

Communications Server
for Windows** NT ÉÂÔ

System Management Programming
Version 5.0

 SC31-8426-00

Communications Server
for Windows** NT ÉÂÔ

System Management Programming
Version 5.0

 SC31-8426-00

 Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

First Edition (March 1997)

This edition applies to Version 5.0 Communications Server and to all subsequent releases and modifications until otherwise indicated
in new editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
 Department CGMD

P.O. Box 12195
Research Triangle Park, North Carolina

 27709-2195

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1989, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Trademarks . xi

About This Book . xiii
Who Should Read This Book . xiii
How to Use This Book . xiii
Where to Find More Information . xv

Part 1. Communications Server Node Operator Facility 1

Chapter 1. Introduction . 5
Purpose of the Document . 5
Communications Server Node Operator Facility 5
Entry Points . 5
Verb Control Blocks (VCBs) . 6
Writing Node Operator Facility (NOF) Programs 6
SNA API Client Support . 7

Chapter 2. Overview of the Verbs in This Book 9
How to Read Verb Descriptions . 9

Supplied Parameters . 9
Returned Parameters . 9

Common VCB Fields . 9
DLC Processes, Ports, and Link Stations . 14

Chapter 3. Node Operator Facility Entry Points 17
WinNOF() . 18
WinAsyncNOF() . 19
WinAsyncNOFEx() . 20
WinNOFCancelAsyncRequest() . 21
WinNOFCleanup() . 22
WinNOFStartup() . 23
WinNOFRegisterIndicationSink() . 24
WinNOFUnregisterIndicationSink() . 25
WinNOFGetIndication() . 26

Chapter 4. Node Configuration Verbs . 27
DEFINE_ADJACENT_NODE . 28
DEFINE_CN . 31
DEFINE_COS . 35
DEFINE_DEFAULTS . 42
DEFINE_DEFAULT_PU . 44
DEFINE_DLC . 46
DEFINE_DLUR_DEFAULTS . 49
DEFINE_DOWNSTREAM_LU . 51
DEFINE_DOWNSTREAM_LU_RANGE . 53
DEFINE_DSPU_TEMPLATE . 56
DEFINE_FOCAL_POINT . 59
DEFINE_INTERNAL_PU . 62

 Copyright IBM Corp. 1989, 1997 iii

DEFINE_LOCAL_LU . 64
DEFINE_LS . 67
DEFINE_LU_0_TO_3 . 79
DEFINE_LU_0_TO_3_RANGE . 82
DEFINE_LU_POOL . 85
DEFINE_MODE . 87
DEFINE_PARTNER_LU . 91
DEFINE_PORT . 94
DEFINE_TP . 101
DELETE_ADJACENT_NODE . 105
DELETE_CN . 107
DELETE_COS . 109
DELETE_DLC . 110
DELETE_DOWNSTREAM_LU . 112
DELETE_DOWNSTREAM_LU_RANGE . 114
DELETE_DSPU_TEMPLATE . 116
DELETE_FOCAL_POINT . 117
DELETE_INTERNAL_PU . 119
DELETE_LOCAL_LU . 121
DELETE_LS . 122
DELETE_LU_0_TO_3 . 124
DELETE_LU_0_TO_3_RANGE . 126
DELETE_LU_POOL . 128
DELETE_MODE . 130
DELETE_PARTNER_LU . 132
DELETE_PORT . 133
DELETE_TP . 135

Chapter 5. Activation and Deactivation Verbs 137
START_DLC . 138
START_INTERNAL_PU . 140
START_LS . 142
START_PORT . 144
STOP_DLC . 146
STOP_INTERNAL_PU . 148
STOP_LS . 150
STOP_PORT . 152
ACTIVATE_SESSION . 154
DEACTIVATE_CONV_GROUP . 156
DEACTIVATE_SESSION . 158
PATH_SWITCH . 161

Chapter 6. Query Verbs . 163
QUERY_ADJACENT_NN . 164
QUERY_CN . 167
QUERY_CN_PORT . 172
QUERY_COS . 175
QUERY_DEFAULT_PU . 178
QUERY_DEFAULTS . 180
QUERY_DIRECTORY_LU . 182
QUERY_DIRECTORY_STATS . 186
QUERY_DLC . 188
QUERY_DLUR_LU . 193
QUERY_DLUR_PU . 197

iv System Management Programming

QUERY_DLUS . 203
QUERY_DOWNSTREAM_LU . 208
QUERY_DOWNSTREAM_PU . 217
QUERY_DSPU_TEMPLATE . 222
QUERY_FOCAL_POINT . 225
QUERY_ISR_SESSION . 230
QUERY_LOCAL_LU . 237
QUERY_LOCAL_TOPOLOGY . 243
QUERY_LS . 248
QUERY_LU_0_TO_3 . 263
QUERY_LU_POOL . 272
QUERY_MDS_APPLICATION . 276
QUERY_MDS_STATISTICS . 279
QUERY_MODE . 281
QUERY_MODE_DEFINITION . 287
QUERY_MODE_TO_COS_MAPPING . 291
QUERY_NMVT_APPLICATION . 294
QUERY_NN_TOPOLOGY_NODE . 297
QUERY_NN_TOPOLOGY_STATS . 302
QUERY_NN_TOPOLOGY_TG . 306
QUERY_NODE . 312
QUERY_PARTNER_LU . 321
QUERY_PARTNER_LU_DEFINITION . 327
QUERY_PORT . 332
QUERY_PU . 341
QUERY_RTP_CONNECTION . 346
QUERY_SESSION . 353
QUERY_STATISTICS . 360
QUERY_TP . 362
QUERY_TP_DEFINITION . 366

Chapter 7. Session Limit Verbs . 371
CHANGE_SESSION_LIMIT . 372
INITIALIZE_SESSION_LIMIT . 375
RESET_SESSION_LIMIT . 378

Chapter 8. Node Operator Facility API Indications 381
DLC_INDICATION . 382
DLUR_LU_INDICATION . 383
DLUS_INDICATION . 384
DOWNSTREAM_LU_INDICATION . 386
DOWNSTREAM_PU_INDICATION . 391
FOCAL_POINT_INDICATION . 394
ISR_INDICATION . 396
LOCAL_LU_INDICATION . 401
LOCAL_TOPOLOGY_INDICATION . 404
LS_INDICATION . 405
LU_0_TO_3_INDICATION . 409
MODE_INDICATION . 413
NN_TOPOLOGY_NODE_INDICATION . 415
NN_TOPOLOGY_TG_INDICATION . 416
PLU_INDICATION . 418
PORT_INDICATION . 420
PU_INDICATION . 421

 Contents v

REGISTRATION_FAILURE . 424
RTP_INDICATION . 425
SESSION_INDICATION . 429

Chapter 9. Security Verbs . 433
DEFINE_LU_LU_PASSWORD . 434
DEFINE_USERID_PASSWORD . 436
DELETE_LU_LU_PASSWORD . 438
DELETE_USERID_PASSWORD . 440

Chapter 10. APING and CPI-C Verbs . 443
APING . 444
CPI-C Verbs . 448
DEFINE_CPIC_SIDE_INFO . 449
DELETE_CPIC_SIDE_INFO . 452
QUERY_CPIC_SIDE_INFO . 453

Chapter 11. Attach Manager Verbs . 457
DISABLE_ATTACH_MANAGER . 458
ENABLE_ATTACH_MANAGER . 459
QUERY_ATTACH_MANAGER . 460

Part 2. Communications Server Management Services API 461

Chapter 12. Introduction to Management Services API 463
Management Services Verbs . 463
Entry Points . 463
Verb Control Blocks (VCB) . 463
Writing Management Services (MS) Programs 464
SNA API Client Support . 465

Chapter 13. Management Services Entry Points 467
WinMS() . 468
WinMSCleanup() . 469
WinMSStartup() . 470
WinMSRegisterApplication() . 471
WinMSUnregisterApplication() . 474
WinMSGetIndication() . 476

Chapter 14. Management Services Verbs 477
TRANSFER_MS_DATA . 478
MDS_MU_RECEIVED . 481
SEND_MDS_MU . 483
ALERT_INDICATION . 486
FP_NOTIFICATION . 487
NMVT_RECEIVED . 488

Part 3. Communications Server ASCII Configuration 491

Chapter 15. Introduction to ASCII Configuration 493
Keywords . 493
ASCII Configuration Verify Utility . 493

vi System Management Programming

Verifying a Configuration File . 494
Editing a Configuration File . 494

Chapter 16. ASCII Configuration Keywords 497
Kinds and Types of Keywords . 497

Kinds of keywords . 497
Types of Keywords . 497
Other Keyword Fields and What They Mean 498

Keyword Formats . 498
NODE . 499

NODE Sample . 500
PORT . 501

PORT Sample . 510
LINK_STATION . 511

LINK_STATION Sample . 517
INTERNAL_PU . 519

INTERNAL_PU Sample . 519
DLUR_DEFAULTS . 520

DLUR_DEFAULTS Sample . 520
SPLIT_STACK . 521

SPLIT_STACK Sample . 521
TN3270E_DEF . 522

TN3270E_DEF Sample . 523
ADJACENT_NODE . 524

ADJACENT_NODE Sample . 524
CONNECTION_NETWORK . 525

CONNECTION_NETWORK Sample . 525
DSPU_TEMPLATE . 526

DSPU_TEMPLATE Sample . 526
DOWNSTREAM_LU . 527

DOWNSTREAM_LU Sample . 527
FOCAL_POINT . 528

FOCAL_POINT Sample . 528
LOCAL_LU . 529

LOCAL_LU Sample . 529
LU_0_TO_3 . 530

LU_0_TO_3 Sample . 531
MODE . 532

MODE Sample . 533
PARTNER_LU . 534

PARTNER_LU Sample . 534
TP . 536

TP Sample . 537
CPIC_SIDE_INFO . 539

CPIC_SIDE_INFO Sample . 540
LU_LU_PASSWORD . 541

LU_LU_PASSWORD Sample . 541
USERID_PASSWORD . 542

USERID_PASSWORD Sample . 542
ANYNET_COMMON_PARAMETERS . 543

ANYNET_COMMON_PARAMETERS Sample 543
ANYNET_SOCKETS_OVER_SNA . 545

ANYNET_SOCKETS_OVER_SNA Sample 546
VERIFY . 548

 Contents vii

VERIFY Sample . 548
Other Verb Structures for Supported Keywords 548
START_NODE . 549

Appendix A. IBM APPN MIB Tables . 553

Glossary . 555

Index . 589

viii System Management Programming

 Figures

1. Example of a Language Statement . 564
2. Example of an NCP Definition Statement 564
3. Example of a VTAM Definition Statement 564

 Tables

1. Header Files and Libraries for NOF . 7
2. Port Types for DLC Types . 47
3. Header Files and Libraries for Management Services 464

 Copyright IBM Corp. 1989, 1997 ix

x System Management Programming

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make them available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
Thornwood, New York 10594

 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 Site Counsel
 IBM Corporation

P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, NC

 27709-2195
 USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any
warranty of any kind, and all warranties are hereby disclaimed including the
warranties of merchantability and fitness for a particular purpose.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

 ACF/VTAM
Advanced Peer-to-Peer Networking

 AFP
 AIX

 Copyright IBM Corp. 1989, 1997 xi

 AnyNet
 APPN
 AS/400
 CICS

Common User Access
 CUA
 IBM
 IMS
 MVS
 MVS/ESA
 MVS/XA
 NetView
 Operating System/2
 OS/2
 OS/400
 RACF
 System/370

Virtual Machine/Enterprise Systems Architecture
 VM/ESA
 VTAM

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

xii System Management Programming

About This Book

This book describes how to develop programs that use IBM Communications
Server for Windows NT**. In this book, Windows refers to Windows NT.
Throughout this book, workstation refers to all supported personal computers.
When only one model or architecture of the personal computer is referred to, only
that type is specified.

Who Should Read This Book
This book is intended for programmers and developers who plan to use Node
Operator Facility (NOF) API messages to manage and query the operation of
Communications Server or plan to use ASCII Configuration files or both.

This book is also intended for developers who are writing network management
applications that use the underlying management services support provided by
Communications Server to communicate with remote (host focal point) network
management applications.

How to Use This Book
This book is organized into three parts. Part 1, “Communications Server Node
Operator Facility” contains the following chapters:

¹ Chapter 1, “Introduction,” describes the purpose of this book.

¹ Chapter 2, “Overview of the Verbs in This Book,” describes the Node Operator
Facility API structure and the verbs it supports. The chapter outlines the
categories of the verbs implemented and the additional signals provided by
Communications Server.

¹ Chapter 3, “Node Operator Facility Entry Points,” describes the entry point
extensions.

¹ Chapters 4 through 11 describe the syntax of each verb. A copy of the
structure that holds the information for each verb is included and each entry
described, followed by a list of possible return codes.

Part 2, “Communications Server Management Services API” contains the following
chapters:

¹ Chapter 12, “Introduction to Management Services API,” describes the
management services API.

¹ Chapter 13, “Management Services Entry Points,” describes the entry points
for the management services verbs.

¹ Chapter 14, “Management Services Verbs,” describes the syntax of each verb.
A copy of the structure that holds the information for each verb is included and
each entry described, followed by a list of possible return codes.

Part 3, “Communications Server ASCII Configuration” contains the following
chapters:

¹ Chapter 15, “Introduction to ASCII Configuration” describes the
Communications Server ASCII configuration and verification utility.

 Copyright IBM Corp. 1989, 1997 xiii

¹ Chapter 16, “ASCII Configuration Keywords” describes the kinds and types of
keywords.

 Icons
In this book, when it is necessary to communicate special information, the following
icon appears:

The ringing phone.

Conventions Used in This Book
The following conventions are used throughout the Communications Server library.
Some of the conventions listed might not be used in this particular book.

 Text Conventions
Bold Bold type indicates verbs, functions, and parameters that you can use in

a program or at a command prompt. These values are case sensitive
and should be entered exactly as they appear in the text.

Italics Italic type indicates the following things:

¹ A variable that you supply a value for.

¹ The names of window controls, such as lists, check boxed, entry
fields, push buttons, and menu choices. They appear in the text as
they appear in the window.

 ¹ Book titles.

¹ A letter is being used as a letter or a word is being used as a word.
Example: When you see an a, make sure it is not supposed to be
an an.

Bold italics Bold italic type is used to emphasize a word.

UPPERCASE Uppercase indicates constants, file names, keywords, and options that
you can use in a program or at a command prompt. You can enter
these values in uppercase or lowercase.

Double
quotation marks

Double quotation marks indicate messages you see in a window. An
example of this would be the messages that appear in the operator
information area (OIA) of an emulator session.

Example type Example type indicates information that you are instructed to type at a
command prompt or in a window.

 Number Conventions
Binary numbers Represented as BX'xxxx xxxx' or BX'x' except in certain instances

where they are represented with text (“A value of binary xxxx xxxx
is...”).

Bit positions Start with 0 at the rightmost position (least significant bit).

Decimal
numbers

Decimal numbers over 4 digits are represented in metric style. A space
is used rather than a comma to separate groups of 3 digits. For
example, the number sixteen thousand, one hundred forty-seven is
written 16 147.

Hexadecimal
numbers

Represented in text as hex xxxx or X'xxxx' (“The address of the
adjacent node is hex 5D, which is specified as X'5d'.”)

xiv System Management Programming

Where to Find More Information
For information about SNA, APPN, or LU 6.2 architecture, refer to the following IBM
documents:

¹ IBM Systems Network Architecture: LU 6.2 Reference: Peer Protocols,
SC31-6808 (softcopy only)

¹ IBM Systems Network Architecture: APPN Architecture Reference, SC30-3422

¹ IBM Systems Network Architecture: Management Services, SC30-3346

¹ IBM Systems Network Architecture: Formats, GA27-3136

¹ IBM APPN Architecture and Product Implementations Tutorial, GG24-3669

¹ IBM Communications Manager/2 System Management Programming
Reference, SC31-6173 (softcopy only)

¹ IBM Communications Manager/2 APPC Programming Guide and Reference,
SC31-6160 (softcopy only)

¹ IBM System/370 Principles of Operation, GA22-7000

¹ IBM Systems Network Architecture: Technical Overview, GC30-3073

¹ IBM Systems Network Architecture: VTAM Programming for LU Type 6.2,
SC30-3400

¹ IBM Systems Network Architecture Concepts and Products, GC30-3073

¹ IBM Systems Network Architecture Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2, SC30-3269

¹ IBM Systems Network Architecture: Transaction Programmer's Reference
Manual for LU Type 6.2, GC30-3084

¹ IBM Systems Network Architecture Format and Protocol Reference Manual:
Architectural Logic, SC30-3112

 About This Book xv

xvi System Management Programming

Part 1. Communications Server Node Operator Facility

Chapter 1. Introduction . 5
Purpose of the Document . 5
Communications Server Node Operator Facility 5
Entry Points . 5
Verb Control Blocks (VCBs) . 6
Writing Node Operator Facility (NOF) Programs 6
SNA API Client Support . 7

Chapter 2. Overview of the Verbs in This Book 9
How to Read Verb Descriptions . 9

Supplied Parameters . 9
Returned Parameters . 9

Common VCB Fields . 9
DLC Processes, Ports, and Link Stations . 14

Chapter 3. Node Operator Facility Entry Points 17
WinNOF() . 18
WinAsyncNOF() . 19
WinAsyncNOFEx() . 20
WinNOFCancelAsyncRequest() . 21
WinNOFCleanup() . 22
WinNOFStartup() . 23
WinNOFRegisterIndicationSink() . 24
WinNOFUnregisterIndicationSink() . 25
WinNOFGetIndication() . 26

Chapter 4. Node Configuration Verbs . 27
DEFINE_ADJACENT_NODE . 28
DEFINE_CN . 31
DEFINE_COS . 35
DEFINE_DEFAULTS . 42
DEFINE_DEFAULT_PU . 44
DEFINE_DLC . 46
DEFINE_DLUR_DEFAULTS . 49
DEFINE_DOWNSTREAM_LU . 51
DEFINE_DOWNSTREAM_LU_RANGE . 53
DEFINE_DSPU_TEMPLATE . 56
DEFINE_FOCAL_POINT . 59
DEFINE_INTERNAL_PU . 62
DEFINE_LOCAL_LU . 64
DEFINE_LS . 67
DEFINE_LU_0_TO_3 . 79
DEFINE_LU_0_TO_3_RANGE . 82
DEFINE_LU_POOL . 85
DEFINE_MODE . 87
DEFINE_PARTNER_LU . 91
DEFINE_PORT . 94
DEFINE_TP . 101
DELETE_ADJACENT_NODE . 105
DELETE_CN . 107

 Copyright IBM Corp. 1989, 1997 1

DELETE_COS . 109
DELETE_DLC . 110
DELETE_DOWNSTREAM_LU . 112
DELETE_DOWNSTREAM_LU_RANGE . 114
DELETE_DSPU_TEMPLATE . 116
DELETE_FOCAL_POINT . 117
DELETE_INTERNAL_PU . 119
DELETE_LOCAL_LU . 121
DELETE_LS . 122
DELETE_LU_0_TO_3 . 124
DELETE_LU_0_TO_3_RANGE . 126
DELETE_LU_POOL . 128
DELETE_MODE . 130
DELETE_PARTNER_LU . 132
DELETE_PORT . 133
DELETE_TP . 135

Chapter 5. Activation and Deactivation Verbs 137
START_DLC . 138
START_INTERNAL_PU . 140
START_LS . 142
START_PORT . 144
STOP_DLC . 146
STOP_INTERNAL_PU . 148
STOP_LS . 150
STOP_PORT . 152
ACTIVATE_SESSION . 154
DEACTIVATE_CONV_GROUP . 156
DEACTIVATE_SESSION . 158
PATH_SWITCH . 161

Chapter 6. Query Verbs . 163
QUERY_ADJACENT_NN . 164
QUERY_CN . 167
QUERY_CN_PORT . 172
QUERY_COS . 175
QUERY_DEFAULT_PU . 178
QUERY_DEFAULTS . 180
QUERY_DIRECTORY_LU . 182
QUERY_DIRECTORY_STATS . 186
QUERY_DLC . 188
QUERY_DLUR_LU . 193
QUERY_DLUR_PU . 197
QUERY_DLUS . 203
QUERY_DOWNSTREAM_LU . 208
QUERY_DOWNSTREAM_PU . 217
QUERY_DSPU_TEMPLATE . 222
QUERY_FOCAL_POINT . 225
QUERY_ISR_SESSION . 230
QUERY_LOCAL_LU . 237
QUERY_LOCAL_TOPOLOGY . 243
QUERY_LS . 248
QUERY_LU_0_TO_3 . 263
QUERY_LU_POOL . 272

2 System Management Programming

QUERY_MDS_APPLICATION . 276
QUERY_MDS_STATISTICS . 279
QUERY_MODE . 281
QUERY_MODE_DEFINITION . 287
QUERY_MODE_TO_COS_MAPPING . 291
QUERY_NMVT_APPLICATION . 294
QUERY_NN_TOPOLOGY_NODE . 297
QUERY_NN_TOPOLOGY_STATS . 302
QUERY_NN_TOPOLOGY_TG . 306
QUERY_NODE . 312
QUERY_PARTNER_LU . 321
QUERY_PARTNER_LU_DEFINITION . 327
QUERY_PORT . 332
QUERY_PU . 341
QUERY_RTP_CONNECTION . 346
QUERY_SESSION . 353
QUERY_STATISTICS . 360
QUERY_TP . 362
QUERY_TP_DEFINITION . 366

Chapter 7. Session Limit Verbs . 371
CHANGE_SESSION_LIMIT . 372
INITIALIZE_SESSION_LIMIT . 375
RESET_SESSION_LIMIT . 378

Chapter 8. Node Operator Facility API Indications 381
DLC_INDICATION . 382
DLUR_LU_INDICATION . 383
DLUS_INDICATION . 384
DOWNSTREAM_LU_INDICATION . 386
DOWNSTREAM_PU_INDICATION . 391
FOCAL_POINT_INDICATION . 394
ISR_INDICATION . 396
LOCAL_LU_INDICATION . 401
LOCAL_TOPOLOGY_INDICATION . 404
LS_INDICATION . 405
LU_0_TO_3_INDICATION . 409
MODE_INDICATION . 413
NN_TOPOLOGY_NODE_INDICATION . 415
NN_TOPOLOGY_TG_INDICATION . 416
PLU_INDICATION . 418
PORT_INDICATION . 420
PU_INDICATION . 421
REGISTRATION_FAILURE . 424
RTP_INDICATION . 425
SESSION_INDICATION . 429

Chapter 9. Security Verbs . 433
DEFINE_LU_LU_PASSWORD . 434
DEFINE_USERID_PASSWORD . 436
DELETE_LU_LU_PASSWORD . 438
DELETE_USERID_PASSWORD . 440

Chapter 10. APING and CPI-C Verbs . 443

 Part 1. Communications Server Node Operator Facility 3

APING . 444
CPI-C Verbs . 448
DEFINE_CPIC_SIDE_INFO . 449
DELETE_CPIC_SIDE_INFO . 452
QUERY_CPIC_SIDE_INFO . 453

Chapter 11. Attach Manager Verbs . 457
DISABLE_ATTACH_MANAGER . 458
ENABLE_ATTACH_MANAGER . 459
QUERY_ATTACH_MANAGER . 460

4 System Management Programming

 Chapter 1. Introduction

This part describes the Node Operator Facility (NOF) API provided by
Communications Server.

Purpose of the Document
The aim of the document is to:

¹ Provide a brief overview of the structure of the Node Operator Facility API
¹ Define the syntax of the signals that flow across the interface.

Communications Server Node Operator Facility
The Communications Server Node Operator Facility enables communication
between the node operator, and the control point (CP) and logical units (LUs). The
Node Operator Facility receives node configuration information from the operator,
which it uses to initialize the control point when the node is started. The Node
Operator Facility also receives requests to query and display node configuration
information. The node operator is able to:

¹ Define and delete LUs, DLCs, ports, and links
¹ Activate and deactivate links and sessions
¹ Query the control point and LUs for database and status information

The node operator can be a human operator working with an interactive display, a
command file accessed by a file interface, or a transaction program. The Node
Operator Facility communicates with the node operator by using a verb interface.

 Entry Points
Communications Server provides a library file that handles Node Operator Facility
verbs.

Node Operator Facility verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block. Then your
program calls the entry point and passes a pointer to the verb control block. When
its operation is complete, Node Operator Facility returns, having used and then
modified the fields in the verb control block. Your program can then read the
returned parameters from the verb control block.

Following is a list of entry points for Node Operator Facility verbs:

 ¹ WinAsyncNOF()
 ¹ WinAsyncNOFEx()
 ¹ WinNOFCancelAsyncRequest()
 ¹ WinNOFCleanup()
 ¹ WinNOFStartup()
 ¹ WinNOFRegisterIndicationSink()
 ¹ WinNOFUnregisterIndicationSink()
 ¹ WinNOFGetIndication()

 Copyright IBM Corp. 1989, 1997 5

See Chapter 3, “Node Operator Facility Entry Points” for detailed descriptions of
the entry points.

Verb Control Blocks (VCBs)
Programming Note: The base operating system optimizes performance by
executing some subsystems in the calling application's address space. This means
that incorrect use of local descriptor table (LDT) selectors by application programs
can cause improper operation, or perhaps system failures. Accordingly, application
programs should not perform pointer arithmetic operations that involve changing the
LDT selector field of a pointer.

The segment used for the verb control block (VCB) must be a read/write data
segment. Your program can either declare the VCB as a variable in your program,
allocate it, or suballocate it from a larger segment. It must be sufficiently large to
contain all the fields for the verb your program is issuing.

An application program should not change any part of the verb control block after it
has been issued until the verb completes. When Node Operator Facility finishes
the execution of a verb, it copies a complete, modified VCB back onto the original
block. Therefore, if your program declares a verb control block as a variable,
consider declaring it in static storage rather than on the stack of an internal
procedure.

Fill all reserved and unused fields in each VCB with zeros (X'00'). In fact, it might
be more time-efficient to set the entire verb control block to zeros before your
program assigns the values to the parameters. Setting reserved fields to zeros is
particularly important.

Note: If the VCB is not read/write, or if it is not at least 10 bytes (that is, large
enough to hold the Node Operator Facility primary and secondary return
codes), Node Operator Facility cannot access it, and the base operating
system abnormally ends the process. This termination is recognized as a
general protection fault, processor exception trap D.

Node Operator Facility returns the INVALID_VERB_SEGMENT primary return code
when the VCB is too short or the incorrect type of segment is used.

Writing Node Operator Facility (NOF) Programs
Communications Server provides a dynamic link library (DLL) file, that handles NOF
verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

NOF verbs have a straightforward language interface. Your program fills in fields in
a block of memory called a verb control block (VCB). Then it calls the NOF DLL
and passes a pointer to the verb control block. When its operation is complete,
NOF returns, having used and then modified the fields in the VCB. Your program
can then read the returned parameters from the verb control block.

6 System Management Programming

Table 1 on page 7 shows source module usage of supplied header files and
libraries needed to compile and link NOF programs. Some of the header files may
include other required header files.

Table 1. Header Files and Libraries for NOF

Operating System Header File Library DLL Name

WINNT & WIN95 WINNOF.H WINNOF32.LIB WINNOF32.DLL

WIN3.1 WINNOF.H WINNOF.LIB WINNOF.DLL

OS/2 APPC_C.H APPC.LIB APPC.DLL

SNA API Client Support
SNA API client only supports a subset of the full node operator facility. Specifically,
WINNOF is the only entry point supported on the Windows clients (95, NT, 3.1).
The following is a list of the NOF verbs supported:

 ¹ QUERY_LOCAL_LU
 ¹ QUERY_LU_0_TO_3
 ¹ QUERY_LU_POOL
 ¹ QUERY_MODE
 ¹ QUERY_MODE_DEFINITION
 ¹ QUERY_PARTNER_LU
 ¹ QUERY_PARTNER_LU_DEFINITION
 ¹ QUERY_PU
 ¹ QUERY_SESSION
 ¹ QUERY_TP
 ¹ QUERY_TP_DEFINITION

 Chapter 1. Introduction 7

8 System Management Programming

Chapter 2. Overview of the Verbs in This Book

The verb interface described in this book allows your programs to perform most of
the configuration, system management, and node definition functions associated
with a Communications Server network environment. This chapter provides an
overview of each of these functions and the associated verbs.

How to Read Verb Descriptions
Chapters 4 through 11 describe the configuration, system management, and attach
manager verbs.

 Supplied Parameters
Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values supplied by the program.

In some cases, you must supply a variable value for a parameter.

 Returned Parameters
Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values returned to the program.

 Return Codes
The configuration, system management, and attach manager verbs described in
this book have return codes associated with them that supply information about the
success of verb execution or that provide error information. These codes are listed
in the “Returned Parameters” section for each verb.

 Additional Information
Many of the verb descriptions also contain a section titled “Additional Information.”
This section provides additional useful information about the verb.

Common VCB Fields
This chapter documents the syntax of each verb passed across the Node Operator
Facility API. It also describes the parameters passed in and returned for each
verb.

typedef struct nof_hdr
{
 unsigned short opcode;

unsigned char reserv2; /* reserved */
 unsigned char format;
 unsigned short primary_rc;
 unsigned long secondary_rc;
} NOF_HDR;

Each VCB has a number of common fields. These are listed and described below.

opcode Verb operation code. This field identifies the verb.

 Copyright IBM Corp. 1989, 1997 9

format Identifies the format of the VCB. The value that this field
must be set to in order to specify the current version of the
VCB is documented individually under each verb.

primary_rc Primary return code. Possible values for each verb are listed
in each verb section.

secondary_rc Secondary return code. This supplements the information
provided by the primary return code.

 Verb Summary
The Node Operator Facility API is composed of verbs that can be used to do the
following things:

¹ Configure node resources
¹ Activate and deactivate links and sessions
¹ Query information held by the node
¹ Change the number of sessions
¹ Handle unsolicited indications
¹ Provide password support
¹ “ping” a remote LU
¹ Define, query, and delete CPI-C side information

 Node Configuration
The following verbs can be used to define resources:

 ¹ DEFINE_ADJACENT_NODE
 ¹ DEFINE_CN
 ¹ DEFINE_COS
 ¹ DEFINE_DEFAULT_PU
 ¹ DEFINE_DLC
 ¹ DEFINE_DLUR_DEFAULTS
 ¹ DEFINE_DOWNSTREAM_LU
 ¹ DEFINE_DOWNSTREAM_LU_RANGE
 ¹ DEFINE_FOCAL_POINT
 ¹ DEFINE_INTERNAL_PU
 ¹ DEFINE_LOCAL_LU
 ¹ DEFINE_LS
 ¹ DEFINE_LU_0_TO_3
 ¹ DEFINE_LU_0_TO_3_RANGE
 ¹ DEFINE_LU_POOL
 ¹ DEFINE_MODE
 ¹ DEFINE_PARTNER_LU
 ¹ DEFINE_PORT
 ¹ DEFINE_TP

The following verbs can be used to delete resources:

 ¹ DELETE_ADJACENT_NODE
 ¹ DELETE_CN
 ¹ DELETE_COS
 ¹ DELETE_DLC
 ¹ DELETE_DOWNSTREAM_LU
 ¹ DELETE_DOWNSTREAM_LU_RANGE
 ¹ DELETE_FOCAL_POINT
 ¹ DELETE_INTERNAL_PU

10 System Management Programming

 ¹ DELETE_LOCAL_LU
 ¹ DELETE_LS
 ¹ DELETE_LU_0_TO_3
 ¹ DELETE_LU_0_TO_3_RANGE
 ¹ DELETE_LU_POOL
 ¹ DELETE_MODE
 ¹ DELETE_PARTNER_LU
 ¹ DELETE_PORT
 ¹ DELETE_TP

Activation and Deactivation
The following verbs are used at link level:

 ¹ START_DLC
 ¹ START_LS
 ¹ START_PORT
 ¹ STOP_DLC
 ¹ STOP_LS
 ¹ STOP_PORT

The following verbs are used for dependent LU requestor function:

 ¹ START_INTERNAL_PU
 ¹ STOP_INTERNAL_PU

The following verbs are used at session level:

 ¹ ACTIVATE_SESSION
 ¹ DEACTIVATE_CONV_GROUP
 ¹ DEACTIVATE_SESSION

The following verb is used to force a high performance routing (HPR) RTP
connection to switch paths:

 PATH_SWITCH

Querying the Node
These verbs return node information in named fields:

 ¹ QUERY_DEFAULT_PU
 ¹ QUERY_MDS_STATISTICS
 ¹ QUERY_NN_TOPOLOGY_STATS
 ¹ QUERY_NODE
 ¹ QUERY_STATISTICS

The following verbs can return one or more units of information:

 ¹ QUERY_ADJACENT_NN
 ¹ QUERY_CN
 ¹ QUERY_CN_PORT
 ¹ QUERY_COS
 ¹ QUERY_DEFAULTS
 ¹ QUERY_DLUS
 ¹ QUERY_DOWNSTREAM_PU
 ¹ QUERY_FOCAL_POINT
 ¹ QUERY_LU_POOL
 ¹ QUERY_MDS_APPLICATION

 Chapter 2. Overview of the Verbs in This Book 11

 ¹ QUERY_MODE_TO_COS_MAPPING
 ¹ QUERY_NMVT_APPLICATION
 ¹ QUERY_PU
 ¹ QUERY_TP

This information can be thought of as being stored in the form of a list. The verb
can specify a named entry in the list, which is then considered to be a place marker
(or index value) in the list. The list_options field on these verbs specifies from
which point in the list information will be returned.

