

	Chapter 2. Fundamental APPC Concepts
	What Is a Transaction Program?
	APPC Transaction Programs
	CPI Communications Transaction Programs
	Client Transaction Programs
	Server Transaction Programs

	What Is a Logical Unit?
	LU Types
	Dependent and Independent LUs
	What Is an LU Name?

	What Is a Session?
	What Is a Conversation?
	Relationships among Sessions, Conversations, and LUs

	Conversation Types
	Mapped Conversations
	Basic Conversations

	Examples of APPC Operations
	Types of APPC Conversations
	One-Way Conversation
	Confirmed-Delivery Conversation
	Inquiry Conversation
	Database Update Conversation

	Conversations That Have Errors
	Summary

	Chapter 3. Using the Attach Manager
	Differentiating between an Application and a Transaction Program
	Transaction Program Definitions
	Identifying the Transaction Program Name on Both Machines
	Defining Conversation Attributes
	Synchronization Level
	Conversation Type and Style
	Conversation Styles

	Conversation Security for an Incoming Allocation Request
	Conversation Security for an Outgoing Allocation Request
	Using the Attach Manager on Personal Communications
	Starting the Attach Manager
	Starting Programs with the Attach Manager

	Matching Incoming Allocation Requests with RECEIVE_ALLOCATE Verbs
	Nonqueued Programs
	Queued Programs

	Using the Attach Manager on Communications Server SNA API Clients
	Defining Transaction Programs for SNA API Clients
	Starting the SNA API Client Attach Manager

	Chapter 4. Writing a Transaction Program
	Application Protocols
	Available Program LU 6.2 Services
	Choosing a Conversation Type
	Consistency of Conversation Type
	Sending Data
	Receiving Data
	Reporting Errors and Abnormal Termination
	Sending an Error Log Data Record
	Abnormally Terminating because of a Timeout

	Requesting Confirmation
	Choosing between Half-Duplex and Full-Duplex Conversations
	Choosing a Transaction Program Name
	Using the Security Features
	Partner LU Verification (Session-Level Security)
	End-User Verification (Conversation-Level Security)

	Converting between EBCDIC and ASCII

	Chapter 5. Implementing APPC Transaction Programs
	Writing Transaction Programs
	Option Sets Supported

	Full-Duplex VCBs
	Queue-Level Nonblocking

	Default Local LU

	Chapter 6. Implementing CPI-C Programs
	Writing CPIC Programs
	CPI-C Versions
	CPI-C Conformance Class Support
	CPI-C Functions

	Specifying Service TP Names
	Additional Options for Setting Local_LU

	Chapter 7. APPC Entry Points
	APPC
	WinAsyncAPPC()
	WinAsyncAPPCEx()
	WinAPPCCancelAsyncRequest()
	WinAPPCCancelBlockingCall()
	WinAPPCCleanup()
	WinAPPCIsBlocking()
	WinAPPCStartup()
	WinAPPCSetBlockingHook()
	WinAPPCUnhookBlockingHook()
	GetAppcConfig()
	GetAppcReturnCode()

	Chapter 8. APPC Verbs
	Verb Control Blocks
	Common Fields

	APPC API Support
	Verbs Supported

	GET_TP_PROPERTIES
	GET_TYPE
	RECEIVE_ALLOCATE
	SET_TP_PROPERTIES
	TP_ENDED
	TP_STARTED
	[MC_]ALLOCATE
	[MC_]CONFIRM
	[MC_]CONFIRMED
	[MC_]DEALLOCATE
	[MC_]FLUSH
	[MC_]GET_ATTRIBUTES
	[MC_]PREPARE_TO_RECEIVE
	[MC_]RECEIVE_AND_POST
	[MC]RECEIVE_AND_WAIT
	[MC_]RECEIVE_EXPEDITED_DATA
	[MC_]RECEIVE_IMMEDIATE
	[MC_]REQUEST_TO_SEND
	[MC_]SEND_CONVERSATION
	[MC_]SEND_DATA
	[MC_]SEND_ERROR
	[MC_]SEND_EXPEDITED_DATA
	[MC_]TEST_RTS
	[MC_]TEST_RTS_AND_POST

