

Common Programming Interface
Communications ÉÂÔ

CPI-C Reference
Version 2.1

 SC26-4399-09

Common Programming Interface
Communications ÉÂÔ

CPI-C Reference
Version 2.1

 SC26-4399-09

 Note

Before using this document, read the general information under “Notices” on page xxiii.

Tenth Edition (July 1998)

This edition replaces the previous edition, SC26-4399-08.

This edition applies to the Common Programming Interface Communications (CPI-C) architecture and to the following:

¹ Version 3 Release 1 of AIX SNA Server/6000 (program number 5765-582)
¹ Version 2 Release 1.2 of AIX SNA Server/6000 (program number 5601-287)
¹ Version 1 Release 1 of Desktop SNA for AIX (program number 5765-419)
¹ Version 3 Release 3 of CICS/ESA (program number 5685-083)
¹ Version 1 of IBM Communications Manager/2 (part number 20G1575 – 3½")
¹ Version 1 of IBM Communications Manager/2 (part number 53G3769 – 5¼")
¹ Version 1.1 of IBM Communications Manager/2 (part number 79G0257 – CD-ROM)
¹ Version 1.1 of IBM Communications Manager/2 (part number 79G0258 – 5½")
¹ Version 1.11 of IBM Communications Manager/2 (part number 79G0257 – CD-ROM)
¹ Version 1.11 of IBM Communications Manager/2 (part number 79G0258 – 5½")
¹ Version 4.0 of IBM Communications Server for OS/2 WARP (part number 33H7328 – CD-ROM)
¹ Version 4.1 of Personal Communications AS/400 and 3270 for OS/2 (part number 39H3929 – 3½")
¹ Version 5 of IMS/ESA Transaction Manager (program number 5695-176)
¹ Version 5 of MVS/ESA System Product (program numbers 5655-068 and 5655-069)
¹ Version 1.0 of IBM APPC Networking Services for Windows (part number 11H0400)
¹ Version 3 Release 1 Modification 0 of Operating System/400 (program number 5763-SS1)
¹ Release 2.2 of VM/ESA (program number 5684-112)
¹ Version 4 Release 1 of IBM eNetwork Personal Communications AS/400 and 3270 for Windows 95 (part number 69H0–342)
¹ Version 4 Release 1 of IBM eNetwork Personal Communications AS/400 for Windows 95 (part number 64H0–375)
¹ Version 5 of IBM eNetwork Communication Server for Windows NT
¹ Version 2 Release 2 of Netware for SAA
¹ Version 2 Release 3 of IntraNetware for SAA
¹ Version 4 Release 1 of IBM eNetwork Personal Communications for WinNT
¹ Version 4 Release 2 of IBM eNetwork Personal Communications for Win95

and to all subsequent releases and modifications until otherwise indicated in new editions. Consult the latest edition of the applicable
IBM system bibliography for current information on these products.

This edition incorporates text that is copyright 1990 X/Open Company Limited related to the following calls:

 ¹ Cancel_Conversation (CMCANC)
 ¹ Convert_Incoming (CMCNVI)
 ¹ Convert_Outgoing (CMCNVO)
 ¹ Extract_Security_User_ID (CMESUI)
 ¹ Extract_TP_Name (CMETPN)
 ¹ Set_Conversation_Security_Password (CMSCSP)
 ¹ Set_Conversation_Security_Type (CMSCST)
 ¹ Set_Conversation_Security_User_ID (CMSCSU)
 ¹ Set_Processing_Mode (CMSPM)
 ¹ Specify_Local_TP_Name (CMSLTP)
 ¹ Wait_For_Conversation (CMWAIT)

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM representative or write to
the IBM branch office serving your locality. In the United States, you may also order IBM publications by calling 1-800-879-2755.

A form for your comments is provided at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
 Dept. CGMD

P.O. Box 12195
Research Triangle Park, NC 27709-9990

 U.S.A.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xxiii
Programming Interface Information . xxiv
Trademarks and Service Marks . xxiv

Acknowledgements . xxv

Part 1. CPI-C 2.0 Architecture . 1

Chapter 1. Introduction . 5
CPI-C and the Conversational Model . 5
Who Should Read This Book . 5
What Is New in This Book . 6
Relationship to CPI-C 2.1 Specification . 6
Relationship to Products . 7
Additional Information Sources . 8

Previous Editions of this Reference . 8
Related APPC/LU 6.2 Publications . 8
CD-ROM . 9
Solution Developers Organization . 9
Online Information—CPI-C, APPC, and APPN 9

CompuServe . 9
OS/2 BBS . 9
Internet . 10

Functional Levels of CPI Communications . 10
CPI-C 1.0 . 10
CPI-C 1.1 . 10
X/Open CPI-C . 10
CPI-C 1.2 . 10
CPI-C 2.0 . 11
X/Open CPI-C 2.0 . 11
CPI-C 2.1 . 11

Call Table for Functional Levels of CPI-C . 12
Naming Conventions—Calls, Characteristics, Variables, and Values 13

Chapter 2. CPI Communications Terms and Concepts 17
Communication across a Network . 18
Conversation Types . 19
Send-Receive Modes . 19
Program Partners . 20
Identifying the Partner Program . 20
Operating Environment . 21

Node Services . 22
Side Information . 23
Distributed Directory . 25

CPI Communications Directory Object . 25
Using the Distributed Directory . 26
Interaction with Side Information and Set Calls 27

Distributed Security . 28
Operating System . 28

 Copyright IBM Corp. 1996, 1998 iii

Program Calls . 29
Starter Set Calls . 29

Establishing a Conversation . 29
Multiple Conversations . 30

Partner Program Names . 30
Multiple Outbound Conversations . 30
Multiple Inbound Conversations . 31

Contexts and Context Management . 32
Relationship between Contexts and Conversations 32
Relationship between Contexts and Security Parameters 32
Inbound and Outbound Conversations . 32

Conversation Characteristics . 33
Modifying and Viewing Characteristics . 34
Characteristic Values and CRMs . 39
Characteristic Values and Send-Receive Modes 40
Automatic Conversion of Characteristics . 41

Automatic Data Conversion . 42
Data Conversion . 43
Data Buffering and Transmission . 44
Concurrent Operations . 44

Using Multiple Program Threads . 45
Non-Blocking Operations . 47

Conversation-Level Non-Blocking . 48
Queue-Level Non-Blocking . 49

Working with Wait Facility . 49
Wait Facility Scenario . 49
Using Callback Function . 50

Canceling Outstanding Operations . 50
Non-Blocking Calls and Context Management 50

Conversation Security . 51
Program Flow—States and Transitions . 52
Support for Resource Recovery Interfaces . 54

Coordination with Resource Recovery Interfaces 55
Take-Commit and Take-Backout Notifications 55
The Backout-Required Condition . 58
Responses to Take-Commit and Take-Backout Notifications 59
Chained and Unchained Transactions . 61
Joining a Transaction . 61
Superior and Subordinate Programs . 63
Additional CPI Communications States . 64
Valid States for Resource Recovery Calls . 65
TX Extensions for CPI Communications . 66

Chapter 3. Program-to-Program Communication Example Flows 67
Interpreting the Flow Diagrams . 67
Starter-Set Flows . 68

Example 1: Data Flow in One Direction . 69
Example 2: Data Flow in Both Directions . 72

Controlling Data Flow Direction . 74
Example 3: The Sending Program Changes the Data Flow Direction 74
Example 4: The Receiving Program Changes the Data Flow Direction . . . 75

Verifying Receipt of Data . 78
Example 5: Validation of Data Receipt . 78

Reporting Errors to Partner . 80

iv CPI Communications Reference

Example 6: Reporting Errors . 80
Example 7: Error Direction and Send-Pending State 82

Using Full-Duplex Conversations . 84
Example 8: Establishing a Full-Duplex Conversation 84
Example 9: Using a Full-Duplex Conversation 86
Example 10: Terminating a Full-Duplex Conversation 88

Using Queue-Level Non-Blocking . 90
Example 11: Queue-Level Non-Blocking . 90

Accepting Multiple Conversations . 92
Example 12: Accepting Multiple Conversations Using Blocking Calls 92
Example 13: Accepting Multiple Conversations Using Conversation-Level

Non-Blocking Calls . 94
Using the Distributed Directory . 96

Example 14: Using the Distributed Directory to Find the Partner Program . 96
Resource Recovery Flows . 98

Example 15: Sending Program Issues a Commit 98
Example 16: Successful Commit with Conversation State Change 100
Example 17: Conversation Deallocation before the Commit Call 102

Part 2. CPI-C 2.1 Call Reference . 105

Chapter 4. Call Reference . 107
Call Syntax . 108
Conformance Class and Interface Definition Table 109
Programming Language Considerations . 111

Application Generator . 112
C . 112
COBOL . 112
FORTRAN . 112
PL/I . 112
REXX . 113
RPG . 113

How to Use the Call References . 113
Summary List of Calls and Their Descriptions 114
Accept_Conversation (CMACCP) . 119
Accept_Incoming (CMACCI) . 121
Allocate (CMALLC) . 124
Cancel_Conversation (CMCANC) . 131
Confirm (CMCFM) . 133
Confirmed (CMCFMD) . 137
Convert_Incoming (CMCNVI) . 139
Convert_Outgoing (CMCNVO) . 141
Deallocate (CMDEAL) . 143
Deferred_Deallocate (CMDFDE) . 153
Extract_AE_Qualifier (CMEAEQ) . 155
Extract_AP_Title (CMEAPT) . 157
Extract_Application_Context_Name (CMEACN) 159
Extract_Conversation_Context (CMECTX) . 161
Extract_Conversation_State (CMECS) . 163
Extract_Conversation_Type (CMECT) . 166
Extract_Initialization_Data (CMEID) . 168
Extract_Mapped_Initialization_Data (CMEMID) 170
Extract_Maximum_Buffer_Size (CMEMBS) . 173

 Contents v

Extract_Mode_Name (CMEMN) . 175
Extract_Partner_ID (CMEPID) . 177
Extract_Partner_LU_Name (CMEPLN) . 180
Extract_Secondary_Information (CMESI) . 182
Extract_Security_User_ID (CMESUI) . 185
Extract_Send_Receive_Mode (CMESRM) . 187
Extract_Sync_Level (CMESL) . 189
Extract_TP_Name (CMETPN) . 191
Extract_Transaction_Control (CMETC) . 193
Flush (CMFLUS) . 195
Include_Partner_In_Transaction (CMINCL) . 198
Initialize_Conversation (CMINIT) . 200
Initialize_For_Incoming (CMINIC) . 203
Prepare (CMPREP) . 205
Prepare_To_Receive (CMPTR) . 208
Receive (CMRCV) . 213
Receive_Expedited_Data (CMRCVX) . 228
Receive_Mapped_Data (CMRCVM) . 231
Release_Local_TP_Name (CMRLTP) . 244
Request_To_Send (CMRTS) . 246
Send_Data (CMSEND) . 249
Send_Error (CMSERR) . 259
Send_Expedited_Data (CMSNDX) . 268
Send_Mapped_Data (CMSNDM) . 271
Set_AE_Qualifier (CMSAEQ) . 280
Set_Allocate_Confirm (CMSAC) . 282
Set_AP_Title (CMSAPT) . 284
Set_Application_Context_Name (CMSACN) 286
Set_Begin_Transaction (CMSBT) . 288
Set_Confirmation_Urgency (CMSCU) . 290
Set_Conversation_Security_Password (CMSCSP) 292
Set_Conversation_Security_Type (CMSCST) 295
Set_Conversation_Security_User_ID (CMSCSU) 298
Set_Conversation_Type (CMSCT) . 301
Set_Deallocate_Type (CMSDT) . 303
Set_Error_Direction (CMSED) . 307
Set_Fill (CMSF) . 310
Set_Initialization_Data (CMSID) . 312
Set_Join_Transaction (CMSJT) . 314
Set_Log_Data (CMSLD) . 316
Set_Mapped_Initialization_Data (CMSMID) . 318
Set_Mode_Name (CMSMN) . 321
Set_Partner_ID (CMSPID) . 323
Set_Partner_LU_Name (CMSPLN) . 327
Set_Prepare_Data_Permitted (CMSPDP) . 329
Set_Prepare_To_Receive_Type (CMSPTR) 331
Set_Processing_Mode (CMSPM) . 334
Set_Queue_Callback_Function (CMSQCF) . 337
Set_Queue_Processing_Mode (CMSQPM) . 340
Set_Receive_Type (CMSRT) . 344
Set_Return_Control (CMSRC) . 346
Set_Send_Receive_Mode (CMSSRM) . 349
Set_Send_Type (CMSST) . 351
Set_Sync_Level (CMSSL) . 354

vi CPI Communications Reference

Set_TP_Name (CMSTPN) . 357
Set_Transaction_Control (CMSTC) . 359
Specify_Local_TP_Name (CMSLTP) . 361
Test_Request_To_Send_Received (CMTRTS) 363
Wait_For_Completion (CMWCMP) . 366
Wait_For_Conversation (CMWAIT) . 369

Part 3. CPI-C 2.1 Implementation Specifics . 373

Chapter 5. CPI Communications on AIX . 381
AIX Publications . 381
AIX Operating Environment . 382

AIX CPI Communications Concepts . 382
Conformance Classes Supported . 382
Languages Supported . 383
Pseudonym Files . 383
Profiles . 383
Creating and Maintaining Profiles through SMIT 388
Starting SMIT . 388
Working with Profiles . 388
Verifying Profiles . 388
How Dangling Conversations Are Deallocated 388
Scope of the Conversation_ID . 389
Identifying Product-Specific Errors . 389
Diagnosing Errors . 389
When Allocation Requests Are Sent . 391
Deviations from the CPI Communications Architecture 391
Security Using CPI Communications and AIX 391
Compilation . 393
Running a Transaction Program . 393

AIX Extension Calls . 394
Extract_Conversation_Security_Type (XCECST) 396
Extract_Conversation_Security_User_ID (XCECSU) 398
Set_Conversation_Security_Password (XCSCSP) 399
Set_Conversation_Security_Type (XCSCST) 401
Set_Conversation_Security_User_ID (XCSCSU) 403
Set_Signal_Behavior (XCSSB) . 405

Chapter 6. CPI Communications on CICS/ESA 407
CICS/ESA Publications . 407
CICS/ESA Operating Environment . 407

Conformance Classes Supported . 408
Languages Supported . 408
Pseudonym Files . 408
Defining Side Information . 409
How Dangling Conversations Are Deallocated 411
Scope of the Conversation_ID . 412
Identifying Product-Specific Errors . 412
Diagnosing Errors . 412
When Allocation Requests are Sent . 412
Deviations from the CPI Communications Architecture 413

CICS/ESA Extension Calls . 413
CICS/ESA Special Notes . 414

 Contents vii

Chapter 7. CPI Communications on IMS/ESA 415

Chapter 8. CPI Communications on MVS/ESA 417
MVS/ESA Publications . 417
MVS/ESA Operating Environment . 418

Conformance Classes Supported . 418
Languages Supported . 419
Pseudonym Files . 419
Defining Side Information . 420
How Dangling Conversations Are Deallocated 420
Scope of the Conversation_ID . 420
Identifying Product-Specific Errors . 421
Diagnosing Errors . 423
When Allocation Requests Are Sent . 424
Deviations from the CPI Communications Architecture 424

MVS/ESA Extension Calls . 425
MVS/ESA Special Notes . 425

TP Profiles . 425
MVS Performance Considerations . 425
APPC/MVS Services . 425

Chapter 9. CPI Communications on Networking Services for Windows 429
Networking Services for Windows Publications 429
Networking Services for Windows Operating Environment 429

Support of CPI-C Conformance Classes . 429
Optional Conformance Classes Supported 429
Optional Conformance Classes Not Supported 430

Languages Supported . 430
Pseudonym Files . 430

Examples of Using C . 431
CPI-C Function Calls in C . 431
Using the Pseudonym Files in C Language Programs 431
Using Other Languages . 431

Linking with the CPI-C Import Library . 432
Memory Considerations . 432

Data Buffers . 432
Stack Size . 432

Defining Side Information . 432
Usage Notes for Mode_Name and TP_Name 432

Mode_Name . 432
Restrictions on Transaction Program Names 433

How Dangling Conversations Are Deallocated 433
Diagnosing Errors . 433

Log_Data . 433
Identifying Product-Specific Errors . 433

Deviations from the CPI Communications Architecture 434
Return_control Characteristic for Allocate (CMALLC) 434
CM_PROGRAM_PARAMETER_CHECK Return Code 434
Log Data Support . 434

Chapter 10. CPI Communications on OS/2 435
OS/2 Publications . 436
OS/2 Operating Environment . 437

Conformance Classes Supported . 437

viii CPI Communications Reference

Languages Supported . 437
C . 438
COBOL . 439
FORTRAN . 439
REXX (SAA Procedures Language) . 440

Pseudonym Files . 443
Defining Side Information . 443

User-Defined Side Information . 444
Program-Defined Side Information . 444
Side Information Parameters . 445

How Dangling Conversations Are Deallocated 447
Scope of the Conversation_ID . 447
Identifying Product-Specific Errors . 447
Diagnosing Errors . 448

Set_Log_Data (CMSLD) . 448
Logging Errors for CPI Communications Error Return Codes 448
Causes for the CM_PROGRAM_PARAMETER_CHECK Return Code . 449
Causes for the CM_PROGRAM_STATE_CHECK Return Code 449

When Allocation Requests Are Sent . 450
Deviations from the CPI Communications Architecture 450

Accept_Incoming (CMACCI) . 450
Release_Local_TP_Name (CMRLTP) . 451
Specify_Local_TP_Name (CMSLTP) . 451
Set_Sync_Level (CMSSL) . 451
Programming Languages Not Supported 452
Mode Names Not Supported . 452
CPI Communications Functions Not Available 452

OS/2 Extension Calls—System Management 454
Delete_CPIC_Side_Information (XCMDSI) . 455
Extract_CPIC_Side_Information (XCMESI) . 457
Set_CPIC_Side_Information (XCMSSI) . 460
Define_TP (XCDEFTP) . 463
Delete_TP (XCDELTP) . 467
Register_Memory_Object (XCRMO) . 469
Unregister_Memory_Object (XCURMO) . 470
OS/2 Extension Calls—Conversation . 471
Extract_Conversation_Security_Type (XCECST) 472
Extract_Conversation_Security_User_ID (XCECSU) 473
Initialize_Conv_For_TP (XCINCT) . 474
Set_Conversation_Security_Password (XCSCSP) 476
Set_Conversation_Security_Type (XCSCST) 477
Set_Conversation_Security_User_ID (XCSCSU) 478
OS/2 Extension Calls—Transaction Program Control 479
End_TP (XCENDT) . 480
Extract_TP_ID (XCETI) . 482
Start_TP (XCSTP) . 483
OS/2 Special Notes . 485

Migration to Communications Server . 485
Multi-threaded CPI-C Programs . 485
Considerations for CPI Communications Calls 485

TP Instances for Communications Manager 486
Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) . . . 487
Extract_Conversation_Context (CMECTX) 488
Extract_Secondary_Information (CMESI) 489

 Contents ix

Initialize_Conversation (CMINIT) . 490
Receive (CMRCV) . 492
Send_Data (CMSEND) . 492
Send_Expedited_Data (CMSNDX) . 493
Set_Partner_LU_Name (CMSPLN) . 493
Set_Sync_Level (CMSSL) . 493
Set_Queue_Processing_Mode (CMSQPM) 493
Test_Request_To_Send (CMTRTS) . 493
Wait_For_Completion (CMWCMP) . 493

Characteristics, Fields, and Variables . 494
Communications Manager Native Encoding 494
Variable Types and Lengths . 495
Defining and Running a CPI Communications Program on Communications

Manager . 498
Defining a CPI Communications Program to Communications Manager 498
Using Defaults for TP Definitions . 498
Communications Manager Use of OS/2 Environment Variables 499
Stack Size . 500
Performance Considerations For Using Send/Receive Buffers 500
Exit List Processing . 501

Sample Program Listings for OS/2 . 502
OS/2 C Sample Programs . 503

SETSIDE.C . 503
OS/2 COBOL Sample Programs . 504

DEFSIDE.CBL . 504
DELSIDE.CBL . 507

OS/2 REXX Sample Programs . 509
XCMSSI.CMD . 509
XCMESI.CMD . 510

Chapter 11. CPI Communications on Operating System/400 513
OS/400 Publications . 513
OS/400 Operating Environment . 513

OS/400 Terms and Concepts . 513
Conformance Classes Supported . 515
Languages Supported . 515
Pseudonym Files . 516
Defining Side Information . 516

Managing the Communications Side Information 517
How Dangling Conversations Are Deallocated 518

Reclaim Resource Processing . 519
Scope of the Conversation_ID . 519
Identifying Product-Specific Errors . 519

CM_PRODUCT_SPECIFIC_ERROR . 519
Diagnosing Errors . 520

OS/400 CPI Communications Support of Log_Data 521
Return Codes . 521
REXX Reserved RC Variable . 522
REXX Error and Failure Conditions . 523
Tracing CPI Communications . 523

When Allocation Requests Are Sent . 524
OS/400 Extension Calls . 524
OS/400 Special Notes . 524

CPI Communications over TCP/IP Support 524

x CPI Communications Reference

Prestarting Jobs for Incoming Conversations 524
Multiple Conversation Support . 525
Portability Considerations . 525

Chapter 12. CPI Communications on VM/ESA CMS 527
VM Publications . 527
VM/ESA Operating Environment . 528

Conformance Classes Supported . 528
Languages Supported . 528

Programming Language Considerations 529
Pseudonym Files . 530
Defining Side Information . 532
How Dangling Conversations Are Deallocated 534
Scope of the Conversation_ID . 534
Identifying Product-Specific Errors . 534
Diagnosing Errors . 536

Processing Log Data . 536
Invocation Errors . 537
Possible Causes for Selected Return Codes 538
APPC Protocol Errors in VM/ESA . 539

When Allocation Requests Are Sent . 540
Deviations from the CPI Communications Architecture 540

VM/ESA Extension Calls . 541
Extract_Conversation_LUWID (XCECL) . 544
Extract_Conversation_Security_User_ID (XCECSU) 546
Extract_Conversation_Workunitid (XCECWU) 548
Extract_Local_Fully_Qualified_LU_Name (XCELFQ) 550
Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) 552
Extract_TP_Name (XCETPN) . 554
Identify_Resource_Manager (XCIDRM) . 555
Set_Client_Security_User_ID (XCSCUI) . 559
Set_Conversation_Security_Password (XCSCSP) 562
Set_Conversation_Security_Type (XCSCST) 564
Set_Conversation_Security_User_ID (XCSCSU) 566
Signal_User_Event (XCSUE) . 568
Terminate_Resource_Manager (XCTRRM) . 570
Wait_on_Event (XCWOE) . 571
VM/ESA Variables and Characteristics . 576

Pseudonyms and Integer Values . 576
Variable Types and Lengths . 577

VM/ESA Special Notes . 577
Program-Startup Processing . 578
End-of-Command Processing . 578
Work Units . 578
External Interrupts . 579
Coordination with the SAA Resource Recovery Interface 579
Additional Conversation Characteristics . 579
TP-Model Applications in VM/ESA . 580

LU 6.2 Communications Model . 580
VM/ESA TP-Model Applications . 581
Implications . 582

VM/ESA-Specific Notes for CPI Communications Routines 583
VM/ESA Communications Events . 585

The VMCPIC Event . 586

 Contents xi

Notes on the VMCPIC Event . 587
Using the Online HELP Facility . 588

Chapter 13. CPI Communications on IBM eNetwork Personal
Communications V4.1 for Windows 95 . 589

Conformance Classes Supported . 589
Personal Communications V4.1 for Windows 95 Publications 590
Programming Language Support . 590
Linking with the CPI-C library . 590
Accepting Conversations . 590
Extension Calls supported . 591

WinCPICStartup . 591
WinCPICCleanup . 591
Specify_Windows_Handle (XCHWND) . 591

Deviations from the CPI-C architecture . 592

Chapter 14. CPI Communications on Win32 and 32-bit API Client
Platforms . 593

Operating Environment . 594
Conformance Classes Supported . 594
Languages Supported . 596
CPI-C Communications Use of Environment Variables 597
Pseudonym Files . 597
Defining Side Information . 598

User-Defined Side Information . 598
Program-Defined Side Information . 598

How Dangling Conversations Are Deallocated 599
Diagnosing Errors . 599

Causes for the CM_PROGRAM_PARAMETER_CHECK Return Code . 599
Causes for the CM_PROGRAM_STATE_CHECK Return Code 599

When Allocation Requests Are Sent . 600
Deviations from the CPI Communications Architecture 600

Accept_Incoming (CMACCI) . 600
Release_Local_TP_Name (CMRLTP) . 600
Mode Names Not Supported . 600
CPI-C Communication Functions Not Available 600

Extension Calls – System Management . 601
Delete_CPIC_Side_Information (XCMDSI) . 602
Extract_CPIC_Side_Information . 604
Set_CPIC_Side_Information . 607
Extension Calls—Conversation . 610
Extract_Conversation_Security_Type (XCECST) 611
Extract_Conversation_Security_User_ID (XCECSU) 612
Initialize_Conv_For_TP (XCINCT) . 613
Set_Conversation_Security_Password (XCSCSP) 615
Set_Conversation_Security_Type (XCSCST) 616
Set_Conversation_Security_User_ID (XCSCSU) 617
Extension Calls—Transaction Program Control 618
End_TP (XCENDT) . 619
Extract_TP_ID (XCETI) . 621
Start_TP (XCSTP) . 622
Special Notes . 624

Migration to Communications Server . 624
Multi-threaded CPI-C Programs . 624

xii CPI Communications Reference

Considerations for CPI Communications Calls 624
TP Instances for CPI-C Communications 625
Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) . . . 625
Extract_Conversation_Context (CMECTX) 627
Extract_Secondary_Information (CMESI) 627
Initialize_Conversation (CMINIT) . 628
Receive (CMRCV) . 629
Send_Data (CMSEND) . 630
Send_Expedited_Data (CMSNDX) . 630
Set_Partner_LU_Name (CMSPLN) . 630
Set_Queue_Processing_Mode (CMSQPM) 630
Test_Request_To_Send (CMTRTS) . 631
Wait_For_Completion (CMWCMP) . 631

Characteristics, Fields, and Variables . 631
Variable Types and Lengths . 632
WOSA Extension Calls Supported . 633
WinCPICStartup . 634

Returns . 634
WinCPICCleanup . 634

WINCPICCleanup() . 634
Specify_Windows Handle (xchwnd) . 635

Part 4. CPI-C 2.1 Appendixes . 637

Appendix A. Variables and Characteristics 641
Pseudonyms and Integer Values . 641
Character Sets . 647
Variable Types . 649

Integers . 649
Character Strings . 649

Distinguished Name . 655
Program Function Identifier (PFID) . 656

PFID Assignment Algorithms . 656
Program Binding . 658

Appendix B. Return Codes and Secondary Information 661
Return Codes . 661
Secondary Information . 679

Application-Oriented Information . 680
CPI Communications-Defined Information 681
CRM-Specific Secondary Information . 692
Implementation-Related Information . 693

Appendix C. State Tables . 695
How to Use the State Tables . 695

Example . 696
Explanation of Half-Duplex State Table Abbreviations 697

Conversation Characteristics () . 697
Conversation Queues () . 699
Return Code Values [] . 700
data_received and status_received { , } . 702
Table Symbols for the Half-Duplex State Table 703

 Contents xiii

Effects of Calls to the SAA Resource Recovery Interface on Half-Duplex
Conversations . 710

Effects of Calls on Half-Duplex Conversations to the X/Open TX Interface . 711
Explanation of Full-Duplex State Table Abbreviations 712

Conversation Characteristics () . 712
Conversation Queues () . 713
Return Code Values [] . 713
data_received and status_received { , } . 715
Table Symbols for the Full-Duplex State Table 716

Effects of Calls to the SAA Resource Recovery Interface on Full-Duplex
Conversations . 723

Effects of Calls on Full-Duplex Conversations to the X/Open TX Interface . . 724

Appendix D. CPI Communications and LU 6.2 725
Send-Pending State and the error_direction Characteristic 726
Can CPI Communications Programs Communicate with APPC Programs? 727
SNA Service Transaction Programs . 727
Implementation Considerations . 727
Relationship between LU 6.2 Verbs and CPI Communications Calls . . . 727

Appendix E. Application Migration from X/Open CPI-C 735

Appendix F. CPI Communications Extensions for Use with DCE
Directory . 737

Profile Object . 737
Server Object . 737
Server Group Object . 738
Interaction of Directory Objects . 738
CPI-C Name Service Interface . 739

CNSI Calls . 740
Definition of New Objects . 740

Terminology . 740
Profile Object . 741
Server Object . 741
Server Group Object . 741
Program Installation Object . 742
Encoding Method for Complex Attribute Values 742

Scenarios for Use of CNSI . 742
(PFID, *, *) . 743
(PFID, SDN, *) . 743
(PFID, SGDN, *) . 743
(PFID, SDN, resID) . 744
(PFID, SGDN, resID) . 744
(PFID, PDN, *) . 744
(PFID, PDN, resID) . 744

Appendix G. CPI Communications 2.1 Conformance Classes 745
Definitions . 745
Conformance Requirements . 745

Multi-Threading Support . 745
CPI-C 2.1 Conformance Classes . 745
Functional Conformance Class Descriptions 746

Conversations . 746
LU 6.2 . 747

xiv CPI Communications Reference

OSI TP . 747
Recoverable Transactions . 748
Unchained Transactions . 748
Conversation-Level Non-Blocking . 749
Queue-Level Non-Blocking . 749
Callback Function . 749
Server . 750
Data Conversion Routines . 750
Security . 750
Distributed Security . 751
Full-Duplex . 751
Expedited Data . 751
Directory . 751
Secondary Information . 752
Initialization Data . 752
Automatic Data Conversation . 752

Configuration Conformance Class Description 753
OSI TP Addressing Disable . 753

Relationship to OSI TP Functional Units and OSI TP Profiles 754
Conformance Class Details . 755

Appendix H. Solution Developers Program - Enterprise Communications
Partners in Development . 763

Program Highlights . 763
Membership . 763

Glossary . 765

Index . 769

 Contents xv

xvi CPI Communications Reference

 Figures

1. Programs Using CPI Communications to Converse through a Network . 18
2. Operating Environment of CPI Communications Program 22
3. Generic Program Interaction with a Distributed Directory 25
4. Program Interaction with CPI Communications and a Distributed Directory 27
5. CRM Interaction with Distributed Security Service 28
6. A Program Using Multiple Outbound CPI Communications Conversations 31
7. A Program Using Multiple Inbound CPI Communications Conversations 31
8. Server Program with Both Inbound and Outbound Conversations 33
9. Commit Tree with Program 1 as Root and Superior 63

10. Data Flow in One Direction . 71
11. Data Flow in Both Directions . 73
12. The Sending Program Changes the Data Flow Direction 75
13. Changing the Data Flow Direction . 77
14. Validation and Confirmation of Data Reception 79
15. Reporting Errors . 81
16. Error Direction and Send-Pending State 83
17. Establishing a Full-Duplex Conversation 85
18. Using a Full-Duplex Conversation . 87
19. Terminating a Full-Duplex Conversation 89
20. Using Queue-Level Non-Blocking . 91
21. Accepting Multiple Conversations Using Blocking Calls 93
22. Accepting Multiple Conversations Using Non-Blocking Calls 95
23. Using the Distributed Directory to Locate the Partner Program 97
24. Establishing a Protected Conversation and Issuing a Successful Commit 99
25. A Successful Commit with Conversation State Change 101
26. Conversation Deallocation Precedes the Commit Call 103
27. LU 6.2 Communications Model . 580
28. Creating a TP-Model Application in VM/ESA 581
29. Three Potential Conversation Wrap-Back Scenarios 583
30. Relationship of PFID to Program Installation DNs 656
31. Sample Program Binding Format . 659
32. Interactions of Directory Objects . 738
33. CPI-C Name Service Interface (CNSI) and CPI Communications 739
34. Program Uses CNSI to Locate PIDN . 743

 Copyright IBM Corp. 1996, 1998 xvii

xviii CPI Communications Reference

 Tables

1. Previous Editions of the CPI-C Reference 8
2. Versions of CPI Communications . 12
3. Characteristics and Their Default Values 35
4. Conversation Characteristic Values that Cannot Be Set for Half-Duplex

Conversations . 40
5. Conversation Characteristic Values that Cannot Be Set for Full-Duplex

Conversations . 40
6. Conversation Queues—Associated Calls and Send-Receive Modes . . . 45
7. Calls Returning CM_OPERATION_INCOMPLETE 48
8. Incompatible conversation_security_type and required_user_name_type

Values . 52
9. Possible Take-Commit Notifications for Half-Duplex Conversations . . . 56

10. Possible Take-Commit Notifications for Full-Duplex Conversations 57
11. Responses to Take-Commit and Take-Backout Notifications 60
12. Responses to the CM_JOIN_TRANSACTION Indication 63
13. CPI Communications States for Protected Conversations 64
14. Languages Supported by Platform . 108
15. CPI-C Calls and Product Implementation 109
16. List of CPI-C Calls and Their Descriptions 114
17. Full-Duplex and Half-Duplex Conversation Queues 342
18. Return Control Options . 347
19. List of SNA Server/6000 Extension Calls for CPI Communications . . . 394
20. CICS Pseudonym Files for Supported Languages 409
21. Defaults and Allowed Values for the CICS PARTNER Resource 411
22. General Requirements for CPI Communications Calls on MVS 418
23. CPI Communications Pseudonym Files on MVS 419
24. Symptom String for Product-Specific Errors on MVS 421
25. Reason Codes for Product-Specific Errors on MVS 422
26. Location (OS/2 Subdirectory) of Pseudonym Files and Link Edit Files . 438
27. Values Returned in the REXX RC Variable for Communications Manager 442
28. An Entry of Communications Manager CPI Communications Side

Information . 445
29. List of Communications Manager System Management Calls 454
30. Entry Structure for the Communications Manager

Extract_CPIC_Side_Information Call . 458
31. Extended Entry Structure for the Communications Server Call 458
32. Entry Structure for the Communications Manager

Set_CPIC_Side_Information Call . 460
33. Extended Entry Structure for the Communications Server Call 461
34. Entry Structure for the Communications Server Define_TP Call 464
35. List of Communications Manager Conversation Calls 471
36. List of Communications Manager Transaction Program Control Calls . 479
37. Additional Communications Manager Characteristics Initialized following

CMACCP or CMACCI . 487
38. Additional Communications Manager Characteristics Initialized following

CMINIT . 491
39. Additional Communications Manager Characters Translated between

ASCII and EBCDIC . 495
40. Communications Manager Variable and Field Types and Lengths . . . 496
41. Description of OS/400 Communications Side Information Object 518

 Copyright IBM Corp. 1996, 1998 xix

42. Summary of CPI Communications Pseudonym Files 530
43. Contents of a CMS Communications Directory File 533
44. Overview of VM/ESA Extension Routines 542
45. VM/ESA Variables/Characteristics and Their Possible Values 576
46. VM/ESA Variable Types and Lengths . 577
47. VM/ESA Security Characteristics and Their Default Values 579
48. Personal Communications V4.1 for Windows 95 Publications 590
49. Client Support of CPI-C Functions . 597
49. Header Files and Libraries for CPI-C . 597
50. List of CPI-C Communications System Management Calls 601
51. Extended Entry Structure for the CPI-C Communications Call 605
52. Entry Structure for the CPI-C Communications

Set_CPIC_Side_Information Call . 607
53. Extended Entry Structure for the Communications Server Call 608
54. List of CPI-C Communications Conversation Calls 610
55. List of CPI-C Communications Transaction Program Control Calls . . . 618
56. Additional CPI-C Communications Characteristics Initialized following

CMACCP or CMACCI . 626
57. Additional CPI-C Communications Characteristics Initialized following

CMINIT . 628
58. CPI-C Communications Variable and Field Types and Lengths 632
59. Variables/Characteristics and Their Possible Values 642
60. Character Sets T61String, 01134, and 00640 647
61. Variable Types and Lengths . 650
62. Fields in the Program Binding . 658
63. Secondary Information Types and Associated Return Codes 679
64. Range of Condition Codes for Different Secondary Information Types . 680
65. CPI Communications-Defined Secondary Information 681
66. Examples of LU 6.2 CRM-Specific Secondary Information 692
67. Examples of OSI TP CRM-Specific Secondary Information 692
68. Examples of Implementation-Related Secondary Information 693
69. States and Transitions for CPI Communications Calls on Half-Duplex

Conversations . 704
70. States and Transitions for Protected Half-Duplex Conversations (CPIRR) 710
71. States and Transitions for Protected Half-Duplex Conversations (X/Open

TX) . 711
72. States and Transitions for CPI Communications Calls on Full-Duplex

Conversations . 718
73. States and Transitions for Protected Full-Duplex Conversations (CPIRR) 723
74. States and Transitions for Protected Full-Duplex Conversations (X/Open

TX) . 724
75. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 1) . . 729
76. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 2) . . 730
77. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 3) . . 731
78. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 4) . . 732
79. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 5) . . 733
80. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 6) . . 734
81. Parameter Type Differences . 736
82. Sample Calls for CNSI . 740
83. Fields in Complex Attributes . 742
84. OSI TP Service Functional Units and Corresponding Conformance

Classes . 754
85. OSI TP Profiles and Corresponding Conformance Classes 754
86. Conformance Class Requirements—Calls 755

xx CPI Communications Reference

87. Conformance Class Requirements—Characteristics, Variables, and
Values . 757

 Tables xxi

xxii CPI Communications Reference

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Portions of this publication are derived from the CPI-C 2.1 Specification
(SC31-6180). IBM authorizes any developer, under IBM's copyrights, to use and
reproduce the materials in the CPI-C 2.1 Specification (“Materials”): to implement
CPI Communications in the developer's products and to describe the interface in
supporting publications for those products. The foregoing authorization does not
apply to material which appears in this publication but not in the referenced CPI-C
Specification. X/Open has authorized any developer to do the same with respect to
any Materials in this publication in which X/Open holds the copyright.

The developer, in consideration of the foregoing authorization, and IBM agree not
to assert any copyrights in any derivative works of the Materials against each other
or any third party.

No authorization or right is granted by IBM either directly or by implication,
estoppel, or otherwise other than as explicitly stated above, or under any other
intellectual property right of IBM including but not limited to trade secrets,
trademarks, patents, or patent applications of IBM.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

208 Harbor Drive
 Stamford, Connecticut
 USA 06904-2501

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the
warranties of merchantability and fitness for a particular purpose.

 Copyright IBM Corp. 1996, 1998 xxiii

Programming Interface Information
This manual is intended to help the customer program with CPI Communications.
This book documents General-Use Programming Interface and Associated
Guidance Information provided by CPI Communications as implemented in AIX,
CICS/ESA, IMS/ESA, MVS/ESA, Networking Services for Windows, OS/2, OS/400,
VM/ESA, and Windows 95.

General-Use programming interfaces allow the customer to write programs that
obtain the services of CPI Communications as implemented in AIX, CICS/ESA,
IMS/ESA, MVS/ESA, Networking Services for Windows, OS/2, OS/400, VM/ESA,
and Windows 95.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*) on their first occurrence in this
publication, are trademarks or service marks of the IBM Corporation in the United
States and/or other countries:

The following terms, denoted by a double asterisk (**) on the first occurrence in this
publication, are trademarks of other companies:

Trademark Owned by
DCE Open Software Foundation
Windows Microsoft Corporation
NDS Novell Corporation
Windows 95 Microsoft Corporation
Windows NT Microsoft Corporation
NWSAA Novell
IWSAA Novell

AD/Cycle IMS/ESA
Advanced Peer-To-Peer Networking MVS/ESA
AIX Library Reader
Application System/400 MVS/SP
APPN Operating System/2
AS/400 Operating System/400
BookManager OS/2
CICS/ESA OS/400
C/2 Presentation Manager
C/400 PrintManager
COBOL/2 RISC System/6000
COBOL/400 RPG/400
Common User Access SAA
CUA Systems Application Architecture
Enterprise Systems Architecture/370 SystemView
Enterprise Systems Architecture/390 System/370
ESA/370 System/390
ESA/390 Virtual Machine/Enterprise Systems

Architecture
FORTRAN/400 VM/ESA
IBM VTAM
ILE

xxiv CPI Communications Reference

 Acknowledgements

IBM wishes to express its appreciation for the teamwork of the CPI-C
Implementers' Workshop (CIW) in defining CPI-C 2.0 and 2.1. Further, IBM
gratefully acknowledges X/Open for its assistance, review, and refinement of CPI-C.

 Copyright IBM Corp. 1996, 1998 xxv

xxvi CPI Communications Reference

Part 1. CPI-C 2.0 Architecture

Chapter 1. Introduction . 5
CPI-C and the Conversational Model . 5
Who Should Read This Book . 5
What Is New in This Book . 6
Relationship to CPI-C 2.1 Specification . 6
Relationship to Products . 7
Additional Information Sources . 8

Previous Editions of this Reference . 8
Related APPC/LU 6.2 Publications . 8
CD-ROM . 9
Solution Developers Organization . 9
Online Information—CPI-C, APPC, and APPN 9

CompuServe . 9
OS/2 BBS . 9
Internet . 10

Functional Levels of CPI Communications . 10
CPI-C 1.0 . 10
CPI-C 1.1 . 10
X/Open CPI-C . 10
CPI-C 1.2 . 10
CPI-C 2.0 . 11
X/Open CPI-C 2.0 . 11
CPI-C 2.1 . 11

Call Table for Functional Levels of CPI-C . 12
Naming Conventions—Calls, Characteristics, Variables, and Values 13

Chapter 2. CPI Communications Terms and Concepts 17
Communication across a Network . 18
Conversation Types . 19
Send-Receive Modes . 19
Program Partners . 20
Identifying the Partner Program . 20
Operating Environment . 21

Node Services . 22
Side Information . 23
Distributed Directory . 25

CPI Communications Directory Object . 25
Using the Distributed Directory . 26
Interaction with Side Information and Set Calls 27

Distributed Security . 28
Operating System . 28

Program Calls . 29
Starter Set Calls . 29

Establishing a Conversation . 29
Multiple Conversations . 30

Partner Program Names . 30
Multiple Outbound Conversations . 30
Multiple Inbound Conversations . 31

Contexts and Context Management . 32
Relationship between Contexts and Conversations 32

 Copyright IBM Corp. 1996, 1998 1

Relationship between Contexts and Security Parameters 32
Inbound and Outbound Conversations . 32

Conversation Characteristics . 33
Modifying and Viewing Characteristics . 34
Characteristic Values and CRMs . 39
Characteristic Values and Send-Receive Modes 40
Automatic Conversion of Characteristics . 41

Automatic Data Conversion . 42
Data Conversion . 43
Data Buffering and Transmission . 44
Concurrent Operations . 44

Using Multiple Program Threads . 45
Non-Blocking Operations . 47

Conversation-Level Non-Blocking . 48
Queue-Level Non-Blocking . 49

Working with Wait Facility . 49
Wait Facility Scenario . 49
Using Callback Function . 50

Canceling Outstanding Operations . 50
Non-Blocking Calls and Context Management 50

Conversation Security . 51
Program Flow—States and Transitions . 52
Support for Resource Recovery Interfaces . 54

Coordination with Resource Recovery Interfaces 55
Take-Commit and Take-Backout Notifications 55
The Backout-Required Condition . 58
Responses to Take-Commit and Take-Backout Notifications 59
Chained and Unchained Transactions . 61
Joining a Transaction . 61
Superior and Subordinate Programs . 63
Additional CPI Communications States . 64
Valid States for Resource Recovery Calls . 65
TX Extensions for CPI Communications . 66

Chapter 3. Program-to-Program Communication Example Flows 67
Interpreting the Flow Diagrams . 67
Starter-Set Flows . 68

Example 1: Data Flow in One Direction . 69
Example 2: Data Flow in Both Directions . 72

Controlling Data Flow Direction . 74
Example 3: The Sending Program Changes the Data Flow Direction 74
Example 4: The Receiving Program Changes the Data Flow Direction . . . 75

Verifying Receipt of Data . 78
Example 5: Validation of Data Receipt . 78

Reporting Errors to Partner . 80
Example 6: Reporting Errors . 80
Example 7: Error Direction and Send-Pending State 82

Using Full-Duplex Conversations . 84
Example 8: Establishing a Full-Duplex Conversation 84
Example 9: Using a Full-Duplex Conversation 86
Example 10: Terminating a Full-Duplex Conversation 88

Using Queue-Level Non-Blocking . 90
Example 11: Queue-Level Non-Blocking . 90

Accepting Multiple Conversations . 92

2 CPI Communications Reference

Example 12: Accepting Multiple Conversations Using Blocking Calls 92
Example 13: Accepting Multiple Conversations Using Conversation-Level

Non-Blocking Calls . 94
Using the Distributed Directory . 96

Example 14: Using the Distributed Directory to Find the Partner Program . 96
Resource Recovery Flows . 98

Example 15: Sending Program Issues a Commit 98
Example 16: Successful Commit with Conversation State Change 100
Example 17: Conversation Deallocation before the Commit Call 102

 Part 1. CPI-C 2.0 Architecture 3

4 CPI Communications Reference

 Introduction

 Chapter 1. Introduction

This introductory chapter:

¹ Explains CPI Communications and the conversational model
¹ Identifies the purpose and audience of this book
¹ Lists what is new in this book
¹ Explains the relationship to CPI-C 2.1 specification
¹ Explains the relationship to products
¹ Details the availability of additional information sources
¹ Lists the functional levels of CPI Communications
¹ Provides a call table with the functional levels of CPI-C
¹ Explains the naming conventions followed

CPI-C and the Conversational Model
CPI Communications (CPI-C) provides a cross-system-consistent and easy-to-use
programming interface for applications that require program-to-program
communication. The conversational model of program-to-program communication
is commonly used in the industry today, and a wide variety of applications are
based on this model. The model is described in terms of two
applications—speaking and listening —hence, the term conversation . A
conversation is simply a logical connection between two programs that allows the
programs to communicate with each other. From an application's perspective,
CPI-C provides the function necessary to enable this communication.

The conversational model is implemented in two major communications protocols,
Advanced Program-to-Program Communication (APPC) and Open Systems
Interconnection Distributed Transaction Processing (OSI TP).1 The APPC protocol
is also referred to as logical unit type 6.2 (LU 6.2). CPI-C provides access to both
APPC and OSI-TP.

A primary benefit of this design is that CPI Communications defines a single
programming interface to the underlying network protocols across many different
programming languages and environments. The interface's rich set of
programming services shields the program from details of system connectivity and
eases the integration and porting of the application programs across the supported
environments.

Who Should Read This Book
This book defines CPI Communications. It is intended for programmers who want
to write applications that use communications products supporting CPI
Communications.

Although this book is designed as an API reference, Chapter 3,
“Program-to-Program Communication Example Flows” provides examples for
designing application programs using CPI Communications concepts and calls.

1 International Standardization Organization (ISO) and International Electrotechnical Commission (IEC) standard 10026 1 – 3:
Information Technology – Open Systems Interconnection — Distributed Transaction Processing — Parts 1 – 3.

 Copyright IBM Corp. 1996, 1998 5

 Introduction

What Is New in This Book
This book includes changes to CPI-C 2.1 architecture and changes to product
implementation information.

CPI-C 2.1 Enhancements Providing Support For:

 ¹ Enhanced Cancel_Conversation
¹ Additional return control options

 ¹ Accept specific
¹ Automatic Data Conversion
¹ Service Transaction Programs

Product implementations updated:

¹ AIX to AIX SNA Server/6000 Version 3 Release 1 and Version 2, Release 1.2

¹ OS/2 to Communications Server for OS/2 WARP Version 4.0 and Personal
Communications AS/400 and 3270 for OS/2 Version 4.1.

¹ IMS to IMS/ESA Version 5.

Product implementations added:

¹ Windows 95 environment. Support is provided for IBM eNetwork Personal
Communications AS/400 and 3270 for Windows 95, and IBM eNetwork
Personal Communications AS/400 for Windows 95.

¹ IBM eNetwork Communication Server for Windows NT 5.0, 5.01, and above
¹ Win95 API Client for Communication Server 5.0, 5.01, and above
¹ WinNT API Client for Communication Server 5.0, 5.01, and above
¹ OS/2 API Client for Communication Server 5.0, 5.01, and above

¹ Win95 API Client for Netware for SAA 2.2
¹ WinNT API Client for Netware for SAA 2.2
¹ OS/2 API Client for Netware for SAA 2.2

¹ Win95 API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ WinNT API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ OS/2 API Client for IntraNetware for SAA 2.3, 3.0 and above

¹ IBM eNetwork Personal Communications 4.1 for WinNT and above
¹ IBM eNetwork Personal Communications 4.2 for Win95 and above

Relationship to CPI-C 2.1 Specification
This book contains all the information in the CPI-C 2.1 Specification with these
exceptions:

¹ Most notes to implementers are removed, since they provide no value to
interface users.

¹ Some OSI-TP specific information is not included.

¹ Pseudonym files are provided on diskette.

6 CPI Communications Reference

 Introduction

Relationship to Products
The CPI Communications interface defines elements that are consistent across the
operating environments. Preparing and running programs require the use of a
communications product that implements the CPI-C interface for the desired
environment.

The following environments are supported by the listed IBM products, which are
described in this manual:

Environment Implementing Product
AIX SNA Server/6000
 SNA Desktop/6000
CICS/ESA CICS/ESA
IMS/ESA IMS/ESA Transaction Manager
MVS/ESA MVS/ESA System Product
OS/2 Communications Server for OS/2 WARP

Personal Communications for OS/2
API Client for Communication Server 5.0, 5.01, and above
API Client for Netware for SAA 2.2
API Client for IntraNetware for SAA 2.2, 3.0, and above

OS/400 Operating System/400
VM/ESA VM/ESA
Windows** IBM APPC Networking Services for Windows
Windows 95** IBM eNetwork Personal Communications for Windows 95

Win95 API Client for Communication Server 5.0, 5.01, and
above
Win95 API Client for Netware for SAA 2.2
Win95 API Client for IntraNetware for SAA 2.3, 3.0, and
above
IBM eNetwork Personal Communications v4.2 for Windows95
and WindowNT and above

Windows NT** IBM eNetwork Communication Server for Windows NT 5.0,
5.01, and above
WinNT API Client for Communication Server 5.0, 5.01, and
above
WinNT API Client for Netware for SAA 2.2
WinNT API Client for IntraNetware for SAA 2.3, 3.0, and
above
IBM eNetwork Personal Communications v4.1 for WinNT
IBM eNetwork Personal Communications v4.2 for Windows95
and WindowNT and above

These products have their own documentation, which is required in addition to this
book. This book defines the interface elements that are common across the
environments. This book and other product publications describe any additional
elements and—more importantly—explain how to prepare and run a program in a
particular environment.

See the appropriate product chapters in “Part 3. CPI-C 2.1 Implementation
Specifics” for a list of product documentation currently available.

The CPI Communications interface definition is printed in black ink. If the
implementation of an interface element in an operating environment differs from the

 Chapter 1. Introduction 7

 Introduction

CPI-C definition in its syntax or semantics, the text states that fact and is printed in
green as is this sentence. In addition, the sentence has a g in the margin.

Additional Information Sources
This section lists additional resources for CPI Communications information. If you
need information about using CPI Communications in a specific operating
environment, please see the appropriate product chapter in “Part 3. CPI-C 2.1
Implementation Specifics.”

Previous Editions of this Reference
Table 1 lists the previous editions of this book still available, the order numbers,
and the versions of the implementing product described.

Table 1. Previous Editions of the CPI-C Reference

Edition Number Products

8th Edition
SC26-4399-07

ST01-0223 AIX SNA Server/6000, Version 2 Release 1.1
IMS/ESA, Version 4

7th Edition
SC26-4399-06

ST00-8760 AIX SNA Services/6000, Release 1.2.1
VM/ESA, Release 2
MVS/ESA, Release 4.3

6th Edition
SC26-4399-05

ST00-6053 MVS/ESA, Release 4.2.2
VM/ESA, Release 1.1
AIX SNA Services/6000, Release 1.2.1
IBM Extended Services for OS/2, Version 1, R0
MVS/ESA, Version 4, Release 3
IBM SAA Networking Services/2, Version 1
Networking Services DOS, Version 1
Operating System/400, Version 2, Release 2

5th Edition
SC26-4399-04

ST00-5632 CICS/ESA, Version 3, Release 2
IMS/ESA, Version 3, Release 2
MVS/ESA, Version 4, Release 2

4th Edition
SC26-4399-03

ST00-5002 Operating System/400, Version 2, Release 1

Related APPC/LU 6.2 Publications
The following publications contain introductory level information on CPI-C or APPC:

¹ Systems Network Architecture Technical Overview, GC30-3073

¹ CPI-C Programming in C: An Application Developer's Guide to APPC
(John Q. Walker II and Peter J. Schwaller. McGraw-Hill, Inc., 1994,
ISBN 0-07-911733-3. Paperback, with diskette), SR28-5597

The following publications contain detailed technical information on CPI-C or APPC:

¹ CPI Communications: CPI-C 2.1 Specification, SC31-6180

¹ SNA Formats, GA27-3136

¹ SNA LU 6.2 Reference: Peer Protocols, SC31-6808

¹ Systems Network Architecture: Sync Point Services Architecture Reference,
SC31-8134

8 CPI Communications Reference

 Introduction

¹ SNA Transaction Programmer’s Reference Manual for LU Type 6.2,
GC30-3084

¹ Multiplatform APPC Configuration Guide, GG24-4485

Note: Product-specific information about using CPI Communications in each
operating environment can be found in the appropriate chapters in “Part 3. CPI-C
2.1 Implementation Specifics.”

 CD-ROM
This publication is also available as a softcopy book. The softcopy book is on an
electronic bookshelf and is part of the IBM Networking Systems Softcopy Collection
Kit (SK2T-6012) on compact disk read-only memory (CD-ROM).

You can view and search softcopy books by using BookManager* READ products
or by using the IBM Library Reader* product included on each CD-ROM. For more
information on CD-ROMs and softcopy books, see IBM Online Libraries: Softcopy
Collection Kit User's Guide (GC28-1700) and BookManager READ documentation.

Solution Developers Organization
The Solution Developers Organization (SDO) is open to independent software
vendors (ISVs) who are developing, or planning to develop, APPC and/or CPI-C
support in their products. The SDO provides you with technical, business, and
marketing services related to the development and promotion of APPC support in
products. For full details, please see Appendix H, “Solution Developers Program -
Enterprise Communications Partners in Development” on page 763.

Online Information—CPI-C, APPC, and APPN
You can access helpful online information on CPI-C, APPC, and APPN and utilities
through CompuServe, the OS/2 BBS, and the Internet. You can get up-to-date
information on CPI-C, access sample programs and tools, ask questions, and
provide feedback on CPI-C and related IBM products. You can post questions
about CPI-C programming and architecture, configuration, and about using APPC
with any of IBM's products like CICS, Communications Manager/2, APPC
Networking Services for Windows, AIX SNA Server/6000, AS/400, VTAM/NCP,
MVS, and VM.

 CompuServe
IBM's APPC Market Enablement team maintains the APPC/APPN Forum (GO
APPC) on CompuServe. More than a dozen question-and-answer sections exist as
well as hundreds of sample programs, utilities, and technical papers.

To get a free introductory membership, call CompuServe. In the US and Canada,
the phone number is 800-848-8199; in the UK, 0800-289-378; in Germany,
0130-37-32. Elsewhere the phone number is 1-614-457-0802. Be sure to ask for
representative 337.

 OS/2 BBS
The OS/2 BBS APPC FORUM is available on the IBM Information Network (IIN)
and the IBMLink TalkLink facility. In the US, the phone number is 1-800-547-1283;
in Canada, 1-800-465-7999 (ext 228). Elsewhere, contact your local IBM
representative.

 Chapter 1. Introduction 9

 Introduction

 Internet
A wide variety of APPC announcements, utilities, and CPI-C sample programs are
available from the Internet via the URL:

http://www.raleigh.ibm.com/aac/aachome.htm

Functional Levels of CPI Communications
CPI Communications is an evolving interface, embracing functions to meet the
growing demands from different application environments and to achieve openness
as an industry standard for communications programming. This section contains a
brief history of each functional level of CPI Communications and the additional
function provided.

 CPI-C 1.0
CPI Communications, introduced in 1987, provided the standard base for
conversational communications:

¹ Ability to start and end conversations
¹ Support for program synchronization through confirmation flows

 ¹ Error processing
¹ Ability to optimize conversation flow (using Flush and Prepare_To_Receive

calls)

 CPI-C 1.1
CPI-C 1.0 was extended in 1990 to include four areas of new function:

¹ Support for resource recovery
¹ Automatic parameter conversion
¹ Support for communication with non-CPI-C programs
¹ Local and remote transparency

Note: For more information about the CPI-C 1.1 architecture, see SAA Common
Programming Interface Communications Reference, SC26-4399-06.

 X/Open CPI-C
X/Open adopted CPI-C at the 1.1 level (with the exception of support for resource
recovery) to allow X/Open-compliant systems to communicate with systems
implementing LU 6.2. The X/Open Developer's Specification CPI-C, published in
1990, included several new functions not found in CPI-C 1.1:

¹ Support for non-blocking calls
¹ Support for data conversion (beyond parameters)
¹ Support for security parameters
¹ Ability to accept multiple conversations

 CPI-C 1.2
CPI-C 1.0 was designed to provide a consistent programming interface for
communications programming. However, each of its derivatives, namely CPI-C 1.1
and X/Open CPI-C, provided different levels of function. CPI-C 1.2, documented in
the first edition of CPI Communications, SC31-6180-00, consolidated CPI-C 1.1 and
the X/Open extensions, providing function in four areas:

¹ Support for non-blocking calls—incorporation of X/Open calls

10 CPI Communications Reference

 Introduction

¹ Support for data conversion—incorporation of X/Open calls
¹ Support for specification of security parameters—incorporation of X/Open calls
¹ Ability to accept multiple conversations—new calls to accommodate both

X/Open and CPI-C 1.1

 CPI-C 2.0
CPI-C 2.0, completed by the CPI-C Implementers' Workshop (CIW) in 1994,
provides enhancements to some CPI-C 1.2 functions, as well as offering several
new functions:

¹ Support for full-duplex conversations and expedited data
¹ Enhanced support for non-blocking processing with the addition of queue-level

processing and a callback function
¹ Support for OSI TP applications
¹ Support for use of a distributed directory
¹ Support for use of a distributed security service
¹ Support for secondary information to determine the cause of a return code
¹ Definition of conformance classes

X/Open CPI-C 2.0
X/Open CPI-C 2.0 enhances and updates X/Open CPI-C to the CPI-C 2.0 level with
the following exceptions:

¹ Supports only C and COBOL programming languages.
¹ Does not include distributed directory support. Specifically, the Set_Partner_ID

and Extract_Partner_ID calls are not included.
¹ In the COBOL pseudonym file, X/Open uses COMP-5 for integers—whereas,

CIW CPI-C 2.0 uses COMP-4 for integers.

 CPI-C 2.1
CPI-C 2.1, completed by the CPI-C Implementors' Workshop (CIW) in 1995,
provides the following functions:

¹ Support for automatic data conversation
¹ Support for the ability to accept conversations with a specific TP name
¹ Support for the specification of service TP names
¹ Support for additional return control options
¹ Enhancements to the Cancel_Conversations call to allow determination of

cancelled operations.

 Chapter 1. Introduction 11

 Introduction

Call Table for Functional Levels of CPI-C
Table 2 lists the calls defined for the different versions of CPI Communications. An
X is used to indicate that the call was part of a specific version.

Table 2 (Page 1 of 2). Versions of CPI Communications

Call Name
CPI-C

1.0
CPI-C

1.1
X/Open
CPI-C

CPI-C
1.2

CPI-C
2.0

X/Open
CPI-C

2.0
CPI-C

2.1

Starter Set
 Accept_Conversation X X X X X X X
 Allocate X X X X X X X
 Initialize_Conversation X X X X X X X
 Receive X X X X X X X
 Send_Data X X X X X X X
Advanced Function
 for synchronization and control
 Confirm X X X X X X X
 Confirmed X X X X X X X
 Deferred_Deallocate X X X
 Flush X X X X X X X
 Include_Partner_In_Transaction X X X
 Prepare X X X
 Prepare_To_Receive X X X X X X X
 Receive_Expedited_Data X X X
 Request_To_Send X X X X X X X
 Send_Error X X X X X X X
 Send_Expedited_Data X X X
 Test_Request_To_Send_Received X X X X X X X
Advanced Function
 for modifying conversation
 characteristics:
 Set_AE_Qualifier X X X
 Set_Allocate_Confirm X X X
 Set_AP_Title X X X
 Set_Application_Context_Name X X X
 Set_Begin_Transaction X X X
 Set_Confirmation_Urgency X X X
 Set_Conversation_Security_Password X X X X X
 Set_Conversation_Security_Type X X X X X
 Set_Conversation_Security_User_ID X X X X X
 Set_Conversation_Type X X X X X X X
 Set_Deallocate_Type X X X X X X X
 Set_Fill X X X X X X X
 Set_Initialization_Data X X X
 Set_Join_Transaction X X X
 Set_Log_Data X X X X X X X
 Set_Mode_Name X X X X X X X
 Set_Partner_ID X X
 Set_Partner_LU_Name X X X X X X X
 Set_Prepare_Data_Permitted X X X
 Set_Prepare_To_Receive_Type X X X X X X X
 Set_Receive_Type X X X X X X X
 Set_Return_Control X X X X X X X
 Set_Send_Receive_Mode X X X
 Set_Send_Type X X X X X X X
 Set_Sync_Level
 CM_NONE X X X X X X X
 CM_CONFIRM X X X X X X X
 CM_SYNC_POINT X X X X X
 CM_SYNC_POINT_NO_CONFIRM X X X
 Set_TP_Name X X X X X X X
 Set_Transaction_Control X X X

12 CPI Communications Reference

 Introduction

Table 2 (Page 2 of 2). Versions of CPI Communications

Call Name
CPI-C

1.0
CPI-C

1.1
X/Open
CPI-C

CPI-C
1.2

CPI-C
2.0

X/Open
CPI-C

2.0
CPI-C

2.1

Advanced Function
 for examining information about

the conversation and CRM:
 Extract_AE_Qualifier X X X
 Extract_AP_Title X X X
 Extract_Application_Context_Name X X X
 Extract_Conversation_Context X X X
 Extract_Conversation_State X X X X X
 Extract_Conversation_Type X X X X X X X
 Extract_Initialization_Data X X X
 Extract_Maximum_Buffer_Size X X X X
 Extract_Mode_Name X X X X X X X
 Extract_Partner_ID X X
 Extract_Partner_LU_Name X X X X X X X
 Extract_Secondary_Information X X X
 Extract_Security_User_ID –2 X X X X
 Extract_Send_Receive_Mode X X X
 Extract_Sync_Level X X X X X X X
 Extract_TP_Name X X X X X
 Extract_Transaction_Control X X X
Advanced Function
for non-blocking operations:
 Cancel_Conversation X X X X X
 Set_Processing_Mode X X X X X
 Set_Queue_Callback_Function X X X
 Set_Queue_Processing_Mode X X X
 Wait_For_Completion X X X
 Wait_For_Conversation X X X X X
Advanced Function
for accepting multiple
 conversations:
 Accept_Incoming X X X X
 Initialize_For_Incoming X X X X
 Release_Local_TP_Name X X X X
 Specify_Local_TP_Name X X X X X
Advanced Function
for data conversion:
 Convert_Incoming X X X X X
 Convert_Outgoing X X X X X
 Extract_Mapped_Initialization_Data X
 Receive_Mapped_Data X
 Send_Mapped_Data X
 Set_Mapped_Initialization_Data X

Naming Conventions—Calls, Characteristics, Variables, and Values
Pseudonyms for the actual calls, characteristics, variables, states, and
characteristic values comprising CPI Communications are used throughout this
book to enhance understanding and readability.

Where possible, underscores (_) and complete names are used in the
pseudonyms. Any phrase in the book that contains an underscore is a pseudonym.

2 X/Open CPI-C provides an Extract_Conversation_Security_User_ID call that provides similar function.

 Chapter 1. Introduction 13

 Introduction

For example, Send_Data is the pseudonym for the program call CMSEND, which is
used by a program to send information to its conversation partner.

This book uses the following conventions to aid in distinguishing between the four
types of pseudonyms:

¹ Calls are shown in all capital letters. Each underscore-separated portion of a
call’s pseudonym begins with a capital letter. For example,
Accept_Conversation is the pseudonym for the actual call name CMACCP.

¹ Characteristics and variables used to hold the values of characteristics are in
italics (for example, conversation_type) and contain no capital letters except
those used for abbreviations (for example, TP_name).

In most cases, the parameter used on a call, which corresponds to a program
variable, has the same name as the conversation characteristic. Whether a
name refers to a parameter, a program variable, or a characteristic is
determined by context. In all cases, the value used for the three remains the
same.

¹ Values used for characteristics and variables appear in all uppercase letters
(such as CM_OK) and represent actual integer values that will be placed into
the variable. For a list of the integer values that are placed in the variables,
see Table 59 on page 642 in Appendix A, “Variables and Characteristics.”

¹ States are used to determine the next set of actions that can be taken in a
conversation. States begin with capital letters and appear in bold type, such as
Reset state. Bold is also used to denote the Backout-Required condition.

¹ Queues are used to group related CPI Communications calls. Queue names
begin with capital letters. The parts of a queue name are connected with a
hyphen.

As a complete example of how pseudonyms are used in this book, suppose a
program uses the Set_Return_Control call to set the conversation characteristic of
return_control to a value of CM_IMMEDIATE.

¹ “Set_Return_Control (CMSRC)” contains the syntax and semantics of the
variables used for the call. It explains that the real name of the program call
for Set_Return_Control is CMSRC and that CMSRC has a parameter list of
conversation_ID, return_control, and return_code.

¹ Appendix A, “Variables and Characteristics” provides a complete description of
all variables used in the book and shows that the return_control variable, which
goes into the Set_Return_Control call as a parameter, is a 32-bit integer. This
information is provided in Table 61 on page 650.

¹ Table 59 on page 642 in Appendix A, “Variables and Characteristics” shows
that CM_IMMEDIATE is defined as having an integer value of 1. CM_IMMEDIATE
is placed into the return_control parameter on the call to CMSRC.

¹ Finally, the return_code value CM_OK, which is returned to the program on the
CMSRC call, is defined in Appendix B, “Return Codes and Secondary
Information.” CM_OK means that the call completed successfully.

14 CPI Communications Reference

Notes:

1. Pseudonym value names are not actually passed to CPI Communications as a
string of characters. Instead, the pseudonyms represent integer values that are
passed on the program calls. The pseudonym value names are used to aid
readability of the text. Similarly, programs should use translates and equates
(depending on the language) to aid the readability of the code. In the above
example, for instance, a program equate could be used to define
CM_IMMEDIATE as meaning an integer value of 1. The actual program code
would then read as described above—namely, that return_control is replaced
with CM_IMMEDIATE. The end result, however, is that an integer value of 1 is
placed into the variable.

2. Section “Programming Language Considerations” on page 111 in
“Set_Return_Control (CMSRC)” provides information on system files that can
be used to establish pseudonyms for a program.

 Chapter 1. Introduction 15

16 CPI Communications Reference

 Terms and Concepts

Chapter 2. CPI Communications Terms and Concepts

CPI Communications provides a consistent application programming interface for
applications that require program-to-program communication. The interface
provides access to a rich set of interprogram services, including:

¹ Sending and receiving data
¹ Synchronizing processing between programs
¹ Notifying a partner of errors in the communication

This chapter describes the major terms and concepts used in CPI Communications.

 Copyright IBM Corp. 1996, 1998 17

 Terms and Concepts

Communication across a Network
Figure 1 illustrates the logical view of a sample network. It consists of three
communication resource managers 3 (CRMs): CRM X, CRM Y, and CRM Z.
Each CRM has two logical connections with two other CRMs; the logical
connections are shown as the gray portions of Figure 1 and enable communication
between the CRMs. The network shown in Figure 1 is a simple one. In a real
network, the number of CRMs and logical connections between the CRMs can be
in the tens of thousands or higher.

Conversation
with Program C

Conversation
with Program D

CPI
Communications

CPI
Communications

Conversation
with Program A

Conversation
with Program B

Program A Program B

Program C Program D

CRM X

Logical ConnectionLogical Connection

Logical Connection

CRM Y CRM Z

Product-Specific
Interface

Network

Figure 1. Programs Using CPI Communications to Converse through a Network

The CRMs and the logical connections shown in Figure 1 are generic
representations of real networks. If this were an SNA network, the CRMs would be
referred to as logical units of type 6.2 and the logical connections would be
sessions . In an OSI network, CRMs are called application-entities and the
logical connections are associations . The physical network, which consists of
nodes (processors) and data links between nodes, is not shown in Figure 1
because a program using CPI Communications does not “see” these resources. A
program uses the logical network of CRMs, which in turn communicates with and
uses the physical network. This manual discusses CRMs of type LU 6.2 and type
OSI TP.

3 Communication resource managers can provide many functions in a network. In this manual, the term communication resource
manager refers only to resource managers that provide conversation services to CPI Communications programs. Other CRMs
might, for example, provide services for remote procedure calls or message-queuing interfaces.

18 CPI Communications Reference

 Terms and Concepts

 Conversation Types
Just as two CRMs communicate using a logical connection, two programs
exchange data using a conversation . For example, the conversation between
Program A and Program C is shown in Figure 1 as a single bold line between the
two programs. The line indicating the conversation is shown on top of the logical
connection because a conversation allows programs to communicate “over” the
logical connection between the CRMs.

CPI Communications supports two types of conversations:

¹ Mapped conversations allow programs to exchange arbitrary data records in
data formats agreed upon by the application programmers. CPI
Communications supports both the traditional pass through method, where the
application program encodes and decodes the data, and external routines that
encode and decode user data.

¹ Basic conversations allow programs to exchange data in a standardized
format. This format is a stream of data containing 2-byte logical length fields
(referred to as LLs) that specify the amount of data to follow before the next
length field. The typical data pattern is “LL, data, LL, data.” Each grouping of
“LL, data” is referred to as a logical record .

Notes:

1. Because of the detailed manipulation of data and resulting complexity of
error conditions, the use of basic conversations is intended for programs
with specialized requirements. A more complete discussion of basic and
mapped conversations is provided in the “Usage Notes” section of
“Send_Data (CMSEND)” on page 249.

2. Because OSI TP CRMs do not exchange the conversation characteristic
that determines whether a conversation will be mapped or basic, the
remote application must also issue a Set_Conversation_Type call when
basic conversations are being used, to override the default value of
CM_MAPPED_CONVERSATION for the conversation_type conversation
characteristic.

For further information on basic and mapped conversations, refer to SNA LU 6.2
Reference: Peer Protocols (SC31-6808) and SNA Transaction Programmer’s
Reference Manual for LU Type 6.2 (GC30-3084).

 Send-Receive Modes
CPI Communications supports two modes for sending and receiving data on a
conversation:

¹ Half-duplex —Only one of the programs has send control, the right to send
data, at any time. Send control must be transferred to the other program
before that program can send data.

¹ Full-duplex —Both programs can send and receive data at the same time.
Thus, both programs have send control.

The send-receive mode on a conversation is determined at the time the
conversation is established using Allocate.

 Chapter 2. CPI Communications Terms and Concepts 19

 Terms and Concepts

For further information, see “Characteristic Values and Send-Receive Modes” on
page 40.

 Program Partners
Two programs involved in a conversation are called partners in the conversation.
If a CRM-CRM logical connection exists, or can be created, between the nodes
containing the partner programs, two programs can communicate through the
network with a conversation.

The terms local and remote are used to differentiate between different ends of a
conversation. If a program is being discussed as local , its partner program is said
to be the remote program for that conversation. For example, if Program A is
being discussed, Program A is the local program and Program C is the remote
program. Similarly, if Program C is being discussed as the local program, Program
A is the remote program. Thus, a program can be both local and remote for a
given conversation, depending on the circumstances.

Although program partners generally reside in different nodes in a network, the
local and remote programs may, in fact, reside in the same node. Two programs
communicate with each other the same way, whether they are in the same or
different nodes.

CICS application programs on the same host can communicate using CPI
Communications if they are running on different CICS systems, but not if they are
running on the same CICS system. The ability for CICS applications to
communicate with other CICS applications executing on the same CICS system is
provided by other CICS services that do not involve communications protocols.
Multiple CICS systems can run on a single host, using VTAM*-supported LU 6.2
intersystem communication.

Note: A CPI Communications program may establish a conversation with a
program that is using a product-specific programming interface for a particular
environment and not CPI Communications. The conversation between Program B
and Program D in Figure 1 is an example of such a situation. Some restrictions
may apply in this situation, since CPI Communications does not support all
available network functions.

Identifying the Partner Program
CPI Communications requires a certain amount of destination information, such as
the name of the partner program and the name of the CRM at the partner's node,
before it can establish a conversation. Sources for this information include:

 ¹ Program-supplied
The program can supply the destination information directly.

 ¹ Side information
The program can use data contained in local side information . The side
information is accessed using an 8-byte symbolic destination name or
sym_dest_name, which identifies the partner program.

 ¹ Distributed directory
The program can use a directory object contained in a distributed directory .
The directory object represents a particular installation of a program and is

20 CPI Communications Reference

 Terms and Concepts

identified by a variable-length distinguished name (DN). Programs not having
a DN for their partner program can search the directory for objects containing a
program function identifier (PFID). The PFID is a globally-unique identifier
for the function provided by the program.

There are some considerations to keep in mind when using the different
techniques:

¹ Program-supplied information may require recompilation if the address of the
partner program changes.

¹ Use of sym_dest_name allows only a small name space of locally-defined
names.

¹ Side information requires local administration on each system.

¹ Movement of a program may result in update of side information on multiple
systems.

¹ Use of a distributed directory enables destination information to be stored in a
single location and accessed by multiple programs.

¹ As with the sym_dest_name, a DN identifies a particular installation of a
program and destination information may not be known at program
development time. For example, shrink-wrapped programs will not have access
to the DN when distributed. Use of the PFID solves this problem by allowing a
run-time search of the directory for all program installation objects with a
particular functionality.

¹ “Side Information” on page 23 and “Distributed Directory” on page 25 discuss
how existing CPI Communications programs using side information can be
migrated to use the distributed directory by using the sym_dest_name to
identify a side-information entry containing a DN.

 Operating Environment
Figure 2 on page 22 gives a more detailed view of Program A’s operating
environment. As in Figure 1, the bold black line shows the conversation Program
A has established with its partner program. The new line between the program and
CPI Communications represents Program A’s use of program calls to communicate
with CPI Communications. The different types of CPI Communications calls are
discussed in “Program Calls” on page 29.

 Chapter 2. CPI Communications Terms and Concepts 21

 Terms and Concepts

CPU Cycles
DASD
Memory

Operating
SystemProgram A

Side
Information

Node
Services

Distributed
Services

Conversation
with Program C

calls

CPI
Communications

Communications
Resource Manager

Resource
Recovery
Interface
Sync
Point
Manager

Node Environment

Figure 2. Operating Environment of CPI Communications Program

In addition to the new line with CPI Communications, Figure 2 also shows Program
A using several other generic elements:

 ¹ Node services
 ¹ Side information
 ¹ Distributed services

 – Distributed directory
 – Distributed security

¹ Resource recovery interface
 ¹ Operating system

These elements are further discussed within this chapter.

 Node Services
Node services represents a number of “utility” functions within the local system
environment that are available for CPI Communications and other programming
interfaces. These functions are not related to the actual sending and receiving of
CPI Communications data, and specific implementations differ from product to
product. Node services includes the following general functions:

¹ Setting and accessing of side information

This function is required to set up the initial values of the side information and
allow subsequent modification. It does not refer to individual program
modification of the program’s copy of the side information using Set calls, as
described in “Conversation Characteristics” on page 33. (Refer to specific
product information for details.)

¹ Setting and accessing of distributed directory information

Node services is used by programs requiring direct interaction with a distributed
directory. For example, a program might need to perform a search of the
directory in order to determine the correct destination information. Once the

22 CPI Communications Reference

 Terms and Concepts

correct object has been determined by making calls to node services, the
program can pass the program destination information to CPI Communications.
Alternatively, the program may pass a DN or PFID to CPI Communications and
CPI Communications will access the directory (using node services) to retrieve
the destination information for the program. For more information, see
“Distributed Directory” on page 25.

 ¹ Program-startup processing

A program is started either by receipt of notification that the remote program
has issued an Allocate call for the conversation (discussed in greater detail in
“Starter-Set Flows” on page 68) or by local (operator) action. In either case,
node services sets up the data paths and operating environment required by
the program, validates and establishes security parameters under which the
program will execute, and then allows the program to begin execution. In the
former case, node services receives the notification, retrieves the name of the
program to be started and any access security information included in the
conversation startup request, and then proceeds as if starting a program by
local action.

¹ Program-termination processing (both normal and abnormal)

The program should terminate all conversations before the end of the program.
However, if the program does not terminate all conversations, node services
will abnormally deallocate any dangling conversations.

Please see the appropriate product chapter in “Part 3. CPI-C 2.1
Implementation Specifics” on page 373 for details on how each operating
environment detects and deallocates dangling conversations.

¹ Providing support for programs with multiple partners

As is discussed in greater detail in “Multiple Conversations” on page 30, some
programs do work on behalf of multiple partners. Each partner is represented
by a context , or collection of logical attributes. Node services provides the
necessary function and support (through system interfaces) to allow the
program to manage different partner contexts. See “Contexts and Context
Management” on page 32 for more information.

¹ Acquiring and validating access security information

Node services provides interfaces for CRMs both to acquire and to validate
access security information on behalf of a user. In a distributed system, node
services may use a distributed security service that provides authentication
services to create or validate the access security information. See
“Conversation Security” on page 51 for more information.

 Side Information
As was previously discussed in “Identifying the Partner Program,” CPI
Communications allows a program to identify its partner program with a
sym_dest_name. The sym_dest_name is provided on the Initialize_Conversation
call and corresponds to a side-information entry containing destination information
for the partner program. The information that needs to be specified in the
side-information entry depends on the type of CRM (LU 6.2 or OSI TP) required to
contact the program. Each piece of information may have associated attributes
such as length and format for AP_Title and AE_Qualifier.

The possible information specific to a LU 6.2 CRM is:

 Chapter 2. CPI Communications Terms and Concepts 23

 Terms and Concepts

 ¹ partner_LU_name

Indicates the name of the LU where the partner program is located. This LU
name is any name for the remote LU recognized by the local LU for the
purpose of allocating a conversation.

The possible information specific to an OSI-TP CRM is:

 ¹ AP_title

When combined with the AE_qualifier, the application-process-title indicates the
name of the application-entity where the partner program is located. The
AP_title combined with an AE_qualifier is equivalent to a fully qualified
partner_LU_name in SNA.

 ¹ AE_qualifier

Indicates the application-entity-qualifier, which is used to distinguish between
application-entities having the same AP_title, if required.

 ¹ application_context_name

Specifies the name of the application context being used on the conversation.
An application context is a set of operating rules that two programs have
agreed to follow.

In addition, the entry may contain the following information, which is not CRM-type
dependent.

 ¹ TP_name

Specifies the name of the remote program. TP_name stands for “transaction
program name.” In this manual, transaction program, application program, and
program are synonymous, all denoting a program using CPI Communications.

 ¹ mode_name

Used to designate the properties of the logical connection that will be
established for the conversation. The properties include, for example, the class
of service to be used on the conversation. The system administrator defines a
set of mode names used by the local CRM to establish logical connections with
its partners. An LU 6.2 CRM always has the following modes defined for
application usage: #BATCH, #BATCHSC, #INTER, and #INTERSC.

 ¹ distinguished_name

Indicates a DN that can be used to access destination information in a
distributed directory. The information retrieved from the distributed directory will
be used to establish the conversation. Associated attributes of directory_syntax
and directory_encoding may be present. If a distinguished_name is present,
only the security information from the entry (conversation_security_type,
security_user_ID, and security_password) will be used. All other destination
information from this side information entry will be ignored.

 ¹ conversation_security_type

Specifies the type of access security information to be included in the
conversation startup request. See “Conversation Security” on page 51 for
more information.

 ¹ security_user_ID

Specifies the user ID to be used for validation of access to the remote program
by the partner system.

24 CPI Communications Reference

 Terms and Concepts

 ¹ security_password

Specifies the password to be used with the user ID for validation of access to
the remote program by the partner system.

Programs not wanting to use side information can specify a sym_dest_name of
blanks on the Initialize_Conversation call. For more information, see
“Initialize_Conversation (CMINIT)” on page 200.

On VM, if a corresponding entry is not found in the side information table, the name
provided in sym_dest_name will be used as the partner TP_name.

 Distributed Directory
A distributed directory is a service that enables information to be stored in a single
location. It is referred to as “distributed” because the information can be accessed
from multiple locations in a network using local directory interfaces. The local
directory interface (part of node services) handles the communications and
information flows required to retrieve the requested information from the directory.
Information is stored in the directory by placing it in a directory object. Directory
objects may contain many different pieces of information.

Figure 3 shows Program A interacting directly with a local directory interface.
When Program A provides a name to node services (.1/), node services accesses
the distributed directory (.2/ and .3/). The retrieved object is then returned to the
program (.4/).

Node Environment

Name
dir. obj.

name directory
object

Local Directory
Interface

Distributed
Directory

Program A

1

4

2

3

Figure 3. Generic Program Interaction with a Distributed Directory

CPI Communications Directory Object
A directory object that contains the destination information for a single installation of
a partner program is referred to as a program installation object . A program
installation object includes the following information:

¹ Program Function Identifier (PFID)
A PFID uniquely identifies the function provided by a program. This allows
programs installed on multiple systems, with different DNs, to be recognized as
providing the same function. For example, multiple installations of a distributed
mail application might all have the same PFID. See “Program Function
Identifier (PFID)” on page 656 for a more detailed discussion of the PFID.

 Chapter 2. CPI Communications Terms and Concepts 25

 Terms and Concepts

Note: On distributed directories supporting attribute types, the PFID attribute
type is uniquely identified with a registered ISO object identifier of
1.3.18.0.2.4.13.

 ¹ Program Binding
The program binding contains information required by a partner program to
establish a conversation with the program. Because multiple CRMs can be
used to reach the same program installation, there may be more than one
program binding in a single directory object. Each program binding contains
the following information:

– local address (TP_name)

 – mode (mode_name)

– partner_principal_name—identifies the principal name used by the remote
CRM for authentication of conversation startup requests

– required_user_name_type—identifies the type of user name required for
access to the partner program

 – CRM-specific information

For LU 6.2:

 - partner_LU_name

For OSI TP:

 - AE_qualifier
 - AP_title
 - application_context_name

Notes:

1. On distributed directories supporting attribute types, the CPI Communications
program binding attribute is uniquely identified with a registered ISO object
identifier of 1.3.18.0.2.4.14.

See “Program Binding” on page 658 for guidelines on the specific structure and
format of the PFID and program binding.

2. On distributed directories supporting attribute types, the CPI Communications
program installation object is uniquely identified as an object class with a
registered ISO object identifier of 1.3.18.0.2.6.7.

Using the Distributed Directory
Figure 4 on page 27 illustrates two ways that a CPI Communications program
might use destination information stored in a distributed directory:

¹ The program accesses the distributed directory directly with a DN to retrieve a
program installation object (.1/ and .2/). The program installation object
contains a program binding as one of its pieces of information. The program
passes the program binding to CPI Communications (.3/) using the
Set_Partner_ID call with the partner_ID_type parameter set to
CM_PROGRAM_BINDING. CPI Communications then uses the program-binding
information to allocate the conversation.

¹ Instead of accessing the directory itself, the program passes a DN for a
program installation object to CPI Communications (.3/) using the
Set_Partner_ID call with a partner_ID_type parameter set to
CM_DISTINGUISHED_NAME. CPI Communications uses the DN to access the

26 CPI Communications Reference

 Terms and Concepts

distributed directory and retrieve the program installation object (.4/). CPI
Communications then uses the program-binding information from the object to
allocate the conversation.

Node Environment

Conversation with Program C

DN
dir. obj.

DN directory
object

Node Services

CPI-C

Distributed
Directory

Program A

1

4

2
3

CRM

•
•
•

Figure 4. Program Interaction with CPI Communications and a Distributed Directory

Both these examples require the program to provide a DN directly, either to node
services or to CPI Communications. There are, however, several other ways a
program can access information contained in the distributed directory:

¹ The program provides a sym_dest_name on the Initialize_Conversation call that
corresponds to a side information entry containing a DN. CPI Communications
will then use the DN to access the distributed directory and retrieve the
program binding. After the conversation is allocated, the program can use
“Extract_Partner_ID (CMEPID)” to determine the program binding used.

¹ The program passes a PFID to CPI Communications using “Set_Partner_ID
(CMSPID)” with a partner_ID_type parameter set to
CM_PROGRAM_FUNCTION_ID. CPI Communications uses the PFID to search
the distributed directory and retrieve a program installation object providing the
appropriate function. CPI Communications then uses the program-binding
information from the object to allocate the conversation.

¹ The program accesses the distributed directory using node services and
locates the appropriate directory object (and program binding) using something
other than a DN. For example, the program might search the directory for
non-CPI-C information to determine the correct program installation object.
Once located, the program binding from the directory object can be passed to
CPI Communications using “Set_Partner_ID (CMSPID)” with a partner_ID_type
parameter set to CM_PROGRAM_BINDING.

Interaction with Side Information and Set Calls
CPI Communications does not attempt to integrate destination information from the
distributed directory with destination information obtained from Set calls or side
information. The following rules apply:

¹ If the partner_ID characteristic is null, CPI Communications will use the values
of the destination information obtained from Set calls or side information.

¹ If a partner_ID is non-null, Set calls to provide alternative destination
information (other than Set_Partner_ID, Set_Conversation_Security_Type,
Set_Security_User_ID, and Set_Security_Password) are not allowed. The
program is notified of the error condition with a return_code of
CM_PROGRAM_PARAMETER_CHECK.

 Chapter 2. CPI Communications Terms and Concepts 27

 Terms and Concepts

¹ If a non-null partner_ID is available, CPI Communications will use it to establish
the conversation. CPI Communications will ignore any other destination
information (other than security information) that may have been established by
Set calls or side information.

 Distributed Security
Distributed security allows a user or system to be defined at a single trusted
authentication server using principal names rather than user IDs. For example, a
user or program accessing three different systems might require three separate
sets of user IDs and passwords, one for each system. Using distributed security, a
user or system could use a single principal name and password to access all three
systems.

Figure 5 shows how a distributed security service works. In this example, the user
has already signed on with a principal name and has been authenticated to the
local security service interface. After this initial sign-on, the user is not required to
provide any additional security information. When the user executes a program
that requests a conversation from the CRM (.1/), the CRM communicates with the
local security service interface (.2/) and retrieves the security information to be
sent with the conversation startup request. The local security service
communicates with the Authentication Server (.3/) to determine this information,
also referred to as authentication tokens, and returns it to the CRM (.4/). The
CRM then sends the security information to the partner CRM in the conversation
startup request (.5/). When the partner CRM receives the conversation startup
request, it accesses its local security service interface and validates the
authentication tokens (.6/ and .7/).

start-up request

security info

Distributed Security Service

Security Service
Local Interface

Authentication Server
and

User Registry

CRM CRM

Program

Security Service
Local Interface

1

42

3

75 6

Figure 5. CRM Interaction with Distributed Security Service

 Operating System
CPI Communications depends on the operating system for the normal execution
and operation of the program. Activities such as linking, invoking, and compiling
programs are all described in product documentation. See the product chapters,
“Part 3. CPI-C 2.1 Implementation Specifics” on page 373, for more specific
information.

28 CPI Communications Reference

 Terms and Concepts

 Program Calls
CPI Communications programs communicate with each other by making program
calls. These calls are used to establish the characteristics of the conversation
and to exchange data and control information between the programs. An example
of a conversation characteristic is the send_receive_mode characteristic, which
indicates whether or not both programs may send data at the same time.
Conversation characteristics are discussed in greater detail in “Conversation
Characteristics” on page 33.

When a program makes a CPI Communications call, the program passes
characteristics and data to CPI Communications using input parameters . When
the call completes, CPI Communications passes data and status information back
to the program using output parameters .

The return_code output parameter is returned for all CPI Communications calls. It
indicates whether a call completed successfully or if an error was detected that
caused the call to fail. CPI Communications uses additional output parameters on
some calls to pass status information to the program. These parameters include
the control_information_received, data_received, and status_received parameters.
Additionally, the return code may be associated with secondary information ,
which can be used to determine the cause of the return code.

Starter Set Calls
The following six calls are called the starter set.

 Initialize_Conversation
 Accept_Conversation
 Allocate
 Send_Data
 Receive
 Deallocate

These six calls, which provide the core function, allow for simple communication of
data between two programs. They are sufficient for writing simple applications that
use the initial values for the CPI-C conversation characteristics. They are
necessary for writing very complex applications. Example flows using these calls
are provided in “Starter-Set Flows” on page 68.

Establishing a Conversation
Here is a simple example of how Program A starts a conversation with Program C:

1. Program A issues the Initialize_Conversation call to prepare to start the
conversation. It uses a sym_dest_name to designate Program C as its partner
program. The CRM returns a unique conversation identifier, the
conversation_ID. Program A will use this conversation_ID in all future calls
intended for that conversation.

2. Program A issues an Allocate call to start the conversation.

3. CPI Communications tells the node containing Program C that Program C
needs to be started by sending a conversation startup request (in LU 6.2,
this is an attach) to the partner CRM. The conversation startup request

 Chapter 2. CPI Communications Terms and Concepts 29

 Terms and Concepts

contains information necessary to start the partner program and establish the
conversation.

4. Program C is started and issues the Accept_Conversation call. It receives back
a unique conversation_ID (not necessarily the same as the one provided to
Program A). Program C will use its conversation_ID in all future calls intended
for that conversation.

After issuing their respective Initialize_Conversation and Accept_Conversation calls,
both Program A and Program C have a set of default conversation
characteristics set up for the conversation. The default values established by CPI
Communications are discussed in “Conversation Characteristics” on page 33.

 Multiple Conversations
In the previous example, Program A established a single conversation with a single
partner, but CPI Communications allows a program to communicate with multiple
partners using multiple, concurrent conversations:

¹ Outbound Conversations —A program initiates more than one conversation.
¹ Inbound Conversations —A program accepts more than one conversation.

Specific combinations of outbound and inbound conversations are determined by
application design. The sections that follow discuss in greater detail the concepts
required for multiple conversations.

Partner Program Names
After a program issues Initialize_Conversation to establish its conversation
characteristics, a name for its partner program (the TP_Name) is established. This
name is transmitted to the remote system in the conversation startup request after
the program issues the Allocate call.

At the remote system, the partner program can be started in one of two ways:

¹ Receipt of a conversation startup request
 ¹ Local action

In the first case, node services starts the program named in the conversation
startup request. However, if a program is started locally, the program must notify
node services of its ability to accept conversations for a given name. The program
associates a name with itself by issuing the Specify_Local_TP_Name call. The
program can release a name from association with itself by issuing the
Release_Local_TP_Name call.

To accept multiple conversations for different names, the program issues multiple
Specify_Local_TP_Name calls, thus associating multiple names with itself.

Note: A locally-started program cannot accept conversations until a name has
been associated with the program.

Multiple Outbound Conversations
Figure 6 on page 31 shows Program A establishing conversations with two
partners. For example, a program may need to request data from multiple data
bases on different nodes to answer a particular query. The conversation with
Program B is initialized with an Initialize_Conversation (CMINIT) call that returns a
conversation_ID parameter of X. The conversation with Program C is initialized
with an Initialize_Conversation call that returns a conversation_ID parameter of Y.

30 CPI Communications Reference

 Terms and Concepts

When Program A issues subsequent calls with a conversation_ID of X, CPI
Communications will know these calls apply to the conversation with Program B.
Similarly, when Program A issues subsequent calls with a conversation_ID of Y,
CPI Communications will know these calls apply to the conversation with Program
C.

Program A

Program B Program C

Conversation 1 Conversation 2

(conversation_ID = X) (conversation_ID = Y)

Figure 6. A Program Using Multiple Outbound CPI Communications Conversations

Note: In some implementing environments, Program A can share the
conversation_ID with another task, allowing that task to issue calls on the
conversation with Program C.

Multiple Inbound Conversations
Some programs, often referred to as server programs, may need to accept more
than one inbound conversation. For example, a server could accept conversations
from multiple partners in order to work on the request from one partner while
waiting for a second partner's request or work to complete.

This type of application is shown in Figure 7, where Programs D and E have both
chosen to initiate conversations with the same partner, Program S.

Program S

Work for
Program D

Work for
Program E

Program D Program E

Figure 7. A Program Using Multiple Inbound CPI Communications Conversations

In the simplest case, Program S can accept the two conversations by issuing
Accept_Conversation twice. Alternatively, Program S may make use of two
advanced calls, Initialize_For_Incoming and Accept_Incoming.

Note: A program would use the advanced calls to achieve greater programming
flexibility. See “Non-Blocking Operations” on page 47 for a more detailed
discussion. See “Example 12: Accepting Multiple Conversations Using Blocking
Calls” on page 92 and “Example 13: Accepting Multiple Conversations Using
Conversation-Level Non-Blocking Calls” on page 94 for examples using these calls.

 Chapter 2. CPI Communications Terms and Concepts 31

 Terms and Concepts

Contexts and Context Management
Node services provides support for programs that perform work on behalf of
multiple partners, such as server Program S in the previous example. Each time a
program accepts an incoming conversation, a new context is created. The context
is identified by a system-wide context identifier and is used by node services to
group logical attributes for the work to be done on behalf of the partner program.

Node services maintains one or more contexts for a program in execution within the
node. For each program, there is one distinguished context, the current context ,
within which work is currently being done. A program can manage different
contexts by making calls to node services in order to:

¹ Create a new context
¹ Terminate a context
¹ Set the current context
¹ Retrieve the context identifier of the current context

Note: The discussion of contexts throughout this and following sections assumes
a context is maintained on a program basis. However, in a system that supports
multi-threaded programs, the context may be maintained on a thread basis.

Relationship between Contexts and Conversations
Each conversation is assigned to a context when it is allocated or accepted.

¹ An outgoing conversation is assigned to the current context of the program
when it issues the Allocate call.

¹ An incoming conversation is assigned to the new context created when the
program accepts the incoming conversation with the Accept_Conversation or
Accept_Incoming call.

A program can retrieve the context identifier for a conversation's context by issuing
the Extract_Conversation_Context call.

The program's current context is set by node services to the newly created context
when an Accept_Conversation or Accept_Incoming call completes successfully with
return_code set to CM_OK.

Relationship between Contexts and Security Parameters
Security parameters are among the logical attributes maintained by node services
for a context. The access security information carried in the conversation startup
request is used to set the security parameters for the context created as a result of
an incoming conversation. The security parameters for other contexts are based
on security information maintained within the system. See “Conversation Security”
on page 51 for a complete discussion of conversation security.

Inbound and Outbound Conversations
A program that accepts incoming conversations from multiple program partners
must ensure that work is done within the right context. In the expanded server
example shown in Figure 8, Program S accepts two conversations, one each from
Programs D and E. Two new contexts are created, one for the work done on
behalf of Program D and one for the work done on behalf of Program E. Program
S can retrieve the context identifier for each conversation by issuing the
Extract_Conversation_Context call twice.

32 CPI Communications Reference

 Terms and Concepts

Program S

Work for
Program D

Work for
Program E

Program F

Program D Program E

Figure 8. Server Program with Both Inbound and Outbound Conversations

Now consider a scenario where Program S is doing work for Program E and
receives a request from Program D. The request is for information that Program S
does not have. In this case, Program S allocates a conversation to a third partner,
Program F, in order to answer Program D's request.

Before allocating the conversation to Program F, Program S must first ensure that it
is using the correct context. It does this by setting the current context to that for
Program D. This causes the outgoing conversation to be established using
information, such as the proper security parameters, from the correct context.
“Conversation Security” on page 51 provides a complete discussion of how the
current context is used by node services to establish security parameters for new
conversations.

For more information about establishing and managing conversations, see the
following sections:

¹ “Non-Blocking Operations” on page 47 for use of non-blocking calls
¹ “Example 1: Data Flow in One Direction” on page 69
¹ “Example 12: Accepting Multiple Conversations Using Blocking Calls” on

page 92
¹ “Example 13: Accepting Multiple Conversations Using Conversation-Level

Non-Blocking Calls” on page 94
¹ Usage notes for “Accept_Conversation (CMACCP)” on page 119
¹ Usage notes for “Accept_Incoming (CMACCI)” on page 121
¹ Usage notes for “Initialize_Conversation (CMINIT)” on page 200
¹ Usage notes for “Initialize_For_Incoming (CMINIC)” on page 203

 Conversation Characteristics
CPI Communications maintains a set of characteristics for each conversation used
by a program. These characteristics are established for each program on a
per-conversation basis, and the initial values assigned to the characteristics depend
on the program's role in starting the conversation. Table 3 on page 35 provides a
comparison of the conversation characteristics and initial values as set by the
Initialize_Conversation, Accept_Conversation, Initialize_For_Incoming, and
Accept_Incoming calls. The uppercase values shown in the table are pseudonyms
that represent integer values.

The CPI Communications naming conventions for these characteristics, as well as
for calls, variables, and characteristic values, are discussed in “Naming
Conventions—Calls, Characteristics, Variables, and Values” on page 13.

 Chapter 2. CPI Communications Terms and Concepts 33

 Terms and Concepts

Modifying and Viewing Characteristics
In the example in “Establishing a Conversation” on page 29, the programs used the
initial set of program characteristics provided by CPI Communications as defaults.
However, CPI Communications provides calls that allow a program to modify and
view the conversation characteristics for a particular conversation. Restrictions on
when a program can issue one of these calls are discussed in the individual call
descriptions in Chapter 4, “Call Reference.”

Note: CPI Communications maintains conversation characteristics on a
per-conversation basis. Changes to a characteristic will affect only the
conversation indicated by the conversation_ID. Changes made to a characteristic
do not affect future default values assigned, nor do the changes affect the initial
system values (in the case of values derived from the side information).

For example, consider the conversation characteristic that defines what type of
conversation the initiating program will have, the conversation_type characteristic.
CPI Communications initially sets this characteristic to
CM_MAPPED_CONVERSATION and stores this characteristic value for use in
maintaining the conversation. A program can issue the Extract_Conversation_Type
call to view this value.

A program can issue the Set_Conversation_Type call (after issuing
Initialize_Conversation but before issuing Allocate) to change this value. The
change remains in effect until the conversation ends or until the program issues
another Set_Conversation_Type call.

The Set calls are also used to prevent programs from attempting incorrect syntactic
or semantic changes to conversation characteristics. For example, if a program
attempts to change the conversation_type after the conversation has already been
established (an illegal change), CPI Communications informs the program of its
error and disallows the change. Details on this type of checking are provided in the
individual call descriptions in Chapter 4, “Call Reference.”

34 CPI Communications Reference

 Terms and Concepts

A
cc

ep
t_

In
co

m
in

g
se

ts
 it

 t
o:

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
in

iti
at

in
g

A
E

_q
ua

lif
ie

r
re

ce
iv

ed
 o

n
th

e
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t.
F

or
an

 L
U

 6
.2

 C
R

M
,

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
A

E
_q

ua
lif

ie
r

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
fo

rm
at

 o
f

A
E

_q
ua

lif
ie

r.
F

or
 a

n
LU

 6
.2

 C
R

M
,

A
E

_q
ua

lif
ie

r_
fo

rm
at

 is
 n

ot
 s

et
.

N
ot

 a
pp

lic
ab

le

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
in

iti
at

in
g

A
P

_t
itl

e
re

ce
iv

ed
 o

n
th

e
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t.
F

or
an

 L
U

 6
.2

 C
R

M
,

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
A

P
_t

itl
e

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
fo

rm
at

 o
f

A
P

_t
itl

e.
F

or
 a

n
LU

 6
.2

 C
R

M
,

A
P

_t
itl

e_
fo

rm
at

_
is

 n
ot

 s
et

.

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
in

iti
at

in
g

ap
pl

ic
at

io
n_

co
nt

ex
t_

na
m

e
re

ce
iv

ed
on

 t
he

 c
on

ve
rs

at
io

n
st

ar
tu

p
re

qu
es

t.
F

or
 a

n
LU

 6
.2

 C
R

M
,

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
ap

pl
ic

at
io

n_
co

nt
ex

t_
na

m
e

N
ot

 a
pp

lic
ab

le

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

T
he

 c
on

te
xt

_I
D

 o
f

th
e

ne
w

ly
cr

ea
te

d
co

nt
ex

t

T
he

 le
ng

th
 o

f
co

nt
ex

t_
ID

In
iti

al
iz

e_
F

or
_I

nc
om

in
g

se
ts

 it
to

:

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 a
pp

lic
ab

le

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 a
pp

lic
ab

le

C
M

_C
O

N
F

IR
M

A
T

IO
N

_U
R

G
E

N
T

N
ot

 s
et

N
ot

 s
et

A
cc

ep
t_

C
on

ve
rs

at
io

n
se

ts
 it

 t
o:

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
in

iti
at

in
g

A
E

_q
ua

lif
ie

r
re

ce
iv

ed
 o

n
th

e
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t.
F

or
an

 L
U

 6
.2

 C
R

M
,

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
A

E
_q

ua
lif

ie
r

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
fo

rm
at

 o
f

A
E

_q
ua

lif
ie

r.
F

or
 a

n
LU

 6
.2

 C
R

M
,

A
E

_q
ua

lif
ie

r_
fo

rm
at

 is
 n

ot
 s

et
.

N
ot

 a
pp

lic
ab

le

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
in

iti
at

in
g

A
P

_t
itl

e
re

ce
iv

ed
 o

n
th

e
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t.
F

or
an

 L
U

 6
.2

 C
R

M
,

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
A

P
_t

itl
e

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
fo

rm
at

 o
f

A
P

_t
itl

e.
F

or
 a

n
LU

 6
.2

 C
R

M
,

A
P

_t
itl

e_
fo

rm
at

_
is

 n
ot

 s
et

.

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
in

iti
at

in
g

ap
pl

ic
at

io
n_

co
nt

ex
t_

na
m

e
re

ce
iv

ed
on

 t
he

 c
on

ve
rs

at
io

n
st

ar
tu

p
re

qu
es

t.
F

or
 a

n
LU

 6
.2

 C
R

M
,

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
ap

pl
ic

at
io

n_
co

nt
ex

t_
na

m
e

N
ot

 a
pp

lic
ab

le

C
M

_C
O

N
F

IR
M

A
T

IO
N

_U
R

G
E

N
T

T
he

 c
on

te
xt

_I
D

 o
f

th
e

ne
w

ly
cr

ea
te

d
co

nt
ex

t

T
he

 le
ng

th
 o

f
co

nt
ex

t_
ID

In
iti

al
iz

e_
C

on
ve

rs
at

io
n

se
ts

 it
 t

o:

T
he

 a
pp

lic
at

io
n-

en
tit

y
qu

al
ifi

er
 f

ro
m

 s
id

e
in

fo
rm

at
io

n
re

fe
re

nc
ed

 b
y

sy
m

_d
es

t_
na

m
e.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

A
E

_q
ua

lif
ie

r
w

ill
 b

e
th

e
nu

ll
st

rin
g.

T
he

 le
ng

th
 o

f
A

E
_q

ua
lif

ie
r.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

A
E

_q
ua

lif
ie

r_
le

ng
th

 w
ill

 b
e

0.

T
he

 f
or

m
at

 o
f

A
E

_q
ua

lif
ie

r.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
A

E
_q

ua
lif

ie
r_

fo
rm

at
 w

ill
 n

ot
 b

e
m

ea
ni

ng
fu

l.

C
M

_A
LL

O
C

A
T

E
_N

O
_C

O
N

F
IR

M

T
he

 a
pp

lic
at

io
n-

pr
oc

es
s

tit
le

 f
ro

m
 s

id
e

in
fo

rm
at

io
n

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
 A

P
_t

itl
e

w
ill

 b
e

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
A

P
_t

itl
e.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

A
P

_t
itl

e_
le

ng
th

 w
ill

 b
e

0.

T
he

 f
or

m
at

 o
f

A
P

_t
itl

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
A

P
_t

itl
e_

fo
rm

at
 w

ill
 n

ot
 b

e
m

ea
ni

ng
fu

l.

T
he

 a
pp

lic
at

io
n

co
nt

ex
t

na
m

e
fr

om
 s

id
e

in
fo

rm
at

io
n

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
ap

pl
ic

at
io

n_
co

nt
ex

t_
na

m
e

w
ill

 b
e

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
ap

pl
ic

at
io

n_
co

nt
ex

t_
na

m
e.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

ap
pl

ic
at

io
n_

co
nt

ex
t_

na
m

e
w

ill
 b

e
0.

C
M

_B
E

G
IN

_I
M

P
LI

C
IT

C
M

_C
O

N
F

IR
M

A
T

IO
N

_U
R

G
E

N
T

N
ot

 s
et

N
ot

 s
et

T
ab

le
 3

 (
P

ag
e

1
of

 4
).

 C
ha

ra
ct

er
is

tic
s

an
d

T
he

ir
D

ef
au

lt
V

al
ue

s

N
am

e
of

 C
ha

ra
ct

er
is

tic

A
E

_q
ua

lif
ie

r

A
E

_q
ua

lif
ie

r_
le

ng
th

A
E

_q
ua

lif
ie

r_
fo

rm
at

al
lo

ca
te

_c
on

fir
m

A
P

_t
itl

e

A
P

_t
itl

e_
le

ng
th

A
P

_t
itl

e_
fo

rm
at

ap
pl

ic
at

io
n_

co
nt

ex
t_

na
m

e

ap
pl

ic
at

io
n_

co
nt

ex
t_

na
m

e_
le

ng
th

be
gi

n_
tr

an
sa

ct
io

n

co
nf

irm
at

io
n_

ur
ge

nc
y

co
nt

ex
t_

ID

co
nt

ex
t_

ID
_l

en
gt

h

 Chapter 2. CPI Communications Terms and Concepts 35

 Terms and Concepts

A
cc

ep
t_

In
co

m
in

g
se

ts
 it

 t
o:

N
ot

 a
pp

lic
ab

le

F
or

 h
al

f-
du

pl
ex

 c
on

ve
rs

at
io

ns
,

C
M

_R
E

C
E

IV
E

_S
T

A
T

E
.

F
or

fu
ll-

du
pl

ex
 c

on
ve

rs
at

io
ns

,
C

M
_S

E
N

D
_R

E
C

E
IV

E
_S

T
A

T
E

.

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t
if

th
e

C
R

M
 t

yp
e

is
 L

U
 6

.2
.

N
ot

 c
ha

ng
ed

if
th

e
C

R
M

 t
yp

e
is

 O
S

I
T

P
.

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 le
ng

th
 o

f
th

e
in

iti
al

iz
at

io
n

da
ta

re
ce

iv
ed

 o
n

th
e

co
nv

er
sa

tio
n

st
ar

tu
p

re
qu

es
t

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

In
iti

al
iz

e_
F

or
_I

nc
om

in
g

se
ts

 it
to

:

N
ot

 a
pp

lic
ab

le

C
M

_I
N

IT
IA

LI
Z

E
_I

N
C

O
M

IN
G

_S
T

A
T

E

C
M

_M
A

P
P

E
D

_C
O

N
V

E
R

S
A

T
IO

N

C
M

_D
E

A
LL

O
C

A
T

E
_S

Y
N

C
_L

E
V

E
L

N
ot

 s
et

N
ot

 s
et

C
M

_R
E

C
E

IV
E

_E
R

R
O

R

C
M

_F
IL

L_
LL

N
ul

l

0 N
ul

l

C
M

_J
O

IN
_I

M
P

LI
C

IT

0 N
ul

l

0

A
cc

ep
t_

C
on

ve
rs

at
io

n
se

ts
 it

 t
o:

N
ot

 a
pp

lic
ab

le

F
or

 h
al

f-
du

pl
ex

 c
on

ve
rs

at
io

ns
,

C
M

_R
E

C
E

IV
E

_S
T

A
T

E
.

F
or

fu
ll-

du
pl

ex
 c

on
ve

rs
at

io
ns

,
C

M
_S

E
N

D
_R

E
C

E
IV

E
_S

T
A

T
E

.

C
M

_M
A

P
P

E
D

_C
O

N
V

E
R

S
A

T
IO

N
 if

 t
he

C
R

M
 t

yp
e

is
 O

S
I

T
P

,
or

 t
he

 v
al

ue
re

ce
iv

ed
 o

n
th

e
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t
if

th
e

C
R

M
 t

yp
e

is
LU

 6
.2

.

C
M

_D
E

A
LL

O
C

A
T

E
_S

Y
N

C
_L

E
V

E
L

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

C
M

_R
E

C
E

IV
E

_E
R

R
O

R

C
M

_F
IL

L_
LL

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 le
ng

th
 o

f
th

e
in

iti
al

iz
at

io
n

da
ta

re
ce

iv
ed

 o
n

th
e

co
nv

er
sa

tio
n

st
ar

tu
p

re
qu

es
t

N
ul

l

C
M

_J
O

IN
_I

M
P

LI
C

IT

0 N
ul

l

0

In
iti

al
iz

e_
C

on
ve

rs
at

io
n

se
ts

 it
 t

o:

T
he

 s
ec

ur
ity

 t
yp

e
fr

om
 s

id
e

in
fo

rm
at

io
n

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
co

nv
er

sa
tio

n_
se

cu
rit

y_
ty

pe
 w

ill
 b

e
C

M
_S

E
C

U
R

IT
Y

_S
A

M
E

.

C
M

_I
N

IT
IA

LI
Z

E
_S

T
A

T
E

C
M

_M
A

P
P

E
D

_C
O

N
V

E
R

S
A

T
IO

N

C
M

_D
E

A
LL

O
C

A
T

E
_S

Y
N

C
_L

E
V

E
L

T
he

 d
ire

ct
or

y_
en

co
di

ng
 r

ef
er

en
ce

d
by

sy
m

_d
es

t_
na

m
e.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d

or
 t

he
si

de
 in

fo
rm

at
io

n
en

tr
y

di
d

no
t

co
nt

ai
n

a
di

re
ct

or
y_

en
co

di
ng

 v
al

ue
,

di
re

ct
or

y_
en

co
di

ng
 w

ill
 b

e
se

t
to

C
M

_D
E

F
A

U
LT

_E
N

C
O

D
IN

G
.

T
he

 d
ire

ct
or

y_
sy

nt
ax

 r
ef

er
en

ce
d

by
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d
or

 t
he

si
de

 in
fo

rm
at

io
n

en
tr

y
di

d
no

t
co

nt
ai

n
a

di
re

ct
or

y_
sy

nt
ax

 v
al

ue
,

di
re

ct
or

y_
sy

nt
ax

w
ill

 b
e

se
t

to
C

M
_D

E
F

A
U

LT
_S

Y
N

T
A

X
.

C
M

_R
E

C
E

IV
E

_E
R

R
O

R

C
M

_F
IL

L_
LL

N
ul

l

0 N
ul

l

N
ot

 s
et

0 N
ul

l

0

T
ab

le
 3

 (
P

ag
e

2
of

 4
).

 C
ha

ra
ct

er
is

tic
s

an
d

T
he

ir
D

ef
au

lt
V

al
ue

s

N
am

e
of

 C
ha

ra
ct

er
is

tic

co
nv

er
sa

tio
n_

se
cu

rit
y_

ty
pe

co
nv

er
sa

tio
n_

st
at

e

co
nv

er
sa

tio
n_

ty
pe

de
al

lo
ca

te
_t

yp
e

di
re

ct
or

y_
en

co
di

ng

di
re

ct
or

y_
sy

nt
ax

er
ro

r_
di

re
ct

io
n

fil
l

in
iti

al
iz

at
io

n_
da

ta

in
iti

al
iz

at
io

n_
da

ta
_l

en
gt

h

lo
g_

da
ta

jo
in

_t
ra

ns
ac

tio
n

lo
g_

da
ta

_l
en

gt
h

m
ap

_n
am

e

m
ap

_n
am

e_
le

ng
th

36 CPI Communications Reference

 Terms and Concepts

A
cc

ep
t_

In
co

m
in

g
se

ts
 it

 t
o:

T
he

 m
od

e
na

m
e

fo
r

th
e

lo
gi

ca
l

co
nn

ec
tio

n
on

 w
hi

ch
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t
ar

riv
ed

T
he

 le
ng

th
 o

f
m

od
e_

na
m

e

A
 p

ro
gr

am
 b

in
di

ng
 c

on
ta

in
in

g
al

l
av

ai
la

bl
e

de
st

in
at

io
n

in
fo

rm
at

io
n

on
th

e
pa

rt
ne

r
pr

og
ra

m
.

T
he

 le
ng

th
 o

f
pa

rt
ne

r_
ID

.

C
M

_P
R

O
G

R
A

M
_B

IN
D

IN
G

N
ot

 a
pp

lic
ab

le

F
or

 a
n

LU
 6

.2
 C

R
M

,
th

e
pa

rt
ne

r
LU

 n
am

e
fo

r
th

e
lo

gi
ca

l c
on

ne
ct

io
n

on
 w

hi
ch

 t
he

 c
on

ve
rs

at
io

n
st

ar
tu

p
re

qu
es

t
ar

riv
ed

.
F

or
 a

n
O

S
I

T
P

C
R

M
,

pa
rt

ne
r_

LU
_n

am
e

is
 a

 s
in

gl
e

bl
an

k.

T
he

 le
ng

th
 o

f
pa

rt
ne

r_
LU

_n
am

e

N
ot

 a
pp

lic
ab

le

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

In
iti

al
iz

e_
F

or
_I

nc
om

in
g

se
ts

 it
to

:

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 a
pp

lic
ab

le

C
M

_P
R

E
P

_T
O

_R
E

C
E

IV
E

_S
Y

N
C

_L
E

V
E

L

C
M

_B
LO

C
K

IN
G

C
M

_R
E

C
E

IV
E

_A
N

D
_W

A
IT

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

A
cc

ep
t_

C
on

ve
rs

at
io

n
se

ts
 it

 t
o:

T
he

 m
od

e
na

m
e

fo
r

th
e

lo
gi

ca
l

co
nn

ec
tio

n
on

 w
hi

ch
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t
ar

riv
ed

T
he

 le
ng

th
 o

f
m

od
e_

na
m

e

A
 p

ro
gr

am
 b

in
di

ng
 c

on
ta

in
in

g
al

l
av

ai
la

bl
e

de
st

in
at

io
n

in
fo

rm
at

io
n

on
th

e
pa

rt
ne

r
pr

og
ra

m
.

T
he

 le
ng

th
 o

f
pa

rt
ne

r_
ID

.

C
M

_P
R

O
G

R
A

M
_B

IN
D

IN
G

N
ot

 a
pp

lic
ab

le

F
or

 a
n

LU
 6

.2
 C

R
M

,
th

e
pa

rt
ne

r
LU

 n
am

e
fo

r
th

e
lo

gi
ca

l c
on

ne
ct

io
n

on
 w

hi
ch

 t
he

 c
on

ve
rs

at
io

n
st

ar
tu

p
re

qu
es

t
ar

riv
ed

.
F

or
 a

n
O

S
I

T
P

C
R

M
,

pa
rt

ne
r_

LU
_n

am
e

is
 a

 s
in

gl
e

bl
an

k.

T
he

 le
ng

th
 o

f
pa

rt
ne

r_
LU

_n
am

e

N
ot

 a
pp

lic
ab

le

C
M

_P
R

E
P

_T
O

_R
E

C
E

IV
E

_S
Y

N
C

_L
E

V
E

L

C
M

_B
LO

C
K

IN
G

C
M

_R
E

C
E

IV
E

_A
N

D
_W

A
IT

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

N
ot

 a
pp

lic
ab

le

In
iti

al
iz

e_
C

on
ve

rs
at

io
n

se
ts

 it
 t

o:

T
he

 m
od

e
na

m
e

fr
om

 s
id

e
in

fo
rm

at
io

n
re

fe
re

nc
ed

 b
y

sy
m

_d
es

t_
na

m
e.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

m
od

e_
na

m
e

w
ill

 b
e

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
m

od
e_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
m

od
e_

na
m

e_
le

ng
th

 w
ill

 b
e

0.

T
he

 d
is

tin
gu

is
he

d_
na

m
e

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d
or

 t
he

si
de

 in
fo

rm
at

io
n

en
tr

y
di

d
no

t
co

nt
ai

n
a

di
st

in
gu

is
he

d_
na

m
e,

 p
ar

tn
er

_I
D

 w
ill

 b
e

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
pa

rt
ne

r_
ID

.
If

pa
rt

ne
r_

ID
is

 n
ul

l,
pa

rt
ne

r_
ID

_l
en

gt
h

w
ill

 b
e

0.

C
M

_D
IS

T
IN

G
U

IS
H

E
D

_N
A

M
E

C
M

_E
X

P
LI

C
IT

T
he

 p
ar

tn
er

 L
U

 n
am

e
fr

om
 s

id
e

in
fo

rm
at

io
n

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
pa

rt
ne

r_
LU

_n
am

e
w

ill
 b

e
a

si
ng

le
bl

an
k.

T
he

 le
ng

th
 o

f
pa

rt
ne

r_
LU

_n
am

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
pa

rt
ne

r_
LU

_n
am

e_
le

ng
th

 w
ill

 b
e

1.

C
M

_P
R

E
P

A
R

E
_D

A
T

A
_N

O
T

_P
E

R
M

IT
T

E
D

C
M

_P
R

E
P

_T
O

_R
E

C
E

IV
E

_S
Y

N
C

_L
E

V
E

L

C
M

_B
LO

C
K

IN
G

C
M

_R
E

C
E

IV
E

_A
N

D
_W

A
IT

C
M

_W
H

E
N

_S
E

S
S

IO
N

_A
LL

O
C

A
T

E
D

T
he

 s
ec

ur
ity

 p
as

sw
or

d
fr

om
 s

id
e

in
fo

rm
at

io
n

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
se

cu
rit

y_
pa

ss
w

or
d

w
ill

 b
e

th
e

nu
ll

st
rin

g.

T
he

 le
ng

th
 o

f
se

cu
rit

y_
pa

ss
w

or
d.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

se
cu

rit
y_

pa
ss

w
or

d_
le

ng
th

 w
ill

 b
e

0.

T
ab

le
 3

 (
P

ag
e

3
of

 4
).

 C
ha

ra
ct

er
is

tic
s

an
d

T
he

ir
D

ef
au

lt
V

al
ue

s

N
am

e
of

 C
ha

ra
ct

er
is

tic

m
od

e_
na

m
e

m
od

e_
na

m
e_

le
ng

th

pa
rt

ne
r_

ID

pa
rt

ne
r_

ID
_l

en
gt

h

pa
rt

ne
r_

ID
_t

yp
e

pa
rt

ne
r_

ID
_s

co
pe

pa
rt

ne
r_

LU
_n

am
e

pa
rt

ne
r_

LU
_n

am
e_

le
ng

th

pr
ep

ar
e_

da
ta

_p
er

m
itt

ed

pr
ep

ar
e_

to
_r

ec
ei

ve
_t

yp
e

pr
oc

es
si

ng
_m

od
e

re
ce

iv
e_

ty
pe

re
tu

rn
_c

on
tr

ol

se
cu

rit
y_

pa
ss

w
or

d

se
cu

rit
y_

pa
ss

w
or

d_
le

ng
th

 Chapter 2. CPI Communications Terms and Concepts 37

 Terms and Concepts

A
cc

ep
t_

In
co

m
in

g
se

ts
 it

 t
o:

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 le
ng

th
 o

f
se

cu
rit

y_
us

er
_I

D

T
he

 v
al

ue
 r

ec
ei

ve
d

in
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

N
ot

 c
ha

ng
ed

 b
y

A
cc

ep
t_

In
co

m
in

g

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 le
ng

th
 o

f
T

P
_n

am
e

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
va

lu
e

re
ce

iv
ed

 o
n

th
e

co
nv

er
sa

tio
n

st
ar

tu
p

re
qu

es
t.

F
or

 a
n

LU
 6

.2
C

R
M

,
C

M
_C

H
A

IN
E

D
_T

R
A

N
S

A
C

T
IO

N
S

.

In
iti

al
iz

e_
F

or
_I

nc
om

in
g

se
ts

 it
to

:

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

C
M

_B
U

F
F

E
R

_D
A

T
A

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

N
ot

 s
et

A
cc

ep
t_

C
on

ve
rs

at
io

n
se

ts
 it

 t
o:

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 le
ng

th
 o

f
se

cu
rit

y_
us

er
_I

D

T
he

 v
al

ue
 r

ec
ei

ve
d

in
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

C
M

_B
U

F
F

E
R

_D
A

T
A

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 v
al

ue
 r

ec
ei

ve
d

on
 t

he
co

nv
er

sa
tio

n
st

ar
tu

p
re

qu
es

t

T
he

 le
ng

th
 o

f
T

P
_n

am
e

F
or

 a
n

O
S

I
T

P
 C

R
M

,
th

e
va

lu
e

re
ce

iv
ed

 o
n

th
e

co
nv

er
sa

tio
n

st
ar

tu
p

re
qu

es
t.

F
or

 a
n

LU
 6

.2
C

R
M

,
C

M
_C

H
A

IN
E

D
_T

R
A

N
S

A
C

T
IO

N
S

.

In
iti

al
iz

e_
C

on
ve

rs
at

io
n

se
ts

 it
 t

o:

T
he

 s
ec

ur
ity

 u
se

r
ID

 f
ro

m
 s

id
e

in
fo

rm
at

io
n

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
se

cu
rit

y_
us

er
_I

D
 w

ill
 b

e
th

e
nu

ll
st

rin
g.

T
he

 le
ng

th
 o

f
se

cu
rit

y_
us

er
_I

D
.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

se
cu

rit
y_

us
er

_I
D

_l
en

gt
h

w
ill

 b
e

0.

C
M

_H
A

LF
_D

U
P

LE
X

C
M

_B
U

F
F

E
R

_D
A

T
A

C
M

_N
O

N
E

T
he

 p
ro

gr
am

 n
am

e
fr

om
 s

id
e

in
fo

rm
at

io
n

re
fe

re
nc

ed
 b

y
sy

m
_d

es
t_

na
m

e.
If

a
bl

an
k

sy
m

_d
es

t_
na

m
e

w
as

 s
pe

ci
fie

d,
T

P
_n

am
e

w
ill

 b
e

a
si

ng
le

 b
la

nk
.

T
he

 le
ng

th
 o

f
T

P
_n

am
e.

If
a

bl
an

k
sy

m
_d

es
t_

na
m

e
w

as
 s

pe
ci

fie
d,

T
P

_n
am

e_
le

ng
th

 w
ill

 b
e

1.

C
M

_C
H

A
IN

E
D

_T
R

A
N

S
A

C
T

IO
N

S

T
ab

le
 3

 (
P

ag
e

4
of

 4
).

 C
ha

ra
ct

er
is

tic
s

an
d

T
he

ir
D

ef
au

lt
V

al
ue

s

N
am

e
of

 C
ha

ra
ct

er
is

tic

se
cu

rit
y_

us
er

_I
D

se
cu

rit
y_

us
er

_I
D

_l
en

gt
h

se
nd

_r
ec

ei
ve

_m
od

e

se
nd

_t
yp

e

sy
nc

_l
ev

el

T
P

_n
am

e

T
P

_n
am

e_
le

ng
th

tr
an

sa
ct

io
n_

co
nt

ro
l

38 CPI Communications Reference

 Terms and Concepts

Characteristic Values and CRMs
Some conversation characteristic values are meaningful only for a particular CRM
type. For example, an error_direction value of CM_SEND_ERROR has meaning only
for an LU 6.2 CRM. On the other hand, a sync_level value of CM_NONE paired
with a deallocate_type value of CM_DEALLOCATE_CONFIRM has meaning only
for an OSI TP CRM. These CRM-type-sensitive characteristic values and value
pairs are listed below:

¹ For an LU 6.2 CRM:

– error_direction of CM_SEND_ERROR

¹ For an OSI TP CRM:

– allocate_confirm of CM_ALLOCATE_CONFIRM
– prepared_data_permitted of CM_PREPARE_DATA_PERMITTED
– transaction_control of CM_UNCHAINED_TRANSACTIONS
– sync_level of CM_NONE paired with deallocate_type of

CM_DEALLOCATE_CONFIRM
– sync_level of CM_SYNC_POINT paired with deallocate_type of

CM_DEALLOCATE_CONFIRM
– sync_level of CM_SYNC_POINT paired with deallocate_type of

CM_DEALLOCATE_FLUSH
– sync_level of CM_SYNC_POINT_NO_CONFIRM paired with deallocate_type of

CM_DEALLOCATE_CONFIRM
– sync_level of CM_SYNC_POINT_NO_CONFIRM paired with deallocate_type of

CM_DEALLOCATE_FLUSH
– sync_level of CM_SYNC_POINT_NO_CONFIRM paired with

send_receive_mode of CM_HALF_DUPLEX

CPI Communications considers a conversation to be using a particular CRM type
if either one of the following events occurs:

¹ The program has successfully set a characteristic value or value pair for the
conversation that is meaningful only for that CRM type.

¹ The conversation has been allocated on that CRM type.

When the conversation is using a particular CRM type, the implications are:

¹ The program will receive a CM_PROGRAM_PARAMETER_CHECK return code if it
attempts to set any characteristic value that is meaningful only for a different
CRM type.

For example, suppose a program has successfully set the allocate_confirm
characteristic on a conversation to CM_ALLOCATE_CONFIRM, using the
Set_Allocate_Confirm call. CPI Communications now considers this
conversation to be using an OSI TP CRM. If the program then issues a
Set_Error_Direction call on the conversation with error_direction set to
CM_SEND_ERROR, the program will receive a
CM_PROGRAM_PARAMETER_CHECK return code.

Details on this type of checking are provided in the individual call descriptions
in Chapter 4, “Call Reference” on page 107.

 Chapter 2. CPI Communications Terms and Concepts 39

 Terms and Concepts

¹ The conversation will only be allocated on that CRM type.

If a conversation is using one CRM type and complete destination information
is available for both CRM types, the Allocate call will try to establish a logical
connection using only the destination information for the CRM type being used.

Characteristic Values and Send-Receive Modes
Table 4 lists the values of conversation characteristics that are not applicable to a
half-duplex conversation , a conversation with send_receive_mode set to
CM_HALF_DUPLEX. Table 5 lists the values of conversation characteristics that are
not applicable to a full-duplex conversation , a conversation with
send_receive_mode set to CM_FULL_DUPLEX.

On a conversation with a particular send-receive mode:

¹ The program will receive a CM_PROGRAM_PARAMETER_CHECK if it attempts to
set any characteristic value that is not applicable to that send-receive mode.

¹ The Set_Send_Receive_Mode call will return with
CM_PROGRAM_PARAMETER_CHECK if a previously set deallocate_type,
send_type, or sync_level characteristic value is not applicable to the
send-receive mode specified on the call.

The following calls cannot be issued on full-duplex conversations and will receive a
CM_PROGRAM_PARAMETER_CHECK return code on a full-duplex conversation:

 ¹ Confirm
¹ Confirmed (for conversations using an LU 6.2 CRM only)

 ¹ Prepare_To_Receive
 ¹ Request_To_Send
 ¹ Set_Confirmation_Urgency
 ¹ Set_Error_Direction
 ¹ Set_Prepare_To_Receive_Type
 ¹ Set_Processing_Mode
 ¹ Test_Request_To_Send_Received

Table 4. Conversation Characteristic Values that Cannot Be Set for Half-Duplex
Conversations

Characteristic Name Inapplicable Values

sync_level CM_SYNC_POINT_NO_CONFIRM (for conversations using an
LU 6.2 CRM only)

Table 5. Conversation Characteristic Values that Cannot Be Set for Full-Duplex
Conversations

Characteristic Name Inapplicable Values

confirmation_urgency all values
deallocate_type CM_DEALLOCATE_CONFIRM (for conversations using an LU

6.2 CRM only)
error_direction all values
prepare_to_receive_type all values
processing_mode all values
send_type CM_SEND_AND_CONFIRM

 CM_SEND_AND_PREP_TO_RECEIVE

sync_level CM_CONFIRM

 CM_SYNC_POINT

40 CPI Communications Reference

 Terms and Concepts

Automatic Conversion of Characteristics
Some conversation characteristics affect only the function of the local program; the
remote program is not aware of their settings. An example of this kind of
conversation characteristic is receive_type. Other conversation characteristics,
however, are transmitted to the remote program or CRM and, thus, affect both ends
of the conversation. For example, the local CRM transmits the TP_name
characteristic to the remote CRM as part of the conversation startup process.

When an LU 6.2 CRM is used, CPI Communications requires that these transmitted
characteristics be encoded as EBCDIC characters. For this reason, CPI
Communications automatically converts these characteristics to EBCDIC when they
are used as parameters on CPI Communications calls on non-EBCDIC systems.
The conversion of characteristics not in character set 00640 is implementation
dependent (see Table 60 on page 647). When an OSI TP CRM is used, the
transfer syntax is negotiated by the underlying support. CPI Communications
automatically converts these characteristics to the transfer syntax when they are
used as parameters on CPI Communications calls.

This means programmers can use the native encoding of the local system when
specifying these characteristics on Set calls. Likewise, when these characteristics
are returned by Extract calls, they are represented in the local system's native
encoding.

The following conversation characteristics may be automatically converted by CPI
Communications:

AE_qualifier Specified on the Extract_AE_Qualifier and Set_AE_Qualifier
calls.

AP_Title Specified on the Extract_AP_Title and Set_AP_Title calls.

application_context_name
Specified on the Extract_Application_Context_Name and
Set_Application_Context_Name calls.

initialization_data Specified on the Extract_Initialization_Data and
Set_Initialization_Data calls.

log_data Specified on the Set_Log_Data call.

mode_name Specified on the Extract_Mode_Name and Set_Mode_Name
calls.

partner_LU_name Specified on the Extract_Partner_LU_Name and
Set_Partner_LU_Name calls.

security_password Specified on the Set_Conversation_Security_Password call.

security_user_ID Specified on the Extract_Security_User_ID and
Set_Conversation_Security_User_ID calls.

TP_name Specified on the Set_TP_Name and Extract_TP_Name calls.
Refer to “SNA Service Transaction Programs” on page 727 for
special handling of SNA Service Transaction Program names.

 Chapter 2. CPI Communications Terms and Concepts 41

 Terms and Concepts

Automatic Data Conversion
Automatic data conversion allows two mapped conversation programs to exchange
data records in a manner that insulates a program from concerns about how the
partner program views the data record. This is accomplished by encoding and
decoding data records using routines that are external to the user application.
These routines can be written by a systems administrator, some other qualified
group, or a vendor. The MAP_NAME is used to access the correct routine. Within
the SNA architecture this would be a separate routine which the underlying layers
would access. A particular implementation may either have the user link edit the
routine into the application program or use dynamic link libraries. The results are
the same to the end user. Within the OSI architecture this name would instruct the
U-ASE (the OSI TP entity responsible for encoding and decoding user data) what
specific U-ASE ASN.1 structure to use. When a data record is received the
reverse process occurs with the decoder recognizing what it received and
generating the appropriate local MAP_NAME.

When an application program is moving data between homogeneous systems and
intends to perform all manipulation of the data within the application program itself,
it may use the network like a pipe and simply send and receive buffers of data.
The program can also accomplish this by using pure Send_Data and Receive calls.
It can also accomplish this by using Send_Mapped_data and
Receive_Mapped_Data calls and not supplying a map name or supplying one with
all blanks. The SNA routine the vendor installed routine which supports CPI-C 1.0
mapped conversations. The OSI routine is the Unstructured Data Transfer U-ASE
(UDT).

The MAP_NAME is a 1 to 64 character local name defined by the person who
wrote the encode/decode routine. Both sides of the conversation could have
different local names for the same mapping function. This might occur when a
transaction traveled across an organizational boundary where the naming could not
be coordinated. An example would be two companies which use an industry
standard data record and have independently created a MAP_NAME for the data
record. SNA maps the local MAP_NAME to a globally unique network
MAP_NAME. The globally unique name is provided by a systems administrator.
OSI uses the application context to define, among other things, the abstract
syntax's (ASN.1 encodings) the conversation can use. The MAP_NAME is a local
name established by a systems administrator for the U-ASE to identify what
encoding to use. Again, the two different systems may have different
MAP_NAMES. Unlike SNA, OSI does not transmit a MAP_NAME across the
network. Instead the self defining nature of ASN.1 automatically performs this
function. The encode/decode routines need not be mirror images of each other.
The ability to manipulate the user data before it is sent or received by the
application program allows the application programmer insulation from the network.
The receiver may only require a subset of the data that was sent, therefore only
specific fields are delivered to the program. This allows changes in the data a
program sends to occur without requiring every receiving program to change, only
the decoding routines need change. The sending program may send a subset of
the required data with the encoding routine filling in the missing fields.

Automatic data conversion assumes that both partners operate correctly. There
may be cases where Send_Data and Receive calls are mixed with
Send_Mapped_Data and Receive_Mapped_Data. These calls can be mixed if the
following assumptions are met:

42 CPI Communications Reference

 Terms and Concepts

1. Both partners use equivalent map routines.
2. The Send_Data partner's map routine can recognize the incoming buffer and

encode correctly. For LU 6.2, the map routine will generate the correct map
name and send it to the partner.

3. The Receive_Data partner application code is able to recognize the decoded
buffer and act accordingly.

The send/receive mapped data routines all use a Map_Name_Length of 0 to 64. A
zero length indicates a NULL map name and the use of either the LU 6.2 supplied
map routine or the OSI Unstructed Data ASE, depending on the underlying CRM.

 Data Conversion
Program-to-program communication typically involves a variety of computer
systems and languages. Because each system or language has its own way of
representing equivalent data, data conversion support is needed for the application
program to overcome the differences in data representations from different
environments.

With the Convert_Incoming and Convert_Outgoing calls, CPI Communications
provides limited data conversion for character data in the user buffer. These calls
may be used to write a program that is independent of the partner program's local
character set:

¹ Before issuing a Send_Data call, the program may issue the Convert_Outgoing
call to convert the application data in the local encoding to the corresponding
EBCDIC hexadecimal codes.

¹ After receiving data from a Receive call, the program may issue the
Convert_Incoming call to convert the EBCDIC hexadecimal codes to the
corresponding local representation of the data.

These two calls provide limited data conversion support for character data that
belongs to character set 00640, as specified in Appendix A, “Variables and
Characteristics.” See the usage notes under “Convert_Incoming (CMCNVI)” on
page 139 and “Convert_Outgoing (CMCNVO)” on page 141.

With the Send_Mapped_Data, Receive_Mapped_Data,
Set_Mapped_Initialization_Data, and Extract_Mapped_Initialization_Data calls,
CPI-C provides access to sophisticated routines for conversion of data in the user
buffer before it is sent or received. These routines may be used to write programs
that are independent of encoding of the partner program. This allows the
encode/decode routine to change the order of the fields, selectively receive fields,
and supply missing fields when sending.

These calls should not be used when using the OSI Unstructured Data Transfer
U-ASE or CPI-C 1.0 mapped conversations. If you desire to use these calls for
uniformity with other programs the MAP_NAME should be set to blanks and/or
MAP_NAME_LENGTH set to zero.

 Chapter 2. CPI Communications Terms and Concepts 43

 Terms and Concepts

Data Buffering and Transmission
If a program uses the initial set of conversation characteristics, data is not
automatically sent to the remote program after a Send_Data has been issued,
except when the send buffer at the local system overflows. As shown in the
starter-set flows, the startup of the conversation and subsequent data flow can
occur anytime after the program call to Allocate. This is because the system stores
the data in internal buffers and groups transmissions together for efficiency.

A program can exercise explicit control over the transmission of data by using one
of the following calls to cause the buffered data’s immediate transmission:

 ¹ Confirm
 ¹ Deallocate
 ¹ Deferred_Deallocate
 ¹ Flush
 ¹ Include_Partner_In_Transaction
 ¹ Prepare
 ¹ Prepare_To_Receive
¹ Receive (in Send state) with receive_type set to CM_RECEIVE_AND_WAIT

(receive_type’s default setting)
 ¹ Send_Error

The use of Receive in Send state and the use of Deallocate have already been
shown in “Starter-Set Flows” on page 68. The other calls are discussed in the
following examples.

 Concurrent Operations
CPI Communications provides for concurrent call operations (multiple call
operations in progress simultaneously) on a conversation by grouping calls in
logical associations or conversation queues . Calls associated with one queue are
processed independently of calls associated with other queues or with no queue.
Table 6 on page 45 shows the different conversation queues and calls associated
with them.

The send-receive mode of the conversation determines what queues are available
for the conversation. Table 6 on page 45 shows the send-receive modes for which
the conversation queues are available.

A program may initiate concurrent operations by using multiple program threads on
systems with multi-threading support. See “Using Multiple Program Threads” on
page 45. Alternatively, a program may use queue-level non-blocking support to
regain control when a call operation on a queue cannot complete immediately. The
call operation remains in progress. The program may issue a call associated with
another queue or perform other processing. Queue-level non-blocking is described
in “Queue-Level Non-Blocking” on page 49.

Only one call operation is allowed to be in progress on a given conversation queue
at a time. If a program issues a call associated with a queue that has a previous
call operation still in progress, the later call returns with the
CM_OPERATION_NOT_ACCEPTED return code.

44 CPI Communications Reference

 Terms and Concepts

Using Multiple Program Threads
While CPI Communications itself does not provide multi-threading support, some
implementations are designed to work with multi-threading support in the base
operating system and to allow multi-threaded programs to use CPI
Communications. On such a system, a program may create separate threads to
initiate concurrent operations on a conversation. For example, a program may
create separate threads to handle the send and receive operations on a full-duplex
conversation, where the Send-Data and Receive calls are associated with the Send
and Receive queues, respectively. Each thread's operation proceeds
independently; in particular, the sending thread may continue to send data to the
partner program while the receiving thread is waiting for a Receive call to complete.

It is the responsibility of the program to ensure that action taken by one thread
does not interfere with action taken by another thread. For example, unexpected
results may occur if two threads issue calls associated with the same queue, or if
one thread modifies the value of a conversation characteristic that affects the
processing of a call issued by another thread.

Table 6 (Page 1 of 2). Conversation Queues—Associated Calls and Send-Receive Modes

Conversation Queue CPI Communications Calls Send-Receive Mode

Initialization Accept_Incoming
Allocate
Extract_Mapped_Initialization_Data
Set_AE_Qualifier
Set_Allocate_Confirm
Set_AP_Title
Set_Application_Context_Name
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Initialization_Data
Set_Mapped_Initialization_Data
Set_Mode_Name
Set_Partner_ID
Set_Partner_LU_Name
Set_Return_Control
Set_Send_Receive_Mode
Set_Sync_Level
Set_Transaction_Control
Set_TP_Name

Half-duplex and
full-duplex

Send Confirmed
Deallocate
Deferred_Deallocate
Flush
Include_Partner_In_Transaction
Prepare
Send_Data
Send_Error
Send_Mapped_Data
Set_Deallocate_Type
Set_Log_Data
Set_Prepare_Data_Permitted
Set_Send_Type

Full-duplex

Receive Receive
Receive_Mapped_Data
Set_Fill
Set_Receive_Type

Full-duplex

 Chapter 2. CPI Communications Terms and Concepts 45

 Terms and Concepts

Table 6 (Page 2 of 2). Conversation Queues—Associated Calls and Send-Receive Modes

Conversation Queue CPI Communications Calls Send-Receive Mode

Send-Receive Confirm
Confirmed
Deallocate
Deferred_Deallocate
Flush
Include_Partner_In_Transaction
Prepare
Prepare_To_Receive
Receive
Receive_Mapped_Data
Send_Data
Send_Mapped_Data
Send_Error
Set_Confirmation_Urgency
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Log_Data
Set_Prepare_Data_Permitted
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Send_Type

Half-duplex

Expedited-Send Request_To_Send (Half-duplex only)
Send_Expedited_Data

Half-duplex and
full-duplex

Expedited-Receive Receive_Expedited_Data Half-duplex and
full-duplex

Determined by the
queue named on the
call

Set_Queue_Callback_Function
Set_Queue_Processing_Mode

Half-duplex and
full-duplex

46 CPI Communications Reference

 Terms and Concepts

Note: The following calls are not associated with any queue.

 ¹ Accept_Conversation
 ¹ Cancel_Conversation
 ¹ Convert_Incoming
 ¹ Convert_Outgoing
 ¹ Extract_*
 ¹ Initialize_Conversation
 ¹ Initialize_For_Incoming
 ¹ Release_Local_TP_Name
 ¹ Set_Begin_Transaction
 ¹ Set_Join_Transaction
 ¹ Set_Processing_Mode
 ¹ Specify_Local_TP_Name
 ¹ Test_Request_To_Send_Received
 ¹ Wait_For_Conversation
 ¹ Wait_For_Completion

 Non-Blocking Operations
CPI Communications supports two processing modes for its calls:

¹ Blocking —The call operation completes before control is returned to the
program. If the call operation is unable to complete immediately, it “blocks,”
and the program is forced to wait until the call operation finishes. While
waiting, the program is unable to perform other processing or to communicate
with any of its other partners.

¹ Non-blocking —If possible, the call operation completes immediately and
control is returned to the program. However, if while processing the call CPI
Communications determines that the call operation cannot complete
immediately, control is returned to the program even though the call operation
has not completed. The call operation remains in progress, and completion of
the call operation occurs at a later time.

Note: This section describes non-blocking operations for a single-threaded
program, but similar considerations apply to a program issuing CPI
Communications calls on multiple threads. Specifically, only the thread that issues
a call is blocked if the call is processed in blocking mode and cannot complete
immediately. When the program uses non-blocking support, control is returned to
the calling thread if the call operation cannot complete immediately. That thread
may then perform other processing, including issuing calls on the same
conversation.

When the non-blocking processing mode applies to a call and the call operation
cannot complete immediately, CPI Communications returns control to the program
with a return code of CM_OPERATION_INCOMPLETE. The call operation remains in
progress as an outstanding operation , and the program is allowed to perform
other processing.

 Chapter 2. CPI Communications Terms and Concepts 47

 Terms and Concepts

The following calls can return the CM_OPERATION_INCOMPLETE return code:

CPI Communications provides two levels of support for programs using the
non-blocking processing mode: conversation level and queue level. These are
discussed in the sections below. Until a program chooses a non-blocking level for
a conversation, all calls on the conversation are processed in blocking mode.

Note: A program may choose to use conversation-level non-blocking or
queue-level non-blocking, but not both, on a given conversation. Once set, the
level of non-blocking used on a conversation cannot be changed. Additionally, the
level of non-blocking used depends on the send_receive_mode characteristic. The
program can choose to use either level of non-blocking support on a half-duplex
conversation. However, the program can use only queue-level non-blocking on a
full-duplex conversation.

Table 7. Calls Returning CM_OPERATION_INCOMPLETE

Accept_Incoming
Allocate
Confirm
Confirmed
Deallocate
Deferred_Deallocate
Flush
Include_Partner_In_Transaction
Prepare
Prepare_To_Receive
Receive
Receive_Expedited_Data
Receive_Mapped_Data
Request_To_Send
Send_Data
Send_Error
Send_Expedited_Data
Send_Mapped_Data

 Conversation-Level Non-Blocking
Conversation-level non-blocking allows only one outstanding operation on a
conversation at a time. The program chooses conversation-level non-blocking by
issuing the Set_Processing_Mode (CMSPM) call to set the processing_mode
conversation characteristic. The processing_mode characteristic indicates whether
subsequent calls on the conversation are to be processed in blocking or
non-blocking mode.

If processing_mode is set to CM_NON_BLOCKING and a call receives the
CM_OPERATION_INCOMPLETE return code, the call operation becomes an
outstanding operation on the conversation. The program must issue the
Wait_For_Conversation (CMWAIT) call to determine when the outstanding
operation is completed and to retrieve the return code for that operation. CPI
Communications keeps track of all conversations using conversation-level
non-blocking and having an outstanding operation, and responds to a subsequent
Wait_For_Conversation call with the conversation identifier of one of those
conversations when the operation on it completes.

With conversation-level non-blocking, only one call operation is allowed to be in
progress on the conversation at a time. Any call (except Cancel_Conversation)

48 CPI Communications Reference

 Terms and Concepts

issued on the conversation while the previous call operation is still in progress gets
the CM_OPERATION_NOT_ACCEPTED return code.

A conversation does not change conversation state when a call on that
conversation gets the CM_OPERATION_INCOMPLETE return code. Instead, the state
transition occurs when a subsequent Wait_For_Conversation call completes and
indicates that the conversation has a completed operation. The conversation
enters the state called for by a combination of the operation that completed, the
return code for that operation (the conversation_return_code value returned on the
Wait_For_Conversation call), and the other factors that determine state transitions.

 Queue-Level Non-Blocking
In contrast to conversation-level non-blocking, queue-level non-blocking allows
more than one outstanding operation per conversation. CPI Communications
allows programs using queue-level non-blocking to have one outstanding operation
per queue simultaneously.

With queue-level non-blocking, the processing mode is set on a queue basis. The
program chooses queue-level non-blocking by issuing the
Set_Queue_Processing_Mode (CMSQPM) or Set_Queue_Callback_Function
(CMSQCF) call to set the queue processing mode for a specified queue. Until the
program sets the processing mode for a queue, all calls associated with that queue
are processed in blocking mode. Calls not associated with any queue are
processed in blocking mode and are always completed before control is returned to
the program.

Working with Wait Facility
When using the Set_Queue_Processing_Mode call, the program manages multiple
outstanding operations with outstanding-operation identifiers , or OOIDs. CPI
Communications creates and maintains a unique OOID for each queue.
Additionally, a program may choose to associate a user field with an outstanding
operation. The user field is provided as an aid to programming, and might be used
to contain, for example, the address of a data structure with return parameters for
an outstanding operation.

When a call receives the CM_OPERATION_INCOMPLETE return code, the call
operation becomes an outstanding operation on the conversation queue with which
the call is associated. The program must issue the Wait_For_Completion call to
wait for the operation to complete and to obtain the corresponding OOID and user
field.

Wait Facility Scenario
Here is a scenario of how a program might use queue-level non-blocking on a
full-duplex conversation:

1. The program uses the Set_Queue_Processing_Mode call to set the processing
mode for the Send queue to non-blocking. It also supplies a user field that
contains the address of a parameter list for the Send_Data call and receives
back an OOID from CPI Communications that is unique to the Send queue.

2. The program next uses the Set_Queue_Processing_Mode call to set the
processing mode for the Receive queue to non-blocking. This time it supplies
a user field that contains the address of a parameter list for the Receive call. It

 Chapter 2. CPI Communications Terms and Concepts 49

 Terms and Concepts

receives back an OOID from CPI Communications that is unique to the Receive
queue.

3. The program issues a Send_Data call, which returns
CM_OPERATION_INCOMPLETE, followed by a Receive call, which also returns
CM_OPERATION_INCOMPLETE. If the program attempted to issue another call
associated with either queue, it would receive a
CM_OPERATION_NOT_ACCEPTED return code because there can be only one
outstanding operation at a time per queue. Note that when a call on a
conversation receives a CM_OPERATION_INCOMPLETE return code, the
conversation does not change state.

4. The program can now issue a Wait_For_Completion call to wait for both
outstanding operations at the same time. It does this by specifying a list of
OOIDs for the outstanding operations it wants to wait for. When the
Wait_For_Completion call returns, it indicates which operations have completed
(if any), along with a list of user fields. The state transition triggered by the
completed operation occurs when the Wait_For_Completion call completes.

5. The program uses the parameter-list address in the user field to determine the
results of a given completed operation.

Using Callback Function
An alternative use of queue-level non-blocking is to establish a callback function
and a user field for the conversation queue using the
Set_Queue_Callback_Function (CMSQCF) call. When an outstanding operation
completes, the program is interrupted and the callback function is called (passing
the user field and call ID for the completed operation as input data). See
“Set_Queue_Callback_Function (CMSQCF)” for details. When the callback function
returns, the program continues from where it was interrupted.

Canceling Outstanding Operations
A program may use the Cancel_Conversation (CMCANC) call to end a
conversation. The call terminates all the call operations in progress on the
conversation. The terminated call operation returns a code of
CM_CONVERSATION_CANCELLED

Non-Blocking Calls and Context Management
In general, the program's current context is set by node services to the newly
created context when an Accept_Conversation or Accept_Incoming call completes
successfully with a return code of CM_OK. However, if Accept_Incoming is issued
as a non-blocking call and returns with a CM_OPERATION_INCOMPLETE return
code, the program's current context will not be changed. A new context is not
created until the Accept_Incoming call operation subsequently completes
successfully as a result of the Wait_For_Conversation or Wait_For_Completion call.
The program can then use the Extract_Conversation_Context call to determine the
context to which the conversation was assigned. Because Wait_For_Conversation
and Wait_For_Completion do not cause a change of context, the program is
responsible for issuing the appropriate node services call to establish the correct
current context.

50 CPI Communications Reference

 Terms and Concepts

 Conversation Security
Many systems control access to system resources through security parameters
associated with a request for access to those resources. In particular, a CRM
working in conjunction with node services can control access to its programs and
conversation resources using access security information carried in the
conversation startup request.

The conversation startup request contains one of the following forms of access
security information:

¹ No access security information

¹ The user ID of the user on whose behalf access to the remote program is
requested

¹ The user ID and a password for the user on whose behalf access to the remote
program is requested

¹ Authentication tokens generated by a distributed security service for the user
on whose behalf access to the remote program is requested.

The access security information in the conversation startup request depends on the
values of the security conversation characteristics and comes from the following
sources:

¹ The system administrator can provide security parameters in the side
information. These are used to establish security characteristics when the
program issues the Initialize_Conversation call.

¹ The program can override the values from side information and set the security
characteristics directly using the Set_Conversation_Security_Type,
Set_Conversation_Security_User_ID, and
Set_Conversation_Security_Password calls.

¹ When the program allocates a conversation with conversation_security_type set
to CM_SECURITY_SAME, CM_SECURITY_DISTRIBUTED or
CM_SECURITY_MUTUAL, the security parameters for the program's current
context are used to generate the access security information. This may involve
the use of a distributed security service. The access security information is
sent to the remote CRM in the conversation startup request.

The required_user_name_type field in the program binding may be used to specify
the type of user name required by the remote system.

¹ “NONE” indicates the remote system accepts and processes requests that do
not contain access security information.

¹ “LOCAL” indicates the remote system requires a user ID that is valid at the
remote system. User IDs may be sent for CM_SECURITY_PROGRAM,
CM_SECURITY_PROGRAM_STRONG, CM_SECURITY_SAME,
CM_SECURITY_DISTRIBUTED and CM_SECURITY_MUTUAL requests.

¹ “PRINCIPAL” indicates the remote system requires a principal name from the
distributed security service. Principal names are sent for CM_SECURITY_SAME,
CM_SECURITY_DISTRIBUTED and CM_SECURITY_MUTUAL requests.

Certain combinations of values of conversation_security_type and
required_user_name_type field (from the program binding) cause the local CRM to

 Chapter 2. CPI Communications Terms and Concepts 51

 Terms and Concepts

reject the Allocate call with a return_code of CM_SECURITY_NOT_SUPPORTED.
Table 8 on page 52 shows the incompatible values.

In addition to supporting access security information on conversation startup
requests, the OSI standard includes the ability to perform re-authentication during a
conversation. A program requests re-authentication by making OSI TP
implementation-specific calls to node services. Security protocols for OSI TP
CRMs are defined in standard ISO/IEC 11586 part 1, Generic Upper Layers
Security.

For an OSI TP CRM, the application context identifies to the program developer
which conversation security type should be used.

When a program is started as a result of an incoming conversation startup request
or when an already started program accepts an incoming conversation, node
services uses the access security information to validate the user's access to the
program and to establish the security parameters for the resulting context.

The program that accepts an incoming conversation may examine the
security_user_ID for that conversation by issuing the Extract_Security_User_ID call.

Table 8. Incompatible conversation_security_type and required_user_name_type Values

required_user_name_type conversation_security_type

LOCAL CM_SECURITY_NONE

PRINCIPAL CM_SECURITY_NONE

PRINCIPAL CM_SECURITY_PROGRAM

PRINCIPAL CM_SECURITY_PROGRAM_STRONG

Program Flow—States and Transitions
As implied throughout the discussion so far, a program written to make use of CPI
Communications is written with the remote program in mind. The local program
issues a CPI Communications call for a particular conversation knowing that, in
response, the remote program will issue another CPI Communications call (or its
equivalent) for that same conversation. To explain this two-sided programming
scenario, CPI Communications uses the concept of a conversation state. The
state that a conversation is in determines what the next set of actions may be.
When a conversation leaves a state, it makes a transition from that state to
another.

A CPI Communications conversation can be in one of the following states:

State Description

Reset There is no conversation for this conversation_ID.

Initialize Initialize_Conversation has completed successfully and a
conversation_ID has been assigned for this conversation.

Send The program is able to send data on this conversation. This
state is applicable only for half-duplex conversations.

Receive The program is able to receive data on this conversation.
This state is applicable only for half-duplex conversations.

52 CPI Communications Reference

 Terms and Concepts

State Description

Send-Pending The program has received both data and send control on the
same Receive call. See “Example 7: Error Direction and
Send-Pending State” on page 82 for a discussion of the
Send-Pending state. This state is applicable only for
half-duplex conversations.

Confirm A confirmation request has been received on this
conversation; that is, the remote program issued either a
Confirm call or a Send_Data call with send_type set to
CM_SEND_AND_CONFIRM, and is waiting for the local program
to issue Confirmed. After responding with Confirmed, the
local program's end of the conversation enters Receive state.
This state is applicable only for half-duplex conversations.

Confirm-Send A confirmation request and send control have both been
received on this conversation; that is, the remote program
issued a Prepare_To_Receive call with the
prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and either the
sync_level is CM_CONFIRM, or the sync_level is
CM_SYNC_POINT and the conversation is not currently
included in a transaction. After responding with Confirmed,
the local program's end of the conversation enters Send
state. This state is applicable only for half-duplex
conversations.

Confirm-Deallocate A confirmation request and deallocation notification have both
been received on this conversation. For a half-duplex
conversation, the remote program issued a Deallocate call in
one of the following situations:

¹ deallocate_type is set to CM_DEALLOCATE_CONFIRM.
¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL

and sync_level is set to CM_CONFIRM.
¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,

sync_level is set to CM_SYNC_POINT, and the
conversation is not currently included in a transaction.

For a full-duplex conversation, the remote program issued a
Deallocate call with the deallocate_type set to
CM_DEALLOCATE_CONFIRM.

Initialize-Incoming Initialize_For_Incoming has completed successfully and a
conversation_ID has been assigned for this conversation.
The program may accept an incoming conversation by issuing
Accept_Incoming on this conversation.

Send-Receive The program can send and receive data on this conversation.
This state is applicable only for full-duplex conversations.

Send-Only The program can only send data on this conversation. This
state is applicable only for full-duplex conversations.

Receive-Only The program can only receive data on this conversation. This
state is applicable only for full-duplex conversations.

 Chapter 2. CPI Communications Terms and Concepts 53

 Terms and Concepts

A conversation starts out in Reset state and moves into other states, depending on
the calls made by the program for that conversation and the information received
from the remote program. The current state of a conversation determines what
calls the program can or cannot make.

Since there are two programs for each conversation (one at each end), the state of
the conversation as seen by each program may be different. The state of the
conversation depends on which end of the conversation is being discussed.
Consider a half-duplex conversation where Program A is sending data to Program
C. Program A's end of the conversation is in Send state, but Program C's end is in
Receive state.

Note: CPI Communications keeps track of a conversation’s current state, as
should the program. If a program issues a CPI Communications call for a
conversation that is not in a valid state for the call, CPI Communications will detect
this error and return a return_code value of CM_PROGRAM_STATE_CHECK.

The following additional states are required for programs using a sync_level of
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM:

¹ Defer-Receive (for half-duplex conversations only)
 ¹ Defer-Deallocate
 ¹ Prepared
 ¹ Sync-Point
¹ Sync-Point-Send (for half-duplex conversations only)

 ¹ Sync-Point-Deallocate

“Support for Resource Recovery Interfaces” discusses synchronization point
processing and describes these additional states.

For a complete listing of program calls, possible states, and state transitions, see
Appendix C, “State Tables.”

Support for Resource Recovery Interfaces
This section describes how application programs can use CPI Communications in
conjunction with a resource recovery interface. A resource recovery interface
provides access to services and facilities that use two-phase commit protocols to
coordinate changes to distributed resources.

While CPI Communications' sync point functions can be used with other resource
recovery interfaces, this book describes how CPI Communications works with the
Systems Application Architecture* (SAA*) CPI Resource Recovery and X/Open TX
resource recovery interfaces. For information about performing synchronization
point processing with the SAA resource recovery interface, see SAA Common
Programming Interface: Resource Recovery Reference (SC31-6821) and read the
documentation for the appropriate operating environment. For information on using
the X/Open TX resource recovery interface, see Distributed Transaction
Processing: The TX (Transaction Demarcation) Specification, published by X/Open
Company Limited, ISBN: 1-872630-65-0.

54 CPI Communications Reference

 Terms and Concepts

Notes:

1. The following discussion is intended for programmers using CPI
Communications advanced functions. Readers not interested in a high degree
of synchronization need not read this section and can go to the next chapter.

2. The information in this section applies only to the CICS, OS/400, and VM
environments, since these products support the use of the SAA resource
recovery interface with CPI Communications.

A CPI Communications conversation can be used with a resource recovery
interface only if its sync_level characteristic is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM. This kind of conversation is called a protected
conversation .

Coordination with Resource Recovery Interfaces
A program communicates with a resource recovery interface by establishing
synchronization points , or sync points , in the program logic. A sync point is a
reference point during transaction processing to which resources can be restored if
a failure occurs. The program uses a resource recovery interface's commit call to
establish a new sync point or a resource recovery interface's backout call to return
to a previous sync point. The processing and the changes to resources that occur
between one sync point and the next are collectively referred to as a transaction
or a logical unit of work .

In turn, the resource recovery interface invokes a component of the operating
environment called a sync point manager (SPM) or a transaction manager . The
SPM coordinates the commit or backout processing among all the protected
resources involved in the sync point transaction.

The commitment or backout of protected resources is done on a context basis.
Only those changes to protected resources, including protected conversations, that
belong to the program's current context when the commit or backout call is issued
are committed or backed out. Therefore, prior to issuing the commit or backout
call, the program must ensure that the current context is the context for which the
commit or backout is intended.

For example, Program S in Figure 7 on page 31 has two distinct contexts, one for
Program D and one for Program E. If Program S decides to commit or back out
the work that it has done for Program D, it must set the current context to ensure
that only the resources associated with Program D will be affected. For more
information on contexts, see “Contexts and Context Management” on page 32.

Take-Commit and Take-Backout Notifications
When a program issues a Prepare, commit, or backout call, CPI Communications
cooperates with the resource recovery interface by passing synchronization
information to its conversation partner. This sync point information consists of
take-commit and take-backout notifications.

When the program issues a Prepare or commit call, CPI Communications returns a
take-commit notification to the partner program in the status_received parameter
for a Receive call issued by the partner. The sequence of CPI Communications
calls issued before the Prepare or resource recovery commit call determines the
value of the take-commit notification returned to the partner program. In addition to

 Chapter 2. CPI Communications Terms and Concepts 55

 Terms and Concepts

requesting that the partner program establish a sync point, the take-commit
notification also contains conversation state transition information.

Table 9 and Table 10 show the status_received values that CPI Communications
uses as take-commit notifications, the conditions under which each of the values
may be received, and the state changes resulting from their receipt.

Table 9 (Page 1 of 2). Possible Take-Commit Notifications for Half-Duplex Conversations

status_received Value Conditions for Receipt

CM_TAKE_COMMIT The partner program issued a commit call,
or a Prepare call with the
prepare_data_permitted conversation
characteristic set to
CM_PREPARE_DATA_NOT_PERMITTED, while
its end of the conversation was in Send or
Send-Pending state. The local program's
end of the conversation is in Sync-Point
state and will be placed back in Receive
state once the local program issues a
successful commit call.

CM_TAKE_COMMIT_SEND The partner program issued a commit call,
or a Prepare call with the
prepare_data_permitted conversation
characteristic set to
CM_PREPARE_DATA_NOT_PERMITTED, while
its end of the conversation was in
Defer-Receive state. The local program's
end of the conversation is in
Sync-Point-Send state and will be placed
in Send state once the local program issues
a successful commit call.

CM_TAKE_COMMIT_DEALLOCATE The partner program issued a commit call,
or a Prepare call with the
prepare_data_permitted conversation
characteristic set to
CM_PREPARE_DATA_NOT_PERMITTED,
either while its end of the conversation was
in Defer-Deallocate state or after issuing a
Deferred_Deallocate call. The local
program's end of the conversation is in
Sync-Point-Deallocate state and will be
placed in Reset state once the local
program issues a successful commit call.

CM_TAKE_COMMIT_DATA_OK The partner program issued a Prepare call
with the prepare_data_permitted
conversation characteristic set to
CM_PREPARE_DATA_PERMITTED while its
end of the conversation was in Send or
Send-Pending state. The local program's
end of the conversation is in Sync-Point
state and will be placed back in Receive
state once the local program issues a
successful commit call.

56 CPI Communications Reference

 Terms and Concepts

Table 9 (Page 2 of 2). Possible Take-Commit Notifications for Half-Duplex Conversations

status_received Value Conditions for Receipt

CM_TAKE_COMMIT_SEND_DATA_OK The partner program issued a Prepare call
with the prepare_data_permitted
conversation characteristic set to
CM_PREPARE_DATA_PERMITTED while its
end of the conversation was in
Defer-Receive state. The local program's
end of the conversation is in
Sync-Point-Send state and will be placed
in Send state once the local program issues
a successful commit call.

CM_TAKE_COMMIT_DEALLOC_DATA_OK The partner program issued a Prepare call
with the prepare_data_permitted
conversation characteristic set to
CM_PREPARE_DATA_PERMITTED, either
while its end of the conversation was in
Defer-Deallocate state or after issuing a
Deferred_Deallocate call. The local
program's end of the conversation is in
Sync-Point-Deallocate state and will be
placed in Reset state once the local
program issues a successful commit call.

Table 10 (Page 1 of 2). Possible Take-Commit Notifications for Full-Duplex Conversations

status_received Value Conditions for Receipt

CM_TAKE_COMMIT The partner program issued a commit call,
or the conversation is using an LU 6.2 CRM
and the partner program issued a Prepare
call, while its end of the conversation was in
Send-Receive state. The local program's
end of the conversation is in Sync-Point
state and will be placed back in
Send-Receive state once the local program
issues a successful commit call.

CM_TAKE_COMMIT_DEALLOCATE The partner program issued a commit call,
or the conversation is using an LU 6.2 CRM
and the partner program issued a Prepare
call, either while its end of the conversation
was in Defer-Deallocate state or after
issuing a Deferred_Deallocate call. The
local program's end of the conversation is in
Sync-Point-Deallocate state and will be
placed in Reset state once the local
program issues a successful commit call.

CM_TAKE_COMMIT_DATA_OK The conversation is using an OSI TP CRM,
and the partner program issued a Prepare
call while its end of the conversation was in
Send-Receive state. The local program's
end of the conversation is in Sync-Point
state and will be placed back in
Send-Receive state once the local program
issues a successful commit call.

 Chapter 2. CPI Communications Terms and Concepts 57

 Terms and Concepts

When the program issues a backout call, or when a system failure or a problem
with a protected resource causes the SPM to initiate a backout operation, CPI
Communications returns a take-backout notification to the partner program. CPI
Communications returns this notification as one of the following values in the
return_code parameter:

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
¹ CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_DEALLOCATED_NORMAL_BO

CPI Communications can return a take-backout notification on any of the following
calls issued by the partner program:

 ¹ Confirm
 ¹ Deallocate(S)4

 ¹ Extract_Conversation_State
 ¹ Flush
 ¹ Prepare
 ¹ Prepare_To_Receive
 ¹ Receive
 ¹ Send_Data
 ¹ Send_Error

Table 10 (Page 2 of 2). Possible Take-Commit Notifications for Full-Duplex Conversations

status_received Value Conditions for Receipt

CM_TAKE_COMMIT_DEALLOC_DATA_OK The conversation is using an OSI TP CRM,
and the partner program issued a Prepare
call, either while its end of the conversation
was in Defer-Deallocate state or after
issuing a Deferred_Deallocate call. The
local program's end of the conversation is in
Sync-Point-Deallocate state and will be
placed in Reset state once the local
program issues a successful commit call.

The Backout-Required Condition
Upon receipt of a take-backout notification on a protected conversation, the
conversation's context is placed in the Backout-Required condition. This condition
is not a conversation state, because it applies to all of the program's protected
resources for that context, possibly including multiple conversations.

A context may be placed in the Backout-Required condition in one of the following
ways:

¹ When CPI Communications returns a take-backout notification

4 Deallocate(S) refers to a Deallocate call issued with the deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and the sync_level
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

58 CPI Communications Reference

 Terms and Concepts

¹ When the program issues a Cancel_Conversation call, a Deallocate call
deallocate_type set to CM_DEALLOCATE_ABEND, or when a Send_Data call
with send_type set to CM_SEND_AND_DEALLOCATE and deallocate_type set to
CM_DEALLOCATE_ABEND. When one of these calls is successfully issued, CPI
Communications places the context in the Backout-Required condition.