¹ If list_options is set to AP_FIRST_IN_LIST, then the fields specifying the
index value will be ignored, and the returned list will start at the beginning.

¹ If list_options is set to AP_LIST_INCLUSIVE, then the returned list will start
from the specified index value.

¹ If list_options is set to AP_LIST_FROM_NEXT, then the returned list will start
from the entry after the specified index value.

The index value specifies the starting point for returned information. Once this has
been determined, some of the query verbs also provide additional filtering options
for the returned list. These are specified independently of the index value. Note
that unless specified otherwise, the returned list will be ordered according to IBM's
6611 APPN MIB. (See Appendix A, “IBM APPN MIB Tables,” for information on
how verb parameters map to MIB table entries.)

The number of entries to be returned or the buffer size to be filled is set. (If both
are set, then the verb is returned with the lower of the two specified quantities of
information.) Because the application buffer size typically limits the amount of
information that can be returned, the Node Operator Facility returns additional
information indicating the total amount of buffer space required to return the
requested information, and the total number of entries this represents.

In addition to returning one or more units of information, the following verbs are
also able to return different levels of information. The list_options field specifies
whether summary or detailed information will be returned by including either
AP_DETAIL or AP_SUMMARY in the list_options field. These options are
specified by ORing one of the previous list_options , for example: AP_DETAIL |
AP_FIRST_IN_LIST.

 ¹ QUERY_DIRECTORY_LU
 ¹ QUERY_DLC
 ¹ QUERY_DLUR_LU
 ¹ QUERY_DLUR_PU
 ¹ QUERY_DOWNSTREAM_LU
 ¹ QUERY_ISR_SESSION
 ¹ QUERY_LOCAL_LU
 ¹ QUERY_LOCAL_TOPOLOGY
 ¹ QUERY_LS
 ¹ QUERY_LU_0_TO_3
 ¹ QUERY_MODE
 ¹ QUERY_MODE_DEFINITION
 ¹ QUERY_NN_TOPOLOGY_NODE
 ¹ QUERY_NN_TOPOLOGY_TG
 ¹ QUERY_PARTNER_LU
 ¹ QUERY_PARTNER_LU_DEFINITION

12 System Management Programming

 ¹ QUERY_PORT
 ¹ QUERY_RTP_CONNECTION
 ¹ QUERY_SESSION
 ¹ QUERY_TP_DEFINITION

Session Limit Verbs
 ¹ CHANGE_SESSION_LIMIT
 ¹ INITIALIZE_SESSION_LIMIT
 ¹ RESET_SESSION_LIMIT

 Unsolicited Indications
Applications displaying node information can use these indications (which are
issued when a change occurs and return summary information only) to trigger the
query verbs (returning detailed information). The node only produces the signals
listed below as unsolicited indications of the named events if there are any
applications registered to receive the information. Applications should therefore
unregister if they no longer require the information.

 ¹ DLC_INDICATION
 ¹ DLUR_LU_INDICATION
 ¹ DLUS_INDICATION
 ¹ DOWNSTREAM_LU_INDICATION
 ¹ DOWNSTREAM_PU_INDICATION
 ¹ FOCAL_POINT_INDICATION
 ¹ ISR_INDICATION
 ¹ LOCAL_LU_INDICATION
 ¹ LOCAL_TOPOLOGY_INDICATION
 ¹ LS_INDICATION
 ¹ LU_0_TO_3_INDICATION
 ¹ MODE_INDICATION
 ¹ NN_TOPOLOGY_NODE_INDICATION
 ¹ NN_TOPOLOGY_TG_INDICATION
 ¹ PLU_INDICATION
 ¹ PORT_INDICATION
 ¹ PU_INDICATION
 ¹ REGISTRATION_FAILURE
 ¹ RTP_INDICATION
 ¹ SESSION_INDICATION

The entry points used for indications are:

WinNOFRegisterIndicationSink Register to receive an indication

WinNOFUnregisterIndicationSink Unregister from receiving an indication

WinNOFGetIndication Receive an indication

These indications are passed to any indication sinks that have registered with the
Node Operator Facility. If the component generating the indication is unable to
send it, then it sets the data_lost indicator on the next indication it issues. If the
data_lost flag has been set to AP_YES on an indication, then subsequent data
fields can be set to null. This flag is used to notify the application that a change
has occurred whose details have been lost, indicating that the application should
respond by issuing the appropriate query verb.

 Chapter 2. Overview of the Verbs in This Book 13

 Security Verbs
The following security verbs allow management of passwords for LU-LU verification
or conversation security.

 ¹ DEFINE_LU_LU_PASSWORD
 ¹ DEFINE_USERID_PASSWORD
 ¹ DELETE_LU_LU_PASSWORD
 ¹ DELETE_USERID_PASSWORD

 APING Verbs
The following verb allows a management application to “ping” a remote LU in the
network.

 APING

 CPI-C Verbs
The following verbs allow CPI-C side information to be defined, queried, and
deleted.

 ¹ DEFINE_CPIC_SIDE_INFO
 ¹ DELETE_CPIC_SIDE_INFO
 ¹ QUERY_CPIC_SIDE_INFO

See the CPI-C Reference for more information about the CPI-C support provided
by Communications Server for Windows NT.

Attach Manager Verbs
The following verbs can be used to control the attach manager:

 ¹ DISABLE_ATTACH_MANAGER
 ¹ ENABLE_ATTACH_MANAGER
 ¹ QUERY_ATTACH_MANAGER

DLC Processes, Ports, and Link Stations

 DLC Processes
Communications Server can create multiple DLC processes. Each DLC process is
created by Communications Server in response to a START_DLC verb issued at
the Node Operator Facility API. Each DLC is responsible for communication over a
link, or set of links, using a specific data link protocol (such as SDLC or Token
Ring).

Each DLC process can manage one or more ports. Ports are described below.

 Ports
A port represents a unique access point (such as a MAC/SAP address pair) in the
local machine and is associated with a DLC process. Each DLC can have one or
more ports. A port can be one of the following types:

Switched port Can have one or more adjacent link stations that are active
at any one time. (Note that this differs from the definition in
the SNA APPN Architecture Reference.)

Nonswitched port Can have both point-to-point and multipoint link connections.
Adjacent link stations on a nonswitched link connection must
be defined by a Node Operator Facility component.

14 System Management Programming

Multipoint nonswitched links require primary/secondary
relationships to be defined properly on all nodes to avoid
unpredictable results.

SATF port Uses a shared-access transport facility such as token ring. It
allows connectivity between any pair of link stations attaching
to the facility. The initial role for all link stations being
activated on a token ring must always be defined as
negotiable, so that link activation can be initiated through any
link station.

Note: SATF ports can also be associated with Connection
Networks. In this case, topology updates are used to
broadcast the address of the unique access point.

 Link Stations
A link station is associated with a port and represents a connection to an adjacent
node. A port can have multiple link stations. Link stations can be categorized in
the following way:

Defined link station A link station that has been defined explicitly (using a
DEFINE_LS verb).

Dynamic link station
A link station that has been created as a result of activating a
dynamic connection through a connection network (also
known as a virtual routing node (VRN)).

Implicit link station A link station that has been created as a result of a call
received from a previously unknown partner node on a
switched or SATF port. (This type of port is not defined in
the SNA APPN Architecture Reference.)

Temporary link station
A link station that is created when a CONNECT_IN is
received over the DLC interface on a switched or SATF port.
It is either deleted, or becomes dynamic or implicit, when the
remote node identity is determined.

 Chapter 2. Overview of the Verbs in This Book 15

16 System Management Programming

Chapter 3. Node Operator Facility Entry Points

This chapter describes the entry points for Node Operator Facility verbs.

 Copyright IBM Corp. 1989, 1997 17

 WinNOF()

 WinNOF()
This function provides a synchronous entry point for all of the Node Operator
Facility verbs.

 Syntax
void WINAPI WinNOF(long vcb,

unsigned short vcb_size)

Parameter Description

vcb Pointer to verb control block.

vcb_size Number of bytes in the verb control block.

 Returns
No return value. The primary_rc and secondary_rc fields in the verb control
block indicate any error.

 Remarks
This is the main synchronous entry point for the Node Operator Facility API. This
call blocks until the verb completes.

18 System Management Programming

 WinAsyncNOF()

 WinAsyncNOF()
This function provides an asynchronous entry point for all of the Node Operator
Facility verbs.

 Syntax
HANDLE WINAPI WinAsyncNOF(HWND hwnd,
 long vcb,

unsigned short vcb_size)

Parameter Description

hwnd Window handle to receive completion message.

vcb Pointer to verb control block.

vcb_size Number of bytes in the verb control block.

 Returns
The return value specifies whether the asynchronous request was successful. If
the function was successful, the actual return value is a handle. If the function was
not successful, a zero is returned.

 Remarks
Each application thread can only have one outstanding request at a time when
using this entry point.

When the asynchronous operation is complete, the application's window hWnd
receives the message returned RegisterWindowMessage with “WinAsyncNOF”
as the input string. The wParam argument contains the asynchronous task handle
returned by the original function call.

If the function returns successfully, a WinAsyncNOF() message will be posted to
the application when the operation completes or the conversation is canceled.

Note: See also WinNOFCancelAsyncRequest() .

 Chapter 3. Node Operator Facility Entry Points 19

 WinAsyncNOFEx()

 WinAsyncNOFEx()
This function provides an asynchronous entry point for all of the Node Operator
Facility verbs. Use this entry point instead of the blocking calls to allow multiple
verbs to be handled on the same thread.

 Syntax
HANDLE WINAPI WinAsyncNOFEx(HANDLE handle,
 long vcb,

unsigned short vcb_size);

Parameter Description

handle Handle of the event that the application will wait on.

vcb Pointer to verb control block.

vcb_size Number of bytes in the verb control block.

 Returns
The return value specifies whether the asynchronous request was successful. If
the function was successful, the actual return value is a handle.

 Remarks
This entry point is intended for use with WaitForMultipleObjects in the Win32** API.
For more information about this function, see the programming documentation for
the Win32 API.

When the asynchronous operation is complete, the application is notified by way of
the signaling of the event. Upon signaling of the event, examine the primary return
code and secondary return code for any error conditions.

Note: See also WinNOFCancelAsyncRequest() .

20 System Management Programming

 WinNOFCancelAsyncRequest()

 WinNOFCancelAsyncRequest()
This function cancels an outstanding WinAsyncNOF based request.

 Syntax
int WINAPI WinNOFCancelAsyncRequest(HANDLE handle);

Parameter Description

handle Supplied parameter; specifies the handle of the request to be
canceled.

 Returns
The return value specifies whether the asynchronous request was canceled. If the
value is zero, the request was canceled. Otherwise the value is:

WNOFALREADY
An error code indicating that the asynchronous request being canceled has
already completed, or the handle was not valid.

 Remarks
An asynchronous request previously issued by one of the WinAsyncNOF functions
can be canceled prior to completion by issuing the
WinNOFCancelAsyncRequest() call, specifying the handle returned by the initial
function in handle.

Canceling an asynchronous request stops any update to the application verb
control block and stops the application being notified that the verb has completed
(either by way of the window message or event). It does not cancel the underlying
request. To actually cancel the underlying request, the application must issue the
appropriate NOF verb (that is, STOP_LS to cancel START_LS).

Should an attempt to cancel an existing asynchronous WinAsyncNOF routine fail
with an error code of WNOFALREADY, one of two things has occurred. Either the
original routine has already completed and the application has dealt with the
resulting notification, or the original routine has already completed but the
application has not dealt with the completion notification.

Note: See also WinAsyncNOF() .

 Chapter 3. Node Operator Facility Entry Points 21

 WinNOFCleanup()

 WinNOFCleanup()
This function terminates and deregisters an application from the Node Operator
Facility API.

 Syntax
BOOL WINAPI WinNOFCleanup(void);

 Returns
The return value specifies whether the deregistration was successful. If the value
is not zero, the application was successfully deregistered. The application was not
deregistered if a value of zero is returned.

 Remarks
Use WinNOFCleanup() to indicate deregistration of a Node Operator Facility
application from the Node Operator Facility API.

WinNOFCleanup unblocks any thread waiting in WinNOFGetIndication . These
return with WNOFNOTREG, (the application is not registered to receive indication).
WinNOFCleanup unregisters the application for all indications. WinNOFCleanup
returns any outstanding verb (synchronous or asynchronous) with the error
AP_CANCELLED. However, the verb completes inside the node.

It is not a requirement to use WinNOFStartup and WinNOFCleanup . However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinNOFStartup() .

22 System Management Programming

 WinNOFStartup()

 WinNOFStartup()
This function allows an application to specify the version of Node Operator Facility
API required and to retrieve the version of the API supported by the product. This
function can be called by an application before issuing any further Node Operator
Facility API calls to register itself.

 Syntax
int WINAPI WinNOFStartup(WORD wVersionRequired,
 LPWNOFDATA nofdata);

Parameter Description

wVersionRequired Specifies the version of Node Operator Facility API support
required. The high-order byte specifies the minor version
(revision) number; the low-order byte specifies the major
version number.

nofdata Returns the version of Node Operator Facility API and a
description of API implementation.

 Returns
The return value specifies whether the application was registered successfully and
whether the Node Operator Facility API implementation can support the specified
version number. If the value is zero, it was registered successfully and the
specified version can be supported. Otherwise, the return value is one of the
following values:

WNOFSYSERROR
The underlying network subsystem is not ready for network communication.

WNOFVERNOTSUPPORTED
The version of Node Operator Facility API support requested is not provided by
this particular implementation.

WNOFBADPOINTER
Incorrect nofdata parameter.

 Remarks
This call is intended to help with compatibility of future releases of the API. The
current version is 1.0.

It is not a requirement to use WinNOFStartup and WinNOFCleanup . However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinNOFCleanup() .

 Chapter 3. Node Operator Facility Entry Points 23

 WinNOFRegisterIndicationSink()

 WinNOFRegisterIndicationSink()
This allows the application to register to receive unsolicited indications.

 Syntax
BOOL WINAPI WinNOFRegisterIndicationSink(unsigned short indication_opcode,

unsigned short queue_size,
unsigned short *primary_rc,
unsigned long *secondary_rc);

Parameter Description

indication_opcode The indication to register for.

queue_size Number of unreceived indications to queue. Zero means use
the current value (the initial default value is set to 10). There is
only one queue for all indications registered by application.

primary_rc Returned: primary return code

secondary_rc Returned: secondary return code

 Returns
The function returns a value indicating whether the registration was successful. If
the value is not zero, the registration was successful. If the value is zero, the
registration was not successful.

 Remarks
Use WinNOFRegisterIndicationSink to register to receive unsolicited indications
of type indication_opcode .

An application must issue a WinNOFRegisterIndicationSink for each type of
indication it wants to receive.

Note: See also WinNOFUnregisterIndicationSink and WinNOFGetIndication .

24 System Management Programming

 WinNOFUnregisterIndicationSink()

 WinNOFUnregisterIndicationSink()
This allows the application to stop receiving unsolicited indications.

 Syntax
BOOL WINAPI WinNOFUnregisterIndicationSink(unsigned short indication_opcode,

unsigned short *primary_rc,
unsigned long *secondary_rc);

Parameter Description

indication_opcode The indication to unregister from.

primary_rc Returned: primary return code.

secondary_rc Returned: secondary return code.

 Returns
The function returns a value indicating whether the unregistration was successful.
If the value is not zero, the unregistration was successful. If the value is zero, the
unregistration was not successful.

 Remarks
Use WinNOFUnregisterIndicationSink to stop receiving unsolicited indications of
type indication_opcode .

An application must issue a WinNOFUnregisterIndicationSink for each type of
indication it wants to stop receiving.

Note: See also WinNOFRegisterIndicationSink and WinNOFGetIndication .

 Chapter 3. Node Operator Facility Entry Points 25

 WinNOFGetIndication()

 WinNOFGetIndication()
This allows the application to received unsolicited indications.

 Syntax
int WINAPI WinNOFGetIndication(long buffer,

unsigned short *buffer_size,
unsigned long timeout);

Parameter Description

buffer Pointer to a buffer to receive indication.

buffer_size Size of buffer. Returned: the size of the indication.

timeout Time to wait for indication in milliseconds.

 Returns
The function returns a value indicating whether an indication was received.

0 Indication returned.

WNOFTIMEOUT
Timeout waiting for indication.

WNOFSYSNOTREADY
The underlying network subsystem is not ready for network communication.

WNOFNOTREG
The application is not registered to receive indications.

WNOFBADSIZE
The buffer is too small to receive the indication. Reissue the
WinNOFGetIndication call with a large enough buffer. The size of the
indication is returned in the buffer_size parameter.

WNOFBADPOINTER
Either the buffer or buffer_size parameter is not valid.

WNOFSYSERROR
An unexpected system error has occurred.

 Remarks
This is a blocking call, it returns in one of the following circumstances:

¹ An indication is returned
¹ The timeout expires
¹ The application issues a WinNOFCleanup call
¹ The product is stopped
¹ A system error occurs

Note: See also WinNOFRegisterIndicationSink and
WinNOFUnregisterIndicationSink .

26 System Management Programming

 Node Configuration Verbs

Chapter 4. Node Configuration Verbs

The following verbs are used to define and delete node configuration information.

 Copyright IBM Corp. 1989, 1997 27

 DEFINE_ADJACENT_NODE

 DEFINE_ADJACENT_NODE
DEFINE_ADJACENT_NODE adds entries to the node directory database for the
resources on an adjacent node.

Note: This verb is not required, and should not be issued, if there is an active
path to the adjacent node using CP-CP sessions.

This verb can be issued on an end node, in which case the node's control point is
added to the root of the directory.

To define the node's control point LU, set the following fields:

¹ Specify the node's control point name in the cp_name field

¹ Add an ADJACENT_NODE_LU structure, specifying the control point name in
the fqlu_name field.

Any additional LUs on the node are added to the directory as children of the node's
control point. DEFINE_ADJACENT_NODE can also be used to add LU definitions
to an existing node definition. LUs can be removed in the same way by issuing the
DELETE_ADJACENT_NODE verb. If the verb fails part way through processing,
all new directory entries are removed, leaving the directory as it was before the
verb was issued.

 VCB Structure
The DEFINE_ADJACENT_NODE verb contains a variable number of
ADJACENT_NODE_LU overlays. The ADJACENT_NODE_LU structures are
concatenated onto the end of DEFINE_ADJACENT_NODE structure.

typedef struct define_adjacent_node
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cp_name[17]; /* CP name */
unsigned char description[RD_LEN]; /* resource description */

 unsigned char reserv3[19]; /* reserved */
unsigned short num_of_lus; /* number of LUs */

 unsigned char reserv4[2]; /* reserved */
} DEFINE_ADJACENT_NODE;

typedef struct adjacent_node_lu
{

unsigned char wildcard_lu; /* wildcard LU name */
 /* indicator */

unsigned char fqlu_name[17]; /* fully qualified LU name */
 unsigned char reserv1[6]; /* reserved */
} ADJACENT_NODE_LU;

28 System Management Programming

 DEFINE_ADJACENT_NODE

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_ADJACENT_NODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

cp_name The fully qualified name of the control point in the adjacent
end node. This should match the name the node sends on
its XIDs (if it supports them), and the adjacent control point
name specified on the DEFINE_LS for the link to the node.
The name is 17 bytes long and is right-padded with EBCDIC
spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

description Resource description (returned on
QUERY_DIRECTORY_LU). This is a 16-byte (nonzero)
string in a locally displayable character set. All 16 bytes are
significant.

num_of_lus The number of adjacent LU overlays that follow the
DEFINE_ADJACENT_NODE VCB.

adjacent_node_lu.wildcard_lu
Indicates whether the specified LU name is a wildcard name
(AP_YES or AP_NO).

adjacent_node_lu.fqlu_name
The LU name to be defined. If this name is not fully qualified
the network ID of the CP name is assumed. The name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of either one or two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_CP_NAME

AP_INVALID_LU_NAME
AP_INVALID_WILDCARD_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

 Chapter 4. Node Configuration Verbs 29

 DEFINE_ADJACENT_NODE

secondary_rc AP_INVALID_CP_NAME

AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

secondary_rc AP_MEMORY_SHORTAGE

AP_DIRECTORY_FULL

30 System Management Programming

 DEFINE_CN

 DEFINE_CN
DEFINE_CN defines a connection network (also known as a virtual routing node or
VRN). The verb provides the network-qualified name of the connection network
along with its transmission group (TG) characteristics. It also provides a list of the
names of the local ports that can access this connection network.

DEFINE_CN can be used to redefine an existing connection network. In particular,
new ports can be added to the list of ports that access the connection network by
issuing another DEFINE_CN. (Ports can be removed in the same way by issuing
the DELETE_CN verb.)

 VCB Structure
typedef struct define_cn
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqcn_name[17]; /* name of connection network */
CN_DEF_DATA def_data; /* CN defined data */

 unsigned char port_name[8][8];
/* port names */

} DEFINE_CN;

typedef struct cn_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char num_ports; /* number of ports on CN */

 unsigned char reserv1[16]; /* reserved */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

} CN_DEF_DATA;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */

unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */

 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */

unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

 Chapter 4. Node Configuration Verbs 31

 DEFINE_CN

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_CN

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

fqcn_name Fully qualified name (17 bytes long) of connection network
being defined. This name is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

def_data.description
Resource description (returned on QUERY_CN). This is a
16-byte string in a locally displayable character set. All 16
bytes are significant.

def_data.num_ports
Number of ports associated with this connection network.
There can be as many as eight ports per DEFINE_CN verb,
and up to and including 239 ports in total per CN.

def_data.tg_chars.effect_cap
Actual units of effective capacity. The value is encoded as a
1-byte floating-point number, represented by the formula
0.1mmm * 2 eeeee, where the bit representation of the byte
is eeeeemmm. Each unit of effective capacity is equal to 300
bits per second.

def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the
range 0—255, where 0 is the lowest cost per connect time
and 255 is the highest.

def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range
0—255, where 0 is the lowest cost per byte and 255 is the
highest.

def_data.tg_chars.security
Security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

32 System Management Programming

 DEFINE_CN

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

def_data.tg_chars.prop_delay
Propagation delay representing the time it takes for a signal
to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by
the formula 0.1mmm * 2 eeeee, where the bit representation
of the byte is eeeeemmm. Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

def_data.tg_chars.modem_class
Reserved. This field should always be set to zero.

def_data.tg_chars.user_def_parm_1
User defined parameter in the range 0—255.

def_data.tg_chars.user_def_parm_2
User defined parameter in the range 0—255.

def_data.tg_chars.user_def_parm_3
User defined parameter in the range 0—255.

port_name Array of up to eight port names defined on the connection
network. Each named port must have already been defined
by a DEFINE_PORT verb. Each port name is an 8-byte
string in a locally displayable character set and must match
that on the associated DEFINE_PORT verb. Additional ports
can be defined on the connection network by issuing another
DEFINE_CN specifying the new port names.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

 Chapter 4. Node Configuration Verbs 33

 DEFINE_CN

secondary_rc AP_INVALID_CN_NAME

AP_INVALID_NUM_PORTS_SPECIFIED
AP_INVALID_PORT_NAME
AP_INVALID_PORT_TYPE
AP_DEF_LINK_INVALID_SECURITY
AP_EXCEEDS_MAX_ALLOWED

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PORT_ACTIVE

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

34 System Management Programming

 DEFINE_COS

 DEFINE_COS
DEFINE_COS adds a class-of-service definition. The DEFINE_COS verb can also
be used to modify any fields in a previously defined COS.

The definition provides node and TG “rows.” These rows associate a range of node
and TG characteristics with weights that are used for route calculation. The lower
the weight the more favorable the route.

 VCB Structure
The DEFINE_COS verb contains a variable number of cos_tg_row and
cos_node_row overlays. The cos_tg_row structures are concatenated onto the
end of DEFINE_COS (and ordered in ascending weight) and are followed by the
cos_node_row structures (also ordered in ascending weight).

typedef struct define_cos
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cos_name[8]; /* class-of-service name */

 unsigned char description[RD_LEN];
/* resource description */

 unsigned char transmission_priority;
/* transmission priority */

 unsigned char reserv3[9]; /* reserved */
unsigned char num_of_node_rows; /* number of node rows */
unsigned char num_of_tg_rows; /* number of TG rows */

} DEFINE_COS;

typedef struct cos_node_row
{
 COS_NODE_STATUS minimum; /* minimum */
 COS_NODE_STATUS maximum; /* max */
 unsigned char weight; /* weight */
 unsigned char reserv1; /* reserved */
} COS_NODE_ROW;

typedef struct cos_node_status
{

unsigned char rar; /* route additional resistance */
unsigned char status; /* node status. */

 unsigned char reserv1[2]; /* reserved */
} COS_NODE_STATUS;

typedef struct cos_tg_row
{
 TG_DEFINED_CHARS minimum; /* minimum */
 TG_DEFINED_CHARS maximum; /* maximum */
 unsigned char weight; /* weight */
 unsigned char reserv1; /* reserved */
} COS_TG_ROW;

typedef struct tg_defined_chars
{

 Chapter 4. Node Configuration Verbs 35

 DEFINE_COS

unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */

unsigned char connect_cost; /* cost per connect time */
unsigned char byte_cost; /* cost per byte */

 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */

unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_COS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

cos_name Class-of-service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

description Resource description (returned on QUERY_COS). This is a
16-byte string in a locally displayable character set. All 16
bytes are significant.

transmission_priority
Transmission priority. This is set to one of the following
values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

num_of_node_rows Number of node row overlays that follow the DEFINE_COS
VCB. The maximum is 8.

num_of_tg_rows Number of TG row overlays that follow the node row
overlays. The maximum is 8. Each node row contains a set
of minimum node characteristics, a set of maximum node
characteristics, and a weight. When computing the weights
for a node, its characteristics are checked against the
minimum and maximum characteristics defined for each node
row. The node is then assigned the weight of the first node
row, which bounds all the node's characteristics within the
limits specified. If the node characteristics do not satisfy any
of the listed node rows, the node is considered unsuitable for
this COS, and is assigned an infinite weight. Note that the
node rows must be concatenated in ascending order of
weight.

cos_node_row.minimum.rar
Route additional resistance minimum. Values must be in the
range 0—255.

36 System Management Programming

 DEFINE_COS

cos_node_row.minimum.status
Specifies the minimum congestion status of the node. This
can be one of the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold .

cos_node_row.maximum.rar
Route additional resistance maximum. Values must be in the
range 0—255.

cos_node_row.maximum.status
Specifies the maximum congestion status of the node. This
can be one of the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold .

cos_node_row.weight
Weight associated with this node row. Values must be in the
range 0—255. Each TG row contains a set of minimum TG
characteristics, a set of maximum TG characteristics, and a
weight. When computing the weights for a TG, its
characteristics are checked against the minimum and
maximum characteristics defined for each TG row. The TG
is then assigned the weight of the first TG row, which bounds
all the TG's characteristics within the limits specified. If the
TG characteristics do not satisfy any of the listed TG rows,
the TG is considered unsuitable for this COS, and is
assigned an infinite weight. Note that the TG rows must be
concatenated in ascending order of weight.

cos_tg_row.minimum.effect_cap
Minimum limit for actual units of effective capacity. The
value is encoded as a 1-byte floating-point number,
represented by the formula 0.1mmm * 2 eeeee, where the bit
representation of the byte is eeeeemmm. Each unit of effective
capacity is equal to 300 bits per second.

cos_tg_row.minimum.connect_cost
Minimum limit for cost per connect time. Valid values are
integer values in the range 0—255, where 0 is the lowest
cost per connect time and 255 is the highest.

cos_tg_row.minimum.byte_cost
Minimum limit for cost per byte. Valid values are integer
values in the range 0—255, where 0 is the lowest cost per
byte and 255 is the highest.

cos_tg_row.minimum.security
Minimum limits for security values as described in the list
below:

 Chapter 4. Node Configuration Verbs 37

 DEFINE_COS

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg_row.minimum.prop_delay
Minimum limits for propagation delay representing the time it
takes for a signal to travel the length of the link, in
microseconds. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.1mmm *
2 eeeee, where the bit representation of the byte is
eeeeemmm. Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.minimum.modem_class
Reserved. This field should always be set to zero.

cos_tg_row.minimum.user_def_parm_1
Minimum limit for user-defined parameter in the range
0—255.

cos_tg_row.minimum.user_def_parm_2
Minimum limit for user-defined parameter in the range
0—255.

cos_tg_row.minimum.user_def_parm_3
Minimum limit for user-defined parameter in the range
0—255.

38 System Management Programming

 DEFINE_COS

cos_tg_row.maximum.effect_cap
Maximum limit for actual units of effective capacity. The
value is encoded as a 1-byte floating-point number,
represented by the formula 0.1mmm * 2 eeeee, where the bit
representation of the byte is eeeeemmm. Each unit of effective
capacity is equal to 300 bits per second.

cos_tg_row.maximum.connect_cost
Maximum limit for cost per connect time. Valid values are
integer values in the range 0—255, where 0 is the lowest
cost per connect time and 255 is the highest.

cos_tg_row.maximum.byte_cost
Maximum limit for cost per byte. Valid values are integer
values in the range 0—255, where 0 is the lowest cost per
byte and 255 is the highest.

cos_tg_row.maximum.security
Maximum limits for security values as described in the list
below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit that is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg_row.maximum.prop_delay
Maximum limits for propagation delay representing the time it
takes for a signal to travel the length of the link, in
microseconds. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.1mmm *
2 eeeee, where the bit representation of the byte is
eeeeemmm. Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

 Chapter 4. Node Configuration Verbs 39

 DEFINE_COS

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.maximum.modem_class
Reserved. This field should always be set to zero.

cos_tg_row.maximum.user_def_parm_1
Maximum limit for user-defined parameter in the range
0—255.

cos_tg_row.maximum.user_def_parm_2
Maximum limit for user-defined parameter in the range
0—255.

cos_tg_row.maximum.user_def_parm_3
Maximum limit for user-defined parameter in the range
0—255.

cos_tg_row.weight Weight associated with this TG row.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_COS_NAME

AP_INVALID_NUMBER_OF_NODE_ROWS
AP_INVALID_NUMBER_OF_TG_ROWS
AP_NODE_ROW_WGT_LESS_THAN_LAST
AP_TG_ROW_WGT_LESS_THAN_LAST

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_COS_TABLE_FULL

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

40 System Management Programming

 DEFINE_COS

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 41

 DEFINE_DEFAULTS

 DEFINE_DEFAULTS
DEFINE_DEFAULTS allows the user to define or redefine default actions of the
node.