	Part 2. LUA API
	Chapter 9. Fundamental Concepts of the IBM Conventional LU Application
	Understanding LUA and SNA
	Connection Capabilities
	LUA Application Programs
	LUA Verbs
	LUs, Local LUs, and Partner LUs
	System Services Control Point (SSCP)
	SNA Layers
	Data Link Control Layer
	Path Control Layer
	Transmission Control Layer
	Data Flow Control Layer
	Presentation Services Layer

	Using SNA Sessions
	Prerequisites to an SNA Session
	Starting Sessions
	Starting an LU-LU Session from an SLU
	Starting an LU-LU Session from a PLU

	Transferring Data on an LU-LU Session
	Stopping Sessions
	Stopping an LU-LU Session by an SLU
	Stopping an LU-LU Session by a PLU
	Stopping an SSCP-LU Session and an SSCP-PU Session

	Disconnecting the Host Link

	Message Numbers
	Restarting and Resynchronizing a Session
	Using Protocols to Control Requests and Responses
	Using the Pacing Protocol
	Receive-Pacing Protocol
	Send-Pacing Protocol

	Using the Half-Duplex Contention/Flip-Flop Protocol
	Using the Bracket Protocol
	Using the Data-Chaining Protocol

	Data Exchange Control Methods
	Flow Protocols
	Response Modes
	LUA Correlation Tables
	Exception Response Requests (RQEs)

	Session Profiles
	TS Profiles
	FM Profiles

	Using RUI LUA Verbs
	Verb Summary

	RUI Sessions
	Issuing RUI Verbs
	Asynchronous Verb Completion
	Sample LUA Communication Sequence
	BIND Checking
	Negative Responses and SNA Sense Codes
	Distinguishing SNA Sense Codes from Other Secondary Return Codes
	Information on SNA Sense Codes

	Pacing
	Segmentation
	Courtesy Acknowledgments
	Purging Data to End of Chain

	Configuration
	LUA LU Pool (Optional)
	SNA API Client Considerations

	Chapter 10. Features of the RUI LUA Verbs
	Handling Exception Requests
	Changing the Verb Record
	Handling Bracket Bid Reject

	Minimizing LAN Traffic
	Reducing RUI_BID Usage

	Dealing with Suspensions
	Canceling RUI_INIT
	Canceling RUI_WRITE
	Canceling RUI_READ

	Compressing Data
	Rules for Negotiating Data Compression Per Session
	RUI Rules
	SLI Rules

	Recovering from Session Failure

	Chapter 11. Implementing LUA Programs
	Writing LUA Programs
	Calling LUA Services
	Understanding Verb Record Contents
	Multiple Processes
	Multiple Threads
	LUA Verb Postings
	Converting to EBCDIC from ASCII

	Chapter 12. RUI LUA Entry Points
	RUI()
	WinRUI
	WinRUICleanup()
	WinRUIGetLastInitStatus()
	WinRUIStartup()
	GetLuaReturnCode()

	Chapter 13. RUI Verbs
	LUA Verb Control Block Format
	Common Verb Header
	RUI_BID Data Structure

	RUI_BID
	RUI_INIT
	RUI_PURGE
	RUI_READ
	RUI_TERM
	RUI_WRITE

	Chapter 14. SLI Entry Points
	SLI()
	WinSLI()
	WinSLICleanup()
	WinSLIStartup()

	Chapter 15. SLI Verbs
	SLI_BID
	SLI_CLOSE
	SLI_OPEN
	SLI_PURGE
	SLI_RECEIVE
	SLI_SEND
	SLI_BIND_ROUTINE
	SLI_STSN_ROUTINE
	SLI_SDT_ROUTINE