When a context is placed in the Backout-Required condition, the program should
issue a resource recovery backout call. Until it issues a backout call, the program
will be unable to successfully issue any of the following CPI Communications calls
for any of its protected conversations within that context. The
CM_PROGRAM_STATE_CHECK return code will be returned if the program issues
any of the following calls:

 ¹ Allocate
 ¹ Confirm
 ¹ Confirmed
¹ Deallocate (unless deallocate_type is set to CM_DEALLOCATE_ABEND)

 ¹ Flush
 ¹ Prepare
 ¹ Prepare_To_Receive
 ¹ Receive
 ¹ Request_To_Send
 ¹ Send_Data
 ¹ Send_Error
 ¹ Test_Request_To_Send_Received

Responses to Take-Commit and Take-Backout Notifications
A program usually issues a commit or backout call in response to a take-commit
notification, and a backout call in response to a take-backout notification. In some
cases, however, the program may respond to one of these notifications with a CPI
Communications call instead of a commit or backout call. Table 11 on page 60
shows the calls a program can use to respond to take-commit and take-backout
notifications, the result of issuing each call, and any further action required by the
program.

 Chapter 2. CPI Communications Terms and Concepts 59

 Terms and Concepts

Table 11. Responses to Take-Commit and Take-Backout Notifications

Notification
Received

Possible Response Reason for
Response

Result of
Response

Further Action
Required

Take-Commit1 Commit The program
agrees that it can
commit (or has
committed) all
protected
resources.

The commit
request is spread
to other programs
in the transaction.

None

Backout The program
disagrees with the
commit request.

A backout request
is spread to other
programs in the
transaction,
including the
program that
issued the original
commit call.

None

Deallocate
(Abend)2 or
Cancel_
Conversation

The program has
detected an error
condition that
prevents it from
continuing normal
processing.

The conversation's
context is placed in
the
Backout-Required
condition.

The program
should issue a
resource recovery
backout call.

Send_Error3 The program has
detected an error
in received data or
some other error
that may be
correctable.

The SPM backs
out the transaction,
and both programs
are informed of the
backout.

Depends on the
response from the
partner program.

Take-Backout Commit This is an error in
program logic.

The commit call is
treated as though it
were a backout
call, and the
backout request is
spread to other
programs in the
transaction.

None

Backout The program
agrees to the
backout request.

The backout
request is spread
to other programs
in the transaction.

None

Deallocate
(Abend)2 or
Cancel_
Conversation

The program has
detected an error
condition that
prevents it from
continuing normal
processing.

The conversation's
context is placed in
the
Backout-Required
condition.

The program
should issue a
resource recovery
backout call.

1 If the take-commit indicator ended in *_DATA_OK, the partner may also send data before making any of
the other possible responses.
2 “Deallocate (Abend)” refers to the CPI Communications Deallocate call with a deallocate_type of
CM_DEALLOCATE_ABEND.
3 The program can respond with a Send_Error call only when using a half-duplex conversation.

60 CPI Communications Reference

 Terms and Concepts

Chained and Unchained Transactions
When a program is using the X/Open TX resource recovery interface, it may
choose when the next transaction is started after the current transaction ends.
Specifically, if the TX Transaction_Control variable is set to:

¹ TX_CHAINED, a commit call ends the current transaction and immediately
begins the next transaction and establishes a new sync point.

¹ TX_UNCHAINED, a commit call ends the current transaction but does not
begin the next transaction. The program must issue the tx_begin call to the
X/Open TX interface to start the next transaction and to establish a new sync
point.

For a conversation using an OSI TP CRM, the program that initializes a
conversation may use the Set_Transaction_Control call to specify whether it wants
to use chained or unchained transactions for the conversation. The remote
program may determine whether chained or unchained transactions are being used
for the conversation by issuing the Extract_Transaction_Control call. A
conversation using an LU 6.2 CRM must use chained transactions.

In a conversation using chained transactions, if a commit call ends the current
transaction and immediately begins the next transaction, the conversation is
automatically included in that next transaction and is always a protected
conversation. If the commit call does not immediately start the next transaction, the
conversation is deallocated by the system, and the program is notified of the
deallocation by a CM_RESOURCE_FAILURE_RETRY return code.

For a conversation using unchained transactions, when a commit call ends the
current transaction, the conversation is not automatically included in the next
transaction. Until the next transaction is started and the conversation is included in
that transaction, the conversation is not a protected conversation, and any commit
or backout processing does not apply to that conversation. After the next
transaction is started, the conversation is included in that transaction, and becomes
a protected conversation again, when the program requests that the partner
program join the transaction.

The TX Transaction_Control variable and the CPI Communications
transaction_control conversation characteristic are independent. There are four
possible combinations:

 – TX_CHAINED and CM_CHAINED_TRANSACTIONS

 – TX_CHAINED and CM_UNCHAINED_TRANSACTIONS

– TX_UNCHAINED and CM_CHAINED_TRANSACTIONS

– TX_UNCHAINED and CM_UNCHAINED_TRANSACTIONS

Joining a Transaction
For a conversation using chained transactions, when the local program issues an
Allocate call after setting the sync_level to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the remote program issues an
Accept_Conversation or Accept_Incoming call, the remote program automatically
joins the transaction.

For a conversation using unchained transactions, when a new transaction is
started, the local program has the following two ways of requesting that the partner
join the transaction.

 Chapter 2. CPI Communications Terms and Concepts 61

 Terms and Concepts

1. By making an implicit request — The local program can issue a
Set_Begin_Transaction call with a begin_transaction value of
CM_BEGIN_IMPLICIT, followed by any of the following CPI Communications calls
from Initialize , Send , Send-Pending , or Send-Receive states.

 ¹ Allocate
 ¹ Confirm
 ¹ Include_Partner_In_Transaction
 ¹ Prepare
 ¹ Prepare_To_Receive
 ¹ Receive
 ¹ Send_Data
 ¹ Send_Error

In this case, when the local program issues the second CPI Communications
call, the remote program receives a status_received value of
CM_JOIN_TRANSACTION.

Note: If the local program is not in transaction when one of the above calls is
made, the begin_transaction characteristic is ignored, and the partner program
is not requested to join a transaction.

2. By making an explicit request — The local program can issue a
Set_Begin_Transaction call with a begin_transaction value of
CM_BEGIN_EXPLICIT. At this point, no indication is sent to the remote program.
The remote program does not receive the CM_JOIN_TRANSACTION value until
the local program issues an Include_Partner_In_Transaction call.

Normally, if the remote program receives the request to join the transaction, it joins
automatically. When using the X/Open TX resource recovery interface, the
program can issue a tx_info() call to see whether or not it is in transaction mode.

When using the X/Open TX resource recovery interface, the program can choose
not to join automatically. In this case, the program must issue a
Set_Join_Transaction call with join_transaction set to CM_JOIN_EXPLICIT. This call
should be issued in the Initilize_Incoming state, so that it has an effect at the
following Accept_Incoming call. If a program uses CM_JOIN_EXPLICIT, it should
extract the transaction_control characteristic after a successful Accept_Incoming
call. If the value is CM_CHAINED_TRANSACTIONS, the program should join the
transaction by issuing a tx_begin() call. If the value is
CM_UNCHAINED_TRANSACTIONS, the program is informed with a
CM_JOIN_TRANSACTION status_received value if it is to join the transaction. In any
case, the program might first do any local work that is not for inclusion in the
remote program's transaction before joining the transaction. Instead of issuing a
tx_begin() call, the program also might reject the request to join the transaction by
issuing a Deallocate call with a deallocate_type of CM_DEALLOCATE_ABEND or a
CM_DEALLOCATE_ABEND or a Cancel_Conversation call.

62 CPI Communications Reference

 Terms and Concepts

Table 12. Responses to the CM_JOIN_TRANSACTION Indication

Notification
Received

Possible
Response

Reason for
Response

Result of
Response

Further Action
Required

Join- Transaction tx_begin The program
agrees to join the
distributed
transaction.

The local program
is included in the
distributed
transaction.

None

Deallocate (Abend)
1

or Cancel_
Conversation

The program
rejects the request
to join the
distributed
transaction.

The local program
is included in the
distributed
transaction.

None

1 “Deallocate (Abend)” refers to the CPI Communications Deallocate call with a
deallocate_type of CM_DEALLOCATE_ABEND.

Superior and Subordinate Programs
The concept of superior and subordinate programs applies only for conversations
with sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM that are
are using an OSI TP CRM.

The superior program is the program that initiates the conversation (using the
Initialize_Conversation call). A program that issues the Accept_Conversation or
Accept_Incoming call is a subordinate of the superior program.

Figure 9 shows a commit tree with seven programs participating in the transaction.

Program 1 Program 5

Program 2

Program 3

Program 4

Program 6 Program 7

Figure 9. Commit Tree with Program 1 as Root and Superior

In this example, Program 1 is the superior program in its conversations with
Programs 2, 5, and 6, which are all its subordinates. Similarly, Program 2 is the
superior in its conversations with Programs 3 and 4, and Program 6 is the superior
in its conversation with Program 7.

 Chapter 2. CPI Communications Terms and Concepts 63

 Terms and Concepts

Only the superior program that initiated the transaction (program 1 in this case) can
issue the initial commit call to end the transaction. However, any of the superior
programs in the transaction (in this example, Programs 1, 2, and 6) can issue the
Deferred_Deallocate call to their subordinates (but not to their superiors).

In addition, the Include_Partner_In_Transaction, Prepare, Set_Begin_Transaction,
and Set_Prepare_Data_Permitted calls may be issued only by the superior
program. These calls return a CM_PROGRAM_PARAMETER_CHECK return code
when they are issued by the subordinate.

Additional CPI Communications States
In addition to the conversation states described in “Program Flow—States and
Transitions” on page 52, the states described in Table 13 are required when a
program uses a protected CPI Communications conversation (that is, with the
sync_level characteristic set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM).

Table 13 (Page 1 of 2). CPI Communications States for Protected Conversations

State Description

Defer-Receive The local program's end of the conversation will enter Receive
state after a synchronization call completes successfully. The
synchronization call may be a resource recovery commit call or a
CPI Communications Flush or Confirm call.

A conversation enters Defer-Receive state when the local
program issues a Prepare_To_Receive call with
prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, or when it
issues a Send_Data call with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE, prepare_to_receive_type set
to CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

Defer-Receive state is applicable for half-duplex conversations
only.

Defer-Deallocate The local program has requested that the conversation be
deallocated after a commit operation has completed; that is, the
conversation is included in a transaction, and the program has
issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, or it has
issued a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE, deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL, and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM. The
conversation will not be deallocated until a successful commit
operation takes place.

Prepared The local program has issued a Prepare call to request that the
remote program prepare its resources for commitment.

64 CPI Communications Reference

 Terms and Concepts

Table 13 (Page 2 of 2). CPI Communications States for Protected Conversations

State Description

Sync-Point The local program issued a Receive call and was given a
return_code of CM_OK and a status_received of
CM_TAKE_COMMIT or CM_TAKE_COMMIT_DATA_OK. After a
successful commit operation, a half-duplex conversation will
return to Receive state, while a full-duplex conversation will return
to Send-Receive state.

Sync-Point-Send The local program issued a Receive call and was given a
return_code of CM_OK and a status_received of
CM_TAKE_COMMIT_SEND or CM_TAKE_COMMIT_SEND_DATA_OK.
After a successful commit operation, the conversation will be
placed in Send state.

Sync-Point-Send state is applicable for half-duplex conversations
only.

Sync-Point-Deallocate The local program issued a Receive call and was given a
return_code of CM_OK and a status_received of
CM_TAKE_COMMIT_DEALLOCATE or
CM_TAKE_COMMIT_DEALLOC_DATA_OK. After a successful
commit operation, the conversation will be deallocated and placed
in Reset state.

Valid States for Resource Recovery Calls
A program must ensure that there are no outstanding operations on its protected
conversations within a context before issuing a resource recovery call for that
context. If a resource recovery call is issued while there is an outstanding
operation on a protected conversation, the program receives from the resource
recovery interface a return code indicating an error.

All protected conversations within a context must be in one of the following states
for the program to issue a commit call for that context:

 ¹ Reset
 ¹ Initialize
 ¹ Initialize-Incoming
 ¹ Send
 ¹ Send-Pending
 ¹ Defer-Receive
 ¹ Defer-Deallocate
 ¹ Prepared
 ¹ Send-Receive
 ¹ Sync-Point
 ¹ Sync-Point-Send
 ¹ Sync-Point-Deallocate

If a commit call is issued from any other conversation state, the program receives
from the resource recovery interface a return code indicating an error. The
program can also receive an error return code if the conversation was in Send or
Send-Receive state when the commit call was issued, and the program had started
but had not finished sending a basic conversation logical record.

A backout call can be issued in any state.

 Chapter 2. CPI Communications Terms and Concepts 65

TX Extensions for CPI Communications
If the subordinate program uses the X/Open TX resource recovery interface and the
join_transaction characteristic has the value CM_JOIN_IMPLICIT, the TX State Table,
in the X/Open TX Specification, changes in the following ways:

¹ An incoming conversation request causes an implicit
tx_set_transaction-control() call in the following way:

– If the value of the CPI-C transaction_control characteristic is
TX_CHAINED_TRANSACTIONS, the TX transaction_control characteristic
changes to TX_CHAINED.

– If the value of the CPI-C transaction_control characteristic is
TX_UNCHAINED_TRANSACTIONS, the TX transaction_control characteristic
changes to TX_UNCHAINED.

¹ An incoming join_transaction request causes an implicit tx_begin() call. This
causes implicit TX state changes.

The program can use the tx_info() call to determine if it is in transaction mode and
to determine the value of the TX transaction_control characteristic.

66 CPI Communications Reference

 Example Flows

Chapter 3. Program-to-Program Communication Example
Flows

This chapter provides example flows of how two programs using CPI
Communications can exchange information and data in a controlled manner.

The examples are divided into these sections:

¹ “Starter-Set Flows” on page 68
¹ “Controlling Data Flow Direction” on page 74
¹ “Verifying Receipt of Data” on page 78
¹ “Reporting Errors to Partner” on page 80
¹ “Using Full-Duplex Conversations” on page 84
¹ “Using Queue-Level Non-Blocking” on page 90
¹ “Accepting Multiple Conversations” on page 92
¹ “Using the Distributed Directory” on page 96
¹ “Resource Recovery Flows” on page 98

In addition to these sample flows, a simple COBOL application using CPI
Communications calls is provided on the diskette that came with this manual.

Interpreting the Flow Diagrams
In the flow diagrams shown in this chapter (for example, Figure 10 on page 71),
vertical dotted lines indicate the components involved in the exchange of
information between systems. The horizontal arrows indicate the direction of the
flow for that step. The numbers lined up on the left side of the flow are reference
points to the flow and indicate the progression of the calls made on the
conversation. These same numbers correspond to the numbers under the Step
heading of the text description for each example.

The call parameter lists shown in the flows are not complete; only the parameters
of particular interest to the flows being discussed are shown. A complete
description of each CPI Communications call and the required parameters can be
found in Chapter 4, “Call Reference.”

A complete discussion of all possible timing scenarios is beyond the scope of the
chapter. Where appropriate, such discussion is provided in the individual call
descriptions in Chapter 4, “Call Reference.”

 Copyright IBM Corp. 1996, 1998 67

 Example Flows

 Starter-Set Flows
This section provides examples of programs using the CPI Communications
starter-set calls:

¹ “Example 1: Data Flow in One Direction” on page 69 demonstrates a flow of
data in only one direction (only the initiating program sends data).

¹ “Example 2: Data Flow in Both Directions” on page 72 describes a
bidirectional flow of data (the initiating program sends data and then allows the
partner program to send data).

68 CPI Communications Reference

 Example Flows

Example 1: Data Flow in One Direction
Figure 10 on page 71 shows an example of a conversation where the flow of data
is in only one direction.

The steps shown in Figure 10 are:

Step Description

.1/ To communicate with its partner program, Program A must first establish a conversation.
Program A uses the Initialize_Conversation call to tell CPI Communications that it wants to:

¹ Initialize a conversation
¹ Identify the conversation partner (using sym_dest_name)
¹ Ask CPI Communications to establish the identifier that the program will use when

referring to the conversation (the conversation_ID).

Upon successful completion of the Initialize_Conversation call, CPI Communications
assigns a conversation_ID and returns it to Program A. The program must store the
conversation_ID and use it on all subsequent calls intended for that conversation.

.2/ No errors were found on the Initialize_Conversation call, and the return_code is set to
CM_OK.

Two major tasks are now accomplished:

¹ CPI Communications has established a set of conversation characteristics for the
conversation, based on the sym_dest_name, and uniquely associated them with the
conversation_ID.

¹ The default values for the conversation characteristics, as listed in
“Initialize_Conversation (CMINIT)” on page 200, have been assigned. (For example,
the conversation now has conversation_type set to CM_MAPPED_CONVERSATION.)

.3/ Program A asks that a conversation be started with an Allocate call (see “Allocate
(CMALLC)” on page 124) using the conversation_ID previously assigned by the
Initialize_Conversation call.

.4/ If a logical connection between the systems is not already available, one is activated.
Program A and Program C can now have a conversation.

.5/ A return_code of CM_OK indicates that the Allocate call was successful and the system has
allocated the necessary resources to the program for its conversation. Program A’s
conversation is now in Send state and Program A can begin to send data.

Note: In this example, the error conditions that can arise (such as no logical connections
available) are not discussed. See “Allocate (CMALLC)” on page 124 for more information
about the error conditions that can result.

 Chapter 3. Program-to-Program Communication Example Flows 69

 Example Flows

Step Description

.6/ and .7/ Program A sends data with the Send_Data call (described in “Send_Data (CMSEND)” on
page 249) and receives a return_code of CM_OK. Until now, the conversation may not
have been established because the conversation startup request may not be sent until the
first flow of data. In fact, any number of Send_Data calls can be issued before CPI
Communications actually has a full buffer, which causes it to send the startup request and
data. Step .6/ shows a case where the amount of data sent by the first Send_Data is
greater than the size of the local system’s send buffer (a system-dependent property),
which is one of the conditions that triggers the sending of data. The request for a
conversation is sent at this time.

Notes:

1. Some implementations may choose to transmit the conversation startup request as part
of the Allocate processing.

2. The local program can ensure that the remote program is connected as soon as
possible by issuing Flush (CMFLUS) immediately after Allocate (CMALLC).

For a complete discussion of transmission conditions and how to ensure the immediate
establishment of a conversation and transmission of data, see “Data Buffering and
Transmission” on page 44.

.8/ and .9/ Once the conversation is established, the remote program’s system takes care of starting
Program C. The conversation on Program C’s side is in Reset state and Program C
issues a call to Accept_Conversation, which places the conversation into Receive state.
The Accept_Conversation call is similar to the Initialize_Conversation call in that it equates
a conversation_ID with a set of conversation characteristics (see “Accept_Conversation
(CMACCP)” on page 119 for details). Program C, like Program A in Step .2/, receives a
unique conversation_ID that it will use in all future CPI Communications calls for that
particular conversation. As discussed in “Conversation Characteristics” on page 33, some
of Program C’s defaults are based on information contained in the conversation startup
request.

.10/ and .11/ Once its end of the conversation is in Receive state, Program C begins whatever
processing role it and Program A have agreed upon. In this case, Program C accepts data
with a Receive call (as described in “Receive (CMRCV)” on page 213).

Program A could continue to make Send_Data calls (and Program C could continue to
make Receive calls), but, for the purposes of this example, assume that Program A only
wanted to send the data contained in its initial Send_Data call.

.12/ Program A issues a Deallocate call (see “Deallocate (CMDEAL)” on page 143) to send any
data buffered in the local system and release the conversation. Program C issues a final
Receive, shown here in the same step as the Deallocate, to check that it has all the
received data.

.13/ and .14/ The return_code of CM_DEALLOCATED_NORMAL tells Program C that the conversation is
deallocated. Both Program C and Program A finish normally.

Note: Only one program should issue Deallocate; in this case it was Program A. If
Program C had issued Deallocate after receiving CM_DEALLOCATED_NORMAL, an error
would have resulted.

70 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

 Initialize_Conversation (sym_dest_name) . .
.1/ .────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
.2/ .%────────────────────────. . .

 .Allocate(conversation_ID). . .
.3/ .────────────────────────5. Logical connection setup, . .

. . if logical connection . .

. . not already available . .
.4/ . .%───────────────────────────────5. .
 . return_code=CM_OK . . .
.5/ .%────────────────────────. . .

.Send_Data(conversation_ID, conversation startup request, . .

. data) . data . .
.6/ .────────────────────────5.────────────────────────────────5. .
 . return_code=CM_OK . . .
.7/ .%────────────────────────. .(Program C is started by .
 . . . node services) .

. . . Accept_Conversation .
.8/ . . .%────────────────────────.
 . . conversation_ID, return_code=CM_OK
.9/ . . .────────────────────────5.

 . . . Receive(conversation_ID).
.10/. . .%────────────────────────.

. . . data, return_code=CM_OK .
.11/. . .────────────────────────5.

. . remainder of data, . .
 .Deallocate(conversation_ID) conversation end . Receive(conversation_ID).
.12/.────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK . . data, .
.13/.%────────────────────────. return_code=CM_DEALLOCATED_NORMAL
 . . .────────────────────────5.

.14/. (Program A completes . . (Program C completes .

. normally) . . normally) .

Figure 10. Data Flow in One Direction

 Chapter 3. Program-to-Program Communication Example Flows 71

 Example Flows

Example 2: Data Flow in Both Directions
Figure 11 shows a conversation in which the flow of data is in both directions. It
describes how two programs using starter-set calls can initiate a change of control
over who is sending the data.

The steps shown in Figure 11 are:

Step Description

.1/ through .4/ Program A is sending data and Program C is receiving data.

Note: The conversation in this example is already established with the default
characteristics. Program A’s end of the conversation is in Send state, and Program C’s is
in Receive state.

.5/ After sending some amount of data (an indeterminate number of Send_Data calls),
Program A issues the Receive call while its end of the conversation is in Send state. As
described in “Receive (CMRCV)” on page 213, this call causes the remaining data buffered
at System X to be sent and permission to send to be given to Program C. Program A’s
end of the conversation is placed in Receive state, and Program A waits for a response
from Program C.

Note: See “Example 3: The Sending Program Changes the Data Flow Direction” on
page 74 for alternate methods that allow Program A to continue processing.

Program C issues a Receive call in the same way it issued the two prior Receive calls.

.6/ Program C receives not only the last of the data from Program A, but also a
status_received parameter set to CM_SEND_RECEIVED. The value of CM_SEND_RECEIVED
notifies Program C that its end of the conversation is now in Send state.

.7/ As a result of the status_received value, Program C issues a Send_Data call. The data
from this call, on arrival at System X, is returned to Program A as a response to the
Receive it issued in Step .5/.

At this point, the flow of data has been completely reversed and the two programs can
continue whatever processing their logic dictates.

To give control of the conversation back to Program A, Program C would simply follow the
same procedure that Program A executed in Step.5/.

.8/ through .10/ Programs A and C continue processing. Program C sends data and Program A receives
the data.

72 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . Programs A and C are in . .
 . . conversation . .

 .Send_Data(conversation_ID, data) data . Receive(conversation_ID).
.1/ .────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK . . data, return_code=CM_OK .
.2/ .%────────────────────────. .────────────────────────5.

 .Send_Data(conversation_ID, data) data . Receive(conversation_ID).
.3/ .────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK . . data, return_code=CM_OK .
.4/ .%────────────────────────. .────────────────────────5.

. . permission to send, . .

. Receive(conversation_ID). remainder of data, if any . Receive(conversation_ID).
.5/ .────────────────────────5.────────────────────────────────5.%────────────────────────.

. (Program A waits for . . data, .

. data from C) . status_received=CM_SEND_RECEIVED
.6/ . . .────────────────────────5.

. data, return_code=CM_OK . data Send_Data(conversation_ID, data)
.7/ .%────────────────────────.%────────────────────────────────.%────────────────────────.
 . . . return_code=CM_OK .
.8/ . . .────────────────────────5.

 . Receive(conversation_ID). data Send_Data(conversation_ID, data)
.9/ .────────────────────────5.%────────────────────────────────.%────────────────────────.

. data, return_code=CM_OK . . return_code=CM_OK .
.10/.%────────────────────────. .────────────────────────5.

. (further processing by both programs) .

Figure 11. Data Flow in Both Directions

 Chapter 3. Program-to-Program Communication Example Flows 73

 Example Flows

Controlling Data Flow Direction
This section discusses how a program can exercise control over the data flow
direction:

¹ “Example 3: The Sending Program Changes the Data Flow Direction” shows
how to use the Prepare_To_Receive call to change the direction of the data
flow on a half-duplex conversation.

¹ “Example 4: The Receiving Program Changes the Data Flow Direction” shows
how to use the Request_To_Send call to request a change in the direction of
the data flow on a half-duplex conversation.

Example 3: The Sending Program Changes the Data Flow Direction
Figure 12 is a variation on the function provided by the flow shown in “Example 2:
Data Flow in Both Directions” on page 72. When the data flow direction changes,
Program A can continue processing instead of waiting for data to arrive on this
half-duplex conversation.

The steps shown in Figure 12 are:

Step Description

.1/ through .6/ The program begins the same as “Example 1: Data Flow in One Direction” on page 69.
Program A establishes the conversation and makes the initial transmission of data.

.7/ through .10/ Program A makes use of an advanced-function call, Prepare_To_Receive, (described in
“Prepare_To_Receive (CMPTR)” on page 208), which sends an indication to Program C
that Program A is ready to receive data. This call also flushes the data buffer and places
Program A’s end of the conversation into Receive state. It does not, as did the Receive
call when used with the initial conversation characteristics in effect, force Program A to
pause and wait for data from Program C to arrive. Program A continues processing while
data is sent to Program C.

.11/ through .13/ Program C, started by System Y’s reception of the conversation startup request and
buffered data, makes the Accept_Conversation and Receive calls.

Program A finishes its processing and issues its own Receive call. It will now wait until
data is received (Step .15/).

.14/ through .16/ The status_received on the Receive call made by Program C, which is set to
CM_SEND_RECEIVED, tells Program C that the conversation is in Send state. Program C
can now issue the Send_Data call.

Program A receives the data.

Note: There is a way for Program A to check periodically to see if the data has arrived,
without waiting. After issuing the Prepare_To_Receive call, Program A can use the
Set_Receive_Type call to set the receive_type conversation characteristic equal to
CM_RECEIVE_IMMEDIATE. This call changes the nature of all subsequent Receive calls
issued by Program A (until a further call to Set_Receive_Type is made). If a Receive is
issued with the receive_type set to CM_RECEIVE_IMMEDIATE, the program retains control of
processing without waiting. It receives data back if data is present, and a return_code of
CM_UNSUCCESSFUL if no data has arrived.

This method of receiving data is not shown in Figure 12. For further discussion of this
alternate flow, see “Set_Receive_Type (CMSRT)” on page 344 and “Receive (CMRCV)” on
page 213.

74 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

 Initialize_Conversation (sym_dest_name) . .
.1/ .────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
.2/ .%────────────────────────. Logical connection setup, . .

. . if logical connection . .

.Allocate(conversation_ID). not already available . .
.3/ .────────────────────────5.%───────────────────────────────5. .
 . return_code=CM_OK . . .
.4/ .%────────────────────────. . .

 .Send_Data(conversation_ID, data) . .
.5/ .────────────────────────5. . .
 . return_code=CM_OK . . .
.6/ .%────────────────────────. permission to send, . .

. . conversation startup request, . .
 Prepare_To_Receive(conversation_ID) all buffered data . .
.7/ .────────────────────────5.────────────────────────────────5. .
 . return_code=CM_OK . . .
.8/ .%────────────────────────. . .

.9/ . (Program A continues . .(Program C is started by .
 . to process while . . node services) .

. data is sent to . . .
.10/. Program C) . . .

. . . Accept_Conversation .
.11/. . .%────────────────────────.
 . . conversation_ID, return_code=CM_OK
.12/. . .────────────────────────5.

 . Receive(conversation_ID). . Receive(conversation_ID).
.13/.────────────────────────5. .%────────────────────────.

. . . data, .
 . . status_received=CM_SEND_RECEIVED
.14/. . .────────────────────────5.

. data, return_code=CM_OK . data Send_Data(conversation_ID, data)
.15/.%────────────────────────.%────────────────────────────────.%────────────────────────.
 . . . return_code=CM_OK .
.16/. . .────────────────────────5.

. (further processing by both programs) .

Figure 12. The Sending Program Changes the Data Flow Direction

Example 4: The Receiving Program Changes the Data Flow Direction
Figure 13 shows how a program on the receiving side of a half-duplex conversation
can request a change in the direction of data flow with the Request_To_Send call.
(See “Request_To_Send (CMRTS)” on page 246 for more information.) In this
example, Programs A and C have already established a conversation using the
default conversation characteristics.

 Chapter 3. Program-to-Program Communication Example Flows 75

 Example Flows

The steps shown in Figure 13 are:

Step Description

.1/ and .2/ Program A is sending data and Program C is receiving the data.

.3/ and .4/ Program C issues a Request_To_Send call in order to begin sending data. Program A will
be notified of this request on the return value of the next call issued by Program A
(Send_Data in this case, Step .6/).

.5/ and .6/ Program A issues a Send_Data request, and the call returns with
control_information_received set equal to CM_REQ_TO_SEND_RECEIVED.

.7/ and .8/ In reply to the Request_To_Send, Program A issues a Prepare_To_Receive call, which
allows Program A to continue its own processing and passes permission to send to
Program C. The call also forces the buffer at System X to be flushed. It leaves the
conversation in Receive state for Program A.

Note: Program A does not have to reply to the Request_To_Send call immediately (as it
does in this example). See “Example 3: The Sending Program Changes the Data Flow
Direction” on page 74 for other possible responses.

Program C continues with normal processing by issuing a Receive call and receives
Program A’s acceptance of the Request_To_Send on the status_received parameter, which
is set to CM_SEND_RECEIVED. The conversation is now in Send state for Program C.

.9/ and .10/ Program C can now transmit data. Because Program C has only one instance of data to
transmit, it first changes the send_type conversation characteristic by issuing
Set_Send_Type. Setting send_type to a value of CM_SEND_AND_PREP_TO_RECEIVE
means that Program C’s end of the conversation will return to Receive state after Program
C issues a Send_Data call. It also forces a flushing of the system's data buffer.

.11/ Program C issues the Send_Data call and its end of the conversation is placed in Receive
state. The data and permission-to-send indication are transmitted from System Y to
System X.

Program A, meanwhile, has finished its own processing and issued a Receive call (which is
perfectly timed, in this diagram).

.12/ Program A receives the data requested and, because of the value of the status_received
parameter (which is set to CM_SEND_RECEIVED), knows that the conversation has been
returned to Send state.

.13/ and .14/ The original processing flow continues: Program A issues a Send_Data call and Program
C issues a Receive call.

76 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . Programs A and C are in . .
 . . conversation . .

 .Send_Data(conversation_ID, data) data . Receive(conversation_ID).
.1/ .────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK . . data, return_code=CM_OK .
.2/ .%────────────────────────. .────────────────────────5.

. . request for permission . .
 . . to send Request_To_Send(conversation_ID)
.3/ . .%────────────────────────────────.%────────────────────────.
 . . . return_code=CM_OK .
.4/ . . .────────────────────────5.

 .Send_Data(conversation_ID, data) data . Receive(conversation_ID).
.5/ .────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK, . . .
control_information_received=CM_REQUEST_TO_SEND_RECEIVED . data, return_code=CM_OK .

.6/ .%────────────────────────. .────────────────────────5.
. . permission to send, . .

 Prepare_To_Receive(conversation_ID) data . Receive(conversation_ID).
.7/ .────────────────────────5.────────────────────────────────5.%────────────────────────.

. . .data, return_code=CM_OK, .
 . return_code=CM_OK . status_received=CM_SEND_RECEIVED
.8/ .%────────────────────────. .────────────────────────5.

. (Program A continues . . .
 . local processing) . Set_Send_Type(conversation_ID,
 . . send_type=CM_SEND_AND_PREP_TO_RECEIVE)
.9/ . . .%────────────────────────.
 . . . return_code=CM_OK .
.10/. . .────────────────────────5.

. . permission to send, . .
 . Receive(conversation_ID). data Send_Data(conversation_ID, data)
.11/.────────────────────────5.%────────────────────────────────.%────────────────────────.

.data, return_code=CM_OK, . . .
 . status_received=CM_SEND_RECEIVED . return_code=CM_OK .
.12/.%────────────────────────. .────────────────────────5.

 .Send_Data(conversation_ID, data) data . Receive(conversation_ID).
.13/.────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK . . data, return_code=CM_OK .
.14/.%────────────────────────. .────────────────────────5.

. (further processing by both programs) .

Figure 13. Changing the Data Flow Direction

 Chapter 3. Program-to-Program Communication Example Flows 77

 Example Flows

Verifying Receipt of Data
This section provides an example of a program validating receipt of data.

Example 5: Validation of Data Receipt
Figure 14 on page 79 shows how a program can use the Confirm and Confirmed
calls on a half-duplex conversation to verify receipt of its sent data. The Flush call
is also shown.

The steps shown in Figure 14 are:

Step Description

.1/ and .2/ As before, Program A issues the Initialize_Conversation call to initialize the conversation.

.3/ and .4/ Program A issues a new call, Set_Sync_Level, to set the sync_level characteristic to
CM_CONFIRM.

Note: Program A must set the sync_level characteristic before issuing the Allocate call
(Step .5/) for the value to take effect. Attempting to change the sync_level after the
conversation is allocated results in an error condition. See “Set_Sync_Level (CMSSL)” on
page 354 for a detailed discussion of the sync_level characteristic and the meaning of
CM_CONFIRM.

.5/ and .6/ Program A issues the Allocate call to start the conversation.

.7/ and .8/ Program A uses the Flush call (see “Flush (CMFLUS)” on page 195) to make sure that the
conversation is immediately established. If data is present, the local system buffer is
emptied and the contents are sent to the remote system. Since no data is present, only
the conversation startup request is sent to establish the conversation.

At System Y, the conversation startup request is received. Program C is started and
begins processing.

.9/and .10/ Program A issues a Send_Data call. Program C issues an Accept_Conversation call.

.11/ Program A issues a Confirm call to make sure that Program C has received the data and
performed any data validation that Programs A and C have agreed upon. Program A is
forced to wait for a reply.

.12/ and .13/ Program C issues a Receive call and receives the data with status_received set to
CM_CONFIRM_RECEIVED.

.14/ and .15/ Because status_received is set to CM_CONFIRM_RECEIVED, indicating a confirmation
request, the conversation has been placed into Confirm state. Program C must now issue
a Confirmed call. After Program C makes the Confirmed call (see “Confirmed (CMCFMD)”
on page 137), the conversation returns to Receive state. Meanwhile, at System X, the
confirmation reply arrives and the CM_OK return_code is sent back to Program A.

.16/ Program A continues with further processing.

Note: Unlike the previous examples in which a program could bypass waiting, this
example demonstrates that use of the Confirm call forces the program to wait for a reply.

78 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

 Initialize_Conversation (sym_dest_name) . .
.1/ .────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
.2/ .%────────────────────────. . .

 Set_Sync_Level(CM_CONFIRM). . .
.3/ .────────────────────────5. . .
 . return_code=CM_OK . . .
.4/ .%────────────────────────. Logical connection setup, . .

. . if logical connection . .

.Allocate(conversation_ID). not already available . .
.5/ .────────────────────────5.%───────────────────────────────5. .
 . return_code=CM_OK . . .
.6/ .%────────────────────────. . .

. Flush(conversation_ID) . conversation startup request . .
.7/ .────────────────────────5.────────────────────────────────5. .
 . return_code=CM_OK . .(Program C is started by .
.8/ .%────────────────────────. . node services) .

. Send_Data(conversation_ID, data) . Accept_Conversation .
.9/ .────────────────────────5. .%────────────────────────.
 . return_code=CM_OK . conversation_ID, return_code=CM_OK
.10/.%────────────────────────. .────────────────────────5.

.Confirm(conversation_ID) . confirmation request, data . .
.11/.────────────────────────5.────────────────────────────────5. .

. (Program A waits for . . Receive(conversation_ID).
.12/. a reply from . .%────────────────────────.

. Program C) . . data, .
 . . status_received=CM_CONFIRM_RECEIVED
.13/. . .────────────────────────5.

 . return_code=CM_OK . confirmation reply .Confirmed(conversation_ID)
.14/.%────────────────────────.%────────────────────────────────.%────────────────────────.
 . . . return_code=CM_OK .
.15/. . .────────────────────────5.

. Send_Data(conversation_ID, data) . .
.16/.────────────────────────5. . .

. (further processing by both programs) .

Figure 14. Validation and Confirmation of Data Reception

 Chapter 3. Program-to-Program Communication Example Flows 79

 Example Flows

Reporting Errors to Partner
All the previous examples assumed that no errors were found in the data, and that
the receiving program was able to continue receiving data. However, in some
cases the local program may detect an error in the data or may find that it is unable
to receive more data (for example, its buffers are full) and cannot wait for the
remote program to honor a request-to-send request.

This section provides two examples of error reporting:

¹ “Example 6: Reporting Errors” shows how to use the Send_Error call to report
errors in the data flow on a half-duplex conversation.

¹ “Example 7: Error Direction and Send-Pending State” shows how to use the
Send-Pending state and the error_direction characteristic to resolve an
ambiguous error condition that can occur when a program receives both a
change-of-direction indication and data for a Receive call on a half-duplex
conversation.

 Example 6: Reporting Errors
Figure 15 is an example of programs using a half-duplex conversation. This
example describes the simplest type of error reporting, an error found while
receiving data. “Example 7: Error Direction and Send-Pending State” on page 82
describes a more complicated use of Send_Error.

The steps shown in Figure 15 are:

Step Description

.1/ and .2/ Program A is sending data and Program C is receiving data. The initial characteristic
values set by Initialize_Conversation and Accept_Conversation are in effect.

.3/ and .4/ Program C encounters an error on the received data and issues the Send_Error call. The
local system sends control information to System X indicating that the Send_Error has
been issued and purges all data contained in its buffer.

.5/ and .6/ Meanwhile, Program A has sent more data. This data is purged because System X knows
that a Send_Error has been issued at System Y (the control information sent in Step .3/).
After System X sends control information to System Y, a return_code of CM_OK is returned
to Program C and the conversation is left in Send state.

Program A learns of the error (and possibly lost data) when it receives back the
return_code, which is set to CM_PROGRAM_ERROR_PURGING. Program A’s end of the
conversation is also placed into Receive state, in a parallel action to the now-new Send
state of the conversation for Program C.

.7/ and .8/ Program C issues a Send_Data call, and Program A receives the data using the Receive
call.

Programs A and C continue processing normally.

80 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . Programs A and C are in . .
 . . conversation . .

 .Send_Data(conversation_ID, data) data . Receive(conversation_ID).
.1/ .────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK . . data, return_code=CM_OK .
.2/ .%────────────────────────. .────────────────────────5.

 . . control information .Send_Error(conversation_ID)
.3/ . .%────────────────────────────────.%────────────────────────.
 . . . (data purged .
.4/ . . . by CRM) .

.Send_Data(conversation_ID, data) control information . .
.5/ .────────────────────────5.────────────────────────────────5. .
 . (data purged . . .
 . by CRM) . . .

 . return_code= . . .
 . CM_PROGRAM_ERROR_PURGING. error notification . return_code=CM_OK .
.6/ .%────────────────────────.%────────────────────────────────.────────────────────────5.

 . Receive(conversation_ID). data Send_Data(conversation_ID, data)
.7/ .────────────────────────5.%────────────────────────────────.%────────────────────────.

. data, return_code=CM_OK . . return_code=CM_OK .
.8/ .%────────────────────────. .────────────────────────5.

. (further processing by both programs) .

Figure 15. Reporting Errors

 Chapter 3. Program-to-Program Communication Example Flows 81

 Example Flows

Example 7: Error Direction and Send-Pending State
Figure 16 on page 83 shows how to use the Send-Pending state and the
error_direction characteristic to resolve an ambiguous error condition that can occur
when a program receives both a change of direction indication and data on a
Receive call.

This example applies only to a half-duplex conversation using an LU 6.2 CRM.

The steps shown in Figure 16 are:

Step Description

.1/ and .2/ The conversation has already been established using the default conversation
characteristics. Program A is sending data in Send state and Program C is receiving data
in Receive state.

.3/ Program A issues the Receive call to begin receiving data and its end of the conversation
enters Receive state.

.4/ and .5/ Program C issues a Receive and is notified of the change in the conversation’s state by the
status_received parameter, which is set to CM_SEND_RECEIVED. The reception of both
data and CM_SEND_RECEIVED on the same Receive call places Program C’s end of the
conversation into Send-Pending state. Two possible error conditions can now occur:

¹ Program C, while processing the data just received, discovers something wrong with
the data (as was discussed in “Example 6: Reporting Errors”). This is an error in the
“receive” direction of the data.

¹ Program C finishes processing the data and begins its send processing. However, it
discovers that it cannot send a reply. For example, the received data might contain a
query for a particular database. Program C successfully processes the query but finds
that the database is not available when it attempts to access that database. This is an
error in the “send” direction of the data.

The error_direction characteristic is used to indicate which of these two conditions has
occurred. A program sets error_direction to CM_RECEIVE_ERROR for the first case and
sets error_direction to CM_SEND_ERROR for the second.

.6/ and .7/ In this example, Program C encounters a send error and issues Set_Error_Direction to set
the error_direction characteristic to CM_SEND_ERROR.

Note: The error_direction characteristic was not set in the previous example because
Program C did not receive send control with the data and, consequently, the conversation
did not enter Send-Pending state. The error_direction characteristic is relevant only when
the conversation is in Send-Pending state.

.8/ Program C issues Send_Error. Because CPI Communications knows the conversation is in
Send-Pending state, it checks the error_direction characteristic and notifies the CPI
Communications component at System X which type of error has occurred.

Program A receives the error information in the return_code. The return_code is set to
CM_PROGRAM_NO_TRUNC because Program C set error_direction to CM_SEND_ERROR. If
error_direction had been set to CM_RECEIVE_ERROR, Program A would have received a
return_code of CM_PROGRAM_ERROR_PURGING (as in the previous example).

.9/ through .11/ Program C notifies Program A of the exact nature of the problem and both programs
continue processing.

82 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . Programs A and C are in . .
 . . conversation . .

 .Send_Data(conversation_ID, data) data . Receive(conversation_ID).
.1/ .────────────────────────5.────────────────────────────────5.%────────────────────────.
 . return_code=CM_OK . . data, return_code=CM_OK .
.2/ .%────────────────────────. .────────────────────────5.

. Receive(conversation_ID). rest of data . Receive(conversation_ID).
.3/ .────────────────────────5.────────────────────────────────5.%────────────────────────.

. . .data, return_code=CM_OK, .
 . . status_received=CM_SEND_RECEIVED
.4/ . . .────────────────────────5.

.5/ . . .(program processes data, .

. . . acts on request, finds .
 . . . an error) .

 . . Set_Error_Direction(conversation_ID,
 . . error_direction=CM_SEND_ERROR)
.6/ . . .%────────────────────────.
 . . . return_code=CM_OK .
.7/ . . .────────────────────────5.
 . return_code= . . .
 .CM_PROGRAM_ERROR_NO_TRUNC. error notification .Send_Error(conversation_ID)
.8/ .%────────────────────────.%────────────────────────────────.%────────────────────────.
 . . . return_code=CM_OK .
.9/ . . .────────────────────────5.

 . Receive(conversation_ID). data Send_Data(conversation_ID, data)
.10/.────────────────────────5.%────────────────────────────────.%────────────────────────.

. data, return_code=CM_OK . . return_code=CM_OK .
.11/.%────────────────────────. .────────────────────────5.

. (further processing by both programs) .

Figure 16. Error Direction and Send-Pending State

 Chapter 3. Program-to-Program Communication Example Flows 83

 Example Flows

Using Full-Duplex Conversations
This section provides examples of programs using full-duplex conversation flows:

¹ “Example 8: Establishing a Full-Duplex Conversation” describes how a
full-duplex conversation is established.

¹ “Example 9: Using a Full-Duplex Conversation” on page 86 describes how a
full-duplex conversation is used to send and receive data.

¹ “Example 10: Terminating a Full-Duplex Conversation” on page 88 describes
how a full-duplex conversation can be terminated.

Example 8: Establishing a Full-Duplex Conversation
Figure 17 on page 85 is an example of how a full-duplex conversation is set up.

The steps shown in Figure 17 are:

Step Description

.1/ and .2/ Program A initializes a conversation using the Initialize_Conversation call.

.3/ and .4/ The default value of the send_receive_mode characteristic is set to CM_HALF_DUPLEX.
Since the program wants to have a full-duplex conversation, it issues the
Set_Send_Receive_Mode call to set the send_receive_mode characteristic to
CM_FULL_DUPLEX.

.5/ through .7/ Program A allocates the full-duplex conversation. Program A's conversation state changes
from Initialize state to Send_Receive state, and Program A can begin to send and receive
data.

.8/ and .9/ Program A sends data with the Send_Data call and receives a return_code of CM_OK. The
request for a conversation is sent at this time, and it carries the send_receive_mode.

.10/ and .11/ The remote system starts Program C. The conversation on Program C’s side is in Reset
state. Program C accepts the conversation, and the conversation state changes to
Send-Receive state.

Some of Program C’s conversation characteristics are based on information contained in
the conversation startup request. In particular, the send_receive_mode is set to
CM_FULL_DUPLEX.

.12/ and .13/ Progam C issues Extract_Send_Receive_Mode to determine whether the conversation is
half-duplex or full-duplex; the returned send_receive_mode value indicates that it is a
full-duplex conversation.

.14/ and .15/ Once its end of the conversation is in Send-Receive state, Program C begins whatever
processing role it and Program A have agreed upon. In this case, Program C receives
data with a Receive call.

84 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

 Initialize_Conversation (sym_dest_name) . .
.1/ .────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
.2/ .%────────────────────────. . .
 .Set_Send_Receive_Mode . . .
 . (CM_FULL_DUPLEX) . . .
.3/ .────────────────────────5. . .
 . return_code=CM_OK . . .
.4/ .%────────────────────────. . .
 .Allocate(conversation_ID). . .
.5/ .────────────────────────5. logical connection setup, . .

. . if logical connection . .

. . not already available . .
.6/ . .%───────────────────────────────5. .
 . return_code=CM_OK . . .
.7/ .%────────────────────────. . .

.Send_Data(conversation_ID, conversation startup request, . .

. data) . data . .
.8/ .────────────────────────5.────────────────────────────────5. .
 . return_code=CM_OK . . .
.9/ .%────────────────────────. .(Program C is started by .
 . . . node services) .

. . . Accept_Conversation .
.10/. . .%────────────────────────.
 . . conversation_ID, return_code=CM_OK
.11/. . .────────────────────────5.
 . . .Extract_Send_Receive_Mode
 . . (conversation_ID)
.12/. . .%────────────────────────.
 . . . send_receive_mode= .
 . . . CM_FULL_DUPLEX .
.13/. . .────────────────────────5.
 . . . Receive(conversation_ID).
.14/. . .%────────────────────────.

. . . data, return_code=CM_OK .
.15/. . .────────────────────────5.

. (Program A continues) . . (Program C continues) .

Figure 17. Establishing a Full-Duplex Conversation

 Chapter 3. Program-to-Program Communication Example Flows 85

 Example Flows

Example 9: Using a Full-Duplex Conversation
Figure 18 on page 87 shows an example of how a full-duplex conversation is used
to send and receive data.

The steps shown in Figure 18 are:

Step Description

.1/ Programs A and C are in a full-duplex conversation. Both Program A's and Program C's
ends of the conversation are in Send-Receive state. Both programs can issue a
Send_Data call or a Receive call. In this example, Program A wants to receive a response
to some previous request it sent to Program C, and so it issues the Receive call.

.2/ Program C issues a Send_Data call to send data to Program A. In this example, the data
is sent to Program A right away.

.3/ Program A receives data from program C.

.4/ and .5/ Both programs issue Send_Data calls, and the calls complete successfully.

.6/ and .7/ Both programs issue Receive calls, and the Receive calls complete successfully. The state
of the conversation at Program A and Program C continues to be Send-Receive state.

86 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . Programs A and C are in . .
 . . full-duplex conversation . .

 .Receive(conversation_ID) . . .
.1/ .────────────────────────5. data Send_Data(conversation_ID,data).
.2/ .data, return_code=CM_OK .%────────────────────────────────.%────────────────────────.
.3/ .%────────────────────────. . return_code=CM_OK .
.4/ . . .────────────────────────5.
 .Send_Data(conversation_ID, data) data . Send_Data(conversation_ID,data)
.5/ .────────────────────────5.───────────────\ /───────.%────────────────────────.
 . return_code=CM_OK . \ / .return_code=CM_OK .
.6/ .%────────────────────────. \ / .────────────────────────5.
 . . / \ . .
 . Receive(conversation_ID). data / \ . Receive(conversation_ID).
.7/ .────────────────────────5.%──────────────/ \──────5.%────────────────────────.

. data, return_code=CM_OK . . data, return_code=CM_OK .
 .%────────────────────────. .────────────────────────5.

. (Program A continues) . . (Program C continues) .

Figure 18. Using a Full-Duplex Conversation

 Chapter 3. Program-to-Program Communication Example Flows 87

 Example Flows

Example 10: Terminating a Full-Duplex Conversation
Figure 19 on page 89 shows an example of how a full-duplex conversation can be
terminated.

The steps shown in Figure 19 are:

Step Description

.1/and .2/ The state of the conversation at Program A and Program C is Send-Receive state.
Program A issues a Send_Data call, which completes successfully. Note that the data is
not actually sent to the partner program but is buffered.

.3/ and .4/ Program A has finished sending all data, and issues a Deallocate call.

When the call completes successfully, the data in the CRM's buffers is flushed to the
partner along with a deallocation notification. The conversation state at Program A's end
now makes a transition to Receive-Only state. Program A can no longer send any data on
this conversation.

.5/and .6/ Program C's end is in Send-Receive state, and Program C issues a Receive call.
Program C gets back data and a return code of CM_DEALLOCATED_NORMAL. Program C's
end of the conversation now enters Send_Only state. Program C can no longer receive
any data on this conversation.

.7/ Program C issues a Send_Data call, and the data gets sent to Program A.

.8/ and .9/ Program A issues a Receive call and gets data.

.10/ Program C's end of the conversation is in Send-Only state, and Program C has finished
sending data. It issues a Deallocate call for the conversation_ID.

Program A issues a Receive call to receive data.

.11/ Program A gets a return code of CM_DEALLOCATED_NORMAL, and its end of the
conversation goes from Receive-Only state to Reset state.

Program C gets a return code of CM_OK for the Deallocate call it issued earlier. Its end of
the conversation goes from Send-Only state to Reset state.

88 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . Programs A and C are in . .
 . . full─duplex conversation . .

 .Send_Data(conversation_ID, data) . .
.1/ .────────────────────────5. . .
 . return_code=CM_OK . . .
.2/ .%────────────────────────. . .
 . . remaining data, . .
 .Deallocate(conversation_ID) deallocation notification . .
.3/ .────────────────────────5.────────────────────────────────5. .
 . return_code=CM_OK . . .
.4/ .%────────────────────────. . .
 . . . Receive(conversation_ID).
.5/ . . .%────────────────────────.

. . . data, .
 . . .return_code=CM_DEALLOCATED_NORMAL
.6/ . . .────────────────────────5.
 . . data Send_Data(conversation_ID, data)
.7/ . Receive(conversation_ID).%────────────────────────────────.%────────────────────────.
.8/ .────────────────────────5. . return_code=CM_OK .

. data, return_code=CM_OK . .────────────────────────5.
.9/ .%────────────────────────. . .
 . Receive(conversation_ID). deallocation notification .Deallocate(conversation_ID)
.10/.────────────────────────5.%────────────────────────────────.%────────────────────────.
 .return_code=CM_DEALLOCATED_NORMAL .return_code=CM_OK .
.11/.%────────────────────────. .────────────────────────5.

. (conversation ends) . . (conversation ends) .

Figure 19. Terminating a Full-Duplex Conversation

 Chapter 3. Program-to-Program Communication Example Flows 89

 Example Flows

Using Queue-Level Non-Blocking
This section provides an example of a program using queue-level non-blocking.

 Example 11: Queue-Level Non-Blocking
Figure 20 on page 91 shows an example of a program that uses queue-level
non-blocking.

The steps shown in Figure 20 are:

Step Description

.1/ In a full-duplex conversation, the state of the conversation at Program A and Program C is
Send-Receive state. Program A issues Set_Queue_Processing_Mode to set the
processing mode for its Send queue to CM_NON_BLOCKING. It also specifies a user field,
uf_send, as a pointer to the parameters on the Send_Data call. When the
Set_Queue_Processing_Mode call completes successfully, Program A receives an OOID,
OOID1, that is unique to the Send queue.

.2/ Program A also issues Set_Queue_Processing_Mode to set the processing mode for its
Receive queue to CM_NON_BLOCKING. This time it specifies a user field, uf_rcv, as a
pointer to the parameters on the Receive call. When the Set_Queue_Processing_Mode
call completes successfully, Program A receives an OOID, OOID2, that is unique to the
Receive queue.

.3/ Program A issues a Receive call. Because no incoming data is ready to be received, the
call is suspended and returns CM_OPERATION_INCOMPLETE.

.4/ Program A issues a Send_Data call, which also returns CM_OPERATION_INCOMPLETE
because of transmission buffer shortage.

.5/ Program C sends data to Program A, which will satisfy the outstanding Receive call.

.6/ Program A issues Wait_For_Completion to wait for both outstanding operations. It does so
by specifying OOID1 and OOID2 in the OOID_list. To indicate that the Receive call has
completed, the Wait_For_Completion call returns an index value 2 and uf_rcv, which are
associated with the Receive call. Program A can now use the returned user field, uf_rcv,
to examine the return code of the Receive call.

90 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . Program A and C are in . .
 . . full-duplex conversation . .

 .Set_Queue_Processing_Mode. . .
 .(conversation_ID, CM_SEND_QUEUE, . .
 .CM_NON_BLOCKING, uf_send). . .
.1/ .────────────────────────5. . .

. OOID1, return_code=CM_OK. . .
 .%────────────────────────. . .

 .Set_Queue_Processing_Mode. . .
 .(conversation_ID, CM_RECEIVE_QUEUE, . .

. CM_NON_BLOCKING, uf_rcv). . .
.2/ .────────────────────────5. . .

. OOID2, return_code=CM_OK. . .
 .%────────────────────────. . .

 .Receive(conversation_ID) . . .
.3/ .────────────────────────5. . .
 . return_code . . .
 . =CM_OPERATION_INCOMPLETE. . .
 .%────────────────────────. . .

 .Send_Data(conversation_ID, data) . .
.4/ .────────────────────────5. . .
 . return_code . . .
 . =CM_OPERATION_INCOMPLETE. . .
 .%────────────────────────. . .
 . . data Send_Data(conversation_ID, data)
.5/ . .%────────────────────────────────.%────────────────────────.

 .Wait_For_Completion(. . .

.[OOID1,OOID2], 2, timeout) . .
.6/ .────────────────────────5. . .

. [2], 1, [uf_rcv], . . .
 . return_code=CM_OK . . .
 .%────────────────────────. . .

Figure 20. Using Queue-Level Non-Blocking

 Chapter 3. Program-to-Program Communication Example Flows 91

 Example Flows

Accepting Multiple Conversations
This section provides examples of programs accepting multiple conversations:

¹ “Example 12: Accepting Multiple Conversations Using Blocking Calls” shows a
program that uses blocking calls to accept multiple incoming half-duplex
conversations.

¹ “Example 13: Accepting Multiple Conversations Using Conversation-Level
Non-Blocking Calls” shows a program that uses non-blocking calls to accept
multiple incoming half-duplex conversations.

Example 12: Accepting Multiple Conversations Using Blocking Calls
Figure 21 on page 93 shows an example of a program that uses blocking calls to
accept multiple incoming half-duplex conversations.

The steps shown in Figure 21 are:

Step Description

.1/ Program C is started as the result of a local operation and informs node services that it is
ready to accept conversation startup requests for a program named “PAYROLL” by issuing
the Specify_Local_TP_Name (CMSLTP) call.

.2/ Program C initializes the conversation on the accepting side by issuing the
Initialize_For_Incoming call. Upon successful completion of this call, the conversation is in
Initialize-Incoming state.

.3/ Program C accepts the incoming conversation with the Accept_Incoming call. The
conversation_ID returned on the Initialize_For_Incoming call is supplied on the
Accept_Incoming call. This call blocks until the conversation startup request arrives. The
processing_mode characteristic is initialized to the default value of CM_BLOCKING by the
Initialize_For_Incoming call.

.4/ Program A uses the Initialize_Conversation call to initialize conversation characteristics for
an outgoing conversation to Program C. In this example, the TP name characteristic is set
to “PAYROLL”.

.5/ Program A allocates the conversation, supplying the conversation_ID returned by the
Initialize_Conversation call. In this example, the conversation startup request is sent as
part of the Allocate processing.

When System Y receives the conversation startup request, the Accept_Incoming call
completes. A new context is created, and the conversation is assigned to that context.
Node services sets Program C's current context to the new context.

.6/ and .7/ Program C is ready to accept a second conversation, and it issues the
Initialize_For_Incoming and Accept_Incoming calls. Again, the Accept_Incoming call blocks
until a conversation startup request arrives at System Y.

.8/ and .9/ Program B on System Z initializes and allocates a conversation to “PAYROLL”.

When System Y receives the conversation startup request, the Accept_Incoming call
completes with a return code of CM_OK. Another new context is created and the new
conversation is assigned to that context. Node services sets Program C's current context
to the new context.

92 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . . Specify_Local_TP_Name (“PAYROLL”)
.1/ . . .%────────────────────────.
 . . . return_code=CM_OK .
 . . .────────────────────────5.

. . . Initialize_For_Incoming .
.2/ . . .%────────────────────────.
 . . conversation_ID_1, return_code=CM_OK
 . . .────────────────────────5.
 . . Accept_Incoming(conversation_ID_1)
.3/ . . .%────────────────────────.
 Initialize_Conversation(sym_dest_name) . .
.4/ .────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
 .%────────────────────────. . .

.Allocate(conversation_ID). conversation startup request . return_code=CM_OK .
.5/ .────────────────────────5.────────────────────────────────5.────────────────────────5.
 . return_code=CM_OK . . .

.%────────────────────────. . (Program C continues .

. (Program A continues . . conversation with .
 . conversation with . . Program A) .
 . Program C) . . .

. . . Initialize_For_Incoming .
.6/ . . .%────────────────────────.
 . . conversation_ID_2, return_code=CM_OK
 . . .────────────────────────5.
 . . Accept_Incoming(conversation_ID_2)
.7/ . . .%────────────────────────.
 System Z . .
 ┌───────────────────────────────┐ . .
 │ ┌───────┐ ┌──────────────┐ │ . .
 │ │Program│ │ CPI │ │ . .
 │ │ B │ │Communications│ │ . .
 │ └.──────┘ └─────────────.┘ │ . .
 └──.─────────────────────────.──┘ . .

 Initialize_Conversation (sym_dest_name) . .
.8/ .────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
 .%────────────────────────. . .

.Allocate(conversation_ID). conversation startup request . return_code=CM_OK .
.9/ .────────────────────────5.────────────────────────────────5.────────────────────────5.
 . return_code=CM_OK . . .

.%────────────────────────. . (Program C continues .
 . . . conversations with .

. (Program B continues . . Programs A & B) .
 . conversation with . . .
 . Program C) . . .

Figure 21. Accepting Multiple Conversations Using Blocking Calls

 Chapter 3. Program-to-Program Communication Example Flows 93

 Example Flows

Example 13: Accepting Multiple Conversations Using
Conversation-Level Non-Blocking Calls

Figure 22 on page 95 shows an example of a program that uses
conversation-level non-blocking calls to accept multiple incoming half-duplex
conversations.

The steps shown in Figure 22 are:

Step Description

.1/ Program C is started as the result of a local operation and informs node services that it is
ready to accept conversation startup requests for a program named “PAYROLL” by issuing
the Specify_Local_TP_Name call.

.2/ Program C prepares for an incoming conversation by issuing the Initialize_For_Incoming
call. Upon successful completion of this call, the conversation is in Initialize-Incoming
state.

Note: The Initialize_For_Incoming call is required in this case since the conversation will
be accepted in a non-blocking processing mode. The Accept_Conversation call cannot be
used because it is a blocking call. A conversation_ID is needed to set the processing
mode and none is available prior to issuing the Accept_Conversation call.

.3/ and .4/ Program C sets the processing mode for the conversation to non-blocking and issues the
Accept_Incoming call. Since no conversation is currently available,
CM_OPERATION_INCOMPLETE is returned.

.5/ Program C waits for an incoming conversation with the Wait_For_Conversation call.

.6/ Program A prepares to allocate a conversation by issuing Initialize_Conversation to
initialize the conversation characteristics. In this example, the TP name characteristic is set
to “PAYROLL”.

.7/ Program A allocates a conversation. In this example, the conversation startup request is
sent as part of the Allocate processing.

When System Y receives the conversation startup request, the Wait_For_Conversation call
completes, returning conversation_ID_1. A new context is created, and the conversation is
assigned to that context. The program's current context is not changed.

.8/ Program C issues another Initialize_For_Incoming call to prepare to accept a second
incoming conversation.

.9/ and .10/ The Set_Processing_Mode call is used to set the processing mode for the conversation to
non-blocking prior to issuing the Accept_Incoming call. Since there is no conversation
startup request to receive, the call completes with CM_OPERATION_INCOMPLETE.

.11/ Program C again issues a Wait_For_Conversation call to wait for activity on either
conversation_ID_1 or conversation_ID_2.

.12/ Program B on System Z initializes conversation characteristics in preparation for allocating
a conversation. In this example, the TP name characteristic is set to “PAYROLL”.

.13/ Program B allocates a conversation to Program C. In this example, the conversation
startup request is sent as part of the Allocate processing.

When System Y receives the conversation startup request, the outstanding
Wait_For_Conversation call completes, returning conversation_ID_2. Another new context
is created and the new conversation is assigned to that context. The program's current
context is not changed.

94 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ │ │ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

. . . Specify_Local_TP_Name (“PAYROLL”)
.1/ . . .%────────────────────────.
 . . . return_code=CM_OK .
 . . .────────────────────────5.

. . . Initialize_For_Incoming .
.2/ . . .%────────────────────────.
 . . conversation_ID_1, return_code=CM_OK
 . . .────────────────────────5.
 . . . Set_Processing_Mode .
 . . (conversation_ID_1, CM_NON_BLOCKING)
.3/ . . .%────────────────────────.
 . . . return_code=CM_OK .
 . . .────────────────────────5.
 . . Accept_Incoming(conversation_ID_1)
.4/ . . .%────────────────────────.
 . . return_code=CM_OPERATION_INCOMPLETE
 . . .────────────────────────5.

. . . Wait_For_Conversation .
.5/ . .%────────────────────────.
 Initialize_Conversation(sym_dest_name) . .
.6/ .────────────────────────5. . .
 . return_code=CM_OK . . .
 .%────────────────────────. conversation conversation_ID_1, return_code=CM_OK,
 .Allocate(conversation_ID). startup request .conversation_return_code=CM_OK
.7/ .────────────────────────5.────────────────────────────────5.────────────────────────5.

. return_code=CM_OK . . (Program C continues .
 .%────────────────────────. . conversation with .
 . . . Program A) .

 . . .Initialize_For_Incoming .
.8/ . . .%────────────────────────.
 . . conversation_ID_2, return_code=CM_OK

. (Program A continues . .────────────────────────5.
 . conversation with . . Set_Processing_Mode .
 . Program C) . (conversation_ID_2, CM_NON_BLOCKING)
.9/ .%────────────────────────.

. return_code=CM_OK .
 .────────────────────────5.
 Accept_Incoming(conversation_ID_2)
.10/ .%────────────────────────.
 return_code=CM_OPERATION_INCOMPLETE
 .────────────────────────5.

. Wait_For_Conversation .
.11/ System Z .%────────────────────────.
 ┌───────────────────────────────┐ . .
 │ ┌───────┐ ┌──────────────┐ │ . .
 │ │Program│ │ CPI │ │ . .
 │ │ B │ │Communications│ │ . .
 │ └.──────┘ └─────────────.┘ │ . .
 └──.─────────────────────────.──┘ . .

 Initialize_Conversation (sym_dest_name) . .
.12/.────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
 .%────────────────────────. conversation .conversation_ID_2, return_code=CM_OK,
 .Allocate(conversation_ID). startup request .conversation_return_code=CM_OK
.13/.────────────────────────5.────────────────────────────────5.────────────────────────5.

. return_code=CM_OK . . (Program C continues .
 .%────────────────────────. . conversation with .

. (Program B continues . . Programs A & B) .
 . conversation with . . .
 . Program C) . . .

Figure 22. Accepting Multiple Conversations Using Non-Blocking Calls

 Chapter 3. Program-to-Program Communication Example Flows 95

 Example Flows

Using the Distributed Directory
This section provides an example of a program using the distributed directory to
locate the partner program.

Example 14: Using the Distributed Directory to Find the Partner
Program

Figure 23 is a variation on the function provided by the flow shown in “Example 1:
Data Flow in One Direction” on page 69. In this case, the program directly
provides a distinguished name so as to access information contained in the
distributed directory.

The steps shown in Figure 23 are:

Step Description

.1/ and .2/ Program A establishes the conversation and retrieves a conversation_ID using a
sym_dest_name of all blanks.

.3/ and .4/ Program A uses the Set_Partner_ID call to provide a distinguished name to CPI
Communications. To provide a program binding or PFID, Program A could use the same
call and set the partner_ID_type parameter to CM_PROGRAM_BINDING or
CM_PROGRAM_FUNCTION_ID.

.5/ and .6/ When Program A issues the Allocate call, CPI Communications uses the distinguished
name it received in .3/ to retrieve a program binding from the distributed directory. This
information is then used to establish a logical connection with the partner CRM and allocate
a conversation with Program C.

.7/ and .8/ After the conversation has been successfully allocated, the program can issue the
Extract_Partner_ID call to retrieve the specific program binding, as shown in Step .7/.
The partner_ID parameter returned in Step .8/ contains the program binding used to
allocate the conversation with Program C.

Note that the partner_ID field, which contained a distinguished name prior to the Allocate,
has now been updated to contain a program binding.

.9/ and .10/ Program A begins to send data to its partner program and continues with further
processing.

96 CPI Communications Reference

 Example Flows

 System X System Y
 ┌───────────────────────────────┐ ┌───────────────────────────────┐
 │ ┌───────┐ ┌──────────────┐ │ │ ┌──────────────┐ ┌───────┐ │
 │ │Program│ │ CPI │ ├───────────────────────────┤ │ CPI │ │Program│ │
 │ │ A │ │Communications│ │ │ │Communications│ │ C │ │
 │ └.──────┘ └─────────────.┘ │ │ └.─────────────┘ └──────.┘ │
 └──.─────────────────────────.──┘ └──.─────────────────────────.──┘

 Initialize_Conversation (sym_dest_name=' ') . .
.1/ .────────────────────────5. . .
 conversation_ID, return_code=CM_OK . .
.2/ .%────────────────────────. . .

 Set_Partner_ID(conversation_ID . .

partner_ID_type = CM_DISTINGUISHED_NAME . .
partner_ID = my_partner_distinguished_name . .

partner_ID_scope = CM_EXPLICIT . .
directory_syntax = CM_DEFAULT_SYNTAX . .

directory_encoding = CM_DEFAULT_ENCODING) . .
.3/ .────────────────────────5. . .
 . return_code=CM_OK . . .
.4/ .%────────────────────────. . .

. . logical connection setup, if . .

.Allocate(conversation_ID). not already available . .
.5/ .────────────────────────5.%───────────────────────────────5. .
 . return_code=CM_OK . . .
.6/ .%────────────────────────. . .

Extract_Partner_ID(conversation_ID) . .
.7/ .────────────────────────5. . .

partner_ID_type = CM_PROGRAM_BINDING . .
partner_ID = my_partner_binding . .

 . return_code=CM_OK . . .
.8/ .%────────────────────────. . .

.Send_Data(conversation_ID, conversation startup request, . .

. data) . data . .
.9/ .────────────────────────5.────────────────────────────────5. .
 . return_code=CM_OK . . .
.10/.%────────────────────────. .(Program C is started by .
 . . . node services) .

. (further processing by both programs) .

Figure 23. Using the Distributed Directory to Locate the Partner Program

 Chapter 3. Program-to-Program Communication Example Flows 97

 Example Flows

Resource Recovery Flows
This section provides examples of resource recovery flows. These examples use
CPI Communications with the resource recovery commit call. The acronym
RR/SPM is used in the following examples to represent the resource recovery
interface functioning in conjunction with a sync point manager. The actual resource
recovery call names and return codes depend on the resource recovery interface
being used.

¹ “Example 15: Sending Program Issues a Commit” shows how to use a
protected conversation with a resource recovery commit call to establish a
synchronization point for protected resources on a half-duplex conversation.

¹ “Example 16: Successful Commit with Conversation State Change” shows a
successful resource recovery commit operation with a conversation state
change on a half-duplex conversation.

¹ “Example 17: Conversation Deallocation before the Commit Call” shows a
resource recovery commit call issued after a CPI Communications Deallocate
call on a half-duplex conversation.

Example 15: Sending Program Issues a Commit
This example shows a program sending data on a protected half-duplex
conversation and issuing a resource recovery commit call. A protected
conversation is one in which the sync_level has been set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM. This synchronization level tells CPI
Communications that the program will use the calls of a resource recovery interface
to manage the changes made to protected resources.

The steps shown in Figure 24 are:

Step Description

.1/ through .6/ To communicate with its partner program, Program A must first establish a conversation. It
uses the Set_Sync_Level call in step .3/ to request that the conversation be protected.

.7/ Program A sends data, and Program C issues a Receive call that allows it to receive the
data.

.8/ Both Program A and Program C get return codes indicating that their respective calls have
completed successfully.

.9/ Program A issues a resource recovery commit call to make all of the updates permanent
and to advance all of the protected resources to a new synchronization point. Program C's
end of the conversation is still in Receive state and it issues a second Receive call.

.10/ On System X, a request to commit is sent from the sync point manager to the CPI
Communications component. The CPI Communications component of System X
propagates the request to its counterpart, the CPI Communications component of System
Y, using the CPI Communications conversation. Any data remaining in Program A's send
buffer is flushed at this point.

.11/ Program C's Receive call executes successfully and it receives the take-commit notification
from the CPI Communications component of System Y.

.12/ Program C responds to the take-commit notification by issuing a resource recovery commit
call.

.13/ Commit-processing protocols are exchanged between the two sync point managers.

.14/ Both Program A and Program C receive return codes that indicate successful completion of
the commit operation. Program A can now send more data to Program C.

98 CPI Communications Reference

 Example Flows

 System X System Y
 ┌──┐ ┌──┐
│ ┌───────┐ ┌──────┐ ┌──────────────┐ ┌────────┐ │ │ ┌────────┐ ┌──────────────┐ ┌──────┐ ┌───────┐ │

 │ │Program│ │RR/SPM│ │ CPI │ │Database│ │ │ │Database│ │ CPI │ │RR/SPM│ │Program│ │
│ │ A │ │ │ │Communications│ │ │ │ │ │ │ │Communications│ │ │ │ C │ │
│ └───────┘ └──────┘ └──────────────┘ └────────┘ │ │ └────────┘ └──────────────┘ └──────┘ └───────┘ │

 └──┘ └──┘

 Initialize_Conversation(sym_dest_name)
 .1/ ─────────────────────────5

 return_code=CM_OK
 .2/ %─────────────────────────

 Set_Sync_Level(CM_SYNC_POINT)
 .3/ ─────────────────────────5

 return_code=CM_OK
 .4/ %─────────────────────────

Logical connection setup,
if logical connection

Allocate not already available
 .5/ ─────────────────────────5 %──5

 return_code=CM_OK
 .6/ %─────────────────────────

Conversation startup request, (Program C is started by
Send_Data(data) Data node services and accepts

 .7/ ─────────────────────────5 ───5 the conversation)
 Receive
 %─────────────────────

 return_code=CM_OK data, return_code=CM_OK
 .8/ %───────────────────────── ─────────────────────5

 commit Receive
 .9/ ─────────────5 %─────────────────────

• •
 • •
 .10/ • ───5 •
 • data, return_code=CM_OK,
 • status_received=CM_TAKE_COMMIT
 .11/ • ─────────────────────5
 • Commit Protocols •
 • commit
 .12/ • %──────────
 • •
.13/ • %───5 •
 • •

• •

 return_code=ok return_code=ok
 .14/ %───────────── ──────────5

(further processing by both programs)

Figure 24. Establishing a Protected Conversation and Issuing a Successful Commit

 Chapter 3. Program-to-Program Communication Example Flows 99

 Example Flows

Example 16: Successful Commit with Conversation State Change
Figure 25 on page 101 shows a successful commit with a conversation state
change on a half-duplex conversation.

The steps shown in Figure 25 are:

Step Description

.1/ Program C's end of a protected conversation is in Receive state. It issues a Receive call.

.2/ and .3/ Program A wants its side of the CPI Communications conversation to be changed from
Send to Receive state after it issues its next commit call. To do this, Program A uses the
Set_Prepare_To_Receive_Type call to set the prepare_to_receive_type conversation
characteristic to CM_PREP_TO_RECEIVE_SYNC_LEVEL.

.4/ and .5/ Program A issues a Prepare_To_Receive call. Because the prepare_to_receive_type
conversation characteristic is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, Program A's side
of the conversation is now in Defer-Receive state until Program A issues a commit call.

.6/ Program A issues a resource recovery commit call in Defer-Receive state. If the call
completes successfully, Program A's end of the conversation will be placed in Receive
state.

.7/ The sync point manager of System X sends Program A's request to commit to the CPI
Communications component of System X, which passes it to the CPI Communications
component of System Y. Any data remaining in Program A's send buffer is flushed at this
point.

.8/ Because Program A was in Defer-Receive state when it issued the commit call, the CPI
Communications component of System Y returns the take-commit notification to Program C
as a CM_TAKE_COMMIT_SEND value in the status_received parameter. This value means
that if Program C completes a commit call successfully, its end of the conversation will be
placed in Send state.

.9/ Program C responds to the take-commit notification with a resource recovery commit call.

.10/ through .12/ The database managers and the sync point managers on the two systems participate in the
protocol flows necessary to accomplish the commit.

.13/ Both commit calls end successfully.

.14/ Program A's end of the conversation is now in Receive state and it issues a Receive call.
Program C's end of the conversation is in Send state and it issues a Send_Data call.

Note: If the commit is unsuccessful and responses indicating backout are received on the
commit calls by Programs A and C, the conversation states for Programs A and C
are reset to their values at the time of the last sync point.

The program can retrieve the current conversation state by using the CPI
Communications Extract_Conversation_State call.

100 CPI Communications Reference

 Example Flows

 System X System Y
 ┌──┐ ┌──┐
│ ┌───────┐ ┌──────┐ ┌──────────────┐ ┌────────┐ │ │ ┌────────┐ ┌──────────────┐ ┌──────┐ ┌───────┐ │

 │ │Program│ │RR/SPM│ │ CPI │ │Database│ │ │ │Database│ │ CPI │ │RR/SPM│ │Program│ │
│ │ A │ │ │ │Communications│ │ │ │ │ │ │ │Communications│ │ │ │ C │ │
│ └───────┘ └──────┘ └──────────────┘ └────────┘ │ │ └────────┘ └──────────────┘ └──────┘ └───────┘ │

 └──┘ └──┘

Programs A and C are in
 conversation
 Receive
 .1/ %─────────────────────
 Set_Prepare_To_Receive_Type
 (CM_PREP_TO_RECEIVE_SYNC_LEVEL)
 .2/ ─────────────────────────5
 return_code=CM_OK
 .3/ %─────────────────────────
 Prepare_To_Receive
 .4/ ─────────────────────────5
 return_code=CM_OK
 .5/ %─────────────────────────

 commit
 .6/ ─────────────5

• •
 • •
 .7/ • ───5 •
 • •
 • data, return_code=CM_OK,
 • status_received=CM_TAKE_COMMIT_SEND
 .8/ • ─────────────────────5
 • Commit Protocols •
 • commit
 .9/ • %──────────
 • •
 .10/ • %─────────────────────5 •
 • •
.11/ • %───5 •
 • •
 .12/ • %────────────────────5 •
 • •

• •

 return_code=ok return_code=ok
 .13/ %───────────── ──────────5

 Receive Send_Data
 .14/ ─────────────────────────5 %─────────────────────

(further processing by both programs)

Figure 25. A Successful Commit with Conversation State Change

 Chapter 3. Program-to-Program Communication Example Flows 101

 Example Flows

Example 17: Conversation Deallocation before the Commit Call
Figure 26 on page 103 shows a commit call issued after a CPI Communications
Deallocate call on a half-duplex conversation.

The steps shown in Figure 26 are:

Step Description

.1/ Program C's end of a protected conversation is in Receive state. It issues a Receive call.

.2/ and .3/ Program A wants to deallocate the conversation after issuing a commit call. To accomplish
this, Program A chooses to issue a Set_Deallocate_Type call with the deallocate_type
parameter set to CM_DEALLOCATE_SYNC_LEVEL.

.4/ and .5/ Program A next issues a Deallocate call. CPI Communications completes the call, and
places Program A's side of the conversation in Defer-Deallocate state.

.6/ Program A issues a resource recovery commit call. If the call completes successfully,
Program A's end of the conversation will be deallocated (put in Reset state).

.7/ The sync point manager of System X sends Program A's request to commit to the CPI
Communications component of System X, which passes it to the CPI Communications
component of System Y. Any data remaining in Program A's send buffer is flushed at this
point.

.8/ Because Program A's end of the conversation was in Defer-Deallocate state when
Program A issued the commit call, Program C receives the take-commit notification as a
CM_TAKE_COMMIT_DEALLOCATE value in the status_received parameter of its Receive call.

.9/ Program C responds to the take-commit notification by issuing a resource recovery commit
call. The CM_TAKE_COMMIT_DEALLOCATE value means that if this commit is successful,
Program C's end of the conversation will be deallocated (put in Reset state).

.10/ through .12/ The database managers and the sync point managers on the two systems participate in the
protocol flows necessary to accomplish the commit.

.13/ Both commit calls end successfully.

Note: If the commit is unsuccessful and responses indicating backout are received on the
commit calls by Programs A and C, the conversation is not deallocated. The
conversation states for Programs A and C are reset to their values at the time of
the last sync point.

The program can retrieve the current conversation state by using the CPI
Communications Extract_Conversation_State call.

102 CPI Communications Reference

 System X System Y
 ┌──┐ ┌──┐
│ ┌───────┐ ┌──────┐ ┌──────────────┐ ┌────────┐ │ │ ┌────────┐ ┌──────────────┐ ┌──────┐ ┌───────┐ │

 │ │Program│ │RR/SPM│ │ CPI │ │Database│ │ │ │Database│ │ CPI │ │RR/SPM│ │Program│ │
│ │ A │ │ │ │Communications│ │ │ │ │ │ │ │Communications│ │ │ │ C │ │
│ └───────┘ └──────┘ └──────────────┘ └────────┘ │ │ └────────┘ └──────────────┘ └──────┘ └───────┘ │

 └──┘ └──┘

Programs A and C are in
 conversation
 Receive
 .1/ %─────────────────────
 Set_Deallocate_Type
 (CM_DEALLOCATE_SYNC_LEVEL)
 .2/ ─────────────────────────5
 return_code=CM_OK
 .3/ %─────────────────────────
 Deallocate
 .4/ ─────────────────────────5
 return_code=CM_OK
 .5/ %─────────────────────────

 commit
 .6/ ─────────────5

• •
 • •
 .7/ • ───5 •
 • •
 • data, return_code=CM_OK,
 • status_received=CM_TAKE_COMMIT_DEALLOCATE
 .8/ • ─────────────────────5
 • Commit Protocols •
 • commit
 .9/ • %──────────
 • •
 .10/ • %─────────────────────5 •
 • •
.11/ • %───5 •
 • •
 .12/ • %────────────────────5 •
 • •

• •

 return_code=ok return_code=ok
 .13/ %───────────── ──────────5

(the conversation is deallocated)

Figure 26. Conversation Deallocation Precedes the Commit Call

 Chapter 3. Program-to-Program Communication Example Flows 103

104 CPI Communications Reference

Part 2. CPI-C 2.1 Call Reference

Chapter 4. Call Reference . 107
Call Syntax . 108
Conformance Class and Interface Definition Table 109
Programming Language Considerations . 111

Application Generator . 112
C . 112
COBOL . 112
FORTRAN . 112
PL/I . 112
REXX . 113
RPG . 113

How to Use the Call References . 113
Summary List of Calls and Their Descriptions 114
Accept_Conversation (CMACCP) . 119
Accept_Incoming (CMACCI) . 121
Allocate (CMALLC) . 124
Cancel_Conversation (CMCANC) . 131
Confirm (CMCFM) . 133
Confirmed (CMCFMD) . 137
Convert_Incoming (CMCNVI) . 139
Convert_Outgoing (CMCNVO) . 141
Deallocate (CMDEAL) . 143
Deferred_Deallocate (CMDFDE) . 153
Extract_AE_Qualifier (CMEAEQ) . 155
Extract_AP_Title (CMEAPT) . 157
Extract_Application_Context_Name (CMEACN) 159
Extract_Conversation_Context (CMECTX) . 161
Extract_Conversation_State (CMECS) . 163
Extract_Conversation_Type (CMECT) . 166
Extract_Initialization_Data (CMEID) . 168
Extract_Mapped_Initialization_Data (CMEMID) 170
Extract_Maximum_Buffer_Size (CMEMBS) . 173
Extract_Mode_Name (CMEMN) . 175
Extract_Partner_ID (CMEPID) . 177
Extract_Partner_LU_Name (CMEPLN) . 180
Extract_Secondary_Information (CMESI) . 182
Extract_Security_User_ID (CMESUI) . 185
Extract_Send_Receive_Mode (CMESRM) . 187
Extract_Sync_Level (CMESL) . 189
Extract_TP_Name (CMETPN) . 191
Extract_Transaction_Control (CMETC) . 193
Flush (CMFLUS) . 195
Include_Partner_In_Transaction (CMINCL) . 198
Initialize_Conversation (CMINIT) . 200
Initialize_For_Incoming (CMINIC) . 203
Prepare (CMPREP) . 205
Prepare_To_Receive (CMPTR) . 208
Receive (CMRCV) . 213
Receive_Expedited_Data (CMRCVX) . 228
Receive_Mapped_Data (CMRCVM) . 231

 Copyright IBM Corp. 1996, 1998 105

Release_Local_TP_Name (CMRLTP) . 244
Request_To_Send (CMRTS) . 246
Send_Data (CMSEND) . 249
Send_Error (CMSERR) . 259
Send_Expedited_Data (CMSNDX) . 268
Send_Mapped_Data (CMSNDM) . 271
Set_AE_Qualifier (CMSAEQ) . 280
Set_Allocate_Confirm (CMSAC) . 282
Set_AP_Title (CMSAPT) . 284
Set_Application_Context_Name (CMSACN) 286
Set_Begin_Transaction (CMSBT) . 288
Set_Confirmation_Urgency (CMSCU) . 290
Set_Conversation_Security_Password (CMSCSP) 292
Set_Conversation_Security_Type (CMSCST) 295
Set_Conversation_Security_User_ID (CMSCSU) 298
Set_Conversation_Type (CMSCT) . 301
Set_Deallocate_Type (CMSDT) . 303
Set_Error_Direction (CMSED) . 307
Set_Fill (CMSF) . 310
Set_Initialization_Data (CMSID) . 312
Set_Join_Transaction (CMSJT) . 314
Set_Log_Data (CMSLD) . 316
Set_Mapped_Initialization_Data (CMSMID) . 318
Set_Mode_Name (CMSMN) . 321
Set_Partner_ID (CMSPID) . 323
Set_Partner_LU_Name (CMSPLN) . 327
Set_Prepare_Data_Permitted (CMSPDP) . 329
Set_Prepare_To_Receive_Type (CMSPTR) 331
Set_Processing_Mode (CMSPM) . 334
Set_Queue_Callback_Function (CMSQCF) . 337
Set_Queue_Processing_Mode (CMSQPM) . 340
Set_Receive_Type (CMSRT) . 344
Set_Return_Control (CMSRC) . 346
Set_Send_Receive_Mode (CMSSRM) . 349
Set_Send_Type (CMSST) . 351
Set_Sync_Level (CMSSL) . 354
Set_TP_Name (CMSTPN) . 357
Set_Transaction_Control (CMSTC) . 359
Specify_Local_TP_Name (CMSLTP) . 361
Test_Request_To_Send_Received (CMTRTS) 363
Wait_For_Completion (CMWCMP) . 366
Wait_For_Conversation (CMWAIT) . 369

106 CPI Communications Reference

 Call Reference

 Chapter 4. Call Reference

This chapter describes the CPI Communications calls. Also, this chapter provides
the function of each call and any optional setup calls that can be issued before the
call being described. In addition, the following information is provided:

¹ Communications Resource Manager Box

The CRM box identifies the CRMs on which the call is applicable. The possible
values are LU 6.2 and OSI TP.

¹ System Checklist Box

A system checklist precedes each call. If the call is implemented or announced
on a particular system, that column is marked with an X. If it is not yet
implemented on a particular system, that column is blank.

Notes:

1. The X does not mean all parameters are supported.

2. If the call is not implemented, but an equivalent call is available as a
product extension, the column is marked with an X*.

 ¹ Format

The format used to program the call.

Note: The actual syntax used to program the calls in this chapter depends on
the programming language used. See “Call Syntax” on page 108 for specifics.

 ¹ Parameters

The parameters that are required for the call. Parameters are identified as
input parameters (that is, set by the calling program and used as input to CPI
Communications) or output parameters (that is, set by CPI Communications
before returning control to the calling program).

 ¹ State Changes

The changes in the conversation state that can result from this call. See
“Program Flow—States and Transitions” on page 52 for more information on
conversation states.

 ¹ Usage Notes

Additional information that applies to the call.

 ¹ Related Information

Where to find additional information related to the call.

The CPI Communications interface definition is printed in black ink. If the
implementation of an interface element in an operating environment differs from the
CPI-C definition in its syntax or semantics, the text states that fact and is printed in
green and has a g in the margin, as is this sentence.

Note: :Win32 means:

¹ IBM eNetwork Communication Server for Windows NT 5.0, 5.01, and above
¹ Win95 API Client for Communication Server 5.0, 5.01, and above
¹ WinNT API Client for Communication Server 5.0, 5.01, and above
¹ OS/2 API Client for Communication Server 5.0, 5.01, and above

 Copyright IBM Corp. 1996, 1998 107

 Call Reference

¹ Win95 API Client for Netware for SAA 2.2
¹ WinNT API Client for Netware for SAA 2.2
¹ OS/2 API Client for Netware for SAA 2.2

¹ Win95 API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ WinNT API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ OS/2 API Client for IntraNetware for SAA 2.3, 3.0 and above

¹ IBM eNetwork Personal Communications 4.1 for WinNT and above
¹ IBM eNetwork Personal Communications 4.2 for Win95 and above

 Call Syntax
CPI Communications calls can be made from application programs written in a
number of high-level programming languages. Table 14 shows the languages that
can be used on each IBM platform.

Table 14. Languages Supported by Platform

Language AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Application
Generator X X X X X X

C X X X X X X X X X

COBOL X X X X X X X

FORTRAN X X X X X

PL/I X X X X

REXX X X X X X

RPG X X X

In addition to the above languages, certain environments support CPI
Communications calls in additional languages. For more information about
supported languages as well as specific syntax and library information for each
operating environment that implements CPI Communications, refer to the
appropriate product chapters in “Part 3. CPI-C 2.1 Implementation Specifics” on
page 373 for additional information.

This book uses a general call format to show the name of the CPI Communications
call and the parameters used. This is an example of that format:

CALL CMPROG (parm0,

 parm1,

 parm2,

 .

 .

 parmN)

where CMPROG is the name of the call, and parm0, parm1, parm2, and parmN

represent the parameter list described in the individual call description.

This format would be translated into the following syntax for each of the supported
languages:

108 CPI Communications Reference

 Call Reference

Application Generator (CSP)
CALL CMPROG parm0,parm1,parm2,...parmN

C
CMPROG (parm0,parm1,parm2,...parmN)

COBOL
CALL “CMPROG” USING parm0,parm1,parm2,...parmN

FORTRAN
CALL CMPROG (parm0,parm1,parm2,...parmN)

PL/I
CALL CMPROG (parm0,parm1,parm2,...parmN)

REXX
ADDRESS CPICOMM ‘CMPROG parm0 parm1 parm2 ... parmN’

RPG

CALL 'CMPROG'

PARM parm1

PARM parm2

 . .

 . .

 . .

PARM parmN

Conformance Class and Interface Definition Table
Table 15 lists the CPI Communications conformance classes, calls, and product
implementation. More conformance class information is located in Chapter 5, "CPI
Communications 2.1 Conformance Classes". An X is used to indicate which
systems already have an IBM licensed program announced or available that
implements a particular communications call. Refer to the footnotes for
implementation specifics.

Table 15 (Page 1 of 3). CPI-C Calls and Product Implementation

Conformance Classes
 Calls

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Conversations (mandatory)
 Accept_Conversation X X X X X X X X X
 Allocate X X X X X X X X X
 Confirm X X X X X X X X X
 Confirmed X X X X X X X X X
 Deallocate X X X X X X X X X
 Extract_Conversation_State X X X X X X X X X
 Extract_Conversation_Type X X X X X X X X X
 Extract_Maximum_Buffer_Size X12 X X1 X X
 Extract_Mode_Name X X X X X X X X X
 Extract_Sync_Level X X X X X X X X X
 Flush X X X X X X X X X
 Initialize_Conversation X X X X X X X X X
 Prepare_To_Receive X X X X X X X X X
 Receive X X X X X X X X X
 Request_To_Send X X X X X X X X X
 Send_Data X X X X X X X X X
 Send_Error X X X X X X X X X
 Set_Conversation_Type X X X X X X X X X
 Set_Deallocate_Type X X X X X X X X X
 Set_Fill X X X X X X X X X
 Set_Log_Data X X X X X X X X X
 Set_Mode_Name X X X X X X X X X
 Set_Prepare_To_Receive_Type X X X X X X X X X
 Set_Receive_Type X X X X X X X X X

 Chapter 4. Call Reference 109

 Call Reference

Table 15 (Page 2 of 3). CPI-C Calls and Product Implementation

Conformance Classes
 Calls

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 Set_Return_Control X X X X X X X X X
 Set_Send_Type X X X X X X X X X
 Set_Sync_Level
 —CM_NONE2 X X X X X X X X X
 —CM_CONFIRM2 X X X X X X X X X
 Set_TP_Name X X X X X X X X X
 Test_Request_To_Send_Received X X X X X X X X X
LU 6.2 (optional)
 Extract_Partner_LU_Name X X X X X X X X X
 Set_Error_Direction X X X X X X X X X
 Set_Partner_LU_Name X X X X X X X X X
OSI TP (optional)
 Extract_AE_Qualifier
 Extract_AP_Title
 Extract_Application_Context_Name
 Set_Allocate_Confirm
 Set_AE_Qualifier
 Set_AP_Title
 Set_Application_Context_Name
 Set_Confirmation_Urgency
Recoverable Transactions (optional)
 Set_Join_Transaction3

 Set_Sync_Level
 —CM_SYNC_POINT2 X X X
 —CM_SYNC_POINT_NO_CONFIRM4

 Deferred_Deallocate5

 Prepare5

 Set_Prepare_Data_Permitted5

Unchained Transactions (optional)
 Extract_Transaction_Control
 Include_Partner_In_Transaction
 Set_Begin_Transaction
 Set_Transaction_Control
Conversation-Level Non-Blocking
(optional)
 Cancel_Conversation X X8 X
 Set_Processing_Mode X8 X
 Wait_For_Conversation X8 X
Queue-Level Non-Blocking (optional)
 Cancel_Conversation X X8 X
 Set_Queue_Processing_Mode X X8 X
 Wait_For_Completion X X8 X
Callback Function (optional)
 Cancel_Conversation X X
 Set_Queue_Callback_Function X X8 X
Server (optional)
 Accept_Incoming X12 X X8 X
 Extract_Conversation_Context X12 X8 X
 Extract_TP_Name X12 X X8 X
 Initialize_For_Incoming X12 X X8 X
 Release_Local_TP_Name X12 X8 X
 Specify_Local_TP_Name X12 X8 X
Data Conversion Routines (optional)
 Convert_Incoming X12. X X8 X X
 Convert_Outgoing X12 X X8 X X
Security (optional)
 Extract_Security_User_ID X11 X X9 X X6 X
 Set_Conversation_Security_Password X11 X X9 X X6 X
 Set_Conversation_Security_Type
 —CM_SECURITY_NONE7 X11 X X9 X X6 X
 —CM_SECURITY_PROGRAM7 X11 X X9 X X6 X
 —CM_SECURITY_PROGRAM_
 STRONG7

X

 —CM_SECURITY_SAME7 X11 X X9 X X6 X
 Set_Conversation_Security_User_ID X11 X X9 X X6 X
Distributed Security (optional)
 Extract_Security_User_ID X11 X X9 X X6 X
 Set_Conversation_Security_Type
 —CM_SECURITY_NONE7 X11 X X9 X X6 X
 —CM_SECURITY_SAME7 X11 X X9 X X6 X
 —CM_SECURITY_DISTRIBUTED7

 —CM_SECURITY_MUTUAL7

110 CPI Communications Reference

 Call Reference

Table 15 (Page 3 of 3). CPI-C Calls and Product Implementation

Conformance Classes
 Calls

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Full-Duplex (optional)
 Extract_Send_Receive_Mode X X8 X14

 Set_Send_Receive_Mode X X8 X14

Expedited Data (optional)
 Receive_Expedited_Data X8 X14

 Send_Expedited_Data X8 X14

Directory (optional)
 Extract_Partner_ID
 Set_Partner_ID
Secondary Information (optional)
 Extract_Secondary_Information X10 X14

Initialization Data (optional)
 Extract_Initialization_Data
 Set_Initialization_Data
Automatic Data Conversion
 Extract_Mapped_Initialization_Data13

 Receive_Mapped_Data
 Send_Mapped_Data
 Set_Mapped_Initialization_Data13

Notes:

1 This call is supported in Communications Manager/2 Version 1.11 and IBM Communications Server.
2 This is a required sync_level value.
3 This is a required call if the TX resource recovery interface is supported.
4 This is a required sync_level value if either full duplex or OSI TP is also supported.
5 This is a required call if OSI TP is also supported.
6 This platform currently supports the function provided by this call via a product extension call. Refer to the appropriate product chapter.
7 This is a required conversation_security_type value.
8 This call is supported only in IBM Communications Server, and only at the 32-bit C Language interface and through REXX.
9 This call is supported only in IBM Communications Server, and only at the 32-bit C Language interface and through REXX. In Communications
Manager (prior to IBM Communications Server) this call is supported via a product extension call. Refer to the OS/2 chapter for details.
10 This call is supported only in IBM Communications Server, and only at the 32-bit C Language interface and through REXX.
11 This call is supported in AIX SNA Server Version 3 Release 1 or later. In SNA Server, prior to Version 3, this call is supported via a product
extension call. Refer to the AIX chapter for details.
12 This call is supported in AIX SNA Server Version 3 Release 1 or later.
13 This is a required call if Initialization Data is also supported.
14 This call is not supported for the following Win32 CPI-C platforms:

¹ Win95 API Client for Communication Server 5.0, 5.01, and above

¹ WinNT API Client for Communication Server 5.0, 5.01, and above

¹ OS/2 API Client for Communication Server 5.0, 5.01, and above

¹ Win95 API Client for Netware for SAA 2.2
¹ WinNT API Client for Netware for SAA 2.2
¹ OS/2 API Client for Netware for SAA 2.2

¹ Win95 API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ WinNT API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ OS/2 API Client for IntraNetware for SAA 2.3, 3.0 and above

Programming Language Considerations
This section describes programming language considerations to keep in mind when
writing and running a program that uses CPI Communications. Sample pseudonym
files are on the diskette that came with this manual. Customized pseudonym files
or datasets for supported programming languages may be available on systems
that implement CPI Communications.

Note: Some programming language processors (compilers and interpreters) may
not support the asynchronous modification of a program's variables by another
process. Use of non-blocking operations is not possible by programs using these
language processors.

 Chapter 4. Call Reference 111

 Call Reference

 Application Generator
Cross System Product (CSP) is the implementing product for the Application
Generator common programming interface.

No special considerations apply to CPI Communications programs written in CSP.

 C
The following notes apply to C programs using CPI Communications calls:

¹ When passing an integer value as a parameter, prefix the parameter name with
an ampersand (&) so that the value is passed by reference.

¹ To pass a parameter as a string literal, surround it with double quotes rather
than single quotes.

¹ To enable asynchronous updates of program variables, the return parameters
on a non-blocking call must be declared using the volatile qualifier as defined
in ANSI C.

 COBOL
The following notes apply to COBOL programs using CPI Communications calls:

¹ Because COBOL does not support the underscore character (_), the
underscores in COBOL pseudonyms are replaced with dashes (-). For
example, COBOL programmers use CM-IMMEDIATE as a pseudonym value
name in their programs instead of CM_IMMEDIATE.

¹ Each argument in the parameter list must be called (listed) by name.

¹ Each variable in the parameter list must be level 01.

¹ Number variables must be full words (at least five but less than ten “9”s) and
they must be COMP-4, not zoned decimal.

 FORTRAN
The following notes apply to FORTRAN programs using CPI Communications calls:

¹ The EXTERNAL statement may be required for each CPI Communications call
that is issued, depending on the environment being used. The PRAGMA
statement may also be required. EXTERNAL and PRAGMA statements may
be included in the FORTRAN pseudonym file provided for a given environment.

¹ To enable asynchronous updates of program variables, the return parameters
on a non-blocking call must be declared using the VOLATILE qualifier.

 PL/I
The following notes apply to PL/I programs using CPI Communications calls:

¹ Numbers in the parameter list must be declared, initialized, and passed as
variables.

¹ ENTRY declaration statements should be used for each CPI Communications
call that is issued. ENTRY declaration statements may be included in the PL/I
pseudonym file provided for a given environment.

¹ To enable asynchronous updates of program variables, the return parameters
on a non-blocking call must be declared using the ABNORMAL qualifier.

112 CPI Communications Reference

 Call Reference

 REXX
The following notes apply to REXX programs using CPI Communications calls:

¹ REXX programs must use the ADDRESS CPICOMM statement to access CPI
Communications calls. These calls are not accessible through the REXX CALL
statement interface.

¹ Character strings returned by CPI Communications calls are stored in variables
with the maximum allowable length. (Maximum lengths are shown in
Appendix A, “Variables and Characteristics.”) However, there is a returned
length variable associated with the returned character string, which allows use
of the REXX function

LEFT(returned_char_string,returned_length)

to get the correct amount of data.

(This note does not apply to returned fixed-length character strings. For
instance, a conversation_ID returned from the Accept_Conversation call always
has a length of 8 bytes.)

 RPG
The following note applies to RPG programs using CPI Communications calls:

¹ Because RPG supports only variable names with lengths of 1–6 characters, the
pseudonym names for RPG have been abbreviated. For example, RPG
programmers should use IMMED as a pseudonym name in their programs
instead of CM_IMMEDIATE.

How to Use the Call References
Here is an example of how the information in this chapter can be used in
connection with the rest of the book. The example describes how to use the
Set_Return_Control call to set the conversation characteristic of return_control to a
value of CM_IMMEDIATE.

¹ Table 15 on page 109 shows that Set_Return_Control is implemented for all
operating environments.

¹ “Set_Return_Control (CMSRC)” on page 346 contains the semantics of the
variables used for the call. It explains that the real name of the program call
for Set_Return_Control is CMSRC and that CMSRC has a parameter list of
conversation_ID, return_control, and return_code.

¹ “Call Syntax” on page 108 shows the syntax for the programming language
being used.

¹ Appendix A, “Variables and Characteristics” provides a complete description of
all variables used in the book and shows that the return_control variable, which
goes into the call as a parameter, is a 32-bit integer. This information is
provided in Table 61 on page 650.

¹ Table 59 on page 642 in Appendix A, “Variables and Characteristics” shows
that CM_IMMEDIATE, which is placed into the return_control parameter on the
call to CMSRC, is defined as having an integer value of 1.

¹ Finally, the return_code value CM_OK, which is returned to the program on the
CMSRC call, is defined in Appendix B, “Return Codes and Secondary
Information.” CM_OK means that the call completed successfully.

 Chapter 4. Call Reference 113

 Call Reference

Summary List of Calls and Their Descriptions

Table 16 (Page 1 of 5). List of CPI-C Calls and Their Descriptions

Pseudonym Call Description Page

Accept_Conversation CMACCP Used by a program to accept an incoming
conversation.

119

Accept_Incoming CMACCI Used by a program to accept an incoming
conversation previously initialized with the
Initialize_For_Incoming call.

121

Allocate CMALLC Used by a program to establish a
conversation.

124

Cancel_Conversation CMCANC Used by a program to end a conversation
immediately.

131

Confirm CMCFM Used by a program to send a confirmation
request to its partner.

133

Confirmed CMCFMD Used by a program to send a confirmation
reply to its partner.

137

Convert_Incoming CMCNVI Used by a program to change the encoding
of a character string from EBCDIC to the
local encoding used by the program.

139

Convert_Outgoing CMCNVO Used by a program to change the encoding
of a character string from the local encoding
used by the program to EBCDIC.

141

Deallocate CMDEAL Used by a program to end a conversation. 143

Deferred_Deallocate CMDFDE Used by a program to end a conversation
following successful completion of the
current transaction.

153

Extract_AE_Qualifier CMEAEQ Used by a program to view the current
ae_qualifier conversation characteristic.

155

Extract_AP_Title CMEAPT Used by a program to view the current
ap_title conversation characteristic.

157

Extract_Application_Context_Name CMEACN Used by a program to view the current
application_context_name conversation
characteristic.

159

Extract_Conversation_Context CMECTX Used by a program to extract the context_ID
for a conversation.

161

Extract_Conversation_State CMECS Used by a program to view the current state
of a conversation.

163

Extract_Conversation_Type CMECT Used by a program to view the current
conversation_type conversation
characteristic.

166

Extract_Initialization_Data CMEID Used by a program to extract the current
initialization_data conversation
characteristic.

168

Extract_Mapped_Initialization_Data CMEMID Used by a program to extract the
initialization_data conversation characteristic
for mapped initialization data.

170

Extract_Maximum_Buffer_Size CMEMBS Used by a program to extract the maximum
buffer size supported by the system.

173

114 CPI Communications Reference

 Call Reference

Table 16 (Page 2 of 5). List of CPI-C Calls and Their Descriptions

Pseudonym Call Description Page

Extract_Mode_Name CMEMN Used by a program to view the current
mode_name conversation characteristic.

175

Extract_Partner_ID CMEPID Used by a program to view the current
partner_ID conversation characteristic.

177

Extract_Partner_LU_Name CMEPLN Used by a program to view the current
partner_LU_name conversation
characteristic.

180

Extract_Secondary_Information CMESI Used by a program to extract secondary
information associated with the return code
for a given call.

182

Extract_Security_User_ID CMESUI Used by a program to view the current
security_user_ID conversation characteristic.

185

Extract_Send_Receive_Mode CMESRM Used by a program to view the current
send_receive_mode conversation
characteristic.

187

Extract_Sync_Level CMESL Used by a program to view the current
sync_level conversation characteristic.

189

Extract_TP_Name CMETPN Used by a program to determine the
TP_name characteristic's value for a given
conversation.

191

Extract_Transaction_Control CMETC Used by a program to extract the
transaction_control characteristic's value for
a given conversation.

193

Flush CMFLUS Used by a program to flush the local CRM’s
send buffer.

195

Include_Partner_In_Transaction CMINCL Used by a program to include a partner
program in a transaction.

198

Initialize_Conversation CMINIT Used by a program to initialize the
conversation characteristics for an outgoing
conversation.

200

Initialize_For_Incoming CMINIC Used by a program to initialize the
conversation characteristics for an incoming
conversation.

203

Prepare CMPREP Used by a program to prepare a subordinate
for a commit operation.

205

Prepare_To_Receive CMPTR Used by a program to change a
conversation from Send to Receive state in
preparation to receive data.

208

Receive CMRCV Used by a program to receive data. 213

Receive_Expedited_Data CMRCVX Used by a program to receive expedited
data from its partner.

228

Receive_Mapped_Data CMRCVM Used by a program to receive mapped data
from its partner.

231

Release_Local_TP_Name CMRLTP Used by a program to release a name. 244

Request_To_Send CMRTS Used by a program to notify its partner that
it would like to send data.

246

Send_Data CMSEND Used by a program to send data. 249

 Chapter 4. Call Reference 115

 Call Reference

Table 16 (Page 3 of 5). List of CPI-C Calls and Their Descriptions

Pseudonym Call Description Page

Send_Error CMSERR Used by a program to notify its partner of an
error that occurred during the conversation.

259

Send_Expedited_Data CMSNDX Used by a program to send expedited data
to its partner.

268

Send_Mapped_Data CMSNDM Used by a program to send mapped data to
its partner

271

Set_AE_Qualifier CMSAEQ Used by a program to set the ae_qualifier
conversation characteristic.

280

Set_Allocate_Confirm CMSAC Used by a program to set the
allocate_confirm conversation characteristic.

282

Set_AP_Title CMSAPT Used by a program to set the ap_title
conversation characteristic.

284

Set_Application_Context_Name CMSACN Used by a program to set the
application_context_name conversation
characteristic.

286

Set_Begin_Transaction CMSBT Used by a program to set the
begin_transaction conversation
characteristic.

288

Set_Confirmation_Urgency CMSCU Used by a program to set the
confirmation_urgency conversation
characteristic.

286

Set_Conversation_Security_Password CMSCSP Used by a program to set the
security_password conversation
characteristic.

292

Set_Conversation_Security_Type CMSCST Used by a program to set the
conversation_security_type conversation
characteristic.

295

Set_Conversation_Security_User_ID CMSCSU Used by a program to set the
security_user_ID conversation characteristic.

298

Set _Conversation_Type CMSCT Used by a program to set the
conversation_type conversation
characteristic.

301

Set_Deallocate_Type CMSDT Used by a program to set the
deallocate_type conversation characteristic.

303

Set_Error_Direction CMSED Used by a program to set the error_direction
conversation characteristic.

307

Set_Fill CMSF Used by a program to set the fill
conversation characteristic.

310

Set_Initialization_Data CMSID Used by a program to set the
initialization_data conversation
characteristic.

312

Set_Join_Transaction CMSJT Used by a program to set the
join_transaction conversation characteristic.

314

Set_Log_Data CMSLD Used by a program to set the log_data
conversation characteristic.

316

116 CPI Communications Reference

 Call Reference

Table 16 (Page 4 of 5). List of CPI-C Calls and Their Descriptions

Pseudonym Call Description Page

Set_Mapped_Initialization_Data CMSMID Used by a program to set the
initialization_data conversation characteristic
for mapped initialization data.

318

Set_Mode_Name CMSMN Used by a program to set the mode_name
conversation characteristic.

321

Set_Partner_ID CMSPID Used by a program to set the partner_ID
conversation characteristic.

323

Set_Partner_LU_Name CMSPLN Used by a program to set the
partner_LU_name conversation
characteristic.

327

Set_Prepare_Data_Permitted CMSPDP Used by a program to set the
prepare_data_permitted conversation
characteristic.

329

Set_Prepare_To_Receive_Type CMSPTR Used by a program to set the
prepare_to_receive_type conversation
characteristic.

331

Set_Processing_Mode CMSPM Used by a program to set the
processing_mode conversation
characteristic.

334

Set_Queue_Callback_Function CMSQCF Used by a program to set a callback
function and a user field for a given
conversation queue and to set the queue's
processing mode to CM_NON_BLOCKING.

337

Set_Queue_Processing_Mode CMSQPM Used by a program to set the processing
mode for a given conversation queue and to
associate an outstanding-operation identifier
(OOID) and a user field with the queue.

340

Set_Receive_Type CMSRT Used by a program to set the receive_type
conversation characteristic.

344

Set_Return_Control CMSRC Used by a program to set the return_control
conversation characteristic.

346

Set_Send_Receive_Mode CMSSRM Used by a program to set the
send_receive_mode conversation
characteristic.

349

Set_Send_Type CMSST Used by a program to set the send_type
conversation characteristic.

351

Set_Sync_Level CMSSL Used by a program to set the sync_level
conversation characteristic.

354

Set_TP_Name CMSTPN Used by a program to set the TP_Name
conversation characteristic.

357

Set_Transaction_Control CMSTC Used by a program to set the
transaction_control conversation
characteristic.

359

Specify_Local_TP_Name CMSLTP Used by a program to associate a name
with itself.

361

Test_Request_To_Send_Received CMTRTS Used by a program to determine whether or
not the remote program is requesting to
send data.

363

 Chapter 4. Call Reference 117

 Call Reference

Table 16 (Page 5 of 5). List of CPI-C Calls and Their Descriptions

Pseudonym Call Description Page

Wait_For_Completion CMWCMP Used by a program to wait for completion of
one or more outstanding operations
represented in a specified
outstanding-operation-ID (OOID) list.

366

Wait_For_Conversation CMWAIT Used by a program to wait for the
completion of any conversation-level
outstanding operation.

369

118 CPI Communications Reference

 Accept_Conversation (CMACCP)

 Accept_Conversation (CMACCP)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

The Accept_Conversation (CMACCP) call accepts an incoming conversation. Like
Initialize_Conversation, this call initializes values for various conversation
characteristics. The difference between the two calls is that the program that will
later allocate the conversation issues the Initialize_Conversation call, and the
partner program that will accept the conversation after it is allocated issues the
Accept_Conversation call.

 Format
CALL CMACCP(conversation_ID,

return_code)

 Parameters
conversation_ID (output)

Specifies the conversation identifier assigned to the conversation. CPI
Communications supplies and maintains the conversation_ID. When the
return_code is set equal to CM_OK, the value returned in this parameter is used
by the program on all subsequent calls issued for this conversation.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_DEALLOCATED_ABEND

This value indicates, that CPI Communications deallocated the incoming
conversation because an implicit call of tx_set_transaction_control or
tx_begin failed.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– No incoming conversation exists.
– No name is associated with the program. A program associates a

name with itself by issuing the Specify_Local_TP_Name call.
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
For half-duplex conversations, when return_code is set equal to CM_OK, the
conversation enters Receive state.

For full-duplex conversations, when return_code is set equal to CM_OK, the
conversation enters Send-Receive state.

 Chapter 4. Call Reference 119

 Accept_Conversation (CMACCP)

 Usage Notes
1. For each conversation, CPI Communications assigns a unique identifier (the

conversation_ID) that the program uses in all future calls intended for that
conversation. Therefore, the program must issue the Accept_Conversation call
before any other calls can refer to the conversation.

2. There may be a system-defined limit on the number of conversations that a
program can accept or allocate, but CPI Communications imposes no limit.

3. For a list of the conversation characteristics that are initialized when the
Accept_Conversation call completes successfully, see Table 3 on page 35.

4. CPI Communications makes incoming conversations available to programs
based upon names that are associated with the program. Specifically, those
names associated with the program at the time the Accept_Conversation call is
issued are used to satisfy that Accept_Conversation call. These names come
either from locally defined information or from execution of the
Specify_Local_TP_Name call. An implementation may place restrictions on the
actions that a program may take before issuing Accept_Conversation in order
to properly identify programs with associated names.

5. An implementation may choose to specify a minimum time before returning
CM_PROGRAM_STATE_CHECK when no incoming conversation has arrived for
the program.

6. Accept_Conversation always functions as if the processing_mode were set to
CM_BLOCKING. A program that must be able to accept incoming conversations
in a non-blocking mode should use the Initialize_For_Incoming and
Accept_Incoming calls. The processing mode for the conversation can be set
to CM_NON_BLOCKING prior to issuing Accept_Incoming.

7. A new context is created as a result of the successful completion of the
Accept_Conversation call, and the conversation is assigned to the new context.
The program's current context is set to the new context by node services.

 Related Information
“Conversation Characteristics” on page 33 provides a comparison of the
conversation characteristics set by Initialize_For_Incoming, Initialize_Conversation,
and Accept_Conversation.

“Example 1: Data Flow in One Direction” on page 69 shows an example program
flow using the Accept_Conversation call to accept a half-duplex conversation.

“Example 8: Establishing a Full-Duplex Conversation” on page 84 shows an
example program flow using an Accept_Conversation call to accept a full-duplex
conversation.

“Initialize_Conversation (CMINIT)” on page 200 describes how the conversation
characteristics are initialized for the program that allocates the conversation.

120 CPI Communications Reference

 Accept_Incoming (CMACCI)

 Accept_Incoming (CMACCI)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X

A program uses the Accept_Incoming (CMACCI) call to accept an incoming
conversation that has previously been initialized with the Initialize_For_Incoming
call and to complete the initialization of the conversation characteristics.

Before issuing the Accept_Incoming call, a program has the option of issuing one of
the following calls:

CALL CMSPM – Set_Processing_Mode
CALL CMSQPM – Set_Queue_Processing_Mode
CALL CMSQCF – Set_Queue_Callback_Function

X* In AIX, this call is supported in Version 3 Release 1 or later. In OS/2, this call
is supported by Communications Server.

 Format
CALL CMACCI(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier of a conversation that has been initialized
for an incoming conversation.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_DEALLOCATED_ABEND

This value indicates, that CPI Communications deallocated the incoming
conversation because an implicit call of tx_set_transaction_control or
tx_begin failed.

 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Initialize-Incoming state.
– No name is associated with the program. A program associates a

name with itself by issuing the Specify_Local_TP_Name call.

 Chapter 4. Call Reference 121

 Accept_Incoming (CMACCI)

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
For half-duplex conversations, when return_code is set to CM_OK, the conversation
enters Receive state.

For full-duplex conversations, when return_code is set to CM_OK, the conversation
enters Send-Receive state.

 Usage Notes
1. The Accept_Incoming call can be used only when an Initialize_For_Incoming

call has already completed.

2. When Accept_Incoming successfully completes, CPI Communications initializes
those conversation characteristics that use values from the conversation startup
request. See Table 3 on page 35 for a list of the conversation characteristics
and how they are set by Initialize_For_Incoming and Accept_Incoming.

3. If Accept_Incoming is issued as a blocking call and no incoming conversation is
available for the program, the call blocks until a conversation startup request
arrives. The program can ensure that it is not placed in a wait state by taking
one of the following actions before issuing the Accept_Incoming call:

¹ For conversation-level non-blocking — set the processing_mode
characteristic to CM_NON_BLOCKING by using the Set_Processing_Mode
call

¹ For queue-level non-blocking — set the processing mode for the
Initialization queue to CM_NON_BLOCKING by using the
Set_Queue_Callback_Function call or the Set_Queue_Processing_Mode
call.

4. If the program has successfully issued a Set_Processing_Mode call, the
subsequent Accept_Incoming call will complete only when the conversation
startup request is for a half-duplex conversation.

5. There may be a system-defined limit on the number of conversations that a
program can accept or allocate, but CPI Communications imposes no limit.

6. CPI Communications makes incoming conversations available to programs
based upon names that are associated with the program. Specifically, those
names associated with the program at the time the Accept_Incoming call is
issued are used to satisfy that Accept_Incoming call. These names come
either from locally defined information or from execution of the
Specify_Local_TP_Name call. An implementation may place restrictions on the
actions that a program may take before issuing Accept_Incoming in order to
properly identify programs with associated names.

7. A new context is created as a result of the successful completion of the
Accept_Incoming call, and the conversation is assigned to the new context. If
Accept_Incoming completes successfully with return_code set to CM_OK, the
program's current context is set to the new context by node services. If
Accept_Incoming is issued with processing_mode set to CM_NON_BLOCKING
and gets the CM_OPERATION_INCOMPLETE return code, the program's current
context is not changed if the Accept_Incoming call operation subsequently
completes successfully as a result of the Wait_For_Conversation call.

122 CPI Communications Reference

 Accept_Incoming (CMACCI)

 Related Information
“Conversation Characteristics” on page 33 provides a comparison of the
conversation characteristics set by Initialize_For_Incoming and Accept_Incoming.

“Example 12: Accepting Multiple Conversations Using Blocking Calls” on page 92
and “Example 13: Accepting Multiple Conversations Using Conversation-Level
Non-Blocking Calls” on page 94 show example program flows using the
Initialize_For_Incoming and Accept_Incoming calls.

“Initialize_For_Incoming (CMINIC)” on page 203 describes how the
conversation_ID supplied on Accept_Incoming is assigned.

“Set_Processing_Mode (CMSPM)” on page 334 describes setting the processing
mode conversation characteristic.

“Set_Queue_Callback_Function (CMSQCF)” on page 337 describes the how to set
a callback function and related information for a non-blocking conversation queue.

“Set_Queue_Processing_Mode (CMSQPM)” on page 340 describes how to set the
processing mode for a non-blocking conversation queue.

The calls beginning with “Extract” in this chapter are used to examine conversation
characteristics established by the Accept_Incoming call.

 Chapter 4. Call Reference 123

 Allocate (CMALLC)

 Allocate (CMALLC)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Allocate (CMALLC) call to establish a basic or mapped
conversation (depending on the conversation_type characteristic) with its partner
program. The partner program is specified in the TP_name characteristic.

Before issuing the Allocate call, a program has the option of issuing one or more of
the following calls:

CALL CMSAEQ – Set_AE_Qualifier
CALL CMSAC – Set_Allocate_Confirm
CALL CMSAPT – Set_AP_Title
CALL CMSACN – Set_Application_Context_Name
CALL CMSBT – Set_Begin_Transaction
CALL CMSCSP – Set_Conversation_Security_Password
CALL CMSCST – Set_Conversation_Security_Type
CALL CMSCSU – Set_Conversation_Security_User_ID
CALL CMSCT – Set_Conversation_Type
CALL CMSID – Set_Initialization_Data
CALL CMSMID – Set_Mapped_Initialization_Data
CALL CMSMN – Set_Mode_Name
CALL CMSPLN – Set_Partner_LU_Name
CALL CMSPM – Set_Processing_Mode
CALL CMSQCF – Set_Queue_Callback_Function
CALL CMSQPM – Set_Queue_Processing_Mode
CALL CMSRC – Set_Return_Control
CALL CMSSRM – Set_Send_Receive_Mode
CALL CMSSL – Set_Sync_Level
CALL CMSTPN – Set_TP_Name
CALL CMSTC – Set_Transaction_Control

 Format
CALL CMALLC(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier of an initialized conversation.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE

124 CPI Communications Reference

 Allocate (CMALLC)

 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_RETRY_LIMIT_EXCEEDED

This value indicates that the system-specified retry limit was exceeded.
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_PARAMETER_ERROR

This value indicates one of the following:
– The mode_name characteristic (set from side information or by

Set_Mode_Name) specifies a mode name that is not recognized by the
LU as being valid.

– The mode_name characteristic (set from side information or by
Set_Mode_Name) specifies a mode name that the local program does
not have the authority to specify. For example, SNASVCMG requires
special authority with LU 6.2.

– The TP_name characteristic (set from side information or by
Set_TP_Name) specifies a transaction program name that the local
program does not have the appropriate authority to allocate a
conversation to. For example, SNA service programs require special
authority with LU 6.2. (For more information, see “SNA Service
Transaction Programs” on page 727.)

– The TP_name characteristic (set from side information or by
Set_TP_Name) specifies an SNA service transaction program and
conversation_type is set to CM_MAPPED_CONVERSATION.

– The partner_LU_name characteristic (set from side information or by
Set_Partner_LU_Name) specifies a partner LU name that is not
recognized as being valid.

– The AP_title characteristic (set from side information or using the
Set_AP_Title call) or the AE_qualifier characteristic (set from side
information or using the Set_AE_Qualifier call), or the
application_context_name characteristic (set from side information or
using the Set_Application_Context_Name call) specifies an AP title or
an AE qualifier or an application context name that is not recognized as
being valid.

– The conversation_security_type characteristic is
CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG, and
the security_password characteristic or the security_user_ID
characteristic (set from side information or by SET calls), or both, are
null.

– The conversation_security_type is set to CM_SECURITY_DISTRIBUTED
or CM_SECURITY_MUTUAL and the partner principal name (set from the
program binding) is null or is not recognized by the CRM as being valid.

– A partner_ID characteristic was provided that caused a search of the
distributed directory, but no program binding was retrieved.

– The program binding for the conversation, either specified directly on
the Set_Partner_ID call or obtained from the distributed directory, was
invalid.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Initialize state.
– The sync_level is set to CM_SYNC_POINT or

CM_SYNC_POINT_NO_CONFIRM, transaction_control is set to
CM_CHAINED_TRANSACTIONS, and the conversation's context is not in
transaction.

 Chapter 4. Call Reference 125

 Allocate (CMALLC)

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. New protected conversations cannot be
allocated for a context when it is in this condition.

– The program has issued a successful Accept_Conversation or
Accept_Incoming call on a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and using an OSI
TP CRM, and the program has not issued a Receive call on this
conversation.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_SECURITY_NOT_SUPPORTED

This value indicates that the requested conversation security type could not
be provided. This is either because the remote system does not accept the
requested type of security from the local system or because the requested
security does not transport the type of required user name identified in the
program binding.

If conversation_security_type is set to CM_SECURITY_MUTUAL, return_code can
have the following values:

 ¹ CM_SECURITY_NOT_VALID
This value indicates that the remote system rejected the conversation
startup request due to a security-related error.

 ¹ CM_SECURITY_MUTUAL_FAILED
This value indicates that the remote system could not be successfully
authenticated.

 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY

In addition, when return_control is set to CM_WHEN_SESSION_ALLOCATED,
CM_WHEN_CONWINNER_ALLOCATED, or CM_WHEN_SESSION_FREE, the
return_code can have the following values:

 ¹ CM_ALLOCATE_FAILURE_NO_RETRY
 ¹ CM_ALLOCATE_FAILURE_RETRY

If return_control is set to CM_IMMEDIATE, return_code can have the following
value:

 ¹ CM_UNSUCCESSFUL

This value indicates that the logical connection is not immediately available.

126 CPI Communications Reference

 Allocate (CMALLC)

 State Changes
For half-duplex conversations, when return_code is set to CM_OK, the conversation
enters Send state.

For full-duplex conversations, when return_code is set to CM_OK, the conversation
enters Send-Receive state.

 Usage Notes
1. An allocation error resulting from the local system’s failure to obtain a logical

connection for the conversation is reported on the Allocate call. An allocation
error resulting from the remote system’s rejection of the conversation startup
request is reported on a subsequent conversation call, unless
conversation_security_type is set to CM_SECURITY_MUTUAL. In this case, the
allocation error is reported on the Allocate call.

2. For CPI Communications to establish the conversation, CPI Communications
must first establish a logical connection between the local system and the
remote system, if such a connection does not already exist.

3. Depending on the circumstances, the local system can send the conversation
startup request to the remote system as soon as it allocates a logical
connection for the conversation. The local system can also buffer the
conversation startup request until it accumulates enough information for
transmission (from one or more subsequent Send_Data calls), or until the local
program issues a subsequent call other than Send_Data that explicitly causes
the system to flush its send buffer. The amount of information sufficient for
transmission depends on the characteristics of the logical connection allocated
for the conversation and can vary from one logical connection to another.

4. The local program can ensure that the remote program is connected as soon
as possible by issuing Flush (CMFLUS) immediately after Allocate (CMALLC).

5. A set of security parameters is established for the conversation, based on the
values of the security characteristics. See “Conversation Security” on page 51
for more information on conversation security.

6. When return_control is set to CM_IMMEDIATE, the call completes immediately,
regardless of the processing mode in effect for the Allocate call. If a logical
connection is not available, return_code is set to CM_UNSUCCESSFUL.

7. When a program allocates a conversation, the program's current context at the
time the Allocate call is issued becomes the new conversation's context. If the
program has multiple contexts (for example, as a result of accepting multiple
conversations), it must ensure that the current context is set to the appropriate
context before allocating the new conversation.

8. Initialization data specified by use of the Set_Initialization_Data (CMSID) call is
sent to the remote program along with the conversation startup request. The
remote program may extract the initialization data with the
Extract_Initialization_Data (CMEID) call.

9. Initialization data specified by the use of the Set_Mapped_Initialization_Data
(CMSMID) call is sent to the remote program along with the conversation
startup request. The remote program may extract the initialization data with the
Extract_Mapped_Initialization_Data (CMEMID) call.

 Chapter 4. Call Reference 127

 Allocate (CMALLC)

10. By using the Set_Allocate_Confirm call, the program allocating the conversation
may request notification that the remote program has confirmed its acceptance
of the conversation.

11. If a conversation is using a particular CRM type, the Allocate call tries to
establish a conversation using only the destination information for that CRM
type.

12. If a program specifies destination information for both an OSI TP CRM and an
LU 6.2 CRM but only one set of information is complete, the Allocate call tries
only the destination for which CPI Communications has complete information.
If complete destination information exists for use of both an LU 6.2 CRM and
an OSI TP CRM, the Allocate call tries to establish a logical connection using
one and then the other destination. Only if both attempts fail does the Allocate
call return either CM_ALLOCATE_FAILURE_* or CM_UNSUCCESSFUL.

13. CPI Communications programs can provide multiple program bindings for use
on Allocate:

¹ The program specifies a distinguished_name (either in side information or
using the Set_Partner_ID call) that identifies a directory object containing
multiple program bindings.

¹ The program specifies a PFID with the Set_Partner_ID call that identifies
multiple program installation objects with, possibly, multiple program
bindings.

¹ The program issues the Set_Partner_ID call with partner_ID_scope set to
CM_REFERENCE. This allows CPI Communications to locate alternative
installations of the same function if unable to establish a logical connection
using the program binding obtained from the specified DN.

¹ A program may use the Set_Partner_ID call with partner_ID_type set to
CM_PROGRAM_BINDING and provide a partner_ID characteristic that
contains multiple program bindings.

In each of these cases, CPI Communications uses all available bindings to
attempt to establish a logical connection, retrying until a logical connection is
established or all bindings have been tried. The order of bindings used is
determined by the method used. For example, a CM_REFERENCE option
implies an ordering; the DN specified should be tried first. Alternatively, some
implementations may be able to determine a “least cost” or “closest” partner
and create an ordering based on network topology. Where no ordering for the
bindings exists, random selection is enforced.

Although no retry limit is provided at the CPI Communications level, a retry limit
may be imposed by the local system to control the effects of retry. The form of
this limit is system-specific; however, if a limit exists and is reached, the
program is informed of this condition with a return code of
CM_RETRY_LIMIT_EXCEEDED on the Allocate.

14. When conversation_security_type is CM_SECURITY_DISTRIBUTED or
CM_SECURITY_MUTUAL, then the partner principal name must be set via a
program binding before the Allocate. This can be done explicitly using the
CMSPID call with partner_ID_type set to CM_PROGRAM_BINDING or implicitly
using a directory.

15. Various conversation_security_type values and required_user_name_type
values (from the program binding) cause the local CRM to reject an Allocate

128 CPI Communications Reference

 Allocate (CMALLC)

request with a return_code of CM_SECURITY_NOT_SUPPORTED. The
incompatible combinations are shown in Table 8 on page 52.

CPI Communications applications in CICS cannot be SNA service programs and,
therefore, cannot allocate on the mode names SNASVCMG or CPSVCMG. If they
attempt to do this, they get the CM_PARAMETER_ERROR return code.

 Related Information
“Contexts and Context Management” on page 32 defines contexts and discusses
how application programs can manage multiple contexts.

“Example 1: Data Flow in One Direction” on page 69 shows an example program
flow using the Allocate call to establish a half-duplex conversation.

“Data Buffering and Transmission” on page 44 discusses control methods for data
transmission.

“Example 8: Establishing a Full-Duplex Conversation” on page 84 shows an
example program flow using an Allocate call to establish a full-duplex conversation.

“Extract_Conversation_Context (CMECTX)” on page 161 discusses the context_ID
characteristic.

“Extract_Partner_ID (CMEPID)” on page 177 discusses the partner_ID
characteristic.

“Set_AE_Qualifier (CMSAEQ)” on page 280 discusses the AE_qualifier
conversation characteristic.

“Set_Allocate_Confirm (CMSAC)” on page 282 discusses the allocate_confirm
conversation characteristic and explains an option for confirming acceptance of the
conversation.

“Set_AP_Title (CMSAPT)” on page 284 discusses the AP_title conversation
characteristic.

“Set_Application_Context_Name (CMSACN)” on page 286 discusses the
application_context_name conversation characteristic.

“Set_Begin_Transaction (CMSBT)” on page 288 discusses the begin_transaction
conversation characteristic.

“Set_Conversation_Security_Password (CMSCSP)” on page 292 discusses the
security_password conversation characteristic.

“Set_Conversation_Security_Type (CMSCST)” on page 295 discusses the
conversation_security_type conversation characteristic.

“Set_Conversation_Security_User_ID (CMSCSU)” on page 298 discusses the
security_user_ID conversation characteristic.

“Set_Conversation_Type (CMSCT)” on page 301 discusses the conversation_type
characteristic.

 Chapter 4. Call Reference 129

 Allocate (CMALLC)

“Set_Initialization_Data (CMSID)” on page 312 and “Extract_Initialization_Data
(CMEID)” on page 168 discuss the initialization_data conversation characteristic.

“Set_Mode_Name (CMSMN)” on page 321 discusses the mode_name
conversation characteristic.

“Set_Partner_ID (CMSPID)” on page 323 discusses the partner_ID characteristic.

“Set_Mapped_Initialization_Data (CMSMID)” on page 318 discusses the
initialization_data conversation characteristic for mapped initialization data.

“Set_Partner_LU_Name (CMSPLN)” on page 327 discusses the partner_LU_name
conversation characteristic.

“Set_Processing_Mode (CMSPM)” on page 334 describes setting the
processing_mode conversation characteristic.

“Set_Queue_Callback_Function (CMSQCF)” on page 337 discusses how to set a
callback function and related information for a conversation queue.

“Set_Queue_Processing_Mode (CMSQPM)” on page 340 discusses how to set the
processing mode for a conversation queue.

“Set_Return_Control (CMSRC)” on page 346 discusses the return_control
characteristic.

“Set_Send_Receive_Mode (CMSSRM)” on page 349 discusses how to set the
send-receive mode for a conversation.

“Set_Sync_Level (CMSSL)” on page 354 discusses the sync_level conversation
characteristic.

“Set_TP_Name (CMSTPN)” on page 357 discusses the TP_name conversation
characteristic.

“Set_Transaction_Control (CMSTC)” on page 359 discusses the transaction_control
conversation characteristic.

“Program Binding” on page 658 describes the format of a program binding.

“SNA Service Transaction Programs” on page 727 discusses SNA service
transaction programs.

130 CPI Communications Reference

 Cancel_Conversation (CMCANC)

 Cancel_Conversation (CMCANC)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X X* X

A program uses Cancel_Conversation (CMCANC) to end a conversation
immediately. Cancel_Conversation can be issued at any time, regardless of
whether a previous operation is still in progress on the conversation.

Cancel_Conversation results in the immediate termination of any operations in
progress on the specified conversation. The terminated operations will have a
return code value of CM_CONVERSATION_CANCELLED. No other guarantees are
given on the results of the terminated operations. For example, when a
Cancel_Conversation call has been issued while a non-blocking Send_Data call is
outstanding, the program cannot determine how much data was actually moved
from the application buffer, nor can the program rely on the validity of any of the
output parameters, except the return_code, for the terminated Send_Data call.

X* In OS/2, this call is supported by Communications Server.

 Format
CALL CMCANC(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
When return_code is set to CM_OK, the conversation enters Reset state.

 Chapter 4. Call Reference 131

 Cancel_Conversation (CMCANC)

 Usage Notes
1. From the perspective of the local program, the conversation is terminated

immediately. However, CPI Communications may not be able to notify the
remote program until a later time.

2. A program is most likely to use the Cancel_Conversation call when a
conversation with an outstanding operation must be terminated immediately.

3. The remote program will be notified of the termination of the conversation with
the CM_DEALLOCATED_ABEND or CM_RESOURCE_FAILURE_RETRY return code
or, if the conversation has sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and backout is required, with the
CM_DEALLOCATED_ABEND_BO or CM_RESOURCE_FAILURE_RETRY_BO return
code.

Note: For half-duplex conversations, if the conversation is using an LU 6.2
CRM and the remote program has issued Send_Error with its end of the
conversation in Receive state, the incoming information containing notice of
CM_DEALLOCATED_ABEND is purged, and a CM_DEALLOCATED_NORMAL or
CM_DEALLOCATED_NORMAL_BO return code is reported instead of
CM_DEALLOCATED_ABEND or CM_DEALLOCATED_ABEND_BO, respectively.
See “Send_Error (CMSERR)” on page 259 for a complete discussion.

4. Program-supplied log data is not sent to the remote system as a result of a
Cancel_Conversation call.

5. When Cancel_Conversation is issued for a protected conversation, the
conversation's context may be placed in the Backout-Required condition.

6. If the Cancel_Conversation call is the first operation on the conversation
following an Accept (CMACCP) or Accept_Incoming (CMACCI) call and an OSI
TP CRM is being used, then any initialization data specified by the use of the
Set_Initialization_Data (CMSID) or Set_Mapped_Initialization_Data (CMSMID)
call is sent to the remote program.

 Related Information
“Non-Blocking Operations” on page 47 discusses the use of non-blocking
operations.

“Extract_Mapped_Initialization_Data (CMEMID)” on page 170 discusses the extract
initialization_data conversation characteristic for mapped initialization data.

“Set_Initialization_Data (CMSID)” on page 312 and “Extract_Initialization_Data
(CMEID)” on page 168 discuss the initialization_data conversation characteristic.

“Set_Mapped_Initialization_Data (CMSMID)” on page 318 discusses the
initialization_data conversation characteristic for mapped initialization data.

“Wait_For_Conversation (CMWAIT)” on page 369 and “Wait_For_Completion
(CMWCMP)” on page 366 describe the normal completion of non-blocking
operations.

132 CPI Communications Reference

 Confirm (CMCFM)

 Confirm (CMCFM)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

The Confirm (CMCFM) call is used by a local program to send a confirmation
request to the remote program and then wait for a reply. The remote program
replies with a Confirmed (CMCFMD) call. The local and remote programs use the
Confirm and Confirmed calls to synchronize their processing of data.

Notes:

1. The sync_level conversation characteristic for the conversation_ID specified
must be set to CM_CONFIRM or CM_SYNC_POINT to use this call. The
Set_Sync_Level (CMSSL) call is used to set a conversation’s synchronization
level.

2. The Confirm call can be issued only on a half-duplex conversation.

 Format
CALL CMCFM(conversation_ID,

control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received.

The control_information_received variable can have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the
local program's end of the conversation to enter Receive state, which
would place the remote program's end of the conversation in Send state.
See “Request_To_Send (CMRTS)” on page 246 for further discussion of
the local program's possible responses.

¹ CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation.

 Chapter 4. Call Reference 133

 Confirm (CMCFM)

¹ CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data.

¹ CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may
now issue an Extract_Initialization_Data (CMEID) call to receive the
initialization data.

This value will be returned with a return code of CM_OK. The program will
receive a CM_DEALLOCATED_ABEND return code on a later call on the
conversation.

¹ CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations and LU
6.2 CRM only)
The local program received a request-to-send notification from the remote
program and expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned
to the program, it will be returned in the following order:

 ¹ CM_ALLOCATE_CONFIRMED, CM_ALLOCATE_CONFIRMED_WITH_DATA,
or CM_ALLOCATE_REJECTED_WITH_DATA

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

¹ CM_OK (remote program replied Confirmed)
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

134 CPI Communications Reference

 Confirm (CMCFM)

¹ CM_SVC_ERROR_PURGING (basic conversations only)
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send , Send-Pending , or Defer-Receive

state.
– The conversation is basic and in Send state, and the program started

but did not finish sending a logical record.
– For a conversation with sync_level set to CM_SYNC_POINT, the

conversation's context is in the Backout-Required condition. The
Confirm call is not allowed for this conversation while its context is in
this condition.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The sync_level conversation characteristic is set to CM_NONE or
CM_SYNC_POINT_NO_CONFIRM.

– The conversation_ID specifies an unassigned conversation identifier.
– The send_receive_mode of the conversation is CM_FULL_DUPLEX.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

 State Changes
When return_code is set to CM_OK:

¹ The conversation enters Send state if the program issued the Confirm call with
the conversation in Send-Pending state.

¹ The conversation enters Receive state if the program issued the Confirm call
with the conversation in Defer-Receive state.

¹ No state change occurs if the program issued the Confirm call with the
conversation in Send state.

 Usage Notes
1. The program that issues Confirm waits until a reply from the remote partner

program is received. (This reply is made using the Confirmed call.)

2. The program can use this call for various application-level functions. For
example:

¹ The program can issue this call immediately following an Allocate call to
determine if the conversation was allocated before sending any data.

¹ The program can issue this call to determine if the remote program
received the data sent. The remote program can respond by issuing a
Confirmed call if it received and processed the data without error, or by
issuing a Send_Error call if it encountered an error. The only other valid
response from the remote program is the issuance of the Deallocate call

 Chapter 4. Call Reference 135

 Confirm (CMCFM)

with deallocate_type set to CM_DEALLOCATE_ABEND or the
Cancel_Conversation call.

3. The send buffer of the local system is flushed as a result of this call.

4. When control_information_received indicates that expedited data is available,
subsequent calls with this parameter will continue to return the notification until
the expedited data has been received.

 Related Information
“Example 5: Validation of Data Receipt” on page 78 shows an example program
using the Confirm call.

“Confirmed (CMCFMD)” on page 137 provides information on the remote program’s
reply to the Confirm call.

“Request_To_Send (CMRTS)” on page 246 provides a complete discussion of the
control_information_received parameter.

“Set_Allocate_Confirm (CMSAC)” on page 282 describes how a program can
request that the remote program confirm its acceptance of the conversation.

“Set_Sync_Level (CMSSL)” on page 354 explains how programs specify the level
of synchronization processing.

136 CPI Communications Reference

 Confirmed (CMCFMD)

 Confirmed (CMCFMD)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Confirmed (CMCFMD) call to send a confirmation reply to the
remote program. The local and remote programs can use the Confirmed and
Confirm calls to synchronize their processing.

A program can issue the Confirmed call on a full-duplex conversation only when
deallocating a conversation that is using an OSI TP CRM.

 Format
CALL CMCFMD(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– For a half-duplex conversation, the conversation is not in Confirm ,

Confirm-Send , or Confirm-Deallocate state.
– For a full-duplex conversation, the conversation is not in

Confirm-Deallocate state.
– For a conversation with sync_level set to CM_SYNC_POINT, the

conversation's context is in the Backout-Required condition. The
Confirmed call is not allowed for this conversation while its context is in
this condition.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The send_receive_mode is set to CM_FULL_DUPLEX and the

conversation is using an LU 6.2 CRM.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 Chapter 4. Call Reference 137

 Confirmed (CMCFMD)

 State Changes
For a half-duplex conversation, when return_code is set to CM_OK:

¹ The conversation enters Receive state if the program received the
status_received parameter set to CM_CONFIRM_RECEIVED on the preceding
Receive call—that is, if the conversation was in Confirm state.

¹ The conversation enters Send state if the program received the
status_received parameter set to CM_CONFIRM_SEND_RECEIVED on the
preceding Receive call — that is, if the conversation was in Confirm-Send
state.

¹ The conversation enters Reset state if the program received the
status_received parameter set to CM_CONFIRM_DEALLOC_RECEIVED on the
preceding Receive call—that is, if the conversation was in Confirm-Deallocate
state.

For a full-duplex conversation, when return_code is set to CM_OK, the conversation
enters Reset state if the program received a status_received value of
CM_CONFIRM_DEALLOC_RECEIVED on the preceding Receive call—that is, if the
conversation was in Confirm-Deallocate state.

 Usage Notes
1. For a half-duplex conversation, the local program can issue this call only as a

reply to a confirmation request; the call cannot be issued at any other time. A
confirmation request is generated (by the remote system) when the remote
program makes a call to Confirm. The remote program that has issued Confirm
will wait until the local program responds with Confirmed.

2. For a half-duplex conversation, the program can use this call for various
application-level functions. For example, the remote program may send data
followed by a confirmation request (using the Confirm call). When the local
program receives the confirmation request, it can issue a Confirmed call to
indicate that it received and processed the data without error.

 Related Information
“Example 5: Validation of Data Receipt” on page 78 shows an example program
using the Confirmed call.

“Confirm (CMCFM)” on page 133 provides more information on the Confirm call.

“Receive (CMRCV)” on page 213 provides more information on the status_received
parameter.

“Set_Sync_Level (CMSSL)” on page 354 explains how programs specify the level
of synchronization processing.

138 CPI Communications Reference

 Convert_Incoming (CMCNVI)

 Convert_Incoming (CMCNVI)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X X

The Convert_Incoming (CMCNVI) call is used to change the encoding of a
character string from EBCDIC to the local encoding used by the program.

X* In AIX, this call is supported in Version 3 Release 1 or later. In OS/2, this call
is supported by Communications Server.

 Format
CALL CMCNVI(buffer,

buffer_length,
return_code)

 Parameters
buffer (input/output)

Specifies the buffer containing the string to be converted. The contents of the
string will be replaced by the results of the conversion.

buffer_length (input)
Specifies the number of characters in the string to be converted.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the buffer_length is invalid for the range permitted
by the implementation.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call causes no state changes.

 Usage Notes
1. When the EBCDIC hexadecimal codes, specified in Table 60 on page 647,

represent the encoding for the data transmitted across the network, the
Convert_Incoming call can be used to convert the EBCDIC hexadecimal codes
to the corresponding local representation of the data.

2. Convert_Incoming converts data on a character-by-character basis. Since the
program may use character values beyond those defined in Table 60 on
page 647, care must be taken in the use of Convert_Incoming in that it may

 Chapter 4. Call Reference 139

 Convert_Incoming (CMCNVI)

generate implementation-dependent results if applied to a string that contains
such values.

Networking Services for Windows converts the values to X'FF'.

3. A program may be written to be independent of the encoding (such as ASCII or
EBCDIC) of the partner program by sending and receiving EBCDIC data
records with the help of the Convert_Outgoing and Convert_Incoming calls.
The sending program calls Convert_Outgoing to convert the data record to
EBCDIC before sending it. The receiving program calls Convert_Incoming to
convert the EBCDIC data record to the appropriate encoding for its
environment.

4. If the local encoding is EBCDIC, the Convert_Incoming call does not change
the buffer contents.

 Related Information
“Data Conversion” on page 43 provides information about data conversion and the
Convert_Incoming call.

“Convert_Outgoing (CMCNVO)” on page 141 provides information about the
Convert_Outgoing call.

“Receive_Mapped_Data (CMRCVM)” on page 231 provides information about
receiving mapped partner data.

“Send_Mapped_Data (CMSNDM)” on page 271 provides information about sending
mapped partner data.

140 CPI Communications Reference

 Convert_Outgoing (CMCNVO)

 Convert_Outgoing (CMCNVO)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X X

The Convert_Outgoing (CMCNVO) call is used to change the encoding of a
character string to EBCDIC from the local encoding used by the program.

X* In AIX, this call is supported in Version 3 Release 1 or later. In OS/2, this call
is supported by Communications Server.

 Format
CALL CMCNVO(buffer,

buffer_length,
return_code)

 Parameters
buffer (input/output)

Specifies the buffer containing the string to be converted. The contents of the
string will be replaced by the results of the conversion.

buffer_length (input)
Specifies the number of characters in the string to be converted.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the buffer_length is invalid for the range permitted
by the implementation.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call causes no state changes.

 Usage Notes
1. When the EBCDIC hexadecimal codes, specified in Table 60 on page 647,

represent the encoding for the data transmitted across the network, the
Convert_Outgoing call can be used to convert the data supplied by the program
from the local encoding to the corresponding EBCDIC hexadecimal codes.

2. Convert_Outgoing converts data on a character-by-character basis. Since the
program may use character values beyond those defined in Table 60 on
page 647, care must be taken in the use of Convert_Outgoing in that it may

 Chapter 4. Call Reference 141

 Convert_Outgoing (CMCNVO)

generate implementation-dependent results if applied to a string which contains
such values.

Networking Services for Windows converts the values to X'FF'.

3. A program may be written to be independent of the encoding (such as ASCII or
EBCDIC) of the partner program by sending and receiving EBCDIC data
records with the help of the Convert_Outgoing and Convert_Incoming calls.
The sending program calls Convert_Outgoing to convert the data record to
EBCDIC before sending it. The receiving program calls Convert_Incoming to
convert the EBCDIC data record to the appropriate encoding for its
environment.

4. If the local encoding is EBCDIC, the Convert_Outgoing call does not change
the buffer contents.

 Related Information
“Data Conversion” on page 43 provides information about data conversion and the
Convert_Outgoing call.

“Convert_Incoming (CMCNVI)” on page 139 provides information about the
Convert_Incoming call.

“Receive_Mapped_Data (CMRCVM)” on page 231 provides information about
receiving mapped partner data.

“Send_Mapped_Data (CMSNDM)” on page 271 provides information about sending
mapped partner data.

142 CPI Communications Reference

 Deallocate (CMDEAL)

 Deallocate (CMDEAL)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Deallocate (CMDEAL) call to end a conversation. The
conversation_ID is no longer assigned when the conversation is deallocated as part
of this call.

For a half-duplex conversation, the deallocation can either be completed as part of
this call or deferred until the program issues a resource recovery call. If the
Deallocate call includes the function of the Flush or Confirm call, depending on the
deallocate_type characteristic, the deallocation is completed as part of this call.

For a full-duplex conversation, the deallocation may be deferred until the program
issues a resource recovery commit call. If the Deallocate call includes abnormal
deallocation or the function of the Confirm call, depending on the deallocate_type
characteristic, the deallocation is completed as part of this call. If the Deallocate
call includes the function of the Flush call, depending on the deallocate_type
characteristic, then the program can no longer send data to the partner. The
deallocation is completed if the conversation was in Send-Only state before this
call. Otherwise, the conversation goes to Receive-Only state. In this latter case,
the deallocation is completed when a terminating error condition occurs, either this
program or the partner program deallocates the conversation abnormally or cancels
it, or the partner program deallocates the conversation using the function of the
Flush call.

Before issuing the Deallocate call, a program has the option of issuing one or both
of the following calls to set deallocation parameters:

CALL CMSDT – Set_Deallocate_Type
CALL CMSLD – Set_Log_Data

 Format
CALL CMDEAL(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier of the conversation to be ended.

return_code (output)
Specifies the result of the call execution.

 Chapter 4. Call Reference 143

 Deallocate (CMDEAL)

The following return codes apply to half-duplex conversations .

For any of the following conditions:

– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either
sync_level is set to CM_NONE or the conversation is in Initialize-Incoming
state

– deallocate_type is set to CM_DEALLOCATE_FLUSH
– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set

to CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently
included in a transaction

the return_code variable can have one of the following values:

¹ CM_OK (deallocation is completed)
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send , Send-Pending or Initialize-Incoming

state.
– The conversation is basic and in Send state; and the program started

but did not finish sending a logical record.
– The deallocate_type is set to CM_DEALLOCATE_FLUSH, and the

conversation is currently included in a transaction.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

If the deallocate_type conversation characteristic is set to
CM_DEALLOCATE_ABEND, the return_code variable can have one of the
following values:

¹ CM_OK (deallocation is completed)
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

For any of the following conditions:

– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and the sync_level
is set to CM_CONFIRM

– deallocate_type is set to CM_DEALLOCATE_CONFIRM
– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set

to CM_SYNC_POINT, but the conversation is not currently included in a
transaction

the return_code variable can have one of the following values:

¹ CM_OK (deallocation is completed)
 ¹ CM_OPERATION_INCOMPLETE

144 CPI Communications Reference

 Deallocate (CMDEAL)

 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

 ¹ CM_SVC_ERROR_PURGING
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send or Send-Pending state.
– The conversation is basic and in Send state; and the program started

but did not finish sending a logical record.
– The deallocate_type is set to CM_DEALLOCATE_CONFIRM, and the

conversation is currently included in a transaction.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

If the deallocate_type conversation characteristic is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction, the return_code variable can have one of the following values:

 ¹ CM_OK
Deallocation is deferred until the program issues a resource recovery
commit call. If the commit call is successful, the conversation will be
deallocated normally. If the commit is not successful or if the program
issues a resource recovery backout call instead of a commit, the
conversation will not be deallocated. Instead, the conversation will be
restored to the state it was in at the previous synchronization point.

Table 70 on page 710 and Table 71 on page 711 show how resource
recovery calls affect CPI Communications conversation states.

 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send or Send-Pending state.
– The conversation is basic and in Send state, and the program started

but did not finish sending a logical record.
– The conversation's context is in the Backout-Required condition.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

 Chapter 4. Call Reference 145

 Deallocate (CMDEAL)

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation is using an OSI TP CRM, and the program is not the

superior for the conversation.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following return codes apply to full-duplex conversations .

For any of the following conditions:

– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either
sync_level is set to CM_NONE or the conversation is in Initialize-Incoming
state

– deallocate_type is set to CM_DEALLOCATE_FLUSH
– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set

to CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently
included in a transaction

the return_code variable can have one of the following values:

 ¹ CM_OK
Deallocation is completed if this call was issued in Send-Only or
Initialize-Incoming state. Otherwise, the call was issued in Send-Receive
state and the conversation goes to Receive-Only state. In this latter case,
the conversation will later get deallocated when a terminating error
condition occurs, either this program or the partner program deallocates the
conversation abnormally or cancels it, or the partner program deallocates
the conversation using the function of the Flush call.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send-Receive or Send-Only or
Initialize-Incoming state.

– The conversation is basic and in Send-Receive or Send-Only state,
and the program started but did not finish sending a logical record.

– The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

– The deallocate_type is set to CM_DEALLOCATE_FLUSH, and the
conversation is currently included in a transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_ALLOCATION_ERROR
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_TIMER
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

146 CPI Communications Reference

 Deallocate (CMDEAL)

If the deallocate_type conversation characteristic is set to
CM_DEALLOCATE_ABEND, the return_code variable can have one of the
following values:

¹ CM_OK (deallocation is completed)
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

If the deallocate_type conversation characteristic is set to
CM_DEALLOCATE_CONFIRM, the return_code variable can have one of the
following values:

¹ CM_OK (deallocation is completed)
 ¹ CM_DEALLOCATE_CONFIRM_REJECT

This value indicates that the partner program rejected the confirmation
request. The conversation is not deallocated.

 ¹ CM_ALLOCATION_ERROR
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send-Receive state.
– The conversation is basic and in Send-Receive state, and the program

started but did not finish sending a logical record.
– The local program has received a status_received value of

CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

– The deallocate_type is set to CM_DEALLOCATE_CONFIRM, and the
conversation is currently included in a transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_OPERATION_NOT_ACCEPTED

If the deallocate_type conversation characteristic is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction, the return_code variable can have one of the following values:

 ¹ CM_OK
Deallocation is deferred until the program issues a resource recovery
commit call. If the commit call is successful, the conversation will be
deallocated normally. If the commit is not successful or if the program
issues a resource recovery backout call instead of a commit, the
conversation will not be deallocated. Instead, the conversation will be
restored to the state it was in at the previous synchronization point.

 Chapter 4. Call Reference 147

 Deallocate (CMDEAL)

Table 70 on page 710 and Table 71 on page 711 show how resource
recovery calls affect CPI Communications conversation states.

 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send-Receive state.
– The conversation is basic and in Send-Receive state, and the program

started but did not finish sending a logical record.
– The conversation's context is in the Backout-Required condition.
– The local program has received a status_received value of

CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation is using an OSI TP CRM, and the program is not the

superior for the conversation.
 ¹ CM_ALLOCATION_ERROR
 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_DEALLOCATED_ABEND_SVC_BO
 ¹ CM_DEALLOCATED_ABEND_TIMER_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_INCLUDE_PARTNER_REJECT_BO
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
For half-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Reset state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and either sync_level is set to CM_NONE or the
conversation is in Initialize-Incoming state, or if deallocate_type is set to
CM_DEALLOCATE_FLUSH, CM_DEALLOCATE_CONFIRM, or
CM_DEALLOCATE_ABEND.

¹ The conversation enters Reset state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently included
in a transaction.

¹ The conversation enters Defer-Deallocate state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

For full-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Reset state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and either sync_level is set to CM_NONE or the
conversation is in Initialize-Incoming state, or if deallocate_type is set to
CM_DEALLOCATE_CONFIRM or CM_DEALLOCATE_ABEND.

148 CPI Communications Reference

 Deallocate (CMDEAL)

¹ The conversation enters Reset state if deallocate_type is set to
CM_DEALLOCATE_FLUSH, or if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included in
a transaction, and the current state is Send-Only state.

¹ The conversation enters Receive-Only state if deallocate_type is set to
CM_DEALLOCATE_FLUSH, or if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included in
a transaction, and the current state is Send-Receive state.

¹ The conversation enters Defer-Deallocate state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

 Usage Notes
1. The execution of Deallocate includes the flushing of the local system's send

buffer if any of the following conditions is true:

– deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM

– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is
CM_NONE or CM_CONFIRM

– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but the
conversation is not currently included in a transaction.

If deallocate_type is CM_DEALLOCATE_SYNC_LEVEL, sync_level is
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and the conversation is
included in a transaction, the local system's send buffer will not be flushed until
a resource recovery commit or backout call is issued by the program or the
sync point manager.

2. If a conversation has sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, CPI Communications does not allow the
conversation to be deallocated with a deallocate_type of
CM_DEALLOCATE_CONFIRM or CM_DEALLOCATE_FLUSH unless
transaction_control is set to CM_UNCHAINED_TRANSACTIONS and the
conversation is not currently included in a transaction.

3. If deallocate_type is set to CM_DEALLOCATE_ABEND and the log_data_length
characteristic is greater than zero, the system formats the supplied log data into
the appropriate format. The data supplied by the program is any data the
program wants to have logged. The data is logged on the local system's error
log and is also sent to the remote system for logging there.

4. The remote program receives the deallocate notification by means of a
return_code or status_received indication, as follows:

 ¹ CM_DEALLOCATED_NORMAL return_code
This return code indicates that the local program issued Deallocate with the
deallocate_type set to CM_DEALLOCATE_FLUSH, or with the
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and sync_level set
to CM_NONE, or with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level set to

 Chapter 4. Call Reference 149

 Deallocate (CMDEAL)

CM_SYNC_POINT_NO_CONFIRM, and the conversation not currently
included in a transaction.

For a full-duplex conversation, this return code is returned on the Receive
call, and if the conversation is using an OSI TP CRM, it is also returned on
calls associated with the Send queue.

 ¹ CM_DEALLOCATED_ABEND return_code
This indicates that the local program issued Deallocate with deallocate_type
set to CM_DEALLOCATE_ABEND.

For a full-duplex conversation, this return code is returned on the Receive
call, and if the conversation is using an OSI TP CRM, it is also returned on
some calls associated with the Send queue.

Note: For a half-duplex conversation, if the conversation is using an LU
6.2 CRM and the remote program has issued Send_Error with its end of
the conversation in Receive state, the incoming information containing
notice of CM_DEALLOCATED_ABEND is purged and a
CM_DEALLOCATED_NORMAL return_code is reported instead of
CM_DEALLOCATED_ABEND. See “Send_Error (CMSERR)” on page 259 for
a complete discussion.

 ¹ CM_DEALLOCATED_ABEND_BO return_code
This indicates that the local program issued Deallocate with the
deallocate_type set to CM_DEALLOCATE_ABEND and with the conversation
included in a transaction.

Note: For a half-duplex conversation, if the conversation is using an LU
6.2 CRM and the remote program has issued Send_Error with its end of
the conversation in Receive state, the incoming information containing
notice of CM_DEALLOCATED_ABEND_BO is purged and a
CM_DEALLOCATED_NORMAL_BO return_code is reported instead of
CM_DEALLOCATED_ABEND_BO. See “Send_Error (CMSERR)” on
page 259 for a complete discussion.

¹ CM_CONFIRM_DEALLOC_RECEIVED status_received indication
This indicates that the local program issued Deallocate with the
deallocate_type set to CM_DEALLOCATE_CONFIRM, or with deallocate_type
set to CM_DEALLOCATE_SYNC_LEVEL and sync_level set to CM_CONFIRM,
or with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level set to CM_SYNC_POINT, but with the conversation not currently
included in a transaction.

¹ CM_TAKE_COMMIT_DEALLOCATE status_received indication
This indicates that the local program issued a resource recovery commit
call after issuing a Deallocate call with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a
transaction.

5. The program should terminate all conversations before the end of the program.
However, if the program does not terminate all conversations, node services
will abnormally deallocate any dangling conversations. The way abnormal
deallocation is accomplished is implementation-specific.

6. When a Deallocate call is issued with deallocate_type set to
CM_DEALLOCATE_ABEND and sync_level set to CM_SYNC_POINT or

150 CPI Communications Reference

 Deallocate (CMDEAL)

CM_SYNC_POINT_NO_CONFIRM, the conversation's context may be placed in
the Backout-Required condition.

7. If the conversation is using an OSI TP CRM and the Deallocate call with
deallocate_type of CM_DEALLOCATE_ABEND is the first operation on the
specified conversation following an Accept_Conversation (CMACCP) or
Accept_Incoming (CMACCI) call, then any initialization data specified by use of
the Set_Initialization_Data call is sent to the remote program.

8. If the Deallocate call on a full-duplex conversation is issued with the
deallocate_type set to CM_DEALLOCATE_ABEND, the conversation is
deallocated.

If the conversation is not currently included in a transaction, outstanding calls
associated with both the local and the remote programs get return codes as
follows:

At the local program, all outstanding operations are terminated. No guarantee
is given on the results of the terminated operation.

At the remote program,

¹ Other than Confirmed and Set calls, a new or outstanding call associated
with the Send queue gets CM_DEALLOCATED_ABEND, and the conversation
goes to Receive-Only or Reset state if it was in Send-Receive or
Send-Only state, respectively.

¹ Any data sent by the partner before it issued the Deallocate call can be
received, after which the next Receive call will get
CM_DEALLOCATED_ABEND. The conversation is now in Reset state.

¹ Calls associated with the Expedited-Send queue until the conversation
goes to Reset state get CM_CONVERSATION_ENDING. An outstanding call
is terminated when the conversation goes to Reset state. No guarantee is
given on the results of the terminated operation.

¹ Calls associated with the Expedited-Receive queue until the conversation
goes to Reset state get CM_CONVERSATION_ENDING after any available
expedited data has been received. An outstanding call is terminated when
the conversation goes to Reset state. No guarantee is given on the results
of the terminated operation.

If the conversation is currently included in a transaction, then calls associated
with the local Receive queue and the remote Receive queue, as well as certain
calls associated with the remote Send queue, get
CM_DEALLOCATED_ABEND_BO and the conversation goes to Reset state.
Calls associated with the expedited data queues get the same return codes as
when the conversation is not included in a transaction.

9. For a full-duplex conversation in Send-Receive state, when
CM_DEALLOCATED_ABEND is returned to a call associated with the Send
queue, the program can terminate the conversation by issuing Receive calls
until it gets the CM_DEALLOCATED_ABEND return code that takes it to Reset
state, or by issuing a Deallocate call with deallocate_type set to
CM_DEALLOCATED_ABEND.

10. For a full-duplex conversation, if any of the following conditions is true:

– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_NONE

– deallocate_type is set to CM_DEALLOCATE_FLUSH

 Chapter 4. Call Reference 151

 Deallocate (CMDEAL)

– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently
included in a transaction

then the program can no longer send data on the conversation when a
Deallocate call issued in Send-Receive state completes, and the
conversation_ID is no longer assigned when a Deallocate call issued in
Send-Only state completes.

If deallocate_type is set to CM_DEALLOCATE_CONFIRM, or if deallocate_type is
set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to CM_SYNC_POINT
but the conversation is not currently included in a transaction, then the
conversation_ID is no longer assigned when the conversation is deallocated
after confirmation.

If deallocate_type is CM_DEALLOCATE_ABEND, then the conversation_ID is no
longer assigned when the conversation is deallocated as part of this call.

 Related Information
“Example 1: Data Flow in One Direction” on page 69 shows an example program
flow using the Deallocate call for a half-duplex conversation.

“Example 10: Terminating a Full-Duplex Conversation” on page 88 shows how a
full-duplex conversation can be deallocated.

“Set_Deallocate_Type (CMSDT)” on page 303 discusses the deallocate_type
characteristic and its possible values.

“Set_Log_Data (CMSLD)” on page 316 discusses the log_data characteristic.

152 CPI Communications Reference

 Deferred_Deallocate (CMDFDE)

 Deferred_Deallocate (CMDFDE)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program uses the Deferred_Deallocate (CMDFDE) call to end a conversation
upon successful completion of the current transaction.

Deferred_Deallocate may be issued at any time during the transaction. Unlike the
Deallocate call, it does not need to be the last call on the conversation.
Deferred_Deallocate does not invalidate the conversation identifier.

Note: The Deferred_Deallocate (CMDFDE) call has meaning only when an OSI
TP CRM is being used for the conversation.

 Format
CALL CMDFDE(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– This value indicates the conversation_ID specifies an unassigned

identifier.
– The conversation is not using an OSI TP CRM.
– The program is not the superior for the conversation.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send or Send-Pending state (for half-duplex
conversations) or Send-Receive state (for full-duplex conversations).

– The conversation is not currently included in a transaction.
 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_INCLUDE_PARTNER_REJECT_BO
 ¹ CM_OPERATION_NOT_ACCEPTED

 Chapter 4. Call Reference 153

 Deferred_Deallocate (CMDFDE)

 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following return codes apply to half-duplex conversations .

 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_PROGRAM_ERROR_PURGING

The following return code applies to full-duplex conversations .

 ¹ CM_ALLOCATION_ERROR

 State Changes
This call does not cause an immediate state change. However, one of the
following occurs after the transaction completes:

¹ If the transaction completes successfully, the conversation enters Reset state
and the conversation_id is no longer assigned.

¹ If the transaction does not complete successfully, the conversation returns to
the state it was in at the beginning of the transaction, and the conversation_id
remains valid. If the conversation was initialized during the transaction, the
conversation returns to the state it was in following conversation establishment.

 Usage Notes
1. Once a commit call completes successfully for this transaction, a

Deferred_Deallocate call performs the same function as a Deallocate
(CMDEAL) call with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level set to either CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

2. If the transaction does not complete successfully and is backed out, longer in
effect.

 Related Information
“Deallocate (CMDEAL)” on page 143 discusses conversation deallocation in more
detail.

154 CPI Communications Reference

 Extract_AE_Qualifier (CMEAEQ)

 Extract_AE_Qualifier (CMEAEQ)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

The local program uses the Extract_AE_Qualifier (CMEAEQ) call to extract the
AE_qualifier conversation characteristic for a given conversation. The value is
returned to the application in the AE_qualifier parameter.

The AE_qualifier conversation characteristic identifies the OSI application-entity
qualifier associated with the remote program.

 Format
CALL CMEAEQ(conversation_ID,

AE_qualifier,
AE_qualifier_length,
AE_qualifier_format,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

AE_qualifier (output)
Specifies the variable containing the application-entity-qualifier for the remote
program. The variable must be defined with a length of at least 1024 bytes.

Note: Unless return_code is set to CM_OK, the value of AE_qualifier is not
meaningful.

AE_qualifier_length (output)
Specifies the variable containing the length of the returned AE_qualifier
parameter.

Note: Unless return_code is set to CM_OK, the value of AE_qualifier_length is
not meaningful.

AE_qualifier_format (output)
Specifies the variable containing the format of the returned AE_qualifier
parameter. The AE_qualifier_format variable can have one of the following
values:

 ¹ CM_DN
Specifies that the AE_qualifier is a distinguished name.

 ¹ CM_INT_DIGITS
Specifies that the AE_qualifier is an integer represented as a sequence of
decimal digits.

Note: Unless return_code is set to CM_OK, the value of AE_qualifier_format is
not meaningful.

 Chapter 4. Call Reference 155

 Extract_AE_Qualifier (CMEAEQ)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. This call does not change the AE_qualifier, AE_qualifier_length, or

AE_qualifier_format for the specified conversation.

2. The AE_qualifier may be either a distinguished name or an integer represented
as a sequence of decimal digits. Distinguished names may have any format
and syntax that can be recognized by the local system.

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED.

 Related Information
“Set_AE_Qualifier (CMSAEQ)” on page 280 and “Side Information” on page 23
provide more information on the AE_qualifier conversation characteristic.

156 CPI Communications Reference

 Extract_AP_Title (CMEAPT)

 Extract_AP_Title (CMEAPT)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program uses the Extract_AP_Title (CMEAPT) call to extract the AP_title
characteristic for a given conversation. The value is returned to the application in
the AP_title parameter.

The AP_title conversation characteristic identifies the OSI application-process title
associated with the remote program.

 Format
CALL CMEAPT(conversation_ID,

AP_title,
AP_title_length,
AP_title_format,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

AP_title (output)
Specifies the variable containing the title of the application-process where the
remote program is located. The variable must be defined with a length of at
least 1024 bytes.

Note: Unless return_code is set to CM_OK, the value of AP_title is not
meaningful.

AP_title_length (output)
Specifies the variable containing the length of the returned AP_title parameter.

Note: Unless return_code is set to CM_OK, the value of AP_title_length is not
meaningful.