 VCB Structure
typedef struct define_defaults
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
DEFAULT_CHARS default_chars; /* default information */

} DEFINE_DEFAULTS;

typedef struct default_chars
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char mode_name[8]; /* default mode name */

 unsigned char reserv[248]; /* reserved */
} DEFAULT_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_DEFAULTS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

default_chars.description
Resource description (returned on QUERY_DEFAULTS).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

default_chars.mode_name
Name of the mode that will serve as the default. This is an
8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb specifies a default mode that is not valid (for example, not EBCDIC A),
or is valid but has not been defined, Communications Server returns the following
parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_MODE_NAME

42 System Management Programming

 DEFINE_DEFAULTS

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 43

 DEFINE_DEFAULT_PU

 DEFINE_DEFAULT_PU
DEFINE_DEFAULT_PU allows the user to define, redefine, or modify any field of a
default PU. It also allows the user to delete the default PU, by specifying a null PU
name. If a PU name is not specified explicitly on a TRANSFER_MS_DATA verb,
then the management services information carried on the TRANSFER_MS_DATA
is sent on the default PU's session with the host SSCP. For more information
about this see Chapter 14, “Management Services Verbs.”

 VCB Structure
typedef struct define_default_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* PU name */

 unsigned char description[RD_LEN];
/* resource description */

 unsigned char reserv3[16]; /* reserved */
} DEFINE_DEFAULT_PU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_DEFAULT_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pu_name Name of local PU that will serve as the default. This is an
8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

description Resource description (returned on QUERY_DEFAULT_PU).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

44 System Management Programming

 DEFINE_DEFAULT_PU

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 45

 DEFINE_DLC

 DEFINE_DLC
DEFINE_DLC defines a new DLC or modifies an existing DLC. This verb defines
the DLC name, which is unique throughout the node, and some DLC-specific data,
which is concatenated to the basic structure. This data is used during initialization
of the DLC, and the format is specific to the DLC type (such as Token Ring). Only
the DLC-specific data appended to the verb can be modified using the
DEFINE_DLC verb. To do this, a STOP_DLC verb must first be issued so that the
DLC is in a reset state.

See “DLC Processes, Ports, and Link Stations” on page 14, for more information
about the relationship between DLCs, ports and link stations.

 VCB Structure
typedef struct define_dlc
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */
DLC_DEF_DATA def_data; /* DLC defined data */

} DEFINE_DLC;

typedef struct dlc_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char dlc_type; /* DLC type */
unsigned char neg_ls_supp; /* negotiable LS support */
unsigned char port_types; /* allowable port types */

 unsigned char reserv3[11]; /* reserved */
unsigned short dlc_spec_data_len; /* Length of DLC specific data */

} DLC_DEF_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_DLC

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

dlc_name Name of the DLC. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. For OEM devices, this name is
manufacturer-specific. Valid values are LAN, SDLC, AnyNet,
X25 or TWINAX (padded to 8 chars with spaces).

def_data.description
Resource description (returned on QUERY_DLC). This is a
16-byte string in a locally displayable character set. All 16
bytes are significant.

46 System Management Programming

 DEFINE_DLC

def_data.dlc_type Type of the DLC. Communications Server supports the
following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

def_data.neg_ls_supp
Specifies whether the DLC supports negotiable link stations
(AP_YES or AP_NO). If the dlc_type is AP_TWINAX, then
only AP_NO is supported. If the dlc_type is AP_ANYNET,
then only AP_YES is supported.

def_data.port_types
Specifies the allowable port types for the supplied dlc_type .
The value corresponds to one or more of the following values
ORed together.

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

Use the following table to set the fields for the corresponding
DLC type.

def_data.dlc_spec_data_len
This field should always be set to zero.

Table 2. Port Types for DLC Types

DLC Type Port Type

AP_ANYNET AP_PORT_SATF

AP_LLC2 AP_PORT_SATF

AP_OEM_DLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_SDLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_TWINAX AP_PORT_NONSWITCHED

AP_X25 AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

 Chapter 4. Node Configuration Verbs 47

 DEFINE_DLC

secondary_rc AP_INVALID_DLC_NAME

AP_INVALID_DLC_TYPE
AP_INVALID_PORT_TYPE

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_DLC_ACTIVE

AP_INVALID_DLC_TYPE

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

48 System Management Programming

 DEFINE_DLUR_DEFAULTS

 DEFINE_DLUR_DEFAULTS
DEFINE_DLUR_DEFAULTS allows the user to define, redefine, or revoke a default
dependent LU server (DLUS) and a backup default DLUS. The default DLUS
name is used by DLUR when it initiates SSCP-PU activation for PUs that do not
have an explicitly specified associated DLUS. If a DLUS name is not specified
explicitly on the DEFINE_DLUR_DEFAULTS verb then the current default (or
backup DLUS) is revoked.

 VCB Structure
typedef struct define_dlur_defaults
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name */

 unsigned char reserv3; /* reserved */
unsigned short dlus_retry_timeout; /* DLUS Retry Timeout */
unsigned short dlus_retry_limit; /* DLUS Retry Limit */

 unsigned char reserv4[16]; /* reserved */
} DEFINE_DLUR_DEFAULTS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_DLUR_DEFAULTS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

description Resource description. This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

dlus_name Name of the DLUS node that will serve as the default. This
should be set to all zeros or a 17-byte string composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot, which is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.) If this field is set to all zeros, the current
default DLUS is revoked.

bkup_dlus_name Name of the DLUS node that will serve as the backup
default. This should be set to all zeros or a 17-byte string
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) If this field is set to all
zeros, the current backup default DLUS is revoked.

 Chapter 4. Node Configuration Verbs 49

 DEFINE_DLUR_DEFAULTS

dlus_retry_timeout Interval in seconds between second and subsequent
attempts to contact a DLUS. The interval between the initial
attempt and the first retry is always one second. If zero is
specified, the default value of 5 seconds is used.

dlus_retry_limit Maximum number of retries after an initial failure to contact a
DLUS. If zero is specified, the default value of 3 is used. If
X'FFFF' is specified, Communications Server will retry
indefinitely.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DLUS_NAME

AP_INVALID_BKUP_DLUS_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

50 System Management Programming

 DEFINE_DOWNSTREAM_LU

 DEFINE_DOWNSTREAM_LU
The DEFINE_DOWNSTREAM_LU verb is used for PU concentration. When PU
concentration is used, downstream LUs are able to communicate with an upstream
host. To do this, Communications Server maps each downstream LU to a
dependent local LU , referred to as the host LU.

DEFINE_DOWNSTREAM_LU defines a new downstream LU and cannot be used
to modify an existing definition. The downstream LU is mapped to the specified
host LU (defined using the DEFINE_LU_0_TO_3 verb). The host LU can also be
specified in terms of an LU pool.

 VCB Structure
typedef struct define_downstream_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_name[8]; /* Downstream LU name */
DOWNSTREAM_LU_DEF_DATA def_data; /* defined data */

} DEFINE_DOWNSTREAM_LU;

typedef struct downstream_lu_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char nau_address; /* Downstream LU NAU address */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_lu_name[8]; /* Host LU or Pool name */

 unsigned char reserv2[8]; /* reserved */
} DOWNSTREAM_LU_DEF_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_DOWNSTREAM_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

dslu_name Name of the downstream LU that is being defined. This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

def_data.description
Resource description (returned on
QUERY_DOWNSTREAM_LU). The length of this field
should be a multiple of four bytes, and not zero.

def_data.nau_address
Network addressable unit address of the DOWNSTREAM
LU. This must be in the range 1–255.

 Chapter 4. Node Configuration Verbs 51

 DEFINE_DOWNSTREAM_LU

def_data.dspu_name
Name of the DOWNSTREAM PU (as specified on the
DEFINE_LS). This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

def_data.host_lu_name
Name of the host LU or host LU pool that the downstream
LU is mapped to. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DNST_LU_NAME

AP_INVALID_NAU_ADDRESS

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_INVALID_HOST_LU_NAME
AP_LU_NAME_POOL_NAME_CLASH

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

52 System Management Programming

 DEFINE_DOWNSTREAM_LU_RANGE

 DEFINE_DOWNSTREAM_LU_RANGE
The DEFINE_DOWNSTREAM_LU_RANGE verb is used for PU concentration.
When PU concentration is used, downstream LUs are able to communicate with an
upstream host. To do this, Communications Server maps each downstream LU to
a dependent local LU , referred to as the host LU.

DEFINE_DOWNSTREAM_LU_RANGE allows the definition of multiple downstream
LUs within a specified NAU range (but cannot be used to modify an existing
definition). The node operator provides a base name and an NAU range. The LU
names are generated by combining the base name with the NAU addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would define the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters. Communications Server then right-pads these to eight
characters.

Each downstream LU is mapped to the specified host LU (defined using the
DEFINE_LU_0_TO_3 verb).

 VCB Structure
typedef struct define_downstream_lu_range
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_base_name[5];/* Downstream LU base name */

 unsigned char reserv3; /* reserved */
 unsigned char description[RD_LEN];

/* resource description */
unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_lu_name[8]; /* Host LU or pool name */

 unsigned char reserv4[8]; /* reserved */
} DEFINE_DOWNSTREAM_LU_RANGE;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_DOWNSTREAM_LU_RANGE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

dslu_base_name Base name for downstream LU name range. This is a 5-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This base name is
appended with three type-A EBCDIC numeric characters,
representing the decimal value of the NAU address, for each
LU in the NAU range.

 Chapter 4. Node Configuration Verbs 53

 DEFINE_DOWNSTREAM_LU_RANGE

description Resource description (returned on
QUERY_DOWNSTREAM_LU). The length of this field
should be a multiple of four bytes, and not zero.

min_nau Minimum NAU address in the range. This can be from 1 to
255 inclusive.

max_nau Maximum NAU address in the range. This can be from 1 to
255 inclusive.

dspu_name Name of the DOWNSTREAM PU (as specified on the
DEFINE_LS). This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

host_lu_name Name of the host LU or host LU pool that all the downstream
LUs within the range are mapped to. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DNST_LU_NAME

AP_INVALID_NAU_ADDRESS

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_LU_NAME_POOL_NAME_CLASH

AP_LU_ALREADY_DEFINED
AP_INVALID_HOST_LU_NAME
AP_PU_NOT_DEFINED
AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_LU_NAU_ADDR_ALREADY_DEFD

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

54 System Management Programming

 DEFINE_DOWNSTREAM_LU_RANGE

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 55

 DEFINE_DSPU_TEMPLATE

 DEFINE_DSPU_TEMPLATE
This verb is used for PU concentration. When PU concentration is used,
downstream LUs are able to communicate with an upstream host. To do this,
Communications Server maps each downstream LU to a dependent local LU,
referred to as the host LU. DEFINE_DSPU_TEMPLATE defines a template for the
downstream LUs which are present on a group of downstream workstations. This
template is used to put in place definitions for the downstream LUs when a
workstation connects into Communications Server over an implicit link (one not
previously defined). These templates are referred to by the
implicit_dspu_template field on the DEFINE_PORT verb.
DEFINE_DSPU_TEMPLATE can either be used to define a new template or to
modify an existing template (although the existing instances of the modified
template is not affected).

 VCB Structure
typedef struct define_dspu_template
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template_name[8]; /* name of template */
unsigned char description[RD_LEN]; /* resource description */

 unsigned char reserv1[12]; /* reserved */
unsigned short max_instance; /* Max active template */

 /* instances */
 unsigned short num_of_dslu_templates;

/* number of DSLU templates */
} DEFINE_DSPU_TEMPLATE;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */

 unsigned char reserv1[10]; /* reserved */
unsigned char host_lu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_DSPU_TEMPLATE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

template_name Name of the DSPU template. (This corresponds to the name
specified in the implicit_dspu_template field on
PORT_DEF_DATA). This is an 8_byte string in a
locally-displayable character set. All 8 bytes are significant
and must be set.

description Resource description (returned on
QUERY_DSPU_TEMPLATE). The length of this should be a
multiple of four bytes, and non-zero.

56 System Management Programming

 DEFINE_DSPU_TEMPLATE

max_instance This is the maximum number of instances of the template
which can be active concurrently. While this limit is reached,
no new instances can be created. This can be from 0 to
65535 inclusive, where 0 means no limit.

num_of_dslu_templates
The number of DSLU template overlays which follow the
DEFINE_DSPU_TEMPLATE VCB. This can be from 0 to
255 inclusive.

dslu_template.min_nau
Minimum NAU address in the range. This can be from 1 to
255 inclusive.

dslu_template.max_nau
Maximum NAU address in the range. This can be from 1 to
255 inclusive.

dslu_template.host_lu
Name of the host LU or host LU pool that all the downstream
LUs within the range will be mapped onto. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC Spaces.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TEMPLATE_NAME

AP_INVALID_NAU_ADDRESS
AP_INVALID_NAU_RANGE
AP_CLASHING_NAU_RANGE
AP_INVALID_NUM_DSPU_TEMPLATES

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_HOST_LU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

 Chapter 4. Node Configuration Verbs 57

 DEFINE_DSPU_TEMPLATE

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

58 System Management Programming

 DEFINE_FOCAL_POINT

 DEFINE_FOCAL_POINT
Communications Server can have a number of types of relationships with different
focal points. The DEFINE_FOCAL_POINT verb defines a focal point with which
Communications Server has an implicit relationship (which can be of type primary
or backup). These relationships, and the ways in which they can be established,
are described below. Relationships between a management services focal point
(FP) and a management services entry point (EP) for a given category are
established when they exchange Management Services Capabilities messages.
The following types of FP-EP relationships can be established.

 ¹ Explicit

This relationship is established by an operator at the focal point assigning
the entry point to its sphere of control. The focal point initiates exchange of
Management Services Capabilities.

 ¹ Implicit (primary)

The relationship is established when an operator at an entry point assigns
the entry point to a specified focal point (for example, when the operator
issues a DEFINE_FOCAL_POINT verb). The entry point initiates the
Management Services Capabilities exchange.

 ¹ Implicit (backup)

This relationship is established when an entry point loses either an explicit
or implicit primary focal point. The entry point initiates Management
Services Capabilities exchange. The identity of the backup focal point can
be defined (using the DEFINE_FOCAL_POINT verb) or can be acquired via
Management Services Capabilities exchange.

 ¹ Default

This relationship is established when an FP acquires an EP without
operator intervention. The FP initiates the MS Capabilities exchange. This
relationship only applies to EPs that are NNs

 ¹ Domain

This relationship is established when a serving network node (NN) informs
the end node entry point of the identity of the focal point. Domain
relationships are only valid in end nodes.

 ¹ Host

This relationship does not involve Management Services Capabilities
exchange and is established by the configuration of an SSCP-PU session
from the entry point node to a host. It is the lowest precedence focal point
relationship.

Each DEFINE_FOCAL_POINT verb can only be used to define an implicit focal
point (which can be of type primary or backup). Each DEFINE_FOCAL_POINT
verb is issued for a specific management services category. Within this category
the DEFINE_FOCAL_POINT verb can be used to

¹ Define a focal point
¹ Replace a focal point (or backup focal point)
¹ Revoke the currently active focal point.

The fields on a DEFINE_FOCAL_POINT verb are used as follows.

 Chapter 4. Node Configuration Verbs 59

 DEFINE_FOCAL_POINT

The ms_category must always be filled in. The combination of the fp_fqcp_name
and ms_appl_name fields specify the focal point (or backup focal point if the
backup field is set to AP_YES) for the specified category.

If the verb is being issued to revoke the currently active focal point without
providing a new one, the fp_fqcp_name and ms_appl_name fields should be set
to all zeros. When a DEFINE_FOCAL_POINT verb defining or replacing a focal
point is received, Communications Server attempts to establish an implicit primary
focal point relationship with the specified focal point by sending a Management
Services Capabilities request. When Communications Server receives a
DEFINE_FOCAL_POINT verb revoking the currently active focal point, it sends a
Management Services Capabilities revoke message to the focal point. It is
recommended that the DELETE_FOCAL_POINT verb (specifying AP_ACTIVE) be
used to revoke the currently active focal point.

 VCB Structure
typedef struct define_focal_point
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

 unsigned char reserved; /* reserved */
unsigned char ms_category[8]; /* management services category */
unsigned char fp_fqcp_name[17]; /* Fully qualified focal */

/* point CP name */
unsigned char ms_appl_name[8]; /* Focal point application name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char backup; /* is focal point a backup */
 unsigned char reserv3[16]; /* reserved */
} DEFINE_FOCAL_POINT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_FOCAL_POINT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

ms_category Management services category. This can either be one of
the 4-byte architecturally defined values (right-padded with
EBCDIC spaces) for management services categories as
described in SNA management services, or an 8-byte type
1134 EBCDIC installation-defined name.

fp_fqcp_name Focal point's fully qualified control point name. This should
be set to all zeros or a 17-byte string composed of two
type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.) If the focal point is being revoked, this
field should be set to all zeros.

60 System Management Programming

 DEFINE_FOCAL_POINT

ms_appl_name Focal point application name. This can either be one of the
4-byte architecturally defined values (right-padded with
EBCDIC spaces) for management services applications as
described in SNA Management Services, or an 8-byte type
1134 EBCDIC installation-defined name. If the focal point is
being revoked, this field should be set to all zeros.

description Resource description (returned on QUERY_FOCAL_POINT).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

backup Specifies whether a backup focal point is being defined
(AP_YES or AP_NO). This field is reserved if the currently
active focal point is being revoked. It is recommended that
the DELETE_FOCAL_POINT verb (specifying AP_ACTIVE)
be used to revoke the currently active focal point.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_FP_NAME

AP_INVALID_CATEGORY_NAME

If the verb does not execute successfully, Communications Server returns the
following parameters:

primary_rc AP_REPLACED

AP_UNSUCCESSFUL

secondary_rc AP_IMPLICIT_REQUEST_REJECTED

AP_IMPLICIT_REQUEST_FAILED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

Communications Server returns the following parameter if the verb does not
execute because of a system error or because Communications Server failed to
contact the focal point successfully:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 61

 DEFINE_INTERNAL_PU

 DEFINE_INTERNAL_PU
The DEFINE_INTERNAL_PU verb defines a DLUR-served local PU. This verb is
not used to define a local PU which is directly attached to the host. See
“DEFINE_LS” on page 67 for this purpose.

 VCB Structure
typedef struct define_internal_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
INTERNAL_PU_DEF_DATA def_data; /* defined data */

} DEFINE_INTERNAL_PU;

typedef struct internal_pu_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* backup DLUS name */
unsigned char pu_id[4]; /* PU identifier */

 unsigned char reserv2[8]; /* reserved */
} INTERNAL_PU_DEF_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_INTERNAL_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pu_name Name of the internal PU that is being defined. This is an
8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_DLUR_PU and
QUERY_PU). This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

def_data.dlus_name
Name of the DLUS node that DLUR will use when it initiates
SSCP-PU activation. This should be set to all zeros or a
17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is
set to all zeros, the global default DLUS (if it has been
defined, using the DEFINE_DLUR_DEFAULTS verb) is used
in DLUR-initiated SSCP-PU activation.

62 System Management Programming

 DEFINE_INTERNAL_PU

def_data.bkup_dlus_name
Name of the DLUS node that will serve as the backup DLUS
for this PU. This should be set to all zeros or a 17-byte
string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) If the field is set to all
zeros, the global backup default DLUS (if it has been defined
by the DEFINE_DLUR_DEFAULTS verb) is used as the
backup for this PU.

def_data.pu_id PU identifier. This a 4-byte hexadecimal string. Bits 0—11
are set to the Block number and bits 12—31 to the ID
number that uniquely identifies the PU. This must match the
pu_id configured at the host.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_PU_ID
AP_INVALID_DLUS_NAME
AP_INVALID_BKUP_DLUS_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PU_ALREADY_DEFINED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 63

 DEFINE_LOCAL_LU

 DEFINE_LOCAL_LU
The DEFINE_LOCAL_LU verb requests the definition of a local LU with the
specified characteristics, or, if the LU already exists, the modification of the
attach_routing_data characteristic of the LU. Note that if a DEFINE_LOCAL_LU
is used to modify an existing definition then any parameter other than the
attach_routing_data field will be ignored.

 VCB Structure
typedef struct define_local_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
LOCAL_LU_DEF_DATA def_data; /* defined data */

} DEFINE_LOCAL_LU;

typedef struct local_lu_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char nau_address; /* NAU address */
unsigned char syncpt_support; /* is sync-point supported? */
unsigned short lu_session_limit; /* LU session limit */

 unsigned char reserv1; /* reserved */
 unsigned char reserv2; /* reserved */

unsigned char pu_name[8]; /* PU name */
 unsigned char reserv3[8]; /* reserved */
 unsigned char attach_routing_data[128];

/* routing data for */
/* incoming attaches */

} LOCAL_LU_DEF_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_LOCAL_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name Name of the local LU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_LOCAL_LU).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

def_data.lu_alias Alias of the local LU to define. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant
and must be set.

64 System Management Programming

 DEFINE_LOCAL_LU

def_data.nau_address
Network addressable unit address of the LU, which must be
in the range 0—255. A nonzero value implies the LU is a
dependent LU. Zero implies the LU is an independent LU.

def_data.syncpt_support
Reserved. This field should always be set to AP_NO.

def_data.lu_session_limit
Maximum number of sessions supported by the LU. Zero
means no limit. If the LU is independent then this can be set
to any value. If the LU is dependent then this must be set to
1.

def_data.pu_name Name of the PU that this LU will use. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This field is only
used by dependent LUs, and should be set to all binary
zeros for independent LUs.

def_data.attach_routing_data
Type of attach routing data.

AP_REGISTERED_OR_DEFAULT_ATTACH_MGR
Specifies that a DYNAMIC_LOAD_INDICATION resulting
from an attach arriving for the transaction program (TP) at
this local LU is sent to the attach manager that has
registered to receive DLIs for this LU, or to the default attach
manager if no attach manager has registered for this LU.

AP_REGISTERED_ATTACH_MGR_ONLY
Specifies that a DYNAMIC_LOAD_INDICATION resulting
from an attach arriving for the transaction program (TP) at
this local LU is sent only to the attach manager that has
registered to receive DLIs for this LU. If no attach manager
has registered for this LU, the attach is rejected.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_NAU_ADDRESS
AP_INVALID_SESSION_LIMIT

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

 Chapter 4. Node Configuration Verbs 65

 DEFINE_LOCAL_LU

secondary_rc AP_PU_NOT_DEFINED

AP_INVALID_LU_NAME
AP_LU_ALREADY_DEFINED
AP_ALLOCATE_NOT_PENDING
AP_LU_ALIAS_ALREADY_USED
AP_PLU_ALIAS_ALREADY_USED
AP_PLU_ALIAS_CANT_BE_CHANGED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

secondary_rc AP_MEMORY_SHORTAGE

66 System Management Programming

 DEFINE_LS

 DEFINE_LS
DEFINE_LS is used to define a new link station (LS) or modify an existing one.
This verb provides the LS name, which is unique throughout the node, and the
name of the port this LS should use. This port must already have been defined
using a DEFINE_PORT verb. Link-specific data is concatenated to the basic
structure. DEFINE_LS can only be used to modify one or more fields of an existing
link station if the link station is in a reset state (after a STOP_LS has been issued),
and the port_name specified on the DEFINE_LS has not changed since the
previous definition of the LS.

See “DLC Processes, Ports, and Link Stations” on page 14, for more information
about the relationship between DLCs, ports, and link stations.

The setting of a large number of the fields in LS_DEF_DATA depends on the value
of the adj_cp_type field.

There are eight values that adj_cp_type can take (which are described further
under def_data.adj_cp_type), four of which are used for links to adjacent Type 2.1
(APPN) nodes:

 ¹ AP_NETWORK_NODE
 ¹ AP_END_NODE
 ¹ AP_APPN_NODE
 ¹ AP_BACK_LEVEL_LEN_NODE

and four of which are used for links carrying PU Type 2.0 traffic only:

 ¹ AP_HOST_XID3
 ¹ AP_HOST_XID0
 ¹ AP_DSPU_XID
 ¹ AP_DSPU_NOXID.

There are four types of APPN nodes, which are distinguished as follows

¹ An APPN network node includes the Network Name Control Vector (CV) in its
XID3, supports parallel TGs, sets the networking capabilities bit in its XID3, and
can support CP-CP sessions on a link.

¹ An APPN end node includes the Network Name CV in its XID3, supports
parallel TGs, does not set the networking capabilities bit in its XID3, and can
support CP-CP sessions on a link.

¹ An up-level node includes the Network Name CV in its XID3, can support
parallel TGs, does not set the networking capabilities bit in its XID3, and does
not support CP-CP sessions.

¹ A back-level node does not include the Network Name CV in its XID3, does not
support parallel TGs, does not set the networking capabilities bit in its XID3,
and does not support CP-CP sessions.

The following fields must be set for all links:

 port_name
 adj_cp_type
 dest_address
 auto_act_supp
 disable_remote_act

 Chapter 4. Node Configuration Verbs 67

 DEFINE_LS

 limited_resource
 link_deact_timer
 ls_attributes
 adj_node_id
 local_node_id
 target_pacing_count
 max_send_btu_size
 link_spec_data_len
 ls_role

Other fields must be set as follows:

¹ If adj_cp_type is set to AP_NETWORK_NODE, AP_END_NODE, or
AP_APPN_NODE the following fields must be set:

 adj_cp_name
 tg_number
 solicit_sscp_sessions
 dspu_services
 hpr_supported
 hpr_link_lvl_error
 default_nn_server
 cp_cp_sess_support
 use_default_tg_chars
 tg_chars

¹ If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE the following fields
must be set:

 adj_cp_name
 solicit_sscp_sessions
 dspu_services
 use_default_tg_chars
 tg_chars

¹ If a local PU is to use the link (adj_cp_type is set to AP_HOST_XID3 or
AP_HOST_XID0, or solicit_sscp_sessions is set to AP_YES on a link to an
APPN node) the following field must be set:

 pu_name

¹ If a downstream PU is to use the link and will be served by PU Concentration
(dspu_services is set to AP_PU_CONCENTRATION) the following field must
be set:

 dspu_name

¹ If a downstream PU is to use the link and will be served by DLUR
(dspu_services is set to AP_DLUR) the following fields must be set:

 dspu_name

 dlus_name

 bkup_dlus_name

68 System Management Programming

 DEFINE_LS

 VCB Structure
typedef struct define_ls
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char ls_name[8]; /* name of link station */
LS_DEF_DATA def_data; /* LS defined data */

} DEFINE_LS;

typedef struct ls_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char port_name[8]; /* name of associated port */
unsigned char adj_cp_name[17]; /* adjacent CP name */
unsigned char adj_cp_type; /* adjacent node type */
LINK_ADDRESS dest_address; /* destination address */
unsigned char auto_act_supp; /* auto-activate supported */
unsigned char tg_number; /* Pre-assigned TG number */
unsigned char limited_resource; /* limited resource */

 unsigned char solicit_sscp_sessions;
/* solicit SSCP sessions */

unsigned char pu_name[8]; /* Local PU name (reserved if */
/* solicit_sscp_sessions is set */
/* to AP_NO) */

unsigned char disable_remote_act; /* disable remote activation flag */
unsigned char dspu_services; /* Services provided for */

/* downstream PU */
unsigned char dspu_name[8]; /* Downstream PU name (reserved */

/* if dspu_services is set to */
/* AP_NONE or AP_DLUR) */

unsigned char dlus_name[17]; /* DLUS name if dspu_services */
/* set to AP_DLUR */

unsigned char bkup_dlus_name[17]; /* Backup DLUS name if */
/* dspu_services set to AP_DLUR */

unsigned char hpr_supported; /* does the link support HPR? */
unsigned char hpr_link_lvl_error; /* does link use link-level */

/* error recovery for HPR frms? */
unsigned short link_deact_timer; /* HPR link deactivation timer */

 unsigned char reserv1; /* reserved */
unsigned char default_nn_server; /* Use as deflt LS to NN server */
unsigned char ls_attributes[4]; /* LS attributes */
unsigned char adj_node_id[4]; /* adjacent node ID */
unsigned char local_node_id[4]; /* local node ID */
unsigned char cp_cp_sess_support; /* CP-CP session support */

 unsigned char use_default_tg_chars;
/* Use the default tg_chars */

TG_DEFINED_CHARS tg_chars; /* TG characteristics */
unsigned short target_pacing_count;/* target pacing count */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned char ls_role; /* link station role to use */

/* on this link */
unsigned char max_ifrm_rcvd; /* max number of I-frames rcvd */

 unsigned char reserv3[34]; /* reserved */

 Chapter 4. Node Configuration Verbs 69

 DEFINE_LS

unsigned short link_spec_data_len; /* length of link specific data */
} LS_DEF_DATA;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */

unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */

 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */

unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

typedef struct link_address
{
 unsigned short length; /* length */

unsigned short reserve1; /* reserved */
 unsigned char address[MAX_LINK_ADDR_LEN];
 /* address */
} LINK_ADDRESS;

typedef struct link_spec_data
{
 unsigned char link_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_LS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

ls_name Name of link station. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set.

Setting the field ls_name to the special value “$ANYNET$”
(an ASCII string) has the effect of informing the Node
Operator Facility that this is the link station to which
independent LU session traffic that is to be routed by the
AnyNet DLC should be sent. A link station of this name must
be defined on a port over the AnyNet DLC if AnyNet routing
is required.

def_data.description
Resource description (returned on QUERY_LS, QUERY_PU
). This is a 16-byte string in a locally displayable character
set. All 16 bytes are significant.

70 System Management Programming

 DEFINE_LS

def_data.port_name
Name of port associated with this link station. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant and must be set. This named port must
have already been defined by a DEFINE_PORT verb.

def_data.adj_cp_name
Fully qualified 17-byte adjacent control point name, which is
right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8
bytes with no embedded spaces.) This field is only relevant
for links to APPN nodes and is otherwise ignored. For links
to APPN nodes it can be set to all zeros unless the field
tg_number is set to a number in the range one to 20 or the
field adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE.
If it is set to all zeros, it is not checked against the name
received from the adjacent node during XID exchange. If it is
not set to all zeros, it is checked against the name received
from the adjacent node during XID exchange unless
adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE (in
which case it is used to identify the adjacent node).

def_data.adj_cp_type
Adjacent node type.

AP_NETWORK_NODE
Specifies that the node is an APPN network node.

AP_END_NODE
Specifies that the node is an APPN end node or an up-level
node.

AP_APPN_NODE
Specifies that the node is an APPN network node, an APPN
end node, or an up-level node. The node type will be
learned during XID exchange.

AP_BACK_LEVEL_LEN_NODE
Specifies that the node is a back_level_len node. That is, it
does not send the control point name in the XID. For a link
using the AnyNet DLC supporting independent LU sessions,
you must specify AP_BACK_LEVEL_LEN_NODE.

AP_HOST_XID3
Specifies that the node is a host and that Communications
Server responds to a polling XID from the node with a format
3 XID.

AP_HOST_XID0
Specifies that the node is a host and that Communications
Server responds to a polling XID from the node with a format
0 XID. For a link using the AnyNet DLC supporting
dependent LU sessions, you must specify AP_HOST_XID0.

AP_DSPU_XID
Specifies that the node is a downstream PU and that
Communications Server includes XID exchange in link
activation.

 Chapter 4. Node Configuration Verbs 71

 DEFINE_LS

AP_DSPU_NOXID
Specifies that the node is a downstream PU and that
Communications Server does not include XID exchange in
link activation.