	Part 3. Common Services API
	Chapter 16. Common Services Entry Points
	Writing Common Services Programs
	ACSSVC()
	WinCSV()
	WinCSVCleanup()
	WinAsyncCSV()
	WinCSVStartup()
	GetCsvReturnCode()

	Chapter 17. Common Services Verbs (CSV)
	GET_CP_CONVERT_TABLE
	CONVERT
	TrnsDt

	Part 4. EHNAPPC API
	Chapter 18. EHNAPPC Application Program Interface
	Writing EHNAPPC Programs
	EHNAPPC Routines
	EHNAPPC_Allocate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Confirm
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Confirmed
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Deallocate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_ExtendedAllocate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_Flush
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_GetAttributes
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_GetCapabilities
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_GetDefaultSystem
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_IsRouterLoaded
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_PrepareToReceive
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryConfiguredSystems
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryConvState
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryFullSystems
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QueryUserid
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_QuerySystems
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_ReceiveAndWait
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_ReceiveImmediate
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_RemoteProgramStart
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_RqsToSend
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_SendData
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_SendError
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC_StartHostProgram
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNAPPC Structures
	AS400_SYS
	Purpose
	Procedure Declaration
	Parameters

	appcrtrcap_hdr
	Purpose
	Procedure Declaration
	Parameters

	appcrtrcap_mult
	Purpose
	Procedure Declaration
	Parameters

	appcrtrcap_query
	Purpose
	Procedure Declaration
	Parameters

	Return Codes for the EHNAPPC API
	Running 16-Bit EHNAPPC Programs

	Chapter 19. Data Transform Windows Application Program Interface
	Data Transform Windows API Routines
	EHNDT_ANSIToEBCDIC
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNDT_ASCIIToEBCDIC
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNDT_EBCDICToANSI
	Purpose
	Procedure Declaration
	Parameters
	Return Codes

	EHNDT_EBCDICToASCII
	Purpose
	Return Codes

	Part 5. Java Programming Interfaces
	Chapter 20. Introduction to the Host Access Class Library for Java
	What Is HACL?
	HACL Concepts
	Sessions
	Container Objects
	List Objects
	Events
	Error Handling
	Addressing (Rows, Columns, Positions)

	Installing HACL on the Communications Server for Windows Server
	Installing HACL on the Communications Server 32–Bit Windows Client
	Setting the Classpath
	HACL Codepage Converters

	HACL Samples

	Chapter 21. Using CPIC-C for Java
	What is CPI-C for Java?
	Installing CPI-C for Java (Communications Server)
	CPI-C for Java Samples
	Client Sample
	Server Sample

	Part 6. Appendixes
	Appendix A. APPC Common Return Codes
	Appendix B. LUA Verb Return Codes
	Primary Return Codes
	Secondary Return Codes

	Appendix C. APPC Conversation State Transitions
	Appendix D. Communications Server Service Location Protocol
	Discovery and Load Balancing APIs
	Structure
	Scenarios
	Method 2: UA API to locate the least-loaded (or low-loaded) service.
	Ports
	Method 3: UA for service location and CM_CSLIST_GETII for load-balancing
	Configuration Considerations
	Discovery
	Configuration

	DA-Discovery Timeout
	SA Multicast Timeout

	Administrator Help information
	Scope
	How Is Scope Used?
	How Does Scope Relate to SLP?

	Load Balancing Weight Factor

	Appendix E. Service Templates
	Commserver Service Template
	Commserver Service Registration Message
	Dependent LU Service Template
	Dependent LU Service Registration Message
	TN3270 Service Template
	TN3270 Service Registration Message
	TN5250 Service Template
	TN5250 Service Registration Message
	LU 6.2 Service Template
	LU 6.2 Service Registration Message

	Appendix F. DLL Version Information
	32–Bit Windows DLLs

	Appendix G. Notices
	Trademarks

	Index