AP_title_format (output)
Specifies the variable containing the format of the returned AP_title parameter.
The AP_title_format variable can have one of the following values:

 ¹ CM_DN
Specifies that the AP_title is a distinguished name.

 ¹ CM_OID
Specifies that the AP_title is an object identifier.

Note: Unless return_code is set to CM_OK, the value of AP_title_format is not
meaningful.

 Chapter 4. Call Reference 157

 Extract_AP_Title (CMEAPT)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. This call does not change the AP_title, AP_title_length, or AP_title_format for

the specified conversation.

2. The AP_title may be either a distinguished name or an object identifier.
Distinguished names may have any format and syntax that can be recognized
by the local system. Object identifiers are represented as a series of digits by
periods (for example, n.nn.n.nnn).

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Set_AP_Title (CMSAPT)” on page 284 and “Side Information” on page 23 provide
more information on the AP_title conversation characteristic.

158 CPI Communications Reference

 Extract_Application_Context_Name (CMEACN)

 Extract_Application_Context_Name (CMEACN)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Extract_Application_Context_Name (CMEACN) is used by a program to extract the
application_context_name characteristic for a given conversation. The value is
returned to the application in the application_context_name parameter.

The application_context_name conversation characteristic identifies the OSI
application context used on the conversation.

 Format
CALL CMEACN(conversation_ID,

application_context_name,
application_context_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

application_context_name (output)
Specifies the application context name that is to be used on the conversation.
The variable must be defined with a length of at least 256 bytes.

Note: Unless return_code is set to CM_OK, the value of
application_context_name is not meaningful.

application_context_name_length (output)
Specifies the length of the application context name that is to be used on the
conversation.

Note: Unless return_code is set to CM_OK, the value of
application_context_name_length is not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 Chapter 4. Call Reference 159

 Extract_Application_Context_Name (CMEACN)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. This call does not change the application_context_name or the

application_context_name_length conversation characteristic for the specified
conversation.

2. The application context name is an object identifier and is represented as a
series of digits separated by periods. For example, the application context
defined by the Open Systems Environment Implementers' Workshop (OIW) for
UDT with Commit Profiles is represented as "1.3.14.15.5.1.0" and the
application context for Application Supported Transactions using UDT is
represented as "1.3.14.15.5.2.0".

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Set_Application_Context_Name (CMSACN)” on page 286 and “Side Information”
on page 23 provide more information on the application_context_name
conversation characteristic.

160 CPI Communications Reference

 Extract_Conversation_Context (CMECTX)

 Extract_Conversation_Context (CMECTX)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X* X

Extract_Conversation_Context (CMECTX) is used by a program to extract the
context identifier for a conversation.

The conversation_context conversation characteristic identifies which partner
program is associated with the work being done by the local program.

X* In AIX, this call is supported in Version 3 Release 1 or later. In OS/2, this call
is supported in Communications Server.

 Format
CALL CMECTX(conversation_ID,

context_ID,
context_ID_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

context_ID (output)
Specifies the variable containing the context identifier for this conversation. The
variable must be defined with a length of at least 32 bytes.

Note: Unless return_code is set to CM_OK, the value of context_ID is not
meaningful.

context_ID_length (output)
Specifies the variable containing the length of the returned context_ID
parameter.

Note: Unless return_code is set to CM_OK, the value of context_ID_length is
not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize or
Initialize-Incoming state.

 Chapter 4. Call Reference 161

 Extract_Conversation_Context (CMECTX)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call does not change the context_ID for the specified conversation.

2. A program may want to determine the context for a conversation prior to
allocating a new conversation. The program would issue
Extract_Conversation_Context to get the context_ID and then would use node
services to set that context as the current context prior to issuing the Allocate
call for the new conversation.

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Contexts and Context Management” on page 32 defines contexts and discusses
how application programs can manage multiple contexts.

162 CPI Communications Reference

 Extract_Conversation_State (CMECS)

 Extract_Conversation_State (CMECS)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Extract_Conversation_State (CMECS) call to extract the
conversation state for a given conversation. The value is returned in the
conversation_state parameter.

The conversation_state conversation characteristic identifies the state of the
conversation with respect to the local program.

 Format
CALL CMECS(conversation_ID,

conversation_state,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_state (output)
Specifies the conversation state that is returned to the local program. For
half-duplex conversations, the conversation_state can be one of the following:

 ¹ CM_INITIALIZE_STATE
 ¹ CM_SEND_STATE
 ¹ CM_RECEIVE_STATE
 ¹ CM_SEND_PENDING_STATE
 ¹ CM_CONFIRM_STATE
 ¹ CM_CONFIRM_SEND_STATE
 ¹ CM_CONFIRM_DEALLOCATE_STATE
 ¹ CM_DEFER_RECEIVE_STATE
 ¹ CM_DEFER_DEALLOCATE_STATE
 ¹ CM_SYNC_POINT_STATE
 ¹ CM_SYNC_POINT_SEND_STATE
 ¹ CM_SYNC_POINT_DEALLOCATE_STATE
 ¹ CM_INITIALIZE_INCOMING_STATE
 ¹ CM_PREPARED_STATE

For full-duplex conversations, the conversation_state can be one of the
following:

 ¹ CM_INITIALIZE_STATE
 ¹ CM_CONFIRM_DEALLOCATE_STATE
 ¹ CM_DEFER_DEALLOCATE_STATE
 ¹ CM_SYNC_POINT_STATE
 ¹ CM_SYNC_POINT_DEALLOCATE_STATE

 Chapter 4. Call Reference 163

 Extract_Conversation_State (CMECS)

 ¹ CM_INITIALIZE_INCOMING_STATE
 ¹ CM_SEND_ONLY_STATE
 ¹ CM_RECEIVE_ONLY_STATE
 ¹ CM_SEND_RECEIVE_STATE
 ¹ CM_PREPARED_STATE

Notes:

¹ Unless return_code is set to CM_OK, the value of conversation_state is not
meaningful.

¹ The following conversation_state values are returned only on CICS, OS/400,
and VM, because these systems support a sync_level of CM_SYNC_POINT:

 – CM_DEFER_RECEIVE_STATE
 – CM_DEFER_DEALLOCATE_STATE
 – CM_SYNC_POINT_STATE
 – CM_SYNC_POINT_SEND_STATE
 – CM_SYNC_POINT_DEALLOCATE_STATE

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:.

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This return code indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_TAKE_BACKOUT
This value is returned only when all of the following conditions are true:

– The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

– The conversation is not in Initialize , Initialize-Incoming ,
Confirm-Deallocate , Send-Only , or Receive-Only state.

– The conversation's context is in the Backout-Required condition.
– The program is using protected resources that must be backed out.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call can be used to discover the state of a conversation after it has been

backed out during a resource recovery backout operation.

2. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

164 CPI Communications Reference

 Extract_Conversation_State (CMECS)

 Related Information
“Support for Resource Recovery Interfaces” on page 54 provides more information
on using resource recovery interfaces.

 Chapter 4. Call Reference 165

 Extract_Conversation_Type (CMECT)

 Extract_Conversation_Type (CMECT)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Extract_Conversation_Type (CMECT) call to extract the
conversation_type characteristic's value for a given conversation. The value is
returned in the conversation_type parameter.

The conversation_type conversation characteristic identifies whether the data
exchange on the conversation will follow basic or mapped rules.

 Format
CALL CMECT(conversation_ID,

conversation_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_type (output)
Specifies the conversation type that is returned to the local program. The
conversation_type can be one of the following:

 ¹ CM_BASIC_CONVERSATION
Indicates that the conversation is allocated as a basic conversation.

 ¹ CM_MAPPED_CONVERSATION
Indicates that the conversation is allocated as a mapped conversation.

Note: Unless return_code is set to CM_OK, the value of conversation_type is
not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This return code indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

166 CPI Communications Reference

 Extract_Conversation_Type (CMECT)

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call does not change the conversation_type for the specified conversation.

2. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Set_Conversation_Type (CMSCT)” on page 301 provides more information on the
conversation_type characteristic.

 Chapter 4. Call Reference 167

 Extract_Initialization_Data (CMEID)

 Extract_Initialization_Data (CMEID)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program uses the Extract_Initialization_Data (CMEID) call to extract the
initialization_data and initialization_data_length conversation characteristics
received from the remote program for a given conversation. The values are
returned to the program in the initialization_data and initialization_data_length
parameters.

The initialization_data conversation characteristic contains program-supplied data
that is sent to, or received from, the remote program during conversation
initialization.

The Extract_Initialization_Data call is used by the recipient of the conversation to
extract the incoming initialization data received from the initiator of the
conversation. It may be issued following the Accept_Conversation or
Accept_Incoming call.

When the conversation is using an OSI TP CRM, the Extract_Initialization_Data call
may also be used by the initiator of the conversation to extract the incoming
initialization data from the recipient of the conversation. In this case, the call may
be issued following receipt of a control_information_received value of
CM_ALLOCATE_CONFIRMED_WITH_DATA or CM_ALLOCATE_REJECTED_WITH_DATA.

 Format
CALL CMEID(conversation_ID,

initialization_data,
requested_length,
initialization_data_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

initialization_data (output)
Specifies the variable containing the initialization data. Initialization data may
be from 0 to 10000 bytes.

Note: Unless return_code is set to CM_OK, the value of initialization_data is
not meaningful.

requested_length (input)
Specifies the length of the initialization_data variable to contain the initialization
data.

168 CPI Communications Reference

 Extract_Initialization_Data (CMEID)

initialization_data_length (output)
If return_code is CM_OK, the output value of this parameter specifies the size of
the initialization_data variable in bytes. If return_code is
CM_BUFFER_TOO_SMALL, this parameter indicates the size of the
initialization_data to be extracted.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned identifier.
– The requested_length specifies a value less than 0.

 ¹ CM_BUFFER_TOO_SMALL
The requested_length specifies a value that is less than the size of the
initialization_data characteristic to be extracted. The initialization_data
characteristic is not returned, but the initialization_data_length parameter is
set to indicate the size required.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. This call does not change the value of the initialization_data or the

initialization_data_length characteristic for the specified conversation.

2. The program that initiates the conversation (issues Initialize_Conversation)
must set allocate_confirm to CM_ALLOCATE_CONFIRM if it is expecting
initialization data to be returned from the remote program following its
confirmation of acceptance of the conversation.

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Extract_Mapped_Initialization_Data (CMEMID)” on page 170 describes information
about extracting the initialization_data conversation characteristic for mapped
initialization data.

“Set_Mapped_Initialization_Data (CMSMID)” on page 318 describes how the
initialization data is set by the remote program.

 Chapter 4. Call Reference 169

 Extract_Mapped_Initialization_Data (CMEMID)

 Extract_Mapped_Initialization_Data (CMEMID)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program uses the Extract_Mapped_Initialization_Data (CMEMID) call to extract
the initialization_data and initialization_data_length conversation characteristics
received from the remote program for a given conversation after they have been
processed by the underlying map routine. The map_name identifies the data so
that it can be processed properly. The values are returned to the program in the
initialization_data and initialization_data_length parameters.

The initialization_data conversation characteristic contains program-supplied data
that is sent to, or received from, the remote program during conversation
initialization.

The Extract_Mapped_Initialization_Data call is used by the recipient of the
conversation to extract the incoming initialization data received from the initiator of
the conversation and transformed by the underlying map routine. It may be issued
following the Accept_Conversation or Accept_Incoming call.

The Extract_Mapped_Initialization_Data call may be used by the initiator of the
conversation to extract the incoming initialization data from the recipient of the
conversation after it has been processed by the U-ASE. The
Extract_Initialization_Data call may also be used by the initiator of the conversation
to extract the incoming initialization data from the recipient of the conversation. In
this case, the call may be issued following receipt of a control_information_received
value of CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA.

 Format
CALL CMEMID(conversation_ID,

map_name,
map_name_length,
initialization_data,
requested_length,
initialization_data_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

map_name (output)
Specifies the variable containing the mapping function used to decode the data
record. The length of the variable must be at least 64 bytes.

170 CPI Communications Reference

 Extract_Mapped_Initialization_Data (CMEMID)

map_name_length (output)
Specifies the variable containing the length of the returned_map name
parameter.

Note: Unless return_code is set to CM_OK, the value of initialization_data is
not meaningful.

requested_length (input)
Specifies the length of the initialization_data variable to contain the initialization
data.

initialization_data_length (output)
If return_code is CM_OK, the output value of this parameter specifies the size of
the initialization_data variable in bytes. If return_code is
CM_BUFFER_TOO_SMALL, this parameter indicates the size of the
initialization_data to be extracted.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned identifier.
– The requested_length specifies a value less than 0.
– The conversation_type characteristic is set to

CM_BASIC_CONVERSATION.
 ¹ CM_BUFFER_TOO_SMALL

The requested_length specifies a value that is less than the size of the
initialization_data characteristic to be extracted. The initialization_data
characteristic is not returned, but the initialization_data_length parameter is
set to indicate the size required.

 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED
The received data requires a map routine that the local map function does
not support. The buffer contains the unprocessed user data.

 ¹ CM_MAP_ROUTINE_ERROR
The map routine encountered a problem with the received data. The buffer
contains the unprocessed user data.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Chapter 4. Call Reference 171

 Extract_Mapped_Initialization_Data (CMEMID)

 Usage Notes
1. This call does not change the value of the initialization_data or the

initialization_data_length characteristic for the specified conversation.

2. The program that initiates the conversation (issues Initialize_Conversation)
must set allocate_confirm to CM_ALLOCATE_CONFIRM if it is expecting
initialization data to be returned from the remote program following its
confirmation of acceptance of the conversation.

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

4. The received_length is local information from the map routine. The
receive_length value is calculated by the map routine after all transformations
are completed.

5. If CM_BUFFER_TOO_SMALL is returned, Initialization_data wil have been set to
the length required to receive the data. You can allocate a larger buffer in
which to receive the data and reissue the call or perform other user specified
actions.

 Related Information
“Extract_Initialization_Data (CMEID)” on page 168 describes how the mapped
initialization data is set by the remote program.

“Set_Initialization_Data (CMSID)” on page 312 describes how the set initialization
data is sent to the remote program.

172 CPI Communications Reference

 Extract_Maximum_Buffer_Size (CMEMBS)

 Extract_Maximum_Buffer_Size (CMEMBS)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X X

A program uses the Extract_Maximum_Buffer_Size (CMEMBS) call to extract the
maximum buffer size supported by the system.

The maximum_buffer_size conversation characteristic contains the value of the
largest supported buffer size on the local system.

X* In AIX, this call is supported in Version 3 Release 1 or later. In
Communications Manager/2, this call is supported in Version 1.11 or later.

 Format
CALL CMEMBS(maximum_buffer_size,

return_code)

 Parameters
maximum_buffer_size (output)

Specifies the variable containing the maximum buffer size supported by the
system.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call causes no state changes.

 Usage Notes
This call can be used to find out the maximum buffer size supported by the system,
when the maximum value is not known during program development. The value in
maximum_buffer_size determines the largest amount of data the program can send
in a Send_Data call or extract in an Extract_Secondary_Information call.

 Chapter 4. Call Reference 173

 Extract_Maximum_Buffer_Size (CMEMBS)

The largest amount of data that can be received by the program in a Receive call
is:

¹ For a basic conversation
– 32767, if the fill characteristic is set to CM_FILL_LL
– The value of maximum_buffer_size, if the fill characteristic is set to

CM_FILL_BUFFER
¹ For a mapped conversation

– The value of maximum_buffer_size. The program should be aware that the
CM_INCOMPLETE_DATA_RECEIVED value of the data_received parameter
on the Receive call may be returned when the local maximum buffer size is
less than the program partner's maximum buffer size.

174 CPI Communications Reference

 Extract_Mode_Name (CMEMN)

 Extract_Mode_Name (CMEMN)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Extract_Mode_Name (CMEMN) call to extract the mode_name
characteristic's value for a given conversation. The value is returned to the
program in the mode_name parameter.

The mode_name conversation characteristic is a name that is used to identify the
network properties requested for the conversation. When the conversation is using
an OSI TP CRM, the mode_name used during conversation initialization is not
available to the recipient of the conversation.

 Format
CALL CMEMN(conversation_ID,

mode_name,
mode_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

mode_name (output)
Specifies the variable containing the mode name. The mode name designates
the network properties for the logical connection allocated, or to be allocated,
which will carry the conversation specified by the conversation_ID.

Note: Unless return_code is set to CM_OK, the value of mode_name is not
meaningful.

mode_name_length (output)
Specifies the variable containing the length of the returned mode_name
parameter. The variable must be defined with a length of at least 8 bytes.

Note: Unless return_code is set to CM_OK, the value of mode_name_length is
not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 Chapter 4. Call Reference 175

 Extract_Mode_Name (CMEMN)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call does not change the mode_name for the specified conversation.

2. CPI Communications returns the mode_name using the native encoding of the
local system.

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the mode_name parameter.

“Set_Mode_Name (CMSMN)” on page 321 and “Side Information” on page 23
provide further information on the mode_name characteristic.

176 CPI Communications Reference

 Extract_Partner_ID (CMEPID)

 Extract_Partner_ID (CMEPID)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Programs use the Extract_Partner_ID call to determine the partner_ID characteristic
for a conversation.

 Format
CALL CMEPID(conversation_ID,

partner_ID_type,
partner_ID,
requested_length,
partner_ID_length,
partner_ID_scope,
directory_syntax,
directory_encoding,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation ID.

partner_ID_type (output)
Specifies the type of the partner_ID characteristic. If the call is issued after
Allocate completes, the partner_ID_type will be of type CM_PROGRAM_BINDING.

partner_ID (output)
Specifies the partner_ID characteristic for the conversation. This parameter is
only set if the return_code is CM_OK.

requested_length (input)
The input value of this parameter specifies the maximum size of the partner_ID
variable the program is to receive.

partner_ID_length (output)
If return_code is CM_OK, the output value of this parameter specifies the size of
the partner_ID variable in bytes. If return_code is CM_BUFFER_TOO_SMALL,
this parameter indicates the size of the partner_ID to be extracted.

partner_ID_scope (output)
Specifies the scope of the search in the use of the partner_ID. The
partner_ID_scope variable only has meaning when the partner_ID is of type
CM_DISTINGUISHED_NAME.

directory_syntax (output)
Specifies the syntax of the distributed directory that CPI Communications
accesses with the partner_ID. This parameter has no meaning if
partner_ID_type is CM_PROGRAM_BINDING.

 Chapter 4. Call Reference 177

 Extract_Partner_ID (CMEPID)

directory_encoding (output)
Specifies the encoding rule of the distributed directory that CPI Communications
accesses with the partner_ID. This parameter has no meaning if
partner_ID_type is CM_PROGRAM_BINDING.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is in Initialize-Incoming state.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The requested_length specifies a value less than 0.

 ¹ CM_BUFFER_TOO_SMALL
The requested_length specifies a value that is less than the size of the
partner_ID characteristic to be extracted. The partner_ID characteristic is
not returned, but the partner_ID_length parameter is set to indicate the size
required.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. Unless the return_code indicates CM_OK or CM_BUFFER_TOO_SMALL, the

values of all other parameters on this call have no meaning.

2. If the value specified for the requested_length is less than the size of the
partner_ID characteristic to be extracted, the program receives a return code of
CM_BUFFER_TOO_SMALL and the partner_ID is not returned. The
partner_ID_length parameter, however, is updated to show the size partner_ID
parameter required. A subsequent call to Extract_Partner_ID with sufficient
size completes successfully.

3. When used before the Allocate call, this call returns the partner_ID value
established from side information or by a prior Set_Partner_ID call. After a
successful Allocate call, Extract_Partner_ID returns the program binding used
to establish the conversation. The program can determine the CRM type on
which the conversation is allocated by parsing the program binding. See
“Program Binding” on page 658 for details.

4. If the call is issued by the program that accepts the conversation, the program
binding returned to the program may not be complete. For example, programs
accepting a conversation with a CRM type of LU 6.2 are not able to access the
TP name of the partner program. In these cases, Extract_Partner_ID returns
with a partner_ID_type of CM_PROGRAM_BINDING and the partner_ID variable
contains as much information on the partner program as is currently available.

5. This call may be issued in Reset state to retrieve the program binding. When
the call completes successfully, CPI Communications no longer keeps the
partner_ID. The program should issue this call immediately upon entering

178 CPI Communications Reference

 Extract_Partner_ID (CMEPID)

Reset state, as the duration of the program binding and valid conversation
identifier is implementation-specific.

 Related Information
“Distributed Directory” on page 25 explains the terms and concepts required for
use of a distributed directory.

“Example 14: Using the Distributed Directory to Find the Partner Program” on
page 96 provides a sample scenario of a program using the Extract_Partner_ID
call.

“Set_Partner_ID (CMSPID)” on page 323 provides details on how to set the
partner_ID characteristic.

“Program Binding” on page 658 describes the format of a program binding.

 Chapter 4. Call Reference 179

 Extract_Partner_LU_Name (CMEPLN)

 Extract_Partner_LU_Name (CMEPLN)

LU 6.2

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Extract_Partner_LU_Name (CMEPLN) call to extract the
partner_LU_name characteristic's value for a given conversation. The value is
returned in the partner_LU_name parameter.

The partner_lu_name conversation characteristic contains the SNA LU name that
identifies the location of the remote program.

 Format
CALL CMEPLN(conversation_ID,

partner_LU_name,
partner_LU_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

partner_LU_name (output)
Specifies the variable containing the name of the LU where the remote program
is located. The variable must be defined with a length of at least 17 bytes.

Note: Unless return_code is set to CM_OK, the value of partner_LU_name is
not meaningful.

partner_LU_name_length (output)
Specifies the variable containing the length of the returned partner_LU_name
parameter.

Note: Unless return_code is set to CM_OK, the value of
partner_LU_name_length is not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

180 CPI Communications Reference

 Extract_Partner_LU_Name (CMEPLN)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call does not change the partner_LU_name for the specified conversation.

2. CPI Communications returns the partner_LU_name using the native encoding
of the local system.

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the partner_LU_name parameter.

“Set_Partner_LU_Name (CMSPLN)” on page 327 and “Side Information” on
page 23 provide more information on the partner_LU_name characteristic.

 Chapter 4. Call Reference 181

 Extract_Secondary_Information (CMESI)

 Extract_Secondary_Information (CMESI)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X

Extract_Secondary_Information (CMESI) is used to extract secondary information
associated with the return code for a given call.

OS/2 provides partial support for secondary information.

 Format
CALL CMESI(conversation_ID,

call_ID,
buffer,
requested_length,
data_received,
received_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

call_ID (input)
Specifies the call identifier (see Table 59 on page 642).

buffer (output)
Specifies the variable in which the program is to receive the secondary
information.

Note: buffer contains information only if the return_code is set to CM_OK.

requested_length (input)
Specifies the maximum amount of secondary information the program is to
receive. Valid requested_length values range from 1 to the maximum buffer
size supported by the system. The maximum buffer size is at least 32767
bytes. See Usage Note 13 on page 225 of the Receive call for additional
information about determining the maximum buffer size.

data_received (output)
Specifies whether or not the program received complete secondary information.

Note: Unless return_code is set to CM_OK, the value contained in
data_received has no meaning.

The data_received variable can have one of the following values:

 ¹ CM_COMPLETE_DATA_RECEIVED
This value indicates that complete secondary information is received.

 ¹ CM_INCOMPLETE_DATA_RECEIVED

182 CPI Communications Reference

 Extract_Secondary_Information (CMESI)

This value indicates that more secondary information is available to be
received.

received_length (output)
Specifies the variable containing the amount of secondary information the
program received, up to the maximum.

Note: Unless return_code is set to CM_OK, the value contained in
received_length has no meaning.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_NO_SECONDARY_INFORMATION

This value indicates that no secondary information is available for the
specified call on the specified conversation.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The call_ID specifies CM_CMESI or an undefined value.
– The requested_length specifies a value that exceeds the range

permitted by the implementation.

 State Changes
This call does not cause a state change.

 Usage Notes
1. The program should issue the call immediately after it receives a return code at

the completion of a call. In particular, when a conversation is deallocated and
enters Reset state, the associated secondary information and conversation
identifier are available for a system-dependent time.

2. If an Accept_Conversation, Initialize_Conversation, or Initialize_For_Incoming
call fails, a conversation identifier is assigned and returned to the program for
use only on the Extract_Secondary_Information call.

3. When the Extract_Secondary_Information call completes successfully, CPI
Communications no longer keeps the returned secondary information for the
specified call on the specified conversation. The same information is not
available for a subsequent Extract_Secondary_Information call.

4. The program cannot use the call to retrieve secondary information for the
previous Extract_Secondary_Information call.

5. When the call_ID specifies one of the non-conversation calls (that is,
Convert_Incoming, Convert_Outgoing, Extract_Maximum_Buffer_Size,
Release_Local_TP_Name, Specify_Local_TP_Name, Wait_For_Conversation,
and Wait_For_Completion), the conversation_ID is ignored.

6. Note to Implementers: Because of different non-blocking levels, an
implementation should maintain secondary information as follows:

¹ For conversations using conversation-level non-blocking, secondary
information is kept:

– On a per-conversation basis for conversation calls

 Chapter 4. Call Reference 183

 Extract_Secondary_Information (CMESI)

– On a per-thread basis for non-conversation calls

¹ For conversations not using conversation-level non-blocking, secondary
information is kept:

– On a per-queue basis for calls that are associated with a conversation
queue

– On a per-thread basis for calls that are not associated with any
conversation queue

 Related Information
“Extract_Maximum_Buffer_Size (CMEMBS)” on page 173 further discusses
determining the maximum buffer size supported by the system.

“Secondary Information” on page 679 provides a complete discussion of secondary
information.

184 CPI Communications Reference

 Extract_Security_User_ID (CMESUI)

 Extract_Security_User_ID (CMESUI)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X X* X

A program uses Extract_Security_User_ID (CMESUI) to extract the value of the
security_user_ID characteristic for a given conversation.

The security_user_id conversation characteristic contains the user identification
associated with the conversation.

X* AIX, prior to Version 3 Release 1, supported this function in a product-specific
extension call.
OS/2, prior to Communications Server, supported this function in a
product-specific extension call.
VM currently supports this function in a product-specific extension call.
For AIX, see “Extract_Conversation_Security_User_ID (XCECSU)” on
page 398.
For OS/2, see “Extract_Conversation_Security_User_ID (XCECSU)” on
page 612.
For VM, see “Extract_Conversation_Security_User_ID (XCECSU)” on
page 546.

 Format
CALL CMESUI(conversation_ID,

security_user_ID,
security_user_ID_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_user_ID (output)
Specifies the variable containing the user ID. The variable must be defined
with a length of at least 10 bytes.

Note: If return_code is not set to CM_OK, security_user_ID is undefined.

security_user_ID_length (output)
Specifies the variable containing the length of the user ID.

Note: If return_code is not set to CM_OK, security_user_ID_length is
undefined.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK

 Chapter 4. Call Reference 185

 Extract_Security_User_ID (CMESUI)

 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the program is in Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. This call does not change the security_user_ID for the specified conversation.

2. CPI Communications returns the security_user_ID using the native encoding of
the local system.

3. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the security_user_ID parameter.

“Set_Conversation_Security_User_ID (CMSCSU)” on page 298 discusses the
setting of the security_user_ID characteristic.

186 CPI Communications Reference

 Extract_Send_Receive_Mode (CMESRM)

 Extract_Send_Receive_Mode (CMESRM)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X X*

The Extract_Send_Receive_Mode (CMESRM) call is used by a program to extract
the value of the send_receive_mode characteristic for a conversation. The value is
returned in the send_receive_mode parameter.

The send_receive_mode conversation characteristic indicates whether the
conversation is using half-duplex or full-duplex mode for data transmission.

X* In OS/2, this call is supported by Communications Server.

 Format
CALL CMESRM(conversation_ID,

send_receive_mode,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

send_receive_mode (output)
Specifies the send-receive mode for the conversation.

The send_receive_mode variable can have one of the following values:

 ¹ CM_HALF_DUPLEX
Indicates that the conversation is a half-duplex conversation.

 ¹ CM_FULL_DUPLEX
Indicates that the conversation is a full-duplex conversation.

Note: Unless return_code is set to CM_OK, the value of send_receive_mode is
not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 Chapter 4. Call Reference 187

 Extract_Send_Receive_Mode (CMESRM)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call does not change the send_receive_mode for the specified

conversation.

2. This call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Send-Receive Modes” on page 19 provides more information on the differences
between half-duplex and full-duplex conversations.

“Example 8: Establishing a Full-Duplex Conversation” on page 84 shows an
example of how a full-duplex conversation is set up.

“Set_Send_Receive_Mode (CMSSRM)” on page 349 describes how to set the
send_receive_mode characteristic for a conversation.

188 CPI Communications Reference

 Extract_Sync_Level (CMESL)

 Extract_Sync_Level (CMESL)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Extract_Sync_Level (CMESL) call to extract the sync_level
characteristic’s value for a given conversation. The value is returned to the
program in the sync_level parameter.

The sync_level conversation characteristic indicates the level of synchronization
services provided on the conversation.

 Format
CALL CMESL(conversation_ID,

sync_level,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

sync_level (output)
Specifies the variable containing the sync_level characteristic of this
conversation. The sync_level variable can have one of the following values:

 ¹ CM_NONE
Specifies that the programs will not perform confirmation processing on this
conversation. The programs will not issue calls or recognize returned
parameters relating to synchronization.

¹ CM_CONFIRM (half-duplex conversations only)
Specifies that the programs can perform confirmation processing on this
conversation. The programs can issue calls and will recognize returned
parameters relating to confirmation.

¹ CM_SYNC_POINT (half-duplex conversations only)
For systems that support resource recovery processing, this value specifies
that this conversation is a protected resource. The programs can issue
resource recovery calls and will recognize returned parameters relating to
resource recovery operations. The programs can also perform confirmation
processing.

The CM_SYNC_POINT value is not returned on AIX, IMS, MVS, NS/WIN,
OS/2, or Windows 95 systems.

 ¹ CM_SYNC_POINT_NO_CONFIRM
For systems that support resource recovery processing, this value specifies
that the conversation is a protected resource. The programs can issue
resource recovery interface calls and will recognize returned parameters
relating to resource recovery processing. The programs cannot perform
confirmation processing.

 Chapter 4. Call Reference 189

 Extract_Sync_Level (CMESL)

Notes:

1. Unless return_code is set to CM_OK, the value of sync_level is not
meaningful.

2. If the conversation is using an OSI TP CRM, confirmation of the
deallocation of the conversation can be performed with any sync_level
value.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call does not change the sync_level for the specified conversation.

2. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Set_Sync_Level (CMSSL)” on page 354 provides more information on the
sync_level characteristic.

190 CPI Communications Reference

 Extract_TP_Name (CMETPN)

 Extract_TP_Name (CMETPN)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X* X

A program uses the Extract_TP_Name (CMETPN) call to extract the TP_name
characteristic's value for a given conversation. The value is returned to the
program in the TP_name parameter.

For a conversation established using Initialize_Conversation, TP_name is the value
set from the side information referenced by sym_dest_name or set by the
Set_TP_Name call.

For a conversation established by Accept_Conversation or Accept_Incoming,
TP_name is the value included in the conversation startup request. Since this
value comes from the TP_name characteristic of the remote program, the values
are the same at both ends of a conversation.

X* In Aix, this call is supported in Version 3 Release 1 or later.
In OS/2, this call is supported by Communications Server.
VM supports this function via a product-specific extension call.
For more information, see “Extract_TP_Name (XCETPN)” on page 554.

 Format
CALL CMETPN(conversation_ID,

TP_name,
TP_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

TP_name (output)
Specifies the variable containing the TP_name for the specified conversation.
The variable must be defined with a length of at least 64 bytes.

Note: Unless return_code is set to CM_OK, the value in TP_name is not
meaningful.

TP_name_length (output)
Specifies the variable containing the length of the returned TP_name.

Note: Unless return_code is set to CM_OK, the value in TP_name_length is
not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 Chapter 4. Call Reference 191

 Extract_TP_Name (CMETPN)

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. This call is used by programs that accept multiple conversations.

Extract_TP_Name allows the program to determine which local name was
specified in the incoming conversation startup request.

2. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

3. TP_Name is returned using the local system's native encoding. CPI-C
automatically converts TP_Name from the transfer encoding where necessary.

4. Refer to “SNA Service Transaction Programs” on page 727 for special handling
of SNA Service Transaction Program names.

 Related Information
“Specify_Local_TP_Name (CMSLTP)” on page 361 provides more information on
handling multiple names within a single program.

192 CPI Communications Reference

 Extract_Transaction_Control (CMETC)

 Extract_Transaction_Control (CMETC)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Extract_Transaction_Control (CMETC) is used by a program to extract the
transaction_control characteristic for a given conversation. The value is returned to
the application program in the transaction_control parameter.

The transaction_control characteristic is used only by an OSI TP CRM and is not
significant unless the sync_level characteristic is set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

The transaction_control conversation characteristic indicates whether the
conversation supports chained or unchained transactions.

 Format
CALL CMETC(conversation_ID,

transaction_control,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

transaction_control (output)
Specifies the variable containing the transaction_control characteristic for the
specified conversation. The transaction_control variable can have one of the
following values:

 ¹ CM_CHAINED_TRANSACTIONS
Specifies that the conversation uses chained transactions.

 ¹ CM_UNCHAINED_TRANSACTIONS
Specifies that the conversation uses unchained transactions.

Note: Unless return_code is set to CM_OK, the value of transaction_control is
not meaningful.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
identifier.

 Chapter 4. Call Reference 193

 Extract_Transaction_Control (CMETC)

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in
Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. This call does not change the transaction_control for the specified conversation.

2. This call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED.

3. This call can be used by the recipient to determine the transaction_control
characteristic for the conversation. If the value is
CM_CHAINED_TRANSACTIONS, the conversation is already included in a
transaction. If the value is CM_UNCHAINED_TRANSACTIONS, the program will
be informed with a CM_JOIN_TRANSACTION status_received value if it is to join
the transaction.

 Related Information
“Set_Transaction_Control (CMSTC)” on page 359 provides more information on the
transaction_control characteristic.

194 CPI Communications Reference

 Flush (CMFLUS)

 Flush (CMFLUS)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Flush (CMFLUS) call to empty the local system’s send buffer
for a given conversation. When notified by CPI Communications that a Flush has
been issued, the system sends any information it has buffered to the remote
system. The information that can be buffered comes from the Allocate, Send_Data,
or Send_Error call. Refer to the descriptions of these calls for more details of when
and how buffering occurs.

 Format
CALL CMFLUS(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation ID.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– For a half-duplex conversation, the conversation is not in Send ,
Send-Pending , or Defer-Receive state.

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Flush call is not allowed for this
conversation while its context is in this condition.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following return codes apply to full-duplex conversations .

If the conversation is not currently included in a transaction, the return_code
can have one of the following values:

 Chapter 4. Call Reference 195

 Flush (CMFLUS)

 ¹ CM_ALLOCATION_ERROR
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_TIMER
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the program has received a status_received value
of CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

If the sync_level is set to CM_SYNC_POINT_NO_CONFIRM and the conversation
is included in a transaction, the return_code can have one of the following
values:

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_DEALLOCATED_ABEND_SVC_BO
 ¹ CM_DEALLOCATED_ABEND_TIMER_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_INCLUDE_PARTNER_REJECT_BO
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT

 State Changes
For half-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Send state if the program issues the Flush call with
the conversation in Send-Pending state.

¹ The conversation enters Receive state if the program issues the Flush call with
the conversation in Defer-Receive state.

¹ No state change occurs if the program issues the Flush call with the
conversation in Send state.

For full-duplex conversations, this call does not cause any state changes.

 Usage Notes
1. This call optimizes processing between the local and remote programs. The

local system normally buffers the data from consecutive Send_Data calls until it
has a sufficient amount for transmission. Only then does the local system
transmit the buffered data.

The local program can issue a Flush call to cause the system to transmit the
data immediately. This helps minimize any delay in the remote program’s
processing of the data.

2. The Flush call causes the local system to flush its send buffer only when the
system has some information to transmit. If the system has no information in
its send buffer, nothing is transmitted to the remote system.

3. The use of Send_Data followed by a call to Flush is equivalent to the use of
Send_Data after setting send_type to CM_SEND_AND_FLUSH.

4. For full-duplex conversations, when CM_ALLOCATION_ERROR,
CM_DEALLOCATE_*, CM_RESOURCE_FAILURE_*, or CM_DEALLOCATE_NORMAL

196 CPI Communications Reference

 Flush (CMFLUS)

is returned and the conversation is in Send-Receive state, the program can
terminate the conversation by issuing Receive calls until it gets a return code
that takes it to Reset state, or by issuing a Deallocate call with deallocate_type
set to CM_DEALLOCATE_ABEND.

 Related Information
“Data Buffering and Transmission” on page 44 discusses the conditions for data
transmission.

“Example 5: Validation of Data Receipt” on page 78 shows an example of how a
program can use the Flush call to establish a conversation immediately.

“Allocate (CMALLC)” on page 124 provides more information on how information is
buffered from the Allocate call.

“Send_Data (CMSEND)” on page 249 provides more information on how
information is buffered from the Send_Data call.

“Send_Error (CMSERR)” on page 259 provides more information on how
information is buffered from the Send_Error call.

“Send_Mapped_Data (CMSNDM)” on page 271 provides more information on a
program sends mapped data to its partner.

“Set_Send_Type (CMSST)” on page 351 discusses alternative methods of
achieving the Flush function.

 Chapter 4. Call Reference 197

 Include_Partner_In_Transaction (CMINCL)

 Include_Partner_In_Transaction (CMINCL)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program uses the Include_Partner_In_Transaction (CMINCL) call to explicitly
request that the subordinate join the transaction. The caller must be in a
transaction, and the subordinate must be on a branch supporting unchained
transactions.

Note: The Include_Partner_In_Transaction call has meaning only when an OSI TP
CRM is being used for the conversation.

 Format
CALL CMINCL(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The conversation is not using an OSI TP CRM.
– The transaction_control is CM_CHAINED_TRANSACTIONS.
– The program is not the superior for the conversation.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– For a half-duplex conversation, the conversation is not in Send or
Send-Pending state.

– For a full-duplex conversation, the conversation is not in Send-Receive
state.

– The conversation is basic and the program started but did not finish
sending a logical record.

– The conversation's context is not in transaction. The program must
issue a tx_begin call to the X/Open TX interface to start a transaction.

– The conversation is already included in the current transaction.
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_RESOURCE_FAILURE_NO_RETRY

198 CPI Communications Reference

 Include_Partner_In_Transaction (CMINCL)

 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following return codes apply to half-duplex conversations.

 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_PROGRAM_ERROR_PURGING

The following return codes apply to full-duplex conversations.

 ¹ CM_ALLOCATION_ERROR
 ¹ CM_DEALLOCATED_NORMAL

 State Changes
This call does not cause any state changes.

 Usage Notes
1. The call is used by a program to request that the subordinate join the

transaction when the begin_transaction conversation characteristic set to
CM_BEGIN_EXPLICIT.

2. The remote program receives the request to join the transaction as a
status_received indicator of CM_JOIN_TRANSACTION on a Receive call.

 Related Information
“Chained and Unchained Transactions” on page 61 discusses chained and
unchained transactions.

“Joining a Transaction” on page 61 discusses how a program requests the partner
program to join a transaction.

“Set_Begin_Transaction (CMSBT)” on page 288 discusses the begin_transaction
characteristic.

 Chapter 4. Call Reference 199

 Initialize_Conversation (CMINIT)

 Initialize_Conversation (CMINIT)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Initialize_Conversation (CMINIT) call to initialize values for
various conversation characteristics before the conversation is allocated (with a call
to Allocate). The remote partner program uses the Accept_Conversation call or the
Initalize_Incoming and Accept_Incoming calls to initialize values for the
conversation characteristics on its end of the conversation.

Note: A program can override the values that are initialized by this call using the
appropriate Set calls, such as Set_Sync_Level. Once the value is changed, it
remains changed until the end of the conversation or until changed again by a Set
call.

 Format
CALL CMINIT(conversation_ID,

sym_dest_name
return_code)

 Parameters
conversation_ID (output)

Specifies the variable containing the conversation identifier assigned to the
conversation. CPI Communications supplies and maintains the
conversation_ID. If the Initialize_Conversation call is successful (return_code is
set to CM_OK), the local program uses the identifier returned in this variable for
the rest of the conversation.

sym_dest_name (input)
Specifies the symbolic destination name. The symbolic destination name is
provided by the program and points to an entry in the side information. The
appropriate entry in the side information is retrieved and used to initialize the
characteristics for the conversation. Alternatively, a blank sym_dest_name (one
composed of eight space characters) may be specified. When this is done, the
program is responsible for setting up the appropriate destination information,
using Set calls, before issuing the Allocate call for that conversation.

On VM, if no corresponding entry is found in the side information table, the
name provided in sym_dest_name will be used as the partner TP_name.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates that the sym_dest_name specifies an unrecognized
value.

200 CPI Communications Reference

 Initialize_Conversation (CMINIT)

On VM, if the value specified for the sym_dest_name does not match an
entry in side information, VM/ESA does not return
CM_PROGRAM_PARAMETER_CHECK. Instead, CM_OK is returned and the
specified sym_dest_name is used to set the TP_name characteristic for the
conversation. See Chapter 12, “CPI Communications on VM/ESA CMS” on
page 527 for more information.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
When return_code indicates CM_OK, the conversation enters the Initialize state.

 Usage Notes
1. For a list of the conversation characteristics that are initialized when the

Initialize_Conversation call completes successfully, see Table 3 on page 35.

2. For each conversation, CPI Communications assigns a unique identifier, the
conversation_ID. The program then uses the conversation_ID in all future calls
intended for that conversation. Initialize_Conversation (or Accept_Conversation
or Initialize_For_Incoming, on the opposite side of the conversation) must be
issued by the program before any other calls may be made for that
conversation.

3. A program can call Initialize_Conversation more than once and establish
multiple, concurrently active conversations. When a program with an existing
initialized conversation issues an Initialize_Conversation call, CPI
Communications initializes a new conversation and assigns a new
conversation_ID. CPI Communications is designed so that
Initialize_Conversation is always issued from the Reset state. For more
information about managing concurrent conversations, see “Multiple
Conversations” on page 30.

4. If the side information supplies invalid allocation information on the
Initialize_Conversation (CMINIT) call, or if the program supplies invalid
allocation information on any subsequent Set calls, the error is detected when
the information is processed by Allocate (CMALLC).

5. A program may obtain information about its partner program (for example,
partner_LU_name, TP_name, and mode_name) from a source other than the
side information. The local program can, for example, read this information
from a file or receive it from another partner over a separate conversation. The
information might even be hard-coded in the program. In cases where a
program wishes to specify destination information about its partner program
without making use of side information, the local program may supply a blank
sym_dest_name on the Initialize_Conversation call. CPI Communications will
initialize the conversation characteristics and return a conversation_ID for the
new conversation. The program is then responsible for specifying valid
destination information (using Set_Partner_LU_Name, Set_TP_Name, and
Set_Mode_Name calls) before issuing the Allocate call.

 Chapter 4. Call Reference 201

 Initialize_Conversation (CMINIT)

 Related Information
“Side Information” on page 23 provides more information on sym_dest_name.

“Conversation Characteristics” on page 33 provides a general overview of
conversation characteristics and how they are used by the program and CPI
Communications.

“Example 1: Data Flow in One Direction” on page 69 shows an example program
flow where Initialize_Conversation is used.

The calls beginning with “Set” and “Extract” in this chapter are used to modify or
examine conversation characteristics established by the Initialize_Conversation
program call; see the individual call descriptions for details.

202 CPI Communications Reference

 Initialize_For_Incoming (CMINIC)

 Initialize_For_Incoming (CMINIC)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X

A program uses the Initialize_For_Incoming and Accept_Incoming calls, rather than
the Accept call, when various conversation characteristics (for example,
processing_mode) must be initialized before the conversation is accepted.

Note: A program can override the values that are initialized by this call using the
appropriate Set calls, such as Set_Receive_Type. Once the value is changed, it
remains changed until the end of the conversation or until changed again by a Set
call.

X* In AIX, this call is supported in Version 3 Release 1 or later. In OS/2, this call
is supported by Communications Server.

 Format
CALL CMINIC(conversation_ID,

return_code)

 Parameters
conversation_ID (output)

Specifies the variable containing the conversation identifier assigned to the
conversation. CPI Communications supplies and maintains the
conversation_ID. If the Initialize_For_Incoming call is successful (return_code
is set to CM_OK), the local program uses the identifier returned in this variable
for the rest of the conversation.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
When return_code indicates CM_OK, the conversation enters the
Initialize-Incoming state.

 Usage Notes
1. For a list of the conversation characteristics initialized when the

Initialize_For_Incoming call completes successfully, see Table 3 on page 35.

2. For each conversation, CPI Communications assigns a unique identifier, the
conversation_ID. The program then uses the conversation_ID in all future calls
intended for that conversation.

 Chapter 4. Call Reference 203

 Initialize_For_Incoming (CMINIC)

3. The call is designed for use with Accept_Incoming. As shown in Table 3,
when Initialize_For_Incoming completes, certain conversation characteristics
are initialized. When the Accept_Incoming call completes, the remaining
applicable conversation characteristics are initialized.

4. The Initialize_For_Incoming and Accept_Incoming calls can be used by a
program to accept multiple conversations.

5. Even though the program may have been initialized as a direct result of an
incoming conversation initialization request, the conversation must not be
coupled with the conversation_id until the Accept_Incoming call. This allows
the program to issue Set_TP_Name calls between the Initialize_For_Incoming
and Accept_Incoming calls to associate specific transaction program names
with specific conversation_ids.

 Related Information
“Conversation Characteristics” on page 33 describes how the conversation
characteristics are initialized by the Initialize_For_Incoming and Accept_Incoming
calls.

“Example 12: Accepting Multiple Conversations Using Blocking Calls” on page 92
and “Example 13: Accepting Multiple Conversations Using Conversation-Level
Non-Blocking Calls” on page 94 show example program flows where
Initialize_For_Incoming is used.

The calls beginning with “Set” and “Extract” in this chapter are used to modify or
examine conversation characteristics established by the Initialize_For_Incoming
program call. See the individual call descriptions for details.

“Accept_Incoming (CMACCI)” on page 121 describes how the conversation_ID is
used when an incoming conversation is accepted by a program.

204 CPI Communications Reference

 Prepare (CMPREP)

 Prepare (CMPREP)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program uses the Prepare (CMPREP) call to explicitly request that a branch of
the transaction prepare its resources to commit changes made during the
transaction.

When the conversation is using an OSI TP CRM and the caller is not the root of
the transaction, the caller must have received a take-commit notification from its
superior. The subordinate program on the conversation cannot issue a Prepare
(CMPREP) call.

 Format
CALL CMPREP(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The sync_level is not CM_SYNC_POINT or

CM_SYNC_POINT_NO_CONFIRM.
– The conversation is using an OSI TP CRM, and the program is not the

superior for the conversation.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– For a half-duplex conversation, the conversation is not in Send ,

Send-Pending , Defer-Receive , or Defer-Deallocate state.
– For a full-duplex conversation, the conversation is not in Send-Receive

or Defer-Deallocate state.
– The conversation is basic, and the program started but did not finish

sending a logical record.
– The conversation's context is not in transaction. The program must

issue a tx_begin call to the X/Open TX interface to start a transaction.

 Chapter 4. Call Reference 205

 Prepare (CMPREP)

– The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation's context is in the
Backout-Required condition.

– The conversation is using an OSI TP CRM, begin_transaction is set to
CM_BEGIN_EXPLICIT, and the conversation is not currently included in a
transaction.

– The conversation is using an OSI TP CRM, and the program is not the
root of the transaction and has not received a take-commit notification
from its superior.

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_DEALLOCATED_ABEND_SVC_BO
 ¹ CM_DEALLOCATED_ABEND_TIMER_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_INCLUDE_PARTNER_REJECT_BO
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following return codes apply to half-duplex conversations.

 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_PROGRAM_ERROR_PURGING

The following return codes apply to full-duplex conversations.

 ¹ CM_ALLOCATION_ERROR
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT

 State Changes
When return_code indicates CM_OK, the conversation enters the Prepared state.

 Usage Notes
1. The Prepare (CMPREP) functions without waiting for a response from the

remote program. A program can detect that its partner has prepared its
transaction resources by issuing a Receive (CMRCV) call and checking the
result in status_received, or the caller can complete the transaction without
waiting for the partner to respond.

2. A program cannot send data to the remote program after issuing a Prepare
call.

206 CPI Communications Reference

 Prepare (CMPREP)

3. A program that issues the Prepare call may receive data from the remote
program if the conversation is using an OSI TP CRM and either
prepare_data_permitted is set to CM_PREPARE_DATA_PERMITTED or the
conversation is full-duplex.

4. The partner finds out about the Prepare call by receiving one of the
take-commit notifications described in Table 9 on page 56 or Table 10 on
page 57.

 Related Information
“Receive (CMRCV)” on page 213 discusses the status_received parameter.

“Set_Prepare_Data_Permitted (CMSPDP)” on page 329 discusses the
prepare_data_permitted characteristic.

 Chapter 4. Call Reference 207

 Prepare_To_Receive (CMPTR)

 Prepare_To_Receive (CMPTR)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Programs use the Prepare_To_Receive call to transfer control of the conversation
to the remote program without waiting for the remote program to send data; that is,
waiting for a Receive to complete. This allows the local program to continue
processing until it actually needs data from the remote program.

A program uses the Prepare_To_Receive (CMPTR) call to change a conversation
from Send to Receive state in preparation to receive data. The change to Receive
state can be either completed as part of this call or deferred until the program
issues a Flush, Confirm, or resource recovery commit call. When the change to
Receive state is completed as part of this call, it may include the function of the
Flush or Confirm call. This call's function is determined by the value of the
prepare_to_receive_type conversation characteristic.

Before issuing the Prepare_To_Receive call, a program has the option of issuing
the following call which affects the function of the Prepare_To_Receive call:

Call CMSPTR – Set_Prepare_To_Receive_Type

Note: The Prepare_To_Receive_Type call can be issued only on a half-duplex
conversation.

 Format
CALL CMPTR(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The prepare_to_receive_type
currently in effect determines which return codes can be returned to the local
program.

For any of the following conditions:

– prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH
– prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and

sync_level is set to CM_NONE
– prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and

sync_level is set to CM_SYNC_POINT_NO_CONFIRM, but the conversation is
not currently included in a transaction

208 CPI Communications Reference

 Prepare_To_Receive (CMPTR)

the return_code variable can have one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send or Send-Pending state.
– The conversation is basic and in Send state, and the program started

but did not finish sending a logical record.
– The sync_level is set to CM_SYNC_POINT or

CM_SYNC_POINT_NO_CONFIRM, and the conversation's context is in the
Backout-Required condition. The Prepare_To_Receive call is not
allowed while the conversation's context is in this condition.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The send_receive_mode of the conversation is CM_FULL_DUPLEX.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

For any of the following conditions:

– prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM
– prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and

sync_level is set to CM_CONFIRM
– prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and

sync_level is set to CM_SYNC_POINT, but the conversation is not currently
included in a transaction

the return_code variable can have one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)
¹ CM_SVC_ERROR_PURGING (basic conversations only)

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send or Send-Pending state.
– The conversation is basic and in Send state, and the program started

but did not finish sending a logical record.

 Chapter 4. Call Reference 209

 Prepare_To_Receive (CMPTR)

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates that the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

If prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL,
sync_level is set to is CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and
the conversation is included in a transaction, the return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Send or Send-Pending state.
– The conversation is basic and in Send state, and the program started

but did not finish sending a logical record.
– The conversation's context is in the Backout-Required condition.
– A prior call to Deferred_Deallocate is still in effect for the conversation.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation is using an OSI TP CRM, and the program is not the

superior for the conversation.
– The send_receive_mode of the conversation is CM_FULL_DUPLEX.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
When return_code indicates CM_OK:

¹ If any of the following conditions is true, the conversation enters the Receive
state.

– The prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH
– The prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM
– The prepare_to_receive_type is set to

CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to CM_NONE or
CM_CONFIRM

– The prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT

210 CPI Communications Reference

 Prepare_To_Receive (CMPTR)

or CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently
included in a transaction.

¹ The conversation enters the Defer-Receive state if prepare_to_receive_type is
set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and the conversation is
included in a transaction.

 Usage Notes
1. If prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM, or if

prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level is CM_CONFIRM, or if prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is CM_SYNC_POINT but
the conversation is not currently included in a transaction, the local program
regains control when a Confirmed reply is received.

2. The program uses the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL to transfer send control to the remote
program based on one of the following synchronization levels allocated to the
conversation:

¹ If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently
included in a transaction, the system's send buffer is flushed if it contains
information, and send control is transferred to the remote program without
any synchronizing acknowledgment.

¹ If sync_level is set to CM_CONFIRM, or if sync_level is set to
CM_SYNC_POINT but the conversation is not currently included in a
transaction, the system's send buffer is flushed if it contains information,
and send control is transferred to the remote program with confirmation
requested.

¹ If sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM
and the conversation is included in a transaction, transfer of send control is
deferred. When the local program subsequently issues a Flush, Confirm,
or resource recovery commit call, the system's send buffer is flushed if it
contains information, and send control is transferred to the remote program.
(A synchronization point is also requested when the call is a commit call.)

3. The program uses the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_FLUSH to transfer send control to the remote program
without any synchronizing acknowledgment. The prepare_to_receive_type
characteristic set to CM_PREP_TO_RECEIVE_FLUSH functions the same as the
prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL combined with a sync_level set to
CM_NONE.

4. The program uses the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_CONFIRM to transfer send control to the remote
program with confirmation requested. The prepare_to_receive_type
characteristic set to CM_PREP_TO_RECEIVE_CONFIRM functions the same as
the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL combined with a sync_level set to
CM_CONFIRM.

 Chapter 4. Call Reference 211

 Prepare_To_Receive (CMPTR)

5. The remote program receives send control of the conversation by means of the
status_received parameter, which can have the following values:

 ¹ CM_SEND_RECEIVED
The local program issued this call with one of the following:

– prepare_to_receive_type set to CM_PREP_TO_RECEIVE_FLUSH
– prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL

and sync_level set to CM_NONE
– prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL

and sync_level set to CM_SYNC_POINT_NO_CONFIRM, but with the
conversation not currently included in a transaction.

 ¹ CM_CONFIRM_SEND_RECEIVED
The local program issued this call with one of the following:

– prepare_to_receive_type set to CM_PREP_TO_RECEIVE_CONFIRM
– prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL

and sync_level set to CM_CONFIRM
– prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL

and sync_level set to CM_SYNC_POINT, but with the conversation not
currently included in a transaction.

 ¹ CM_TAKE_COMMIT_SEND
The local program issued a resource recovery commit call after issuing the
Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and with the
conversation included in a transaction.

6. When the local program's end of the conversation enters Receive state, the
remote program's end of the conversation enters Send or Send-Pending state,
depending on the data_received indicator. The remote program can then send
data to the local program.

7. When the conversation is using an OSI TP CRM and the Deferred_Deallocate
call has been issued on the conversation, the Prepare_To_Receive call with
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL is not
allowed. The call gets the CM_PROGRAM_PARAMETER_CHECK return code.

 Related Information
“Example 3: The Sending Program Changes the Data Flow Direction” on page 74
and “Example 4: The Receiving Program Changes the Data Flow Direction” on
page 75 show example program flows where the Prepare_To_Receive call is used.

“Set_Confirmation_Urgency (CMSCU)” on page 290 tells how to request an
immediate response to the Prepare_To_Receive call.
“Set_Prepare_To_Receive_Type (CMSPTR)” on page 331 provides more
information on the prepare_to_receive_type characteristic.

“Set_Sync_Level (CMSSL)” on page 354 discusses the sync_level characteristic
and its possible values.

212 CPI Communications Reference

 Receive (CMRCV)

 Receive (CMRCV)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Receive (CMRCV) call to receive information from a given
conversation. The information received can be a data record (on a mapped
conversation), data (on a basic conversation), conversation status, or a request for
confirmation or for resource recovery services.

Before issuing the Receive call, a program has the option of issuing one or both of
the following calls, which affect the function of the Receive call:

CALL CMSF — Set_Fill
CALL CMSRT — Set_Receive_Type

 Format
CALL CMRCV(conversation_ID,

buffer,
requested_length,
data_received,
received_length,
status_received,
control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

buffer (output)
Specifies the variable in which the program is to receive the data.

Note: Buffer contains data only if return_code is set to CM_OK or
CM_DEALLOCATED_NORMAL and data_received is not set to
CM_NO_DATA_RECEIVED.

requested_length (input)
Specifies the maximum amount of data the program is to receive. Valid
requested_length values range from 0 to the maximum buffer size supported by
the system. The maximum buffer size is at least 32767 bytes. See Usage
Note 13 on page 225 for additional information about determining the maximum
buffer size.

data_received (output)
Specifies whether or not the program received data.

Note: Unless return_code is set to CM_OK or CM_DEALLOCATED_NORMAL, the
value contained in data_received has no meaning.

 Chapter 4. Call Reference 213

 Receive (CMRCV)

The data_received variable can have one of the following values:

¹ CM_NO_DATA_RECEIVED (basic and mapped conversations)
No data is received by the program. Status may be received if the
return_code is set to CM_OK.

¹ CM_DATA_RECEIVED (basic conversations only)
The fill characteristic is set to CM_FILL_BUFFER and data (independent of its
logical-record format) is received by the program.

¹ CM_COMPLETE_DATA_RECEIVED (basic and mapped conversations)
This value indicates one of the following:

– For mapped conversations, a complete data record or the last
remaining portion of the record is received.

– For basic conversations, fill is set to CM_FILL_LL and a complete logical
record, or the last remaining portion of the record, is received.

¹ CM_INCOMPLETE_DATA_RECEIVED (basic and mapped conversations)
This value indicates one of the following:

– For mapped conversations, less than a complete data record is
received.

– For basic conversations, fill is set to CM_FILL_LL, and less than a
complete logical record is received.

Note: For either type of conversation, if data_received is set to
CM_INCOMPLETE_DATA_RECEIVED, the program must issue another
Receive (or possibly multiple Receive calls) to receive the remainder of the
data.

received_length (output)
Specifies the variable containing the amount of data the program received, up
to the maximum. If the program does not receive data on this call, the value
contained in received_length has no meaning.

Note: Data is received only if return_code is set to CM_OK or
CM_DEALLOCATED_NORMAL, and data_received is not set to
CM_NO_DATA_RECEIVED.

status_received (output)
Specifies the variable containing an indication of the conversation status.

Note: Unless return_code is set to CM_OK, the value contained in
status_received has no meaning.

The status_received variable can have one of the following values:

 ¹ CM_NO_STATUS_RECEIVED
No conversation status is received by the program; data may be received.

¹ CM_SEND_RECEIVED (half-duplex conversations only)
The remote program's end of the conversation has entered Receive state,
placing the local program's end of the conversation in Send-Pending state
(if the program also received data on this call) or Send state (if the program
did not receive data on this call). The local program (which issued the
Receive call) can now send data.

¹ CM_CONFIRM_RECEIVED (half-duplex conversations only)
The remote program has sent a confirmation request, requesting the local
program to respond by issuing a Confirmed call. The local program must
respond by issuing Confirmed, Send_Error, Deallocate with deallocate_type
set to CM_DEALLOCATE_ABEND, or Cancel_Conversation.

214 CPI Communications Reference

 Receive (CMRCV)

¹ CM_CONFIRM_SEND_RECEIVED (half-duplex conversations only)
The remote program's end of the conversation has entered Receive state
with confirmation requested. The local program must respond by issuing
Confirmed, Send_Error, Deallocate with deallocate_type set to
CM_DEALLOCATE_ABEND, or Cancel_Conversation. Upon issuing a
successful Confirmed call, the local program (which issued the Receive call)
can now send data.

 ¹ CM_CONFIRM_DEALLOC_RECEIVED
The remote program has deallocated the conversation with confirmation
requested. The local program must respond by issuing Confirmed,
Send_Error, Deallocate with deallocate_type set to
CM_DEALLOCATE_ABEND, or Cancel_Conversation. Upon issuing a
successful Confirmed call, the local program (which issued the Receive call)
is deallocated—that is, placed in Reset state.

For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a
transaction, the status_received variable can also be set to one of the following
values:

 ¹ CM_TAKE_COMMIT
The remote program has issued a resource recovery commit call or a
Prepare call. For the exact conditions for receipt of this status_received
value, refer to Table 9 on page 56 and Table 10 on page 57. The local
program should issue a commit call in order to commit all protected
resources throughout the transaction. When appropriate, the local program
may respond by issuing a call other than commit, such as Send_Error (for
half-duplex conversations only) or a resource recovery backout call.

¹ CM_TAKE_COMMIT_SEND (for half-duplex conversations only)
The remote program has issued a Prepare_To_Receive call with
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and
then issued a resource recovery commit call or a Prepare call. For the
exact conditions for receipt of this status_received value, refer to Table 9
on page 56 and Table 10 on page 57. The local program should issue a
commit call in order to commit all protected resources throughout the
transaction. When appropriate, the local program may respond by issuing a
call other than commit, such as Send_Error or a resource recovery backout
call. If a successful commit call is issued, the local program can then send
data.

 ¹ CM_TAKE_COMMIT_DEALLOCATE
The remote program has deallocated the conversation with deallocate_type
set to CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, or has issued a
Deferred_Deallocate call, and then issued a resource recovery commit call
or a Prepare call. For the exact conditions for receipt of this
status_received value, refer to Table 9 on page 56 and Table 10 on
page 57. The local program should issue a commit call in order to commit
all protected resources throughout the transaction. The local program may
respond by issuing a call other than commit when appropriate, such as
Send_Error for a half-duplex conversation, or a resource recovery backout
call. If a successful commit call is issued, the local program is then
deallocated—that is, placed in Reset state.

 Chapter 4. Call Reference 215

 Receive (CMRCV)

 ¹ CM_PREPARE_OK
By issuing a Prepare (CMPREP) call, the local program requested that the
remote program prepare its resources for commitment, and the remote
program has done so, by issuing a commit call. The subtree is now ready
to commit its resources.

For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and using an OSI TP CRM, the status_received
variable can also be set to one of the following values if the conversation is
included in a transaction:

 ¹ CM_TAKE_COMMIT_DATA_OK
The remote program issued a Prepare call. For the exact conditions for
receipt of this status_received value, refer to Table 9 on page 56 and
Table 10 on page 57. The local program should issue a commit call in
order to commit all protected resources throughout the transaction. The
program is allowed to send data before issuing the commit call. When
appropriate, the local program may respond by issuing a call other than
commit, such as Send_Error (for half-duplex conversations only) or a
resource recovery backout call.

¹ CM_TAKE_COMMIT_SEND_DATA_OK (half-duplex conversations only)
The remote program issued a Prepare call. For the exact conditions for
receipt of this status_received value, refer to Table 9 on page 56 and
Table 10 on page 57. The local program should issue a commit call in
order to commit all protected resources throughout the transaction. The
program is allowed to send data before issuing the commit call. When
appropriate, the local program may respond by issuing a call other than
commit, such as Send_Error or a resource recovery backout call. If a
successful commit call is issued, the local program can then send data.

 ¹ CM_TAKE_COMMIT_DEALLOC_DATA_OK
The remote program issued a Prepare call. For the exact conditions for
receipt of this status_received value, refer to Table 9 on page 56 and
Table 10 on page 57. The local program should issue a commit call in
order to commit all protected resources throughout the transaction. The
program is allowed to send data before issuing the commit call. The local
program may respond by issuing a call other than commit when
appropriate, such as Send_Error for a half-duplex conversation, or a
resource recovery backout call. If a successful commit call is issued, the
local program is then deallocated—that is, placed in Reset state.

¹ CM_JOIN_TRANSACTION (unchained transactions only)
The remote program requested that the local program join into its current
transaction. If the local program called Set_Join_Transaction with
CM_JOIN_EXPLICIT, the local program should issue a tx_begin() call to the
X/Open TX interface to join the superior's transaction as soon as any local
work, which is not to be included in the remote program's transaction, has
completed. If the local program called Set_Join_Transaction with
CM_JOIN_IMPLICIT, the local program already joined the transaction, and
tx_begin() must not be called.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received. The control_information_received variable can
have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

216 CPI Communications Reference

 Receive (CMRCV)

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the
local program's end of the conversation to enter Receive state, which
would place the remote program's end of the conversation in Send state.
See “Request_To_Send (CMRTS)” on page 246 for further discussion of
the local program's possible responses.

¹ CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation.

¹ CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data.

¹ CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may
now issue an Extract_Initialization_Data (CMEID) call to receive the
initialization data.

This value will be returned with a return code of CM_OK. The program will
receive a CM_DEALLOCATED_ABEND return code on a later call on the
conversation.

¹ CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations and LU
6.2 CRM only)
The local program received a request-to-send notification from the remote
program and expedited data is available to be received.

Notes:

1. The value contained in control_information_received has no meaning only if
return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK.

2. When more than one piece of control information is available to be returned
to the program, it will be returned in the following order:

 ¹ CM_ALLOCATE_CONFIRMED, CM_ALLOCATE_CONFIRMED_WITH_DATA,
or CM_ALLOCATE_REJECTED_WITH_DATA

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of the call execution. The return codes that can be returned
depend on the state and characteristics of the conversation at the time this call
is issued.

The following return codes apply to half-duplex conversations .

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in Send
state, return_code can have one of the following values:

 ¹ CM_OK

 Chapter 4. Call Reference 217

 Receive (CMRCV)

 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)
¹ CM_SVC_ERROR_NO_TRUNC (basic conversations only)
¹ CM_SVC_ERROR_PURGING (basic conversations only)

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction :
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in
Send-Pending state, return_code can be one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)
¹ CM_SVC_ERROR_NO_TRUNC (basic conversations only)
¹ CM_SVC_ERROR_PURGING (basic conversations only)

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction :

218 CPI Communications Reference

 Receive (CMRCV)

 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

If receive_type is set to CM_RECEIVE_AND_WAIT or CM_RECEIVE_IMMEDIATE
and this call is issued in Receive or Prepared state, return_code can be one of
the following:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE

This value is only received when receive_type is set to
CM_RECEIVE_AND_WAIT.

 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_PURGING
¹ CM_PROGRAM_ERROR_TRUNC (basic conversations only)

 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)
¹ CM_SVC_ERROR_NO_TRUNC (basic conversations only)
¹ CM_SVC_ERROR_PURGING (basic conversations only)
¹ CM_SVC_ERROR_TRUNC (basic conversations only)

 ¹ CM_UNSUCCESSFUL
This value indicates that receive_type is set to CM_RECEIVE_IMMEDIATE,
but there is no data or status to receive.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

 Chapter 4. Call Reference 219

 Receive (CMRCV)

If a state or parameter error has occurred, return_code can have one of the
following values:

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The receive_type is set to CM_RECEIVE_AND_WAIT and the
conversation is not in Send , Send-Pending , Receive or Prepared
state.

– The receive_type is set to CM_RECEIVE_IMMEDIATE and the
conversation is not in Receive or Prepared state.

– The receive_type is set to CM_RECEIVE_AND_WAIT; the conversation is
basic and in Send state; and the program started but did not finish
sending a logical record.

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Receive call is not allowed for this
conversation while its context is in this condition.

– The program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The requested_length specifies a value that exceeds the range

permitted by the implementation. The maximum value of the length in
each implementation is at least 32767. See Usage Note 13 on
page 225 for additional information about determining the maximum
buffer size.

The following return codes apply to full-duplex conversations .

If the call is issued in Send-Receive , Receive-Only , or Prepared state,
return_code can be one of the following:

 ¹ CM_OK
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LEVEL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_DEALLOCATED_ABEND
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

 ¹ CM_PROGRAM_ERROR_NO_TRUNC
¹ CM_PROGRAM_ERROR_TRUNC (basic conversations only)
¹ CM_PROGRAM_ERROR_PURGING (OSI TP CRM only)

 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_RESOURCE_FAILURE_NO_RETRY

220 CPI Communications Reference

 Receive (CMRCV)

¹ CM_SVC_ERROR_NO_TRUNC (basic conversations only)
¹ CM_SVC_ERROR_TRUNC (basic conversations only)

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_UNSUCCESSFUL

This value indicates that receive_type is set to CM_RECEIVE_IMMEDIATE,
but there is nothing to receive.

¹ The following values are returned only if sync_level is
CM_SYNC_POINT_NO_CONFIRM and the state is Send-Receive or
Prepared and the conversation is included in a transaction:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SCV_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_CONV_DEALLOC_AFTER_SYNCPT
 – CM_INCLUDE_PARTNER_REJECT_BO

If a state or parameter error has occurred, return_code can have one of the
following values:

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send-Receive , Prepared , or Receive-Only
state.

– For a conversation with sync_level set to
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout Required condition. The Receive call is not allowed for this
conversation while its context is in this condition.

– The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The requested_length specifies a value that exceeds the range

permitted by the implementation. The maximum value of the length in
each implementation is at least 32,767. See Note 13 on page 225 for
additional information about determining the maximum buffer size.

 State Changes
For half-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Receive state if a Receive call is issued and all of the
following conditions are true:

– The receive_type is set to CM_RECEIVE_AND_WAIT.
– The conversation is in Send-Pending or Send state.
– The data_received indicates CM_DATA_RECEIVED,

CM_COMPLETE_DATA_RECEIVED, or CM_INCOMPLETE_DATA_RECEIVED.
– The status_received indicates CM_NO_STATUS_RECEIVED.

¹ The conversation enters Send state when data_received is set to
CM_NO_DATA_RECEIVED and status_received is set to CM_SEND_RECEIVED.

 Chapter 4. Call Reference 221

 Receive (CMRCV)

¹ The conversation enters Send-Pending state when data_received is set to
CM_DATA_RECEIVED, or CM_COMPLETE_DATA_RECEIVED, and status_received
is set to CM_SEND_RECEIVED.

¹ The conversation enters Confirm , Confirm-Send , or Confirm-Deallocate state
when status_received is set to, respectively, CM_CONFIRM_RECEIVED,
CM_CONFIRM_SEND_RECEIVED, or CM_CONFIRM_DEALLOC_RECEIVED.

¹ For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation enters Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state when status_received is set
to CM_TAKE_COMMIT, CM_TAKE_COMMIT_SEND, or
CM_TAKE_COMMIT_DEALLOCATE, respectively.

¹ For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation enters Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state when status_received is set
to CM_TAKE_COMMIT_DATA_OK, CM_TAKE_COMMIT_SEND_DATA_OK, or
CM_TAKE_COMMIT_DEALLOC_DATA_OK, respectively.

¹ No state change occurs when the call is issued in Receive state; data_received
is set to CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED, or
CM_INCOMPLETE_DATA_RECEIVED; and status_received indicates
CM_NO_STATUS_RECEIVED.

¹ No state change occurs when the call is issued in Prepared state, or if
status_received indicates CM_JOIN_TRANSACTION.

For full-duplex conversations, when return_code indicates CM_OK:

¹ No state change occurs when the call is issued in Prepared or Receive-Only
state, or if status_received indicates CM_JOIN_TRANSACTION.

¹ The conversation enters Confirm-Deallocate state when status_received is set
to CM_CONFIRM_DEALLOC_RECEIVED.

¹ For a conversation with sync_level set to CM_SYNC_POINT_NO_CONFIRM, the
conversation enters Sync-Point state when status_received is set to
CM_TAKE_COMMIT or CM_TAKE_COMMIT_DATA_OK, and it enters
Sync-Point-Deallocate state when status_received is set to
CM_TAKE_COMMIT_DEALLOCATE or CM_TAKE_COMMIT_DEALLOC_DATA_OK.

 Usage Notes
1. If receive_type is set to CM_RECEIVE_AND_WAIT and no information is present

when the call is made, CPI Communications waits for information to arrive on
the specified conversation before allowing the Receive call to return with the
information. If information is already available, the program receives it without
waiting.

2. For a half-duplex conversation, if the program issues a Receive call with its end
of the conversation in Send state with receive_type set to
CM_RECEIVE_AND_WAIT, the local system will flush its send buffer and send all
buffered information to the remote program. The local system will also send a
change-of-direction indication. This is a convenient method to change the
direction of the conversation, because it leaves the local program's end of the
conversation in Receive state and tells the remote program that it may now
begin sending data. The local system waits for information to arrive.

222 CPI Communications Reference

 Receive (CMRCV)

Note: A Receive call in Send or Send-Pending state with a receive_type set
to CM_RECEIVE_AND_WAIT generates an implicit execution of
Prepare_To_Receive with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_FLUSH, followed by a Receive. Refer to
“Prepare_To_Receive (CMPTR)” on page 208 for more information.

3. If receive_type is set to CM_RECEIVE_IMMEDIATE, a Receive call receives any
available information, but does not wait for information to arrive. If information
is available, it is returned to the program with an indication of the exact nature
of the information received.

Since data may not be available when a given Receive call is issued, a
program that is using concurrent conversations with multiple partners might use
a receive_type of CM_RECEIVE_IMMEDIATE and periodically check each
conversation for data. For more information about multiple, concurrent
conversations, see “Multiple Conversations” on page 30.

4. On MVS and VM systems, when a conversation crosses a VTAM network, the
Receive call does not return data until an entire logical record arrives at the
local system. For basic conversations, this behavior may cause the Receive
call to return unexpected results.

For example, a Receive call with receive_type set to CM_RECEIVE_IMMEDIATE
will return a return code of CM_UNSUCCESSFUL if the entire logical record has
not arrived at the local system, even if enough of the logical record has arrived
to satisfy the Receive call's requested length. Similarly, a Receive call with
receive_type set to CM_RECEIVE_AND_WAIT will wait until the remainder of the
logical record is received by the local system, even if enough of the logical
record has arrived to satisfy the requested length. For MVS/ESA, the Receive
call works properly under these circumstances between LUs controlled by
APPC/MVS in the same MVS system image. It also works properly under VM
within a TSAF or CS collection.

5. If the return_code indicates CM_PROGRAM_STATE_CHECK or
CM_PROGRAM_PARAMETER_CHECK, the values of all other parameters on this
call have no meaning.

6. A Receive call issued against a mapped conversation can receive only as
much of the data record as specified by the requested_length parameter. The
data_received parameter indicates whether the program has received a
complete or incomplete data record, as follows:

¹ When the program receives a complete data record or the last remaining
portion of a data record, the data_received parameter is set to
CM_COMPLETE_DATA_RECEIVED. The length of the record or portion of
the record is less than or equal to the length specified on the
requested_length parameter.

¹ When the program receives a portion of the data record other than the last
remaining portion, the data_received parameter is set to
CM_INCOMPLETE_DATA_RECEIVED. The data record is incomplete for one
of the following reasons:

– receive_type is set to CM_RECEIVE_AND_WAIT, and the length of the
record is greater than the length specified on the requested_length
parameter.

– receive_type is set to CM_RECEIVE_IMMEDIATE, and either the length
of the record is greater than the length specified on the

 Chapter 4. Call Reference 223

 Receive (CMRCV)

requested_length parameter or the last portion of the data record has
not arrived from the partner program.

In either case, the amount of data received is equal to the received_length
specified.

7. When fill is set to CM_FILL_LL on a basic conversation, the program intends to
receive a logical record, and there are the following possibilities:

¹ The program receives a complete logical record or the last remaining
portion of a complete record. The length of the record or portion of the
record is less than or equal to the length specified on the requested_length
parameter. The data_received parameter is set to
CM_COMPLETE_DATA_RECEIVED.

¹ The program receives an incomplete logical record for one of the following
reasons:

– The length of the logical record is greater than the length specified on
the requested_length parameter. In this case, the amount received
equals the length specified.

– Only a portion of the logical record is available (possibly because it has
been truncated). The portion is equal to or less than the length
specified on the requested_length parameter.

The data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED.
The program issues another Receive (or possibly multiple Receive calls) to
receive the remainder of the logical record.

Refer to the Send_Data call for a definition of complete and incomplete logical
records.

8. When fill is set to CM_FILL_BUFFER on a basic conversation, the program is to
receive data independently of its logical-record format. The program receives
an amount of data equal to or less than the length specified on the
requested_length parameter.

The program can receive less data only under one of the following conditions:

¹ receive_type is set to CM_RECEIVE_AND_WAIT and the end of the data is
received. The end of data occurs when it is followed by either:

– An indication of a change in the state of the conversation
- For a half-duplex conversation, a change to Send , Send-Pending ,

Confirm , Confirm-Send , Confirm-Deallocate , Sync-Point ,
Sync-Point-Send , Sync-Point-Deallocate , or Reset state

- For a full-duplex conversation, a change to Send-Only ,
Confirm-Deallocate , Sync-Point , Sync-Point-Deallocate , or
Reset state

– An error indication, such as a CM_PROGRAM_ERROR_NO_TRUNC return
code.

¹ receive_type is set to CM_RECEIVE_IMMEDIATE and an amount of data
equal to the requested_length specified has not arrived from the partner
program.

The program is responsible for tracking the logical-record format of the data.

9. The Receive call made with requested_length set to zero has no special
significance. The type of information available is indicated by the return_code,
data_received, and status_received parameters, as usual. If receive_type is

224 CPI Communications Reference

 Receive (CMRCV)

set to CM_RECEIVE_AND_WAIT and no information is available, this call waits
for information to arrive. If receive_type is set to CM_RECEIVE_IMMEDIATE, it is
possible that no information is available.

If data is available, the conversation is basic, and fill is set to CM_FILL_LL, the
data_received parameter indicates CM_INCOMPLETE_DATA_RECEIVED. If data
is available, the conversation is basic, and fill is set to CM_FILL_BUFFER, the
data_received parameter indicates CM_DATA_RECEIVED. If data is available
and the conversation is mapped, the data_received parameter is set to
CM_INCOMPLETE_DATA_RECEIVED. In all the above cases, the program
receives no data.

If the conversation is mapped and a null data record is available (resulting from
a Send_Data call with send_length set to 0), the data_received parameter is
set to CM_COMPLETE_DATA_RECEIVED and the received_length parameter is
set to 0.

Note: When requested_length is set to zero, receipt of either data or status
can be indicated, but not both. The only exception to this rule is when a null
data record is available for receipt on a mapped conversation. In that case,
receipt of the null data record and status can both be indicated.

10. The program can receive both data and conversation status on the same call.
However, if the remote program truncates a logical record, the local program
receives the indication of the truncation on the Receive call issued by the local
program after it receives all of the truncated record. The return_code,
data_received, and status_received parameters indicate to the program the
kind of information the program receives.

11. The program may receive data and conversation status on the same Receive
call or on separate Receive calls. The program should be prepared for either
case.

12. For a half-duplex conversation, the request-to-send notification is returned to
the program in addition to (not in place of) the information indicated by the
return_code, data_received, and status_received parameters.

13. A program must not specify a value in the requested_length parameter that is
greater than the maximum the implementation can support. The maximum may
vary from system to system. The program can use the
Extract_Maximum_Buffer_Size call to determine the maximum supported by the
local system. The program can achieve portability across different systems by
using one of the following methods:

a. Never using a requested_length value greater than 32767.

b. Using the Extract_Maximum_Buffer_Size call to determine the maximum
buffer size supported by the system and never setting requested_length
greater than that maximum buffer size.

The program should also be aware that the CM_INCOMPLETE_DATA_RECEIVED
value of the data_received parameter may be returned when the maximum
buffer size differs across the systems.

14. When the Receive call is processed in non-blocking mode and receive_type is
set to CM_RECEIVE_IMMEDIATE, the call completes immediately. If information
is not available, return_code is set to CM_UNSUCCESSFUL.

15. When the local program has requested confirmation of the Allocate call and the
first call made by the recipient program is Request_To_Send or the recipient

 Chapter 4. Call Reference 225

 Receive (CMRCV)

program has issued a Send_Expedited_Data call, the
CM_ALLOCATE_CONFIRMED value of the control_information_received
parameter will be returned first, and one of the following values will be returned
at the next opportunity:

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE

16. The Receive call may be issued following a successful Prepare call, without a
state transition to Receive state in case of a half-duplex conversation, for either
of these reasons:

¹ To receive data when CM_PREPARE_DATA_PERMITTED is selected and the
Prepare Call is issued

¹ To receive a new CM_PREPARE_OK value in status_received.

17. For a full-duplex conversation, if receive_type is set to CM_RECEIVE_AND_WAIT
and the conversation startup request has not been sent to the partner, then the
Receive call will flush the conversation startup request to the partner.

18. For a full-duplex conversation, if the return code
CM_PROGRAM_ERROR_PURGING is received, it indicates that the conversation
is allocated using an OSI TP CRM and that data may have been purged. The
application has to ensure that the two partners are coordinated.

19. For a full-duplex conversation, when CM_DEALLOCATED_ABEND or
CM_DEALLOCATED_ABEND_BO is received, further information on the cause of
the deallocation may be obtained by issuing the Extract_Secondary_Information
call.

20. When control_information_received indicates that expedited data is available to
be received, subsequent calls with this parameter will continue to indicate that
expedited data is available until the expedited data has been received by the
program.

 Related Information
“Conversation Types” on page 19 and “Set_Fill (CMSF)” on page 310 further
discuss the use of basic conversations.

Most of the example program flows in Chapter 3, “Program-to-Program
Communication Example Flows” show programs using the Receive call.

“Extract_Maximum_Buffer_Size (CMEMBS)” on page 173 further discusses
determining the maximum buffer size supported by the system.

“Receive_Mapped_Data (CMRCVM)” on page 231 discusses how a program
receives partner mapped data.

“Request_To_Send (CMRTS)” on page 246 discusses how a program can place its
end of the conversation into Receive state.

“Send_Data (CMSEND)” on page 249 provides more information on complete and
incomplete logical records and data records.

“Send_Mapped_Data (CMSNDM)” on page 271 dicusses how a program sends
mapped partner data.

226 CPI Communications Reference

 Receive (CMRCV)

“Set_Receive_Type (CMSRT)” on page 344 discusses the receive_type
characteristic and its various values.

 Chapter 4. Call Reference 227

 Receive_Expedited_Data (CMRCVX)

 Receive_Expedited_Data (CMRCVX)

LU 6.2

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X*

A program uses the Receive_Expedited_Data (CMRCVX) call to receive expedited
data sent by its partner.

This call has meaning only when an LU 6.2 CRM is used for the conversation.

X* In OS/2, this call is supported in Communications Server.

 Format
CALL CMRCVX(conversation_ID,

buffer,
requested_length,
received_length,
control_information_received,
expedited_receive_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

buffer (output)
Specifies the variable in which the program is to receive the data.

requested_length (input)
Specifies the maximum amount of data the program is to receive. This length
can range from 0 to 86 bytes.

received_length (output)
When CM_OK is returned to the program, this parameter specifies the amount
of data received, which is less than or equal to the buffer size specified in
requested_length. When CM_BUFFER_TOO_SMALL is returned to the program,
this parameter indicates the size of the data that is available to be received but
has not been received.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received.

The control_information_received variable can have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the

228 CPI Communications Reference

 Receive_Expedited_Data (CMRCVX)

local program's end of the conversation to enter Receive state, which
would place the remote program's end of the conversation in Send state.
See “Request_To_Send (CMRTS)” on page 246 for further discussion of
the local program's possible responses.

 ¹ CM_EXPEDITED_DATA_AVAILABLE
Additional expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program and expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned
to the program, it will be returned in the following order:

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

expedited_receive_type (input)
Specifies whether control should be returned to the program immediately or
after there is expedited data available to receive.

The expedited_receive_type variable can have one of the following values:

 ¹ CM_RECEIVE_AND_WAIT
The Receive_Expedited_Data call is to wait for expedited data to arrive on
the specified conversation. If expedited data is already available, the
program receives it without waiting.

 ¹ CM_RECEIVE_IMMEDIATE
The Receive_Expedited_Data call is to receive any expedited data that is
available from the specified conversation, but is not to wait for expedited
data to arrive.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

– The conversation_ID specifies an unassigned conversation identifier.
– The requested_length specifies a value less than 0 or greater than 86.
– The conversation is not using an LU 6.2 CRM.
– The expedited_receive_type specifies an undefined value.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize or
Initialize-Incoming state and is not allowed to send expedited data.

 ¹ CM_CONVERSATION_ENDING
This value indicates that the conversation is ending due to a normal
deallocation, an allocation error, a Cancel_Conversation call, a Deallocate

 Chapter 4. Call Reference 229

 Receive_Expedited_Data (CMRCVX)

call with deallocate_type set to CM_DEALLOCATE_ABEND, or a conversation
failure. Hence, no expedited data is received.

 ¹ CM_EXP_DATA_NOT_SUPPORTED
This value indicates that the remote system does not support expedited
data.

 ¹ CM_BUFFER_TOO_SMALL
This value indicates that the value specified for the requested_length
parameter is less than the amount of expedited data to be received.
Therefore, no expedited data has been received.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_UNSUCCESSFUL

This value indicates that the expedited_receive_type parameter was set to
CM_RECEIVE_IMMEDIATE and there was no expedited data available to
receive.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. When expedited data is received by the CRM from the partner program, it is

indicated to the local program on the next call it issues that returns the
control_information_received parameter. When the program uses multiple
threads or queue-level non-blocking, more than one call with the
control_information_received parameter may be executed simultaneously. The
availability of expedited data will continue to be indicated until the expedited
data is received by the program. However, if a request-to-send or an
allocate-confirm notification has been received, this notification is given to the
program in only one call that has the control_information_received parameter.

2. If the program issues Receive_Expedited_Data with requested_length set to 0
and there is data available to be received, CM_BUFFER_TOO_SMALL is
returned.

3. If the program issues Receive_Expedited_Data with requested_length set to 0
and expedited_receive_type set to CM_RECEIVE_AND_WAIT, and there is no
data available to be received, the call does not complete until expedited data is
available to be received. CM_BUFFER_TOO_SMALL is then returned.

 Related Information
“Send_Expedited_Data (CMSNDX)” on page 268 describes the
Send_Expedited_Data call.

230 CPI Communications Reference

 Receive_Mapped_Data (CMRCVM)

 Receive_Mapped_Data (CMRCVM)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program issues the Receive_Mapped_Data (CMRCVM) call to receive mapped
data sent by its partner.

Before issuing the Receive_Mapped_Data call, a program has the option of issuing
the CMSRT-Set_Receive_Type call.

 Format
CALL CMRCVM(conversation_ID,

map_name,
map_name_length,
buffer,
requested_length,
data_received,
status_received,
control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the variable containing the conversation identifier assigned to the
conversation.

map_name (output)
Specifies the variable containing the mapping function used to decode the data
record. The length of the variable must be at least 64 bytes.

map_name_length (output)
Specifies the variable containing the length of the returned map_name
parameter.

buffer (output)
Specifies the variable in which the program is to receive the data.

Note: Buffer contains data only if return_code is set to CM_OK or
CM_DEALLOCATE_NORMAL and data_received is not set to
CM_NO_DATA_RECEIVED. If the return_code is set to
CM_MAP_ROUTINE_ERROR or CM_UNKNOWN_MAP_RECEIVED the buffer
contains the unprocessed user data.

requested_length (input)
Specifies the maximum amount of data the program is to receive. Valid
requested_length values range from 0 to the maximum buffer size supported by
the system and the map name. See usage note 10 on page 241 for additional
information about determining the maximum buffer size.

 Chapter 4. Call Reference 231

 Receive_Mapped_Data (CMRCVM)

data received_ (output)
Specifies whether or not the program received data.

Note: Unless return_code is set to CM_OK or
CM_DEALLOCATE_NORMAL, the value contained in data_received has no
meaning.

The data_received variable can have one of the following values:

 ¹ CM_NO_DATA_RECEIVED
No data is received by the program. Status may be received if the
return_code is set to CM_OK

 ¹ CM_COMPLETE_DATA_RECEIVED
A complete data record or the last remaining portion of the record is
received.

 ¹ CM_INCOMPLETE_DATA_RECEIVED

Less than a complete data record was received.

received_length (output)
Specifies the variable containing the amount of data the program received, up
to the maximum. If the program does not receive data on this call, the value
contained in received_length has no meaning.

Note: Data is received only if return_code is set to CM_OK or
CM_DEALLOCATE_NORMAL and data_received is not set to
CM_NO_DATA_RECEIVED.

status_received (output)
Specifies the variable containing an indication of the conversation status.

Note: Unless return_code is set to CM_OK, the value contained in status_received
has no meaning.

The status_received variable can have one of the following values:

 ¹ CM_NO_STATUS_RECEIVED
No conversation status is received by the program; data may be received.

¹ CM_SEND_RECEIVED (half-duplex conversations only)
The remote program's end of the conversation in Send-Pending state (if the
program also received data on this call) or Send state (if the program did not
receive data on this call). The local program which issued the Receive call can
now send data.

¹ CM_CONFIRM_RECEIVED (half-duplex conversations only)
The remote program has sent a confirmation request, requesting the local
program to respond by issuing a Confirmed call. The local program must
respond by issuing Confirmed, Send_Error, or Deallocate with deallocate_type
set to CM_DEALLOCATE_ABEND.

¹ CM_CONFIRM_SEND_RECEIVED (half-duplex conversations only)
The remote program's end of the conversation entered RECEIVE state with
conformation requested. The local program must respond by issuing
Confirmed, Send_Error, or Deallocate with deallocate_type set to
CM_DEALLOCATE_ABEND. Upon issuing a successful Confirmed call, the local
program which issued the Receive call can now send data.

 ¹ CM_CONFIRM_DEALLOC_RECEIVED
The remote program has deallocated the conversation with conformation
requested. The local program must respond by issuing Confirmed, Send_Error,
or Deallocate with deallocate_type set to CM_DEALLOCATE_ABEND. Upon

232 CPI Communications Reference

 Receive_Mapped_Data (CMRCVM)

issuing a successful Confirmed call, the local program which issued the
Receive call is deallocated. This means it is placed in RESET state.

For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and with the conversation include in a
transaction, the status_received variable can also be set to one of the following
values:

 ¹ CM_TAKE_COMMIT
The remote program has issued a resource recovery commit call. The local
program should issue a commit call in order to commit all protected program
should issue a commit call in order to commit all protected resources
throughout the transaction. When appropriate, the local program may respond
by issuing a call other than commit, such as Send_error (for half-duplex
conversations only) or a resource recovery backout call.

¹ CM_TAKE_COMMIT_SEND (half-duplex conversations only)
The remote program issued a Prepare_to_Receive call with
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync
level set to CM_SYNC_POINT and then issued a resource recovery commit call.
The local program should issue a commit call in order to commit all protected
resources throughout the transaction. When appropriate, the local program
may respond by issuing a call other than commit, such as Send_Error, or a
resource recovery backout call. If a successful commit call is issued, the local
program can then send data.

 ¹ CM_TAKE_COMMIT_DEALLOCATE
The remote program has deallocated the conversation with deallocate_type set
to CM_DEALLOCATE_SYNC_LEVEL and sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_COMMIT and then issued a resource recovery commit
call. The local program should issue a commit call in order to commit all
protected resources throughout the transaction. The local program may
respond by issuing a call other than commit, such as Send_Error, or a resource
recovery backout call. If a successful commit call is issued, the local program
is then deallocated. This means it is placed in RESET state.

 ¹ CM_PREPARE_OK
By issuing a Prepare (CMPREP) call, the local program requested that the
remote program prepare its resources for commitment, and the remote program
has done so by issuing a commit call. The subtree is now ready to commit its
resources.

For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and allocated using an OSI TP CRM, the
status_received variable can also be set to one of the values if the conversation is
included in a transaction:

 ¹ CM_JOIN_TRANSACTION
The remote program requested that the local program join into its current
transaction. The local program should issue an tx_begin call to the X/OPEN
TX interface to join the superior's transaction as soon as any local work that is
not to be included in the remote program's transaction has been completed.

 ¹ CM_TAKE_COMMIT_DATA_OK
The remote program issued a Prepare call. For the exact conditions for receipt
of this status_received value, see Table 17 on page 342 and Table 59 on
page 642 The local program should issue a commit call in order to commit all
protected resources throughout the transaction. The program is allowed to
send data before issuing the commit call. When appropriate, the local program

 Chapter 4. Call Reference 233

 Receive_Mapped_Data (CMRCVM)

may respond by issuing a call other than commit, such as Send_Error for
half-duplex conversations only, or a resource recovery backout call.

¹ CM_TAKE_COMMIT_SEND_DATA_OK(half-duplex conversations only)
The remote program issued a Prepare call. For the exact conditions for receipt
of this status_received value, see Table 17 on page 342 and Table 59 on
page 642 The local program should issue a commit call in order to commit all
protected resources throughout the transaction. The program is allowed to
send data before issuing the commit call. When appropriate, the local program
may respond by issuing a call other than commit, such as Send_Error for
half-duplex conversations only, or a resource recovery backout call. If a
successful commit call is issued, the local program can then send data.

 ¹ CM_TAKE_COMMIT_DEALLOC_DATA_OK
The remote program issued a Prepare call. For the exact conditions for receipt
of this status_received value, see Table 17 on page 342 and Table 59 on
page 642 The local program should issue a commit call in order to commit all
protected resources throughout the transaction. The program is allowed to
send data before issuing the commit call. When appropriate, the local program
may respond by issuing a call other than commit, such as Send_Error for
half-duplex conversations only, or a resource recovery backout call. If a
successful commit call is issued, the local program is then deallocated. This
means that it is placed in RESET state.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received. The control_infomration_received variable can
have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the local
program's end of conversation to enter Receive state, which would place the
remote program's end of conversation in Send state. See “Request_To_Send
(CMRTS)” on page 246 for further discussion of the local program's possible
responses.

¹ CM_ALLOCATE_CONFIRM (OSI TP CRM only)
The local program received confirmation of the remote program's acceptance of
the conversation.

¹ CM_ALLOCATE_CONFIRM_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program's acceptance of
the conversation. The local program may now issue an
Extract_Mapped_Initialization_Data (CMEMID) call to receive the initialization
data.

¹ CM_ALLOCATE_REJECT_WITH_DATA (OST TP CRM only)
The remote program rejected the conversation. The local program may now
issue an Extract_Mapped_Initialization_call to receive the initialization data.

This value will be returned with a return code of CM_OK. The program will
receive a CM_DEALLOCATE_ABEND return code on a later call on the
conversation.

¹ CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

¹ CM_EXPEDITED_MAPPED_DATA_AVAILABLE (LU 6.2 CRM only)
Mapped expedited data is available to be received.

234 CPI Communications Reference

 Receive_Mapped_Data (CMRCVM)

¹ CM_RTS_RCVD_AND_EXP_MAP_DATA_AVAIL (half-duplex conversations and LU
6.2 CRM only)
The local program received a request-to-send notification from the remote
program and mapped expedited date is available for receiving.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned to
the program, it will be returned in the following order:

 ¹ CM_ALLOCATE_CONFIRMED,
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_RTS_RCVD_AND_MAP_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of call execution The return_code that can be returned
depends on the state and characteristics of he conversation at the time this call
is issued.

The following return codes apply to half-duplex conversations:

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in Send
state, the return_code can have one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TPN_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TPN_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATE_ABEND
 ¹ CM_DEALLOCATE_NORMAL
 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_NO_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED

The received data requires a map routine that the local map function does not
support. The buffer contains the unprocessed user data.

 Chapter 4. Call Reference 235

 Receive_Mapped_Data (CMRCVM)

 ¹ CM_MAP_ROUTINE_ERROR
The map routine encountered a problem with the received data. The buffer
contains the unprocessed user data.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_PROGRAM_STATE_CHECK
 ¹ CM_PROGRAM_STATE_CHECK

The following values are returned only when the sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in the transaction:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO
 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in
Send-Pending state, return_code can have one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED

The received data requires a map routine that the local map function does not
support. The buffer contains the unprocessed user data.

 ¹ CM_MAP_ROUTINE_ERROR
The map routine encountered a problem with the received data. The buffer
contains the unprocessed user data.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when the sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction:

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO

If receive_type is set to CM_RECEIVE_AND_WAIT or CM_RECEIVE_IMMEDIATE and
this call is issued in Receive state, the return_code can have one of the following
values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED

This value is only received when receive_type is set to
CM_RECEIVE_AND_WAIT.

 ¹ CM_CONVERSATION_TYPE_MISMATCH

236 CPI Communications Reference

 Receive_Mapped_Data (CMRCVM)

 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TPN_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TPN_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATE_ABEND
 ¹ CM_DEALLOCATE_NORMAL
 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_UNSUCCESSFUL
 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED

The received data requires a map routine the local map function does not
support. The buffer contains the unprocessed user data.

 ¹ CM_MAP_ROUTINE_ERROR
The map routine encountered a problem with the received data. The buffer
contains the unprocessed user data.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when the sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFORM and the conversation is
included in a transaction:

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATE_ABEND_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY

If the state or parameter error has occurred, the return_code can have one of the
following values:

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

¹ The receive_type is set to CM_RECEIVE_AND_WAIT and the conversation is not
set to CM_RECEIVE_AND_WAIT and the conversation is not in Send,
Send-Pending, Receive or Prepare state.

¹ The receive_type is set to CM_RECEIVE_IMMEDIATE and the conversation is not
set to CM_RECEIVE_AND_WAIT and the conversation is not in Receive or
Prepare state.

¹ For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Receive_Mapped_Data call is not allowed
for this conversation while its context is in this condition.

¹ The program has a status_received value of CM_JOIN_TRANSACTION and must
issue a tx_begin call to the X/OPEN TX interface to join the transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

¹ The conversation_ID specifies an unassigned conversation identifier.
¹ The requested_length specifies a value that exceeds the range permitted by

implementation. The maximum value of the length in each implementation is at

 Chapter 4. Call Reference 237

 Receive_Mapped_Data (CMRCVM)

least 32,767. See usage note 10 on page 241 for additional information about
determining the maximum buffer size.

¹ The conversation_type characteristic is set to
CM_BASIC_CONVERSATION

The following return codes apply to full_duplex conversations:

If the call is issued in Send-Receive or Receive-Only state and either the
sync_level is CM_NONE or the sync_level is CM_SYNC_POINT_NO_CONFIRM and
the conversation is not currently included in a transaction, the return_code can
have one of the following values:

 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TPN_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TPN_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATE_ABEND
 ¹ CM_DEALLOCATE_NORMAL
¹ CM_PROGRAM_ERROR_NO_TRUNC (half-duplex conversations only)
¹ CM_PROGRAM_ERROR_PURGING (OSI TP CRM only)

 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED

The received data requires a map routine the local map function does not
support. The buffer contains the unprocessed user data.

 ¹ CM_MAP_ROUTINE_ERROR
The map rountine encountered a problem with the received data. The buffer
contains the unprocessed user data.

 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_PROGRAM_STATE_CHECK

The following values are returned only when the sync_level is set to
CM_SYNC_POINT_NO_CONFORM and the state is Send-Receive or Prepared and
the conversation is included in a transaction:

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATE_ABEND_BO
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT
 ¹ CM_INCLUDE_PARTNER_REJECT_BO
 ¹ CM_PRODUCT_SPECIFIC_ERROR_

If the state or parameter error has occurred, the return_code can have one of the
following values:

238 CPI Communications Reference

 Receive_Mapped_Data (CMRCVM)

 CM_PROGRAM_STATE_CHECK
This value indicates one of the following:
The conversation is not in Send-Receive, Prepared or Receive-Only state.
For a conversation with sync_level set to CM_SYNC_POINT_NO_CONFIRM, the
conversation's context is in the Backout-Required condition. The
Receive_Mapped_Data call is not allowed for this conversation while its context
is in this condition.

 CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:

The conversation_ID specifies an unassigned conversation identifier.
The requested_length specifies a value that exceeds the range permitted by
implementation. The maximum value of the length in each implementation is at
least 32,767. See usage note 10 on page 241 for additional information about
determining the maximum buffer size.
The conversation_type characteristic is set to
CM_BASIC_CONVERSATION

 State Changes
For half-duplex conversations, when return_code indicates CM_OK:

The conversation enters Receive state if a Receive call is issued and all of the
following conditions are true:
¹ The receive type is set to CM_RECEIVE_AND_WAIT.
¹ The conversation is in Send-Pending or Send state.
¹ The data_received indicates CM_DATA_RECEIVED,

CM_COMPLETE_DATA_RECEIVED or CM_INCOMPLETE_DATA_RECEIVED
¹ The status_received indicates CM_NO_STATUS_RECEIVED.

¹ The conversation enters Send state when data_received is set to
CM_NO_DATA_RECEIVED and status_received is set to CM_SEND_RECEIVED.

¹ The conversation enters Send-Pending state when data_received is set to
CM_DATA_RECEIVED, or CM_COMPLETE_DATA_RECEIVED, and status_received
is set to CM_SEND_RECEIVED.

¹ The conversation enters Confirm , Confirm-send , or Confirm-Deallocate state
when status_received is set to CM_CONFIRM_RECEIVED,
CM_CONFIRM_SEND_RECEIVED, or CM_CONFIRM_DEALLOC_RECEIVED,
respectively.

¹ For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation enters Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state when status_received is set
to CM_TAKE_COMMIT, CM_TAKE_COMMIT_SEND, or
CM_TAKE_COMMIT_DEALLOCATE, respectively.

¹ For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation enters Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state when status_received is set
to CM_TAKE_COMMIT_DATA_OK, CM_TAKE_COMMIT_SEND_DATA_OK, or
CM_TAKE_COMMIT_DEALLOC_DATA_OK, respectively.

¹ No state change occurs when the call is issued in Receive state.
data_received is set to CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED,
or CM_INCOMPLETE_DATA_RECEIVED and status_received indicates
CM_NO_STATUS_RECEIVED

 Chapter 4. Call Reference 239

 Receive_Mapped_Data (CMRCVM)

¹ No state change occurs when the call is issued in Prepared state, or if
status_received indicates CM_JOIN_TRANSACTION.

For full-duplex conversations when return_code indicates CM_OK:

¹ No state change occurs when the call is issued in Prepared or Receive-Only
state, or if status_received indicates CM_JOIN_TRANSACTION

¹ The conversation enters Confirm-Deallocate state when status_rejected is set
to CM_CONFIRM_DEALLOC_RECEIVED.

¹ For a conversation with sync_level set to CM_SYNC_POINT_NO_CONFIRM, the
conversation enters Sync-Point state when status_received is set to
CM_TAKE_COMMIT or CM_TAKE_COMMIT_DATA_OK, and it enters
Sync-Point-Deallocate state when status_received is set to
CM_TAKE_COMMIT_DEALLOCATE, or
CM_TAKE_COMMIT_DEALLOC_DATA_OK.

 Usage Notes
1. If receive_type is set to CM_RECEIVE_AND_WAIT and no information is present

when the call is made, CPI-C waits for information to arrive on the specified
conversation before allowing the Receive call to return with the information. If
the information is already available, the program receives it without waiting.

2. For a half-duplex conversation, if the program issues a Receive call with its end
of the conversation in Send state with receive_type set to
CM_RECEIVE_AND_WAIT, the local system will flush its send buffer and send all
buffered information to the remote program. The local system will also send a
change-of-direction indication. This is convenient method to change the
direction of the conversation because it leaves the local program's end of the
conversation in Receive state and tells the remote program that it may now
begin sending data. The local system waits for information to arrive.

Note: A Receive call in Send or Send-Pending state with a receive_type set
to CM_RECEIVE_AND_WAIT generates an implicit execution of
Prepare_To_Receive with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_FLUSH followed by a Receive. See
“Prepare_To_Receive (CMPTR)” on page 208 for more information.

3. If receive_type is set to CM_RECEIVE_IMMEDIATE, a Receive call receives any
available information, but does not wait for information to arrive. If information
is available, it is returned to the program with an indication of the exact nature
of the information received.

Since data may not be available when a given Receive call is issued, a
program that is using concurrent conversations with multiple partners might use
a receive_type of CM_RECEIVE_IMMEDIATE and periodically check each
conversation for data. For more information about multiple, concurrent
conversations see “Multiple Conversations” on page 30

4. If the return_code indicates CM_PROGRAM_STATE_CHECK or
CM_PROGRAM_PARAMETER_CHECK, the values of all other parameters on the
call have no meaning.

5. A Receive call is issued against a mapped conversation can receive only as
much of the data record as specified by the requested_length parameter. The
data_received parameter indicates whether the program has received a
complete or incomplete data record as follows:

240 CPI Communications Reference

 Receive_Mapped_Data (CMRCVM)

¹ When the program receives a compete data record or the last remaining
portion of a data record, the data_received is set to
CM_COMPLETE_DATA_RECEIVED The length of the record or portion of the
record is less than or equal to the length specified on the requested_length
parameter.

¹ When the program receives a portion of the data record other than the last
remaining portion, the data_received parameter is set to
CM_INCOMPLETE_DATA_RECEIVED. The data record is incomplete for one
of the following reasons:

– receive_type is set to CM_RECEIVE_AND_WAIT and the length of the
record is greater than the length specified on the requested_length
parameter.

– receive_type is set to CM_RECEIVE_IMMEDIATE and either the length of
the record is greater than the length specified on the requested_length
parameter or the last portion of the data record has not arrived from the
partner program.
In either case, the amount of data received is equal to the
received_length specified.

6. The Receive call made with requested_length set to zero has no special
significance. The type of information available is indicated by the return_code,
data_received. and status_received parameters as usual. If receive_type is set
to CM_RECEIVE_AND_WAIT and no information is available, this call waits for
information to arrive. If receive_type is set to CM_RECEIVE_IMMEDIATE, it is
possible that no information is available. If data is available, the data_received
parameter is set to CM_INCOMPLETE_DATA_RECEIVED and the program
receives no data.

If the conversation is mapped and a null data record is available (resulting from
a Send_Mapped_Data call with send_length set to 0), the data_received
parameter is set to CM_COMPLETE_DATA_RECEIVED and the received_length
parameter is set to 0.

Note: When requested_length is set to zero, receipt of either data or status
can be indicated, but not both. The only exception to this rules is when a null
data record is available for receipt on a mapped conversation. In that case,
receipt of the null data record and status can both be indicated.

7. The program can receive both data and conversation status on the same call.
However, if the remote program truncates a logical record, the local program
receives the indication of the truncation on the Receive call issued by the local
program after it receives all of the truncated record. The return_code,
data_received, and status_received parameters indicate to the program the
kind of information the program receives.

8. The program may receive data and conversation status on the same Receive
call or on separate Receive calls. The program should be prepared for either
case.

9. For a half-duplex conversation, the request-to-send notification is returned to
the program in addition to (not in place of) the information indicated by the
return_code_data_received and status_received parameters.

10. A program must not specify a value in the requested_length parameter that is
greater than the maximum the implementation can support. The maximum may

 Chapter 4. Call Reference 241

 Receive_Mapped_Data (CMRCVM)

vary from system to system. The maximum also depends on the map_name
parameter.

Every CPI-C product must be able to receive data buffers with a length of
32,767 bytes. Users who write map routines should describe the length of the
data buffer after decoding, if the encoded buffer has a length of 32,767 bytes.

The application program should use a requested_length value not smaller than
this value. The program should also be aware that
CM_INCOMPLETE_DATA_RECEIVED value of the data_received parameter may
be returned when the maximum buffer size differs across systems.

11. When the Receive call is processed in non-blocking mode and receive_type is
set to CM_RECEIVE_IMMEDIATE, the call completes immediately. If information
is not available, return_code is set to CM_UNSUCCESSFUL.

12. When the local program has requested confirmation of the Allocate call and the
first call made by the recipient program is Request_To_Send or the recipient
program has issued a Send_Expedited_Data call, the
CM_ALLOCATE_CONFIRMED value of the control_information_received
parameter will be returned first and one of the following values will be returned
at the next opportunity:

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_EXPEDITED_MAPPED_DATA_AVAILABLE

13. The Receive call may be issued following a successful Prepare call, without a
state transition to Receive state in case of a half-duplex conversation, for either
of these reasons:

¹ To receive data when CM_PREPARE_DATA_PERMITTED is selected and the
Prepare Call is issued

¹ To receive a new CM_PREPARE_OK value in status_received.

14. For a full-duplex conversation, if receive_type is set to CM_RECEIVE_AND_WAIT
and the conversation startup request has been sent to the partner, then the
Receive call will flush the conversation startup request to the partner.

15. For a full-duplex conversation, if the return code
CM_PROGRAM_ERROR_PURGING is received, it indicates that the conversation
is allocated using an OSI TP CRM and that data may have been purged. The
application has to ensure that the two partners are coordinated.

16. For a full-duplex conversation, when CM_DEALLOCATED_ABEND or
CM_DEALLOCATED_ABEND_BO is received, further information on the cause of
the deallocation may be obtained by issuing the Extract_Secondary_Information
call.

17. When control_information_received indicated that expedited data is available to
be received, subsequent calls with this parameter will continue to indicate that
expedited data is available until the expedited data has been received by the
program.

18. The received_length is local information from the map routine. The
received_length value is calculated by the map routine after all transformations
are completed.

19. If a basic conversation data record is received the map routine treats it as an
error.

242 CPI Communications Reference

 Receive_Mapped_Data (CMRCVM)

 Related Information
Chapter 3, “Program-to-Program Communication Example Flows” on page 67
show programs using the Receive call.

“Request_To_Send (CMRTS)” on page 246 discusses how a program can place its
end of the conversation into Receive state.

“Send_Mapped_Data (CMSNDM)” on page 271 provides more information on
complete and incomplete logical records and data records.

“Set_Prepare_To_Receive_Type (CMSPTR)” on page 331 discusses the
receive_type characteristic and its various values.

 Chapter 4. Call Reference 243

 Release_Local_TP_Name (CMRLTP)

 Release_Local_TP_Name (CMRLTP)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X* X

Release_Local_TP_Name (CMRLTP) is used by a program to release a name.
The name is no longer associated with the program.

X* In AIX, this call is supported in Version 3 Release 1 or later. OS/2, this call is
supported in Communications Server.

 Format
CALL CMRLTP(TP_name,

TP_name_length,
return_code)

 Parameters
TP_name (input)

Specifies the name to be released.

Note: Refer to “SNA Service Transaction Programs” on page 727 for special
handling of SNA Service Transaction Program names.

TP_name_length (input)
Specifies the length of TP_name. The length can be from 1 to 64 bytes.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The TP_name specifies a name that is not associated with this

program.
– The TP_name_length specifies a value less than 1 or greater than 64.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

244 CPI Communications Reference

 Release_Local_TP_Name (CMRLTP)

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the names

associated with the current program remain unchanged.

2. The names used to satisfy an outstanding Accept_Incoming or
Accept_Conversation call are not changed by the Release_Local_TP_Name
call. The released name will not be used to satisfy future Accept_Incoming or
Accept_Conversation calls.

3. A TP can release a name that was taken from the conversation startup request
and used to start the program.

4. If a TP has released all names, no incoming conversations can be accepted.
Subsequent Accept_Incoming and Accept_Conversation calls will receive the
CM_PROGRAM_STATE_CHECK return code.

 Related Information
“Specify_Local_TP_Name (CMSLTP)” on page 361 describes how local names are
associated with a program.

 Chapter 4. Call Reference 245

 Request_To_Send (CMRTS)

 Request_To_Send (CMRTS)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

The local program uses the Request_To_Send (CMRTS) call to notify the remote
program that the local program would like to enter Send state for a given
conversation.

Note: The Request_To_Send call has meaning only on a half-duplex
conversation.

 Format
CALL CMRTS(conversation_ID,

return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The send_receive_mode is CM_FULL_DUPLEX.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Receive , Send , Send-Pending , Confirm ,
Confirm-Send , Confirm-Deallocate , Sync-Point , Sync-Point-Send ,
Sync-Point-Deallocate or Prepared state.

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Request_To_Send call is not
allowed for this conversation while its context is in this condition.

– For a conversation using an OSI TP CRM, the Request_To_Send call is
not allowed from Send or Prepared state.

– The program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

 ¹ CM_CONVERSATION_ENDING

246 CPI Communications Reference

 Request_To_Send (CMRTS)

This return code indicates that the local system is ending the conversation
or notification has been received from the remote system that it is ending
the conversation.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. The remote program is informed of the arrival of a request-to-send notification

by means of the control_information_received parameter. The
control_information_received parameter set to CM_REQ_TO_SEND_RECEIVED or
CM_RTS_RCVD_AND_EXP_DATA_AVAIL is a request for the remote program's
end of the conversation to enter Receive state in order to place the partner
program's end of the conversation (the program that issued the
Request_To_Send) in Send state.

The remote program's end of the conversation enters Receive state when the
remote program successfully issues one of the following calls or sequences of
calls:

¹ The Receive call with receive_type set to CM_RECEIVE_AND_WAIT
¹ The Prepare_To_Receive call with prepare_to_receive_type set to

CM_PREP_TO_RECEIVE_FLUSH, CM_PREP_TO_RECEIVE_CONFIRM, or
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to CM_CONFIRM
or CM_NONE, or CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set
to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but with the
conversation not currently included in a transaction.

¹ The Send_Data call with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE and prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_FLUSH, CM_PREP_TO_RECEIVE_CONFIRM, or
CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level set to CM_CONFIRM
or CM_NONE, or CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set
to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but with the
conversation not currently included in a transaction.

¹ The Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, followed by a
successful commit, Confirm, or Flush call.

¹ The Send_Data call with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE, prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, followed by a
successful commit, Confirm, or Flush call.

After a remote program issues one of these calls, the local program's end of
the conversation is placed into a corresponding Send , Send-Pending ,
Confirm-Send , or Sync-Point-Send state when the local program issues a
Receive call. See the status_received parameter for the Receive call on page
213 for information about why the state changes from Receive to Send .

2. The CM_REQ_TO_SEND_RECEIVED value is normally returned to the remote
program in the control_information_received parameter when the remote
program's end of the conversation is in Send state (on a Send_Data,

 Chapter 4. Call Reference 247

 Request_To_Send (CMRTS)

Send_Error, Confirm, or Test_Request_To_Send_Received call). However, the
value can also be returned on a Receive call.

3. When the remote system receives the request-to-send notification, it retains the
notification until the remote program issues a call with the
control_information_received parameter. The remote system will retain only
one request-to-send notification at a time (per conversation). Additional
notifications are discarded until the retained notification is indicated to the
remote program. Therefore, a local program may issue the Request_To_Send
call more times than are indicated to the remote program.

 Related Information
“Example 4: The Receiving Program Changes the Data Flow Direction” on
page 75 shows an example program flow using the Request_To_Send call.

“Receive (CMRCV)” on page 213 provides additional information on the
status_received and control_information_received parameters.

“Receive_Mapped_Data (CMRCVM)” on page 231 provides information about
receiving mapped partner data.

248 CPI Communications Reference

 Send_Data (CMSEND)

 Send_Data (CMSEND)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

A program uses the Send_Data (CMSEND) call to send data to the remote
program. When issued during a mapped conversation, this call sends one data
record to the remote program. The data record consists entirely of data and is not
examined by the system for possible logical records.

When issued during a basic conversation, this call sends data to the remote
program. The data consists of logical records. The amount of data is specified
independently of the data format.

Before issuing the Send_Data call, a program has the option of issuing one or more
of the following calls, which affect the function of the Send_Data call:

CALL CMSST – Set_Send_Type

If send_type = CM_SEND_AND_PREP_TO_RECEIVE, optional setup may include:

CALL CMSPTR – Set_Prepare_To_Receive_Type

If send_type = CM_SEND_AND_DEALLOCATE, optional setup may include:

CALL CMSDT – Set_Deallocate_Type

 Format
CALL CMSEND(conversation_ID,

buffer,
send_length,
control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

buffer (input)
When a program issues a Send_Data call during a mapped conversation, buffer
specifies the data record to be sent. The length of the data record is given by
the send_length parameter.

When a program issues a Send_Data call during a basic conversation, buffer
specifies the data to be sent. The data consists of logical records, each
containing a 2-byte length field (denoted as LL) followed by a data field.

 Chapter 4. Call Reference 249

 Send_Data (CMSEND)

The length of the data field can range from 0 to 32765 bytes. The 2-byte
length field contains the following bits:

¹ A high-order bit that is not examined by the system. It is used, for
example, by the system’s mapped conversation component in support of
the mapped conversation calls.

¹ A 15-bit binary length of the record.

The length of the record equals the length of the data field plus the 2-byte
length field. Therefore, logical record length values of X'0000', X'0001',
X'8000', and X'8001' are not valid.

Note: The logical record length values shown above (such as X'0000') are in
the hexadecimal (base-16) numbering system.

send_length (input)
For both basic and mapped conversations, the send_length ranges in value
from 0 to the maximum buffer size supported by the system. The maximum
buffer size is at least 32767 bytes. See Usage Note 10 on page 257 for
additional information about determining the maximum buffer size. The
send_length parameter specifies the size of the buffer parameter and the
number of bytes to be sent on the conversation.

When a program issues a Send_Data call during a mapped conversation and
send_length is zero, a null data record is sent.

When a program issues a Send_Data call during a basic conversation,
send_length specifies the size of the buffer parameter and is not related to the
length of a logical record. If send_length is zero, no data is sent, and the buffer
parameter is not important. However, the other parameters and setup
characteristics are significant and retain their meaning as described.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received.

The control_information_received variable can have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the
local program's end of the conversation to enter Receive state, which
would place the remote program's end of the conversation in Send state.
See “Request_To_Send (CMRTS)” on page 246 for further discussion of
the local program's possible responses.

¹ CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation.

¹ CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data.

¹ CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may
now issue an Extract_Initialization_Data (CMEID) call to receive the
initialization data.

250 CPI Communications Reference

 Send_Data (CMSEND)

This value will be returned with a return code of CM_OK. The program will
receive a CM_DEALLOCATED_ABEND return code on a later call on the
conversation.

¹ CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations and LU
6.2 CRM only)
The local program received a request-to-send notification from the remote
program and expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned
to the program, it will be returned in the following order:

 ¹ CM_ALLOCATE_CONFIRMED, CM_ALLOCATE_CONFIRMED_WITH_DATA,
or CM_ALLOCATE_REJECTED_WITH_DATA

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values.

The following return codes apply to half-duplex conversations .

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)
¹ CM_SVC_ERROR_PURGING (basic conversations only)

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send , Send-Pending , Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state.

 Chapter 4. Call Reference 251

 Send_Data (CMSEND)

– The conversation is in Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state, and the program received a take-commit
notification not ending in *_DATA_OK.

– The conversation is basic and in Send state; the send_type is set to
CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE, or
CM_SEND_AND_PREP_TO_RECEIVE; the deallocate_type is not set to
CM_DEALLOCATE_ABEND (if send_type is set to
CM_SEND_AND_DEALLOCATE); and the data does not end on a logical
record boundary.

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Send_Data call is not allowed for
this conversation while its context is in this condition.

– The conversation is in Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state, and send_type is set to
CM_SEND_AND_CONFIRM or CM_SEND_AND_PREP_TO_RECEIVE.

– The conversation is in Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state, the send_type is set to
CM_SEND_AND_DEALLOCATE, and the deallocate_type is not set to
CM_DEALLOCATE_ABEND.

– The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

- The deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM.

- The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

- The conversation is included in a transaction.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The send_length exceeds the range permitted by the implementation.

The maximum value of the length in each implementation is at least
32767. See Usage Note 10 on page 257 for additional information
about determining the maximum buffer size.

– The conversation_type is CM_BASIC_CONVERSATION and buffer
contains an invalid logical record length (LL) value of X'0000',
X'0001', X'8000', or X'8001'.

– The send_type is set to CM_SEND_AND_PREP_TO_RECEIVE and the
following conditions are also true:

- The prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL.

- The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

- The conversation is included in a transaction.
- The conversation is using an OSI TP CRM, and the program is not

the superior for the conversation.
– The send_type is set to CM_SEND_AND_DEALLOCATE and the following

conditions are also true:
- The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL.
- The sync_level is set to CM_SYNC_POINT or

CM_SYNC_POINT_NO_CONFIRM.
- The conversation is included in a transaction.
- The conversation is using an OSI TP CRM, and the program is not

the superior for the conversation.

252 CPI Communications Reference

 Send_Data (CMSEND)

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

The following return codes apply to full-duplex conversations .

The return_code can have one of the following values:

 ¹ CM_OK
 ¹ CM_ALLOCATION_ERROR
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_TIMER
 ¹ CM_DEALLOCATED_CONFIRM_REJECT
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_NORMAL (OSI TP CRM only)

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send-Receive , Send-Only , Sync-Point , or
Sync-Point-Deallocate state.

– The conversation is basic and in Send-Receive or Send-Only state,
the send_type is set to CM_SEND_AND_DEALLOCATE, the
deallocate_type is not set to CM_DEALLOCATE_ABEND, and the data
does not end on a logical record boundary.

– The conversation is in Sync-Point or Sync-Point Deallocate state and
the program received a take-commit notification not ending in
*_DATA_OK.

– The conversation is in Sync-Point , or Sync-Point-Deallocate state,
the send_type is set to CM_SEND_AND_DEALLOCATE, and the
deallocate_type is not set to CM_DEALLOCATE_ABEND.

– The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

- The deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM.

- The sync_level is set to CM_SYNC_POINT_NO_CONFIRM.
- The conversation is included in a transaction.

– For a conversation with sync_level set to
CM_SYNC_POINT_NO_CONFIRM, this return code indicates one of the
following:

- The conversation's context is in the Backout-Required condition.
The Send_Data call is not allowed for this conversation while its
context is in this condition.

 Chapter 4. Call Reference 253

 Send_Data (CMSEND)

- The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the
X/Open TX interface to join the transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The send_length exceeds the range permitted by the implementation.

The maximum value of the length in each implementation is at least
32767.

– The conversation_type is CM_BASIC_CONVERSATION and buffer
contains an invalid logical record length (LL) value of X'0000',
X'0001', X'8000', or X'8001'.

– The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

- The deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM.

- The sync_level is set to CM_SYNC_POINT_NO_CONFIRM.
- The conversation in included in a transaction.

– The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

- The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL.
- The sync_level is set to CM_SYNC_POINT_NO_CONFIRM.
- The conversation is included in a transaction.
- The program is not the superior for the conversation.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only if sync_level is
CM_SYNC_POINT_NO_CONFIRM, the state is Send-Receive and the
conversation is currently included in a transaction.

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
¹ CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT
 ¹ CM_INCLUDE_PARTNER_REJECT_BO

 State Changes
For half-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Receive state when Send_Data is issued with
send_type set to CM_SEND_AND_PREP_TO_RECEIVE and any of the following
conditions are true:

– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH
– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM
– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL

and sync_level is set to CM_NONE or CM_CONFIRM

254 CPI Communications Reference

 Send_Data (CMSEND)

– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM,
but the conversation is not currently included in a transaction.

¹ The conversation enters Defer-Receive state when Send_Data is issued with
send_type set to CM_SEND_AND_PREP_TO_RECEIVE, prepare_to_receive_type
set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

¹ The conversation enters Reset state when Send_Data is issued with send_type
set to CM_SEND_AND_DEALLOCATE and any of the following conditions is true:

– Deallocate_type is set to CM_DEALLOCATE_ABEND
– Deallocate_type is set to CM_DEALLOCATE_FLUSH
– Deallocate_type is set to CM_DEALLOCATE_CONFIRM
– Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is

set to CM_NONE or CM_CONFIRM
– Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set

to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but the
conversation is not currently included in a transaction.

¹ The conversation enters Defer-Deallocate state when Send_Data is issued
with send_type set to CM_SEND_AND_DEALLOCATE, deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

¹ The conversation enters Send state when Send_Data is issued in
Send-Pending state with send_type set to CM_BUFFER_DATA,
CM_SEND_AND_FLUSH, or CM_SEND_AND_CONFIRM.

¹ No state change occurs when Send_Data is issued in Send state with
send_type set to CM_BUFFER_DATA, CM_SEND_AND_FLUSH, or
CM_SEND_AND_CONFIRM.

For full-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Receive-Only state when the Send_Data call is
issued in Send-Receive state with send_type set to
CM_SEND_AND_DEALLOCATE, and one of the following conditions is true:

– deallocate_type is set to CM_DEALLOCATE_FLUSH
– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is

set to CM_NONE
– deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set

to CM_SYNC_POINT_NO_CONFIRM, and the conversation is not currently
included in a transaction.

¹ The conversation enters Reset state when the Send_Data call is issued with
send_type set to CM_SEND_AND_DEALLOCATE and one of the following
conditions is true:

– The call is issued in Send-Only state
– The call is issued in Send-Receive , Send-Only , Sync-Point , or

Sync-Point-Deallocate state and deallocate_type is set to
CM_DEALLOCATE_ABEND.

¹ The conversation enters Defer-Deallocate state when the Send_Data call is
issued with send_type set to CM_SEND_AND_DEALLOCATE, deallocate_type set

 Chapter 4. Call Reference 255

 Send_Data (CMSEND)

to CM_DEALLOCATE_SYNC_LEVEL, sync_level set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation included in a transaction.

¹ No state change occurs when Send_Data is issued in Send-Receive or
Send-Only state with send_type set to CM_BUFFER_DATA or
CM_SEND_AND_FLUSH.

 Usage Notes
1. The local system buffers the data to be sent to the remote system until it

accumulates a sufficient amount of data for transmission (from one or more
Send_Data calls), or until the local program issues a call that causes the
system to flush its send buffer. The amount of data sufficient for transmission
depends on the characteristics of the logical connection allocated for the
conversation, and varies from one logical connection to another.

2. For a half-duplex conversation, when control_information_received indicates
CM_REQ_TO_SEND_RECEIVED, or CM_RTS_RCVD_AND_EXP_DATA_AVAIL, or
the remote program is requesting the local program's end of the conversation to
enter Receive state, which places the remote program's end of the
conversation in Send state. See “Request_To_Send (CMRTS)” on page 246
for a discussion of how a program can place its end of a conversation in
Receive state.

3. When issued during a mapped conversation, the Send_Data call sends one
complete data record. The data record consists entirely of data, and CPI
Communications does not examine the data for logical record length fields. It
is this complete data record that is indicated to the remote program by the
data_received parameter of the Receive call.

For example, consider a mapped conversation where the local program issues
two Send_Data calls with send_length set, respectively, to 30 and then 50.
(These numbers are simplistic for explanatory purposes.) The local program
then issues Flush and the 80 bytes of data are sent to the remote system. The
remote program now issues Receive with requested_length set to a sufficiently
large value, say 1000. The remote program will receive back only 30 bytes of
data (indicated by the received_length parameter) because this is a complete
data record. The completeness of the data record is indicated by the
data_received variable, which will be set to CM_COMPLETE_DATA_RECEIVED.

The remote program receives the remaining 50 bytes of data (from the second
Send_Data) when it performs a second Receive with requested_length set to a
value greater than or equal to 50.

4. The data sent by the program during a basic conversation consists of logical
records. The logical records are independent of the length of data as specified
by the send_length parameter. The data can contain one or more complete
records, the beginning of a record, the middle of a record, or the end of a
record. The following combinations of data are also possible:

¹ One or more complete records, followed by the beginning of a record
¹ The end of a record, followed by one or more complete records
¹ The end of a record, followed by one or more complete records, followed

by the beginning of a record
¹ The end of a record, followed by the beginning of a record

5. The program using a basic conversation must finish sending a logical record
before issuing any of the following calls:

256 CPI Communications Reference

 Send_Data (CMSEND)

 ¹ Confirm
¹ Deallocate with deallocate_type set to CM_DEALLOCATE_FLUSH,

CM_DEALLOCATE_CONFIRM, or CM_DEALLOCATE_SYNC_LEVEL
 ¹ Include_Partner_In_Transaction
 ¹ Prepare
 ¹ Prepare_To_Receive
 ¹ Receive
¹ Resource recovery commit

A program finishes sending a logical record when it sends a complete record or
when it truncates an incomplete record. The data must end with the end of a
logical record (on a logical record boundary) when Send_Data is issued with
send_type set to CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE, or
CM_SEND_AND_PREP_TO_RECEIVE.

6. A complete logical record contains the 2-byte LL field and all bytes of the data
field, as determined by the logical-record length. If the data field length is zero,
the complete logical record contains only the 2-byte length field. An incomplete
logical record consists of any amount of data less than a complete record. It
can consist of only the first byte of the LL field, the 2-byte LL field plus all of
the data field except the last byte, or any amount in between. A logical record
is incomplete until the last byte of the data field is sent, or until the second byte
of the LL field is sent if the data field is of zero length.

7. During a basic conversation, a program can truncate an incomplete logical
record by issuing the Send_Error call. Send_Error causes the system to flush
its send buffer, which includes sending the truncated record. The system then
treats the first two bytes of data specified in the next Send_Data as the LL
field. Issuing Send_Data with send_type set to CM_SEND_AND_DEALLOCATE
and deallocate_type set to CM_DEALLOCATE_ABEND, or Deallocate with
deallocate_type set to CM_DEALLOCATE_ABEND, during a basic conversation
also truncates an incomplete logical record. If the log_data characteristic is not
null and these conditions occur, log data is sent.

8. Send_Data is often used in combination with other calls, such as Flush,
Confirm, and Prepare_To_Receive. Contrast this usage with the equivalent
function available from the use of the Set_Send_Type call prior to issuing a call
to Send_Data.

9. When a Send_Data call is issued with send_type set to
CM_SEND_AND_DEALLOCATE, deallocate_type set to CM_DEALLOCATE_ABEND,
and sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, the
conversation's context may be placed in the Backout-Required condition.

10. A program must not specify a value in the send_length parameter that is
greater than the maximum the implementation can support. The maximum may
vary from system to system. The program can use the
Extract_Maximum_Buffer_Size call to find out the maximum buffer size
supported by the local system. The program can achieve portability across
different systems by using one of the following methods:

a. Never using a send_length value greater than 32767

b. Using the Extract_Maximum_Buffer_Size call to determine the maximum
buffer size supported by the system and never setting send_length greater
than that maximum buffer size

11. When control_information_received indicates that expedited data is available to
be received, subsequent calls with this parameter will continue to indicate that

 Chapter 4. Call Reference 257

 Send_Data (CMSEND)

expedited data is available until the expedited data has been received by the
program.

 Related Information
“Conversation Types” on page 19 provides more information on mapped and basic
conversations.

“Data Buffering and Transmission” on page 44 provides a complete discussion of
controls over data transmission.

All of the example program flows in Chapter 3, “Program-to-Program
Communication Example Flows” make use of the Send_Data call.

“Extract_Maximum_Buffer_Size (CMEMBS)” on page 173 further discusses
determining the maximum buffer size supported by the system.

“Receive (CMRCV)” on page 213 provides more information on the data_received
parameter.

“Receive_Mapped_Data (CMRCVM)” on page 231 provides more information on
receiving mapped partner data.

“Send_Mapped_Data (CMSNDM)” on page 271 provides more information on
sending mapped partner data.

“Set_Send_Type (CMSST)” on page 351 provides more information on the
send_type conversation characteristic and the use of it in combination with calls to
Send_Data.

SNA Transaction Programmer’s Reference Manual for LU Type 6.2 provides further
discussion of basic conversations.

258 CPI Communications Reference

 Send_Error (CMSERR)

 Send_Error (CMSERR)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Send_Error (CMSERR) is used by a program to inform the remote program that the
local program detected an error during a conversation. If the conversation is in
Send , Send-Receive , or Send-Only state, Send_Error forces the system to flush
its send buffer.

For a half-duplex conversation, when this call completes successfully, the local
program's end of the conversation is in Send state and the remote program's end
of the conversation is in Receive state. Further action is defined by program logic.
Typically, this involves sending information about the error to the partner.

For a full-duplex conversation, no state change occurs. The issuance of
Send_Error will be reported to the partner on a Receive call.

Before issuing the Send_Error call, a program has the option of issuing one or
more of the following calls, which affect the function of the Send_Error call:

CALL CMSED – Set_Error_Direction (for half-duplex conversations only)
CALL CMSLD – Set_Log_Data

 Format
CALL CMSERR(conversation_ID,

control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received.

The control_information_received variable can have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the
local program's end of the conversation to enter Receive state, which
would place the remote program's end of the conversation in Send state.
See “Request_To_Send (CMRTS)” on page 246 for further discussion of
the local program's possible responses.

 Chapter 4. Call Reference 259

 Send_Error (CMSERR)

¹ CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation.

¹ CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data.

¹ CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may
now issue an Extract_Initialization_Data (CMEID) call to receive the
initialization data.

This value will be returned with a return code of CM_OK. The program will
receive a CM_DEALLOCATED_ABEND return code on a later call on the
conversation.

¹ CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations and LU
6.2 CRM only)
The local program received a request-to-send notification from the remote
program and expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned
to the program, it will be returned in the following order:

 ¹ CM_ALLOCATE_CONFIRMED, CM_ALLOCATE_CONFIRMED_WITH_DATA,
or CM_ALLOCATE_REJECTED_WITH_DATA

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of the call execution. The value for return_code depends
on the state of the conversation at the time this call is issued.

The following return codes apply to half-duplex conversations .

If the Send_Error is issued in Send state, return_code can have one of the
following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED

260 CPI Communications Reference

 Send_Error (CMSERR)

 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)
¹ CM_SVC_ERROR_PURGING (basic conversations only)

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_PROGRAM_STATE_CHECK
This return code indicates that for a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, the conversation's
context is in the Backout-Required condition. The Send_Error call is
not allowed for this conversation while its context is in this condition.

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

If the Send_Error is issued in Receive state, return_code can have one of the
following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_PROGRAM_PARAMETER_CHECK

The conversation_ID specifies an unassigned conversation identifier.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction:
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

 Chapter 4. Call Reference 261

 Send_Error (CMSERR)

 – CM_DEALLOCATED_NORMAL_BO
 – CM_PROGRAM_STATE_CHECK

This return code indicates one of the following:
- For a conversation with sync_level set to CM_SYNC_POINT or

CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Send_Error call is not allowed
for this conversation while its context is in this condition.

- The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the
X/Open TX interface to join the transaction.

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

If the Send_Error is issued in Send-Pending state, return_code can have one
of the following values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_PROGRAM_PARAMETER_CHECK

The conversation_ID specifies an unassigned conversation identifier.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR
¹ The following values are returned only when sync_level is set to

CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM:
 – CM_TAKE_BACKOUT
 – CM_PROGRAM_STATE_CHECK

This return code indicates that for a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, the conversation's
context is in the Backout-Required condition. The Send_Error call is
not allowed for this conversation while its context is in this condition.

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_INCLUDE_PARTNER_REJECT_BO

If the Send_Error call is issued in Confirm , Confirm-Send ,
Confirm-Deallocate , Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state, return_code can have one of the following
values:

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

The conversation_ID specifies an unassigned conversation identifier.
 ¹ CM_PROGRAM_STATE_CHECK

This return code indicates that for a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, the conversation's
context is in the Backout-Required condition. The Send_Error call is not
allowed for this conversation while its context is in this condition.

 ¹ CM_TAKE_BACKOUT

262 CPI Communications Reference

 Send_Error (CMSERR)

This value is returned only when the Send_Error call is issued in
Sync-Point , Sync-Point-Send , or Sync-Point-Deallocate state, and only
when the conversation is using an OSI TP CRM.

 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO

This value is returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

 ¹ CM_RESOURCE_FAILURE_RETRY_BO
This value is returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

 ¹ CM_TAKE_BACKOUT
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

Otherwise, the conversation is in Reset , Initialize , Defer-Receive ,
Defer-Deallocate , Initialize-Incoming , or Prepared state and return_code has
one of the following values:

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PROGRAM_STATE_CHECK

The following return codes apply to full-duplex conversations .

The return_code variable can have one of the following values:

 ¹ CM_OK
 ¹ CM_ALLOCATION_ERROR
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_TIMER
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_NORMAL (OSI TP CRM only)

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send-Receive , Send-Only , or
Confirm-Deallocate state.

– The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the X/Open
TX interface to join the transaction.

– For a conversation with sync_level set to
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Send_Error call is not allowed for
this conversation while its context is in this condition.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates the conversation_ID specifies an unassigned
conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 Chapter 4. Call Reference 263

 Send_Error (CMSERR)

¹ The following values are returned only if sync_level is
CM_SYNC_POINT_NO_CONFIRM, the state is Send-Receive , and the
conversation is included in a transaction.
 – CM_TAKE_BACKOUT
 – CM_DEALLOCATED_ABEND_BO

– CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
– CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

 – CM_RESOURCE_FAIL_NO_RETRY_BO
 – CM_RESOURCE_FAILURE_RETRY_BO
 – CM_CONV_DEALLOC_AFTER_SYNCPT
 – CM_INCLUDE_PARTNER_REJECT_BO

 State Changes
For half-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Send state when the call is issued in Receive ,
Confirm , Confirm-Send , Confirm-Deallocate , or Send-Pending state. For a
conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and which is included in a transaction, the
conversation also enters Send state when the call is issued in Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state.

¹ No state change occurs when the call is issued in Send state.

For full-duplex conversations, when return_code indicates CM_OK, the conversation
enters Send-Receive state when this call is issued in Confirm-Deallocate state.

 Usage Notes
1. The system can send the error notification to the remote system immediately

(during the processing of this call), or the system can delay sending the
notification until a later time. If the system delays sending the notification, it
buffers the notification until it has accumulated a sufficient amount of
information for transmission, or until the local program issues a call that causes
the system to flush its send buffer.

2. The amount of information sufficient for transmission depends on the
characteristics of the logical connection allocated for the conversation, and
varies from one logical connection to another. Transmission of the information
can begin immediately if the log_data characteristic has been specified with
sufficient log data, or transmission can be delayed until sufficient data from
subsequent Send_Data calls is also buffered.

3. To make sure that the remote program receives the error notification as soon
as possible, the local program can issue Flush immediately after Send_Error.

4. For a half-duplex conversation using an LU 6.2 CRM, the issuance of
Send_Error is reported to the remote program as one of the following return
codes:

¹ CM_PROGRAM_ERROR_TRUNC (basic conversation)
The local program issued Send_Error with its end of the conversation in
Send state after sending an incomplete logical record (see “Send_Data
(CMSEND)” on page 249). The record has been truncated.

¹ CM_PROGRAM_ERROR_NO_TRUNC (basic and mapped conversations)
The local program issued Send_Error with its end of the conversation in
Send state after sending a complete logical record (basic) or data record

264 CPI Communications Reference

 Send_Error (CMSERR)

(mapped); or before sending any record; or the local program issued
Send_Error with its end of the conversation in Send-Pending state with
error_direction set to CM_SEND_ERROR. No truncation has occurred.

¹ CM_PROGRAM_ERROR_PURGING (basic and mapped conversations)
The local program issued Send_Error with its end of the conversation in
Receive state, and all information sent by the remote program and not yet
received by the local program has been purged. Or the local program
issued Send_Error with its end of the conversation in Send-Pending state
and error_direction set to CM_RECEIVE_ERROR or in Confirm ,
Confirm-Send , or Confirm-Deallocate state, and no purging has occurred.

5. If the conversation is using an OSI TP CRM, the remote program receives
CM_PROGRAM_ERROR_PURGING, regardless of the conversation state.

6. When a half-duplex conversation is using an LU 6.2 CRM and Send_Error is
issued in Receive state, incoming information is also purged. Because of this
purging, the return_code of CM_DEALLOCATED_NORMAL is reported instead of:

 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_DEALLOCATED_ABEND
¹ CM_DEALLOCATED_ABEND_SVC (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

Likewise, for conversations with sync_level set to CM_SYNC_POINT, a return
code of CM_DEALLOCATED_NORMAL_BO is reported instead of:

 ¹ CM_DEALLOCATED_ABEND_BO
¹ CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
¹ CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

Similarly, a return code of CM_OK is reported instead of:

 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_PURGING
¹ CM_PROGRAM_ERROR_TRUNC (basic conversations only)
¹ CM_SVC_ERROR_NO_TRUNC (basic conversations only)
¹ CM_SVC_ERROR_PURGING (basic conversations only)
¹ CM_SVC_ERROR_TRUNC (basic conversations only)

 ¹ CM_TAKE_BACKOUT

When the return code CM_TAKE_BACKOUT is purged, the remote system
resends the backout indication and the local program receives the
CM_TAKE_BACKOUT return code on a subsequent call.

The following types of incoming information are also purged:

¹ Data sent with the Send_Data call.
¹ Confirmation request sent with the Send_Data, Confirm,

Prepare_To_Receive, or Deallocate call.
If the confirmation request was sent with deallocate_type set to
CM_DEALLOCATE_CONFIRM or CM_DEALLOCATE_SYNC_LEVEL, the
deallocation request will also be purged.

¹ Prepare call or resource recovery commit call.

 Chapter 4. Call Reference 265

 Send_Error (CMSERR)

If the Prepare or commit call was sent in conjunction with a Deallocate call
with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, the deallocation
request will also be purged.

The request-to-send notification is not purged. This notification is reported to
the program when it issues a call that includes the control_information_received
parameter.

7. The program can use this call for various application-level functions. For
example, the program can issue this call to truncate an incomplete logical
record it is sending; to inform the remote program of an error detected in data
received; or to reject a confirmation request.

8. If the log_data_length characteristic is greater than zero, the system formats
the supplied log data into the appropriate format. The data supplied by the
program is any data the program wants to have logged. The data is logged on
the local system's error log and is also sent to the remote system for logging
there.

The log_data is not sent on the Send_Error call when an OSI TP CRM is being
used for the conversation. Instead, it is ignored.

After completion of the Send_Error processing, log_data is reset to null, and
log_data_length is reset to zero.

IMS and MVS systems do not send log_data to the partner program's system
and do not log data associated with outgoing and incoming Send_Error and
Deallocate calls.

Networking Services for Windows does not send log_data to the partner
program's system and does not log data associated with outgoing and incoming
Send_Error and incoming Deallocate calls. log_data is placed in the trace log
when the Deallocate call is issued.

9. The error_direction characteristic is significant only when a half-duplex
conversation is using an LU 6.2 CRM and Send_Error is issued in
Send-Pending state (that is, the Send_Error is issued immediately following a
Receive on which both data and a status_received parameter set to
CM_SEND_RECEIVED is received). In this case, Send_Error could be reporting
one of the following types of errors:

¹ An error in the received data (in the receive flow)
¹ An error having nothing to do with the received data, but instead being the

result of processing performed by the program after it had successfully
received and processed the data (in the send flow).

Because the system cannot tell which of the two errors occurred, the program
has to supply the error_direction information.

The default for error_direction is CM_RECEIVE_ERROR. A program can override
the default using the Set_Error_Direction call before issuing Send_Error.

Once changed, the new error_direction value remains in effect until the
program changes it again. Therefore, a program should issue
Set_Error_Direction before issuing Send_Error for a conversation in
Send-Pending state.

If the conversation is not in Send-Pending state, the error_direction
characteristic is ignored.

266 CPI Communications Reference

 Send_Error (CMSERR)

10. When control_information_received indicates that expedited data is available,
subsequent calls with this parameter will continue to indicate that expedited
data is available until the expedited data has been received by the program.

11. For full-duplex conversations, the issuance of Send_Error is reported on the
remote program's Receive call as one of the following return codes:

¹ CM_PROGRAM_ERROR_NO_TRUNC (basic and mapped conversations using
an LU 6.2 CRM)

¹ CM_PROGRAM_ERROR_TRUNC (basic conversations using an LU 6.2 CRM)
¹ CM_PROGRAM_ERROR_PURGING (conversations using an OSI TP CRM)

No data is purged, unless the conversation is using an OSI TP CRM, in which
case, the program should expect purging. The partner program may expect the
CM_PROGRAM_ERROR_PURGING return code if the conversation is allocated
using an OSI TP CRM. The programs may know whether to expect purging by
issuing an Extract_Partner_ID call.

12. Send_Error does not complete successfully if an error that causes the
conversation to terminate has occurred or the remote program has issued a
Cancel_Conversation call, a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND, or a Deallocate call with deallocate_type set to
CM_DEALLOCATE_FLUSH and the conversation has been allocated using an
OSI TP CRM.

For a conversation which is not included in a transaction, a
CM_DEALLOCATED_ABEND_*, CM_ALLOCATION_ERROR,
CM_RESOURCE_FAILURE_*_RETRY, or CM_DEALLOCATED_NORMAL return code
is returned. When one of the above return codes is returned and the
conversation is in Send-Receive state, the program can terminate the
conversation by issuing Receives until it gets one of the above return codes
taking it to Reset state, or by issuing Cancel_Conversation or Deallocate with
deallocate_type set to CM_DEALLOCATE_ABEND.

For a conversation which is included in a transaction,
CM_DEALLOCATED_ABEND_*_BO, CM_ALLOCATION_ERROR,
CM_RESOURCE_FAILURE_RETRY_BO, or CM_RESOURCE_FAIL_NO_RETRY_BO
is returned. If CM_ALLOCATION_ERROR is returned, the program behaves as
though it were not in transaction, otherwise it is in Backout-Required condition
and in Reset state.

 Related Information
“Example 6: Reporting Errors” on page 80 and “Example 7: Error Direction and
Send-Pending State” on page 82 provide example program flows using Send_Error
and the Send-Pending state; “Set_Error_Direction (CMSED)” on page 307
provides further information on the error_direction characteristic.

“Usage Notes” of “Request_To_Send (CMRTS)” on page 247 provides more
information on how a conversation enters Receive state.

“Send_Data (CMSEND)” on page 249 discusses basic conversations and logical
records.

“Set_Log_Data (CMSLD)” on page 316 provides a description of the log_data
characteristic.

 Chapter 4. Call Reference 267

 Send_Expedited_Data (CMSNDX)

 Send_Expedited_Data (CMSNDX)

LU 6.2

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X*

A program uses the Send_Expedited_Data (CMSNDX) call to send expedited data
to its partner.

This call has meaning only when an LU 6.2 CRM is used for the conversation.

X* In OS/2, this call is supported in Communications Server.

 Format
CALL CMSNDX(conversation_ID,

buffer,
send_length,
control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

buffer (input)
Specifies the variable containing the data to be sent.

send_length (input)
Specifies the length of the data to be sent. The minimum amount of data that
can be sent is 1 byte; the maximum is 86 bytes.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received.

The control_information_received variable can have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the
local program's end of the conversation to enter Receive state, which
would place the remote program's end of the conversation in Send state.
See “Request_To_Send (CMRTS)” on page 246 for further discussion of
the local program's possible responses.

 ¹ CM_EXPEDITED_DATA_AVAILABLE
Expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations only)

268 CPI Communications Reference

 Send_Expedited_Data (CMSNDX)

The local program received a request-to-send notification from the remote
program and expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned
to the program, it will be returned in the following order:

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PROGRAM_PARAMETER_CHECK

– The conversation_ID specifies an unassigned conversation identifier.
– The send_length specifies a value less than 1 or greater than 86.
– The conversation is not using an LU 6.2 CRM.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize or
Initialize-Incoming state and is not allowed to send expedited data.

 ¹ CM_CONVERSATION_ENDING
This value indicates that the conversation is ending due to a normal
deallocation, an allocation error, a Cancel_Conversation call, a Deallocate
call with deallocate_type set to CM_DEALLOCATE_ABEND, or a conversation
failure. Hence, no expedited data is sent.

 ¹ CM_EXP_DATA_NOT_SUPPORTED
This value indicates that the remote system does not support expedited
data.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. A program uses the Send_Expedited_Data call to send data that flows in an

expedited fashion, possibly bypassing data sent using the Send_Data call.

2. The Send_Expedited_Data call should be used sparingly and should not be
used for sending normal data.

3. When the remote system receives the expedited data, it retains the expedited
data until it is received by the partner program using Receive_Expedited_Data.

4. Note to Implementers: A control_information_received notification can be
reported on this call (associated with the Expedited-Send queue), on the

 Chapter 4. Call Reference 269

 Send_Expedited_Data (CMSNDX)

Receive_Expedited_Data call (associated with the Expedited-Receive queue),
on the Send_Data call (associated with the Send queue or the Send-Receive
queue), on the Receive call (associated with the Receive queue or the
Send-Receive queue), and on the Test_Request_To_Send_Received call (not
associated with any queue). When the program uses multiple threads or
queue-level non-blocking, more than one of these calls may be executed
simultaneously. An implementation should report the
CM_EXPEDITED_DATA_AVAILABLE indication to the program through all
available calls, until the expedited data is received. All other values of
control_information_received should be reported only once.

 Related Information
“Receive_Expedited_Data (CMRCVX)” on page 228 describes the
Receive_Expedited_Data call.

270 CPI Communications Reference

 Send_Mapped_Data (CMSNDM)

 Send_Mapped_Data (CMSNDM)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program issues the Send_Mapped_Data (CMSNDM) call to send data that
requires some type of transformation, for example, ASN.1 encoding, before it is
sent to the remote partner. The map_name is used to identify to the local map
routine what data is being sent so that it can apply the correct transforms.

When issued during a basis conversation, this call results in an error.

Before issuing the Send_Mapped_Data call, a program has the option of issuing
one or more of the following calls which affect the function of the Send_Data call:

CALL CMSST - Set_Send_Type

If send_type = CM_SEND_AND_PREP_TO_RECEIVE, optional set may include:

CALL CMSPTR - Set_Prepare_To_Receive_Type

If send type=CM_SEND_AND_DEALLOCATE, optional set may include:

CALL CMSDT - Set_Deallocate_Type

 Format
CALL CMSNDM(conversation_ID,

map_name,
map_name_length,
buffer,
send_length,
control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier of the conversation.

map_name (input)
Specifies the mapping function used to encode the data record. This is a 0 to
64 byte identifier.

map_name_length (input)
Specifies the length of the map_name. The length can be from 0 to 64 bytes.
If the length is 0, the map_name is ignored.

buffer (input)
Specifies the data record to be sent. The length of the data record is given by
the send_length parameter.

 Chapter 4. Call Reference 271

 Send_Mapped_Data (CMSNDM)

send_length (input)
The send_length ranges in value from 0 to the maximum buffer size supported
by the system. The maximum buffer size depends on the map name. See
Usage Note 6 on page 257 for additional information about determining the
maximum buffer size. The send_length parameter specifies the size of the
buffer parameter and the number of bytes to be sent to the local map routine.
The map routine will calculate the length of the data to be sent on the
conversation and handle it in accordance with the underlying CRM.

When a program issues a Send_Mapped_Data call and send_length is 0, a null
data record is sent. The map routine will determine if a null record will be sent on
the conversation. Refer to site documentation for that particular map routine.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received.

The control_information_received variable can have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

¹ CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the local
program's end of the conversation to enter Receive state, which would place
the remote program's end of the conversation in Send state. See
“Request_To_Send (CMRTS)” on page 246 for further information about the
local program's possible responses.

¹ CM_ALLOCATE_CONFIRMED (OSI TP CRM only) The local program received
confirmation of the remote program's acceptance of the conversation.

¹ CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only) The local
received confirmation of the remote program's acceptance of the conversation.
The local program received confirmation of the remote program's acceptance of
the conversation. The local program may now issue an
Extract_Mapped_Initialization_Data (CMEMID) call to receive the initialization
data.

data received_ (output)

¹ CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may now
issue an Extract_Mapped_Initialization_Data (CMEMID) call to receive the
initialization data.
This value will be returned with a return code of CM_OK. The program will
receive a CM_DEALLOCATED_ABEND return code on a later call on the
conversation.

¹ CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations and LU 6.2
CRM only)
The local program received a request-to-send notification form the remote
program and expedited data is available to be received.

¹ CM_EXPEDITED_MAPPED_DATA_AVAILABLE (LU 6.2 CRM only)

272 CPI Communications Reference

 Send_Mapped_Data (CMSNDM)

Mapped expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_MAP_DATA_AVAIL (half-duplex conversations and LU
6.2 CRM only)
The local program received a request-to-send notification from the remote
program and expedited mapped data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned to
the program, it will be returned in the following order:

 ¹ CM_ALLOCATE_CONFIRMED CM_ALLOCATE_CONFIRMED_WITH_DATA, or
CM_ALLOCATE_REJECTED_WITH_DATA

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_EXPEDITED_MAPPED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of the call execution.

The following return codes apply to half-duplex conversations .

 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TPN_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TPN_NOT_AVAILABLE_RETRY
 ¹ CM_PROGRAM_ERROR_NO_PURGING
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_UNKNOWN_MAP_NAME_REQUESTED

The supplied map name is unknown to the map routine. No data was sent.
 ¹ CM_MAP_ROUTINE_ERROR

The map routine encountered a problem with the user data. No data was sent.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
.

– The conversation is not in Send , Send-Pending , Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state.

 Chapter 4. Call Reference 273

 Send_Mapped_Data (CMSNDM)

– The conversation is in Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state and the program receives a take-commit
notification not ending in DATA_OK.

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout Required condition. The Send_Mapped_Data call is not allowed
for this conversation while its context is in this condition.

– The conversation is Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state, and send_type is set to
CM_SEND_AND_CONFIRM or CM_SEND_AND_PREP_TO_RECEIVE.

– The conversation is Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state, the send_type is set to
CM_SEND_AND_DEALLOCATE, and the deallocate_type is not set to
CM_DEALLOCATE_ABEND.

– The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

- The deallocate_type is set to CM_DEALLOCATE_FLUSH
or CM_DEALLOCATE_CONFIRM.

- The sync_level is set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM, the conversation is included in a
transaction.

 – CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

.
- The conversation_ID specifies an unassigned conversation identifier.
- The send_length exceeds the range permitted by the implementation.
- The conversation_type characteristic is set to:

 CM_BASIC_CONVERSATION

- The send_type is set to CM_SEND_AND_PREP_TO_RECEIVE and the
following conditions are also true:
The prepare_to_receive_type is set to:.
CM_PREP_TO_RECEIVE_SYNC_LEVEL

¹ The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM

¹ The conversation is included in a transaction.

¹ The conversation is using an OSI TP CRM, and the program is not
the superior for the conversation.

- The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

¹ The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL

¹ The sync_level is se to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM

¹ The conversation is included in a transaction.

¹ The conversation using an OSI TP CRM, and the program is not
the superior for the conversation.

 ¹ CM_OPERATION_NOT_ACCEPTED

274 CPI Communications Reference

 Send_Mapped_Data (CMSNDM)

 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction:

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO

The following return codes apply to full-duplex conversations .

 ¹ CM_OK
 ¹ CM_ALLOCATION_ERROR
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_TIMER
 ¹ CM_DEALLOCATED_CONFIRM_REJECT
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
¹ CM_DEALLOCATED_NORMAL_ (OSI TP CRM only)

 ¹ CM_UNKNOWN_MAP_NAME_REQUESTED
The supplied map name is unknown to the map routine, no data was sent.

 ¹ CM_MAP_ROUTINE_ERROR
The map routine encountered a problem with the user data, no data was sent.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation is not in Send-Receive , Send-only , Sync-Point , or
Sync-Point-Deallocate state.

– The conversation is basic and in Send-Receive or Send-Only state, the
send_type is set to CM_SEND_AND_DEALLOCATE, the deallocate_type is
not set to CM_DEALLOCATE_ABEND, and the data does not end on a logical
record boundary.

– The conversation is in Sync-Point or Sync-Point Deallocate state and the
program received a take-commit notification not ending in DATA_OK.

– The conversation is in Sync-Point or Sync-Point Deallocate state, the
send_type is set to CM_SEND_AND_DEALLOCATE, and the deallocate_type
is not set to CM_DEALLOCATE_ABEND.

– For a conversation with sync_level set to CM_SYNC_POINT_NO_CONFIRM,
this return code indicates one of the following:

- The conversation's context is in the Backout-Required condition. The
Send_Data call is not allowed for this conversation while its context is
in this condition.

- The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to the
X/Open TX interface to join the transaction.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.

 Chapter 4. Call Reference 275

 Send_Mapped_Data (CMSNDM)

– The send_length exceeds the range permitted by the implementation. The
maximum value of the length in each implementation is at least 32767.

– The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

– The deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM.

– The sync_level is set to CM_SYNC_POINT_NO_CONFIRM.
– The conversation is included in a transaction.
– The send_type is set to CM_SEND_AND_DEALLOCATE and the following

conditions are also true:
– The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL
– The sync_level is set to CM_SYNC_POINT_NO_CONFIRM
– The conversation is included in a transaction.
– The program is not the superior for the conversation.
– The conversation_type characteristic is set to

CM_BASIC_CONVERSATION

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, the state is Send-Receive and the conversation is
currently included in a transaction.

 ¹ CM_TAKE_BACKOUT
 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT
 ¹ CM_INCLUDE_PARTNER_REJECT_BO

 State Changes
For half-duplex conversations, when return_code indicates CM_OK:

¹ The conversation enters Receive state when Send_data is issued with send
type set to CM_SEND_AND_PREP_TO_RECEIVE and any of the following
conditions are true.

– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH

– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM

– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level is set to CM_NONE or CM_CONFIRM

– Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM,
but the conversation is not currently included in a transaction.

¹ The conversation enters Defer-Receive state when Send_Data is issued with
send_type set to CM_SEND_AND_PREP_TO_RECEIVE, prepare_to_receive_type
set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

¹ The conversation enters Reset state when Send_Data is issued with send_type
set to CM_SEND_AND_DEALLOCATE and any of the following conditions is true:

276 CPI Communications Reference

 Send_Mapped_Data (CMSNDM)

– Deallocate_type is set to CM_DEALLOCATE_ABEND
– Deallocate_type is set to CM_DEALLOCATE_FLUSH
– Deallocate_type is set to CM_DEALLOCATE_CONFIRM
– Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is

set to CM_NONE or CM_CONFIRM
– Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set

to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but the
conversation is not currently included in a transaction.

¹ The conversation enters Defer-Deallocate state when Send_Data is issued
with send type set to CM_SEND_AND_DEALLOCATE, deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and

¹ The conversation enters Send state when Send_Data is issued in
Send-Pending state with send_type set to CM_BUFFER_DATA
CM_SEND_AND_FLUSH, or CM_SEND_AND_CONFIRM.

¹ No state change occurs when Send_Data is issued in Send state with
send_type set to CM_BUFFER_DATA_CM_SEND_AND_FLUSH, or
CM_SEND_AND_CONFIRM.

For full-duplex conversations when return_code indicates CM_OK:

¹ The conversation enters Receive-Only state when the Send_Data call is
issued in Send-Receive state with send_type set to
CM_SEND_AND_DEALLOCATE, and one of the following conditions is true:

– Deallocate_type is set to CM_DEALLOCATE_FLUSH

– Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM NONE

– Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT_NO_CONFIRM, and the conversation is not currently
included in a transaction.

The conversation enters Reset state when the Send_Data call is issued
with send_type set to CM_SEND_AND_DEALLOCATE and one of the
following conditions is true:

– The call is issued in Send-Only state.

– The call is issued in Send-Receive , Send-Only , Sync-Point , or
Sync-Point-Deallocate state and deallocate_type is set to
CM_DEALLOCATE_ABEND

¹ The conversation enters Defer-Deallocate state when the Send_Data call is
issued with send_type set to CM_SEND_DEALLOCATE, sync_level set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation included in a transaction.

¹ No state change occurs when Send_Data is issued in Send-Receive or
Send-Only state with send_type set to CM_BUFFER_DATA or
CM_SEND_AND_FLUSH.

 Usage Notes
1. The local system may buffer data to be sent to the remote system unit until it

accumulates a sufficient amount of data for transmission (from one or more
Send_Mapped_Data calls), or until the local program issues a call that causes
the system to flush its send buffer. The map routine is responsible for any

 Chapter 4. Call Reference 277

 Send_Mapped_Data (CMSNDM)

buffering and determines when data should be sent. Therefore, a flush call
may or may not have an effect.

2. For a half-duplex conversation, when control_information_received indicates
CM_REQ_TO_SEND_RECEIVED, CM_RTS_RCVD_AND_EXP_DATA_AVAIL, or
CM_RTS_RCVD_AND_EXP_MAP_DATA_AVAIL or the remote program is
requesting the local program's end of conversation to enter Receive state,
which places the remote program's end of the conversation in Send state. See
“Request_To_Send (CMRTS)” on page 246 for a discussion of how a program
can place its end of a conversation in Receive state.

3. When issued during a mapped conversation, the Send_Mapped_Data call
sends one complete data record. The data record consists entirely of data.
CPI-C does not examine the data for logical record length fields. It is this
specification of a complete data record, at send time by the local program and
what it sends, that is indicated to the remote program by the data_received
parameter of the Receive_Mapped_Data call.

For example, consider a mapped conversation where the local program issues
tow Send_Data calls with send_length set to 30 and 50 respectively. (These
numbers are simple for explanatory purposes.) The local program then issues
Flush and the 80 bytes of data are sent to the remote system. The remote
program now issues Receive_Mapped_Data with requested length set to a
sufficiently large value of 1000. The remote program will receive back only 30
bytes of data, indicated by the received_length parameter, because this is a
complete data record. The completeness of the data record is indicated by the
data_received variable, which will be set to CM_COMPLETE_DATA_RECEIVED.

The remote program receives the remaining 50 bytes of data (from the second
Send_Mapped_Data) when it performs a second Receive_Mapped_Data with
requested_length set to a value greater than or equal to 50.

Note: The received_length may be different from the send_length because of
the differences in how data is represented locally in each partner system.

4. If the map routine is unable to process the user data because an incorrect
map_name was identified or the map routine encountered an error during
processing, the return_code is set appropriately. Nothing is sent and the
conversation is not aborted. Control is given back to the program for
appropriate action.

5. The send_length is local information for the map routine. The send_length
value that is used by the CRM is calculated by the map routine after all
transformations are completed.

6. Send_Data is often used in conjunction with other call, such as Flush, Confirm,
and Prepare_To_Receive. Contrast this usage with the equivalent function
available from the use of the Set_Send_Type call prior to issuing a call to
Send_Data.

7. A program must not specify a value in the send_length parameter that is
greater than the maximum the implementation can support. The maximum may
vary from system-to-system. The maximum also depends on the map_name
parameter.

Every CPI-C product must be able to send buffers with a length of 32767 bytes.
Map routines written should describe the length of the data buffer before
encoding, if the encoded buffer has a length of 32767 bytes.

The application program should not use a send_length larger than this.

278 CPI Communications Reference

 Send_Mapped_Data (CMSNDM)

8. When control_information_received indicates that expedited data is available to
be received, subsequent calls with this parameter will continue to indicate that
expedited data is available until the expedited data has been received by the
program.

 Related Information
“Conversation Types” on page 19 provides more information on mapped and basic
conversations.

“Data Buffering and Transmission” on page 44 provides information about data
transmission control.

Chapter 3, “Program-to-Program Communication Example Flows” on page 67
show programs using the Send_Data call.

For a mapped conversation with a non-null map name, the largest amount of data a
program can send in a Send_Mapped_Data call and the largest amount of data that
can be received by the program in a Receive_Mapped_Data call depends on the
map name.

“Receive_Mapped_Data (CMRCVM)” on page 231 provides more information about
the data_received parameter.

“Set_Send_Type (CMSST)” on page 351 provides more information about the
send_type conversation characteristic and the use of it in combination with calls to
Send_Data.

The SNA Transaction Programmers Reference Manual for LU Type 6.2 provides
more information about mapped conversations.

 Chapter 4. Call Reference 279

 Set_AE_Qualifier (CMSAEQ)

 Set_AE_Qualifier (CMSAEQ)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_AE_Qualifier (CMSAEQ) is used by a program to set the AE_qualifier,
AE_qualifier_length, and AE_qualifier_format characteristics for a conversation.
Set_AE_Qualifier overrides the current values that were originally acquired from the
side information using sym_dest_name.

Issuing this call does not change the information in the side information. It only
changes the AE_qualifier, the AE_qualifier_length, and the AE_qualifier_format
characteristics for this conversation.

The AE_qualifier conversation characteristic identifies the OSI application-entity
qualifier associated with the remote program. It may be set by the conversation
initiator to identify the location of the remote program.

Notes:

1. A program cannot issue Set_AE_Qualifier after an Allocate call is issued. Only
the program that initiated the conversation (issued the Initialize_Conversation
call) can issue Set_AE_Qualifier.

2. The AE_qualifier characteristic is used only by an OSI TP CRM.

 Format
CALL CMSAEQ(conversation_ID,

AE_qualifier,
AE_qualifier_length,
AE_qualifier_format,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

AE_qualifier (input)
Specifies the application-entity-qualifier that distinguishes the application-entity
at the application-process where the remote program is located.

AE_qualifier_length (input)
Specifies the length of AE_qualifier. The length can be from 1 to 1024 bytes.

280 CPI Communications Reference

 Set_AE_Qualifier (CMSAEQ)

AE_qualifier_format (input)
Specifies the format of AE_qualifier. The AE_qualifier_format variable can have
one of the following values:

 ¹ CM_DN
Specifies that the AE_qualifier is a distinguished name.

 ¹ CM_INT_DIGITS
Specifies that the AE_qualifier is an integer represented as a sequence of
decimal digits.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The AE_qualifier_length is set to a value less than 1 or greater than

1024.
– The AE_qualifier_format specifies an undefined value.
– The partner_ID characteristic is set to a non-null value.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. Specify AE_qualifier using the local system's native encoding. CPI

Communications automatically converts the AE_qualifier from the native
encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the AE_qualifier, the
AE_qualifier_length, and the AE_qualifier_format conversation characteristics
remain unchanged.

3. The AE_qualifier may be either a distinguished name or an integer represented
as a sequence of decimal digits. Distinguished names can have any format
and syntax that can be recognized by the local system.

 Related Information
“Side Information” on page 23 and note 4 of Table 61 on page 650 provide further
discussion of the AE_qualifier conversation characteristic.

“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the AE_qualifier parameter.

 Chapter 4. Call Reference 281

 Set_Allocate_Confirm (CMSAC)

 Set_Allocate_Confirm (CMSAC)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_Allocate_Confirm (CMSAC) is used by a program to set the allocate_confirm
characteristic for a given conversation. Set_Allocate_Confirm overrides the value
that was assigned when the Initialize_Conversation call was issued.