Note: A link station to a VRN is always dynamic and is
therefore not defined.

def_data.dest_address.length
Length of destination link station's address on adjacent node.

def_data.dest_address.address
Link station's destination address on adjacent node. For a
link using the AnyNet DLC, the dest_address specifies the
adjacent node ID or adjacent control point name. If an
adjacent node ID is specified, the length must be 4 and the
address must contain the 4-byte hexadecimal node ID
(1-byte block ID, 3-byte PU ID). If an adjacent control point
name is specified, the length must be 17 and the address
must contain the control point name in EBCDIC, padded with
EBCDIC blanks.

def_data.auto_act_supp
Specifies whether the link can be activated automatically
when required by a session. (AP_YES or AP_NO). If the
link is not to an APPN node then this field can always be set
to AP_YES and has no requirements on other parameters. If
the link is to an APPN node then this field cannot be set to
AP_YES if the link also supports CP-CP sessions (
cp_cp_sess_support is set to AP_YES) and can only be set
to AP_YES if a pre-assigned TG number is also defined for
the link (tg_number is set to a value between one and 20).
These requirements will always be met if adj_cp_type is set
to AP_BACK_LEVEL_LEN_NODE because
cp_cp_sess_support and tg_number are ignored in this
case).

def_data.tg_number
Pre-assigned TG number. This field is only relevant if the
link is to an adjacent APPN node and is otherwise ignored.
If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE then
it is also ignored and is assumed to be set to one. For links
to adjacent APPN nodes this must be set in the range one to
20. This number is used to represent the link when the link
is activated. Communications Server will not accept any
other number from the adjacent node during activation of this
link. To avoid link-activation failure because of a mismatch
of preassigned TG numbers, the same TG number must be
defined by the adjacent node on the adjacent link station (if
using preassigned TG numbers). If a preassigned TG
number is defined then the adj_cp_name must also be
defined (and cannot be set to all zeros) and the adj_cp_type
must be set to AP_NETWORK_NODE or AP_END_NODE.
If zero is entered the TG number is not preassigned and is
negotiated when the link is activated.

72 System Management Programming

 DEFINE_LS

def_data.limited_resource
Specifies whether this link station is to be deactivated when
there are no sessions using the link. This is set to one of the
following values:

AP_NO
The link is not a limited resource and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
The link is a limited resource and will be deactivated
automatically when no active sessions are using it. A limited
resource link station can be configured for CP-CP session
support. (This is done by setting this field to AP_YES and
cp_cp_sess_support to AP_YES.) In this case, if CP-CP
sessions are brought up over the link, Communications
Server will not treat the link as a limited resource (and will
not bring the link down).

AP_INACTIVITY
The link is a limited resource and will be deactivated
automatically when no active sessions are using it, or when
no data has flowed on the link for the time period specified
by the link_deact_timer field. Note that link stations on a
nonswitched port cannot be configured as limited resource.

def_data.solicit_sscp_sessions
AP_YES requests the adjacent node to initiate sessions
between the SSCP and the local control point and dependent
LUs. (In this case the pu_name must be set.) AP_NO
requests no sessions with the SSCP on this link. This field is
only relevant if the link is to an APPN node and is otherwise
ignored. If the adjacent node is defined to be a host
(adj_cp_type is set to AP_HOST_XID3 or AP_HOST_XID0),
then Communications Server always requests the host to
initiate sessions between the SSCP and the local control
point and dependent LUs (and again the pu_name must be
set).

def_data.pu_name Name of local PU that will use this link if the adjacent node is
defined to be a host or solicit_sscp_sessions is set to
AP_YES on a link to an APPN node. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If the adjacent
node is not defined to be a host, and is not defined as an
APPN node with solicit_sscp_sessions set to AP_YES, this
field is ignored.

def_data.disable_remote_act
Specifies whether remote activation of this link is supported
(AP_YES or AP_NO).

def_data.dspu_services
Specifies the services that the local node provides to the
downstream PU across this link. This is set to one of the
following:

 Chapter 4. Node Configuration Verbs 73

 DEFINE_LS

AP_PU_CONCENTRATION
Local node will provide PU concentration for the downstream
PU.

AP_DLUR
Local node will provide DLUR services for the downstream
PU.

AP_NONE
Local node will provide no services for this downstream PU.

The dspu_name must also be set if this field is set to
AP_PU_CONCENTRATION or AP_DLUR.

This field must be set to AP_PU_CONCENTRATION or
AP_DLUR if the adjacent node is defined as a downstream
PU (that is, adj_cp_type is set to AP_DSPU_XID or
AP_DSPU_NOXID). It can be set to
AP_PU_CONCENTRATION or AP_DLUR on a link to an
APPN node if solicit_sscp_sessions is set to AP_NO. This
field is ignored if the adjacent node is defined as a host.

def_data.dspu_name
Name of the downstream PU. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

This field must be set if dspu_services is set to
AP_PU_CONCENTRATION or AP_DLUR and is otherwise
ignored.

def_data.dlus_name
Name of DLUS node which DLUR solicits SSCP services
from when the link to the downstream node is activated.
This should be set to all zeros or a 17-byte string composed
of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, which is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.) If the field is set to all zeros, then the
global default DLUS (if it has been defined using the
DEFINE_DLUR_DEFAULTS verb) is solicited when the link is
activated. If the dlus_name is set to zeros and there is no
global default DLUS, then DLUR will not initiate SSCP
contact when the link is activated. This field is ignored if
dspu_services is not set to AP_DLUR.

def_data.bkup_dlus_name
Name of DLUS node which serves as the backup for the
downstream PU. This should be set to all zeros or a 17-byte
string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) If the field is set to all
zeros, then the global backup default DLUS (if it has been
defined by the DEFINE_DLUR_DEFAULTS verb) is used as
the backup for this PU. This field is ignored if
dspu_services is not set to AP_DLUR.

74 System Management Programming

 DEFINE_LS

def_data.hpr_supported
Specifies whether HPR is supported on this link (AP_YES or
AP_NO). This field is only relevant if the link is to an APPN
node and is otherwise ignored.

def_data.hpr_link_lvl_error
Specifies whether HPR traffic should be sent on this link
using link-level error recovery (AP_YES or AP_NO). This
parameter is ignored if hpr_supported is set to AP_NO.

def_data.link_deact_timer
Limited resource link deactivation timer (in seconds).

If limited_resource is set to AP_INACTIVITY, then a link is
automatically deactivated if no data traverses the link for the
duration of this timer.

If zero is specified, the default value of 30 is used.
Otherwise, the minimum value is 5. (If it is set any lower, the
specified value will be ignored and 5 will be used.) This
parameter is reserved if limited_resource is set to AP_NO.

def_data.default_nn_server
Specifies whether a link can be automatically activated by an
end node to support CP-CP sessions to a network node
server. (AP_YES or AP_NO). Note that the link must be
defined to support CP-CP sessions for this field to take
effect.

def_data.ls_attributes
Specifies further information about the adjacent node.

def_data.ls_attributes[0]
Host type.

AP_SNA
Standard SNA host.

AP_FNA
FNA (VTAM-F) host.

AP_HNA
HNA host.

def_data.ls_attributes[1]
Network Name CV suppression option for a link to a
back-level node. (This field is ignored unless adj_cp_type is
set to AP_BACK_LEVEL_LEN_NODE or AP_HOST_XID3.)

AP_NO
Include Network Name CV in XID3.

AP_SUPPRESS_CP_NAME
Do not include Network Name CV in XID3.

def_data.adj_node_id
Node ID of adjacent node. This a 4-byte hexadecimal string.
If adj_cp_type indicates the adjacent node is a T2.1 node,
this field is ignored unless it is nonzero, and either the
adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE or the
adjacent node does not send a Network Name CV in its

 Chapter 4. Node Configuration Verbs 75

 DEFINE_LS

XID3. If adj_cp_type is set to AP_HOST_XID3 or
AP_HOST_XID0, this field is always ignored. If adj_cp_type
is set to AP_DSPU_XID and this field is nonzero, it is used to
check the identity of the downstream PU. If adj_cp_type is
set to AP_DSPU_NOXID, this field is either ignored (if
dspu_services is AP_PU_CONCENTRATION) or used to
identify the downstream PU to DLUS (if dspu_services is
AP_DLUR).

def_data.local_node_id
Node ID sent in XIDs on this link station. This a 4-byte
hexadecimal string. If this field is set to zero, the node_id
will be used in XID exchanges. If this field is nonzero, it
replaces the value for XID exchanges on this LS.

def_data.cp_cp_sess_support
Specifies whether CP-CP sessions are supported (AP_YES
or AP_NO). This field is only relevant if the link is to an
APPN node and is otherwise ignored. If adj_cp_type is set
to AP_BACK_LEVEL_LEN_NODE then it is also ignored and
is assumed to be set to AP_NO.

def_data.use_default_tg_chars
Specifies whether the default TG characteristics supplied on
the DEFINE_PORT verb should be used (AP_YES or
AP_NO). If this is set to AP_YES then the tg_chars field will
be ignored. This field is only relevant if the link is to an
APPN node and is otherwise ignored.

def_data.tg_chars TG characteristics (See “DEFINE_CN” on page 31). This
field is only relevant if the link is to an APPN node and is
otherwise ignored.

def_data.target_pacing_count
Numeric value between 1 and 32 767, inclusive, indicating
the desired pacing window size for BINDs on this TG. The
number is only significant when fixed bind pacing is being
performed. Communications Server does not currently use
this value.

def_data.max_send_btu_size
Maximum BTU size that can be sent from this link station.
This value is used to negotiate the maximum BTU size than
can be transmitted between a link station pair. If the link is
not HPR-capable then this must be set to a value greater
than or equal to 99. If the link is HPR-capable then this must
be set to a value greater than or equal to 768.

def_data.ls_role The link station role that this link station should assume.
This can be any one of AP_LS_NEG, AP_LS_PRI or
AP_LS_SEC to select a role of negotiable, primary or
secondary. The field can also be set to
AP_USE_PORT_DEFAULTS to select the value configured
on the DEFINE_PORT verb. If the dlc_type is AP_TWINAX,
then only AP_LS_SEC is supported. If dlc_type is
AP_ANYNET (and ls_name is “$ANYNET$”), then
AP_LS_PRI is not supported.

76 System Management Programming

 DEFINE_LS

def_data.max_ifrm_rcvd
The maximum number of I-frames that can be received by
the XID sender before acknowledgment. Set to zero if the
default value from DEFINE_PORT should be used.

def_data.link_spec_data_len
This field should always be set to zero.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_DEF_LINK_INVALID_SECURITY

AP_INVALID_CP_NAME
AP_INVALID_LIMITED_RESOURCE
AP_INVALID_LINK_NAME
AP_INVALID_LS_ROLE
AP_INVALID_NODE_TYPE
AP_INVALID_PORT_NAME
AP_INVALID_AUTO_ACT_SUPP
AP_INVALID_PU_NAME
AP_INVALID_SOLICIT_SSCP_SESS
AP_INVALID_DLUS_NAME
AP_INVALID_BKUP_DLUS_NAME
AP_INVALID_NODE_TYPE_FOR_HPR
AP_INVALID_TARGET_PACING_COUNT
AP_INVALID_BTU_SIZE
AP_HPR_NOT_SUPPORTED
AP_INVALID_TG_NUMBER
AP_MISSING_CP_NAME
AP_MISSING_CP_TYPE
AP_MISSING_TG_NUMBER
AP_PARALLEL_TGS_NOT_SUPPORTED

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_LOCAL_CP_NAME

AP_DEPENDENT_LU_SUPPORTED
AP_DUPLICATE_DEST_ADDR
AP_INVALID_NUM_LS_SPECIFIED
AP_LS_ACTIVE
AP_PU_ALREADY_DEFINED
AP_DSPU_SERVICES_NOT_SUPPORTED
AP_DUPLICATE_TG_NUMBER
AP_TG_NUMBER_IN_USE

 Chapter 4. Node Configuration Verbs 77

 DEFINE_LS

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

78 System Management Programming

 DEFINE_LU_0_TO_3

 DEFINE_LU_0_TO_3
This verb defines an LU of type 0, 1, 2 or 3. It allows the LU to be added to an LU
pool. If the pool does not already exist it is added. This verb cannot be used to
modify existing definitions.

Communications Server supports implicit LU type 0, 1, 2 or 3 definition by ACTLU.
Implicit definitions cannot be deleted, but are removed when the LU becomes
inactive. To obtain information about implicit definitions, use QUERY_LU_0_TO_3
or register for LU_0_TO_3_INDICATIONs. An implicit LU definition can be
redefined using DEFINE_LU_0_TO_3, provided lu_name , pu_name , and
nau_address are correct, and pool_name is all zeros (the LU is then treated as if
it had been configured by the operator in the first place).

 VCB Structure
typedef struct define_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */
LU_0_TO_3_DEF_DATA def_data; /* defined data */

} DEFINE_LU_0_TO_3;

typedef struct lu_0_to_3_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char nau_address; /* LU NAU address */
unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */

 unsigned char reserv2[8]; /* reserved */
unsigned char app_spec_def_data[16]; /* Application Specified Data */

} LU_0_TO_3_DEF_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_LU_0_TO_3

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name Name of the local LU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_LU_0_TO_3).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

 Chapter 4. Node Configuration Verbs 79

 DEFINE_LU_0_TO_3

def_data.nau_address
Network addressable unit address of the LU, which must be
in the range 1—255.

def_data.pool_name
Name of LU pool to which this LU belongs. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If the LU does not
belong to a pool, this field is set to all binary zeros. If the
pool does not currently exist, it is created.

def_data.pu_name Name of the PU (as specified on the DEFINE_LS verb) that
this LU will use. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

def_data.priority LU priority when sending to the host. This is set to one of
the following values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

def_data.lu_model Model type and number of the LU. This is set to one of the
following values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_UNKNOWN

If a value other than AP_UNKNOWN is specified and the
host system supports SDDLU (Self-Defining Dependent LU),
the node will generate an unsolicited PSID NMVT reply in
order to dynamically define the local LU at the host.

def_data.app_spec_def_data
Application specified defined data. This field is not
interpreted by Communications Server , but is stored and
subsequently returned on the QUERY_LU_0_TO_3 verb.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_NAU_ADDRESS
AP_INVALID_PRIORITY

80 System Management Programming

 DEFINE_LU_0_TO_3

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_NAME_POOL_NAME_CLASH
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD

If the verb does not execute because the system has not been built with Dependent
LU support, Communications Server returns the following parameter:

primary_rc AP_INVALID_VERB

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 81

 DEFINE_LU_0_TO_3_RANGE

 DEFINE_LU_0_TO_3_RANGE
This verb allows the definition of multiple LUs within a specified NAU range. The
node operator provides a base name and an NAU range. The LU names are
generated by combining the base name with the NAU addresses. This verb cannot
be used to modify existing definitions.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would define the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters. Communications Server then right-pads these to eight
characters.

 VCB Structure
typedef struct define_lu_0_to_3_range
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */

 unsigned char reserv3; /* reserved */
 unsigned char description[RD_LEN];

/* resource description */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */

 unsigned char reserv4[8]; /* reserved */
unsigned char app_spec_def_data[16]; /* application specified data */

} DEFINE_LU_0_TO_3_RANGE;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_LU_0_TO_3_RANGE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

base_name Base LU name. This is an 5-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This base name is appended with three
type-A EBCDIC numeric characters, representing the decimal
value of the NAU address, for each LU in the NAU range.

description Resource description (returned on QUERY_LU_0_TO_3).
The length of this field should be a multiple of four bytes, and
not zero.

min_nau Minimum NAU address in the range. This can be from 1 to
255 inclusive.

82 System Management Programming

 DEFINE_LU_0_TO_3_RANGE

max_nau Maximum NAU address in the range. This can be from 1 to
255 inclusive.

pool_name Name of LU pool to which this LU belongs. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If the LU does not
belong to a pool, this field is set to all binary zeros.

pu_name Name of the PU (as specified on the DEFINE_LS verb) that
this LU uses. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

priority LU priority when sending to the host. This is set to one of
the following values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

lu_model Model type and number of the LU. This is set to one of the
following values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_UNKNOWN

If a value other than AP_UNKNOWN is specified and the
host system supports Self-Defining Dependent LU (SDDLU),
the node will generate an unsolicited PSID NMVT reply in
order to dynamically define the local LU at the host.

app_spec_def_data Application specified defined data. This field is not
interpreted by Communications Server, but is stored and
subsequently returned on the QUERY_LU_0_TO_3 verb (the
same data is returned for each LU in the range).

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_NAU_ADDRESS
AP_INVALID_PRIORITY

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

 Chapter 4. Node Configuration Verbs 83

 DEFINE_LU_0_TO_3_RANGE

primary_rc AP_STATE_CHECK

secondary_rc AP_PU_NOT_DEFINED

AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_LU_NAME_POOL_NAME_CLASH
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_IMPLICIT_LU_DEFINED

If the verb does not execute because the system has not been built with dependent
LU support, Communications Server returns the following parameter:

primary_rc AP_INVALID_VERB

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

84 System Management Programming

 DEFINE_LU_POOL

 DEFINE_LU_POOL
This verb is used to define an LU pool or to add LUs to an existing pool. The LUs
that are to be added must already have been defined using either a
DEFINE_LU_0_TO_3 verb or a DEFINE_LU_0_TO_3_RANGE verb. LUs can only
belong to one LU pool at a time. If the specified LUs already belong to a pool, they
are removed from the existing pool into the pool being defined. Up to 10 LUs can
be added to a pool at a time, although there is no limit to the total number of LUs in
a pool.

 VCB Structure
typedef struct define_lu_pool
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pool_name[8]; /* LU pool name */
unsigned char description[RD_LEN]; /* resource description */

 unsigned char reserv3[4]; /* reserved */
unsigned short num_lus; /* number of LUs to add */
unsigned char lu_names[10][8]; /* LU names */

} DEFINE_LU_POOL;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_LU_POOL

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pool_name Name of pool to which these LUs belong. This name is an
8-byte string, padded to the right with spaces. This can be
either an EBCDIC string or a string in a locally displayable
character set.

description Resource description (returned on QUERY_LU_POOL). The
length of this field should be a multiple of four bytes, and not
zero.

num_lus Number of LUs to add, in the range 0 to 10.

lu_names Names of the LUs that are being added to the pool. Each
name is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC
spaces.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

 Chapter 4. Node Configuration Verbs 85

 DEFINE_LU_POOL

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_NUM_LUS
AP_INVALID_POOL_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_LU_NAME_POOL_NAME_CLASH

AP_INVALID_POOL_NAME

If the verb does not execute because the system has not been built with dependent
LU support, Communications Server returns the following parameter:

primary_rc AP_INVALID_VERB

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

86 System Management Programming

 DEFINE_MODE

 DEFINE_MODE
The DEFINE_MODE verb defines a set of networking characteristics to assign to a
particular mode (or group of sessions). This verb can also be used to modify any
fields on a previously defined mode. If the SNASVCMG mode is redefined, its
mode_name and cos_name cannot be modified. The CPSVCMG mode cannot be
redefined.

The DEFINE_MODE verb can also be used to define the default COS, which
unknown modes will be mapped to. This is done by setting mode_name to all
zeros. The default COS is initially #CONNECT.

Note: It is not necessary to define all the modes you want to use locally, though
they must be defined at your network node and potentially, the partner
node. If an ALLOCATE is issued specifying a mode that has not been
defined, the node uses the characteristics for the model default mode
specified on the DEFINE_DEFAULTS verb. If no such model has been
specified, the characteristics of the blank mode are used for the model.

 VCB Structure
typedef struct define_mode
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char mode_name[8]; /* mode name */

 unsigned short reserv3; /* reserved */
MODE_CHARS mode_chars; /* mode characteristics */

} DEFINE_MODE;

typedef struct mode_chars
{
 unsigned char description[RD_LEN]

/* resource description */
unsigned short max_ru_size_upp; /* max RU size upper bound */
unsigned char receive_pacing_win; /* receive pacing window */
unsigned char default_ru_size; /* default RU size to maximize */

 /* performance */
unsigned short max_neg_sess_lim; /* max negotiable session limit */
unsigned short plu_mode_session_limit; /* LU-mode session limit */
unsigned short min_conwin_src; /* min source contention winner */

 /* sessions */
unsigned char cos_name[8]; /* class-of-service name */

 unsigned char cryptography; /* cryptography */
 unsigned char reserv1; /* reserved */

unsigned short auto_act; /* initial auto-activation count*/
 unsigned char reserv2[6]; /* reserved */
} MODE_CHARS;

 Chapter 4. Node Configuration Verbs 87

 DEFINE_MODE

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_MODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

mode_name Name of the mode. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this is set to all zeros, the default COS is
set to mode_chars.cos_name , and all other mode_chars
fields are ignored.

mode_chars.description
Resource description (returned on
QUERY_MODE_DEFINITION and QUERY_MODE). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

mode_chars.max_ru_size_upp
Upper bound for the maximum size of RUs sent and received
on sessions in this mode. The value is used when the
maximum RU size is negotiated during session activation.
The range is 256—16384. This field is ignored if
default_ru_size is set to AP_YES.

mode_chars.receive_pacing_win
Session pacing window for sessions in this mode. For fixed
pacing, this value specifies the receive pacing window. For
adaptive pacing, this value is used as an initial receive
window size. Note that Communications Server will always
use adaptive pacing unless the adjacent node specifies that it
does not support it. The range is 1—63. The value zero is
not allowed.

mode_chars.default_ru_size
Specifies whether a default upper bound for the maximum
RU size will be used. If this parameter specifies AP_YES,
max_ru_size_upp is ignored, and the upper bound for the
maximum RU size is set to the link BTU size minus the size
of the TH and the RH.

AP_YES
AP_NO

mode_chars.max_neg_sess_lim
Maximum number of sessions allowed on this mode between
any local LU and partner LU. If a value of zero is specified
then there will be no implicit CNOS exchange. The range is
0—32 767.

mode_chars.plu_mode_session_limit
Default session limit for this mode. This limits the number of
sessions on this mode between any one local LU and partner
LU pair. This value is used when CNOS (Change Number of
Sessions) exchange is initiated implicitly. If a value of zero is
specified then there will be no implicit CNOS exchange. The
range is 0—32 767.

88 System Management Programming

 DEFINE_MODE

mode_chars.min_conwin_src
Minimum number of contention winner sessions activatable
by any one local LU using this mode. This value is used
when CNOS (Change Number of Sessions) exchange is
initiated implicitly. If a value of zero is specified then there
will be no implicit CNOS exchange. The range is 0—32 767.

mode_chars.cos_name
Name of the class of service to request when activating
sessions on this mode. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

mode_chars.cryptography
Specifies whether session-level cryptography must be used
(AP_NONE or AP_MANDATORY).

mode_chars.auto_act
Specifies how many sessions are autoactivated for this
mode. This value is used when Change Number of Sessions
(CNOS) exchange is initiated implicitly.

The range is 0–32767.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_COS_NAME

AP_CPSVCMG_ALREADY_DEFD
AP_INVALID_CNOS_SLIM
AP_INVALID_COS_SNASVCMG_MODE
AP_INVALID_DEFAULT_RU_SIZE
AP_INVALID_MAX_NEGOT_SESS_LIM
AP_INVALID_MAX_RU_SIZE_UPPER
AP_INVALID_MIN_CONWINNERS
AP_INVALID_MODE_NAME
AP_INVALID_SESSION_LIMIT
AP_INVALID_RECV_PACING_WINDOW
AP_INVALID_DEFAULT_RU_SIZES
AP_INVALID_SNASVCMG_MODE_LIMIT
AP_MODE_SESS_LIM_EXCEEDS_NEG

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

 Chapter 4. Node Configuration Verbs 89

 DEFINE_MODE

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

90 System Management Programming

 DEFINE_PARTNER_LU

 DEFINE_PARTNER_LU
The DEFINE_PARTNER_LU verb defines the parameters of a partner LU for
LU-LU sessions between a local LU and the partner LU. Alternatively,
DEFINE_PARTNER_LU can be used to modify all parameters already defined for
the partner LU, other than the fqplu_name and plu_alias .

 VCB Structure
typedef struct define_partner_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
PLU_CHARS plu_chars; /* partner LU characteristics */

} DEFINE_PARTNER_LU;

typedef struct plu_chars
{

unsigned char fqplu_name[17]; /* fully qualified partner */
/* LU name */

unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char description[RD_LEN];

/* resource description */
unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
unsigned char preference /* routing preference */
unsigned short max_mc_ll_send_size; /* max MC send LL size */
unsigned char conv_security_ver; /* already_verified accepted? */
unsigned char parallel_sess_supp; /* parallel sessions supported? */

 unsigned char reserv2[8]; /* reserved */
} PLU_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_PARTNER_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

plu_chars.fqplu_name
Fully qualified name of the partner LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

plu_chars.plu_alias Alias of the partner LU. This is an 8-byte string in a locally
displayable character set. This field may be set to all zeros
for a partner LU with no alias associated to it.

plu_chars.description
Resource description (returned on QUERY_PARTNER_LU
and QUERY_PARTNER_LU_DEFINITION). This is a
16-byte string in a locally displayable character set. All 16
bytes are significant.

 Chapter 4. Node Configuration Verbs 91

 DEFINE_PARTNER_LU

plu_chars.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte
type-A EBCDIC character string.

plu_chars.max_mc_ll_send_size
Maximum size of LL records sent by and received by
mapped conversation services at the partner LU. Range:
1–32 767 (32 767 is specified by setting this field to 0)

plu_chars.preference
The preferred routing protocol to be used for session
activation to this partner LU. This field can take the following
values:

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use non-native (AnyNet) protocols only.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located then retry session activation using non-native
(AnyNet) protocols.

AP_NONNATIVE_THEN_NATIVE
Try non-native (AnyNet) protocols, and if the partner LU
cannot be located then retry session activation using native
(APPN) protocols.

AP_USE_DEFAULT_PREFERENCE
Use the default preference defined when the node was
started. (This can be recalled by QUERY_NODE.)

Note: Non-native routing is only meaningful when an
AnyNet DLC is available to the Node Operator
Facility, and there is an AnyNet link station defined.
(See Defined_LS).

plu_chars.conv_security_ver
Specifies whether the partner LU is authorized to validate
user_ids on behalf of local LUs, that is whether the partner
LU can set the already verified indicator in an Attach request
(AP_YES or AP_NO).

plu_chars.parallel_sess_supp
Specifies whether the partner LU supports parallel sessions
(AP_YES or AP_NO).

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

92 System Management Programming

 DEFINE_PARTNER_LU

secondary_rc AP_ANYNET_NOT_SUPPORTED

AP_DEF_PLU_INVALID_FQ_NAME
AP_INVALID_UNINT_PLU_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PLU_ALIAS_CANT_BE_CHANGED

AP_PLU_ALIAS_ALREADY_USED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 93

 DEFINE_PORT

 DEFINE_PORT
DEFINE_PORT defines a new port or modifies an existing one. This port belongs
to a specified DLC, which must already have been defined using a DEFINE_DLC
verb. The DEFINE_PORT verb provides the port name, which is unique throughout
the node, along with port specific parameters and default LS characteristics for use
with dynamic link stations. The port specific parameters are concatenated to the
basic structure. The default LS characteristics are concatenated immediately
following the port specific parameters.

DEFINE_PORT can be used to modify one or more fields on an existing port if the
port is in a reset state (after STOP_PORT has been issued) and the dlc_name
specified on the DEFINE_PORT has not changed since the previous definition of
the port.

See “DLC Processes, Ports, and Link Stations” on page 14, for more information
about the relationship between DLCs, ports and link stations.

 VCB Structure
typedef struct define_port
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char port_name[8]; /* name of port */
PORT_DEF_DATA def_data; /* port defined data */

} DEFINE_PORT;

typedef struct port_def_data
{
 unsigned char description[RD_LEN]

/* resource description */
unsigned char dlc_name[8]; /* DLC name associated with port */
unsigned char port_type; /* port type */

 unsigned char reserv3[7]; /* reserved */
unsigned long port_number; /* port number */
unsigned short max_rcv_btu_size; /* max receive BTU size */
unsigned short tot_link_act_lim; /* total link activation limit */
unsigned short inb_link_act_lim; /* inbound link activation limit */
unsigned short out_link_act_lim; /* outbound link activation */

 /* limit */
unsigned char ls_role; /* initial link station role */

 unsigned char reserv1[15]; /* reserved */
 unsigned char implicit_dspu_template[8];
 /* reserved */
 unsigned char reserv2[3]; /* reserved */
 unsigned char implicit_dspu_services;

/* implicit links support DSPUs */
unsigned char implicit_deact_timer; /* Implicit link HPR link */

/* deactivation timer */
 unsigned short act_xid_exchange_limit;

/* act. XID exchange limit */
 unsigned short nonact_xid_exchange_limit;

/* nonact. XID exchange limit */

94 System Management Programming

 DEFINE_PORT

unsigned char ls_xmit_rcv_cap; /* LS transmit-receive */
 /* capability */

unsigned char max_ifrm_rcvd; /* max number of I-frames that */
/* can be received */

unsigned short target_pacing_count; /* Target pacing count */
unsigned short max_send_btu_size; /* Desired max send BTU size */
LINK_ADDRESS dlc_data; /* DLC data */
LINK_ADDRESS hpr_dlc_data; /* HPR DLC data */

 unsigned char implicit_cp_cp_sess_support;
/* Implicit links allow CP-CP */

 /* sessions */
 unsigned char implicit_limited_resource;

/* Implicit links are limited */
 /* resource */
 unsigned char implicit_hpr_support;

/* Implicit links support HPR */
 unsigned char implicit_link_lvl_error;

/* Implicit links support HPR */
/* link-level error recovery */

 unsigned char retired1; /* reserved */
 TG_DEFINED_CHARS default_tg_chars;

/* Default TG chars */
 unsigned char discovery_supported;

/* Discovery function */
 /* supported? */

unsigned short port_spec_data_len; /* length of port spec data */
unsigned short link_spec_data_len; /* length of link spec data */

} PORT_DEF_DATA;

typedef struct link_address
{
 unsigned short length; /* length */
 unsigned short reserve1; /* reserved */
 unsigned char address[MAX_LINK_ADDR_LEN];
 /* address */
} LINK_ADDRESS;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */

unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */

 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */

unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

typedef struct port_spec_data
{
 unsigned char port_data[SIZEOF_PORT_SPEC_DATA];

} PORT_SPEC_DATA;

 Chapter 4. Node Configuration Verbs 95

 DEFINE_PORT

typedef struct link_spec_data
{
 unsigned char link_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_PORT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

port_name Name of port being defined. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant
and must be set.

def_data.description
Resource description (returned on QUERY_PORT). This is a
16-byte string in a locally displayable character set. All 16
bytes are significant.

def_data.dlc_name Name of the associated DLC, which is an 8-byte string in a
locally displayable character set. All 8 bytes are significant
and must be set. This named DLC must have already been
defined by a DEFINE_DLC verb.

def_data.port_type Specifies the type of line used by the port. The value
corresponds to one of the following line types:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

Note that if this field is set to AP_PORT_SATF then the
ls_role must be set to AP_LS_NEG.

def_data.port_number
Port number.

def_data.max_rcv_btu_size
Maximum BTU size that can be received. If implicit
HPR-capable links are not supported on the port then this
must be set to a value greater than or equal to 99. If implicit
HPR-capable links are supported on the port then this must
be set to a value greater than or equal to 768. If this port is
for the AnyNet DLC, you must use 65535.

def_data.tot_link_act_lim
Total link activation limit. This specifies the maximum
number of link stations that can be active concurrently. This
must be greater than or equal to the sum of the
inb_link_act_lim and out_link_act_lim fields. If the
port_type is set to AP_PORT_NONSWITCHED and the
ls_role is set to AP_LS_NEG or AP_LS_SEC then this field
must be set to one. If the ls_role is set to AP_LS_PRI then
this field must be in the range greater than or equal to one to
256. If this port is for the AnyNet DLC, you must use 65535.

96 System Management Programming

 DEFINE_PORT

def_data.inb_link_act_lim
Inbound link activation limit. This specifies the number of link
stations reserved for inbound activation on this port. The
maximum number of outbound link stations that can be active
concurrently is therefore def_data.tot_link_act_lim -
def_data.inb_link_act_lim . If the port_type is set to
AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_NEG or AP_LS_PRI then this field must be set to
zero. If the port_type is set to AP_PORT_NONSWITCHED
and the ls_role is set to AP_LS_SEC then this field must be
set to zero or one. If this port is for the AnyNet DLC, you
must use zero.

def_data.out_link_act_lim
Outbound link activation limit. This specifies the number of
link stations reserved for outbound activation on this port.
The maximum number of inbound link stations that can be
active concurrently is therefore def_data.tot_link_act_lim -
def_data.out_link_act_lim . If the port_type is set to
AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_NEG then this field must be set to zero. If the
ls_role is set to AP_LS_PRI then this field must be equal to
tot_link_act_lim . If the port_type is set to
AP_PORT_NONSWITCHED and the ls_role is set to
AP_LS_SEC then this field must be set to zero or one. If
this port is for the AnyNet DLC, you must use zero.

def_data.ls_role Link station role. This can be negotiable (AP_LS_NEG),
primary (AP_LS_PRI), or secondary (AP_LS_SEC). The link
station role determines the relationship between the values
specified by the tot_act_lim , inb_link_act_lim , and
out_link_act_lim fields as described above. Note that if the
port_type is set to AP_PORT_SATF then the ls_role must
be set to AP_LS_NEG.

def_data.implicit_dspu_template
Specifies the DSPU template, defined with the
DEFINE_DSPU_TEMPLATE verb, that is used for definitions
if the local node is to provide PU Concentration for an implicit
link activated on this port. If the template specified does not
exist (or is already at its instance limit) when the link is
activated, activation fails. This is an 8-byte string in a
locally-displayable character set. All 8 bytes are significant
and must be set.

If the def_data.implicit_dspu_services field is not set to
AP_PU_CONCENTRATION, then this field is reserved.

def_data.implicit.dspu_services
Specifies the services that the local node will provide to the
downstream PU across implicit links activated on this port.
This is set to one of the following values:

AP_DLUR
Local node will provide DLUR services for the downstream
PU (using the default DLUS configured through the
DEFINE_DLUR_DEFAULTS verb).

 Chapter 4. Node Configuration Verbs 97

 DEFINE_PORT

AP_PU_CONCENTRATION
Local node will provide PU Concentration for the downstream
PU (and will put in place definitions as specified by the
DSPU template specified in the field
def_data.implicit_dspu_template).

AP_NONE
Local node will provide no services for this downstream PU.

def_data.implicit_deact_timer
Limited resource link deactivation timer (in seconds). If
implicit_limited_resource is set to AP_YES or
AP_NO_SESSIONS, then an HPR-capable implicit link is
automatically deactivated if no data traverses the link for the
duration of this timer, and no sessions are using the link.

If implicit_limited_resource is set to AP_INACTIVITY then
an implicit link is automatically deactivated if no data
traverses the link for the duration of this timer.

If zero is specified, the default value of 30 is used.
Otherwise the minimum value is 5. (If it is set any lower, the
specified value will be ignored and 5 will be used.) Note that
this parameter is reserved unless implicit_limited_resource
is set to AP_NO.

def_data.act_xid_exchange_limit
Activation XID exchange limit.

def_data.nonact_xid_exchange_limit
Non-activation XID exchange limit.

def_data.ls_xmit_rcv_cap
Specifies the link station transmit/receive capability. This is
either two-way simultaneous (AP_LS_TWS) (also known as
duplex or full-duplex) or two way alternating (AP_LS_TWA)
(also know as half-duplex).

def_data.max_ifrm_rcvd
Maximum number of I-frames that can be received by the
local link stations before an acknowledgment is sent. The
range is 1—127.

def_data.target_pacing_count
Numeric value between 1 and 32 767 inclusive indicating the
desired pacing window size for BINDs on this TG. The
number is only significant when fixed bind pacing is being
performed. Note that Communications Server does not
currently use this value.

def_data.max_send_btu_size
Maximum BTU size that can be sent from this link station.
This value is used to negotiate the maximum BTU size than
can be transmitted between a link station pair. If implicit
HPR-capable links are not supported on the port then this
must be set to a value greater than or equal to 99. If implicit
HPR-capable links are supported on the port then this must
be set to a value greater than or equal to 768.

98 System Management Programming

 DEFINE_PORT

def_data.dlc_data.length
Port address length.

def_data.dlc_data.address
Port address.

def_data.hpr_dlc_data.length
HPR Port address length.

def_data.hpr_dlc_data.address
HPR Port address. This is currently used when supporting
HPR links. The field specifies the information sent by
Communications Server in the X'80' subfield of the X'61'
control vector on XID3s exchanged on link stations using this
port. It is passed on the ACTIVATE_PORT issued to the
DLC by Communications Server. Some DLCs can require
this information to be filled in for ports supporting HPR links.

def_data.implicit_cp_cp_sess_support
Specifies whether CP-CP sessions are permitted for implicit
link stations off this port (AP_YES or AP_NO).

def_data.implicit_limited_resource
Specifies whether implicit link stations off this port should be
deactivated when there are no sessions using the link. This
is set to one of the following values:

AP_NO
Implicit links are not limited resources and will not be
deactivated automatically.

AP_YES or AP_NO_SESSIONS
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them.

AP_INACTIVITY
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them, or
when no data has followed on the link for the time period
specified by the implicit_deact_timer field.

def_data.implicit_hpr_support
Specifies whether HPR should be supported on implicit links
(AP_YES or AP_NO).

def_data.implicit_link_lvl_error
Specifies whether HPR traffic should be sent on implicit links
using link-level error recovery (AP_YES or AP_NO). Note
that the parameter is reserved if implicit_hpr_support is set
to AP_NO.

def_data.default_tg_chars
TG characteristics (See “DEFINE_COS” on page 35). These
are used for implicit link stations off this port and also for
defined link stations that specify use_default_tg_chars .

def_data.discovery_supported
Specifies whether Discovery functions are to be performed
on this port (AP_YES or AP_NO).

 Chapter 4. Node Configuration Verbs 99

 DEFINE_PORT

def_data.port_spec_data_len
Length of data to be passed unchanged to port on
ACTIVATE_PORT signal. The data should be concatenated
to the basic structure.

def_data.link_spec_data_len
This field should always be set to zero.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PORT_NAME

AP_INVALID_DLC_NAME
AP_INVALID_PORT_TYPE
AP_INVALID_BTU_SIZE
AP_INVALID_LS_ROLE
AP_INVALID_LINK_ACTIVE_LIMIT
AP_INVALID_MAX_IFRM_RCVD
AP_INVALID_DSPU_SERVICES
AP_HPR_NOT_SUPPORTED
AP_DLUR_NOT_SUPPORTED
AP_INVALID_DISCOVERY_SUPPORT

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PORT_ACTIVE

AP_DUPLICATE_PORT_NUMBER

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

100 System Management Programming

 DEFINE_TP

 DEFINE_TP
The DEFINE_TP verb defines transaction program (TP) information for use by the
Node Operator Facility TP Attach Manager when it processes incoming attaches
from partner LUs. This verb can also be used to modify one or more fields on a
previously defined transaction program (but cannot be used to modify
Communications Server defined transaction programs).

 VCB Structure
typedef struct define_tp
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_name[64]; /* TP name */

 TP_CHARS tp_chars; /* TP characteristics */
} DEFINE_TP;

typedef struct tp_chars
{
 unsigned char description[RD_LEN]

/* resource description */
unsigned char conv_type; /* conversation type */
unsigned char security_rqd; /* security support */
unsigned char sync_level; /* synchronization level support */
unsigned char dynamic_load; /* dynamic load */
unsigned char enabled; /* is the TP enabled? */
unsigned char pip_allowed; /* program initialization */

/* parameters supported */
unsigned char duplex_support; /* duplex supported */

 unsigned char reserv3[9]; /* reserved */
unsigned short tp_instance_limit; /* limit on currently active TP */

 /* instances */
 unsigned short incoming_alloc_timeout;

/* incoming allocation timeout */
unsigned short rcv_alloc_timeout; /* receive allocation timeout */
unsigned short tp_data_len; /* TP data length */
TP_SPEC_DATA tp_data; /* TP data */

} TP_CHARS;

typedef struct tp_spec_data
{

unsigned char pathname[256]; /* path and TP name */
unsigned char parameters[64]; /* parameters for TP */
unsigned char queued; /* queued TP */
unsigned char load_type; /* type of load-DETACHED/CONSOLE */
unsigned char dynamic_load /* dynamic loading of TP enabled */

 unsigned char reserved[5]; /* reserved */
} TP_SPEC_DATA;

 Chapter 4. Node Configuration Verbs 101

 DEFINE_TP

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_TP

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

tp_name Name of the transaction program being defined. This is a
64-byte EBCDIC string padded to the right with EBCDIC
spaces. Note that Communications Server does not check
the character set of this field.

tp_chars.description
Resource description (returned on QUERY_TP_DEFINITION
and QUERY_TP). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

tp_chars.conv_type Specifies the types of conversation supported by this
transaction program.

AP_BASIC
AP_MAPPED
AP_EITHER

tp_chars.security_rqd
Specifies whether conversation security information is
required to start the transaction program (AP_NONE,
AP_SAME or AP_PGM).

tp_chars.sync_level
Specifies the synchronization levels supported by the
transaction program.

AP_NONE
The transaction program supports a synchronization level of
None.

AP_CONFIRM_SYNC_LEVEL
The transaction program supports a synchronization level of
Confirm.

AP_EITHER
The transaction program supports a synchronization level of
None or Confirm.

AP_SYNCPT_REQUIRED
The transaction program supports a synchronization level of
Sync-point.

AP_SYNCPT_NEGOTIABLE
The transaction program supports a synchronization level of
None, Confirm or Sync-point.

tp_chars.dynamic_load
Specifies whether the transaction program can be
dynamically loaded (AP_YES or AP_NO).

tp_chars.enabled Specifies whether the transaction program can be attached
successfully (AP_YES or AP_NO). The default is AP_NO.

102 System Management Programming

 DEFINE_TP

tp_chars.pip_allowed
Specifies whether the transaction program can receive
program initialization (PIP) parameters (AP_YES or AP_NO).

tp_chars.duplex_support
Indicates whether the transaction program is full or half
duplex.

AP_FULL_DUPLEX
Specifies that the transaction program is full duplex.

AP_HALF_DUPLEX
Specifies that the transaction program is half duplex.

AP_EITHER_DUPLEX
Specifies that the transaction program can be either half or
full duplex

tp_chars.tp_instance_limit
Limit on the number of concurrently active transaction
program instances. A value of zero means no limit.

tp_chars.incoming_alloc_timeout
Specifies the number of seconds that an incoming attach will
be queued waiting for a RECEIVE_ALLOCATE. Zero implies
no timeout, and so it will be held indefinitely.

tp_chars.rcv_alloc_timeout
Specifies the number of seconds that a
RECEIVE_ALLOCATE verb will be queued while waiting for
an Attach. Zero implies no timeout, and so it will be held
indefinitely.

tp_chars.tp_data_len
Length of the implementation-dependent transaction program
data.

tp_spec_data Information used by the Attach Manager when launching the
transaction program. See the Attach Manager in
Communications Server Client/Server Communications
Programming for further details of how this is used.

tp_chars.tp_data.pathname
Specifies the path and transaction program name.

tp_chars.tp_data.parameters
Specifies the parameters for the transaction program.

tp_chars.tp_data.queued
Specifies whether the transaction program will be queued.

tp_chars.tp_data.load_type
Specifies how the transaction program will be loaded.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

 Chapter 4. Node Configuration Verbs 103

 DEFINE_TP

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

104 System Management Programming

 DELETE_ADJACENT_NODE

 DELETE_ADJACENT_NODE
DELETE_ADJACENT_NODE removes entries in the node directory database that
are associated with the resources on an adjacent node.

To remove the node's control point from the directory along with its LUs, set
num_of_lus to zero. If num_of_lus is nonzero, this verb is used to remove node
LUs from the directory, leaving the control point definition intact.

If the verb fails for any reason, no directory entries will be deleted.

 VCB Structure
The DELETE_ADJACENT_NODE verb contains a variable number of
ADJACENT_NODE_LU overlays. The ADJACENT_NODE_LU structures are
concatenated onto the end of DELETE_ADJACENT_NODE structure.

typedef struct delete_adjacent_node
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cp_name[17]; /* CP name */

 unsigned char reserv3[3]; /* reserved */
unsigned short num_of_lus; /* number of LUs */

} DELETE_ADJACENT_NODE;

typedef struct adjacent_node_lu
{

unsigned char wildcard_lu; /* wildcard LU name indicator */
unsigned char fqlu_name[17]; /* fully qualified LU name */

 unsigned char reserv1[6]; /* reserved */
} ADJACENT_NODE_LU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_ADJACENT_NODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

cp_name The fully qualified name of the control point in the adjacent
LEN end node. The name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8
bytes with no embedded spaces.)

num_of_lus The number of LUs to be deleted. Set this to zero if the
entire node definition is to be deleted. This number
represents the number of adjacent LU overlays that follow
the DELETE_ADJACENT_NODE VCB.

adjacent_node_lu.wildcard_lu
Indicates whether the specified LU name is a wildcard name
(AP_YES or AP_NO).

 Chapter 4. Node Configuration Verbs 105

 DELETE_ADJACENT_NODE

adjacent_node_lu.fqlu_name
The LU name to be deleted. If this name is not fully
qualified, the network ID of the CP name is assumed. The
name is 17 bytes long and is right-padded with EBCDIC
spaces. It is composed of one or two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no
embedded spaces.)

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_CP_NAME

AP_INVALID_LU_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_CP_NAME

AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

106 System Management Programming

 DELETE_CN

 DELETE_CN
DELETE_CN deletes and frees the memory for a connection network control block
if all the associated ports are reset. DELETE_CN can also be used to delete
selected ports from a connection network. To do this, the user should set the
num_ports field to a nonzero value and supply the port names of the ports to be
deleted.

 VCB Structure
typedef struct delete_cn
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqcn_name[17]; /* name of connection network */

 unsigned char reserv1; /* reserved */
unsigned short num_ports; /* number of ports to delete */

 unsigned char port_name[8] [8];
/* names of ports to delete */

} DELETE_CN;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_CN

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

fqcn_name Name of connection network (17 bytes long) to be deleted.
This name is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

num_ports The number of ports to delete on the connection network.
This should be set to zero if the entire connection network is
to be deleted.

port_name Names of the ports to be deleted if the num_ports is
nonzero. Each port name is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If the num_ports field is zero this field is
reserved.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

 Chapter 4. Node Configuration Verbs 107

 DELETE_CN

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_CN_NAME

AP_INVALID_NUM_PORTS_SPECIFIED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

108 System Management Programming

 DELETE_COS

 DELETE_COS
DELETE_COS deletes a class-of-service entry unless it is one of the default
classes of service defined by SNA.

 VCB Structure
typedef struct delete_cos
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cos_name[8]; /* class-of-service name */

} DELETE_COS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_COS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

cos_name Class-of-service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_COS_NAME_NOT_DEFD

AP_SNA_DEFD_COS_CANT_BE_DELETE

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 109

 DELETE_DLC

 DELETE_DLC
DELETE_DLC deletes all ports, link stations, and connection network transmission
groups (TGs) associated with the DLC if it is reset. All DLC control blocks are
deleted and the memory freed. The Node Operator Facility returns a response
specifying whether the DLC was deleted successfully.

Note that if a link station, which has a PU associated with it, is deleted (because it
is associated with the DLC) then any LUs defined on this PU will also be deleted.

 VCB Structure
typedef struct delete_dlc
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */

} DELETE_DLC;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_DLC

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

dlc_name Name of DLC to be deleted. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant
and must be set.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DLC_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_DLC_ACTIVE

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

110 System Management Programming

 DELETE_DLC

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 111

 DELETE_DOWNSTREAM_LU

 DELETE_DOWNSTREAM_LU
The DELETE_DOWNSTREAM_LU verb is used to delete a specific downstream
LU.

 VCB Structure
typedef struct delete_downstream_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_name[8]; /* Downstream LU name */

} DELETE_DOWNSTREAM_LU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_DOWNSTREAM_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

dslu_name Name of the downstream LU that is being deleted. This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

112 System Management Programming

 DELETE_DOWNSTREAM_LU

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 113

 DELETE_DOWNSTREAM_LU_RANGE

 DELETE_DOWNSTREAM_LU_RANGE
The DELETE_DOWNSTREAM_LU_RANGE verb is used to delete a range of
downstream LUs. The node operator provides a base name and an NAU range.
The LU names in the range are generated by combining the base name with the
NAU addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
deletes the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A base
name of less than five non-pad characters results in LU names of less than eight
non-pad characters.

This verb deletes all LUs in the range. If an LU in the range does not exist, then
the verb continues with the next one that does exist. The verb only fails if no LUs
exist in the specified range.

 VCB Structure
typedef struct delete_downstream_lu_range
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_base_name[5];/* Downstream LU base name */
unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */

} DELETE_DOWNSTREAM_LU_RANGE;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_DOWNSTREAM_LU_RANGE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

dslu_base_name Base name for downstream LU name range. This is a 5-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This base name is
appended with three type-A EBCDIC numeric characters,
representing the decimal value of the NAU address, for each
LU in the NAU range.

min_nau Minimum NAU address in the range. This can be from 1 to
255 inclusive.

max_nau Maximum NAU address in the range. This can be from 1 to
255 inclusive.

114 System Management Programming

 DELETE_DOWNSTREAM_LU_RANGE

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_NAU_ADDRESS

AP_INVALID_LU_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 115

 DELETE_DSPU_TEMPLATE

 DELETE_DSPU_TEMPLATE
This verb is used to delete a specific DSPU template.

 VCB Structure
typedef struct delete_dspu_template
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template_name[8]; /* name of template */

} DELETE_DSPU_TEMPLATE;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_DSPU_TEMPLATE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

template_name Name of the DSPU template to be deleted. This is an 8-byte
string in a locally-displayable character set. All 8 bytes are
significant and must be set.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TEMPLATE_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

116 System Management Programming

 DELETE_FOCAL_POINT

 DELETE_FOCAL_POINT
The DELETE_FOCAL_POINT verb can be used to delete focal points of a specified
type and category. For more information about focal point types, see
“DEFINE_FOCAL_POINT” on page 59. If an active focal point is deleted it will be
revoked. To revoke the active focal point (of any type) specify a type of
AP_ACTIVE. If a backup or implicit focal point is deleted (by specifying
AP_BACKUP or AP_IMPLICIT) when it is not currently active, any information
stored about it will simply be removed.

Note that the DEFINE_FOCAL_POINT verb can also be used to revoke currently
active focal points. This duplicated function is retained for back compatibility.

 VCB Structure
typedef struct delete_focal_point
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

 unsigned char reserved; /* reserved */
unsigned char ms_category[8]; /* management services category */
unsigned char type; /* type of focal point */

} DELETE_FOCAL_POINT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_FOCAL_POINT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

ms_category Management services category. This cab either be one of
the 4-byte architecturally defined values (right-padded with
EBCDIC spaces) for management services categories as
described in SNA management services, or an 8-byte type
1134 EBCDIC installation-defined name.

type Specifies the type of the focal point that is being deleted.
Possible types are:

AP_ACTIVE
The currently active focal point (which can be of any type) is
revoked.

AP_IMPLICIT
The implicit definition is removed. If the currently active focal
point is an implicit focal point, then it is revoked.

AP_BACKUP
The backup definition is removed. If the currently active focal
point is a backup focal point, then it is revoked.

 Chapter 4. Node Configuration Verbs 117

 DELETE_FOCAL_POINT

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TYPE

AP_INVALID_CATEGORY_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

118 System Management Programming

 DELETE_INTERNAL_PU

 DELETE_INTERNAL_PU
The DELETE_INTERNAL_PU verb requests the deletion of a DLUR-served local
PU. The verb will only succeed if the PU does not have an active SSCP-PU
session.

Any LUs associated with the PU will be deleted.

 VCB Structure
typedef struct delete_internal_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */

} DELETE_INTERNAL_PU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_INTERNAL_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pu_name Name of the internal PU that is being deleted. This is an
8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PU_NOT_RESET

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

 Chapter 4. Node Configuration Verbs 119

 DELETE_INTERNAL_PU

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

120 System Management Programming

 DELETE_LOCAL_LU

 DELETE_LOCAL_LU
The DELETE_LOCAL_LU verb requests deletion of the local LU definition.

 VCB Structure
typedef struct delete_local_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */

} DELETE_LOCAL_LU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_LOCAL_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name Name of the local LU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_CANT_DELETE_CP_LU

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 121

 DELETE_LS

 DELETE_LS
DELETE_LS checks that the link station has been previously defined and reset. It
removes the link station control block and returns a response from the Node
Operator Facility specifying whether the link station has been deleted successfully.
Note that any LUs defined on the PU using this link station will also be deleted.

 VCB Structure
typedef struct delete_ls
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char ls_name[8]; /* name of link station */

} DELETE_LS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_LS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

ls_name Name of link station being deleted. This is an 8-byte string in
a locally displayable character set. All 8 bytes are significant
and must be set.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LINK_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_LS_ACTIVE

AP_INVALID_LINK_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

122 System Management Programming

 DELETE_LS

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 123

 DELETE_LU_0_TO_3

 DELETE_LU_0_TO_3
This verb is used to delete a specific LU.

 VCB Structure
typedef struct delete_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */

} DELETE_LU_0_TO_3;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_LU_0_TO_3

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name Name of the LU to be deleted. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

124 System Management Programming

 DELETE_LU_0_TO_3

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 125

 DELETE_LU_0_TO_3_RANGE

 DELETE_LU_0_TO_3_RANGE
This verb is used to delete a range of LUs. The node operator provides a base
name and an NAU range. The LU names are generated by combining the base
name with the NAU addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would delete the LUs LUNME001, LUNME002, LUNME003, and LUNME004. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters.

All LUs in the range are deleted. If an LU in the range does not exist, then the
verb continues with the next one that does exist. The verb fails if no LUs exist in
the specified range.

 VCB Structure
typedef struct delete_lu_0_to_3_range
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */

 unsigned char reserv3; /* reserved */
} DELETE_LU_0_TO_3_RANGE;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_LU_0_TO_3_RANGE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

base_name Base LU name. This is an 5-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This base name is appended with three
type-A EBCDIC numeric characters, representing the decimal
value of the NAU address, for each LU in the NAU range.

min_nau Minimum NAU address in the range. This can be from 1 to
255 inclusive.

max_nau Maximum NAU address in the range. This can be from 1 to
255 inclusive.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

126 System Management Programming

 DELETE_LU_0_TO_3_RANGE

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_NAU_ADDRESS

AP_INVALID_LU_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_CANT_DELETE_IMPLICIT_LU

If the verb does not execute because the system has not been built with dependent
LU support, Communications Server returns the following parameter:

primary_rc AP_INVALID_VERB

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 127

 DELETE_LU_POOL

 DELETE_LU_POOL
This verb is used to delete an LU pool or to remove LUs from a pool. If no LU
names are specified, the entire pool is removed. This verb completes successfully
when the specified LUs within the LU pool, or the LU pool itself, no longer exist.
The verb only fails if none of the specified LUs exist, or if there are no LUs in the
specified pool.

 VCB Structure
typedef struct delete_lu_pool
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pool_name[8]; /* LU pool name */
unsigned short num_lus; /* number of LUs to add */
unsigned char lu_names[10][8]; /* LU names */

} DELETE_LU_POOL;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_LU_POOL

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pool_name Name of the LU pool. All 8 bytes are significant and must be
set. This name is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

num_lus Number of LUs specified in the lu_names list.

lu_names Names of the LUs to be removed. Each name is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

 Returned Parameter
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_POOL_NAME

AP_INVALID_LU_NAME
AP_INVALID_NUM_LUS

If the verb does not execute because the system has not been built with dependent
LU support, Communications Server returns the following parameter:

128 System Management Programming

 DELETE_LU_POOL

primary_rc AP_INVALID_VERB

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 129

 DELETE_MODE

 DELETE_MODE
The DELETE_MODE verb requests deletion of a mode definition. Default
definitions for CPSVCMG, SNASVCMG, and other standard SNA modes will not be
deleted.

 VCB Structure
typedef struct delete_mode
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char mode_name[8]; /* mode name */

} DELETE_MODE;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_MODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

mode_name Name of the mode. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_CP_OR_SNA_SVCMG_UNDELETABLE

AP_MODE_UNDELETABLE
AP_DEL_MODE_DEFAULT_SPCD
AP_MODE_NAME_NOT_DEFD

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

130 System Management Programming

 DELETE_MODE

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 131

 DELETE_PARTNER_LU

 DELETE_PARTNER_LU
The DELETE_PARTNER_LU requests the deletion of a partner LU definition.

 VCB Structure
typedef struct delete_partner_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
} DELETE_PARTNER_LU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_PARTNER_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

fqplu_name Fully qualified name of the partner LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PLU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

132 System Management Programming

 DELETE_PORT

 DELETE_PORT
DELETE_PORT deletes all link stations and connection network transmission
groups (TGs) associated with the port if it is reset. It then deletes the port's control
block, frees the memory, and returns a response from the Node Operator Facility
indicating whether the port has been deleted successfully.

Note that if a link station, which has a PU associated with it, is deleted (because it
is associated with the port) then any LUs defined on this PU will also be deleted.

 VCB Structure
typedef struct delete_port
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char port_name[8]; /* name of port */

} DELETE_PORT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_PORT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

port_name Name of port being deleted. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant
and must be set.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PORT_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PORT_ACTIVE

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

 Chapter 4. Node Configuration Verbs 133

 DELETE_PORT

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

134 System Management Programming

 DELETE_TP

 DELETE_TP
The DELETE_TP requests the deletion of a transaction program (TP) definition.

 VCB Structure
typedef struct delete_tp
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_name[64]; /* TP name */

} DELETE_TP;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_TP format Identifies the format of the VCB.
Set this field to zero to specify the version of the VCB listed
above.

tp_name Name of the transaction program. Communications Server
does not check the character set of this field.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TP_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 4. Node Configuration Verbs 135

 DELETE_TP

136 System Management Programming

Chapter 5. Activation and Deactivation Verbs

This chapter describes verbs that are used to activate and deactivate:

¹ Data link controls (DLCs)
 ¹ Internal PUs
 ¹ Ports
 ¹ Link stations
 ¹ Sessions
 ¹ Conversation groups

This chapter also describes a verb used to request a path switch to a connection
that supports High-Performance Routing (HPR).

 Copyright IBM Corp. 1989, 1997 137

 START_DLC

 START_DLC
START_DLC requests the activation of a data link control (DLC). It is subsequently
returned indicating whether the activation of the DLC was successful. Note that the
DLC can be started even if no ports have been defined for it. See “DLC
Processes, Ports, and Link Stations” on page 14, for more information about the
relationship between DLCs, ports, and link stations.

 VCB Structure
typedef struct start_dlc
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */

} START_DLC;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_START_DLC

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

dlc_name Name of Data Link Control instance that is to be started.
This is an 8-byte string in a locally displayable character set,
which must have already been defined by a DEFINE_DLC
verb.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DLC

If the verb does not execute because the DLC is deactivating , Communications
Server returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_DLC_DEACTIVATING

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

138 System Management Programming

 START_DLC

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 139

 START_INTERNAL_PU

 START_INTERNAL_PU
The START_INTERNAL_PU verb requests the dependent LU requester (DLUR) to
initiate SSCP-PU session activation for a previously defined local PU that is served
by DLUR.

 VCB Structure
typedef struct start_internal_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name */

} START_INTERNAL_PU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_START_INTERNAL_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pu_name Name of the internal PU for which the SSCP-PU session
activation flows will be solicited. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

dlus_name Name of the dependent LU server (DLUS) node that DLUR
will contact to solicit SSCP-PU session activation for the
given PU. This should be set to all zeros or a 17-byte string
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This value overrides
the value specified in the DEFINE_INTERNAL_PU verb. If
the field is set to all zeros, the DLUS specified in the
DEFINE_INTERNAL_PU verb will be used. If no DLUS has
been specified in the DEFINE_INTERNAL_PU verb, then the
global default (if specified by a DEFINE_DLUR_DEFAULTS
verb) will be used.

bkup_dlus_name Name of the DLUS node that DLUR will store as the backup
DLUS for the given PU. This should be set to all zeros or a
17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This value
overrides the value specified in the DEFINE_INTERNAL_PU
verb. If the field is set to all zeros, the backup DLUS name
specified by a DEFINE_INTERNAL_PU verb will be retained
as the backup DLUS for this PU. If no backup DLUS was

140 System Management Programming

 START_INTERNAL_PU

specified by the DEFINE_INTERNAL_PU verb, the global
backup default DLUS (if defined by the
DEFINE_DLUR_DEFAULTS verb) is retained as the backup
default for this PU.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DLUS_NAME

AP_INVALID_BKUP_DLUS_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_NO_DEFAULT_DLUS_DEFINED

AP_PU_NOT_DEFINED
AP_PU_ALREADY_ACTIVATING
AP_PU_ALREADY_ACTIVE

If the verb does not execute successfully, Communications Server returns the
following parameters:

primary_rc AP_UNSUCCESSFUL

secondary_rc AP_DLUS_REJECTED

AP_DLUS_CAPS_MISMATCH
AP_PU_FAILED_ACTPU

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 141

 START_LS

 START_LS
START_LS requests activation of a link. It is returned as a response specifying
whether the link was successfully activated.

See “DLC Processes, Ports, and Link Stations” on page 14, for more information
about the relationship between DLCs, ports and link stations.

 VCB Structure
typedef struct start_ls
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char ls_name[8]; /* name of link station */
unsigned char enable; /* whether the link is enabled*/

 unsigned char reserv3[3]; /* reserved */
} START_LS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_START_LS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

ls_name Name of link station to be started. This is an 8-byte string in
a locally displayable character set. All 8 bytes are significant
and must be set. The value of ls_name must match that on
the DEFINE_LS verb.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LINK_NAME_SPECIFIED

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PORT_INACTIVE

AP_ACTIVATION_LIMITS_REACHED
AP_PARALLEL_TGS_NOT_SUPPORTED
AP_ALREADY_STARTING
AP_LINK_DEACT_IN_PROGRESS

142 System Management Programming

 START_LS

If the verb does not execute because it was canceled by a subsequent STOP_LS
or STOP_PORT before the link became active, Communications Server returns the
following parameters:

primary_rc AP_CANCELLED

secondary_rc AP_LINK_DEACTIVATED

If the verb does not execute because the partner could not be found by the link
software, Communications Server returns the following parameters:

primary_rc AP_LS_FAILURE

secondary_rc AP_PARTNER_NOT_FOUND

If the verb does not execute because a link error occurred while the link was being
established, Communications Server returns the following parameters:

primary_rc AP_LS_FAILURE

secondary_rc AP_ERROR

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 143

 START_PORT

 START_PORT
START_PORT requests the activation of a port. It is returned indicating whether
the port was successfully activated. The port can be started even if no link stations
have been defined for it, but it will not be started if its parent DLC is inactive.

See “DLC Processes, Ports, and Link Stations” on page 14, for more information
about the relationship between DLCs, ports and link stations.

 VCB Structure
typedef struct start_port
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char port_name[8]; /* name of port */

} START_PORT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_START_PORT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

port_name Name of port to be started. This is an 8-byte string in a
locally displayable character set and must match that on the
DEFINE_PORT verb.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PORT_NAME

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_DLC_INACTIVE

AP_STOP_PORT_PENDING
AP_DUPLICATE_PORT

If the verb does not execute because it was canceled, Communications Server
returns the following parameter:

primary_rc AP_CANCELLED

144 System Management Programming

 START_PORT

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 145

 STOP_DLC

 STOP_DLC
STOP_DLC requests that a DLC be stopped. It is returned indicating whether the
DLC was successfully stopped.