The conversation initiator uses the Set_Allocate_Confirm call to indicate whether or
not a positive confirmation is required when the remote program has accepted the
conversation.

Notes:

1. A program cannot issue Set_Allocate_Confirm after an Allocate call is issued.
Only the program that initiates the conversation (issues the
Initialize_Conversation call) can issue Set_Allocate_Confirm.

2. The allocate_confirm characteristic is used only by an OSI TP CRM.

 Format
CALL CMSAC(conversation_ID,

allocate_confirm,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

allocate_confirm (input)
Specifies whether the program is to receive notification when the remote
program confirms its acceptance of the conversation. The allocate_confirm
variable can have one of the following values:

 ¹ CM_ALLOCATE_NO_CONFIRM
Specifies that the program is not to receive notification when the remote
program confirms its acceptance of the conversation.

 ¹ CM_ALLOCATE_CONFIRM
Specifies that the program is to receive notification when the remote
program confirms its acceptance of the conversation.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED

282 CPI Communications Reference

 Set_Allocate_Confirm (CMSAC)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned identifier.
– The allocate_confirm specifies an undefined value.
– The allocate_confirm specifies CM_ALLOCATE_CONFIRM, and the

conversation is using an LU 6.2 CRM.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the allocate_confirm

conversation characteristic remains unchanged.

2. When the remote program confirms its acceptance of the conversation, the
initiating program is notified by receiving a control_information_received value
of CM_ALLOCATE_CONFIRMED or CM_ALLOCATE_CONFIRMED_WITH_DATA on a
subsequent call.

3. After the remote program has accepted the conversation by issuing an
Accept_Conversation or Accept_Incoming call, it confirms the acceptance by
issuing any call other than a Cancel_Conversation, Deallocate with
deallocate_type of CM_DEALLOCATE_ABEND, or Set_* or Extract_* call. The
remote program rejects the conversation by issuing a Cancel_Conversation call
or a Deallocate call with deallocate_type of CM_DEALLOCATE_ABEND as its first
operation on the conversation (other than a Set_* or Extract_* call).

4. The program that initiates the conversation (issues Initialize_Conversation)
must set allocate_confirm to CM_ALLOCATE_CONFIRM if it is expecting
initialization_data to be returned from the remote program after the remote
program confirms its acceptance of the conversation.

 Chapter 4. Call Reference 283

 Set_AP_Title (CMSAPT)

 Set_AP_Title (CMSAPT)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_AP_Title (CMSAPT) is used by a program to set the AP_title, AP_title_length,
and AP_title_format characteristics for a conversation. Set_AP_Title overrides the
current values that were originally acquired from the side information using
sym_dest_name.

Issuing this call does not change the values in the side information. It only
changes the AP_title, the AP_title_length, and the AP_title_format characteristics
for this conversation.

The AP_title conversation characteristic identifies the OSI application-process title
associated with the remote program. It may be set by the conversation initiator to
identify the location of the remote program.

Notes:

1. A program cannot issue Set_AP_Title after an Allocate call is issued. Only the
program that initiated the conversation (issued the Initialize_Conversation call)
can issue Set_AP_Title.

2. The AP_title characteristic is used only by an OSI TP CRM.

 Format
CALL CMSAPT(conversation_ID,

AP_title,
AP_title_length,
AP_title_format,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

AP_title (input)
Specifies the title of the application-process where the remote program is
located.

AP_title_length (input)
Specifies the length of AP_title. The length can be from 1 to 1024 bytes.

284 CPI Communications Reference

 Set_AP_Title (CMSAPT)

AP_title_format (input)
Specifies the format of AP_title. The AP_title_format variable can have one of
the following values:

 ¹ CM_DN
Specifies that the AP_title is a distinguished name.

 ¹ CM_OID
Specifies that the AP_title is an object identifier.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned identifier.
– The AP_title_length is set to a value less than 1 or greater than 1024.
– The AP_title_format specifies an undefined value.
– The partner_ID characteristic is set to a non-null value.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. Specify AP_title using the local system's native encoding. CPI Communications

automatically converts the AP_title from the native encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the AP_title, the
AP_title_length, and the AP_title_format conversation characteristics remain
unchanged.

3. The AP_title may be either a distinguished name or an object identifier.
Distinguished names can have any format and syntax that can be recognized
by the local system. Object identifiers are represented as a series of digits
separated by periods (for example, n.nn.n.nnn).

 Related Information
“Side Information” on page 23 and note 4 of Table 61 on page 650 provide further
discussion of the AP_title conversation characteristic.

“Automatic Conversion of Characteristics” on page 41 provides more information on
the automatic conversion of the AP_title parameter.

 Chapter 4. Call Reference 285

 Set_Application_Context_Name (CMSACN)

 Set_Application_Context_Name (CMSACN)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_Application_Context_Name (CMSACN) is used by a program to set the
application_context_name and application_context_name_length characteristics for
a conversation. Set_Application_Context_Name overrides the current values that
were originally acquired from the side information using sym_dest_name.

The application_context_name conversation characteristic identifies the OSI
application-context used on the conversation. It may be set by the conversation
initiator.

Issuing this call does not change the values in the side information. It only
changes the application_context_name and application_context_name_length
characteristics for this conversation.

Note: The application_context_name characteristic is used only by an OSI TP
CRM.

 Format
CALL CMSACN(conversation_ID,

application_context_name,
application_context_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

application_context_name (input)
Specifies the name of the application context to be used on the conversation.
The length can be 1-256 bytes.

application_context_name_length (input)
Specifies the length of the application context name to be used on the
conversation startup request.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in the Initialize state.

286 CPI Communications Reference

 Set_Application_Context_Name (CMSACN)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned identifier.
– The application_context_name_length is set to a value less than 1 or

greater than 256.
– The partner_ID characteristic is set to a non-null value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. Specify application_context_name using the local system's native encoding.

CPI Communications automatically converts the application_context_name from
the native encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the
application_context_name and the application_context_name_length
conversation characteristics remain unchanged.

3. The application context name is an object identifier and is represented as a
series of digits separated by periods. For example, the application context
defined by the Open System Environment Implementers' Workshop (OIW) for
UDT with Commit Profiles is represented as "1.3.14.15.5.1.0" and the
application context for Application Supported Transactions using UDT is
represented as "1.3.14.15.5.2.0".

 Related Information
“Side Information” on page 23 provides more information on the
application_context_name conversation characteristic.

“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the application_context_name parameter.

 Chapter 4. Call Reference 287

 Set_Begin_Transaction (CMSBT)

 Set_Begin_Transaction (CMSBT)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_Begin_Transaction (CMSBT) is used by a program to set the begin_transaction
characteristic for a given conversation. Set_Begin_Transaction overrides the value
that was assigned when the Initialize_Conversation call was issued.

The superior program uses the Set_Begin_Transaction call to indicate whether the
subordinate is to be explicitly included in the current transaction or implicitly
included, if and when any conversation activity occurs.

Note: The begin_transaction characteristic is used only by an OSI TP CRM.

 Format
CALL CMSBT(conversation_ID,

begin_transaction,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

begin_transaction (input)
Specifies whether the superior, when a new transaction is started, will explicitly
or implicitly ask that the subordinate program join the transaction. The
begin_transaction variable can have one of the following values:

 ¹ CM_BEGIN_IMPLICIT
Specifies that the superior implicitly asks that the subordinate join the
transaction by issuing one of the following calls from Initialize , Send ,
Send-Pending , or Send-Receive states.

CMALLC — Allocate
CMCFM — Confirm
CMINCL — Include_Partner_In_Transaction
CMPREP — Prepare
CMPTR — Prepare_To_Receive
CMRCV — Receive
CMSEND — Send_Data
CMSERR — Send_Error

 ¹ CM_BEGIN_EXPLICIT
Specifies that the superior explicitly asks that the subordinate join the
transaction by use of the Include_Partner_In_Transaction (CMINCL) call.

288 CPI Communications Reference

 Set_Begin_Transaction (CMSBT)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is in Initialize-Incoming state.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned identifier.
– The begin_transaction specifies an undefined value.
– The transaction_control is set to CM_CHAINED_TRANSACTIONS.
– The program is not the superior for the conversation.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the begin_transaction

conversation characteristic remains unchanged.

2. This call does not apply to any previous call operation still in progress.

3. The remote program receives the request to join the transaction as a
status_received indicator of CM_JOIN_TRANSACTION on a Receive call it
issues.

4. If the superior is not in transaction when it issues an Allocate, Confirm,
Include_Partner_In_Transaction, Prepare, Prepare_To_Receive, Receive,
Send_Data, or Send_Error call, the begin_transaction characteristic is ignored,
and the subordinate is not asked to join a transaction.

5. If begin_transaction is set to CM_BEGIN_IMPLICIT, the subordinate is asked to
join the transaction only when the Allocate, Confirm,
Include_Partner_In_Transaction, Prepare, Prepare_To_Receive, Receive,
Send_Data or Send_Error call is returned with a return_code of CM_OK.

6. The call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Chained and Unchained Transactions” on page 61 discusses chained and
unchained transactions.

“Joining a Transaction” on page 61 discusses how a program requests the partner
program to join a transaction.

 Chapter 4. Call Reference 289

 Set_Confirmation_Urgency (CMSCU)

 Set_Confirmation_Urgency (CMSCU)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_Confirmation_Urgency (CMSCU) is used by a program to set the
confirm_urgency characteristic for a given conversation. Set_Confirmation_Urgency
overrides the value that was assigned when the Initialize_Conversation,
Accept_Conversation, or Initialize_For_Incoming call was issued.

Programs would use the Set_Confirmation_Urgency call to indicate whether to
optimize the Prepare_to_Receive flows for reduced link traffic or immediate
response.

Note: The confirmation_urgency characteristic is used only for a half-duplex
conversation.

 Format
CALL CMSCU(conversation_ID,

confirmation_urgency,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

confirmation_urgency (input)
Specifies whether the response to a Prepare_To_Receive call that requests
confirmation will be sent immediately. The confirmation_urgency variable can
have one of the following values:

 ¹ CM_CONFIRMATION_NOT_URGENT
Specifies that the remote program's response to the confirmation request
may not be sent immediately.

 ¹ CM_CONFIRMATION_URGENT
Specifies that the remote program's response to the confirmation request
will be sent immediately.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED

290 CPI Communications Reference

 Set_Confirmation_Urgency (CMSCU)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned identifier.
– The confirmation_urgency variable specifies an undefined value.
– The send_receive_mode of the conversation is CM_FULL_DUPLEX.
– The sync_level is set to CM_NONE or CM_SYNC_POINT_NO_CONFIRM.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the

confirmation_urgency conversation characteristic remains unchanged.

2. When the local program issues a Prepare_To_Receive call with
prepare_to_receive_type set to CM_PREPARE_TO_RECEIVE_CONFIRM or
CM_PREPARE_TO_RECEIVE_SYNC_LEVEL with sync_level set to CM_CONFIRM,
the remote CRM may optimize link usage by buffering the response generated
by the Confirmed call until the remote program issues another call. This may
increase the time the local program must wait for control to be returned to it.

By issuing a Set_Confirmation_Urgency call with the confirmation_urgency
parameter set to CM_CONFIRMATION_URGENT before issuing the
Prepare_To_Receive call, the local program can request that the response from
the Confirmed call be sent to the local program as soon as it is issued by the
remote program.

 Related Information
See “Prepare_To_Receive (CMPTR)” on page 208 for information on requesting
confirmation.

 Chapter 4. Call Reference 291

 Set_Conversation_Security_Password (CMSCSP)

 Set_Conversation_Security_Password (CMSCSP)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X X* X

Set_Conversation_Security_Password (CMSCSP) is used by a program to set the
security_password and security_password_length characteristics for a conversation.
Set_Conversation_Security_Password overrides the current values, which were
originally acquired from the side information using sym_dest_name.

This call does not change the values in the side information. It only changes the
security_password and security_password_length characteristics for this
conversation.

The security_password conversation characteristic contains the password
associated with the user identification to be used on the conversation. It may be
set by the conversation initiator.

Note: A program cannot issue the Set_Conversation_Security_Password call after
an Allocate call is issued. Only the program that initiates the conversation (issues
the Initialize_Conversation call) can issue Set_Conversation_Security_Password. A
program can only specify a password when conversation_security_type is set to
CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG.

X* AIX prior to Version 3 Release 1, OS/2 prior to Communications Server, and
VM support this function in a product-specific extension call.

– For AIX, see “Set_Conversation_Security_Password (XCSCSP)” on
page 399.

– For OS/2, see “Set_Conversation_Security_Password (XCSCSP)” on
page 615.

– For VM, see “Set_Conversation_Security_Password (XCSCSP)” on
page 562.

 Format
CALL CMSCSP(conversation_ID,

security_password,
security_password_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_password (input)
Specifies the password to be included in the conversation startup request. The
partner system uses this value and the user ID to validate the user's access to

292 CPI Communications Reference

 Set_Conversation_Security_Password (CMSCSP)

the remote program. The password is stored temporarily by node services, and
is erased at the successful completion of an Allocate call.

security_password_length (input)
Specifies the length of the password. The length can be from 0 to 10 bytes. If
zero, the security_password_length characteristic is set to zero (effectively
setting the security_password characteristic to the null string), and the
security_password parameter on this call is ignored.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Initialize state.
– conversation_security_type is not set to CM_SECURITY_PROGRAM or

CM_SECURITY_PROGRAM_STRONG.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The security_password_length is less than 0 or greater than 10.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. When a program issues Set_Conversation_Security_Password, a user ID must

also be supplied. The user ID comes from side information or is set by the
program issuing Set_Conversation_Security_User_ID.

2. Specify security_password using the local system's native encoding. CPI
Communications automatically converts the security_password from the native
encoding where necessary.

3. Specification of a password that is not valid is not detected on this call. It is
detected by the partner system when it receives the conversation startup
request. The partner system returns an error indication to the local system,
which reports the error to the program by means of the
CM_SECURITY_NOT_VALID return code on a call subsequent to the Allocate
call.

4. If a return_code other than CM_OK is returned on the call, the
security_password and security_password_length characteristics are
unchanged.

 Chapter 4. Call Reference 293

 Set_Conversation_Security_Password (CMSCSP)

 Related Information
“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the security_password parameter.

“Conversation Security” on page 51 provides further information on security.

“Set_Conversation_Security_Type (CMSCST)” on page 295 provides more
information on the conversation_security_type characteristic.

“Set_Conversation_Security_User_ID (CMSCSU)” on page 298 provides more
information on the security_user_ID characteristic.

294 CPI Communications Reference

 Set_Conversation_Security_Type (CMSCST)

 Set_Conversation_Security_Type (CMSCST)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X X* X

Set_Conversation_Security_Type (CMSCST) is used by a program to set the
conversation_security_type characteristic for a conversation.
Set_Conversation_Security_Type overrides the current value, which was originally
acquired from the side information using sym_dest_name.

This call does not change the value in the side information. It only changes the
conversation_security_type characteristic for this conversation.

The conversation initiator uses the Set_Conversation_Security_Type call to indicate
the type of authorization to be used during conversation initialization.

Note: A program cannot issue the Set_Conversation_Security_Type call after an
Allocate call is issued. Only the program that initiates the conversation (issues the
Initialize_Conversation call) can issue Set_Conversation_Security_Type.

X* AIX prior to Version 3 Release 1, OS/2 prior to Communications Server, and
VM support this function in a product-specific extension call.

– For AIX, see “Set_Conversation_Security_Type (XCSCST)” on page 401.

– For OS/2, see “Set_Conversation_Security_Type (XCSCST)” on page 616.

– For VM, see “Set_Conversation_Security_Type (XCSCST)” on page 564.

 Format
CALL CMSCST(conversation_ID,

conversation_security_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_security_type (input)
Specifies the type of access security information to be sent in the conversation
startup request to the partner system. The access security information, if
present, consists of either a user ID, or a user ID and a password. It is used
by the partner system to validate the user's access to the remote program.

The conversation_security_type variable can have one of the following values:

 ¹ CM_SECURITY_NONE
No access security information is included in the conversation startup
request.

 Chapter 4. Call Reference 295

 Set_Conversation_Security_Type (CMSCST)

 ¹ CM_SECURITY_SAME
The security parameters maintained by node services for the program's
current context when the program issues the Allocate call are used to set
the access security information included in the conversation startup request.

 ¹ CM_SECURITY_PROGRAM
The values of the security_user_ID and security_password characteristics
are used to set the access security information included in the conversation
startup request.

 ¹ CM_SECURITY_PROGRAM_STRONG
The values of the security_user_ID and security_password characteristics
are used to set the access security information included in the conversation
startup request. The local CRM ensures that the security_password is not
exposed in clear-text form on the physical network. If the local CRM cannot
ensure this, then the subsequent Allocate request will fail with a
return_code of CM_SECURITY_NOT_SUPPORTED.

Currently, OS/400 is the only product/platform that implements
CM_SECURITY_PROGRAM_STRONG.

 ¹ CM_SECURITY_DISTRIBUTED

The security parameters for the program's current context are used to
generate authentication tokens using a distributed security service. The
tokens are used as the access security information included in the
conversation startup request. If the remote system does not accept the
type of tokens generated by the local system, then the request fails locally.
A locally failed request does not send any data to the remote system.

Currently, no product/platform implements CM_SECURITY_DISTRIBUTED.

 ¹ CM_SECURITY_MUTUAL

The security parameters for the program's current context are used to
generate authentication tokens using a distributed security service. The
tokens are used as the access security information included in the
conversation startup request. Furthermore, the local CRM is requested to
authenticate the partner principal before any user information is transmitted
to the remote CRM.

Currently, no product/platform implements CM_SECURITY_MUTUAL.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.
 ¹ CM_PARM_VALUE_NOT_SUPPORTED

This value indicates that the conversation_security_type specifies
CM_SECURITY_PROGRAM, CM_SECURITY_PROGRAM_STRONG,
CM_SECURITY_DISTRIBUTED, or CM_SECURITY_MUTUAL and the value is
not supported by the local system.

296 CPI Communications Reference

 Set_Conversation_Security_Type (CMSCST)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation_security_type specifies an undefined value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. A conversation_security_type of CM_SECURITY_SAME is intended for use

between nodes which have the same set of user IDs and which accept user
validation performed on one node as verifying the user for all nodes. A
password is not used in this case.

2. A conversation_security_type of CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG requires that a user ID and password be
supplied for inclusion in the conversation startup request. These may come
from side information or be set by the program using the
Set_Conversation_Security_User_ID and Set_Conversation_Security_Password
calls.

3. If a return_code other than CM_OK is returned on the call, the
conversation_security_type is unchanged.

4. A conversation_security_type of CM_SECURITY_MUTUAL is intended for usage
when the local program wants the local CRM to authenticate that the remote
program or CRM is actually the partner principal specified in the program
binding.

5. Certain combinations of conversation_security_type value and
required_user_name_type value (from the program binding) causes the local
CRM to reject an Allocate request with a return_code value of
CM_SECURITY_NOT_SUPPORTED. The incompatible combinations are shown
in Table 8 on page 52.

6. For an OSI TP CRM, the type of access security information sent for
CM_SECURITY_SAME is implementation defined.

 Related Information
“Conversation Security” on page 51 provides further information on security.

“Set_Conversation_Security_Password (CMSCSP)” on page 292 discusses setting
the security_password characteristic.

“Set_Conversation_Security_User_ID (CMSCSU)” on page 298 discusses setting
the security_user_ID characteristic.

“Set_Partner_ID (CMSPID)” on page 323 discusses setting the partner_ID
characteristic.

“Program Binding” on page 658 provides further information on the program
binding.

 Chapter 4. Call Reference 297

 Set_Conversation_Security_User_ID (CMSCSU)

 Set_Conversation_Security_User_ID (CMSCSU)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X X* X X* X

Set_Conversation_Security_User_ID (CMSCSU) is used by a program to set the
security_user_ID and security_user_ID_length characteristics for a conversation.
Set_Conversation_Security_User_ID overrides the current values, which were
originally acquired from the side information using sym_dest_name.

The security_user_id conversation characteristic contains the user identification
associated with the conversation. It may be set by the conversation initiator.

This call does not change the values in the side information. It only changes the
security_user_ID and security_user_ID_length characteristics for this conversation.

Note: A program cannot issue the Set_Conversation_Security_User_ID call after
an Allocate call is issued. Only the program that initiates the conversation (issues
the Initialize_Conversation call) can issue Set_Conversation_Security_User_ID. A
program can only specify an access security user ID when
conversation_security_type is set to CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG.

X* AIX prior to Version 3 Release 1, OS/2 prior to Communications Server, and
VM support this function in a product-specific extension call.

– For AIX, see “Set_Conversation_Security_User_ID (XCSCSU)” on
page 403.

– For OS/2, see “Set_Conversation_Security_User_ID (XCSCSU)” on
page 617.

– For VM, see “Set_Conversation_Security_User_ID (XCSCSU)” on
page 566.

 Format
CALL CMSCSU(conversation_ID,

security_user_ID,
security_user_ID_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_user_ID (input)
Specifies the user ID to be included in the conversation startup request. The
partner system uses this value and the password to validate the user's access

298 CPI Communications Reference

 Set_Conversation_Security_User_ID (CMSCSU)

to the remote program. In addition, the partner system may use the user ID for
auditing or accounting purposes.

security_user_ID_length (input)
Specifies the length of the user ID. The length can be from 0 to 10 bytes. If
zero, the security_password_length characteristic is set to zero (effectively
setting the security_password characteristic to the null string), and the
security_password parameter on this call is ignored.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Initialize state.
– The conversation_security_type is not set to CM_SECURITY_PROGRAM

or CM_SECURITY_PROGRAM_STRONG.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This return code indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The security_user_ID_length is less than 0 or greater than 10.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. When a program issues Set_Conversation_Security_User_ID, a password must

also be supplied. The password comes from side information or is set by the
program using Set_Conversation_Security_Password.

2. Specify security_user_ID using the local system's native encoding. CPI
Communications automatically converts the security_user_ID from the native
encoding where necessary.

3. Specification of a security user ID that is not valid is not detected on this call.
It is detected by the partner system when it receives the conversation startup
request. The partner system returns an error indication to the local system,
which reports the error to the program by means of the
CM_SECURITY_NOT_VALID return code on a call subsequent to the Allocate
call.

4. If a return_code other than CM_OK is returned on the call, the security_user_ID
and security_user_ID_length characteristics are unchanged.

 Related Information
“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the security_user_ID parameter.

“Conversation Security” on page 51 provides further information on security.

 Chapter 4. Call Reference 299

 Set_Conversation_Security_User_ID (CMSCSU)

“Set_Conversation_Security_Password (CMSCSP)” on page 292 provides more
information on the security_password characteristic.

“Set_Conversation_Security_Type (CMSCST)” on page 295 provides more
information on the conversation_security_type characteristic.

300 CPI Communications Reference

 Set_Conversation_Type (CMSCT)

 Set_Conversation_Type (CMSCT)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Conversation_Type (CMSCT) is used by a program to set the
conversation_type characteristic for a given conversation. It overrides the value
that was assigned when the Initialize_Conversation or Initialize_For_Incoming call
was issued.

The conversation_type conversation characteristic indicates whether the data
exchange on the conversation will follow basic or mapped rules.

Notes:

1. A program cannot use Set_Conversation_Type after an Allocate has been
issued. Only the program that initiates the conversation (using the
Initialize_Conversation call) can issue the Set_Conversation_Type call.

2. When using an LU 6.2 CRM, only the program that initiates the conversation
(using the Initialize_Conversation call) can issue the Set_Conversation_Type
call, and it must be issued before the Allocate is issued. When using an OSI
TP CRM, because the mapped/basic indication is not carried by the protocol,
the recipient of the conversation request must use Initialize_For_Incoming and
Set_Conversation_Type to override the conversation_type default of
CM_MAPPED_CONVERSATION. The recipient must issue these calls before the
Accept_Incoming call is issued.

 Format
CALL CMSCT(conversation_ID,

conversation_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_type (input)
Specifies the type of conversation to be allocated when Allocate is issued. The
conversation_type variable can have one of the following values:

 ¹ CM_BASIC_CONVERSATION
Specifies the allocation of a basic conversation.

 ¹ CM_MAPPED_CONVERSATION
Specifies the allocation of a mapped conversation.

 Chapter 4. Call Reference 301

 Set_Conversation_Type (CMSCT)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize or
Initialize-Incoming state.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation_type specifies an undefined value.
– The conversation_type is set to CM_MAPPED_CONVERSATION, but fill is

set to CM_FILL_BUFFER.
– The conversation_type is set to CM_MAPPED_CONVERSATION, but a

prior call to Set_Log_Data is still in effect.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. Because of the detailed manipulation of the data and resulting complexity of

error conditions, the use of basic conversations should be regarded as an
advanced programming technique.

2. If a return_code other than CM_OK is returned on the call, the
conversation_type conversation characteristic is unchanged.

 Related Information
“Conversation Types” on page 19 and the “Usage Notes” section of “Send_Data
(CMSEND)” on page 249 provide more information on the differences between
mapped and basic conversations.

302 CPI Communications Reference

 Set_Deallocate_Type (CMSDT)

 Set_Deallocate_Type (CMSDT)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Deallocate_Type (CMSDT) is used by a program to set the deallocate_type
characteristic for a given conversation. Set_Deallocate_Type overrides the value
that was assigned when the Initialize_Conversation, Accept_Conversation, or
Initialize_For_Incoming call was issued.

The Set_Deallocate_Type call is used by programs to identify the processing option
to be used when the local program issues a Deallocate call.

 Format
CALL CMSDT(conversation_ID,

deallocate_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

deallocate_type (input)
Specifies the type of deallocation to be performed. The deallocate_type
variable can have one of the following values:

 ¹ CM_DEALLOCATE_SYNC_LEVEL
Perform deallocation based on the sync_level characteristic in effect for this
conversation:

– If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently
included in a transaction, execute the function of the Flush call and
deallocate the conversation normally.

– For half-duplex conversations, if sync_level is set to CM_CONFIRM, or if
sync_level is set to CM_SYNC_POINT but the conversation is not
currently included in a transaction, execute the function of the Confirm
call. If the Confirm call is successful (as indicated by a return code of
CM_OK on the Deallocate call or a return code of CM_OK on the
Send_Data call with send_type set to CM_SEND_AND_DEALLOCATE),
deallocate the conversation normally. If the Confirm call is not
successful, the state of the conversation is determined by the return
code.

– If sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a
transaction, defer the deallocation until the program issues a resource
recovery commit call. If the commit call is successful, the conversation
is deallocated normally. If the commit is not successful or if the

 Chapter 4. Call Reference 303

 Set_Deallocate_Type (CMSDT)

program issues a resource recovery backout call instead of a commit,
the conversation is not deallocated. See “Deallocate (CMDEAL)” on
page 143 for more information about deallocating conversations with
sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

 ¹ CM_DEALLOCATE_FLUSH
Execute the function of the Flush call and deallocate the conversation
normally.

 ¹ CM_DEALLOCATE_CONFIRM
Execute the function of the Confirm call. If the Confirm call is successful
(as indicated by a return code of CM_OK on the Deallocate call or a return
code of CM_OK on the Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE), deallocate the conversation normally. If the
Confirm call is not successful, the state of the conversation is determined
by the return code.

 ¹ CM_DEALLOCATE_ABEND
For half-duplex conversations, execute the function of the Flush call when
the conversation is in Send state and deallocate the conversation
abnormally. Data purging can occur when the conversation is in Receive
state. If the conversation is a basic conversation, logical-record truncation
can occur when the conversation is in Send state.

For full-duplex conversations, execute the function of the Flush call when
the conversation is in Send-Receive or Send-Only state and deallocate the
conversation abnormally. Data purging can occur when the conversation is
in Send-Receive or Receive-Only state. If the conversation is basic,
logical-record truncation can occur when the conversation is in
Send-Receive or Send-Only state.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The deallocate_type specifies an undefined value.
– The deallocate_type is set to CM_DEALLOCATE_FLUSH, sync_level is

set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and
transaction_control is set to CM_CHAINED_TRANSACTIONS.

– The conversation is using an LU 6.2 CRM, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, and sync_level is set to CM_NONE,
CM_SYNC_POINT, or CM_SYNC_POINT_NO_CONFIRM.

– The converation is using an OSI TP CRM, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and transaction_control is set to
CM_CHAINED_TRANSACTIONS.

 ¹ CM_PROGRAM_STATE_CHECK
The conversation is in Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

304 CPI Communications Reference

 Set_Deallocate_Type (CMSDT)

 State Changes
This call does not cause a state change.

 Usage Notes
1. A deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL is used by a program

to deallocate a conversation based on the conversation’s synchronization level.

¹ For half-duplex conversations:

– If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently
included in a transaction, the conversation is unconditionally
deallocated.

– If sync_level is set to CM_CONFIRM, or if sync_level is set to
CM_SYNC_POINT but the conversation is not currently included in a
transaction, the conversation is deallocated when the remote program
responds to the confirmation request by issuing the Confirmed call.
The conversation remains allocated when the remote program
responds to the confirmation request by issuing the Send_Error call.

– If sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a
transaction, the deallocation is deferred until the program issues a
resource recovery commit call. If the commit call is successful, the
conversation is deallocated normally. If the commit is not successful or
if the program issues a resource recovery backout call instead of a
commit, the conversation is not deallocated.

¹ For full-duplex conversations:

– If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently
included in a transaction, and the Deallocate call is issued in
Send-Receive state, the program can no longer issue calls associated
with the Send queue, but it can continue to issue calls associated with
the other conversation queues. If the Deallocate call is issued in
Send-Only state, the conversation is deallocated.

– If sync_level is set to CM_SYNC_POINT_NO_CONFIRM and the
conversation is included in a transaction, the deallocation is deferred
until the program issues a resource recovery commit call. If the commit
call is successful, the conversation is deallocated normally. If the
commit is not successful or if the program issues a backout call instead
of a commit, the conversation is not deallocated.

2. A deallocate_type set to CM_DEALLOCATE_FLUSH is used by a program to
unconditionally deallocate the conversation. This deallocate_type value can be
used for conversations with sync_level set to CM_NONE or CM_CONFIRM. If the
conversation is using an OSI TP CRM, it can also be used for conversations
with sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM if the
conversation is not currently included in a transaction. The deallocate_type set
to CM_DEALLOCATE_FLUSH is functionally equivalent to deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL combined with a sync_level set to CM_NONE.

For a half-duplex conversation, the conversation is deallocated. For a
full-duplex conversation, the program can no longer issue calls associated with
the Send queue, and the conversation is deallocated if the Deallocate call is

 Chapter 4. Call Reference 305

 Set_Deallocate_Type (CMSDT)

issued in Send-Only state. This deallocate_type value can be used for
conversations with sync_level set to CM_NONE.

3. A deallocate_type set to CM_DEALLOCATE_CONFIRM is used by a program to
conditionally deallocate the conversation, depending on the remote program's
response, when the sync_level is set to CM_CONFIRM. The deallocate_type set
to CM_DEALLOCATE_CONFIRM is functionally equivalent to deallocate_type set
to CM_DEALLOCATE_SYNC_LEVEL combined with a sync_level set to
CM_CONFIRM.

The conversation is deallocated when the remote program responds to the
confirmation request by issuing Confirmed. The conversation remains allocated
when the remote program responds to the confirmation request by issuing
Send_Error.

4. A deallocate_type set to CM_DEALLOCATE_ABEND is used by a program to
unconditionally deallocate a conversation regardless of its synchronization level
and its current state. Specifically, this deallocate_type value is used when the
program detects an error condition that prevents further useful communications
(communications that would lead to successful completion of the transaction).

5. If a return_code other than CM_OK is returned on the call, the deallocate_type
conversation characteristic is unchanged.

 Related Information
“Deallocate (CMDEAL)” on page 143 provides further discussion on the use of the
deallocate_type characteristic in the deallocation of a conversation.

“Set_Sync_Level (CMSSL)” on page 354 provides information on how the
sync_level characteristic is used in combination with the deallocate_type
characteristic in the deallocation of a conversation.

306 CPI Communications Reference

 Set_Error_Direction (CMSED)

 Set_Error_Direction (CMSED)

LU 6.2

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Error_Direction (CMSED) is used by a program to set the error_direction
characteristic for a given conversation. Set_Error_Direction overrides the value that
was assigned when the Initialize_Conversation, the Accept_Conversation, or the
Initialize_For_Incoming call was issued.

A program uses the Set_Error_Direction call, when using an LU 6.2 CRM, to
indicate whether the error was detected while receiving the data or after receiving
the data.

Note: The error_direction characteristic is used by an LU 6.2 CRM and only for a
half-duplex conversation.

 Format
CALL CMSED(conversation_ID,

error_direction,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

error_direction (input)
Specifies the direction of the data flow in which the program detected an error.
This parameter is significant only if Send_Error is issued in Send-Pending
state (that is, immediately after a Receive on which both data and a
conversation status of CM_SEND_RECEIVED are received). Otherwise, the
error_direction value is ignored when the program issues Send_Error.

The error_direction variable can have one of the following values:

 ¹ CM_RECEIVE_ERROR
Specifies that the program detected an error in the data it received from the
remote program.

 ¹ CM_SEND_ERROR
Specifies that the program detected an error while preparing to send data to
the remote program.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED

 Chapter 4. Call Reference 307

 Set_Error_Direction (CMSED)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The error_direction specifies CM_SEND_ERROR and the conversation is

using an OSI TP CRM.
– The error_direction specifies an undefined value.
– The send_receive_mode of the conversation is CM_FULL_DUPLEX.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. The error_direction conversation characteristic is significant only if Send_Error

is issued immediately after a Receive on which both data and a conversation
status of CM_SEND_RECEIVED are received (when the conversation is in
Send-Pending state). In this situation, the Send_Error may result from one of
the following errors:

¹ An error in the received data (in the receive flow)

¹ An error having nothing to do with the received data, but instead being the
result of processing performed by the program after it had successfully
received and processed the data (in the send flow).

Because the system in this situation cannot tell which error occurred, the
program has to supply the error_direction information.

The error_direction defaults to a value of CM_RECEIVE_ERROR. To override
the default, a program can issue the Set_Error_Direction call prior to issuing
Send_Error.

Once changed, the new error_direction value remains in effect until the
program changes it again. Therefore, a program should issue
Set_Error_Direction before issuing Send_Error for a conversation in
Send-Pending state.

If the conversation is not in Send-Pending state, the error_direction
characteristic is ignored.

2. If the conversation is in Send-Pending state and the program issues a
Send_Error call, CPI Communications examines the error_direction
characteristic and notifies the partner program accordingly:

¹ If error_direction is set to CM_RECEIVE_ERROR, the partner program
receives a return_code of CM_PROGRAM_ERROR_PURGING. This indicates
that an error at the remote program occurred in the data before the remote
program received send control.

¹ If error_direction is set to CM_SEND_ERROR, the partner program receives
a return_code of CM_PROGRAM_ERROR_NO_TRUNC. This indicates that an
error at the remote program occurred in the send processing after the
remote program received send control.

3. If a return_code other than CM_OK is returned on the call, the error_direction
conversation characteristic is unchanged.

308 CPI Communications Reference

 Set_Error_Direction (CMSED)

 Related Information
“Example 7: Error Direction and Send-Pending State” on page 82 provides an
example program using Set_Error_Direction.

“Send_Error (CMSERR)” on page 259 provides more information on reporting
errors.

“Send-Pending State and the error_direction Characteristic” on page 726 provides
more information on the error_direction characteristic.

 Chapter 4. Call Reference 309

 Set_Fill (CMSF)

 Set_Fill (CMSF)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Fill (CMSF) is used by a program to set the fill characteristic for a given
conversation. Set_Fill overrides the value that was assigned when the
Initialize_Conversation, Accept_Conversation, or Initialize_For_Incoming call was
issued.

Programs use the Set_Fill call to indicate to the local system the condition that will
be used to determine when sufficient data is available to complete a Receive call.

Note: This call applies only to basic conversations. The fill characteristic is
ignored for mapped conversations.

 Format
CALL CMSF(conversation_ID,

fill,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

fill (input)
Specifies whether the program is to receive data in terms of the logical-record
format of the data. The fill variable can have one of the following values:

 ¹ CM_FILL_LL
Specifies that the program is to receive one complete or truncated logical
record, or a portion of the logical record that is equal to the length specified
by the requested_length parameter of the Receive call.

 ¹ CM_FILL_BUFFER
Specifies that the program is to receive data independent of its
logical-record format. The amount of data received will be equal to or less
than the length specified by the requested_length parameter of the Receive
call. The amount is less than the requested length when the program
receives the end of the data.

310 CPI Communications Reference

 Set_Fill (CMSF)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The conversation_type specifies CM_MAPPED_CONVERSATION.
– The fill specifies an undefined value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. The fill value provided (for a basic conversation) is used on all subsequent

Receive calls for the specified conversation until changed by the program with
another Set_Fill call.

2. If a return_code other than CM_OK is returned on the call, the fill conversation
characteristic is unchanged.

 Related Information
“Receive (CMRCV)” on page 213 provides more information on how the fill
characteristic is used for basic conversations.

 Chapter 4. Call Reference 311

 Set_Initialization_Data (CMSID)

 Set_Initialization_Data (CMSID)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_Initialization_Data (CMSID) is used by a program to set the initialization_data
and initialization_data_length conversation characteristics to be sent to the remote
program for a given conversation. Set_Initialization_Data overrides the values that
were assigned when the Initialize_Conversation, Accept_Conversation,
Initialize_For_Incoming, or Accept_Incoming call was issued.

The initialization_data conversation characteristic contains program-supplied data
that is sent to, or received from, the remote program during conversation
initialization. It may be specified prior to Allocate by the conversation initiator.
When the conversation is using an OSI TP CRM it may also be specified by the
recipient of the conversation immediately following Accept_Conversation or
Accept_Incoming.

 Format
CALL CMSID(conversation_ID,

initialization_data,
initialization_data_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

initialization_data (input)
Specifies the initialization data that is to be passed to the remote program
during conversation startup.

initialization_data_length (input)
Specifies the length of the initialization data. The length can be from 0 to
10000 bytes. If zero, the initialization_data parameter is ignored.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Initialize state, Receive state (for a

half-duplex conversation), or Send-Receive state (for a full-duplex
conversation).

312 CPI Communications Reference

 Set_Initialization_Data (CMSID)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned identifier.
– The initialization_data_length specifies a value greater than 10000 or

less than zero.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. Initialization data is data that the program initiating a conversation (using the

Initialize_Conversation call) can choose to send to the remote program. The
initiator issues a Set_Initialization_Data call between the Initialize_Conversation
and Allocate calls to specify the initialization data to be sent by the Allocate
call. Following the successful completion of either an Accept_Conversation or
Accept_Incoming call, the remote program issues an Extract_Initialization_Data
call to extract the initialization data.

2. When the conversation is allocated using an OSI TP CRM, the remote program
may issue a Set_Initialization_Data call to identify data that is to be sent to the
initiating program on its next call following its acceptance of the conversation.
To avoid overwriting initialization data from the initiating program, the recipient
must issue the Extract_Initialization_Data call to extract the incoming
initialization data before issuing the Set_Initialization_Data call. The
Set_Initialization_Data must be issued before any other call on the
conversation, except Set_* or Extract_* calls. To extract the data from the
remote program, the initiating program issues the Extract_Initialization_Data call
after receiving a control_information_received value of
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA.

3. If a return_code other than CM_OK is returned on the call, the initialization_data
and initialization_data_length conversation characteristics remain unchanged.

 Related Information
“Extract_Initialization_Data (CMEID)” on page 168 describes the
Extract_Initialization_Data call.

“Extract_Mapped_Initialization_Data (CMEMID)” on page 170 describes information
about the Extract_Mapped_Initialization_Data call.

“Set_Mapped_Initialization_Data (CMSMID)” on page 318 describes information
about the Set_Mapped_Initialization_Data call.

 Chapter 4. Call Reference 313

 Set_Join_Transaction (CMSJT)

 Set_Join_Transaction (CMSJT)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Programs use the Set_Join_Transaction call to set the join_transaction
characteristic for a conversation. Set_Join_Transaction overrides the value
assigned when the Accept_Conversation or Accept_Incoming call was issued.

Note: The join_transaction characteristic is only meaningful in conjunction with the
X/Open TX resource recovery interface.

 Format
CALL CMSJT(conversation_ID,

join_transaction,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation ID.

join_transaction (input)
Specifies if the subordinate implicitly joins the transaction after receiving a join
transaction request from the superior. The join_transaction characteristic can
have one of the following values:

 ¹ CM_JOIN_IMPLICIT
Specifies that the subordinate automatically joins the transaction when
receiving a join transaction request from the superior.

 ¹ CM_JOIN_EXPLICIT
Specifies that the subordinate must join the transaction explicitly when
receiving a join transaction request from the superior.

return_code (output)
Specifies the results of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned identifier.
– The join_transaction specifies an undefined value.
– The program is not the subordinate for the conversation.
– The transaction_control characteristic is set to

CM_CHAINED_TRANSACTIONS.

314 CPI Communications Reference

 Set_Join_Transaction (CMSJT)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the join_transaction

conversation characteristic remains unchanged.

2. This call can be issued only by the subordinate program of a conversation.

3. This call can be issued in all states except Reset and Initialize . It should be
issued in the Initialize_Incoming state, so that it has an effect at the following
Accept_Incoming call. In all other states, it is allowed only if the
transaction_control characteristic has the value CM_UNCHAINED_TRANSACTION.

4. If a program wants to use CM_JOIN_EXPLICIT, it should extract the
transaction_control characteristic after a successful Accept_Incoming call. If
the value is CM_CHAINED_TRANSACTIONS, the program should join the
transaction by issuing a tx_begin() call. If the value is
CM_UNCHAINED_TRANSACTIONS, the program is informed with a
CM_JOIN_TRANSACTION status_received value if it is to join the transaction. In
any case, the program may first do any local work that is not to be included in
the remote program's transaction before joining the transaction.

5. This call does not apply to any previous call operation still in progress.

6. This call is not associated with any conversation queue. When a conversation
uses queue-level non-blocking, the call does not return
CM_OPERATION_NOT_ACCEPTED on the conversation.

 Related Information
“Joining a Transaction” on page 61 discusses how a program can join a
transaction.

“TX Extensions for CPI Communications” on page 66 discusses the TX extensions
for CPI Communications.

 Chapter 4. Call Reference 315

 Set_Log_Data (CMSLD)

 Set_Log_Data (CMSLD)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Log_Data (CMSLD) is used by a program to set the log_data and
log_data_length characteristics for a given conversation. Set_Log_Data overrides
the values that were assigned when the Initialize_Conversation,
Accept_Conversation, or Initialize_For_Incoming call was issued.

The log_data conversation characteristic contains program-supplied information that
will be sent to the remote system when an error occurs. It may be helpful in
determining what caused the error condition.

Note: When an LU 6.2 CRM is being used, the log_data characteristic is used
only on basic conversations.

For IMS and MVS, this call does update the log_data conversation characteristic.
However, the error information is not logged or sent to the conversation partner's
system in error situations.

For Networking Services for Windows, this call does update the log_data
conversation characteristic. log_data is written to the trace log upon entry to
Set_Log_Data and Deallocate. Networking Services for Windows does not send
log_data to the remote program.

An AIX application program can issue a Set_Log_Data call; however, prior to
Version 3 Release 1, this call performs no operation. AIX does not log or transmit
the data until Version 3 Release 1 or later.

 Format
CALL CMSLD(conversation_ID,

log_data,
log_data_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

log_data (input)
Specifies the program-unique error information that is to be logged. The data
supplied by the program is any data the program wants to have logged.

log_data_length (input)
Specifies the length of the program-unique error information. The length can be
from 0 to 512 bytes. If zero, the log_data_length characteristic is set to zero

316 CPI Communications Reference

 Set_Log_Data (CMSLD)

(effectively setting the log_data characteristic to the null string), and the
log_data parameter on this call is ignored.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value can be one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The conversation_type is set to CM_MAPPED_CONVERSATION and the

conversation is using an LU 6.2 CRM.
– The log_data_length specifies a value less than 0 or greater than 512.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. If the log_data characteristic contains data (as a result of a Set_Log_Data

call), log data will be sent to the remote system under any of the following
conditions:

¹ When the local program issues a Send_Error call and the conversation is
using an LU 6.2 CRM

¹ When the local program issues a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND

¹ When the local program issues a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE and deallocate_type set to
CM_DEALLOCATE_ABEND

2. The system resets the log_data and log_data_length characteristics to their
initial (null) values after sending the log data. Therefore, the log_data is sent to
the remote system only once even though an error indication may be issued
several times. See usage note 1 for conditions when log data is sent.

3. Specify log_data using the local system's native encoding. When the log data
is displayed on the partner system, it will be displayed in that system's native
encoding.

4. If a return_code other than CM_OK is returned on the call, the log_data and
log_data_length conversation characteristics are unchanged.

 Related Information
“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the log_data parameter.

“Send_Error (CMSERR)” on page 259 and “Deallocate (CMDEAL)” on page 143
provide further discussion on how the log_data characteristic is used.

 Chapter 4. Call Reference 317

 Set_Mapped_Initialization_Data (CMSMID)

 Set_Mapped_Initialization_Data (CMSMID)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

A program uses the Set_Mapped_Initialization_Data (CMSMID) call to set the
initialization_data and initialization_data_length conversation characteristics to be
sent to the remote program for a given conversation. The map_name identifies the
data so the underlying map routine can properly transform it for transmission to the
remote partner. Set_Mapped_Initialization_Data overrides the values that were
assigned when the Initialize_Conversation, Accept_Conversation,
Initialize_For_Incoming, or Accept_Incoming call was issued.

 Format
CALL CMSMID(conversation_ID,

map_name,
map_name_length, initialization_data,
initialization_data_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

map_name (input)
Specifies the mapping function used to encode the data record. The length of
the identifier is 0 to 64 bytes.

map_name_length (input)
Specifies the length of the map_name. The length can range from 0 to 64
bytes. If the length is zero, the map_name parameter is ignored.

initialization_data (input)
Specifies the initialization data that is to be passed to the remote program
during conversation start up.

initialization_data_length (input)
Specifies the length of the initialization data. If zero, the initialization_data
parameter is ignored.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_UNKNOWN_MAP_NAME_REQUESTED

The supplied map name is unknown to the map routine. No data was sent.
 ¹ CM_MAP_ROUTINE_ERROR

The map routine encountered a problem with the user data. No data was sent.

318 CPI Communications Reference

 Set_Mapped_Initialization_Data (CMSMID)

 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:

¹ The conversation is not in initialize state, Receive state (for a half-duplex
conversation), or Send-Receive state (for a full-duplex conversation).

 ¹ CM_PROGRAM_PARAMETER_CHECK

Value indicates one of the following:

– The conversation_ID specifies an unassigned identifier.
– The initialization_data_length specifies a value greater than 10000 or less

than 0.
– The conversation_type characteristic is set to

CM_BASIC_CONVERSATION.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. Initialization data is data that the program initiating a conversation, using the

Initialize_Conversation call, can choose to send to the remote program. The
initiator issues a Set_Mapped_Initialization Data call between the
Initialize_Conversation and Allocate calls to specify the initialization to be sent
by the Allocate call. The map_name parameter is set to identify the data so
that the underlying map routine can properly handle it. Following the
successful completion of either an Accept_Conversation or Accept_Incoming
call, the remote program issues an Extract_Mapped_Initialization_Data call to
extract the initialization data.

2. The remote program may issue a Set_Mapped_Initialization_Data call to
identify data that is to be sent to the initiating program on its next call following
its acceptance of the conversation. To avoid overwriting initialization data from
the initiating program, the recipient must issue the
Extract_Mapped_Initialization_Data call to extract the incoming initialization
data before issuing the Set_Mapped_Initialization_Data call. The
Set_Mapped_Initialization Data must be issued before any other call on the
conversation, except Set or Extract calls. To extract the data from the remote
program, the initiating program issues the Extract_Mapped_Initialization_Data
call after receiving a control_information_received value of
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA.

3. If a return_code other than CM_OK is returned on the call, the initialization_data
and initialization_data_length conversation characteristics remain unchanged.

4. If the map routine is unable to process the user data either because the user
identified an incorrect map_name or the map routine encountered an error
during processing the return_code is set appropriately. Nothing is sent nor is
the conversation aborted. Control is given back to the program for appropriate
action.

 Chapter 4. Call Reference 319

 Set_Mapped_Initialization_Data (CMSMID)

5. Because of the work the local map routine performs, the real amount of data
sent by the CRM may be larger than 10000 bytes, even if the
initialization_data_length is less than 10000. In this case the remote system
may not be able to process the data. Therefore, the maximum value of
initialization_data_length depends on the map routine and the abilities of the
remote system.

6. When the conversation is allocated using the LU 6.2 CRM, initialization data is
sent as PIP data.

 Related Information
“Extract_Initialization_Data (CMEID)” on page 168 describes the
Extract_Initialization_Data call.

“Set_Initialization_Data (CMSID)” on page 312 describes the Set_Initialization_Data
call.

“Extract_Mapped_Initialization_Data (CMEMID)” on page 170 describes the
Extract_Mapped_Initialization_Data call.

320 CPI Communications Reference

 Set_Mode_Name (CMSMN)

 Set_Mode_Name (CMSMN)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Mode_Name (CMSMN) is used by a program to set the mode_name and
mode_name_length characteristics for a conversation. Set_Mode_Name overrides
the current values that were originally acquired from the side information using the
sym_dest_name.

Issuing this call does not change the values in the side information. It only
changes the mode_name and mode_name_length characteristics for this
conversation.

Note: A program cannot issue the Set_Mode_Name call after an Allocate is
issued. Only the program that initiates the conversation (using the
Initialize_Conversation call) can issue this call.

The mode_name conversation characteristic is used during conversation
initialization to select a session with the appropriate attributes; such as, cost,
bandwidth, and so on.

 Format
CALL CMSMN(conversation_ID,

mode_name,
mode_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

mode_name (input)
Specifies the mode name designating the network properties for the logical
connection to be allocated for the conversation. The network properties
include, for example, the class of service to be used, and whether data is to be
enciphered.

Note: A program may require special authority to specify some mode names.
For example, SNASVCMG requires special authority with LU 6.2.

CPI Communications applications in CICS cannot be SNA service programs
and, therefore, cannot allocate on the mode names SNASVCMG or CPSVCMG.
If they attempt to do this they will get CM_PARAMETER_ERROR.

mode_name_length (input)
Specifies the length of the mode name. The length can be from zero to eight
bytes. If zero, the mode name for this conversation is set to null and the
mode_name parameter included with this call is not significant.

 Chapter 4. Call Reference 321

 Set_Mode_Name (CMSMN)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The mode_name_length specifies a value less than zero or greater

than eight.
– The partner_ID characteristic is set to a non-null value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. Specification of a mode name that is not recognized by the system is not

detected on this call. It is detected on the subsequent Allocate call.

2. Specify mode_name using the local system's native encoding. CPI
Communications automatically converts the mode_name from the native
encoding where necessary.

3. If a return_code other than CM_OK is returned on the call, the mode_name and
mode_name_length conversation characteristics are unchanged.

 Related Information
“Side Information” on page 23 further discusses the mode_name conversation
characteristic.

“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the mode_name parameter.

“SNA Service Transaction Programs” on page 727 discusses SNA service
transaction programs.

322 CPI Communications Reference

 Set_Partner_ID (CMSPID)

 Set_Partner_ID (CMSPID)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Programs use the Set_Partner_ID call to specify a partner_ID characteristic that will
be used to allocate the conversation. Set_Partner_ID overrides the current values
for the partner_ID, partner_ID_length, partner_ID_type, and partner_ID_scope
characteristics that were originally acquired from the side information using the
sym_dest_name.

Issuing this call does not change the information in the side information. It only
changes the partner_ID, partner_ID_length, partner_ID_type, and partner_ID_scope
characteristics for this conversation.

 Format
CALL CMSPID(conversation_ID,

partner_ID_type,
partner_ID,
partner_ID_length,
partner_ID_scope,
directory_syntax,
directory_encoding,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation ID.

partner_ID_type (input)
Specifies the type of the partner_ID that will be used on this conversation.

The partner_ID_type variable can have one of the following values:

 ¹ CM_DISTINGUISHED_NAME
The partner_ID variable contains a complete distinguished name CPI
Communications can use to retrieve destination information from a
distributed directory.

 ¹ CM_LOCAL_DISTINGUISHED_NAME
The partner_ID variable contains a local distinguished name. When
combined with a system-specific prefix, the local DN creates a complete DN
for access of destination information from a distributed directory.

 ¹ CM_PROGRAM_FUNCTION_ID
The partner_ID variable contains a program function identifier that CPI
Communications can use to search the distributed directory and obtain the
partner binding.

 Chapter 4. Call Reference 323

 Set_Partner_ID (CMSPID)

 ¹ CM_OSI_TPSU_TITLE_OID
The partner_ID variable contains an object identifier for an OSI TPSU title.
On systems supporting attribute_type searches, CPI Communications will
search the directory for objects containing attributes with an attribute_type
of TPSU_ENTRY and an attribute_value equal to the specified partner_ID.

 ¹ CM_PROGRAM_BINDING
The partner_ID variable contains a program binding for the partner
program. For more information on the format of a program binding, see
“Program Binding” on page 658.

partner_ID (input) Specifies the partner_ID to be used in allocating the
conversation.

partner_ID_length (input) Specifies the length of the partner_ID. The length
can be from 0 to 32767 bytes. If the partner_ID_length is zero
(effectively setting the partner_ID characteristic to the null string), the
partner_ID parameter on this call is ignored.

partner_ID_scope (input) Specifies the scope of the search in the use of the
partner_ID. The partner_ID_scope variable only has meaning when
the partner_ID is of type CM_DISTINGUISHED_NAME. It can have
one of the following values:

 ¹ CM_EXPLICIT
CPI Communications should only use the destination information contained
in the program installation object identified by the distinguished name.

 ¹ CM_REFERENCE
CPI Communications should access the program binding contained in the
program installation object identified by the distinguished name. If CPI
Communications is unable to establish a logical connection with the partner
CRM using this binding, CPI Communications should use the PFID
contained in the program installation object (if available) to search for and
attempt to use other program installation objects.

directory_syntax (input)
Specifies the syntax of the distributed directory that CPI Communications will
access with the partner_ID. This parameter is ignored if the partner_ID_type is
CM_PROGRAM_BINDING. directory_syntax can have one of the following
values:

 ¹ CM_DEFAULT_SYNTAX
The DN or PFID specified can be used with a directory conforming to the
default directory syntax for the implementation.

 ¹ CM_DCE_SYNTAX
The DN or PFID specified can be used with a directory conforming to DCE
directory syntax guidelines.

 ¹ CM_XDS_SYNTAX
The DN or PFID specified can be used with a directory conforming to XDS
directory syntax guidelines.

 ¹ CM_NDS_SYNTAX
The DN or PFID specified can be used with a directory conforming to
Novell's NDS directory syntax guidelines.

directory_encoding (input)
Specifies the encoding rule of the distributed directory that CPI Communications
will access with the partner_ID. This parameter is ignored if the

324 CPI Communications Reference

 Set_Partner_ID (CMSPID)

partner_ID_type is CM_PROGRAM_BINDING. directory_encoding can have one
of the following values:

 ¹ CM_DEFAULT_ENCODING
The DN or PFID specified is encoded in 8-bit locally-defined format.

 ¹ CM_UNICODE_ENCODING
The DN or PFID specified is encoded in 16-bit unicode format.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The partner_ID_type parameter specifies an undefined value.
– The partner_ID_scope parameter specifies an undefined value.
– The partner_ID_type parameter specifies CM_PROGRAM_BINDING and

the partner_ID_length parameter specifies a value less than 0 or
greater than 32767.

– The partner_ID_type parameter specifies CM_DISTINGUISHED_NAME or
CM_PROGRAM_FUNCTION_ID and the partner_ID_length parameter
specifies a value less than 0 or greater than 1024.

– The directory_syntax parameter specifies an undefined value.
– The directory_encoding parameter specifies an undefined value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This program does not cause a state change.

 Usage Notes
1. If the partner_ID variable is not null, it is used by CPI Communications to

allocate the conversation. Any other destination information (specified in side
information or using Set calls) is ignored.

2. If the partner_ID characteristic is null, the partner_ID characteristic will not be
used to allocate the conversation. Instead, CPI Communications will use any
destination information provided by side information or Set calls.

3. If a return_code other than CM_OK is returned on the call, the characteristics for
the conversation are unchanged.

4. If the program sets partner_ID_type to CM_PROGRAM_FUNCTION_ID, the
partner_ID parameter will be used as a PFID to search the distributed directory.
CPI Communications uses the PFID in conjunction with a default DN. The
specification of a default DN is system-specific and its use depends on the
contents of the directory object pointed to:

¹ If the default DN points to one of the directory objects defined in
Appendix F, “CPI Communications Extensions for Use with DCE Directory,”

 Chapter 4. Call Reference 325

 Set_Partner_ID (CMSPID)

CPI Communications will use the contents of the object to direct its search.
See “Scenarios for Use of CNSI” on page 742 for examples.

¹ If the default DN does not point to a directory object recognized by CPI
Communications, the default DN will be used as a starting point for a
search of the directory tree for objects containing a PFID with a value equal
to the value specified in partner_ID.

 Related Information
“Distributed Directory” on page 25 explains the terms and concepts required for
use of a distributed directory.

“Example 14: Using the Distributed Directory to Find the Partner Program” on
page 96 provides a sample scenario of a program using the Set_Partner_ID call.

“Extract_Partner_ID (CMEPID)” on page 177 can be used to extract the partner_ID
characteristic.

“Program Binding” on page 658 describes the format of a program binding.

326 CPI Communications Reference

 Set_Partner_LU_Name (CMSPLN)

 Set_Partner_LU_Name (CMSPLN)

LU 6.2

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Partner_LU_Name (CMSPLN) is used by a program to set the
partner_LU_name and partner_LU_name_length characteristics for a conversation.
Set_Partner_LU_Name overrides the current values that were originally acquired
from the side information using the sym_dest_name.

Issuing this call does not change the information in the side information. It only
changes the partner_LU_name and partner_LU_name_length characteristics for this
conversation.

The partner_lu_name conversation characteristic contains the SNA LU name that
identifies the location of the remote program. It may be set by the conversation
initiator to identify the location of the remote program.

Notes:

1. A program cannot issue Set_Partner_LU_Name after an Allocate call is issued.
Only the program that initiated the conversation (issued the
Initialize_Conversation call) can issue Set_Partner_LU_Name.

2. The partner_LU_name characteristic is used only by an LU 6.2 CRM.

 Format
CALL CMSPLN(conversation_ID,

partner_LU_name,
partner_LU_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

partner_LU_name (input)
Specifies the name of the remote LU at which the remote program is located.
This LU name is any name by which the local system knows the remote LU for
purposes of allocating a conversation.

On MVS, a blank partner LU name can be specified. If Allocate (CMALLC) is
called while the partner LU name is set to blanks, the system considers the
partner LU name to be the name of the local LU from which CMALLC is called.
MVS also allows a blank partner LU name to be specified as an entry in the
side information.

 Chapter 4. Call Reference 327

 Set_Partner_LU_Name (CMSPLN)

partner_LU_name_length (input)
Specifies the length of the partner LU name. The length can be from 1 to 17
bytes.

On MVS, the length of a blank partner LU name can also be 1 to 17 bytes.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The partner_LU_name_length is set to a value less than 1 or greater

than 17.
– The partner_ID characteristic is set to a non-null value.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. Specify partner_LU_name using the local system's native encoding. CPI

Communications automatically converts the partner_LU_name from the native
encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the
partner_LU_name and partner_LU_name_length conversation characteristics
are unchanged.

 Related Information
“Side Information” on page 23 and notes 4 and 5 of Table 61 on page 650 provide
further discussion of the partner_LU_name conversation characteristic.

“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the partner_LU_name parameter.

328 CPI Communications Reference

 Set_Prepare_Data_Permitted (CMSPDP)

 Set_Prepare_Data_Permitted (CMSPDP)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_Prepare_Data_Permitted (CMSPDP) is used by a program to set the
prepare_data_permitted characteristic for a given conversation.
Set_Prepare_Data_Permitted overrides the value that was assigned when the
Initialize_Conversation call was issued. The subordinate program on the
conversation cannot issue the Set_Prepare_Data_Permitted call.

The superior program uses the Set_Prepare_Data Permitted call to indicate
whether the subordinate may send data following receipt of a take_commit
notification.

Note: The prepare_data_permitted characteristic is used only by an OSI TP CRM
and only for a half-duplex conversation.

 Format
CALL CMSPDP(conversation_ID,

prepare_data_permitted,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

prepare_data_permitted (input)
Specifies whether the superior program wants to allow the subordinate to send
data following the receipt of a take-commit notification. The
prepare_data_permitted variable can have one of the following values:

 ¹ CM_PREPARE_DATA_NOT_PERMITTED
Specifies the subordinate will not be permitted to send data following the
receipt of a take-commit notification.

 ¹ CM_PREPARE_DATA_PERMITTED
Specifies the subordinate will be permitted to send data following the
receipt of a take-commit notification.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned identifier.

 Chapter 4. Call Reference 329

 Set_Prepare_Data_Permitted (CMSPDP)

– The prepare_data_permitted specifies CM_PREPARE_DATA_PERMITTED
and the conversation is using an LU 6.2 CRM.

– The prepare_data_permitted specifies an undefined value.
– The sync_level is set to CM_NONE or CM_CONFIRM.
– The program is not the superior for the conversation.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the

prepare_data_permitted conversation characteristic remains unchanged.

2. When the Prepare call is issued with the prepare_data_permitted characteristic
set to CM_PREPARE_DATA_PERMITTED, the subordinate program is notified that
it is permitted to send data through a take-commit notification that ends in a
status_received value of CM_TAKE_COMMIT_DATA_OK,
CM_TAKE_COMMIT_SEND_DATA_OK, or
CM_TAKE_COMMIT_DEALLOC_DATA_OK.

 Related Information
See “Prepare (CMPREP)” on page 205 for a description of the Prepare call.

330 CPI Communications Reference

 Set_Prepare_To_Receive_Type (CMSPTR)

 Set_Prepare_To_Receive_Type (CMSPTR)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Prepare_To_Receive_Type (CMSPTR) is used by a program to set the
prepare_to_receive_type characteristic for a conversation. This call overrides the
value that was assigned when the Initialize_Conversation, Accept_Conversation, or
Initialize_For_Incoming call was issued.

Programs use the Set_Prepare_To_Receive_Type call to identify any additional
CPI-C functions (such as, Flush and Confirm) that are to be done in conjunction
with the Prepare_To_Receive call.

Note: The prepare_to_receive_type characteristic is used only for a half-duplex
conversation.

 Format
CALL CMSPTR(conversation_ID,

prepare_to_receive_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

prepare_to_receive_type (input)
Specifies the type of prepare-to-receive processing to be performed for this
conversation. The prepare_to_receive_type variable can have one of the
following values:

 ¹ CM_PREP_TO_RECEIVE_SYNC_LEVEL
Perform the prepare-to-receive based on one of the following sync_level
settings:

– If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently
included in a transaction, execute the function of the Flush call and
enter Receive state.

– If sync_level is set to CM_CONFIRM, or if sync_level is set to
CM_SYNC_POINT but the conversation is not currently included in a
transaction, execute the function of the Confirm call and if successful
(as indicated by a return code of CM_OK on the Prepare_To_Receive
call, or a return code of CM_OK on the Send_Data call with send_type
set to CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state. If
Confirm is not successful, the state of the conversation is determined
by the return code.

– If sync_level is set to CM_SYNC_POINT and the conversation is included
in a transaction, enter Defer-Receive state until the program issues a

 Chapter 4. Call Reference 331

 Set_Prepare_To_Receive_Type (CMSPTR)

resource recovery commit or backout call, or until the program issues a
Confirm or Flush call for this conversation. If the commit or Confirm call
is successful or if a Flush call is issued, the conversation then enters
Receive state. If the backout call is successful, the conversation
returns to its state at the previous sync point. Otherwise, the state of
the conversation is determined by the return code.

– If sync_level is set to CM_SYNC_POINT_NO_CONFIRM, and the
conversation is included in a transaction, enter Defer-Receive state
until the program issues a resource recovery commit or backout call, or
until the program issues a Flush call for this conversation. If the
commit call is successful or if a Flush call is issued, the conversation
then enters Receive state. If the backout call is successful, the
conversation returns to its state at the previous sync point. Otherwise,
the state of the conversation is determined by the return code.

 ¹ CM_PREP_TO_RECEIVE_FLUSH
Execute the function of the Flush call and enter Receive state.

 ¹ CM_PREP_TO_RECEIVE_CONFIRM
Execute the function of the Confirm call and if successful (as indicated by a
return code of CM_OK on the Prepare_To_Receive call, or a return code of
CM_OK on the Send_Data call with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state. If it is not
successful, the state of the conversation is determined by the return code.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The prepare_to_receive_type is set to an undefined value.
– The prepare_to_receive_type is CM_PREP_TO_RECEIVE_CONFIRM, but

the conversation is assigned with sync_level set to CM_NONE or
CM_SYNC_POINT_NO_CONFIRM.

– The send_receive_mode of the conversation is CM_FULL_DUPLEX.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is in Initialize-Incoming state.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
If a return_code other than CM_OK is returned on the call, the
prepare_to_receive_type conversation characteristic is unchanged.

332 CPI Communications Reference

 Set_Prepare_To_Receive_Type (CMSPTR)

 Related Information
“Example 4: The Receiving Program Changes the Data Flow Direction” on
page 75 shows an example program using the Prepare_To_Receive call.

“Prepare_To_Receive (CMPTR)” on page 208 discusses how the
prepare_to_receive_type is used.

 Chapter 4. Call Reference 333

 Set_Processing_Mode (CMSPM)

 Set_Processing_Mode (CMSPM)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X* X

A program uses the Set_Processing_Mode (CMSPM) call to set the
processing_mode characteristic of a conversation. The processing_mode
characteristic indicates whether CPI Communications calls on the specified
conversation are to be processed in blocking or conversation-level non-blocking
mode. Set_Processing_Mode overrides the default value of CM_BLOCKING that
was assigned when the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call was issued. The processing mode of a conversation
cannot be changed prior to the completion of all previous call operations on that
conversation.

Note: The processing_mode characteristic is used only for a half-duplex
conversation.

X* In Communications Manager/2, this call is supported in Communications Server

 Format
CALL CMSPM(conversation_ID,

processing_mode,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

processing_mode (input)
Specifies the processing mode to be used for this conversation.
processing_mode can have one of the following values:

 ¹ CM_BLOCKING
Specifies that calls will be processed in blocking mode. Calls complete
before control is returned to the program. The
CM_OPERATION_INCOMPLETE return code will not be returned on this
conversation.

 ¹ CM_NON_BLOCKING
Specifies that calls will be processed in conversation-level non-blocking
mode. If possible, the calls complete immediately. When a call operation
cannot complete immediately, CPI Communications returns control to the
program with the CM_OPERATION_INCOMPLETE return code. The operation
proceeds without blocking the program.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

334 CPI Communications Reference

 Set_Processing_Mode (CMSPM)

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The processing_mode specifies an undefined value.
– The send_receive_mode of the conversation is CM_FULL_DUPLEX.
– The program has chosen queue-level non-blocking for the conversation.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous call operation on the conversation is
still in progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
1. A program can choose to use conversation-level non-blocking by issuing the

Set_Processing_Mode call to set the processing_mode characteristic to
CM_NON_BLOCKING for a conversation. The processing mode applies to all the
subsequent calls on that conversation until it is set otherwise or the
conversation ends.

2. If a return_code other than CM_OK is returned on the call, the processing_mode
conversation characteristic is unchanged.

3. When CM_OPERATION_INCOMPLETE is returned from any of the calls listed in
Table 7 on page 48, the call operation has not completed. The operation
proceeds without blocking the program. The data and buffer areas used in the
call are in an indeterminate state and should not be referenced until the
operation is completed. For conversations using conversation-level
non-blocking, the Wait_For_Conversation call is used to determine when an
operation is completed. Each call to Wait_For_Conversation will return the
conversation identifier and return code (the conversation_return_code value) of
a completed operation. It is the responsibility of the program to keep track of
the operation being performed by each conversation in order to be able to
properly interpret the conversation_return_code value.

If programs place the Wait_For_Conversation call in a procedure other than the
accompanying CPI-C call that returned CM_OPERATION_INCOMPLETE, all
parameters of that CPI-C call must be in global storage and not in automatic
storage. This is important even for parameters the program does not use. For
example, if the partner program will never use any call that results in a
control_information_received value, other than
CM_NO_CONTROL_INFO_RECEIVED, the local program still has to place the
control_information_received parameter of the Receive call in global storage.

4. Not all language processors support the use of non-blocking operations. See
“Programming Language Considerations” on page 111 for language processor
restrictions on the use of non-blocking operations.

 Chapter 4. Call Reference 335

 Set_Processing_Mode (CMSPM)

 Related Information
“Concurrent Operations” on page 44 discusses the use of concurrent operations
and conversation queues.

“Non-Blocking Operations” on page 47 discusses the use of non-blocking
operations.

“Example 13: Accepting Multiple Conversations Using Conversation-Level
Non-Blocking Calls” on page 94 shows an example of a program that uses
conversation-level non-blocking calls to accept multiple incoming half-duplex
conversations.

“Set_Queue_Callback_Function (CMSQCF)” on page 337 describes how to set a
callback function and related information for a conversation queue.

“Set_Queue_Processing_Mode (CMSQPM)” on page 340 describes how to set the
processing mode for a conversation queue.

“Wait_For_Conversation (CMWAIT)” on page 369 describes the use of
Wait_For_Conversation to wait for completion of a conversation-level outstanding
operation.

336 CPI Communications Reference

 Set_Queue_Callback_Function (CMSQCF)

 Set_Queue_Callback_Function (CMSQCF)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X X

Set_Queue_Callback_Function (CMSQCF) is used to set a callback function and a
user field for a given conversation queue and to set the queue's processing mode
to CM_NON_BLOCKING.

 Format
CALL CMSQCF(conversation_ID,

conversation_queue,
callback_function,
user_field,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_queue (input)
Specifies the conversation queue on which completion of a call operation will
invoke the callback function. The conversation_queue can have one of the
following values:

 ¹ CM_INITIALIZATION_QUEUE
 ¹ CM_SEND_QUEUE
 ¹ CM_RECEIVE_QUEUE
 ¹ CM_SEND_RECEIVE_QUEUE
 ¹ CM_EXPEDITED_SEND_QUEUE
 ¹ CM_EXPEDITED_RECEIVE_QUEUE

callback_function (input)
Specifies a callback function to be set for the identified queue.

user_field (input)
Specifies a user field to be associated with the identified queue.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID contains an unassigned conversation identifier.
– The conversation_queue specifies a value that is not defined for the

send_receive_mode conversation characteristic.

 Chapter 4. Call Reference 337

 Set_Queue_Callback_Function (CMSQCF)

– The program has chosen conversation-level non-blocking for the
conversation.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

– The conversation_queue parameter is set to
CM_INITIALIZATION_QUEUE, and the conversation is not in Initialize or
Initialize-Incoming state.

– The conversation_queue parameter is set to CM_SEND_QUEUE,
CM_RECEIVE_QUEUE, CM_SEND_RECEIVE_QUEUE,
CM_EXPEDITED_SEND_QUEUE, or CM_EXPEDITED_RECEIVE_QUEUE,
and the conversation is in Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. Because of requiring support of passing a callback function as a parameter, the

call is supported by the C programming language only.

2. A program can choose to use queue-level non-blocking by issuing the
Set_Queue_Callback_Function call (or the Set_Queue_Processing_Mode call)
for a conversation queue. When the call completes successfully, the
processing_mode characteristic becomes meaningless to the conversation.

3. The call is associated with the queue specified in the conversation_queue
parameter.

4. The program can issue the call for a conversation queue that is defined for the
current send-receive mode. The defined queues for each send-receive mode
are listed in Table 17 on page 342 under the "Usage Notes" for the
Set_Queue_Processing_Mode call.

In the special case when the conversation is in Initialize-Incoming state, the
send_receive_mode characteristic has no defined value. The program can
issue the call only for the Initialization queue.

5. Until the program sets the processing mode for a conversation queue (or
chooses conversation-level non-blocking), all the calls associated with that
queue are processed in blocking mode.

6. The call sets the processing mode of the identified queue to
CM_NON_BLOCKING. The processing mode applies to all subsequent calls to
the queue until the processing mode is set to CM_BLOCKING using a
Set_Queue_Processing_Mode (CMSQPM) call or the conversation ends.

7. Once set for the identified queue, the callback function and user field will be
associated with all subsequent outstanding operations on the queue until they
are set differently, a Set_Queue_Processing_Mode (CMSQPM) call is issued,
or the conversation ends.

8. When CM_OPERATION_INCOMPLETE is returned from any of the calls listed in
Table 7 on page 48, the call operation has not completed; in this case, CPI
Communications will return the result of the completed operation in the
return_code input parameter to the callback function rather than overlaying
the CM_OPERATION_INCOMPLETE value returned for the incomplete call (but

338 CPI Communications Reference

 Set_Queue_Callback_Function (CMSQCF)

see the Note below for an exception for Windows 3.x). The operation proceeds
without blocking the program. The data and buffer areas used in the call are in
an indeterminate state and should not be referenced until the operation is
completed.

9. A callback function is a user-defined routine and has three input parameters,
user_field (as passed in the CMSQCF call), call_ID (identifying the completed
call), and return_code (in which CPI Communications places the return code
specifying the final result of the completed operation). The callback function is
used to handle completion of an outstanding operation.

If a callback function is set for a conversation queue, the function is invoked
when an outstanding operation on the queue completes. The user field, as
specified by the program, and call ID and final return code for the completed
operation can then be passed to the callback function.

Note: An exception is the Microsoft Windows** environment. The
callback_function parameter is ignored in Windows, and the user_field
parameter contains a pointer to a structure of type MSG, as defined by Windows.
The structure contains at least a window handle, a message number, a word
value (in which CPI Communications places the return code specifying the
result of the completed operation — except for Windows 3.x, where instead it
overlays the CM_OPERATION_INCOMPLETE value in the return_code referenced
in the completed call), and a doubleword value. When an outstanding
operation completes, CPI Communications will use these fields as parameters
to call the Windows PostMessage function. Upon catching the message, the
program can then invoke a routine (taking the word value and doubleword
value as input) to handle the completion of the outstanding operation.

10. The last call to set queue-level non-blocking takes precedence. This means
that if a CMSQPM is followed by a CMSQCF for the same queue, then the
completion of outstanding operations will take place through callback. If a
CMSQCF is followed by a CMSQPM for the same queue, then completion of
outstanding operations will take place through CMWCMP.

11. The user callback function is defined as follows:

void callback_fn(void * user_field, CM_CALL_ID * call_id)

Note that the input parameters to the callback function are both pointers rather
than values.

 Related Information
“Concurrent Operations” on page 44 discusses the use of concurrent operations
and conversation queues.

“Non-Blocking Operations” on page 47 discusses the use of non-blocking
operations.

“Set_Queue_Processing_Mode (CMSQPM)” on page 340 describes how to set the
processing mode for a conversation queue.

“Wait_For_Completion (CMWCMP)” on page 366 describes the use of
Wait_For_Completion to wait for completion of an outstanding operation on a
conversation queue.

 Chapter 4. Call Reference 339

 Set_Queue_Processing_Mode (CMSQPM)

 Set_Queue_Processing_Mode (CMSQPM)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X X* X

Set_Queue_Processing_Mode (CMSQPM) is used to set the processing mode for a
given conversation queue. When the queue_processing_mode is set to
CM_NON_BLOCKING, this call also associates an outstanding-operation identifier
(OOID) and a user field with the queue.

X* In Communications Manager/2, this call is supported in Communications
Server.

 Format
CALL CMSQPM(conversation_ID,

conversation_queue,
queue_processing_mode,
user_field,
OOID,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_queue (input)
Specifies the conversation queue for which the processing mode is to be set by
this call. conversation_queue can have one of the following values:

 ¹ CM_INITIALIZATION_QUEUE
 ¹ CM_SEND_QUEUE
 ¹ CM_RECEIVE_QUEUE
 ¹ CM_SEND_RECEIVE_QUEUE
 ¹ CM_EXPEDITED_SEND_QUEUE
 ¹ CM_EXPEDITED_RECEIVE_QUEUE

queue_processing_mode (input)
Specifies the processing mode to be used for the identified queue.
queue_processing_mode can have one of the following values:

 ¹ CM_BLOCKING
 ¹ CM_NON_BLOCKING

user_field (input)
Specifies a user field to be associated with the identified queue, when
queue_processing_mode is set to CM_NON_BLOCKING.

OOID (output)
Specifies an outstanding operation identifier assigned to the identified queue,
when queue_processing_mode is set to CM_NON_BLOCKING.

340 CPI Communications Reference

 Set_Queue_Processing_Mode (CMSQPM)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID contains an unassigned conversation identifier.
– The conversation_queue specifies a value that is not defined for the

send_receive_mode conversation characteristic.
– The queue_processing_mode specifies an undefined value.
– The program has chosen conversation-level non-blocking for the

conversation.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation_queue parameter is set to

CM_INITIALIZATION_QUEUE, and the conversation is not in Initialize or
Initialize-Incoming state.

– The conversation_queue parameter is set to CM_SEND_QUEUE,
CM_RECEIVE_QUEUE, CM_SEND_RECEIVE_QUEUE,
CM_EXPEDITED_SEND_QUEUE, or CM_EXPEDITED_RECEIVE_QUEUE,
and the conversation is in Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. A program can choose to use queue-level non-blocking by issuing the

Set_Queue_Processing_Mode call (or the Set_Queue_Callback_Function call)
for a conversation queue. When the call completes successfully, the
processing_mode characteristic becomes meaningless to the conversation.

2. The call is associated with the queue specified in the conversation_queue
parameter.

3. The program can issue the call for a conversation queue that is defined for the
current send-receive mode. The defined queues for each send-receive mode
are listed in Table 17 on page 342.

In the special case when the conversation is in Initialize-Incoming state, the
send_receive_mode characteristic has no defined value. The program can
issue the call only for the Initialization queue.

 Chapter 4. Call Reference 341

 Set_Queue_Processing_Mode (CMSQPM)

4. Until the program sets the processing mode for a conversation queue (or
chooses conversation-level non-blocking), all the calls associated with that
queue are processed in blocking mode.

5. If a return code other than CM_OK is returned on the call, the processing mode
of the specified queue is unchanged.

6. Once a processing mode is set for a conversation queue, the processing mode
applies to all the subsequent calls associated with the queue until it is set
differently using the call or until the conversation ends.

7. If the queue processing mode is CM_BLOCKING, no OOID is returned on the
call. Therefore, the program should ignore the OOID parameter.

8. If the queue processing mode is CM_NON_BLOCKING, an OOID is returned on
the call. The OOID will be associated with all subsequent outstanding
operations on the queue until the processing mode is set to CM_BLOCKING, a
Set_Queue_Callback_Function (CMSQCF) call is issued, or the conversation
ends.

9. When the program issues the call for a conversation queue and sets the queue
processing mode to CM_NON_BLOCKING for the first time, an OOID is created
and set for the queue. The OOID remains with the queue until the
conversation ends. Even if the queue processing mode changes several times
or a Set_Queue_Callback_Function (CMSQCF) call is issued during the
conversation, each Set_Queue_Processing_Mode call to return to
CM_NON_BLOCKING reactivates the same OOID for that queue. If a CMSQCF
call is issued for a queue that has an OOID associated with it, then the OOID
will not be available for wait operations until a CMSQPM call is re-issued for
that queue.

10. When CM_OPERATION_INCOMPLETE is returned from any of the calls listed in
Table 7 on page 48, the call operation has not completed. The operation
proceeds without blocking the program. The data and buffer areas used in the
call are in an indeterminate state and should not be referenced until the
operation is completed. For conversations using the
Set_Queue_Processing_Mode call, the Wait_For_Completion call is used to
determine when an outstanding operation is completed.

11. The program may specify a user field on the call when the queue processing
mode is CM_NON_BLOCKING. If the program chooses to do so, the user field
will be associated with the identified queue along with an OOID. The user field
specified by the program will be returned on the user_field_list parameter of the
Wait_For_Completion (CMWCMP) call when an outstanding operation with the
OOID has completed.

Table 17. Full-Duplex and Half-Duplex Conversation Queues

Send-Receive Mode Conversation Queues

Full-Duplex Initialization
Send
Receive
Expedited-Send
Expedited-Receive

Half-Duplex Initialization
Send-Receive
Expedited-Send
Expedited-Receive

342 CPI Communications Reference

 Set_Queue_Processing_Mode (CMSQPM)

12. The last call to set queue-level non-blocking takes precedence. This means
that if a CMSQPM is followed by a CMSQCF for the same queue, then the
completion of outstanding operations will take place through callback. If a
CMSQCF is followed by a CMSQPM for the same queue, then completion of
outstanding operations will take place through CMWCMP.

 Related Information
“Concurrent Operations” on page 44 discusses the use of concurrent operations
and conversation queues.

“Non-Blocking Operations” on page 47 discusses the use of non-blocking
operations.

“Example 11: Queue-Level Non-Blocking” on page 90 shows an example of a
program that uses queue-level non-blocking.

“Set_Queue_Callback_Function (CMSQCF)” on page 337 describes how to set a
callback function and related information for a conversation queue.

“Wait_For_Completion (CMWCMP)” on page 366 describes the use of
Wait_For_Completion to wait for completion of an outstanding operation on a
conversation queue.

 Chapter 4. Call Reference 343

 Set_Receive_Type (CMSRT)

 Set_Receive_Type (CMSRT)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Receive_Type (CMSRT) is used by a program to set the receive_type
characteristic for a conversation. Set_Receive_Type overrides the value that was
assigned when the Initialize_Conversation, Accept_Conversation, or
Initialize_For_Incoming call was issued.

Programs use the Set_Receive_Type call to indicate whether the Receive call will
return immediately when no data is available, or wait for data to be received.

 Format
CALL CMSRT(conversation_ID,

receive_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

receive_type (input)
Specifies the type of receive to be performed. The receive_type variable can
have one of the following values:

 ¹ CM_RECEIVE_AND_WAIT
The Receive call is to wait for information to arrive on the specified
conversation. If information is already available, the program receives it
without waiting.

 ¹ CM_RECEIVE_IMMEDIATE
The Receive call is to receive any information that is available from the
specified conversation, but is not to wait for information to arrive.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The receive_type specifies an undefined value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

344 CPI Communications Reference

 Set_Receive_Type (CMSRT)

 State Changes
This call does not cause a state change.

 Usage Notes
If a return_code other than CM_OK is returned on the call, the receive_type
conversation characteristic is unchanged.

 Related Information
“Example 3: The Sending Program Changes the Data Flow Direction” on page 74
discusses how a program can use Set_Receive_Type with a value of
CM_RECEIVE_IMMEDIATE.

“Receive (CMRCV)” on page 213 discusses how the receive_type characteristic is
used.

“Receive_Mapped_Data (CMRCVM)” on page 231 discusses how a program is
used to receive mapped partner data.

 Chapter 4. Call Reference 345

 Set_Return_Control (CMSRC)

 Set_Return_Control (CMSRC)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Return_Control (CMSRC) is used to set the return_control characteristic for a
given conversation. Set_Return_Control overrides the value that was assigned
when the Initialize_Conversation call was issued.

Note: A program cannot issue the Set_Return_Control call after an Allocate has
been issued for a conversation. Only the program that initiates the conversation
(with the Initialize_Conversation call) can issue this call.

The conversation initiator uses the Set_Return_Control call to indicate whether the
Allocate call will return before the conversation is assigned to a session, or wait
until a session is available.

 Format
CALL CMSRC(conversation_ID,

return_control,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

return_control (input)
Specifies when a program receives control back after issuing a call to Allocate.
The return_control can have one of the following values:

 ¹ CM_WHEN_SESSION_ALLOCATED
Allocate a logical connection for the conversation before returning control to
the program.

 ¹ CM_IMMEDIATE

Allocate a logical connection for the conversation if a logical connection is
immediately available and return control to the program with one of the
following return codes indicating whether or not a logical connection is
allocated.

– A return code of CM_OK indicates a logical connection was immediately
available and has been allocated for the conversation. A logical
connection is immediately available when it is active; the logical
connection is not allocated to another conversation; and, for an LU 6.2
CRM, the local system is the contention winner for the logical
connection.

– A return code of CM_UNSUCCESSFUL indicates a logical connection is
not immediately available. Allocation is not performed.

 ¹ CM_WHEN_CONWINNER_ALLOCATED

346 CPI Communications Reference

 Set_Return_Control (CMSRC)

This value is supported on OS/2 only.
Allocate a contention winner session for the conversation before returning
control to the program.

 ¹ CM_WHEN_SESSION_FREE
This value is supported on OS/2 only.
Allocate a session for the conversation if a session is available. If no
session is available, the local program is willing to wait for session
activation. If a session cannot be activated and there are no outstanding
session activation requests to satisfy this Allocate, control returns to the
program with a return code of CM_ALLOCATE_FAILURE_RETRY.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The return_control specifies an undefined value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

Table 18. Return Control Options

Return_control value Con-winner
acceptable

Con-loser
acceptable

Wait expected

CM_WHEN_SESSION_ALLOCATED Yes Yes Yes, indefinitely

CM_WHEN_CONWINNER_ALLOCATED Yes No Yes, indefinitely

CM_WHEN_SESSION_FREE Yes Yes Yes, while there
are outstanding
session
activation
requests

CM_IMMEDIATE Yes No No

 State Changes
This call does not cause a state change.

 Usage Notes
1. An allocation error resulting from the local system’s failure to obtain a logical

connection for the conversation is reported on the Allocate call. An allocation
error resulting from the remote system’s rejection of the conversation startup
request is reported on a subsequent conversation call.

2. For an LU 6.2 CRM, two systems connected by a logical connection may both
attempt to allocate a conversation on the logical connection at the same time.
This is called contention. Contention is resolved by making one system the
contention winner of the session and the other system the contention loser of
the session. The contention-winner system allocates a conversation on a
session without asking permission from the contention-loser system.
Conversely, the contention-loser system requests permission from the

 Chapter 4. Call Reference 347

 Set_Return_Control (CMSRC)

contention-winner system to allocate a conversation on the session, and the
contention-winner system either grants or rejects the request. For more
information, see SNA Transaction Programmer’s Reference Manual for LU
Type 6.2.

Contention may result in a CM_UNSUCCESSFUL return code for programs
specifying CM_IMMEDIATE.

3. The program can modify the function of the Allocate call by specifying a
return_control characteristic of CM_IMMEDIATE. The result is that control is
returned to the program immediately if no session is available. Use of the
distributed directory for destination information makes it impossible to
guarantee a similar level of function because the CPI Communications
implementation's call to the distributed directory might itself make use of a
resource that is not immediately available.

Programs requiring immediate return of control on the Allocate call should
consider using non-blocking function, or accessing the directory directly and
providing the information as a program binding to CPI Communications using
the Set_Partner_ID call.

4. If a return_code other than CM_OK is returned on the call, the return_control
conversation characteristic is unchanged.

 Related Information
“Allocate (CMALLC)” on page 124 provides more discussion on the use of the
return_control characteristic in allocating a conversation.

348 CPI Communications Reference

 Set_Send_Receive_Mode (CMSSRM)

 Set_Send_Receive_Mode (CMSSRM)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X X*

The Set_Send_Receive_Mode (CMSSRM) call is used by a program to set the
send_receive_mode characteristic for a conversation. Set_Send_Receive_Mode
overrides the value that was assigned when the Initialize_Conversation call was
issued.

The send_receive_mode conversation characteristic indicates whether the
conversation is using half-duplex or full-duplex mode for data transmission. It may
be set by the conversation initiator.

Note: A program cannot issue Set_Send_Receive_Mode after an Allocate call is
issued. Only the program that initiated the conversation (issued the
Initialize_Conversation call) can issue Set_Send_Receive_Mode.

X* In Communications Manager/2, this call is supported in Communications
Server.

 Format
CALL CMSSRM(conversation_ID,

send_receive_mode,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

send_receive_mode (input)
Specifies the send-receive mode of the conversation.

The send_receive_mode variable can have one of the following values:

 ¹ CM_HALF_DUPLEX
Specifies the allocation of a half-duplex conversation.

 ¹ CM_FULL_DUPLEX
Specifies the allocation of a full-duplex conversation.

Networking Services for Windows provides a simulated full-duplex conversation
support.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the program is not in Initialize state.

 Chapter 4. Call Reference 349

 Set_Send_Receive_Mode (CMSSRM)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The send_receive_mode specifies an undefined value.
– The sync_level is set to CM_CONFIRM or CM_SYNC_POINT, and

send_receive_mode is set to CM_FULL_DUPLEX.
– The sync_level is set to CM_SYNC_POINT_NO_CONFIRM, the

conversation is using a LU 6.2 CRM, and the send_receive_mode
specifies CM_HALF_DUPLEX.

– The send_type is set to CM_SEND_AND_CONFIRM or
CM_SEND_AND_PREP_TO_RECEIVE, and send_receive_mode is set to
CM_FULL_DUPLEX.

– The deallocate_type is set to CM_DEALLOCATE_CONFIRM, the
conversation is using a LU 6.2 CRM, and the send_receive_mode
specifies CM_FULL_DUPLEX.

– The program has selected conversation-level non-blocking by issuing
Set_Processing_Mode successfully, and send_receive_mode is set to
CM_FULL_DUPLEX.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the

send_receive_mode characteristic is unchanged.

2. Set_Send_Receive_Mode overrides the value assigned with the
Initialize_Conversation call and can only be issued when the program is in
Initialize state.

3. Networking Services for Windows simulates full-duplex by transparently using
two half-duplex conversations. This full-duplex simulation does not allow
interoperability with implementations that support true full-duplex conversations.

 Related Information
“Send-Receive Modes” on page 19 provides more information on the differences
between half-duplex and full-duplex conversations.

“Example 8: Establishing a Full-Duplex Conversation” on page 84 shows an
example of how a full-duplex conversation is set up.

“Extract_Send_Receive_Mode (CMESRM)” on page 187 tells how to determine the
send-receive mode used for a conversation.

350 CPI Communications Reference

 Set_Send_Type (CMSST)

 Set_Send_Type (CMSST)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Send_Type (CMSST) is used by a program to set the send_type characteristic
for a conversation. Set_Send_Type overrides the value that was assigned when
the Initialize_Conversation, Accept_Conversation, or Initialize_For_Incoming call
was issued.

Programs use the Set_Send_Type call to identify any additional CPI-C functions
(such as, Flush and Confirm) to be done following the transferring of the data to the
buffer.

 Format
CALL CMSST(conversation_ID,

send_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

send_type (input)
Specifies what, if any, information is to be sent to the remote program in
addition to the data supplied on the Send_Data call, and whether the data is to
be sent immediately or buffered.

The send_type variable can have one of the following values:

 ¹ CM_BUFFER_DATA
No additional information is to be sent to the remote program. Further, the
supplied data might not be sent immediately but, instead, might be buffered
until a sufficient quantity is accumulated.

 ¹ CM_SEND_AND_FLUSH
No additional information is to be sent to the remote program. However,
the supplied data is sent immediately rather than buffered. Send_Data with
send_type set to CM_SEND_AND_FLUSH is functionally equivalent to a
Send_Data with send_type set to CM_BUFFER_DATA followed by a Flush
call.

¹ CM_SEND_AND_CONFIRM (half-duplex conversations only)
The supplied data is to be sent to the remote program immediately, along
with a request for confirmation. Send_Data with send_type set to
CM_SEND_AND_CONFIRM is functionally equivalent to Send_Data with
send_type set to CM_BUFFER_DATA followed by a Confirm call.

¹ CM_SEND_AND_PREP_TO_RECEIVE (half-duplex conversations only)
The supplied data is to be sent to the remote program immediately, along
with send control of the conversation. Send_Data with send_type set to

 Chapter 4. Call Reference 351

 Set_Send_Type (CMSST)

CM_SEND_AND_PREP_TO_RECEIVE is functionally equivalent to Send_Data
with send_type set to CM_BUFFER_DATA followed by a
Prepare_To_Receive call. The action depends on the value of the
prepare_to_receive_type characteristic for the conversation.

 ¹ CM_SEND_AND_DEALLOCATE
The supplied data is to be sent to the remote program immediately, along
with a deallocation notification. Send_Data with send_type set to
CM_SEND_AND_DEALLOCATE is functionally equivalent to Send_Data with
send_type set to CM_BUFFER_DATA followed by a call to Deallocate. The
action depends on the value of the deallocate_type characteristic for the
conversation.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The conversation_ID specifies an unassigned conversation identifier.
– The send_type is set to CM_SEND_AND_CONFIRM and the conversation

is assigned with sync_level set to CM_NONE or
CM_SYNC_POINT_NO_CONFIRM.

– The send_type specifies an undefined value.
– The send_type is set to CM_SEND_AND_CONFIRM or

CM_SEND_AND_PREP_TO_RECEIVE and the send_receive_mode is set
to CM_FULL_DUPLEX.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates the conversation is in Initialize-Incoming state.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
If a return_code other than CM_OK is returned on the call, the send_type
conversation characteristic is unchanged.

 Related Information
“Example 4: The Receiving Program Changes the Data Flow Direction” on
page 75 shows an example program flow using the Set_Send_Type call.

“Send_Data (CMSEND)” on page 249 discusses how the send_type characteristic
is used by Send_Data.

“Send_Mapped_Data (CMSNDM)” on page 271 discusses how a program sends
mapped data to its partner.

The same function of a call to Send_Data with different values of the send_type
conversation characteristic in effect can be achieved by combining Send_Data with
other calls:

¹ “Confirm (CMCFM)” on page 133

352 CPI Communications Reference

 Set_Send_Type (CMSST)

¹ “Deallocate (CMDEAL)” on page 143
¹ “Flush (CMFLUS)” on page 195
¹ “Prepare_To_Receive (CMPTR)” on page 208

 Chapter 4. Call Reference 353

 Set_Sync_Level (CMSSL)

 Set_Sync_Level (CMSSL)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_Sync_Level (CMSSL) is used by a program to set the sync_level characteristic
for a given conversation. The sync_level characteristic is used to specify the level
of synchronization processing between the two programs. It determines whether
the programs support no synchronization, confirmation-level synchronization (using
the Confirm and Confirmed CPI Communications calls), or sync-point-level
synchronization (using the calls of a resource recovery interface). Set_Sync_Level
overrides the value that was assigned when the Initialize_Conversation call was
issued.

The sync_level conversation characteristic indicates the level of synchronization
services provided on the conversation. It may be set by the conversation initiator.

Note: A program cannot use the Set_Sync_Level call after an Allocate has been
issued. Only the program that initiates a conversation (using the
Initialize_Conversation call) can issue this call.

 Format
CALL CMSSL(conversation_ID,

sync_level,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

sync_level (input)
Specifies the synchronization level that the local and remote programs can use
on this conversation. The sync_level can have one of the following values:

 ¹ CM_NONE
The programs will not perform confirmation or sync point processing on this
conversation. The programs will not issue any calls or recognize any
returned parameters relating to synchronization.

¹ CM_CONFIRM (half-duplex conversations only)
The programs can perform confirmation processing on this conversation.
The programs can issue calls and recognize returned parameters relating to
confirmation.

¹ CM_SYNC_POINT (half-duplex conversations only)

The CM_SYNC_POINT value is only valid on CICS, OS/400, and VM.

The programs can perform sync point processing on this conversation. The
programs can issue resource recovery interface calls and will recognize

354 CPI Communications Reference

 Set_Sync_Level (CMSSL)

returned parameters relating to resource recovery processing. The
programs can also perform confirmation processing.

 ¹ CM_SYNC_POINT_NO_CONFIRM

The CM_SYNC_POINT_NO_CONFIRM value is not supported by any of the
products.

The programs can perform sync point processing on this conversation. The
programs can issue resource recovery interface calls and will recognize
returned parameters relating to resource recovery processing. The
programs cannot perform confirmation processing.

Note: If the conversation is using an OSI TP CRM, confirmation of the
deallocation of the conversation can be performed with any sync_level value.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PARM_VALUE_NOT_SUPPORTED

This value indicates that the sync_level specifies CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the value is not supported by the local
system.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The sync_level specifies CM_NONE, the deallocate_type is set to

CM_DEALLOCATE_CONFIRM, and the conversation is using an LU 6.2
CRM.

– The sync_level specifies CM_NONE, the send_receive_mode is set to
CM_HALF_DUPLEX, and the prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_CONFIRM.

– The sync_level specifies CM_NONE or CM_SYNC_POINT_NO_CONFIRM,
the send_receive_mode is set to CM_HALF_DUPLEX, and the send_type
is set to CM_SEND_AND_CONFIRM.

– The sync_level specifies CM_CONFIRM or CM_SYNC_POINT and the
send_receive_mode is set to CM_FULL_DUPLEX.

– The sync_level specifies CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the deallocate_type is set to
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, and the
conversation is using an LU 6.2 CRM.

– The sync_level specifies CM_SYNC_POINT_NO_CONFIRM, the
send_receive_mode is set to CM_HALF_DUPLEX, and the conversation
is using an LU 6.2 CRM.

– The sync_level specifies an undefined value.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 Chapter 4. Call Reference 355

 Set_Sync_Level (CMSSL)

 State Changes
This call does not cause a state change.

 Usage Notes
If a return_code other than CM_OK is returned on the call, the sync_level
conversation characteristic is unchanged.

 Related Information
“Confirm (CMCFM)” on page 133 and “Confirmed (CMCFMD)” on page 137
provide further information on confirmation processing.

“Example 5: Validation of Data Receipt” on page 78 and “Example 15: Sending
Program Issues a Commit” on page 98 show how to use the Set_Sync_Level call
and how to perform confirm and sync point processing.

“Support for Resource Recovery Interfaces” on page 54 contains additional related
information on the Set_Sync_Level call.

356 CPI Communications Reference

 Set_TP_Name (CMSTPN)

 Set_TP_Name (CMSTPN)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Set_TP_Name (CMSTPN) is used by a program that initiates a conversation, using
the Initialize_Conversation call, to set the TP_name and TP_name_length
characteristics for a given conversation. Set_TP_Name overrides the current
values that were originally acquired from the side information using the
sym_dest_name. See “Side Information” on page 23 for more information.

This call does not change the values in the side information. Set_TP_Name only
changes theTP_name and TP_name_length characteristics for this conversation.
The Set_TP_Name call may also be used by the program that did not initiate the
conversation to identify a specific TP_name to be accepted on a given
conversation.

The tp_name conversation characteristic identifies the recipient of the conversation
initialization request. It may be set by the conversation initiator.

Note: A program cannot issue Set_TP_Name after an Allocate,
Accept_Conversation, or Accept_Incoming is issued.

 Format
CALL CMSTPN(conversation_ID,

TP_name,
TP_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

TP_name (input)
Specifies the name of the remote program.

Note: A program may require special syntax for the name and special
authority to specify some TP names. For example, SNA service transaction
programs require special authority with LU 6.2. (For more information, see
“SNA Service Transaction Programs” on page 727.)

TP_name_length (input)
Specifies the length of TP_name. The length can be from 1 to 64 bytes.

return_code (output)
Specifies the result of the call execution. The return_code can have one of the
following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_STATE_CHECK

 Chapter 4. Call Reference 357

 Set_TP_Name (CMSTPN)

This value indicates that the conversation is not in Initialize or
Initialize_Incoming state.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The TP_name_length specifies a value less than 1 or greater than 64.
– The partner_ID characteristic is set to a non-null value.

 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. Specify TP_name using the local system's native encoding. CPI

Communications automatically converts the TP_name from the native encoding
where necessary.

2. If a return_code other than CM_OK is returned on the call, the TP_name and
TP_name_length conversation characteristics are unchanged.

3. The TP_name specified on this call must be formatted according to the naming
conventions of the partner system.

4. Refer to “SNA Service Transaction Programs” on page 727 for special handling
of SNA Service Transaction Program names.

 Related Information
“Side Information” on page 23 and notes 3 on page 652 and 6 on page 653 of
Table 61 on page 650 provide further discussion of the TP_name conversation
characteristic.

“Automatic Conversion of Characteristics” on page 41 provides further information
on the automatic conversion of the TP_name parameter.

“SNA Service Transaction Programs” on page 727 provides more information on
privilege and service transaction programs.

358 CPI Communications Reference

 Set_Transaction_Control (CMSTC)

 Set_Transaction_Control (CMSTC)

OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

Set_Transaction_Control (CMSTC) is used by a program to set the
transaction_control characteristic for a given conversation.
Set_Transaction_Control overrides the value that was assigned when the
Initialize_Conversation call was issued.

The transaction_control conversation characteristic indicates whether the
conversation supports chained or unchained transactions. It may be set by the
conversation initiator.

Notes:

1. Only the program that initiates the conversation can issue this call.

2. The transaction_control characteristic is used only by an OSI TP CRM.

 Format
CALL CMSTC(conversation_ID,

transaction_control,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

transaction_control (input)
Specifies whether the superior program wants to use chained or unchained
transactions on the conversation with the subordinate. The transaction_control
variable can have one of the following values:

 ¹ CM_CHAINED_TRANSACTIONS
Specifies that the conversation will use chained transactions.

 ¹ CM_UNCHAINED_TRANSACTIONS
Specifies that the conversation will use unchained transactions.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in the Initialize state.

 Chapter 4. Call Reference 359

 Set_Transaction_Control (CMSTC)

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned identifier.
– The transaction_control specifies an undefined value.
– The sync_level is set to either CM_NONE or CM_CONFIRM.
– The transaction_control specifies CM_UNCHAINED_TRANSACTIONS, and

the conversation is using an LU 6.2 CRM.
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause any state changes.

 Usage Notes
If a return_code other than CM_OK is returned on the call, the transaction_control
conversation characteristic remains unchanged.

 Related Information
“Chained and Unchained Transactions” on page 61 provides more information
about using chained and unchained transactions with CPI Communications.

360 CPI Communications Reference

 Specify_Local_TP_Name (CMSLTP)

 Specify_Local_TP_Name (CMSLTP)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X* X* X

A program uses the Specify_Local_TP_Name (CMSLTP) call to associate a name
with itself, thus notifying CPI Communications that it can accept conversations
destined for the name. A program may have many local names simultaneously. It
can extract the TP_name for a particular conversation using the Extract_TP_Name
call.

X* In AIX, this call is supported in Version 3 Release 1 or later. In
Communications Manager/2, this call is supported in Communications Server.

 Format
CALL CMSLTP(TP_name,

TP_name_length,
return_code)

 Parameters
TP_name (input)

Specifies a name to be associated with this program.

Note: Refer to “SNA Service Transaction Programs” on page 727 for special
handling of SNA Service Transaction Program names.

TP_name_length (input)
Specifies the length of TP_name. The length can be from 1 to 64 bytes.

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The TP_name specifies a name that is restricted in some way by node

services.
– The TP_name has incorrect internal syntax as defined by node

services.
– The TP_name_length specifies a value less than 1 or greater than 64.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 Chapter 4. Call Reference 361

 Specify_Local_TP_Name (CMSLTP)

 State Changes
This call does not cause any state changes.

 Usage Notes
1. If a return_code other than CM_OK is returned on the call, the names

associated with the current program remain unchanged.

2. Any of the names associated with the program at the time an
Accept_Conversation or Accept_Incoming call is issued can be used to satisfy
the call.

3. If the program has an outstanding Accept_Incoming or Accept_Conversation
call when it issues Specify_Local_TP_Name, the names used to satisfy the
outstanding Accept_Incoming or Accept_Conversation are not affected. The
newly specified name will be added to the names used to satisfy subsequent
Accept_Incoming or Accept_Conversation calls.

 Related Information
“Accept_Conversation (CMACCP)” on page 119 and “Accept_Incoming (CMACCI)”
on page 121 describe how an incoming conversation is accepted by a program.

“Release_Local_TP_Name (CMRLTP)” on page 244 explains additional timing
considerations for names associated with the program.

362 CPI Communications Reference

 Test_Request_To_Send_Received (CMTRTS)

 Test_Request_To_Send_Received (CMTRTS)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

X X X X X X X X X

Test_Request_To_Send_Received (CMTRTS) is used by a program to determine
whether a request-to-send or allocate-confirmed notification has been received from
the remote program for the specified conversation.

Note: The Test_Request_To_Send_Received call has meaning only when a
half-duplex conversation is being used.

 Format
CALL CMTRTS(conversation_ID,

control_information_received,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

control_information_received (output)
Specifies the variable containing an indication of whether or not control
information has been received.

The control_information_received variable can have one of the following values:

 ¹ CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

 ¹ CM_REQ_TO_SEND_RECEIVED
The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the
local program's end of the conversation to enter Receive state, which
would place the remote program's end of the conversation in Send state.
See “Request_To_Send (CMRTS)” on page 246 for further discussion of
the local program's possible responses.

¹ CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation.

¹ CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program's
acceptance of the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data.

¹ CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may
now issue an Extract_Initialization_Data (CMEID) call to receive the
initialization data.

 Chapter 4. Call Reference 363

 Test_Request_To_Send_Received (CMTRTS)

This value will be returned with a return code of CM_OK. The program will
receive a CM_DEALLOCATED_ABEND return code on a later call on the
conversation.

¹ CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL (LU 6.2 CRM only)
The local program received a request-to-send notification from the remote
program and expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned
to the program, it will be returned in the following order:

 ¹ CM_ALLOCATE_CONFIRMED, CM_ALLOCATE_CONFIRMED_WITH_DATA,
or CM_ALLOCATE_REJECTED_WITH_DATA

 ¹ CM_RTS_RCVD_AND_EXP_DATA_AVAIL
 ¹ CM_REQ_TO_SEND_RECEIVED
 ¹ CM_EXPEDITED_DATA_AVAILABLE
 ¹ CM_NO_CONTROL_INFO_RECEIVED

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_PROGRAM_STATE_CHECK

– This value indicates that the conversation is not in Send , Receive ,
Send-Pending , Defer-Receive , or Defer-Deallocate state.

– For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The Test_Request_To_Send_Received
call is not allowed for this conversation while its context is in this
condition.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The send_receive_mode of the conversation is CM_FULL_DUPLEX.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level
non-blocking for the conversation and a previous call operation is still in
progress.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

364 CPI Communications Reference

 Test_Request_To_Send_Received (CMTRTS)

 Usage Notes
1. When the local system receives a request-to-send or allocate-confirmed

notification, it retains the notification until the local program issues a call (such
as Test_Request_To_Send_Received) with the control_information_received
parameter. It will retain only one request-to-send or allocate-confirmed
notification at a time (per conversation). Additional notifications are discarded
until the retained notification is indicated to the local program. Therefore, a
remote program may issue the Request_To_Send call more times than are
indicated to the local program.

When the local system receives expedited data from the partner system, it is
indicated on the calls that have the control_information_received parameter
until the expedited data is actually received by the program.

2. After the retained notification, other than the expedited data notification, is
indicated to the local program through the control_information_received
parameter, the local system discards the notification.

3. Note to Implementers: A request-to-send or allocate-confirmed notification
can be reported on this call (not associated with any queue), on the
Send_Expedited_Data call (associated with the Expedited-Send queue), and on
the Receive_Expedited_Data call (associated with the Expedited-Receive
queue). When the program uses queue-level non-blocking, more than one of
these calls may be executed simultaneously. An implementation should report
the notification to the program only once, through one of these calls.

4. A program should not rely solely on this call to test whether expedited data is
available. Expedited data may be available in the CRM, but the implementation
of the CPIC layer may not always be able to indicate this to the program on
this call. To test for the availability of expedited data, the program should issue
Receive_Expedited_Data with the expedited_receive_type set to
CM_RECEIVE_IMMEDIATE.

5. On MVS and VM systems, for conversations that cross a VTAM network, the
Test_Request_To_Send_Received (CMTRTS) call always sets
request_to_send_received to CM_REQ_TO_SEND_NOT_RECEIVED when
return_code=CM_OK, regardless of whether the remote programs have sent
such requests to the local programs. For MVS/ESA, CMTRTS works properly
in conversations between LUs controlled by APPC/MVS in the same MVS
system image. It also works properly under VM within a TSAF or CS collection.

 Related Information
“Request_To_Send (CMRTS)” on page 246 provides further discussion of the
request-to-send function, and “Set_Allocate_Confirm (CMSAC)” on page 282
provides more information about the allocate-confirmed function.

 Chapter 4. Call Reference 365

 Wait_For_Completion (CMWCMP)

 Wait_For_Completion (CMWCMP)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X X* X

Wait_For_Completion (CMWCMP) is used to wait for completion of one or more
outstanding operations represented in a specified outstanding-operation-ID (OOID)
list.

X* In Communications Manager/2, this call is supported in Communications
Server.

 Format
CALL CMWCMP(OOID_list,

OOID_list_count,
timeout,
completed_op_index_list,
completed_op_count,
user_field_list,
return_code)

 Parameters
OOID_list (input)

Specifies a list of OOIDs representing the outstanding operations for which
completion is expected.

OOID_list_count (input)
Specifies the number of OOIDs contained in OOID_list.

timeout (input)
Specifies the amount of time in milliseconds that the program is willing to wait
for completion of an operation. Valid timeout values are zero or any greater
integer number.

completed_op_index_list (output)
Specifies a list of indexes corresponding to the OOIDs in OOID_list for which
the associated operations have completed. The index is the position of an
OOID in OOID_list, beginning with 1.

completed_op_count (output)
Specifies the number of indexes contained in completed_op_index_list, or the
number of user fields contained in user_field_list, or both.

user_field_list (output)
Specifies a list of user fields corresponding to the completed operations.

366 CPI Communications Reference

 Wait_For_Completion (CMWCMP)

return_code (output)
Specifies the result of the call execution. The return_code variable can have
one of the following values:

 ¹ CM_OK
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
– The OOID_list_count specifies a value less than 1.
– The number of OOIDs in OOID_list is less than the value specified in

OOID_list_count.
– The OOID_list contains an unassigned OOID.
– The timeout specifies a value less than zero.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that there is no outstanding operation associated with
any of the OOIDs specified in OOID_list.

 ¹ CM_UNSUCCESSFUL
This value indicates that the specified timeout value has elapsed and none
of the operations specified in OOID_list has completed.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change.

 Usage Notes
1. Unless the return_code indicates CM_OK, the values of all other parameters on

this call have no meaning.

2. The call returns the OOID corresponding to a completed operation only once.
At that time, all information about the completed operation is purged from the
associated queue. If the program issues the call to check the status of the
same operation again, the OOID will not be returned.

3. When the call returns a completion operation to the program, the return code of
the completion operation can be found in the return_code parameter on the
completed call.

4. A special timeout value of zero can be used to check the status of all the
operations whose OOIDs are specified in the OOID_list parameter. The call
specified in this way incurs no blocking.

5. The program can replace a previously returned OOID in the OOID_list
parameter with a null OOID (integer zero) and continue to use the same list for
the following Wait_For_Completion call. The null OOID is not associated with
any outstanding operation.

6. There is a one-to-one correspondence between elements of the
completed-operation-index list and those of the user-field list. Hence, the size
of the user-field list equals that of the completed-operation-index list.

7. The program should allocate the same amount of storage for the
completed-operation-index list and user-field list as it does for the
outstanding-operation-ID list. If there is not enough storage allocated, the
program may lose some OOIDs and user fields that correspond to the
completed operations.

 Chapter 4. Call Reference 367

 Wait_For_Completion (CMWCMP)

8. In a multi-threaded environment, concurrent Wait_For_Completion operations
can occur. If an OOID is specified on more than one Wait_For_Completion
call, the OOID is returned on only one of the Wait_For_Completion calls when
the corresponding outstanding operation completes.

9. Note to Implementers: After returning CM_OPERATION_INCOMPLETE to the
program, an implementation should not fill the return code for the outstanding
operation before the program checks the return-code value. It is recommended
that implementations fill the return code only when the program issues a
Wait_For_Completion call for the outstanding operation.

 Related Information
“Non-Blocking Operations” on page 47 discusses the use of non-blocking
operations.

“Example 13: Accepting Multiple Conversations Using Conversation-Level
Non-Blocking Calls” on page 94 shows an example of a program that uses
conversation-level non-blocking calls to accept multiple incoming half-duplex
conversations.

“Set_Queue_Processing_Mode (CMSQPM)” on page 340 describes how to set the
processing mode for a conversation queue.

368 CPI Communications Reference

 Wait_For_Conversation (CMWAIT)

 Wait_For_Conversation (CMWAIT)

LU 6.2 OSI TP

AIX CICS IMS MVS NS/WIN OS/2 OS/400 VM WIN32

 X* X

A program must use the Wait_For_Conversation (CMWAIT) call to wait for the
completion of an outstanding operation on a conversation using conversation-level
non-blocking. An outstanding operation is indicated when the
CM_OPERATION_INCOMPLETE return_code value is returned on an
Accept_Incoming, Allocate, Confirm, Confirmed, Deallocate, Flush,
Prepare_To_Receive, Receive, Receive_Expedited_Data, Request_To_Send,
Send_Data, Send_Error, or Send_Expedited_Data call. This can occur when the
processing_mode conversation characteristic is set to CM_NON_BLOCKING and the
requested operation cannot complete immediately.

X* In Communications Manager/2, this call is supported in Communications
Server.

 Format
CALL CMWAIT(conversation_ID,

conversation_return_code,
return_code)

 Parameters
conversation_ID (output)

Specifies the variable containing the conversation identifier for the completed
operation.

Note: Unless return_code is set to CM_OK, the value contained in
conversation_ID is not meaningful.

conversation_return_code (output)
Specifies the variable containing the return code for the completed operation.
The meaning of this return code depends upon the operation that was started.
conversation_return_code can have one of the following values:

 ¹ CM_OK
 ¹ CM_ALLOCATE_FAILURE_NO_RETRY
 ¹ CM_ALLOCATE_FAILURE_RETRY
 ¹ CM_BUFFER_TOO_SMALL
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_ENDING
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_DEALLOC_CONFIRM_REJECT
 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_BO

 Chapter 4. Call Reference 369

 Wait_For_Conversation (CMWAIT)

 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_SVC_BO
 ¹ CM_DEALLOCATED_ABEND_TIMER
 ¹ CM_DEALLOCATED_ABEND_TIMER_BO
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_DEALLOCATED_NORMAL_BO
 ¹ CM_EXP_DATA_NOT_SUPPORTED
 ¹ CM_INCLUDE_PARTNER_REJECT_BO
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_PROGRAM_ERROR_TRUNC
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY_BO
 ¹ CM_RETRY_LIMIT_EXCEEDED
 ¹ CM_SECURITY_MUTUAL_FAILED
 ¹ CM_SECURITY_NOT_SUPPORTED
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_SVC_ERROR_NO_TRUNC
 ¹ CM_SVC_ERROR_PURGING
 ¹ CM_SVC_ERROR_TRUNC
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TAKE_BACKOUT
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_TPN_NOT_RECOGNIZED

Note: Unless return_code is set to CM_OK, the value contained in
conversation_return_code is not meaningful.

return_code (output)
Specifies the result of the Wait_For_Conversation call execution. The
return_code variable can have one of the following values:

 ¹ CM_OK
This value indicates that an outstanding operation has completed and that
the conversation_ID and conversation_return_code have been returned.

 ¹ CM_SYSTEM_EVENT
This value indicates that, rather than an outstanding operation on a
conversation, an event (such as a signal) recognized by the program has
occurred. The Wait_For_Conversation call returns this return code value to
allow the program to decide whether to reissue the Wait_For_Conversation
or to perform other processing.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that there were no conversation-level outstanding
operations for the program.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

370 CPI Communications Reference

 Wait_For_Conversation (CMWAIT)

 State Changes
When return_code is set to CM_OK, the conversation identified by conversation_ID
may change state. The new state is determined by the operation that completed,
the return code for that operation (the conversation_return_code value), and the
other factors that affect state transitions.

 Usage Notes
1. Wait_For_Conversation waits for the completion of any outstanding operation

on any conversation using conversation-level non-blocking. It is the
responsibility of the program to keep track of the operation in progress on each
conversation in order to be able to interpret properly the
conversation_return_code value.

2. In a multi-threaded environment, concurrent operations may occur. A
Wait_For_Conversation call waits for any operation, on any conversation using
conversation-level non-blocking, that either is already outstanding or becomes
outstanding during execution of the Wait_For_Conversation call. In case of
concurrent Wait_For_Conversation operations, completion of an outstanding
operation is indicated on one Wait_For_Conversation call only.

3. It is the responsibility of the event-handling portion of the program to record
sufficient information for the program to decide how to proceed on receipt of
the CM_SYSTEM_EVENT return code.

4. The program's current context is not changed as a result of the completion of a
Wait_For_Conversation call.

5. This call applies only to conversations using conversation-level non-blocking
support.

 Related Information
“Non-Blocking Operations” on page 47 discusses the use of non-blocking
operations.

“Example 13: Accepting Multiple Conversations Using Conversation-Level
Non-Blocking Calls” on page 94 shows an example of a program that uses
conversation-level non-blocking calls to accept multiple incoming half-duplex
conversations.

“Cancel_Conversation (CMCANC)” on page 131 describes the means for
terminating an operation before it is completed.

“Set_Processing_Mode (CMSPM)” on page 334 describes setting the
processing_mode conversation characteristic.

 Chapter 4. Call Reference 371

372 CPI Communications Reference

Part 3. CPI-C 2.1 Implementation Specifics

Chapter 5. CPI Communications on AIX . 381
AIX Publications . 381
AIX Operating Environment . 382

AIX CPI Communications Concepts . 382
Conformance Classes Supported . 382
Languages Supported . 383
Pseudonym Files . 383
Profiles . 383
Creating and Maintaining Profiles through SMIT 388
Starting SMIT . 388
Working with Profiles . 388
Verifying Profiles . 388
How Dangling Conversations Are Deallocated 388
Scope of the Conversation_ID . 389
Identifying Product-Specific Errors . 389
Diagnosing Errors . 389
When Allocation Requests Are Sent . 391
Deviations from the CPI Communications Architecture 391
Security Using CPI Communications and AIX 391
Compilation . 393
Running a Transaction Program . 393

AIX Extension Calls . 394
Extract_Conversation_Security_Type (XCECST) 396
Extract_Conversation_Security_User_ID (XCECSU) 398
Set_Conversation_Security_Password (XCSCSP) 399
Set_Conversation_Security_Type (XCSCST) 401
Set_Conversation_Security_User_ID (XCSCSU) 403
Set_Signal_Behavior (XCSSB) . 405

Chapter 6. CPI Communications on CICS/ESA 407
CICS/ESA Publications . 407
CICS/ESA Operating Environment . 407

Conformance Classes Supported . 408
Languages Supported . 408
Pseudonym Files . 408
Defining Side Information . 409
How Dangling Conversations Are Deallocated 411
Scope of the Conversation_ID . 412
Identifying Product-Specific Errors . 412
Diagnosing Errors . 412
When Allocation Requests are Sent . 412
Deviations from the CPI Communications Architecture 413

CICS/ESA Extension Calls . 413
CICS/ESA Special Notes . 414

Chapter 7. CPI Communications on IMS/ESA 415

Chapter 8. CPI Communications on MVS/ESA 417
MVS/ESA Publications . 417
MVS/ESA Operating Environment . 418

 Copyright IBM Corp. 1996, 1998 373

Conformance Classes Supported . 418
Languages Supported . 419
Pseudonym Files . 419
Defining Side Information . 420
How Dangling Conversations Are Deallocated 420
Scope of the Conversation_ID . 420
Identifying Product-Specific Errors . 421
Diagnosing Errors . 423
When Allocation Requests Are Sent . 424
Deviations from the CPI Communications Architecture 424

MVS/ESA Extension Calls . 425
MVS/ESA Special Notes . 425

TP Profiles . 425
MVS Performance Considerations . 425
APPC/MVS Services . 425

Chapter 9. CPI Communications on Networking Services for Windows 429
Networking Services for Windows Publications 429
Networking Services for Windows Operating Environment 429

Support of CPI-C Conformance Classes . 429
Optional Conformance Classes Supported 429
Optional Conformance Classes Not Supported 430

Languages Supported . 430
Pseudonym Files . 430

Examples of Using C . 431
CPI-C Function Calls in C . 431
Using the Pseudonym Files in C Language Programs 431
Using Other Languages . 431

Linking with the CPI-C Import Library . 432
Memory Considerations . 432

Data Buffers . 432
Stack Size . 432

Defining Side Information . 432
Usage Notes for Mode_Name and TP_Name 432

Mode_Name . 432
Restrictions on Transaction Program Names 433

How Dangling Conversations Are Deallocated 433
Diagnosing Errors . 433

Log_Data . 433
Identifying Product-Specific Errors . 433

Deviations from the CPI Communications Architecture 434
Return_control Characteristic for Allocate (CMALLC) 434
CM_PROGRAM_PARAMETER_CHECK Return Code 434
Log Data Support . 434

Chapter 10. CPI Communications on OS/2 435
OS/2 Publications . 436
OS/2 Operating Environment . 437

Conformance Classes Supported . 437
Languages Supported . 437

C . 438
COBOL . 439
FORTRAN . 439
REXX (SAA Procedures Language) . 440

374 CPI Communications Reference

Pseudonym Files . 443
Defining Side Information . 443

User-Defined Side Information . 444
Program-Defined Side Information . 444
Side Information Parameters . 445

How Dangling Conversations Are Deallocated 447
Scope of the Conversation_ID . 447
Identifying Product-Specific Errors . 447
Diagnosing Errors . 448

Set_Log_Data (CMSLD) . 448
Logging Errors for CPI Communications Error Return Codes 448
Causes for the CM_PROGRAM_PARAMETER_CHECK Return Code . 449
Causes for the CM_PROGRAM_STATE_CHECK Return Code 449

When Allocation Requests Are Sent . 450
Deviations from the CPI Communications Architecture 450

Accept_Incoming (CMACCI) . 450
Release_Local_TP_Name (CMRLTP) . 451
Specify_Local_TP_Name (CMSLTP) . 451
Set_Sync_Level (CMSSL) . 451
Programming Languages Not Supported 452
Mode Names Not Supported . 452
CPI Communications Functions Not Available 452

OS/2 Extension Calls—System Management 454
Delete_CPIC_Side_Information (XCMDSI) . 455
Extract_CPIC_Side_Information (XCMESI) . 457
Set_CPIC_Side_Information (XCMSSI) . 460
Define_TP (XCDEFTP) . 463
Delete_TP (XCDELTP) . 467
Register_Memory_Object (XCRMO) . 469
Unregister_Memory_Object (XCURMO) . 470
OS/2 Extension Calls—Conversation . 471
Extract_Conversation_Security_Type (XCECST) 472
Extract_Conversation_Security_User_ID (XCECSU) 473
Initialize_Conv_For_TP (XCINCT) . 474
Set_Conversation_Security_Password (XCSCSP) 476
Set_Conversation_Security_Type (XCSCST) 477
Set_Conversation_Security_User_ID (XCSCSU) 478
OS/2 Extension Calls—Transaction Program Control 479
End_TP (XCENDT) . 480
Extract_TP_ID (XCETI) . 482
Start_TP (XCSTP) . 483
OS/2 Special Notes . 485

Migration to Communications Server . 485
Multi-threaded CPI-C Programs . 485
Considerations for CPI Communications Calls 485

TP Instances for Communications Manager 486
Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) . . . 487
Extract_Conversation_Context (CMECTX) 488
Extract_Secondary_Information (CMESI) 489
Initialize_Conversation (CMINIT) . 490
Receive (CMRCV) . 492
Send_Data (CMSEND) . 492
Send_Expedited_Data (CMSNDX) . 493
Set_Partner_LU_Name (CMSPLN) . 493

 Part 3. CPI-C 2.1 Implementation Specifics 375

Set_Sync_Level (CMSSL) . 493
Set_Queue_Processing_Mode (CMSQPM) 493
Test_Request_To_Send (CMTRTS) . 493
Wait_For_Completion (CMWCMP) . 493

Characteristics, Fields, and Variables . 494
Communications Manager Native Encoding 494
Variable Types and Lengths . 495
Defining and Running a CPI Communications Program on Communications

Manager . 498
Defining a CPI Communications Program to Communications Manager 498
Using Defaults for TP Definitions . 498
Communications Manager Use of OS/2 Environment Variables 499
Stack Size . 500
Performance Considerations For Using Send/Receive Buffers 500
Exit List Processing . 501

Sample Program Listings for OS/2 . 502
OS/2 C Sample Programs . 503

SETSIDE.C . 503
OS/2 COBOL Sample Programs . 504

DEFSIDE.CBL . 504
DELSIDE.CBL . 507

OS/2 REXX Sample Programs . 509
XCMSSI.CMD . 509
XCMESI.CMD . 510

Chapter 11. CPI Communications on Operating System/400 513
OS/400 Publications . 513
OS/400 Operating Environment . 513

OS/400 Terms and Concepts . 513
Conformance Classes Supported . 515
Languages Supported . 515
Pseudonym Files . 516
Defining Side Information . 516

Managing the Communications Side Information 517
How Dangling Conversations Are Deallocated 518

Reclaim Resource Processing . 519
Scope of the Conversation_ID . 519
Identifying Product-Specific Errors . 519

CM_PRODUCT_SPECIFIC_ERROR . 519
Diagnosing Errors . 520

OS/400 CPI Communications Support of Log_Data 521
Return Codes . 521
REXX Reserved RC Variable . 522
REXX Error and Failure Conditions . 523
Tracing CPI Communications . 523

When Allocation Requests Are Sent . 524
OS/400 Extension Calls . 524
OS/400 Special Notes . 524

CPI Communications over TCP/IP Support 524
Prestarting Jobs for Incoming Conversations 524
Multiple Conversation Support . 525
Portability Considerations . 525

Chapter 12. CPI Communications on VM/ESA CMS 527

376 CPI Communications Reference

VM Publications . 527
VM/ESA Operating Environment . 528

Conformance Classes Supported . 528
Languages Supported . 528

Programming Language Considerations 529
Pseudonym Files . 530
Defining Side Information . 532
How Dangling Conversations Are Deallocated 534
Scope of the Conversation_ID . 534
Identifying Product-Specific Errors . 534
Diagnosing Errors . 536

Processing Log Data . 536
Invocation Errors . 537
Possible Causes for Selected Return Codes 538
APPC Protocol Errors in VM/ESA . 539

When Allocation Requests Are Sent . 540
Deviations from the CPI Communications Architecture 540

VM/ESA Extension Calls . 541
Extract_Conversation_LUWID (XCECL) . 544
Extract_Conversation_Security_User_ID (XCECSU) 546
Extract_Conversation_Workunitid (XCECWU) 548
Extract_Local_Fully_Qualified_LU_Name (XCELFQ) 550
Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) 552
Extract_TP_Name (XCETPN) . 554
Identify_Resource_Manager (XCIDRM) . 555
Set_Client_Security_User_ID (XCSCUI) . 559
Set_Conversation_Security_Password (XCSCSP) 562
Set_Conversation_Security_Type (XCSCST) 564
Set_Conversation_Security_User_ID (XCSCSU) 566
Signal_User_Event (XCSUE) . 568
Terminate_Resource_Manager (XCTRRM) . 570
Wait_on_Event (XCWOE) . 571
VM/ESA Variables and Characteristics . 576

Pseudonyms and Integer Values . 576
Variable Types and Lengths . 577

VM/ESA Special Notes . 577
Program-Startup Processing . 578
End-of-Command Processing . 578
Work Units . 578
External Interrupts . 579
Coordination with the SAA Resource Recovery Interface 579
Additional Conversation Characteristics . 579
TP-Model Applications in VM/ESA . 580

LU 6.2 Communications Model . 580
VM/ESA TP-Model Applications . 581
Implications . 582

VM/ESA-Specific Notes for CPI Communications Routines 583
VM/ESA Communications Events . 585

The VMCPIC Event . 586
Notes on the VMCPIC Event . 587

Using the Online HELP Facility . 588

Chapter 13. CPI Communications on IBM eNetwork Personal
Communications V4.1 for Windows 95 . 589

 Part 3. CPI-C 2.1 Implementation Specifics 377

Conformance Classes Supported . 589
Personal Communications V4.1 for Windows 95 Publications 590
Programming Language Support . 590
Linking with the CPI-C library . 590
Accepting Conversations . 590
Extension Calls supported . 591

WinCPICStartup . 591
WinCPICCleanup . 591
Specify_Windows_Handle (XCHWND) . 591

Deviations from the CPI-C architecture . 592

Chapter 14. CPI Communications on Win32 and 32-bit API Client
Platforms . 593

Operating Environment . 594
Conformance Classes Supported . 594
Languages Supported . 596
CPI-C Communications Use of Environment Variables 597
Pseudonym Files . 597
Defining Side Information . 598

User-Defined Side Information . 598
Program-Defined Side Information . 598

How Dangling Conversations Are Deallocated 599
Diagnosing Errors . 599

Causes for the CM_PROGRAM_PARAMETER_CHECK Return Code . 599
Causes for the CM_PROGRAM_STATE_CHECK Return Code 599

When Allocation Requests Are Sent . 600
Deviations from the CPI Communications Architecture 600

Accept_Incoming (CMACCI) . 600
Release_Local_TP_Name (CMRLTP) . 600
Mode Names Not Supported . 600
CPI-C Communication Functions Not Available 600

Extension Calls – System Management . 601
Delete_CPIC_Side_Information (XCMDSI) . 602
Extract_CPIC_Side_Information . 604
Set_CPIC_Side_Information . 607
Extension Calls—Conversation . 610
Extract_Conversation_Security_Type (XCECST) 611
Extract_Conversation_Security_User_ID (XCECSU) 612
Initialize_Conv_For_TP (XCINCT) . 613
Set_Conversation_Security_Password (XCSCSP) 615
Set_Conversation_Security_Type (XCSCST) 616
Set_Conversation_Security_User_ID (XCSCSU) 617
Extension Calls—Transaction Program Control 618
End_TP (XCENDT) . 619
Extract_TP_ID (XCETI) . 621
Start_TP (XCSTP) . 622
Special Notes . 624

Migration to Communications Server . 624
Multi-threaded CPI-C Programs . 624
Considerations for CPI Communications Calls 624

TP Instances for CPI-C Communications 625
Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) . . . 625
Extract_Conversation_Context (CMECTX) 627
Extract_Secondary_Information (CMESI) 627

378 CPI Communications Reference

Initialize_Conversation (CMINIT) . 628
Receive (CMRCV) . 629
Send_Data (CMSEND) . 630
Send_Expedited_Data (CMSNDX) . 630
Set_Partner_LU_Name (CMSPLN) . 630
Set_Queue_Processing_Mode (CMSQPM) 630
Test_Request_To_Send (CMTRTS) . 631
Wait_For_Completion (CMWCMP) . 631

Characteristics, Fields, and Variables . 631
Variable Types and Lengths . 632
WOSA Extension Calls Supported . 633
WinCPICStartup . 634

Returns . 634
WinCPICCleanup . 634

WINCPICCleanup() . 634
Specify_Windows Handle (xchwnd) . 635

 Part 3. CPI-C 2.1 Implementation Specifics 379

380 CPI Communications Reference

 AIX

Chapter 5. CPI Communications on AIX

This chapter summarizes the product-specific information that the AIX programmer
needs when writing application programs that contain CPI Communications calls or
AIX extension calls. This information is for use with the CPI-C included in AIX SNA
Server/6000, Version 3, Release 1, Version 2, Release 1.2, or Desktop SNA for
AIX, Version 1.

AIX SNA Server/6000 (hereafter referred to as SNA Server/6000) runs on all
models of the IBM RISC System/6000 workstation. SNA Server/6000 supports
application program use of CPI Communications calls to communicate with
programs on other RISC System/6000 workstations or on other systems in an SNA
network. Communication with other programs on the same RISC System/6000
workstation is supported in a limited fashion, as described under “AIX Operating
Environment” on page 382.

The implementations of CPI Communications calls by SNA Server/6000 are
compatible with those of other systems documented in this book. This chapter
describes aspects of CPI Communications that are unique to SNA Server/6000.

This chapter is organized as follows:

 ¹ AIX Publications

¹ AIX Operating Environment

– Conformance Classes Supported
 – Languages Supported
 – Pseudonym Files
 – Profiles

– How Dangling Conversations Are Deallocated
– Scope of the Conversation_ID
– Identifying Product-Specific Errors

 – Diagnosing Errors
– When Allocation Requests Are Sent
– Deviations from the CPI Communications Architecture
– Security Using CPI Communications and AIX

 – Compilation
– Running a Transaction Program

¹ AIX Extension Calls

 AIX Publications
The following AIX publications contain detailed product information:

¹ AIX SNA Server/6000 User's Guide, SC31-7002
¹ AIX SNA Server/6000 Transaction Program Reference, SC31-7003
¹ AIX SNA Server/6000 Command Reference, SC31-7100
¹ AIX SNA Server/6000 Configuration Reference, SC31-7014
¹ Introduction to CPI-C Programming in an AIX SNA Environment, GG22-9510
¹ SNA Server for AIX: Version 3.1 User's Guide SC31-8211-00
¹ SNA Server for AIX: Version 3.1 Transaction Program Reference ,

SC31-8212-00
¹ SNA Server for AIX: Version 3.1 Command Reference, SC31-8214-00

 Copyright IBM Corp. 1996, 1998 381

 AIX

¹ SNA Server for AIX: Version 3.1 Configuration Reference, SC31-8213-0
¹ SNA Server for AIX: Version 3.1 CPI-C Programming Guide, GC31-8210-00

AIX Operating Environment
On the RISC System/6000 workstation, programs that use CPI Communications
calls are considered transaction programs (TPs). After reading this chapter, refer to
AIX SNA Server/6000: Transaction Program Reference for details on designing,
writing, testing, and installing transaction programs to run on AIX. Refer to AIX
SNA Server/6000: Configuration Reference for details on how to supply side
information and how and when to create TP profiles for transaction programs on
AIX.

The CPI Communications calls are part of the libraries libcpic.a and libcpic_r.a ,
which is shipped with SNA Server/6000. These calls are structured to act as
independent C-language calls. SNA Server/6000 offers some extensions to the
basic CPI Communications interface. These extension calls have a prefix of xc ,
rather than the cm prefix used for the basic CPI Communications calls.

AIX CPI Communications Concepts
In AIX, a source CPI Communications program is run under the user ID the user is
operating under. A target program is run under the user ID specified in the
transaction program profile.

Allocations using the already verified option will always use the source program's
user ID. If the user making an allocation request is part of the system group, the
user ID for the allocation request can be changed with a Set_Security_User_ID call.

The following sections explain some special considerations that should be
understood when writing applications for an AIX environment. For more
information, refer to Introduction to CPI-C Programming in an AIX SNA
Environment.

Conformance Classes Supported
AIX supports the following conformance classes:

 ¹ Conversations

All conversations, with the exception of Extract_Maximum_Buffer_Size
(CMEMBS)

 ¹ LU 6.2

SNA Server/6000 Version 3 release 1 supports the following additional
conformance classes

 ¹ Conversations

Including Extract_Maximum_Buffer Size

 ¹ Server

 ¹ Security

except that the security type CM_SECURITY_PROGRAM_STRONG is not
supported

¹ Data Conversion Routines

382 CPI Communications Reference

 AIX

Refer to “Functional Conformance Class Descriptions” on page 746 for a complete
description of functional conformance classes.

 Languages Supported
The C language is the only language that can be used to call CPI Communications
routines and AIX extension routines.

 Pseudonym Files
The pseudonym file for CPI Communications calls in the C language is
/usr/include/cmc.h . All function prototypes and constants used by the SNA
Server/6000 CPI Communications subroutines are defined in this file.

 Profiles
To run CPI Communications on SNA Server/6000, a set of physical profiles related
to a link station profile and a subset of LU 6.2 session profiles are required.

When generating profiles, keep in mind that the profile name itself is merely a label
on the local AIX system. It has no relationship to any name on the remote system.
However, the names defined inside these profiles do have a relationship to the
remote system. For example, the TP profile name is only referenced in the profile
database. But the TP name within the TP profile is the name used to determine
which TP is started by a remote allocation request.

Side information for AIX CPI Communications is contained in side information
profiles. These profiles are created as part of the SNA Server/6000 configuration
process, using the System Management Interface Tool (SMIT).

Side_information profiles include a mode name, a partner LU name, and a remote
transaction program name.

It helps to understand what profiles are needed and how they relate to each other.
Below is a listing of all AIX SNA profiles. All can be entered or changed using
various command-line commands (mksnaobj, chsnaobj) or through SMIT.

¹ Control Point Profile

This defines the node name the local machine uses for all transaction
programs. You should use other manuals to best determine characteristics.
But for CPI-C purposes, you should understand that there is only one local
node defined on a machine. Configuration is easiest when the network name
is common to all machines that you want to establish links to, and AIX SNA
can use the control point name as a default LU name. Fully qualified LU
names are in the form “Network_Name.LU_Name.”

 ¹ SNA Profile

This defines characteristics of the local node. Again, there is only one such
profile on the local machine. The important fields include the maximum number
of sessions and conversations that can occur on the local machine and whether
or not inbound partner LU definitions are allowed (should be set to yes).

¹ SNA DLC Profile

These profiles fall under the link profile definitions and are specific to the type
of physical link you are using. You should use other manuals to help fine-tune

 Chapter 5. CPI Communications on AIX 383

 AIX

your physical link characteristics. In most cases, the default values should
provide acceptable results.

¹ Link Station Profile

These profiles, also under the link profile definitions, provide link_station access
to the physical links. Important fields include the SNA DLC Profile name, which
refers to the name of the DLC profile you are using for physical access.

The method of link access is also determined through this profile. If you are
using this profile as a calling link, you need to determine whether you are
calling by link_name or link_address (the network address of the remote
machine's physical link—usually obtained through the netstat -v command).

The link activation parameters may be a source of error. Calling link stations
should set Initiate call when link station is activated to yes and activate link
station at SNA Server startup to no. Listening link stations should have both
fields reversed. For both listening and calling link stations, set the activate on
demand field to no.

All attachments between two machines consist of a calling link station and a
listening link station. Whether a program runs on a calling side or a listening
side has absolutely nothing to do with whether a program can be a source or a
target. Once the link station is up, you can initialize from either side.

Note: The following profiles all are part of the LU 6.2 session category. Aside
from the mode profile on both systems and the transaction program name profile on
the target system, none of these profiles are absolutely required. Side information
profiles are recommended for the source system, and session security, local LU
and partner LU profiles are used with conversation security.

¹ Local LU Profile

This profile defines a local LU to the network. The local LU name and alias
fields are used to refer to the local LU name. An alias allows you to refer to an
LU in a more mnemonic fashion if the regular LUs on a system have
hard-to-remember names. An alias is a nick-name.

If you are using dependent LU 6.2 profiles, you can set the LU address through
this profile. This profile is required for dependent LUs.

If you are using security, the Conversation Security Access List Profile Name
allows you to specify the list that contains user names that can start a dynamic
transaction program on this LU.

¹ CPI-C Side Information Profile

This profile is used by source programs to define names and profiles used
when starting a transaction program. All this profile does is provide SNA
another way to fill in information for an allocate call in place of the individual
CPI-C set calls.

Relevant fields:

Local LU or Control Point Alias—name of local LU being accessed by the
transaction program. If this field is left blank, then the control point is used
as a default.

(Fully qualified) Partner LU Name—name of remote LU. This can be an
alias of a fully-qualified name. It is a field defined for both fully-qualified
names and aliases. Only one of these two fields should be used.

384 CPI Communications Reference

 AIX

Mode Name—name of the mode you want to use for the session between
these two programs.

Remote Transaction Program Name—transaction program name on the
remote machine, which references the name of the target program
executable you want to start using this local program.

RTPN in Hexadecimal—whether or not the remote transaction program
name is specified in hexadecimal form. Service TPs, for example, are
referenced by hexadecimal numbers.

¹ Partner LU Profile

This profile contains information about a remote LU that is a potential partner
for sessions containing conversations.

 Chapter 5. CPI Communications on AIX 385

 AIX

Relevant Fields:

Fully-qualified Partner LU Name—fully-qualified name of the remote LU.

Partner LU Alias—nickname the local LU can use to refer to the partner
LU.

Parallel Sessions Supported—whether or not you will accept more that one
session from the remote LU. This field is set to no with dependent LU 6.2,
and to yes only with independent LU 6.2 when you want to have more than
one session active concurrently.

Session Security Supported—whether or not you require session-level
security for sessions with the remote LU. This is related to BIND
passwords and not to conversation-level security.

Conversation Security Level—amount of security information the remote LU
is allowed to send in an allocation request.

 ¹ Mode Profile

This profile defines an SNA mode, which defines certain attributes for a
session. Unless you have very specific transmission needs, you should be
able to use one of the pre-defined modes included with AIX SNA. As far as
CPI-C is concerned, you want to ensure the maximum number of sessions is
large enough to handle the number of programs you want to run using the link,
and you might want to control the Maximum RU Size, which is the maximum
acceptable size of the send buffer (size negotiated when the bind takes place).
The mode name must match the mode name defined on the remote system.

¹ Transaction Program Name Profile—contains information about local
transaction programs. This profile is optional (and not referenced) for source
programs, but is required for target programs.

Relevant Fields:

Transaction Program Name—name of the program you want to use (should
match the remote TP name being sent by the source TP. Unless the TPN
in Hex field is set to no, this field will be translated to EBCDIC before
storing this profile).

TPN in Hexadecimal?—Set this value to no unless the name in the above
field is in hexadecimal form.

PIP Data—CPI-C does not use PIP data.

Conversation Type—conversation type used by the source TP. Use
“either” if you do not want to limit remote access to one conversation type.

Sync Level—sync level used by the source TP. Use “none/confirm” in this
field if you do not want to limit remote access to one synchronization level.

Resource Security Level—amount of security information required in an
allocate request to start the transaction program referenced by this profile.

Resource Security Access List Profile—list which, if defined, contains user
IDs that are allowed to remotely start this program. This field is optional
and only relevant when the resource security level is set to “access.”

Full Path to TPN Executable—fully-qualified name (and directory, starting
from root) where the executable is located (example: /u/cpictest/target).

User ID—ID number you wish to execute the program under. This value
can produce confusing errors in the source program when it attempts to

386 CPI Communications Reference

 AIX

allocate. Make sure the user ID you use has permission to run the
executable specified in the full path field above. The user referenced by
the ID may need read, write or execute permission on directories on the
machine, depending on non-CPI-C calls within the program.

Standard Output File/Device—usually, a file to which output from the target
program is written during execution. If this is left at /dev/console , output
will appear on the console. You can change the console by issuing the
swcons command.

Standard Error File/Device—same as above.

Security Required—level of incoming security required to run this program.

You can use the default values for all other fields.

¹ Conversation Security Access List (under Conversation Security)—this profile is
optional. It contains a list of user IDs (by name) that are allowed to allocate
sessions using the local LU profile that refers to this list.

¹ Resource Security Access List (under Conversation Security)—this profile is
optional. It contains a list of user IDs (by name) that are allowed to start the
target program that refers to this list (in its TP Name profile).

¹ Partner LU 6.2 Location – This is needed if the machine is not in an APPN
network. It defines where LUs can be found on the network.

Relevant fields:

Fully-qualified Partner LU Name—The LU name entered must be the
partner LU name as it is defined on the remote system. Full and partial
wildcards are supported. A full wildcard is useful for an APPN network
node attached to a LEN-level subarea network.

Partner LU Location Method—Two possible values:

– Owning CP—The partner LU will be located by first finding the control
point specified in the "fully-qualified control point name" field.

– Link station—The partner LU is assumed to be located on the other
side of the link specified by the "Link Station Profile Name" field.

Note: The link station option is only valid if the local machine is not
defined as a network node.

Fully-qualified Owning CP Name—Network name of the machine where the
LU is located.

Local Node is Network Server for LEN Node—Specifying "yes" is only valid
if the local machine is an APPN network node.

Local LU Name—Specify what local LU name to use over this link.

Link Station Profile Name—This parameter specifies the link over which the
session identified by the "fully-qualified partner LU name" and "local LU
name" fields is to activate.

 Chapter 5. CPI Communications on AIX 387

 AIX

Creating and Maintaining Profiles through SMIT
You can create and maintain profiles through the System Management Interface
Tool (SMIT) and through direct profile management commands. SMIT is
recommended for manipulating profiles. The following paragraphs describe how to
use SMIT with SNA Server/6000.

 Starting SMIT
To start SMIT for the SNA Server, type smit sna from a command line. If you want
to avoid the AIX windows motif version, type smit -C sna. To move around in
SMIT, use the arrow keys to change the highlighted field and the return key to
select the highlighted field.

Working with Profiles
To work with profiles, select “Configure SNA Profiles” from the first screen. To
create profiles using quick_config, select the “Quick Configuration” option. To
manipulate or create profiles, select “Advanced Configuration.”

Select “Links” from Advanced Configuration to manipulate or create link_station
profiles. (The Control Point Profile and the SNA System profile are under the
“Advanced Configuration” menu, and the LU6.2 profiles are under “Sessions.” This
screen also contains the options for saving and importing profiles.)

To save a profile set, select “Export Configuration Profiles.” This creates a file that
contains every profile currently in the SNA database. To take every profile from
one of these files and put it in the current database, select “Import Configuration
Profiles.” It is a good idea to export profiles after you have created a working
configuration.

 Verifying Profiles
Use the “Verify Configuration Profiles” option to check required cross references
between profiles and enter the profiles into the working set of SNA profiles.
(Running this option can help you uncover mistakes.)

Once you are familiar with SMIT screens, you can find, change, and create profiles.
When you have a long list of profiles under a certain type and do not remember the
specific names, use the F4 key to list them.

After you select a particular profile (or created a new profile), press the Enter key
to enter the changes or enter the new profile in the database. To cancel the
changes, press the F3 key instead of the Enter key.

If you change or create a profile, you will need to verify the profile set to activate
the changes. In some cases, you will have to stop a link_station or SNA before
you can use your new or changed version.

How Dangling Conversations Are Deallocated
Programs should deallocate conversations before ending, and should have
recovery routines to deallocate conversations in the event of abnormal termination.
If a local or remote program ends without proper deallocation processing (that is,
without sending or receiving a deallocation notification) SNA Server/6000 issues the
equivalent of a DEALLOCATE_ABEND return code. The partner program receives a
CM_DEALLOCATED_ABEND return code for that condition.

388 CPI Communications Reference

 AIX

Scope of the Conversation_ID
In AIX, all CPI Communications calls for a given conversation must be made from
the same process. The conversation ID is not valid outside the process that
initialized or accepted it.

Identifying Product-Specific Errors
The return code CM_PRODUCT_SPECIFIC_ERROR in SNA Server/6000 means that
an SNA error code has been stored in the global variable errno . SNA error codes
are defined and described in the file /usr/include/luxsna.h .

 Diagnosing Errors
This section helps you debug and understand what can go wrong with transaction
programs. You might benefit from setting up CPI-C traces. You can set up tracing
on either a source program or a target program (or both). To set up
application-level traces, enter the following from a command line:

sna -setlogs -s

This only needs to be done once after installation. It tells SNA to put all trace
information in a file in the directory /var/sna called snaservice.X , where X is a
number from 1 to 10.

To start a CPI-C trace, enter the following from a command line:

sna -trace -c on

When your program finishes running, enter the following from the command line:

sna -trace -c off

sna -setlogs -t

This will take all the output generated from your trace and flush it into the
/var/sna/snaservice.X file.

To format the data from that storage area into a readable file, enter this command:

trcrpt -d 390 /var/sna/snaservice.X > filename

filename is the name of an ordinary AIX file which will be created (or replaced) from
the above command. If you skip the > filename part of the above command,
output will go directly to the screen.

To determine what X should be, you need to perform the ls -l command on the
/var/sna directory. Choose the largest file that was updated when you issued the
setlogs -t command.

Using 27a instead of 390 will give you a trace of SNA events. Using 27b will give
you information about SNA errors.

Reading the traces is easy. Each CPI Communications command generates two
sections (at entry and exit) in the trace file. Some input and output parameters are
shown in the trace, as well as return codes, error numbers, and conversation
states.

 Chapter 5. CPI Communications on AIX 389

 AIX

Analyzing CPI Communications Return Codes: The return codes are used to
report whether or not the program could execute the command, and what went
wrong if execution failed. Some return codes will cause your program to enter
reset state (essentially self-destruct) or enter receive state (usually because the
program received a send error indication). Not all return codes result from errors in
a conversation.

Note: See Appendix B, “Return Codes and Secondary Information” on page 661
for a list of return codes.

Analyzing AIX Errnos: errnos are SNA Server/6000's way of giving a user of an
API information about what went wrong with a command. errno is a global variable
which is defined in the file /usr/include/errno.h . To use this variable, include this
file in the program.

The CPI Communications trace facility will also provide any errno which happened
to occur as a result of a call.

For the most part, CPI Communications return codes are enough to deduce what
went wrong with a particular call. But when CM_PRODUCT_SPECIFIC_ERROR is
returned, the errno will provide additional information.

These are some of the more common errnos, which are not matched by CPI
Communications return codes. The errno number itself is in parentheses.

¹ EINTR (4): While processing a call, the process the program was running under
was interrupted. You will likely never get this error code unless you have set
up an interrupt handler to avoid killing the TP in the event of an interruption.

Note: CPI Communications will re-issue the command upon interruption, so
this is a rare error. If the command is repeatedly interrupted, CPI
Communications returns this error. One solution is to set up the interrupt
handler to allow CPI Communications to stay running once interrupted.

¹ EBADF (9): This is a bad file descriptor error, which sometimes occurs when a
call is made after the remote program has deallocated abnormally without
issuing a Deallocate call. The local program has not issued a call, which would
pick up a CM_RESOURCE_FAILURE return code. Check the remote program to
ensure the program logic does not cause the program to end before doing all
the processing required on both sides.

¹ EACCESS (13): This is the “permission denied” error. It usually indicates that
the side information profile contains a parameter that does not allow SNA to put
together a good attach. Maybe the link station referenced by the profile is not
active.

Other errnos are more rare, and are easier to debug. errnos numbered 101 and
higher can be found in /usr/include/luxsna.h . This file contains SNA
Server/6000-specific error numbers (most of which CPI Communications translates
to return codes). Lower-numbered errnos are related to AIX problems, and are
defined in the file /usr/include/sys/errno.h .

Sometimes a program will just hang. This is probably a confirmation problem. A
Confirm call, whether it stems from a Confirm, Send, Prepare_To_Receive, or
Deallocate call, will wait until it gets a Confirmed or Send_Error call in response. A
Deallocate call with deallocate_type of CM_DEALLOCATE_ABEND is also a possible
response, though that stops a program. Ensure that all Receive calls on the

390 CPI Communications Reference

 AIX

remote side look for confirmation requests. If a program is hanging when it should
be allocating, it may have trouble getting a connection going. Starting the session
manually will help on some systems. It is also possible that the side information
profile contains an error.

When Allocation Requests Are Sent
Because SNA Server/6000 buffers data transmitted to the remote LU, the allocation
request generated by Allocate is not sent to the remote node until the local LU's
send buffer is flushed as the result of Send_Data, Flush, Receive,
Prepare_To_Receive, Send_Error, Deallocate, Confirm, or other calls.

Allocation does not take place until the buffer has been flushed. Therefore, the
remote program does not start until the allocation information reaches the remote
machine. Also, an error in the allocation request (like an incorrect transaction
program name) might not show up until a return code is received from a Receive
call or another call that flushes the buffer.

Deviations from the CPI Communications Architecture
SNA Server/6000 supports CPI Communications calls with these distinctions:

¹ CPI Communications calls on SNA Server/6000 are supported by the C
language only.

¹ On releases prior to Version 3 Release 1 of SNA Server/6000 do not log or
transmit data associated with the Set_Log_Data call.

¹ SNA Server/6000 does not support conversations with a sync_level
characteristic of CM_SYNC_POINT.

Note: CPI-C 2.0 conformance.

Security Using CPI Communications and AIX
Security is one of the more difficult concepts when using AIX. It does, however,
boil down to a basic idea:

The source program is responsible for selecting a level of security to
include with the allocation request. This request can include a user ID
and/or password. The target machine (not the program) is responsible for
maintaining two separate security checks of that incoming request. First, it
checks to make sure the requesting program is allowed to use the session.
And second, it checks that the requesting program is allowed to start the
specified target program.

Okay, so it is not all that basic. In AIX SNA Server/6000, security acceptance is all
done through profiles, and security requests are made through source transaction
programs. Below is an algorithm for determining your security setup.

Note: Setting all security levels to none makes everything very easy if you have a
secure system. However, since many systems allow access through dial-in
modems or off-site links, protection of certain transaction programs is a good way
to protect important information.

¹ Source-Side Security: The key value is the conversation security type, which
defaults to XC_SECURITY_SAME in CPI-C, and can be set through the XCSCST
command (after executing CMINIT and before executing CMALLC).

 Chapter 5. CPI Communications on AIX 391

 AIX

Security Type:

None : No security information is provided with the allocation request.

Same: A user ID and the already-verified notification are provided with the
allocation request. (This user ID will default to the user ID of the process
the source program is running under, unless this is a target program started
using the “same” option, in which case, it will be the user ID that started the
original source program. Note that this would be used by a target program
only if it were starting a new source conversation.

Program : A user ID and password are provided with the allocation
request.

 ¹ Target-Side Security:

Key values include the security levels of the LU 6.2 Partner LU Profile, which
has a partner LU name that matches the LU on the remote machine attempting
to allocate a conversation and the Transaction Program Profile related to the
target program referenced by the remote TP name set by the source program
on the allocation request. Both these profiles act in tandem to create
conversation-level security.

Partner LU Profile Conversation security level field:

None : Any allocation request will be accepted.

Note: A request cannot pass this test with security information present.
So the source LU, rather than needlessly sending this information,
downgrades this security level to none and strips off the user ID and
password, if present. This automatic downgrade will show up as an
informational message in an API trace file, if you choose to run an API
trace. The user will not have to alter the request as it is re-sent
automatically with no security information present.

Conversation : Allocation requests will be accepted unless the user ID
and/or password are invalid. If the incoming request is type program , and
a conversation security access list is defined in the Local LU profile
representing the LU that is the target for the allocation request, the user ID
is checked against that list (and the request is rejected if the ID is not
present). The user ID is checked against valid user IDs on that machine
(in the file /etc/security/passwd), regardless of whether a security access
list is provided. The password is checked against the encoded passwords
in the file /etc/security/passwd. The request is rejected if the password
does not match the machine's password for that user ID. If the incoming
request is type same , security information is stripped off and the request is
re-sent without security parameters in exactly the same manner as it would
be if this field were set to none .

Already Verified : Allocation requests with an already-verified indicator will
be accepted unless they do not provide a user ID. Allocation requests with
a user ID and a password will have user IDs checked against the
Conversation Security Access List, if present, and the list of user IDs in the
file /etc/security/password . The password is checked against the
encoded passwords in the file /etc/security/password . The request is
rejected if the password does not match the machine's password for that
user ID.

392 CPI Communications Reference

 AIX

Transaction Program Profile security level field (only requests that have passed
the LU session-level test are checked using this profile):

None : All requests are accepted.

Conversation : All requests with an incoming security level of same or
program are accepted unless the user ID does not appear in the file
/etc/security/password .

Note: If security information was stripped off due to a downgrade caused
by the value in the partner LU profile's conversation security level field, the
request will fail.

Access : All requests with an incoming security level of same or program
are accepted, unless the user ID does not appear in the file
/etc/security/password . If there is a resource security access list defined
in this transaction program profile, the user ID is checked against that list.
If the user ID is not on that list, the request will fail.

Note: If security information was stripped off due to a downgrade caused
by the value in the partner LU profile's security level field, the request will
fail.

 Compilation
On AIX, compilation of CPI Communications programs requires three files:

¹ The appropriate library, either libcpic.a or libcpic_r.a must be in the directory
/usr/lib . The library libcpic_r.a is a thread-safe library and is only present in
SNA Server/6000 Version 3 Release 1 and higher.

This is the case if SNA Server/6000 is installed properly.

¹ The include file cmc.h must be in the directory /usr/include . This is the case if
SNA Server/6000 is installed properly.

¹ A program must have the statement #include <cmc.h> before making any CPI
Communications calls. It must reference all CPI Communications commands
properly. All command names must be in lowercase and contain the proper
number and type of arguments. To use macros associated with
product-specific errors, include the statement #include <luxsna.h> .

To compile, execute the following command from the command line. This example
assumes the program name is program.c and the executable will be named prog .

cc program.c -o prog -lcpic

To compile a multi-threaded program a command such as the following should be
used.

cc_r program.c -o prog -lcpic_r

Running a Transaction Program
Follow these steps to start a transaction program:

1. Before a transaction program can be run, SNA server must be started on both
machines. To do this, type the following from the command line:

sna -s sna

 Chapter 5. CPI Communications on AIX 393

 AIX

2. Bring up a link between the two machines. To do this, both machines must
have profile sets. One machine must have a calling station and the other a
listening station. Note that it does not matter which machine calls and which
machine listens. Source programs can be run from both. Type the following
from the command line:

sna -s l -p name_of_calling_link_station

Wait for the CP-CP session to become active on both machines. CP-CP
sessions will only come active if at least one machine is an NN. To check the
status of SNA sessions, type the following from the command line:

sna -d s

If active CP-CP sessions do not exist on both machines, there is a problem
with the profile set.

AIX Extension Calls
SNA Server/6000 extends CPI Communications with five additional calls that
enable a program to obtain or change the values of the conversation-security
characteristics.

Note: If these calls are used, the program must be modified before it can be run
on a different CPI Communications platform that does not provide the same
extension calls with the same syntax. Where a similar extension call exists in other
CPI Communications environments, the same call name and syntax are used in
AIX to aid portability.

Three of these calls are used to set the conversation security characteristics used
with the Allocate (CMALLC) call. The other two calls are used obtain the current
value of these characteristics, except for security_password. The password can be
set, but, to reduce the risk of unintentional or unauthorized access to passwords, it
cannot be extracted.

Table 19 lists the AIX extension calls and briefly describes their functions.

Table 19. List of SNA Server/6000 Extension Calls for CPI Communications

Call and Pseudonym Description

XCECST
Extract_Conversation_Security_Type

Returns the current value of the
conversation_security_type characteristic.

XCECSU
Extract_Conversation_Security_User_ID

Returns the current value of the
security_user_ID characteristic.

XCSCSP
Set_Conversation_Security_Password

Sets the value of the security_password
characteristic.

XCSCST
Set_Conversation_Security_Type

Sets the value of the
conversation_security_type characteristic.

XCSCSU
Set_Conversation_Security_User_ID

Sets the value of the security_user_ID
characteristic.

XCSSB
Set_Signal_Behavior

Determines the behavior of CPI
Communications calls if they are interupted
by a signal.

394 CPI Communications Reference

 AIX

Note: As with all CPI Communications calls in AIX SNA Server/6000, these calls
are available only in the C language. The function names representing these calls
are the same as the call names shown, but in lowercase characters.

 Chapter 5. CPI Communications on AIX 395

 AIX Extract_Conversation_Security_Type (XCECST)

 Extract_Conversation_Security_Type (XCECST)
A program issues the Extract_Conversation_Security_Type (XCECST) call to obtain
the access security type for the conversation.

 Format
CALL XCECST(conversation_ID,

conversation_security_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_security_type (output)
Specifies the variable used to return the value of the
conversation_security_type characteristic for this conversation. The
conversation_security_type returned to the program can be one of the
following:

 ¹ XC_SECURITY_NONE
No access security information is associated with the allocation request.

 ¹ XC_SECURITY_SAME
If the local TP was started as a target TP and is now acting as source TP
for another conversation, the user ID (if any) on the inbound allocation
request that started the local TP will be included on the allocation request
sent to the partner LU, along with an “already verified” indication.

If the local TP was not started as a target TP, the user ID under which it
is executing will be included on the allocation request sent to the partner
LU, along with an “already verified” indication.

 ¹ XC_SECURITY_PROGRAM
The access security information included with the allocation request sent
to the partner LU will consist of the conversation_security_user_ID and
security_password characteristics. These characteristics must have been
set using the XCSCSU and XCSCSP calls.

return_code (output)
Specifies the variable used to pass back the return code to the calling
program. The return_code variable can have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 State Changes
This call does not cause a state change.

396 CPI Communications Reference

 AIX Extract_Conversation_Security_Type (XCECST)

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the value contained

in the conversation_security_type variable is not meaningful.

2. This call does not change the conversation security type for the specified
conversation.

3. The conversation_security_type characteristic is set to an initial value of
XC_SECURITY_SAME by the Initialize_Conversation (CMINIT) call. It can be set
to a different value using the Set_Conversation_Security_Type (XCSCST) call.

 Chapter 5. CPI Communications on AIX 397

 AIX Extract_Conversation_Security_User_ID (XCECSU)

 Extract_Conversation_Security_User_ID (XCECSU)
A program issues the Extract_Conversation_Security_User_ID (XCECSU) call to
obtain the access security user ID associated with a conversation.

 Format
CALL XCECSU(conversation_ID,

security_user_ID,
security_user_ID_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_user_ID (output)
Specifies the variable used to return the value of the security_user_ID
characteristic for this conversation.

security_user_ID_length (output)
Specifies the variable used to return the length in bytes of the
security_user_ID characteristic for this conversation.

return_code (output)
Specifies the variable used to pass back the return code to the calling
program. The return_code variable can have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 State Changes
This call does not cause a state change.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the values contained

in the security_user_ID and security_user_ID_length variables are not
meaningful.

2. This call does not change the security user ID for the specified conversation.

3. The value of the security_user_ID is set to the user_ID in the last incoming
attach request, if that request contained a user ID. This is the case following a
CMACCP or a CMINIT call. If no user ID was put by the attach, the
characteristic is set to the user ID of the process running the transaction
program. This processing is only performed after the CMINIT call.

4. Programs running under SNA Server/6000 Version 3 Release 1 can instead
call CMESUI.

398 CPI Communications Reference

 AIX Set_Conversation_Security_Password (XCSCSP)

 Set_Conversation_Security_Password (XCSCSP)
A program issues the Set_Conversation_Security_Password (XCSCSP) call to set
the access security password for a conversation. A password is necessary to
establish a conversation that uses a conversation_security_type of
XC_SECURITY_PROGRAM.

Set_Conversation_Security_Password can be called only for a conversation in
Initialize state having a conversation_security_type of XC_SECURITY_PROGRAM.

 Format
CALL XCSCSP(conversation_ID,

security_password,
security_password_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_password (input)
Specifies the access security password. The partner LU uses this value and
the security_user_ID to verify the identity of the requestor; the user ID can be
specified by using the Set_Conversation_Security_User_ID (XCSCSU) call.

security_password_length (input)
Specifies the length of the security password. The length can be 1–8
characters.

return_code (output)
Specifies the variable used to pass back the return code to the calling
program. The return_code variable can have one of these values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation ID.
– The security_password_length specifies a value less than 1 or greater

than 8.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Initialize state.
– The conversation_security_type is not XC_SECURITY_PROGRAM.

 State Changes
This call does not cause a state change.

 Chapter 5. CPI Communications on AIX 399

 AIX Set_Conversation_Security_Password (XCSCSP)

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the

security_password characteristic remains unchanged.

2. The conversation_security_password is not initialized when the program calls
Initialize_Conversation (CMINIT). This password can only be set by means of
the XCSCSP call.

3. If the conversation_security_type characteristic is XC_SECURITY_PROGRAM
when the program calls Allocate (CMALLC), SNA Server/6000 obtains the
access security password for the allocation request from the security_password
characteristic. If the conversation_security_type is other than
XC_SECURITY_PROGRAM, SNA Server/6000 ignores the security_password
characteristic when the program calls Allocate.

4. If an invalid security password is specified, it is not detected on this call; it is
detected by the partner LU when it receives the allocation request. The partner
LU returns an error indication to the local LU, which reports the error to the
program by means of the CM_SECURITY_NOT_VALID return code on a
subsequent call to CPI Communications.

5. Specify security_password using the native encoding for AIX, which is 8-bit
ASCII. SNA Server/6000 converts the password to EBCDIC before including it
on allocation requests sent to partner LUs.

6. Programs running under SNA Server/6000 Version 3 Release 1 can specify a
value between 1 and 10 for security_password_length.

7. Programs running under SNA Server/6000 Version 3 Release 1 can instead
call CMSCSP.

400 CPI Communications Reference

 AIX Set_Conversation_Security_Type (XCSCST)

 Set_Conversation_Security_Type (XCSCST)
A program issues the Set_Conversation_Security_Type (XCSCST) call to set the
security type for the conversation. This call can be used to override the security
type of XC_SECURITY_SAME that is assigned when the conversation is initialized.

Set_Conversation_Security_Type can be called only for a conversation that is in
Initialize state.

 Format
CALL XCSCST(conversation_ID,

conversation_security_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_security_type (input)
Specifies the level of access security information to be sent to the partner LU
on an allocation request. The security information, if present, consists of a
user ID and, optionally, a password. This parameter must be set to one of
the following values:

 ¹ XC_SECURITY_NONE
No access security information is associated with the allocation request.

 ¹ XC_SECURITY_SAME
If the local TP was started as a target TP and is now acting as source TP
for another conversation, the user ID (if any) on the inbound allocation
request that started the local TP is included on the allocation request sent
to the partner LU, along with an “already verified” indication.

If the local TP was not started as a target TP, the user ID, under which it
is executing, is included on the allocation request sent to the partner LU,
along with an “already verified” indication.