 VCB Structure
typedef struct stop_dlc
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char stop_type; /* stop type */
unsigned char dlc_name[8]; /* name of DLC */

} STOP_DLC;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_STOP_DLC

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

stop_type Manner in which DLC should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping
DLC.

AP_IMMEDIATE_STOP
Node should stop DLC immediately.

dlc_name Name of DLC to be stopped. This is an 8-byte string in a
locally displayable character set, which must match that on
the DEFINE_DLC verb.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DLC

AP_UNRECOGNIZED_DEACT_TYPE

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_STOP_DLC_PENDING

146 System Management Programming

 STOP_DLC

If the verb does not execute because it has been canceled, Communications
Server returns the following parameter:

primary_rc AP_CANCELLED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 147

 STOP_INTERNAL_PU

 STOP_INTERNAL_PU
The STOP_INTERNAL_PU verb requests the dependent LU requester (DLUR)
initiate SSCP-PU session deactivation for a previously defined local PU that is
served by DLUR.

 VCB Structure
typedef struct stop_internal_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
unsigned char stop_type; /* type of stop requested */

} STOP_INTERNAL_PU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_STOP_INTERNAL_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pu_name Name of the internal PU for which the SSCP-PU session will
be deactivated. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

stop_type Specifies stop type requested for the PU. An orderly stop
will deactivate all underlying PLU-SLU and SSCP-LU
sessions before deactivating the SSCP-PU session.

AP_ORDERLY_STOP
AP_IMMEDIATE_STOP

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_STOP_TYPE

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

148 System Management Programming

 STOP_INTERNAL_PU

secondary_rc AP_PU_NOT_DEFINED

AP_PU_ALREADY_DEACTIVATING
AP_PU_NOT_ACTIVE

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 149

 STOP_LS

 STOP_LS
STOP_LS requests the deactivation of a link station. It is returned specifying
whether the link was stopped successfully.

 VCB Structure
typedef struct stop_ls
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char stop_type; /* stop type */
unsigned char ls_name[8]; /* name of link station */
unsigned char disable; /* whether the link is disabled */

 unsigned char reserved[3]; /* reserved */
} STOP_LS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_STOP_LS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

stop_type Manner in which the link station should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping the
link station.

AP_IMMEDIATE_STOP
Node should stop the link station immediately.

ls_name Name of link station to be stopped. This is an 8-byte string
in a locally displayable character set. All 8 bytes are
significant and must be set. The value of ls_name must
match that on the DEFINE_LS verb.

disable This indicates whether remote activation or activation on
demand of this link station should be disabled. If set to
AP_NO, then the link station is returned to the state given by
the values of auto_act_supp and disable_remote_act from
the DEFINE_LS verb. Otherwise, the following values are
possible (and can be ORed together).

AP_AUTO_ACT
The link cannot be re-activated on demand by the local node.

AP_REMOTE_ACT
The link cannot be activated by the remote node. For a link
configured with disable_remote_act set to AP_YES, this bit
is ignored (activation by a remote node is always disabled by
STOP_LS).

150 System Management Programming

 STOP_LS

If the disable field is not set to AP_NO, then STOP_LS can
be issued for a link that is not active or that is in the process
of deactivating, for the purpose of setting the disable field.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_UNRECOGNIZED_DEACT_TYPE

AP_LINK_NOT_DEFD

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_LINK_DEACT_IN_PROGRESS

If the verb does not execute because it was canceled, Communications Server
returns the following parameter:

primary_rc AP_CANCELLED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 151

 STOP_PORT

 STOP_PORT
STOP_PORT requests that a port be stopped. It is returned specifying whether the
port was stopped successfully.

 VCB Structure
typedef struct stop_port
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char stop_type; /* Stop Type */
unsigned char port_name[8]; /* name of port */

} STOP_PORT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_STOP_PORT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

stop_type Manner in which the port should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping the
port.

AP_IMMEDIATE_STOP
Node should stop the port immediately.

port_name Name of port to be stopped. This is an 8-byte string in a
locally displayable character set, which must match that on
the DEFINE_PORT verb.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PORT_NAME

AP_UNRECOGNIZED_DEACT_TYPE

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_STOP_PORT_PENDING

152 System Management Programming

 STOP_PORT

If the verb does not execute because it has been canceled, Communications
Server returns the following parameter:

primary_rc AP_CANCELLED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 153

 ACTIVATE_SESSION

 ACTIVATE_SESSION
The ACTIVATE_SESSION verb requests activation of a session between the local
LU and a specified partner LU using the characteristic of a particular mode.

 VCB Structure
typedef struct activate_session
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv3; /* reserved */

unsigned char session_id[8]; /* session identifier */
} ACTIVATE_SESSION;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_ACTIVATE_SESSION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU requested to activate a session.
This name is an 8-byte type-A EBCDIC character string. If
this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias Alias of the local LU requested to activate a session. This is
an 8-byte string in a locally displayable character set. This
field is only significant if the lu_name field is set to all zeros,
in which case all 8 bytes are significant and must be set. If
both the lu_alias and the lu_name are set to all zeros then
the verb is forwarded to the LU associated with the control
point (the default LU).

plu_alias Alias by which the partner LU is known to the local LU. This
name must match the name of a partner LU established
during configuration. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

mode_name Name of a set of networking characteristics defined during
configuration. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

154 System Management Programming

 ACTIVATE_SESSION

fqplu_name Fully qualified LU name for the partner LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is only significant if the plu_alias field is set to all zeros.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

secondary_rc AP_AS_SPECIFIED

AP_AS_NEGOTIATED

session_id 8-byte identifier of the activated session.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PLU_NAME

AP_LU_SESS_LIMIT_EXCEEDED
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_MODE_NAME

If the verb exceeds the session limit for the mode, Communications Server returns
the following parameters:

primary_rc AP_PARAMETER_CHECK

Secondary_rc AP_EXCEEDS_MAX_ALLOWED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of other errors, Communications Server
returns one of the following parameters:

primary_rc AP_ACTIVATION_FAIL_NO_RETRY

AP_ACTIVATION_FAIL_RETRY

 Chapter 5. Activation and Deactivation Verbs 155

 DEACTIVATE_CONV_GROUP

 DEACTIVATE_CONV_GROUP
The DEACTIVATE_CONV_GROUP verb requests the deactivation of the session
corresponding to the specified conversation group. Although this verb is part of the
Node Operator Facility API, it is primarily intended for use by application
programmers writing transaction programs that use the Communications Server
APPC API. The conversation group identifier is returned by the MC_ALLOCATE,
ALLOCATE, MC_GET_ATTRIBUTES, GET_ATTRIBUTES and
RECEIVE_ALLOCATE verbs defined in Communications Server Client/Server
Communications Programming.

 VCB Structure
typedef struct deactivate_conv_group
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned long conv_group_id; /* conversation group identifier */
unsigned char type; /* deactivation type */

 unsigned char reserv3[3]; /* reserved */
unsigned long sense_data; /* deactivation sense data */

} DEACTIVATE_CONV_GROUP;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEACTIVATE_CONV_GROUP

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU requested to deactivate the
conversation group. This name is an 8-byte type-A EBCDIC
character string. If this field is set to all zeros, the lu_alias
field will be used for determining the local LU.

lu_alias Alias of the local LU requested to deactivate the conversation
group. This is an 8-byte string in a locally displayable
character set. This field is only significant if the lu_name
field is set to all zeros, in which case all 8 bytes are
significant and must be set. If both the lu_name and
lu_alias are set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

conv_group_id Conversation group identifier for the session to be
deactivated.

type Type of deactivation.

AP_DEACT_CLEANUP
The session is terminated immediately, without waiting for a
response from the partner LU.

156 System Management Programming

 DEACTIVATE_CONV_GROUP

AP_DEACT_NORMAL
The session terminates after all conversations using the
session are ended.

sense_data Specifies the sense data for use in the CLEANUP type of
deactivation.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_CLEANUP_TYPE

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 5. Activation and Deactivation Verbs 157

 DEACTIVATE_SESSION

 DEACTIVATE_SESSION
The DEACTIVATE_SESSION verb requests the deactivation of a particular session,
or all sessions on a particular mode.

 VCB Structure
typedef struct deactivate_session
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char session_id[8]; /* session identifier */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char type; /* deactivation type */

 unsigned char reserv3[3]; /* reserved */
unsigned long sense_data; /* deactivation sense data */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv4[20]; /* reserved */
} DEACTIVATE_SESSION;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEACTIVATE_SESSION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU requested to deactivate a session.
This name is an 8-byte type-A EBCDIC character string. If
this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias Alias of the local LU requested to deactivate a session. This
is an 8-byte string in a locally displayable character set. This
field is only significant if the lu_name field is set to all zeros,
in which case all 8 bytes are significant and must be set. If
both the lu_name and the lu_alias fields are set to all zeros
then the verb is forwarded to the LU associated with the
control point (the default LU).

session_id 8-byte identifier of the session to deactivate. If this field is
set to all zeros, Communications Server deactivates all
sessions for the partner LU and mode.

plu_alias Alias by which the partner LU is known to the local LU. This
name must match the name of a partner LU established
during configuration. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

158 System Management Programming

 DEACTIVATE_SESSION

mode_name Name of a set of networking characteristics defined during
configuration. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

type Type of deactivation.

AP_DEACT_CLEANUP
Terminates the session immediately, without waiting for a
response from the partner LU.

AP_DEACT_NORMAL
Terminates the session after all conversations using the
session are ended.

sense_data Specifies the sense data to be used for the CLEANUP type
of deactivation.

fqplu_name Fully qualified LU name for the partner LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is only significant if the plu_alias field is set to all zeros.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

Note that if the session_id cannot be matched with any
existing sessions, it is assumed that this is because the
session has already been deactivated. In this case the verb
completes successfully.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_MODE_NAME

AP_INVALID_PLU_NAME
AP_INVALID_CLEANUP_TYPE
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

 Chapter 5. Activation and Deactivation Verbs 159

 DEACTIVATE_SESSION

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

160 System Management Programming

 PATH_SWITCH

 PATH_SWITCH
The PATH_SWITCH verb requests Communications Server to switch routes on a
connection that supports high-performance routing (HPR). If a better path cannot
be found, the connection is left unchanged.

 VCB Structure
typedef struct path_switch
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

 unsigned char rtp_connection_name[8];
/* RTP connection name */

} PATH_SWITCH;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_PATH_SWITCH

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

rtp_connection_name Identifies the RTP connection to path-switch. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant and must be set.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_RTP_CONNECTION

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_PATH_SWITCH_IN_PROGRESS

If the verb does not execute because the path switch attempt fails, Communications
Server returns the following parameter:

primary_rc AP_UNSUCCESSFUL

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

 Chapter 5. Activation and Deactivation Verbs 161

 PATH_SWITCH

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

162 System Management Programming

 Chapter 6. Query Verbs

This chapter describes verbs used to query information about node configuration
and status.

Only certain parameters are supported on SNA API clients. See the ringing

telephone () for more detailed information.

 Copyright IBM Corp. 1989, 1997 163

 QUERY_ADJACENT_NN

 QUERY_ADJACENT_NN
QUERY_ADJACENT_NN is only used at a network node and returns information
about adjacent network nodes (that is, those network nodes to which CP-CP
sessions are active or have been active or have been active at some time).

The adjacent node information is returned as a formatted list. To obtain information
about a specific network node or to obtain the list information in several “chunks,”
the adj_nncp_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered on the adj_nncp_name Ordering is by name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected the list starts from the next entry according to the defined ordering
(whether the specified entry exists or not).

 VCB Structure
typedef struct query_adjacent_nn
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char adj_nncp_name[17]; /* CP name of adj network node */

} QUERY_ADJACENT_NN;

typedef struct adj_nncp_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char adj_nncp_name[17]; /* CP name of adj. network node */
unsigned char cp_cp_sess_status; /* CP-CP session status */
unsigned long out_of_seq_tdus; /* out of sequence TDUs */
unsigned long last_frsn_sent; /* last FRSN sent */
unsigned long last_frsn_rcvd; /* last FRSN received */

 unsigned char reserva[20]; /* reserved */
} ADJ_NNCP_DATA;

164 System Management Programming

 QUERY_ADJACENT_NN

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_ADJACENT_NN

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:
The adj_nncp_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

adj_nncp_name Fully-qualified, 17 byte, name of adjacent network node
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries The number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

 Chapter 6. Query Verbs 165

 QUERY_ADJACENT_NN

adj_nncp_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

adj_nncp_data.adj_nncp_name
17-byte fully-qualified CP name of adjacent network node
which is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

adj_nncp_data.cp_cp_sess_status
Status of the CP-CP session. This is set to one of the
following:

AP-ACTIVE
AP_CONWINNER_ACTIVE
AP_CONLOSER_ACTIVE
AP_INACTIVE

adj_nncp_data.out_of_seq_tdus
Number of out_of_sequence TDUs received from this node.

adj_nncp_data.last_frsn_sent
The last flow reduction sequence number sent to this node.

adj_nncp_data.last_frsn_rcvd
The last flow reduction sequence number received from this
node.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_ADJ_NNCP_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

166 System Management Programming

 QUERY_CN

 QUERY_CN
QUERY_CN returns information about adjacent Connection Networks. This
information is structured as “determined data” (data gathered dynamically during
execution) and “defined data” (the data supplied by the application on
DEFINE_CN).

The information is returned as a formatted list. To obtain information about a
specific CN, or to obtain the list information in several “chunks,” the fqcn_name
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered on the fqcn_name . Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the list will start from the next entry
according to the defined ordering (whether the specified entry exists or not).

 VCB Structure
typedef struct query_cn
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char fqcn_name[17]; /* Name of connection network */

} QUERY_CN;

typedef struct cn_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char fqcn_name[17]; /* Name of connection network */

 unsigned char reserv1; /* reserved */
CN_DET_DATA det_data; /* Determined data */
CN_DEF_DATA def_data; /* Defined data */

} CN_DATA;

typedef struct cn_det_data
{

unsigned short num_act_ports; /* number of active ports */
 unsigned char reserva[20]; /* reserved */
} CN_DET_DATA;

 Chapter 6. Query Verbs 167

 QUERY_CN

typedef struct cn_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char num_ports; /* number of ports on CN */

 unsigned char reserv1[16]; /* reserved */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

} CN_DEF_DATA;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */

unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */

 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */

unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */
unsigned char user_def_parm_1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def_parm_3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_CN

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:
The fqcn_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

168 System Management Programming

 QUERY_CN

fqcn_name Fully qualified, 17-byte, connection network name. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

cn_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

cn_data.fqcn_name Fully qualified, 17-byte, connection network name. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

cn_data.det_data.num_act_ports
Dynamic value giving number of active ports on the
connection network.

cn_data.def_data.description
Resource description (as specified on DEFINE_CN). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

cn_data.def_data.num_ports
Number of ports on the connection network.

cn_data.def_data.tg_chars.effect_cap
Actual units of effective capacity. The value is encoded as a
1-byte floating-point number, represented by the formula
0.1mmm * 2 eeeee, where the bit representation of the byte
is eeeeemmm. Each unit of effective capacity is equal to 300
bits per second.

cn_data.def_data.tg_chars.connect_cost Cost per connect time.
Valid values are integer values in the range 0—255, where 0
is the lowest cost per connect time and 255 is the highest.

 Chapter 6. Query Verbs 169

 QUERY_CN

cn_data.def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range
0—255, where 0 is the lowest cost per byte and 255 is the
highest.

cn_data.def_data.tg_chars.security
Security values as described in the list below.

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data is transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cn_data.def_data.tg_chars.prop_delay
Propagation delay representing the time it takes for a signal
to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by
the formula 0.1mmm * 2 eeeee, where the bit representation
of the byte is eeeeemmm. Default values are listed below.

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cn_data.def_data.tg_chars.modem_class
Reserved. This field should always be set to zero.

cn_data.def_data.tg_chars.user_def_parm_1
User defined parameter in the range 0—255.

cn_data.def_data.tg_chars.user_def_parm_2
User defined parameter in the range 0—255.

170 System Management Programming

 QUERY_CN

cn_data.def_data.tg_chars.user_def_parm_3
User defined parameter in the range 0—255.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_CN_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 171

 QUERY_CN_PORT

 QUERY_CN_PORT
QUERY_CN_PORT returns information about ports defined on adjacent connection
networks. The information is returned as a formatted list. To obtain information
about a specific port, or to obtain the list information in several “chunks,” the
port_name field should be set. Otherwise (if the list_options field is set to
AP_FIRST_IN_LIST), this field will be ignored. Note that the fqcn_name field must
always be set to the name of a valid connection network.

See “Querying the Node” on page 11, for background on how the list formats are
used.

 VCB Structure
typedef struct query_cn_port
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char fqcn_name[17]; /* Name of connection network */
unsigned char port_name[8]; /* port name */

} QUERY_CN_PORT;

typedef struct cn_port_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char fqcn_name[17]; /* Name of connection network */
unsigned char port_name[8]; /* name of port */
unsigned char tg_num; /* transmission group number */

 unsigned char reserva[20]; /* reserved */
} CN_PORT_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_CN_PORT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

172 System Management Programming

 QUERY_CN_PORT

list_options This indicates what should be returned in the list information:
The combination of fqcn_name and port_name specified
(see the following parameter) represents an index value that
is used to specify the starting point of the actual information
to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

fqcn_name Fully qualified, 17-byte, connection network name. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field must
always be set.

port_name 8-byte string in a locally displayable character set. All 8
bytes are significant and must be set. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

cn_port_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

cn_port_data.fqcn_name
Fully qualified, 17-byte, connection network name. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

cn_port_data.port_name
Port name in an 8-byte, locally displayable character set. All
8 bytes are significant.

 Chapter 6. Query Verbs 173

 QUERY_CN_PORT

cn_port_data.tg_num
Transmission group number for specified port.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_CN_NAME

AP_INVALID_PORT_NAME
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

174 System Management Programming

 QUERY_COS

 QUERY_COS
QUERY_COS returns route calculation information for a specific class of service.
The information is returned as a formatted list. To obtain information about a
specific COS, or to obtain the list information in several “chunks,” the cos_name
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used. This list is ordered on the cos_name . Ordering is by name
length first, and then by ASCII lexicographical ordering for names of the same
length (in accordance with IBM's 6611 APPN MIB ordering). If
AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

 VCB Structure
typedef struct query_cos
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char cos_name[8]; /* COS name */

} QUERY_COS;

typedef struct cos_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char cos_name[8]; /* COS name */

 unsigned char description[RD_LEN];
/* resource description */

 unsigned char transmission_priority;
/* transmission priority */

 unsigned char reserv1; /* reserved */
unsigned short num_of_node_rows; /* number of node rows */
unsigned short num_of_tg_rows; /* number of TG rows */
unsigned long trees; /* number of tree caches for COS */
unsigned long calcs; /* number of route calculations */

/* for this COS */
unsigned long rejs; /* number of route rejects */

/* for COS */
 unsigned char reserva[20]; /* reserved */
} COS_DATA;

 Chapter 6. Query Verbs 175

 QUERY_COS

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_COS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:
The cos_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

cos_name Class-of-service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

cos_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

176 System Management Programming

 QUERY_COS

cos_data.cos_name
Class-of-service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

cos_data.description
Resource description (as specified on DEFINE_COS). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

cos_data.transmission_priority
Transmission priority. This is set to one of the following
values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

cos_data.num_of_node_rows
Number of node rows for this COS.

cos_data.num_of_tg_rows
Number of TG rows for this COS.

cos_data.trees Number of route tree caches built for this COS since the last
initialization.

cos_data.calcs Number of session activation requests (and therefore route
calculations) specifying this class of service.

cos_data.rejs Number of session activation requests that failed because
there was no acceptable (using the specified class of service)
route from this node to the named destination through the
network. A route is only acceptable if it is made up entirely
of active TGs and nodes that can provide the specified class
of service.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_COS_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 177

 QUERY_DEFAULT_PU

 QUERY_DEFAULT_PU
QUERY_DEFAULT_PU allows the user to query the default PU defined using a
DEFINE_DEFAULT_PU verb.

 VCB Structure
typedef struct query_default_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char def_pu_name[8]; /* default PU name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char def_pu_sess[8]; /* PU name of active */
/* default session */

 unsigned char reserv3[16]; /* reserved */
} QUERY_DEFAULT_PU;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DEFAULT_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

def_pu_name Name of the PU specified on the most recent
DEFINE_DEFAULT_PU verb. This is an 8-byte
alphanumeric type A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If no
DEFINE_DEFAULT_PU verb has been issued then this field
will be set to all zeros.

description Resource description (as specified on
DEFINE_DEFAULT_PU). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

def_pu_sess Name of the PU associated with the currently active default
PU session. This will be different from the def_pu_name
field if a default PU has been defined, but the session
associated with it is not active. In this case, Communications
Server continues to use the session associated with the
previous default PU until the session associated with the
defined default PU becomes active. If there are no active PU
sessions then this field will be set to all zeros.

178 System Management Programming

 QUERY_DEFAULT_PU

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 179

 QUERY_DEFAULTS

 QUERY_DEFAULTS
QUERY_DEFAULTS allows the user to query the defaults defined using the
DEFINE_DEFAULTS verb.

 VCB Structure
typedef struct query_defaults
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
DEFAULT_CHARS default_chars; /* default information */

} QUERY_DEFAULTS;

typedef struct default_chars
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char mode_name[8]; /* default mode name */

 unsigned char reserv[248]; /* reserved */
} DEFAULT_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DEFAULTS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

default_chars.description
Resource description (as specified on DEFINE_DEFAULTS).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

default_chars.mode_name
Name of the mode specified on the most recent
DEFINE_DEFAULTS verb. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. If no DEFINE_DEFAULTS verb
has been issued then this field will be set to all zeros.

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

180 System Management Programming

 QUERY_DEFAULTS

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 181

 QUERY_DIRECTORY_LU

 QUERY_DIRECTORY_LU
QUERY_DIRECTORY_LU returns a list of LUs from the directory database. The
information is returned as a list in one of two formats, either summary or detailed
information. To obtain information about a specific LU, or to obtain the list
information in several “chunks,” the lu_name field should be set. Otherwise (if the
list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 11, for background on how the list formats are used.

This list is ordered by the lu_name . Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

 VCB Structure
typedef struct query_directory_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char lu_name[17]; /* network qualified LU name */

} QUERY_DIRECTORY_LU;

typedef struct directory_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[17]; /* network qualified LU name */
unsigned char description[RD_LEN]; /* resource description */

} DIRECTORY_LU_SUMMARY;

typedef struct directory_lu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[17]; /* network qualified LU name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char server_name[17]; /* network qualified */

/* server name */
unsigned char lu_owner_name[17]; /* network qualified */

/* LU owner name */
unsigned char location; /* Resource location */
unsigned char entry_type; /* Type of the directory entry */
unsigned char wild_card; /* type of wildcard entry */

 unsigned char reserva[20]; /* reserved */
} DIRECTORY_LU_DETAIL;

182 System Management Programming

 QUERY_DIRECTORY_LU

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DIRECTORY_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The lu_name specified (see the following parameter)
 represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

lu_name Network qualified LU name. This name is 17 bytes long and
is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8
bytes with no embedded spaces.) This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of directory entries returned.

 Chapter 6. Query Verbs 183

 QUERY_DIRECTORY_LU

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

directory_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

directory_lu_summary.lu_name
Network qualified LU name. This name is 17 bytes long and
is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8
bytes with no embedded spaces.)

directory_lu_summary.description
Resource description (as specified on DEFINE_LOCAL_LU,
or DEFINE_ADJACENT_NODE). This is a 16-byte string in
a locally displayable character set. All 16 bytes are
significant.

directory_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

directory_lu_detail.lu_name
Network qualified LU name. This name is 17 bytes long and
is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8
bytes with no embedded spaces.)

directory_lu_detail.description
Resource description (as specified on DEFINE_LOCAL_LU,
or DEFINE_ADJACENT_NODE). This is a 16-byte string in
a locally displayable character set. All 16 bytes are
significant.

directory_lu_detail.server_name
Network qualified name of the node serving the LU. This
name is 17 bytes long and is right-padded with EBCDIC
spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

directory_lu_detail.lu_owner_name
Network qualified name of the node owning the LU. This
name is 17 bytes long and is right-padded with EBCDIC
spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

directory_lu_detail.location
Specifies the location of the resource, which can be one of
the following values:

AP_LOCAL
The resource is at the local node.

184 System Management Programming

 QUERY_DIRECTORY_LU

AP_DOMAIN
The resource belongs to an attached end node.

AP_CROSS_DOMAIN
The resource is not within the domain of the local node.

directory_lu_detail.entry_type
Specifies the type of the directory entry. This can be one of
the following values:

AP_HOME
Local resource.

AP_CACHE
Cached entry.

AP_REGISTER
Registered resource (NN only).

directory_lu_detail.wild_card
Specifies the type of wildcard the LU will match.

AP_OTHER
Unknown type of LU entry.

AP_EXPLICIT
The full lu_name will be used for locating this LU.

AP_PARTIAL_WILDCARD
Only the nonspace portions of lu_name will be used for
locating this LU.

AP_FULL_WILDCARD
All lu_names will be directed to this LU.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 185

 QUERY_DIRECTORY_STATS

 QUERY_DIRECTORY_STATS
QUERY_DIRECTORY_STATS returns directory database statistics. (The statistics
that refer to cache information are reserved in the case of an end node). The verb
can be used to gauge the level of network locate traffic. In the case of a network
node this information can be used to tune the size of the directory cache, which is
configurable at node-initialization time.

 VCB Structure
typedef struct query_directory_stats
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned long max_caches; /* max number of cache entries */
unsigned long cur_caches; /* cache entry count */
unsigned long cur_home_entries; /* home entry count */
unsigned long cur_reg_entries; /* registered entry count */

 unsigned long cur_directory_entries;
/* current number of dir entries */

unsigned long cache_hits; /* count of cache finds */
unsigned long cache_misses; /* count of resources found by */

/* broadcast search (not cache) */
unsigned long in_locates; /* locates in */
unsigned long in_bcast_locates; /* broadcast locates in */
unsigned long out_locates; /* locates out */
unsigned long out_bcast_locates; /* broadcast locates out */
unsigned long not_found_locates; /* unsuccessful locates */

 unsigned long not_found_bcast_locates;
/* unsuccessful broadcast */

 /* locates */
 unsigned long locates_outstanding;

/* total outstanding locates */
 unsigned char reserva[20]; /* reserved */
} QUERY_DIRECTORY_STATS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DIRECTORY_STATS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

max_caches Reserved.

cur_caches Reserved.

186 System Management Programming

 QUERY_DIRECTORY_STATS

cur_home_entries
Current number of home entries.

cur_reg_entries
Current number of registered entries.

cur_directory_entries
Total number of entries currently in the directory.

cache_hits Reserved.

cache_misses
Reserved.

in_locates Number of directed locates received.

in_bcast_locates
Number of broadcast locates received.

out_locates Number of directed locates sent.

out_bcast_locates
Number of broadcast locates sent.

not_found_locates
Number of directed locates returned with a “not found.”

not_found_bcast_locates
Number of broadcast locates returned with a “not found.”

locates_outstanding
Current number of outstanding locates, both directed and broadcast.

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 187

 QUERY_DLC

 QUERY_DLC
QUERY_DLC returns a list of information about the DLCs defined at the node.
This information is structured as “determined data” (data gathered dynamically
during execution) and “defined data” (the data supplied by the application on
DEFINE_DLC).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific DLC, or to obtain the
list information in several “chunks,” the dlc_name field should be set. Otherwise
(if the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored.
See “Querying the Node” on page 11, for background on how the list formats are
used.

This list is ordered by the dlc_name . Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

 VCB Structure
typedef struct query_dlc
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char dlc_name[8]; /* name of DLC */

} QUERY_DLC;

typedef struct dlc_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char dlc_name[8]; /* name of DLC */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char state; /* State of the DLC */
unsigned char dlc_type; /* DLC type */

} DLC_SUMMARY;

typedef struct dlc_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char dlc_name[8]; /* name of DLC */

 unsigned char reserv2[2]; /* reserved */
DLC_DET_DATA det_data; /* Determined data */

188 System Management Programming

 QUERY_DLC

DLC_DEF_DATA def_data; /* Defined data */
} DLC_DETAIL;

typedef struct dlc_det_data
{

unsigned char state; /* State of the DLC */
 unsigned char reserv3[3]; /* reserved */
 unsigned char reserva[20]; /* reserved */
} DLC_DET_DATA;

typedef struct dlc_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char dlc_type; /* DLC type */
unsigned char neg_ls_supp; /* negotiable LS support */
unsigned char port_types; /* allowable port types */

 unsigned char reserv3[11]; /* reserved */
unsigned short dlc_spec_data_len; /* Length of DLC specific data */

} DLC_DEF_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DLC

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dlc_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

 Chapter 6. Query Verbs 189

 QUERY_DLC

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

dlc_name DLC name. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.
This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

dlc_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

dlc_summary.dlc_name
DLC name. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

dlc_summary.description
Resource description (as specified on DEFINE_DLC). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

dlc_summary.state State of the DLC. This field is set to one of the following
values:

AP_ACTIVE
AP_NOT_ACTIVE
AP_PENDING_INACTIVE

dlc_summary.dlc_type
Type of DLC. Communications Server supports the following
types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

dlc_detail.overlay_size
The number of bytes in this entry (including dlc_spec_data),
and hence the offset to the next entry returned (if any).

190 System Management Programming

 QUERY_DLC

dlc_detail.dlc_name
DLC name. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

dlc_detail.det_data.state
State of the DLC. This field is set to one of the following
values:

AP_ACTIVE
AP_NOT_ACTIVE
AP_PENDING_INACTIVE

dlc_detail.def_data.description
Resource description (as specified on DEFINE_DLC). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

dlc_detail.def_data.dlc_type
Type of DLC. Communications Server supports the following
types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

dlc_detail.def_data.neg_ls_supp
Specifies whether the DLC supports negotiable link stations
(AP_YES or AP_NO).

dlc_detail.def_data.port_types
Specifies the allowable port types for the supplied dlc_type .
The value corresponds to one or more of the following values
Ored together:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

dlc_detail.def_data.dlc_spec_data_len
Unpadded length, in bytes, of data specific to the type of
DLC. The data will be concatenated to the DLC_DETAIL
structure. This data will be padded to end on a 4-byte
boundary. This field should always be set to zero.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DLC_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

 Chapter 6. Query Verbs 191

 QUERY_DLC

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

192 System Management Programming

 QUERY_DLUR_LU

 QUERY_DLUR_LU
QUERY_DLUR_LU returns a list of information about DLUR-supported LUs.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LU, or to obtain the list
information in several “chunks,” the lu_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered by the lu_name . Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

The list of LUs returned can be filtered by pu_name or by whether the LU is local
or downstream or by both. If filtering by PU is desired, the pu_name field should
be set (otherwise this field should be set to all zeros). If filtering by location is
desired, the filter field should be set to AP_INTERNAL or AP_DOWNSTREAM
(otherwise, if no filtering is required, this field should be set to AP_NONE).

 VCB Structure
typedef struct query_dlur_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* name of LU */
unsigned char pu_name[8]; /* name of PU to filter on */

 unsigned char filter; /* reserved */
} QUERY_DLUR_LU;

typedef struct dlur_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* name of LU */

} DLUR_LU_SUMMARY;

typedef struct dlur_lu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* name of LU */
unsigned char pu_name[8]; /* name of owning PU */

 Chapter 6. Query Verbs 193

 QUERY_DLUR_LU

unsigned char dlus_name[17]; /* DLUS name if SSCP-LU */
/* session active */

unsigned char lu_location; /* downstream or local LU */
unsigned char nau_address; /* NAU address of LU */
unsigned char plu_name[17]; /* PLU name if PLU-SLU session */

 /* active */
 unsigned char reserv1[27]; /* reserved */

unsigned char rscv_len; /* length of appended RSCV */
} DLUR_LU_DETAIL;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DLUR_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The lu_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

lu_name Name of LU being queried. This is an 8-byte alphanumeric
type A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

pu_name PU name filter. This should be set to all zeros or an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If this field is set

194 System Management Programming

 QUERY_DLUR_LU

then only LUs associated with the specified PU are returned.
This field is ignored if it is set to all zeros.

filter Location filter. Specifies whether the returned LUs should
be filtered by location (AP_INTERNAL or
AP_DOWNSTREAM). If no filter is required, this field should
be set to AP_NONE.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

dlur_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

dlur_lu_summary.lu_name
Name of LU. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

dlur_lu_detail.overlay_size
The number of bytes in this entry (including appended
RSCV), and hence the offset to the next entry returned (if
any).

dlur_lu_detail.lu_name
Name of LU. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

dlur_lu_detail.pu_name
Name of PU associated with the LU. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

dlur_lu_detail.dlus_name
Name of the DLUS node if the SSCP-LU session is active.
This is a 17-byte string composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) If
the SSCP-LU session is not active, this field will be set to all
zeros.

 Chapter 6. Query Verbs 195

 QUERY_DLUR_LU

dlur_lu_detail.lu_location
Location of LU. The only value returned is:

AP_INTERNAL
AP_DOWNSTREAM

dlur_lu_detail.nau_address
Network addressable unit address of the LU. This is in the
range 1—255.

dlur_lu_detail.plu_name
Name of PLU if the LU has an active PLU-SLU session.
This is a 17-byte string composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) If
the PLU-SLU session is not active, this field will be set to all
zeros.

dlur_lu_detail.rscv_len
This value will always be zero.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_FILTER_OPTION
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

196 System Management Programming

 QUERY_DLUR_PU

 QUERY_DLUR_PU
QUERY_DLUR_PU returns a list of information about DLUR-supported PUs.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific PU, or to obtain the list
information in several “chunks,” the pu_name field should be set. Otherwise (if the
list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 11, for background on how the list formats are used.

This list is ordered by the pu_name . Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

The list of PUs returned can be filtered either by dlus_name or by whether the PU
is local or downstream or by both. If filtering by DLUS is desired, the dlus_name
field should be set (otherwise this field should be set to all zeros). If filtering by PU
location is desired, the filter field should be set to AP_INTERNAL or
AP_DOWNSTREAM (otherwise, if no filtering is required, this field should be set to
AP_NONE).

 VCB Structure
typedef struct query_dlur_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char pu_name[8]; /* name of PU */
unsigned char dlus_name[17]; /* fully qualified DLUS name */
unsigned char filter; /* local/downstream filter */

} QUERY_DLUR_PU;

typedef struct dlur_pu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* name of PU */

 unsigned char description[RD_LEN];
/* resource description */

} DLUR_PU_SUMMARY;

typedef struct dlur_pu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* name of PU */

 Chapter 6. Query Verbs 197

 QUERY_DLUR_PU

 unsigned char description[RD_LEN];
/* resource description */

 unsigned char defined_dlus_name[17];
/* defined DLUS name */

unsigned char bkup_dlus_name[17]; /* backup DLUS name */
unsigned char pu_id[4]; /* PU identifier */
unsigned char pu_location; /* downstream or local PU */

 unsigned char active_dlus_name[17];
/* active DLUS name */

unsigned char ans_support; /* Auto-Network shutdown support */
unsigned char pu_status; /* status of the PU */
unsigned char dlus_session_status; /* status of the DLUS pipe */

 unsigned char reserv3; /* reserved */
FQPCID fqpcid; /* FQPCID used on pipe */

} DLUR_PU_DETAIL;

typedef struct fqpcid
{

unsigned char pcid[8]; /* proc correlator identifier */
unsigned char fqcp_name[17]; /* originator's network */

/* qualified CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DLUR_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The pu_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

198 System Management Programming

 QUERY_DLUR_PU

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

pu_name Name of PU being queried. This is an 8-byte alphanumeric
type A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

dlus_name DLUS filter. This should be set to all zeros or to a 17-byte
string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. If this field is set then only PUs associated
with an SSCP-PU session to the specified DLUS node are
returned. This field is ignored if it is set to all zeros.

filter This field should be set to AP_NONE.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

dlur_pu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

dlur_pu_summary.pu_name
Name of PU. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

dlur_pu_summary.description
Resource description (as specified on
DEFINE_INTERNAL_PU). This is a 16-byte string in a
locally displayable character set. All 16 bytes are significant.

dlur_pu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

dlur_pu_detail.pu_name
Name of PU. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

 Chapter 6. Query Verbs 199

 QUERY_DLUR_PU

dlur_pu_detail.description
Resource description (as specified on
DEFINE_INTERNAL_PU). This is a 16-byte string in a
locally displayable character set. All 16 bytes are significant.

dlur_pu_detail.defined_dlus_name
Name of the DLUS node defined by either a
DEFINE_INTERNAL_PU verb or DEFINE_LS verb (with
dspu_services set to AP_DLUR). This is a 17-byte string
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

dlur_pu_detail.bkup_dlus_name
Name of backup DLUS node defined by either a
DEFINE_INTERNAL_PU verb or DEFINE_LS verb (with
dspu_services set to AP_DLUR). This is a 17-byte string
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

dlur_pu_detail.pu_id
PU identifier defined in a DEFINE_INTERNAL_PU verb or
obtained in an XID from a downstream PU. This a 4-byte
hexadecimal string. Bits 0—11 are set to the Block number
and bits 12—31 are set to the ID number that uniquely
identifies the PU.

dlur_pu_detail.pu_location
Location of PU. The only value returned is:

AP_INTERNAL
AP_DOWNSTREAM

dlur_pu_detail.active_dlus_name
Name of the DLUS node that the PU is currently using. This
is a 17-byte string composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) If
the SSCP-PU session is not active, this field will be set to all
zeros.

dlur_pu_detail.ans_support
Auto Network Shutdown support. This field is reserved if the
SSCP-LU session is inactive. The support setting is sent to
DLUR from the DLUS at SSCP-PU activation. It specifies
whether link-level contact should be continued if the subarea
node initiates an auto network shutdown procedure for the
SSCP controlling the PU. This can be one of the following
values:

AP_CONT
AP_STOP

200 System Management Programming

 QUERY_DLUR_PU

dlur_pu_detail.pu_status
Status of the PU (as seen by DLUR). This can be set to one
of the following values:

AP_RESET
The PU is in reset state.

AP_PEND_ACTPU
The PU is waiting for an ACTPU from the host.

AP_PEND_ACTPU_RSP
Having forwarded an ACTPU to the PU, DLUR is now waiting
for the PU to respond to it.

AP_ACTIVE
The PU is active.

AP_PEND_DACTPU_RSP
Having forwarded a DACTPU to the PU, DLUR is waiting for
the PU to respond to it.

AP_PEND_INOP
DLUR is waiting for all necessary events to complete before
it deactivates the PU.

dlur_pu_detail.dlus_session_status
Status of the DLUS pipe currently being used by the PU.
This can be one of the following values:

AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE
AP_INACTIVE

dlur_pu_detail.fqpcid.pcid
Procedure correlator ID used on the pipe. This is an 8-byte
hexadecimal string. If the SSCP-PU session is not active
this field will be set to zeros.

dlur_pu_detail.fqpcid.fqcp_name
Fully qualified Control Point name used on the pipe. This
name is 17 bytes long and is right-padded with EBCDIC
spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.) If the SSCP-PU session is not active this field will
be set to zeros.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_FILTER_OPTION
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

 Chapter 6. Query Verbs 201

 QUERY_DLUR_PU

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

202 System Management Programming

 QUERY_DLUS

 QUERY_DLUS
QUERY_DLUS returns a list of information about DLUS nodes known by DLUR.

The information is returned as a list. To obtain information about a specific DLUS
node, or to obtain the list information in several “chunks,” the dlus_name field
should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered by the dlus_name . Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

Note that this verb returns pipe statistics.

 VCB Structure
typedef struct query_dlus
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char dlus_name[17]; /* fully qualified DLUS name */

} QUERY_DLUS;

typedef struct dlus_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char dlus_name[17]; /* fully qualified DLUS name */
unsigned char is_default; /* is the DLUS the default */
unsigned char is_backup_default; /* is DLUS the backup default */
unsigned char pipe_state; /* state of CPSVRMGR pipe */
unsigned short num_active_pus; /* num of active PUs using pipe */
PIPE_STATS pipe_stats; /* pipe statistics */

} DLUS_DATA;

typedef struct pipe_stats
{

unsigned long reqactpu_sent; /* REQACTPUs sent to DLUS */
 unsigned long reqactpu_rsp_received;

/* RSP(REQACTPU)s received */
/* from DLUS */

 Chapter 6. Query Verbs 203

 QUERY_DLUS

unsigned long actpu_received; /* ACTPUs received from DLUS */
unsigned long actpu_rsp_sent; /* RSP(ACTPU)s sent to DLUS */
unsigned long reqdactpu_sent; /* REQDACTPUs sent to DLUS */

 unsigned long reqdactpu_rsp_received;
/* RSP(REQDACTPU)s received */
/* from DLUS */

unsigned long dactpu_received; /* DACTPUs received from DLUS */
unsigned long dactpu_rsp_sent; /* RSP(DACTPU)s sent to DLUS */
unsigned long actlu_received; /* ACTLUs received from DLUS */
unsigned long actlu_rsp_sent; /* RSP(ACTLU)s sent to DLUS */
unsigned long dactlu_received; /* DACTLUs received from DLUS */
unsigned long dactlu_rsp_sent; /* RSP(DACTLU)s sent to DLUS */
unsigned long sscp_pu_mus_rcvd; /* MUs for SSCP-PU */

/* sessions received */
unsigned long sscp_pu_mus_sent; /* MUs for SSCP-PU sessions sent */
unsigned long sscp_lu_mus_rcvd; /* MUs for SSCP-LU sessions */

 /* received */
unsigned long sscp_lu_mus_sent; /* MUs for SSCP-LU sessions sent */

} PIPE_STATS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DLUS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dlus_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

204 System Management Programming

 QUERY_DLUS

dlus_name Name of the DLUS being queried. This should be set to all
zeros or a 17-byte string composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

dlus_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

dlus_data.dlus_name
Name of the DLUS. This is a 17-byte string composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.)

dlus_data.is_default
Specifies whether the DLUS node has been designated as
the default by a DEFINE_DLUR_DEFAULTS verb (AP_YES
or AP_NO).

dlus_data.is_backup_default
Specifies whether the DLUS node has been designated as
the backup default by a DEFINE_DLUR_DEFAULTS verb
(AP_YES or AP_NO).

dlus_data.pipe_state
State of the pipe to the DLUS. It can have one of the
following values:

AP_ACTIVE
AP_PENDING_ACTIVE
AP_INACTIVE
AP_PENDING_INACTIVE

dlus_data.num_active_pus
Number of PUs currently using the pipe to the DLUS.

dlus_data.pipe_stats.reqactpu_sent
Number of REQACTPUs sent to DLUS over the pipe.

 Chapter 6. Query Verbs 205

 QUERY_DLUS

dlus_data.pipe_stats.reqactpu_rsp_received
Number of RSP(REQACTPU)s received from DLUS over the
pipe.

dlus_data.pipe_stats.actpu_received
Number of ACTPUs received from DLUS over the pipe.

dlus_data.pipe_stats.actpu_rsp_sent
Number of RSP(ACTPU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.reqdactpu_sent
Number of REQDACTPUs sent to DLUS over the pipe.

dlus_data.pipe_stats.reqdactpu_rsp_received
Number of RSP(REQDACTPU)s received from DLUS over
the pipe.

dlus_data.pipe_stats.dactpu_received
Number of DACTPUs received from DLUS over the pipe.

dlus_data.pipe_stats.dactpu_rsp_sent
Number of RSP(DACTPU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.actlu_received
Number of ACTLUs received from DLUS over the pipe.

dlus_data.pipe_stats.actlu_rsp_sent
Number of RSP(ACTLU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.dactlu_received
Number of DACTLUs received from DLUS over the pipe.

dlus_data.pipe_stats.dactlu_rsp_sent
Number of RSP(DACTLU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.sscp_pu_mus_rcvd
Number of SSCP-PU MUs received from DLUS over the
pipe.

dlus_data.pipe_stats.sscp_pu_mus_sent
Number of SSCP-PU MUs sent to DLUS over the pipe.

dlus_data.pipe_stats.sscp_lu_mus_rcvd
Number of SSCP-LU MUs received from DLUS over the
pipe.

dlus_data.pipe_stats.sscp_lu_mus_sent
Number of SSCP-LU MUs sent to DLUS over the pipe.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_DLUS_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

206 System Management Programming

 QUERY_DLUS

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 207

 QUERY_DOWNSTREAM_LU

 QUERY_DOWNSTREAM_LU
QUERY_DOWNSTREAM_LU returns information about downstream LUs served by
DLUR or PU concentration or both. This information is structured as determined
data (data gathered dynamically during execution) and defined data. (Defined data
is supplied by the application on the DEFINE_DOWNSTREAM_LU verb. Note that
for DLUR-supported LUs, implicitly defined data is put in place when the
downstream LU is activated).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU or to obtain
the list information in several chunks, the dslu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored.

The returned LUs may be filtered by the type of service the local node provides or
the LU's associated downstream PU or both. If filtering by type of service is
desired, the dspu_services field should be set to AP_PU_CONCENTRATION or
AP_DLUR (otherwise, this field should be set to AP_NONE). If filtering by PU is
desired, the dspu_name field should be set (otherwise, this field should be set to
all zeros).

 VCB Structure
typedef struct query_downstream_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char dslu_name[8]; /* Downstream LU name */
unsigned char dspu_name[8]; /* Downstream PU name filter */
unsigned char dspu_services; /* filter on DSPU services type */

} QUERY_DOWNSTREAM_LU;

typedef struct downstream_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char dslu_name[8]; /* LU name */
unsigned char dspu_name[8]; /* PU name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char dspu_services; /* type of service provided to */
/* downstream node */

unsigned char nau_address; /* NAU address */
 unsigned char lu_sscp_sess_active;

/* Is LU-SSCP session active */
unsigned char plu_sess_active; /* Is PLU-SLU session active */

} DOWNSTREAM_LU_SUMMARY

208 System Management Programming

 QUERY_DOWNSTREAM_LU

typedef struct downstream_lu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char dslu_name[8]; /* LU name */

 unsigned char reserv1[2]; /* reserved */
DOWNSTREAM_LU_DET_DATA det_data; /* Determined data */
DOWNSTREAM_LU_DEF_DATA def_data; /* Defined data */

} DOWNSTREAM_LU_DETAIL;

typedef struct downstream_lu_det_data
{
 unsigned char lu_sscp_sess_active;

/* Is LU-SSCP session active */
unsigned char plu_sess_active; /* Is PLU-SLU session active */
unsigned char dspu_services; /* type of services provided to */

/* downstream node */
 unsigned char reserv1; /* reserved */

SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
SESSION_STATS ds_plu_stats; /* downstream PLU-SLU session */

 /* statistics */
SESSION_STATS us_plu_stats; /* upstream PLU_SLU sess stats */

 unsigned char reserva[20]; /* reserved */
} DOWNSTREAM_LU_DET_DATA;

typedef struct downstream_lu_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char nau_address; /* NAU address */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_lu_name[8]; /* host LU or pool name */

 unsigned char reserv2[8]; /* reserved */
} DOWNSTREAM_LU_DEF_DATA

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num of FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */

 unsigned long rcv_fmd_data_frames;
/* num of FMD data frames recvd */

unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 Chapter 6. Query Verbs 209

 QUERY_DOWNSTREAM_LU

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DOWNSTREAM_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dslu_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

dslu_name Name of the local LU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

dspu_name PU name filter. This should be set to all zeros or an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If this field is set,
then only LUs associated with the specified PU are returned.
This field is ignored if it is set to all zeros.

dspu_services DSPU services filter. If set to AP_PU_CONCENTRATION,
only downstream LUs served by PU concentration are
returned. If set to AP_DLUR, only DLUR-supported LUs are
returned. Otherwise, if set to AP_NONE, information on all
downstream LUs is returned.

210 System Management Programming

 QUERY_DOWNSTREAM_LU

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

downstream_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

downstream_lu_summary.dslu_name
Name of the local LU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

downstream_lu_summary.dspu_name
Name of local PU that this LU is using. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

downstream_lu_summary.description
Resource description (as specified on
DEFINE_DOWNSTREAM_LU or
DEFINE_DOWNSTREAM_LU_RANGE). This is a 16-byte
string in a locally displayable character set. All 16 bytes are
significant.

downstream_lu_summary.dspu_services
Specifies the services which the local node provides to the
downstream LU across the link. This is set to one of the
following:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the
downstream LU.

AP_DLUR
Local node that provides DLUR support for the downstream
LU.

downstream_lu_summary.nau_address
Network addressable unit address of the LU, which is in the
range 1—255.

downstream_lu_summary.lu_sscp_sess_active
Indicates whether the LU-SSCP session is active (AP_YES
or AP_NO).

 Chapter 6. Query Verbs 211

 QUERY_DOWNSTREAM_LU

downstream_lu_summary.plu_sess_active
Indicates whether the PLU-SLU session is active (AP_YES or
AP_NO).

downstream_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

downstream_lu_detail.dslu_name
Name of the local LU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

downstream_lu_detail.det_data.lu_sscp_sess_active
Indicates whether the LU-SSCP session to the downstream
LU is active (AP_YES or AP_NO).

downstream_lu_detail.det_data.plu_sess_active
Indicates whether the PLU-SLU session to the downstream
LU is active (AP_YES or AP_NO).

downstream_lu_detail.det_data.dspu_services
Specifies the services that the local node provides to the
downstream LU across the link. This is set to one of the
following values:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the
downstream LU.

AP_DLUR
Local node that provides DLUR support for the downstream
LU.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_ru_size
Maximum receive RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.lu_sscp_stats.send_ru_size
Maximum send RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

212 System Management Programming

 QUERY_DOWNSTREAM_LU

downstream_lu_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_lu_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

downstream_lu_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

downstream_lu_detail.det_data.lu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station, and sets it to one
if the BIND sender is the node containing the secondary link
station.

downstream_lu_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

downstream_lu_detail.det_data.ds_plu_stats.rcv_ru_size
Maximum receive RU size.

downstream_lu_detail.det_data.ds_plu_stats.send_ru_size
Maximum send RU size.

downstream_lu_detail.det_data.ds_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.ds_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.ds_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.send_data_frames
Number of normal flow data frames sent.

 Chapter 6. Query Verbs 213

 QUERY_DOWNSTREAM_LU

downstream_lu_detail.det_data.ds_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.ds_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.ds_plu_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_lu_detail.det_data.ds_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_lu_detail.det_data.ds_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_lu_detail.det_data.ds_plu_stats.sidh
Session ID high byte.

downstream_lu_detail.det_data.ds_plu_stats.sidl
Session ID low byte.

downstream_lu_detail.det_data.ds_plu_stats.odai
Origin Destination Address Indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station, and sets it to 1 if
the BIND sender is the node containing the secondary link
station.

downstream_lu_detail.det_data.ds_plu_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

downstream_lu_detail.det_data.us_plu_stats.rcv_ru_size
Maximum receive RU size.

downstream_lu_detail.det_data.us_plu_stats.send_ru_size
Maximum send RU size.

downstream_lu_detail.det_data.us_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.us_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.us_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.us_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

214 System Management Programming

 QUERY_DOWNSTREAM_LU

downstream_lu_detail.det_data.us_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.us_plu_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_lu_detail.det_data.us_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_lu_detail.det_data.us_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_lu_detail.det_data.us_plu_stats.sidh
Session ID high byte. If
downstream_lu_detail.det_data_.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.sidl
Session ID low byte. If
downstream_lu_detail.det_data_.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.odai
Origin Destination Address Indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station, and sets it to 1 if
the BIND sender is the node containing the secondary link
station. If downstream_lu_detail.det_data_.dspu_services
is set to AP_PU_CONCENTRATION, then this field is
reserved.

downstream_lu_detail.det_data.us_plu_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. If
downstream_lu_detail.det_data_.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.def_data.description
Resource description (as specified on
DEFINE_DOWNSTREAM_LU or
DEFINE_DOWNSTREAM_LU_RANGE).

downstream_lu_detail.def_data.nau_address
Network addressable unit address of the LU, which is in the
range 1—255.

downstream_lu_detail.def_data.dspu_name
Name of PU associated with the LU. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

downstream_lu_detail.def_data.host_lu_name
Name of the host LU or host LU pool that the downstream
LU is mapped to. In the case of an LU, this is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. In the case of an
LU pool, Communications Server does not specify a
character set for this field. This field is reserved for
DLUR-served downstream LUs.

 Chapter 6. Query Verbs 215

 QUERY_DOWNSTREAM_LU

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

216 System Management Programming

 QUERY_DOWNSTREAM_PU

 QUERY_DOWNSTREAM_PU
QUERY_DOWNSTREAM_PU returns information about downstream PUs (defined
using a DEFINE_LS verb).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local PU or to obtain
the list information in several chunks, the dspu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field is
ignored.

The list of PUs can be filtered by the type of service the local node provides for the
downstream PU. To do this, the dspu_services field should be set to
AP_PU_CONCENTRATION or AP_DLUR.

 VCB Structure
typedef struct query_downstream_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char dspu_services; /* filter on DSPU services type */

} QUERY_DOWNSTREAM_PU;

typedef struct downstream_pu_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char dspu_name[8]; /* PU name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char ls_name[8]; /* Link name */
 unsigned char pu_sscp_sess_active;

/* Is PU-SSCP session active */
unsigned char dspu_services; /* DSPU service type */
SESSION _STATS pu_sscp_stats; /* SSCP-PU session stats */

 unsigned char reserva[20]; /* reserved */
} DOWNSTREAM_PU_DATA

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */

 Chapter 6. Query Verbs 217

 QUERY_DOWNSTREAM_PU

unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num of FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */

 unsigned long rcv_fmd_data_frames;
/* num of FMD data frames recvd */

unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DOWNSTREAM_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dslu_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

218 System Management Programming

 QUERY_DOWNSTREAM_PU

dspu_name Name of the downstream PU that is being queried. This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

dspu_services DSPU services filter. If set to AP_PU_CONCENTRATION,
only downstream LUs served by PU concentration are
returned. If set to AP_DLUR, only DLUR-supported LUs are
returned. Otherwise, if set to AP_NONE, information on all
downstream LUs is returned.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

downstream_pu_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

downstream_pu_data.dspu_name
Name of the downstream PU. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

downstream_pu_data.description
Resource description (as specified on DEFINE_LS).

downstream_pu_data.ls_name
Name of link station. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

downstream_pu_data.pu_sscp_sess_active
Indicates whether the PU_SSCP session to the downstream
PU is active. Set to either AP_YES or AP_NO.

downstream_pu_data.dspu_services
Specifies the services that the local node provides to the
downstream PU across the link. This is set to one of the
following values:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the
downstream LU.

AP_DLUR
Local node that provides DLUR support for the downstream
LU.

 Chapter 6. Query Verbs 219

 QUERY_DOWNSTREAM_PU

downstream_pu_data.pu_sscp_stats.rcv_ru_size
Maximum receive RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_pu_data.pu_sscp_stats.send_ru_size
Maximum send RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_pu_data.pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_pu_data.pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_pu_data.pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

downstream_pu_data.pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_pu_data.pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_pu_data.pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_pu_data.pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_pu_data.pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_pu_data.pu_sscp_stats.sidh
Session ID high byte.

downstream_pu_data.pu_sscp_stats.sidl
Session ID low byte.

downstream_pu_data.pu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station, and sets it to 1 if
the BIND sender is the node containing the secondary link
station.

downstream_pu_data.pu_sscp_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

220 System Management Programming

 QUERY_DOWNSTREAM_PU

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 221

 QUERY_DSPU_TEMPLATE

 QUERY_DSPU_TEMPLATE
QUERY_DSPU_TEMPLATE returns information about defined downstream PU
templates used for PU concentration over implicit links. This information is returned
as a list. To obtain information about a specific downstream PU template or to
obtain the list information in several chunks, the template_name field should be
set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field is
ignored.

 VCB Structure
typedef struct query_dspu_template
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char template_name[8]; /* name of DSPU template */

} QUERY_DSPU_TEMPLATE;

typedef struct dspu_template_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char template_name[8]; /* name of DSPU template */

 unsigned char description[RD_LEN];
/* resource description */

 unsigned char reserv1[12]; /* reserved */
unsigned short max_instance; /* max active template instances */
unsigned short active instance; /* current active instances */

 unsigned short num_of_dslu_templates;
/* number of DSLU templates */

} DSPU_TEMPLATE_DATA;

Each dspu_template_data is followed by num_of_dslu_templates downstream
LU templates. Each downstream LU template has the following format.

typedef struct dslu_template_data
{

unsigned short overlay_size; /* size of this entry */
 unsigned char reserv1[2]; /* reserved */

DSLU_TEMPLATE dslu_template; /* downstream LU template */
} DSLU_TEMPLATE_DATA;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */

 unsigned char reserv1[10]; /* reserved */
unsigned char host_lu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

222 System Management Programming

 QUERY_DSPU_TEMPLATE

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_DSPU_TEMPLATE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

The template_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

template_name Name of the DSPU template. This is an 8_byte string in a
locally-displayable character set. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

dspu_template_data.overlay_size
The number of bytes in this entry (including any downstream
LU templates, and hence the offset to the next entry
returned, if any).

 Chapter 6. Query Verbs 223

 QUERY_DSPU_TEMPLATE

dspu_template_data.template_name
Name of the DSPU template. This is an 8_byte string in a
locally-displayable character set.

dspu_template_data.description
Resource description (as specified on
QUERY_DSPU_TEMPLATE).

dspu_template_data.max_instance
This is the maximum number of instances of the template
which can be active concurrently.

dspu_template_data.active_instance
This is the number of instances of the template which are
currently active.

dspu_template_data.num_of_dslu_templates
Number of downstream LU templates for this downstream PU
template. Following this field are
num_of_dslu_templates_application_id entries, one for
each application registered for the focal point category.

dslu_template_data.overlay_size
The number of bytes in this entry (and hence the offset to the
next entry returned, if any).

dslu_template_data.dslu_template.min_nau
Minimum NAU address in the range.

dslu_template_data.dslu_template.max_nau
Maximum NAU address in the range.

dslu_template_data.dslu_template.host_lu_name
Name of the host LU or host LU pool that all the downstream
LUs within the range will be mapped onto. This is an 8-byte
alphanumeric type A-EBCDIC string (starting with a letter),
padded to the right with EBCDIC Spaces.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TEMPLATE_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameters:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

224 System Management Programming

 QUERY_FOCAL_POINT

 QUERY_FOCAL_POINT
QUERY_FOCAL_POINT returns information about focal points that
Communications Server knows about.

This information is returned as a list. To obtain information about a specific focal
point category or to obtain the list information in several “chunks,” the ms_category
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

 VCB Structure
typedef struct query_focal_point
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char ms_category[8]; /* name of MS category */

} QUERY_FOCAL_POINT;

typedef struct fp_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char ms_appl_name[8]; /* focal point application name */
unsigned char ms_category[8]; /* focal point category */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char fp_fqcp_name[17]; /* focal pt fully qual CP name */
unsigned char bkup_appl_name[8]; /* backup focal pt appl name */

 unsigned char bkup_fp_fqcp_name[17];
/* backup FP fully qualified */
/* CP name */

 unsigned char implicit_appl_name[8];
/* implicit FP appl name */

 unsigned char implicit_fp_fqcp_name[17];
/* implicit FP fully */
/* qualified CP name */

unsigned char fp_type; /* focal point type */
unsigned char fp_status; /* focal point status */
unsigned char fp_routing; /* type of MDS routing to use */

 unsigned char reserva[20]; /* reserved */
unsigned short number_of_appls; /* number of applications */

} FP_DATA;

 Chapter 6. Query Verbs 225

 QUERY_FOCAL_POINT

Each fp_data is followed by number_of_appls application names. Each
application name has the following format:

typedef struct application_id
{

unsigned char appl_name[8]; /* application name */
} APPLICATION_ID;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_FOCAL_POINT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:
The ms_category specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

ms_category Management services category. This can either be one of
the 4-byte architecturally defined values (right-padded with
EBCDIC spaces) for management services categories as
described in SNA management services, or an 8-byte type
1134 EBCDIC installation defined name. This field is ignored
if list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

226 System Management Programming

 QUERY_FOCAL_POINT

num_entries The number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

fp_data.overlay_size
The number of bytes in this entry (including any application
names, and hence the offset to the next entry returned (if
any)).

fp_data.ms_appl_name
Name of the currently active focal point application. This can
either be one of the 4-byte architecturally defined values
(right-padded with EBCDIC spaces) for management services
applications as described in SNA management services, or
an 8-byte type 1134 EBCDIC installation defined name.

fp_data.ms_category
Management services category. This can either be one of
the 4-byte architecturally defined values (right-padded with
EBCDIC spaces) for management services categories as
described in SNA management services, or an 8-byte type
1134 EBCDIC installation defined name.

fp_data.description Resource description (as specified on
DEFINE_FOCAL_POINT). This is a 16-byte string in a
locally displayable character set. All 16 bytes are significant.

fp_data.fp_fqcp_name
Currently active focal point's fully qualified control point
name. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no
embedded spaces.)

fp_data.bkup_appl_name
Name of backup focal point application. This can either be
one of the 4-byte architecturally defined values (right-padded
with EBCDIC spaces) for management services applications
as described in SNA management services, or an 8-byte type
1134 EBCDIC installation defined name.

fp_data.bkup_fp_fqcp_name
Backup focal point's fully qualified control point name. This
name is 17 bytes long and is right-padded with EBCDIC
spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

fp_data.implicit_appl_name
Name of implicit focal point application (specified using the
DEFINE_FOCAL_POINT verb). This can either be one of
the four byte architecturally defined values (right-padded with
EBCDIC spaces) for management services applications as
described in SNA management services, or an 8-byte type
1134 EBCDIC installation defined name. This field will be

 Chapter 6. Query Verbs 227

 QUERY_FOCAL_POINT

the same as the ms_appl_name if the implicit focal point is
the currently active focal point.

fp_data.bkup_fp_fqcp_name
Implicit focal point's fully qualified control point name (as
specified using the DEFINE_FOCAL_POINT verb). This
name is 17 bytes long and is right-padded with EBCDIC
spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.) This field will be the same as the fp_fqcp_name if
the implicit focal point is the currently active focal point.

fp_data.fp_type Type of focal point. Refer to SNA Management Services for
further detail. This will be one of the following values:

AP_EXPLICIT_PRIMARY_FP
AP_BACKUP_FP
AP_DEFAULT_PRIMARY_FP
AP_IMPLICIT_PRIMARY_FP
AP_DOMAIN_FP
AP_HOST_FP
AP_NO_FP

fp_data.fp_status Status of the focal point. This can be one of the following
values:

AP_NOT_ACTIVE
The focal point is currently not active.

AP_ACTIVE
The focal point is currently active.

AP_PENDING
The focal point is pending active. This occurs after an
implicit request has been sent to the focal point and before
the response has been received.

AP_NEVER_ACTIVE
No focal point information is available for the specified
category although application registrations for the category
have been accepted.

fp_data.fp_routing Type of routing that applications should specify when using
MDS transport to send data to the focal point.

AP_DEFAULT
Default routing is used to deliver the MDS_MU to the focal
point.

AP_DIRECT
The MDS_MU will be routed on a session directly to the focal
point.

fp_data.number_of_appls
Number of applications registered for this focal point
category. Following this field will be number_of_appls
application_id entries , one for each application registered
for the focal point category.