 ¹ XC_SECURITY_PROGRAM
The access security information included with the allocation request sent
to the partner LU will consist of the conversation_security_user_ID and
security_password characteristics. These characteristics must have been
set using the XCSCSU and XCSCSP calls.

return_code (output)
Specifies the variable used to pass back the return code to the calling
program. The return_code variable can have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation ID.
– The conversation_security_type specifies an undefined value.

 ¹ CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

 Chapter 5. CPI Communications on AIX 401

 AIX Set_Conversation_Security_Type (XCSCST)

 State Changes
This call does not cause a state change.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the

conversation_security_type characteristic remains unchanged.

2. When the program calls Initialize_Conversation (CMINIT), SNA Server/6000
initializes the conversation_security_type to XC_SECURITY_SAME. A program
does not need to issue the Set_Conversation_Security_Type call unless the
security type is to be other than XC_SECURITY_SAME.

3. If the program sets or defaults the conversation_security_type to
XC_SECURITY_NONE or XC_SECURITY_SAME, any conversation security ID or
password values set by XCSCSU or XCSCSP will be ignored by CMALLC.
When the conversation_security_type characteristic is set to
XC_SECURITY_SAME and the user is part of the system group, then the
allocation request uses the conversation_security_user_ID set through this call.

4. If the program uses XCSCST to set conversation_security_type to
XC_SECURITY_PROGRAM, it must then call
Set_Conversation_Security_Password (XCSCSP) to set the security_password
and Set_Conversation_Security_User_ID (XCSCSU) to set the
security_user_ID. Otherwise, when the program calls Allocate, the initial values
(a single space character) will be used for these characteristics.

5. If the program uses XCSCST to set the user ID to xc_security_same, the user
ID stored by CPI-C will change to the user ID of the process running the
transaction program.

6. Programs running under SNA Server/6000 Version 3 Release 1 can instead
call CMSCST.

402 CPI Communications Reference

 AIX Set_Conversation_Security_User_ID (XCSCSU)

 Set_Conversation_Security_User_ID (XCSCSU)
A program issues the Set_Conversation_Security_User_ID (XCSCSU) call to set
the access security user ID for a conversation. The user ID is necessary to
establish a conversation on which a conversation_security_type of
XC_SECURITY_PROGRAM is used.

Set_Conversation_Security_User_ID can be called only for a conversation in
Initialize state having a conversation_security_type of XC_SECURITY_PROGRAM or
XC_SECURITY_SAME.

 Format
CALL XCSCSU(conversation_ID,

security_user_ID,
security_user_ID_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation ID.

security_user_ID (input)
Specifies the access security user ID. The partner LU uses this value, along
with the security_password, to verify the identity of the requestor. The
password can only be specified by means of the
Set_Conversation_Security_Password (XCSCSP) call.

security_user_ID_length (input)
Specifies the length of the security user ID, which must be 1–8 characters.

return_code (output)
Specifies the variable used to pass back the return code to the calling
program. The return_code variable can have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation ID.
– The security_user_ID_length specifies a value less than 1 or greater

than 8.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
– The conversation is not in Initialize state.
– The conversation_security_type is not XC_SECURITY_PROGRAM or

XC_SECURITY_SAME.

 State Changes
This call does not cause a state change.

 Chapter 5. CPI Communications on AIX 403

 AIX Set_Conversation_Security_User_ID (XCSCSU)

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the security_user_ID

characteristic remains unchanged.

2. When the program calls Allocate (CMALLC) and the conversation_security_type
characteristic is XC_SECURITY_PROGRAM, SNA Server/6000 obtains the access
security user ID for the allocation request from the
conversation_security_user_ID characteristic. If the conversation_security_type
is other than XC_SECURITY_PROGRAM, SNA Server/6000 ignores the
conversation_security_user_ID characteristic, unless the user is part of the
system group. When the program calls Allocate (CMALLC) and the
conversation_security_type characteristic is set to XC_SECURITY_SAME and the
user is part of the system group, then the allocation request uses the
conversation_security_user_ID set through this call.

3. Specification of a security user ID that is invalid is not detected on this call. It
is detected by the partner LU when it receives the allocation request. The
partner LU returns an error indication to the local LU, which reports the error to
the program by means of the CM_SECURITY_NOT_VALID return code on a
subsequent CPI Communications call.

4. Specify security_user_ID using the native encoding for AIX, which is 8-bit
ASCII. SNA Server/6000 converts the user ID to EBCDIC before sending it,
with an allocation request, to a partner LU.

5. Programs running under SNA Server/6000 Version 3 Release 1 can instead
call CMSCSU.

6. Programs running under SNA Server/6000 Version 3 Release 1 can specify a
value between 1 and 10 for security_user_ID_length.

404 CPI Communications Reference

 AIX Set_Signal_Behavior (XCSSB)

 Set_Signal_Behavior (XCSSB)
The Set_Signal_Behavior(xcssb) call specifis how CPI Communications should
handle an interupted CPI Communications verb in the event that a signal interrupts
the CPI Communications TP thread. If a CPI Communications TP does not uses
this verb, CPI Communications will by defaults attempt to complete the interupted
verb.

 Format
CALL XCSSB(conversation_ID,

Signal_behavior,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation ID.

Signal_behavior (input)
must be one of the following values.

 ¹ XC_SIGNAL_BEHVIOR_NO_RETRY
if Signal_behvior has this value, CPI Communications will not attempt to
complete the verb. If this value is specified, and interupted CPI
Communications verb will return the error CM_PRODUCT_SPECIFIC_ERROR,
and errno will be set to EINTR. In that case, the CPI Communications TP
should use CMCANC to cancel the conversation, which will be in an
inderterminate state.

 ¹ XC_SIGNAL_BEHAVIOR_INFINITE_RETRY

If Signal_behavior has this value, CPI Communications will attempt to complete
the verb, even if more signals are delivered to the CPI Communications TP
thread. If this value is specified, control of execution will not be returned to the
CPI Communications TP in the event of a signal.

return_code (output)
Specifies the variable used to pass back the return code to the calling
program. The return_code variable can have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

– The conversation_ID specifies an unassigned conversation ID.
– The Signal_Behavior specifies a value less than

XC_SGINAL_BEHAVIOR_NO_RETRY or
XC_SIGNAL_BEHAVIOR_INFINITE_RETRY

 Chapter 5. CPI Communications on AIX 405

 AIX Set_Signal_Behavior (XCSSB)

 State Changes
This call does not cause a state change.

 Usage Notes
This call should only be made in SNA Server/6000 Version 3 Release 1.

406 CPI Communications Reference

 CICS/ESA

Chapter 6. CPI Communications on CICS/ESA

This chapter summarizes product-specific information that the CICS programmer
needs when writing application programs that contain CPI Communications calls.

CICS/ESA has provided support for CPI Communications since Version 3 Release
2.1. The CICS/ESA Intercommunication Guide deals with CICS intercommunication
generally, and gives details of how to define links for APPC support.

This chapter is organized as follows:

 ¹ CICS/ESA Publications

¹ CICS/ESA Operating Environment

– Conformance Classes Supported
 – Languages Supported
 – Pseudonym Files

– Defining Side Information
– How Dangling Conversations Are Deallocated
– Scope of the Conversation_ID
– Identifying Product-Specific Errors

 – Diagnosing Errors
– When Allocation Requests Are Sent
– Deviations from the CPI Communications Architecture

¹ CICS/ESA Extension Calls

¹ CICS/ESA Special Notes

 CICS/ESA Publications
The following CICS/ESA publications contain detailed product information:

¹ CICS/ESA Intercommunication Guide, SC33-1181
¹ CICS/ESA Application Programming Guide, SC33-1169
¹ CICS/ESA Application Programmer's Reference, SC33-1170
¹ CICS Library Guide, GC33-1226

CICS/ESA Operating Environment
The CPI Communications Interface in CICS provides an alternative application
programming interface (API) to existing CICS APPC communications support.

Users who have already made a skill investment in the existing EXEC CICS
programming interface or who do not expect to require the cross-system
consistency benefits offered by CPI-C, might choose to continue using the EXEC
CICS API. Investment in applications written to the CICS API is protected by IBM’s
continuing commitment to its enhancement and support across all CICS products.

Alternatively, users might prefer to use CPI Communications in APPC networks that
include multiple system platforms, where a common API's consistency is seen to be
beneficial.

 Copyright IBM Corp. 1996, 1998 407

 CICS/ESA

A major benefit of the common APPC standard is that applications that use CPI
Communications can communicate with applications on any system that provides
an APPC API. This includes applications on different CICS platforms. However,
the user should be aware of some restrictions regarding APPC partners of CPI
Communications programs. These are documented in Appendix D of this manual.

A CICS transaction program can use both CICS APPC API commands and CPI
Communications calls in the same program, but may not use both in the same
conversation.

The following sections explain some special considerations that should be
understood when writing applications for a CICS environment.

Conformance Classes Supported
CICS supports the following conformance classes:

 ¹ Conversations

All conversations, with the exception of Extract_Maximum_Buffer_Size
(CMEMBS)

 ¹ LU 6.2

 ¹ Recoverable Transactions

Refer to “Functional Conformance Class Descriptions” on page 746 for a complete
description of functional conformance classes.

 Languages Supported
The following SAA languages can be used on a CICS/ESA system to issue CPI
Communications calls:

 ¹ C
 ¹ COBOL
 ¹ PL/I

System/370 Assembler can also be used even though it is not an SAA language.

Note: CICS/ESA requires that applications written for use with CPI
Communications should be fully re-entrant. Exceptions to this are applications
written in System/370 assembler; these must be quasi-reentrant. For guidance on
quasi-reentrancy and multithreading, see the CICS/ESA Application Programming
Guide.

The programming interfaces for COBOL, PL/I, and C are as described in
“Programming Language Considerations” on page 111. All programs must set up
a parameter list and obey the standard IBM linking convention.

 Pseudonym Files
CICS provides a pseudonym file for each language supported.

408 CPI Communications Reference

 CICS/ESA

Table 20. CICS Pseudonym Files for Supported Languages

Language File name Location

COBOL CMCOBOL CICSxxx.SDFHCOB

PL/I CMPLI CICSxxx.SDFHPLI

C CMC CICSxxx.SDFHC370

Assembler CMHASM CICSxxx.SDFHMAC

Note: xxx is the CICS release number. (For example, 321 would mean
Version 3 Release 2 Modification 1.)

Defining Side Information
CICS implements the side information table by means of the PARTNER resource.
Partner resources are defined by the CEDA DEFINE command. To become known
to an active CICS system, a defined partner resource must then be installed using
the CEDA INSTALL command.

Here is the general format of the CEDA DEFINE PARTNER command, which
identifies a partner program in a remote LU:

CEDA DEFINE

 PARTNER(sym_dest_name)

 [GROUP(groupname)]

 [NETWORK(name)]

 NETNAME(name)

 [PROFILE(name)]

 {TPNAME(name)|XTPNAME(value)}

PARTNER(sym_dest_name)
The Initialize_Conversation (CMINIT) call identifies the partner program by this
name. It must be specified.

GROUP(groupname)
This identifies the group in the CICS system definition data set (CSD) of which
the PARTNER definition is a member. Every CICS resource definition belongs
to a group.

NETWORK(name)
This represents the network ID part of the partner_LU_name. CICS currently
rules that LU names must be unique throughout all connected networks. This
parameter is therefore ignored by CICS when processing an EXEC CICS
ALLOCATE request. This parameter is included to support portability.

NETNAME(name)
This represents the network LU part of the partner_LU_name. It matches
name in NETNAME(name) on a corresponding CEDA DEFINE CONNECTION
command, which defines the partner LU in CICS.

PROFILE(name)
This specifies the name of the communications profile containing the mode
name for this partner.

This parameter assigns a communication profile to the session. The name of
this profile should match the name on a corresponding CEDA DEFINE

 Chapter 6. CPI Communications on CICS/ESA 409

 CICS/ESA

PROFILE(name) command. CICS communication profiles can contain the
name of the group of APPC sessions from which the session is to be acquired
(MODENAME on the CEDA DEFINE PROFILE command or mode_name in
CPI Communications), thereby enabling a particular class of service to be
selected.

TPNAME(name)|XTPNAME(value)
The TP_name (transaction identifier in CICS) can be defined using either the
TPNAME or XTPNAME parameter. Use TPNAME when the characters shown
in Table 21 on page 411 can be used. Use XTPNAME to specify the
hexadecimal values for characters that CICS does not allow for the TPNAME
parameter.

When the conversation is initiated by Allocate (CMALLC), the TP_name (which
will be either TPNAME or XTPNAME) is sent to the remote LU.

When a CICS/ESA system receives a request to attach a transaction, it
searches it’s transaction definitions to determine which transaction to attach.
Those transaction definitions are defined by the CEDA DEFINE
TRANSACTION(name) command, and may have either a TPNAME or a
XTPNAME in a similar manner to partner transactions defined in the side
information table. CICS/ESA will use the first four characters of TP_name to
identify the transaction, but optionally you can use the global user exit XZCATT
to convert a 64 character TP_name to four-characters.

Table 21 on page 411 gives details of character sets used in CICS to define the
PARTNER operands. Where CICS names have to match with the variables listed
in Table 61 on page 650, it is recommended that the character sets for CPI
Communications, as defined in Table 21 on page 411, be used if portability is to
be maintained for CICS.

410 CPI Communications Reference

 CICS/ESA

Table 21. Defaults and Allowed Values for the CICS PARTNER Resource

Operand Default Mandatory Type Length Range of values

PARTNER yes chars 8 A– 0–9

GROUP Current
group

no chars 1-8 A– 0–9 @ # $
Lowercase changed to
uppercase

NETWORK Undefined no chars 1-8 A– 0–9 @ # $
Lowercase changed to
uppercase

NETNAME Undefined yes chars 1-8 A– 0–9 @ # $
Lowercase changed to
uppercase

PROFILE DFHCICSA 1 no chars 1-8 A– 0–9 ¢ @ # . / - _ % & $
? ! : | " = ¬ , ; < >

TPNAME2 Undefined yes (or
XTPNAME)

chars 1-64 A– 0–9 ¢ @ # . / - _ % & $
? ! : | " = ¬ , ; < >

XTPNAME Undefined yes (or
TPNAME)

hex
chars

2-128 0-9 A-F excluding the hex
byte X'40'

Note:

1. The default profile DFHCICSA does not have a MODENAME defined.

2. TPNAME does not allow the characters a–z () * + and ', which can be used in CPI
Communications for TP_name. However, it is possible to specify these characters by giving their
hexadecimal equivalents as XTPNAME.

How Dangling Conversations Are Deallocated
If a CICS transaction terminates during a conversation, CICS tries to end the
dangling conversation normally. If this fails, abnormal termination is performed.

For conversations with the sync_level set to CM_NONE or CM_CONFIRM, CICS
attempts a Deallocate call with deallocate_type set to CM_DEALLOCATE_FLUSH. If
this call results in a state check, then the conversation is terminated with a
Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND.

For conversations with sync_level set to CM_SYNC_POINT, CICS attempts the
equivalent of a Deallocate call with the deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL followed by an SAA resource recovery Commit call.
If this fails because of a state check, the task abends, and the conversation is
terminated. The equivalent of a Deallocate call with deallocate_type is set to
CM_DEALLOCATE_ABEND.

CICS provides this facility to allow emergency cleanup of sessions. The
programmer should not rely on it when designing transactions. When this facility is
used, information on the status of the conversation can be lost, because the
conversation does not wait to receive the information. Instead, all conversations
should be explicitly deallocated before the transaction is terminated.

 Chapter 6. CPI Communications on CICS/ESA 411

 CICS/ESA

Scope of the Conversation_ID
The scope of a conversation_ID within CICS/ESA is one CICS task. A
conversation_ID is created when a task initializes or accepts a conversation.
Thereafter, any CICS/ESA application running under this task can use
conversation_ID to issue verbs against the conversation during its lifetime.

Identifying Product-Specific Errors
The CM_PRODUCT_SPECIFIC_ERROR return code results in one of the following
informational error messages:

¹ DFHCP0742—The session is not available for CPI Communications as it is
already in use by another process.

¹ DFHCP0743—CPI Communications cannot be used, as the transaction was
initiated by ATI.

¹ DFHCP0750—An unrecognized profile name was supplied in partner resource
sym_dest_name.

These messages are sent to the CCPI transient data queue.

There are no state transitions connected with CM_PRODUCT_SPECIFIC_ERROR.

 Diagnosing Errors
On detecting error conditions that result in a return code of
CM_PRODUCT_SPECIFIC_ERROR, CM_PARAMETER_ERROR,
CM_PROGRAM_PARAMETER_CHECK, or CM_PROGRAM_STATE_CHECK, CICS
sends an explanatory message to the CCPI transient data queue, which is used for
logging CPI Communications messages.

If CICS receives an unrecognized sense code from the partner program, CICS
returns one of these return codes:

 CM_DEALLOCATED_ABEND
 CM_DEALLOCATED_ABEND_BO

or one of these:

 CM_PROGRAM_ERROR_PURGING
 CM_SVC_ERROR_PURGING

The return code received depends. respectively, on whether the error indication is
accompanied by a conditional end bracket (CEB) or not. When this happens, CICS
also sends an explanatory message containing the sense code received to the
CCPI transient data queue.

Note: The CEB is an SNA indicator used to say that the remote program
deallocated the conversation.

When Allocation Requests are Sent
The allocation request is not sent as part of the Allocate call. It is buffered to be
sent later, when a subsequent call causes the buffer to be flushed.

412 CPI Communications Reference

 CICS/ESA

Deviations from the CPI Communications Architecture
On CICS/ESA systems, when the program is using CPI Communications to
communicate with releases of CICS earlier than CICS/ESA Version 3.2, the
program's conversation state after a backout is one of the following:

¹ If the program initiated the backout, its side of the conversation is placed in
Send status.

¹ If the program did not initiate the backout, its side of the conversation is placed
in Receive status.

¹ If the program's side of the conversation was in Defer-Deallocate status when
the backout occurred, the conversation is placed in Reset state.

CICS application programs on the same host can communicate using CPI
Communications if they are running on different CICS systems, but not if they are
running on the same system. The ability for CICS applications to communicate
with other CICS applications executing on the same CICS system is provided by
other CICS services that do not involve communications protocols. Multiple CICS
systems can run on a single host, using VTAM-supported LU 6.2 intersystem
communication.

CPI Communications applications in CICS cannot be SNA service programs and
therefore cannot allocate on the mode names SNASVCMG or CPSVCMG. If they
attempt to do this they will get CM_PARAMETER_ERROR.

CICS attempts to end dangling conversations normally, but if this fails then
abnormal termination is performed.

CICS/ESA Extension Calls
CICS/ESA provides no CPI Communications extension calls.

 Chapter 6. CPI Communications on CICS/ESA 413

CICS/ESA Special Notes
CICS programmers should note the following points when writing programs that
issue CPI Communications calls:

¹ A CICS transaction started by automatic transaction initiation (ATI) cannot use
CPI Communications calls on its principal facility.

¹ If a CICS transaction issues an Allocate call (CMALLC) and the status of the
connection specified in the partner definition is INSERVICE RELEASED, CICS
does not try to ACQUIRE the connection; a return code of
CM_ALLOCATE_FAILURE_RETRY is returned to the application.

¹ CICS indicates USER_ID_IS_ALREADY_VERIFIED in the FMH5 header for
outgoing attach requests. The USER_ID is also in the same header.

¹ The security requirements of incoming attach requests can be specified by
CICS resource definition.

¹ The TP_name may contain the CICS four-character transaction identifier of the
partner program if the partner LU is CICS.

¹ APPC transaction routing is supported for CPI Communications between a pair
of CICS/ESA systems.

414 CPI Communications Reference

Chapter 7. CPI Communications on IMS/ESA

Programs running under IMS/ESA can use all the CPI Communications calls,
extensions, and features provided by APPC/MVS. No special setup or restrictions
apply. For a description of how to use CPI Communications under IMS/ESA, see
Chapter 8, “CPI Communications on MVS/ESA” on page 417 and the following

| IMS/ESA Version 5 books:

| ¹ IMS/ESA Application Programming: Transaction Manager, SC26-8017-00
| ¹ IMS/ESA Administration Guide: Transaction Manager, SC26-8014-00
| ¹ IMS/ESA Application Programming: Database Manager, SC26-8015-01
| ¹ IMS/ESA Application Programming: Design Guide, SC26-8016-00

Additional product information can be found in the following IMS/ESA books:

| ¹ IMS/ESA General Information, GC26-3467-00
| ¹ IMS/ESA Release Planning Guide, GC26-8031-00
| ¹ IMS/ESA Version 5 Licensed Program Specifications, GC26-8040-00
| ¹ IMS/ESA Customization Guide, SC26-8020-00
| ¹ IMS/ESA Utilities Reference: Transaction Manager, SC26-8022-00
| ¹ IMS/ESA Installation Volume 1: Installation and Verification, SC26-8023-00
| ¹ IMS/ESA Installation Volume 2: System Definition and Tailoring, SC26-8024-00
| ¹ IMS/ESA Administration Guide: System, SC26-8013-00
| ¹ IMS/ESA Operations Guide, SC26-8029-00
| ¹ IMS/ESA Operator’s Reference, SC26-8030-00
| ¹ IMS/ESA Sample Operating Procedures, SC26-8032-00
| ¹ IMS/ESA Messages and Codes, SC26-8028-00
| ¹ IMS/ESA Failure Analysis Structure Tables (FAST) for Dump Analysis,
| LY27-9621-00
| ¹ IMS/ESA Diagnosis Guide and Reference, LY27-9620-00
| ¹ IMS/ESA LU 6.1 Adapter for LU 6.2 Applications: Program
| Description/Operations, SC26-3061-01
| ¹ IMS/ESA Master Index and Glossary, SC26-8027-00
| ¹ IMS/ESA Summary of Operator Commands, SC26-8042-00

| All IMS/ESA Version 5 books are available on CD-ROM; you can order IBM Online
| Library: Transaction Processing and Data (SK2T-0730) or MVS Collection
| (SK2T-0710).

| For IMS/ESA Version 5, there is also IMS/ESA Softcopy Master Index, which is a
| master index of the IMS library. It is available only in BookManager format on
| either of the CD-ROMs listed above.

Note: IMS application programs can use the CPI Communications pseudonym
files provided by APPC/MVS as long as the APPC/MVS libraries containing these
files are accessible when the programs are compiled.

 Copyright IBM Corp. 1996, 1998 415

416 CPI Communications Reference

 MVS/ESA

Chapter 8. CPI Communications on MVS/ESA

This chapter summarizes the product-specific information that the MVS programmer
needs when writing application programs that contain CPI Communications calls.

MVS application programs can use CPI Communications calls to communicate with
programs on the same MVS system, other MVS systems, or other systems in an
SNA network. The CPI Communications calls on MVS are compatible with those
on other systems documented in this book, and can be easily ported to other SAA
systems.

This chapter describes aspects of CPI Communications that are unique to MVS.
On MVS, programs that use CPI Communications calls are considered transaction
programs (TPs). After reading this chapter, refer to MVS/ESA Application
Development: Writing Transaction Programs for APPC/MVS for complete details on
designing, writing, testing, and installing transaction programs to run on MVS. See
MVS/ESA Planning: APPC Management for details on how to supply side
information on MVS, and how and when to create TP profiles for transaction
programs that run on MVS.

This chapter is organized as follows:

 ¹ MVS/ESA Publications

¹ MVS/ESA Operating Environment

– Conformance Classes Supported
 – Languages Supported
 – Pseudonym Files

– Defining Side Information
– How Dangling Conversations Are Deallocated
– Scope of the Conversation_ID
– Identifying Product-Specific Errors

 – Diagnosing Errors
– When Allocation Requests Are Sent
– Deviations from the CPI Communications Architecture

¹ MVS/ESA Extension Calls

¹ MVS/ESA Special Notes

 MVS/ESA Publications
¹ MVS/ESA Programming: Writing Transaction Programs for APPC/MVS,

GC28-1471
¹ MVS/ESA Planning: APPC Management, GC28-1503
¹ MVS/ESA Programming: Writing Servers for APPC/MVS, GC28-1472
¹ MVS/ESA Programming: Writing Transaction Schedulers for APPC/MVS,

GC28-1465
¹ MVS/ESA APPC/MVS Handbook for the OS/2 System Administrator,

GC28-1504

 Copyright IBM Corp. 1996, 1998 417

 MVS/ESA

MVS/ESA Operating Environment
Any MVS program that issues CPI Communications calls, or is attached by an
APPC/MVS LU in response to an inbound request, is considered to be an
APPC/MVS transaction program. To issue CPI Communications calls, a
transaction program must meet the requirements described in this section.

The following requirements apply to TPs that are written to run in problem-program
state:

¹ CPI Communications calls must be invoked in 31-bit addressing mode.

¹ All parameters of CPI Communications calls must be addressable by the caller
and in the primary address space.

The general requirements shown in Table 22 apply to CPI Communications calls
invoked by any TP. They include requirements (such as locks not allowed) that are
only of concern to TPs running in supervisor state or with PSW key 0-7.

Programs using CPI Communications on MVS, other than those written in REXX,
must use one of the following methods to access the APPC/MVS system services:

¹ Link-edit the program with the load module ATBPBI, which is provided in
SYS1.CSSLIB.

¹ Issue the MVS LOAD macro for the APPC/MVS service to obtain its entry point
address. Use that address to call the APPC/MVS service.

TSO/E release 2.3 provides this service for interpreted REXX programs. TSO/E
releases 2.3.1 and above provide this service for compiled REXX programs.

TPs that call CPI Communications services while in task mode should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.

The following sections discuss special considerations that should be understood
when writing applications for an MVS environment.

Table 22. General Requirements for CPI Communications Calls on MVS

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Conformance Classes Supported
MVS supports the following conformance classes:

 ¹ Conversations

All conversations, with the exception of Extract_Maximum_Buffer_Size
(CMEMBS)

 ¹ LU 6.2

418 CPI Communications Reference

 MVS/ESA

Refer to “Functional Conformance Class Descriptions” on page 746 for a complete
description of functional conformance classes.

 Languages Supported
The following languages can be used to issue CPI Communications calls:

 ¹ C
 ¹ COBOL
¹ CSP (Application Generator)

 ¹ FORTRAN
 ¹ PL/I
¹ REXX (Procedures Language)

 ¹ RPG

In addition, any high-level language that conforms to the following linkage
conventions may be used to issue CPI Communications calls on MVS:

¹ Register 1 must contain the address of a parameter list. This is a list of
consecutive words, each word containing the address of a parameter to be
passed. The last word in this list must have a 1 in the high-order (sign) bit.

¹ Register 13 must contain the address of an 18-word save area.

¹ Register 14 must contain the return address.

¹ Register 15 must contain the entry-point address of the service being called.

¹ If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15
must all be set to zero.

On return from the service, general and access registers 2–14 are restored.
Registers 0, 1 and 15 are not restored.

 Pseudonym Files
Pseudonym files (also called interface definition files or IDFs) for the CPI
Communications calls are provided, as described in Table 23. Pseudonym files
define calls, parameters, and variable values in the SAA languages.

As shown in Table 23, the CPI Communications pseudonym files in
SYS1.SAMPLIB are not named according to the CPI-C file names. IBM
recommends that a pseudonym file be renamed to the CPI-C name when being
placed in a high-level language macro library.

Table 23. CPI Communications Pseudonym Files on MVS

Language In SYS1.SAMPLIB
Member

CPI-C File Name

C ATBCMC CMC

COBOL ATBCMCOB CMCOBOL

FORTRAN ATBCMFOR CMFORTRN

PL/I ATBCMPLI CMPLI

REXX ATBCMREX CMREXX

RPG ATBCMRPG CMRPG

 Chapter 8. CPI Communications on MVS/ESA 419

 MVS/ESA

CSP pseudonym file CMCSP COPY is shipped by Cross System* Product, Release
3.3.0 and above.

Defining Side Information
In MVS/ESA, CPI Communications programs must provide a symbolic destination
name on an Initialize_Conversation call. For each sym_dest_name used on a
CMINIT call, provide an entry containing the following in a side information file on
MVS:

 ¹ TP name
¹ Logon mode name
¹ Partner LU name

The side information file is a VSAM key-sequenced data set. To add and maintain
side information entries, an installation can use the APPC administration utility
(ATBSDFMU) or the interactive APPC administration dialog that is provided with
TSO/E Version 2 Release 3 and above. For details about creating and maintaining
side information on MVS, see MVS/ESA Planning: APPC Management.

How Dangling Conversations Are Deallocated
Programs should deallocate conversations before ending, and should have
recovery routines to deallocate conversations in the event of abnormal termination.
If a program ends without deallocating its conversations, partner programs might
continue to send data or wait to receive data. MVS deallocates any dangling
conversation. If this is a mapped conversation, the partner on the other end of the
conversation receives a return code of CM_RESOURCE_FAILURE_NO_RETRY. If it is
a basic conversation, the partner on the other end of the conversation receives a
return code of either CM_RESOURCE_FAILURE_NO_RETRY or
CM_DEALLOCATED_ABEND_SVC.

Scope of the Conversation_ID
MVS considers the scope of a transaction program to be the home address space.
MVS allows programs to share a single conversation, represented by a
conversation_ID, across multiple tasks or SRBs in the home address space.

The application must pass the conversation_ID between tasks and SRBs (MVS
does not provide a service for this purpose). Only one task or SRB can have
control of the conversation at a given time, and only one CPI Communications call
can be outstanding from one address space for a given conversation at a time.
(When a CPI Communications call is outstanding, a return code of
CM_PRODUCT_SPECIFIC_ERROR will be given for CPI Communications calls issued
from the same address space.)

The only exception is the Deallocate call with a deallocate_type of
CM_DEALLOCATE_ABEND, which can be issued from one task when a CPI
Communications call is outstanding from another task for the same conversation.
In that case, the outstanding call receives a return code of
CM_PRODUCT_SPECIFIC_ERROR.

420 CPI Communications Reference

 MVS/ESA

Identifying Product-Specific Errors
CPI Communications defines a return code called CM_PRODUCT_SPECIFIC_ERROR
for each call. MVS returns this code when either:

¹ An MVS-specific error occurred, or

¹ APPC/MVS is not active.

On MVS, product-specific errors cause state transitions in the following situations:

¹ When a call is interrupted by a Deallocate call with deallocate_type=
CM_DEALLOCATE_ABEND, the Deallocate call causes a state change to Reset
state and the interrupted call receives a return code of
CM_PRODUCT_SPECIFIC_ERROR.

¹ If APPC/MVS is deactivated, all active conversations are terminated;
communicating programs receive CM_PRODUCT_SPECIFIC_ERROR in response
to their next call and go into Reset state.

When a return code of PRODUCT_SPECIFIC_ERROR is returned to the local
program in response to a CPI Communications call, the code often has an
accompanying symptom record in the logrec data set. If APPC/MVS is not active,
however, a symptom record is not produced. In this case, your TP can call the
MVS-specific Error_Extract callable service, which returns decimal code 64 when
APPC/MVS is not active. No further diagnostic information is available when
APPC/MVS is not active.

When a symptom record is recorded in the logrec data set, section 3 of the
symptom record contains the primary symptom string for the product-specific errors:

Section 5 of the symptom record contains the following information for the
product-specific error:

¹ The job or user name, in EBCDIC, for the home address space of the caller

¹ An EBCDIC description of the error (up to 80 characters)

Look for symptom FLDS/REASON VALU/Hdddddddd in section 3 of the symptom
record for the reason code identifying the error, which is one of those appearing in
Table 25 on page 422.

Table 24. Symptom String for Product-Specific Errors on MVS. (Section 3 of the
Symptom Record in a Logrec Data Set).

Symptom Description

PIDS/5752SCACB Product identifier
RIDS/ATBxxxxx CSECT name
RIDS/ATBxxxxx#L Load module name
LVLS/ddd Product level
PCSS/ATBxxxx or CMxxxx The statement that caused the error
PRCS/dddddddd The return code returned to the caller of

the service
FLDS/REASON VALU/Hdddddddd The unique reason code identifying the

product-specific error

 Chapter 8. CPI Communications on MVS/ESA 421

 MVS/ESA

Table 25 (Page 1 of 2). Reason Codes for Product-Specific Errors on MVS

Reason Code Message Text Explanation

00000001 APPC SERVICE REQUESTED WHILE SYSTEM
LOCK HELD.

A user requested an APPC/MVS service while a
system lock was held.

00000002 UNRECOGNIZED REQUEST. The system request from the caller is not one of the
APPC CPIC or APPC LU 6.2 calls. The program
might be using an incorrect level of the stub routine.

00000003 APPC DATA STRUCTURES FOR THE TP ARE IN
USE BY ANOTHER PROCESS.

APPC/MVS data structures for the TP are in use by
another process.

00000004 SYSTEM CANNOT PROCESS A CALL. A
CLEANUP_TP REQUEST IS IN PROGRESS.

A program called the Cleanup_TP service for the
TP that owns the conversation. The conversation is
no longer available to the TP.

00000005 APPC/MVS COULD NOT RETRIEVE SIDE
INFORMATION.

An error occurred when APPC/MVS tried to retrieve
side information from the side information file.

00000006 ERROR RETRIEVING SECURITY INFORMATION. An error occurred when APPC/MVS tried to obtain
information about the caller's security environment
from RACF.

The RACF return code and reason code appear in
section 5 of the symptom record. See RACF V1
R9.2 Messages and Codes, SC38-1014 for
explanations of the return and reason codes from
RACF.

00000008 ADDRESS SPACE CANNOT USE THE SYSTEM
BASE LU.

A program tried to allocate or initialize a
conversation. The program is running in an address
space that is not connected to a scheduler.
Therefore, APPC/MVS must use the system default
base LU as the source LU for the conversation.
The address space in which the program is running
was prohibited from using the system default base
LU.

00000009 NO BASE LU DEFINED FOR SCHEDULER. A program tried to allocate or initialize a
conversation. The program is running in an address
space that is connected to a scheduler. Therefore,
APPC/MVS uses the base LU that is defined for
that scheduler in the APPCPMxx parmlib member.
None of the LUs assigned to the scheduler were
designated as the base LU.

0000000A SCHEDULER EXTRACT EXIT COULD NOT
IDENTIFY ACTIVE TP.

An APPC/MVS service was invoked in an address
space that has more than one active TP.
APPC/MVS invoked the transaction scheduler
extract exit, which must return the TPID of the
active transaction program. This exit ended
abnormally or returned with a nonzero return code.

0000000B STORAGE NOT AVAILABLE FOR APPC
INTERNAL STRUCTURES.

APPC could not obtain enough storage to process
the requested service.

0000000C -
0000000D

AN INTERNAL FAILURE OCCURRED IN APPC
PROCESSING.

APPC data structures for the TP are in use by
another process. The system does not request a
dump.

0000000E SERVICE INTERRUPTED BY CALL TO
CLEANUP_TP SERVICE.

A service was interrupted because a Cleanup_TP
was issued against the TP that owns the
conversation.

0000000F STORAGE NOT AVAILABLE FOR APPC
INTERNAL STRUCTURES.

APPC could not obtain storage for internal
structures. APPC writes a symptom record for all
failures to obtain storage.

422 CPI Communications Reference

 MVS/ESA

Table 25 (Page 2 of 2). Reason Codes for Product-Specific Errors on MVS

Reason Code Message Text Explanation

00000010 AN INTERNAL FAILURE OCCURRED IN APPC
PROCESSING.

An internal failure occurred in APPC processing.

00000011 -
00000013

AN INTERNAL FAILURE OCCURRED IN APPC
PROCESSING.

An internal error occurred in APPC/MVS processing.

00000014 INFORMATION ABOUT LOCAL LU WAS NOT
AVAILABLE TO APPC/MVS.

APPC/MVS could not locate the local LU.

00000015 -
00000016

AN INTERNAL FAILURE OCCURRED IN APPC
PROCESSING.

An internal error occurred in APPC/MVS processing.

00000017 PROCESSING FOR SERVICE INTERRUPTED BY
DEALLOCATE_ABEND.

The requested callable service was interrupted
because a Deallocate (ABEND) was issued against
the conversation.

00000018 AN INTERNAL FAILURE OCCURRED IN APPC
PROCESSING.

An internal error occurred in APPC/MVS processing.

00000019 A PREVIOUS ERROR LEFT THE CONVERSATION
IN AN UNDEFINED STATE.

A previous error left the conversation in an
undefined state. Issue a Deallocate with a
deallocate_type of ABEND on the conversation to
free up the resources for the conversation. This
action will cause APPC/MVS to end the current
session.

0000001A AN UNEXPECTED RESOURCE FAILURE
OCCURRED.

APPC/MVS found a resource failure when
processing a service that does not return the
resource_failure_retry or resource_failure_no_retry
return codes.

0000001B SERVICE INTERRUPTED BY CALL TO
CLEANUP_TP SERVICE.

The service was interrupted because a Cleanup_TP
was issued against the TP that owns the
conversation.

0000001C-
0000001D

AN INTERNAL FAILURE OCCURRED IN APPC
PROCESSING.

An internal error occurred in APPC/MVS processing.

0000001E -
0000001F

PROCESSING FOR SERVICE INTERRUPTED BY
DEALLOCATE_ABEND.

A service was interrupted because a Deallocate
(ABEND) was issued against the conversation.

00000021 ADDRESS SPACE IN WHICH TP IS RUNNING
CANNOT USE SYSTEM BASE LU.

A program tried to allocate or initialize a
conversation. The program is running in an address
space that is prohibited from using the system base
LU that is defined in the APPCPMxx parmlib
member.

00000022 NO SYSTEM BASE LU DEFINED TO APPC/MVS. A program tried to allocate or initialize a
conversation. The attempt was rejected because
the program did not specify a local LU name, and
no default system base LU exists.

00000023 AN INTERNAL FAILURE OCCURRED IN APPC
PROCESSING.

An internal error occurred in APPC/MVS processing.

00000024 BUFFER STORAGE NOT AVAILABLE FOR
RECEIVE PROCESSING.

APPC/MVS could not obtain buffer storage to
receive data sent by a partner TP.

 Diagnosing Errors
The TP message log can be used for recovery and problem determination when an
error occurs while a TP is processing. The TP message log can be controlled
through parameters from the TP profile and from the APPC/MVS transaction
scheduler parmlib member. When these parameters are used to set up the TP
message log, the log can be accessed after a TP stops running, or the
ASBSCHWL write log routine can be invoked (after a job step in the TP profile JCL)

 Chapter 8. CPI Communications on MVS/ESA 423

 MVS/ESA

to access the message log between job steps. The write log routine allows viewing
messages for the previous job step.

For information on how to specify parameters used in the TP message log
definition and view the message log, see MVS/ESA Planning: APPC Management.

When Allocation Requests Are Sent
Allocation requests are buffered until enough data is accumulated or the sender
flushes the data; then the request is sent.

Deviations from the CPI Communications Architecture
MVS/ESA supports CPI Communications calls with the following distinctions:

¹ MVS/ESA does not log data associated with outgoing and incoming Send_Error
and Deallocate (Deallocate_type= CM_DEALLOCATE_ABEND) calls.

¹ MVS/ESA allows a blank partner LU name to be specified on calls to the
CMSPLN service. If the Allocate (CMALLC) call is issued when the partner LU
name is set to blanks, the system considers the partner LU name to be the
name of the local LU from which CMALLC is called. MVS also allows a blank
partner LU name to be specified as an entry in the side information.

¹ When a conversation crosses a VTAM network, the Receive call does not
return data until an entire logical record arrives at the local system. For basic
conversations, this behavior may cause the Receive call to return unexpected
results.

For example, a Receive call with receive_type set to CM_RECEIVE_IMMEDIATE
returns a return code of CM_UNSUCCESSFUL if the entire logical record has not
arrived at the local system, even if enough of the logical record has arrived to
satisfy the Receive call's requested length. Similarly, a Receive call with
receive_type set to CM_RECEIVE_AND_WAIT will wait until the remainder of the
logical record is received by the local system, even if enough of the logical
record has arrived to satisfy the requested length. CMRCV works properly in
conversations between LUs controlled by APPC/MVS in the same MVS system
image.

¹ For conversations crossing a VTAM network, the
Test_Request_To_Send_Received (CMTRTS) call always sets
Request_To_Send_Received to CM_REQ_TO_SEND_NOT_RECEIVED when
Return_Code=CM_OK, regardless of whether the remote programs have sent
such requests to the local programs. CMTRTS works properly in conversations
between LUs controlled by APPC/MVS in the same MVS system image.

¹ MVS/ESA does not support conversations with a sync_level characteristic of
CM_SYNC_POINT.

¹ The character set restrictions on LU names, VTAM mode names, and TP
names differ slightly from those prescribed in Appendix A, “Variables and
Characteristics” on page 641.

LU names and mode names can contain uppercase alphabetic, numeric, and
national characters ($, @, #), and must begin with an alphabetic or national
character. IBM recommends that $, @, and # be avoided because they display
differently depending on the national language code page in use.

While TP names cannot contain blanks, blanks can still be used as a trailing
pad character. The blanks are not considered part of the string.

424 CPI Communications Reference

 MVS/ESA

IBM recommends that the asterisk (*) be avoided in MVS TP names because it
causes a list request when entered on panels of the APPC administration
dialog. The comma should also be avoided in MVS TP names because it acts
as a parameter delimiter in DISPLAY APPC commands.

See Appendix A in MVS/ESA Application Development: Writing Transaction
Programs for APPC/MVS for a table showing the allowable characters.

Other deviations from the CPI Communications architecture are highlighted in green
ink throughout this publication.

MVS/ESA Extension Calls
Although MVS/ESA does not provide CPI Communications extension calls,
MVS/ESA does provide additional callable services that perform similar and
additional communications functions. See “APPC/MVS Services” on page 425 for
more information on these MVS-specific callable services.

MVS/ESA Special Notes
The following sections contain information that MVS programmers should consider
when writing programs that issue CPI Communications calls:

 TP Profiles
In MVS/ESA, program-startup processing uses a TP profile to start a local program
in response to an allocation request from a remote program. The TP profile
contains security and scheduling information for the local program, and must be
created in advance using the APPC administration utility or APPC administration
dialog. For details about the contents of TP profiles, and how to create and
maintain them on MVS, see MVS/ESA Planning: APPC Management.

MVS Performance Considerations
The relative performance speed of CPI Communications calls varies depending on
the functions that the call performs. For example, calls that involve VTAM or cause
the movement of data buffers involve a greater number of internal instructions. For
an overview of performance considerations for CPI Communications calls on MVS,
see MVS/ESA Application Development: Writing Transaction Programs for
APPC/MVS.

 APPC/MVS Services
In addition to CPI Communications calls, MVS also provides APPC/MVS callable
services that are specific to MVS and provide similar and additional
communications functions. MVS-specific calls begin with the characters ATB
(ATBxxxx).

Programs on MVS can issue both CPI Communications (CMxxxx) and APPC/MVS
(ATBxxxx) calls from the same program (as long as both pseudonym files are
included in the program). The conversation_ID returned from a CMINIT or
ATBALLC call is available to all subsequent CMxxxx or ATBxxxx calls for the
conversation. For all conversation characteristics set by CMINIT, ATBALLC
provides an equivalent parameter or sets the same default value. Calls to

 Chapter 8. CPI Communications on MVS/ESA 425

 MVS/ESA

APPC/MVS services do not change any conversation characteristics previously
established by a CPI Communications call.

426 CPI Communications Reference

 MVS/ESA

The following is a summary of MVS-specific services and functions:

Functions similar to conversation-level non-blocking calls: Many APPC/MVS
services have an option to allow asynchronous execution. For more information
about those services, see MVS/ESA Application Development: Writing Transaction
Programs for APPC/MVS.

Functions similar to server calls: Allocate queue services allow you to set up
“servers” that can process multiple inbound allocate requests. For information
about those services, see MVS/ESA SP V5 Writing Servers for APPC/MVS.

Functions similar to secondary information calls: The Error_Extract service
allows you to return detailed information about errors indicated by return codes
from CPI Communications calls and LU 6.2 services. For more information about
Error_Extract, see MVS/ESA Application Development: Writing Transaction
Programs for APPC/MVS.

Additional functions: LU 6.2 services provide functions that are similar to CPI
Communications calls, with some functions that are specific to APPC/MVS. For
example, the APPC/MVS Send_Data (ATBSEND) service lets a program send data
from an MVS/ESA data space. For more information about the APPC/MVS
services, see MVS/ESA Application Development: Writing Transaction Programs for
APPC/MVS.

 Chapter 8. CPI Communications on MVS/ESA 427

 MVS/ESA

428 CPI Communications Reference

 Networking Services for Windows

Chapter 9. CPI Communications on Networking Services for
Windows

This chapter contains information about the IBM APPC Networking Services for
Windows implementation of, and extensions to, CPI Communications. The topics
covered are:

¹ Networking Services for Windows Publications
¹ Conformance Classes Supported

 ¹ Languages Supported
¹ Pseudonym Files Provided by Networking Services for Windows
¹ Linking with the CPI-C Library

 ¹ Memory Considerations
¹ Defining Side Information
¹ Usage Notes for Mode_Name and TP_Name
¹ Deallocating Dangling Conversations

 ¹ Diagnosing Errors
¹ Deviations from the CPI Communications Architecture

Networking Services for Windows Publications
The following publications contain detailed product information:

¹ IBM APPC Networking Services for Windows: Getting Started, SC31-8124

¹ IBM APPC Networking Services for Windows: Administrator's Guide,
SC31-8125

¹ IBM APPC Networking Services for Windows: Application Programmer's
Reference, SC31-8126

¹ IBM APPC Networking Services for Windows: Configuration Parameters
Reference for Administrators and Application Programmers, SC31-8138

Networking Services for Windows Operating Environment
This section describes aspects of CPI Communications that are unique to IBM
APPC Networking Services for Windows.

Support of CPI-C Conformance Classes
Networking Services for Windows supports the conversations class and the LU 6.2
class.

Optional Conformance Classes Supported
Networking Services for Windows supports the following optional conformance
classes:

¹ Data conversion routines

 ¹ Full-duplex
Networking Services for Windows uses two half-duplex, LU 6.2 conversations to
transparently provide a simulated full-duplex CPI-C conversation.

 ¹ Queue-level non-blocking

 Copyright IBM Corp. 1996, 1998 429

 Networking Services for Windows

 ¹ Callback function

 ¹ Security
Networking Services for Windows supports all calls that provide security
functions. However, the input parameter of CM_SECURITY_PROGRAM_STRONG
on the call, Set_Conversation_Security_Type (CMSCST) is not supported.

 ¹ Server
Networking Services for Windows supports the calls that provide the server
function of accepting multiple incoming conversations. It does not support the
calls that allow a program to register multiple TP names, or to manage contexts

Optional Conformance Classes Not Supported
Networking Services for Windows does not support these optional conformance
classes:

¹ Conversation-level non-blocking — Networking Services for Windows supports
queue-level non-blocking instead

 ¹ Directory

 ¹ Distributed security

 ¹ Expedited data

 ¹ OSI TP

 ¹ Recoverable transactions

 ¹ Secondary information

 ¹ Unchained transactions

 Languages Supported
For information about which languages are supported by Networking Services for
Windows, see Table 14 on page 108.

 Pseudonym Files
Networking Services for Windows provides the pseudonym file, CPIC.H, to support
the C language.

This pseudonym file is located in the INCLUDE subdirectory on the disk where
Networking Services for Windows is installed. You may want to add this
subdirectory to your INCLUDE environment variable.

This file contains constant declarations and data types for each supplied and
returned parameter in CPI-C calls. To use another language or a non-standard
implementation of a supported language, you will have to write a pseudonym file. If
you are using another language, use the provided file as the model to build the
pseudonym file for your language.

When writing pseudonym files, note that the Networking Services for Windows
implementation of CPI-C follows the Microsoft Pascal calling conventions. In the
library files, NSDW.LIB and NSDW.DLL, the symbol names corresponding to the
CPI-C calls are normalized to uppercase. This is important when using a language

430 CPI Communications Reference

 Networking Services for Windows

or compiler that is case-sensitive or when linking with the “/NOIGNORECASE”
option.

CPI-C calls do not return a value; they are procedures rather than functions. The
CPI-C API is invoked by far calls only. Parameters are passed by reference using
far pointers pushed onto the stack in the order in which they lexically appear in the
pseudonym files (conversation_ID first). The called CPI-C procedure removes its
received parameters from the stack before returning to the caller.

Examples of Using C
One of the installation options for Networking Services for Windows is whether you
want the sample programs. If you select this option, the installation program
installs the sample programs and source code in the SAMPLES subdirectory.
These samples are a guide to the details of compiling and linking real applications.

CPI-C Function Calls in C
The following example illustrates the Initialize_Conversation call in the C language:

unsigned char conversation_id[8]; /* your conversation ID */

unsigned char sym_dest_name[8]; /* symbolic destination name */

CM_INT32 cm_retcode; /* return code */

cminit(conversation_id, /* Address of returned conversation ID */

 sym_dest_name, /* Address of supplied destination address */

&cm_retcode); /* Address of returned return code */

Using the Pseudonym Files in C Language Programs
The pseudonym files contain function prototypes for each of the CPI-C library calls.
These function prototypes help the compiler check for agreement of the number
and type of each parameter.

The C pseudonym file, CPIC.H., contains the CPI-C constants and function
prototypes.

Using Other Languages
Determine how to make calls using the Pascal calling convention in your language.
The calling convention refers to the order in which procedure parameters are
pushed on the stack. When multiple parameters are passed on a call, they can be
pushed onto the stack in two ways:

Pascal Push the first parameter first, then the second, and so on. Your
compiler would use a sequence like the following to make a CPI-C call.

PUSH the 32-bit address of the first parameter

PUSH the 32-bit address of the second parameter
...

PUSH the 32-bit address of the last parameter

CALL the 32-bit address of the specific CPI-C call

C Push the last parameter first, then the next-to-last, and so on.

This calling convention is not supported in Networking Services for
Windows.

 Chapter 9. CPI Communications on Networking Services for Windows 431

 Networking Services for Windows

Linking with the CPI-C Import Library
Link your application with the CPI-C import library, NSDW.LIB, shipped with
Networking Services for Windows. This library is located in the Networking
Services for Windows LIB directory.

 Memory Considerations

 Data Buffers
For calls that require data buffers, such as Receive or Send_Data, your program
can either declare the data buffer as a variable or allocate it using a library function
(for example, the C malloc() function).

If your program specifies a buffer length greater than the actual buffer size,
Networking Services for Windows might not detect this error. As a result, data lying
beyond the end of the buffer might be overwritten.

Beware when allocating memory using a library function that can allocate more
than 64KB (for example, the C halloc() function). No data buffer passed to
Networking Services for Windows can be larger than 64KB.

 Stack Size
Networking Services for Windows calls execute on the calling application's stack.
You are responsible for ensuring that your application's stack is sufficiently large.

Defining Side Information
In Networking Services for Windows, the Initialize_Conversation call reads side
information in order to find the partner LU, transaction program, and mode names
associated with the specified sym_dest_name. For more information on creating
side information for Networking Services for Windows, refer to the IBM APPC
Networking Services for Windows: Configuration Parameters Reference for
Administrators and Application Programmers.

Usage Notes for Mode_Name and TP_Name

 Mode_Name
Although Networking Services for Windows allows you to set the mode_name
characteristic to CPSVCMG or SNASVCMG using the Set_Mode_Name (CMSMN)
call, it rejects an Allocate (CMALLC) call for a conversation with either of these
mode names and returns a CM_PARAMETER_ERROR return code.

Specification of the blank mode for a conversation is handled in different ways
depending on where the mode is set. When the mode is specified in the side
information table, the string 'BLANK' must be used. When the mode is set by
means of a Set_Mode_Name (CMSMN) call, an empty string or a string containing
only ASCII blanks must be specified. If you use the Extract_Mode_Name
(CMEMN) call on a session using the blank mode, Networking Services for
Windows returns a zero-length string.

432 CPI Communications Reference

 Networking Services for Windows

Restrictions on Transaction Program Names
Networking Services for Windows translates transaction program names from ASCII
to EBCDIC. Therefore, if a program sets the TP_name characteristic using a
double-byte name and then calls Allocate (CMALLC), the partner LU rejects the
allocation request because of an incorrect transaction program name. Transaction
program names can be entered in the side information table file using a
hexadecimal format specification to allow any valid SNA transaction program name.
For more information about valid formats for transaction program names, refer to
the IBM APPC Networking Services for Windows: Configuration Parameters
Reference for Administrators and Application Programmers.

How Dangling Conversations Are Deallocated
When an application ends without deallocating its active conversations, those
conversations are dangling. Networking Services for Windows automatically
deallocates dangling conversations and deactivates the sessions carrying those
conversations related to that application.

Dangling conversations are deallocated when the use count of the shared
NSDW.DLL goes to zero. Note that the Program Launcher uses the DLL; if you
want Networking Services for Windows to automatically deallocate dangling
conversations, stop the Program Launcher.

 Diagnosing Errors
When a Networking Services for Windows call returns an error return code,
Networking Services for Windows places a message in the message log. If tracing
is enabled, Networking Services for Windows also places a message in the trace
log.

 Log_Data
A successful call to Set_Log_Data (CMSLD) sets the log_data and log_data_length
characteristics. However, log data is not sent to the conversation partner; it is only
entered into the trace log when tracing is enabled.

When tracing is enabled, Networking Services for Windows places log data in the
trace log when successfully entering:

 ¹ Set_Log_Data (CMSLD)
 ¹ Deallocate (CMDEAL)

Identifying Product-Specific Errors
To assist in identifying product-specific errors, enable CPI-C error tracing.

CPI-C allows a return code of CM_PRODUCT_SPECIFIC_ERROR when there is no
corresponding CPI Communications return code to which the error could be
mapped appropriately.

Networking Services for Windows returns the CM_PRODUCT_SPECIFIC_ERROR
return code when:

¹ Networking Services for Windows has not been started.

 Chapter 9. CPI Communications on Networking Services for Windows 433

 Networking Services for Windows

¹ The underlying APPC implementation fails. In this case, Networking Services
for Windows writes a message to the Networking Services for Windows
message log. The message states that an APPC error occurred and gives the
primary and secondary APPC return codes for this error.

¹ Some internal error occurs, such as a call failing in its attempt to allocate
storage internally for its own use. In this case, Networking Services for
Windows writes a message to the message log, which indicates the nature of
the failure.

Deviations from the CPI Communications Architecture
Deviations from the CPI Communications Architecture are found in the following
areas:

¹ Return_control characteristic for Allocate
 ¹ Parameter checking
¹ Log data support

Return_control Characteristic for Allocate (CMALLC)
If a program issues Allocate (CMALLC) with return_control set to
CM_WHEN_SESSION_ALLOCATED while no sessions are available and the session
limit has been reached, Networking Services for Windows does not wait for a
session to become available. Instead, the CM_ALLOCATE_FAILURE_RETRY return
code will be returned.

CM_PROGRAM_PARAMETER_CHECK Return Code
A Networking Services for Windows call returns
CM_PROGRAM_PARAMETER_CHECK if it detects that one or more of the parameters
supplied in the call are incorrect. Networking Services for Windows also places a
message in the message log. If CM_PROGRAM_PARAMETER_CHECK is not
returned, it does not mean that the actual parameters are valid.

Networking Services for Windows returns CM_PROGRAM_PARAMETER_CHECK if it
determines that one or more of the actual parameters is a protected mode address
that is not valid. Examples include selector values that specify a conversation_ID
that cannot be read, or an output variable that cannot be written.

Log Data Support
Networking Services for Windows neither sends nor receives log_data. If any
log_data is received, Networking Services for Windows discards it.

434 CPI Communications Reference

 OS/2

Chapter 10. CPI Communications on OS/2

This chapter summarizes the product-specific information that the OS/2
programmer needs when writing application programs that contain CPI
Communications calls or OS/2 extension calls.

This chapter provides information about the Operating System/2 (OS/2)
implementation of CPI Communications. CPI Communications for OS/2 is provided
as part of the following products (listed in chronological order of their availability):

¹ Communications Manager/2 Version 1.0
¹ Communications Manager/2 Version 1.1
¹ Communications Manager/2 Version 1.11

 ¹ Communications Server

In this chapter, the term IBM Communications Server is used to refer to CPI-C
function in either of the following products:

¹ Communications Server for OS/2 WARP Version 4.0
¹ Personal Communications AS/400 and 3270 for OS/2 Version 4.1

Please see Chapter 14, “CPI Communications on Win32 and 32-bit API Client
Platforms” for a description of the OS/2 API Client CPI-C that is part of the
following products:

¹ IBM eNetwork Communication Server for Windows NT 5.0, 5.01, and above

¹ Netware for SAA 2.2

¹ IntraNetware for SAA 2.3, 3.0, and above

For the remainder of this chapter, the term Communications Manager
collectively identifies these products. If a statement is not true for all these
products, the exception is noted. The phrase or later is used when indicating a
statement is true for a particular product and its successors (the product and
the ones after it in the above list). For example, "Communications Manager/2
Version 1.1 or later" refers to the products Communications Manager/2 Version
1.1, Communications Manager/2 Version 1.11, and Communications Server.

Communications Manager implements functions in the manner described in the
main sections of this publication, except as described in “Deviations from the
CPI Communications Architecture” on page 450.

This chapter is organized as follows:

 – OS/2 Publications

– OS/2 Operating Environment

- Conformance Classes Supported
 - Languages Supported
 - Pseudonym Files

- Defining Side Information
- How Dangling Conversations Are Deallocated
- Scope of the Conversation_ID
- Identifying Product-Specific Errors

 - Diagnosing Errors
- When Allocation Requests Are Sent
- Deviations from the CPI Communications Architecture

 Copyright IBM Corp. 1996, 1998 435

 OS/2

– OS/2 Extension Calls—System Management

– OS/2 Extension Calls—Conversation

– OS/2 Extension Calls—Transaction Program Control

– OS/2 Special Notes

– Sample Program Listings for OS/2

 OS/2 Publications
The following publications contain detailed product information:

¹ Communications Manager/2 Version 1.0 Administration Guide, SC31-6168
¹ Communications Manager/2 Version 1.0 Application Programming Guide,

SC31-7012
¹ Communications Manager/2 Version 1.0 APPC Programming Guide and

Reference, SC31-6160
¹ Communications Manager/2 Version 1.0 APPN System Management

Programming Reference, SC31-6173
¹ Communications Manager/2 Version 1.0 Problem Determination Reference,

SC31-6157
¹ Communications Manager/2 Version 1.1 Network Administration and

Subsystem Management Guide, (SC31-6168)
¹ Communications Manager/2 Version 1.1 Application Programming Guide
¹ Communications Manager/2 Version 1.1 APPC Programming Reference
¹ Communications Manager/2 Version 1.1 System Management Programming

Reference
¹ Communications Manager/2 Version 1.1 Problem Determination Guide
¹ Communications Server Version 4.0 Network Administration and Subsystem

Guide, (SC31-6168)
¹ Communications Server Version 4.0 Application Programming Guide and

Reference
¹ Communications Server Version 4.0 APPC Programming Reference
¹ Communications Server Version 4.0 System Management Programming

Reference
¹ Communications Server Version 4.0 Problem Determination Guide

436 CPI Communications Reference

 OS/2

OS/2 Operating Environment
The following sections explain some special considerations that should be
understood when writing applications for an OS/2 environment.

Conformance Classes Supported
Refer to “Functional Conformance Class Descriptions” on page 746 for a complete
description of functional conformance classes. Also, refer to Table 15 on
page 109 to determine what releases of Communications Manager support which
architected CPI-C calls.

Communications Manager supports the following mandatory conformance classes:

 1. Conversations

Note: The following restrictions apply:

¹ The Extract_Maximum_Buffer_Size (CMEMBS) call is only available in
Communications Manager/2 Version 1.11 or later.

 2. LU 6.2

In addition to the mandatory conformance classes listed above, the following
optional conformance classes are available in Communications Server. They are
only supported in 32-bit C Language interface and REXX.

 1. Conversation-level non-blocking
 2. Queue-level non-blocking
 3. Server

4. Data conversion routines
 5. Full-duplex conversations
 6. Expedited data

7. Security - Value of CM_SECURITY_PROGRAM_STRONG is not supported.

Also, prior to Communications Server, partial support is provided by product
extension calls, refer to Table 15 on page 109 for details.

8. Secondary Information (partial support)

In addition to all the conformance classes listed above, Communications Manager
supports the CPI-C extension calls documented in this chapter.

 Languages Supported
The following languages can be used to issue CPI Communications calls and OS/2
extension calls:

 ¹ C
 ¹ COBOL
 ¹ FORTRAN5

 ¹ REXX

Note: Some of the calls are only available in Communications Server, and only at
the 32-bit C Language interface and through REXX. Refer to Table 15 on
page 109 for details.

5 FORTRAN cannot be used to issue the following calls: Set_CPIC_Side_Information (XCMSSI), Delete_CPIC_Side_Information
(XCMDSI), Extract_CPIC_Side_Information (XCMESI), and Define_TP(XCDEFTP)

 Chapter 10. CPI Communications on OS/2 437

 OS/2

The C, COBOL, and FORTRAN programming languages allow a program to
include header files; the REXX language does not. The following sections list the
file names for the files that contain pseudonym definitions and call prototypes. By
including these files, a program can use these definitions and prototypes.

The following sections contain additional information about using individual
programming languages for CPI Communications. To link CPI Communications
programs written in the C, COBOL, and FORTRAN languages, define the link
libraries for these languages to the system. Add the subdirectory path containing
the link library to the OS/2 SET LIB command for the system (or environment), or
prefix it to the library file name in the list of libraries on the OS/2 LINK statement.

Table 26. Location (OS/2 Subdirectory) of Pseudonym Files and Link Edit Files

 Communications
Manager/2
Version 1.0

Communications
Manager/2
Version 1.1
(diskette)

Communications
Manager/2 Version 1.1
Communications
Server
(CDROM)

CMC.H, also
CPIC.H in V2.0

\CM_H \CM_H \APISUPP

CMCOBOL.CBL \CM_CBL \CM_CBL \APISUPP

CMFORTRN.INC \CM_INC \CM_INC \APISUPP

CMREXX.CPY \CM_CPY \CM_CPY \APISUPP

CPIC.LIB \CM_LIB \CM_LIB \APISUPP

CPIC32.LIB \APISUPP
(Communications Server
only)

CPICOBOL.LIB \CM_LIB \CM_LIB \APISUPP

 C
The C pseudonym file provided with Communications Manager is:

 CMC.H

CPIC.H, in Communications Server, is included by CMC.H

This file contains the C pseudonym definitions, side information entry structure, and
call prototypes for CPI Communications calls and OS/2 extension calls.

When compiling a C program using the IBM C/2, or C-Set++ compiler, set the
warning level to 3. This level provides warning messages for mismatched data
types and integer lengths. If the C pseudonym file is included in the program, and
the warning level is set to 3 for compilation, the C compiler will flag calls having
incorrect variables—those with a data type (integer or character) or integer length
(short or long) that does not match the corresponding call prototype statement
contained in the pseudonym file.

To enable asynchronous updates of program variables, the return parameters on a
non-blocking call must be declared using the volatile qualifier as defined in ANSI C.

As part of the linkage edit step for the CPI Communications program, include the
CPIC.LIB , or CPIC32.LIB file in the list of libraries on the OS/2 LINK statement.
For Communications Server, refer to the Communications Server Version 4.0

438 CPI Communications Reference

 OS/2

Application Programming Guide and Reference for information on which .LIB file to
use.

 COBOL
The COBOL pseudonym file provided with Communications Manager is:

 CMCOBOL.CBL

This file contains the COBOL pseudonym definitions and side information entry
structure for CPI Communications calls and OS/2 extension calls.

A program written to the SAA COBOL specification uses COMP-4 integers. COMP-4

integers in memory are in System/370 format (big-endian). Therefore, the program
does not have to convert the value in the length (LL) field of a basic-conversation
logical record to or from the System/370 format when using the value in an integer
operation.

As part of the linkage edit step for the CPI Communications program written to the
SAA COBOL specification, include the CPICOBOL.LIB file in the list of libraries on
the OS/2 LINK statement.

A program can include COMP-5 integers; however, this provision of the IBM
COBOL/2 compiler is outside of the SAA COBOL specification, and such a program
is not portable across all SAA systems. COMP-5 integers in memory are in native
system format (i.e. byte-reversed for OS/2). This format can improve performance
if a program performs many integer operations. If the program uses COMP-5
integers, it should:

¹ Specify the variables on the CPI Communications and Communications
Manager calls in reverse order from that specified in this book.

¹ On the Send_Data (CMSEND) call for a basic conversation, ensure that the
length (LL) value is in System/370 format before issuing the call.

¹ Include the CPIC.LIB file in the list of libraries on the OS/2 LINK statement,
and do not include the CPICOBOL.LIB file.

 FORTRAN
The FORTRAN pseudonym file provided with Communications Manager is:

 CMFORTRN.INC

This file contains the FORTRAN pseudonym definitions and call prototypes for CPI
Communications calls and OS/2 extension calls.

The following Communications Manager calls cannot be issued from a FORTRAN
program:

 Set_CPIC_Side_Information (XCMSSI)
 Extract_CPIC_Side_Information (XCMESI)
 Delete_CPIC_Side_Information (XCMDSI)

As part of the linkage edit step for the CPI Communications program written to the
SAA FORTRAN specification, include the CPIC.LIB file in the list of libraries on the
OS/2 LINK statement.

A program may be written that uses EXTERNAL statements. To do so, the program
must use the OS prefix on the EXTERNAL statements. However, use of the OS prefix

 Chapter 10. CPI Communications on OS/2 439

 OS/2

is outside the SAA FORTRAN specification, and such a program is not portable
across all SAA systems.

REXX (SAA Procedures Language)
The following sections provide information helpful in writing a REXX program for the
OS/2 environment.

REXX Programs: REXX programs are really command files (also called batch
files) that are executed interpretively. The file extension of .CMD must be used for
REXX programs. Communications Manager supports single-threaded REXX
programs.

REXX Pseudonym Definitions: The REXX pseudonym file provided with
Communications Manager is:

 CMREXX.CPY

This file contains the REXX pseudonym definitions for CPI Communications calls
and OS/2 extension calls.

Unlike the other languages supported by Communications Manager, the REXX
language does not provide an “include” capability. Therefore, the programmer may
either copy the desired pseudonym definitions directly into the program, or have
REXX interpret the definitions from the pseudonym file using REXX instructions for
reading and interpreting lines of a file. For example:

 fn=“CMREXX.CPY”

do while lines(fn) > 0;

 INTERPRET linein(fn);

 end;

Starting a REXX Program: The CPICREXX.EXE program must be executed
before starting any CPI-C REXX program that issues CPI-C calls, since these calls
use the CPICOMM environment established by CPICREXX.EXE. The
CPICREXX.EXE program can be executed by the operator, from a STARTUP.CMD
file, from the CONFIG.SYS file, or by any other means the user chooses, as long
as it is executed before running any CPI-C REXX programs. The CPICREXX.EXE
needs to be executed only once after OS/2 starts.

The CPICREXX.EXE program registers the CPICOMM environment to REXX. After
the CPICOMM environment is registered, REXX programs can make CPI
Communications calls.

To start a REXX program from the OS/2 command line, use the OS/2 START
command with the /C command option. For example, to start a program named
XCMESI.CMD from the command line, type:

START /C XCMESI.CMD

This command causes OS/2 to start a new OS/2 session for the CMD.EXE
program, which then starts the REXX program. When the REXX program ends,
OS/2 ends the session.

To start a REXX program by means of an inbound allocation request, configure a
TP definition with CMD.EXE as the file name and the REXX program file name as
the parameter string for the TP definition. Precede the file name in the parameter

440 CPI Communications Reference

 OS/2

string with the /C option. For example, to start the program named XCMSSI.CMD
by means of an inbound allocation request, configure the parameter string for the
TP definition as:

 /C XCMSSI.CMD

This configuration causes OS/2 to start a new OS/2 session for the CMD.EXE
program, which then starts the REXX program. When the REXX program ends,
OS/2 ends the session.

Note: A program that is started manually from the OS/2 command line is referred
to as an operator-started program. One that is started by an inbound allocation
request is referred to as an “attach manager started” program.

Issuing a Call Using REXX: To issue a call using the REXX language, type:

ADDRESS CPICOMM 'callname variable0 variable1 ... variableN'

CPICOMM is the environment name the program uses to invoke CPI
Communications calls. The program passes the call name and variable names as
a character string to the CPICOMM environment. In Communications Manager, the
CPICOMM environment is registered to REXX by the CPICREXX.EXE program
before running any REXX CPI Communications programs.

Some character-string variables used on the OS/2 extension calls do not have an
associated length variable. For example:

 key
 sym_dest_name

For languages other than REXX, these variables must be at least 8 bytes long.
REXX programs can specify variables that are shorter than 8 bytes—that is, REXX
variables have the same length as the character string they contain.

A similar exception applies to the elements of REXX arrays such as the array used
for the side_info_entry fields and the (XCDEFTP) TP_definition fields. REXX
programs can specify array elements that are shorter than the corresponding field
lengths—elements having the same length as the character string they contain.
Conversely, REXX programs can specify array elements that are longer than the
corresponding side_info_entry field lengths. However, Communications Manager
ignores any characters of an array element that are beyond the length of the
corresponding field.

Checking the REXX Return Code: The CPICOMM environment uses the call
name and variable names to create the actual call. In doing so, it can encounter
certain error conditions prior to issuing the call. If it encounters an error, it returns
to the REXX program without issuing the CPI Communications call. It sets the
REXX return code variable, RC, to a non-zero value when it encounters an error.
The value may be negative or positive, depending on the error. If it does not
encounter any errors, the CPICOMM environment issues the call and, upon
completion of the call, sets the REXX return code variable to zero.

The return code values that the CPICOMM environment can return in the RC
variable are shown in Table 27.

 Chapter 10. CPI Communications on OS/2 441

 OS/2

Following the call, the REXX program should check the RC variable before it
processes any values returned in the CPI Communications variables, including the
CPI Communications return code. If the RC value is anything other than 0, the
output parameters of the call are not meaningful.

Ending a REXX Program: For Communications Manager to know when a REXX
program ends, the OS/2 session in which the CMD.EXE program is running must
end. When the session ends, control transfers to a Communications Manager exit
routine to perform cleanup processing. If the session does not end,
Communications Manager does not get control when the program is finished, and
resources such as the TP instance and dangling conversations cannot end. This
might require operator intervention to deactivate the sessions allocated to the
conversations, to free the session resources for subsequent use.

Following are some examples of how to cause the OS/2 session to end when the
REXX program is finished:

¹ Use the /C option on the OS/2 START command for operator-started programs,
or precede the program file name with /C on the parameter string for the TP
definition.

¹ End the REXX program with one of the following EXIT statements:

ADDRESS CMD 'EXIT'

 'EXIT'

The first statement explicitly addresses the EXIT to the CMD environment,
which causes the CMD.EXE session to end. The second statement is
equivalent to the first and can be used to end the OS/2 session if the current
environment is the CMD environment—that is, if the program has not
permanently changed the environment from the time it started.

Table 27. Values Returned in the REXX RC Variable for Communications Manager

RC
Value Meaning

0 The ADDRESS CPICOMM statement completed with no REXX errors.

+30 The CPICREXX.EXE program has not been executed.

−3 The CPICOMM environment does not recognize the call name
specified on the ADDRESS CPICOMM statement.

−9 The CPICOMM environment requested a buffer from the CPI
Communications component of Communications Manager to create
the call, but insufficient buffers were available.

−10 The REXX program supplied too many variable names for the call.

−11 The REXX program supplied too few variable names for the call.

−24 The CPICOMM environment encountered a REXX fetch failure; this
usually means the REXX program supplied a name for a variable that
does not exist.

−25 The CPICOMM environment encountered a REXX set failure; this
means REXX memory has been exhausted.

−28 The REXX program supplied an invalid variable name.

442 CPI Communications Reference

 OS/2

¹ For operator-started programs, end the session by entering the OS/2 EXIT
command.

Defining or Referencing a Side Information Entry using REXX: The
Set_CPIC_Side_Information (XCMSSI) and Extract_CPIC_Side_Information
(XCMESI) calls supply a data structure as one of the variables. REXX programs
cannot create the data structure as shown in the description of these calls. For a
REXX program to issue these calls, it must do the following:

1. Use the REXX array capability to create the structure.

2. The name for the array, such as sideinfo, may be chosen by the program.

3. Each element of the array must consist of the array name and the
side_info_entry field name as the array element name. For example, the first
field of a side information entry is the sym_dest_name, so the first element of
the sideinfo array would be named sideinfo.sym_dest_name

4. On the REXX statement for the call, supply the array name as the
side_info_entry variable name—sideinfo in this example.

Defining or Referencing TP_Definition Using REXX: The same type of
considerations for defining or referencing side information fields used on the
XCMSSI call (see “Defining or Referencing a Side Information Entry using REXX”)
are applicable for defining or referencing the TP_Definition structure using REXX.

 Pseudonym Files
Integer characteristics, variables, and fields are shown throughout this chapter as
having pseudonym values rather than integer values. For example, instead of
stating that the variable conversation_security_type is set to an integer value of 0,
this chapter shows conversation_security_type set to the pseudonym value of
CM_SECURITY_NONE. In addition to the pseudonyms used with base CPI
Communications, Communications Manager provides pseudonyms for additional
characteristics, fields, and variables.

For the file name that contains the pseudonym definitions for each supported
language, see “Languages Supported” on page 437.

Defining Side Information
The set of parameters associated with a given symbolic destination name is called
a side information entry. This section provides an overview of how a
Communications Manager user or program can add, replace, delete, and extract
side information entries.

When Communications Manager starts, it copies the side information from the
active configuration file into internal memory. From then on, until it is restarted,
Communications Manager maintains the side information within its internal memory.
When a program calls Initialize_Conversation, Communications Manager obtains
the initial values for the applicable conversation characteristics from this internal
side information.

 Chapter 10. CPI Communications on OS/2 443

 OS/2

User-Defined Side Information
The Communications Manager configuration panels can be used to create and
update side information entries in a configuration file. In addition, if the
configuration file is active, Communications Manager can be requested to also
update the side information in its internal memory. In general, using the
configuration panels requires an operator, a keyboard, and a display—a typical, if
not universal, Communications Manager environment.

The configuration file can also be updated using an editor. This method is useful,
for example, when it is necessary to configure side information for multiple systems
and distribute the configuration file among the systems.

For information about all of the Communications Manager configuration capabilities,
including details about how a user can configure CPI Communications side
information, refer to the Communications Manager/2 Configuration Guide.

After the configuration file is updated, Communications Manager verification of the
configuration file may be initiated. As an option, one can request that changes
made to the side information in the file also take effect in the internal side
information, provided that the configuration file is active and the verification is
successful.

Program-Defined Side Information
The programmer can write a system management program that issues
Communications Manager calls to update the internal side information entries and
obtain the parameter values of the entries. These updates affect only the internal
side information and remain in effect until changed or until Communications
Manager is stopped; they do not alter the configuration file. Similarly, parameter
values are obtained only from the internal side information; no reference is made to
the configuration file. Consequently, these calls are useful for making temporary
updates to the internal side information without affecting the original information in
the configuration file.

Communications Manager provides calls to update the internal side information and
one to extract it. These are:

 ¹ Set_CPIC_Side_Information (XCMSSI)
Add or replace the entry (all parameter values) for a symbolic destination name.
See page 607 for a detailed description.

 ¹ Delete_CPIC_Side_Information (XCMDSI)
Delete the entry for a symbolic destination name. See page 602 for a detailed
description.

 ¹ Extract_CPIC_Side_Information (XCMESI)
Return the entry for a symbolic destination name or for the nth entry. See
page 457 for a detailed description.

Note: For REXX programs, refer to “Defining or Referencing a Side Information
Entry using REXX” on page 443 for information on how to define side information
entries.

The symbolic destination name provides the index on each of these calls for
accessing a side information entry. Alternatively, an integer value provides the
index on the Extract_CPIC_Side_Information call for extracting an entry. If the
program calls Set_CPIC_Side_Information and an entry for the symbolic destination

444 CPI Communications Reference

 OS/2

name does not exist, Communications Manager adds a new entry. If the entry
does exist, Communications Manager replaces all of the entry's parameters. When
the program calls Delete_CPIC_Side_Information, Communications Manager
removes the entire entry (the symbolic destination name and all of its associated
parameters). If the program calls Extract_CPIC_Side_Information, all parameters
for the entry are returned except security_password.

The Communications Manager keylock feature is used with the
Set_CPIC_Side_Information and Delete_CPIC_Side_Information calls. The feature
may be enabled (secured) during Communications Manager configuration. This
feature provides a means for protecting a system against unauthorized change to
Communications Manager system definition parameters, including CPI
Communications side information. When the keylock feature is secure, a program
can issue the Set_CPIC_Side_Information and Delete_CPIC_Side_Information calls
only if it supplies the Communications Manager master or service key. Refer to the
Communications Manager/2 Configuration Guide for details about the keylock
feature.

Side Information Parameters
Table 28 shows the parameters contained in a Communications Manager CPI
Communications side information entry and a brief description of each parameter.
Refer to “Characteristics, Fields, and Variables” on page 631 for a definition of the
data type and length of these parameters.

Table 28 (Page 1 of 2). An Entry of Communications Manager CPI Communications Side
Information

Parameter Pseudonym Description

sym_dest_name The name a program specifies on
Initialize_Conversation to assign the
initial characteristic values for the
conversation.

partner_lu_name The alias or network name of the
partner LU for the conversation.

tp_name_type An indicator of whether the tp_name
parameter specifies an application TP
name or an SNA service TP name.
The value may be:

 ¹ XC_APPLICATION_TP
 ¹ XC_SNA_SERVICE_TP

tp_name The name of the partner program for
the conversation. The program may be
an application TP or an SNA service
TP.

mode_name The name of the session mode for the
conversation.

 Chapter 10. CPI Communications on OS/2 445

 OS/2

Table 28 (Page 2 of 2). An Entry of Communications Manager CPI Communications Side
Information

Parameter Pseudonym Description

conversation_security_type The level of access security information
to include on the allocation request sent
to the partner LU. This parameter is
defined only from the configuration
panels or by a program call to
Set_CPIC_Side_Information; it is not
included in the editable configuration
file. The value may be:

 ¹ CM_SECURITY_NONE (or
XC_SECURITY_NONE)

 ¹ CM_SECURITY_SAME (or
XC_SECURITY_SAME)

 ¹ CM_SECURITY_PROGRAM (or
XC_SECURITY_PROGRAM)

See “Set_Conversation_Security_Type
(XCSCST)” on page 616 for a
description of these values.

security_user_ID The access security user ID to include
on the allocation request sent to the
partner LU, when
conversation_security_type is
CM_SECURITY_PROGRAM (or
XC_SECURITY_PROGRAM). When
conversation_security_type is other
than CM_SECURITY_PROGRAM (or
XC_SECURITY_PROGRAM), this
parameter is ignored. This parameter
is defined only from the configuration
panels or by a program call to
Set_CPIC_Side_Information; it is not
included in the editable configuration
file.

security_password The access security password to
include on the allocation request sent to
the partner LU, when
conversation_security_type is
CM_SECURITY_PROGRAM (or
XC_SECURITY_PROGRAM). When
conversation_security_type is any value
other than CM_SECURITY_PROGRAM
(or XC_SECURITY_PROGRAM), this
parameter is ignored. This parameter
is defined only from the configuration
panels or by a program call to
Set_CPIC_Side_Information; it is not
included in the editable configuration
file.

446 CPI Communications Reference

 OS/2

How Dangling Conversations Are Deallocated
When a CPI Communications program starts, Communications Manager adds itself
to an OS/2 exit list for the program's OS/2 process. When the program ends its
execution, OS/2 gives control to the Communications Manager exit routine. The
Communications Manager exit routine performs cleanup processing on behalf of the
program.

With one exception (described in the following paragraph), Communications
Manager deallocates dangling conversations, as part of its cleanup processing.
That is, it deallocates all remaining conversations for that program, using the
deallocate_type of CM_DEALLOCATE_ABEND.

The exception to this deallocation is a program written in the REXX language.
Communications Manager may not get control when a REXX program ends.
Therefore, REXX programs should deallocate all conversations before ending.
Failure to do so may require operator intervention to deactivate the sessions
allocated to the conversations, to free the session resources for subsequent use.
See “Ending a REXX Program” on page 442 for information about how to end the
execution of a REXX program.

It is a good practice for all CPI Communications programs to deallocate all active
conversations when they are finished with them. And, of course, programs that
require their conversations to be deallocated with a deallocate_type other than
CM_DEALLOCATE_ABEND must deallocate them before ending execution.

Scope of the Conversation_ID
The scope of the conversation_ID in OS/2 is limited to one TP instance—that is,
the TP instance with which it was associated when the conversation was initialized.
For more information, refer to “TP Instances for Communications Manager” on
page 625.

Identifying Product-Specific Errors
When CPI Communications returns the CM_PRODUCT_SPECIFIC_ERROR return
code, it creates an entry in the error log. Information in the error log entry identifies
CPIC as the originator. Refer to the problem determination guide for the specific
product being used for a complete description of the errors and the recommended
action to take.

Notes:

1. The state of the conversation remains unchanged, except for conditions where
APPC is stopped or ends abnormally.

2. As part of its processing of a CPI Communications call other than a Set or
Extract call, the CPI Communications component of Communications Manager
creates an APPC verb and calls the APPC component to execute the verb.
For example, when a program calls Allocate (CMALLC) for a basic
conversation, Communications Manager creates and executes the APPC verb,
ALLOCATE. When the APPC component of Communications Manager
encounters an unexpected error on an OS/2 call, it logs the error as type 0022.
When the APPC component returns to the CPI Communications component,
the latter logs an additional entry as type 0052. The second log entry indicates
that the error occurred while Communications Manager was processing a CPI
Communications call.

 Chapter 10. CPI Communications on OS/2 447

 OS/2

3. If Communications Manager is not active when the program issues the
Initialize_Conversation or Accept_Conversation call, the
CM_PRODUCT_SPECIFIC_ERROR return code is returned on the call but no
error is logged.

 Diagnosing Errors
This section provides information on diagnosing errors. Refer to the problem
determination guide for the specific product being used for an additional description
of the errors and the recommended action to take. Refer also to the CPI
Communications return codes given in Appendix B, “Return Codes and Secondary
Information” and Table 27 on page 442.

 Set_Log_Data (CMSLD)
The program sets the log_data characteristic to a character string representing the
message text portion of the Error Log GDS variable. The log_data variable on the
CMSLD call must contain a 1–512 byte ASCII character string, and it may include
the space character. Communications Manager translates all log_data characters
to EBCDIC before recording the log data in the system error log and sending the
Error Log GDS variable on the conversation. The log data is written to the error log
with a type of 0001 and a subtype set to the sense data Communications Manager
sends with the Error Log GDS variable on the conversation.

Logging Errors for CPI Communications Error Return Codes
Communications Manager provides the user with a means for identifying errors and
return codes. Communications Manager stores the errors in the OS/2 system error
log. Refer to the problem determination guide for the specific product being used
for a complete description of the errors and the recommended action to take.

Communications Manager creates an error log entry, as discussed in “Identifying
Product-Specific Errors” on page 447, when it logs the
CM_PRODUCT_SPECIFIC_ERROR.

Communications Manager creates an error log entry for session activation failures
and session outages. If the CPI Communications program receives one of the
following error return codes, Communications Manager may also record a system
error log entry:

 CM_ALLOCATE_FAILURE_NO_RETRY
 CM_ALLOCATE_FAILURE_RETRY
 CM_RESOURCE_FAILURE_NO_RETRY
 CM_RESOURCE_FAILURE_RETRY

The first two return codes are indicated on an Allocate (CMALLC) call when
Communications Manager fails to allocate a session. The last two return codes are
indicated on calls following an Allocate or Accept_Conversation (CMACCP) call
when Communications Manager detects a session outage. Communications
Manager logs session outages in all cases. However, it logs allocation failures only
when the cause is a session activation failure. Allocation failures caused by the
session limit being 0 for the session mode name are not logged.

Session activation errors and session outages can be caused by a number of
different conditions. The system error log specifies a type and subtype combination
for each condition.

448 CPI Communications Reference

 OS/2

Communications Manager creates an error log entry for error information sent by
the partner program. These error log entries all have a type of 0001 and a subtype
set to the sense data Communications Manager receives with the error notification.
The CPI Communications return codes for these conditions are:

 CM_DEALLOCATE_ABEND
 CM_PROGRAM_ERROR_NO_TRUNC
 CM_PROGRAM_ERROR_PURGING
 CM_PROGRAM_ERROR_TRUNC
 CM_SVC_ERROR_NO_TRUNC
 CM_SVC_ERROR_PURGING
 CM_SVC_ERROR_TRUNC

Causes for the CM_PROGRAM_PARAMETER_CHECK Return
Code
This section discusses the causes for the CM_PROGRAM_PARAMETER_CHECK
return code that are specific to Communications Manager. These causes are in
addition to those described in Appendix B, “Return Codes and Secondary
Information.” In Communications Server, CM_PROGRAM_PARAMETER_CHECK return
codes usually cause additional information to be written to the Communications
Manager message log.

Communications Manager indicates the CM_PROGRAM_PARAMETER_CHECK return
code because:

¹ The call passed a pointer to a variable and the pointer is not valid. An invalid
pointer contains a memory address that Communications Manager cannot use
to refer to the variable. Examples of a invalid pointer are:

– An address within a code segment
– An address greater than the data segment limit
– An address of zero (which is called a null address)

¹ The call passed a pointer to a character string variable (including a buffer
variable) and a length, but the length would extend the valid addressability for
the data beyond the segment limit.

¹ For non-blocking operations that initially go outstanding
(CM_OPERATION_INCOMPLETE return code), if a return parameter becomes
inacessible, then the CM_PROGRAM_PARAMETER_CHECK return code will be
returned. This could be caused, for example, if a C Language program freed
the storage by returning it to OS/2.

Causes for the CM_PROGRAM_STATE_CHECK Return Code
This section discusses the causes for the CM_PROGRAM_STATE_CHECK return
code on the Accept_Conversation (CMACCP) call that are specific to
Communications Manager. These causes are in addition to those described for the
base CPI Communications call, as given in Appendix B, “Return Codes and
Secondary Information”. Communications Manager does not log these errors.

Communications Manager indicates the CM_PROGRAM_STATE_CHECK return code
on the Accept_Conversation call because:

¹ The operator or program set a TP name in the APPCTPN environment variable
that was incorrect; that is, it did not match the TP name on the inbound
allocation request for the program.

 Chapter 10. CPI Communications on OS/2 449

 OS/2

¹ An operator-started program issued the Accept_Conversation call, but the call
expired before the inbound allocation request arrived. The duration that a call
waits for an inbound allocation request is configured on the TP definition, using
the receive_allocate_timeout parameter.

¹ For an Accept_Conversation or Accept_Incoming call, at least one TP name
being used by the call is a Communications Manager non-queued TP and there
are no outstanding attaches matching any of the TP name(s) being waited on.

¹ An operator-started or attach manager-started program issued the
Accept_Conversation call after the inbound allocation request for the program
expired. The duration that an inbound allocation request waits for an
Accept_Conversation call is configured on the TP definition, using the
incoming_allocate_timeout parameter.

When Allocation Requests Are Sent
Because Communications Manager buffers data being transmitted to the remote
LU, the allocation request generated by an Allocate call is not sent to the remote
node until one of the following occurs:

¹ The local LU's send buffer becomes full as the result of (one or more)
Send_Data calls.

¹ A call is executed that explicitly flushes the buffer (for example, a Flush call or
a Receive call).

Deviations from the CPI Communications Architecture
OS/2 supports CPI Communications calls except as indicated in the following
sections.

 Accept_Incoming (CMACCI)
When an Accept_Incoming (CMACCI) call is issued to Communications Manager,
the following rules are checked sequentially to determine if it applies. The TP
name(s) is determined by the first applicable rule.

1. The TP name from a successfully completed Set_TP_Name (CMSTPN) call for
this conversation.

This rule is only used for Communications Server.

2. The TP name(s) from a successfully completed Specify_Local_TP_Name
(CMSLTP) call for this conversation. Refer to “Specify_Local_TP_Name
(CMSLTP)” on page 451 for allowable TP names on the CMSLTP call.

3. A TP name set in the APPCTPN OS/2 environment variable. The environment
variable must be set to a valid TP name.

Partially specified TP names and '*' (allowed on the CMSLTP call) are not
allowable TP names for the APPCTPN environment variable.

If none of the above rules yields a TP name, then CMACCI completes with a
CM_PROGRAM_STATE_CHECK return code.

450 CPI Communications Reference

 OS/2

 Release_Local_TP_Name (CMRLTP)
In addition to the TP names described in “Specify_Local_TP_Name (CMSLTP),”
Communications Manager allows the TP name XC_RELEASE_ALL on the
CMRLTP. Use of this name will result in releasing all of the TP names for this
program.

If you are writing a multi-threaded CPI-C program, refer to “Multi-threaded CPI-C
Programs” on page 624.

 Specify_Local_TP_Name (CMSLTP)
Communications Manager allows the following TP names on the CMSLTP call:

¹ A fully specified name.
The allowable characters and length are specified in Table 40 on page 632
For example: MYTP12.

¹ A partially specified name.
This option allows CPI-C to accept conversations for TP names that begin with
a partially specified name. For example: MYTP* will accept conversations for
TP names MYTP1, MYTPFROMHEADQUARTERS, etc.

 ¹ '*'
This option will accept any LU 6.2 incoming conversations for this entire
workstation (instance of Communications Manager). This option should be
used very judiciously and only if this program is the only LU 6.2 program
running under the entire OS/2 operating system.

CPI-C issues the RECEIVE_ALLOCATE(multiple) APPC verb when processing the
CMACCI call. If a TP name for an incoming conversation has not been configured
in Communications Manager, there are cases where Communications Manager will
dynamically define the TP characteristics when using the above options. Refer to
RECEIVE_ALLOCATE(multiple) call in the Communications Manager/2 APPC
Programming Reference for details.

Duplicate CMSLTP entries are not removed by Communications Manager. For
example, if CMSLTP is issued twice and in each case the TP name MYTP1 is
specified, then the list of local TP names will contain two MYTP1 entries. A
CMRLTP call specifying a TP name of MYTP1 must be issued twice to removed
these entries.

If you are writing a multi-threaded CPI-C program, refer to “Multi-threaded CPI-C
Programs” on page 624.

 Set_Sync_Level (CMSSL)
Communications Manager supports the following synchronization levels:

 CM_NONE
 CM_CONFIRM

If the program specifies other values (than those listed above) on the sync_level
variable, Communications Manager rejects the Set_Sync_Level call with a
return_code of:

¹ CM_PARM_VALUE_NOT_SUPPORTED for Communications Manager/2 Version
1.11 or later

¹ CM_PROGRAM_PARAMETER_CHECK for "Communications Manager/2 Version
1.0 and Communications Manager/2 Version 1.1

 Chapter 10. CPI Communications on OS/2 451

 OS/2

Programming Languages Not Supported
CPI Communications calls from Application Generator, PL/I, and RPG programs are
not supported on OS/2 systems.

Mode Names Not Supported
Communications Manager does not allow a CPI Communications program to
allocate a conversation that uses the CPSVCMG or SNASVCMG mode name. If
the program attempts to call Allocate (CMALLC) with the mode_name characteristic
set to CPSVCMG or SNASVCMG, Communications Manager rejects the call with a
return_code of CM_PARAMETER_ERROR.

CPI Communications Functions Not Available
This section lists the CPI Communications functions that are not available at the
CPI Communications interface on Communications Manager.

Unsupported TP Names: Communications Manager does not support
double-byte TP names and provides limited support for SNA service TP names.

Double-Byte TP Names: Communications Manager does not support TP names
consisting of characters from a double-byte character set, such as Kanji. These TP
names begin with the X'0E' character and end with the X'0F' character. They
have an even number of bytes (2 or more) between these delimiting characters.

If the program calls Allocate (CMALLC) with the TP_name characteristic set to a
double-byte name, Communications Manager treats the name as ASCII and
translates each byte to EBCDIC. The resulting TP name is not valid, and the
partner LU for the conversation rejects the allocation request.

SNA Service TP Names: Communications Manager does not support the
specification of an SNA service TP name on the Set_TP_Name (CMSTPN) call, nor
does it support the setting of the APPCTPN OS/2 environment variable to an SNA
service TP name.

Specifically, a TP name can be supplied in the following ways:

¹ Specified on the Specify_Local_TP_Name (CMSLTP) call

¹ Specified on the Set_TP_Name (CMSTPN) call

¹ Specified in the side information—by means of either the configuration panels
or the Set_CPIC_Side_Information (XCMSSI) call

¹ Set in the APPCTPN OS/2 environment variable for operator-started programs.

A TP name specified on the CMSTPN call or in the side information is used when a
program issues the Allocate (CMALLC) call for an outbound conversation. A TP
name set in the APPCTPN OS/2 environment variable or specified on the CMSLTP
call is used when an operator-started program issues the Accept_Conversation
(CMACCP) call or Accept_Incoming (CMACCI) call for an inbound conversation.
Communications Manager treats a TP name specified on the CMSTPN call or a TP
name set in the APPCTPN OS/2 environment variable as an application TP name and
translates all characters of the name from ASCII-to-EBCDIC before using the name.

However, Communications Manager is able to distinguish an application TP name
from an SNA service TP name specified in the side information. The side
information includes a flag, TP_name_type, that indicates whether the TP name is

452 CPI Communications Reference

 OS/2

an application TP name or an SNA service TP name. Communications Manager
translates all characters of an SNA service TP name (except the first character)
from ASCII-to-EBCDIC before using the name.

Remotely started CPI Communications programs—local programs that are started
by inbound allocation requests—cannot be SNA service TPs. That is,
Communications Manager cannot complete a CMACCP or CMACCI call for an
inbound allocation request that specifies an SNA service TP name. This restriction
exists because Communications Manager sets the TP name (converted from
EBCDIC-to-ASCII) in the APPCTPN OS/2 environment variable for the program.
Then, when the program issues the CMACCP or CMACCI call, Communications
Manager retrieves the TP name from the environment variable to complete the call,
just as it does for an operator-started program. However, Communications
Manager sets only application TP names in the environment variable, not SNA
service TP names (because of the conflict with ASCII characters and the first
character of an SNA service TP name). If the inbound allocation request specifies
an SNA service TP name, the CPI Communications program's CMACCP (or
CMACCI) fails with a return_code of CM_PRODUCT_SPECIFIC_ERROR.

 Chapter 10. CPI Communications on OS/2 453

 OS/2

OS/2 Extension Calls—System Management
A program issues system management calls to do the following:

¹ Set, delete, or extract parameter values as defined in the Communications
Manager internal side information. The side information is used to assign initial
characteristic values on the Initialize_Conversation (CMINIT) call. The program
can also extract the current values of the side information.

¹ Define or delete TP definitions.

¹ Register or unregister memory objects.

Note: Using any of these calls means that the program requires modification to
run on another system that does not implement the call or implements it differently.

Table 29 lists the system management call names and briefly describes their
functions.

Table 29. List of Communications Manager System Management Calls

Call Pseudonym Description

XCMDSI Delete_CPIC_Side_InformationDeletes a side information
entry for a specified
symbolic destination name.

XCMESI Extract_CPIC_Side_InformationReturns the parameter
values of a side information
entry for a specified
symbolic destination name
or entry number.

XCMSSI Set_CPIC_Side_Information Sets the parameter values of
a side information entry for a
specified symbolic
destination name.

XCDEFTP Define_TP Defines a TP.

XCDELTP Delete_TP Deletes a TP definition.

XCRMO Register_Memory_Object Registers a memory object.

XCURMO Unregister_Memory_Object Unregisters a memory
object.

454 CPI Communications Reference

 OS/2 Delete_CPIC_Side_Information (XCMDSI)

 Delete_CPIC_Side_Information (XCMDSI)
A program issues the Delete_CPIC_Side_Information (XCMDSI) call to delete an
entry from Communications Manager internal side information. The entry to be
deleted is identified by the symbolic destination name. Side information in the
configuration file remains unchanged.

See “Defining Side Information” on page 443 for more information about
configuring side information.

 Format
CALL XCMDSI(key,

sym_dest_name,
return_code)

 Parameters
key (input)

Specifies either the master or service key, when the Communications
Manager keylock feature has been secured. The use of the key deters
unintentional or unauthorized changes to the side information. See the
Communications Manager/2 Configuration Guide for the product being used
for details of the keylock feature.

If keylock is not secured, the value of this parameter is ignored.

sym_dest_name (input)
Specifies the symbolic destination name for the side information entry to be
removed.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The key variable contains a value that does not match the master or
service key and the Communications Manager keylock feature has
been secured.

– The sym_dest_name variable contains a name that does not exist in
Communications Manager internal side information.

– The address of one of the variables is not valid.
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The APPC component of Communications Manager is not active for one
of the following reasons:

– The Communications Manager has not started APPC.
– The Communications Manager has stopped APPC.
– APPC is in an abend state.

 Chapter 10. CPI Communications on OS/2 455

 OS/2 Delete_CPIC_Side_Information (XCMDSI)

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, Communications

Manager does not delete the side information entry.

2. This call does not affect any active conversation.

3. The side information is removed immediately, which affects all
Initialize_Conversation calls for the deleted symbolic destination name made
after completion of this call.

4. While Communications Manager is removing the side information entry, any
other program's call to change or extract the side information will be suspended
until this call is completed; this suspension includes a program's call to
Initialize_Conversation (CMINIT).

5. The Delete_CPIC_Side_Information call is available on Communications
Manager for these SAA programming languages:

 ¹ C
 ¹ COBOL
 ¹ REXX

456 CPI Communications Reference

 OS/2 Extract_CPIC_Side_Information (XCMESI)

 Extract_CPIC_Side_Information (XCMESI)
A program issues the Extract_CPIC_Side_Information (XCMESI) call to obtain the
parameter values of an entry in Communications Manager internal side information.
The program requests the entry by either an entry number or a symbolic destination
name. It does not access side information in the configuration file.

See “Defining Side Information” on page 443 for information about configuring side
information.

 Format
CALL XCMESI(entry_number,

sym_dest_name,
side_info_entry,
side_info_entry_length,
return_code)

 Parameters
entry_number (input)

Specifies the current number (index) of the side information entry for which
parameter values are to be returned, where an entry_number of 1 designates
the first entry. The program may obtain parameter values from all the entries
by incrementing the entry_number on successive calls until the last entry has
been accessed; the program gets a return_code of
CM_PROGRAM_PARAMETER_CHECK when the entry_number exceeds the
number of entries in the side information.

Alternatively, the program may specify an entry_number of 0 to obtain a
named entry, using the sym_dest_name variable to identify the entry.

sym_dest_name (input)
Specifies the symbolic destination name of the entry, when parameter values
for a named entry are needed. Communications Manager uses this variable
only when entry_number is 0. If entry_number is greater than 0,
Communications Manager ignores this sym_dest_name variable.

side_info_entry (output)
Specifies a structure in which the parameter values are returned. The format
of the structure is shown in Table 30. Values within character string fields
are returned left-justified and padded on the right with space characters.

 Chapter 10. CPI Communications on OS/2 457

 OS/2 Extract_CPIC_Side_Information (XCMESI)

The following extended structure is available in Communications Server to
support 10-byte user_IDs and 10-byte user_passwords:

Refer to Table 28 on page 445 for descriptions of the side information
parameters. Refer to Table 40 on page 632 for definitions of the character
set usage and length of each character string parameter.

side_info_entry_length (input)
Specifies the length of the entry structure. Set this length to 124, or 140 for
Communications Server if using the extended side information stucture.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK

Table 30. Entry Structure for the Communications Manager
Extract_CPIC_Side_Information Call

Byte
Offset

Field Length and
Type Parameter Pseudonym

0 8-byte character string sym_dest_name

8 17-byte character string partner_lu_name

25 3-byte character string (reserved)

28 32-bit integer tp_name_type

32 64-byte character string tp_name

96 8-byte character string mode_name

104 32-bit integer conversation_security_type

108 8-byte character string security_user_ID

116 8-byte character string (reserved)

Table 31. Extended Entry Structure for the Communications Server Call

Byte
Offset

Field Length and
Type Parameter Pseudonym

0 8-byte character string sym_dest_name

8 17-byte character string partner_lu_name

25 3-byte character string (reserved)

28 32-bit integer tp_name_type

32 64-byte character string tp_name

96 8-byte character string mode_name

104 32-bit integer conversation_security_type

108 10-byte character string security_user_ID

118 22-byte character string
(must be zeros)

(reserved)

458 CPI Communications Reference

 OS/2 Extract_CPIC_Side_Information (XCMESI)

Successful completion.
 ¹ CM_PROGRAM_PARAMETER_CHECK

This return code indicates one of the following:
– The entry_number specifies a value greater than the number of

entries in the side information.
– The entry_number specifies a value less than 0.
– The sym_dest_name specifies a name that is not in any entry in the

internal side information, and entry_number specifies 0.
– The side_info_entry_length contains a value other than 124 or 140.
– The address of one of the variables is not valid.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
The APPC component of Communications Manager is not active for one
of the following reasons:

– The Communications Manager has not started APPC.
– The Communications Manager has stopped APPC.
– APPC is in an abend state.

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the values contained

in the side_info_entry fields are not meaningful.

2. If no user ID exists in the side information, the security_user_ID field contains
all space characters.

3. The security_password of the side information entry is not returned; the field (at
byte offset 116) is reserved on this call, and its content is not meaningful.

4. This call does not affect any active conversation.

5. This call does not change the parameter values of the specified side
information entry.

6. While Communications Manager is extracting the side information, any other
program's call to change the side information is suspended until this call is
completed.

7. The Extract_CPIC_Side_Information call is available on Communications
Manager for the following programming languages:

 C
 COBOL
 REXX

Refer to “Languages Supported” on page 437 for information on how to create
the data structure using these languages.

8. The Extract_CPIC_Side_Information call and the Set_CPIC_Side_Information
(XCMSSI) call use the same side_info_entry format. This format enables a
program to obtain an entry, update a field, and restore the updated entry,
provided the entry contains no security_password, or the program also updates
the security_password.

9. The entry_number specifies an index into the current list of internal side
information entries. If entries are deleted, the indexes for particular entries may
change.

 Chapter 10. CPI Communications on OS/2 459

 OS/2 Set_CPIC_Side_Information (XCMSSI)

 Set_CPIC_Side_Information (XCMSSI)
A program issues the Set_CPIC_Side_Information (XCMSSI) call to add or replace
an entry in Communications Manager internal side information. The entry contains
all the side information parameters for the conversation identified by the supplied
symbolic destination name. If the entry does not exist in the side information, this
call adds a new entry; otherwise, it replaces the existing entry in its entirety.

Side information in the configuration file remains unchanged. This call overrides
the side information copied from the active configuration file when Communications
Manager was started.

See “Defining Side Information” on page 443 for more information about
configuring side information.

 Format
CALL XCMSSI(key,

side_info_entry,
side_info_entry_length,
return_code)

 Parameters
key (input)

Specifies either the master or service key, when the Communications
Manager keylock feature has been secured. The use of the key deters
unintentional or unauthorized changes to the side information. See the
Communications Manager/2 Configuration Guide for the product being used
for details of the keylock feature.

If keylock is not secured, the value of this parameter is ignored.

side_info_entry (input)
Specifies the structure containing the parameter values for the side
information entry. The format of the structure is shown in Table 32. Values
within character string fields must be left-justified and padded on the right with
space characters.

Table 32 (Page 1 of 2). Entry Structure for the Communications Manager
Set_CPIC_Side_Information Call

Byte
Offset

Field Length and
Type Parameter Pseudonym

0 8-byte character string sym_dest_name

8 17-byte character string partner_LU_name

25 3-byte character string (reserved)

28 32-bit integer TP_name_type

32 64-byte character string TP_name

96 8-byte character string mode_name

104 32-bit integer conversation_security_type

108 8-byte character string security_user_ID

460 CPI Communications Reference

 OS/2 Set_CPIC_Side_Information (XCMSSI)

The following extended structure is available in Communications Server to
support 10-byte user_IDs and 10-byte user_passwords:

Refer to Table 28 on page 445 for a description of the side information
parameters; refer to Table 40 on page 632 for a definition of the character
set usage and the length of each character string parameter.

side_info_entry_length (input)
Specifies the length of the entry structure. Set this length to 124, or 140 for
Communications Server if using the extended side information stucture.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The key variable contains a value that does not match the master or
service key and the Communications Manager keylock feature has
been secured.

– The sym_dest_name field in the side_info_entry structure contains a
space character in the left-most byte (at byte offset 0 of the structure).

– The tp_name_type field in the side_info_entry structure specifies an
undefined value.

Table 32 (Page 2 of 2). Entry Structure for the Communications Manager
Set_CPIC_Side_Information Call

Byte
Offset

Field Length and
Type Parameter Pseudonym

116 8-byte character string security_password

Table 33. Extended Entry Structure for the Communications Server Call

Byte
Offset

Field Length and
Type Parameter Pseudonym

0 8-byte character string sym_dest_name

8 17-byte character string partner_LU_name

25 3-byte character string (reserved)

28 32-bit integer TP_name_type

32 64-byte character string TP_name

96 8-byte character string mode_name

104 32-bit integer conversation_security_type

108 10-byte character string security_user_ID

118 10yte character string security_password

128 12-byte character string
(must be zeroes)

(reserved)

 Chapter 10. CPI Communications on OS/2 461

 OS/2 Set_CPIC_Side_Information (XCMSSI)

– The conversation_security_type field in the side_info_entry structure
specifies an undefined value.

– The side_info_entry_length contains a value other than 124 or 140.
– The address of one of the variables is not valid.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
The APPC component of Communications Manager is not active for one
of these reasons:

– The Communications Manager has not started APPC.
– The Communications Manager has stopped APPC.
– APPC is in an abend state.

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the side information

entry is not created or changed.

2. The character string parameter values supplied in the fields of the
side_info_entry structure are not checked for validity on this call. An invalid
parameter value is detected later on the Allocate (CMALLC) call or on a
subsequent call, such as Send_Data (CMSEND), depending on which
parameter value is not valid. An invalid partner LU name or mode name is
detected on the Allocate call and indicated to the program on that call. The
partner LU detects an invalid TP name, user ID, or password when it receives
the allocation request; in this case the partner LU returns an error indication to
the program on a subsequent call following the Allocate.

3. This Set_CPIC_Side_Information call does not affect any active conversation.

4. The side information supplied on this call takes effect immediately and is used
for all Initialize_Conversation calls for the new or changed symbolic destination
name made after completion of this call.

5. While Communications Manager updates the side information with the
parameters from this call, any other program's call to change or extract the side
information is suspended until this call is completed; this includes a program's
call to Initialize_Conversation (CMINIT).

6. The Set_CPIC_Side_Information call is available on Communications Manager
for the following SAA programming languages:

 ¹ C
 ¹ COBOL
 ¹ REXX

Refer to “Languages Supported” on page 437 for information on how to create
the data structure using these languages.

7. The Set_CPIC_Side_Information call and the Extract_CPIC_Side_Information
(XCMESI) call use the same side_info_entry format. This format enables a
program to obtain an entry, update a field, and restore the updated entry,
provided the entry contains no security_password, or the program also updates
the security_password.

462 CPI Communications Reference

 OS/2 Define_TP (XCDEFTP)

 Define_TP (XCDEFTP)
This call is only available in Communications Server, and only at the 32-bit C
Language interface and through REXX.

A program uses the Define_TP (XCDEFTP) call to define information that affects
the way Communications Manager processes an incoming request for a
conversation with the specified transaction program (TP) name. This TP name can
subsequently be associated with a running program via the
Specify_Local_TP_Name (CMSLTP) call. The definition information includes the
characteristics of conversations that the TP can accept, the file specification of the
local program, and the timeout values for both incoming conversation requests and
accept calls.

The XCDEFTP call can be used to add a new TP definition or to replace an
existing one. If the TP is already defined but has not been associated with a
program with a CMSLTP call, the existing definition is replaced. If the TP name is
already associated with a program, the call is rejected.

A TP definition can be removed with a Delete_TP (XCDELTP) call.

More information concerning XCDEFTP and XCDELTP can be found in the
Define_TP and Delete_TP verb sections of the Communications Server Version 4.0
System Management Programming Reference.

 Format
CALL XCDEFTP(key,

TP_definition,
TP_definition_length,
return_code)

 Parameters
key (input)

Specifies either the master or service key, when the Communications
Manager keylock feature has been secured. See the Communications Server
Installation and Configuration Guide for details of the keylock feature.

This is an 8-byte character field. If the key is shorter than 8 characters, it
must be left-justified and padded on the right with space characters.

TP_definition (input)
Specifies the structure containing the parameter values for the TP definition
entry. The format of the structure is shown in Table 34 on page 464. Values
within character string fields must be left-justified and padded on the right with
space characters.

 Chapter 10. CPI Communications on OS/2 463

 OS/2 Define_TP (XCDEFTP)

TP_definition_length (input)
Specifies the length of the entry structure. Set this length to 408 (the only
defined value).

Table 34. Entry Structure for the Communications Server Define_TP Call.

Byte
Offset

Field Length and
Type

Parameter Pseudonym

0 64-byte character
string (ASCII)

TP_name

64 32-bit integer TP_name_type
(XC_APPLICATION_TP,
XC_SNA_SERVICE_TP)

68 80-byte character
string (ASCII)

filespec

148 80-byte character
string (ASCII)

icon_filespec

228 128-byte character
string (ASCII)

parm_string

356 32-bit integer conversation_type
(CM_BASIC_CONVERSATION,
CM_MAPPED_CONVERSATION,
XC_EITHER_CONVERSATION_TYPE)

360 32-bit integer send_receive_mode
CM_HALF_DUPLEX,
CM_FULL_DUPLEX,
XC_EITHER_SEND_RECEIVE_MODE)

364 32-bit integer (must
be zeros)

Reserved

368 32-bit integer conversation_security_required
(XC_NO,
XC_YES)

372 32-bit integer sync_level
(CM_NONE,
CM_CONFIRM,
XC_EITHER_SYNC_LEVEL)

376 32-bit integer TP_operation
(XC_QUEUED_OPERATOR_STARTED,
XC_QUEUED_AM_STARTED,
XC_NONQUEUED_AM_STARTED,
XC_QUEUED_OPERATOR_PRELOADED)

380 32-bit integer program_type
(XC_BACKGROUND,
XC_FULLSCREEN,
XC_PRESENTATION_MANAGER,
XC_VIO_WINDOWABLE)

384 32-bit integer Incoming_allocate_queue_limit

388 32-bit integer Incoming_allocate_timeout

392 32-bit integer accept_timeout

396 12-byte character
string (must be zeros)

Reserved

464 CPI Communications Reference

 OS/2 Define_TP (XCDEFTP)

return_code
Specifies the result of the call execution. The return_code can be one of the
following (more details can be found in related return codes for the Define_TP
verb in Communications Server Version 4.0 System Management
Programming Reference.)

 ¹ CM_OK

Successful completion

 ¹ CM_PROGRAM_PARAMETER_CHECK

A parameter contains either a null or an inaccessible address.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

This return code can occur for reasons such as: out of memory, DOS call
failure, etc..

 ¹ XC_PARM1_CHECK

The key variable contains a value that does not match the master or
service key and the Communications Manager keylock feature has been
secured.

 ¹ XC_PARM3_CHECK

The length given for the TP_definition structure is not valid.

 ¹ XC_TP_ALREADY_ACTIVE

The TP is already defined and it is currently active or being started.

 ¹ XC_COMMUNICATION_SUBSYSTEM_ABENDED

 ¹ XC_COMMUNICATION_SUBSYSTEM_NOT_LOADED

 ¹ XC_STACK_TOO_SMALL

 ¹ XC_UNEXPECTED_DOS_ERROR

 ¹ XC_INCONSISTENT_TP_OPERATION

 ¹ XC_INVALID_CONV_SECURITY_RQD

 ¹ XC_INVALID_CONVERSATION_TYPE

 ¹ XC_INVALID_SEND_RCV_MODE

 ¹ XC_INVALID_INCOM_ALLOC_TIMEOUT

 ¹ XC_INVALID_PROGRAM_TYPE

 ¹ XC_INVALID_INCOM_ALLOC_Q_LIMIT

 ¹ XC_INVALID_ACCEPT_TIMEOUT

 ¹ XC_INVALID_SYNC_LEVEL

 ¹ XC_INVALID_TP_NAME

 ¹ XC_INVALID_TP_NAME_TYPE

 ¹ XC_INVALID_TP_OPERATION

 Chapter 10. CPI Communications on OS/2 465

 OS/2 Define_TP (XCDEFTP)

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
If a return_code other than CM_OK is returned on this call, the TP definition is not
created or changed.

466 CPI Communications Reference

 OS/2 Delete_TP (XCDELTP)

 Delete_TP (XCDELTP)
This call is only available in Communications Server, and only at the 32-bit C
Language interface and through REXX.

Any Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) calls queued
for the deleted TP are returned with the CM_PRODUCT_SPECIFIC_ERROR return
code.

For nonqueued TPs, the TP definition is deleted immediately. For queued TPs, the
TP definition is deleted when the active instance terminates.

More information concerning XCDEFTP and XCDELTP can be found in the
Define_TP and Delete_TP verb sections of the Communications Server Version 4.0
System Management Programming Reference.

 Format
CALL XCDELTP(key,

TP_name,
TP_name_length,
TP_name_type,
return_code)

 Parameters
key (input)

Specifies either the master or service key, when the Communications Server
keylock feature has been secured. See the Communications Manager
Installation and Configuration Guide for details of the keylock feature.

This is an 8 byte character field. If the key is fewer than 8 characters, it must
be left-justified and padded on the right with space characters.

TP_name (input)
Specifies the name (ASCII) of the transaction program as specified in the
Define_TP call (or DEFINE_TP APPC verb).

TP_name_length (input)
Specifies the length of TP_name. The length can be from 1 to 64 bytes.

TP_name_type (input)
Either XC_APPLICATION_TP or XC_SNA_SERVICE_TP

return_code
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK

Successful completion

 ¹ CM_PROGRAM_PARAMETER_CHECK

A parameter contains either a null or an inaccessible address.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

This return code can occur for reasons such as: out of memory, DOS call
failure, etc..

 Chapter 10. CPI Communications on OS/2 467

 OS/2 Delete_TP (XCDELTP)

An CMACCI call queued for a deleted TP name will fail with this return
code, even if the program had associated itself with other TP names that
are still defined.

 ¹ XC_PARM1_CHECK

The key variable contains a value that does not match the master or
service key and the Communications Manager keylock feature has been
secured.

 ¹ XC_PARM2_CHECK

The TP_name variable contains an invalid value.

 ¹ XC_PARM3_CHECK

The TP_name_length variable contains an invalid value.

 ¹ XC_PARM4_CHECK

The TP_name_type variable contains an invalid value.

 ¹ XC_TP_NAME_NOT_RECOGNIZED

 ¹ XC_COMMUNICATION_SUBSYSTEM_ABENDED

 ¹ XC_COMMUNICATION_SUBSYSTEM_NOT_LOADED

 ¹ XC_STACK_TOO_SMALL

 ¹ XC_UNEXPECTED_DOS_ERROR

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
If a return_code other than CM_OK is returned on this call, the TP definition (if it
already exists) is not deleted.

468 CPI Communications Reference

 OS/2 Register_Memory_Object (XCRMO)

 Register_Memory_Object (XCRMO)
This call is only available in Communications Server, and only at the 32-bit C
Language interface and through REXX.

An OS/2 memory object used for send (CMSEND, CMSNDX) or receive (CMRCV,
CMRCVX) buffers is not released by Communications Manager (OS/2 call
DosFreeMem) until the program ends. If, however, the program uses the
Register_Memory_Object (XCRMO) call to register the object with Communications
Manager before using the memory object on a send or receive call, then the
program can request an early release of the memory object via the
Unregister_Memory_Object (XCURMO) call.

 Format
CALL XCRMO(memobject_base_address,

return_code)

 Parameters
memobject_base_address (input)

The base address of the memory object. Prior to using this call, the program
must obtain a memory object using the DosAllocSharedMem call to OS/2.
The memory object must be shareable, giveable, readable, writeable, and
tiled.

return_code
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK

Successful completion

 ¹ CM_PROGRAM_PARAMETER_CHECK

A parameter contains either a null or an inaccessible address, or the
memobject_base_address does not point to a valid memory object having
the following characteristics: shareable, giveable, readable, writeable,
and tiled.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If this call is used to register an object that already is registered, then it will

have no effect, and it returns a CM_OK return code.

2. For performance reasons, it is advisable to reuse memory objects for send and
receive buffers as much as possible (instead of unregistering (XCURMO) them
after each read or write).

 Chapter 10. CPI Communications on OS/2 469

 OS/2 Unregister_Memory_Object (XCURMO)

 Unregister_Memory_Object (XCURMO)
This call is only available in Communications Server, and only at the 32-bit C
Language interface and through REXX.

This call is used to request Communications Manager to release memory objects
that have been successfully registered by the Register_Memory_Object (XCRMO).

 Format
CALL XCURMO(memobject_base_address,

return_code)

 Parameters
memobject_base_address (input)

The base address of the memory object.

return_code
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK

Successful completion

 ¹ CM_PROGRAM_PARAMETER_CHECK

A parameter contains either a null or inaccessible address, or the
memobject_base_address does not point to a valid memory object.

 ¹ XC_MEMORY_OBJECT_IN_USE

The memory object cannot be unregistered because the memory object is
currently in use by Communications Manager. For example, this can
occur if there is an outstanding CPI-C call using that memory object.
.

 ¹ XC_MEMORY_OBJECT_NOT_REG

The memory object is not currently registered with Communications
Manager.

 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
For performance reasons, it is advisable to reuse memory objects for send and
receive buffers as much as possible (instead of unregistering (XCURMO) them after
each read or write).

470 CPI Communications Reference

OS/2 Extension Calls—Conversation
Conversation calls permit a program to obtain or change the values for the
conversation-security characteristics available on Communications Manager. As an
aid to portability, where similar calls exist in other SAA environments, the same call
names and syntaxes are used.

Note: Using any of these calls means that the program will require modification to
run on another SAA system that does not implement the call or implements it
differently.

Table 35 lists the Communications Manager conversation extension calls and
briefly describes their functions. For the calls that set the conversation security
characteristics (used with the Allocate (CMALLC) call), the program also can obtain
the current values of these characteristics, except for security_password. This
characteristic can be set, but it cannot be extracted; this restriction is intended to
reduce the risk of unintentional or unauthorized access to passwords.

Table 35. List of Communications Manager Conversation Calls

Call Pseudonym Description

XCECST Extract_Conversation_Security_Type Returns the current value of
the
conversation_security_type
characteristic.

XCECSU Extract_Conversation_Security_User_ID Returns the current value of
the security_user_ID
characteristic.

XCINCT Initialize_Conv_For_TP Initializes a new
conversation for the
specified TP.

XCSCSP Set_Conversation_Security_Password Sets the value of the
security_password
characteristic.

XCSCST Set_Conversation_Security_Type Sets the value of the
conversation_security_type
characteristic.

XCSCSU Set_Conversation_Security_User_ID Sets the value of the
security_user_ID
characteristic.

 Chapter 10. CPI Communications on OS/2 471

 OS/2 Extract_Conversation_Security_Type (XCECST)

 Extract_Conversation_Security_Type (XCECST)
A program issues the Extract_Conversation_Security_Type (XCECST) call to obtain
the access security type for the conversation.

 Format
CALL XCECST(conversation_ID,

conversation_security_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_security_type (output)
Specifies the variable used to return the value of the
conversation_security_type characteristic for this conversation. The
conversation_security_type returned to the program can be one of the
following:

 ¹ XC_SECURITY_NONE
 ¹ XC_SECURITY_SAME
 ¹ XC_SECURITY_PROGRAM

See “Set_Conversation_Security_Type (XCSCST)” on page 616 for a
description of these values.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The address of one of the variables is not valid.

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the value contained

in the conversation_security_type variable is not meaningful.

2. This call does not change the conversation security type for the specified
conversation.

3. The conversation_security_type characteristic is set to an initial value from side
information using the Initialize_Conversation (CMINIT) call. It can be set to a
different value using the Set_Conversation_Security_Type (XCSCST) call.

472 CPI Communications Reference

 OS/2 Extract_Conversation_Security_User_ID (XCECSU)

 Extract_Conversation_Security_User_ID (XCECSU)
A program issues the Extract_Conversation_Security_User_ID (XCECSU) call to
obtain the access security user ID associated with a conversation.

The XCECSU extension call was in Communications Manager prior to the time the
Extract_Security_User_ID (CMESUI) call was part of the CPI-C architecture. For
program migration purposes, the XCECSU call continues to be supported by
Communications Manager.

The Extract_Security_User_ID (CMESUI) call is only available in Communications
Server, and only at the 32-bit C Language interface and through REXX.

The XCECSU call provides the same function as the CMESUI call. However, it has
the following differences in allowable parameters when used in releases prior to
Communications Server:

1. security_user_ID_length can be a maximum of 8.

2. conversation_security_type can be set to one of the following parameters:

 ¹ XC_SECURITY_NONE

 ¹ XC_SECURITY_SAME

 ¹ XC_SECURITY_PROGRAM

 Chapter 10. CPI Communications on OS/2 473

 OS/2 Initialize_Conv_For_TP (XCINCT)

 Initialize_Conv_For_TP (XCINCT)
A program uses the Initialize_Conv_For_TP (XCINCT) call to initialize values for
various conversation characteristics before the conversation is allocated (with a call
to Allocate).

XCINCT processing is similar to CMINIT processing described in
“Initialize_Conversation (CMINIT)” on page 628. In addition, the XCINCT call
allows the conversation being initialized to be associated with a specific TP
instance.

 Format
CALL XCINCT(conversation_ID,

sym_dest_name,
CPIC_TP_ID,
return_code)

 Parameters
conversation_ID (output)

Specifies the conversation identifier.

sym_dest_name (input)
Specifies the symbolic destination name.

CPIC_TP_ID (input)
Specifies the TP instance as identified by its CPIC TP ID.

If the CPIC_TP_ID is specified, the conversation being initialized is associated
with that TP instance.

If the CPIC_TP_ID is set to zeros, the following rules apply:

¹ 0 active TP instances

If there are no active TP instances for this OS/2 process (if no prior
CMACCP, CMINIT, or XCSTP call has completed successfully), the
program creates a new TP instance and initializes a new conversation.

¹ 1 active TP instance

If there is one active TP instance for this OS/2 process, the program
initializes a new conversation and associates it with that active TP
instance.

¹ More than 1 active TP instance

If there is more than one active TP instance for this OS/2 process, a
return code of CM_PRODUCT_SPECIFIC_ERROR is returned, and the
program creates an error log entry.

474 CPI Communications Reference

 OS/2 Initialize_Conv_For_TP (XCINCT)

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
When return_code indicates CM_OK, the conversation enters the Initialize state.

 Usage Notes
See Table 38 on page 628 and notes 1 through 4 on page 629.

 Chapter 10. CPI Communications on OS/2 475

 OS/2 Set_Conversation_Security_Password (XCSCSP)

 Set_Conversation_Security_Password (XCSCSP)
A program issues the Set_Conversation_Security_Password (XCSCSP) call to set
the access security password for a conversation.

The XCSCSP extension call was in Communications Manager prior to the time the
Set_Conversation_Security_Password (CMSCSP) call was part of the CPI-C
architecture. For program migration purposes, the XCSCSP call continues to be
supported by Communications Manager.

The Set_Conversation_Security_Password (CMSCSP) call is only available in
Communications Server, and only at the 32-bit C Language interface and through
REXX.

The XCSCSP call provides the same function as the CMSCSP call. However, it
has the following difference in allowable parameters when used in releases prior to
Communications Server: security_password._length can be a maximum of 8.

476 CPI Communications Reference

 OS/2 Set_Conversation_Security_Type (XCSCST)

 Set_Conversation_Security_Type (XCSCST)
A program issues the Set_Conversation_Security_Type (XCSCST) call to set the
security type for the conversation.

The XCSCST extension call was in Communications Manager prior to the time the
Set_Conversation_Security_Type (CMSCST) call was part of the CPI-C
architecture. For program migration purposes, the XCSCST call continues to be
supported by Communications Manager.

The Set_Conversation_Security_Type (CMSCST) call is only available in
Communications Server, and only at the 32-bit C Language interface and through
REXX.

The XCSCST call provides the same function as the CMSCST call. However, it
has the following differences in allowable parameters when used in releases prior
to Communications Server:

conversation_security_type can be set to one of the following parameters:

 ¹ XC_SECURITY_NONE

 ¹ XC_SECURITY_SAME

 ¹ XC_SECURITY_PROGRAM

 Chapter 10. CPI Communications on OS/2 477

 OS/2 Set_Conversation_Security_User_ID (XCSCSU)

 Set_Conversation_Security_User_ID (XCSCSU)
A program issues the Set_Conversation_Security_User_ID (XCSCSU) call to set
the access security user ID for a conversation.

The XCSCSU extension call was in Communications Manager prior to the time the
Set_Conversation_Security_User_ID (CMSCSU) call was part of the CPI-C
architecture. For program migration purposes, the XCSCSU call continues to be
supported by Communications Manager.

The Set_Conversation_Security_User_ID (CMSCSU) call is only available in
Communications Server, and only at the 32-bit C Language interface and through
REXX.

The XCSCSU call provides the same function as the CMSCSU call. However, it
has the following differences in allowable parameters when used in releases prior
to Communications Server: security_user_ID_length can be a maximum of 8.

478 CPI Communications Reference

OS/2 Extension Calls—Transaction Program Control
Transaction program control calls permit a program to end or start a TP instance,
or to determine the CPIC TP ID of a TP instance. See “TP Instances for
Communications Manager” on page 625.

Note: Using any of these calls means that the program will require modification to
run on another SAA system that does not implement the call or implements it
differently.

Table 36 lists the transaction program control call names and gives a brief
description of their function.

Table 36. List of Communications Manager Transaction Program Control Calls

Call Pseudonym Description

XCENDT End_TP Ends the specified TP instance.

XCETI Extract_TP_ID Returns the CPIC TP ID for the specified conversation_ID.

XCSTP Start_TP Starts a new TP instance.

 Chapter 10. CPI Communications on OS/2 479

 OS/2 End_TP (XCENDT)

 End_TP (XCENDT)
A program uses the End_TP (XCENDT) call to request that CPI Communications
release any resources held by CPI Communications for an active TP instance,
including resources held for all conversations associated with the TP instance. This
call allows a reusable resource to be used consecutively among many TP instances
instead of locking the resource indefinitely in CPI Communications.

When processing End_TP, Communications Manager issues the APPC TP_ENDED
verb for the specified TP instance. Upon completion of the TP_ENDED verb,
Communications Manager releases the control blocks associated with that TP
instance.

 Format
CALL XCENDT (CPIC TP ID,

type,
return_code)

 Parameters
CPIC TP ID (input)

Specifies the TP instance as identified by its CPIC TP ID.

When the CPIC TP ID is set to zeros, the following rules apply:

¹ 0 active TP instances

If there are no active TP instances for this OS/2 process (if no prior
CMACCP, CMINIT, or XCSTP call has completed successfully), a return
code of CM_PROGRAM_STATE_CHECK is returned, and Communications
Manager creates an error log entry.

¹ 1 active TP instance

If there is one active TP instance for this OS/2 process, it is ended.

¹ More than 1 active TP instance

If there is more than one active TP instance for this OS/2 process, a
return code of CM_PRODUCT_SPECIFIC_ERROR is returned, and
Communications Manager creates an error log entry.

type (input)
Specifies how resources held for a TP instance will be released. The type
can be one of the following:

 ¹ XC_SOFT
Specifies that the TP instance will wait for all active CPI Communications
calls to complete.

 ¹ XC_HARD
Specifies that all active CPI Communications calls for this TP instance are
overridden and termination completes. It also ends the sessions being
used by the conversations of that TP instance. Both sides of the
conversation may receive conversation failure return codes. XC_HARD is
not intended for the typical program, but for more complex CPI
Communications applications.

480 CPI Communications Reference

 OS/2 End_TP (XCENDT)

Note: Prior to Communications Server, only one XCENDT call with a
type of XC_HARD can be issued for a CPI Communications TP instance.
If a second XC_HARD call is issued, a return code of
CM_PRODUCT_SPECIFIC_ERROR is returned and Communications
Manager creates an error log entry.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates CPIC TP ID is set to zeros, and there are no active
TP instances.

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
None.

 Chapter 10. CPI Communications on OS/2 481

 OS/2 Extract_TP_ID (XCETI)

 Extract_TP_ID (XCETI)
A program uses the Extract_TP_ID (XCETI) call to obtain the CPIC TP ID for a
specified conversation.

 Format
CALL XCETI (conversation_ID,

CPIC TP ID,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

CPIC TP ID (output)
Specifies the CPIC TP ID.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
None.

482 CPI Communications Reference

 OS/2 Start_TP (XCSTP)

 Start_TP (XCSTP)
A program uses the Start_TP (XCSTP) call to indicate to CPI Communications that
a new TP instance is to be started.

 Format
CALL XCSTP (local_LU_alias,

local_LU_alias_length,
TP_name,
TP_name_length,
CPIC TP ID,
return_code)

 Parameters
local_LU_alias (input)

CPI Communications chooses the local LU alias name by the first condition
that is encountered:

1. If local_LU_alias_length is not 0, the local_LU_alias value is used.
2. If the APPCLLU environment variable exists, it is used.
3. The default LU configured for this node is used.

local_lu_alias_length (input)
Specifies the length of the local LU alias name.

TP_name (input)
CPI Communications chooses the local TP name by the first condition that is
encountered:

1. If TP_name_length is not 0, the TP_name value is used.
2. If the APPCTPN environment variable exists, it is used.
3. CPIC_DEFAULT_TPNAME is used.

TP_name_length (input)
Specifies the length of the local TP name.

CPIC TP ID (output)
Specifies the CPIC TP ID.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change on any conversation.

 Chapter 10. CPI Communications on OS/2 483

 OS/2 Start_TP (XCSTP)

 Usage Notes
The Start_TP (XCSTP) call is used to start a new TP instance. The program must
use the End_TP (XCENDT) call to request that CPI Communications release
resources held for that active TP instance, if it is desireable to reduce resource
usage before the program ends. The Deallocate (CMDEAL) call releases
resources for the specified conversation, but not for the TP instance.

484 CPI Communications Reference

 OS/2

OS/2 Special Notes
The following sections contain information that OS/2 programmers should consider
when writing programs that issue CPI Communications calls:

Migration to Communications Server
When migrating from prior releases of Communications Manager to
Communications Server some situations that resulted in a
CM_PRODUCT_SPECIFIC_ERROR(TP_busy) return code will now complete with
the return code CM_OPERATION_NOT_ACCEPTED. Refer to “TP Instances for
Communications Manager” on page 625.

Multi-threaded CPI-C Programs
This section contains information that OS/2 programmers should consider when
writing multi-threaded programs that issue CPI-C calls to Communications Manager
as follows:

¹ Scope of CPI-C conversation_ID and CPIC TP ID
All CPI-C calls issued within one OS/2 process are considered by
Communications Manager to be part of one program. The scope of CPI-C
information (such as conversation_ID or CPIC TP ID) kept for a program is the
OS/2 process in which it is executing. For example, if a program issues an
Accept_Conversation (CMACCP) call on thread 1, the conversation_ID that is
obtained can be used by that same program on thread 2 (of the same OS/2
process) to issue the Send_Data call.

¹ Specifying TP name
CMSLTP and CMRLTP operate on only one list of TP names that is unique per
program, regardless of which thread (in that OS/2 process) issues the CMSLTP
or CMRLTP call. Therefore, multi-threaded CPI-C programs should coordinate
the use of these calls.

Note: when the Accept_Incoming (CMACCI) call is being used, and only one
TP name needs to be specified, an alternative method is to use the
Set_TP_Name (CMSTPN). Refer to “Accept_Incoming (CMACCI)” on
page 450. This takes effect per conversation, and removes the need to
coordinate among other threads.

¹ OS/2 environment variables
When a multi-threaded operator-started program is using OS/2 environment
variable(s), such as APPCTPN or APPCLLU (for example for the CMACCP,
CMACCI, CMINIT, XCINCT calls), setting of this variable by the program should
be serialized across threads (if using a different value of the variable per
thread).

¹ CMWCMP conficting OOIDs
Refer to “Wait_For_Completion (CMWCMP)” on page 631.

Considerations for CPI Communications Calls
This section describes TP instances, followed by CPI Communications calls that
require special consideration when one is writing a CPI Communications program
to be run on a Communications Manager system. Each call needing special
attention is discussed in alphabetical order by call name.

 Chapter 10. CPI Communications on OS/2 485

 OS/2

Refer to Table 15 on page 109 to determine what releases of Communications
Manager support which architected CPI-C calls.

Note: Explanations of error return codes whose causes on Communications
Manager differ from those defined for CPI Communications are not included in this
section. See “Diagnosing Errors” on page 448 for this information.

TP Instances for Communications Manager
Within an OS/2 process, CPI Communications creates an executable instance of a
transaction program (TP instance) when a program issues any of the following CPI
Communications calls:

¹ Accept_Conversation (CMACCP) call

Note: Multiple CMACCP calls can be issued within an OS/2 process. Each
CMACCP creates a new TP instance.

¹ Accept_Incoming (CMACCI) call

Note: Multiple CMACCI calls can be issued within an OS/2 process. Each
CMACCI creates a new TP instance.

¹ Initialize_Conversation (CMINIT) call, if all of the following conditions are met
(within this OS/2 process):

– No prior CMINIT call has been issued
– No prior CMACCP calls have been issued
– No prior XCSTP calls have been issued

¹ Start_TP (XCSTP) call

Note: Multiple XCSTP calls can be issued within an OS/2 process. Each
XCSTP creates a new TP instance.

CPI Communications represents the TP instance by using a transaction program
identifier, or CPIC TP ID. CPI Communications converts each CPI
Communications call, other than Extract and Set calls, to an APPC verb and makes
a call across its APPC interface to process the verb. Each CPIC TP ID is uniquely
associated with an APPC TP identifier (TP ID). Each APPC verb includes the
TP ID as a parameter.

CPI Communications associates with each TP instance the logical unit of work
identifier and access security information (if any) that it obtains when it starts the
TP instance. It maintains the correlation of this information to the CPIC TP ID until
the TP instance ends.

Each TP instance remains active until the program ends, or until it is explicitly
ended by using the End_TP (XCENDT) call.

Each conversation is associated with only one TP instance. However, a TP
instance can be associated with more than one conversation. When the TP
instance ends, all associated conversations are ended.

Usage Note 1: The Initialize_Conversation (CMINIT) call is used when a program
initializes a conversation within an OS/2 process that contains up to one TP
instance. When initializing a conversation within an OS/2 process that contains
more than one TP instance, the program must specify a particular TP instance
(CPIC TP ID) and the conversation will be associated with it. This association is
done by using the Initialize_Conv_For_TP (XCINCT) call.

486 CPI Communications Reference

 OS/2

Usage Note 2: This note is applicable to releases of Communications Manager
prior to Communications Server:

For each conversation, Communications Manager CPI-C only allows one CPI-C call
to be in-progress at a time. It rejects a second call for that conversation with
CM_PRODUCT_SPECIFIC_ERROR(TP_busy). Also, for each TP instance,
Communications Manager CPI-C only allows one total CPI-C call to be in-progress
at a time for all the conversations running under that TP instance. It rejects a
second call with CM_PRODUCT_SPECIFIC_ERROR(TP_busy). To avoid this
situation, if a program issues calls to more than one conversation at a time, those
conversations should be created under separate TP instances. For accepting
conversations this is automatically done by the CMACCP call. For initializing
conversations, this can be done by not using the CMINIT call, but instead using the
XCSTP call followed by the XCINCT call (specifying the CPIC_TP_ID returned on
the XCSTP call).

Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI)
When the Accept_Conversation or Accept_Incoming call completes successfully,
the following conversation characteristics are initialized:

For the Accept_Conversation (CMACCP) call, Communications Manager processes
the following rules, sequentially, the first rule that is true is used to determine the
TP name(s) to use for accepting an incoming conversation:

1. The TP name(s) from successfully completed Specify_Local_TP_Name
(CMSLTP) call(s) for this progam. Refer to “Specify_Local_TP_Name
(CMSLTP)” on page 451 for allowable TP names on the CMSLTP call.

2. A TP name set in the APPCTPN OS/2 environment variable. The environment
variable must be set to a valid TP name.

Table 37. Additional Communications Manager Characteristics Initialized following CMACCP
or CMACCI

Conversation Characteristic Initialized Value

conversation_security_type CM_SECURITY_SAME (or eqivalently
XC_SECURITY_SAME)

Note: This value is set regardless of the level
of access security information (if any) on the
inbound allocation request.

security_user_ID The value received on the conversation startup
request (10 characters in Communications
Server, truncated to 8 characters in
Communications Manager releases prior to
Communications Server). If the conversation
startup request contained no access security
information, this characteristic is set to a
single-space character.

security_user_ID_length The length of security_user_ID.

security_password A single-space character.

security_password_length Set to 1.

 Chapter 10. CPI Communications on OS/2 487

 OS/2

Partially specified TP names and '*' (allowed on the CMSLTP call) are not
allowable TP names for the APPCTPN environment variable.

If none of the above rules yields a TP name, then CMACCP completes with a
CM_PROGRAM_STATE_CHECK return code.

For the rules determining the TP name used on the CMACCI call, refer to
“Accept_Incoming (CMACCI)” on page 450

When an inbound allocation request arrives with this TP name specified,
Communications Manager completes the call.

Notes:

1. When the APPCTPN environment variable is used to specify a TP name, the TP
name set in the environment variable is case sensitive; that is, lowercase letters
are not converted to uppercase. The TP name set in the environment variable
is made up of ASCII characters; therefore, it must be an application TP name,
not an SNA service TP name. See “Unsupported TP Names” on page 452 for
an explanation of this restriction.

2. For an attach manager-started program, Communications Manager sets the
APPCTPN environment variable with the TP name from the inbound allocation
request for the conversation when it starts the program. It then uses the TP
name from the environment variable to complete the subsequent
Accept_Conversation or Accept_Incoming call from the program. Therefore, for
Communications Manager to match the Accept_Conversation or
Accept_Incoming call with the inbound conversation, the attach
manager-started program should not set the environment variable to a different
TP name.

3. Communications Manager recognizes certain error conditions while accepting
conversations that are specific to its use of OS/2 environment variables. See
“Diagnosing Errors” on page 448 for more details.

4. Each Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) call
starts a new TP instance. The program must use the End_TP (XCENDT) call
to request that CPI Communications release resources held for that active TP
instance, if it is desireable to reduce resource usage before the program ends.
The Deallocate (CMDEAL) call releases resources for the specified
conversation, but not for the TP instance.

 Extract_Conversation_Context (CMECTX)
The Extract_Conversation_Context (CMECTX) call currently returns a context that
is the left justified 12-byte CPIC TP ID padded by zeros on the right, to 32-bytes
total length.

Since contexts are subject to future architectural changes, the content of this field is
subject to change. In addition, dependencies on the context are not portable
across platforms.

488 CPI Communications Reference

 OS/2

 Extract_Secondary_Information (CMESI)
After a call fails that causes CPI-C to generate secondary information, the next
CPI-C call for that conversation should be the Extract_Secondary_Information
(CMESI) call (because other calls can reset the secondary information).

If a CMACCP or CMACCI call is not successful, CPI-C will return a temporary
conversation ID for use on the CMESI call. It is recommended that the CPI-C
program issue the CMESI as soon as possible, since the CPI-C implementation will
eventually delete the secondary information and conversation ID.

Communications Server provides limited support for the CMESI call as follows:

¹ The only supported values of the call_ID parameter for a CMESI call are the
following:

 – CM_CMACCI
 – CM_CMACCP
 – CM_CMALLC
 – CM_CMCFM
 – CM_CMDEAL
 – CM_CMPTR
 – CM_CMRCV
 – CM_CMSEND
 – CM_CMSERR

For all other values of this parameter, the call is returned with the return code
CM_NO_SECONDARY_INFORMATION.

¹ CMESI returns additional secondary information if the previous CMACCP,
CMACCI, or CMALLC call was rejected with a
CM_PRODUCT_SPECIFIC_ERROR return code and error information is
available to Communications Manager (for example, a failure in a call to the
APPC component of Communications Manager). For errors detected by OS/2
rather than Communications Manager, this call returns
CM_NO_SECONDARY_INFORMATION if Communications Manager has no
additional information about the failure.

¹ CMESI returns additional secondary information for CRM-specific associated
return codes.

The layout of the “Additional information from the implementation,” which is a
subfield of secondary information, is described in the Communications Manager C
Language header file (cpic.h). The format of the field is determined by what type of
error has occurred.

 Chapter 10. CPI Communications on OS/2 489

 OS/2

The following is an example of a secondary information buffer when the call failed
due to an error detected within the APPC component of Communications Manager.

4003;;CMR0323: Common Programming Interface Communications (CPI-C) received

an unexpected return code from advanced program-to-program communications

(APPC).;;;;;;AP01000100010000000100000000

The following is an explanation of the “Additional information from the
implementation” field included in the above example. Refer to the Communications
Manager/2 APPC Programming Reference for the meaning of the APPC fields.

APPC verb opcode (ALLOCATE)

 |

| secondary APPC return code (BAD_TP_ID)

 | |

 ---- --------

 AP01000100010000000100000000

 ---- ---- --------

 | | |

 | | |

 | | APPC sense data

 | |

 | primary APPC return code (PARAMETER_CHECK)

 |

TYPE (defines the format of this entry)

 Initialize_Conversation (CMINIT)
When Initialize_Conversation completes successfully, the Communications Manager
specific characteristics are initialized as shown in Table 38 on page 628.

490 CPI Communications Reference

 OS/2

Initialize_Conversation Notes:

1. If an operator-started CPI Communications program is to be run on a local LU
other than the default LU configured for the node, either the operator or the
program must set the local LU name in an OS/2 environment variable named
APPCLLU before the program issues the CMINIT call.

2. The APPCLLU environment variable is used only for an operator-started CPI
Communications program that issues the Initialize_Conversation call to start the
TP instance. The LU name set in the environment variable is case sensitive;
that is, lowercase letters are not converted to uppercase.

3. The APPCTPN environment variable is used to obtain the local TP name for any
type CPI Communications program (operator-started or attach manager-started)
that issues the Initialize_Conversation call to start the TP instance.
Communications Manager sets the environment variable to a default local TP
name of CPIC_DEFAULT_TPNAME. The operator or program may set the APPCTPN

environment variable to a different TP name before the program issues the

Table 38. Additional Communications Manager Characteristics Initialized following CMINIT

Conversation Characteristic Initialized Value

conversation_security_type Security type from side information referenced
by sym_dest_name. If a blank sym_dest_name
is specified, conversation_security_type is set to
CM_SECURITY_SAME (or equivalently
XC_SECURITY_SAME).

security_user_ID User ID from side information referenced by
sym_dest_name, if conversation_security_type
is CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, a single
space character. If a blank sym_dest_name is
specified, security_user_ID is set to a single
space character.

security_user_ID_length Length of security user ID, if
conversation_security_type is
CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, 1. If a
blank sym_dest_name is specified,
security_user_ID_length is set to 1.

security_password Password from side information referenced by
sym_dest_name if conversation_security_type is
CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, a single
space character. If a blank sym_dest_name is
specified, security_password is set to a single
space character.

security_password_length Length of security password, if
conversation_security_type is
CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, 1. If a
blank sym_dest_name is specified,
security_password_length is set to 1.

 Chapter 10. CPI Communications on OS/2 491

 OS/2

Initialize_Conversation call, if a different local TP name is desired.
Communications Manager does not send this local TP name outside the node.

4. Communications Manager recognizes certain error conditions on the
Initialize_Conversation call that are specific to its use of OS/2 environment
variables. See “Diagnosing Errors” on page 448 for more details.

5. For CMINIT, the following rules apply:

¹ 0 active TP instances

If there are no active TP instances for this OS/2 process (if no prior
CMACCP, CMINIT, or XCSTP has completed successfully),
Communications Manager creates a new TP instance and initializes a new
conversation.

¹ 1 active TP instance

If there is one active TP instance for this OS/2 process, Communications
Manager initializes a new conversation and associates it with that active TP
instance.

¹ More than 1 active TP instance

If there is more than one active TP instance for this OS/2 process, a return
code of CM_PRODUCT_SPECIFIC_ERROR is returned and Communications
Manager creates an error log entry.

When a CMINIT call starts a TP instance, the TP instance remains active
until the End_TP (XCENDT) is issued or the program ends.

For multiple TP instances, use an XCINCT call to initialize a new
conversation.

 Receive (CMRCV)
When the Receive call is receiving data from a basic conversation, the 2-byte
logical record length, or LL, field of the data is in System/370 format, with the left
byte being the most significant. Depending on the programming language used,
the program might have to reverse the bytes to use the field value in an integer
operation.

Communications Manager does not perform any EBCDIC-to-ASCII translation on
the data before placing it in the buffer variable.

See “Performance Considerations For Using Send/Receive Buffers” on page 500
for additional information concerning data buffers.

 Send_Data (CMSEND)
When the Send_Data call sends data on a basic conversation, the 2-byte logical
record length, or LL, field of the data must be in System/370 format, with the left
byte being the most significant. If the program obtains this value from an integer
operation, it might have to reverse the bytes before issuing the call, depending on
the programming language used.

Communications Manager does not perform any ASCII-to-EBCDIC translation on
the data when it sends the data from the buffer variable.

See “Performance Considerations For Using Send/Receive Buffers” on page 500
for additional information concerning data buffers.

492 CPI Communications Reference

 OS/2

 Send_Expedited_Data (CMSNDX)
A CMSNDX call will not complete if the partner program has not yet received the
data from a prior CMSNDX call for that same conversation. This is illustrated with
the following example where sequential non-blocking Send_Expedited_Data
(CMSNDX) calls are issued to Communications Manager:

1. A program issues a CMSNDX call, with a resulting CM_OK return code.

2. A second CMSNDX call is issued immediately for that same conversation.

If the partner program has not yet issued the Receive_Expedited_Data
(CMRCVX) call to obtain the data from the first CMSNDX call, then the result of
the second CMSNDX call is a CM_OPERATION_INCOMPLETE return code.
The second CMSNDX call will not complete until the partner has issued the
Receive_Expedited_Data call to receive the data for the first CMSNDX call.

 Set_Partner_LU_Name (CMSPLN)
The program can set the partner_LU_name characteristic to either an alias or a
network name. Alias and network names are distinguished from each other on this
call as follows:

¹ An alias name is 1–8 characters and does not contain a period.
Communications Manager retains alias names in ASCII, without translating
them to EBCDIC.

¹ A network name is 2–17 characters, with a period separating the network ID
(0–8 characters) from the network LU name (1–8 characters). If the network
name does not include a network ID, the period must still be inserted preceding
the network LU name, to distinguish the name as a network name instead of an
alias name.

 Set_Sync_Level (CMSSL)
See “Set_Sync_Level (CMSSL)” on page 451 for information on OS/2 support of
synchronization levels.

 Set_Queue_Processing_Mode (CMSQPM)
For the Set_Queue_Processing_Mode (CMSQPM) call, a valid memory area must
be allocated for the user_field parameter, even if this parameter is not being used
by the program.

 Test_Request_To_Send (CMTRTS)
The CMTRTS call does not support CM_EXPEDITED_DATA_AVAILABLE.

 Wait_For_Completion (CMWCMP)
For the Wait_For_Completion (CMWCMP) call a valid memory area must be
allocated for the user_field_list parameter, even if this parameter is not being used
by the program.

For CMWCMP, 512 is the maximum OOID_list_count that can be specified.

If on a CMWCMP call, a valid OOID (for example, OOIDx) is specified but there is
no outstanding operation for that OOID (at the time the CMWCMP call is issued by
the program), then the following will occur:

¹ If there is at least one OOID on the list for which there is an outstanding
operation, then OOIDx will be ignored (treated as a NULL (integer zero) OOID).

 Chapter 10. CPI Communications on OS/2 493

 OS/2

¹ If there are valid OOIDs on the list, but all of them have no outstanding
operations, then the following is returned: CM_PROGRAM_STATE_CHECK
return code.

Conflicting OOIDs:
Suppose OOIDx has outstanding operations, and it is being waited on by a
CMWCMP call (denoted CMWCMP1). Before CMWCMP1 completes, if another
call (CMWCMP2) waits on OOIDx, then OOIDx will be ignored (treated as a NULL
(integer zero) OOID) with respect to CMWCMP2. Moreover, OOIDx will not be
waited on by CMWCMP2, even if CMWCMP1 completed for a reason other than
OOIDx. To avoid this situation, do one of the following:

¹ Do not use the same OOID simultaneously on more than one CMWCMP call.

¹ Use the timeout paramater on CMWCMP to allow your program to get control
to periodically reissue the CMWCMP call.

Characteristics, Fields, and Variables
This section defines the values and data types for the additional characteristics,
fields, and variables used with the Communications Manager calls. It also includes
the CPI Communications variables for which Communications Manager imposes
certain restrictions.

The following distinctions are made regarding characteristics, fields, and variables:

Characteristic
An internal parameter of a given conversation whose value is maintained
within the CPI Communications component. The value of a conversation
characteristic is initialized during the Initialize_Conversation (CMINIT) or
Accept_Conversation (CMACCP) call for that conversation. The value may
be changed subsequently using a Set call.

Field
An element of a data structure. The data structure itself is specified as a
variable on the Set_CPIC_Side_Information and
Extract_CPIC_Side_Information calls. A field can supply a value as input on
a call, or return a value as output from a call.

Variable
A parameter specified on a call. A variable can supply a value as input on a
call, or return a value as output from a call.

Note: Communications Manager does not support all values of the conversation
characteristics and variables described in Appendix A, “Variables and
Characteristics.”

Communications Manager Native Encoding
The native encoding for specifying certain character string variables and fields on
Communications Manager is ASCII. These variables and fields are:

 ¹ key
 ¹ mode_name*
¹ partner_LU_name (as an alias name)
¹ partner_LU_name (as a network name)*

 ¹ security_password*
 ¹ security_user_ID*
 ¹ sym_dest_name

494 CPI Communications Reference

 OS/2

¹ TP name (as an application TP name)*
¹ TP name (as an SNA service TP name, excluding first character)*

The variables and fields indicated by an asterisk (*) are translated from ASCII to
EBCDIC on input, and from EBCDIC to ASCII on output. The others are retained
in ASCII.

Communications Manager performs translation between the ASCII characters
having code points in the range X'20' through X'7E' and the corresponding
EBCDIC characters. The ASCII characters are those defined in the ASCII code
page 850. However, this range of characters is common across all ASCII code
pages. The EBCDIC characters are those defined in the EBCDIC code page 500.

Communications Manager translates all of the characters from character set 00640
(including the space character) and the 13 additional characters listed in Table 39.
Characters outside character set 00640 and not shown in this table are not
translated and remain unchanged.

Table 39. Additional Communications Manager
Characters Translated between ASCII and
EBCDIC

Graphic Description

[Left bracket
! Exclamation point
] Right bracket
$ Dollar sign
_ Caret
y Right prime
Number sign
@ At sign
˜ Tilde
| Vertical bar
{ Left brace
} Right brace
\ Back slash

Variable Types and Lengths
Table 40 defines the data type, character set usage, and length of fields and
variables used for OS/2 extension calls. It also includes CPI Communications
variables for which Communications Manager imposes certain restrictions.

The variables Communications Manager uses for its conversation calls are the
same two types of variables that CPI Communications uses: integer and character.
The variables used by Communications Manager for system management calls
include a third type: a data structure. The data structure has both integer and
character string fields.

With one exception, the program specifies the character string fields and variables
using ASCII characters on the Set calls, and Communications Manager returns
them as ASCII characters on the Extract calls. The exception to this is SNA
service TP name, as noted inTable 40 .

 Chapter 10. CPI Communications on OS/2 495

 OS/2

All fields of the side_info_entry structure are fixed length, so character string data
within these fields must be specified. The data is returned left-justified and padded
on the right with ASCII space characters. In general, Communications Manager
does not reject the Set_CPIC_Side_Information call when a character string field of
the side_info_entry contains all space characters, even if the minimum length
defined for the data in that field is greater than 0. The sym_dest_name is the
exception, as noted in Table 40.

The use of character set 01134 or 00640, as defined for each field or variable, is
recommended for consistency with the CPI Communications definition; however,
Communications Manager does not enforce this.

Referenced Notes:

1. The national characters @, #, and $ are also allowed as part of the key, mode
name, partner LU name, and TP name. (For a TP name only, lower case
alphabetic characters are also acceptable.)

2. The null string (all space characters) is a valid mode name. The program
should not set the mode_name to CPSVCMG or SNASVCMG. Although
Communications Manager allows the program to specify these mode names, it
rejects a program's Allocate (CMALLC) call with a return_code of

Table 40. Communications Manager Variable and Field Types and Lengths

Variable or Field Data Type Character
Set

Length

conversation_security_type Integer Not applicable 32 bits

CPIC TP ID Character string Not applicable 12 bytes

key 1 , 10 Character string 01134 8 bytes

mode_name 1 , 2 Character string 01134 0-8 bytes

partner_LU_name 3 , 5

(as an alias name)
Character string 01134 1-8 bytes

partner_LU_name 1 , 4

(as a network name)
Character string 01134 2-17 bytes

security_password 5 Character string 00640 1-8, 1-10
bytes12

security_password_length Integer Not applicable 32 bits

security_user_ID 5 Character string 00640 1-8, 1-10
bytes13

security_user_ID_length Integer Not applicable 32 bits

side_info_entry 6 Data structure Field
dependent

124 bytes

side_info_entry_length Integer Not applicable 32 bits

sym_dest_name 7 , 11 Character string 01134 8 bytes

TP_name 1 , 5, 8

(as an application TP name)
Character string 01134 1-64 bytes

TP_name 1 , 9

(as an SNA service TP name)
Character string 01134 1-4 bytes

TP_name_type Integer Not applicable 32 bits

496 CPI Communications Reference

 OS/2

CM_PARAMETER_ERROR if the conversation characteristic is set to either of
these mode names.

3. A period character is not allowed as part of an alias partner LU name. An alias
partner LU name might contain ASCII characters in the range X'21' to X'FE';
however, use of characters drawn from character set 01134 (plus the national
characters @, #, and $) is recommended.

4. The period must be present in a network partner LU name because it
distinguishes the name as a network name instead of an alias name. If the
partner LU name does not have a network ID, the period must be the first
character in the partner_LU_name variable or field.

5. The space character is not allowed as part of a partner LU name, security
password, security user ID, or application TP name, because it is used as the
fill character in the corresponding fields of the side_info_entry data structure.

6. The format of the side_info_entry data structure is shown in the description of
“Set_CPIC_Side_Information (XCMSSI)” on page 607.

7. The sym_dest_name can be specified as all space characters only on the
Initialize_Conversation (CMINIT) call. On all other calls that include this
variable or field, the name must be 1–8 characters long.

8. An application TP name is composed entirely of ASCII characters. It cannot be
a double-byte TP name—one that has a leading X'0E' byte and a trailing
X'0F' byte—because Communications Manager does not support double-byte
TP names. Communications Manager converts all characters of an application
TP name from ASCII to EBCDIC when it includes the TP name on an allocation
request.

9. An SNA service TP name is composed of a leading SNA service TP identifier
byte and 0–3 additional ASCII characters; the identifier byte has a value in the
range X'00' to X'0D' and X'0F' to X'3F'. An SNA service TP name may be
specified only with the Set_CPIC_Side_Information call; it cannot be specified
on the Set_TP_Name call.

10. The key variable on the Delete_CPIC_Side_Information (XCMDSI) and
Set_CPIC_Side_Information (XCMSSI) calls must be at least 8 bytes long. The
key within the variable may be 1–8 characters long. If the key is shorter than 8
characters, it must be left-justified in the variable and padded on the right with
space characters. If the variable is longer than 8 bytes, the key is taken from
the first (leftmost) 8 bytes and the remaining bytes are ignored.

11. The sym_dest_name variable on the Delete_CPIC_Side_Information (XCMDSI)
and Extract_CPIC_Side_Information (XCMESI) calls must be at least 8 bytes
long. The symbolic destination name within the variable may be 1–8
characters long on these calls. If the symbolic destination name is shorter than
8 characters, it must be left-justified in the variable and padded on the right
with space characters. If the variable is longer than 8 bytes, the symbolic
destination name is taken from the first (leftmost) 8 bytes and the remaining
bytes are ignored.

12. The length of security_password can be 1-10 bytes in Communications
Server, and 1-8 bytes prior to Communications Server.

13. The length of security_user_ID can be 1-10 bytes in Communications Server,
and 1-8 bytes prior to Communications Server.

 Chapter 10. CPI Communications on OS/2 497

 OS/2

Defining and Running a CPI Communications Program on
Communications Manager

This section discusses the operating parameters that can be configured for a CPI
Communications program and how they affect the program's operation.

Defining a CPI Communications Program to Communications
Manager
A CPI Communications program can be defined to Communications Manager by
configuring a transaction program definition. The TP definition includes the OS/2
file specification (the drive, path, filename, and extension for the file containing the
program), a TP name, and certain operating characteristics for the program. In
writing a program that is to be started by an inbound allocation request, one should
define the program to Communications Manager as non-queued, and attach
manager-started. This definition allows multiple instances of the program to be
started concurrently when Communications Manager receives multiple inbound
allocation requests for the TP name defined for the program.

The TP name must be an application TP name. A local CPI Communications
program cannot be an SNA service TP; that is, the program cannot accept a
conversation started by an inbound allocation request specifying an SNA service
TP name. See “Unsupported TP Names” on page 452 for more information on this
restriction.

A CPI Communications program that is to be started by an inbound allocation
request does not require a TP definition if the program is not a REXX program; see
“Using Defaults for TP Definitions” for more details. (See “Starting a REXX
Program” on page 440 for an explanation of why REXX programs that are started
by inbound allocation requests require a TP definition.)

If the program issues the Initialize_Conversation (CMINIT) call to start the TP
instance, Communications Manager starts the TP instance on the default local LU
configured for the node. If the operator (or program) wants the program to be
started on a different LU, it must set the alias name for the desired local LU in the
OS/2 environment variable named APPCLLU. Communications Manager then starts
the program on that LU. A program that issues the Initialize_Conversation call to
start the TP instance does not require a TP definition.

If the program issues the Accept_Conversation (CMACCP) call, Communications
Manager starts the TP instance on the LU that receives the inbound allocation
request.

Using Defaults for TP Definitions
Communications Manager provides defaults for attach manager-started programs.
The defaults eliminate the need to explicitly configure TP definitions to
Communications Manager for these programs. To use these defaults for a CPI
Communications program:

¹ The TP name must be the same as the name of the file; Communications
Manager converts the TP name from the inbound allocation request to ASCII
and uses the ASCII name to start the program.

¹ The program must be in the OS/2 subdirectory for default TPs, or in an OS/2
subdirectory of the current path.

498 CPI Communications Reference

 OS/2

¹ The option for how default TPs are started must be Non-queued, Attach

Manager started; the other choices are for queued (single-instance) programs,
which do not apply to CPI Communications programs.

¹ The presentation type for the program must agree with the execution
environment the program requires. The options are:

 – Presentation Manager

 – VIO-windowable

 – Full screen

 – Background

¹ The choice of Yes or No for whether default TPs require conversation security6

must agree with what the CPI Communications program requires.

These default TP definitions apply across all Communications Manager
programs—APPC programs and CPI Communications programs alike. Explicitly
configure TP definitions for all CPI Communications programs having operating
characteristics that differ from these default definitions.

Communications Manager Use of OS/2 Environment Variables
Communications Manager makes use of certain OS/2 environment variables when
processing CPI Communications calls. The environment variables become part of
the OS/2 process created when the CPI Communications program is started.
These environment variables are:

APPCTPN During an Accept_Conversation (CMACCP) call, Communications
Manager obtains the TP name from this environment variable. It
completes the call when an inbound allocation request carrying the
same TP name arrives, or if one is already waiting. The operator or
program must set the TP name in this environment variable for an
operator-started program that uses the CMACCP call. Communications
Manager sets the TP name from an inbound allocation request in this
environment variable when it starts an attach manager-started program.

Refer to “Accept_Incoming (CMACCI)” on page 450 for use of the
APPCTPN environment variable with the CMACCI call.

During an Initialize_Conversation call, Communications Manager obtains
the local TP name from this environment variable when the call starts
the TP instance. If the operator or program does not set this
environment variable, Communications Manager uses
CPIC_DEFAULT_TPNAME as a default name for the local TP instance.

APPCLLU During an Initialize_Conversation call that starts the TP instance,
Communications Manager obtains the local LU name from this
environment variable. It then starts the TP instance on this local LU. If
this environment variable is not set when the program issues an
Initialize_Conversation call that starts the TP instance, Communications
Manager starts the TP instance on the default local LU configured for
the node.

6 The option of Yes for conversation security required means the inbound allocation requests that start default TPs must include LU
6.2 access security information.

 Chapter 10. CPI Communications on OS/2 499

 OS/2

 Stack Size
Communications Manager requires that CPI-C programs have a minimum stack
size of 4500 bytes. However, programs using the 32-bit interface are required to
have a minimum stack size of 8KB (8192 bytes).

Performance Considerations For Using Send/Receive Buffers
This section provides information related to performance in the Communications
Manager environment. For performance reasons, it advisable for CPI-C programs
to reuse data buffers.

The Extract_Maximum_Buffer_Size (CMEMBS) is available in Communications
Manager/2 Version 1.11 or later. It should be used by programs to dynamically
determine maximum send/receive buffer sizes supported by Communications
Manager. In Communications Server, the maximum was raised from 32767 to
65535 bytes.

When a program issues a call that supplies a data buffer, such as Send_Data
(CMSEND), Send_Expedited_Data (CMSNDX), Receive (CMRCV), and
Receive_Expedited_Data (CMRCVX), Communications Manager determines
whether the data buffer can be shared (giveable memory) across OS/2 processes.
If it can, Communications Manager uses the buffer directly as the source or
destination of data. If the buffer cannot be shared, Communications Manager must
copy the data between memory it allocates and the program's buffer. Therefore, by
using memory that can be shared for the buffer, the program can avoid the extra
copying of the data and the memory allocation that Communications Manager
would otherwise do on each applicable call.

It is recommended for future migration that buffers be defined with the OS/2 tiled
memory allocation option.

A program can use shareable memory for its data buffer by explicitly allocating the
memory, using OS/2 calls. Depending on the application, the program might have
to allocate the shareable memory only once, when it is started, and use that
memory for its send and receive buffers for the remainder of its execution. For
performance reasons, shareable data buffers passed to CPI-C on Send_Data
(CMSEND), Send_Expedited_Data (CMSNDX), Receive (CMRCV), and
Receive_Expedited_Data (CMRCVX), are internally registered within
Communications Manager and not freed until the CPI-C program (i.e. that OS/2
process) ends. This means that the memory will not be freed by OS/2 at the time
the program frees it. However, for programs running under Communications
Server, calls are available to allow the program to free memory before the CPI-C
program (i.e. that OS/2 process) ends. Refer to “Register_Memory_Object
(XCRMO)” on page 469 and “Unregister_Memory_Object (XCURMO)” on
page 470.

For more information on memory allocation for send and receive buffers, and other
performance suggestions, refer to the APPC Programming Reference for the
specific product being used.

500 CPI Communications Reference

 OS/2

Exit List Processing
If a CPI Communications program registers for OS/2 exit list processing, it must
register outside the range of priorities specified in the APPC Programming
Reference for the specific product being used.

When an OS/2 process ends, APPC gets control (before a CPI Communications
program gets control) during exit list processing to clean up resources
Consequently, CPI Communications calls made by a program during exit list
processing will not be successful.

For other exit list considerations, refer to “How Dangling Conversations Are
Deallocated” on page 447 and “Ending a REXX Program” on page 442.

 Chapter 10. CPI Communications on OS/2 501

 OS/2

Sample Program Listings for OS/2
This section provides listings of some sample programs that show how
Communications Manager calls are made using the SAA languages that these
products support.

The listings are provided for tutorial purposes to show how the calls are made.
They are not intended to show complete applications or the most efficient way of
performing a function.

502 CPI Communications Reference

 OS/2 C Sample Programs (SETSIDE.C)

OS/2 C Sample Programs
This program is a C language sample program that sets CPI-C side information.

 SETSIDE.C
/***/

/* This program is a C language sample program that sets CPI-C */

/* side information. */

/* */

/* Note: Before running this program, the Communications */

/* Manager keylock feature must either be secured with a */

/* service key of "SVCKEY" or not be secured at all. */

/***/

#include <os2.h>

#include <string.h>

#include <stdio.h>

#include <cmc.h>

int main (void)

{

 SIDE_INFO side_info;

 CM_INT32 side_info_length;

 CM_RETURN_CODE rc;

side_info_length = sizeof(SIDE_INFO);

 /**/

/* Set fields in side_info structure */

 /**/

 memset(&side_info,' ',sizeof(side_info));

 memcpy(side_info.sym_dest_name,"SYMDEST1",8);

 memcpy(side_info.partner_LU_name,"ALIASLU2",8);

side_info.TP_name_type = XC_APPLICATION_TP;

 memcpy(side_info.TP_name,"MYTPN",5);

 memcpy(side_info.mode_name," ",8);

side_info.conversation_security_type = XC_SECURITY_PROGRAM;

 memcpy(side_info.security_user_ID,"MYUSERID",8);

 memcpy(side_info.security_password,"XXXXXXXX",8);

 /**/

/* Call XCMSSI to define the side info */

 /**/

/* Note: The key must be 8 bytes long (blank pad if needed) */

 /**/

 xcmssi("SVCKEY ", &side_info, &side_info_length, &rc);

printf("return code from xcmssi is: %d \n", rc);

 return(0);

}

 Chapter 10. CPI Communications on OS/2 503

 OS/2 COBOL Sample Programs (DEFSIDE.CBL)

OS/2 COBOL Sample Programs
This program is an example of the function available through the CPI-C extensions
provided. *

 DEFSIDE.CBL
 IDENTIFICATION DIVISION.

 PROGRAM-ID. DEFSIDE.

* THIS PROGRAM IS AN EXAMPLE OF THE FUNCTION AVAILABLE *

* THROUGH THE CPI-C EXTENSIONS PROVIDED. *

 * *

* PURPOSE: DEFINE CPI-C SIDE INFORMATION AND DISPLAY RESULT *

 * *

 * INPUT: SIDE-INFORMATION STRUCTURE. *

 * *

* OUTPUT: CPI-C SIDE INFORMATION TABLE IS UPDATED TO *

* REFLECT INPUT STRUCTURE. *

 * *

* NOTE: FOR THIS SAMPLE PROGRAM, THE KEY FIELD (TEST-KEY), *

* SUPPORTING THE COMMUNICATIONS MANAGER *

* KEYLOCK FEATURE, IS SET TO SPACES. AS A RESULT, *

* THIS PROGRAM WILL RUN SUCCESSFULLY ONLY WHEN *

* THE KEYLOCK FEATURE IS NOT SECURED. *

 * *

 *

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. PS-2.

 OBJECT-COMPUTER. PS-2.

 SPECIAL-NAMES.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 I-O-CONTROL.

 *

 DATA DIVISION.

 FILE SECTION.

 WORKING-STORAGE SECTION.

 01 TEST-KEY PIC X(1) VALUE SPACES.

01 TEST-ENTRY-NUMBER PIC 9(9) VALUE 0 COMP-4.

01 CM-ERROR-DISPLAY-MSG PIC X(40) VALUE SPACES.

 **

* USE THE CPI COMMUNICATIONS PSEUDONYM FILES *

 **

 COPY CMCOBOL.

 LINKAGE SECTION.

 EJECT

 *

 PROCEDURE DIVISION.

 **

************************** START OF MAINLINE *******************

 **

 MAINLINE.

 PERFORM SIDE-INITIALIZE

 THRU SIDE-INITIALIZE-EXIT.

 PERFORM SIDE-DISPLAY

504 CPI Communications Reference

 OS/2 COBOL Sample Programs (DEFSIDE.CBL)

 THRU SIDE-DISPLAY-EXIT.

 PERFORM CLEANUP

 THRU CLEANUP-EXIT.

 STOP RUN.

 **

*************************** END OF MAINLINE ********************

 **

 *

 SIDE-INITIALIZE.

INITIALIZE SIDE-INFO-ENTRY REPLACING NUMERIC BY 0

ALPHABETIC BY " ".

MOVE "CREDRPT" TO SI-SYM-DEST-NAME.

 **

* CHANGE THE SI-PARTNER-LU-NAME TO MATCH YOUR CONFIGURATION *

 **

MOVE "NET1.ENLU" TO SI-PARTNER-LU-NAME.

SET SI-APPLICATION-TP TO TRUE.

MOVE "CREDRPT " TO SI-TP-NAME.

MOVE "#INTER" TO SI-MODE-NAME.

MOVE 124 TO SIDE-INFO-LEN.

SET SI-SECURITY-NONE TO TRUE.

CALL "XCMSSI" USING TEST-KEY

 SIDE-INFO-ENTRY

 SIDE-INFO-LEN

 CM-RETCODE.

 *

 IF CM-OK

DISPLAY "SIDE-INFO CREATED"

 ELSE

MOVE "FAILURE TO CREATE SIDE-INFO"

 TO CM-ERROR-DISPLAY-MSG

 PERFORM CLEANUP

 THRU CLEANUP-EXIT

 END-IF.

 SIDE-INITIALIZE-EXIT. EXIT.

* CLEAR THE SIDE-INFO CONTROL BLOCK FOR TESTING PURPOSES

* THEN ISSUE DISPLAY REQUEST

 SIDE-DISPLAY.

INITIALIZE SIDE-INFO-ENTRY REPLACING NUMERIC BY 0

ALPHABETIC BY " ".

DISPLAY "EXTRACTING NEWLY DEFINED SIDE INFORMATION".

MOVE "CREDRPT" TO SI-SYM-DEST-NAME.

MOVE 124 TO SIDE-INFO-LEN.

 CALL "XCMESI" USING TEST-ENTRY-NUMBER

 SI-SYM-DEST-NAME

 SIDE-INFO-ENTRY

 SIDE-INFO-LEN

 CM-RETCODE.

 *

IF CM-OK THEN

 DISPLAY "-------------------------"

DISPLAY "SIDE INFORMATION OBTAINED"

 DISPLAY "-------------------------"

DISPLAY "PARTNER TP NAME = " SI-TP-NAME

DISPLAY "PARTNER LU NAME = " SI-PARTNER-LU-NAME

DISPLAY "MODE NAME = " SI-MODE-NAME

 ELSE

MOVE "FAILURE DURING SIDE-INFO DISPLAY"

 TO CM-ERROR-DISPLAY-MSG

 PERFORM CLEANUP

 THRU CLEANUP-EXIT

 END-IF.

 Chapter 10. CPI Communications on OS/2 505

 OS/2 COBOL Sample Programs (DEFSIDE.CBL)

 SIDE-DISPLAY-EXIT. EXIT.

* DISPLAY EXECUTION COMPLETE OR ERROR MESSAGE *

* NOTE: CREDRPT WILL DEALLOCATE CONVERSATION *

 CLEANUP.

 IF CM-ERROR-DISPLAY-MSG = SPACES

DISPLAY "PROGRAM: DEFSIDE EXECUTION COMPLETE"

 ELSE

DISPLAY "DEFSIDE PROGRAM - ",

CM-ERROR-DISPLAY-MSG, " RC= ", CM-RETCODE.

 STOP RUN.

 CLEANUP-EXIT. EXIT.

506 CPI Communications Reference

 OS/2 COBOL Sample Programs (DELSIDE.CBL)

 DELSIDE.CBL
This program is an example of the function available through the CPI-C extensions
provided. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DELSIDE.

* THIS PROGRAM IS AN EXAMPLE OF THE FUNCTION AVAILABLE *

* THROUGH THE CPI-C EXTENSIONS PROVIDED. *

 * *

* PURPOSE: DELETE CPI-C SIDE INFORMATION AND DISPLAY RESULT *

 * *

 * INPUT: SIDE-INFORMATION STRUCTURE. *

 * *

* OUTPUT: CPI-C SIDE INFORMATION TABLE IS DELETED *

 * *

* NOTE: FOR THIS SAMPLE PROGRAM, THE KEY FIELD (TEST-KEY), *

* SUPPORTING THE COMMUNICATIONS MANAGER *

* KEYLOCK FEATURE, IS SET TO SPACES. AS A RESULT, *

* THIS PROGRAM WILL RUN SUCCESSFULLY ONLY WHEN *

* THE KEYLOCK FEATURE IS NOT SECURED. *

 * *

 *

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. PS-2.

 OBJECT-COMPUTER. PS-2.

 SPECIAL-NAMES.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 I-O-CONTROL.

 *

 DATA DIVISION.

 FILE SECTION.

 WORKING-STORAGE SECTION.

 01 TEST-KEY PIC X(1) VALUE SPACES.

01 CM-ERROR-DISPLAY-MSG PIC X(40) VALUE SPACES.

 **

* USE THE CPI COMMUNICATIONS PSEUDONYM FILES *

 **

 COPY CMCOBOL.

 LINKAGE SECTION.

 EJECT

 *

 PROCEDURE DIVISION.

 **

************************** START OF MAINLINE *******************

 **

 MAINLINE.

 PERFORM DELETE-SIDE-INFO

 THRU DELETE-SIDE-INFO-EXIT.

 PERFORM CLEANUP

 THRU CLEANUP-EXIT.

 STOP RUN.

 Chapter 10. CPI Communications on OS/2 507

 OS/2 COBOL Sample Programs (DELSIDE.CBL)

* DELETE SIDE-INFO *

 DELETE-SIDE-INFO.

MOVE "CREDRPT" TO SI-SYM-DEST-NAME.

 CALL "XCMDSI" USING TEST-KEY

 SI-SYM-DEST-NAME

 CM-RETCODE.

IF CM-OK THEN

DISPLAY "SIDE INFO DELETED"

 ELSE

MOVE "FAILURE TO DELETE SIDE-INFO"

 TO CM-ERROR-DISPLAY-MSG

 PERFORM CLEANUP

 THRU CLEANUP-EXIT

 END-IF.

 DELETE-SIDE-INFO-EXIT. EXIT.

* DISPLAY EXECUTION COMPLETE OR ERROR MESSAGE *

 CLEANUP.

IF CM-OK THEN

DISPLAY "PROGRAM: DELETE SIDE EXECUTION COMPLETE"

 ELSE

DISPLAY "DELSIDE PROGRAM - ",

CM-ERROR-DISPLAY-MSG, " RC= ", CM-RETCODE

 IF CM-PROGRAM-PARAMETER-CHECK

 DISPLAY "--"

DISPLAY "THIS ERROR CAN RESULT FROM RUNNING DELSIDE"

DISPLAY "WHEN SIDE INFORMATION HAS ALREADY BEEN DELETED"

 DISPLAY "--"

 END-IF

 END-IF.

 STOP RUN.

 CLEANUP-EXIT. EXIT.

508 CPI Communications Reference

 OS/2 REXX Sample Programs (XCMSSI.CMD)

OS/2 REXX Sample Programs
This is a sample of a REXX program to set CPI-C side information.

 XCMSSI.CMD
/*---*/

/* REXX sample program to set CPI-C side information */

/* */

/* Notes: CPICREXX.EXE must be run at some point prior */

/* to running this program in order to register */

/* the CPICOMM environment to REXX. */

/* Also, before running this program, the */

/* Communications Manager keylock feature */

/* must either be secured with a service key of */

/* "svckey" or not be secured at all. */

/*---*/

/*------------------------*/

/* set defined constants. */

/*------------------------*/

CM_OK = 0

XC_APPLICATION_TP = 0

XC_SECURITY_PROGRAM = 2

say 'CPI-C set side information sample program'

/*---*/

/* set up parameters and sideinfo structure. */

/*---*/

sideinfo_len = 124

key = "svckey "

sideinfo.sym_dest_name = "SYMDEST1"

sideinfo.partner_LU_name = "ALIASLU2"

sideinfo.TP_name = "MYTPN"

sideinfo.mode_name = " "

sideinfo.TP_name_type = XC_APPLICATION_TP

sideinfo.conversation_security_type = XC_SECURITY_PROGRAM

sideinfo.security_user_id = "myuserid"

sideinfo.security_password = "xxxxxxxxx"

/*--*/

/* issue the CPI-C call to the CPICOMM environment. */

/*--*/

address CPICOMM 'xcmssi key sideinfo sideinfo_len retc'

if rc = 0 & retc = CM_OK then

 do

 say '***'

say 'CPI-C side information successfully set.'

 say '***'

 end

else

 do

say 'Failure to set CPI-C side information.'

if rc = 0 then

say 'CPI-C return code =' retc

else if rc = 30 then

say 'CPICREXX has not been executed.'

 else

say 'REXX return code =' rc

 end

'pause'

'exit'

 Chapter 10. CPI Communications on OS/2 509

 OS/2 REXX Sample Programs (XCMESI.CMD)

 XCMESI.CMD
/*---*/

/* REXX sample program to extract CPI-C side information */

/* */

/* Note: CPICREXX.EXE must be run at some point prior */

/* to running this program in order to register */

/* the CPICOMM environment to REXX. */

/*---*/

/*------------------------*/

/* Set defined constants. */

/*------------------------*/

CM_OK = 0

CM_PROGRAM_PARAMETER_CHECK = 24

XC_SECURITY_PROGRAM = 2

say 'CPI-C extract side information sample program'

entry_number = 1

sideinfolen = 124

rc = 0

retc = CM_OK

do while rc = 0 & retc = CM_OK

address cpicomm 'xcmesi entry_number symdest sideinfo sideinfolen retc'

if rc = 0 & retc = CM_OK then

 do

 say '***'

say '*** Extracted CPI-C side information for entry number:'

 entry_number

 say '***'

say 'entry_number =' entry_number

say 'sym_dest_name =' sideinfo.sym_dest_name

say 'TP_name =' sideinfo.TP_name

say 'TP_name_type =' sideinfo.TP_name_type

say 'partner_LU_name =' sideinfo.partner_LU_name

say 'mode_name =' sideinfo.mode_name

say 'conversation_security_type =' sideinfo.conversation_security_type

if sideinfo.conversation_security_type = XC_SECURITY_PROGRAM then

say 'security_user_id =' sideinfo.security_user_id

 say

 end

else

 do

if rc = 30 then

say 'CPICREXX has not been executed.'

else if rc <> 0 then

 do

say 'Failure extracting CPI-C side information '

say 'for entry number:' entry_number

say 'REXX return code =' rc

 end

else if retc <> CM_PROGRAM_PARAMETER_CHECK then

 do

say 'Failure extracting CPI-C side information '

say 'for entry number:' entry_number

say 'CPI-C return code =' retc

 end

else if entry_number = 1 then

say 'No CPI-C side information.'

 else

say 'End of CPI-C side information entries.'

510 CPI Communications Reference

 OS/2 REXX Sample Programs (XCMESI.CMD)

 end

entry_number = entry_number + 1

end

/*---*/

/* Now extract side information by symbolic destination name */

/*---*/

use_symdest = 0

entry_number = use_symdest

symdest = "SYMDEST1"

address cpicomm 'xcmesi entry_number symdest sideinfo sideinfolen retc'

if rc = 0 & retc = CM_OK then

 do

 say '***'

say '*** Extracted CPI-C side information for symbolic destination name:'

 symdest

 say '***'

say 'sym_dest_name =' sideinfo.sym_dest_name

say 'TP_name =' sideinfo.TP_name

say 'TP_name_type =' sideinfo.TP_name_type

say 'partner_LU_name =' sideinfo.partner_LU_name

say 'mode_name =' sideinfo.mode_name

say 'conversation_security_type =' sideinfo.conversation_security_type

if sideinfo.conversation_security_type = XC_SECURITY_PROGRAM then

say 'security_user_id =' sideinfo.security_user_id

 end

else if rc = 0 then

 do

say 'Failure extracting CPI-C side information'

say 'for symbolic destination name:' symdest

say 'CPI-C return code =' retc

 end

else if rc = 30 then

say 'CPICREXX has not been executed.'

else

say 'REXX return code =' rc

'pause'

'exit'

 Chapter 10. CPI Communications on OS/2 511

 OS/2 REXX Sample Programs (XCMESI.CMD)

512 CPI Communications Reference

 OS/400

Chapter 11. CPI Communications on Operating System/400

This chapter summarizes the product-specific information that the OS/400
programmer needs when writing application programs that contain CPI
Communications calls.

The information in this chapter should be read in conjunction with the CPI
Communications information contained in AS/400* APPC Programming
(SC41-3443).

This chapter is organized as follows:

 ¹ OS/400 Publications

¹ OS/400 Operating Environment

– OS/400 Terms and Concepts
– Conformance Classes Supported

 – Languages Supported
 – Pseudonym Files

– Defining Side Information
– How Dangling Conversations Are Deallocated
– Scope of the Conversation_ID
– Identifying Product-Specific Errors

 – Diagnosing Errors
– When Allocation Requests Are Sent
– Deviations from the CPI Communications Architecture

¹ OS/400 Extension Calls

¹ OS/400 Special Notes

 OS/400 Publications
The following OS/400 publications contain detailed product information:

¹ AS/400: APPC Programming, SC41-3443
¹ AS/400: Work Management, SC41-3306
¹ AS/400: Communications Management, SC41-3406
¹ AS/400: APPN Support, SC41-3407
¹ AS/400: CL Reference, SC41-3722
¹ AS/400: REXX/400 Programmer's Guide, SC24-5665

OS/400 Operating Environment
The following sections explain special considerations for use when writing
applications for an OS/400 environment.

OS/400 Terms and Concepts
Each piece of work run on the OS/400 system is called a job . Each job is a single,
identifiable sequence of processing actions that represents a single use of the
system. The basic types of jobs performed on the OS/400 system are interactive
jobs, batch jobs, spooling jobs, autostart jobs, and prestart jobs.

 Copyright IBM Corp. 1996, 1998 513

 OS/400

On the OS/400 system, all user jobs operate in an environment called a
subsystem .

A subsystem is a single, predefined operating environment through which the
system coordinates work flow and resource usage. The OS/400 system can
contain several independently operating subsystems. The run-time characteristics
of a subsystem are defined in an object called a subsystem description . IBM
supplies several subsystem descriptions that can be used with or without
modification:

QINTER Used for interactive jobs

QBATCH Used for batch jobs

QBASE Used for both interactive and communications batch jobs

QCMN Used for communications batch jobs

A new subsystem description can also be defined using the Create Subsystem
Description (CRTSBSD) command.

In a subsystem description, work entries are defined to identify the sources from
which jobs can be started in that subsystem. The types of work entries are as
follows:

Autostart job entry
Specifies a job that is automatically started when the subsystem is started.

Workstation entry
Specifies one or a group of workstations from which interactive jobs can be
started.

Job queue entry
Specifies one of the job queues from which the subsystem can select batch
jobs . A batch job is a job that can run independently of a user at a
workstation.

Communications entry
Specifies one or a group of communications device descriptions from which
communications batch jobs may be started. Communications batch jobs do not
use job queues.

Prestart job entry
Identifies an application program to be started to wait for incoming allocation
requests.

When a CPI Communications program issues an Allocate (CMALLC) call, the
underlying LU 6.2 support sends an allocation request (the LU 6.2 Functional
Management Header Type 5, or FMH5). When an allocation request is received by
a system, it is called an incoming conversation. Before the OS/400 system can
start a job to run the program specified by the incoming conversation, a subsystem
must be defined with the appropriate work entries to process this incoming
conversation, and the subsystem must be started. The subsystem processing the
incoming conversation must have a communications entry defined to identify the
communications device and the remote location name (the partner_LU_name) on
which incoming work can be received. The IBM-supplied subsystem descriptions,
QBASE and QCMN, contain default communications entries that can be used for
incoming conversations.

514 CPI Communications Reference

 OS/400

Communications entries can be added or modified using the following commands:

¹ Add Communications Entry (ADDCMNE)
¹ Remove Communications Entry (RMVCMNE)
¹ Change Communications Entry (CHGCMNE)

Refer to OS/400 Work Management (SC41-3306) and OS/400 Communications
Management (SC41-3406) for more information on subsystems and
communications entries.

Conformance Classes Supported
OS/400 supports the following conformance classes:

 ¹ Conversations
 ¹ LU 6.2
 ¹ Security
¹ Data Conversion Routines

 ¹ Recoverable Transactions

Refer to “Functional Conformance Class Descriptions” on page 746 for a complete
description of functional conformance classes.

 Languages Supported
The following languages can be used on the OS/400 system to issue CPI
Communications calls:

 ¹ Application Generator
 ¹ ILE* C/400
 ¹ ILE COBOL/400
 ¹ FORTRAN/400
 ¹ REXX/400
 ¹ ILE RPG/400

Each language is discussed in the sections that follow.

Application Generator Language: Cross System Product (CSP) is used to
implement the Application Generator Common Programming Interface.

The OS/400 system supports CSP/Application Execution but does not support
CSP/Application Development. Therefore, CSP application programs cannot be
developed on the OS/400 system. However, CSP programs for the OS/400 system
can be written in another environment and then run on the OS/400 system.

ILE C/400 Language: The #pragma statement is needed for each CPI
Communications routine used in a program. The #pragma statements are included
in the ILE C/400 pseudonym file.

The external function names are case-sensitive in ILE C/400 language. On all
Version 2 Release 1.1 or earlier OS/400 systems, all CPI Communications call
names must be typed in uppercase letters. Lowercase letters in CPI
Communications call names for programs that issue CPI Communications calls on
another platform (for example, cmaccp) must be changed to uppercase letters
when using Version 2 Release 1.1 or earlier.

 Chapter 11. CPI Communications on Operating System/400 515

 OS/400

FORTRAN/400 Language: The #pragma statement is needed for each CPI
Communications call used in a program. The #pragma statements are included in
the FORTRAN/400 pseudonym file.

REXX/400: OS/400 REXX programs are not compiled programs and do not exist
as OS/400 objects. To start a REXX program as a result of a program start
request, the program name in the program start request must reference a CL
program that contains the Start REXX Procedure (STRREXPRC) command.

The Create Command (CRTCMD) command, the Start REXX Procedure
(STRREXPRC) command, and the Change Command (CHGCMD) command allow
an OS/400 user to specify an initial command environment to be used when an
ADDRESS statement is not coded and a command is encountered. The special
value *CPICOMM can be used for the command environment keyword CMDENV
on the STRREXPRC command to specify that CPI Communications is the initial
command environment. The special value *CPICOMM can be used for the REXX
command environment keyword REXCMDENV on the CRTCMD and CHGCMD
commands to specify that CPI Communications is the initial command environment.

 Pseudonym Files
Application Generator Language: CSP programs for the OS/400 system can be
written in another environment and run on the OS/400 system. For this reason, no
pseudonym file is provided for CSP on the OS/400 system.

ILE C/400 Language: The #pragma statements are included in the pseudonym
file provided by IBM. The pseudonym file resides in library QSYSINC , file H,
member CMC.

COBOL/400 Language: Pseudonym files are provided for CPI Communications
programs written in the COBOL/400 and ILE COBOL/400 languages. The
pseudonym file for COBOL/400 resides in library QSYSINC, file QLBLSRC,
member CMCOBOL. The pseudonym file for ILE COBOL/400 resides in library
QSYSINC, file QCBLLESRC, member CMCOBOL.

FORTRAN/400 Language: The #pragma statements are included in the
pseudonym file provided by IBM. The pseudonym file resides in library QFTN, file
QIFOINC, member CMFORTRN.

RPG/400 Language: Pseudonym files are provided for CPI Communications
programs written in the RPG/400 and ILE RPG/400 languages. The pseudonym
file for RPG/400 resides in library QSYSINC, file QRPGSRC, member CMRPG.
The pseudonym file for ILE RPG/400 resides in library QSYSINC, file
QRPGLESRC, member CMRPG.

REXX/400: No pseudonym file is provided for the OS/400 REXX language.

Defining Side Information
For a program to establish a conversation with a partner program, CPI
Communications requires initialization parameters, such as the name of the partner
program and the name of the LU at the node of the partner program. These
initialization parameters are stored in the side information. On the OS/400 system,
the side information is referred to as communications side information .

516 CPI Communications Reference

 OS/400

A program must specify the communications side information name as the symbolic
destination name (sym_dest_name) parameter on the Initialize_Conversation call to
use the stored characteristics. If a program does not specify a side information
name (that is, the sym_dest_name is eight space characters), it must issue the
Set_Partner_LU_Name and Set_TP_Name calls. Also, when no side information
name is specified, the mode_name characteristic for the conversation defaults to
eight space characters. To override this default, the program must issue the
Set_Mode_Name call.

On the OS/400 system, the communications side information is an object of type
*CSI (communications side information). It contains information that defines the
remote system (for example, the remote location name, remote network identifier,
and mode). The OS/400 communications side information object also contains
additional information, namely, the device description, the local location name (local
network LU name), and the authority. The remote network ID, remote location
name, device description, and local location name are used by the OS/400 system
to connect to the remote system.

Note: On the OS/400 system, the conversation security type, user ID, and
password cannot be stored in the communications side information. To set these
conversation characteristics, use the following calls:

 ¹ Set_Conversation_Security_Password (CMSCSP)
 ¹ Set_Conversation_Security_Type (CMSCST)
 ¹ Set_Conversation_Security_User_ID (CMSCSU)

Managing the Communications Side Information
To manage the side information object, the OS/400 system provides Control
Language (CL) commands that can be used to create, display, print, change,
delete, and work with the communications side information. Command prompting
from a display is also provided to perform these tasks. The following is a list of the
CL commands that can be used to manage the communications side information
object:

OS/400 Command Description
CRTCSI Used to create the CPI Communications side information object
CHGCSI Used to change the CPI Communications side information object
DSPCSI Used to display or print the CPI Communications side information

object
DLTCSI Used to delete the CPI Communications side information object
WRKCSI Provides a menu from which the user can create, change, display,

delete, or print the CPI Communications side information object

The following table describes the information contained in the communications side
information object and maps it to the OS/400 CPI Communications parameters.

 Chapter 11. CPI Communications on Operating System/400 517

 OS/400

Table 41. Description of OS/400 Communications Side Information Object

OS/400 System
Parameters

Description

RMTLOCNAME and
RMTNETID

The remote location name (RMTLOCNAME) and remote network
ID (RMTNETID) make up the name of the logical unit (LU) on the
remote system. These parameters correspond to the
partner_LU_name, which is defined by the CPI Communications
architecture as a required characteristic for the side information.
A fully qualified partner_LU_name is defined as the network ID
concatenated by a period with the network LU name (that is,
network ID.network LU name). On the OS/400 system, the
remote network ID is the network ID, and the remote location
name is the network LU name.

MODE The name of the mode used to control the session. It is used to
designate the properties for the session that will be allocated for
the conversation, such as the class of service to be used on the
conversation. This parameter corresponds to the CPI
Communications mode_name characteristic.

To use a mode_name of eight space characters, the special value
of BLANK must be used. The OS/400 system does not support
sending a mode name of 'BLANKxxx' to a remote system, where
x is a space character.

DEV The name of the device description, which describes the
characteristics of the logical connection between a local and
remote location. This parameter is specific to the OS/400 system
and further qualifies the connection defined by the remote location
name and the remote network ID.

LCLLOCNAME The name of the local location, which specifies the local network
LU name in a network. The OS/400 environment supports
multiple local location names. This parameter is specific to the
OS/400 system and further qualifies the connection defined by the
remote location name and the remote network ID.

PGMNAME The name of the target program that is to be started. This
corresponds to the TP_name, which is defined by the CPI
Communications architecture as a required characteristic for the
communications side information.

AUT The authority given to users who do not have specific authority to
the communications side information object. This parameter is
specific to the OS/400 system.

How Dangling Conversations Are Deallocated
When a CPI Communications program ends before one of its conversations is
deallocated, the conversation is considered to be a dangling conversation. The
OS/400 CPI Communications support ends dangling conversations when a job in
which the program was running ends. When the OS/400 CPI Communications
support ends a dangling conversation for a job, a return_code of
CM_DEALLOCATED_ABEND is sent to the partner program, and a message
indicating that the conversation has ended is placed in the system history log. The
Display Log (DSPLOG) command can be used to display or print the system history
log.

518 CPI Communications Reference

 OS/400

Reclaim Resource Processing
A conversation is considered a resource on the OS/400 system. Therefore, the
Reclaim Resource (RCLRSC) command can be used by a user or by a program to
end conversations on the OS/400 system. For each conversation ended by the
reclaim resource processing, a return_code of CM_DEALLOCATED_ABEND is sent to
the partner program, and a message indicating that the conversation has ended is
placed in the system history log. The Display Log (DSPLOG) command can be
used to display or print the system history log.

OS/400 CL Reference (SC41-3722) contains more information on the RCLRSC
command.

Scope of the Conversation_ID
The OS/400 CPI Communications support associates conversations with OS/400
jobs. Each conversation is assigned a conversation_ID that is unique within the
job; however, the conversation_ID is not a system-wide unique value. Therefore, a
conversation_ID in one job cannot be accessed by another job.

Identifying Product-Specific Errors
This section discusses errors that can be returned on calls to CPI Communications
routines because of reasons and errors that are specific to the OS/400 system.

 CM_PRODUCT_SPECIFIC_ERROR
The CM_PRODUCT_SPECIFIC_ERROR return_code is returned on the following calls
for the designated reasons:

Set_Mode_Name (CMSMN)
OS/400 CPI Communications only supports the use of the following OS/400
special values when they are specified in the side information. These special
values cannot be specified on a Set_Mode_Name call.

¹ OS/400 special value *NETATR was specified for mode_name.

¹ OS/400 special value BLANK was specified for mode_name.

¹ An unexpected OS/400 internal error occurred.

Note: The conversation_state does not change for this return_code on this call.

Set_Partner_LU_Name (CMSPLN)
OS/400 CPI Communications only supports the use of the following OS/400
special values when they are specified in the side information. These special
values cannot be specified on a Set_Partner_LU_Name call.

¹ OS/400 special value *LOC was specified for the network ID portion of the
partner_LU_name.

¹ OS/400 special value *NETATR was specified for the network ID portion of
the partner_LU_name.

¹ OS/400 special value *NONE was specified for the network ID portion of the
partner_LU_name.

¹ An unexpected OS/400 internal error occurred.

Note: The conversation_state does not change for this return_code on this call.

 Chapter 11. CPI Communications on Operating System/400 519

 OS/400

Accept_Conversation (CMACCP)
The conversation enters Reset state when CM_PRODUCT_SPECIFIC_ERROR is
returned in a return_code for the following reasons:

¹ The program is defined in a prestart job entry (ADDPJE command) and is
being ended.

¹ The program has already issued an ACQUIRE operation to the
*REQUESTER device using an Intersystem Communications Function (ICF)
file or a communications file or a mixed file.

¹ OS/400 CPI Communications was unable to obtain enough system storage
to support the conversation.

¹ An unexpected OS/400 internal error occurred.

Allocate (CMALLC)
The conversation enters Reset state when CM_PRODUCT_SPECIFIC_ERROR is
returned in the return_code for this call. CM_PRODUCT_SPECIFIC_ERROR can be
returned for the following reasons:

¹ The program is not authorized to use the APPC device description that was
selected based on the partner_LU_name and the side information location
parameters.

¹ The program specified a partner_LU_name that caused the system to select
a device description that is not an APPC device. (The network LU name
portion of the partner_LU_name specified an OS/400 remote location name
that is configured in a non-APPC device description.)

¹ The partner_LU_name requested a conversation with a network LU name
that resides on the same control point, and APPN support is being used.
(The OS/400 system does not support communications between two network
LU names on the same control point when APPN support is used.)

¹ An unexpected OS/400 internal error occurred.

Initialize_Conversation (CMINIT)
The conversation enters Reset state when CM_PRODUCT_SPECIFIC_ERROR is
returned in a return_code for the following reasons:

¹ OS/400 CPI Communications was unable to obtain enough system storage
to support the conversation.

¹ An unexpected OS/400 internal error occurred.

Any other set or any extract call
An unexpected OS/400 internal error occurred. The state of the conversation
remains unchanged.

 Diagnosing Errors
Each time OS/400 CPI Communications support returns an error return_code to a
program, a message is also placed in the job log for the user's job to indicate the
cause of the error. The Display Job Log (DSPJOBLOG) command can be used to
display or print the job log for any OS/400 job.

520 CPI Communications Reference

 OS/400

OS/400 CPI Communications Support of Log_Data
A CPI Communications program may set log_data using the Set_Log_Data
(CMSLD) call on a basic conversation. If a program has set log_data, the log_data
will be sent to the partner system when one of the following occurs:

¹ The CPI Communications program issues a Send_Error (CMSERR) call.

¹ The CPI Communications program issues a Deallocate (CMDEAL) call with
deallocate_type of CM_DEALLOCATE_ABEND.

When the OS/400 sends log_data to a partner system, it places a message in the
system history log. This message includes the log_data that was sent.

When an OS/400 receives log_data from a partner system, it places a message in
the system history log. This message includes the log_data that was received.

The OS/400 system history log can be viewed or printed using the Display Log
(DSPLOG) command.

 Return Codes
The following return_code values can be returned on calls to CPI Communications
routines because of reasons and errors that are specific to the OS/400 operating
system. Many of these same errors can occur when running CPI Communications
over TCP/IP (AnyNet support) because APPC over TCP/IP controllers simulate
APPN support.

CM_ALLOCATE_FAILURE_RETRY

¹ The operator varied off the APPC device, or the APPC device was in a
recovery mode and the recovery was cancelled via a command or via an
answer of cancel to a recovery message on the system operator message
queue.

¹ The OS/400 APPN support attempted to dynamically vary on the APPC
device description needed for the partner_LU_name. A line failure or
station failure may have occurred during APPN processing, and the
recovery was cancelled.

¹ The APPC device description needed for the partner_LU_name is a
dependent device configured to use APPN support, but the device is
varied off. OS/400 APPN support does not dynamically vary on
dependent devices.

¹ The OS/400 APPN support could not determine an available route to the
destination specified by the partner_LU_name. For example, directory
services encountered a link failure on a control point in a control point
session.

¹ The exchange log name processing failed.

¹ The protected conversation registration failed.

CM_ALLOCATE_FAILURE_NO_RETRY

¹ The OS/400 APPN support attempted to dynamically create the APPC
device description needed for the partner_LU_name. The attempt was
unsuccessful because of a previous user configuration error.

¹ The OS/400 APPN support attempted to dynamically add the mode
needed for the mode_name to the APPC device description needed for

 Chapter 11. CPI Communications on Operating System/400 521

 OS/400

the partner_LU_name. The attempt was unsuccessful because the
needed device description already has the maximum number of modes
that is allowed by configuration services.

¹ The OS/400 APPN support attempted to start the mode needed for the
mode_name. The attempt was not successful because of a
change-number-of-sessions (CNOS) failure.

¹ The OS/400 APPN support encountered a route calculation error.

¹ The class of service (COS) specified in the mode description cannot be
found. The mode description is specified by the mode_name
conversation characteristic.

¹ No route exists that satisfies the COS characteristic specified by the COS
parameter in the mode description. The mode description is specified by
the mode_name conversation characteristic.

¹ The local network LU (local location name) that was specified in the side
information cannot be found.

¹ The device or devices specified single-session support.

¹ A protected conversation could not be established because the program
was running in the System/36 or System/38 environment.

CM_PARAMETER_ERROR
The CM_PARAMETER_ERROR can be returned on the Allocate call (CMALLC)
for the following reasons:

¹ The requested partner_LU_name does not reside on this end node, and
no network node is available to search for the partner_LU_name.

¹ The requested partner_LU_name cannot be located by APPN directory
services.

REXX Reserved RC Variable
The OS/400 CPICOMM environment support returns the following values in the
REXX RC variable:

Code Meaning

0 The CPI Communications routine was successfully called.

-3 The routine name specified does not exist or was spelled incorrectly.

-9 Insufficient storage is available. Attempt the call again when more storage
is available.

-10 Too many parameters were specified for the CPI Communications calls.
Refer to the detailed description for the specified call in this book to find
the proper number of parameters.

-11 Not enough parameters were specified for the CPI Communications call.
Refer to the detailed description for the specified call in this book to find
the proper number of parameters.

-14 An internal system error occurred in the CPICOMM environment. Attempt
the call again. If the condition continues, report the problem using the
Analyze Problem (ANZPRB) command.

522 CPI Communications Reference

 OS/400

-24 An unexpected error occurred on an internal fetch variable contents call.
Attempt the call again. If the condition continues, report the problem using
the Analyze Problem (ANZPRB) command.

-25 An unexpected error occurred on an internal set variable contents call.
Attempt the call again. If the condition continues, report the problem using
the Analyze Problem (ANZPRB) command.

-27 The value of the module call parameter is not valid. This value cannot be
converted to the binary integer format required by CPI Communications.
The value was more than 31 digits, contained a digit that was not 0–9, a
plus sign (+), a minus sign (-), or contained an embedded blank.

-28 An invalid variable name was used. Refer to AS/400: REXX/400
Programmer's Guide (SC24-5665) for information concerning valid variable
names.

-30 A character string that started with a shift-out character did not end with a
shift-in character. The command passed to the REXX CPICOMM
environment must contain valid bracketed DBCS characters.

REXX Error and Failure Conditions
Conditions are problems or other occurrences that may arise while a REXX
program is running. Condition traps are routines that take control when the
specified conditions are met. A condition trap is enabled by using the SIGNAL ON
or CALL ON instructions.

The programmer must be aware of two conditions in the OS/400 CPI
Communications command environment: FAILURE and ERROR. The OS/400 CPI
Communications command environment indicates a FAILURE condition when a
negative value is returned in the RC variable. If the program has enabled a
condition trap for the FAILURE condition, control passes to the routine that is
named to handle the FAILURE condition. If the program has not enabled a
condition trap for a FAILURE condition but has enabled a condition trap for an
ERROR condition, control passes to the routine that is named to handle the
ERROR condition.

Note: An ERROR condition trap will never receive control from the CPI
Communications command environment if a FAILURE condition trap is also
enabled.

Refer to AS/400: REXX/400 Programmer's Guide (SC24-5665) for information
concerning the error and failure conditions and how to process them.

Tracing CPI Communications
Use the Trace Common Programming Interface Communications (TRCCPIC)
command to capture information about CPI Communications calls that are being
processed by the application program. This trace information can be collected in a
current job or in a job being serviced by the Start Service Job (STRSRVJOB)
command. Tracing CPI Communications can be done before running a job or after
a job is active. For more information about tracing CPI Communications, see
OS/400 Communications Management (SC41-3406).

 Chapter 11. CPI Communications on Operating System/400 523

 OS/400

When Allocation Requests Are Sent
OS/400 CPI Communications support sends the allocation request before returning
control to the program after the Allocate call.

OS/400 Extension Calls
OS/400 provides no CPI Communications extension calls.

OS/400 Special Notes
This section discusses TCP/IP support, prestarting jobs, multiple conversation
support, and portability considerations that the programmer should be aware of
when writing OS/400 CPI Communications application programs.

CPI Communications over TCP/IP Support
OS/400 CPI Communications applications programs can use TCP/IP support for
communications with no changes. See OS/400 APPC Programming (SC41-3443)
and OS/400 Communications Configuration (SC41-3401) for more information.

Prestarting Jobs for Incoming Conversations
To minimize the time required for a program to accept a conversation with its
partner program, an OS/400 prestart job entry can be used. When a prestart job
entry is used, the application program is started before an allocation request is
received from the partner program. Each prestart job entry contains a program
name, library name, user profile, and other attributes that the subsystem uses to
create and manage a pool of prestart jobs.

The following must be done to use a prestart job entry:

1. Define a prestart job entry. A prestart job entry is defined, using the Add
Prestart Job Entry (ADDPJE) command, in the subsystem that contains the
communications entry.

2. Start the prestart job entry. The prestart job entry can be started at the same
time the subsystem is started or the Start Prestart Jobs (STRPJ) command can
be used.

Programs should be designed with the following considerations when a prestart job
entry is used:

¹ To ensure that the initial processing is completed before the allocation request
is received, a prestart job program should do as much work as possible (for
example, opening database files) before issuing the Accept_Conversation
(CMACCP) call.

The Accept_Conversation call will not complete until an allocation request is
received for the application program. When this request is received, the
application program receives control with a return_code of CM_OK (assuming
that no authorization or other problems are encountered), and the application
program can immediately begin processing.

¹ When a prestart job program has finished servicing an incoming conversation,
the conversation enters the Reset state, and the program may then make itself

524 CPI Communications Reference

 OS/400

available for another incoming conversation by issuing another
Accept_Conversation call.

¹ Only resources that are used specifically for a conversation should be
deallocated. For example, if a database file is used for most conversations,
there is no need to close the file and then open it each time a conversation is
deallocated and a new conversation is accepted.

¹ Prestart jobs can be used for protected conversations, but there are some
considerations:

– If a prestart job attempts an Accept_Conversation (CMACCP) call and the
prestart job has already allocated protected conversations, the CMACCP
call is rejected. The CMACCP call returns a
CM_PRODUCT_SPECIFIC_ERROR return code, and a message is sent to
the job log.

– When protected conversations are already active, a prestart job must end
them before it can accept an incoming, protected conversation.

– A prestart job can accept an incoming, protected conversation if there are
unprotected conversations already active.

Programs that are designed to use prestart job entries may not be portable to other
system environments.

Refer to OS/400 APPC Programming (SC41-3443) for more information about
using CPI Communications with prestart job entries.

Multiple Conversation Support
Application programs running in an OS/400 job can allocate many conversations
and communicate concurrently over these conversations. However, only one
incoming conversation can exist for one OS/400 job at any time. In addition, only
prestart jobs can accept subsequent incoming conversations after deallocating an
initial incoming conversation.

For example, job A can accept, process, and deallocate a conversation. If job A is
a prestart job, it can then issue another Accept_Conversation to wait for another
incoming conversation to process. If job A is not a prestart job, it cannot process
another incoming conversation.

 Portability Considerations
The following are portability considerations for CPI Communications application
programs:

¹ To maintain system security, the conversation security type, user ID, and
password cannot be stored in the communications side information. To set
these conversation characteristics, use the following calls:

 – Set_Conversation_Security_Password (CMSCSP)
 – Set_Conversation_Security_Type (CMSCST)

OS/400 supports these values for Set_Conversation_Security_Type:
 - CM_SECURITY_NONE
 - CM_SECURITY_SAME
 - CM_SECURITY_PROGRAM
 - CM_SECURITY_PROGRAM_STRONG

 – Set_Conversation_Security_User_ID (CMSCSU)

 Chapter 11. CPI Communications on Operating System/400 525

¹ Programs that issue Extract_Partner_LU_Name (CMEPLN) or
Extract_Mode_Name (CMEMN) calls before allocating the conversation with the
Allocate (CMALLC) call may need to be modified. This is because the OS/400
CPI Communications support can also return the OS/400 special values
specified in the communications side information (*NETATR and *LOC, for
example). Once the Allocate call is successfully issued, these special values
are resolved by the CPI Communications support and are no longer returned.

For example, if a network LU name of NEWYORK exists in a network called
APPN, the OS/400 communications side information could specify a network ID
of *NETATR. This means that the name of the local network will be used.
Therefore, a CMEPLN call that is issued before the Allocate call could return
*NETATR.NEWYORK. However, a CMEPLN call issued after the Allocate call
could now return APPN.NEWYORK if APPN is the local network identifier in the
network attributes. Refer to OS/400 APPC Programming (SC41-3443) for more
information on these special values.

¹ Programs that handle multiple incoming conversations (one at a time) might not
be portable. These programs are designed to issue an Accept_Conversation
call multiple times to use the prestart job entry function.

526 CPI Communications Reference

 VM/ESA CMS

Chapter 12. CPI Communications on VM/ESA CMS

This appendix summarizes the product-specific information that the VM programmer
needs when writing application programs that contain CPI Communications calls or
VM/ESA extension calls.

This appendix contains information about VM/ESA's implementation of and
extensions to CPI Communications. It describes the CPI Communications
extension calls that can be used in VM/ESA to take advantage of VM/ESA's
capabilities; note, however, that a program using any of these VM/ESA extension
calls may require modification if moved to another SAA operating system.

Before reading this appendix, the reader should be familiar with the connectivity
programming section of the VM/ESA: CMS Application Development Guide. That
book discusses connectivity terminology used in this appendix, gives an overview of
communications programming on VM/ESA, introduces the use of CPI
Communications on VM/ESA, and describes work units and logical units of work. It
also contains scenarios and example programs that help demonstrate how to use
CPI Communications in VM/ESA. In addition, readers unfamiliar with
communications programming may also find the VM/ESA: Common Programming
Interface Communications User's Guide helpful.

This appendix is organized as follows:

 ¹ VM/ESA Publications

¹ VM/ESA Operating Environment

– Conformance Classes Supported
 – Languages Supported
 – Pseudonym Files

– Defining Side Information
– How Dangling Conversations Are Deallocated
– Scope of the Conversation_ID
– Identifying Product-Specific Errors

 – Diagnosing Errors
– When Allocation Requests Are Sent
– Deviations from the CPI Communications Architecture

¹ VM/ESA Extension Calls

¹ VM/ESA Special Notes

 VM Publications
The following VM/ESA publications contain detailed product information:

¹ VM/ESA: CMS Application Multitasking, SC24-5652
¹ VM/ESA: CMS Command Reference, SC24-5461
¹ VM/ESA: CMS Application Development Reference, SC24-5451
¹ VM/ESA: CMS Application Development Reference for Assembler, SC24-5453
¹ VM/ESA: CMS Application Development Guide, SC24-5450
¹ VM/ESA: CMS User’s Guide, SC24-5460
¹ VM/ESA: CMS Application Development Guide for Assembler, SC24-5452
¹ VM/ESA: Planning and Administration, SC24-5521

 Copyright IBM Corp. 1996, 1998 527

 VM/ESA CMS

¹ VM/ESA: Connectivity Planning, Administration, and Operation, SC24-5448
¹ VM/ESA: CP Programming Services, SC24-5520
¹ VM/ESA: System Messages and Codes, SC24-5529
¹ VM/ESA: REXX/VM Reference, SC24-5466
¹ VM/ESA: Common Programming Interface Communications User's Guide,

SC24-5595
¹ VM/ESA: SFS and CRR Planning, Administration, and Operation, SC24-5649
¹ VM/ESA: Conversion Guide and Notebook for VM/XA SP and VM/ESA,

SC24-5525

VM/ESA Operating Environment
The following sections explain some special considerations that should be
understood when writing applications for a VM/ESA environment.

Conformance Classes Supported
VM/ESA supports the following conformance classes:

 ¹ Conversations

All conversations, with the exception of Extract_Maximum_Buffer_Size
(CMEMBS)

 ¹ LU 6.2

Refer to “Functional Conformance Class Descriptions” on page 746 for a complete
description of functional conformance classes.

 Languages Supported
The following SAA languages can be used on VM/ESA to issue CPI
Communications calls and VM/ESA extension calls:

¹ Application Generator (Cross System Product implementation)
 ¹ C
 ¹ COBOL
 ¹ FORTRAN
 ¹ PL/I
¹ REXX (SAA Procedures Language).

In addition, the following non-SAA languages can be used on VM/ESA:

 ¹ Assembler
 ¹ Pascal.

The following list shows the call syntax for Assembler and Pascal:

Assembler
CALL routine_name,(parm1,parm2,...return_code),VL

Pascal
routine_name (parm1,parm2,...return_code);

528 CPI Communications Reference

 VM/ESA CMS

Programming Language Considerations
This section describes the programming considerations a programmer should keep
in mind when writing and running programs that use CPI Communications in a
VM/ESA environment. Specific notes for Application Generator, Assembler, C,
Pascal, and REXX are listed in the sections that follow.

Note: For all languages except REXX, when the CPI Communications application
is bound into a module through the usual CMS LOAD, INCLUDE, GENMOD, or
LKED procedures, the disk or directory containing CMSSAA TXTLIB and VMLIB
TXTLIB should be accessed and CMSSAA and VMLIB should be specified on a
GLOBAL TXTLIB command. CMSSAA TXTLIB is not referenced at run time.

Application Generator: Cross System Product (CSP) is the implementing product
for the Application Generator Common Programming Interface.

Please keep the following note in mind when coding a CSP program that issues
CPI Communications calls:

¹ Use the ‘NONCSP’ parameter in the CALL statement to avoid searching the
application's load file for the CPI Communications routines.

Assembler: Please keep the following note in mind when coding an assembler
program that issues CPI Communications calls:

¹ When building the parameter list to pass to CPI Communications, make sure
the high-order bit of all the addresses in the parameter list is zero, except for
the last entry in the parameter list. The last entry must have the high-order bit
set to designate the end of the parameter list. Specifying VL on the routine call
as shown on page 528 causes the high-order bit of the last address parameter
to be set to 1.

C: Please keep the following notes in mind when coding a C program that issues
CPI Communications calls:

¹ VM/ESA does not put a terminating null byte in character strings it returns. C
programs must take this into consideration.

¹ The #pragma linkage statement is needed for each CPI Communications call
used in a program. The #pragma statements are included in the CMC COPY
pseudonym file provided with VM/ESA. Note that because C is a
case-sensitive language, the CPI Communications call name must be coded
exactly as specified in the #pragma statement.

¹ If the C/370 licensed program is being used, the following REXX exec may set
up the proper environment for compiling C programs:

/* A REXX exec to set the loader tables and perform necessary

global commands */

'SET LDRTBLS 8'

'GLOBAL LOADLIB EDCLINK'

'GLOBAL TXTLIB EDCBASE IBMLIB CMSLIB CMSSAA VMLIB'

exit

Pascal: Please keep the following notes in mind when coding a Pascal program
that issues CPI Communications calls:

¹ The %INCLUDE for CMPASCAL should be a constant declaration.

 Chapter 12. CPI Communications on VM/ESA CMS 529

 VM/ESA CMS

¹ Use internal procedure statements for each CPI Communications call being
used, and declare each call as a FORTRAN call.

¹ Parameters should be passed as variables by reference, rather than passing
them as literals and constants.

¹ String parameters must have a length specified.

¹ Use PASCMOD, not LOAD, to build a load module. Enter the following
commands to compile, load, and run an executable Pascal program named
‘myprog’:

VSPASCAL myprog (lib(dmsgpi)) /* compile 'myprog' */

PASCMOD myprog CMSSAA VMLIB /* build module file, make sure

CMSSAA TXTLIB and VMLIB TXTLIB are used */

myprog /* run 'myprog' */

REXX (SAA Procedures Language): Please keep the following notes in mind
when coding a REXX program that issues CPI Communications calls:

¹ If Send_Data (CMSEND) is called from a REXX program, the buffer parameter
specified on the call cannot contain more than 32767 bytes of data. A data
field exceeding this size must be partitioned into units of 32767 bytes or less.
This restriction applies only to REXX.

¹ The special REXX variable RC should be checked following each CPI
Communications call before processing any values returned by the call. If the
RC value is not zero, the output parameters of the call are not meaningful.

 Pseudonym Files
The pseudonym files provided with VM/ESA include all of the CPI Communications
pseudonym values listed in Table 59 on page 642 along with the additional
VM/ESA values shown in Table 45 on page 576.

By including the appropriate file, a program can use pseudonyms for the actual CPI
Communications integer values. Table 42 lists the various pseudonym files and
shows where they reside in VM/ESA.

Table 42. Summary of CPI Communications Pseudonym Files

Language File Name File Location

Application Generator CMCSP COPY System disk

Assembler H CMHASM COPY DMSGPI MACLIB

C CMC COPY DMSGPI MACLIB

COBOL CMCOBOL COPY DMSGPI MACLIB

FORTRAN CMFORTRN COPY DMSGPI MACLIB

Pascal CMPASCAL COPY DMSGPI MACLIB

PL/I CMPLI COPY DMSGPI MACLIB

REXX CMREXX COPY System disk

530 CPI Communications Reference

 VM/ESA CMS

The following notes discuss some special considerations when accessing the
pseudonym files:

Assembler: The following example shows how to use the CMHASM COPY file.
Before assembling it, enter the command GLOBAL MACLIB DMSGPI OSMACRO to get
access to CMHASM COPY (in DMSGPI MACLIB) and the CALL macro (in
OSMACRO MACLIB).

MYPROG CSECT

* Standard OS linkage

STM R14,R12,12(R13) Save system's registers

USING MYPROG,R12 Establish base register 12

ST R13,SAVEMAIN+4 Save pointer to system's save area

LA R13,SAVEMAIN R13 points to our save area

* Get addressability to the CMHASM file

 USING CMHASM,R8

 L R8,=V(CMHASM)

* Do Initialize conversation

 CALL CMINIT,(CONID,SYMDNAME,RETCODE),VL

L R4,RETCODE Get the return code

* Compare return code from CMINIT with CM_OK value in CMHASM COPY

C R4,CM_OK Did CMINIT work successfully?

BZ INITOK Yes, branch and handle it.

* Handle CMINIT error

 :

INITOK EQU *

* CMINIT worked fine

 :

COPY CMHASM Include for CMHASM

 END MYPROG

C: Users who do not have access to Version 2 of the IBM C/370 Compiler and
Library, which provides MACLIB support in VM/ESA, may have to copy the CMC
COPY file from DMSGPI MACLIB to a minidisk or directory. One way to do this is
by entering

XEDIT DMSGPI MACLIB (MEMBER CMC

and then filing it as CMC COPY on a read/write minidisk or directory.

When using Version 2 of the IBM C/370 Compiler and Library, the following
example shows how to use the MACLIB support on VM/ESA when compiling a
program called ‘myprog’:

CC myprog (SEARCH((CMC.COPY)=(LIB(DMSGPI)))

 Chapter 12. CPI Communications on VM/ESA CMS 531

 VM/ESA CMS

REXX (SAA Procedures Language): The following example shows how to use
the CMREXX COPY file to equate pseudonyms to their integer values:

/*--*/

/* Equate pseudonyms to integer values based on CMREXX COPY file. */

/*--*/

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'

do index = 1 to pseudonym.0

 interpret pseudonym.index

end

CMS Pipelines provides an alternative to the EXECIO statement that was used in
the previous example:

/*--*/

/* Equate pseudonyms to integer values based on CMREXX COPY file. */

/*--*/

address command 'PIPE < CMREXX COPY * | STEM PSEUDONYM.'

do index = 1 to pseudonym.0

 interpret pseudonym.index

end

Defining Side Information
CPI Communications defines side information, which is a set of values used when
starting conversations. VM/ESA extends the side information to include access
security information.

VM/ESA implements side information using CMS communications directory files. A
communications directory file is a CMS NAMES format file that can be set up on a
system level (by a system administrator) or on a user level. The default name for
the system-level communications directory file is SCOMDIR NAMES and the default
name for the user-level file is UCOMDIR NAMES.

Note: Communications directories can be created or changed using the NAMES
command. See the NAMES command usage notes in the VM/ESA: CMS
Command Reference for more information.

Table 43 on page 533 lists and describes the tags that can be used in a CMS
communications directory.

532 CPI Communications Reference

 VM/ESA CMS

Table 43. Contents of a CMS Communications Directory File

Tag What the Value on the Tag Specifies

:nick. The symbolic destination name of up to 8 characters for the target resource.

:luname. The partner LU name (locally known LU name) that identifies where the resource resides.
This name consists of two fields of up to 8 characters each separated by at least one blank.
The fields are an LU name qualifier (network ID) and a target LU name. The values that can
be used for each depend on the connection:

Connection LU Name Qualifier Target LU name

To private resource within the TSAF
or CS collection

private resource
manager's user ID

To a local or system resource, or to
a global resource within the TSAF or
CS collection (tag may be omitted)

blank

Outside the TSAF or CS collection VM gateway name name of target LU

To global or system resource on a
particular system in the CS or TSAF
collection

system gateway name
of target system

blank

To a private resource on a particular
system in the CS or TSAF collection

system gateway name
of the target system

private resource
manager's user ID

:tpn. The transaction program name as it is known at the target LU for connections in the local
VM system or collection. For a local or global resource, this is the resource name identified
by the resource manager. For a private resource, this is the nickname specified in the
private resource server virtual machine's $SERVER$ NAMES file. For a target LU in the
SNA network, this is the transaction program name. The transaction program name cannot
start with a period. '&TSAF' is the transaction program name reserved for TSAF virtual
machines that are using APPC links.

:modename. For connections outside the TSAF or CS collection, this field specifies the mode name for
the SNA session connecting the gateway to the target LU. For connections within the TSAF
or CS collection, this field specifies a mode name of either VMINT or VMBAT, or it is
omitted. Only user programs running in requester virtual machines with OPTION COMSRV
specified in their CP directory entry can specify connections with a mode name of VMINT or
VMBAT.

:security. The access security type of the conversation (NONE, SAME, or PGM).

:userid.7 The access security user ID. (This is used for security type PGM and is ignored for other
security types.)

:password.7 The access security password. (This is used for security type PGM and is ignored for other
security types.)

See VM/ESA: Connectivity Planning, Administration, and Operation for examples of
communications directory entries and information on using them to implement or
modify side information. Once a communications directory file has been created or
modified, it must be put into effect by entering the SET COMDIR command. (Refer
to the VM/ESA: CMS Command Reference for details on this command.) The
VM/ESA-supplied SYSPROF EXEC automatically attempts to load SCOMDIR
NAMES and UCOMDIR NAMES during CMS initialization.

7 Including access security user IDs and passwords in a CMS communications directory is a potential security exposure. Security
user IDs and passwords can be specified on the APPCPASS statement in the source virtual machine's directory, rather than in
this file. VM/ESA: Connectivity Planning, Administration, and Operation explains this in detail.

 Chapter 12. CPI Communications on VM/ESA CMS 533

 VM/ESA CMS

How Dangling Conversations Are Deallocated
A program should terminate all conversations before the end of the program.
However, if the program does not terminate all conversations, node services will
deallocate them abnormally during CMS end-of-work unit processing. These
leftover conversations are referred to as dangling conversations.

On VM/ESA, node services will deallocate all dangling conversations with APPCVM
SEVER specifying a sever code of DEALLOCATE_ABEND_SVC. This applies to both
mapped and basic conversations. The DEALLOCATE_ABEND_SVC sever code
indicates to the partner program that node services issued the deallocate.

The return code that is reflected to the CPI Communications conversation partner
depends on the conversation_type and sync_level characteristics. When the
sync_level is CM_SYNC_POINT, the return code indicates that a backout (BO) is
required. If the conversation_type is CM_BASIC_CONVERSATION, the partner
program sees a return code of either:

 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_SVC_BO.

If the conversation_type is CM_MAPPED_CONVERSATION, the partner program sees
a return code of either:

 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO.

In addition, at CMS end of command, conversations left in Initialize state are
deallocated.

If a conversation that attempts to invoke a private resource manager is never
accepted, the connection request is severed and a return code of
CM_TPN_NOT_RECOGNIZED is reflected to the partner program.

Scope of the Conversation_ID
In VM/ESA, only the application that allocates or accepts a conversation can use
the associated conversation ID.

Identifying Product-Specific Errors
CPI Communications defines a return code called CM_PRODUCT_SPECIFIC_ERROR
for each routine. In VM/ESA, when a call to a CPI Communications routine results
in this return code:

¹ The file CPICOMM LOGDATA A is appended with a record describing the
cause of the error. Each record is prefixed with
“CMxxxx_PRODUCT_SPECIFIC_ERROR” when it is added to the CPICOMM
LOGDATA A file. “CMxxxx” identifies the routine that produced the error.
(While the CPICOMM LOGDATA file provides error information, it is not
intended to be used as a programming interface.)

¹ The return code does not cause state changes.

This section lists the VM/ESA record entries possible with each CPI
Communications routine's CM_PRODUCT_SPECIFIC_ERROR return code. Messages
associated with that return code on VM/ESA extension routines are listed in the
routine description.

534 CPI Communications Reference

 VM/ESA CMS

Note: If a problem is encountered while attempting to write to the CPICOMM
LOGDATA A file, the product-specific error message may not be written to the file
although the application has received the CM_PRODUCT_SPECIFIC_ERROR return
code.

The code in some messages is a decimal value representing:

¹ The 4-digit IPRCODE returned by an APPC/VM function.

IPRCODEs are documented in the “Condition Codes and Return Codes”
section of the specified function of the APPCVM macro, which is described in
VM/ESA: CP Programming Services.

¹ The 4-digit return code given by a CMSIUCV or HNDIUCV function.

The CMSIUCV or HNDIUCV return codes, which are padded on the left if less
than 4 digits, are documented in the “Return Codes” section of those macros,
both of which are described in the VM/ESA: CMS Application Development
Reference for Assembler.

¹ The 5-digit CSL reason code returned by a CMSIUCV or HNDIUCV function.

Reason codes are documented in the VM/ESA: System Messages and Codes
book.

The hexcode in some messages is a hexadecimal value of 4 digits returned by a
function of the APPCVM macro.

The VM/ESA-specific messages associated with each CPI Communications
routine's CM_PRODUCT_SPECIFIC_ERROR return code are:

Accept_Conversation (CMACCP)

¹ CMSIUCV ACCEPT failed with CSL reason code code

¹ CMSIUCV ACCEPT failed with return code code

¹ HNDIUCV SET failed with return code code

¹ Unable to get storage

¹ Unable to RTNLOAD VMMTLIB.

Allocate (CMALLC)

¹ CMSIUCV CONNECT completed with code code

¹ APPCVM CONNECT completed by a sever interrupt with IPCODE hexcode

¹ The allocation cannot be to the application's own virtual machine

¹ Unable to set alternate user ID

¹ Privilege class not authorized to set alternate user ID

¹ Providing a security password without a security user ID is invalid.

Confirm (CMCFM)

¹ Unexpected IPRCODE code from APPCVM SENDCNF call.

Deallocate (CMDEAL)

¹ Unexpected IPRCODE code from APPCVM SENDCNF or SETMODFY call

¹ Error freeing storage for log data.

 Chapter 12. CPI Communications on VM/ESA CMS 535

 VM/ESA CMS

Flush (CMFLUS)

¹ Unexpected IPRCODE code from APPCVM SENDDATA call.

Initialize_Conversation (CMINIT)

¹ Bad Side-Information Security value

¹ Unable to get storage

¹ HNDIUCV SET failed with return code code

¹ Unable to RTNLOAD VMMTLIB.

Prepare_To_Receive (CMPTR)

¹ Unexpected IPRCODE code from APPCVM RECEIVE call.

Receive (CMRCV)

¹ APPCVM RECEIVE returned neither data nor status

¹ Unable to get storage

¹ Error freeing storage for log data

¹ Unexpected IPRCODE code from APPCVM SENDDATA or RECEIVE call.

Request_To_Send (CMRTS)

¹ Unexpected IPRCODE code from APPCVM SENDREQ call.

Send_Data (CMSEND)

¹ Unexpected IPRCODE code from APPCVM SENDDATA or RECEIVE call.

Send_Error (CMSERR)

¹ Unexpected IPRCODE code from APPCVM SENDERR call

¹ Error freeing storage for log data.

Set_Log_Data (CMSLD)

¹ Unable to get storage.

Set_Partner_LU_Name (CMSPLN)

¹ The partner LU name cannot contain a period

¹ A partner LU name field cannot contain more than 8 characters

¹ A blank in a partner LU name should only be used as a delimiter.

 Diagnosing Errors
This section discusses log data processing, invocation errors, causes for selected
return codes, and APPC protocol errors in VM/ESA.

Processing Log Data
If the log_data characteristic contains data (as a result of a Set_Log_Data call), log
data is appended to a file called CPICOMM LOGDATA A under any of the following
conditions:

¹ When the local program issues a Send_Error call

¹ When the local program issues a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND

536 CPI Communications Reference

 VM/ESA CMS

¹ When the local program issues a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE and deallocate_type set to
CM_DEALLOCATE_ABEND.

If the partner application is also using CPI Communications on a VM/ESA system,
the log data is written to the partner's CPICOMM LOGDATA A file when one of the
conditions above is reflected as a return code on a CPI Communications call to the
partner application.

If the partner encounters a problem while receiving the log data, one of the
following messages is written to the partner's CPICOMM LOGDATA A file:

¹ Log Data receive routine: Error getting storage.
¹ Log Data receive routine: Error freeing storage.
¹ Log Data receive routine: Unexpected IPRCODE nnnn from APPCVM

RECEIVE call.

If an error is encountered while attempting to write to the CPICOMM LOGDATA A
file, the log data will not be written to the file.

If the conversation for which the log_data characteristic was specified is a protected
conversation (sync_level is set to CM_SYNC_POINT), the log data may be written
during sync point processing to a file called CMSCOMM LOGDATA A, rather than
to the CPICOMM LOGDATA A file.

 Invocation Errors
If a VM/ESA program cannot successfully invoke the CPI Communications routine it
is trying to call, the following error message is generated:

1292E Error calling CPI-Communications routine, return code

retcode

If error message 1292E is received, the called routine was not invoked and the
program was terminated with an abend code of X'ACB'. If the routine was called
from REXX, no abend occurs and execution continues. The following return codes
for this message are possible when using any of the supported languages:

Code Meaning

-7 The CPI Communications routine called was not loaded. Issue the
following command:

‘RTNLOAD * (FROM VMLIB SYSTEM GROUP VMLIB)’

and then try calling the routine again. If this fails, contact the system
administrator. (This command is ordinarily executed as part of the
standard SYSPROF EXEC during IPL of the virtual machine.)

-8 The CPI Communications routine called has been dropped. Follow the
same steps as for return code -7.

-9 Insufficient storage is available.

-10 Too many parameters were specified for the CPI Communications routine.
Refer to the detailed description for the routine in this book to find the
proper number of parameters.

-11 Not enough parameters were specified for the CPI Communications
routine. Follow the same step as for return code -10.

 Chapter 12. CPI Communications on VM/ESA CMS 537

 VM/ESA CMS

The following return codes for this message are possible only when using REXX:

Code Meaning

104 Insufficient virtual storage is available.

-3 Routine does not exist.

-20 A callable services library internal error occurred: invalid call.

-22 A callable services library internal error occurred: parameter list contains
more than one argument.

-24 VM/REXX internal error: EXECCOMM FETCH failure.

-25 VM/REXX internal error: EXECCOMM SET failure.

-26nnn Invalid data length for parameter number nnn.

-27nnn Invalid data or data type for parameter number nnn.

-28nnn Invalid variable name for parameter number nnn.

-29nnn Invalid length value (for example, a negative value) was specified for
length parameter, parameter number nnn.

(For the last four return codes, note that parameters are numbered serially,
corresponding to the order in which they are coded. The routine name is always
parameter number 001, the next parameter is 002, and so forth.)

See the VM/ESA: System Messages and Codes book for additional information.

Note: The CPI Communications interface is available only on VM/SP Release 6
and on VM/ESA. If a CPI Communications program compiled on VM/ESA Release
2 is run on a VM system that does not support CPI Communications, a return code
of -12 is placed in register 15. In addition, the following invocation error message
will be displayed:

CPI Communications not available on this release of CMS. IPL

correct level of CMS.

Possible Causes for Selected Return Codes
Return codes for CPI Communications routines are listed with each routine in
Chapter 4, and they are generically described in Appendix B; however, reasons for
return codes may be specific to VM/ESA. The following list shows possible
VM/ESA-specific causes for some CPI Communications return codes:

CM_RESOURCE_FAILURE_NO_RETRY
This code can result when the partner does one of the following:

¹ Fails to deallocate the conversation before issuing the
Terminate_Resource_Manager (XCTRRM) routine

¹ Re-IPLs CMS or logs off

¹ Issues an IUCV Sever

¹ Fails to deallocate the conversation before going through end-of-work
unit or issuing the Return Workunitid (DMSRETWU) or Purge
Workunitids (DMSPURWU) callable services library (CSL) routine to
end the associated CMS work unit.

538 CPI Communications Reference

 VM/ESA CMS

CM_SECURITY_NOT_VALID
This code can result for the following reasons:

¹ The user ID trying to allocate a conversation to a private resource is
not authorized on the :list. tag in the private server's $SERVER$
NAMES file.

¹ Access security type on the conversation is NONE, but the remote
program does not accept XC_SECURITY_NONE.

¹ An invalid password was supplied for a conversation with an access
security type of XC_SECURITY_PROGRAM.

¹ An Identify_Resource_Manager (XCIDRM) call was issued with the
security_level_flag set to XC_REJECT_SECURITY_NONE.

CM_TP_NOT_AVAILABLE_NO_RETRY
This code can result when the connection to the remote program cannot
be completed due to one of the following:

¹ Either the local or the remote program does not have the appropriate
IUCV authority in its VM directory authorization.

¹ The program tried allocating a conversation to a private resource
manager program, but the private server virtual machine either had
SET SERVER OFF or SET FULLSCREEN ON.

¹ The server virtual machine has exceeded its maximum number of
connections.

¹ The private server virtual machine is running a TP-model application
and has already accepted a protected conversation with the same
LUWID as that associated with the protected conversation allocated by
the local program. This situation is referred to as allocation wrapback.

CM_TPN_NOT_RECOGNIZED
This code can result when the connection to the remote program cannot
be completed due to one of the following:

¹ The remote local, global, or system server virtual machine has not
issued the Identify_Resource_Manager (XCIDRM) routine.

¹ No entry in the private server's $SERVER$ NAMES file matches the
incoming resource ID (private resource name).

¹ The private server virtual machine cannot be autologged.

¹ The routine specified on the :module. tag in the private server's
$SERVER$ NAMES file is unknown.

¹ There is no :module. tag for an entry in the private server's
$SERVER$ NAMES file, and no program corresponds to the name
specified on the :nick. tag.

APPC Protocol Errors in VM/ESA
It is possible, although unlikely, for CPI Communications to encounter an APPC
architectural protocol error. If this condition arises in VM/ESA, a return code of
either CM_RESOURCE_FAILURE_NO_RETRY or CM_RESOURCE_FAIL_NO_RETRY_BO
is returned to the application, and a file called CPICOMM LOGDATA A is appended
with a message line providing the error code that caused the protocol error.

 Chapter 12. CPI Communications on VM/ESA CMS 539

 VM/ESA CMS

This section lists the CPI Communications routines that can return a protocol error
along with the associated message. The X'xxxx' value in the messages is one
of:X'0410', X'0420',X'0510', X'0520', or X'0530'. These codes are
documented in VM/ESA: CP Programming Services. Note that each message is
prefixed with “CMxxxx_PROTOCOL_ERROR” when it is added to the CPICOMM
LOGDATA A file. “CMxxxx” identifies the routine that produced the error. If a
problem is encountered while attempting to write to the CPICOMM LOGDATA A
file, the protocol error message will not be written to the file.

Confirm (CMCFM)

¹ APPCVM SENDCNF completed with IPCODE X'xxxx' and IPWHATRC
X'03'.

Deallocate (CMDEAL)

¹ APPCVM SEVER completed with IPCODE X'xxxx' and IPWHATRC X'03'.

Prepare_To_Receive (CMPTR)

¹ APPCVM SENDCNF completed with IPCODE X'xxxx' and IPWHATRC
X'03'.

Receive (CMRCV)

¹ APPCVM RECEIVE completed with IPCODE X'xxxx' and IPWHATRC
X'03'.

¹ A mapped conversation GDS variable with GDSID X'12F2' has been
received.

Send_Data (CMSEND)

¹ APPCVM SENDDATA completed with IPCODE X'xxxx' and IPWHATRC
X'03'.

Send_Error (CMSERR)

¹ APPCVM SENDERR completed with IPCODE X'xxxx' and IPWHATRC
X'03'.

When Allocation Requests Are Sent
If the target program is within the same TSAF or CS collection, Allocate (CMALLC)
provides no session buffering; the Allocate call can be considered to include the
function of the Flush (CMFLUS) call. Therefore, the allocation request is flowed to
the partner immediately. When the conversation crosses the SNA network, the
allocation request is buffered and is sent when the buffer is flushed.

Deviations from the CPI Communications Architecture
VM/ESA supports CPI Communications calls with the following distinctions:

¹ For the Initialize_Conversation call, if the value specified for the
sym_dest_name does not match an entry in side information VM/ESA does not
return CM_PROGRAM_PARAMETER_CHECK. Instead, CM_OK is returned and
the specified sym_dest_name is used to set the TP_name characteristic for the
conversation.

¹ CPI Communications calls from RPG programs are not currently supported on
VM/ESA systems.

540 CPI Communications Reference

 VM/ESA Extension Calls

¹ On VM/ESA systems, when a conversation crosses a VTAM network, the
Receive call does not return data until an entire logical record arrives at the
local system. For basic conversations, this behavior may cause the Receive
call to return unexpected results.

For example, a Receive call with receive_type=CM_RECEIVE_IMMEDIATE will
return a return code of CM_UNSUCCESSFUL if the entire logical record has not
arrived at the local system, even if enough of the logical record has arrived to
satisfy the Receive call's requested length. Similarly, a Receive call with
receive_type=CM_RECEIVE_AND_WAIT waits until the remainder of the logical
record is received by the local system, even if enough of the logical record has
arrived to satisfy the requested length. This call works properly in
conversations within a TSAF or CS collection.

¹ On VM/ESA systems, for conversations that cross a VTAM network, the
Test_Request_To_Send_Received (CMTRTS) call always sets
request_to_send_received to CM_REQ_TO_SEND_NOT_RECEIVED when
return_code=CM_OK, regardless of whether the remote programs have sent
such requests to the local programs. This call works properly under VM/ESA
within a TSAF or CS collection.

¹ On VM/ESA, a space is used as a delimiter instead of a period in the
partner_LU_name.

¹ On VM/ESA, CPI Communications declares an APPC protocol error when a
user-control data GDS variable is received.

¹ On VM/ESA, any program initialization parameter variables received by CPI
Communications are ignored.

VM/ESA Extension Calls
Table 44 on page 542 summarizes VM/ESA routines that are extensions to CPI
Communications. The routines are listed in alphabetic order by their callable name.
The last column of the table shows the page where the routine is described in
detail.

These routines can be used in CMS to take advantage of VM/ESA's capabilities.
Note, however, that because these extension routines may not be supported or
may be implemented differently in other SAA operating environments, a program
using any of these VM/ESA extension routines cannot be moved to another system
without being changed.

Notes:

1. To aid in recognizing the call names, all VM/ESA extension routines begin with
the prefix XC.

2. See “VM/ESA Variables and Characteristics” on page 576 for information on
the possible values for the variables and characteristics associated with the
VM/ESA extension routines.

 Chapter 12. CPI Communications on VM/ESA CMS 541

 VM/ESA Extension Calls

Table 44 (Page 1 of 2). Overview of VM/ESA Extension Routines

Call Pseudonym Description Page

XCECL Extract_Conversation_LUWID Lets a program extract the
SNA LU 6.2 architected
logical unit of work identifier
for a given protected
conversation.

544

XCECSU Extract_Conversation_Security_User_IDLets a program extract the
access security user ID
associated with a given
conversation.

546

XCECWU Extract_Conversation_Workunitid Lets a program extract the
CMS work unit ID for a given
conversation.

548

XCELFQ Extract_Local_Fully_Qualified_
 LU_Name

Lets a program extract the
local fully-qualified LU name
for a given conversation.

550

XCERFQ Extract_Remote_Fully_Qualified_
 LU_Name

Lets a program extract the
remote fully-qualified LU
name for a given
conversation.

552

XCETPN Extract_TP_Name Lets a program extract the
TP name for a given
conversation.

554

XCIDRM Identify_Resource_Manager Declares to CMS a name
(resource ID) by which the
resource manager application
will be known.

555

XCSCSP Set_Conversation_Security_PasswordSets the access security
password value for the
conversation. The target LU
uses this value and the
security user ID to verify the
identity of the requester.

562

XCSCST Set_Conversation_Security_Type Sets the access security type
for the conversation. The
security type determines what
security information is sent to
the target.

564

XCSCSU Set_Conversation_Security_User_IDSets the access security user
ID value for the conversation.
The target LU uses this value
and the access security
password to verify the identity
of the requester.

566

XCSCUI Set_Client_Security_User_ID Lets an intermediate server
specify an alternate user ID
(the user ID of a specific
client application).

559

XCSUE Signal_User_Event Queues an event to be
reported by a subsequent call
to Wait_on_Event (XCWOE)
in the virtual machine.

568

542 CPI Communications Reference

 VM/ESA Extension Calls

Table 44 (Page 2 of 2). Overview of VM/ESA Extension Routines

Call Pseudonym Description Page

XCTRRM Terminate_Resource_Manager Ends ownership of a
resource by a resource
manager program.

570

XCWOE Wait_on_Event Allows an application to wait
on communications from one
or more partners. Events
posted are user events,
allocation requests,
information input, notification
that resource management
has been revoked, console
input, and asynchronous
Shared File System (SFS)
requests.

571

 Chapter 12. CPI Communications on VM/ESA CMS 543

 VM/ESA Extract_Conversation_LUWID (XCECL)

 Extract_Conversation_LUWID (XCECL)
A program uses the Extract_Conversation_LUWID (XCECL) call to extract the SNA
LU 6.2 architected logical unit of work ID (LUWID) for a given protected
conversation. The LUWID can be used to identify the most recent sync point.

This routine can be called after issuing an Allocate (CMALLC) or
Accept_Conversation (CMACCP) call to establish a protected conversation.

Note: The Extract_Conversation_LUWID call is valid only for protected
(sync_level=CM_SYNC_POINT) conversations.

 Format
CALL XCECL(conversation_ID,

luwid,
luwid_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

luwid (output)
Is a 26-byte character variable used to return the SNA LU 6.2 architected
LUWID associated with the specified conversation ID when the return_code is
CM_OK. See the usage note for a description of the LUWID.

luwid_length (output)
Is a variable used to return the length of the SNA LU 6.2 architected LUWID
when the return_code is CM_OK.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
This return code can result in the CPICOMM LOGDATA A file being
appended with one of the following entries:

XCECL_PRODUCT_SPECIFIC_ERROR: Call to DMSLUWID failed

XCECL_PRODUCT_SPECIFIC_ERROR: Call to CMSIUCV QCMSWID failed

 ¹ CM_PROGRAM_PARAMETER_CHECK
This can result from one of the following conditions:

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation_ID was not for a protected

(sync_level=CM_SYNC_POINT) conversation.
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is in Initialize state.
 ¹ CM_OPERATION_NOT_ACCEPTED

This value indicates that a previous operation on this conversation is
incomplete.

544 CPI Communications Reference

 VM/ESA Extract_Conversation_LUWID (XCECL)

 State Changes
This call does not cause a state change.

 Usage Notes
1. The LUWID can be up to 26 bytes long, containing the following fields:

Length Description

1 Length of the fully-qualified LU name

1-17 The fully-qualified LU name. If its length is less than 17 bytes, it is
left-justified and padded on the right with blanks (X'40'). It is
composed of the following fields:

Length Description

0-8 The network ID

0-1 A delimiter (a period)

1-8 LU name

If both the network ID and the LU name are present, they are
separated by a period.

6 Instance number in binary

2 Sequence number in binary

Refer to the SNA Format and Protocol Reference Manual for LU Type 6.2 for
more information about the LUWID.

2. This call does not change the luwid for the specified conversation.

 Chapter 12. CPI Communications on VM/ESA CMS 545

 VM/ESA Extract_Conversation_Security_User_ID (XCECSU)

 Extract_Conversation_Security_User_ID (XCECSU)
A program uses the Extract_Conversation_Security_User_ID (XCECSU) routine to
extract the access security user ID associated with a given conversation.

A security user ID is only returned if conversation_security_type is
XC_SECURITY_SAME or XC_SECURITY_PROGRAM. If the
conversation_security_type is XC_SECURITY_NONE, the security_user_ID parameter
returns nulls (X'00'), and the length is set to zero.

The returned security_user_ID can be used as input to the DMSREG (Resource
Adapter Registration) CSL routine, which is described in the VM/ESA: CMS
Application Development Reference. The security_user_ID returned is not valid for
this use if Extract_Conversation_Security_User_ID is called while the conversation
is in Initialize state.

 Format
CALL XCECSU(conversation_ID,

security_user_ID,
security_user_ID_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_user_ID (output)
Is a variable used to return the access security user ID obtained by this
routine when the return_code is CM_OK.

security_user_ID_length (output)
Is a variable used to return the length, in bytes, of the security_user_ID when
the return_code is CM_OK.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

 State Changes
This call does not cause a state change.

546 CPI Communications Reference

 VM/ESA Extract_Conversation_Security_User_ID (XCECSU)

 Usage Notes
1. Generally, when in Initialize state the security_user_ID_length is zero and the

security_user_ID is meaningless. If the conversation was initialized with the
:security. tag set to PGM in side information (a CMS communications
directory file) and a security user ID was specified on the :userid. tag, then
that specified value is returned. Also, if Set_Conversation_Security_User_ID
(XCSCSU) was called to set a security user ID, that value is returned.

When Extract_Conversation_Security_User_ID is called after a successful
Allocate (CMALLC) or Accept_Conversation (CMACCP) call, the access
security user ID for the specified conversation ID is returned.

2. This call does not change the security_user_ID for the specified conversation.

 Chapter 12. CPI Communications on VM/ESA CMS 547

 VM/ESA Extract_Conversation_Workunitid (XCECWU)

 Extract_Conversation_Workunitid (XCECWU)
A program uses the Extract_Conversation_Workunitid (XCECWU) call to extract the
CMS work unit ID for a given conversation. This routine can be used after issuing
an Allocate (CMALLC) or Accept_Conversation (CMACCP) call. This routine is
especially useful for resource managers that handle multiple requests for multiple
resources.

The output from this routine can be used as input to specify the work unit ID on
such CSL routines as DMSPUSWU (Push Workunitid) for changing the default
CMS work unit, and DMSCOMM (Commit) and DMSROLLB (Rollback) when using
Coordinated Resource Recovery. These callable services library (CSL) routines
are described in the VM/ESA: CMS Application Development Reference.

For information on CMS work units, refer to the VM/ESA: CMS Application
Development Guide.

 Format
CALL XCECWU(conversation_ID,

workunitid,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

workunitid (output)
Is a signed 4-byte integer variable used to return the CMS work unit ID
associated with the specified conversation ID when the return_code is
CM_OK.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
When this code is returned, a file named CPICOMM LOGDATA A is
appended with the following line:

XCECWU_PRODUCT_SPECIFIC_ERROR: Call to CMSIUCV QCMSWID failed

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

548 CPI Communications Reference

 VM/ESA Extract_Conversation_Workunitid (XCECWU)

 State Changes
This call does not cause a state change.

 Usage Notes
This call does not change the workunitid for the specified conversation.

 Chapter 12. CPI Communications on VM/ESA CMS 549

 VM/ESA Extract_Local_Fully_Qualified_LU_Name (XCELFQ)

 Extract_Local_Fully_Qualified_LU_Name (XCELFQ)
A program uses the Extract_Local_Fully_Qualified_LU_Name (XCELFQ) call to
extract the local fully-qualified LU name for a given conversation. This routine can
be used after issuing an Allocate (CMALLC) or Accept_Conversation (CMACCP)
call.

The output from this routine can be used as input on the DMSREG (Resource
Adapter Registration) CSL routine, which is described in the VM/ESA: CMS
Application Development Reference.

 Format
CALL XCELFQ(conversation_ID,

local_FQ_LU_name,
local_FQ_LU_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

local_FQ_LU_name (output)
Specifies the variable used to return the local fully-qualified LU name obtained
by this routine when the return_code is CM_OK. Allow 17 bytes for this
variable: 0 to 8 bytes for a network ID, 1 to 8 bytes for the LU name, and 1
byte for a delimiter if both a network ID and LU name are specified (the
delimiter is a period). If the fully-qualified LU name is less than 17 bytes long,
it is left-justified and padded on the right with blanks (X'40').

local_FQ_LU_name_length (output)
Specifies the variable used to return the length of the local fully-qualified LU
name obtained by this routine when the return_code is CM_OK. This length is
zero if the partner program is on the same LU as the program issuing this
routine (communication is not routed through AVS).

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

550 CPI Communications Reference

 VM/ESA Extract_Local_Fully_Qualified_LU_Name (XCELFQ)

 State Changes
This call does not cause a state change.

 Usage Notes
This call does not change the local_FQ_LU_name for the specified conversation.

 Chapter 12. CPI Communications on VM/ESA CMS 551

 VM/ESA Extract_Remote_Fully_Qualified_LU_Name (XCERFQ)

 Extract_Remote_Fully_Qualified_LU_Name (XCERFQ)
A program uses the Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) call to
extract the remote fully-qualified LU name for a given conversation. This routine
can be used after issuing an Allocate (CMALLC) or Accept_Conversation
(CMACCP) call.

The output from this routine can be used as input on the DMSREG (Resource
Adapter Registration) CSL routine, which is described in the VM/ESA: CMS
Application Development Reference.

 Format
CALL XCERFQ(conversation_ID,

remote_FQ_LU_name,
remote_FQ_LU_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

remote_FQ_LU_name (output)
Specifies the variable to contain the remote fully-qualified LU name obtained
by this routine and returned to the local program when the return_code is
CM_OK. Allow 17 bytes for this variable: 0 to 8 bytes for a network ID, 1 to 8
bytes for the LU name, and 1 byte for a delimiter if both a network ID and LU
name are specified (the delimiter is a period). If the fully-qualified LU name is
less than 17 bytes long, it is left-justified and padded on the right with blanks
(X'40').

remote_FQ_LU_name_length (output)
Specifies the variable to contain the length of the remote fully-qualified LU
name obtained by this routine and returned to the local program when the
return_code is CM_OK. This length is zero if the remote program is on the
same system as the local program.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize state.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

552 CPI Communications Reference

 VM/ESA Extract_Remote_Fully_Qualified_LU_Name (XCERFQ)

 State Changes
This call does not cause a state change.

 Usage Notes
This call does not change the remote_FQ_LU_name for the specified conversation.

 Chapter 12. CPI Communications on VM/ESA CMS 553

 VM/ESA Extract_TP_Name (XCETPN)

 Extract_TP_Name (XCETPN)
A program uses the Extract_TP_Name (XCETPN) call to extract the TP_name
characteristic for a given conversation.

 Format
CALL XCETPN(conversation_ID,

TP_name,
TP_name_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

TP_name (output)
Specifies the variable to contain the transaction program name obtained by
this routine and returned to the local program when the return_code is
CM_OK. Allow 64 bytes for this variable.

TP_name_length (output)
Specifies the variable to contain the length of the transaction program name
obtained by this routine and returned to the local program when the
return_code is CM_OK.

return_code (output)
Specifies the return code that is passed back from the communications
routine to the calling program. The return_code variable can have one of the
following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

 State Changes
This call does not cause a state change.

 Usage Notes
1. This call does not change the TP_name for the specified conversation.

2. When the non-blank symbolic destination name is specified on the
Initialize_Conversation (CMINIT) call, the TP_name characteristic is set to an
initial value from side information if an entry exists for it (on the :tpn. tag). If
there is no entry in side information or a different value is required, the TP
name can be set using the Set_TP_Name (CMSTPN) call.

554 CPI Communications Reference

 VM/ESA Identify_Resource_Manager (XCIDRM)

 Identify_Resource_Manager (XCIDRM)
An application uses the Identify_Resource_Manager (XCIDRM) routine to declare to
CMS the name of a resource that it wants to manage.

 Format
CALL XCIDRM(resource_ID,

resource_manager_type,
service_mode,
security_level_flag,
return_code)

 Parameters
resource_ID (input)

Specifies the name of a resource managed by this resource manager
application. This variable must be an 8-byte character string, padded on the
right with blanks if necessary. The first character of the resource name must
be alphanumeric.

The value of the resource_ID parameter corresponds to the TP_name
characteristic that requesting applications supply when allocating a
conversation to this resource. This resource_ID name must be unique within
the scope (private, local, global, or system) for which it is identified.

Other programs' allocation requests are then routed to the application that
called this Identify_Resource_Manager routine.

resource_manager_type (input)
Identifies whether the specified resource_ID is a private, local, global, or
system resource. The resource_manager_type variable can have one of the
following values:

 ¹ XC_PRIVATE
Private resource names are identified only to the virtual machine in which
they are active, but they can be accessed by authorized users on the
same VM/ESA system, in the same TSAF or CS collection, or on another
system in an SNA network.

 ¹ XC_LOCAL
Local resource names are identified only to the system in which they
reside and cannot be accessed from outside this system.

 ¹ XC_GLOBAL
Global resource names are identified to an entire TSAF or CS collection.
They may be accessed by other users in the collection or in an SNA
network.

 ¹ XC_SYSTEM
System resource names are identified only to the VM/ESA system in
which they reside, but are remotely accessible from other systems.

 Chapter 12. CPI Communications on VM/ESA CMS 555

 VM/ESA Identify_Resource_Manager (XCIDRM)

service_mode (input)
Indicates how this resource manager application handles conversations
associated with the specified resource_ID. The service_mode can have one
of the following values:

 ¹ XC_SINGLE
This resource manager program can accept only a single conversation for
the specified resource_ID.

If the resource manager program already has accepted a conversation for
the resource and another program requests that same resource, the
identification of the resource manager type as private, local, global, or
system determines what happens to the new allocation request:

– For a private resource, CMS queues the new allocation request.
Then, when the private resource manager program that is running
ends, CMS automatically restarts the private resource manager
program and takes the first pending allocation request off the queue.

– For a local, global, or system resource, CMS deallocates the
allocation request. The application issuing the allocation request
receives a return_code value of CM_TPN_NOT_RECOGNIZED upon
completion of a subsequent call that allows this return code.

 ¹ XC_SEQUENTIAL
This resource manager program can accept only one conversation at a
time for the specified resource_ID. When one conversation is completed
and deallocated, the resource manager program can issue
Wait_on_Event (XCWOE) to wait for the next allocation request, or issue
Accept_Conversation (CMACCP). (If a program issues
Accept_Conversation and there is not a pending allocation request,
however, a CM_PROGRAM_STATE_CHECK return code is returned.)

If the resource manager program has an active conversation for the
resource and another program requests that same resource, the
identification of the resource manager type as private, local, global, or
system determines what happens to the new allocation request:

– For a private resource, CMS queues the new allocation request.
Then after the active conversation is deallocated, the resource
manager program should issue Wait_on_Event or
Accept_Conversation as described in the preceding paragraph.

– For a local, global, or system resource, CMS deallocates the
allocation request. The application issuing the allocation request
receives a return_code value of CM_TPN_NOT_RECOGNIZED upon
completion of a subsequent call that allows this return code.

 ¹ XC_MULTIPLE
This resource manager program can accept multiple conversations for the
specified resource_ID.

If another program requests the resource for which there is already an
active conversation, the pending allocation request will be reported to the
resource manager on a future call to Wait_on_Event.

556 CPI Communications Reference

 VM/ESA Identify_Resource_Manager (XCIDRM)

security_level_flag (input)
Indicates whether this resource manager will accept inbound connections for
the specified resource_ID that have conversation_security_type equal to
XC_SECURITY_NONE. The security_level_flag variable must have one of the
following values:

 ¹ XC_REJECT_SECURITY_NONE
The resource manager will not accept connections that have a
conversation_security_type of XC_SECURITY_NONE. A requester program
that allocates a conversation with XC_SECURITY_NONE will get a return
code of CM_SECURITY_NOT_VALID upon completion of a subsequent call
that allows this return code.

 ¹ XC_ACCEPT_SECURITY_NONE
The resource manager will accept connections that have
conversation_security_type equal to XC_SECURITY_NONE.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
This return code can result from one of the following conditions:

– A storage failure prevented the specified resource_ID from being
identified. When this code is returned, a file named CPICOMM
LOGDATA A is appended with the following line:

XCIDRM_PRODUCT_SPECIFIC_ERROR: Unable to get storage

– An error was encountered trying to load the VMMTLIB callable
services library which is required by CPI Communications. When this
code is returned, a file named CPICOMM LOGDATA A is appended
with the following line:

XCIDRM_PRODUCT_SPECIFIC_ERROR: Unable to RTNLOAD VMMTLIB

 ¹ CM_PROGRAM_PARAMETER_CHECK
This can result from one of the following conditions:

– The resource_ID has already been defined within the virtual machine.
– The resource_manager_type contains an invalid value.
– The service_mode contains an invalid value.
– The security_level_flag contains an invalid value.

 ¹ CM_PROGRAM_STATE_CHECK
This is a TP-model application, so this routine cannot be called.

 ¹ CM_UNSUCCESSFUL
Identify_Resource_Manager was unable to obtain ownership of the
resource. The following are possible reasons:

– The resource is already owned by another virtual machine.
– The virtual machine in which the application is running does not have

authority to connect to *IDENT.
– The virtual machine in which the application is running does not have

authority to declare the resource.
This return code applies only when resource_manager_type is XC_LOCAL,
XC_GLOBAL, or XC_SYSTEM.

 Chapter 12. CPI Communications on VM/ESA CMS 557

 VM/ESA Identify_Resource_Manager (XCIDRM)

 State Changes
This call is not specific to a conversation, so it does not cause a state change.

 Usage Notes
1. An application can call Identify_Resource_Manager multiple times to identify

different resources that it wants to manage.

2. The application does not need to call Identify_Resource_Manager if:

¹ The application initiates all its conversations and is never the target of an
allocation request.

¹ The application is a private resource manager invoked by CMS as the
target of a single conversation.

3. An application calling Identify_Resource_Manager should also call the
Terminate_Resource_Manager (XCTRRM) routine before exiting. See
“End-of-Command Processing” on page 578 for information regarding system
cleanup of resource identifiers after program termination.

558 CPI Communications Reference

 VM/ESA Set_Client_Security_User_ID (XCSCUI)

 Set_Client_Security_User_ID (XCSCUI)
A program acting as an intermediate server uses the Set_Client_Security_User_ID
(XCSCUI) routine to set the access security user ID for a given conversation based
on an incoming conversation's access security user ID. This user ID is then
presented to the target when the intermediate server allocates a conversation on
behalf of the client application.

An intermediate server can call Set_Client_Security_User_ID only when the
following conditions are true:

¹ The program is not a TP-model application.

¹ The specified conversation (to be allocated to the target resource manager) has
a conversation_security_type equal to XC_SECURITY_SAME.

¹ An access security user ID is available for the incoming conversation with the
client. The access security user ID for that conversation should be retrieved by
calling the Extract_Conversation_Security_User_ID (XCECSU) routine.

¹ The intermediate server virtual machine is authorized to issue a DIAGNOSE
code X'D4' (for defining an alternate user ID). This authorization is privilege
class B (unless default privilege classes have been changed). If not
authorized, the Allocate (CMALLC) call will complete with a
CM_PRODUCT_SPECIFIC_ERROR return code.

¹ There is no alternate user ID in effect for an incoming conversation. If an
alternate user ID is in effect, the Allocate will complete with a
CM_PRODUCT_SPECIFIC_ERROR return code.

Note: Set_Client_Security_User_ID can be issued only for a conversation that is
in Initialize state. It cannot be issued after an Allocate.

 Format
CALL XCSCUI(conversation_ID,

client_user_ID,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

client_user_ID (input)
Specifies the client's user ID. This variable must be an 8-byte character
string, padded on the right with blanks as necessary.

 Chapter 12. CPI Communications on VM/ESA CMS 559

 VM/ESA Set_Client_Security_User_ID (XCSCUI)

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
return one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This can result from one of the following conditions:

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation_security_type for the specified conversation is not

equal to XC_SECURITY_SAME.
 ¹ CM_PROGRAM_STATE_CHECK

This can result from one of the following conditions:
– The conversation is not in Initialize state.
– This is a TP-model application, so this routine cannot be called.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

 State Changes
This call does not cause a state change.

 Usage Notes
1. A program that acts as an intermediate server might have incoming

conversations from various clients. With Set_Client_Security_User_ID, such a
server can specify a particular user ID that will be presented to a target
resource manager. In this way, the target resource manager can determine
whether to grant access to its resources based on the client's access security
user ID rather than the intermediate server's.

2. Here is a typical sequence of events that include an intermediate server calling
the Set_Client_Security_User_ID:

a. The server application issues Identify_Resource_Manager (XCIDRM) to
declare the resource it is managing, and then issues Wait_on_Event
(XCWOE) to wait for a request.

b. A client application issues an Allocate for a conversation to the server
application.

c. The server application accepts the conversation using the
Accept_Conversation (CMACCP) routine.

d. The server application calls the Extract_Conversation_Security_User_ID
routine for the conversation with the client application to get the client’s
access security user ID.

e. The server calls Initialize_Conversation (CMINIT) to get a conversation
ready to allocate on behalf of the client. The conversation_security_type
characteristic should be set to XC_SECURITY_SAME, which is the default
value.

f. The server application calls Set_Client_Security_User_ID using the
extracted access security user ID to set the security information of the new
conversation.

560 CPI Communications Reference

 VM/ESA Set_Client_Security_User_ID (XCSCUI)

g. The intermediate server application calls Allocate for the outgoing
conversation on behalf of the client application.

h. The target program is presented with the client program's access security
user ID.

3. When a TP-model intermediate server allocates a conversation to a target with
conversation_security_type set to XC_SECURITY_SAME, the access security
user ID forwarded on the allocation is always the client's user ID; TP-model
intermediate servers cannot use Set_Client_Security_User_ID.

4. When an intermediate server that has called Identify_Resource_Manager
allocates a conversation with conversation_security_type set to
XC_SECURITY_SAME to the target resource manager without first calling
Set_Client_Security_User_ID, the access security user ID forwarded on the
allocation is its own user ID, not that of the client.

5. If a return_code other than CM_OK is returned on the call, the client_user_ID
conversation characteristic is unchanged.

 Chapter 12. CPI Communications on VM/ESA CMS 561

 VM/ESA Set_Conversation_Security_Password (XCSCSP)

 Set_Conversation_Security_Password (XCSCSP)
A program uses the Set_Conversation_Security_Password (XCSCSP) routine to set
the access security password for a given conversation when the
conversation_security_type is XC_SECURITY_PROGRAM. Both an access security
user ID and password are required to establish a conversation with a security type
of PGM.

This call does not change the value of the :password. tag in side information.
Set_Conversation_Security_Password changes the security_password and
security_password_length only for this conversation.

Note: Set_Conversation_Security_Password can be issued only for a conversation
that is in Initialize state. It cannot be issued after an Allocate (CMALLC).

 Format
CALL XCSCSP(conversation_ID,

security_password,
security_password_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_password (input)
Specifies the access security password. The target LU verifies the access
security user ID and password pair during the allocation process. CPI
Communications maintains this password while the conversation is in
Initialize state.

security_password_length (input)
Specifies the length of the security password. The length must be specified
as a value from 0 to 8. If 0 is specified, the password is set to null and the
security_password parameter is ignored.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
return one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This can result from one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The security_password_length variable specifies a value of less than

0 or greater than 8.
 ¹ CM_PROGRAM_STATE_CHECK

This can result from one of the following:
– The conversation is not in Initialize state.
– The conversation_security_type is not XC_SECURITY_PROGRAM.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

562 CPI Communications Reference

 VM/ESA Set_Conversation_Security_Password (XCSCSP)

 State Changes
This call does not cause a state change.

 Usage Notes
1. A program does not need to call this routine if a security password is specified

in either of the following:

¹ Side information (communications directory file)
¹ An APPCPASS statement in the virtual machine's CP directory.

The access security password specified on this routine overrides a password in
the communications directory file and takes precedence over a password
specified on a corresponding APPCPASS directory statement. If the
security_password_length parameter is specified as zero, however, the CP
directory will still be checked during conversation allocation for an APPCPASS
statement to supply the missing password. The
Set_Conversation_Security_User_ID routine works the same way.

2. If a return_code other than CM_OK is returned on the call, the
security_password and security_password_length conversation characteristics
are unchanged.

 Chapter 12. CPI Communications on VM/ESA CMS 563

 VM/ESA Set_Conversation_Security_Type (XCSCST)

 Set_Conversation_Security_Type (XCSCST)
A program uses the Set_Conversation_Security_Type (XCSCST) routine to set the
security type for a given conversation. This routine overrides the value that was
assigned when the conversation was initialized.

This call does not change the value of the :security. tag in side information.
Set_Conversation_Security_Type changes the conversation_security_type only for
this conversation.

Note: Set_Conversation_Security_Type can be issued only for a conversation that
is in Initialize state. It cannot be issued after an Allocate (CMALLC).

 Format
CALL XCSCST(conversation_ID,

conversation_security_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_security_type (input)
Specifies the kind of access security information to be sent to the target. The
target LU uses this security information to verify the identity of the source.
The access security information, if present, consists of either a user ID or a
user ID and password. This parameter must be set to one of the following
values:

 ¹ XC_SECURITY_NONE
No access security information is to be included on the allocation request
to the target resource manager.

 ¹ XC_SECURITY_SAME
An access security user ID is sent on the allocation request to the target
resource manager.

 ¹ XC_SECURITY_PROGRAM
An access security user ID and password must be supplied. These
values can be set by calls to Set_Conversation_Security_User_ID
(XCSCSU) and Set_Conversation_Security_Password (XCSCSP) or from
information contained in an APPCPASS statement in the virtual machine's
CP directory.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
return one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This can result from one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The conversation_security_type specifies an undefined value.

 ¹ CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

564 CPI Communications Reference

 VM/ESA Set_Conversation_Security_Type (XCSCST)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

 State Changes
This call does not cause a state change.

 Usage Notes
1. A program does not need to use this routine if the default security type of

XC_SECURITY_SAME is desired, or if a security type is specified in the virtual
machine's side information.

2. If the current security type for the conversation is PGM, a security user ID
previously set by a :userid. entry in side information associated with this
conversation or by a call to Set_Conversation_Security_User_ID (XCSCSU) is
reset to a null value if Set_Conversation_Security_Type is called to change the
conversation_security_type to either XC_SECURITY_NONE or
XC_SECURITY_SAME. Similarly, a security password previously set from a
:password. tag in side information or by a
Set_Conversation_Security_Password (XCSCSP) call is reset to a null value if
the conversation_security_type is changed to either XC_SECURITY_NONE or
XC_SECURITY_SAME.

If the current security type for the conversation is SAME, a client security user
ID previously set by a Set_Client_Security_User_ID (XCSCUI) call is reset to a
null value if Set_Conversation_Security_Type is called to change the
conversation_security_type to either XC_SECURITY_NONE or
XC_SECURITY_PROGRAM.

3. If a return_code other than CM_OK is returned on the call, the
conversation_security_type conversation characteristic is unchanged.

 Chapter 12. CPI Communications on VM/ESA CMS 565

 VM/ESA Set_Conversation_Security_User_ID (XCSCSU)

 Set_Conversation_Security_User_ID (XCSCSU)
A program uses the Set_Conversation_Security_User_ID (XCSCSU) routine to set
the access security user ID for a given conversation when the
conversation_security_type is XC_SECURITY_PROGRAM. Both an access security
user ID and password are required to establish a conversation when the
conversation_security_type is XC_SECURITY_PROGRAM.

This call does not change the value of the :userid. tag in the side information.
Set_Conversation_Security_User_ID changes the security_user_ID and
security_user_ID_length only for this conversation.

Note: Set_Conversation_Security_User_ID can be issued only for a conversation
that is in Initialize state. It cannot be issued after an Allocate (CMALLC).

 Format
CALL XCSCSU(conversation_ID,

security_user_ID,
security_user_ID_length,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

security_user_ID (input)
Specifies the user ID. The target LU verifies the access security user ID and
password, which can be specified on the
Set_Conversation_Security_Password (XCSCSP) routine, during the
allocation process. In addition, the target LU can use the user ID for auditing
or accounting purposes.

security_user_ID_length (input)
Specifies the length, in bytes, of the security user ID. This variable must be
given a value from 0 to 8. If 0 is specified, the user ID is set to null and the
security_user_ID parameter is ignored.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
return one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This can result from one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The security_user_ID_length variable specifies a value less than 0 or

greater than 8.
 ¹ CM_PROGRAM_STATE_CHECK

This can result from one of the following:
– The conversation is not in Initialize state.
– The conversation_security_type is not XC_SECURITY_PROGRAM.

566 CPI Communications Reference

 VM/ESA Set_Conversation_Security_User_ID (XCSCSU)

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is
incomplete.

 State Changes
This call does not cause a state change.

 Usage Notes
1. A program does not need to call this routine if a security user ID is specified in

either of the following:

¹ Side information (a communications directory file)
¹ An APPCPASS statement in the virtual machine's CP directory.

The access security user ID specified on this routine overrides a user ID in the
communications directory file and takes precedence over a user ID specified on
a corresponding APPCPASS directory statement. If the
security_user_ID_length parameter is specified as zero, however, the CP
directory will still be checked during conversation allocation for an APPCPASS
statement to supply the missing user ID. The
Set_Conversation_Security_Password routine works the same way.

2. If a return_code other than CM_OK is returned on the call, the security_user_ID
and security_user_ID_length conversation characteristics are unchanged.

 Chapter 12. CPI Communications on VM/ESA CMS 567

 VM/ESA Signal_User_Event (XCSUE)

 Signal_User_Event (XCSUE)
A program, such as an interrupt handler, uses the Signal_User_Event (XCSUE)
routine to inform VM/ESA CPI Communications that a user event has occurred.

Signal_User_Event would typically be called from an interrupt handler to let a CPI
Communications program running in the same virtual machine know about some
event such as the receipt of a message or the lapsing of a time interval.
Information on writing interrupt handlers can be found in the VM/ESA: CMS
Application Development Guide for Assembler. An example program using the
Signal_User_Event call can be found in the VM/ESA: CMS Application
Development Guide. The CPI Communications program must issue Wait_on_Event
(XCWOE) to get the user-event notification.

 Format
CALL XCSUE(event_ID,

user_data,
user_data_length,
return_code)

 Parameters
event_ID (input)

Specifies a variable to identify the event. This identifier will be returned by
Wait_on_Event (XCWOE) in the resource_ID parameter when the event is
reported.

user_data (input)
Specifies information about the event. The data supplied for this parameter is
any information the program wants to supply to describe the event. This
information will be returned by Wait_on_Event in the event_buffer parameter
when the event is reported.

user_data_length (input)
Specifies the length of the information specified for the user_data parameter.
If zero is specified, the user_data parameter is ignored. The length can be
from 0 to 130 bytes.

return_code (output)
Is a variable used to hold the return code passed back from the
communications call to the calling program. The return_code variable can
have one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
The user_data_length parameter specifies a value of less than 0 or
greater than 130.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
A storage failure prevented the user event from being queued. A file
named CPICOMM LOGDATA A is appended with the following line:

XCSUE_PRODUCT_SPECIFIC_ERROR: Unable to get storage

568 CPI Communications Reference

 VM/ESA Signal_User_Event (XCSUE)

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that a successful call has not been made to
Accept_Conversation (CMACCP), Initialize_Conversation (CMINIT), or
Identify_Resource_Manager (XCIDRM).

 State Changes
This call does not cause a state change.

 Usage Notes
1. When Signal_User_Event is issued, VM/ESA CPI Communications queues the

event so it can be reported by a subsequent Wait_on_Event call. Any number
of events can be queued, limited only by the amount of storage in the virtual
machine. If there is an outstanding Wait_on_Event call when
Signal_User_Event is issued, Wait_on_Event reports the user event as soon as
the interrupt handler completes.

2. Pending (unreported) user events are purged at end-of-command.

3. By using CMS event management services, events can be created and
signalled without issuing the Signal_User_Event call.

 Chapter 12. CPI Communications on VM/ESA CMS 569

 VM/ESA Terminate_Resource_Manager (XCTRRM)

 Terminate_Resource_Manager (XCTRRM)
A resource manager application uses the Terminate_Resource_Manager
(XCTRRM) routine to end management of a resource. CPI Communications
automatically deallocates all conversations and pending allocation requests for the
specified resource ID. All CPI Communications calls issued on these conversations
following the Terminate_Resource_Manager call will result in a
CM_PROGRAM_PARAMETER_CHECK return code.

 Format
CALL XCTRRM(resource_ID,

return_code)

 Parameters
resource_ID (input)

Specifies the name of a resource, managed by this resource manager
application, for which service is being terminated. This is a name that was
specified by this application on a previous call to the
Identify_Resource_Manager (XCIDRM) routine.

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
return one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This virtual machine does not control the specified resource.

 ¹ CM_PROGRAM_STATE_CHECK
This is a TP-model application, so this routine cannot be called.

 ¹ CM_OPERATION_NOT_ACCEPTED
This value indicates that the resource_ID cannot be terminated at this
time because an operation on a conversation associated with this
resource_ID is incomplete.

 State Changes
When the return code is CM_OK, Reset state is entered on all conversations
associated with the specified resource_ID.

 Usage Notes
1. Any resource manager application that calls the Identify_Resource_Manager

routine should be sure to call Terminate_Resource_Manager before exiting.
Failure to call Terminate_Resource_Manager will result in the name of the
resource remaining active until CMS end-of-command processing.

2. Generally, an application should deallocate all conversations associated with
the specified resource ID before calling Terminate_Resource_Manager.

3. Upon successful completion of this call, the specified resource ID is no longer
identified.

570 CPI Communications Reference

 VM/ESA Wait_on_Event (XCWOE)

 Wait_on_Event (XCWOE)
An application uses the Wait_on_Event (XCWOE) routine to wait for
communications from one or more partners. This routine is basically a way to
handle “interrupts” from partner programs and system functions; a program can
issue Wait_on_Event, then take action according to the type of interrupt it receives.

 Format
CALL XCWOE(resource_ID,

conversation_ID,
event_type,
event_info_length,
event_buffer,
return_code)

 Parameters
resource_ID (output)

Is a variable used to return one of the following, depending on the value
returned in the event_type parameter:

¹ If the event_type is XC_ALLOCATION_REQUEST or
XC_RESOURCE_REVOKED, the resource_ID returns the name of a
resource managed by this resource manager application for which an
event has completed. The value returned is a name that was specified by
this application for the resource_ID parameter on a previous call to
Identify_Resource_Manager (XCIDRM).

¹ If the event_type is XC_USER_EVENT, the resource_ID returns an event
identifier, specified as the event_ID parameter on the Signal_User_Event
(XCSUE) call corresponding to this event.

¹ If the event_type is XC_INFORMATION_INPUT, XC_CONSOLE_INPUT, or
XC_REQUEST_ID, the resource_ID parameter should not be examined.

conversation_ID (output)
Is a variable used to identify the conversation on which data or status
information is available to be received.

This parameter is valid only when the event_type is XC_INFORMATION_INPUT.
The contents of this variable should not be examined if event_type contains
any other value.

event_type (output)
Is a variable used to indicate the type of event. The event_type variable can
return one of the following values:

 ¹ XC_ALLOCATION_REQUEST
A program is attempting to allocate a conversation with the application
that called Wait_on_Event. The application should call
Accept_Conversation (CMACCP) to process this event.

 ¹ XC_INFORMATION_INPUT
A partner program is attempting to communicate information to the
application that called Wait_on_Event. For instance, it might be sending
data or deallocating the conversation. The application should call
Receive (CMRCV) to process this event.

 Chapter 12. CPI Communications on VM/ESA CMS 571

 VM/ESA Wait_on_Event (XCWOE)

 ¹ XC_RESOURCE_REVOKED
Another program has revoked the resource being managed by the
application that called Wait_on_Event.

 ¹ XC_CONSOLE_INPUT
Information is available from the console attached to this virtual machine.
This information is placed in the event_buffer parameter.

 ¹ XC_REQUEST_ID
A Shared File System (SFS) asynchronous event has completed. The
request ID is placed in the event_info_length parameter.

 ¹ XC_USER_EVENT
An interrupt handler or other program in the local program's virtual
machine called Signal_User_Event. The values specified for the
Signal_User_Event input parameters are returned by the following
Wait_on_Event output parameters:

 XCSUE (input) XCWOE (output)
 event_ID resource_ID
 user_data event_buffer
 user_data_length event_info_length

event_info_length (output)
Is a variable whose contents depend on the event_type parameter as follows:

¹ If the event_type is XC_INFORMATION_INPUT, this variable indicates the
number of data bytes that are available to be received. See Usage Note
2 on page 575 for details of how to use this value on a Receive call.

¹ If the event_type is XC_CONSOLE_INPUT or XC_USER_EVENT, this
variable indicates how many bytes of data are available in the
event_buffer parameter.

¹ If the event_type is XC_REQUEST_ID, this variable contains the actual
request ID.

¹ If the event_type is XC_ALLOCATION_REQUEST or
XC_RESOURCE_REVOKED, the contents of this variable should not be
examined.

event_buffer (output)
Is the name of a 130-byte character string buffer. If more than 130 bytes are
supplied, CPI Communications uses only the first 130 bytes.

The contents of this buffer depend on the value returned in the event_type
parameter:

¹ If event_type is XC_CONSOLE_INPUT, this buffer contains the contents of
the console input buffer.

¹ If the event_type is XC_USER_EVENT, this buffer contains the user event
data as specified in the user_data parameter on the Signal_User_Event
call corresponding to this event.

¹ If the event_type is XC_ALLOCATION_REQUEST, XC_INFORMATION_INPUT,
XC_RESOURCE_REVOKED, or XC_REQUEST_ID, this variable should not
be examined.

The event_info_length parameter returns the number of bytes stored in this
buffer.

572 CPI Communications Reference

 VM/ESA Wait_on_Event (XCWOE)

return_code (output)
Is a variable used to hold the return code passed back from the
communications routine to the calling program. The return_code variable can
return one of the following values:

 ¹ CM_OK
Successful completion.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
This return code can result from one of the following conditions:

– There was a problem attempting to obtain or to release storage. A
file named CPICOMM LOGDATA A is appended with one of the
following lines:

XCWOE_PRODUCT_SPECIFIC_ERROR: Unable to get storage

XCWOE_PRODUCT_SPECIFIC_ERROR: Unable to free storage

– There was a problem on a call to the callable services library (CSL)
routine DMSCHECK. If the problem was encountered while calling
DMSCHECK, a file named CPICOMM LOGDATA A is appended with
the following line:

XCWOE_PRODUCT_SPECIFIC_ERROR: Call to DMSCHECK failed with CSL

return code dd

where dd is a negative value. If the DMSCHECK CSL routine
encountered the problem, CPICOMM LOGDATA A is appended with
the following line:

XCWOE_PRODUCT_SPECIFIC_ERROR: Call to DMSCHECK returned reason

code reascode

where reascode is the reason code returned.

Possible return codes and reason codes are described in the
VM/ESA: CMS Application Development Reference.

 ¹ CM_PROGRAM_STATE_CHECK
This value indicates that a successful call has not been made to
Accept_Conversation (CMACCP), Initialize_Conversation (CMINIT), or
Identify_Resource_Manager (XCIDRM) prior to calling Wait_on_Event
(XCWOE).

 State Changes
This call does not cause a state change.

 Usage Notes
1. Events are reported in this order of priority:

 a. User event
 b. Allocation request
 c. Information input

d. Resource revoked notification
 e. Request ID
 f. Console input

For example, as long as there are user events pending, they will be reported
first. Within an event type, however, events may not be reported in the order in
which they occurred.

 Chapter 12. CPI Communications on VM/ESA CMS 573

 VM/ESA Wait_on_Event (XCWOE)

 ¹ User event :

The application determines how to interpret the user event and what further
action to take. User events are reported first in, first out (FIFO). This
information will not be available after it has been presented to the program.

 ¹ Allocation request :

After receiving the allocation event indication, the application can call the
Accept_Conversation routine, which will establish the conversation and
assign a conversation_ID. If necessary, the resource manager application
can get information about the conversation by calling the appropriate
Extract routines after accepting the conversation.

This event will be reported by Wait_on_Event calls until an
Accept_Conversation (CMACCP) call is issued to process this event or until
Terminate_Resource_Manager (XCTRRM) is called to end management of
the subject resource.

 ¹ Information input :

After getting this event, the application should call the Receive routine.
Usage Note 2 on page 575 describes how to use the value returned in the
event_info_length parameter for the requested_length on the Receive call.
Note that for protected conversations (sync_level of CM_SYNC_POINT), if
the application initiates a backout sync point instead of issuing a Receive,
the data or information associated with the event is purged unless the
information is deallocation notification. This event will be reported by
Wait_on_Event calls until a Receive (CMRCV) call is issued to process this
event, until a Send_Error (CMSERR) or Deallocate (CMDEAL) call is
issued, or until Terminate_Resource_Manager is called to end management
of the subject resource. If there are multiple conversations with the
information input event, this event will not necessarily be reported on every
Wait_on_Event call.

¹ Resource revoked notification :

The application will no longer receive allocation requests for this resource.
No new connections may be made to the specified resource_ID. This
resource ID is no longer known to the rest of the system or TSAF or CS
collection. Existing conversations for this resource ID are not affected.
The actions taken for this event are application-specific. The resource
manager still must issue Terminate_Resource_Manager after all associated
conversations have been deallocated. This information will not be available
after it has been presented to the program.

 ¹ Request ID :

After receiving the request ID event indication, the application should
examine the event_info_length field to get the request ID for a Shared File
System asynchronous event. This information will not be available after it
has been presented to the program. For information on SFS asynchronous
events, see the VM/ESA: CMS Application Development Guide.

 ¹ Console input :

The application determines how to interpret what is input from the console
and what further action to take. The console input will not be available
after it has been presented to the program.

574 CPI Communications Reference

 VM/ESA Wait_on_Event (XCWOE)

2. The event_info_length parameter indicates how much data is available when
the event_type is XC_INFORMATION_INPUT, XC_CONSOLE_INPUT, or
XC_USER_EVENT.

When the event_type is XC_INFORMATION_INPUT, the value returned by
event_info_length can be used for the requested_length parameter on a
subsequent call to the Receive routine to receive the data. An application
using this value as the requested length may need to verify that it does not
exceed the maximum length for a single Receive call.

For mapped conversations, the value returned by event_info_length may be
greater than the number of bytes sent by the remote program. Using this
length on the call to Receive will not guarantee that the Receive call will
complete immediately; the only way to guarantee that a call to Receive will
complete immediately is to set receive_type to CM_RECEIVE_IMMEDIATE prior
to calling Receive.

3. This call causes the entire application to wait. Multitasking applications should
use the CMS event management services to allow a single thread to wait for an
event while the others continue processing.

 Chapter 12. CPI Communications on VM/ESA CMS 575

 VM/ESA Variables and Characteristics

VM/ESA Variables and Characteristics
The following tables are provided for the variables and characteristics used with the
VM/ESA extension calls shown in this appendix:

¹ A chart showing the possible values for variables and characteristics associated
with VM/ESA extension calls. The valid pseudonyms and corresponding
integer values are provided for each variable or characteristic.

¹ The data definitions for types and lengths of all VM/ESA extension
characteristics and variables.

Pseudonyms and Integer Values
Values for VM/ESA variables and conversation characteristics are shown as
pseudonym character strings rather than integer values. For example, instead of
stating that the variable conversation_security_type is set to an integer value of 0,
this appendix shows conversation_security_type being set to a pseudonym value of
XC_SECURITY_NONE. Table 45 provides a mapping from valid VM/ESA
pseudonyms to integer values for each variable and characteristic.

Pseudonyms can also be used for integer values in program code by making use of
equate or define statements. See “Pseudonym Files” on page 530 for more
information on the sample pseudonym files VM/ESA provides.

For further discussion of variables, characteristics, pseudonyms, and the various
naming conventions used throughout this book, see Chapter 2, “CPI
Communications Terms and Concepts” on page 17.

Table 45. VM/ESA Variables/Characteristics and Their Possible Values

Variable or Characteristic
Name

Pseudonym Values Integer
Values

conversation_security_type XC_SECURITY_NONE 0
XC_SECURITY_SAME 1
XC_SECURITY_PROGRAM 2

event_type XC_ALLOCATION_REQUEST 1

XC_INFORMATION_INPUT 2
XC_RESOURCE_REVOKED 3
XC_CONSOLE_INPUT 4
XC_REQUEST_ID 5
XC_USER_EVENT 6

resource_manager_type XC_PRIVATE 0

XC_LOCAL 1
XC_GLOBAL 2
XC_SYSTEM 3

security_level_flag XC_REJECT_SECURITY_NONE 0

XC_ACCEPT_SECURITY_NONE 1

service_mode XC_SINGLE 0

XC_SEQUENTIAL 1
XC_MULTIPLE 2

576 CPI Communications Reference

 VM/ESA CMS

Variable Types and Lengths
Table 46 defines the type and length of variables used specifically for VM/ESA
extension calls.

Note:

1. Because the security_user_ID characteristic is an output parameter on the
Extract_Conversation_Security_User_ID (XCECSU) call, the variable used to
contain the output character string should be defined with a length equal to the
maximum specification length.

Table 46. VM/ESA Variable Types and Lengths

Variable Variable Type Character Set Length
(in
bytes)

client_user_ID Character string 00640 8

conversation_security_type Integer Not applicable 4

event_buffer Character string No restriction 130

event_ID Character string No restriction 8

event_info_length Integer Not applicable 4

event_type Integer Not applicable 4

local_FQ_LU_name Character string 00640 17

local_FQ_LU_name_length Integer Not applicable 4

luwid Character string 00640 26

luwid_length Integer Not applicable 4

remote_FQ_LU_name Character string 00640 17

remote_FQ_LU_name_length Integer Not applicable 4

resource_ID Character string 00640 8

resource_manager_type Integer Not applicable 4

security_level_flag Integer Not applicable 4

security_password Character string 00640 0-8

security_password_length Integer Not applicable 4

security_user_ID 1 Character string 00640 0-8

security_user_ID_length Integer Not applicable 4

service_mode Integer Not applicable 4

user_data Character string No restriction 0-130

user_data_length Integer Not applicable 4

workunitid Integer Not applicable 4

VM/ESA Special Notes
The topics in this section cover a variety of important issues relating to the VM/ESA
implementation of CPI Communications.

 Chapter 12. CPI Communications on VM/ESA CMS 577

 VM/ESA CMS

 Program-Startup Processing
In VM/ESA, when the resource being requested is a private resource, node
services retrieves the name of the program to be started from a special CMS
NAMES file called $SERVER$ NAMES. VM/ESA also uses this file to enable a
user to control access to private resources in the virtual machine. The file contains
the names of private resources and users that are allowed to connect to them. See
VM/ESA: Connectivity Planning, Administration, and Operation for detailed
information on setting up a $SERVER$ NAMES file.

In addition, the private resource program's virtual machine requires certain
statements in its CP directory and PROFILE EXEC to enable it to start CMS and
act as a server virtual machine. At a minimum, the CP directory needs the
following entries:

 ¹ IUCV ALLOW
 ¹ IPL CMS

The IUCV ALLOW directory control statement lets programs in other virtual
machines communicate with the resource program in the server virtual machine.
The IPL CMS statement causes CP to start CMS in the server virtual machine.
VM/ESA: Connectivity Planning, Administration, and Operation describes these
directory control statements in more detail.

The private server virtual machine needs the following statements in its PROFILE
EXEC so it can process private resource connections after it has been autologged:

¹ SET SERVER ON
¹ SET FULLSCREEN OFF or SET FULLSCREEN SUSPEND
¹ SET AUTOREAD OFF

The SET SERVER command enables CMS private resource processing. The SET
FULLSCREEN command ensures that session services are deactivated. The SET
AUTOREAD command prevents CMS from issuing a console read immediately
after command execution. This means that CMS will return to Ready; state
following end-of-command processing and thus will be able to invoke the private
resource program. For more information on these CMS commands, see the
VM/ESA: CMS Command Reference.

 End-of-Command Processing
Any unterminated resources declared using Identify_Resource_Manager (XCIDRM)
are terminated at CMS end of command.

 Work Units
All CPI Communications conversations are associated with CMS work units in
VM/ESA. This means that any events that affect CMS work units also affect
associated conversations. For example, during end-of-work unit processing, all CPI
Communications conversations associated with that work unit are deallocated.
Work units are discussed in detail in the VM/ESA: CMS Application Development
Guide.

578 CPI Communications Reference

 VM/ESA CMS

 External Interrupts
For CPI Communications to work properly in VM/ESA, external interrupts must be
enabled for a user's virtual machine. Except for the VM/ESA extension routine
Signal_User_Event (XCSUE), CPI Communications routines should not be called
from an interrupt handler.

Coordination with the SAA Resource Recovery Interface
VM/ESA supports the SAA resource recovery interface for protected conversations
and product-specific protected resources, such as the CMS Shared File System
(SFS). See “Support for Resource Recovery Interfaces” on page 54 for an
overview of CPI Communications support for the SAA resource recovery interface.
The CMS Coordinated Resource Recovery (CRR) facility implements the SAA
resource recovery interface in VM/ESA. CRR is available only in CMS
environments. For more information on using the SAA resource recovery interface
in VM/ESA, see the VM/ESA appendix to the SAA CPI Resource Recovery
Reference. For more information on CRR, see the VM/ESA: CMS Application
Development Guide and VM/ESA: SFS and CRR Planning, Administration, and
Operation.

Additional Conversation Characteristics
In VM/ESA, CPI Communications maintains an additional set of characteristics for
each conversation used by a program. These characteristics provide security
parameters, which the program can modify.

Table 47 provides a comparison of the security conversation characteristics and
initial values as set by the Initialize_Conversation call and the Accept_Conversation
call.

Table 47 (Page 1 of 2). VM/ESA Security Characteristics and Their Default Values

Name of Characteristic Initialize_Conversation sets it to: Accept_Conversation sets
it to:

conversation_security_type The security type from side
information referenced by
sym_dest_name; if the security type
is not listed in side information or if a
blank sym_dest_name is specified
on the call,
conversation_security_type is set to
XC_SECURITY_SAME.

Not applicable

security_password The password from side information
referenced by sym_dest_name when
the conversation_security_type is
XC_SECURITY_PROGRAM and a user
ID is listed; otherwise a null string. If
a blank sym_dest_name is specified,
security_password is set to a null
string.

Not applicable

security_password_length The length of security_password, if
that characteristic is assigned a
value; otherwise, zero. If a blank
sym_dest_name is specified,
security_password_length is set to
zero.

Not applicable

 Chapter 12. CPI Communications on VM/ESA CMS 579

 VM/ESA CMS

Table 47 (Page 2 of 2). VM/ESA Security Characteristics and Their Default Values

Name of Characteristic Initialize_Conversation sets it to: Accept_Conversation sets
it to:

security_user_ID The user ID from side information
referenced by sym_dest_name when
the conversation_security_type is
XC_SECURITY_PROGRAM; otherwise
a null string. If a blank
sym_dest_name is specified,
security_user_ID is set to a null
string.

The access security user ID
for the session on which the
conversation startup request
arrived

security_user_ID_length The length of security_user_ID, if
that characteristic is assigned a
value; otherwise, zero. If a blank
sym_dest_name is specified,
security_user_ID_length is set to
zero.

The length of
security_user_ID, if that
characteristic is assigned a
value; otherwise zero

TP-Model Applications in VM/ESA
Recall from Chapter 2 that SAA CPI Communications provides a programming
interface to IBM's SNA LU 6.2. The set of calls defined by SAA, however, does not
implement every aspect of the LU 6.2 protocol. VM/ESA provides extensions to
SAA CPI Communications to support several additional LU 6.2 features, such as
support for security types. VM/ESA also provides routines that are considered
extensions to the LU 6.2 architecture. Resource manager support for accepting
multiple incoming conversations, for example, is not part of the LU 6.2 protocol.

This section describes how CPI Communications programs in the VM/ESA
environment can establish conversations that closely conform to the LU 6.2 model
for communications. Such programs are referred to here as LU 6.2 transaction
program model applications, or TP-model applications. While a TP-model
application can be created using only SAA CPI Communications routines, such an
application program is also allowed to call most of the VM/ESA extension routines.

LU 6.2 Communications Model
In LU 6.2, LUs initiate and run transaction programs. A transaction program (TP)
initiates a conversation with its TP partner using the services of the LUs. In
Figure 27, TP A in LU x allocates a conversation to TP B in LU y. LU x formats
and presents a conversation startup request in the form of an LU 6.2 Attach to LU
y. LU y validates the Attach and starts a new instance of TP B.

 ┌──────┐ ┌──────┐
│ TP A │ │ TP B │

 │ │ │ │ & │
 ┌┴───┼──┴┐ ┌┴───┼──┴┐
 │ └───┼───────────┼────┘ │

│ LU x │ │ LU y │
 └────────┘ └────────┘

Figure 27. LU 6.2 Communications Model

In this example, both TP A and TP B are TP-model applications:

¹ TP A is the initial program of a distributed application. It is invoked by some
process other than an Attach, typically by an end-user command. TP A has no
incoming conversations.

580 CPI Communications Reference

 VM/ESA CMS

¹ TP B is invoked as a result of the Attach presented to LU y. There is one and
only one incoming conversation.

TP A and TP B can allocate any number of conversations with other partner
programs.

VM/ESA TP-Model Applications
In Figure 28, assume that the allocation of a conversation by program A in virtual
machine VMUSR1 in LU x causes program B to be automatically started by CMS in
virtual machine VMUSR2 in LU y.

 ┌────┐ ┌────┐
 │TP A│ │TP B│
 ││ │ │ &│
 ┌┴┼───┴─────┐ ┌─────┴───┼┴┐
 │ │ VMUSR1 │ │ VMUSR2 │ │
 ┌┴─┼─────────┴──┐ ┌──┴─────────┼─┴┐

│ └────────────┼───────────┼────────────┘ │
 │ │ │ │
 │ LU x │ │ LU y │
 └───────────────┘ └───────────────┘

Figure 28. Creating a TP-Model Application in VM/ESA

The CPI-C calls issued by each program determine if it is a TP-model application.
Program A is considered a TP-model application until it issues
Identify_Resource_Manager (XCIDRM) VM/ESA extension call. Program B's
classification, though, is determined by how it is started and by the first successful
CPI Communications call that it issues. Calling Accept_Conversation (CMACCP) or
Initialize_Conversation (CMINIT) results in program B being a TP-model application.
If it is not desirable for program B to be a TP-model application, then it should
issue Identify_Resource_Manager as its first CPI Communications call.

VM/ESA considers an application program like program A in Figure 28 to be a
TP-model application if it has the following characteristics:

¹ The program is started by CMS as a result of local (end-user) action.

¹ There are no incoming conversations. However, the application program can
allocate any number of conversations with other partner programs.

¹ The Identify_Resource_Manager call has not been issued successfully.

VM/ESA considers an application program like program B in Figure 28 to be a
TP-model application if it has the following characteristics:

¹ The program is started automatically by CMS as a result of a private resource
conversation startup request.

¹ There is only one incoming conversation - the one that caused CMS to start the
program. The program can allocate any number of conversations with other
partner programs, though.

¹ The first successful CPI Communications call is either Accept_Conversation or
Initialize_Conversation.

 Chapter 12. CPI Communications on VM/ESA CMS 581

 VM/ESA CMS

VM/ESA considers an application program to be a non TP-model application if it
has the following characteristics:

¹ The program has successfully called Identify_Resource_Manager at least once
to identify a resource ID it wishes to manage.

¹ The program can accept multiple conversations and can also allocate any
number of conversations with other partner programs.

¹ The program can call the VM/ESA extensions Terminate_Resource_Manager
(XCTRRM) and Set_Client_Security_User_ID (XCSCUI).

 Implications
Certain behavior is enforced and certain services are provided by VM/ESA for
TP-model applications:

¹ For TP-model applications, there are three VM/ESA extension calls intended for
non TP-model applications that the application programs are not allowed to
issue. These functions are: Identify_Resource_Manager (XCIDRM),
Terminate_Resource_Manager (XCTRRM), and Set_Client_Security_User_ID
(XCSCUI).

¹ The virtual machine in which a TP-model application is running may require
authorization to issue DIAGNOSE code X'D4'. This authorization is necessary
if the TP-model application is an intermediate server allocating a conversation
with a conversation_security_type characteristic of XC_SECURITY_SAME, which
is the default value. In this case, the access security user ID provided by the
incoming conversation that caused CMS to start the program is automatically
propagated on the allocated conversation.

See the VM/ESA: CMS Application Development Guide for more information on
intermediate servers and the propagation of access security user IDs.

¹ For CPI Communications protected conversations (those with the sync_level
characteristic set to CM_SYNC_POINT), screening is performed for TP-model
applications to prevent allocation wrapback. Allocation wrapback occurs when
a program tries to allocate a protected conversation whose logical unit of work
identifier (LUWID) is already associated with another protected conversation to
which the remote program is a partner. Screening is necessary because
allocation wrapback can result in deadlock during sync-point processing.

For example, assume that protected conversations between program A and
program B and between program B and program C have been established, as
illustrated by the solid lines in Figure 29 on page 583. Three cases of
allocation wrapback are illustrated by the dotted lines in that figure. In all of
these cases, allocations are being attempted for protected conversations with
the same LUWID. Note that the work unit in effect when Allocate (CMALLC) is
called determines the LUWID for a protected conversation. The VM/ESA: CMS
Application Development Guide describes the relationship between LUWIDs
and CMS work units.

582 CPI Communications Reference

 VM/ESA CMS

 luwid=x
 •••
 • 6

VMUSR1 VMUSR2 VMUSR3
 ┌───┐ luwid=x ┌───┐ luwid=x ┌───┐

│ A ├───────────────5│ B ├───────────────5│ C │
└───┘ └───┘ └───┘
& luwid=x • & luwid=x •

 ••••••••••••••••••••• •••••••••••••••••••••

Figure 29. Three Potential Conversation Wrap-Back Scenarios

A conversation startup request that would result in allocation wrapback is
automatically rejected for TP-model applications by CMS in the target virtual
machine. If an application program allocates a protected conversation that
would result in allocation wrapback, it receives a return_code value of
CM_TP_NOT_AVAILABLE_NO_RETRY on a CPI Communications call following
the allocate.

Certain behavior is enforced by VM/ESA for non TP-model applications:

¹ In order to accept any incoming conversations, the program must call the
Identify_Resource_Manager function for all of the resource IDs it wishes to
manage (for example, program B in Figure 28 on page 581 must call the
Identify_Resource_Manager function for the resource ID of the conversation
startup request from program A; otherwise, program B will not be able to accept
the conversation startup request from program A).

VM/ESA-Specific Notes for CPI Communications Routines
This section contains VM/ESA-specific notes for certain CPI Communications
routines.

Notes for Accept_Conversation (CMACCP):

¹ In VM/ESA, CPI Communications maintains additional conversation
characteristics that provide security information. Table 47 on page 579 lists
these additional conversation characteristics and describes how they are
initialized by VM/ESA when the Accept_Conversation (CMACCP) call
completes successfully.

¹ When accepting a conversation, the program can become a TP-model
application. Refer to “TP-Model Applications in VM/ESA” on page 580 for
information on how Accept_Conversation can determine whether a program is
a TP-model application.

Notes for Allocate (CMALLC):

¹ If the remote program is within the same TSAF or CS collection, the operation
of the Allocate (CMALLC) call differs from that described in Chapter 4 of this
book in the following ways:

– The Allocate (CMALLC) call does not establish an LU 6.2 session.

– Because sessions are not used, the return_control conversation
characteristic has no effect.

– There is no session buffering; the Allocate (CMALLC) call can be
considered to include the function of the Flush (CMFLUS) call. Therefore,
the conversation startup request is flowed to the partner immediately.

 Chapter 12. CPI Communications on VM/ESA CMS 583

 VM/ESA CMS

– The Allocate (CMALLC) call does not complete immediately. Instead, it
completes when the remote program or VM/ESA system either accepts or
deallocates the conversation startup request.

¹ The virtual machine in which the program is running may require authorization
to issue DIAGNOSE code X'D4' to allow CPI Communications to set an
alternate user ID. This authorization is usually privilege class B, unless the
default privilege classes assigned to your installation have been changed.

DIAGNOSE code X'D4' authorization is typically required when a program
either is a TP-model intermediate server or issues the
Set_Client_Security_User_ID (XCSCUI) call.

If not authorized, the Allocate call will complete with a
CM_PRODUCT_SPECIFIC_ERROR return code.

Note for Flush (CMFLUS):

¹ A Flush (CMFLUS) call has no effect when issued on a conversation that is
allocated to a target program within the same TSAF or CS collection because
information is not buffered for this environment. However, inclusion of Flush
(CMFLUS) calls should be considered to make an application program portable.

Notes for Initialize_Conversation (CMINIT):

¹ If the value specified for sym_dest_name does not match an entry in side
information, VM/ESA does not return CM_PROGRAM_PARAMETER_CHECK.
Rather, the specified value is used to set the TP_name characteristic for the
conversation. Likewise, if a matching entry is found in the side information, but
no TP_name characteristic (:tpn. field) is associated with the entry, the
specified sym_dest_name is used. This means that VM/ESA handles both of
these cases as initializations for a conversation to a local, global, or system
resource that has been identified with a name matching the specified
sym_dest_name. Conversation characteristics are initialized to the values listed
in the section entitled “Conversation Characteristics” on page 33 except as
listed here.

Conversation Characteristic Initialized Value

mode_name set to a null string

mode_name_length set to zero

partner_LU_name set to a null value, which indicates *IDENT

partner_LU_name_length set to zero

TP_name set to the name specified in the sym_dest_name
parameter

TP_name_length set to the length of the name passed in the
sym_dest_name parameter.

¹ In VM/ESA, CPI Communications maintains additional conversation
characteristics that provide security information. Table 47 on page 579 lists
these additional conversation characteristics and describes how they are
initialized by VM/ESA when the Initialize_Conversation (CMINIT) call completes
successfully.

¹ When initializing a conversation, the program can become a TP-model
application. Refer to “TP-Model Applications in VM/ESA” on page 580 for

584 CPI Communications Reference

 VM/ESA CMS

information on how Initialize_Conversation may determine whether a program is
a TP-model application.

Notes for Send_Data (CMSEND):

¹ If Send_Data (CMSEND) is called from a REXX program, the buffer parameter
specified on the call cannot contain more than 32767 bytes of data. A data
field exceeding this size must be partitioned into units of 32767 bytes or less.
This restriction applies only to REXX.

¹ Setting the send_type conversation characteristic to CM_SEND_AND_FLUSH or
CM_BUFFER_DATA does not affect a Send_Data (CMSEND) call issued on a
conversation that is allocated to a target program within the same TSAF or CS
collection because information is not buffered for this environment. However,
setting the send_type characteristic should be considered in case the
application is ported to another environment.

¹ If the conversation partner is located on the same VM/ESA system and the
conversation is not allocated through the SNA network, completion of the
Send_Data call depends on the partner to receive the data, to send an error
notification, or to deallocate its side of the conversation abnormally. In this
situation, if the conversation partner does not respond, the Send_Data call will
not complete.

Single-threaded applications that use two conversations to simulate full-duplex
behavior can experience a deadlock if both partners are waiting for the other
partner to respond to a Send_Data call. To avoid this problem, these
applications should use multiple threads and CMS multitasking services.

Note for Set_Log_Data (CMSLD):

¹ The error information supplied in the log_data parameter is formatted by the
sending LU into an Error Log general data stream (GDS) variable. The data is
placed in the message text portion of the Error Log GDS variable created by
the LU. The LU formats the GDS variable, filling in the appropriate length fields
and the Product Set ID portion of the GDS variable. See VM/ESA: CP
Programming Services for the format of the Log Data GDS variable in VM/ESA.

VM/ESA Communications Events
The occurrences of communications events are represented by a system event
called VMCPIC. By reporting information through this event, CPI Communications
allows an application to use all the facilities of CMS event management services to
monitor and respond to these conditions, with the additional benefit of avoiding
undue serialization in multitasking applications.

The following types of events are reported by VMCPIC:

 ¹ Allocation requests
¹ Information input from partner
¹ Resource revoked notification.

The other two events supported by Signal_User_Event (XCSUE) and
Wait_on_Event (XCWOE), namely console input and user events, also can be
handled through the use of event management services. CMS provides a system
event, called VMCONINPUT, that allows an application to wait on console input
events. Additionally, an application can use the event management functions to
generate and process its own user events.

 Chapter 12. CPI Communications on VM/ESA CMS 585

 VM/ESA CMS

See VM/ESA: CMS Application Multitasking for a full description of event
management services.

The VMCPIC Event
When VMCPIC is signalled, event data is associated with the signal, and a portion
of this event data forms the event key. The following sections describe the
VMCPIC event data and event keys in more detail and provide some information on
creating match keys.

Event Data and Keys: The following list contains a description of the event data
available when VMCPIC is signalled and the event keys that are carried by the
VMCPIC signals.

 ¹ Allocation request

The event data associated with a signal for an allocation request consists of
X'00000001' concatenated with the resource_ID:

 ┌─────────────┬───────────────────────────┐
 │ X'00000001' │ resource_ID │
 └─────────────┴───────────────────────────┘
 4 bytes 8 bytes

The event key is composed of both fields. However, note that since allocation
requests are presented in first in, first out (FIFO) order, an application should
not create a key to handle allocation requests selectively based on the
resource_ID. An application that attempts to use selective allocation request
monitors may not perform as desired. The application instead should specify
the match-all wildcard ‘*’ (X'5C') for the resource ID portion of the key.

 ¹ Information input

The event data associated with a signal for information input consists of
X'00000002' concatenated with the conversation_ID concatenated with the
event_info_length:

 ┌─────────────┬───────────────────────────┬───────────────────┐
 │ X'00000002' │ conversation_ID │ event_info_length │
 └─────────────┴───────────────────────────┴───────────────────┘
 4 bytes 8 bytes 4 bytes

Note: The value returned by event_info_length may be greater than the
amount of data sent by the remote partner. An application that uses this value
to set the requested_length parameter on a Receive call may need to verify
that it does not exceed the maximum length allowed for a single Receive call.

The event key consists of the first two fields.

¹ Resource revoked notification

The event data associated with a signal for a resource revoked notification
consists of X'00000003' concatenated with the resource_ID:

 ┌─────────────┬───────────────────────────┐
 │ X'00000003' │ resource_ID │
 └─────────────┴───────────────────────────┘
 4 bytes 8 bytes

The event key contains both fields.

Creating Match Keys: An application may specify either a key that exactly
matches the signal key of interest, or a partial key, possibly including wildcard
characters, which matches a broader range of occurrences.

586 CPI Communications Reference

 VM/ESA CMS

The event_type values provided in the VM/ESA pseudonym files may be used to
build keys or to determine which event was signalled by a VMCPIC event; however,
some conversion of the pseudonym value or event data by the application may be
required.

For example, to build the key to specify when creating a monitor for information
input events associated with an established conversation represented by the
identifier contained in the conversation_ID variable, a REXX application may use a
line of code like this:

match_key = d2c(XC_INFORMATION_INPUT,4)||conversation_ID

Notes on the VMCPIC Event
Here is some information that a programmer should understand before writing an
application that uses the VMCPIC event.

¹ Event services and the VMCPIC event are supported for the Assembler, C, and
REXX programming languages.

¹ VMCPIC is not signalled for an allocation request event unless an
Identify_Resource_Manager (XCIDRM) call was previously issued for the
corresponding resource_ID.

¹ VMCPIC is not signalled for an information input event if a Receive (CMRCV)
call with a receive_type of CM_RECEIVE_AND_WAIT is outstanding for the
corresponding conversation at the time the event occurs. Thus, if both a
Receive call and an EventWait for a VMCPIC monitor were waiting when an
information input event occurred, only the Receive call would complete.

¹ VMCPIC is not signaled if Request_To_Send arrives without any accompanying
data.

¹ The occurrence of an allocation request event or an information input event is
signalled only once by VMCPIC, rather than continuously until the event has
been processed as is done by the Wait_on_Event call.

¹ An application using the VMCPIC event should be written such that all
communications-related actions are performed in response to the signalling of
VMCPIC. In other words, the application using VMCPIC should not anticipate
that certain communications events will happen and handle those events before
VMCPIC has signalled their occurrence.

 Chapter 12. CPI Communications on VM/ESA CMS 587

Using the Online HELP Facility
You can receive online information about the CPI Communications calls and the
VM/ESA extensions described in this book using the VM/ESA HELP Facility. For
example, to display a menu of callable routines, enter:

help routine menu

To display a list of general tasks for which callable routines exist, enter

help routine task

To display information about a specific call (CMINIT in this example), enter:

help routine cminit

For more information about using the HELP Facility, see the VM/ESA: CMS User’s
Guide. To display the main HELP Task Menu, enter:

help

For more information about the HELP command, see the VM/ESA: CMS Command
Reference or enter:

help cms help

588 CPI Communications Reference

 Windows 95

Chapter 13. CPI Communications on IBM eNetwork Personal
Communications V4.1 for Windows 95

This chapter contains information about the CPI Communications implementation
included in IBM eNetwork Personal Communications AS/400 and 3270 V4.1 for
Windows 95 and eNetwork Personal Communications AS/400 V4.1 for Windows
95.

The topics covered are:

¹ Conformance Classes Supported
¹ Personal Communications V4.1 Publications

 ¹ Languages Supported
¹ Linking with the CPI-C Library

 ¹ Accepting Conversations
 ¹ Extension calls
¹ Deviations from the CPI-C architecture

Please see Chapter 14, “CPI Communications on Win32 and 32-bit API Client
Platforms” on page 593 for a description of CPI-C Communications shipped with
the following products:

¹ IBM eNetwork Communication Server for Windows NT 5.0, 5.01, and above
¹ Win95 API Client for Communication Server 5.0, 5.01, and above
¹ WinNT API Client for Communication Server 5.0, 5.01, and above
¹ OS/2 API Client for Communication Server 5.0, 5.01, and above

¹ Win95 API Client for Netware for SAA 2.2
¹ WinNT API Client for Netware for SAA 2.2
¹ OS/2 API Client for Netware for SAA 2.2

¹ Win95 API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ WinNT API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ OS/2 API Client for IntraNetware for SAA 2.3, 3.0 and above

¹ IBM eNetwork Personal Communications 4.1 for WinNT and above
¹ IBM eNetwork Personal Communications 4.2 for Win95 and above

Conformance Classes Supported
Personal Communications V4.1 for Windows 95 supports the following CPI
Communications V2.1 conformance classes:

 ¹ LU 6.2
 ¹ Conversations
 ¹ Callback function
 ¹ Conversation-level non-blocking
 ¹ Data Conversion
 ¹ Queue-level non-blocking
 ¹ Server
 ¹ Security

All calls in this class are supported, but the input parameter of
CM_SECURITY_PROGRAM_STRONG on the

 Copyright IBM Corp. 1996, 1998 589

 Windows 95

Set_Conversation_Security_Type (CMSCST) call is not supported. If specified
it will be rejected with the return code CM_PARM_VALUE_NOT_SUPPORTED.

Personal Communications V4.1 for Windows 95 Publications
The following publications contain detailed product information:

Table 48. Personal Communications V4.1 for Windows 95 Publications

Title Form
Number

Part Number

Personal Communications AS/400 and 3270 for
Windows 95 Up and Running

SC31-8205-00 64H0669

Personal Communications AS/400 and 3270 for
Windows 95 Reference

SC31-8206-00 64H0692

Personal Communications AS/400 and 3270 for
Windows 95 Emulator Programming

SC31-8207-00 64H0693

Personal Communications AS/400 and 3270 for
Windows 95 APPN Programming

SC31-8208-00 64H0694

Personal Communications AS/400 and 3270 for
Windows 95 NOF Programming

SC31-8199-00 64H0695

Programming Language Support
The C language is supported. Only 32 bit API support is provided.

The pseudonym file WINCPIC.H is provided to assist in the development of
programs. It contains the constant declarations and data types for each supplied
and returned parameter in the CPI-C calls, and call prototypes. This file can be
found in the INCLUDE subdirectory of the Personal Communications directory.

Linking with the CPI-C library
The WCPIC32.LIB file can be found in the LIB subdirectory of the Personal
Communications directory.

 Accepting Conversations
When an ATTACH is received, the TP name in the ATTACH is matched against TP
names from the DEFINE_TPs. If a match is found, the executable name from that
definition is started. If a match is not found, then the name of the executable is
assumed to be the same as that which was specified in the ATTACH appended
with ".EXE".

If a transaction program issues an Accept call (CMACCP) and specifies a TP name
that has not previously been defined, the system performs an implicit definition of
the TP and assigns default values to the parameters.

The defaults used are:

Attach timeout = 0 (no timeout is applied)

590 CPI Communications Reference

 Windows 95

Receive Allocate timeout = 0 (no timeout is applied)

Attach Manager Loaded = Yes (the TP can be loaded by the Attach Manager)

These defaults mean that if you issue a call to CMACCP as described above it will
not complete until an attempt is made to attach to the named TP, or you cancel the
call.

Extension Calls supported
The following CPI-C extensions, defined in the WOSA WinSNA APIs, are
supported:

 ¹ WinCPICStartup
 ¹ WinCPICCleanup
 ¹ WinCPICIsBlocking
 ¹ WinCPICSetBlockingHook
 ¹ WinCPICUnhookBlockingHook

Only WinCPICStartup and WinCPICCleanup are recommended for use. The
remaining calls are provided for migration of existing applications.

In addition, the Personal Communications products support the additional call:

 ¹ XCHWND (Specify_Windows_Handle)

 WinCPICStartup

int WINAPI WinCPICStartup(WORD, LPWCPICDATA);

The CPIC program would issue this call when starting up. It can be used to
determine version information of the API. The call returns a pointer to a structure
which contains:

 WORD wVersion

 char szDescription[WCPICDESCRIPTION_LEN+1]

 WinCPICCleanup

bool WINAPI WinCPICCleanup(void);

This call is used to indicate that the CPIC program is ending.

 Specify_Windows_Handle (XCHWND)
This function checks that no call is currently outstanding on any conversation that
has conversation level non-blocking set. It then sets the global window handle
which is to be used on all subsequent calls on a conversation which has
conversation level non-blocking or sets non-blocking on at some time in the future.
This can be reset by calling XCHWND specifying a NULL handle.

 Chapter 13. CPI Communications on IBM eNetwork Personal Communications V4.1 for Windows 95 591

 Windows 95

The prototype is as follows:

CM_ENTRY xchwnd(HWND, /* Window handle */

CM_INT32 CM_PTR); /* return code */

Deviations from the CPI-C architecture
The CMTRTS call may be issued in any state of the conversation. If the
conversation is not in Send, Receive, or Send-Pending state, the value returned in
control_information_received has no meaning.

592 CPI Communications Reference

 CPI-C on Win32

Chapter 14. CPI Communications on Win32 and 32-bit API
Client Platforms

This chapter provides information to write applications that contain CPI
Communications calls for the following platforms and products:

¹ IBM eNetwork Communication Server for Windows NT 5.0, 5.01, and above
¹ Win95 API Client for Communication Server 5.0, 5.01, and above
¹ WinNT API Client for Communication Server 5.0, 5.01, and above
¹ OS/2 API Client for Communication Server 5.0, 5.01, and above

¹ Win95 API Client for Netware for SAA 2.2
¹ WinNT API Client for Netware for SAA 2.2
¹ OS/2 API Client for Netware for SAA 2.2

¹ Win95 API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ WinNT API Client for IntraNetware for SAA 2.3, 3.0 and above
¹ OS/2 API Client for IntraNetware for SAA 2.3, 3.0 and above

¹ IBM eNetwork Personal Communications 4.1 for WinNT and above
¹ IBM eNetwork Personal Communications 4.2 for Win95 and above

For the remainder of this chapter, the term "Communications CPI-C" collectively
identifies these products. If a statement is not true for all these products, the
exception is noted. The phrases "or later" and "or above" are used to indicate a
statement is true for a particular product and its successors.

Communications CPI-C implements functions in the manner described in the main
sections of the publication, except as described in “Deviations from the CPI
Communications Architecture” on page 600.

This chapter is organized as follows:

 ¹ Operating Environment
– Conformance Classes Supported

 – Languages Supported
– CPI-C Communications Use of Environment Variables

 – Pseudonym Files
– Defining Side Information
– How Dangling Conversations are Deallocated
– Scope of the Conversation_ID

 – Diagnosing Errors
– When Allocation Requuests Are Sent
– Deviations from the CPI Communications Architecture

¹ Extension Calls – System Management
¹ Extension Calls – Conversation
¹ Extension Calls – Transaction Program Control

 ¹ Special Notes

 Copyright IBM Corp. 1996, 1998 593

 CPI-C on Win32

 Operating Environment
The following sections explain some special considerations that should be
understood when writing applications.

Conformance Classes Supported
Refer to “Functional Conformance Class Descriptions” on page 746 for a complete
description of the functional conformance classes.

Communications CPI-C support the following mandatory conformance classes:

 1. Conversatons
 2. LU 6.2

In addition to the mandatory conformance classes listed above, the following
optional conformance classes are available in Communications CPI-C:

 1. Conversation-level non-blocking
 2. Queue-level non-blocking
 3. Server

4. Data conversation routines
 5. Full-duplex conversations
 6. Expedited data
 7. Security
 8. Callback Function
 9. Secondary Information
10. Full-Duplex
11. Expedited Data

With the following exceptions:

¹ Win95/WinNT/OS2 API Client for Communications Server 5.0 and 5.01 does
not support Full-Duplex or Expedited Data

¹ Win95/WinNT/OS2 API Client for Netware for SAA 2.2 does not support
Full-Duplex or Expedited Data

¹ Win95/WinNT/OS2 API Client for IntraNetware for SAA 2.3 does not support
Full-Duplex or Expedited Data

In addition to all the conformance classes listed above, Communications CPI-C
supports the CPI-C extension calls documented in this chapter.

Following is a table of CPI Communication verbs which are supported by each
product.

Table 49. Client Support of CPI-C Functions

Function Long Name

Windows NT
Server and
Personal
Comm. 4

Windows 95
and Windows
NT Clients 5 OS/2 Clients 6

cmaccp Accept_Conversation x x x
cmacci Accept_Incoming x x x
cmallc Allocate x x x
cmcanc Cancel_Conversation x x x
cmcfm Confirm x x x
cmcfmd Confirmed x x x
cmcnvi Convert_Incoming x x x

594 CPI Communications Reference

 CPI-C on Win32

Table 49. Client Support of CPI-C Functions

Function Long Name

Windows NT
Server and
Personal
Comm. 4

Windows 95
and Windows
NT Clients 5 OS/2 Clients 6

cmcnvo Convert_Outgoing x x x
cmdeal Deallocate x x x
xcmdsi Delete_CPIC_Side_Information x - -
cmectx Extract_Conversation_Context x x x
xcecst Extract_Conversation_Security_Type x x x
cmecst Extract_Conversation_Security_Type x x x
cmecs Extract_Conversation_State x x x
cmect Extract_Conversation_Type x x x
xcmesi Extract_CPIC_Side_Information x x x
cmembs Extract_Maximum_Buffer_Size x x x
cmemn Extract_Mode_Name x x x
cmepln Extract_Partner_LU_Name x x x
cmesi Extract_Secondary_Information x x x
cmesui Extract_Security_User_ID x x x
cmecsu Extract_Security_User_ID x x x
xcecsu Extract_Security_User_ID x x x
cmesrm Extract_Send_Receive_Mode x - -
cmesl Extract_Sync_Level x x x
xceti Extract_TP_ID x x x
cmetpn Extract_TP_Name x x x
cmflus Flush x x x
cminit Initialize_Conversation x x x
xcinct Initialize_Conversation_For_TP x x x
cminic Initialize_For_Incoming x x x
cmptr Prepare_To_Receive x x x
cmrcv Receive x x x
cmrcvx Receive_Expedited x - -
cmrltp Release_Local_TP_Name x x x
cmrts Request_To_Send x x x
cmsend Send_Data x x x
cmsndx Send_Expedited x - -
cmserr Send_Error x x x
cmscsp Set_Conversation_Security_Password x x x
xcscsp Set_Conversation_Security_Password x x x
cmscst Set_Conversation_Security_Type x x x
xcscst Set_Conversation_Security_Type x x x
cmscsu Set_Conversation_Security_User_ID x x x
xcscsu Set_Conversation_Security_User_ID x x x
cmsct Set_Conversation_Type x x x
xcmssi Set_CPIC_Side_Information x - -
cmsdt Set_Deallocate_Type x x x
cmsed Set_Error_Direction x x x
cmsf Set_Fill x x x
cmsld Set_Log_Data x x x
cmsmn Set_Mode_Name x x x
cmspln Set_Partner_LU_Name x x x
cmsptr Set_Prepare_To_Receive_Type x x x
cmspm Set_Processing_Mode x x x
cmsqcf Set_Queue_Callback_Function x x x
cmsqpm Set_Queue_Processing_Mode x x x
cmsrt Set_Receive_Type x x x
cmsrc Set_Return_Control x x x
cmssrm Set_Send_Receive_Mode x - -
cmsst Set_Send_Type x x x

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 595

 CPI-C on Win32

Note:

1. * Indicates: WOSA function for Microsoft Windows

2. X Indicates: Supported Function

3. - Indicates: Unsupported Function

4. Windows NT Server and Personal Comm.:

IBM eNetwork Communication Server for Windows NT 5.0, 5.01, and above

IBM eNetwork Personal Communications 4.1 for WinNT and above

IBM eNetwork Personal Communications 4.2 for Win95 and above

5. Windows 95 and Windows NT Clients:

Win95 API Client for Communication Server 5.0, 5.01, and above

WinNT API Client for Communication Server 5.0, 5.01, and above

Win95 API Client for Netware for SAA 2.2

WinNT API Client for Netware for SAA 2.2

Win95 API Client for IntraNetware for SAA 2.3, 3.0 and above

WinNT API Client for IntraNetware for SAA 2.3, 3.0 and above

 6. OS/2 Clients:

OS/2 API Client for Communication Server 5.0, 5.01, and above

OS/2 API Client for Netware for SAA 2.2

OS/2 API Client for IntraNetware for SAA 2.3, 3.0 and above

Table 49. Client Support of CPI-C Functions

Function Long Name

Windows NT
Server and
Personal
Comm. 4

Windows 95
and Windows
NT Clients 5 OS/2 Clients 6

cmssl Set_Sync_Level x x x
cmstpn Set_TP_Name x x x
cmsltp Specify_Local_TP_Name x x x
xchwnd* Specify_Windows_Handle x x -
xcstp Start_TP x x x
cmtrts Test_Request_To_Send_Received x x x
cmwcmp Wait_For_Completion x x x
cmwait Wait_For_Conversation x x x
xcendt End_TP x x x
WinCPICCleanup* x x -
WinCPICIsBlocking* - - -
WinCPICSetBlockingHook* - - -
WinCPICStartup* x x -
WinCPICUnhookBlockingHook* - - -

 Languages Supported
"C" is the only language supported by Communications CPI-C.

The supplied header files and libraries needed to compile and link Communications
CPI-C programs are given in the table below:

596 CPI Communications Reference

 CPI-C on Win32

Table 49. Header Files and Libraries for CPI-C

Operating System Header File Library DLL Name

WINNT & WIN95 WINCPIC.H WCPIC32.LIB WCPIC32.DLL
OS/2 CPIC_C.H CPIC16.LIB

or
CPIC32.LIB

CPIC.DLL

CPI-C Communications Use of Environment Variables
CPI-C Communications make use of certain environment variables when
processing CPI Communications calls. The environment variables become part of
the process created when the CPI Communications program is started. These
environment variables are:

APPCTPN During an Accept_Conversation (CMACCP) call, CPI-C Communications
obtain the TP name from this environment variable. The CPI-C
Communications completes the call when an inbound allocation request
carrying the same TP name arrives, or if one is already waiting. The
operator or program must set the TP name in this environment variable
for an operator-started program that uses the CMACCP call. CPI-C
Communications set the TP name from an inbound allocation request in
this environment variable when it starts an attach manager-started
program.

Refer to “Accept_Incoming (CMACCI)” on page 600 for use of the
APPCTPN environment variable with the CMACCI call.

During an Initialize_Conversation call, CPI-C Communications obtain the
local TP name from this environment variable when the call starts the
TP instance. If the operator or program does not set this environment
variable, CPI-C Communications use CPIC_DEFAULT_TPNAME as a default
name for the local TP instance.

APPCLLU During an Initialize_Conversation call that starts the TP instance, CPI-C
Communications obtain the local LU alias from this environment
variable. The CPI-C Communications then start the TP instance on this
local LU. If this environment variable is not set when the program
issues an Initialize_Conversation call that starts the TP instance, CPI-C
Communications start the TP instance on the default local LU configured
for the node. This variable can be a maximum of eight characters.

 Pseudonym Files
Integer characteristics, variables, and fields are shown throughout this chapter as
having pseudonym values rather than integer values. For example, instead of
stating that the variable "conversation_security_type" is set to an integer value of 0,
this chapter shows "conversation_security_type" set to the pseudonym value of
CM_SECURITY_NONE.

For the header file name that contains the pseudonym definitions see “Languages
Supported” on page 596

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 597

 CPI-C on Win32

Defining Side Information
The set of parameters associated with a given symbolic destination name is called
a side information entry. This section provides an overview of how a
Communications CPI-C user or program can add, replace, delete, and extract side
information entries.

User-Defined Side Information
The Communications CPI-C side information records can be updated using the
product specific configuration utility. Please consult each product's configuration
documentation for this information.

Program-Defined Side Information
The programmer can write a system management program that issues
Communications CPI-C calls to update the run-time side information entries and
obtain the parameter values of the entries. These updates affect only the run-time
information and remain in effect until changed or until the Communicaitons CPI-C
subsystem is unloaded. They do not alter the configuration file.

Communications CPI-C provides calls to update the internal side information and
one to extrace it. These are:

Set_CPIC_Side_Information (XCMSSI)
Add or replace the entry (all parameter values) for a symbolic destination name.
See “Set_CPIC_Side_Information (XCMSSI)” on page 607 for a detailed
description.

Note: This call is not supported on the following systems:

¹ OS2/Win95/WinNT API Clients for Communications Server 5.0 and later
¹ OS2/Win95/WinNT API Clients for Netware for SAA 2.2
¹ OS2/Win95/WinNT API Clients for IntraNetware 2.3 and later.

Delete_CPIC_Side_Information (XCMDSI)
Delete the entry for a symbolic destination name. See
“Delete_CPIC_Side_Information (XCMDSI)” on page 602 for a detailed
description.

Note: This call is not support on the following systems:

¹ OS2/Win95/WinNT API Clients for Communications Server 5.0 and later
¹ OS2/Win95/WinNT API Clients for Netware for SAA 2.2
¹ OS2/Win95/WinNT API Clients for IntraNetware 2.3 and later.

Extract_CPIC_Side_Information (XCMESI)
Return the entry for a symbolic destination name or for the nth entry. See
“Extract_CPIC_Side_Information” on page 604 for a detailed description.

Note: The nth entry option is not supported on the following systems:

¹ OS2/Win95/WinNT API Clients for Communications Server 5.0 and later
¹ OS2/Win95/WinNT API Clients for Netware for SAA 2.2
¹ OS2/Win95/WinNT API Clients for IntraNetware 2.3 and later.

598 CPI Communications Reference

 CPI-C on Win32

How Dangling Conversations Are Deallocated
Communications CPI-C deallocates dangling conversations as part of its cleanup
processing. That is, it deallocates all remaining conversations for that program,
using the "deallocate_type" or CM_DEALLOCATE_ABEND.

It is a good practice for all CPI Communications programs to deallocate all active
conversations when they are finished with them. And, of course, programs that
require their conversations to be deallocated with a "deallocate_type" other than
CM_DEALLOCATE_ABEND must deallocate them before ending execution.

The scope of the "conversation_ID" is limited to one TP instance — that is, the TP
instance with which it was associated when the conversation was initiailized.

 Diagnosing Errors

Causes for the CM_PROGRAM_PARAMETER_CHECK Return
Code
This section discusses the causes for the CM_PROGRAM_PARAMETER_CHECK
return code that are specific to Communications CPI-C. These causes are in
addition to those described in Appendix B, “Return Codes and Secondary
Information.”

Communications CPI-C indicates the CM_PROGRAM_PARAMETER_CHECK
return code because:

¹ The call passed a pointer to variable and the pointer is not valid.
¹ For non-blocking operations that initially go outstanding

(CM_OPERATION_INCOMPLETE return code), if a return parameter becomes
inacessible, then the CM_PROGRAM_PARAMETER_CHECK return code will
be returned.

Causes for the CM_PROGRAM_STATE_CHECK Return Code
This section discusses the causes for the CM_PROGRAM_PARAMETER_CHECK
return code on the Accept_Conversation (CMACCP) call that are specific to
Communications CPI-C. These causes are in addition to those described in
Appendix B, “Return Codes and Secondary Information.”

Communications CPI-C indicates the CM_PROGRAM_STATE_CHECK return code
on the Accept_Conversation call because:

¹ The operator or program set a TP name in the APPCTPN environment variable
that was incorrect; that is, it did not match the TP name on the inbound
allocation request for the program

Note: The next two items do not apply to the following systems:
– OS2/Win95/WinNT API Clients for Communications Server 5.0 and later
– OS2/Win95/WinNT API Clients for Netware for SAA 2.2
– OS2/Win95/WinNT API Clients for IntraNetware 2.3 and later.

¹ An operator-started program issued the Accept_Conversation call, but the call
expired before the inbound allocation request arrived. The duration that a call
waits for an inbound allocation request is configured via the product specific
configuration program.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 599

 CPI-C on Win32

¹ For an Accept_Conversation or Accept-Incoming call, at least one TP name
being used by the call is a Communication CPI-C non-queued TP and there are
no outstanding attaches matching any of the TP name(s) being waited on.

When Allocation Requests Are Sent
Because Communications CPI-C buffers data being transmitted to the remote LU,
the allocation request generated by an Allocate call is not sent to the remote node
until one of the following occurs:

¹ The local LU's send buffer becomes full as the result of (one or more)
Send_Data calls.

¹ A call is executed that explicitly flushes the buffer (for example, a Flush call or
a Receive call).

Deviations from the CPI Communications Architecture
CPI-C Communications support CPI Communications calls except as indicated in
the following sections.

 Accept_Incoming (CMACCI)
When an Accept_Incoming (CMACCI) call is issued to CPI-C Communications, the
following rules are checked sequentially to determine if they apply. The TP name(s)
is determined by the first applicable rule.

1. The TP name(s) from a successfully completed Specify_Local_TP_Name
(CMSLTP) call for the conversation.

2. A TP name set in the APPCTPN environment variable.

If the above rules do not yield a TP name, then CMACCI completes with a
CM_PROGRAM_STATE_CHECK return code.

 Release_Local_TP_Name (CMRLTP)
CPI-C Communications allow the TP name XC_RELEASE_ALL on the CMRLTP.
Use of this name will result in releasing all of the TP names for the program.

Mode Names Not Supported
CPI-C Communications do not allow a CPI Communication program to allocate a
conversation that uses the CPSVCMG or SNASVCMG mode name. The Allocate
(CMALLC) call is rejected with a return code of CM_PARAMETER_ERROR

CPI-C Communication Functions Not Available
This section lists the CPI Communications functions that are not available at the
CPI Communications interface on CPI-C Communications.

Unsupported TP Names: CPI-C Communications do not support double-byte TP
names and provide limited support for SNA service TP names.

Double-Byte TP Names: CPI-C Communications do not not support TP names
consisting of characters from a double-byte character set, such as Kanji. These TP
names begin with the X'0E' character and end with the X'0F' character. They
have an even number of bytes (2 or more) between these delimiting characters.

If the program calls Allocate (CMALLC) with the TP_name characteristic set to a
double-byte name, CPI-C Communications treat the name as ASCII and translate

600 CPI Communications Reference

 CPI-C on Win32

each byte to EBCDIC. The resulting TP name is not valid, and the partner LU for
the conversation rejects the allocation request.

SNA Service TP Names: CPI-C Communications do not support the specification
of an SNA service TP name on the Set_TP_Name (CMSTPN) call, nor do they
support the setting of the APPCTPN OS/2 environment variable to an SNA service TP
name.

Extension Calls – System Management
A program issues system management calls to do the following:

¹ Set, delete, or extract parameter values as defined in the CPI-C
Communications internal side information. The side information is used to
assign initial characteristic values on the Initialize_Conversation (CMINIT) call.
The program can also extract the current values of the side information.

¹ Define or delete TP definitions.

Note: Using any of these calls means that the program requires modification to
run on another system that does not implement the call or implements it differently.

Table 29 lists the system management call names and briefly describes their
functions.

Table 50. List of CPI-C Communications System Management Calls

Call Pseudonym Description

XCMDSI Delete_CPIC_Side_Information Deletes a side information entry for
a specified symbolic destination
name.

XCMESI Extract_CPIC_Side_Information Returns the parameter values of a
side information entry for a
specified symbolic destination
name or entry number.

XCMSSI Set_CPIC_Side_Information Sets the parameter values of a
side information entry for a
specified symbolic destination
name.

XCDEFTP Define_TP Defines a TP.

XCDELTP Delete_TP Deletes a TP definition.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 601

 Delete_CPIC_Side_Information (XCMDSI)

 Delete_CPIC_Side_Information (XCMDSI)
A program issues the Delete_CPIC_Side_Information (XCMDSI) call to delete an
entry from CPI-C Communications internal side information. The entry to be
deleted is identified by the symbolic destination name. Side information in the
configuration file remains unchanged.

Note: This call is not supported on the following systems:

¹ OS2/Win95/WinNT API Clients for Communications Server 5.0 and later
¹ OS2/Win95/WinNT API Clients for Netware for SAA 2.2
¹ OS2/Win95/WinNT API Clients for IntraNetware 2.3 and later.

See “Defining Side Information” on page 443 for more information about
configuring side information.

 Format
CALL XCMDSI(key,

sym_dest_name,
return_code)

 Parameters
key (input)

The value of this parameter is ignored.

sym_dest_name (input)
Specifies the symbolic destination name for the side information entry to be
removed.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The sym_dest_name variable contains a name that does not exist in
CPI-C Communications internal side information.

– The address of one of the variables is not valid.
 ¹ CM_PRODUCT_SPECIFIC_ERROR

The APPC component of CPI-C Communications is not active.

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, CPI-C

Communications do not delete the side information entry.

2. This call does not affect any active conversation.

602 CPI Communications Reference

 Delete_CPIC_Side_Information (XCMDSI)

3. The side information is removed immediately, which affects all
Initialize_Conversation calls for the deleted symbolic destination name made
after completion of this call.

4. While CPI-C Communications remove the side information entry, any other
program's call to change or extract the side information will be suspended until
this call is completed; this suspension includes a program's call to
Initialize_Conversation (CMINIT).

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 603

 Extract_CPIC_Side_Information

 Extract_CPIC_Side_Information
A program issues the Extract_CPIC_Side_Information (XCMESI) call to obtain the
parameter values of an entry in CPIC Communications internal side information.
The program requests the entry by either an entry number or a symbolic destination
name. It does not access side information in the configuration file.

See “Defining Side Information” on page 443 for information about configuring side
information.

 Format
CALL XCMESI(entry_number,

sym_dest_name,
side_info_entry,
side_info_entry_length,
return_code)

 Parameters
entry_number (input)

Specifies the current number (index) of the side information entry for which
parameter values are to be returned, where an entry_number of 1 designates
the first entry. The program may obtain parameter values from all the entries
by incrementing the entry_number on successive calls until the last entry has
been accessed; the program gets a return_code of
CM_PROGRAM_PARAMETER_CHECK when the entry_number exceeds the
number of entries in the side information.

Alternatively, the program may specify an entry_number of 0 to obtain a
named entry, using the sym_dest_name variable to identify the entry.

Note: This call is not supported on the following systems:

¹ OS2/Win95/WinNT API Clients for Communications Server 5.0 and later
¹ OS2/Win95/WinNT API Clients for Netware for SAA 2.2
¹ OS2/Win95/WinNT API Clients for IntraNetware 2.3 and later.

sym_dest_name (input)
Specifies the symbolic destination name of the entry, when parameter values
for a named entry are needed. CPI-C Communications use this variable only
when entry_number is 0. If entry_number is greater than 0, CPI-C
Communications ignore this sym_dest_name variable.

side_info_entry (output)
Specifies a structure in which the parameter values are returned. The format
of the structure is shown in Table 30. Values within character string fields
are returned left-justified and padded on the right with space characters.

604 CPI Communications Reference

 Extract_CPIC_Side_Information

The following extended structure is available in CPI-C Communications to
support 10-byte user_IDs and 10-byte user_passwords:

Refer to Table 40 on page 632 for definitions of the character set usage and
length of each character string parameter.

side_info_entry_length (input)
Specifies the length of the entry structure. Set this length to 124, or 140 for
CPI-C Communications if using the extended side information stucture.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The entry_number specifies a value greater than the number of
entries in the side information.

– The entry_number specifies a value less than 0.
– The sym_dest_name specifies a name that is not in any entry in the

internal side information, and entry_number specifies 0.
– The side_info_entry_length contains a value other than 124 or 140.
– The address of one of the variables is not valid.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
The APPC component of CPI-C Communications is not active.

Table 51. Extended Entry Structure for the CPI-C Communications Call

Byte Offset Field Length and Type Parameter Pseudonym

0 8-byte character string sym_dest_name

8 17-byte character string partner_lu_name

25 3-byte character string (reserved)

28 32-bit integer tp_name_type

32 64-byte character string tp_name

96 8-byte character string mode_name

104 32-bit integer conversation_security_type

108 10-byte character string security_user_ID

118 22-byte character string
(must be zeros)

(reserved)

 State Changes
This call does not cause a state change on any conversation.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 605

 Extract_CPIC_Side_Information

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the values contained

in the side_info_entry fields are not meaningful.

2. If no user ID exists in the side information, the security_user_ID field contains
all space characters.

3. The security_password of the side information entry is not returned; the field (at
byte offset 116) is reserved on this call, and its content is not meaningful.

4. This call does not affect any active conversation.

5. This call does not change the parameter values of the specified side
information entry.

6. While CPI-C Communications extract the side information, any other program's
call to change the side information is suspended until this call is completed.

Refer to “Languages Supported” on page 437 for information on how to create
the data structure using these languages.

7. The Extract_CPIC_Side_Information call and the Set_CPIC_Side_Information
(XCMSSI) call use the same side_info_entry format. This format enables a
program to obtain an entry, update a field, and restore the updated entry,
provided the entry contains no security_password, or the program also updates
the security_password.

8. The entry_number specifies an index into the current list of internal side
information entries. If entries are deleted, the indexes for particular entries may
change.

606 CPI Communications Reference

 Set_CPIC_Side_Information (XCMSSI)

 Set_CPIC_Side_Information
See “Defining Side Information” on page 443 for more information about
configuring side information.

Note: This call is not supported on the following systems:

¹ OS2/Win95/WinNT API Clients for Communications Server 5.0 and later
¹ OS2/Win95/WinNT API Clients for Netware for SAA 2.2
¹ OS2/Win95/WinNT API Clients for IntraNetware 2.3 and later.

A program issues the Set_CPIC_Side_Information (XCMSSI) call to add or replace
an entry in CPI-C Communications internal side information. The entry contains all
the side information parameters for the conversation identified by the supplied
symbolic destination name. If the entry does not exist in the side information, this
call adds a new entry; otherwise, it replaces the existing entry in its entirety.

Side information in the configuration file remains unchanged. This call overrides
the side information copied from the active configuration file when CPI-C
Communications was started.

 Format
CALL XCMSSI(key,

side_info_entry,
side_info_entry_length,
return_code)

 Parameters
key (input)

The value of this parameter is ignored.

side_info_entry (input)
Specifies the structure containing the parameter values for the side
information entry. The format of the structure is shown in Table 32. Values
within character string fields must be left-justified and padded on the right with
space characters.

Table 52. Entry Structure for the CPI-C Communications
Set_CPIC_Side_Information Call

Byte Offset Field Length and Type Parameter Pseudonym

0 8-byte character string sym_dest_name

8 17-byte character string partner_LU_name

25 3-byte character string (reserved)

28 32-bit integer TP_name_type

32 64-byte character string TP_name

96 8-byte character string mode_name

104 32-bit integer conversation_security_type

108 8-byte character string security_user_ID

116 8-byte character string security_password

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 607

 Set_CPIC_Side_Information (XCMSSI)

The following extended structure is available in CPI-C Communications to
support 10-byte user_IDs and 10-byte user_passwords:

Refer to Table 40 on page 632 for a definition of the character set usage and
the length of each character string parameter.

side_info_entry_length (input)
Specifies the length of the entry structure. Set this length to 124, or 140 for
Communications Server if using the extended side information stucture.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The sym_dest_name field in the side_info_entry structure contains a
space character in the left-most byte (at byte offset 0 of the structure).

– The tp_name_type field in the side_info_entry structure specifies an
undefined value.

– The conversation_security_type field in the side_info_entry structure
specifies an undefined value.

– The side_info_entry_length contains a value other than 124 or 140.
– The address of one of the variables is not valid.

 ¹ CM_PRODUCT_SPECIFIC_ERROR
The APPC component of CPI-C Communications is not active.

Table 53. Extended Entry Structure for the Communications Server Call

Byte Offset Field Length and Type Parameter Pseudonym

0 8-byte character string sym_dest_name

8 17-byte character string partner_LU_name

25 3-byte character string (reserved)

28 32-bit integer TP_name_type

32 64-byte character string TP_name

96 8-byte character string mode_name

104 32-bit integer conversation_security_type

108 10-byte character string security_user_ID

118 10yte character string security_password

128 12-byte character string
(must be zeroes)

(reserved)

608 CPI Communications Reference

 Set_CPIC_Side_Information (XCMSSI)

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the side information

entry is not created or changed.

2. The character string parameter values supplied in the fields of the
side_info_entry structure are not checked for validity on this call. An invalid
parameter value is detected later on the Allocate (CMALLC) call or on a
subsequent call, such as Send_Data (CMSEND), depending on which
parameter value is not valid. An invalid partner LU name or mode name is
detected on the Allocate call and indicated to the program on that call. The
partner LU detects an invalid TP name, user ID, or password when it receives
the allocation request; in this case the partner LU returns an error indication to
the program on a subsequent call following the Allocate.

3. This Set_CPIC_Side_Information call does not affect any active conversation.

4. The side information supplied on this call takes effect immediately and is used
for all Initialize_Conversation calls for the new or changed symbolic destination
name made after completion of this call.

5. While CPI-C Communications update the side information with the parameters
from this call, any other program's call to change or extract the side information
is suspended until this call is completed; this includes a program's call to
Initialize_Conversation (CMINIT).

6. The Set_CPIC_Side_Information call and the Extract_CPIC_Side_Information
(XCMESI) call use the same side_info_entry format. This format enables a
program to obtain an entry, update a field, and restore the updated entry,
provided the entry contains no security_password, or the program also updates
the security_password.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 609

 Extension Calls—Conversation
Conversation calls permit a program to obtain or change the values for the
conversation-security characteristics available on CPI-C Communications. As an
aid to portability, where similar calls exist in other SAA environments, the same call
names and syntaxes are used.

Note: Using any of these calls means that the program will require modification to
run on another SAA system that does not implement the call or implements it
differently.

Table 35 lists the CPI-C Communications conversation extension calls and briefly
describes their functions. For the calls that set the conversation security
characteristics (used with the Allocate (CMALLC) call), the program also can obtain
the current values of these characteristics, except for security_password. This
characteristic can be set, but it cannot be extracted; this restriction is intended to
reduce the risk of unintentional or unauthorized access to passwords.

Table 54. List of CPI-C Communications Conversation Calls

Call Pseudonym Description

XCECST Extract_Conversation_Security_Type Returns the current value of
the
conversation_security_type
characteristic.

XCECSU Extract_Conversation_Security_User_ID Returns the current value of
the security_user_ID
characteristic.

XCINCT Initialize_Conv_For_TP Initializes a new
conversation for the
specified TP.

XCSCSP Set_Conversation_Security_Password Sets the value of the
security_password
characteristic.

XCSCST Set_Conversation_Security_Type Sets the value of the
conversation_security_type
characteristic.

XCSCSU Set_Conversation_Security_User_ID Sets the value of the
security_user_ID
characteristic.

610 CPI Communications Reference

 OS/2 Extract_Conversation_Security_Type (XCECST)

 Extract_Conversation_Security_Type (XCECST)
A program issues the Extract_Conversation_Security_Type (XCECST) call to obtain
the access security type for the conversation.

 Format
CALL XCECST(conversation_ID,

conversation_security_type,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

conversation_security_type (output)
Specifies the variable used to return the value of the
conversation_security_type characteristic for this conversation. The
conversation_security_type returned to the program can be one of the
following:

 ¹ XC_SECURITY_NONE
 ¹ XC_SECURITY_SAME
 ¹ XC_SECURITY_PROGRAM

See “Set_Conversation_Security_Type (XCSCST)” on page 616 for a
description of these values.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
Successful completion.

 ¹ CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

– The conversation_ID specifies an unassigned conversation identifier.
– The address of one of the variables is not valid.

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
1. If a return_code other than CM_OK is returned on this call, the value contained

in the conversation_security_type variable is not meaningful.

2. This call does not change the conversation security type for the specified
conversation.

3. The conversation_security_type characteristic is set to an initial value from side
information using the Initialize_Conversation (CMINIT) call. It can be set to a
different value using the Set_Conversation_Security_Type (XCSCST) call.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 611

 OS/2 Extract_Conversation_Security_User_ID (XCECSU)

 Extract_Conversation_Security_User_ID (XCECSU)
A program issues the Extract_Conversation_Security_User_ID (XCECSU) call to
obtain the access security user ID associated with a conversation.

The XCECSU extension call was in CPI-C Communications prior to the time the
Extract_Security_User_ID (CMESUI) call was part of the CPI-C architecture. For
program migration purposes, the XCECSU call continues to be supported by CPI-C
Communications.

The XCECSU call provides the same function as the CMESUI call. However, it has
the following differences in allowable parameters when used in releases prior to
Communications Server:

1. security_user_ID_length can be a maximum of 8.

2. conversation_security_type can be set to one of the following parameters:

 ¹ XC_SECURITY_NONE

 ¹ XC_SECURITY_SAME

 ¹ XC_SECURITY_PROGRAM

612 CPI Communications Reference

 Initialize_Conv_For_TP (XCINCT)

 Initialize_Conv_For_TP (XCINCT)
A program uses the Initialize_Conv_For_TP (XCINCT) call to initialize values for
various conversation characteristics before the conversation is allocated (with a call
to Allocate).

XCINCT processing is similar to CMINIT processing described in
“Initialize_Conversation (CMINIT)” on page 628. In addition, the XCINCT call
allows the conversation being initialized to be associated with a specific TP
instance.

 Format
CALL XCINCT(conversation_ID,

sym_dest_name,
CPIC_TP_ID,
return_code)

 Parameters
conversation_ID (output)

Specifies the conversation identifier.

sym_dest_name (input)
Specifies the symbolic destination name.

CPIC_TP_ID (input)
Specifies the TP instance as identified by its CPIC TP ID.

If the CPIC_TP_ID is specified, the conversation being initialized is associated
with that TP instance.

If the CPIC_TP_ID is set to zeros, the following rules apply:

¹ 0 active TP instances

If there are no active TP instances for this process (if no prior CMACCP,
CMINIT, or XCSTP call has completed successfully), the program creates
a new TP instance and initializes a new conversation.

¹ 1 active TP instance

If there is one active TP instance for this process, the program initializes a
new conversation and associates it with that active TP instance.

¹ More than 1 active TP instance

If there is more than one active TP instance for this process, a return
code of CM_PRODUCT_SPECIFIC_ERROR is returned, and the program
creates an error log entry.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 613

 Initialize_Conv_For_TP (XCINCT)

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
When return_code indicates CM_OK, the conversation enters the Initialize state.

 Usage Notes
See Table 38 on page 628 and notes 1 through 4 on page 629.

614 CPI Communications Reference

 Set_Conversation_Security_Password (XCSCSP)

 Set_Conversation_Security_Password (XCSCSP)
A program issues the Set_Conversation_Security_Password (XCSCSP) call to set
the access security password for a conversation.

The XCSCSP extension call was in CPI-C Communications prior to the time the
Set_Conversation_Security_Password (CMSCSP) call was part of the CPI-C
architecture. For program migration purposes, the XCSCSP call continues to be
supported by CPI-C Communications.

The XCSCSP call provides the same function as the CMSCSP call.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 615

 Set_Conversation_Security_Type (XCSCST)

 Set_Conversation_Security_Type (XCSCST)
A program issues the Set_Conversation_Security_Type (XCSCST) call to set the
security type for the conversation.

The XCSCST extension call was in CPI-C Communications prior to the time the
Set_Conversation_Security_Type (CMSCST) call was part of the CPI-C
architecture. For program migration purposes, the XCSCST call continues to be
supported by CPI-C Communications.

The XCSCST call provides the same function as the CMSCST call.

616 CPI Communications Reference

 Set_Conversation_Security_User_ID (XCSCSU)

 Set_Conversation_Security_User_ID (XCSCSU)
A program issues the Set_Conversation_Security_User_ID (XCSCSU) call to set
the access security user ID for a conversation.

The XCSCSU extension call was in Communications Manager prior to the time the
Set_Conversation_Security_User_ID (CMSCSU) call was part of the CPI-C
architecture. For program migration purposes, the XCSCSU call continues to be
supported by CPI-C Communications.

The XCSCSU call provides the same function as the CMSCSU call.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 617

Extension Calls—Transaction Program Control
Transaction program control calls permit a program to end or start a TP instance,
or to determine the CPIC TP ID of a TP instance. See “TP Instances for
Communications Manager” on page 625.

Note: Using any of these calls means that the program will require modification to
run on another SAA system that does not implement the call or implements it
differently.

Table 36 lists the transaction program control call names and gives a brief
description of their function.

Table 55. List of CPI-C Communications Transaction Program Control Calls

Call Pseudonym Description

XCENDT End_TP Ends the specified TP instance.

XCETI Extract_TP_ID Returns the CPIC TP ID for the specified conversation_ID.

XCSTP Start_TP Starts a new TP instance.

618 CPI Communications Reference

 End_TP (XCENDT)

 End_TP (XCENDT)
A program uses the End_TP (XCENDT) call to request that CPI Communications
release any resources held by CPI Communications for an active TP instance,
including resources held for all conversations associated with the TP instance. This
call allows a reusable resource to be used consecutively among many TP instances
instead of locking the resource indefinitely in CPI Communications.

When processing End_TP, CPI-C Communications issue the APPC TP_ENDED
verb for the specified TP instance. Upon completion of the TP_ENDED verb, CPI-C
Communications release the control blocks associated with that TP instance.

 Format
CALL XCENDT (CPIC TP ID,

type,
return_code)

 Parameters
CPIC TP ID (input)

Specifies the TP instance as identified by its CPIC TP ID.

When the CPIC TP ID is set to zeros, the following rules apply:

¹ 0 active TP instances

If there are no active TP instances for this process (if no prior CMACCP,
CMINIT, or XCSTP call has completed successfully), a return code of
CM_PROGRAM_STATE_CHECK is returned.

¹ 1 active TP instance

If there is one active TP instance for this process, it is ended.

¹ More than 1 active TP instance

If there is more than one active TP instance for this process, a return
code of CM_PRODUCT_SPECIFIC_ERROR is returned, and CPI-C
Communications creates an error log entry.

type (input)
Specifies how resources held for a TP instance will be released. The type
can be one of the following:

 ¹ XC_SOFT
Specifies that the TP instance will wait for all active CPI Communications
calls to complete.

 ¹ XC_HARD
Specifies that all active CPI Communications calls for this TP instance are
overridden and termination completes. It also ends the sessions being
used by the conversations of that TP instance. Both sides of the
conversation may receive conversation failure return codes. XC_HARD is
not intended for the typical program, but for more complex CPI
Communications applications.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 619

 End_TP (XCENDT)

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR
 ¹ CM_PROGRAM_STATE_CHECK

This value indicates CPIC TP ID is set to zeros, and there are no active
TP instances.

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
None.

620 CPI Communications Reference

 Extract_TP_ID (XCETI)

 Extract_TP_ID (XCETI)
A program uses the Extract_TP_ID (XCETI) call to obtain the CPIC TP ID for a
specified conversation.

 Format
CALL XCETI (conversation_ID,

CPIC TP ID,
return_code)

 Parameters
conversation_ID (input)

Specifies the conversation identifier.

CPIC TP ID (output)
Specifies the CPIC TP ID.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change on any conversation.

 Usage Notes
None.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 621

 Start_TP (XCSTP)

 Start_TP (XCSTP)
A program uses the Start_TP (XCSTP) call to indicate to CPI Communications that
a new TP instance is to be started.

 Format
CALL XCSTP (local_LU_alias,

local_LU_alias_length,
TP_name,
TP_name_length,
CPIC TP ID,
return_code)

 Parameters
local_LU_alias (input)

CPI Communications chooses the local LU alias name by the first condition
that is encountered:

1. If local_LU_alias_length is not 0, the local_LU_alias value is used.
2. If the APPCLLU environment variable exists, it is used.
3. The default LU configured for this node is used.

local_lu_alias_length (input)
Specifies the length of the local LU alias name.

TP_name (input)
CPI Communications chooses the local TP name by the first condition that is
encountered:

1. If TP_name_length is not 0, the TP_name value is used.
2. If the APPCTPN environment variable exists, it is used.
3. CPIC_DEFAULT_TPNAME is used.

TP_name_length (input)
Specifies the length of the local TP name.

CPIC TP ID (output)
Specifies the CPIC TP ID.

return_code (output)
Specifies the result of the call execution. The return_code can be one of the
following:

 ¹ CM_OK
 ¹ CM_PROGRAM_PARAMETER_CHECK
 ¹ CM_PRODUCT_SPECIFIC_ERROR

 State Changes
This call does not cause a state change on any conversation.

622 CPI Communications Reference

 Start_TP (XCSTP)

 Usage Notes
The Start_TP (XCSTP) call is used to start a new TP instance. The program must
use the End_TP (XCENDT) call to request that CPI Communications release
resources held for that active TP instance, if it is desireable to reduce resource
usage before the program ends. The Deallocate (CMDEAL) call releases
resources for the specified conversation, but not for the TP instance.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 623

 Special Notes
The following sections contain information that programmers should consider when
writing programs that issue CPI Communications calls.

Migration to Communications Server
When migrating from prior releases of Communications Manager to
Communications Server some situations that resulted in a
CM_PRODUCT_SPECIFIC_ERROR(TP_busy) return code will now complete with
the return code CM_OPERATION_NOT_ACCEPTED. Refer to “TP Instances for
Communications Manager” on page 625.

Multi-threaded CPI-C Programs
This section contains information that programmers should consider when writing
multi-threaded programs that issue CPI-C calls to CPI-C Communications as
follows:

¹ Scope of CPI-C conversation_ID and CPIC TP ID
All CPI-C calls issued within one process are considered by CPI-C
Communications to be part of one program. The scope of CPI-C information
(such as conversation_ID or CPIC TP ID) kept for a program is the process in
which it is executing. For example, if a program issues an
Accept_Conversation (CMACCP) call on thread 1, the conversation_ID that is
obtained can be used by that same program on thread 2 (of the same process)
to issue the Send_Data call.

¹ Specifying TP name
CMSLTP and CMRLTP operate on only one list of TP names that is unique per
program, regardless of which thread (in that process) issues the CMSLTP or
CMRLTP call. Therefore, multi-threaded CPI-C programs should coordinate the
use of these calls.

Note: When the Accept_Incoming (CMACCI) call is being used, and only one
TP name needs to be specified, an alternative method is to use the
Set_TP_Name (CMSTPN). Refer to “Accept_Incoming (CMACCI)” on
page 600. This takes effect per conversation, and removes the need to
coordinate among other threads.

 ¹ Environment variables
When a multi-threaded operator-started program is using environment
variable(s), such as APPCTPN or APPCLLU (for example for the CMACCP,
CMACCI, CMINIT, XCINCT calls), setting of this variable by the program should
be serialized across threads (if using a different value of the variable per
thread).

¹ CMWCMP conficting OOIDs
Refer to “Wait_For_Completion (CMWCMP)” on page 631.

Considerations for CPI Communications Calls
This section describes TP instances, followed by CPI Communications calls that
require special consideration when one is writing a CPI Communications program
to be run on a CPI-C Communications system. Each call needing special attention
is discussed in alphabetical order by call name.

624 CPI Communications Reference

TP Instances for CPI-C Communications
Within a process, CPI Communications creates an executable instance of a
transaction program (TP instance) when a program issues any of the following CPI
Communications calls:

¹ Accept_Conversation (CMACCP) call

Note: Multiple CMACCP calls can be issued within an process. Each
CMACCP creates a new TP instance.

¹ Accept_Incoming (CMACCI) call

Note: Multiple CMACCI calls can be issued within an process. Each CMACCI
creates a new TP instance.

¹ Initialize_Conversation (CMINIT) call, if all of the following conditions are met
(within this process):

– No prior CMINIT call has been issued
– No prior CMACCP calls have been issued
– No prior XCSTP calls have been issued

¹ Start_TP (XCSTP) call

Note: Multiple XCSTP calls can be issued within an process. Each XCSTP
creates a new TP instance.

CPI Communications represents the TP instance by using a transaction program
identifier, or CPIC TP ID. CPI Communications converts each CPI
Communications call, other than Extract and Set calls, to an APPC verb and makes
a call across its APPC interface to process the verb. Each CPIC TP ID is uniquely
associated with an APPC TP identifier (TP ID). Each APPC verb includes the
TP ID as a parameter.

CPI Communications associates access security information (if any) that it obtains
when it starts the TP instance. It maintains the correlation of this information to the
CPIC TP ID until the TP instance ends.

Each TP instance remains active until the program ends, or until it is explicitly
ended by using the End_TP (XCENDT) call.

Each conversation is associated with only one TP instance. However, a TP
instance can be associated with more than one conversation. When the TP
instance ends, all associated conversations are ended.

Usage Note 1: The Initialize_Conversation (CMINIT) call is used when a program
initializes a conversation within an process that contains up to one TP instance.
When initializing a conversation within an process that contains more than one TP
instance, the program must specify a particular TP instance (CPIC TP ID) and the
conversation will be associated with it. This association is done by using the
Initialize_Conv_For_TP (XCINCT) call.

Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI)
When the Accept_Conversation or Accept_Incoming call completes successfully,
the following conversation characteristics are initialized:

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 625

For the Accept_Conversation (CMACCP) call, CPI-C Communications process the
following rules, sequentially, the first rule that is true is used to determine the TP
name(s) to use for accepting an incoming conversation:

1. The TP name(s) from successfully completed Specify_Local_TP_Name
(CMSLTP) call(s) for this progam. Refer to “Specify_Local_TP_Name
(CMSLTP)” on page 451 for allowable TP names on the CMSLTP call.

2. A TP name set in the APPCTPN environment variable. The environment variable
must be set to a valid TP name.

Partially specified TP names and '*' (allowed on the CMSLTP call) are not
allowable TP names for the APPCTPN environment variable.

If none of the above rules yields a TP name, then CMACCP completes with a
CM_PROGRAM_STATE_CHECK return code.

For the rules determining the TP name used on the CMACCI call, refer to
“Accept_Incoming (CMACCI)” on page 600

When an inbound allocation request arrives with this TP name specified, CPI-C
Communications complete the call.

Notes:

1. When the APPCTPN environment variable is used to specify a TP name, the TP
name set in the environment variable is case sensitive; that is, lowercase letters
are not converted to uppercase. The TP name set in the environment variable
is made up of ASCII characters; therefore, it must be an application TP name,
not an SNA service TP name.

2. For an attach manager-started program, CPI-C Communications sets the
APPCTPN environment variable with the TP name from the inbound allocation
request for the conversation when it starts the program. It then uses the TP
name from the environment variable to complete the subsequent
Accept_Conversation or Accept_Incoming call from the program. Therefore, for
CPI-C Communications to match the Accept_Conversation or Accept_Incoming

Table 56. Additional CPI-C Communications Characteristics Initialized following CMACCP or
CMACCI

Conversation Characteristic Initialized Value

conversation_security_type CM_SECURITY_SAME (or eqivalently
XC_SECURITY_SAME)

Note: This value is set regardless of the level
of access security information (if any) on the
inbound allocation request.

security_user_ID The value received on the conversation startup
request. If the conversation startup request
contained no access security information, this
characteristic is set to a single-space character.

security_user_ID_length The length of security_user_ID.

security_password A single-space character.

security_password_length Set to 1.

626 CPI Communications Reference

call with the inbound conversation, the attach manager-started program should
not set the environment variable to a different TP name.

3. CPI-C Communications recognize certain error conditions while accepting
conversations that are specific to their use of OS/2 environment variables. See
“Diagnosing Errors” on page 448 for more details.

4. Each Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) call
starts a new TP instance. The program must use the End_TP (XCENDT) call
to request that CPI Communications release resources held for that active TP
instance, if it is desireable to reduce resource usage before the program ends.
The Deallocate (CMDEAL) call releases resources for the specified
conversation, but not for the TP instance.

 Extract_Conversation_Context (CMECTX)
The Extract_Conversation_Context (CMECTX) call currently returns a context that
is the left justified 12-byte CPIC TP ID padded by zeros on the right, to 32-bytes
total length.

Since contexts are subject to future architectural changes, the content of this field is
subject to change. In addition, dependencies on the context are not portable
across platforms.

 Extract_Secondary_Information (CMESI)
After a call fails that causes CPI-C to generate secondary information, the next
CPI-C call for that conversation should be the Extract_Secondary_Information
(CMESI) call (because other calls can reset the secondary information).

If a CMACCP or CMACCI call is not successful, CPI-C will return a temporary
conversation ID for use on the CMESI call. It is recommended that the CPI-C
program issue the CMESI as soon as possible, since the CPI-C implementation will
eventually delete the secondary information and conversation ID.

CPI-C Communications provide limited support for the CMESI call as follows:

¹ The only supported values of the call_ID parameter for a CMESI call are the
following:

 – CM_CMACCI
 – CM_CMACCP
 – CM_CMALLC
 – CM_CMCFM
 – CM_CMDEAL
 – CM_CMPTR
 – CM_CMRCV
 – CM_CMSEND
 – CM_CMSERR

For all other values of this parameter, the call is returned with the return code
CM_NO_SECONDARY_INFORMATION.

¹ CMESI returns additional secondary information if the previous CMACCP,
CMACCI, or CMALLC call was rejected with a
CM_PRODUCT_SPECIFIC_ERROR return code and error information is
available to CPI-C Communications (for example, a failure in a call to the APPC
component). For errors detected by the operating system rather than CPI-C

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 627

Communications, this call returns CM_NO_SECONDARY_INFORMATION if the
CPI-C Communications program has no additional information about the failure.

The layout of the “Additional information from the implementation,” which is a
subfield of secondary information, is described in the CPI-C Communications C
Language header file. The format of the field is determined by what type of error
has occurred.

 Initialize_Conversation (CMINIT)
When Initialize_Conversation completes successfully, the CPI-C Communications
specific characteristics are initialized as shown in Table 38.

Table 57. Additional CPI-C Communications Characteristics Initialized following CMINIT

Conversation Characteristic Initialized Value

conversation_security_type Security type from side information referenced
by sym_dest_name. If a blank sym_dest_name
is specified, conversation_security_type is set to
CM_SECURITY_SAME (or equivalently
XC_SECURITY_SAME).

security_user_ID User ID from side information referenced by
sym_dest_name, if conversation_security_type
is CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, a single
space character. If a blank sym_dest_name is
specified, security_user_ID is set to a single
space character.

security_user_ID_length Length of security user ID, if
conversation_security_type is
CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, 1. If a
blank sym_dest_name is specified,
security_user_ID_length is set to 1.

security_password Password from side information referenced by
sym_dest_name if conversation_security_type is
CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, a single
space character. If a blank sym_dest_name is
specified, security_password is set to a single
space character.

security_password_length Length of security password, if
conversation_security_type is
CM_SECURITY_PROGRAM (or equivalently
XC_SECURITY_PROGRAM); otherwise, 1. If a
blank sym_dest_name is specified,
security_password_length is set to 1.

628 CPI Communications Reference

Initialize_Conversation Notes:

1. If an operator-started CPI Communications program is to be run on a local LU
other than the default LU configured for the node, either the operator or the
program must set the local LU name in an environment variable named
APPCLLU before the program issues the CMINIT call.

2. The APPCLLU environment variable is used only for an operator-started CPI
Communications program that issues the Initialize_Conversation call to start the
TP instance. The LU name set in the environment variable is case sensitive;
that is, lowercase letters are not converted to uppercase.

3. The APPCTPN environment variable is used to obtain the local TP name for any
type CPI Communications program (operator-started or attach manager-started)
that issues the Initialize_Conversation call to start the TP instance. The CPI-C
Communications program sets the environment variable to a default local TP
name of CPIC_DEFAULT_TPNAME. The operator or program may set the APPCTPN

environment variable to a different TP name before the program issues the
Initialize_Conversation call, if a different local TP name is desired. CPI-C
Communications do not send this local TP name outside the node.

4. CPI-C Communications recognize certain error conditions on the
Initialize_Conversation call that are specific to its use of environment variables.
See “Diagnosing Errors” on page 599 for more details.

5. For CMINIT, the following rules apply:

¹ 0 active TP instances

If there are no active TP instances for this process (if no prior CMACCP,
CMINIT, or XCSTP has completed successfully), CPI-C Communications
create a new TP instance and initializes a new conversation.

¹ 1 active TP instance

If there is one active TP instance for this process, the CPI-C
Communications program initializes a new conversation and associates it
with that active TP instance.

¹ More than 1 active TP instance

If there is more than one active TP instance for this process, a return code
of CM_PRODUCT_SPECIFIC_ERROR.

When a CMINIT call starts a TP instance, the TP instance remains active
until the End_TP (XCENDT) is issued or the program ends.

For multiple TP instances, use an XCINCT call to initialize a new
conversation.

 Receive (CMRCV)
When the Receive call is receiving data from a basic conversation, the 2-byte
logical record length, or LL, field of the data is in System/370 format, with the left
byte being the most significant. Depending on the programming language used,
the program might have to reverse the bytes to use the field value in an integer
operation.

CPI-C Communications do not perform any EBCDIC-to-ASCII translation on the
data before placing it in the buffer variable.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 629

See “Performance Considerations For Using Send/Receive Buffers” on page 500
for additional information concerning data buffers.

 Send_Data (CMSEND)
When the Send_Data call sends data on a basic conversation, the 2-byte logical
record length, or LL, field of the data must be in System/370 format, with the left
byte being the most significant. If the program obtains this value from an integer
operation, it might have to reverse the bytes before issuing the call, depending on
the programming language used.

CPI-C Communications does not perform any ASCII-to-EBCDIC translation on the
data when it sends the data from the buffer variable.

See “Performance Considerations For Using Send/Receive Buffers” on page 500
for additional information concerning data buffers.

 Send_Expedited_Data (CMSNDX)
A CMSNDX call will not complete if the partner program has not yet received the
data from a prior CMSNDX call for that same conversation. This is illustrated with
the following example where sequential non-blocking Send_Expedited_Data
(CMSNDX) calls are issued to CPI-C Communications:

1. A program issues a CMSNDX call, with a resulting CM_OK return code.

2. A second CMSNDX call is issued immediately for that same conversation.

If the partner program has not yet issued the Receive_Expedited_Data
(CMRCVX) call to obtain the data from the first CMSNDX call, then the result of
the second CMSNDX call is a CM_OPERATION_INCOMPLETE return code.
The second CMSNDX call will not complete until the partner has issued the
Receive_Expedited_Data call to receive the data for the first CMSNDX call.

 Set_Partner_LU_Name (CMSPLN)
The program can set the partner_LU_name characteristic to either an alias or a
network name. Alias and network names are distinguished from each other on this
call as follows:

¹ An alias name is 1–8 characters and does not contain a period.

¹ A network name is 2–17 characters, with a period separating the network ID
(0–8 characters) from the network LU name (1–8 characters). If the network
name does not include a network ID, the period must still be inserted preceding
the network LU name, to distinguish the name as a network name instead of an
alias name.

 Set_Queue_Processing_Mode (CMSQPM)
For the Set_Queue_Processing_Mode (CMSQPM) call, a valid memory area must
be allocated for the user_field parameter, even if this parameter is not being used
by the program.

630 CPI Communications Reference

 Test_Request_To_Send (CMTRTS)
The CMTRTS call does not support CM_EXPEDITED_DATA_AVAILABLE.

 Wait_For_Completion (CMWCMP)
For the Wait_For_Completion (CMWCMP) call a valid memory area must be
allocated for the user_field_list parameter, even if this parameter is not being used
by the program.

For CMWCMP, 512 is the maximum OOID_list_count that can be specified.

If on a CMWCMP call, a valid OOID (for example, OOIDx) is specified but there is
no outstanding operation for that OOID (at the time the CMWCMP call is issued by
the program), then the following will occur:

¹ If there is at least one OOID on the list for which there is an outstanding
operation, then OOIDx will be ignored (treated as a NULL (integer zero) OOID).

¹ If there are valid OOIDs on the list, but all of them have no outstanding
operations, then the following is returned: CM_PROGRAM_STATE_CHECK
return code.

Conflicting OOIDs:
Suppose OOIDx has outstanding operations, and it is being waited on by a
CMWCMP call (denoted CMWCMP1). Before CMWCMP1 completes, if another
call (CMWCMP2) waits on OOIDx, then OOIDx will be ignored (treated as a NULL
(integer zero) OOID) with respect to CMWCMP2. Moreover, OOIDx will not be
waited on by CMWCMP2, even if CMWCMP1 completed for a reason other than
OOIDx. To avoid this situation, do one of the following:

¹ Do not use the same OOID simultaneously on more than one CMWCMP call.

¹ Use the timeout paramater on CMWCMP to allow your program to get control
to periodically reissue the CMWCMP call.

Characteristics, Fields, and Variables
This section defines the values and data types for the additional characteristics,
fields, and variables used with the CPI-C Communications calls. It also includes
the CPI Communications variables for which CPI-C Communications impose certain
restrictions.

The following distinctions are made regarding characteristics, fields, and variables:

Characteristic
An internal parameter of a given conversation whose value is maintained
within the CPI Communications component. The value of a conversation
characteristic is initialized during the Initialize_Conversation (CMINIT) or
Accept_Conversation (CMACCP) call for that conversation. The value may
be changed subsequently using a Set call.

Field
An element of a data structure. The data structure itself is specified as a
variable on the Set_CPIC_Side_Information and
Extract_CPIC_Side_Information calls. A field can supply a value as input on
a call, or return a value as output from a call.

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 631

Variable
A parameter specified on a call. A variable can supply a value as input on a
call, or return a value as output from a call.

Note: CPI-C Communications do not support all values of the conversation
characteristics and variables described in Appendix A, “Variables and
Characteristics.”

Variable Types and Lengths
The use of character set 01134 or 00640, as defined for each field or variable, is
recommended for consistency with the CPI-C definition; however, CPI-C
Communications do not enforce this.

Referenced Notes:

1. The national characters @, #, and $ are also allowed as part of the key, mode
name, partner LU name, and TP name. (For a TP name only, lower case
alphabetic characters are also acceptable.)

2. The null string (all space characters) is a valid mode name. The program
should not set the mode_name to CPSVCMG or SNASVCMG. Although CPI-C
Communications allow the program to specify these mode names, it rejects a
program's Allocate (CMALLC) call with a return_code of

Table 58. CPI-C Communications Variable and Field Types and Lengths

Variable or Field Data Type Character
Set

Length

conversation_security_type Integer Not applicable 32 bits

CPIC TP ID Character string Not applicable 12 bytes

key 1 , 10 Character string 01134 8 bytes

mode_name 1 , 2 Character string 01134 0-8 bytes

partner_LU_name 3 , 5

(as an alias name)
Character string 01134 1-8 bytes

partner_LU_name 1 , 4

(as a network name)
Character string 01134 2-17 bytes

security_password 5 Character string 00640 1-8, 1-10
bytes12

security_password_length Integer Not applicable 32 bits

security_user_ID 5 Character string 00640 1-8, 1-10
bytes13

security_user_ID_length Integer Not applicable 32 bits

side_info_entry 6 Data structure Field
dependent

124 bytes

side_info_entry_length Integer Not applicable 32 bits

sym_dest_name 7 , 11 Character string 01134 8 bytes

TP_name 1 , 5, 8

(as an application TP name)
Character string 01134 1-64 bytes

TP_name 1 , 9

(as an SNA service TP name)
Character string 01134 1-4 bytes

TP_name_type Integer Not applicable 32 bits

632 CPI Communications Reference

CM_PARAMETER_ERROR if the conversation characteristic is set to either of
these mode names.

3. A period character is not allowed as part of an alias partner LU name. An alias
partner LU name might contain ASCII characters in the range X'21' to X'FE';
however, use of characters drawn from character set 01134 (plus the national
characters @, #, and $) is recommended.

4. The period must be present in a network partner LU name because it
distinguishes the name as a network name instead of an alias name. If the
partner LU name does not have a network ID, the period must be the first
character in the partner_LU_name variable or field.

5. The space character is not allowed as part of a partner LU name, security
password, security user ID, or application TP name, because it is used as the
fill character in the corresponding fields of the side_info_entry data structure.

6. The sym_dest_name can be specified as all space characters only on the
Initialize_Conversation (CMINIT) call. On all other calls that include this
variable or field, the name must be 1–8 characters long.

7. An application TP name is composed entirely of ASCII characters. It cannot be
a double-byte TP name—one that has a leading X'0E' byte and a trailing
X'0F' byte—because CPI-C Communications do not support double-byte TP
names. CPI-C Communications convert all characters of an application TP
name from ASCII to EBCDIC when it includes the TP name on an allocation
request.

8. An SNA service TP name is composed of a leading SNA service TP identifier
byte and 0–3 additional ASCII characters; the identifier byte has a value in the
range X'00' to X'0D' and X'0F' to X'3F'. An SNA service TP name may be
specified only with the Set_CPIC_Side_Information call; it cannot be specified
on the Set_TP_Name call.

9. The sym_dest_name variable on the Delete_CPIC_Side_Information (XCMDSI)
and Extract_CPIC_Side_Information (XCMESI) calls must be at least 8 bytes
long. The symbolic destination name within the variable may be 1–8
characters long on these calls. If the symbolic destination name is shorter than
8 characters, it must be left-justified in the variable and padded on the right
with space characters. If the variable is longer than 8 bytes, the symbolic
destination name is taken from the first (leftmost) 8 bytes and the remaining
bytes are ignored.

WOSA Extension Calls Supported
The following CPI-C extensions, defined in WOSA WinSNA APIs, or WinCPIC
APIs, are supported:

 ¹ WinCPICStartup

 ¹ WinCPICCleanup

 ¹ XCHWND (Specify_Windows_Handle)

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 633

 WinCPICStartup
int WINAPI WinCPICStartup(WORD, LPWCPICDATA);

The CPI-C program would issue this call when starting up. It can be used to
determine version information of the API. The call returns a pointer to a structure
that contains:

 WORD wVersion

 char szDescription[WCPICDESCRIPTION_LEN+1]

 Returns
The return value indicates whether the application was registered successfully and
whether the Windows CPI-C implementation can support the specified version
number. It is zero if it was registered successfully and the specified version can be
supported; otherwise it is one of the following return codes:

WCPICSYSNOTREADY
:Indicates that the underlying network subsystem is not ready for network
communication.

WCPICVERNOTSUPPORTED
The version of Windows CPI-C support requested is not provided by this
particular Windows CPI-C implementation.

WCPICINVALID
The Windows CPI-C version specified by the application is not supported by
this DLL.

 WinCPICCleanup
bool WINAPI WinCPICCleanup(void);

This call is used to indicate that the CPI-C program is ending.

 WINCPICCleanup()
This routine should be called by an application to deregister itself from a Windows
CPI-C implementation.

 Syntax

BOOL WinCPICCleanup(void)

Returns.: The return value indicates whether the deregistration was successful. It
is non-zero if the application was successfully deregistered; otherwise it is zero.

634 CPI Communications Reference

 Specify_Windows

Specify_Windows Handle (xchwnd)

 Parameters
hwndNotify (input)

This parameter specifies the Windows HANDLE to be notified
when outstanding operation completes.

return_code (output)
The following are possible values:

CM_OK
The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The Windows HANDLE is invalid.

CM_PRODUCT_SPECIFIC_ERROR
See Appendix A, “Common Return Codes”

 Chapter 14. CPI Communications on Win32 and 32-bit API Client Platforms 635

 Specify_Windows

636 CPI Communications Reference

Part 4. CPI-C 2.1 Appendixes

Appendix A. Variables and Characteristics 641
Pseudonyms and Integer Values . 641
Character Sets . 647
Variable Types . 649

Integers . 649
Character Strings . 649

Distinguished Name . 655
Program Function Identifier (PFID) . 656

PFID Assignment Algorithms . 656
Program Binding . 658

Appendix B. Return Codes and Secondary Information 661
Return Codes . 661
Secondary Information . 679

Application-Oriented Information . 680
CPI Communications-Defined Information 681
CRM-Specific Secondary Information . 692
Implementation-Related Information . 693

Appendix C. State Tables . 695
How to Use the State Tables . 695

Example . 696
Explanation of Half-Duplex State Table Abbreviations 697

Conversation Characteristics () . 697
Conversation Queues () . 699
Return Code Values [] . 700
data_received and status_received { , } . 702
Table Symbols for the Half-Duplex State Table 703

Effects of Calls to the SAA Resource Recovery Interface on Half-Duplex
Conversations . 710

Effects of Calls on Half-Duplex Conversations to the X/Open TX Interface . 711
Explanation of Full-Duplex State Table Abbreviations 712

Conversation Characteristics () . 712
Conversation Queues () . 713
Return Code Values [] . 713
data_received and status_received { , } . 715
Table Symbols for the Full-Duplex State Table 716

Effects of Calls to the SAA Resource Recovery Interface on Full-Duplex
Conversations . 723

Effects of Calls on Full-Duplex Conversations to the X/Open TX Interface . . 724

Appendix D. CPI Communications and LU 6.2 725
Send-Pending State and the error_direction Characteristic 726
Can CPI Communications Programs Communicate with APPC Programs? 727
SNA Service Transaction Programs . 727
Implementation Considerations . 727
Relationship between LU 6.2 Verbs and CPI Communications Calls . . . 727

Appendix E. Application Migration from X/Open CPI-C 735

 Copyright IBM Corp. 1996, 1998 637

Appendix F. CPI Communications Extensions for Use with DCE
Directory . 737

Profile Object . 737
Server Object . 737
Server Group Object . 738
Interaction of Directory Objects . 738
CPI-C Name Service Interface . 739

CNSI Calls . 740
Definition of New Objects . 740

Terminology . 740
Profile Object . 741
Server Object . 741
Server Group Object . 741
Program Installation Object . 742
Encoding Method for Complex Attribute Values 742

Scenarios for Use of CNSI . 742
(PFID, *, *) . 743
(PFID, SDN, *) . 743
(PFID, SGDN, *) . 743
(PFID, SDN, resID) . 744
(PFID, SGDN, resID) . 744
(PFID, PDN, *) . 744
(PFID, PDN, resID) . 744

Appendix G. CPI Communications 2.1 Conformance Classes 745
Definitions . 745
Conformance Requirements . 745

Multi-Threading Support . 745
CPI-C 2.1 Conformance Classes . 745
Functional Conformance Class Descriptions 746

Conversations . 746
LU 6.2 . 747
OSI TP . 747
Recoverable Transactions . 748
Unchained Transactions . 748
Conversation-Level Non-Blocking . 749
Queue-Level Non-Blocking . 749
Callback Function . 749
Server . 750
Data Conversion Routines . 750
Security . 750
Distributed Security . 751
Full-Duplex . 751
Expedited Data . 751
Directory . 751
Secondary Information . 752
Initialization Data . 752
Automatic Data Conversation . 752

Configuration Conformance Class Description 753
OSI TP Addressing Disable . 753

Relationship to OSI TP Functional Units and OSI TP Profiles 754
Conformance Class Details . 755

638 CPI Communications Reference

Appendix H. Solution Developers Program - Enterprise Communications
Partners in Development . 763

Program Highlights . 763
Membership . 763

 Part 4. CPI-C 2.1 Appendixes 639

640 CPI Communications Reference

 Variable Definitions

Appendix A. Variables and Characteristics

For the variables and characteristics used throughout this book, this appendix
provides the following items:

¹ A chart showing the values that variables and characteristics can take. The
valid pseudonyms and corresponding integer values are provided for each
variable and characteristic.

¹ The character sets used by CPI Communications.

¹ The data definitions for types and lengths of all CPI Communications
characteristics and variables.

Pseudonyms and Integer Values
As explained in “Naming Conventions—Calls, Characteristics, Variables, and
Values” on page 13, the values for variables and conversation characteristics are
shown as pseudonyms rather than integer values. For example, instead of stating
that the variable return_code is set to an integer value of 0, the book shows the
return_code being set to a pseudonym value of CM_OK. Table 59 on page 642
provides a mapping from valid pseudonyms to integer values for each variable and
characteristic.

Pseudonyms can also be used for integer values in program code by making use of
equate or define statements. The diskette that came with this manual provides
sample pseudonym files for several programming languages. The diskette also
contains an example of how a pseudonym file is used by a COBOL program.

Note: Because the return_code variable is used for all CPI Communications calls,
Appendix B, “Return Codes and Secondary Information” provides a more detailed
description of its values, in addition to the list of values provided here.

 Copyright IBM Corp. 1996, 1998 641

 Variable Definitions

Table 59 (Page 1 of 5). Variables/Characteristics and Their Possible Values

Variable or Characteristic
Names

Pseudonym Values Integer
Values

AE_qualifier_format CM_DN 0
CM_INT_DIGITS 2

allocate_confirm CM_ALLOCATE_NO_CONFIRM 0
CM_ALLOCATE_CONFIRM 1

AP_title_format CM_DN 0
CM_OID 1

begin_transaction CM_BEGIN_IMPLICIT 0
CM_BEGIN_EXPLICIT 1

call_id 1 CM_CMACCI 1
CM_CMACCP 2
CM_CMALLC 3
CM_CMCANC 4
CM_CMCFM 5
CM_CMCFMD 6
CM_CMCNVI 7
CM_CMCNVO 8
CM_CMDEAL 9
CM_CMDFDE 10
CM_CMEACN 11
CM_CMEAEQ 12
CM_CMEAPT 13
CM_CMECS 14
CM_CMECT 15
CM_CMECTX 16
CM_CMEID 17
CM_CMEMBS 18
CM_CMEMN 19
CM_CMEPID 20
CM_CMEPLN 21

 CM_CMESI 22
CM_CMESL 23
CM_CMESRM 24
CM_CMESUI 25
CM_CMETC 26
CM_CMETPN 27
CM_CMFLUS 28
CM_CMINCL 29
CM_CMINIC 30
CM_CMINIT 31
CM_CMPREP 32
CM_CMPTR 33
CM_CMRCV 34
CM_CMRCVX 35
CM_CMRLTP 36
CM_CMRTS 37
CM_CMSAC 38
CM_CMSACN 39
CM_CMSAEQ 40
CM_CMSAPT 41
CM_CMSBT 42

642 CPI Communications Reference

 Variable Definitions

Table 59 (Page 2 of 5). Variables/Characteristics and Their Possible Values

Variable or Characteristic
Names

Pseudonym Values Integer
Values

 CM_CMSCSP 43
CM_CMSCST 44
CM_CMSCSU 45
CM_CMSCT 46
CM_CMSCU 47
CM_CMSDT 48
CM_CMSED 49
CM_CMSEND 50
CM_CMSERR 51
CM_CMSF 52
CM_CMSID 53
CM_CMSLD 54
CM_CMSLTP 55
CM_CMSMN 56
CM_CMSNDX 57
CM_CMSPDP 58
CM_CMSPID 59
CM_CMSPLN 60
CM_CMSPM 61
CM_CMSPTR 62
CM_CMSQCF 63

 CM_CMSQPM 64
CM_CMSRC 65
CM_CMSRT 66
CM_CMSSL 67
CM_CMSSRM 68
CM_CMSST 69
CM_CMSTC 70
CM_CMSTPN 71
CM_CMTRTS 72
CM_CMWAIT 73
CM_CMWCMP 74
CM_CMSJT 75
CM_CMEMID 76
CM_CMSMID 77
CM_CMSNDM 78
CM_CMRCVM 79

confirmation_urgency CM_CONFIRMATION_NOT_URGENT 0
CM_CONFIRMATION_URGENT 1

control_information_received CM_NO_CONTROL_INFO_RECEIVED 0
CM_REQ_TO_SEND_RECEIVED 1
CM_ALLOCATE_CONFIRMED 2
CM_ALLOCATE_CONFIRMED_WITH_DATA 3
CM_ALLOCATE_REJECTED_WITH_DATA 4
CM_EXPEDITED_DATA_AVAILABLE 5
CM_RTS_RCVD_AND_EXP_DATA_AVAIL 6

conversation_queue CM_INITIALIZATION_QUEUE 0
CM_SEND_QUEUE 1
CM_RECEIVE_QUEUE 2
CM_SEND_RECEIVE_QUEUE 3
CM_EXPEDITED_SEND_QUEUE 4
CM_EXPEDITED_RECEIVE_QUEUE 5

conversation_return_code See return_code.

 Appendix A. Variables and Characteristics 643

 Variable Definitions

Table 59 (Page 3 of 5). Variables/Characteristics and Their Possible Values

Variable or Characteristic
Names

Pseudonym Values Integer
Values

conversation_security_type CM_SECURITY_NONE 0
CM_SECURITY_SAME 1
CM_SECURITY_PROGRAM 2
CM_SECURITY_DISTRIBUTED 3
CM_SECURITY_MUTUAL 4
CM_SECURITY_PROGRAM_STRONG 5

conversation_state CM_INITIALIZE_STATE 2
CM_SEND_STATE 3
CM_RECEIVE_STATE 4
CM_SEND_PENDING_STATE 5
CM_CONFIRM_STATE 6
CM_CONFIRM_SEND_STATE 7
CM_CONFIRM_DEALLOCATE_STATE 8
CM_DEFER_RECEIVE_STATE 9
CM_DEFER_DEALLOCATE_STATE 10
CM_SYNC_POINT_STATE 11
CM_SYNC_POINT_SEND_STATE 12
CM_SYNC_POINT_DEALLOCATE_STATE 13
CM_INITIALIZE_INCOMING_STATE 14
CM_SEND_ONLY_STATE 15
CM_RECEIVE_ONLY_STATE 16
CM_SEND_RECEIVE_STATE 17
CM_PREPARED_STATE 18

conversation_type CM_BASIC_CONVERSATION 0
CM_MAPPED_CONVERSATION 1

data_received CM_NO_DATA_RECEIVED 0
CM_DATA_RECEIVED 1
CM_COMPLETE_DATA_RECEIVED 2
CM_INCOMPLETE_DATA_RECEIVED 3

deallocate_type CM_DEALLOCATE_SYNC_LEVEL 0
CM_DEALLOCATE_FLUSH 1
CM_DEALLOCATE_CONFIRM 2
CM_DEALLOCATE_ABEND 3

directory_encoding CM_DEFAULT_ENCODING 0
CM_UNICODE_ENCODING 1

directory_syntax CM_DEFAULT_SYNTAX 0
CM_DCE_SYNTAX 1
CM_XDS_SYNTAX 2
CM_NDS_SYNTAX 3

error_direction CM_RECEIVE_ERROR 0
CM_SEND_ERROR 1

expedited_receive_type CM_RECEIVE_AND_WAIT 0
CM_RECEIVE_IMMEDIATE 1

fill CM_FILL_LL 0
CM_FILL_BUFFER 1

join_transaction CM_JOIN_IMPLICIT 0
CM_JOIN_EXPLICIT 1

partner_ID_scope CM_EXPLICIT 0
CM_REFERENCE 1

partner_ID_type CM_DISTINGUISHED_NAME 0
CM_LOCAL_DISTINGUISHED_NAME 1
CM_PROGRAM_FUNCTION_ID 2
CM_OSI_TPSU_TITLE_OID 3
CM_PROGRAM_BINDING 4

644 CPI Communications Reference

 Variable Definitions

Table 59 (Page 4 of 5). Variables/Characteristics and Their Possible Values

Variable or Characteristic
Names

Pseudonym Values Integer
Values

prepare_data_permitted CM_PREPARE_DATA_NOT_PERMITTED 0
CM_PREPARE_DATA_PERMITTED 1

prepare_to_receive_type CM_PREP_TO_RECEIVE_SYNC_LEVEL 0
CM_PREP_TO_RECEIVE_FLUSH 1
CM_PREP_TO_RECEIVE_CONFIRM 2

processing_mode CM_BLOCKING 0
CM_NON_BLOCKING 1

queue_processing_mode CM_BLOCKING 0
CM_NON_BLOCKING 1

receive_type CM_RECEIVE_AND_WAIT 0
CM_RECEIVE_IMMEDIATE 1

request_to_send_received 2 CM_REQ_TO_SEND_NOT_RECEIVED 0
CM_REQ_TO_SEND_RECEIVED 1

return_code and
conversation_return_code

CM_OK 0
CM_ALLOCATE_FAILURE_NO_RETRY 1
CM_ALLOCATE_FAILURE_RETRY 2
CM_CONVERSATION_TYPE_MISMATCH 3
CM_PIP_NOT_SPECIFIED_CORRECTLY 5
CM_SECURITY_NOT_VALID 6
CM_SYNC_LVL_NOT_SUPPORTED_SYS 7
CM_SYNC_LVL_NOT_SUPPORTED_PGM 8
CM_TPN_NOT_RECOGNIZED 9
CM_TP_NOT_AVAILABLE_NO_RETRY 10
CM_TP_NOT_AVAILABLE_RETRY 11
CM_DEALLOCATED_ABEND 17
CM_DEALLOCATED_NORMAL 18
CM_PARAMETER_ERROR 19
CM_PRODUCT_SPECIFIC_ERROR 20
CM_PROGRAM_ERROR_NO_TRUNC 21
CM_PROGRAM_ERROR_PURGING 22
CM_PROGRAM_ERROR_TRUNC 23
CM_PROGRAM_PARAMETER_CHECK 24
CM_PROGRAM_STATE_CHECK 25
CM_RESOURCE_FAILURE_NO_RETRY 26

 CM_RESOURCE_FAILURE_RETRY 27
CM_UNSUCCESSFUL 28
CM_DEALLOCATED_ABEND_SVC 30
CM_DEALLOCATED_ABEND_TIMER 31
CM_SVC_ERROR_NO_TRUNC 32
CM_SVC_ERROR_PURGING 33
CM_SVC_ERROR_TRUNC 34
CM_OPERATION_INCOMPLETE 35
CM_SYSTEM_EVENT 36
CM_OPERATION_NOT_ACCEPTED 37
CM_CONVERSATION_ENDING 38
CM_SEND_RCV_MODE_NOT_SUPPORTED 39
CM_BUFFER_TOO_SMALL 40
CM_EXP_DATA_NOT_SUPPORTED 41
CM_DEALLOC_CONFIRM_REJECT 42
CM_ALLOCATION_ERROR 43
CM_RETRY_LIMIT_EXCEEDED 44
CM_NO_SECONDARY_INFORMATION 45
CM_SECURITY_NOT_SUPPORTED 46
CM_SECURITY_MUTUAL_FAILED 47
CM_CALL_NOT_SUPPORTED 48

 Appendix A. Variables and Characteristics 645

 Variable Definitions

Table 59 (Page 5 of 5). Variables/Characteristics and Their Possible Values

Variable or Characteristic
Names

Pseudonym Values Integer
Values

 CM_PARM_VALUE_NOT_SUPPORTED 49
CM_UNKNOWN_MAP_NAME_REQUESTED 50
CM_UNKNOWN_MAP_NAME_RECEIVED 51
CM_MAP_ROUTINE_ERROR 52
CM_CONVERSATION_CANCELLED 53
CM_TAKE_BACKOUT 100

 CM_DEALLOCATED_ABEND_BO 130
CM_DEALLOCATED_ABEND_SVC_BO 131
CM_DEALLOCATED_ABEND_TIMER_BO 132
CM_RESOURCE_FAIL_NO_RETRY_BO 133
CM_RESOURCE_FAILURE_RETRY_BO 134
CM_DEALLOCATED_NORMAL_BO 135
CM_CONV_DEALLOC_AFTER_SYNCPT 136
CM_INCLUDE_PARTNER_REJECT_BO 137

return_control CM_WHEN_SESSION_ALLOCATED 0
CM_IMMEDIATE 1
CM_WHEN_CONWINNER_ALLOCATED 2
CM_WHEN_SESSION_FREE 3

send_receive_mode CM_HALF_DUPLEX 0
CM_FULL_DUPLEX 1

send_type CM_BUFFER_DATA 0
CM_SEND_AND_FLUSH 1
CM_SEND_AND_CONFIRM 2
CM_SEND_AND_PREP_TO_RECEIVE 3
CM_SEND_AND_DEALLOCATE 4

status_received CM_NO_STATUS_RECEIVED 0
CM_SEND_RECEIVED 1
CM_CONFIRM_RECEIVED 2
CM_CONFIRM_SEND_RECEIVED 3
CM_CONFIRM_DEALLOC_RECEIVED 4
CM_TAKE_COMMIT 5
CM_TAKE_COMMIT_SEND 6
CM_TAKE_COMMIT_DEALLOCATE 7
CM_TAKE_COMMIT_DATA_OK 8
CM_TAKE_COMMIT_SEND_DATA_OK 9
CM_TAKE_COMMIT_DEALLOC_DATA_OK 10
CM_PREPARE_OK 11
CM_JOIN_TRANSACTION 12

sync_level CM_NONE 0
CM_CONFIRM 1
CM_SYNC_POINT 2
CM_SYNC_POINT_NO_CONFIRM 3

transaction_control CM_CHAINED_TRANSACTIONS 0
CM_UNCHAINED_TRANSACTIONS 1

Notes:

1. The call_ID values greater than 10000 are reserved for the product extension
calls.

2. Early versions of CPI-C used the request_to_send_received variable. CPI-C
2.0 or later programs use control_information_received, which is an enhanced
version of the request_to_send_received variable.

646 CPI Communications Reference

 Variable Definitions

 Character Sets
CPI Communications makes use of character strings composed of characters from
one of the following character sets:

¹ Character set 01134, which is composed of the uppercase letters A through Z
and numerals 0-9.

¹ Character set 00640, which is composed of the uppercase and lowercase
letters A through Z, numerals 0-9, and 20 special characters.

¹ Character set T61String, which is composed of the uppercase and lowercase
letters A through Z, numerals 0-9, and many additional special characters. The
most commonly used special characters are provided in Table 60. See CCITT
Recommendation T.61 for other defined special characters.

These character sets, along with EBCDIC hexadecimal and graphic
representations, are provided in Table 60. See the SNA Formats manual
(GA27-3136) for more information on character sets.

Table 60 (Page 1 of 3). Character Sets T61String, 01134, and 00640

EBCDIC
Hex

Code

Graphic Description Character Set

T61-
String

01134 00640

40 Blank X X
4A [Left square bracket X
4B . Period X X
4C < Less than sign X X
4D (Left parenthesis X X
4E + Plus sign X X
4F ! Exclamation mark X
50 & Ampersand X X
5A] Right square bracket X
5C * Asterisk X X
5D) Right parenthesis X X
5E ; Semicolon X X
60 - Dash X X
61 / Slash X X
6B , Comma X X
6C % Percent sign X X
6D _ Underscore X X
6E > Greater than sign X X
6F ? Question mark X X
7A : Colon X X
7C @ Commercial a (at sign) X
7D ' Single quote X X
7E = Equal sign X X
7F " Double quote X X
81 a Lowercase a X X
82 b Lowercase b X X
83 c Lowercase c X X
84 d Lowercase d X X
85 e Lowercase e X X
86 f Lowercase f X X
87 g Lowercase g X X

 Appendix A. Variables and Characteristics 647

 Variable Definitions

Table 60 (Page 2 of 3). Character Sets T61String, 01134, and 00640

EBCDIC
Hex

Code

Graphic Description Character Set

T61-
String

01134 00640

88 h Lowercase h X X
89 i Lowercase i X X
91 j Lowercase j X X
92 k Lowercase k X X
93 l Lowercase l X X
94 m Lowercase m X X
95 n Lowercase n X X
96 o Lowercase o X X
97 p Lowercase p X X
98 q Lowercase q X X
99 r Lowercase r X X
A2 s Lowercase s X X
A3 t Lowercase t X X
A4 u Lowercase u X X
A5 v Lowercase v X X
A6 w Lowercase w X X
A7 x Lowercase x X X
A8 y Lowercase y X X
A9 z Lowercase z X X
BB | Vertical line X
C1 A Uppercase A X X X
C2 B Uppercase B X X X
C3 C Uppercase C X X X
C4 D Uppercase D X X X
C5 E Uppercase E X X X
C6 F Uppercase F X X X
C7 G Uppercase G X X X
C8 H Uppercase H X X X
C9 I Uppercase I X X X
D1 J Uppercase J X X X
D2 K Uppercase K X X X
D3 L Uppercase L X X X
D4 M Uppercase M X X X
D5 N Uppercase N X X X
D6 O Uppercase O X X X
D7 P Uppercase P X X X
D8 Q Uppercase Q X X X
D9 R Uppercase R X X X
E2 S Uppercase S X X X
E3 T Uppercase T X X X
E4 U Uppercase U X X X
E5 V Uppercase V X X X
E6 W Uppercase W X X X
E7 X Uppercase X X X X
E8 Y Uppercase Y X X X
E9 Z Uppercase Z X X X
F0 0 Zero X X X
F1 1 One X X X
F2 2 Two X X X
F3 3 Three X X X
F4 4 Four X X X
F5 5 Five X X X
F6 6 Six X X X

648 CPI Communications Reference

 Variable Definitions

Table 60 (Page 3 of 3). Character Sets T61String, 01134, and 00640

EBCDIC
Hex

Code

Graphic Description Character Set

T61-
String

01134 00640

F7 7 Seven X X X
F8 8 Eight X X X
F9 9 Nine X X X

 Variable Types
CPI Communications makes use of two variable types, integer and character string.
Table 61 on page 650 defines the type and length of variables used in this
document. Variable types are described below.

 Integers
The integers are signed, non-negative integers. Their length is provided in bits.

 Character Strings
Character strings are composed of characters taken from one of the character sets
discussed in “Character Sets” on page 647, or, in the case of buffer, are bytes with
no restrictions (that is, a string composed of characters from X'00' to X'FF').

Note: The name “character string” as used in this manual should not be confused
with “character string” as used in the C programming language. No further
restrictions beyond those described above are intended.

The character-string length represents the number of characters a character string
can contain. CPI Communications defines two lengths for some character-string
variables:

¹ Minimum specification length: The minimum number of characters that a
program can use to specify the character string. For some character strings,
the minimum specification length is zero. A zero-length character string on a
call means the character string is omitted, regardless of the length of the
variable that contains the character string (see the notes for Table 61 on
page 650).

¹ Maximum specification length: The maximum number of characters that a
transaction program can use to specify a character string. All products can
send or receive the maximum specification length for the character string.

For example, the character-string length for log_data is listed as 0-512 bytes, where
0 is the minimum specification length and 512 is the maximum specification length.

If the variable to which a character string is assigned is longer than the character
string, the character string is left-justified within the variable and the variable is filled
out to the right with space characters (also referred to as blank characters). Space
characters, if present, are not part of the character string.

If the character string is formed from the concatenation of two or more individual
character strings, as is discussed in note 5 on page 653 for the partner_LU_name,
the concatenated character string as a whole is left-justified within the variable and

 Appendix A. Variables and Characteristics 649

 Variable Definitions

the variable is filled out to the right with space characters. Space characters, if
present, are not part of the concatenated character string.

Table 61 (Page 1 of 3). Variable Types and Lengths

Variable Variable Type Character Set Length

AE_qualifier 3, 4 Character string T61String 0-1024
bytes

AE_qualifier_format Integer N/A 32 bits

AE_qualifier_length Integer N/A 32 bits

allocate_confirm Integer N/A 32 bits

AP_title 3, 4 Character string T61String 0-1024
bytes

AP_title_format Integer N/A 32 bits

AP_title_length Integer N/A 32 bits

application_context_name 3, 4 Character string 00640 0-256 bytes

application_context_name_length Integer N/A 32 bits

begin_transaction Integer N/A 32 bits

buffer 1, 2 Character string no restriction 0-max
supported
by system

buffer_length 1 Integer N/A 32 bits

call_ID Integer N/A 32 bits

callback_function Pointer 11 N/A system-
dependent 11

completed_op_index_list Array of integers N/A n X 32 bits

completed_op_count Integer N/A 32 bits

confirmation_urgency Integer N/A 32 bits

context_ID Character string no restriction 1-32 bytes

context_ID_length Integer N/A 32 bits

control_information_received Integer N/A 32 bits

conversation_ID Character string no restriction 8 bytes

conversation_queue Integer N/A 32 bits

conversation_return_code Integer N/A 32 bits

conversation_security_type Integer N/A 32 bits

conversation_state Integer N/A 32 bits

conversation_type Integer N/A 32 bits

data_received Integer N/A 32 bits

deallocate_type Integer N/A 32 bits

directory_encoding Integer N/A 32 bits

directory_syntax Integer N/A 32 bits

error_direction Integer N/A 32 bits

expedited_receive_type Integer N/A 32 bits

fill Integer N/A 32 bits

650 CPI Communications Reference

 Variable Definitions

Table 61 (Page 2 of 3). Variable Types and Lengths

Variable Variable Type Character Set Length

initialization_data 3, 4 Character string no restriction 0-10000
bytes

initialization_data_length Integer N/A 32 bits

join_transaction Integer N/A 32 bits

log_data 3 Character string no restriction 0-512 bytes

log_data_length Integer N/A 32 bits

map_name Character string T61String 0-64 bytes

map_name_length Integer N/A 32 bits

maximum_buffer_size 2 Integer N/A 32 bits

mode_name 3, 4, 8 Character string 01134 0-8 bytes

mode_name_length Integer N/A 32 bits

OOID Integer N/A 32 bits

OOID_list Array of integers N/A n X 32 bits

OOID_list_count Integer N/A 32 bits

partner_ID Character string no restriction 0-32767
bytes

partner_ID_length Integer N/A 32 bits

partner_ID_scope Integer N/A 32 bits

partner_ID_type Integer N/A 32 bits

partner_LU_name 3, 4, 5 Character string 01134 1-17 bytes

partner_LU_name_length Integer N/A 32 bits

prepare_data_permitted Integer N/A 32 bits

prepare_to_receive_type Integer N/A 32 bits

processing_mode Integer N/A 32 bits

queue_processing_mode Integer N/A 32 bits

receive_type Integer N/A 32 bits

received_length 2 Integer N/A 32 bits

request_to_send_received 10 Integer N/A 32 bits

requested_length 2 Integer N/A 32 bits

return_code Integer N/A 32 bits

return_control Integer N/A 32 bits

security_password 3 Character string 00640 0-10 bytes

security_password_length Integer N/A 32 bits

security_user_ID 3, 4 Character string 00640 0-10 bytes

security_user_ID_length Integer N/A 32 bits

send_length 2 Integer N/A 32 bits

send_receive_mode Integer N/A 32 bits

send_type Integer N/A 32 bits

status_received Integer N/A 32 bits

 Appendix A. Variables and Characteristics 651

 Variable Definitions

Table 61 (Page 3 of 3). Variable Types and Lengths

Variable Variable Type Character Set Length

sym_dest_name 3, 7 Character string 01134 8 bytes

sync_level Integer N/A 32 bits

timeout Integer N/A 32 bits

TP_name 3, 4, 6 Character string T61String 1-64 bytes

TP_name_length Integer N/A 32 bits

transaction_control Integer N/A 32 bits

user_field Character string no restriction 8 bytes

user_field_list Array of character
strings

no restriction n X 8 bytes

Notes:

1. When a transaction program is in conversation with another transaction
program executing in an unlike environment (for example, an
EBCDIC-environment program in conversation with an ASCII-environment
program), buffer may require conversion from one encoding to the other. For
character data in character data set 00640, this conversion can be
accomplished by Convert_Outgoing in the sending program and by
Convert_Incoming in the receiving program. The maximum allowed value of
the buffer_length parameter on the Convert_Incoming and Convert_Outgoing
calls is implementation-specific.

2. The maximum buffer size for sending and receiving data may vary from system
to system. The maximum buffer size is at least 32767. For more information,
refer to “Extract_Maximum_Buffer_Size (CMEMBS)” on page 173.

3. Specify these fields using the native encoding of the local system. When
appropriate, CPI Communications automatically converts these fields to the
correct format (EBCDIC on LU 6.2 and the negotiated transfer syntax on OSI
TP) when they are used as input parameters on CPI Communications calls.
When CPI Communications returns these fields to the program (for instance, as
output parameters on one of the Extract calls), they are returned in the native
encoding of the local system. See “Automatic Conversion of Characteristics”
on page 41 for more information on automatic conversion of these fields.

Note: An LU 6.2 CRM converts log data in character set 00640 only. To
enhance program portability, it is recommended that character set 00640 be
used for the log_data characteristic.

4. Because the mode_name, partner_LU_name, security_user_ID, AE_qualifier,
AP_title, application_context_name, context_ID, TP_name, and
initialization_data characteristics are output parameters on their respective
Extract calls, the variables used to contain the output character strings should
be defined with a length equal to the maximum specification length.

Note: An LU 6.2 CRM uses character set 00640 for the partner_LU_name
and TP_name. An OSI TP CRM uses character set T61 String for the
AE_qualifier, AP_title, application_context_name, and TP_name. Both CRM
types use character set 01134 for the mode_name. To enhance program
portability, it is recommended that character set 01134, a subset of character
sets 00640 and T61 String, be used for these characteristics.

652 CPI Communications Reference

 Variable Definitions

The IMS, MVS, OS/2, and OS/400 implementations of CPI Communications
allow use of the $, @, and # national characters in the mode_name and
partner_LU_name fields and restrict the first character in these fields to an
alphabetic or national character.

OS/400 CPI Communications does not support a mode_name of the characters
“BLANK”. “BLANK” may be specified in the side information, but it denotes that
a mode_name of 8 space characters be used. See Chapter 11, “CPI
Communications on Operating System/400” on page 513 for more information.

The OS/2 implementation allows specification of either an alias or a network
name for the partner_LU_name variable. OS/2 distinguishes the specification
of an alias name from a network name based on the absence or presence of
the period character in the name. See Chapter 10, “CPI Communications on
OS/2” on page 435 for more information about alias and network names used
with OS/2.

For Networking Services for Windows, if an unqualified partner LU name is
specified, that name will be treated as though qualified with the network ID of
the local LU name.

CPI Communications applications in CICS cannot be SNA service programs
and, therefore, cannot allocate on the mode names SNASVCMG or
CPSVCMG. If they attempt to do this, they will get the
CM_PARAMETER_ERROR return code. For Networking Services for Windows or
OS/2, the program should not set the mode_name conversation characteristic
to CPSVCMG or SNASVCMG. Although Networking Services for Windows and
OS/2 allow the program to specify these mode names on the Set_Mode_Name
call, they reject the subsequent Allocate (CMALLC) call with a return_code of
CM_PARAMETER_ERROR.

5. The partner_LU_name can be of two varieties:

¹ A character string composed solely of characters drawn from character set
01134

¹ A character string consisting of two character strings composed of
characters drawn from character set 01134. The two character strings are
concatenated together by a period (the period is not part of character set
01134). The left-hand character string represents the network ID, and the
right-hand character string represents the network LU name. The period is
not part of the network ID or the network LU name. Neither network ID nor
network LU name may be longer than eight bytes.

The use of the period defines which variety of partner_LU_name is being used.

On VM, a space is used as a delimiter instead of a period.

The OS/400 CPI Communications support allows special values for the
partner_LU_name conversation characteristic. While these special values may
be specified only in the side information, they may be extracted with the
Extract_Partner_LU_Name call if it is issued before the Allocate call. They
cannot be used on the Set_Partner_LU_Name call. Refer to Chapter 11, “CPI
Communications on Operating System/400” on page 513 for information about
using these special values.

6. The following usage notes apply when specifying the TP_name:

¹ The space character is not allowed in TP_name.

 Appendix A. Variables and Characteristics 653

 Variable Definitions

¹ When communicating with non-CPI Communications programs, the
TP_name can use characters other than those in character set 00640. See
Appendix D, “CPI Communications and LU 6.2” on page 725 and “SNA
Service Transaction Programs” on page 727 for details.

¹ On IMS and MVS systems, IBM recommends that the asterisk (*) be
avoided in TP names because it causes a list request when it is entered on
panels of the APPC/MVS administration dialog. The comma should also be
avoided in IMS and MVS TP names, because it acts as a parameter
delimiter in DISPLAY APPC commands.

¹ The OS/2 implementation allows the use of characters outside character
set 01134 for the TP_name variable. See Chapter 10, “CPI
Communications on OS/2” on page 435 for more information about default
TP names used with OS/2.

¹ For OS/2 or Networking Services for Windows, the program can use the
Set_TP_Name call to set the TP_name characteristic to an application TP
name only. It cannot set the TP_name to an SNA service TP name
because the encoding of the first character of an SNA service TP name
overlaps with, and is indistinguishable from, some ASCII characters. In
order to allocate a conversation with a partner SNA service TP, the SNA
service TP name must be defined in the side information entry for the
conversation.

¹ Networking Services for Windows translates TP names from ASCII to
EBCDIC. Therefore, if the TP_name characteristic is set using a
double-byte name and then the Allocate (CMALLC) call is issued, the
partner LU will reject the allocation request because of an invalid TP name.

7. The field containing the sym_dest_name parameter on the CMINIT call must be
eight bytes long. The symbolic destination name within that field may be from
0 to 8 characters long, with its characters taken from character set 01134. If
the symbolic destination name is shorter than eight characters, it should be
left-justified in the variable field, and padded on the right with spaces. A
sym_dest_name parameter composed of eight spaces has special significance.
See “Initialize_Conversation (CMINIT)” on page 200 for more information.

8. The four names in the following list are mode names defined by the LU 6.2
architecture for user sessions and may be specified for CPI Communications
conversations on systems where they are defined, even though they contain
the character #, which is not found in character set 01134:

 ¹ #BATCH
 ¹ #BATCHSC
 ¹ #INTER
 ¹ #INTERSC

9. The maximum size of the the partner_ID characteristic is determined by the
partner_ID_type.

¹ If the partner_ID_type is CM_PROGRAM_BINDING, the maximum size is
32767 bytes.

¹ If the partner_ID_type is CM_DISTINGUISHED_NAME,
CM_LOCAL_DISTINGUISHED_NAME, CM_PROGRAM_FUNCTION_ID, or
CM_OSI_TPSU_TITLE_OID, the maximum size is 1024 bytes.

654 CPI Communications Reference

 Variable Definitions

10. The request_to_send_received variable is used by CPI-C 1.2 programs. CPI-C
2.0 programs use control_information_received, which is an enhanced version
of this variable.

11. The callback_function specifies a pointer to a routine and is supported by the C
programming language only. Its length depends on the C compiler.

 Distinguished Name
In general, directory objects are identified by a name. Different directories specify
different syntax conventions for directory object names. Regardless of syntactic
differences though, two naming convention commonalities can be identified:

¹ The program specifies a fully-qualified name that is valid for the entire
distributed directory and namespace. A fully-qualified name may also be
referred to as a global name.

¹ The program specifies an incomplete name that is only a part of a global name.
An incomplete name is also referred to as a partial name. The global name
can be created from a partial name by appending a prefix.

Here are some examples of global names using two different naming conventions.
The first is an XDS-compliant distinguished name. The second is a name for the
same object that would be recognized by DCE:

XDS:

 /C=us/O=UNC/OU=ChapelHill/CN=ThomasWolfe

DCE:

 /.../C=us/O=UNC/OU=ChapelHill/CN=ThomasWolfe

The distinguished name consists of a sequence of relative distinguished names
(RDNs) separated by slashes. Each RDN is composed of an identifier that is set
equal to a value. In the example, well-known abbreviations for identifiers are
used—C for country, O for organization, OU for organization unit, CN for common
name. Thus, the example name identifies an object for someone with a common
name of ThomasWolfe at the Chapel Hill campus of the University of North
Carolina (UNC). The "/.../" prefix at the front of the DCE name explicitly identifies
the name as global.

The partial name of ThomasWolfe might be used to identify the object, but a prefix
of /C=us/O=UNC/OU=ChapelHill/ would be required to make sure that it didn't
locate a Tom Wolfe at the Greensboro campus of UNC. The specific DCE syntax
for such a partial name would be:

 /.:/ThomasWolfe

In DCE, the "/.:" prefix explicitly identifies the name as a partial distinguished name.
The default prefix used by the local system to create a complete DN is the DCE
"cell" name.

In CPI Communications, a distinguished name is always a global name. Programs
establish a distinguished name by issuing the Set_Partner_ID call with a
partner_ID_type set to CM_DISTINGUISHED_NAME. Programs establish a partial
distinguished name by issuing the Set_Partner_ID call with a partner_ID_type set to
CM_LOCAL_DISTINGUISHED_NAME. Format and syntax of the partner_ID
characteristic are determined by the directory_syntax and directory_encoding
characteristics.

 Appendix A. Variables and Characteristics 655

 Variable Definitions

Program Function Identifier (PFID)
The program function identifier (PFID) identifies the function provided by the
program, thus allowing multiple installations of a given program to be recognized as
providing the same function. This relationship is illustrated in Figure 30. In this
example, Program A, B, and C all provide the same function. For example, they
might be mail servers located on three different nodes. Conversations are
allocated to each program using different destination information, and each would
be identified with a different sym_dest_name or DN. The PFID allows all three
programs to be identified as providing the same function.

sym_dest_nameA dist_nameA

dest. info. for
Program A

sym_dest_nameB dist_nameB

dest. info. for
Program B

sym_dest_nameC dist_nameC

dest. info. for
Program C

program function ID
for

Program A, B, C

Figure 30. Relationship of PFID to Program Installation DNs

PFIDs must be administered to ensure they are unambiguous and no PFID value is
assigned to more than one function. Unambiguous PFIDs allow use (and
publication) of the PFID prior to creation of directory objects, and remove the
requirement for installation questions about specific DNs. For example, code
making use of PFIDs allows distribution of shrink-wrapped applications.

PFID Assignment Algorithms
CPI Communications does not establish any assignment algorithms or syntax rules
for the PFID. It treats the PFID as a string and will retrieve program bindings by
finding program installation objects that contain a matching PFID string.
Assignment of PFIDs is implementation- and application- dependent.

Here are three sample assignment algorithms that ensure PFID uniqueness:

1. PFID values are Universal Unique Identifiers (UUIDs).

2. PFID values are ISO-registered object identifiers (OIDs).

3. A general-purpose naming method is created using existing naming registeries.
Here is such a method:

¹ The value consists of up to 1024 printable characters in GCSGID 640 (the
set of invariant graphics in most character sets and also found in the
invariant part of ISO 646).

¹ The value is organized as set of three or more tokens separated by
slashes(/).

656 CPI Communications Reference

 Variable Definitions

¹ The first token identifies the existing naming authority. To accommodate
the spectrum of developers, three values are proposed to begin with:
“SNA,” “INTERNET,” and “OSI.”

¹ The second token is a unique value assigned by the naming authority
identified in the first token. The token values vary based on the naming
authority:

– For SNA, the second token is a registered SNA NETID. For those
network owners with more than one registered NETID, any one of them
may be selected for this purpose. The third and last token is
administered by the “owner” of the NETID.

– For INTERNET, the second token is a printable form of a class A, B, or
C NETID in decimal octet format (such as "9.0.0.0" for IBM).
Alternatively, a domain name suffix such as “AUSTIN.IBM.COM” could
be used. The third and last token is administered by the “owner” of the
NETID.

– For OSI the second token is a two character country code as described
in ISO 3166 (such as US). The country code identifies the country
under which the third token is registered. The third token is an
organization code as registered by the registration authority in the
country identified by the second token. (In the US, American National
Standards Institute (ANSI) operates a registry for organizations.). The
fourth token is administered by the organization. For example, if
fictitious organization MYCOMPANY registered with ANSI, and
identified a program function as ACCOUNTS_PAYABLE, the PFID
would be:

 /OSI/US/MYCOMPANY/ACCOUNTS_PAYABLE

 Appendix A. Variables and Characteristics 657

 Variable Definitions

 Program Binding
A program binding contains the destination information required to allocate a
conversation. The data in the binding is of the general pattern
“field_type=field_value; field_type=field_value” where field_type is a four-byte
identifier for the field and field_value is a variable-length field. The end of a
field_value is determined by the semicolon character. If the field_value itself
contains a semicolon, the textual semicolon is repeated.

Table 62 shows the 4-byte code for each field_type, along with a maximum length
for each field_value. Note that the field_type of “BIND” has a maximum length of 0;
this is because the BIND field_type is used to begin a binding and is immediately
followed by another field_type. The binding is complete when either the end of the
string is reached or another BIND field_type is reached.

Table 62. Fields in the Program Binding

Description of Field
Contents

4-Byte field_type Code Order Maximum Length of Field

binding BIND 1 0

CRM type CRMT 2 5

TP name TPNM 3 64

mode name MODE 4 8

partner LU name PLUN 5 17

partner principal name PPNM 6 1024

required user name type RUNM 7 9

AE qualifier AEQL 8 1024

AP title APTI 9 1024

application context name APCN 10 256

A valid binding must contain both a CRM_type and TP_name field. The possible
values of the CRM_type field_value are “LU6.2” and “OSITP.” If the CRM_type is
“LU6.2,” the AE qualifier, AP title, and application context name fields should not be
present. Similiarly, if the CRM_type is “OSITP,” the partner LU name field should
not be included in the program binding. Possible values for required user name
type are: “NONE,” “LOCAL,” and “PRINCIPAL.” The valid ordering of field_types
for a single binding is as shown in Table 62.

Errors in the binding format will result in failure of the Allocate call with a return
code of CM_PARAMETER_ERROR.

Note:

¹ Programs extracting a program binding after accepting a conversation may not
receive a valid program binding because some fields may not be available to
CPI Communications. Missing fields will have an field_type, but no field_value.
For example, “TPNM=;” would be returned in a program binding for a program
accepting a conversation with a CRM_type of “LU6.2.” See “Extract_Partner_ID
(CMEPID)” for further information.

¹ On systems using distributed directories that support multiple values for an
attribute, the program_binding should be stored as a single attribute value.

658 CPI Communications Reference

Figure 31 shows a sample program binding for a program with the following
destination information fields:

¹ CRM type of “LU6.2”
¹ TP name of “PAYROLL”
¹ Mode name of “BATCH”
¹ Partner LU name of “ibmnet07.accntlu0”

 BIND=;CRMT=LU6.2;TPNM=PAYROLL;MODE=BATCH;PLUN=IBMNET07.ACCNTLU0;

Figure 31. Sample Program Binding Format

If the program can also be accessed by a second LU, that information can be
included in the example by adding a “BIND=;” tag after the last semicolon and
providing the next set of binding information.

 Appendix A. Variables and Characteristics 659

660 CPI Communications Reference

 Return Codes

Appendix B. Return Codes and Secondary Information

This chapter discusses the parameter called return_code that is passed back to the
program at the completion of a call. It also discusses associated secondary
information that may be available for the program to extract using the
Extract_Secondary_Information call.

 Return Codes
All calls have a parameter called return_code that is passed back to the program at
the completion of a call. The return code can be used to determine call-execution
results and any state change that may have occurred on the specified conversation.
On some calls, the return code is not the only source of call-execution information.
For example, on the Receive call, the status_received and data_received
parameters should also be checked.

Some of the return codes indicate the results of the local processing of a call.
These return codes are returned on the call that invoked the local processing.
Other return codes indicate results of processing invoked at the remote end of the
conversation. Depending on the call, these return codes can be returned on the
call that invoked the remote processing or on a subsequent call. Still other return
codes report events that originate at the remote end of the conversation. In all
cases, only one code is returned at a time.

Some of the return codes associated with the allocation of a conversation have the
suffix RETRY or NO_RETRY in their name.

¹ RETRY means that the condition indicated by the return code may not be
permanent, and the program can try to allocate the conversation again.
Whether or not the retry attempt succeeds depends on the duration of the
condition. In general, the program should limit the number of times it attempts
to retry without success.

¹ NO_RETRY means that the condition is probably permanent. In general, a
program should not attempt to allocate the conversation again until the
condition is corrected.

For programs using conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, all return codes indicating a required backout have
numeric values equal to or greater than CM_TAKE_BACKOUT. This allows the CPI
Communications programmer to test for a range of return code values to determine
if backout processing is required. An example is:

return_code >= CM_TAKE_BACKOUT

The return codes shown below are listed alphabetically, and each description
includes the following:

¹ Meaning of the return code
¹ Origin of the condition indicated by the return code
¹ When the return code is reported to the program
¹ The state of the conversation when control is returned to the program

 Copyright IBM Corp. 1996, 1998 661

 Return Codes

Notes:

1. The individual call descriptions in Chapter 4, “Call Reference” list the return
code values that are valid for each call.

2. The integer values that correspond to the pseudonyms listed below are
provided in Table 59 on page 642 of Appendix A, “Variables and
Characteristics.”

The valid return_code values are described below:

CM_ALLOCATE_FAILURE_NO_RETRY
The conversation cannot be allocated on a logical connection because of a
condition that is not temporary. When this return_code value is returned to the
program, the conversation is in Reset state. For example, if the conversation is
using an LU 6.2 CRM, the logical connection (session) to be used for the
conversation cannot be activated because the current session limit for the
specified LU-name and mode-name pair is 0, or because of a system definition
error or a session-activation protocol error. This return code is also returned
when the session is deactivated because of a session protocol error before the
conversation can be allocated. The program should not retry the allocation
request until the condition is corrected. This return code is returned on the
Allocate call.

CM_ALLOCATE_FAILURE_RETRY
The conversation cannot be allocated on a logical connection because of a
condition that may be temporary. When this return_code value is returned to
the program, the conversation is in Reset state. For example, the logical
connection to be used for the conversation cannot be activated because of a
temporary lack of resources at the local system or remote system. This return
code is also returned if the logical connection is deactivated because of logical
connection outage before the conversation can be allocated. The program can
retry the allocation request. This return code is returned on the Allocate call.

CM_ALLOCATION_ERROR
This may be returned on calls associated with the Send queue (except the
Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND) while the
conversation is in Send-Receive state. The function requested on the call is
not performed.

The return code indicates that the partner system rejected the conversation
startup request. At the time this return code information is returned, the cause
of allocation rejection is not returned to the program. The cause of the
allocation rejection, which can be one of the following, can be obtained through
the return code on the first Receive call.

¹ CM_SEND_RCV_MODE_NOT_SUPPORTED (OSI TP CRM only)
¹ CM_CONVERSATION_TYPE_MISMATCH (LU 6.2 CRM only)
¹ CM_PIP_NOT_SPECIFIED_CORRECTLY (LU 6.2 CRM only)
¹ CM_SECURITY_NOT_VALID (LU 6.2 CRM only)
¹ CM_SYNC_LEVEL_NOT_SUPPORTED_SYS (OSI TP CRM only)
¹ CM_SYNC_LEVEL_NOT_SUPPORTED_PGM (LU 6.2 CRM only)

 ¹ CM_TPN_NOT_RECOGNIZED
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY

The conversation is in Receive-Only state.

662 CPI Communications Reference

 Return Codes

CM_BUFFER_TOO_SMALL
The local program issued a CPI Communications call specifying a buffer size
that is insufficient for the amount of data available for the program to receive.
The state of the conversation remains unchanged.

CM_CALL_NOT_SUPPORTED
The call is not supported by the local system. This return code is returned on
any call in an optional conformance class when the implementation provides an
entry point for the call but does not support the function requested by the call.
The state of the conversation remains unchanged.

CM_CONV_DEALLOC_AFTER_SYNCPT (LU 6.2 CRM ONLY)
The conversation was deallocated as a part of the last sync-point operation.
The local program was not given prior notification of the imminent deallocation
because of a commit operation race that arose as follows: This program issued
the resource recovery commit call. At the same time, the partner program
issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT_NO_CONFIRM, followed by the commit call.

CM_CONVERSATION_CANCELLED
This return code is returned for outstanding operations when the conversation
was terminated locally by a Cancel_Conversation call.

CM_CONVERSATION_ENDING (LU 6.2 CRM ONLY)
This return code is returned on the Send_Expedited_Data and
Receive_Expedited_Data calls and indicates one of the following:

¹ The local CRM is ending the conversation normally.

¹ A notification indicating that the remote program is ending the conversation
(normally or abnormally) has been received by the local CRM.

¹ A notification of an error that causes the conversation to terminate has
been received from the remote CRM or occurred locally.

The error that causes the conversation to terminate may be an allocation error,
a conversation failure, or a deallocation of the conversation. The return code
indicating that the cause of termination is returned on the calls associated with
Send-Receive queue (half-duplex conversations only) or with the Send and
Receive queues (full-duplex conversations only). The state of the conversation
remains unchanged. Subsequent calls associated with the expedited queues
will be rejected with this return code until the conversation enters Reset state.

CM_CONVERSATION_TYPE_MISMATCH (LU 6.2 CRM ONLY)
The remote system rejected the conversation startup request because of one of
the following:

¹ The local program issued an Allocate call with conversation_type set to
either CM_MAPPED_CONVERSATION or CM_BASIC_CONVERSATION, and the
remote program does not support the respective conversation type.

¹ The local program issued an Allocate call with send_receive_mode set to
either CM_HALF_DUPLEX or CM_FULL_DUPLEX, and the remote program
does not support the respective send-receive mode.

For a half-duplex conversation, this return code is returned on a subsequent
call to the Allocate. For a full-duplex conversation, this return code is returned
on the Receive call. Calls associated with the Send queue that complete
before this return code is returned on the Receive call are notified of the
conversation type mismatch by a CM_ALLOCATION_ERROR return code.

 Appendix B. Return Codes and Secondary Information 663

 Return Codes

When this return_code value is returned to the program, the conversation is in
Reset state.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_DEALLOCATE_CONFIRM_REJECT (OSI TP CRM ONLY)
This return code is returned on a full-duplex conversation under one of the
following two conditions:

¹ The program issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_CONFIRM and the partner program responded negatively
to the Deallocate by issuing a Send_Error call in Confirm-Deallocate state.

¹ The program issued a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE and deallocate_type set to
CM_DEALLOCATE_CONFIRM, and the partner program responded negatively
to the Send-Data by issuing a Send_Error call in Confirm-Deallocate state.

A Receive call issued by the local program will receive a
CM_PROGRAM_ERROR_PURGING return code after all available data is
received. The state of the conversation remains unchanged.

CM_DEALLOCATED_ABEND
This return code may be returned under one of the following conditions:

¹ The remote program issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND, or a Cancel_Conversation call, or the remote
system has done so because of a remote program abnormal-ending
condition. If the remote program was in Receive state (half-duplex
conversations only) or in Send-Receive or Receive-Only state (full-duplex
conversations only) when the call was issued, information sent by the local
program and not yet received by the remote program is purged.

¹ The remote program terminated normally but did not deallocate the
conversation before terminating. Node services at the remote system
deallocated the conversation on behalf of the remote program.

¹ On a half-duplex conversation using an OSI TP CRM, the local program
issued a Send_Error call, and the error notification was delivered to the
remote CRM. Subsequently, the remote program issued a Deallocate call
with deallocate_type set to CM_DEALLOCATE_FLUSH, or with
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_NONE, or with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL,
sync_level set to CM_SYNC_POINT_NO_CONFIRM, and the conversation
currently not included in a transaction.

¹ begin_transaction_collision (OSI TP CRM only)
On a full-duplex conversation, there was a collision between a Deallocate
call with deallocate_type set to CM_DEALLOCATE_CONFIRM issued by the
local program and an Include_Partner_In_Transaction call issued by the
partner program. No log data is available.

¹ dealloc_confirm_collision (OSI TP CRM only)
On a full-duplex conversation, there was a collision between a Deallocate
call with deallocate_type set to CM_DEALLOCATE_CONFIRM issued by the
local program and a Deallocate call with deallocate_type set to
CM_DEALLOCATE_CONFIRM call issued by the partner program. No log
data is available.

664 CPI Communications Reference

 Return Codes

¹ On a full-duplex conversation in Send-Receive state or Receive-Only
state, the local program has issued a Deallocate call with deallocate_type
set to CM_DEALLOCATE_ABEND.

¹ CPI Communications deallocated the conversation because an implicit call
of tx_set_transaction_control or tx_begin failed.

For a half-duplex conversation, this return code is reported to the local program
on a call issued in Send or Receive state. For a full-duplex conversation, this
return code is returned on a Receive call issued in Send-Receive or
Receive-Only state. It is also returned on calls associated with the Send
queue (except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) under one of the following conditions:

¹ They are issued in Send-Only state.
¹ They are issued in Send-Receive state and complete before this return

code is returned on the Receive call.

The conversation is now in Reset state unless the return code was returned on
one of the calls associated with the Send queue, issued in Send-Receive state.
In that case, the conversation is in Receive-Only state.

CM_DEALLOCATED_ABEND_BO
This return code is returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and with the conversation
included in a transaction.

This return code may be returned under one of the following conditions:

¹ The remote program issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND or a Cancel_Conversation call, or the remote
system has done so because of a remote program abnormal-ending
condition.

¹ dealloc_cfm_collision_bo (OSI TP CRM only)
On a full-duplex conversation, there was a collision between a
Include_Partner_In_Transaction call issued by this program and a
Deallocate call with deallocate_type set to CM_DEALLOCATE_CONFIRM
issued by the partner program. The Include_Partner_In_Transaction call
got a return code of CM_OK. However, when the collision is detected, a
CM_DEALLOCATED_ABEND_BO return code is returned on a subsequent
call. No log data is available.

If the remote program was in Receive state (half-duplex conversations only) or
in Send-Receive , Prepared or Deferred-Deallocate states (full-duplex
conversations only) when it issued the Deallocate call, information sent by the
local program and not yet received by the remote program is purged.

For a half-duplex conversation, this return code is reported to the local program
on a call issued in Send or Receive state. For a full-duplex conversation, this
return code is reported to the local program on calls issued in Send-Receive ,
Sync-Point , Deferred-Deallocate , Sync-Point-Deallocate and Prepared
states. The conversation is now in Reset state. For a full-duplex conversation,
incoming information may not be received if this return code is returned on a
call associated with the Send queue.

The local conversation's context is in the Backout-Required condition, and the
program must issue a resource recovery backout call in order to restore all of
the context's protected resources to their status as of the last synchronization
point.

 Appendix B. Return Codes and Secondary Information 665

 Return Codes

CM_DEALLOCATED_ABEND_SVC (LU 6.2 CRM ONLY)
This return code is returned for basic conversations only. It may be returned
under one of the following conditions:

¹ The remote program, using an LU 6.2 application programming interface
and not using CPI Communications, issued a DEALLOCATE verb
specifying a TYPE parameter of ABEND_SVC. If the remote program was
in Receive state (half-duplex conversations only) or in Send-Receive or
Receive-Only state (full-duplex conversations only) when the verb was
issued, information sent by the local program and not yet received by the
remote program is purged.

¹ The remote program either terminated abnormally or terminated normally
but did not deallocate the conversation before terminating. Node services
at the remote system deallocated the conversation on behalf of the remote
program.

For a half-duplex conversation, this return code is reported to the local program
on a call issued in Send or Receive state. For a full-duplex conversation, this
return code is returned on a Receive call issued in Send-Receive or
Receive-Only state. It is also returned on calls associated with the Send
queue (except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) under one of the following conditions:

¹ They are issued in Send-Only state.
¹ They are issued in Send-Receive state and complete before this return

code is returned on the Receive call.

The conversation is now in Reset state unless the return code was returned on
one of the calls associated with the Send queue issued in Send-Receive state.
In that case, the conversation is in Receive-Only state.

CM_DEALLOCATED_ABEND_SVC_BO (LU 6.2 CRM ONLY)
This return code is returned only for basic conversations with sync_level set to
CM_SYNC_POINT. It is returned under the same conditions described under
CM_DEALLOCATED_ABEND_SVC above.

For a half-duplex conversation, this return code is reported to the local program
on a call issued in Send or Receive state. For a full-duplex conversation, this
return code is reported to the local program on calls issued in Send-Receive ,
Sync-Point , Deferred-Deallocate , Sync-Point-Deallocate , and Prepared
states. The conversation is now in Reset state.

The local conversation's context is in the Backout-Required condition and the
program must issue a resource recovery backout call in order to restore all of
the context's protected resources to their status as of the last synchronization
point.

CM_DEALLOCATED_ABEND_TIMER (LU 6.2 CRM ONLY)
This return code is returned only for basic conversations.

In addition, it is returned only when the remote program is using an LU 6.2
application programming interface and is not using CPI Communications.

The remote LU 6.2 transaction program issued a DEALLOCATE verb specifying
a TYPE parameter of ABEND_TIMER. For a half-duplex conversation, this
return code is reported to the local program on a call issued in Send or
Receive state. For a full-duplex conversation, this return code is returned on a
Receive call issued in Send-Receive or Receive-Only state.

666 CPI Communications Reference

 Return Codes

It is also returned on calls associated with the Send queue (except the
Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND) under one
of the following conditions:

¹ They are issued in Send-Only state.
¹ They are issued in Send-Receive state and complete before this return

code is returned on the Receive call.

The conversation is now in Reset state unless the return code was returned on
one of the calls associated with the Send queue issued in Send-Receive state.
In that case, the conversation is in Receive-Only state.

CM_DEALLOCATED_ABEND_TIMER_BO (LU 6.2 CRM ONLY)
This return code is returned only for basic conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and only when the remote
program is using an LU 6.2 application programming interface and is not using
CPI Communications.

The remote LU 6.2 transaction program issued a DEALLOCATE verb specifying
a TYPE parameter of ABEND_TIMER. If the conversation for the remote
program was in Receive state (half-duplex conversations only) or in
Send-Receive , Prepared , or Deferred-Deallocate state (full-duplex
conversations only) when the verb was issued, information sent by the local
program and not yet received by the remote program is purged. If the return
code is returned on a call associated with the Send queue for a full-duplex
conversation, incoming data may be purged. For a half-duplex conversation,
this return code is reported to the local program on a call issued in Send or
Receive state. For a full-duplex conversation, this return code is reported to
the local program on calls issued in Send-Receive , Sync-Point ,
Deferred-Deallocate , Sync-Point-Deallocate , and Prepared states. The
conversation is now in Reset state.

The local conversation's context is in the Backout-Required condition and the
program must issue a resource recovery backout call in order to restore all of
the context's protected resources to their status as of the last synchronization
point.

CM_DEALLOCATED_NORMAL
This return code may be returned under one of the following conditions:

¹ The remote program issued a Deallocate call or a Send_Data call with
send_type set to CM_SEND_AND_DEALLOCATE on a basic or mapped
conversation with one of the following:

– deallocate_type set to CM_DEALLOCATE_FLUSH
– deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and sync_level

set to CM_NONE
– deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set

to CM_SYNC_POINT_NO_CONFIRM, and the conversation is not currently
included in a transaction

For a half-duplex conversation, this return code is reported to the local
program on a call issued in Receive state. For a full-duplex conversation,
this return code is reported to the local program on the Receive call issued
in Send-Receive or Receive-Only state. If the conversation is a full-duplex
conversation using an OSI TP CRM, this return code is also returned on
calls associated with the Send queue (except the Deallocate call with
deallocate_type set to CM_DEALLOCATE_ABEND).

 Appendix B. Return Codes and Secondary Information 667

 Return Codes

¹ The local program issued a Deallocate call or a Send_Data call with
send_type set to CM_SEND_AND_DEALLOCATE and with one of the
following:

– deallocate_type set to CM_DEALLOCATE_FLUSH
– deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set

to CM_NONE, and the conversation is a full-duplex conversation using
an OSI TP CRM

– deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set
to CM_SYNC_POINT_NO_CONFIRM, and the conversation is not currently
included in a transaction

This return code is returned to the local program on a Receive call that was
outstanding when the Deallocate call was issued.

For a half-duplex conversation, the conversation is now in Reset state. For a
full-duplex conversation, the conversation can now be in one of the following
states:

¹ Reset state if this return code was returned on calls issued in
Receive-Only or Send-Only state.

¹ Send-Only state if this return code was returned on a Receive call issued
in Send-Receive state.

¹ Receive-Only state if this return code was returned on calls associated with
the Send queue (except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) issued in Send-Receive state.

CM_DEALLOCATED_NORMAL_BO
This return code is returned only for half-duplex conversations with sync_level
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and with the
conversation included in a transaction.

When the conversation is using an LU 6.2 CRM and the Send_Error call is
issued in Receive state, incoming information is purged by the system. This
purged information may include an abend deallocation notification from the
remote program or system. When such a notification is purged, CPI
Communications returns CM_DEALLOCATED_NORMAL_BO instead of one of the
following return codes:

 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_DEALLOCATED_ABEND_SVC_BO
 ¹ CM_DEALLOCATED_ABEND_TIMER_BO

The conversation is now in Reset state.

The local conversation's context is in the Backout-Required condition and the
program must issue a resource recovery backout call in order to restore all of
the context's protected resources to their status as of the last synchronization
point.

CM_EXP_DATA_NOT_SUPPORTED (LU 6.2 CRM ONLY)
An expedited data call was locally rejected because the remote CRM does not
support expedited data. The state of the conversation remains unchanged.

CM_INCLUDE_PARTNER_REJECT_BO (OSI TP CRM ONLY)
A prior Include_Partner_In_Transaction call issued by the program completed
locally with CM_OK but was rejected by the partner system. The partner system
rejected the request to join the transaction because the partner program is
already a part of another transaction and cannot be a part of two transactions
at the same time. The conversation is now in Reset state.

668 CPI Communications Reference

 Return Codes

The local conversation's context is in the Backout-Required condition and the
program must issue a resource recovery backout call in order to restore all of
the context's protected resources to their status as of the last synchronization
point.

CM_MAP_ROUTINE_ERROR
This return code is returned on Send_Mapped_Data, Receive_Mapped_Data,
Extract_Mapped_Initialization_Data, and Set_Mapped_Initialization_Data,
indicating that the underlying map routine aborted. If the error occurred during
a receive function, the incoming data is placed in the buffer un-decoded so the
application program can take appropriate action.

CM_NO_SECONDARY_INFORMATION
The Extract_Secondary_Information call did not complete successfully because
no secondary information was available for the specified call on the specified
conversation. The state of the conversation remains unchanged.

CM_OK
The call issued by the local program executed successfully (that is, the function
defined for the call, up to the point at which control is returned to the program,
was performed as specified). The state of the conversation is as defined for
the call.

CM_OPERATION_INCOMPLETE
A non-blocking operation has been started either on the conversation (when
conversation-level non-blocking is used) or on the queue with which the call is
associated (when queue-level non-blocking is used), but the operation has not
completed. This return code is returned when the call is suspended waiting for
incoming data, buffers, or other resources. A program must do one of the
following:

¹ For conversation-level non-blocking, use the Wait_For_Conversation call to
wait for the operation to complete and to retrieve the return code for the
completed operation.

¹ For queue-level non-blocking,

– If an OOID is associated with the outstanding operation, use the
Wait_For_Completion call to wait for the operation to complete and to
obtain the OOID and user field corresponding to the completed
operation.

– If a callback function is associated with the outstanding operation, use
the callback function and user field to properly handle the completed
operation.

The state of the conversation remains unchanged.

CM_OPERATION_NOT_ACCEPTED
A previous operation either on this conversation (when conversation-level
non-blocking is chosen) or on the same queue (when conversation-level
non-blocking is not chosen) is incomplete. This return code is returned when
there is an outstanding operation on the conversation or queue, as indicated by
the CM_OPERATION_INCOMPLETE return code to a previous call. On a system
that supports multiple program threads, when one thread has started an
operation that has not completed, this return code is returned on a call made by
another thread on the same conversation or associated with the same queue.
The state of the conversation remains unchanged.

 Appendix B. Return Codes and Secondary Information 669

 Return Codes

CM_PARM_VALUE_NOT_SUPPORTED
The specified value of a call parameter is not supported by the local system.
This return code is returned on a call with defined parameter values that are
optional for support of the call. It is returned when the implementation supports
the call but does not support the specified optional parameter value. The state
of the conversation remains unchanged.

CM_PARAMETER_ERROR
The local program issued a call specifying a parameter containing an invalid
argument. (“Parameters” include not only the parameters described as part of
the call syntax, but also characteristics associated with the conversation_ID.)
The source of the argument is considered to be outside the program definition,
such as an LU name supplied by a system administrator in the side information
and referenced by the Initialize_Conversation call.

The CM_PARAMETER_ERROR return code is returned on the call specifying the
invalid argument. The state of the conversation remains unchanged.

Note: Contrast this definition with the definition of the
CM_PROGRAM_PARAMETER_CHECK return code.

CM_PIP_NOT_SPECIFIED_CORRECTLY (LU 6.2 CRM ONLY)
This return code is returned only when the remote program is using an LU 6.2
application programming interface and is not using CPI Communications.

The remote CRM rejected the conversation startup request because the remote
program has one or more program initialization parameter (PIP) variables
defined and the initialization data specified by the local program is incorrect.
This return code is returned on a call issued after the Allocate for a half-duplex
conversation. For a full-duplex conversation, this return code is returned on the
Receive call. Calls associated with the Send queue that complete before this
return code is returned are notified of the error by an CM_ALLOCATION_ERROR
return code. When this return code is returned to the program, the
conversation is in Reset state.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_PRODUCT_SPECIFIC_ERROR
A product-specific error has been detected and a description of the error has
been entered into the product’s system error log. See product documentation
for an indication of conditions and state changes caused by this return code.

CM_PROGRAM_ERROR_NO_TRUNC (LU 6.2 CRM ONLY)
One of the following occurred:

¹ The remote program issued a Send_Error call on a mapped conversation
and the conversation for the remote program was in Send state (half-duplex
conversations only) or in Send-Receive or Send-Only state (full-duplex
conversations only). No truncation occurs at the mapped conversation
protocol boundary. This return code is reported to the local program on a
Receive call the program issues before receiving any data records or after
receiving one or more data records.

¹ The remote program issued a Send_Error call on a basic conversation, the
conversation for the remote program was in Send state (half-duplex
conversations only) or in Send-Receive or Send-Only state (full-duplex
conversations only), and the call did not truncate a logical record. No
truncation occurs at the basic conversation protocol boundary when a
program issues Send_Error before sending any logical records or after

670 CPI Communications Reference

 Return Codes

sending a complete logical record. This return code is reported to the local
program on a Receive call the program issues before receiving any logical
records or after receiving one or more complete logical records.

¹ The remote program issued a Send_Error call on a mapped or basic
half-duplex conversation and the conversation for the remote program was
in Send-Pending state. No truncation of data has occurred. This return
code indicates that the remote program has issued Set_Error_Direction to
set the error_direction characteristic to CM_SEND_ERROR. The return code
is reported to the local program on a Receive call the program issues
before receiving any data records or after receiving one or more data
records.

The conversation remains in Receive state for a half-duplex conversation or in
Send-Receive or Receive-Only state for a full-duplex conversation.

CM_PROGRAM_ERROR_PURGING
One of the following occurred:

¹ The remote program issued a Send_Error call on a basic or mapped
half-duplex conversation while its end of the conversation was in Receive
or Confirm state. The call may have caused information enroute to the
remote program to be purged (discarded), but not necessarily.

Purging occurs when the remote program issues Send_Error for a
half-duplex conversation in Receive state before receiving all the
information being sent by the local program. No purging occurs when the
remote program issues Send_Error for a conversation in Receive state if
the remote program has already received all the information sent by the
local program. Also, no purging occurs when the remote program issues
Send_Error for a conversation in Confirm state.

When information is purged, the purging can occur at the local system, the
remote system, or both.

¹ The remote program issued a Send_Error call on a mapped or basic
half-duplex conversation and the conversation for the remote program was
in Send-Pending state. No purging of data has occurred. This return code
indicates that the remote program has issued a Send_Error call with
error_direction set to CM_RECEIVE_ERROR.

¹ The full-duplex conversation is allocated using an OSI TP CRM and the
remote program issued a Send_Error call while its end of the conversation
was in Send-Receive , Send-Only , or Confirm-Deallocate state. Purging
of data sent by the local program may have occurred in transit, if the
remote program was in Send-Receive or Send-Only state when it issued
Send_Error.

For a half-duplex conversation, this return code is normally reported to the local
program on a call the program issues after sending some information to the
remote program. However, the return code can be reported on a call the
program issues before sending any information, depending on the call and
when it is issued. For a full-duplex conversation, this return code is returned on
the Receive call. The half-duplex conversation remains in Receive state. The
full-duplex conversation remains in Send-Receive or Receive-Only state.

 Appendix B. Return Codes and Secondary Information 671

 Return Codes

CM_PROGRAM_ERROR_TRUNC (LU 6.2 CRM ONLY)
The remote program issued a Send_Error call on a basic conversation, the
conversation for the remote program was in Send state (half-duplex
conversations only) or in Send-Receive or Send-Only state (full-duplex
conversations only), and the call truncated a logical record. Truncation occurs
at the basic conversation protocol boundary when a program begins sending a
logical record and then issues Send_Error before sending the complete logical
record. This return code is reported to the local program on a Receive call the
program issues after receiving the truncated logical record. The conversation
remains in Receive state for a half-duplex conversation or in Send-Receive or
Receive-Only state for a full-duplex conversation.

CM_PROGRAM_PARAMETER_CHECK
The local program issued a call in which a programming error has been found
in one or more parameters. (“Parameters” include not only the parameters
described as part of the call syntax, but also characteristics associated with the
conversation_ID, the CRM type used by the conversation, and the transaction
role (superior or subordinate) of the program.) The source of the error is
considered to be inside the program definition (under the control of the local
program). This return code may be caused by the failure of the program to
pass a valid parameter address. The program should not examine any other
returned variables associated with the call as nothing is placed in the variables.
The state of the conversation remains unchanged.

CM_PROGRAM_STATE_CHECK
This return code may be returned under one of the following conditions:

¹ The local program issued a call for a conversation in a state that was not
valid for that call.

¹ There is no incoming conversation. The Accept_Conversation call was
issued but did not complete successfully.

¹ No name is associated with the program. The Accept_Conversation or
Accept_Incoming call was issued but did not complete successfully.

¹ The program started but did not finish sending a logical record.

¹ There is no outstanding operation. The Wait_For_Completion or
Wait_For_Conversation call was issued but did not complete successfully.

¹ For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation's context is in the
Backout-Required condition. The program issued a call that is not allowed
for this conversation while its context is in this condition.

¹ The program has received a status_received value of
CM_JOIN_TRANSACTION. The program issued a call that is not allowed
before the program joins the transaction.

¹ The conversation is included in a transaction. The program issued a call
that is allowed only when the conversation is not currently included in a
transaction.

¹ The conversation is not currently included in a transaction. The program
issued a call that is allowed only when the conversation is included in a
transaction.

¹ A prior Deferred_Deallocate call is still in effect for the conversation. The
Prepare_To_Receive call was issued but is not allowed.

672 CPI Communications Reference

 Return Codes

¹ The program has not received a take-commit notification from its superior.
The Prepare call was issued but is not allowed.

The program should not examine any other returned variables associated with
the call as nothing is placed in the variables. The state of the conversation
remains unchanged.

CM_RESOURCE_FAILURE_NO_RETRY
This return code may be returned under one of the following conditions:

¹ A failure occurred that caused the conversation to be prematurely
terminated. For example, the logical connection being used for the
conversation was deactivated because of a logical-connection protocol
error, or the conversation was deallocated because of a protocol error
between the mapped conversation components of the systems. The
condition is not temporary, and the program should not retry the transaction
until the condition is corrected.

¹ The remote program terminated normally but did not deallocate the
conversation before terminating. Node services at the remote system
deallocated the conversation on behalf of the remote program.

This return code can be reported to the local program on a call it issues for a
conversation in any state other than Reset or Initialize state for a half-duplex
or full-duplex conversation, or Sync-Point , Sync-Point-Deallocate , or
Defer-Deallocate state for a full-duplex conversation.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

For a full-duplex conversation, this return code is returned on the Receive call,
at which time the conversation goes to Reset state. Calls associated with the
Send queue (except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) that complete before this return code is returned on
the Receive call also get this return code, and the conversation is in
Receive-Only or Reset state, depending on whether the call was issued in
Send-Receive or Send-Only state. The conversation is in Reset state if this a
half-duplex conversation.

CM_RESOURCE_FAIL_NO_RETRY_BO
This return code is returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and with the conversation
included in a transaction.

A failure occurred that caused the conversation to be prematurely terminated.
For example, the logical connection being used for the conversation was
deactivated because of a logical-connection protocol error, or the conversation
was deallocated because of a protocol error between the mapped conversation
components of the systems. The condition is not temporary, and the program
should not retry the transaction until the condition is corrected. This return
code can be reported to the local program on a call issued in any state other
than Reset or Initialize state. For a full-duplex conversation, incoming
information may not be received if this return code is returned on a call
associated with the Send queue. The conversation is in Reset state.

The local conversation's context is in the Backout-Required condition and the
program must issue a resource recovery backout call in order to restore all of
the context's protected resources to their status as of the last synchronization
point.

 Appendix B. Return Codes and Secondary Information 673

 Return Codes

CM_RESOURCE_FAILURE_RETRY
A failure occurred that caused the conversation to be prematurely terminated.
For example, the logical connection being used for the conversation was
deactivated because of a logical-connection outage such as a line failure, a
modem failure, or a crypto engine failure. The condition may be temporary,
and the program can retry the transaction.

This return code can be reported to the local program on a call it issues for a
conversation in any state other than Reset or Initialize state for a half-duplex
or full-duplex conversation, or Sync-Point , Sync-Point-Deallocate , or
Defer-Deallocate state for a full-duplex conversation. For a full-duplex
conversation, this return code is returned on the Receive call, at which time the
conversation goes to Reset state. Calls associated with the Send queue
(except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) that complete before this return code is returned on
the Receive call also get this return code, and the conversation is in
Receive-Only or Reset state, depending on whether the call was issued in
Send-Receive or Send-Only state. The conversation is in Reset state if this is
a half-duplex conversation.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_RESOURCE_FAILURE_RETRY_BO
This return code is returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and with the conversation
included in a transaction.

A failure occurred that caused the conversation to be prematurely terminated.
For example, the logical connection being used for the conversation was
deactivated because of a logical-connection outage such as a line failure, a
modem failure, or a crypto engine failure. The condition may be temporary,
and the program can retry the transaction. This return code can be reported to
the local program on a call it issues for a conversation in any state other than
Reset or Initialize . For a full-duplex conversation, incoming information may
not be received if this return code is returned on a call associated with the
Send queue. The conversation is in Reset state.

The local conversation's context is in the Backout-Required condition and the
program must issue a resource recovery backout call in order to restore all of
the context's protected resources to their status as of the last synchronization
point.

CM_RETRY_LIMIT_EXCEEDED
The conversation cannot be allocated on a logical connection because CPI
Communications has exceeded the local system's retry limit. When this
return_code value is returned to the program, the conversation is in Reset
state.

CM_SECURITY_MUTUAL_FAILED
This return code is returned only for conversations with
conversation_security_type set to CM_SECURITY_MUTUAL.

The local system failed the allocate request because the local system was not
able to authenticate the remote system. When this return_code value is
returned to the program, the conversation is in Reset state.

674 CPI Communications Reference

 Return Codes

CM_SECURITY_NOT_SUPPORTED
The local system rejected the allocate request because the local program
specified a required user name type and conversation security type combination
that is not supported between the local and remote systems. When this
return_code value is returned to the program, the conversation is in Reset
state.

CM_SECURITY_NOT_VALID
The remote system rejected the conversation startup request because the
access security information (provided by the local system) is invalid. This
return code is returned on a call issued after the Allocate for a half-duplex
conversation. For a full-duplex conversation, this return code is returned on the
Receive call. Calls associated with the Send queue that complete before this
return code is returned on the Receive call are notified of the error by a
CM_ALLOCATION_ERROR return code. When this return_code value is returned
to the program, the conversation is in Reset state.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_SEND_RCV_MODE_NOT_SUPPORTED
This return code indicates that the conversation startup request was rejected
because of one of the following:

¹ The send_receive_mode characteristic is set to CM_HALF_DUPLEX but the
remote system does not support half-duplex conversations.

¹ The send_receive_mode characteristic is set to CM_FULL_DUPLEX but the
remote system does not support full-duplex conversations.

The state of the conversation remains unchanged.

CM_SVC_ERROR_NO_TRUNC (LU 6.2 CRM ONLY)
This return code is returned only for basic conversations. In addition, it is
returned only when the remote program is using an LU 6.2 application
programming interface and is not using CPI Communications.

The remote LU 6.2 transaction program issued a Send_Error verb specifying a
TYPE parameter of SVC, the conversation for the remote program was in Send
state for a half-duplex conversation or in Send-Receive or Send-Only state for
a full-duplex conversation, and the verb did not truncate a logical record. This
return code is returned on a Receive call. When this return code is returned to
the local program on a half-duplex conversation, the conversation is in Receive
state. There is no state change for a full-duplex conversation.

CM_SVC_ERROR_PURGING (LU 6.2 CRM ONLY)
This return code is returned only for basic half-duplex conversations. In
addition, it is returned only when the remote program is using an LU 6.2
application programming interface and is not using CPI Communications.

The remote LU 6.2 transaction program issued a Send_Error verb specifying a
TYPE parameter of SVC; the conversation for the remote program was in
Receive , Confirm , or Sync-Point state; and the verb may have caused
information to be purged. This return code is normally reported to the local
program on a call the local program issues after sending some information to
the remote program. However, the return code can be reported on a call the
local program issues before sending any information, depending on the call and
when it is issued. When this return code is returned to the local program, the
conversation is in Receive state.

 Appendix B. Return Codes and Secondary Information 675

 Return Codes

CM_SVC_ERROR_TRUNC (LU 6.2 CRM ONLY)
This return code is returned only when the remote program is using an LU 6.2
application programming interface and is not using CPI Communications.

The remote LU 6.2 transaction program issued a Send_Error verb specifying a
TYPE parameter of SVC, the conversation for the remote program was in Send
state for a half-duplex conversation or in Send-Receive or Send-Only state for
a full-duplex conversation, and the verb truncated a logical record. Truncation
occurs at the basic conversation protocol boundary when a program begins
sending a logical record and then issues Send_Error before sending the
complete logical record. This return code is reported to the local program on a
Receive call the local program issues after receiving the truncated logical
record. The state of the conversation remains unchanged.

CM_SYNC_LVL_NOT_SUPPORTED_SYS
This return code is returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

The local program specified a sync_level of CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, which the remote system does not support.
This return code is returned on the Allocate call.

For a full-duplex conversation, this return code is returned on the Receive call if
an attempt to allocate the conversation was made by the local program running
on an OSI TP CRM and the remote system does not support the sync_level of
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM specified in the
conversation startup request. The remote system has rejected the allocation
attempt. Calls associated with the local Send queue that complete before this
return code is returned on the Receive call are notified of the error by a
CM_ALLOCATION_ERROR return code.

When this return_code value is returned to the program, the conversation is in
Reset state.

CM_SYNC_LVL_NOT_SUPPORTED_PGM
The remote system rejected the conversation startup request because the local
program specified a synchronization level (with the sync_level parameter) that
the remote program does not support. For a half-duplex conversation, this
return code is returned on a call issued after the Allocate. For a full-duplex
conversation, this return code is returned on the Receive call. Calls associated
with the Send queue that complete before this return code is returned on the
Receive call are notified of the error by a CM_ALLOCATION_ERROR return code.

When this return_code value is returned to the program, the conversation is in
Reset state.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_SYSTEM_EVENT
The Wait_For_Conversation call was being executed when an event (such as a
signal) handled by the program occurred. Wait_For_Conversation returns this
return code to allow the program to reissue the Wait_For_Conversation call or
to perform other processing. It is the responsibility of the event-handling portion
of the program to record sufficient information for the program to decide how to
proceed upon receipt of this return code. The state of the conversation remains
unchanged.

676 CPI Communications Reference

 Return Codes

CM_TAKE_BACKOUT
This return code is returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and with the conversation
included in a transaction.

The remote program, the local system, or the remote system issued a resource
recovery backout call, and the local application must issue a backout call in
order to restore all protected resources for a context to their status as of the
last synchronization point. The conversation's context is in the
Backout-Required condition upon receipt of this return code. Once the local
program issues a backout call, the conversation is placed in the state it was in
at the time of the last sync point operation.

CM_TPN_NOT_RECOGNIZED
The remote system rejected the conversation startup request because the local
program specified a remote program name that the remote system does not
recognize. For a half-duplex conversation, this return code is returned on a call
issued after the Allocate. For a full-duplex conversation, this return code is
returned on the Receive call. Calls associated with the Send queue that
complete before this return code is returned on the Receive call are notified of
the error by a CM_ALLOCATION_ERROR return code. When this return_code
value is returned to the program, the conversation is in Reset state.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_TP_NOT_AVAILABLE_NO_RETRY
The remote system rejected the conversation startup request because the local
program specified a remote program that the remote system recognizes but
cannot start. The condition is not temporary, and the program should not retry
the allocation request. For a half-duplex conversation, this return code is
returned on a call issued after the Allocate. For a full-duplex conversation, this
return code is returned on the Receive call. Calls associated with the Send
queue that complete before this return code is returned on the Receive call are
notified of the error by a CM_ALLOCATION_ERROR return code. When this
return_code value is returned to the program, the conversation is in Reset
state.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_TP_NOT_AVAILABLE_RETRY
The remote system rejected the conversation startup request because the local
program specified a remote program that the remote system recognizes but
currently cannot start. The condition may be temporary, and the program can
retry the allocation request. For a half-duplex conversation, this return code is
returned on a call issued after the Allocate. For a full-duplex conversation, this
return code is returned on the Receive call. Calls associated with the Send
queue that complete before this return code is returned on the Receive call are
notified of the error by a CM_ALLOCATION_ERROR return code. When this
return_code value is returned to the program, the conversation is in Reset
state.

If conversation_security_type is set to CM_SECURITY_MUTUAL, then this return
code may be returned on the Allocate call.

CM_UNKNOWN_MAP_NAME_RECEIVED
This return code is returned on Receive_Mapped_Data or
Extract_Mapped_Initialization_Data when the incoming map name is invalid

 Appendix B. Return Codes and Secondary Information 677

 Return Codes

because the map routine cannot recognize it. The function request returns the
undecoded incoming data in the buffer and expects the application program to
take appropriate action. This is a serious error which indicates that the two
partners do not have the necessary common understanding to communicate.
Under the OSI TP CRM, this would indicate that one of the partners has
violated the associations's application context. Unser the LU 6.2 CRM, both
partners should review what is expected and determine which partner is in
error.

CM_UNKNOWN_MAP_NAME_REQUESTED
This return code is returned on Send_Mapped_Data, or
Set_Mapped_Initialization_Data when a map_name is specified that the
underlying map routine finds is invalid. The function requested is not performed
and the application program can perform appropriate error recovery. A user
should check to ensure that the proper map routine is being used and the
spelling of the map_name.

CM_UNSUCCESSFUL
The call issued by the local program did not execute successfully. This return
code is returned on the unsuccessful call. The state of the conversation
remains unchanged.

678 CPI Communications Reference

 Secondary Information

 Secondary Information
Associated with the return code, there may be secondary information available for
the program to extract using the Extract_Secondary_Information call. The
secondary information can be used to determine the cause of the return code and
to aid problem determination. Based on its origin, the secondary information and
associated return code can belong to one of the four types, as shown in Table 63.

The following return codes, upon being returned to the program, are not associated
with any secondary information:

 ¹ CM_ALLOCATION_ERROR
 ¹ CM_BUFFER_TOO_SMALL
 ¹ CM_CALL_NOT_SUPPORTED
 ¹ CM_CONV_DEALLOC_AFTER_SYNCPT
 ¹ CM_CONVERSATION_CANCELLED
 ¹ CM_CONVERSATION_ENDING
 ¹ CM_DEALLOC_CONFIRM_REJECT
 ¹ CM_DEALLOCATED_NORMAL
 ¹ CM_DEALLOCATED_NORMAL_BO

Table 63. Secondary Information Types and Associated Return Codes

Secondary Information Type Associated Return Codes

Application-oriented CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_BO
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_SVC_BO
CM_DEALLOCATED_ABEND_TIMER
CM_DEALLOCATED_ABEND_TIMER_BO
CM_PROGRAM_ERROR_NO_TRUNC
CM_PROGRAM_ERROR_PURGING
CM_PROGRAM_ERROR_TRUNC
CM_SVC_ERROR_NO_TRUNC
CM_SVC_ERROR_PURGING
CM_SVC_ERROR_TRUNC

CPI Communications-defined CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_BO
CM_PARAMETER_ERROR
CM_PROGRAM_PARAMETER_CHECK
CM_PROGRAM_STATE_CHECK
CM_SECURITY_NOT_SUPPORTED

CRM-specific CM_ALLOCATE_FAILURE_NO_RETRY
CM_ALLOCATE_FAILURE_RETRY
CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_RESOURCE_FAIL_NO_RETRY_BO
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_RESOURCE_FAILURE_RETRY_BO
CM_RETRY_LIMIT_EXCEEDED
CM_SECURITY_MUTUAL_FAILED
CM_SECURITY_NOT_SUPPORTED
CM_SECURITY_NOT_VALID
CM_SEND_RCV_MODE_NOT_SUPPORTED
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_SYS
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_TPN_NOT_RECOGNIZED

Implementation-related CM_PRODUCT_SPECIFIC_ERROR

 Appendix B. Return Codes and Secondary Information 679

 Secondary Information

 ¹ CM_EXP_DATA_NOT_SUPPORTED
 ¹ CM_INCLUDE_PARTNER_REJECT_BO
 ¹ CM_MAP_ROUTINE_ERROR
 ¹ CM_NO_SECONDARY_INFORMATION
 ¹ CM_OK
 ¹ CM_OPERATION_INCOMPLETE
 ¹ CM_OPERATION_NOT_ACCEPTED
 ¹ CM_PARM_VALUE_NOT_SUPPORTED
 ¹ CM_SYSTEM_EVENT
 ¹ CM_TAKE_BACKOUT
 ¹ CM_UNSUCCESSFUL
 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED
 ¹ CM_UNKNOWN_MAP_NAME_REQUESTED

Except for application-oriented information, which is defined entirely by the
application, secondary information is a string of printable characters and, in general,
consists of the following information in the order described:

 1. Condition code
2. Description of the condition
3. Cause of the condition

 4. Suggested actions
5. Additional information from the implementation

For different secondary information types, the condition codes are in the range
specified in Table 64. In some cases, secondary information may not have all
these fields. Fields present in secondary information are separated by two
consecutive semicolons. The following sections provide examples of secondary
information in different types.

Table 64. Range of Condition Codes for Different Secondary Information Types

Secondary Information Type Condition Codes

CPI Communications-defined 1 - 4000

CRM-specific 4001 (for an LU 6.2 CRM),
4002 (for an OSI TP CRM)

Implementation-related 4003

 Application-Oriented Information
When a program discovers an abnormal condition during its processing, the
program may use log data to convey the condition to its partner program. The
partner program receives the log data when it issues the
Extract_Secondary_Information call. Since log data is application data, it is up to
the application designer to define and interpret its content.

680 CPI Communications Reference

 Secondary Information

CPI Communications-Defined Information
Table 65 lists all CPI Communications-defined secondary information.

Table 65 (Page 1 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

Associated with CM_PROGRAM_PARAMETER_CHECK: 0 < n < 101

The nth parameter specifies an invalid address. 101

The conversation_ID specifies an unassigned conversation
identifier.

102

The sync_level is set to CM_NONE. 103

The sync_level is set to CM_SYNC_POINT_NO_CONFIRM. 104

The send_receive_mode is set to CM_FULL_DUPLEX. 105

The send_receive_mode is set to CM_FULL_DUPLEX, and
conversation is using an LU 6.2 CRM.

106

The buffer_length specifies a value that is invalid for the
range permitted by the implementation.

107

The conversation is using an OSI TP CRM, and the
program is not the superior for the conversation.

108

The conversation is using an LU 6.2 CRM. 109

The requested_length specifies a value less than 0. 110

The transaction_control is set to
CM_CHAINED_TRANSACTIONS.

111

The sym_dest_name specifies an unrecognized value. 112

The sync_level is set to CM_CONFIRM. 113

The requested_length specifies a value that exceeds the
range permitted by the implementation.

114

The requested_length specifies a value less than 0 or
 greater than 86.

115

The expedited_receive_type specifies an undefined value. 116

The conversation is using an OSI TP CRM. 117

The TP_name specifies a name that is not associated with
this program.

118

The TP_name_length specifies a value less than 1 or
greater than 64.

119

The send_length specifies a value that exceeds the range
permitted by the implementation.

120

The conversation_type is set to CM_BASIC_CONVERSATION
and buffer contains an invalid logical record length (LL)
value of X'0000', X'0001', X'8000', X'8001'.

121

The send_type is set to CM_SEND_AND_PREP_TO_RECEIVE,
prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT, the conversation using an OSI TP CRM
is included in a transaction, and the program is not the
superior for the conversation.

122

 Appendix B. Return Codes and Secondary Information 681

 Secondary Information

Table 65 (Page 2 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

The send_type is set to CM_SEND_AND_PREP_TO_RECEIVE,
prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, the conversation using an
OSI TP CRM is included in a transaction, and the program
is not the superior for the conversation.

123

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT, the conversation
using an OSI TP CRM is included in a transaction, and the
program is not the superior for the conversation.

124

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, the
conversation using an OSI TP CRM is included in a
transaction, and the program is not the superior for the
conversation.

125

The send_length specifies a value less than 1 or greater
than 86.

126

The AE_qualifier_length specifies a value less than 1 or
greater than 1024.

127

The AE_qualifier_format specifies an undefined value. 128

The partner_ID is set to a non-null value. 129

The allocate_confirm specifies an undefined value. 130

The allocate_confirm specifies CM_ALLOCATE_CONFIRM,
and the conversation is using an LU 6.2 CRM.

131

The AP_title_length specifies a value less than 1 or greater
than 1024.

132

The AP_title_format specifies an undefined value. 133

The application_context_name_length specifies a value less
than 1 or greater than 256.

134

The begin_transaction specifies an undefined value. 135

The confirmation_urgency specifies an undefined value. 136

The security_password_length specifies a value less than 0
or greater than 10.

137

The conversation_security_type specifies an undefined
value.

138

The security_user_ID_length specifies a value less than 0
or greater than 10.

139

The conversation_type specifies an undefined value. 140

The conversation_type specifies
CM_MAPPED_CONVERSATION, and fill is set to
CM_FILL_BUFFER.

141

The conversation_type specifies
CM_MAPPED_CONVERSATION, and a prior call to
Set_Log_Data is still in effect.

142

682 CPI Communications Reference

 Secondary Information

Table 65 (Page 3 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

The deallocate_type specifies CM_DEALLOCATE_FLUSH,
sync_level is set to CM_SYNC_POINT, and
transaction_control is set to CM_CHAINED_TRANSACTIONS.

143

The deallocate_type specifies CM_DEALLOCATE_FLUSH,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, and
transaction_control is set to CM_CHAINED_TRANSACTIONS.

144

The deallocate_type specifies CM_DEALLOCATE_CONFIRM,
sync_level is set to CM_NONE, and the conversation is
using an LU 6.2 CRM.

145

The deallocate_type specifies CM_DEALLOCATE_CONFIRM,
sync_level is set to CM_SYNC_POINT, and the conversation
is using an LU 6.2 CRM.

146

The deallocate_type specifies CM_DEALLOCATE_CONFIRM,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, and the
conversation is using an LU 6.2 CRM.

147

The deallocate_type specifies CM_DEALLOCATE_CONFIRM,
sync_level is set to CM_SYNC_POINT, transaction_control is
set to CM_CHAINED_TRANSACTIONS, and the conversation
is using an OSI TP CRM.

148

The deallocate_type specifies CM_DEALLOCATE_CONFIRM,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM,
transaction_control is set to CM_CHAINED_TRANSACTIONS,
and the conversation is using an OSI TP CRM.

149

The deallocate_type specifies an undefined value. 150

The error_direction specifies CM_SEND_ERROR, and the
conversation is using an OSI TP CRM.

151

The error_direction specifies an undefined value. 152

The conversation_type is set to
CM_MAPPED_CONVERSATION.

153

The fill specifies an undefined value. 154

The initialization_data_length specifies a value less than 0
or greater than 10000.

155

The conversation_type is set to
CM_MAPPED_CONVERSATION, and the conversation is using
an LU 6.2 CRM.

156

The log_data_length specifies a value less than 0 or greater
than 512.

157

The map_name_length specifies a value less than 0 or
greater than 8.

158

The partner_ID_type specifies an undefined value. 159

The partner_ID_type specifies CM_PROGRAM_BINDING, and
partner_ID_length specifies a value less than 0 or greater
than 32767.

160

The partner_ID_type specifies CM_DISTINGUISHED_NAME or
CM_PROGRAM_FUNCTION_ID, and partner_ID_length
specifies a value less than 0 or greater than 1024.

161

The partner_ID_scope specifies an undefined value. 162

 Appendix B. Return Codes and Secondary Information 683

 Secondary Information

Table 65 (Page 4 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

The directory_syntax specifies an undefined value. 163

The directory_encoding specifies an undefined value. 164

The partner_LU_name_length specifies a value less than 1
or greater than 17.

165

The prepare_data_permitted specifies
CM_PREPARE_DATA_PERMITTED, and the conversation is
using an LU 6.2 CRM.

166

The prepare_data_permitted specifies an undefined value. 167

The prepare_to_receive_type specifies
CM_PREP_TO_RECEIVE_CONFIRM, and sync_level set to
CM_NONE.

168

The prepare_to_receive_type specifies
CM_PREP_TO_RECEIVE_CONFIRM, and sync_level set to
CM_SYNC_POINT_NO_CONFIRM.

169

The prepare_to_receive_type specifies an undefined value. 170

The processing_mode specifies an undefined value. 171

The program has chosen queue-level non-blocking for the
conversation.

172

The conversation_queue specifies a value that is not
defined for the send_receive_mode conversation
characteristic.

173

The program has chosen conversation-level non-blocking
for the conversation.

174

The queue_processing_mode specifies an undefined value. 175

The receive_type specifies an undefined value. 176

The return_control specifies an undefined value. 177

The send_receive_mode specifies CM_FULL_DUPLEX, and
sync_level is set to CM_CONFIRM.

178

The send_receive_mode specifies CM_FULL_DUPLEX, and
sync_level is set to CM_SYNC_POINT.

179

The send_receive_mode specifies CM_FULL_DUPLEX, and
send_type is set to CM_SEND_AND_PREP_TO_RECEIVE.

180

The send_receive_mode specifies CM_FULL_DUPLEX, and
the program has chosen conversation-level non-blocking for
the conversation.

181

The send_receive_mode specifies an undefined value. 182

The send_type specifies CM_SEND_AND_CONFIRM, and
sync_level is set to CM_NONE.

183

The send_type specifies CM_SEND_AND_CONFIRM,
 and sync_level is set to CM_SYNC_POINT_NO_CONFIRM.

184

The send_type specifies CM_SEND_AND_CONFIRM, and
send_receive_mode is set to CM_FULL_DUPLEX.

185

The send_type specifies
CM_SEND_AND_PREP_TO_RECEIVE, and
send_receive_mode is set to CM_FULL_DUPLEX.

186

684 CPI Communications Reference

 Secondary Information

Table 65 (Page 5 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

The send_type specifies an undefined value. 187

The sync_level specifies CM_NONE, deallocate_type is set
to CM_DEALLOCATE_CONFIRM, and the conversation is
using an LU 6.2 CRM.

188

The sync_level specifies CM_NONE, send_receive_mode is
set to CM_HALF_DUPLEX, and prepare_to_receive_type is
set to CM_PREP_TO_RECEIVE_CONFIRM.

189

The sync_level specifies CM_NONE, send_receive_mode is
set to CM_HALF_DUPLEX, and send_type is set to
CM_SEND_AND_CONFIRM.

190

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM,
send_receive_mode is set to CM_HALF_DUPLEX, and
send_type is set to CM_SEND_AND_CONFIRM.

191

The sync_level specifies CM_CONFIRM, and
send_receive_mode is set to CM_FULL_DUPLEX.

192

The sync_level specifies CM_SYNC_POINT, and
send_receive_mode is set to CM_FULL_DUPLEX.

193

The sync_level specifies CM_SYNC_POINT, deallocate_type
is set to CM_DEALLOCATE_FLUSH, and the conversation is
using an LU 6.2 CRM.

194

The sync_level specifies CM_SYNC_POINT, deallocate_type
is set to CM_DEALLOCATE_CONFIRM, and the conversation
is using an LU 6.2 CRM.

195

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM,
deallocate_type is set to CM_DEALLOCATE_FLUSH, and the
conversation is using an LU 6.2 CRM.

196

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM,
deallocate_type is set to CM_DEALLOCATE_CONFIRM, and
the conversation is using an LU 6.2 CRM.

197

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM,
send_receive_mode is set to CM_HALF_DUPLEX, and the
conversation is using an LU 6.2 CRM.

198

The sync_level specifies an undefined value. 199

The transaction_control specifies
CM_UNCHAINED_TRANSACTIONS, and the conversation is
using an LU 6.2 CRM.

200

The transaction_control specifies an undefined value. 201

The TP_name_length specifies a value less than 1 or
greater than 64.

202

The TP_name specifies a name that is restricted in some
way by node services.

203

The TP_name has incorrect internal syntax as defined by
node services.

204

The TP_name_length specifies a value less than 1 or
greater than 64.

205

The OOID_list_count specifies a value less than 1. 206

 Appendix B. Return Codes and Secondary Information 685

 Secondary Information

Table 65 (Page 6 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

The number of OOIDs in OOID_list is less than the value
specified in OOID_list_count.

207

The OOID_list contains an unassigned OOID. 208

The timeout specifies a value less than 0. 209

The send_length calculated by the map routine, specifies a
value less than < 1 or > 86.

210

The conversation_type is set to CM_BASIC_CONVERSATION. 211

The transaction_control is set to
CM_CHAINED_TRANSACTION.

212 - 1000

Reserved for future conditions to be associated with
CM_PROGRAM_PARAMETER_CHECK.

Associated with CM_PROGRAM_STATE_CHECK:

1001

No incoming conversation exists. 1002

No name is associated with the program. A program
associates a name with itself by issuing the
Specify_Local_TP_Name call.

1003

The conversation is not in Initialize-Incoming state. 1004

The conversation is not in Initialize state. 1005

The conversation's context is in the Backout-Required
condition.

1006

The conversation is not in Send , Send-Pending , or
Defer-Receive state.

1007

The conversation is basic, and the program started but did
not finish sending a logical record.

1008

The conversation is not in Confirm , Confirm-Send , or
Confirm-Deallocate state.

1009

The conversation is not in Confirm-Deallocate state. 1010

The conversation is not in Send or Send-Pending state. 1011

The deallocate_type is set to CM_DEALLOCATE_FLUSH, and
the conversation is currently included in a transaction.

1012

The deallocate_type is set to CM_DEALLOCATE_CONFIRM,
and the conversation is currently included in a transaction.

1013

The program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin call to
the X/Open TX interface to join the transaction.

1014

The conversation is not in Send-Receive or Send-Only
state.

1015

The conversation is not in Send-Receive state. 1016

The conversation is not currently included in a transaction. 1017

The conversation is in Initialize-Incoming state. 1018

The conversation is in Initialize state. 1019

686 CPI Communications Reference

 Secondary Information

Table 65 (Page 7 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

The conversation's context is not in transaction. The
program must issue a tx_begin call to the X/Open TX
interface to start a transaction.

1020

The conversation is already included in the current
transaction.

1021

The conversation is using an OSI TP CRM,
begin_transaction is set to CM_BEGIN_EXPLICIT, and the
conversation is not currently included in a transaction.

1022

The conversation is using an OSI TP CRM, and the
program is not the root of the transaction and has not
received a take-commit notification from its superior.

1023

A prior call to Deferred_Deallocate is still in effect for the
conversation.

1024

The receive_type is set to CM_RECEIVE_AND_WAIT, and the
conversation is not in Send , Receive , Send-Pending , or
Prepared state.

1025

The receive_type is set to CM_RECEIVE_IMMEDIATE, and
the conversation is not in Receive or Prepared state.

1026

The conversation is not in Send-Receive , Receive-Only , or
Prepared state.

1027

The conversation is not in Send , Receive , Send-Pending ,
Confirm , Confirm-Send , Confirm-Deallocate , Sync-Point ,
Sync-Point-Send , Sync-Point-Deallocate , or Prepared
state.

1028

For a conversation using an OSI TP CRM, the
Request_To_Send call is not allowed from Send state.

1029

The conversation is not in Send , Send-Pending ,
Sync-Point , Sync-Point-Send , or Sync-Point-Deallocate
state.

1030

The program received a take-commit notification not ending
in *_DATA_OK, and the conversation is in Sync-Point ,
Sync-Point-Send , or Sync-Point-Deallocate state.

1031

The send_type is set to CM_SEND_AND_CONFIRM or
CM_SEND_AND_PREP_TO_RECEIVE, and the conversation is
in Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state.

1032

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is not set to CM_DEALLOCATE_ABEND, and
the conversation is in Sync-Point , Sync-Point-Send , or
Sync-Point-Deallocate state.

1033

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is set to CM_DEALLOCATE_FLUSH,
sync_level is set to CM_SYNC_POINT, and the conversation
is included in a transaction.

1034

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is set to CM_DEALLOCATE_FLUSH,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, and the
conversation is included in a transaction.

1035

 Appendix B. Return Codes and Secondary Information 687

 Secondary Information

Table 65 (Page 8 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is set to CM_DEALLOCATE_CONFIRM,
sync_level is set to CM_SYNC_POINT, and the conversation
is included in a transaction.

1036

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is set to CM_DEALLOCATE_CONFIRM,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, and the
conversation is included in a transaction.

1037

The conversation is not in Send-Receive , Send-Only ,
Sync-Point , or Sync-Point-Deallocate state.

1038

The program received a take-commit notification not ending
in *_DATA_OK, and the conversation is in Sync-Point or
Sync-Point-Deallocate state.

1039

The send_type is set to CM_SEND_AND_DEALLOCATE,
deallocate_type is not set to CM_DEALLOCATE_ABEND, and
the conversation is in Sync-Point or
Sync-Point-Deallocate state.

1040

The conversation is not in Send-Receive , Send-Only , or
Confirm-Deallocate state.

1041

The conversation_security_type is not set to
CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG.

1042

The conversation is not in Initialize or Initialize-Incoming
state.

1043

The conversation is not in Initialize or Receive state. 1044

The conversation is not in Initialize or Send-Receive state. 1045

The conversation_queue specifies
CM_INITIALIZATION_QUEUE, and the conversation is not in
Initialize or Initialize-Incoming state.

1046

The conversation_queue specifies a value other than
CM_INITIALIZATION_QUEUE, and the conversation is in
Initialize-Incoming state.

1047

The conversation is not in Send , Receive , Send-Pending ,
Defer-Receive , or Defer-Deallocate state.

1048

There is no outstanding operation associated with any of
the OOIDs specified in OOID_list or by use of a defined
value of OOID_list_count has completed.

1049

There were no conversation-level outstanding operations for
the program.

1050

The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, transaction_control is set to
CM_CHAINED_TRANSACTIONS, and the conversation's
context is not in transaction.

1051

The program has issued a successful Accept_Conversation
or Accept_Incoming call on a conversation with sync_level
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM
and using an OSI TP CRM, and the program has not
issued a Receive call on this conversation.

1052 - 2000

688 CPI Communications Reference

 Secondary Information

Table 65 (Page 9 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

Reserved for future conditions to be associated with
CM_PROGRAM_STATE_CHECK.

Associated with CM_PARAMETER_ERROR:

2001

The mode_name characteristic (set from side information or
by Set_Mode_Name) specifies a mode name that is not
recognized by the LU as being valid.

2002

The mode_name characteristic (set from side information or
by Set_Mode_Name) specifies a mode name that the local
program does not have the authority to specify. For
example, SNASVCMG requires special authority with LU
6.2.

2003

The TP_name characteristic (set from side information or by
Set_TP_Name) specifies a transaction program name that
the local program does not have the appropriate authority to
allocate a conversation to. For example, SNA service
programs require special authority with LU 6.2.

2004

The TP_name characteristic (set from side information or by
Set_TP_Name) specifies an SNA service transaction
program and conversation_type is set to
CM_MAPPED_CONVERSATION.

2005

The partner_LU_name characteristic (set from side
information or by Set_Partner_LU_Name) specifies a
partner LU name that is not recognized as being valid.

2006

The AP_title characteristic (set from side information or
using Set_AP_Title call or the AE_qualifier characteristic
(set from side information or using Set_AE_Qualifier call),
or the application_context_name characteristic (set from
side information or using the
Set_Application_Context_Name call) specifies an AP title or
an AE qualifier or an application context name that is not
recognized as being valid.

2007

The conversation_security_type characteristic is set to
CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG, and the
security_password characteristic or the security_user_ID
characteristic (set from side information or by Set calls) or
both, are null.

2008

The conversation_security_type characteristic is set to
CM_SECURITY_DISTRIBUTED or CM_SECURITY_MUTUAL,
and the partner principal name (set from the program
binding) is null or is not recognized by the CRM as being
valid.

2009

A partner_ID characteristic was provided that caused a
search of the distributed directory, but no program binding
was retrieved.

2010

The program binding for the conversation, either specified
directly on the Set_Partner_ID call or obtained from the
distributed directory, was invalid.

2011 - 2500

 Appendix B. Return Codes and Secondary Information 689

 Secondary Information

Table 65 (Page 10 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

Reserved for future conditions to be associated with
CM_PARAMETER_ERROR.

Associated with CM_SECURITY_NOT_SUPPORTED:

2501

The conversation_security_type does not provide for the
user name type indicated by the required_user_name_type
field in the program binding.

2502 - 3000

Reserved for future conditions to be associated with
CM_SECURITY_NOT_SUPPORTED.

Associated with CM_DEALLOCATED_ABEND (full-duplex
conversations using an OSI TP CRM only):

3001

There was a collision between a Deallocate call with
deallocate_type set to CM_DEALLOCATE_CONFIRM issued
by the local program and an
Include_Partner_In_Transaction call issued by the partner
program. No log data is available.

3002

There was a collision between a Deallocate call with
deallocate_type set to CM_DEALLOCATE_CONFIRM issued
by the local program and a Deallocate call with
deallocate_type set to CM_DEALLOCATE_CONFIRM call
issued by the partner program. No log data is available.

3003

CPI Communications deallocated the incoming conversation
because an implicit call of tx_set_transaction_control failed
with TX return code TX_PROTOCOL_ERROR.

3004

CPI Communications deallocated the incoming conversation
because an implicit call of tx_set_transaction_control failed
with TX return code TX_FAIL.

3005

CPI Communications deallocated the conversation because
an implicit call of tx_begin failed with TX return code
TX_OUTSIDE.

3006

CPI Communications deallocated the conversation because
an implicit call of tx_begin failed with TX return code
TX_PROTOCOL_ERROR.

3007

CPI Communications deallocated the conversation because
an implicit call of tx_begin failed with TX return code
TX_ERROR.

3008

CPI Communications deallocated the conversation because
an implicit call of tx_begin failed with TX return code
TX_FAIL.

3009 - 3500

Reserved for future conditions to be associated with
CM_DEALLOCATED_ABEND.

Associated with CM_DEALLOCATED_ABEND_BO
(full-duplex conversations using an OSI TP CRM only):

3501

690 CPI Communications Reference

 Secondary Information

Table 65 (Page 11 of 11). CPI Communications-Defined Secondary Information

Condition Code Description

There was a collision between a
Include_Partner_In_Transaction call issued by the local
program and a Deallocate call with deallocate_type set to
CM_DEALLOCATE_CONFIRM issued by the partner program.
No log data is available.

3502 - 4000

Reserved for future conditions to be associated with
CM_DEALLOCATED_ABEND_BO.

 Appendix B. Return Codes and Secondary Information 691

 Secondary Information

CRM-Specific Secondary Information
When the underlying CRM discovers an abnormal condition, the condition, identified
by a CRM-specific message, is then mapped to a CPI Communications return code
and returned to the program. The CRM-specific message is the SNA sense data
information for the CRM type of LU 6.2 and OSI diagnostic information for the CRM
type of OSI TP.

Table 66. Examples of LU 6.2 CRM-Specific Secondary Information

Associated with
CM_CONVERSATION_TYPE_MISMATCH:

4001;;1008 6034 The FMH-5 Attach
command specifies a conversation type
that the receiver does not support for
the specified transaction program. This
sense data is sent only in FMH-7.

Associated with
CM_TPN_NOT_RECOGNIZED:

 4001;;1008 6021 Transaction Program
Name Not Recognized: The FMH-5
Attach command specifies a transaction
program name that the receiver does
not recognize. This sense data is sent
only in FMH-7.

Associated with
CM_SYNC_LVL_NOT_SUPPORTED_SYS:

 4001;;1008 6040 Invalid Attach
Parameter: A parameter in the FMH-5
Attach command conflicts with the
statements of LU capability previously
provided in the BIND negotiation.

Note: See Chapter 10 of System Network Architecture Formats (IBM document number
GA27-3136) for complete information about sense data.

Table 67. Examples of OSI TP CRM-Specific Secondary Information

Associated with
CM_RESOURCE_FAILURE_NO_RETRY,
CM_RESOURCE_FAIL_NO_RETRY_BO:

 4002;;recipient-unknown.
 4002;;no-reason-given.
 4002;;permanent-failure.
 4002;;protocol-error.

Associated with
CM_TPN_NOT_RECOGNIZED:

 4002;;recipient-tpsu-title-unknown.
 4002;;recipient-tpsu-title-required.

Associated with
CM_SYNC_LEVEL_NOT_SUPPORTED_SYS:

 4002;;functional-unit-not-supported.
 4002;;functional-unit-combination-not-supported.

692 CPI Communications Reference

 Implementation-Related Information
An implementation may return CM_PRODUCT_SPECIFIC_ERROR to the program for
any errors that are specific to the implementation or to the system that supports the
implementation. In this case, secondary information is the error message defined
by the implementation or system.

Table 68. Examples of Implementation-Related Secondary Information

Example 1:

4003;;0001 STACK_TOO_SMALL;;A minimum stack size of 3500 bytes is required by CPI-C
when a call is issued. CPI-C runs on the stack of the program that calls it. When the call
was issued, CPI-C found the stack size to be less than the minimum size.;;Programmer
Response: Increase the stack size specified in the .DEF file used in linking. If your program
calls CPI-C from a thread it has created, be sure the stack size on the NewThreadStack
parameter of your DosCreateThread function call is large enough.

Example 2:

4003;;0002 CANNOT_ALLOCATE_SHARED_SEGMENT;;Communications Manager could
not allocate the shared segment named \SHAREMEM\ACSLGMEM.;;Programmer Response:
A necessary shared segment is not currently available. There is no corrective action that
your program can take. This problem will recur until the Communications Manager is
stopped and restarted. Operator Response: Communications Manager must be restarted to
correct the problem.

 Appendix B. Return Codes and Secondary Information 693

694 CPI Communications Reference

 State Tables

 Appendix C. State Tables

The CPI Communications state tables show when and where different CPI
Communications calls can be issued. For example, a program must issue an
Initialize_Conversation call before issuing an Allocate call, and it cannot issue a
Send_Data call before the conversation is allocated.

As described in “Program Flow—States and Transitions” on page 52, CPI
Communications uses the concepts of states and state transitions to simplify
explanations of the restrictions that are placed on the calls. A number of states are
defined for CPI Communications and, for any given call, a number of transitions are
allowed.

¹ Table 69 on page 704 describes the state transitions that are allowed for the
CPI Communications calls on half-duplex conversations.

¹ Table 72 on page 718 describes the state transitions that are allowed for CPI
Communications calls on full-duplex conversations.

¹ Table 70 on page 710 shows the effects of SAA resource recovery Commit
and Backout calls on CPI Communications conversation states for half-duplex
conversations.

¹ Table 71 on page 711 shows the effects of X/Open TX resource recovery calls
on CPI Communications conversation states for half-duplex conversations.

¹ Table 73 on page 723 shows the effects of SAA resource recovery calls on
CPI Communications conversation states for full-duplex conversations.

¹ Table 74 on page 724 shows the effects of X/Open TX resource recovery calls
on CPI Communications conversation states for full-duplex conversations.

How to Use the State Tables
Each CPI Communications call8 is represented in the table by a group of input
rows. The possible conversation states are shown across the top of the table. The
states correspond to the columns of the matrix. The intersection of input (row) and
state (column) represents the validity of a CPI Communications call in that
particular state and, for valid calls, what state transition (if any) occurs.

The first row of each call input grouping (delineated by horizontal lines) contains the
name of the call and a symbol in each state column showing whether the call is
valid for that state. A call is valid for a given state only if that state's column
contains a downward pointing arrow (↓) on this row. If the [sc] or [pc] symbol
appears in a state's column, the call is invalid for that state and receives a return
code of CM_PROGRAM_STATE_CHECK or CM_PROGRAM_PARAMETER_CHECK,
respectively. No state transitions occur for invalid CPI Communications calls.

8 Only the calls that affect conversation states are included in the State table.

 Copyright IBM Corp. 1996, 1998 695

 State Tables

The remaining input rows in the call group show the state transitions for valid calls.
The transition from one conversation state to another often depends on the value of
the return code returned by the call; therefore, a given call group may have several
rows, each showing the state transitions for a particular return code or set of return
codes.

For calls that are processed in non-blocking processing mode, the following special
considerations apply:

¹ When a call gets the CM_OPERATION_INCOMPLETE return code, the operation
remains in progress as an oustanding operation on the conversation (when
conversation-level non-blocking is used) or on the queue with which the call is
associated (when queue-level non-blocking is used). Any other calls (except
Cancel_Conversation) on that conversation or queue get a return code of
CM_OPERATION_NOT_ACCEPTED, and no conversation state transition occurs.

¹ The CM_OPERATION_NOT_ACCEPTED return code is not included in the state
table.

For conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the following special considerations apply:

¹ A state transition symbol ending with a caret (for example, 1_ or –_) means that
the conversation's context may be in the Backout-Required condition following
the call. (Note that the state change for the conversation is indicated by the
first character of these symbols.)

¹ When a context is in the Backout-Required condition, its protected
conversations are restricted from issuing certain CPI Communications calls.
These calls are designated in the table with the symbol ↓′. Where this symbol
appears, the call is valid in this state unless the conversation is protected and
its context is in the Backout-Required condition. If the call is invalid, a
return_code of CM_PROGRAM_STATE_CHECK is returned and no conversation
state transition occurs.

 Example
For an example of how the half-duplex state table might be used, look at the group
of input rows for the Deallocate(C) call. The (C) here means that this group is for
the Deallocate call when either deallocate_type is set to
CM_DEALLOCATE_CONFIRM or deallocate_type is set to
CM_DEALLOCATE_SYNC_LVL and sync_level is set to CM_CONFIRM. The first row
in this group shows that this call is valid only when the conversation is in Send or
Send-Pending state. For all other states, either the call is invalid and a
return_code of CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK is returned, or the call is not possible.

Beneath the input row containing Deallocate(C) , there are several rows showing
the possible return codes returned by this call. Since the call is valid only in Send
and Send-Pending states, only these states' columns contain transition values on
these rows. These transition values provide the following information:

¹ The conversation goes from Send or Send-Pending state to Reset state (state
1) when a return code abbreviated as “ok,” “da,” or “rf” is returned. See
“Return Code Values []” on page 700 to find out what these abbreviations
mean.

696 CPI Communications Reference

 Half-Duplex State Tables

¹ The conversation goes from Send state to Reset state when a return code
abbreviated as “ae” is returned. A return code abbreviated as “ae” will never
be returned when this call is issued from Send-Pending state.

¹ The conversation goes from Send or Send-Pending state to Receive state
(state 4) when a return code abbreviated as “ep” is returned.

¹ There is no state transition when a return code of
CM_PROGRAM_PARAMETER_CHECK (“pc”) or CM_OPERATION_INCOMPLETE
(“oi”) is returned.

¹ There is no state transition for a conversation in Send state when a return code
of CM_PROGRAM_STATE_CHECK (“sc”) is returned. This return code will never
be returned when this call is issued from Send-Pending state.

Explanation of Half-Duplex State Table Abbreviations
Abbreviations are used in the state table to indicate the different permutations of
calls and characteristics. There are four categories of abbreviations:

¹ Conversation characteristic abbreviations are enclosed by parentheses—
(. . .)

¹ Conversation queue abbreviations are enclosed by parentheses—
(. . .)

¹ return_code abbreviations are enclosed by brackets — [. . .]

¹ data_received and status_received abbreviations are enclosed by braces and
separated by a comma— { . . . , . . . }. The abbreviation before the comma
represents the data_received value, and the abbreviation after the comma
represents the value of status_received.

The next sections show the abbreviations used in each category.

Conversation Characteristics ()
The following abbreviations are used for conversation characteristics:

Abbreviation Meaning

A deallocate_type is set to CM_DEALLOCATE_ABEND

B send_type is set to CM_BUFFER_DATA

 Appendix C. State Tables 697

 Half-Duplex State Tables

Abbreviation Meaning

C For a Deallocate call, C means one of the following:

¹ deallocate_type is set to CM_DEALLOCATE_CONFIRM
¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and

sync_level is set to CM_CONFIRM
¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and

sync_level is set to CM_SYNC_POINT, but the conversation is not
currently included in a transaction

For a Prepare_To_Receive call, C means one of the following:

¹ prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM
¹ prepare_to_receive_type is set to

CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
CM_CONFIRM

¹ prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
CM_SYNC_POINT, but the conversation is not currently included in a
transaction

For a Send_Data call, C means the following:

¹ send_type is set to CM_SEND_AND_CONFIRM

D(x) send_type is set to CM_SEND_AND_DEALLOCATE. x represents the
deallocate_type and can be A, C, F, or S. Refer to the appropriate
entries in this table for a description of these values.

F For a Deallocate call, F means one of the following:

¹ deallocate_type is set to CM_DEALLOCATE_FLUSH
¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either

sync_level is set to CM_NONE or the conversation is in
Initialize_Incoming state

¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, but the
conversation is not currently included in a transaction

For a Prepare_To_Receive call, F means one of the following:

¹ prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH
¹ prepare_to_receive_type is set to

CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
CM_NONE

¹ prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently
included in a transaction

For a Send_Data call, F means the following:

¹ send_type is set to CM_SEND_AND_FLUSH

I receive_type is set to CM_RECEIVE_IMMEDIATE

P(x) send_type is set to CM_SEND_AND_PREP_TO_RECEIVE. x represents
the prepare_to_receive_type and can be C, F, or S. Refer to the
appropriate entries in this table for a description of these values.

698 CPI Communications Reference

 Half-Duplex State Tables

Abbreviation Meaning

S For a Deallocate call, S means the following:

¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level
is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and
the conversation is currently included in a transaction

For a Prepare_To_Receive call, S means the following:

¹ prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and the
conversation is currently included in a transaction

W receive_type is set to CM_RECEIVE_AND_WAIT.

Conversation Queues ()
The following abbreviations are used for conversation queues:

Abbreviation Meaning

N conversation_queue is set to CM_INITIALIZATION_QUEUE

Q conversation_queue is set to one of the following:

 ¹ CM_SEND_RECEIVE_QUEUE
 ¹ CM_EXPEDITED_SEND_QUEUE
 ¹ CM_EXPEDITED_RECEIVE_QUEUE

 Appendix C. State Tables 699

 Half-Duplex State Tables

Return Code Values []
The following abbreviations are used for return codes:

Abbreviation Meaning

ae For an Allocate call, ae means one of the following:

 ¹ CM_ALLOCATE_FAILURE_NO_RETRY
 ¹ CM_ALLOCATE_FAILURE_RETRY
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_RETRY_LIMIT_EXCEEDED
 ¹ CM_SECURITY_MUTUAL_FAILED
 ¹ CM_SECURITY_NOT_SUPPORTED
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_TPN_NOT_RECOGNIZED

For any other call, ae means one of the following:

 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_TPN_NOT_RECOGNIZED

bo CM_TAKE_BACKOUT. This return code is returned only for conversations
with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

bs CM_BUFFER_TOO_SMALL

da da means one of the following:

 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_TIMER

db db is returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and means one of
the following:

 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_DEALLOCATED_ABEND_SVC_BO
 ¹ CM_DEALLOCATED_ABEND_TIMER_BO

dn CM_DEALLOCATED_NORMAL

dnb CM_DEALLOCATED_NORMAL_BO. This return code is returned only for
conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

ed ed means one of the following:

 ¹ CM_EXP_DATA_NOT_SUPPORTED
 ¹ CM_CONVERSATION_ENDING

700 CPI Communications Reference

 Half-Duplex State Tables

Notes:

1. The return code CM_PRODUCT_SPECIFIC_ERROR is not included in the state
table because the state transitions caused by this return code are
product-specific.

2. The CM_OPERATION_NOT_ACCEPTED return code is not included in the state
table. If conversation-level non-blocking is being used on a conversation, a
program receives CM_OPERATION_NOT_ACCEPTED when it issues any call
(except Cancel_Conversation) on the conversation while a previous operation is
still in progress, regardless of the state. If conversation-level non-blocking is
not being used on a conversation, a program receives
CM_OPERATION_NOT_ACCEPTED when it issues any call associated with a

Abbreviation Meaning

en en means one of the following:

 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_SVC_ERROR_NO_TRUNC

ep ep means one of the following:

 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_SVC_ERROR_PURGING

et et means one of the following:

 ¹ CM_PROGRAM_ERROR_TRUNC
 ¹ CM_SVC_ERROR_TRUNC

mp mp means one of the following:

 ¹ CM_UNKNOWN_MAP_NAME_REQUESTED
 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED
 ¹ CM_MAP_ROUTINE_ERROR

ns CM_NO_SECONDARY_INFORMATION

oi CM_OPERATION_INCOMPLETE

ok CM_OK

pb CM_INCLUDE_PARTNER_REJECT_BO

pc CM_PROGRAM_PARAMETER_CHECK. This return code means an error
was found in one or more parameters. For calls illegally issued in
Reset state, pc is returned because the conversation_ID is undefined in
that state.

pe CM_PARAMETER_ERROR

pn CM_PARM_VALUE_NOT_SUPPORTED

rb rb means one of the following:

 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO

rf rf means one of the following:

 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY

sc CM_PROGRAM_STATE_CHECK

se CM_SYSTEM_EVENT

un CM_UNSUCCESSFUL

 Appendix C. State Tables 701

 Half-Duplex State Tables

queue that has a previous operation still in progress, regardless of the state.
No conversation state transition occurs.

3. The CM_CALL_NOT_SUPPORTED return code is not included in the state table.
It is returned when the local system provides an entry point for the call but
does not support the function requested by the call, regardless of the state. No
state transition occurs.

data_received and status_received { , }
The following abbreviations are used for the data_received values:

The following abbreviations are used for the status_received values:

Abbreviation Meaning

dr Means one of the following:

 ¹ CM_DATA_RECEIVED
 ¹ CM_COMPLETE_DATA_RECEIVED
 ¹ CM_INCOMPLETE_DATA_RECEIVED

nd CM_NO_DATA_RECEIVED

* Means one of the following:

 ¹ CM_DATA_RECEIVED
 ¹ CM_COMPLETE_DATA_RECEIVED
 ¹ CM_NO_DATA_RECEIVED

Abbreviation Meaning

cd CM_CONFIRM_DEALLOC_RECEIVED

co CM_CONFIRM_RECEIVED

cs CM_CONFIRM_SEND_RECEIVED

jt CM_JOIN_TRANSACTION

no CM_NO_STATUS_RECEIVED

po CM_PREPARE_OK

se CM_SEND_RECEIVED

tc CM_TAKE_COMMIT or CM_TAKE_COMMIT_DATA_OK. These values are
returned only for conversations with sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM.

td CM_TAKE_COMMIT_DEALLOCATE or
CM_TAKE_COMMIT_DEALLOC_DATA_OK. These values are returned only
for conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

ts CM_TAKE_COMMIT_SEND or CM_TAKE_COMMIT_SEND_DATA_OK. These
values are returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

702 CPI Communications Reference

 Half-Duplex State Tables

Table Symbols for the Half-Duplex State Table
The following symbols are used in the state table to indicate the condition that
results when a call is issued from a certain state:

Symbol Meaning

/ Cannot occur. CPI Communications either will not allow this input or will never
return the indicated return codes for this input in this state.

– Remain in current state

1-18 Number of next state

↓ It is valid to make this call from this state. See the table entries immediately
below this symbol to determine the state transition resulting from the call.

↓′ For a conversation not using sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, or not currently included in a transaction, this is
equivalent to ↓. If the conversation has sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is currently included in a
transaction, however, ↓′ means it is valid to make this call from this state unless
the conversation's context is in the Backout-Required condition. In that case,
the call is invalid and CM_PROGRAM_STATE_CHECK is returned. For valid calls,
see the table entries immediately below this symbol to determine the state
transition resulting from the call.

_ For a conversation not using sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM or not currently included in a transaction, this
symbol should be ignored. For a conversation using sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and currently included in a
transaction, when this symbol follows a state number or a – (for example, 1_ or
–_), it means the conversation's context may be in the Backout-Required
condition following the call.

A conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and currently included in a transaction goes to
the state it was in at the completion of the most recent synchronization point. If
there was no prior synchronization event, the side of the conversation that was
initialized with an Allocate call goes to Send state, and the side of the
conversation that accepted the conversation goes to Receive state.

On CICS/ESA systems, when the program is using CPI Communications to
communicate with releases of CICS earlier than CICS/ESA Version 3.2, the
program's conversation state after a backout is one of the following:

¹ If the program initiated the backout, its side of the conversation is placed in
Send state.

¹ If the program did not initiate the backout, its side of the conversation is
placed in Receive state.

¹ If the program's side of the conversation was in Defer-Deallocate state when
the backout occurred, the conversation is placed in Reset state.

% Wait_For_Completion and Wait_For_Conversation can only be issued when one
or more calls have received a return_code of CM_OPERATION_INCOMPLETE.
When Wait_For_Completion or Wait_For_Conversation completes with a
return_code of CM_OK, it indicates one or more conversations on which an
operation has completed. Each of those conversations then moves to the
appropriate state as determined by the return code for the operation that is now
completed and by the other factors that determine state transitions.

? For programs using the X/Open TX interface with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, the state of the conversation
with respect to the transaction is unknown.

 Appendix C. State Tables 703

 Half-Duplex State Tables

Table 69 (Page 1 of 6). States and Transitions for CPI Communications Calls on Half-Duplex Conversations
 Inputs States 1-8 and 14 are used by all conversations Used only by conversations with sync_level set to CM_SYNC_POINT or

CM_SYNC_POINT_NO_CONFIRM

Reset

 1

Ini-
tialize

2

Send

 3

Re-
ceive

4

Send-
Pend-
ing
 5

Con-
firm

6

Con-
firm-
Send
 7

Con-
firm-
Deal-
locate
8

Defer-
Re-
ceive
 9

Defer-
Deal-
locate

10

Sync-
Point

11

Sync-
Point
Send

12

Sync-
Point
Deal-
locate
13

Pre-
pared

18

Ini- tialize-
In- coming

14

Accept_Conversation ↓ / / / / / / / / / / / / / /

[ok] 4

[da,sc] –

Accept_Incoming [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓

[ok] 4

[da] 1

[oi,pc,sc] –

Allocate [pc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 3

[ae] 1

[oi,pc,pe,sc,un] –

Cancel_Conversation [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok] 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_

[pc] – – – – – – – – – – – – – –

Confirm [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc]

[ok] – 3 4

[ae] 1 / 1

[bo] –_ 3_ 4_

[da,rf] 1 1 1

[db,pb,rb] 1_ 1_ 1_

[ep] 4 4 4

[oi,pc] – – –

[sc] – / /

Confirmed [pc] [sc] [sc] [sc] [sc] ↓′ ↓′ ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 4 3 1

[oi,pc] – – –

Deallocate(A) [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ /

[ok] 1 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_

[oi,pc] – – – – – – – – – – – – –

Deallocate(C) [pc] [sc] ↓ [sc] ↓ [sc] [sc] [sc] / / / / / / /

[ok,da,rf] 1 1

[ae] 1 /

[ep] 4 4

[oi,pc] – –

[sc] – /

Deallocate(F) [pc] [sc] ↓ [sc] ↓ [sc] [sc] [sc] / / / / / / ↓

[ok] 1 1 1

[oi,pc] – – –

[sc] – / /

Deallocate(S) [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] /

[ok] 10 10

[oi,pc] – –

[sc] – /

Deferred_Deallocate 9 [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] –10 –10

[ae] 1 /

[bo] –_ 3_

[db,rb] 1_ 1_

[ep] 4 4

[oi,pc] – –

[pb] 1_ /

Extract_AE_Qualifier [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_AP_Title [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_Appl_Ctx_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_Conv_Context [pc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,sc] – – – – – – – – – – – –

Extract_Conv_State [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – – – – – –

[bo] / – – – – – / – – – – – – /

Extract_Conv_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

704 CPI Communications Reference

 Half-Duplex State Tables

Table 69 (Page 2 of 6). States and Transitions for CPI Communications Calls on Half-Duplex Conversations
Extract_Init_Data [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,bs,pc,bs] – – – – – – – – – – – – –

Extract_Mapped_
 Initialization_Data

[pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc,mp,bs] – – – – – – – – – – – – –

Extract_Mode_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_Part_LU_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_Partner_ID ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,bs,pc] – – – – – – – – – – – – – –

Extr_Sec_User_ID [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_Secondary_Info ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,ns,pc] – – – – – – – – – – – – – – –

Extr_Send_Rcv_Mode [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_Sync_Level [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extr_Transaction_Control [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Extract_TP_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Flush [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc]

[ok] – 3 4

[oi,pc] – – –

Include_Ptr_In_Trans 9 [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] – 3

[ae] 1 /

[da,rf] 1 1

[ep] 4 4

[oi,pc,sc] – –

Init_Conversation 11 ↓ / / / / / / / / / / / / / /

[ok] 2

[pc] –

Init_For_Incoming ↓ / / / / / / / / / / / / / /

[ok] 14

Prepare [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] ↓′ ↓′ [sc] [sc] [sc] [sc] [sc]

[ok] 18 18 18 18

[ae] 1 / 1 1

[bo] –_ –_ –_ –_

[db,pb,rb] 1_ 1_ 1_ 1_

[ep] 4 4 4 4

[oi,pc,sc] – – – –

Prepare_To_Receive(C) [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,ep] 4 4

[ae] 1 /

[bo] 4_ 4_

[da,rf] 1 1

[db,pb,rb] 1_ 1_

[oi,pc] – –

[sc] – /

Prepare_To_Receive(F) [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 4 4

[oi,pc] – –

[sc] – /

Prepare_To_Receive(S) [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 9 9

[oi,pc] – –

[sc] – /

 Appendix C. State Tables 705

 Half-Duplex State Tables

Table 69 (Page 3 of 6). States and Transitions for CPI Communications Calls on Half-Duplex Conversations
Receive(I) [pc] [sc] [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓′ [sc]

[ok] {dr,no} – –

[ok] {dr,se} 5 /

[ok] {nd,se} 3 /

[ok] {*,cd} 8 /

[ok] {*,co} 6 /

[ok] {*,cs} 7 /

[ok] {*,jt} – /

[ok] {*,po} / –

[ok] {*,tc} 11 /

[ok] {*,td} 13 /

[ok] {*,ts} 12 /

[ae] 1 1

[bo] –_ –_

[da,dn,rf] 1 /

[db,pb,rb] 1_ 1_

[en,ep] – 4

[et] – /

[pc,sc,un] – –

Receive(W) [pc] [sc] ↓′ ↓′ ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓′ [sc]

[ok] {dr,no} 4 – 4 –

[ok] {dr,se} 5 5 – /

[ok] {nd,se} – 3 3 /

[ok] {*,cd} 8 8 8 /

[ok] {*,co} 6 6 6 /

[ok] {*,cs} 7 7 7 /

[ok] {*,jt} – – / /

[ok] {*,po} / / / –

[ok] {*,tc} 11 11 11 /

[ok] {*,td} 13 13 13 /

[ok] {*,ts} 12 12 12 /

[ae] 1 1 / 1

[bo] 4_ –_ 4_ –_

[da,dn,rf] 1 1 1 /

[db,pb,rb] 1_ 1_ 1_ 1_

[en,ep] 4 – 4 4

[et] / – / /

[oi,pc] – – – –

[sc] – – / –

Rcv_Exp_Data [pc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,bs,ed,oi,pc] – – – – – – – – – – – –

Receive_Mapped_Data(I) [pc] [sc] [sc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓′ [sc]

[ok] {dr,no} – –

[ok] {dr,se} 5 /

[ok] {nd,se} 3 /

[ok] {*,cd} 8 /

[ok] {*,co} 6 /

[ok] {*,cs} 7 /

[ok] {*,jt} – /

[ok] {*,po} / –

[ok] {*,tc} 11 /

[ok] {*,td} 13 /

[ok] {*,ts} 12 /

[ae] 1 1

[bo] –_ –_

[da,dn,rf] 1 /

[db,pb,rb] 1_ 1_

[en,ep] – 4

[et] – /

[pc,sc,un] – –

706 CPI Communications Reference

 Half-Duplex State Tables

Table 69 (Page 4 of 6). States and Transitions for CPI Communications Calls on Half-Duplex Conversations
Receive_Mapped_Data(W) [pc] [sc] ↓′ ↓′ ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓′ [sc]

[ok] {dr,no} 4 – 4 –

[ok] {dr,se} 5 5 – /

[ok] {nd,se} – 3 3 /

[ok] {*,cd} 8 8 8 /

[ok] {*,co} 6 6 6 /

[ok] {*,cs} 7 7 7 /

[ok] {*,jt} – – / /

[ok] {*,po} / / / –

[ok] {*,tc} 11 11 11 /

[ok] {*,td} 13 13 13 /

[ok] {*,ts} 12 12 12 /

[ae] 1 1 / 1

[bo] 4_ –_ 4_ –_

[da,dn,rf] 1 1 1 /

[db,pb,rb] 1_ 1_ 1_ 1_

[en,ep] 4 – 4 4

[et] / – / /

[oi,pc] – – – –

[sc] – – / –

Request_To_Send 12 [pc] [sc] ↓′ ↓′ ↓′ ↓′ ↓′ ↓′ [sc] [sc] ↓′ ↓′ ↓′ ↓′ [sc]

[oi,ok,pc] – – – – – – – – – –

[sc] / – / / / / / / / /

Send_Data [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] ↓′ ↓′ ↓′ [sc] [sc]

(B) [ok] – 3 – – –

(C) [ok] – 3 / / /

(D(A)) [ok] 1_ 1_ 1_ 1_ 1_

(D(C)) [ok] 1 1 / / /

(D(F)) [ok] 1 1 / / /

(D(S)) [ok] 10 10 / / /

(F) [ok] – 3 – – –

(P(C)) [ok] 4 4 / / /

(P(F)) [ok] 4 4 / / /

(P(S)) [ok] 9 9 / / /

[ae] 1 / / / /

[bo] –_ 3_ –_ –_ –_

[da,rf] 1 1 / / /

[db,rb] 1_ 1_ 1_ 1_ 1_

[ep] 4 4 / / /

[oi,pc] – – – – –

[pb] 1_ / / / /

[sc] – / – – –

Send_Error [pc] [sc] ↓′ ↓′ ↓′ ↓′ ↓′ ↓′ [sc] [sc] ↓′ ↓′ ↓′ [sc] [sc]

[ok] – 3 3 3 3 3 3 3 3

[ae,da] 1 1 / / / / / / /

[bo] –_ –_ 3_ / / / –_ –_ –_

[db] 1_ 1_ / / / / / / /

[dn] / 1 / / / / / / /

[dnb] / 1_ / / / / / / /

[ep] 4 – / / / / / / /

[oi,pc] – – – – – – – – –

[pb] 1_ 1_ / / / / / / /

[rb] 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_

[rf] 1 1 1 1 1 1 1 1 1

[sc] – – / / / / – – –

Send_Exp_Data [pc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,ed,oi,pc] – – – – – – – – – – – –

Send_Mapped_Data [pc] [sc] ↓′ [sc] ↓′ [sc] [sc] [sc] [sc] [sc] ↓′ ↓′ ↓′ [sc] [sc]

 Appendix C. State Tables 707

 Half-Duplex State Tables

Table 69 (Page 5 of 6). States and Transitions for CPI Communications Calls on Half-Duplex Conversations
[mp]

(B) [ok] – 3 – – –

(C) [ok] – 3 / / /

(D(A)) [ok] 1_ 1_ 1_ 1_ 1_

(D(C)) [ok] 1 1 / / /

(D(F)) [ok] 1 1 / / /

(D(S)) [ok] 10 10 / / /

(F) [ok] – 3 – – –

(P(C)) [ok] 4 4 / / /

(P(F)) [ok] 4 4 / / /

(P(S)) [ok] 9 9 / / /

[ae] 1 / / / /

[bo] –_ 3_ –_ –_ –_

[da,rf] 1 1 / / /

[db,rb] 1_ 1_ 1_ 1_ 1_

[ep] 4 4 / / /

[oi,pc] – – – – –

[pb] 1_ / / / /

[sc] – / – – –

Set_AE_Qualifier [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Allocate_Confirm [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_AP_Title [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Appl_Context_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Begin_Transaction [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Set_Confirmation_Urgency [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – – – – – –

Set_Conv_Sec_PW [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Conv_Sec_Type [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] –

Set_Conv_Sec_User_ID [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Conv_Type [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Deallocate_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Set_Error_Direction [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – – – – – –

Set_Fill [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – – – – – –

Set_Initialization_Data [pc] ↓ [sc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] – –

Set_Log_Data [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – – – – – –

Set_Mapped_
 Initialization_Data

[ok,pc.mp] ↓ [sc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] – –

Set_Mode_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Partner_ID [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Partner_LU_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Prep_Data_Permitted [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Set_Prep_To_Rcv_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Set_Processing_Mode [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – – – – – –

Set_Q_Callback_Func(N) [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓

[ok,pc] – –

Set_Q_Callback_Func(Q) [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Set_Q_Proc_Mode(N) [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓

[ok,pc] – –

708 CPI Communications Reference

 Half-Duplex State Tables

Table 69 (Page 6 of 6). States and Transitions for CPI Communications Calls on Half-Duplex Conversations
Set_Q_Proc_Mode(Q) [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Set_Receive_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – – – – – –

Set_Return_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Send_Rcv_Mode [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Send_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] – – – – – – – – – – – – –

Set_Sync_Level [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] –

Set_TP_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓

[ok,pc] – –

Set_Transaction_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Test_Req_To_Send_Rcd [pc] [sc] ↓′ ↓′ ↓′ [sc] [sc] [sc] ↓′ ↓′ [sc] [sc] [sc] [sc] [sc]

[ok,pc] – – – – –

Wait_For_Completion ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok] / % % % % % % % % % % % % % %

[pc] / – – – – – – – – – – – – – –

Wait_For_Conversation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok] / % % % % % % % % % % % % % %

[sc,se] / – – – – – – – – – – – – – –

9 The state table entries for Deferred_Deallocate and Include_Partner_In_Transaction calls are for conversations using an OSI TP
CRM only. These calls get the CM_PROGRAM_PARAMETER_CHECK if issued on a conversation using an LU 6.2 CRM, regardless
of the state.

10 CPI Communications suspends action on the Deferred_Deallocate call until the transaction is committed or backed out.

11 While the Initialize_Conversation call can be issued only once for any given conversation, a program can issue multiple
Initialize_Conversation calls to establish concurrent conversations with different partners. For more information, see “Multiple
Conversations” on page 30.

12 The Request_To_Send call is not allowed in Send, Send-Pending, Confirm-Send, Confirm-Deallocate, Sync-Point,
Sync-Point-Send or Sync-Point-Deallocate , or Prepared state when the conversation is using an OSI TP CRM. The call gets
the CM_PROGRAM_STATE_CHECK return code.

 Appendix C. State Tables 709

 Half-Duplex State Tables

Effects of Calls to the SAA Resource Recovery Interface on
Half-Duplex Conversations

Table 70 shows the state transitions resulting from calls to the SAA resource
recovery interface on half-duplex conversations. This table applies only to
conversations with sync_level set to CM_SYNC_POINT.

The following abbreviations are used for return codes in Table 70:

Abbreviation Meaning

bo RR_BACKED_OUT

bom RR_BACKED_OUT_OUTCOME_MIXED

bop RR_BACKED_OUT_OUTCOME_PENDING

com RR_COMMITTED_OUTCOME_MIXED

cop RR_COMMITTED_OUTCOME_PENDING

ok RR_OK

sc RR_PROGRAM_STATE_CHECK

Table 70. States and Transitions for Protected Half-Duplex Conversations (CPIRR)

Inputs

Reset

1

Ini-
tialize

2

Send

3

Re-
ceive

4

Send-
Pend-
ing

5

Con-
firm

6

Con-
firm-
Send

7

Con-
firm-
Deal-
locate
8

Defer-
Re-
ceive

9

Defer-
Deal-
locate

10

Sync-
Point

11

Sync-
Point
Send

12

Sync-
Point
Deal-
locate
13

Pre-
pared

18

Ini-
tialize_

In-
coming

14

Commit call [sc]13 ↓14 ↓ [sc] ↓ [sc] [sc] ↓14 ↓ ↓ ↓ ↓ ↓ ↓ ↓14

[ok,com,cop] – –15 3 – 4 1 4 3 1 316 –
[bo,bom,bop] – # # – # # # # # # –

[sc] – – – – – – – – – – –

Backout call ↓17 ↓14 ↓ ↓ ↓ ↓ ↓ ↓14 ↓ ↓ ↓ ↓ ↓ ↓ ↓14

[ok,bop,bom] – – # # # # # – # # # # # # –

13 When a program started by an incoming conversation startup request issues a Commit call before issuing an Accept_Conversation
call, a state check results. The Commit call has no effect on other conversations in Reset state.

14 Conversations in Initialize , Initialize-Incoming , or Confirm-Deallocate state are not affected by Commit and Backout calls.

15 The conversation goes to Reset state if the local program had issued a Deferred_Deallocate call prior to issuing the Commit call.

16 The conversation goes to Reset or Receive state if the local program had issued a Deferred_Deallocate call or a
Prepare_To_Receive call with prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, respectively, prior to entering
Prepared state.

17 When a program started by an incoming conversation startup request issues a Backout call before issuing an
Accept_Conversation call, the underlying conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

710 CPI Communications Reference

 Half-Duplex State Tables

Effects of Calls on Half-Duplex Conversations to the X/Open TX
Interface

Table 71 shows the state transitions resulting from calls to the X/Open TX interface
on half-duplex conversations. This table applies only to conversations with
sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

The following abbreviations are used for return codes in Table 71:

Abbreviation Meaning

bo TX_ROLLBACK or TX_ROLLBACK_NO_BEGIN

bom TX_ROLLBACK_MIXED or TX_ROLLBACK_MIXED_NO_BEGIN

bop TX_ROLLBACK_HAZARD or TX_ROLLBACK_HAZARD_NO_BEGIN

com TX_MIXED or TX_MIXED_NO_BEGIN

cop TX_HAZARD or TX_HAZARD_NO_BEGIN

fa TX_FAIL

ok TX_OK or TX_NO_BEGIN

sc TX_PROTOCOL_ERROR

Table 71. States and Transitions for Protected Half-Duplex Conversations (X/Open TX)

Inputs

Reset

1

Ini-
tialize

2

Send

3

Re-
ceive

4

Send-
Pend-
ing

5

Con-
firm

6

Con-
firm-
Send

7

Con-
firm-
Deal-
locate
8

Defer-
Re-
ceive

9

Defer-
Deal-
locate

10

Sync-
Point

11

Sync-
Point
Send

12

Sync-
Point
Deal-
locate
13

Pre-
pared

18

Ini-
tialize_

In-
coming

14

tx_commit [sc]18 ↓19 ↓ [sc] ↓ [sc] [sc] ↓19 ↓ ↓ ↓ ↓ ↓ ↓ ↓19

[ok,com,cop] – –20 3 – 4 1 4 3 1 321 –
[bo,bom,bop] – # # – # # # # # # –

[sc] – – – – – – – – – – –
[fa] – ? ? – ? ? ? ? ? ? –

tx_rollback ↓22 ↓19 ↓ ↓ ↓ ↓ ↓ ↓19 ↓ ↓ ↓ ↓ ↓ ↓ ↓19

[ok,bop,bom] – – # # # # # – # # # # # # –
[fa] – ? ? ? ? ? – ? ? ? ? ? ? –

tx_begin – – – – – – – – – – / / / / –

tx_close – – – – – – – – – – – – – – –

tx_info – – – – – – – – – – – – – – –

tx_open – – – – – – – – – – – – – – –

tx_set_commit_return – – – – – – – – – – – – – – –

tx_set_trans_control – – – – – – – – – – – – – – –

tx_set_trans_timeout – – – – – – – – – – – – – – –

18 When a program started by an incoming conversation startup request issues a tx_commit call before issuing an
Accept_Conversation call, a state check results. The tx_commit call has no effect on other conversations in Reset state.

19 Conversations in Initialize , Initialize-Incoming , or Confirm-Deallocate state are not affected by tx_commit and tx_rollback calls.

20 The conversation goes to Reset state if the local program had issued a Deferred_Deallocate call prior to issuing the tx_commit
call.

21 The conversation goes to Reset or Receive state if the local program had issued a Deferred_Deallocate call or a
Prepare_To_Receive call with prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, respectively, prior to entering
Prepared state.

22 When a program started by an incoming conversation startup request issues a tx_rollback call before issuing an
Accept_Conversation call, the underlying conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

 Appendix C. State Tables 711

 Full-Duplex State Tables

Explanation of Full-Duplex State Table Abbreviations
Abbreviations are used in the state table to indicate the different permutations of
calls and characteristics. There are four categories of abbreviations:

¹ Conversation characteristic abbreviations are enclosed by parentheses—
(. . .)

¹ Conversation queue abbreviations are enclosed by parentheses—
(. . .)

¹ return_code abbreviations are enclosed by brackets — [. . .]

¹ data_received and status_received abbreviations are enclosed by braces and
separated by a comma— { . . . , . . . }. The abbreviation before the comma
represents the data_received value, and the abbreviation after the comma
represents the value of status_received.

The next sections show the abbreviations used in each category.

Conversation Characteristics ()
The following abbreviations are used for conversation characteristics:

Abbreviation Meaning

A deallocate_type is set to CM_DEALLOCATE_ABEND

B send_type is set to CM_BUFFER_DATA

C deallocate_type is set to CM_DEALLOCATE_CONFIRM

D(x) send_type is set to CM_SEND_AND_DEALLOCATE. x represents the
deallocate_type and can be A, C, F, or S. Refer to the appropriate
entries in this table for a description of these values.

F For a Deallocate call, F means one of the following:

¹ deallocate_type is set to CM_DEALLOCATE_FLUSH
¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either

sync_level is set to CM_NONE or the conversation is in
Initialize_Incoming state

¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, but the
conversation is not currently included in a transaction

For a Send_Data call, F means the following:

¹ send_type is set to CM_SEND_AND_FLUSH

I receive_type is set to CM_RECEIVE_IMMEDIATE

S For a Deallocate call, S means the following:

¹ deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level
is set to CM_SYNC_POINT_NO_CONFIRM and the conversation is
currently included in a transaction

W receive_type is set to CM_RECEIVE_AND_WAIT.

712 CPI Communications Reference

 Full-Duplex State Tables

Conversation Queues ()
The following abbreviations are used for conversation queues:

Abbreviation Meaning

N conversation_queue is set to CM_INITIALIZATION_QUEUE

Q conversation_queue is set to one of the following:

 ¹ CM_SEND_QUEUE
 ¹ CM_RECEIVE_QUEUE
 ¹ CM_EXPEDITED_SEND_QUEUE
 ¹ CM_EXPEDITED_RECEIVE_QUEUE

Return Code Values []
The following table shows abbreviations that are used for return codes. The state
table for CPI Communications calls on full-duplex conversations follows.

Abbreviation Meaning

ae For an Allocate call, ae means one of the following:

 ¹ CM_ALLOCATE_FAILURE_NO_RETRY
 ¹ CM_ALLOCATE_FAILURE_RETRY
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY
 ¹ CM_RETRY_LIMIT_EXCEEDED
 ¹ CM_SECURITY_MUTUAL_FAILED
 ¹ CM_SECURITY_NOT_SUPPORTED
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_TPN_NOT_RECOGNIZED

For any other call, ae means one of the following:

 ¹ CM_ALLOCATION_ERROR
 ¹ CM_CONVERSATION_TYPE_MISMATCH
 ¹ CM_PIP_NOT_SPECIFIED_CORRECTLY
 ¹ CM_SECURITY_NOT_VALID
 ¹ CM_SEND_RCV_MODE_NOT_SUPPORTED
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_PGM
 ¹ CM_SYNC_LVL_NOT_SUPPORTED_SYS
 ¹ CM_TP_NOT_AVAILABLE_NO_RETRY
 ¹ CM_TP_NOT_AVAILABLE_RETRY
 ¹ CM_TPN_NOT_RECOGNIZED

bo CM_TAKE_BACKOUT. This return code is returned only for conversations
with sync_level set to CM_SYNC_POINT_NO_CONFIRM.

bs CM_BUFFER_TOO_SMALL

da da means one of the following:

 ¹ CM_DEALLOCATED_ABEND
 ¹ CM_DEALLOCATED_ABEND_SVC
 ¹ CM_DEALLOCATED_ABEND_TIMER

 Appendix C. State Tables 713

 Full-Duplex State Tables

Abbreviation Meaning

db db is returned only for conversations with sync_level set to
CM_SYNC_POINT_NO_CONFIRM and means one of the following:

 ¹ CM_DEALLOCATED_ABEND_BO
 ¹ CM_DEALLOCATED_ABEND_SVC_BO
 ¹ CM_DEALLOCATED_ABEND_TIMER_BO

dn CM_DEALLOCATED_NORMAL

dr CM_DEALLOCATE_CONFIRM_REJECT

ds CM_CONV_DEALLOCATED_AFTER_SYNCPT. This return code is returned
only for conversations with sync_level set to
CM_SYNC_POINT_NO_CONFIRM.

ed This return code is reported for expedited-data calls only. ed means
one of the following:

 ¹ CM_EXP_DATA_NOT_SUPPORTED
 ¹ CM_CONVERSATION_ENDING

en en means one of the following:

 ¹ CM_PROGRAM_ERROR_NO_TRUNC
 ¹ CM_SVC_ERROR_NO_TRUNC

mp mp means one of the following:

 ¹ CM_UNKNOWN_MAP_NAME_REQUESTED
 ¹ CM_UNKNOWN_MAP_NAME_RECEIVED
 ¹ CM_MAP_ROUTINE_ERROR

ep ep means one of the following:

 ¹ CM_PROGRAM_ERROR_PURGING
 ¹ CM_SVC_ERROR_PURGING

et et means one of the following:

 ¹ CM_PROGRAM_ERROR_TRUNC
 ¹ CM_SVC_ERROR_TRUNC

ns CM_NO_SECONDARY_INFORMATION

oi CM_OPERATION_INCOMPLETE

ok CM_OK

pb CM_INCLUDE_PARTNER_REJECT_BO

pc CM_PROGRAM_PARAMETER_CHECK. This return code means an error
was found in one or more parameters. For calls illegally issued in
Reset state, pc is returned because the conversation_ID is undefined in
that state.

pe CM_PARAMETER_ERROR

pn CM_PARM_VALUE_NOT_SUPPORTED

rb rb means one of the following:

 ¹ CM_RESOURCE_FAIL_NO_RETRY_BO
 ¹ CM_RESOURCE_FAILURE_RETRY_BO

rf rf means one of the following:

 ¹ CM_RESOURCE_FAILURE_NO_RETRY
 ¹ CM_RESOURCE_FAILURE_RETRY

sc CM_PROGRAM_STATE_CHECK

un CM_UNSUCCESSFUL

714 CPI Communications Reference

 Full-Duplex State Tables

Notes:

1. The return code CM_PRODUCT_SPECIFIC_ERROR is not included in the state
table because the state transitions caused by this return code are
product-specific.

2. The CM_OPERATION_NOT_ACCEPTED return code is not included in the state
table. A program receives CM_OPERATION_NOT_ACCEPTED when it issues a
call associated with a queue that has a a previous operation still in progress,
regardless of the state. No conversation state transition occurs.

3. The CM_CALL_NOT_SUPPORTED return code is not included in the state table.
It is returned when the local system provides an entry point for the call but
does not support the function requested by the call, regardless of the state. No
state transition occurs.

data_received and status_received { , }
The following abbreviations are used for the data_received values:

The following abbreviations are used for the status_received values:

Abbreviation Meaning

dr Means one of the following:

 ¹ CM_DATA_RECEIVED
 ¹ CM_COMPLETE_DATA_RECEIVED
 ¹ CM_INCOMPLETE_DATA_RECEIVED

* Means one of the following:

 ¹ CM_DATA_RECEIVED
 ¹ CM_COMPLETE_DATA_RECEIVED
 ¹ CM_NO_DATA_RECEIVED

Abbreviation Meaning

cd CM_CONFIRM_DEALLOCATE_RECEIVED

jt CM_JOIN_TRANSACTION

no CM_NO_STATUS_RECEIVED

po CM_PREPARE_OK

tc CM_TAKE_COMMIT or CM_TAKE_COMMIT_DATA_OK. These values are
returned only for conversations with sync_level set to
CM_SYNC_POINT_NO_CONFIRM.

td CM_TAKE_COMMIT_DEALLOCATE or
CM_TAKE_COMMIT_DEALLOC_DATA_OK. These values are returned only
for conversations with sync_level set to CM_SYNC_POINT_NO_CONFIRM.

 Appendix C. State Tables 715

 Full-Duplex State Tables

Table Symbols for the Full-Duplex State Table
The following symbols are used in the state table to indicate the condition that
results when a call is issued from a certain state:

Symbol Meaning

/ Cannot occur. CPI Communications either will not allow this input or
will never return the indicated return codes for this input in this state.

– Remain in current state

1-18 Number of next state

↓ It is valid to make this call from this state. See the table entries
immediately below this symbol to determine the state transition resulting
from the call.

% Wait_for_Completion (CMWCMP) can only be issued when one or more
of the calls issued by the program has received a return code of
CM_OPERATION_INCOMPLETE. When Wait_for_Completion completes
with a return code of CM_OK, it returns a list of
outstanding-operation-IDs that identify the operations that have
completed. Each of the conversations on which a call has completed
then makes a transition to the appropriate state as indicated for the
operations that are now complete.

↓′ For a conversation with sync_level set to CM_NONE or not currently
included in a transaction, this is equivalent to ↓. If the conversation has
sync_level set to CM_SYNC_POINT_NO_CONFIRM and the conversation
is currently included in a transaction, however, ↓′ means it is valid to
make this call from this state unless the conversation's context is in the
Backout-Required condition. In that case, the call is invalid and
CM_PROGRAM_STATE_CHECK is returned. For valid calls, see the table
entries immediately below this symbol to determine the state transition
resulting from the call.

_ For a conversation with sync_level set to CM_NONE or not currently
included in a transaction, this symbol should be ignored. For a
conversation using sync_level set to CM_SYNC_POINT_NO_CONFIRM and
currently included in a transaction, when this symbol follows a state
number or a – (for example, 1_ or –_), it means the conversation's
context may be in the Backout-Required condition following the call.

Conversations with sync_level set to CM_SYNC_POINT_NO_CONFIRM go
to the state they were in at the completion of the most recent
synchronization point. If there was no prior synchronization event, both
sides of the conversation go to Send-Receive state.

716 CPI Communications Reference

 Full-Duplex State Tables

Note: The following calls can only be issued on half-duplex conversations. When
issued on full-duplex conversations, CM_PROGRAM_PARAMETER_CHECK is
returned for all conversation states except Reset. These calls are, therefore, not
shown in the state tables.

 ¹ Confirm
 ¹ Prepare_To_Receive
 ¹ Request_To_Send
 ¹ Set_Confirmation_Urgency
 ¹ Set_Error_Direction
 ¹ Set_Prepare_To_Receive_Type
 ¹ Set_Processing_Mode
 ¹ Test_Request_To_Send_Received

 Appendix C. State Tables 717

 Full-Duplex State Tables

Table 72 (Page 1 of 5). States and Transitions for CPI Communications Calls on Full-Duplex Conversations

Inputs

Used by CPI-C FDX conversations

Reset
 1

Ini-
tialize

 2

Confirm-
Dealloc

 8

Defer-
Dealloc

 10

Sync-
Point
 11

Sync-Pt-
Dealloc

 13

Ini-
tialize-
Incoming

 14

Send-
Only

15

Receive-
Only

16

Send-
Receive

 17

Prepared
 18

Accept_Conversation ↓ / / / / / / / / / /

[ok] 17

[da,sc] –

Accept_Incoming [pc] [sc] [sc] [sc] [sc] [sc] ↓ [sc] [sc] [sc] [sc]

[ok] 17

[da] 1

[oi,pc,sc] –

Allocate [pc] ↓′ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 17

[ae] 1

[oi,pc,pe,sc,un] –

Cancel_Conversation [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok] 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_

[pc] – – – – – – – – – –

Confirmed 24 [pc] [sc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 1

[oi,pc] –

Deallocate(A) [pc] ↓ ↓ ↓ ↓ ↓ / ↓ ↓ ↓ ↓

[ok] 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_ 1_

[oi,pc] – – – – – – – – –

Deallocate(C) 24 [pc] [sc] [sc] [sc] [sc] [sc] / [sc] [sc] ↓ [sc]

[ok,ae,da,dn,rf] 16

[dr,oi,pc,sc] –

Deallocate(F) [pc] [sc] [sc] [sc] [sc] [sc] ↓ ↓ [sc] ↓ [sc]

[ok] 1 1 16

[ae] / / 16

[da,dn,rf] / 1 16

[oi,pc] – – –

[sc] / / –

Deallocate(S) [pc] [sc] [sc] [sc] [sc] [sc] / / / ↓′ [sc]

[ok] 10

[ae,oi,pc,sc] –

[bo] –_

[db,pb,rb] 1_

[ds] 1

Deferred_Deallocate 25 [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓′ [sc]

[ok] –26

[ae] –

[bo] –_

[db,pb,rb] 1_

[oi,pc] –

Extract_AE_Qualifier [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Extract_AP_Title [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Extract_Appl_Ctx_Name [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Extract_Conv_Context [pc] [sc] ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – –

Extract_Conv_State [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – –

[bo] / / – – – / / / – –

Extract_Conv_Type [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

718 CPI Communications Reference

 Full-Duplex State Tables

Extract_Init_Data [pc] [sc] ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – –

Extract_Mapped_
 Initialization_Data

[pc] [sc] ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc,mp,bs] – – – – – – – –

Extract_Mode_Name [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc,] – – – – – – – – –

Extract_Part_LU_Name [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,bs,pc,] – – – – – – – – –

Extract_Partner_ID ↓ ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – –

Extract_Sec_User_ID [sc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Extract_Secondary_Info ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,ns,pc] – – – – – – – – – – –

Extract_Send_Receive_Mode [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Extract_Sync_Level [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Extract_Transaction_Control [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Extract_TP_Name [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Flush [pc] [sc] [sc] [sc] [sc] [sc] [sc] ↓ [sc] ↓′ [sc]

[ok] – –

[ae] / 16

[bo] / –_

[da,dn,rf] 1 16

[db,rb] / 1_

[ds] / 1

[oi,pc] – –

[pb] / 1_

[sc] / –

Include_Ptr_In_Trans 25 [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓′ [sc]

[ok] –

[ae] –

[da,dn,rf] 16

[oi,pc] –

Initialize_Conversation 27 ↓ / / / / / / / / / /

[ok] 2

[pc] –

Initialize_for_Incoming ↓ / / / / / / / / / /

[ok] 17

[pc] –

Prepare [pc] [sc] [sc] ↓′ [sc] [sc] [sc] [sc] [sc] ↓′ [sc]

[ok] 18 18

[ae] – –

[bo] –_ –_

[db,pb,rb] 1_ 1_

[ds] 1 1

[oi,pc] – –

Receive(I) [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓ ↓′ ↓′

[ok] {dr,no} – – –

[ok] {*,cd} / 8 /

[ok] {*,jt} / – /

[ok] {*,po} / / –

[ok] {*,tc} / 11 /

[ok] {*,td} / 13 /

[ae] 1 1 1

[bo] / –_ –_

 Appendix C. State Tables 719

 Full-Duplex State Tables

[da,rf] 1 1 /

[db,pb,rb] / 1_ 1_

[dn] 1 15 /

[ds] / 1 /

[en,et] – – 17

[ep] – – /

[pc,un] – – –

[sc] / – –

Receive_Mapped_Data(I) [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓ ↓′ ↓′

[ok,mp] {dr,no} – – –

[ok] {*,cd} / 8 /

[ok] {*,jt} / – /

[ok] {*,po} / / –

[ok] {*,tc} / 11 /

[ok] {*,td} / 13 /

[ae] 1 1 1

[bo] / –_ –_

[da,rf] 1 1 /

[db,pb,rb] / 1_ 1_

[dn] 1 15 /

[ds] / 1 /

[en,et] – – 17

[ep] – – /

[pc,un] – – –

[sc] / – –

Receive(W) [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓ ↓′ ↓′

[ok] {dr,no} – – –

[ok] {*,cd} / 8 /

[ok] {*,jt} / – /

[ok] {*,po} / / –

[ok] {*,tc} / 11 /

[ok] {*,td} / 13 /

[ae] 1 1 1

[bo] / –_ –_

[da,rf] 1 1 /

[db,pb,rb] / 1_ 1_

[dn] 1 15 /

[ds] / 1 /

[en,et] – – 17

[ep] – – /

[oi,pc] – – –

[sc] / – –

Receive_Mapped_Data(W) [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓ ↓′ ↓′

[ok] {dr,no} – – –

[ok] {*,cd} / 8 /

[ok] {*,jt} / – /

[ok] {*,po} / / –

[ok] {*,tc} / 11 /

[ok] {*,td} / 13 /

[ae,mp] 1 1 1

[bo] / –_ –_

[da,rf] 1 1 /

[db,pb,rb] / 1_ 1_

[dn] 1 15 /

[ds] / 1 /

[en,et] – – 17

[ep] – – /

[oi,pc] – – –

[sc] / – –

Receive_Exp_Data [pc] [sc] ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

720 CPI Communications Reference

 Full-Duplex State Tables

[ok,ed,oi,pc,un] – – – – – – – –

Send_Data [pc] [sc] [sc] [sc] ↓′ ↓′ [sc] ↓ [sc] ↓′ [sc]

(B) [ok] – – – –

(D(A)) [ok] 1_ 1_ 1 1_

(D(C)) [ok] / / / 16

(D(F)) [ok] / / 1 16

(D(S)) [ok] / / / 10

(F) [ok] – – – –

[ae] / / / 16

[bo] –_ –_ / –_

[da,dn,rf] / / 1 16

[db,rb] 1_ 1_ / 1_

[dr,oi,pc] – – – –

[ds] / / / 1

[pb] / / / 1_

[sc] – – / –

Send_Error [pc] [sc] ↓ [sc] [sc] [sc] [sc] ↓ [sc] ↓′ [sc]

[ok] 17 – –

[ae] / / 16

[bo] / / –_

[da,dn,rf] 1 1 16

[db,rb] / / 1_

[ds] / / 1

[oi,pc] – – –

[pb] / / 1_

[sc] / / –

Send_Expedited_Data [pc] [sc] ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,ed,oi,pc] – – – – – – – –

Set_AE_Qualifier [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Allocate_Confirm [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_AP_Title [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Appl_Context_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Begin_Transaction [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Set_Conv_Sec_PW [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Conv_Sec_Type [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] –

Set_Conv_Sec_User_ID [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Conversation_Type [pc] ↓ [sc] [sc] [sc] [sc] ↓ [sc] [sc] [sc] [sc]

[ok,pc] – –

Set_Deallocate_Type [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Set_Fill [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – –

Set_Initialization_Data [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓ [sc]

[ok,pc] – –

Set_Log_Data [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – –

Set_Mapped_
 Initialization_Data

[ok,pc,mp] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓ [sc]

[ok,pc] – –

Set_Mode_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Partner_LU_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

 Appendix C. State Tables 721

 Full-Duplex State Tables

[ok,pc] –

Set_Partner_ID [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Prep_Data_Permitted [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – –

Set_Q_Callback_Func(N) [pc] ↓ [sc] [sc] [sc] [sc] ↓ [sc] [sc] [sc] [sc]

[ok,pc] – –

Set_Q_Callback_Func(Q) [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Set_Q_Proc_Mode(N) [pc] ↓ [sc] [sc] [sc] [sc] ↓ [sc] [sc] [sc] [sc]

[ok,pc] – –

Set_Q_Proc_Mode(Q) [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Set_Receive_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – – –

Set_Return_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Send_Receive_Mode [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Set_Send_Type [pc] ↓ ↓ ↓ ↓ ↓ [sc] ↓ ↓ ↓ ↓

[ok,pc] – – – – – – – – –

Set_Sync_Level [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] –

Set_TP_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓

[ok,pc] –

–

Set_Transaction_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] –

Wait_For_Completion ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[ok] / % % % % % % % % % %

[pc] / – – – – – – – – – –

23 This state is entered only if the conversation is allocated using an OSI TP CRM.

24 This call can be issued only if the conversation is allocated using an OSI TP CRM.

25 The state table entries for Deferred_Deallocate and Include_Partner_In_Transaction calls are for conversations using an OSI TP
CRM only. These calls get the CM_PROGRAM_PARAMETER_CHECK if issued on a conversation using an LU 6.2 CRM, regardless
of the state.

26 CPI Communications suspends action on the Deferred_Deallocate call until the transaction is committed or backed out.

27 While the Initialize_Conversation call can be issued only once for any given conversation, a program can issue multiple
Initialize_Conversation calls to establish concurrent conversations with different partners. For more information, see “Multiple
Conversations” on page 30.

722 CPI Communications Reference

 Full-Duplex State Tables

Effects of Calls to the SAA Resource Recovery Interface on
Full-Duplex Conversations

Table 73 shows the state transitions resulting from calls to the SAA resource
recovery interface on full-duplex conversations. This table applies only to
conversations with sync_level set to CM_SYNC_POINT_NO_CONFIRM.

Commit and Backout are resource recovery calls. Their return codes are as
follows.

Abbreviation Meaning

bo RR_BACKED_OUT

bom RR_BACKED_OUT_OUTCOME_MIXED

bop RR_BACKED_OUT_OUTCOME_PENDING

com RR_COMMITTED_OUTCOME_MIXED

cop RR_COMMITTED_OUTCOME_PENDING

ok RR_OK

sc RR_STATE_CHECK

Table 73. States and Transitions for Protected Full-Duplex Conversations (CPIRR)

Inputs

Used by CPI-C FDX conversations

Reset
 1

Ini-
tialize

 2

Confirm-
Dealloc

 8

Defer-
Dealloc

 10

Sync-
Point
 11

Sync-Pt-
Dealloc

 13

Ini-
tialize-
Incoming

 14

Send-
Only

15

Receive-
Only

16

Send-
Receive

 17

Prepared
 18

Commit call 28 [sc] ↓29 ↓29 ↓ ↓ ↓ ↓29 [sc] [sc] ↓ ↓

[ok,com,cop] – – 1 17 1 – –30 1731

[bo,bom,bop] – – 17 17 17 – – 17

[fa,sc] – – – – – – – –

Backout call 32 ↓ ↓29 ↓29 ↓ ↓ ↓ ↓29 [sc] [sc] ↓ ↓

[bo,bom,bop] – – 17 17 17 – – 17

28 When a program started by an incoming conversation startup request issues a Commit call before issuing an Accept_Conversation
call, a state check results. The Commit call has no effect on other conversations in Reset state.

29 Conversations in Initialize , Initialize-Incoming , or Confirm-Deallocate state are not affected by Commit and Backout calls.

30 The conversation goes to Reset state if the local program had issued a Deferred_Deallocate call prior to issuing the Commit call.

31 The conversation goes to Reset state if the local program had issued a Deferred_Deallocate call prior to entering Prepared state.

32 When a program started by an incoming conversation startup request issues a Backout call before issuing an
Accept_Conversation call, the underlying conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

 Appendix C. State Tables 723

Effects of Calls on Full-Duplex Conversations to the X/Open TX
Interface

Table 74 shows the state transitions resulting from calls to the X/Open TX interface
on full-duplex conversations. This table applies only to conversations with
sync_level set to CM_SYNC_POINT_NO_CONFIRM.

The following abbreviations are used for return codes in Table 74:

Abbreviation Meaning

bo TX_ROLLBACK or TX_ROLLBACK_NO_BEGIN

bom TX_ROLLBACK_MIXED or TX_ROLLBACK_MIXED_NO_BEGIN

bop TX_ROLLBACK_HAZARD or TX_ROLLBACK_HAZARD_NO_BEGIN

com TX_MIXED or TX_MIXED_NO_BEGIN

cop TX_HAZARD or TX_HAZARD_NO_BEGIN

fa TX_FAIL

ok TX_OK or TX_NO_BEGIN

sc TX_PROTOCOL_ERROR

Table 74. States and Transitions for Protected Full-Duplex Conversations (X/Open TX)

Inputs

Used by CPI-C FDX conversations

Reset
 1

Ini-
tialize

 2

Confirm-
Dealloc

 8

Defer-
Dealloc

 10

Sync-
Point
 11

Sync-Pt-
Dealloc

 13

Ini-
tialize-
Incoming

 14

Send-
Only

15

Receive-
Only

16

Send-
Receive

 17

Prepared
 18

tx_commit [sc]33 ↓34 ↓34 ↓ ↓ ↓ ↓34 [sc] [sc] ↓ ↓

[ok,com,cop] – – 1 17 1 – –35 1736

[bo,bom,bop] – – 17 17 17 – – 17

[fa] – – – – – – – –

[sc] – – – – – – – –

tx_rollback ↓37 ↓34 ↓34 ↓ ↓ ↓ ↓34 [sc] [sc] ↓ ↓

[bo,bom,bop] – – 17 17 17 – – 17

[fa] – – – – – – –

tx_begin – – / – – / – – – – /

tx_close – – – – – – – – – – –

tx_info – – – – – – – – – – –

tx_open – – – – – – – – – – –

tx_set_commit_return – – – – – – – – – – –

tx_set_trans_control – – – – – – – – – – –

tx_set_trans_timeout – – – – – – – – – – –

33 When a program started by an incoming conversation startup request issues a tx_commit call before issuing an
Accept_Conversation call, a state check results. The tx_commit call has no effect on other conversations in Reset state.

34 Conversations in Initialize , Initialize-Incoming , or Confirm-Deallocate state are not affected by tx_commit and tx_rollback calls.

35 The conversation goes to Reset state if the local program had issued a Deferred_Deallocate call prior to issuing the tx_commit
call.

36 The conversation goes to Reset state if the local program had issued a Deferred_Deallocate call prior to entering Prepared state.

37 When a program started by an incoming conversation startup request issues a tx_rollback call before issuing an
Accept_Conversation call, the underlying conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

724 CPI Communications Reference

 LU 6.2

Appendix D. CPI Communications and LU 6.2

This appendix is intended for programmers who are familiar with the LU 6.2
application programming interface. (LU 6.2 is also known as Advanced
Program-to-Program Communication or APPC.) It describes the functional
relationship between the APPC “verbs” and the CPI Communications calls
described in this manual.

The CPI Communications calls have been built on top of the LU 6.2 verbs
described in SNA Transaction Programmer’s Reference Manual for LU Type 6.2.
Table 75 beginning on page 729 shows the relationship between APPC verbs and
CPI Communications calls. Use this table to determine how the function of a
particular LU 6.2 verb is provided through CPI Communications.

Note: Although much of the LU 6.2 function has been included in CPI
Communications, some of the function has not. Likewise, CPI Communications
contains features that are not found in LU 6.2. These features are differences in
syntax. The semantics of LU 6.2 function have not been changed or extended.

CPI Communications contains the following features not found in LU 6.2:

¹ The Initialize_Conversation call and side information, used to initialize
conversation characteristics without requiring the application program to
explicitly specify these parameters.

¹ A conversation state of Send-Pending (discussed in more detail in
“Send-Pending State and the error_direction Characteristic” on page 726).

¹ The Accept_Conversation call for use by a remote program to explicitly
establish a conversation, the conversation identifier, and the conversation’s
characteristics.

¹ The error_direction conversation characteristic (discussed in more detail in
“Send-Pending State and the error_direction Characteristic” on page 726).

¹ A send_type conversation characteristic for use in combining functions (this
function was available with LU 6.2 verbs, but the verbs had to be issued
separately).

¹ The capability to return both data and conversation status on the same Receive
call.

Note: CPI Communications does not support the USER_CONTROL_DATA function
that is available with the LU 6.2 interface:

To increase portability between systems, the character sets used to specify the
partner TP_name, partner_LU_name, and log_data have been modified slightly
from the character sets allowed by LU 6.2. To answer specific questions of
compatibility, check the character sets described in Appendix A, “Variables and
Characteristics.”

Note: For mapping to OSI TP, see the CPI-C 2.1 Specification (SC31-6180-01).

 Copyright IBM Corp. 1996, 1998 725

 LU 6.2

Send-Pending State and the error_direction Characteristic
The Send-Pending state and error_direction characteristic are used in CPI
Communications to eliminate ambiguity about the source of some errors. A
program using CPI Communications can receive data and a change-of-direction
indication at the same time. This “double function” creates a possibly ambiguous
error condition, since it is impossible to determine whether a reported error (from
Send_Error) was encountered because of the received data or after the processing
of the change of direction.

The ambiguity is eliminated in CPI Communications by use of the Send-Pending
state and error_direction characteristic. CPI Communications places the
conversation in Send-Pending state whenever the program has received data and
a status_received parameter of CM_SEND_RECEIVED (indicating a change of
direction). Then, if the program encounters an error, it uses the
Set_Error_Direction call to indicate how the error occurred. If the conversation is in
Send-Pending state and the program issues a Send_Error call, CPI
Communications examines the error_direction characteristic and notifies the partner
program accordingly:

¹ If error_direction is set to CM_RECEIVE_ERROR, the partner program receives a
return_code of CM_PROGRAM_ERROR_PURGING. This indicates that the error
at the remote program occurred in the data, before (in LU 6.2 terms) the
change-direction indicator was received.

¹ If error_direction is set to CM_SEND_ERROR, the partner program receives a
return_code of CM_PROGRAM_ERROR_NO_TRUNC. This indicates that the error
at the remote program occurred in the send processing after the
change-direction indicator was received.

For an example of how CPI Communications uses the Send-Pending state and the
error_direction characteristic, see “Example 7: Error Direction and Send-Pending
State” on page 82.

726 CPI Communications Reference

 LU 6.2

Can CPI Communications Programs Communicate with APPC
Programs?

Programs written using CPI Communications can communicate with APPC
programs. Some examples of the limitations on the APPC program are:

¹ CPI Communications does not support PIP data.

¹ CPI Communications does not allow the specification of MAP_NAME.

¹ CPI Communications does not allow the specification of User_Control_Data.

¹ APPC programs with names containing characters no longer allowed may
require a name change. See “SNA Service Transaction Programs” for a
discussion of naming conventions for service transaction programs.

SNA Service Transaction Programs
If a CPI Communications program wants to specify an SNA service transaction
program, the character set shown for TP_name in Appendix A, “Variables and
Characteristics” is inadequate. The first character of an SNA service transaction
program name is a character with a value in the range from X'00' through X'0D'

or X'10' through X'3F' (excluding X'0E' and X'0F'). Refer to SNA Transaction
Programmer’s Reference Manual for LU Type 6.2 for more details on SNA service
transaction programs.

A CPI Communications program that has the appropriate privilege may specify the
name of an SNA service transaction program for its partner TP_name. Privilege is
an identification that a product or installation defines in order to differentiate LU
service transaction programs from other programs, such as application programs.
TP_name cannot specify an SNA service transaction program name at the mapped
conversation protocol boundary.

Note: Because of the special nature of SNA service transaction program names,
they cannot be specified on the Set_TP_Name call in a non-EBCDIC environment.
A CPI Communications program in a non-EBCDIC environment wanting to establish
a conversation with an SNA service transaction program must ensure that the
desired TP_name is included in the side information.

 Implementation Considerations
If the CRM used by the CPI-C implementation does not support full-duplex
conversations, and the implementer desires to provide simulated full-duplex
support, then the implementation should follow the Simulated FDX Interoperability
Recommendation in order to interoperate with existing full-duplex simulations. The
Simulated FDX Interoperability Recommendation is available on the Internet at
URL:

ftp://networking.raleigh.ibm.com/pub/standards/ciw/spec/fdxsim.psbin

Relationship between LU 6.2 Verbs and CPI Communications Calls
Table 75 beginning on page 729 shows LU 6.2 verbs and their parameters on the
left side and CPI Communications calls across the top. The table relates a verb or
verb parameter to a call (not a call to a verb). A letter at the intersection of a verb
or verb parameter row and a call column is interpreted as follows:

D This parameter has been set to a default value by the CPI Communications
call. Default values can be found in the individual call descriptions.

 Appendix D. CPI Communications and LU 6.2 727

 LU 6.2

X A similar or equal function for the LU 6.2 verb or parameter is available from
the CPI Communications call. If more than one X appears on a line for a
verb, the function is available by issuing a combination of the calls.

S This parameter can be set using the CPI Communications call.

728 CPI Communications Reference

 LU 6.2

Table 75. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 1)

Starter Set

Advanced Function

Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

X

X D D D DD DD D D

DX
X

X
X

X X

X

X

X
D

X

X X

X

XX

X

D

S
S

S
S

S
S

X
X
X
X

S
S
S

S

X S

X

X
X

X
X

X
X

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Initialization_Data
Extract_Mapped_Initialization_Data
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Receive_Mapped_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Send_Mapped_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password

Set_Mapped_Initialization_Data
Set_Log_Data

Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data

Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

M
C

_A
LL

O
C

A
T

E

-
LU

_
N

A
M

E

-
M

O
D

E
_N

A
M

E

-
T

P
N

-
T

Y
P

E

-
R

E
T

U
R

N
_C

O
N

T
R

O
L

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

-
S

Y
N

C
_L

E
V

E
L

-
S

E
C

U
R

IT
Y

-
P

IP

M
C

_F
LU

S
H

M
C

_G
E

T
_A

T
T

R
IB

U
T

E
S

-
P

A
R

T
N

E
R

_L
U

_N
A

M
E

-
P

A
R

T
_F

U
LL

_Q
U

A
L_

LU
_N

A
M

E

-
M

O
D

E
_N

A
M

E

-
S

Y
N

C
_L

E
V

E
L

-
C

O
N

V
E

R
S

A
T

IO
N

_S
TA

T
E

-
C

O
N

V
_C

O
R

R
E

LA
T

O
R

-
S

E
S

S
IO

N
_I

D

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

M
C

_C
O

N
F

IR
M

M
C

_C
O

N
F

IR
M

E
D

M
C

_D
E

A
LL

O
C

A
T

E

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
T

Y
P

E

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

SX

 Appendix D. CPI Communications and LU 6.2 729

 LU 6.2

Table 76. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 2)

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive

D D

D D

X X X XX X X X
X XX

D D

SX

SX

X X

X
X

X

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mapped_Initialization_Data
Extract_Mode_Name

Send_Data
Advanced Function

Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Receive_Mapped_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Send_Mapped_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mapped_Initialization_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control

M
C

_P
O

S
T

_O
N

_R
E

C
E

IP
T

M
C

_P
R

E
P

A
R

E
_F

O
R

_S
Y

N
C

P
T

M
C

_P
R

E
P

A
R

E
_T

O
_R

E
C

E
IV

E

M
C

_R
E

C
E

IV
E

_A
N

D
_W

A
IT

-
T

Y
P

E

-
LO

C
K

S

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

-
M

A
P

_N
A

M
E

M
C

_R
C

V
_E

X
P

E
D

IT
E

D
_D

A
TA

M
C

_R
E

C
E

IV
E

_I
M

M
E

D
IA

T
E

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

-
M

A
P

_N
A

M
E

M
C

_R
E

Q
U

E
S

T
_T

O
_S

E
N

D

M
C

_S
E

N
D

_D
A

TA

-
M

A
P

_N
A

M
E

-
U

S
E

R
_C

O
N

T
R

O
L_

D
A

TA

-
E

N
C

R
Y

P
T

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

X X X
X X X X X X X X X X

X XX X

Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

730 CPI Communications Reference

 LU 6.2

Table 77. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 3)

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X

X
XX

X X

X

X

X X

X
X

X
X

X

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

M
C

_S
E

N
D

_E
R

R
O

R

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

M
C

_S
E

N
D

_E
X

P
E

D
IT

E
D

_D
A

TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

M
C

_T
E

S
T

-
T

E
S

T
_P

O
S

T
E

D

-
T

E
S

T
_R

E
Q

_T
O

_S
E

N
D

_R
C

V
D

B
A

C
K

O
U

T

G
E

T
_T

P
_P

R
O

P
E

R
T

IE
S

-
O

W
N

_F
U

LL
Y

_Q
U

A
L_

LU
_N

A
M

E

-
O

W
N

_T
P

_N
A

M
E

-
O

W
N

_T
P

_I
N

S
TA

N
C

E

-
S

E
C

U
R

IT
Y

_U
S

E
R

_I
D

-
S

E
C

U
R

IT
Y

_P
R

O
F

IL
E

-
LU

W
_I

D
E

N
T

IF
IE

R

-
P

R
O

T
E

C
T

E
D

_L
U

W
_I

D
E

N
T

IF
IE

R

G
E

T
_T

Y
P

E

S
E

T
_S

Y
N

C
P

T
_O

P
T

IO
N

S

S
Y

N
C

P
T

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

W
A

IT

-
R

E
S

O
U

R
C

E
_P

O
S

T
E

D

W
A

IT
_F

O
R

_C
O

M
P

LE
T

IO
N

 Appendix D. CPI Communications and LU 6.2 731

 LU 6.2

Table 78. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 4)

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X

X X X
X

X
X D D D D D D D

D D

D D

D

D

D
X

X

X

S
X S
X

X

X

X

S
SX

X

X

X

X

X

S

S

S

S

S
S

S
S

S

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

A
LL

O
C

A
T

E

-
LU

_N
A

M
E

-
M

O
D

E
_N

A
M

E

-
T

P
N

-
T

Y
P

E

-
R

E
T

U
R

N
_C

O
N

T
R

O
L

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

-
S

Y
N

C
_L

E
V

E
L

-
S

E
C

U
R

IT
Y

-
P

IP

C
O

N
F

IR
M

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

C
O

N
F

IR
M

E
D

D
E

A
LL

O
C

A
T

E

-
T

Y
P

E

-
LO

G
_D

A
TA

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

F
LU

S
H

732 CPI Communications Reference

 LU 6.2

Table 79. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 5)

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X X

X X

X

X X

X
X

X

X X

X X

X

X

X

X

X

D

D

D

D

D

D

D

D

D

X

X

X

S

S

S

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

G
E

T
_A

T
T

R
IB

U
T

E
S

-
P

A
R

T
N

E
R

_L
U

_N
A

M
E

-
P

A
R

T
_F

U
LL

_Q
U

A
L_

LU
_N

A
M

E

-
M

O
D

E
_N

A
M

E

-
S

Y
N

C
_L

E
V

E
L

-
C

O
N

V
E

R
S

A
T

IO
N

_S
TA

T
E

-
C

O
N

V
_C

O
R

R
E

LA
T

O
R

-
S

E
S

S
IO

N
_I

D

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

P
O

S
T

_O
N

_R
E

C
E

IP
T

-
F

IL
L

P
R

E
P

A
R

E
_F

O
R

_S
Y

N
C

P
T

P
R

E
A

P
A

R
E

_T
O

_R
E

C
E

IV
E

-
T

Y
P

E

-
LO

C
K

S

R
E

C
E

IV
E

_A
N

D
_W

A
IT

-
F

IL
L

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

R
E

C
E

IV
E

_E
X

P
E

D
IT

E
D

_D
A

TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

 Appendix D. CPI Communications and LU 6.2 733

Table 80. Relationship of LU 6.2 Verbs to CPI Communications Calls (Part 6)

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X

XXX

X X X X
X X X

X

X

X S

D XX

D

D

D

D

D

D

X

X

X X

S

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

R
E

C
E

IV
E

_I
M

M
E

D
IA

T
E

-
F

IL
L

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

R
E

Q
U

E
S

T
_T

O
_S

E
N

D

S
E

N
D

_D
A

TA

-
E

N
C

R
Y

P
T

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

S
E

N
D

_E
X

P
E

D
IT

E
D

_D
A

TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

S
E

N
D

_E
R

R
O

R

-
T

Y
P

E

-
LO

G
_D

A
TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

T
E

S
T

-
T

E
S

T
_P

O
S

T
E

D

-
T

E
S

T
_R

E
Q

_T
O

_S
E

N
D

_R
C

V
D

734 CPI Communications Reference

 Application Migration

Appendix E. Application Migration from X/Open CPI-C

This appendix describes the application migration from the original X/Open CPI-C
(as defined in the 1990 edition of X/Open Developers' Specification CPI-C) to
CPI-C 2.0. The following section lists the differences between X/Open CPI-C and
CPI-C 2.0 that may require that changes be made to move a program from X/Open
CPI-C to CPI-C 2.0.

Application Migration Considerations

¹ When the Accept_Conversation call is issued and no incoming conversation
exists, CPI-C 2.0 returns CM_PROGRAM_STATE_CHECK; X/Open CPI-C returns
CM_OPERATION_INCOMPLETE and a conversation identifier. Programs that
want to accept multiple conversations using the non-blocking processing mode
should use the following calls instead of Accept_Conversation:

 – Initialize_For_Incoming
– Set_Processing_Mode, with processing_mode set to CM_NON_BLOCKING

 – Accept_Incoming.

See “Example 13: Accepting Multiple Conversations Using Conversation-Level
Non-Blocking Calls” on page 94 for accepting conversations using non-blocking
Accept_Incoming calls.

¹ CPI-C 2.0 returns the CM_OPERATION_NOT_ACCEPTED return code if a
conversation call is issued and the previous call on the conversation has not
completed. X/Open CPI-C returns CM_PROGRAM_STATE_CHECK.

¹ The Extract_Conversation_Security_User_ID (CMECSU) call of X/Open CPI-C
is not supported in CPI-C 2.0. The function is available in CPI-C 2.0 using the
Extract_Security_User_ID (CMESUI) call, which supports an increased length of
the security_user_id.

¹ The CPI-C 2.0 Convert_Incoming and Convert_Outgoing calls return
CM_PROGRAM_PARAMETER_CHECK if the string_length exceeds the maximum
length permitted by the local implementation. This return code is not supported
in X/Open CPI-C for these calls.

¹ The CM_SYNC_LEVEL_NOT_SUPPORTED_PGM return code of X/Open CPI-C
must be changed to CM_SYNC_LVL_NOT_SUPPORTED_PGM.

¹ The specify_Local_TP_Name call of X/Open CPI-C must be changed to
Specify_Local_TP_Name.

¹ X/Open CPI-C allows several processes to share the same conversation
identifier. In CPI-C 2.0, the scope of the conversation_ID is system-dependent.

¹ X/Open defines all functions as type CM_RETCODE (for example, extern
CM_RETCODE CMACCP;). CPI-C 2.0 defines all functions as type void (for
example, extern CM_ENTRY cmaccp;). Programs that test the return value of
an X/Open CPI-C call have to test the return_code parameter value in CPI-C
2.0.

 Copyright IBM Corp. 1996, 1998 735

¹ The readable macros (for example, Accept_Conversation instead of CMACCP)
are only available in CPI-C 2.0 if the program or the include file contains a line

 #define READABLE_MACROS

¹ Some parameter types in X/Open CPI-C and CPI-C 2.0 differ, as shown in
Table 81. Some compilers may give out warnings when compiling existing
X/Open CPI-C programs with the new CPI-C 2.0 include file.

Table 81. Parameter Type Differences

Parameter Type X/Open CPI-C CPI-C 2.0

Conversation ID Parameters CONVERSATION_ID
(that is, char [8])

unsigned char CM_PTR
(that is, unsigned char *)

Character Pointers char * unsigned char CM_PTR
(that is, unsigned char *)

Length Parameters int * CM_INT32 CM_PTR
(that is, signed long int *)

Definitions of Return Codes
and Numeric Parameters

typedef enum #define

736 CPI Communications Reference

 Extensions for Use with DCE Directory

Appendix F. CPI Communications Extensions for Use with
DCE Directory

This appendix describes CPI Communications extensions in two areas:

¹ Additional directory objects (beyond program installation object) to provide
additional functionality. Three new objects are introduced to allow enhanced
program use of the directory at a functional level equivalent to Distributed
Computing Environment (DCE) Remote Procedure Call (RPC) use. The three
new objects are:

– Profile object, accessed by a profile distinguished name (PDN)

– Server object, accessed by a server distinguished name (SDN)

– Server Group object, accessed by a server group distinguished name
(SGDN)

¹ A CPI Communications-specific interface for interaction with the DCE directory,
referred to here as the CPI-C name service interface (CNSI).

The rest of this appendix describes the three new objects, the CNSI, and how they
can be used to interact with CPI Communications.

 Profile Object
The profile object enables the establishment of a search priority for all of the other
directory objects. For example, a typical profile might define a primary server for
first attempts in locating function, but also define a secondary server if the primary
server is unable.

The structure of the profile object is a list of profile elements, where each element
contains three parts:

¹ PFID—the program function identifier for the profile element. This field can be
null if a default ordering for all function is desired.

¹ Priority—the priority of the element relative to all other profile elements.

¹ Distinguished Name (DN)—points to either a profile, server, server-group, or
program-installation object.

 Server Object
Conceptually, the server object represents a collection of programs and resources;
examples are a single system or a file server on a LAN.

The server object enables two key capabilities:

1. Location/search for a particular function. For example, is OfficeNetMail
application available on this server?

This function is provided by maintaining a list of (PFID, PIDN) pairs in the
server object, where the PIDN is a DN for the program installation object that
provides the function of the PFID. If a function is available from more than one
program installation on the server, there are multiple (PFID, PIDN) pairs.

 Copyright IBM Corp. 1996, 1998 737

 Extensions for Use with DCE Directory

2. Location/search of a particular resource. For example, does the PAYROLL
DATABASE reside on this server?

This function is provided by maintaining a list of resources that are available on
the server.

Server Group Object
The server group object extends the concept of a server by allowing servers to be
grouped. Grouping provides such additional value as transparent redundancy and
the ability to specify equivalent servers.

The server group object pointed to by an SGDN simply contains a list of server
distinguished names (SDNs).

Interaction of Directory Objects
Figure 32 shows a simple diagram of the different directory objects and their
interactions. The arrows show the interconnection of information between different
objects.

Server Group Object
- list of server objects

(SDN, SDN, SDN ...)

SGDN

PDN

Profile Object
- list of

(PFID, Priority, objDN)...

SDN

Server Object
- list of (PFID, PIDN) pairs
- list of available resources

PIDN

Program Installation Object
- Program Function (PFID)
- Program Binding

Figure 32. Interactions of Directory Objects

Here is an example of how a program might use the objects:

¹ The program specifies a profile object, a PFID, and a resource.

¹ The profile object is accessed first to determine servers that have the
requested function. By using the priority field, a prioritized list of relevant
servers is obtained.

¹ The first server object in the list is accessed. The resource list in the server
object is then searched to determine if the server has the requested resource.
If the resource is not found, the next server object in the list is accessed.

¹ Once a server with the correct resource is located, the (PFID, PIDN) list is used
to determine the DN for the program installation object.

¹ The program installation object is accessed to obtain the program binding.

738 CPI Communications Reference

 Extensions for Use with DCE Directory

CPI-C Name Service Interface
The objects described above reside in the distributed directory and are accessed by
a directory interface. For example, programs using the DCE distributed directory
can access directory objects using the X/OPEN Directory Services (XDS) and
X/OPEN Object Management (XOM) programming interfaces. Because these
interfaces are not specific to the CPI Communications directory objects, this
Appendix describes a local service, referred to here as the CPI-C name service
interface (CNSI), which programs can use to interact with CPI Communications
directory objects in the directory.

Figure 33 shows the interaction between the program, CPI-C, and CNSI.

Application Program

CPIC Name Service Interface CPIC or APPC

Output
(binding)

Input
(PFID, DN,
Resource)

Input
(sym_dest_name,
PIDN, PFID, binding)

binding

PIDN or
PFID + default DN

•
•
•
•

•
•
•
•

•
•
•
•

Figure 33. CPI-C Name Service Interface (CNSI) and CPI Communications

The right side of the figure shows how a program makes calls to CPI
Communications using the function described in Chapter 2, “CPI Communications
Terms and Concepts.”

If the program specifies a sym_dest_name pointing to a DN, or a PFID or DN
directly, CPI Communications accesses the distributed directory and acquires a
program binding. CPI-C uses the program binding to establish a conversation with
the partner program. When a PFID is specified, a default DN is used to begin the
search. This default DN may be either a PDN, SDN, or SGDN. Definition of a
default DN is system specific.

The left side of Figure 33 shows how a program uses the CNSI and objects
defined in this Appendix to locate the partner program. The application program
makes a call to the CNSI and specifies a three-parameter search criteria:

¹ program function ID —a PFID that represents the function the partner program
provides.

¹ priority/location —a DN representing either a profile, server, or server group
object.

¹ resource —a resource_ID identifying a particular resource (that is, a file that is
required along with a particular function).

 Appendix F. CPI Communications Extensions for Use with DCE Directory 739

 Extensions for Use with DCE Directory

 CNSI Calls
As previously discussed, the program uses CNSI calls to retrieve a PIDN, which it
then passes to CPI-C using the Set_Partner_ID call. Although CNSI calls are not
CPI Communications calls and, thus, not formally defined, the interface would look
very much like DCE's NSI interface for RPC. Here is a sample listing of the type of
calls that would be required to manipulate the objects.

Table 82. Sample Calls for CNSI

cpic_ns_binding_export
cpic_ns_binding_import_begin
cpic_ns_binding_import_done
cpic_ns_binding_import_next
cpic_ns_binding_inq_entry_name
cpic_ns_binding_lookup_begin
cpic_ns_binding_lookup_done
cpic_ns_binding_lookup_next
cpic_ns_binding_select
cpic_ns_binding_unexport
cpic_ns_entry_expand_name
cpic_ns_entry_object_inq_begin
cpic_ns_entry_object_inq_done
cpic_ns_entry_object_inq_next
cpic_ns_group_delete
cpic_ns_group_mbr_add
cpic_ns_group_mbr_inq_begin

cpic_ns_group_mbr_inq_done
cpic_ns_group_mbr_inq_next
cpic_ns_group_mbr_remove
cpic_ns_mgmt_binding_unexport
cpic_ns_mgmt_entry_create
cpic_ns_mgmt_entry_delete
cpic_ns_mgmt_entry_inq_if_ids
cpic_ns_mgmt_handle_set_exp_age
cpic_ns_mgmt_inq_exp_age
cpic_ns_mgmt_set_exp_age
cpic_ns_profile_delete
cpic_ns_profile_elt_add
cpic_ns_profile_elt_inq_begin
cpic_ns_profile_elt_inq_done
cpic_ns_profile_elt_inq_next
cpic_ns_profile_elt_remove
cpic_ns_set_authn

Definition of New Objects
Three new objects are required:

 ¹ Profile
 ¹ Server
 ¹ Server Group

This section discusses terminology and then provides definitions for attributes in the
new objects.

 Terminology
The following terminology is used to define the new CNSI attributes:

¹ A multi-valued attribute means the directory stores (and is aware of) multiple
values for the attribute.

¹ A single-valued attribute means the directory has only one value for the
attribute.

¹ A complex attribute means the directory is only aware of a single value for the
attribute, but the single-value is encoded to contain multiple fields. A complex
field follows the generic coding guidelines provided in Appendix A, “Variables
and Characteristics” for the program binding.

¹ A simple attribute means the attribute value is not encoded; that is, there is
only one field.

740 CPI Communications Reference

 Extensions for Use with DCE Directory

 Profile Object
The Profile object contains one attribute, a profile record attribute:

 ¹ profile record (complex, multi-valued)

A value for the profile record has three parts: priority, PFID, DN

1. priority is 2-character decimal digits (00=highest)

2. PFID is a program function identifier (as defined in Appendix A, “Variables
and Characteristics”)

3. DN is a distinguished name for one of the following:

 – Server object
– Server group object

 – Profile object
– Program installation object

Note: The profile object has the unique object identifier of 1.3.18.0.2.6.8. The
profile record attribute has the unique object identifier of 1.3.18.0.2.4.15.

 Server Object
The Server object contains two attributes, a server record and resource record
attribute:

 ¹ Server record (complex, multi-valued)

A value for the server record has two parts: PFID and DN.

1. PFID is a program function identifier.
2. DN is a distinguished name for a program installation object.

¹ Resource record (simple, multi-valued)

A value for the resource record is a customer-defined byte string with a
maximum length of 64 bytes.

Note: The server object has the unique object identifier of 1.3.18.0.2.6.9. The
server record attribute has the unique object identifier of 1.3.18.0.2.4.16. The
resource record attribute has the unique object identifier of 1.3.18.0.2.4.17.

Server Group Object
The Server Group object contains one attribute, a distinguished name attribute:

¹ distinguished name (simple, multi-valued)

Valid DN values are distinguished names that represent:

 – Profile object
 – Server object

– Server group object

Note: The server group object has the unique object identifier of 1.3.18.0.2.6.10.
The distinguished name attribute is stored with an object identifier of 2.5.4.31.

 Appendix F. CPI Communications Extensions for Use with DCE Directory 741

 Extensions for Use with DCE Directory

Program Installation Object
The Program Installation object is defined by CPI Communications, but is included
here for completeness. It contains two attributes, a program_function_ID and a
program binding attribute:

¹ Program function ID (simple, single-valued)

See Appendix A, “Variables and Characteristics” for a description.

¹ Program binding (complex, single-valued)

See Appendix A, “Variables and Characteristics” for a description.

Encoding Method for Complex Attribute Values
The encoding method for complex attribute values is to follow the general method
outlined in Appendix A, “Variables and Characteristics” for the program binding.
Each complex value is a string of the general pattern “field_type=field_value;
field_type=field_value” where field_type is a four-byte identifier for the field and
field_value is a variable-length field. The end of a field_value is determined by the
semicolon character. If the field_value itself contains a semicolon, the textual
semicolon is repeated. Correct ordering of fields is shown above in the object
definitions.

Table 83 shows the 4-byte code for the field types required in the complex
attributes of the new objects, along with a maximum length for each field_value.

Table 83. Fields in Complex Attributes

Description of Field Contents 4-Byte field_type
Code

Maximum Length
of Field

priority—used in the profile record and server record attribute. PRIO 2

program function ID—used in the profile record and server record
attribute

PFID 1024

distinguished name—used in the profile record and server record
attribute

DSTN 1024

Scenarios for Use of CNSI
Programs access the CNSI directly by specifying a tuple of (function,
priority/location, resource) and retrieve a PIDN. This PIDN is then passed to CPI-C
using the Set_Partner_ID call. The program is able to control retry because it has
the explicit option of retrieving each successive PIDN and attempting the Allocate.

A sample sequence of calls is illustrated in Figure 34.

742 CPI Communications Reference

 Extensions for Use with DCE Directory

 cpic_ns_binding_lookup_begin (
 PFID, (input)
 entry_name_syntax, (input)
 entry_DN_to_start_search, (input)
 ResID, (input)
 ns_handle, (output)
 status) (output)

 While unsucessful do
 begin

 cpic_ns_binding_lookup_next (
 ns_handle, (input)
 next_PIDN, (output)
 status) (output)

CMINIT(sym_dest_name = ' ',
 conversation_id)

 CMSPID(conversation_ID,
partner_ID_type = CM_DISTINGUISHED_NAME,

partner_ID = next_PIDN,
partner_ID_length = length(next_PIDN),
partner_ID_scope = CM_EXPLICIT,

 return_code)

 CMALLC(conversation_id, return_code)

 end

cpic_ns_done(ns_handle, (input) /* clear up control blocks */
 return_code) (output)

Figure 34. Program Uses CNSI to Locate PIDN

The sections that follow show the different combinations of parameters that can be
provided to CNSI. The three-tuple shown as headings represents
(program_function_ID, DN, resource_ID).

(PFID, *, *)
¹ Target: any program installation providing the function of the PFID.

¹ CNSI reads default profile using PFID, returns PIDNs.

(PFID, SDN, *)
¹ Target: any program installation within the server that provides the function

specified by the PFID.

¹ CNSI reads SDN object, returns PIDNs paired with specified PFID.

(PFID, SGDN, *)
¹ Target: any program installation on any server within a server group.

¹ CNSI reads SGDN object, obtaining list of SDNs. CNSI reads SDN objects (in
random order), returning PIDNs that were paired with the specified PFID.

 Appendix F. CPI Communications Extensions for Use with DCE Directory 743

(PFID, SDN, resID)
¹ Target: program installation on the server with the specified resource and

function.

¹ CNSI reads SDN object and searches for match with resID. If match found,
CNSI returns PIDNs that were paired with the specified PFID.

(PFID, SGDN, resID)
¹ Target: program installation on the server with the specified resource, within a

server group.

¹ CNSI reads SGDN object, obtaining list of SDNs. CNSI reads SDN objects (in
random order) and searches for match with resID. If match found, CNSI
returns PIDNs that were paired with the specified PFID.

(PFID, PDN, *)
¹ Target: any program installation providing the function specified by the PFID,

using the priority specified by the profile object.

¹ CNSI reads profile object and creates a list of elements with the specified PFID.
In priority order, the associated object (PIDN, SDN, or SGDN) is read, and
PIDNs are returned as above.

(PFID, PDN, resID)
¹ Target: program installation providing the specified function on a server with the

specified resource, search order specified by profile object.

¹ CNSI reads profile object and orders the list of elements with the PFID. In
priority order, the associated object (SDN or SGDN) is read, and PIDNs are
returned as above. Note that any PIDN found in the profile would have no
meaning in this case, as there would be no associated resource.

744 CPI Communications Reference

 Conformance Classes

Appendix G. CPI Communications 2.1 Conformance Classes

The purpose of the CPI-C 2.1 conformance classes is to foster an orderly
marketplace for CPI-C 2.1 implementation, purchase, and use. The conformance
class definition assists the CPI-C implementer in deciding what to build, the CPI-C
purchaser in knowing what to buy, and the CPI-C application builder in knowing
what to use. Uses of the conformance class definition include the following:

 ¹ Product announcements
¹ Application requirements specifications

 ¹ Procurement specifications
¹ Conformance test suite development

 Definitions
Mandatory conformance class

A function set that an implementation must support to conform to
CPI-C. All of the function within the set must be implemented.

Optional conformance class
A function set that an implementation may support. To support an
optional conformance class, an implementation must support all the
function in the optional conformance class and in its prerequisite
conformance classes.

Prerequisite conformance class
A conformance class required for support of another conformance
class.

 Conformance Requirements
To conform with CPI-C 2.1, an implementation must support the following:

¹ The mandatory conformance class (conversations)
¹ Either the LU 6.2 or the OSI TP conformance class, or both

Additionally, an implementation may support any optional conformance class.

 Multi-Threading Support
While CPI Communications itself does not provide multi-threading support, some
implementations are designed to work with multi-threading support in the base
operating system and to allow multi-threaded programs to use CPI
Communications. It is assumed that an implementation that supports
multi-threaded programs allows concurrent operations through the use of multiple
program threads. See “Concurrent Operations” on page 44.

CPI-C 2.1 Conformance Classes
CPI-C 2.1 conformance classes consist of a mandatory conformance class and a
number of optional conformance classes. A conformance class may be a functional
conformance class, consisting of function that may be supported by a CPI-C
implementation, or a configuration conformance class, specifying how a CPI-C

 Copyright IBM Corp. 1996, 1998 745

 Conformance Classes

implementation may allow an installation to configure the available support. The
conformance classes are listed here and described below.

Functional conformance classes:

 ¹ Conversations (mandatory)
 ¹ LU 6.2
 ¹ OSI TP
 ¹ Recoverable transactions
 ¹ Unchained transactions
 ¹ Conversation-level non-blocking
 ¹ Queue-level non-blocking
 ¹ Callback function
 ¹ Server
¹ Data conversion routines

 ¹ Security
 ¹ Distributed security
 ¹ Full-duplex
 ¹ Expedited data
 ¹ Directory
 ¹ Secondary information
 ¹ Initialization data
¹ Automatic data conversion

Configuration conformance class:

¹ OSI TP addressing disable

Functional Conformance Class Descriptions
For each conformance class, the following information is provided:

 ¹ Brief description
¹ Prerequisite conformance classes

 ¹ Required calls
¹ Whether support is mandatory or optional

Additional details of the required support (characteristics, variables, and values) are
included in the tables in “Conformance Class Details” on page 755.

 Conversations
Description: allows a program to start and end half-duplex conversations, to
exchange data on those converations, to use confirmation, error notification, the
attention mechanism (Request_To_Send), and the optimization calls (Flush,
Prepare_To_Receive), and to modify and examine conversation or system
characteristics.

Prerequisites: none

Required Starter Set calls:

¹ CMACCP - Accept_Conversation
¹ CMALLC - Allocate
¹ CMDEAL - Deallocate
¹ CMINIT - Initialize_Conversation
¹ CMRCV - Receive

746 CPI Communications Reference

 Conformance Classes

¹ CMSEND - Send_Data

Required Advanced Function calls:

¹ CMCFM - Confirm
¹ CMCFMD - Confirmed
¹ CMECS - Extract_Conversation_State
¹ CMECT - Extract_Conversation_Type
¹ CMEMBS - Extract_Maximum_Buffer_Size
¹ CMEMN - Extract_Mode_Name
¹ CMESL - Extract_Sync_Level
¹ CMFLUS - Flush
¹ CMPTR - Prepare_To_Receive
¹ CMRTS - Request_To_Send
¹ CMSERR - Send_Error
¹ CMSCT - Set_Conversation_Type
¹ CMSDT - Set_Deallocate_Type
¹ CMSF - Set_Fill
¹ CMSLD - Set_Log_Data
¹ CMSMN - Set_Mode_Name
¹ CMSPTR - Set_Prepare_To_Receive_Type
¹ CMSRT - Set_Receive_Type
¹ CMSRC - Set_Return_Control
¹ CMSST - Set_Send_Type
¹ CMSSL - Set_Sync_Level

Required sync_level values:
 – CM_NONE
 – CM_CONFIRM

¹ CMSTPN - Set_TP_Name
¹ CMTRTS - Test_Request_To_Send_Received

Support: mandatory

 LU 6.2
Description: allows a program to use LU 6.2-specific services.

Prerequisites: conversations

Required calls:

¹ CMEPLN - Extract_Partner_LU_Name
¹ CMSED - Set_Error_Direction
¹ CMSPLN - Set_Partner_LU_Name

Support: optional. However, an implementation must support either this
conformance class or the OSI TP conformance class.

 OSI TP
Description: allows a program to use OSI TP-specific services.

Prerequisites: conversations

Required calls:

¹ CMEAEQ - Extract_AE_Qualifier

 Appendix G. CPI Communications 2.1 Conformance Classes 747

 Conformance Classes

¹ CMEAPT - Extract_AP_Title
¹ CMEACN - Extract_Application_Context_Name
¹ CMSAC - Set_Allocate_Confirm
¹ CMSAEQ - Set_AE_Qualifier
¹ CMSAPT - Set_AP_Title
¹ CMSACN - Set_Application_Context_Name
¹ CMSCU - Set_Confirmation_Urgency

Support: optional. However, an implementation must support either this
conformance class or the LU 6.2 conformance class.

 Recoverable Transactions
Description: allows a program to use CPI-C in conjunction with a resource
recovery interface to coordinate changes to distributed resources using two-phase
commit protocols.

Prerequisites: conversations

Required calls:

¹ CMSSL - Set_Sync_Level
Required sync_level value:
 – CM_SYNC_POINT
Required sync_level value if either full duplex or OSI TP is also supported:
 – CM_SYNC_POINT_NO_CONFIRM

Required calls if OSI TP is also supported:

¹ CMDFDE - Deferred_Deallocate
¹ CMPREP - Prepare
¹ CMSPDP - Set_Prepare_Data_Permitted

Required call if X/Open TX resource recovery interface is also supported:

 ¹ CMSJT - Set_Join_Transaction

Support: optional

 Unchained Transactions
Description: allows a program to complete a recoverable transaction with a commit
call without immediately starting a new recoverable transaction. The program may
begin a new recoverable transaction at a later time.

Prerequisites: conversations, recoverable transactions, OSI TP

Required calls:

¹ CMETC - Extract_Transaction_Control
¹ CMINCL - Include_Partner_In_Transaction
¹ CMSBT - Set_Begin_Transaction
¹ CMSTC - Set_Transaction_Control

Support: optional

748 CPI Communications Reference

 Conformance Classes

 Conversation-Level Non-Blocking
Description: allows a program to regain control if a call cannot complete
immediately. The call remains in progress. A program can have one outstanding
operation on a conversation.

Prerequisites: conversations

Required calls:

¹ CMCANC - Cancel_Conversation
¹ CMSPM - Set_Processing_Mode
¹ CMWAIT - Wait_For_Conversation

Support: optional

 Queue-Level Non-Blocking
Description: allows a program to regain control if a call cannot complete
immediately. The call remains in progress. A program can have one outstanding
operation per conversation queue.

Prerequisites: conversations

Required calls:

¹ CMCANC - Cancel_Conversation
¹ CMSQPM - Set_Queue_Processing_Mode
¹ CMWCMP - Wait_For_Completion

Support: optional

 Callback Function
Description: allows a program to regain control if a call cannot complete
immediately. The call remains in progress. A program can have one outstanding
operation per conversation queue. A program receives an asynchronous
notification when an outstanding operation completes.

Prerequisites: conversations

Required calls:

¹ CMCANC - Cancel_Conversation
¹ CMSQCF - Set_Queue_Callback_Function

Support: optional

 Appendix G. CPI Communications 2.1 Conformance Classes 749

 Conformance Classes

 Server
Description: allows a program to register multiple TP names with CPI-C, to accept
multiple incoming conversations, and to manage contexts for different clients.

Prerequisites: conversations. Additionally, for a system that does not support
multi-threaded programs: one or more of conversation-level non-blocking,
queue-level non-blocking, or callback function.

Required calls:

¹ CMACCI - Accept_Incoming
¹ CMECTX - Extract_Conversation_Context
¹ CMETPN - Extract_TP_Name
¹ CMINIC - Initialize_For_Incoming
¹ CMRLTP - Release_Local_TP_Name
¹ CMSLTP - Specify_Local_TP_Name

Support: optional

Data Conversion Routines
Description: allows a program to call local routines to change the encoding of a
character string from the local encoding to EBCDIC, or vice versa.

Prerequisites: conversations

Required calls:

¹ CMCNVI - Convert_Incoming
¹ CMCNVO - Convert_Outgoing

Support: optional

 Security
Description: allows a program to establish conversations that use access security
information provided administratively in side information or set directly by the
program.

Prerequisites: conversations

Required calls:

¹ CMESUI - Extract_Security_User_ID
¹ CMSCSP - Set_Conversation_Security_Password
¹ CMSCST - Set_Conversation_Security_Type

Required conversation_security_type values:
 – CM_SECURITY_NONE
 – CM_SECURITY_PROGRAM
 – CM_SECURITY_PROGRAM_STRONG
 – CM_SECURITY_SAME

 ¹ CMSCSU Set_Conversation_Security_User_ID

Support: optional

750 CPI Communications Reference

 Conformance Classes

 Distributed Security
Description: allows a program to use security services provided by a distributed
security server.

Prerequisites: conversations, directory

Required calls:

¹ CMESUI - Extract_Security_User_ID
¹ CMSCST - Set_Conversation_Security_Type

Required conversation_security_type values:
 – CM_SECURITY_NONE
 – CM_SECURITY_SAME
 – CM_SECURITY_DISTRIBUTED
 – CM_SECURITY_MUTUAL

Support: optional

 Full-Duplex
Description: allows a program to use full-duplex conversations.

Prerequisites: conversations. Additionally, for a system that does not support
multi-threaded programs: either queue-level non-blocking or callback function.

Required calls:

¹ CMESRM - Extract_Send_Receive_Mode
¹ CMSSRM - Set_Send_Receive_Mode

Support: optional

 Expedited Data
Description: allows a program to exchange expedited data with the partner
program.

Prerequisites: conversations, LU 6.2

Required calls:

¹ CMRCVX - Receive_Expedited_Data
¹ CMSNDX - Send_Expedited_Data

Support: optional

 Directory
Description: allows a program to use destination information stored in a distributed
directory.

Prerequisites: conversations

 Appendix G. CPI Communications 2.1 Conformance Classes 751

 Conformance Classes

Required calls:

¹ CMEPID - Extract_Partner_ID
¹ CMSPID - Set_Partner_ID

Support: optional

 Secondary Information
Description: allows a program to extract secondary information associated with the
return code for a given call.

Prerequisites: conversations

Required calls:

¹ CMESI - Extract_Secondary_Information

Support: optional

 Initialization Data
Description: allows a program to exchange initialization data at conversation
start-up.

Prerequisites: conversations

Required calls:

¹ CMEID - Extract_Initialization_Data
¹ CMSID - Set_Initialization_Data

Support: mandatory if OSI TP is supported; otherwise, optional.

Automatic Data Conversation
Description: allows a program to use automatic data conversion on initialization
data and data records sent and received.

Prerequisites: conversations

Required calls:

¹ CMRCVM - Receive_Mapped_Data
¹ CMSNDM - Send_Mapped_Data

Required calls if Initialization Data is also supported:

¹ CMEMID - Extract_Mapped_Initialization_Data
¹ CMSMID - Set_Mapped_Initialization_Data

Support: optional

752 CPI Communications Reference

 Conformance Classes

Configuration Conformance Class Description
Configuration conformance classes specify configuration options that an
implementation may support. This section describes the configuration conformance
class. The following information is provided:

 ¹ Brief description
¹ Prerequisite conformance classes
¹ Required configuration options
¹ Whether support is mandatory or optional

OSI TP Addressing Disable
Description: an installation may disable the addressing Set calls for OSI TP. A
program that issues a disabled call gets the CM_CALL_NOT_SUPPORTED return
code.

Prerequisites: conversations, OSI TP

Calls that may be disabled:

¹ CMSAEQ - Set_AE_Qualifier
¹ CMSAPT - Set_AP_Title
¹ CMSACN - Set_Application_Context_Name

Support: optional

 Appendix G. CPI Communications 2.1 Conformance Classes 753

 Conformance Classes

Relationship to OSI TP Functional Units and OSI TP Profiles
Table 84 shows the OSI TP service functional units and the corresponding CPI-C
2.1 conformance classes. For each functional unit, the calls in the corresponding
conformance classes map to the services defined by the functional unit. For the
Commit, Chained Transactions, and Unchained Transactions functional units,
support for a resource recovery interface is also required.

Table 84. OSI TP Service Functional Units and Corresponding Conformance Classes

Service Functional Unit Conformance Classes

Dialogue conversations, OSI TP

Shared Control full-duplex

Polarized Control conversations

Handshake conversations

Commit recoverable transactions

Chained Transactions recoverable transactions

Unchained Transactions unchained transactions

Table 85 shows the OSI TP profiles defined by the OSI Implementers Workshop
and the corresponding CPI-C 2.1 conformance classes. For each profile, the calls
in the corresponding conformance classes map to the services defined by the
profile. The protocol functional units included in each profile are shown (in
parentheses). For the Commit, Chained Transactions, Unchained Transactions,
and Recovery functional units, support for a resource recovery interface is also
required.

Note: Profiles ATP12, ATP22, and ATP32 specify that the handshake functional
unit is optional. CPI-C does not support the use of Confirm/Confirmed (handshake)
on a full duplex conversation.

Table 85. OSI TP Profiles and Corresponding Conformance Classes

Profile (protocol functional units) Conformance Classes

ATP11 (dialogue, handshake, polarized control) conversations, OSI TP

ATP21 (dialogue, handshake, polarized control, commit,
unchained transactions, recovery)

conversations, OSI TP, recoverable transactions,
 unchained transactions

ATP31 (dialogue, handshake, polarized control, commit,
chained transactions, recovery)

conversations, OSI TP, recoverable transactions

ATP12 (dialogue, handshake (optional), shared control) conversations, OSI TP, full-duplex

ATP22 (dialogue, handshake (optional), shared control, commit,
unchained transactions, recovery)

conversations, OSI TP, full-duplex,
recoverable transactions, unchained transactions

ATP32 (dialogue, handshake (optional), shared control, commit,
chained transactions, recovery)

conversations, OSI TP, full-duplex,
 recoverable transactions

754 CPI Communications Reference

 Conformance Classes

Conformance Class Details
This section provides additional information on the required support for each
functional conformance class. The tables below list each CPI-C call, characteristic,
variable, and value in the left column; any conformance class or combination of
conformance classes that requires the implementation of that call, characteristic,
variable, or value is listed in the right column. Combinations are enclosed in
parentheses. For example, (OSI TP and recoverable transactions) to the right of
the Deferred_Deallocate call indicates that the call is required if both the OSI TP
and recoverable transactions conformance classes are supported.

The conformance class requirements for calls are presented in Table 86, and the
conformance class requirements for characteristics, variables, and values are
presented in Table 87 on page 757.

Table 86 (Page 1 of 3). Conformance Class Requirements—Calls

Call Required by

CMACCP — Accept_Conversation conversations

CMACCI — Accept_Incoming server

CMALLC — Allocate conversations

CMCANC — Cancel_Conversation conversation-level non-blocking, callback function,
 queue-level non-blocking

CMCFM — Confirm conversations

CMCFMD — Confirmed conversations

CMCNVI — Convert_Incoming data conversion routines

CMCNVO — Convert_Outgoing data conversion routines

CMDEAL — Deallocate conversations

CMDFDE — Deferred_Deallocate (OSI TP and recoverable transactions)

CMEAEQ — Extract_AE_Qualifier OSI TP

CMEAPT — Extract_AP_Title OSI TP

CMEACN — Extract_Application_Context_Name OSI TP

CMECTX — Extract_Conversation_Context server

CMECS — Extract_Conversation_State conversations

CMECT — Extract_Conversation_Type conversations

CMEID — Extract_Initialization_Data initialization data

CMEMBS — Extract_Maximum_Buffer_Size conversations

CMEMID — Extract_Mapped_Initialization_Data automatic data conversion

CMEMN — Extract_Mode_Name conversations

CMEPB — Extract_Partner_ID directory

CMEPLN — Extract_Partner_LU_Name LU 6.2

CMESI — Extract_Secondary_Information secondary information

CMESUI — Extract_Security_User_ID security, distributed security

CMESRM — Extract_Send_Receive_Mode full-duplex

CMESL — Extract_Sync_Level conversations

CMETPN — Extract_TP_Name conversations

CMETC — Extract_Transaction_Control unchained transactions

CMFLUS — Flush conversations

CMINCL — Include_Partner_In_Transaction unchained transactions

 Appendix G. CPI Communications 2.1 Conformance Classes 755

 Conformance Classes

Table 86 (Page 2 of 3). Conformance Class Requirements—Calls

Call Required by

CMINIC — Initialize_For_Incoming server

CMINIT — Initialize_Conversation conversations

CMPREP — Prepare (OSI TP and recoverable transactions)

CMPTR — Prepare_To_Receive conversations

CMRCV — Receive conversations

CMRCVM — Receive_Mapped_Data automatic data conversion

CMRCVX — Receive_Expedited_Data expedited data

CMRLTP — Release_Local_TP_Name server

CMRTS — Request_To_Send conversations

CMSEND — Send_Data conversations

CMSERR — Send_Error conversations

CMSNDM — Send_Mapped_Data automatic data conversion

CMSNDX — Send_Expedited_Data expedited data

CMSAEQ — Set_AE_Qualifier OSI TP

CMSAC — Set_Allocate_Confirm OSI TP

CMSAPT — Set_AP_Title OSI TP

CMSACN — Set_Application_Context_Name OSI TP

CMSBT — Set_Begin_Transaction unchained transactions

CMSCU — Set_Confirmation_Urgency OSI TP

CMSCSP — Set_Conversation_Security_Password security

CMSCST — Set_Conversation_Security_Type security, distributed security

CMSCSU — Set_Conversation_Security_User_ID security

CMSCT — Set_Conversation_Type conversations

CMSDT — Set_Deallocate_Type conversations

CMSED — Set_Error_Direction LU 6.2

CMSF — Set_Fill conversations

CMSID — Set_Initialization_Data initialization data

CMSJT — Set_Join_Transaction recoverable transactions (if TX interface is supported)

CMSLD — Set_Log_Data conversations

CMSMID — Set_Mapped_Initialization_Data automatic data conversion

CMSMN — Set_Mode_Name conversations

CMSPID — Set_Partner_ID directory

CMSPLN — Set_Partner_LU_Name LU 6.2

CMSPDP — Set_Prepare_Data_Permitted (OSI TP and recoverable transactions)

CMSPTR — Set_Prepare_to_Receive_Type conversations

CMSPM — Set_Processing_Mode conversation-level non-blocking

CMSQCF — Set_Queue_Callback_Function callback function

CMSQPM — Set_Queue_Processing_Mode queue-level non-blocking

CMSRT — Set_Receive_Type conversations

CMSRC — Set_Return_Control conversations

CMSSRM — Set_Send_Receive_Mode full-duplex

CMSST — Set_Send_Type conversations

CMSSL — Set_Sync_Level conversations

756 CPI Communications Reference

 Conformance Classes

Table 86 (Page 3 of 3). Conformance Class Requirements—Calls

Call Required by

CMSTPN — Set_TP_Name conversations

CMSTC — Set_Transaction_Control unchained transactions

CMSLTP — Specify_Local_TP_Name server

CMTRTS — Test_Request_To_Send_Received conversations

CMWCMP — Wait_For_Completion queue-level non-blocking

CMWAIT — Wait_For_Conversation conversation-level non-blocking

Table 87 (Page 1 of 5). Conformance Class Requirements—Characteristics, Variables, and Values

Characteristics, Variables, and Values Required by

ae_qualifier OSI TP

ae_qualifier_format
 cm_dn
 cm_oid

OSI TP
 OSI TP
 OSI TP

ae_qualifier_length OSI TP

allocate_confirm
 cm_allocate_confirm
 cm_allocate_no_confirm

OSI TP
 OSI TP
 OSI TP

ap_title OSI TP

ap_title_format
 cm_dn
 cm_oid

OSI TP
 OSI TP
 OSI TP

ap_title_length OSI TP

application_context_name OSI TP

application_context_name_length OSI TP

begin_transaction
 cm_begin_explicit
 cm_begin_implicit

OSI TP
 OSI TP
 OSI TP

buffer conversations

buffer_length conversations

callback_function callback function

call_ID secondary information

completed_op_index_list queue-level non-blocking

completed_op_count queue-level non-blocking

confirmation_urgency
 cm_confirmation_not_urgent
 cm_confirmation_urgent

OSI TP
 OSI TP
 OSI TP

context_ID server

context_ID_length server

control_information_received
 cm_no_control_info_received
 cm_req_to_send_received
 cm_exp_data_received
 cm_rts_and_exp_data_received
 cm_allocate_confirmed
 cm_allocate_confirmed_with_data
 cm_allocate_rejected_with_data

conversations
 conversations
 conversations
 expedited data
 expedited data
 OSI TP
 OSI TP
 OSI TP

conversation_ID conversations

 Appendix G. CPI Communications 2.1 Conformance Classes 757

 Conformance Classes

Table 87 (Page 2 of 5). Conformance Class Requirements—Characteristics, Variables, and Values

Characteristics, Variables, and Values Required by

conversation_queue
 cm_initialization_queue
 cm_send_queue
 cm_receive_queue
 cm_send_receive_queue
 cm_expedited_send_queue
 cm_expedited_receive_queue

queue-level non-blocking, callback function
queue-level non-blocking, callback function
queue-level non-blocking, callback function
queue-level non-blocking, callback function
queue-level non-blocking, callback function
queue-level non-blocking, callback function
queue-level non-blocking, callback function

conversation_return_code
(same values as return_code)

conversation-level non-blocking

conversation_security_type
 cm_security_none
 cm_security_same
 cm_security_program
 cm_security_program_strong
 cm_security_distributed
 cm_security_mutual

security, distributed security
security, distributed security
security, distributed security

 security
 security
 distributed security
 distributed security

conversation_state
 cm_initialize_state
 cm_send_state
 cm_receive_state
 cm_send_pending_state
 cm_confirm_state
 cm_confirm_send_state
 cm_confirm_deallocate_state
 cm_defer_receive_state
 cm_defer_deallocate_state
 cm_sync_point_state
 cm_sync_point_send_state
 cm_sync_point_deallocate_state
 cm_initialize_incoming_state
 cm_prepared_state
 cm_send_only_state
 cm_receive_only_state
 cm_send_and_receive_state

conversations
 conversations
 conversations
 conversations
 conversations
 conversations
 conversations
 conversations
 recoverable transactions
 recoverable transactions
 recoverable transactions
 recoverable transactions
 recoverable transactions
 server
 recoverable transactions
 full-duplex
 full-duplex
 full-duplex

conversation_type
 cm_basic_conversation
 cm_mapped_conversation

conversations
 conversations
 conversations

data_received
 cm_no_data_received
 cm_data_received
 cm_complete_data_received
 cm_incomplete_data_received

conversations
 conversations
 conversations
 conversations
 conversations

deallocate_type
 cm_deallocate_sync_level
 cm_deallocate_flush
 cm_deallocate_confirm
 cm_deallocate_abend

conversations
 conversations
 conversations
 conversations
 conversations

directory_encoding
 cm_default_encoding
 cm_unicode_encoding

directory
 directory
 directory

directory_syntax
 cm_default_syntax
 cm_DCE_syntax
 cm_XDS_syntax
 cm_NDS_syntax

directory
 directory
 directory
 directory
 directory

error_direction
 cm_receive_error
 cm_send_error

LU 6.2
 LU 6.2
 LU 6.2

758 CPI Communications Reference

 Conformance Classes

Table 87 (Page 3 of 5). Conformance Class Requirements—Characteristics, Variables, and Values

Characteristics, Variables, and Values Required by

expedited_receive_type
 cm_receive_and_wait
 cm_receive_immediate

expedited data
 expedited data
 expedited data

fill
 cm_fill_ll
 cm_fill_buffer

conversations
 conversations
 conversations

initialization_data OSI TP

initialization_data_length OSI TP

join_transaction
 cm_explicit
 cm_implicit

recoverable transactions (if TX interface is supported)
recoverable transactions (if TX interface is supported)
recoverable transactions (if TX interface is supported)

log_data conversations

log_data_length conversations

map_name automatic data conversion

map_name_length automatic data conversion

maximum_buffer_size conversations

mode_name conversations

mode_name_length conversations

OOID queue-level non-blocking

OOID_list queue-level non-blocking

OOID_list_count queue-level non-blocking

partner_ID directory

partner_ID_length directory

partner_ID_scope
 cm_explicit
 cm_reference

directory
 directory
 directory

partner_ID_type
 cm_distinguished_name
 cm_local_distinguished_name
 cm_program_function_ID
 cm_OSI_TPSU_title_OID
 cm_program_binding

directory
 directory
 directory
 directory
 directory
 directory

partner_LU_name LU 6.2

partner_LU_name_length LU 6.2

prepare_data_permitted
 cm_prepare_data_permitted
 cm_prepare_data_not_permitted

(OSI TP and recoverable transactions)
(OSI TP and recoverable transactions)
(OSI TP and recoverable transactions)

prepare_to_receive_type
 cm_prep_to_receive_sync_level
 cm_prep_to_receive_flush
 cm_prep_to_receive_confirm

conversations
 conversations
 conversations
 conversations

processing_mode
 cm_blocking
 cm_non_blocking

conversation-level non-blocking
 conversation-level non-blocking
 conversation-level non-blocking

queue_processing_mode
 cm_blocking
 cm_non_blocking

queue-level non-blocking
 queue-level non-blocking
 queue-level non-blocking

receive_type
 cm_receive_and_wait
 cm_receive_immediate

conversations
 conversations
 conversations

received_length conversations

 Appendix G. CPI Communications 2.1 Conformance Classes 759

 Conformance Classes

Table 87 (Page 4 of 5). Conformance Class Requirements—Characteristics, Variables, and Values

Characteristics, Variables, and Values Required by

requested_length conversations

return_code
 cm_ok
 cm_allocate_failure_no_retry
 cm_allocate_failure_retry
 cm_conversation_type_mismatch
 cm_pip_not_specified_correctly
 cm_security_not_valid
 cm_sync_lvl_not_supported_sys
 cm_sync_lvl_not_supported_pgm
 cm_tpn_not_recognized
 cm_tp_not_available_no_retry
 cm_tp_not_available_retry
 cm_deallocated_abend
 cm_deallocated_normal
 cm_parameter_error
 cm_product_specific_error
 cm_program_error_no_trunc
 cm_program_error_purging
 cm_program_error_trunc
 cm_program_parameter_check
 cm_program_state_check
 cm_resource_failure_no_retry
 cm_resource_failure_retry
 cm_unsuccessful
 cm_deallocated_abend_svc
 cm_deallocated_abend_timer
 cm_svc_error_no_trunc
 cm_svc_error_purging
 cm_svc_error_trunc
 cm_operation_incomplete

 cm_system_event
 cm_operation_not_accepted

 cm_conversation_ending
 cm_send_rcv_mode_not_supported
 cm_buffer_too_small
 cm_exp_data_not_supported
 cm_deallocate_confirm_reject
 cm_allocation_error
 cm_retry_limit_exceeded
 cm_no_secondary_information
 cm_security_not_supported
 cm_security_mutual_failed
 cm_call_not_supported
 cm_parm_value_not_supported

 cm_unknown_map_name_requested
 cm_unknown_map_name_received
 cm_map_routine_error

 cm_conversation_cancelled

 cm_take_backout
 cm_deallocated_abend_bo
 cm_deallocated_abend_svc_bo
 cm_deallocated_abend_timer_bo
 cm_resource_fail_no_retry_bo
 cm_resource_failure_retry_bo
 cm_deallocated_normal_bo
 cm_conv_dealloc_after_syncpt
 cm_include_partner_reject_bo

conversations
 conversations
 conversations
 conversations
 LU 6.2
 LU 6.2
 conversations
 conversations
 LU 6.2
 conversations
 conversations
 conversations
 conversations
 conversations
 conversations
 conversations
 LU 6.2
 conversations
 LU 6.2
 conversations
 conversations
 conversations
 conversations
 conversations
 LU 6.2
 LU 6.2
 LU 6.2
 LU 6.2
 LU 6.2

conversation-level non-blocking, callback function,
 queue-level non-blocking
 conversation-level non-blocking

conversation-level non-blocking, callback function,
 queue-level non-blocking
 full-duplex

OSI TP, full-duplex
expedited data, OSI TP, directory

 expedited data
(OSI TP and full-duplex)

 full-duplex
 directory
 secondary information

security, distributed security
 distributed security
 -

conversations, security, distributed security
 recoverable transactions

automatic data conversion
automatic data conversion
automatic data conversion

conversation-level non-blocking, callback function,
 queue-level non-blocking
 recoverable transactions
 recoverable transactions

(LU 6.2 and recoverable transactions)
(LU 6.2 and recoverable transactions)

 recoverable transactions
 recoverable transactions
 recoverable transactions

(full-duplex, recoverable transactions and LU 6.2)
 unchained transactions

760 CPI Communications Reference

Table 87 (Page 5 of 5). Conformance Class Requirements—Characteristics, Variables, and Values

Characteristics, Variables, and Values Required by

return_control
 cm_when_session_allocated
 cm_immediate
 cm_when_conwinner_allocated
 cm_when_session_free

conversations
 conversations
 conversations
 conversations
 conversations

security_password security

security_password_length security

security_user_ID security, distributed security

security_user_ID_length security, distributed security

send_length conversations

send_receive_mode
 cm_full_duplex
 cm_half_duplex

full-duplex
 full-duplex
 full-duplex

send_type
 cm_buffer_data
 cm_send_and_flush
 cm_send_and_confirm
 cm_send_and_prep_to_receive
 cm_send_and_deallocate

conversations
 conversations
 conversations
 conversations
 conversations
 conversations

status_received
 cm_no_status_received
 cm_send_received
 cm_confirm_received
 cm_confirm_send_received
 cm_confirm_dealloc_received
 cm_take_commit
 cm_take_commit_send
 cm_take_commit_deallocate
 cm_take_commit_data_permitted
 cm_take_commit_send_data_permitted
 cm_take_commit_deallocate_data_permitted
 cm_prepare_ok
 cm_join_transaction

conversations
 conversations
 conversations
 conversations
 conversations
 conversations
 recoverable transactions
 recoverable transactions
 recoverable transactions

(OSI TP and recoverable transactions)
(OSI TP and recoverable transactions)
(OSI TP and recoverable transactions)

 recoverable transactions
 unchained transactions

sym_dest_name conversations

sync_level
 cm_none
 cm_confirm
 cm_sync_point
 cm_sync_point_no_confirm

conversations
 conversations
 conversations
 recoverable transactions

(OSI TP and recoverable transactions),
(recoverable transactions and full-duplex)

timeout queue-level non-blocking

TP_name conversations

TP_name_length conversations

transaction_control
 cm_chained_transactions
 cm_unchained_transactions

unchained transactions
 unchained transactions
 unchained transactions

user_field queue-level non-blocking, callback function

user_field_list queue-level non-blocking

 Appendix G. CPI Communications 2.1 Conformance Classes 761

762 CPI Communications Reference

 Solution Developers Program

Appendix H. Solution Developers Program - Enterprise
Communications Partners in Development

 Program Highlights
To assist your development efforts, IBM offers the Enterprise Communications
Partners in Development program.

At no cost to you, you receive:

¹ Technical assistance from CROSS-PLATFORM specialists in communications,
operating systems, and application development, provided for your design or
development staff.

¹ The opportunity to participate in early code programs.

¹ Opportunities to participate in special marketing activities, such as industry
magazine supplements and IBM events.

¹ Discounts on IBM Communications Server products

Additional fee-based options include:

¹ Enterprise Communications Remote Test capabilities. Provides members the
opportunity to test applications on a variety servers.

 ¹ Product education

 Membership
The Enterprise Communications Partners in Development program is available to
solution developers at no cost.

For additional information or to receive a membership application, Contact:

U.S. and Canada 1-800-553-1623

Worldwide 1-770-835-9902

Fax 1-214-280-6116

email commsrv@vnet.ibm.com

Worldwide Web http://www.austin.ibm.com/developer

 Copyright IBM Corp. 1996, 1998 763

 Solution Developers Program

764 CPI Communications Reference

 Glossary

 Glossary

A
alias . (1) An alternative name used to identify an
object, a logical unit, or a database. (2) A nickname
set up by the network administrator for a file, printer, or
serial device.

API. Application programming interface.

application-entity . The part of an application-process
that exclusively defines communications formats and
protocols for OSI-compliant systems.

application-entity-qualifier . The qualifier that is used
to identify a specific instance of an application-entity. It
must be unambiguous within the scope of the
application-process. See also ISO/IEC 7498-3.

application-process . The part of an open system that
performs the information processing for a particular
application. See also ISO/IEC 7498:1984.

application-process-title . The unambiguous title of
the application-process. It must be unambiguous within
the OSI environment. See also ISO/IEC 7498-3.

application context . The set of rules that define the
exchange of information between two application
programs. See also ISO/IEC 9545.

application context name . The registered name of
the application context. See also ISO/IEC 9545.

application programming interface (API) . The set of
programming language constructs or statements that
can be coded in an application program to invoke the
specific functions and services provided by an
underlying operating system or service program.

association . A relationship between two
application-entity instances for the purpose of
exchanging data. An association is similar to an SNA
LU 6.2 session and is sometimes called a logical
connection. See also ISO/IEC 9594.

B
basic conversation . A conversation in which
programs exchange data records in an SNA-defined
format. This format is a stream of data containing
2-byte length prefixes that specify the amount of data to
follow before the next prefix.

blocking . A CPI Communications call-processing
mode in which a call operation completes before control

is returned to the program. The program (or thread) is
blocked (unable to perform any other work) until the call
operation is completed.

C
callback function . An application-defined function that
is called when an outstanding operation completes.

chained transactions . A series of transactions in
which the (n+1)th transaction begins immediately upon
the termination of the nth transaction. See also
ISO/IEC 10026-1.

Common Programming Interface Communications
(CPI-C). A programming interface for applications that
require program-to-program communication using the
conversational model.

communications resource manager (CRM) . The
component within a system that manages a particular
resource — in this case, a conversational
communications resource. See also X/Open Guide:
Distributed Transaction Processing Reference Model.

context . A system-wide entity used by node services
to group logical attributes for work done by a program
on behalf of a partner program.

context identifier . A system-wide identifier used by
node services to identify a context.

conversation . A logical connection between two
programs over an LU type 6.2 session or OSI TP
association that allows them to communicate with each
other while processing a transaction. See also basic
conversation and mapped conversation.

conversation characteristics . The attributes of a
conversation that determine the functions and
capabilities of programs within the conversation.

conversation partner . One of the two programs
involved in a conversation.

conversation queue . A logical grouping of CPI
Communications calls on a conversation. Calls
associated with a specific queue are processed serially.
Calls associated with different queues are processed
independently.

conversation state . The condition of a conversation
that reflects what the past action on that conversation
has been and that determines what the next set of
actions may be.

 Copyright IBM Corp. 1996, 1998 765

 Glossary

CPI-C. Common Programming Interface
Communications.

current context . For a program, the context within
which work is currently being done.

D
directory object . A collection of information that is
represented in the distributed directory as a single
entry. Directory objects consist of attributes, each of
which has a type and one or more values.

distinguished name . A completely qualified name that
is used to access an entry in a distributed directory.
Contrast with local distinguished name.

distributed directory . A collection of open systems
that cooperate to hold information about directory
objects . The directory is referred to as distributed
because the data can be accessed from multiple
locations in a network using local directory interfaces.

DN. See distinguished name.

F
full-duplex . Pertaining to communication in which data
can be sent and received at the same time. Contrast
with half-duplex .

H
half-duplex . Pertaining to communication in which
data can only be transmitted in one direction at a time.
Contrast with full-duplex .

I
initialization data . Application-specific data that may
be exchanged between two application programs during
conversation initialization. See also ISO/IEC 10026-2
for User-Data on TP-BEGIN-DIALOGUE and SNA
Transaction Programmers Reference Manual for LU
Type 6.2.

L
local distinguished name . An incomplete
distinguished name for an object in a distributed
directory. The complete distinguished name is formed
by prefixing the local distinguished name with a
system-specific local prefix.

local program . The program being discussed within a
particular context. Contrast with remote program.

logical connection . The generic term used to refer to
either an SNA LU 6.2 session or an OSI association.

logical unit . A port providing formatting, state
synchronization, and other high-level services through
which an end user communicates with another end user
over an SNA network.

logical unit type 6.2 . The SNA logical unit type that
supports general communication between programs in a
distributed processing environment; the SNA logical unit
type on which CPI Communications is built.

M
mapped conversation . A conversation in which
programs exchange data records with arbitrary data
formats agreed upon by the applications’ programmers.

mode name . Part of the CPI Communications side
information. The mode name is used by LU 6.2 to
designate the properties for the logical connection that
will be allocated for a conversation.

N
network name . In SNA, the symbolic identifier by
which end users refer to a network accessible unit
(NAU), link station, or link.

non-blocking . A CPI Communications call-processing
mode in which, if possible, a call operation completes
immediately. If the call operation cannot complete
immediately, control is returned to the program with the
CM_OPERATION_INCOMPLETE return code. The call
operation remains in progress, and completion of the
call operation occurs at a later time. Meanwhile, the
program is free to perform other work.

O
OSI TP. Refers to the International Standard ISO/IEC
10026, Information Technology — Open Systems
Interconnection — Distributed Transaction Processing.
ISO/IEC 10026 is one of a set of standards produced to
facilitate the interconnection of computer systems.

outstanding operation . A call operation for which the
program has received the CM_OPERATION_INCOMPLETE
return code. The call operation remains in progress,
and completion occurs at a later time. An outstanding
operation can only occur on a conversation using
non-blocking processing mode.

766 CPI Communications Reference

 Glossary

P
partial distinguished name . See local distinguished
name.

partner . See conversation partner.

partner principal name . The name by which the
distributed security service knows the target partner.

PFID. See program function ID.

principal . Any entity which participates in an
authentication exchange.

privilege . An identification that a product or installation
defines in order to differentiate SNA service transaction
programs from other programs, such as application
programs.

program function ID . A unique identifier for the
function performed by a particular program. Multiple
installations of a program may have equivalent program
function IDs (PFID).

protected resource . A local or distributed resource
that is updated in a synchronized manner during
processing managed by a resource recovery interface
and a sync point manager.

pseudonym file . A file that provides CPI
Communications declarations for a particular
programming language.

R
remote program . The program at the other end of a
conversation with respect to the reference program.
Contrast with local program.

resource recovery interface . An interface to services
and facilities that use two-phase commit protocols to
coordinate changes to distributed resources.

S
secondary information . Information associated with
the return code at the completion of a call. The
information can be used to determine the cause of the
return code.

session . A logical connection between two logical
units that can be activated, tailored to provide various
protocols, and deactivated as requested.

side information . System-defined values that are
used for the initial values of the

conversation_security_type, mode_name,
partner_LU_name, security_password,
security_user_ID, and TP_name characteristics.

state . See conversation state.

state transition . The act of moving from one
conversation state to another.

subordinate program . The application program that
issued either Accept_Conversation or Accept_Incoming
for a protected conversation.

superior program . The application program that
issued Initialize_Conversation for a protected
conversation.

symbolic destination name . Variable corresponding
to an entry in the side information.

synchronization point . A reference point during
transaction processing to which resources can be
restored if a failure occurs.

sync point manager . A component of the operating
environment that coordinates commit and backout
processing among all the protected resources involved
in a sync point transaction. Synonymous with
transaction manager.

Systems Network Architecture . A description of the
logical structure, formats, protocols, and operational
sequences for transmitting information units through,
and controlling the configuration and operation of,
networks.

T
transaction . A related set of operations that are
characterized by the ACID (atomicity, consistency,
isolation, and durability) properties. See also ISO/IEC
10026-1.

transaction manager . The component within a system
that manages the coordination of resources within a
transaction. Synonymous with sync point manager.
See also X/Open Guide: Distributed Transaction
Processing Reference Model.

transition . See state transition.

U
unchained transactions . A series of transactions in
which the (n+1)th transaction does not begin
immediately upon the termination of the nth transaction,
but is explicitly started at a later time. See also
ISO/IEC 10026-1.

 Glossary 767

 Glossary

user field . Application data that can be associated
with an outstanding operation. The data, as specified
by the program, can be returned to the program through
a Wait_For_Completion call issued for that outstanding
operation, or it can be passed to the callback function
associated with the outstanding operation, when the
operation completes.

X
X/Open . X/Open is an independent, worldwide, open
systems organization whose mission is to bring users
greater value from computing, through the practical
implementation of open systems.

X/Open TX interface . X/Open Distributed Transaction
Processing: The TX (Transaction Demarcation)
Specification defines an interface between the
transaction manager and the application program. It is
similar to the IBM SAA resource recovery interface.

768 CPI Communications Reference

 Index

 Index

Special Characters
- (dash) 112
_ (underscore) 13, 112
. (period) 653
& (ampersand) 112

A
abnormal program ending 23
Accept Conversation (CMACCP) 119

OS/2 considerations 487, 625
VM/ESA-specific errors 535
VM/ESA-specific notes 583

Accept_Incoming (CMACCI) 121
access security information

on OS/2 486, 625
acknowledgement xxv
advanced program-to-program communications

See also LU 6.2
verbs 728

advanced-function calls
automatic data conversion 42
examples 74—103

AE_qualifier, defined 23
AIX

allocation request 391
compiling 393
concept 382
conformance classes 382
conversation scope 389
conversation_ID, scope of 389
dangling conversation, deallocating 388
deviation 391
diagnosing error 389
documentation 381—407
extension calls 394
Extract_Conversation_Security_Type

(XCECST) 396
Extract_Conversation_Security_User_ID

(XCECSU) 398
identifying error 389
languages supported 383
list 394
operating environment 382
product-specific errors 389
profile, working with 388
pseudonym file 383
pseudonym files 383
reference publications 381
security, using 391
Set_Conversation_Security_Password

(XCSCSP) 399

AIX (continued)
Set_Conversation_Security_Type (XCSCST) 401
Set_Conversation_Security_User_ID

(XCSCSU) 403
side information 383
starting SMIT 388
transaction program, running 393

alias name for partner LU on OS/2 493, 496, 630, 632
Allocate (CMALLC) 124

OS/2 considerations
VM/ESA-specific errors 535
VM/ESA-specific notes 583

allocate_confirm 282
allocating data buffers on OS/2 500
allocation requests, when sent

MVS/ESA 424
OS/2 450
OS/400 524
VM/ESA 540

allocation wrapback in VM/ESA 539, 582
AP_title 284
AP_title, defined 23
APPC

See advanced program-to-program communications
APPC/MVS services, use with CPI

Communications 425
APPCLLU OS/2 environment variable 597, 499, 491,

498, 629
APPCTPN OS/2 environment variable 597, 499
Application Generator considerations

general
in OS/400 515
in VM/ESA 529

application migration 735
from X/Open CPI-C to CPI-C 2.0 735

application TP names on OS/2 496, 632
application_context_name 286
application_context_name, defined 23
ASCII, conversion of 652
Assembler considerations (VM/ESA) 529
attach manager-started programs on OS/2 499

B
backout-required condition

described 58
effect on multiple conversations 52

basic conversation 19, 256
begin conversation

CMALLC (Allocate) 124
example flow 69, 84, 88
program startup 22

 Copyright IBM Corp. 1996, 1998 769

 Index

begin conversation (continued)
simple example 29

begin_transaction 288
blank sym_dest_name 25, 200
blocking operations 47
buffering of data

description 44, 256
example flow 70

C
C considerations

general 112
in Networking Services for Windows 431

function calls 431
pseudonym files 431

in OS/2 438
in VM/ESA 529

call reference
format 107
how to use 113
in VM/ESA 528
parameters 107
related information 107
RPG 113
state changes 107
usage notes 107

call_ID 642
callback_function 337
callback_info 337
calls

advanced-function
examples 74—103

call characteristics
See characteristics, call characteristics

for resource recovery interfaces 54
format for AIX 394—407
format for MVS/ESA 419
format for Networking Services for Windows 430
format for OS/2 454, 601

conversation, overview 471, 610
format for VM/ESA 528
naming convention 13
possible values, table 642
starter-set

examples 68—73
Cancel_Conversation (CMCANC) 131
chained transactions 61, 193
changing data flow direction

by receiving program 75
by sending program 72, 74

changing side information on OS/2 443
character sets

exceptions for SNA TP names 727
general 647
on OS/2 496, 632

character sets (continued)
T61String 647

character strings 649
characteristics

automatic conversion of 41
call characteristics

AE_qualifier 280
allocate_confirm 282
AP_title 284
application_context_name 286
begin_transaction 288
call_ID 642
confirmation_urgency 290, 642
context_ID 161
conversation_queue 642
conversation_return_code 642
conversation_security_type 295
conversation_state 163
conversation_type 166
deallocate_type 303
directory_encoding 642
directory_syntax 642
error_direction 307
expedited_receive_type 642
fill 310
initialization_data 312
log_data 316
mode_name 175
OOID_list_count 642
partner_ID_scope 642
partner_ID_type 642
partner_LU_name 180
prepare_data_permitted 329
prepare_to_receive_type 331
processing_mode 334
queue_callback_function 337
queue_processing_mode 340, 642
receive_type 344
return_control 346
security_password 292
security_user_ID 185
send_receive_mode 349
send_type 351
sync_level 354
TP_name 357
transaction_control 359, 642

comparison of defaults 35
default values 30
examining 34
initial values

on OS/2, set by Accept_Conversation 487, 626
on OS/2, set by Initialize_Conversation 491, 628

initial values, table 35
integer values 641
modifying 34
naming convention 13

770 CPI Communications Reference

 Index

characteristics (continued)
OS/2 additions 443
pseudonym 14
viewing 34

CICS/ESA
allocation requests 412
conformance classes 408
documentation 407—414
extension calls 413
reference publications 407

CMACCI (Accept_Incoming) 121
CMACCP (Accept_Conversation) 119

OS/2 considerations 487, 625
VM/ESA-specific errors 535
VM/ESA-specific notes 583

CMALLC (Allocate) 124
OS/2 considerations
VM/ESA-specific errors 535
VM/ESA-specific notes 583

CMC COPY (VM/ESA) 530
CMCANC (Cancel_Conversation) 131
CMCFM (Confirm) 133

protocol error in VM/ESA 540
VM/ESA-specific errors 535

CMCFMD (Confirmed) 137
CMCNVI (Convert_Incoming) 139
CMCNVO (Convert_Outgoing) 141
CMCSP COPY (VM/ESA) 530
CMD.EXE program for OS/2 440
CMDEAL (Deallocate) 143

Networking Services for Windows
considerations 433

protocol error in VM/ESA 540
VM/ESA-specific errors 535, 536

CMDFDE (Deferred_Deallocate) 153
CMEACN (Extract_Application_Context_Name) 159
CMEAEQ (Extract_AE_Qualifier) 155
CMEAPT (Extract_AP_Title) 157
CMECS (Extract_Conversation_State) 163
CMECT (Extract_Conversation_Type) 166
CMECTX (Extract_Conversation_Context) 161
CMEID (Extract_Initialization_Data) 168
CMEMBS (Extract_Maximum_Buffer_Size) 173
CMEMID (Extract_Mapped_Initialization_Data) 170
CMEMN (Extract_Mode_Name) 175
CMEPID (Extract_Partner_ID) 177
CMEPLN (Extract_Partner_LU_Name) 180
CMESI (Extract_Secondary_Information) 182
CMESL (Extract_Sync_Level) 189
CMESRM (Extract_Send_Receive_Mode) 187
CMESUI (Extract_Security_User_ID) 185

AIX call 398
OS/2 call 473, 612

CMETC (Extract_Transaction_Control) 193
CMETPN (Extract_TP_Name) 191

CMFLUS (Flush) 195
VM/ESA-specific errors 536, 584

CMFORTRN COPY (VM/ESA) 530
CMHASM COPY (VM/ESA) 530
CMINCL (Include_Partner_IN_Transaction) 198
CMINIC (Initialize_For_Incoming) 203
CMINIT (Initialize_Conversation) 200

OS/2 considerations 490, 628
VM/ESA-specific errors 536, 584

CMPASCAL COPY (VM/ESA) 530
CMPREP (Prepare) 205
CMPTR (Prepare_To_Receive) 208

protocol error in VM/ESA 540
VM/ESA-specific errors 536

CMRCV (Receive) 213
OS/2 considerations 492, 629
protocol error in VM/ESA 540
VM/ESA-specific errors 536

CMRCVM (Receive_Mapped_Data) 231
CMRCVX (Receive_Expedited_Data) 228
CMREXX COPY (VM/ESA) 530
CMRLTP (Release_Local_TP_Name) 244
CMRTS (Request_To_Send) 246
CMSAC (Set_Allocate_Confirm) 282
CMSACN (Set Application_Context_Name) 286
CMSAEQ (Set_AE_Qualifier) 280
CMSAPT (Set_AP_Title) 284
CMSBT (Set_Begin_Transaction) 288
CMSCT (Set_Conversation_Type) 301
CMSCU (Set_Confirmation_Urgency) 290
CMSDT (Set_Deallocate_Type) 303
CMSED (Set_Error_Direction) 307
CMSEND (Send_Data) 249

OS/2 considerations 492, 630
protocol error in VM/ESA 540
VM/ESA-specific errors 536, 585
VM/ESA-specific notes 537

CMSERR (Send_Error) 259
protocol error in VM/ESA 540
VM/ESA-specific errors 536

CMSF (Set_Fill) 310
CMSID (Set_Initialization_Data) 312
CMSJT (Set_Join_Transaction) 314
CMSLD (Set_Log_Data) 316

Networking Services for Windows
considerations 433

OS/2 considerations 448
VM/ESA-specific errors 536, 585

CMSLTP (Specify_Local_TP_Name) 361
CMSMID (Set_Mapped_Initialization_Data 318
CMSMN (Set_Mode_Name) 321

Networking Services for Windows
considerations 432

OS/2 considerations
CMSNDM (Send_Mapped_Data) 271

 Index 771

 Index

CMSNDX (Send_Expedited_Data) 268
CMSPDP (Set_Prepare_Data_Permitted) 329
CMSPID (Set_Partner_ID) 323
CMSPLN (Set_Partner_LU_Name) 327

OS/2 considerations 493, 630
VM/ESA-specific errors 536

CMSPM (Set_Processing_Mode) 334
CMSPTR (Set_Prepare_To_Receive_Type) 331
CMSQCF (Set_Queue_Callback_Function) 337
CMSQPM (Set_Queue_Processing_Mode) 340
CMSRC (Set_Return_Control) 346
CMSRT (Set_Receive_Type) 344
CMSSAA TXTLIB (VM/ESA) 529
CMSSL (Set_Sync_Level) 354

OS/2 considerations 451
CMSSRM (Set_Send_Receive_Mode) 349
CMSST (Set_Send_Type) 351
CMSTC (Set_Transaction_Control) 359
CMSTPN (Set_TP_Name) 357

OS/2 considerations
CMTRTS (Test_Request_To_Send_Received) 363
CMWAIT (Wait_For_Conversation) 369
CMWCMP (Wait_For_Completion) 366
CNSI (CPI Communications name service

interface) 739
attributes

complex 740
simple 740
single-valued 740

encoding for complex attributes
fields 742

profile object 740
program_installation object 741
sample calls 739
scenarios 742
server object 740

COBOL considerations 112
in OS/2 439
in VM/ESA 528

commit call
by sending program 98
conversation deallocation before 102
example flow 98, 101, 103
with conversation state change 100

commit tree, illustrated 63
common programming interface (CPI)

communications
See CPI Communications

communication
across an SNA network 18
resource manager (CRM) 18
with an APPC program 727

communications directory, CMS (VM/ESA) 532
Communications Manager

See OS/2

completed_op_count 366
completed_op_index_list 366
concurrent conversations 30
concurrent operations

conversation queues 44
multiple program threads 44

association of calls, table 45
Confirm (CMCFM) 133

protocol error in VM/ESA 540
VM/ESA-specific errors 535

Confirm state 52
Confirm-Deallocate state 52
Confirm-Send state 52
confirmation processing

Confirm call 133
Confirmed call 137
example flow 79

confirmation_urgency 642
Confirmed (CMCFMD) 137
conformance class 745

callback function 749
conversation-level non-blocking 749
conversations 746
data conversion routines 750
directory 751
distributed security 751
expedited data 751
full-duplex 751
LU 6.2 747
OSI TP 747
product implementation, table 109
queue-level non-blocking 749
recoverable transactions 748
secondary information 752
security 750
server 750
unchained transactions 748

contexts
changing 32
creating 32
current 32
identifier 32
relationship

conversation 32
security parameter 32

setting 32
control_information_received 642
control_information_received parameter 29
convention, naming 13
conversation

accept 119
allocate 124
basic 19, 256
canceling 131
characteristics

See also characteristics, call characteristics
described 33

772 CPI Communications Reference

 Index

conversation (continued)
characteristics (continued)

overview 33
concurrent 30
dangling

See dangling conversation, deallocating
deallocate 143
description 19
effects on 724
examples 29, 68—103
full-duplex

setting up 86
terminating 89
using 86

identifier 29
illustration

inbound and outbound 32
initialize 200
mapped 19, 256
multiple 30
multiple inbound

illustration 30, 31
in server programs 30

multiple outbound
conversation_ID 22
illustration 31

queues 90
security 51
states

See states, conversation
synchronization and control

Confirm call 133
Confirmed call 137
Flush call 195
Prepare_To_Receive call 208
Request_To_Send call 246
Send_Error 259
Test_Request_To_Send_Received 363

transition from a state 52
types 19

conversation calls on OS/2 471, 610
conversation_ID

described 29
scope of

in CICS/ESA 412
in MVS/ESA 420
in OS/2 447
in OS/400 519
in VM/ESA 534

sharing across tasks, in MVS/ESA 420
conversation security

access security information 51
incompatible values, table 52
on OS/2 486, 625

conversation_security_type characteristic
on OS/2 496, 632

conversation_security_type characteristic (continued)
on VM/ESA 564, 579

conversation states
additional CPI states 64
description 52
extracting 163
full-duplex protected conversations (CPIRR) 723
full-duplex protected conversations (X/Open) 724
half-duplex protected conversations (CPIRR) 710
half-duplex protected conversations (X/Open) 695,

711
list 52
possible values 642
pseudonym 13
table

full-duplex 718
half-duplex 704

valid for resource recovery 65
conversation type characteristic 301
conversation_queue 337, 642
conversation_return_code 642
conversation_security_type, defined 24
conversion

characteristics 41
data 43

conversion of characteristics
on OS/2 495

conversion to and from ASCII
on OS/2 495

Convert_Incoming (CMCNVI) 139
Convert_Outgoing (CMCNVO) 141
Coordinated Resource Recovery (VM/ESA) 579
CPI Communications

additional information sources 8
audience 5
communication with APPC programs 727
conversational model 5
CPI-C 1.0 10
CPI-C 1.1 10
CPI-C 1.2 10
CPI-C 2.0 11
directory object 20
functional levels 10
in SNA networks 18
introducing 5
name service interface (CNSI) 738
naming convention 13
program operating environment 21
related APPC/LU 6.2 publications 8
relationship to 2.1 spec 6
relationship to LU 6.2 interface 725
relationship to products 7
versions of, table 12
what's new in this release 6
with resource recovery interfaces 54
X/Open CPI-C 2.0 11

 Index 773

 Index

CPI Communications (continued)
X/Open extensions 10

CPI-C
See CPI Communications

CPIC.LIB for OS/2 link edit 439
CPICOBOL.LIB for OS/2 link edit 439
CPICOMM LOGDATA file on VM/ESA 534, 539
CPICOMM REXX environment for OS/2 440
CPICREXX.EXE program for OS/2 440
CPIFORTN.LIB for OS/2 link edit 439
CPSVCMG mode name

OS/2 considerations
CRM

characteristic values 39
for LU 6.2 18, 39
for OSI TP 39, 692
using particular type 39

CSP considerations 112

D
dangling conversation, deallocating 22

in AIX 388
in CICS/ESA 411
in MVS/ESA 420
in Networking Services for Windows 433
in OS/2 447
in OS/400 518
in VM/ESA 534

data
buffer allocation on OS/2 500
direction, changing

by receiving program 75
by sending program 72, 74

flow
in both directions 72
in one direction 69, 84, 88

purging 80, 265
reception and validation of 78

data records
description 19
Receive call 214
Send_Data call 256

data_received parameter 29
DCE directory

DCE interface 737
directory objects 738

interaction of 738
extensions 737
profile object 737
server group object 738
server object 737

Deallocate (CMDEAL) 143
Networking Services for Windows

considerations 433
protocol error in VM/ESA 540

Deallocate (CMDEAL) (continued)
VM/ESA-specific errors 535, 536

deallocate_type characteristic 143
defaults for TPs on OS/2 498
Deferred_Deallocate (CMDFDE) 153
defining a program (TP) on OS/2 498
defining side information on OS/2 443
Delete_CPIC_Side_Information (XCMDSI)

OS/2 call 455, 602
destination name, symbolic

blank 25, 200
defined 21
example 69, 84, 88
OS/2 considerations 496, 632

deviations from CPI Communications architecture
CICS/ESA 413
MVS/ESA 424
OS/2 450
VM/ESA 540

diagnosing errors
CICS/ESA 412
MVS/ESA 423
Networking Services for Windows 433
OS/2 448
OS/400 520
VM/ESA 536

directory_encoding 323, 642
directory_syntax 323, 642
distinguished name, naming convention 655
distinguished_name, defined 24
distributed directory

defined 25
directory object 25
distinguished name (DN) 23
illustration of

generic program interaction 25
interaction with CPI Communications 27

locating partner program 25, 96
program function identifier (PFID) 25
program interaction 25
using 25

distributed security
illustration of CRM interaction 28
principal names 28

DN, specifying default 323
double-byte TP names on OS/2 452, 497, 633

E
EBCDIC, conversion to 139, 750

on OS/2 495
environment requirements for MVS/ESA 418
environment variables on OS/2

for local LU name (APPCLLU) 597, 499, 491, 498,
629

for TP name (APPCTPN) 597, 499

774 CPI Communications Reference

 Index

environment, operating
CICS/ESA 407
MVS/ESA 418
OS/2 437
OS/400 513
VM/ESA 528

error codes (VM/ESA) 528
error_direction characteristic

and Send-Pending state 82, 726
error reporting

example 80
OS/2 considerations with REXX 441
Send_Error call 264

errors, diagnosing
CICS/ESA 412
MVS/ESA 423
Networking Services for Windows 433
OS/2 448
OS/400 520
VM/ESA 536

errors, product-specific
See product-specific errors, identifying

event (VM/ESA)
communications 585
services 585
system 585

event management in VM/ESA
using for CPI Communications 569, 575, 585

event management services (VM/ESA) 569, 575, 585
examining conversation characteristics 34

See also extract calls
example flows

See tutorial information
expedited_receive_type 642
extension calls, CPI Communications

CICS/ESA 413
MVS/ESA 425
OS/2 454—485, 601—624
OS/400 524
VM/ESA 541—576

extract calls
AE Qualifier (CMEAEQ) 155
AP_Title (CMEAPT) 157
Application_Context_Name (CMEACN) 159
Conversation_Context (CMECTX) 161
Conversation_Security_Type (XCECST) 472, 611

on OS/2 472, 611
Conversation_Security_User_ID (XCECSU)

on OS/2
Conversation_State (CMECS) 163
Conversation_Type (CMECT) 166
Initialization_Data (CMEID) 168
Mapped_Initialization_Data (CMEMID) 170
Maximum_Buffer_Size (CMEMBS) 173
Mode_Name (CMEMN) 175
Partner_ID (CMEPID) 177

extract calls (continued)
Partner_LU_Name (CMEPLN) 180
Secondary_Information (CMESI) 182
Security_User_ID (CMESUI) 185
Send_Receive_Mode (CMESRM) 187
Side_Info_Entry (XCMESI) (OS/2) 457, 604
Sync_Level (CMESL) 189
TP_Name (CMETPN) 191
Transaction_Control (CMETC) 193

Extract_AE_Qualifier (CMEAEQ) 155
Extract_AP_Title (CMEAPT) 157
Extract_Application_Context_Name (CMEACN) 159
Extract_Conversation_Context (CMECTX) 161
Extract_Conversation_LUWID (XCECL) call on

VM/ESA 544
Extract_Conversation_Security_Type (XCECST)

AIX call 396
OS/2 call 472, 611

Extract_Conversation_State (CMECS) 163
Extract_Conversation_Type (CMECT) 166
Extract_Conversation_Workunit_ID (XCECWU) call on

VM/ESA 548
Extract_CPIC_Side_Information (XCMESI)

OS/2 call 457, 604
Extract_Initialization_Data (CMEID) 168
Extract_Local_Fully_Qualified_LU_Name (XCELFQ)

VM/ESA call 550
Extract_Mapped_Initialization_Data (CMEMID) 170
Extract_Maximum_Buffer_Size (CMEMBS) 173
Extract_Mode_Name (CMEMN) 175
Extract_Partner_ID (CMEPID) 177
Extract_Partner_LU_Name (CMEPLN) 180
Extract_Remote_Fully_Qualified_LU_Name (XCERFQ)

VM/ESA call 552
Extract_Secondary_Information (CMESI) 182
Extract_Security_User_ID (CMESUI) 185

AIX call 398
OS/2 call 473, 612

Extract_Send_Receive_Mode (CMESRM) 187
Extract_Sync_Level (CMESL) 189
Extract_TP_Name (CMETPN) 191
Extract_TP_Name (XCETPN) call on VM/ESA 554
Extract_Transaction_Control (CMETC) 193

F
fields

defined for OS/2 494, 631
of side_info_entry on OS/2 458, 460, 607

fill characteristic 310
flow

definition of 67
diagrams 69—103

Flush (CMFLUS) 195
VM/ESA-specific errors 536, 584

 Index 775

 Index

FORTRAN considerations
general 112
in OS/2 439
in VM/ESA 529

full-duplex
See states, conversation

G
graphic representations for character sets

OS/2 additions 495
table 647

green ink, use of 7, 107

H
half-duplex

See states, conversation
HELP, VM/ESA online 588

I
identifier (PFID) 25
IMS/ESA

documentation 415
reference publications 415

Include_Partner_In_Transaction (CMINCL)
subordinate 198

initialize
conversation 200
state 52

Initialize_Conv_For_TP (XCINCT)
OS/2 call 474, 613

Initialize_Conversation (CMINIT) 200
OS/2 considerations 490, 628
VM/ESA-specific errors 536, 584

Initialize_For_Incoming (CMINIC) 203
Initialize_Incoming state 53
integer

values 641
integer values

OS/2 additions
interface, communications

See CPI Communications
invoking routines

in MVS/ESA 419
in VM/ESA 528

K
key variable on OS/2 496, 632
keylock feature on OS/2 445
keys in VM/ESA 586

L
language considerations, programming 111

in MVS/ESA 418
in OS/2 437
in OS/400 515
in VM/ESA 529

languages supported
CICS/ESA 408
MVS/ESA 419
OS/2 437
OS/400 515
VM/ESA 528

licensing agreement xxiii
link edit for OS/2 439
linkage conventions in MVS/ESA 419
load module for CPI Communications in

MVS/ESA 418
local partner 20
locating partner program

using distributed directory 96
log_data characteristic

OS/2 considerations 448
set 316

logical connection
association 18
session 18

logical records
description 19
OS/2 considerations 492, 629
Receive call 214
Send_Data call 256

logical unit
See also LU 6.2
illustration 18

logical unit of work identifier (LUWID) format on
VM/ESA 545

logical unit of work identifier on OS/2 486
LU

See logical unit
LU 6.2

and CPI communications calls 725
relationship of verbs, table 728—734

considerations in VM/ESA 580
related information 725—728

luname tag in VM/ESA 533
LUWID (logical unit of work identifier) format on

VM/ESA 545

M
MAP_NAME 725
mapped conversation 19, 256
mapping

&I2@CRMMAP.
CPI-C to OSI TP services
LU 6.2 and OSI TP CRMs

776 CPI Communications Reference

 Index

mapping (continued)
&I2@CRMMAP. (continued)

OSI TP services to CPI-C half-duplex
conversations

CRMs
full-duplex conversations
OSI
TP

half-duplex conversations
match keys in VM/ESA 586
mode name, defined 24
mode_name characteristic

defined 24
extract 175
length 652
OS/2 considerations 496, 632
set 321

mode_name CPSVCMG
OS/2 considerations 653

mode_name SNASVCMG
Allocate call 125
OS/2 considerations 653
Set_Mode_Name call 321

mode, processing 334
modename tag in VM/ESA 533
modifying conversation characteristics 34

See also set calls
multiple conversations

inbound 30
outbound 30

multiple program threads 45
multitasking, CMS (VM/ESA)

using event management services 575, 585
MVS/ESA

conformance classes 418
documentation 417—427
errors 421
reference publications 417

N
naming conventions 13
native encoding on OS/2 (ASCII) 494
network name for partner LU

OS/2 considerations 493, 496, 630, 632
Networking Services for Windows

conformance classes 429
dangling conversations in 433
deviations from CPI-C 434
diagnosing errors 433
documentation 429—434
linking with CPI-C import library 432
memory considerations 432

data buffers 432
stack size 432

mode_name 432

Networking Services for Windows (continued)
product-specific errors 433
pseudonym files 430—431
reference publications 429
side information 432

nick tag in VM/ESA 533
node services 22
non-blocking operations

calls returning incomplete, table 48
context management 50
conversation-level 48
operations 47
outstanding operation 47
processing_mode 48
queue-level

callback function 49
using 49
wait facility 49

non-queued programs on OS/2 499

O
online HELP Facility (VM/ESA) 588
OOID_list 366
OOID_list_count 366, 642
operating environment

CICS/ESA 407
example in CPI 21
generic elements 21
illustration 21
MVS/ESA 418
OS/2 437
OS/400 513
VM/ESA 528

Operating System/2
See also OS/2
documentation 435—511

Operating System/400
See also OS/400
documentation 513—526

OS/2 435
characteristics, fields, and variables 494, 631
conformance classes 437
considerations for CPI Communications calls 485,

624
conversation calls 471—478, 610—617
CPI Communications functions not available 452
defining and running a program 498
extension calls

Delete_CPIC_Side_Information (XCMDSI) 455,
602

Extract_Conversation_Security_Type
(XCECST) 472, 611

Extract_Conversation_Security_User_ID
(XCECSU) 473, 612

Extract_CPIC_Side_Information (XCMESI) 457,
604

 Index 777

 Index

OS/2 (continued)
extension calls (continued)

Initialize_Conv_For_TP (XCINCT) 474, 613
Set_Conversation_Security_Password

(XCSCSP) 476, 615
Set_Conversation_Security_Type

(XCSCST) 477, 616
Set_Conversation_Security_User_ID

(XCSCSU) 478, 617
Set_CPIC_Side_Information (XCMSSI) 460, 607

programming languages supported 437
pseudonym files
reference publications 436
sample programs 502
side information 443
system management calls 454—471, 601
transaction program control 479—485, 618—624

OS/400
conformance classes 515
considerations, programming language

See OS/400, programming language
considerations

conversation_ID, scope of 519
conversation support, multiple 525
incoming conversations, prestarting jobs 524
jobs 513
log_data 521
multiple conversation support 525
node services

dangling conversations, ending 518
reclaim resource processing 519

operating environment
Application Generator 515
C/400 515
communications side information, described 516
Cross System Product (CSP) 515
CSP/Application Development 515
CSP/Application Execution 515
FORTRAN/400 516
REXX 516
REXX error and failure conditions 523
REXX reserved RC variable 522
side information, communications 516

overview 513
portability considerations 525
prestarting jobs for incoming conversations 524
programming language considerations 515
pseudonym files 516
reference publications 513
return codes 519, 521

reasons for an error return_code,
determining 520

scope of a conversation_ID 519
side information, communications

described 516
subsystems 514

OS/400 (continued)
support of log_data 521
terms and concepts 513

converation support, multiple 525
conversation_ID, scope of 519
incoming conversations, prestarting jobs 524
jobs 513
multiple converation support 525
prestarting jobs for incoming conversations 524
scope of a conversation_ID 519
subsystems 514

outstanding operations 48, 369

P
parameters

input 29
output 29

partner
identify partner program

distributed directory 20
program supplied 20
side information 20

install
naming programs 30
program binding 22, 25
program function ID 20, 25
program installation object 25

partner_ID 323
partner_ID_scope 323, 642
partner_ID_type 323, 642
partner_LU_name characteristic

extract 180
length 652
OS/2 considerations 496, 632
set 327

partner_LU_name, defined 23
Pascal considerations (VM/ESA) 529
password tag in VM/ESA 533
performance considerations

for CPI Communications calls in MVS/ESA 425
PFID (program function identifier)

defined 656
relationship to DNs, illustrated 656

PFID assignment algorithms 656
PIP data 725
PL/I considerations 112
Prepare (CMPREP)

preparing for commit 205
prepare_data_permitted 642
Prepare_To_Receive (CMPTR) 208

protocol error in VM/ESA 540
VM/ESA-specific errors 536

prepare_to_receive_type characteristic 208
Procedures Language (REXX) considerations

general

778 CPI Communications Reference

 Index

Procedures Language (REXX) considerations
(continued)

in OS/2 440
in VM/ESA 530

processing requirements for MVS/ESA 418
product publications

AIX publications 381
CICS/ESA publications 407
IMS/ESA publications 415
MVS/ESA publications 417
Networking Services for Windows publications 429
OS/2 publications 436
OS/400 publications 513
VM/ESA publications 527

product-specific errors, identifying
CICS/ESA 412
MVS/ESA 421
OS/2 447
OS/400 519
VM/ESA 534

program
asynchronous updates of variables 112
calls 29
compilation 28
partners 20
startup processing 22
states

See states, conversation
termination processing 22
TP definition on OS/2 498
types on OS/2

attach manager-started 499
non-queued 499

program binding
defined 657
errors 658
extracting 658
fields

table 658
sample 658

program defined side information on OS/2 444
programming language considerations 111

in MVS/ESA 418
in OS/2 437
in OS/400 515
in VM/ESA 529

protected conversation 54
protected resource 54
protocol errors (VM/ESA) 539
pseudonym

example 14
explanation 13
values 641

OS/2 additions 443
pseudonym files

for CICS/ESA 408

pseudonym files (continued)
for MVS/ESA 419
for OS/2 443
for OS/400 516
for VM/ESA 530

Q
queue-level

example flow 91
non-blocking 90

queue_processing_mode 642
queues

calls associated with 44
conversation queues 44

R
Receive (CMRCV) 213

OS/2 considerations 492, 629
protocol error in VM/ESA 540
VM/ESA-specific errors 536

Receive state
description 52
how a program enters 247

Receive_Expedited_Data (CMRCVX)
expedited_receive_type 228

Receive_Mapped_Data (CMRCVM) 231
receive_type characteristic 344
records, logical

description 19
OS/2 considerations 492, 629
Receive call 214
Send_Data call 256

relative distinguished_name, defined 655
Release_Local_TP_Name (CMRLTP) 244
remote partner

definition 20
residing on local system 20

reporting errors
example 80
OS/2 considerations with REXX 441
Send_Error call 264

Request_To_Send (CMRTS) 246
Reset state 52
resource recovery interfaces

described 54
VM/ESA support 579

return codes 642, 661—678
return_code parameter

definitions of values 661—678
described 29
possible values 642

return_control characteristic 346
REXX considerations

general

 Index 779

 Index

REXX considerations (continued)
in OS/2 440
in VM/ESA 530

S
SAA resource recovery interface

VM/ESA support 579
with CPI Communications 54

sample programs
CPI Communications (generic)
for OS/2 502

secondary information
application-oriented 679
CPI-defined 679

table 681
CRM-specific

examples from LU 6.2 692
different types and condition codes 680

table 680
implementation-related

examples 693
types and return codes

not associated with 679
table 679

security information
on OS/2 486, 625

security tag in VM/ESA 533
security_password characteristic

on OS/2 496, 632
security_password_length characteristic

on OS/2 496, 632
security_password, defined 292
security_type characteristic

on VM/ESA 564, 579
security_user_ID characteristic

on OS/2 496, 632
security_user_ID_length characteristic

on OS/2 496, 632
security_user_ID, defined 24
Send state

description 52
Send-Pending state

and error_direction characteristic 726
description 52
error direction 82

send-receive mode
characteristic values

not set for full-duplex, table 19, 40
not set for half-duplex, table 19, 40

send control 19
Send_Data (CMSEND) 249

OS/2 considerations 492, 630
protocol error in VM/ESA 540
VM/ESA-specific errors 536, 585
VM/ESA-specific notes 537

Send_Error (CMSERR) 259
protocol error in VM/ESA 540
VM/ESA-specific errors 536

Send_Expedited_Data (CMSNDX) 268
Send_Mapped_Data (CMSNDM) 271
send_type characteristic 351
service transaction programs

general 727
OS/2 considerations

set calls
AE_qualifier 280
allocate_confirm 282
AP_title 284
application_context_name 286
begin_transaction 288
confirmation_urgency 290
conversation_security_password 292

on OS/2
conversation_security_type 295

on OS/2
conversation_security_user 298

on OS/2
conversation_type 301
deallocate_type 303
error_direction 307
fill 310
initialization_data 312
join_transaction 314
log_data 316
mode_name 321
partner_ID 323
partner_LU_name 327
prepare_data_permitted 329
prepare_to_receive_type 331
processing_mode 334
queue_callback_function 337
queue_processing_mode 340
receive_type 344
return_control 346
send_receive_mode 349
send_type 351
side_info_entry (on OS/2) 460, 607
sync_level 354
TP_name 357
transaction_control 359

SET COMDIR command (CMS) 533
Set_AE_Qualifier (CMSAEQ) 280
Set_Allocate_Confirm (CMSAC) 282
Set_AP_Title (CMSAPT) 284
Set_Application_Context_Name (CMSACN) 286
Set_Begin_Transaction (CMSBT) 288
Set_Confirmation_Urgency (CMSCU) 290
Set_Conversation_Security_Password (XCSCSP)

AIX call 399
OS/2 call 476, 615

780 CPI Communications Reference

 Index

Set_Conversation_Security_Type (XCSCST)
AIX call 401
OS/2 call 477, 616

Set_Conversation_Security_User_ID (XCSCSU)
AIX call 403
OS/2 call 478, 617

Set_Conversation_Type (CMSCT) 301
Set_CPIC_Side_Information (XCMSSI)

OS/2 call 460, 607
Set_Deallocate_Type (CMSDT) 303
Set_Error_Direction (CMSED) 307
Set_Fill (CMSF) 310
Set_Initialization_Data (CMSID) 312
Set_Join_Transaction (CMSJT) 314
Set_Log_Data (CMSLD) 316

Networking Services for Windows
considerations 433

OS/2 considerations 448
VM/ESA-specific errors 536, 585

Set_Mapped_Initialization_Data (CMSMID) 318
Set_Mode_Name (CMSMN) 321

Networking Services for Windows
considerations 432

OS/2 considerations
Set_Partner_ID (CMSPID) 323
Set_Partner_LU_Name (CMSPLN) 327

OS/2 considerations 493, 630
VM/ESA-specific errors 536

Set_Prepare_Data_Permitted (CMSPDP) 329
Set_Prepare_To_Receive_Type (CMSPTR) 331
Set_Processing_Mode (CMSPM) 334
Set_Queue_Callback_Function (CMSQCF) 337
Set_Queue_Processing_Mode (CMSQPM) 340
Set_Receive_Type (CMSRT) 344
Set_Return_Control (CMSRC) 346
Set_Send_Receive_Mode (CMSSRM) 349
Set_Send_Type (CMSST) 351
Set_Sync_Level (CMSSL) 354

OS/2 considerations 451
Set_TP_Name (CMSTPN) 357

OS/2 considerations
Set_Transaction_Control (CMSTC) 359
shared memory, allocation of data buffers on

OS/2 500
side information, defining

in CICS/ESA 409
in MVS/ESA 420
in OS/2 443
in OS/400 516
in VM/ESA 532
overview 22
parameters, on OS/2

conversation_security_type 446
mode_name 445
partner_LU_name 445
security_password 446
security_user_ID 446

side information, defining (continued)
parameters, on OS/2 (continued)

sym_dest_name 445
TP_name 445
TP_name_type 445

purpose 23
setting and accessing 22

side_info_entry structure layout for OS/2 calls
Extract_CPIC_Side_Information (XCMESI) 458
Set_CPIC_Side_Information (XCMSSI) 460, 607

side_info_entry variable on OS/2 496, 632
side_info_entry_length variable on OS/2 496, 632
Signal_User_Event (XCSUE) call on VM/ESA 568
SNA

network 18
service transaction programs 727

SNA service TP names on OS/2 452, 496, 632
SNASVCMG mode name

OS/2 considerations
special notes for CPI Communications products

CICS/ESA 414
MVS/ESA 425
OS/2 485, 624
OS/400 524
VM/ESA 577

Specify_Local_TP_Name (CMSLTP) 361
starter-set calls

examples 68—73
state tables, full-duplex

abbreviations
conversation characteristics 712
conversation queues 713
data_received and status_received 715
return code values 713

table symbols 716
state tables, half-duplex 724

abbreviations 697
conversation characteristics 697
conversation queues 699
data_received and status_received 702
return code values 700

example of how to use 695
table symbols 703

state transition 52
states, conversation

additional CPI states 64
description 52
extracting 163
full-duplex protected conversations (CPIRR) 723
full-duplex protected conversations (X/Open) 724
half-duplex protected conversations (CPIRR) 710
half-duplex protected conversations (X/Open) 695,

711
list 52
possible values 642
pseudonym 13

 Index 781

 Index

states, conversation (continued)
table

full-duplex 718
half-duplex 704

valid for resource recovery 65
status_received parameter 29
strings, character 649
subordinate program 63
superior program 63
sym_dest_name

See symbolic destination name
symbolic destination name

blank 25, 200
defined 21
example 69, 84, 88
OS/2 considerations 496, 632

sync point
described 55
logical unit of work 55
sync point manager (SPM) 55
transaction manager 55

sync_level characteristic 354
OS/2 considerations 451

synchronization point
See sync point

Systems Network Architecture
network 18
service transaction programs 727

T
T61String 647
take-backout notification

responses to
table 59

take-commit notification
responses to

table 59
Test_Request_To_Send_Received (CMTRTS) 363
TP definition on OS/2 498
TP names not supported on OS/2 452
TP profiles

in MVS/ESA 425
TP-model application in VM/ESA 580
TP_name characteristic

extract 191, 554
Networking Services for Windows

considerations 433
OS/2 considerations 496, 632
set 357

TP_name_type field on OS/2 496, 632
TP_name, defined 23
tpn tag in VM/ESA 533
transaction

chained 61
join

explicit request 61

transaction (continued)
join (continued)

implicit request 61
responses, table

unchained 61
transaction_control, chained or unchained 359
transition, state 52
tutorial information

example flows 67—103
terms and concepts 17—66

types of conversations 19

U
unchained transactions 61
user profile managment on OS/2
user-defined side information on OS/2 444
USER_CONTROL_DATA 725
user_field 337
user_field_list 366
userid tag in VM/ESA 533

V
validation of data reception 78
values

integers 641
pseudonym 13, 641

variables
characteristics, table 642
in VM/ESA extension routines 576
integer values 642
lengths 649
OS/2 additions 443
pseudonym 13
types 649
types and lengths, table 650

viewing conversation characteristics 34
VM/ESA

conformance classes 528
documentation 526—588
errors 538
extension calls

Extract_Conversation_LUWID (XCECL) 544
Extract_Conversation_Security_User_ID

(XCECSU) 546
Extract_Conversation_Workunitid

(XCECWU) 548
Extract_Local_Fully_Qualified_LU_Name

(XCELFQ) 550
Extract_Remote_Fully_Qualified_LU_Name

(XCERFQ) 552
Extract_TP_Name (XCETPN) 554
Identify_Resource_Manager (XCIDRM) 555
Set_Client_Security_User_ID (XCSCUI) 559
Set_Conversation_Security_Password

(XCSCSP) 562, 579

782 CPI Communications Reference

 Index

VM/ESA (continued)
extension calls (continued)

Set_Conversation_Security_Type (XCSCST) 564
Set_Conversation_Security_User_ID

(XCSCSU) 566, 579
Signal_User_Event (XCSUE) 568
Terminate_Resource_Manager (XCTRRM) 570
Wait_on_Event (XCWOE) 571

HELP Facility, using 588
languages supported 528
reference publications 527

VMCONINPUT system event (VM/ESA) 585
VMCPIC system event (VM/ESA) 585
VMLIB TXTLIB (VM/ESA) 529

multitasking
communications directory 532
Coordinated Resource Recovery 548, 579
work unit 527, 548, 578

W
Wait_For_Completion (CMWCMP) 366
Wait_For_Conversation (CMWAIT) 369
Windows 95

conformance classes
work unit (CMS) 527, 548, 578, 582

X
XCECL (Extract_Conversation_LUWID) call on

VM/ESA 544
XCECST (Extract_Conversation_Security_Type)

AIX call 396
OS/2 call 472, 611

XCECWU (Extract_Conversation_Workunit_ID) call on
VM/ESA 548

XCELFQ (Extract_Local_Fully_Qualified_LU_Name)
VM/ESA call 550

XCERFQ (Extract_Remote_Fully_Qualified_LU_Name)
VM/ESA call 552

XCETPN (Extract_TP_Name) call on VM/ESA 554
XCINCT (Initialize_Conv_For_TP)

OS/2 call 474, 613
XCMDSI (Delete_CPIC_Side_Information)

OS/2 call 455, 602
XCMESI (Extract_CPIC_Side_Information)

OS/2 call 457, 604
XCMSSI (Set_CPIC_Side_Information)

OS/2 call 460, 607
XCSCSP (Set_Conversation_Security_Password)

AIX call 399
OS/2 call 476, 615

XCSCST (Set_Conversation_Security_Type)
AIX call 401
OS/2 call 477, 616

XCSCSU (Set_Conversation_Security_User_ID)
AIX call 403
OS/2 call 478, 617

XCSUE (Signal_User_Event) call on VM/ESA 568

 Index 783

Communicating Your Comments to IBM

Common Programming Interface
Communications
CPI-C Reference
Version 2.1

Publication No. SC26-4399-09

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088

¹ If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

 – Internet: USIB2HPD@VNET.IBM.COM

Make sure to include the following in your note:

¹ Title and publication number of this book
¹ Page number or topic to which your comment applies.

Help us help you!

Common Programming Interface
Communications
CPI-C Reference
Version 2.1

Publication No. SC26-4399-09

We hope you find this publication useful, readable and technically accurate, but only you can tell us! Your
comments and suggestions will help us improve our technical publications. Please take a few minutes to
let us know what you think by completing this form.

Specific Comments or Problems:

Please tell us how we can improve this book:

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to use the
information in any way you choose.

Name Address

Company or Organization

Phone No.

Overall, how satisfied are you with the information in this book? Satisfied Dissatisfied

 Ø Ø

How satisfied are you that the information in this book is: Satisfied Dissatisfied

Accurate Ø Ø
Complete Ø Ø
Easy to find Ø Ø
Easy to understand Ø Ø
Well organized Ø Ø
Applicable to your task Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Help us help you!
SC26-4399-09 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Information Development
Department CGMD
International Business Machines Corporation
PO BOX 12195
RESEARCH TRIANGLE PARK NC 27709-9990

Fold and Tape Please do not staple Fold and Tape

SC26-4399-09

ÉÂÔÙ

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-4399-09

Spine information:

ÉÂÔ Communications
Common Programming Interface

CPI-C Reference Version 2.1