228 System Management Programming

 QUERY_FOCAL_POINT

appl_name Name of application registered for focal point category. This
can either be one of the 4-byte architecturally defined values
(right-padded with EBCDIC spaces) for management services
applications as described in SNA management services, or
an 8-byte type 1134 EBCDIC installation defined name.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_MS_CATEGORY

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 229

 QUERY_ISR_SESSION

 QUERY_ISR_SESSION
QUERY_ISR_SESSION is only used at a Network Node and returns list information
about sessions for which the network node is providing intermediate session
routing.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific session, or to obtain
the list information in several “chunks,” the fields in the fqpcid structure should be
set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), the fields in
this structure is ignored. See “Querying the Node” on page 11, for background on
how the list formats are used.

This list is ordered by fqpcid.pcid first and then by EBCDIC lexicographical
ordering on fqpcid.fqcp_name . If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

The format of the fqpcid structure is an 8-byte Procedure Correlator Identifier
(PCID) and the network qualified CP name of the session originator.

 VCB Structure
typedef struct query_isr_session
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
} QUERY_ISR_SESSION;

typedef struct isr_session_summary
{

unsigned short overlay_size; /* size of this entry */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
} ISR_SESSION_SUMMARY;

typedef struct isr_session_detail
{

unsigned short overlay_size; /* size of this entry */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
unsigned char trans_pri; /* Transmission priority: */
unsigned char cos_name[8]; /* Class-of-service name */
unsigned char ltd_res; /* Session spans a limited */

 /* resource */

230 System Management Programming

 QUERY_ISR_SESSION

 SESSION_STATS pri_sess_stats; /* primary hop session stats */
 SESSION_STATS sec_sess_stats; /* secondary hop session */
 /* statistics */
 unsigned char reserv3[3]; /* reserved */
 unsigned char reserva[20]; /* reserved */

unsigned char rscv_len; /* Length of following RSCV */
} ISR_SESSION_DETAIL;

typedef struct fqpcid
{

unsigned char pcid[8]; /* pro correlator identifier */
unsigned char fqcp_name[17]; /* orig's network qualified */

/* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* Maximum send BTU size */
unsigned short max_rcv_btu_size; /* Maximum rcv BTU size */
unsigned short max_send_pac_win; /* Max send pacing window size */
unsigned short cur_send_pac_win; /* Curr send pacing window size */
unsigned short max_rcv_pac_win; /* Max receive pacing win size */
unsigned short cur_rcv_pac_win; /* Curr rec pacing window size */
unsigned long send_data_frames; /* Number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num of FMD data frames sent */

 unsigned long send_data_bytes; /* Number of data bytes sent */
 unsigned long rcv_data_frames; /* Num data frames received */
 unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* Num data bytes received */
unsigned char sidh; /* Session ID high byte */
unsigned char sidl; /* Session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Supplied parameters
The application supplies the following parameters:

opcode AP_QUERY_ISR_SESSION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

 Chapter 6. Query Verbs 231

 QUERY_ISR_SESSION

list_options This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The fqpcid specified (see the following parameter) represent
an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

fqpcid.pcid Procedure Correlator ID. This is an 8-byte hexadecimal
string. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

fqpcid.pcid_name Fully qualified Control Point name. This name is 17-bytes
long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

isr_session_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

isr_session_summary.fqpcid.pcid
Procedure Correlator ID.

isr_session_summary.fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17-bytes
long and is right-padded with EBCDIC spaces. It is

232 System Management Programming

 QUERY_ISR_SESSION

composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

isr_session_detail.overlay_size
The number of bytes in this entry (including any appended
RSCV), and hence the offset to the next entry returned (if
any).

isr_session_detail.fqpcid.pcid
Procedure Correlator ID.

isr_session_detail.fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17-bytes
long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

session_detail.trans_pri
Transmission priority. This is set to one of the following
values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

session_detail.cos_name
Class-of-service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

session_detail.ltd_res
Specifies whether the session uses a limited resource link
(AP_YES or AP_NO).

isr_session_detail.pri_sess_stats.rcv_ru_size
Maximum receive RU size.

isr_session_detail.pri_sess_stats.send_ru_size
Maximum send RU size.

isr_session_detail.pri_sess_stats.max_send_btu_size
Maximum BTU size that can be sent on primary session hop.

isr_session_detail.pri_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received on the primary
session hop.

isr_session_detail.pri_sess_stats.max_send_pac_win
Maximum size of the send pacing window on the primary
session hop.

isr_session_detail.pri_sess_stats.cur_send_pac_win
Current size of the send pacing window on the primary
session hop.

isr_session_detail.pri_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on the primary
session hop.

 Chapter 6. Query Verbs 233

 QUERY_ISR_SESSION

isr_session_detail.pri_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on the primary
session hop.

isr_session_detail.pri_sess_stats.send_data_frames
Number of normal flow data frames sent on the primary
session hop.

isr_session_detail.pri_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent on the primary
session hop.

isr_session_detail.pri_sess_stats.send_data_bytes
Number of normal flow data bytes sent on the primary
session hop.

isr_session_detail.pri_sess_stats.rcv_data_frames
Number of normal flow data frames received on the primary
session hop.

isr_session_detail.pri_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received on the
primary session hop.

isr_session_detail.pri_sess_stats.rcv_data_bytes
Number of normal flow data bytes received on the primary
session hop.

isr_session_detail.pri_sess_stats.sidh
Session ID high byte.

isr_session_detail.pri_sess_stats.sidl
Session ID low byte.

isr_session_detail.pri_sess_stats.odai
Origin destination address indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station. It sets it to one if
the BIND sender is the node containing the secondary link
station.

isr_session_detail.pri_sess_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. This field can be used to correlate the
session statistics with the link over which session data flows.

isr_session_detail.sec_sess_stats.rcv_ru_size
Maximum receive RU size.

isr_session_detail.sec_sess_stats.send_ru_size
Maximum send RU size.

isr_session_detail.sec_sess_stats.max_send_btu_size
Maximum BTU size that can be sent on secondary session
hop.

isr_session_detail.sec_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received on the secondary
session hop.

234 System Management Programming

 QUERY_ISR_SESSION

isr_session_detail.sec_sess_stats.max_send_pac_win
Maximum size of the send pacing window on the secondary
session hop.

isr_session_detail.sec_sess_stats.cur_send_pac_win
Current size of the send pacing window on the secondary
session hop.

isr_session_detail.sec_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on the
secondary session hop.

isr_session_detail.sec_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on the secondary
session hop.

isr_session_detail.sec_sess_stats.send_data_frames
Number of normal flow data frames sent on the secondary
session hop.

isr_session_detail.sec_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent on the
secondary session hop.

isr_session_detail.sec_sess_stats.send_data_bytes
Number of normal flow data bytes sent on the secondary
session hop.

isr_session_detail.sec_sess_stats.rcv_data_frames
Number of normal flow data frames received on the
secondary session hop.

isr_session_detail.sec_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received on the
secondary session hop.

isr_session_detail.sec_sess_stats.rcv_data_bytes
Number of normal flow data bytes received on the secondary
session hop.

isr_session_detail.sec_sess_stats.sidh
Session ID high byte.

isr_session_detail.sec_sess_stats.sidl
Session ID low byte (from LFSID).

isr_session_detail.sec_sess_stats.odai
Origin destination address indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station. It sets it to one if
the BIND sender is the node containing the secondary link
station.

isr_session_detail.sec_sess_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. This field can be used to correlate the
intermediate session statistics with a particular link station.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

 Chapter 6. Query Verbs 235

 QUERY_ISR_SESSION

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_FQPCID

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

236 System Management Programming

 QUERY_LOCAL_LU

 QUERY_LOCAL_LU
QUERY_LOCAL_LU returns information about local LUs. QUERY_LOCAL_LU can
be issued to retrieve information about the Communications Server control point
LU.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU, or to obtain
the list information in several “chunks,” the lu_name or lu_alias field should be set.
If the lu_name field is nonzero it will be used to determine the index. If the
lu_name field is set to all zeros, the lu_alias will be used to determine the index.
If both the lu_name and the lu_alias fields are set to all zeros then the LU
associated with the control point (the default LU) will be used. If the list_options
field is set to AP_FIRST_IN_LIST then both of these fields will be ignored. (In this
case, the returned list will be ordered by LU alias if the AP_LIST_BY_ALIAS
list_options is set, otherwise it will be ordered by LU name). See “Querying the
Node” on page 11, for background on how the list formats are used.

This list is ordered on either lu_alias or lu_name according to the options
specified. The field is ordered by EBCDIC lexicographical ordering.

The list of local LUs returned can be filtered by the name of the PU that they are
associated with. In this case, the pu_name field should be set (otherwise this field
should be set to all zeros).

 VCB Structure
typedef struct query_local_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char pu_name[8]; /* PU name filter */

} QUERY_LOCAL_LU;

typedef struct local_lu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */

 unsigned char description[RD_LEN];
/* resource description */

} LOCAL_LU_SUMMARY;

typedef struct local_lu_detail
{

 Chapter 6. Query Verbs 237

 QUERY_LOCAL_LU

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* LU name */
LOCAL_LU_DEF_DATA def_data; /* defined data */
LOCAL_LU_DEF_DATA det_data; /* determined data */

} LOCAL_LU_DETAIL;

typedef struct local_lu_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char nau_address; /* NAU address */

 unsigned char syncpt_support; /* Reserved */
unsigned short lu_session_limit; /* LU session limit */

 unsigned char reserv1; /* reserved */
 unsigned char reserv2; /* reserved */

unsigned char pu_name[8]; /* PU name */
 unsigned char reserv3[8]; /* reserved */
 unsigned char attach_routing_data[128];

/* routing data for */
/* incoming attaches */

} LOCAL_LU_DEF_DATA;

typedef struct local_lu_det_data
{
 unsigned char lu_sscp_sess_active;

/* Is LU-SSCP session active */
unsigned char appl_conn_active; /* Is LU-SSCP session active */

 unsigned char reserv1[2]; /* reserved */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */

} LOCAL_LU_DET_DATA;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num of FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */

 unsigned long rcv_fmd_data_frames;
/* num of FMD data frames recvd */

unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

238 System Management Programming

 QUERY_LOCAL_LU

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_LOCAL_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The lu_name (or lu_alias if the lu_name is set to all zeros)
specified represents an index value that is used to specify
the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

AP_LIST_BY_ALIAS
The returned list is ordered by lu_alias . This option is only
valid when AP_FIRST_IN_LIST is specified. If
AP_LIST_FROM_NEXT or AP_LIST_INCLUSIVE is
specified, the list ordering will depend on whether an
lu_name or lu_alias has been supplied as a starting point.

lu_name LU name. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be
used for determining the index. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If both the lu_name and the lu_alias field are
set to all zeros, the LU associated with the control point (the
default LU) is used. This field is ignored if list_options is
set to AP_FIRST_IN_LIST.

 Chapter 6. Query Verbs 239

 QUERY_LOCAL_LU

pu_name PU name filter. This should be set to all zeros or an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If this field is set
then only Local LUs associated with this PU are returned.
This field is ignored if it is set to all zeros.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

local_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

local_lu_summary.lu_name
LU name. This name is an 8-byte type-A EBCDIC character
string.

local_lu_summary.lu_alias
Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

local_lu_summary.description
Resource description (as specified on DEFINE_LOCAL_LU).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

local_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

local_lu_detail.lu_name
LU name. This name is an 8-byte type-A EBCDIC character
string.

local_lu_detail.def_data.description
Resource description (as specified on DEFINE_LOCAL_LU).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

local_lu_detail.def_data.lu_alias
Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

local_lu_detail.def_data.nau_address
Network addressable unit address of the LU, which is in the
range 0—255. A nonzero value implies the LU is a
dependent LU. Zero implies the LU is an independent LU.

240 System Management Programming

 QUERY_LOCAL_LU

local_lu_detail.def_data.syncpt_support
Reserved.

local_lu_detail.def_data.lu_session_limit
Maximum number of sessions for the local LU. A value of
zero indicates that there is no limit.

local_lu_detail.def_data.default_pool
AP_YES if the LU is a member of the dependent LU 6.2
default pool. Always AP_NO for independent LUs.

local_lu_detail.def_data.pu_name
Name of the PU that this LU will use. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This field is only
used by dependent LUs, and will be set to all binary zeros for
independent LUs.

local_lu_detail.def_data.attach_routing_data
Reserved.

local_lu_detail.det_data.lu_sscp_session_active
Specifies whether the LU-SSCP session is active (AP_YES
or AP_NO). If the def_data.nau_address is zero, then this
field is reserved.

local_lu_detail.det_data.appl_conn_active
Specifies whether an application is using the LU (AP_YES or
AP_NO). If the def_data.nau_address is zero, then this
field is reserved.

local_lu_detail.det_data.lu_sscp_stats.rcv_ru_size
This field is always reserved.

local_lu_detail.det_data.lu_sscp_stats.send_ru_size
This field is always reserved.

local_lu_detail.det_data.lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

local_lu_detail.det_data.lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

local_lu_detail.det_data.lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

local_lu_detail.det_data.lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

local_lu_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

local_lu_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

local_lu_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

local_lu_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

local_lu_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

 Chapter 6. Query Verbs 241

 QUERY_LOCAL_LU

local_lu_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

local_lu_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

local_lu_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

local_lu_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

local_lu_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

local_lu_detail.det_data.lu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a
session, the sender of the ACTLU sets this field to zero if the
local node contains the primary link station, and sets it to one
if the ACTLU sender is the node containing the secondary
link station.

local_lu_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. This field can be used to correlate this
session with the link over which the session flows.

Note: The LU-SSCP statistics (local_lu_detail.det_data.lu_sscp_stats) are valid
only when nau_address is not zero. Otherwise the fields are reserved.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_ALIAS

AP_INVALID_LU_NAME
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

242 System Management Programming

 QUERY_LOCAL_TOPOLOGY

 QUERY_LOCAL_TOPOLOGY
All APPN nodes maintain a local topology database that holds information about
the transmission groups (TGs) to all adjacent nodes.

QUERY_LOCAL_TOPOLOGY allows information about these TGs to be returned.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local TG, or to obtain
the list information in several “chunks,” the dest , dest_type , and tg_num fields
should be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST),
these fields will be ignored. See “Querying the Node” on page 11, for background
on how the list formats are used. This list is ordered on dest first, then on
dest_type and finally on tg_num . The dest name is ordered by name length first,
then by lexicographical ordering for names of the same length. The dest_type field
follows the order: AP_LEN_NODE, AP_NETWORK_NODE, AP_END_NODE,
AP_VRN. The tg_num is ordered numerically.

If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid
record of that name.

If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid record
with a name following the one specified.

 VCB Structure
typedef struct query_local_topology
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

} QUERY_LOCAL_TOPOLOGY;

typedef struct local_topology_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

} LOCAL_TOPOLOGY_SUMMARY;

typedef struct local_topology_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char dest[17]; /* TG destination node */

 Chapter 6. Query Verbs 243

 QUERY_LOCAL_TOPOLOGY

unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

 unsigned char reserv1; /* reserved */
LINK_ADDRESS dlc_data; /* DLC signalling data */
unsigned long rsn; /* resource sequence number */

unsigned char status; /* TG status */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

 unsigned char reserva[16]; /* reserved */
} LOCAL_TOPOLOGY_DETAIL;

typedef struct link_address
{
 unsigned short length; /* length */
 unsigned short reserve1; /* reserved */
 unsigned char address[MAX_LINK_ADDR_LEN];
 /* address */
} LINK_ADDRESS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_LOCAL_TOPOLOGY

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the dest , dest_type and tg_num
specified (see the following parameter) represents an index
value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

244 System Management Programming

 QUERY_LOCAL_TOPOLOGY

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

dest Fully qualified destination node name for the TG. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

dest_type Node type of the destination node for this TG. This can be
one of the following values:

AP_NETWORK_NODE
AP_VRN
AP_END_NODE
AP_LEARN_NODE

If the dest_type is unknown, AP_LEARN_NODE must be
specified. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

tg_num Number associated with the TG. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

local_topology_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

local_topology_summary.dest
Fully qualified destination node name for the TG. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

local_topology_summary.dest_type
Type of the destination node for this TG. This is set to one
of the following values:

AP_NETWORK_NODE
AP_VRN
AP_END_NODE

 Chapter 6. Query Verbs 245

 QUERY_LOCAL_TOPOLOGY

Note that if dest_type is set to AP_END_NODE, this
specifies that the TG destination is either to a LEN node or to
an end node.

local_topology_summary.tg_num
Number associated with the TG.

local_topology_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

local_topology_detail.dest
Fully qualified destination node name for the TG. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

local_topology_detail.dest_type
Type of the destination node for this TG. This is set to one
of the following values:

AP_NETWORK_NODE
AP_VRN
AP_END_NODE

Note that if dest_type is set to AP_END_NODE, this
specifies that the TG destination is either to a LEN node or to
an end node.

local_topology_detail.tg_num
Number associated with the TG.

local_topology_detail.dlc_data.length
Length of DLC address of connection to a VRN (set to zero if
dest_type is not AP_VRN).

local_topology_detail.dlc_data.address
DLC address of connection to VRN.

local_topology_detail.rsn
Resource Sequence Number. This is assigned by the
network node that owns this resource.

local_topology_detail.status
Specifies the status of the TG. This can be one or more of
the following values ORed together:

AP_TG_OPERATIVE
AP_TG_CP_CP_SESSIONS
AP_TG_QUIESCING
AP_TG_HPR
AP_TG_RTP
AP_NONE

local_topology_detail.tg_chars
TG characteristics (See “DEFINE_CN” on page 31).

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

246 System Management Programming

 QUERY_LOCAL_TOPOLOGY

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TG

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 247

 QUERY_LS

 QUERY_LS
QUERY_LS returns a list of information about the link stations defined at the node.
This information is structured as “determined data” (data gathered dynamically
during execution) and “defined data” (the data supplied by the application on
DEFINE_LS).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LS, or to obtain the list
information in several “chunks,” the ls_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered by the ls_name . Ordering is according to name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is
selected, the returned list starts from the next entry according to the defined
ordering (whether the specified entry exists or not).

The list of link stations returned can be filtered by the name of the port that they
belong to. In this case, the port_name field should be set (otherwise this field
should be set to all zeros).

 VCB Structure
typedef struct query_ls
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char ls_name[8]; /* name of link station */
unsigned char port_name[8]; /* name of link station */

} QUERY_LS;

typedef struct ls_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char ls_name[8]; /* link station name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char dlc_type; /* DLC type */
unsigned char state; /* link station state */
unsigned short act_sess_count; /* currently active sess count */

 unsigned char det_adj_cp_name[17];
/* determined adj CP name */

unsigned char det_adj_cp_type; /* determined adj node type */

248 System Management Programming

 QUERY_LS

unsigned char port_name[8]; /* port name */
unsigned char adj_cp_name[17]; /* adjacent CP name */
unsigned char adj_cp_type; /* adjacent node type */

} LS_SUMMARY;

typedef struct ls_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char ls_name[8]; /* link stations name */
LS_DET_DATA det_data; /* determined data */
LS_DEF_DATA def_data; /* defined data */

} LS_DETAIL;

typedef struct ls_det_data
{

unsigned short act_sess_count; /* curr active sessions count */
unsigned char dlc_type; /* DLC type */
unsigned char state; /* link station state */
unsigned char sub_state; /* link station sub state */

 unsigned char det_adj_cp_name[17];
/* adjacent CP name */

unsigned char det_adj_cp_type; /* adjacent node type */
unsigned char dlc_name[8]; /* name of DLC */
unsigned char dynamic; /* is LS is dynamic ? */
unsigned char migration; /* supports migration partners */
unsigned char tg_num; /* TG number */

 LS_STATS ls_stats; /* link station statistics */
unsigned long start_time; /* time LS started */
unsigned long stop_time; /* time LS stopped */
unsigned long up_time; /* total time LS active */
unsigned long current_state_time; /* time in current state */
unsigned char deact_cause; /* deactivation cause */
unsigned char hpr_support; /* TG HPR support */
unsigned char anr_label[2]; /* local ANR label */
unsigned char hpr_link_lvl_error; /* HPR link-level error */
unsigned char auto_act; /* auto activate */
unsigned char ls_role; /* link station role */

 unsigned char reserva; /* reserved */
unsigned char node_id[4]; /* determined node id */

 unsigned char reservb[32]; /* reserved */
} LS_DET_DATA;

typedef struct ls_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char port_name[8]; /* name of associated port */
unsigned char adj_cp_name[17]; /* adjacent CP name */
unsigned char adj_cp_type; /* adjacent node type */
LINK_ADDRESS dest_address; /* destination address */
unsigned char auto_act_supp; /* auto-activate supported */
unsigned char tg_number; /* Pre-assigned TG number */
unsigned char limited_resource; /* limited resource */

 unsigned char solicit_sscp_sessions;
/* solicit SSCP sessions */

unsigned char pu_name[8]; /* Local PU name (reserved if */
/* solicit_sscp_sessions is set */
/* to AP_NO) */

 Chapter 6. Query Verbs 249

 QUERY_LS

unsigned char disable_remote_act; /* disable remote activation flag */
unsigned char dspu_services; /* Services provided for */

/* downstream PU */
unsigned char dspu_name[8]; /* Downstream PU name (reserved */

/* if dspu_services is set to */
/* AP_NONE or AP_DLUR) */

unsigned char dlus_name[17]; /* DLUS name if dspu_services */
/* is set to AP_DLUR */

unsigned char bkup_dlus_name[17]; /* Backup DLUS name if */
/* dspu_services is set */
/* to AP_DLUR */

unsigned char hpr_supported; /* does the link support HPR? */
unsigned char hpr_link_lvl_error; /* does the link support HPR */

/* link-level error recovery? */
unsigned short link_deact_timer; /* HPR link deactivation timer */

 unsigned char reserv1; /* reserved */
unsigned char default_nn_server; /* Use as default LS to NN server */
unsigned char ls_attributes[4]; /* LS attributes */
unsigned char adj_node_id[4]; /* adjacent node ID */
unsigned char local_node_id[4]; /* local node ID */
unsigned char cp_cp_sess_support; /* CP-CP session support */

 unsigned char use_default_tg_chars;
/* Use default tg_chars */

TG_DEFINED_CHARS tg_chars; /* TG characteristics */
 unsigned short target_pacing_count;

/* target pacing count */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned char ls_role; /* link station role to use */

/* on this link */
unsigned char max_ifrm_rcvd; /* max number of I-frames rcvd */

 unsigned char reserv3[34]; /* reserved */

unsigned short link_spec_data_len; /* length of link specific data */
} LS_DEF_DATA;

typedef struct link_address
{
 unsigned short length; /* length */
 unsigned short reserve1; /* reserved */
 unsigned char address[MAX_LINK_ADDR_LEN];
 /* address */
} LINK_ADDRESS;

typedef struct link_spec_data
{
 unsigned char link_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* Effective capacity */
 unsigned char reserve1[5]; /* Reserved */

unsigned char connect_cost; /* Connection Cost */
unsigned char byte_cost; /* Byte cost */

 unsigned char reserve2; /* Reserved */
 unsigned char security; /* Security */

unsigned char prop_delay; /* Propagation delay */

250 System Management Programming

 QUERY_LS

unsigned char modem_class; /* Modem class */
unsigned char user_def_parm_1; /* User-defined parameter 1 */
unsigned char user_def_parm_2; /* User-defined parameter 2 */
unsigned char user_def_parm_3; /* User-defined parameter 3 */

} TG_DEFINED_CHARS;

typedef struct ls_stats
{

unsigned long in_xid_bytes; /* number of XID bytes received */
unsigned long in_msg_bytes; /* num message bytes received */
unsigned long in_xid_frames; /* num XID frames received */
unsigned long in_msg_frames; /* num message frames received */
unsigned long out_xid_bytes; /* num XID bytes sent */
unsigned long out_msg_bytes; /* num message bytes sent */
unsigned long out_xid_frames; /* num XID frames sent */
unsigned long out_msg_frames; /* num message frames sent */

 unsigned long in_invalid_sna_frames;
/* num invalid frames received */

 unsigned long in_session_control_frames;
/* num control frames received */

 unsigned long out_session_control_frames;
/* num control frames sent */

unsigned long echo_rsps; /* response from adj LS count */
unsigned long current_delay; /* time taken for last test sig */
unsigned long max_delay; /* max delay by test signal */
unsigned long min_delay; /* min delay by test signal */
unsigned long max_delay_time; /* time since longest delay */
unsigned long good_xids; /* successful XID on LS count */
unsigned long bad_xids; /* unsuccessful XID on LS count */

} LS_STATS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_LS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The ls_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

 Chapter 6. Query Verbs 251

 QUERY_LS

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

ls_name Link station name. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

port_name Port name filter. This should be set to all zeros or an 8-byte
alphanumeric type A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If this field is set
then only link stations belonging to this port are returned.
This field is ignored if it is set to all zeros.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

ls_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

ls_summary.ls_name
Name of link station. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

ls_summary.description
Resource description (as specified on DEFINE_LS). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

ls_summary.dlc_type
Type of DLC. Communications Server supports the following
types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC

252 System Management Programming

 QUERY_LS

AP_TWINAX
AP_X25

ls_summary.state State of this link station. This field is set to one of the
following values:

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

ls_summary.act_sess_count
The total number of active sessions (both endpoint and
intermediate) using the link.

ls_summary.det_adj_cp_name
Fully qualified, 17-byte, adjacent CP name determined during
link activation. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
will be null if the LS is inactive.

If ls_summary.adj_cp_type is not one of
AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE,
or AP_BACK_LEVEL_LEN_NODE, then this field is reserved.

ls_summary.det_adj_cp_type
Type of the adjacent node determined during link activation.
It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_LEARN_NODE
AP_VRN

This will be AP_LEARN_NODE if the LS is inactive.

If ls_summary.adj_cp_type is not one of
AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE,
or AP_BACK_LEVEL_LEN_NODE, then this field is reserved.

ls_summary.port_name
Name of port associated with this link station. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

ls_summary.adj_cp_name
Fully qualified, 17-byte, adjacent control point name
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This will be null for
an implicit link.

ls_summary.adj_cp_type
Type of the adjacent node. It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_APPN_NODE

 Chapter 6. Query Verbs 253

 QUERY_LS

AP_BACK_LEVEL_LEN__NODE
AP_HOST_XID3
AP_HOST_XID0
AP_DSPU_XID
AP_DSPU_NOXID

ls_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

ls_detail.ls_name Name of link station. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

ls_detail.det_data.act_sess_count
Total number of active sessions (both endpoint and
intermediate) using the link.

ls_detail.det_data.dlc_type
Type of DLC. Communications Server supports the following
types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

Additional DLC types can be defined by specifying the new
type on the DEFINE_DLC verb. See “DEFINE_DLC” on
page 46, for more information.

ls_detail.det_data.state
State of this link station. This field is set to one of the
following values:

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

ls_detail.det_data.sub_state
This field provides more detailed information about the state
of this link station. This field is set to one of the following
values:

AP_SENT_CONNECT_OUT
AP_PENDING_XID_EXCHANGE
AP_SENT_ACTIVATE_AS
AP_SENT_SET_MODE
AP_ACTIVE
AP_SENT_DEACTIVATE_AS_ORDERLY
AP_SENT_DISCONNECT
AP_WAITING_STATS
AP_RESET

ls_detail.det_data.det_adj_cp_name
Fully qualified, 17-byte, adjacent control point name
determined during link activation. It is composed of two
type-A EBCDIC character strings concatenated by an

254 System Management Programming

 QUERY_LS

EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.)

If ls_summary.adj_cp_type is not one of
AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE,
or AP_BACK_LEVEL_LEN_NODE, then this field is reserved.

ls_detail.det_data.det_adj_cp_type
Type of the adjacent node determined during link activation.
It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_LEARN_NODE
AP_VRN

If ls_summary.adj_cp_type is not one of
AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE,
or AP_BACK_LEVEL_LEN_NODE, then this field is reserved.

ls_detail.det_data.dlc_name
Name of the DLC. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

ls_detail.det_data.dynamic
Specifies whether the link was defined explicitly (by a
DEFINE_LS command), or implicitly or dynamically (either in
response to a connection request from the adjacent node, or
to connect dynamically to another node across a connection
network). This can be AP_YES or AP_NO.

ls_detail.det_data.migration
Specifies whether the adjacent node is a migration level node
(such as a low entry networking (LEN) node), or a full APPN
network node or end node (AP_YES, AP_NO, or
AP_UNKNOWN).

ls_detail.det_data.tg_num
Number associated with the TG.

ls_detail.det_data.ls_stats.in_xid_bytes
Total number of XID (Exchange Identification) bytes received
on this link station.

ls_detail.det_data.ls_stats.in_msg_bytes
Total number of data bytes received on this link station.

ls_detail.det_data.ls_stats.in_xid_frames
Total number of XID (Exchange Identification) frames
received on this link station.

ls_detail.det_data.ls_stats.in_msg_frames
Total number of data frames received on this link station.

ls_detail.det_data.ls_stats.out_xid_bytes
Total number of XID (Exchange Identification) bytes sent on
this link station.

ls_detail.det_data.ls_stats.out_msg_bytes
Total number of data bytes sent on this link station.

 Chapter 6. Query Verbs 255

 QUERY_LS

ls_detail.det_data.ls_stats.out_xid_frames
Total number of XID (Exchange Identification) frames sent on
this link station.

ls_detail.det_data.ls_stats.out_msg_frames
Total number of data frames sent on this link station.

ls_detail.det_data.ls_stats.in_invalid_sna_frames
Total number of SNA incorrect frames received on this link
station.

ls_detail.det_data.ls_stats.in_session_control_frames
Total number of session control frames received on this link
station.

ls_detail.det_data.ls_stats.out_session_control_frames
Total number of session control frames sent on this link
station.

ls_detail.det_data.ls_stats.echo_rsps
Number of echo responses received from the adjacent node.
Echo requests are sent periodically to gauge the propagation
delay to the adjacent node.

ls_detail.det_data.ls_stats.current_delay
Time (in milliseconds) that it took for the last test signal to be
sent and returned from this link station to the adjacent link
station.

ls_detail.det_data.ls_stats.max_delay
Longest time taken (in milliseconds) for a test signal to be
sent and returned from this link station to the adjacent link
station.

ls_detail.det_data.ls_stats.min_delay
Shortest time taken (in milliseconds) for a test signal to be
sent and returned from this link station to the adjacent link
station.

ls_detail.det_data.ls_stats.max_delay_time
Time since system startup (in hundredths of a second) when
the longest delay occurred.

ls_detail.det_data.ls_stats.good_xids
Total number of successful XID exchanges that have
occurred on this link station since it was started.

ls_detail.det_data.ls_stats.bad_xids
Total number of unsuccessful XID exchanges that have
occurred on this link station since it was started.

ls_detail.det_data.start_time
Time since system startup (in hundredths of a second) when
the link station was last activated (that is, the mode setting
commands completed).

ls_detail.det_data.stop_time
Time since system startup (in hundredths of a second) when
the link station was last deactivated.

256 System Management Programming

 QUERY_LS

ls_detail.det_data.up_time
The total time (in hundredths of a second) that this link
station has been active since system startup.

ls_detail.det_data.current_state_time
The total time (in hundredths of a second) that this link
station has been in the current state.

ls_detail.det_data.deact_cause
The cause of the last deactivation of the link station. The
field is set to one of the following values:

AP_NONE
The link station has never been deactivated.

AP_DEACT_OPER_ORDERLY
The link station was deactivated as a result of an orderly
STOP command from an operator.

AP_DEACT_OPER_IMMEDIATE
The link station was deactivated as a result of an immediate
STOP command from an operator.

AP_DEACT_AUTOMATIC
The link station was deactivated automatically, for example
because there were no more sessions using the link station.

AP_DEACT_FAILURE
The link station was deactivated because of a failure.

ls_detail.det_data.hpr_support
The level of high-performance routing (HPR) supported on
this TG (AP_NONE, AP_BASE or AP_RTP), taking account
of the capabilities of the local and adjacent nodes.

ls_detail.det_data.anr_label
The HPR automatic network routing (ANR) label allocated to
the local link.

ls_detail.det_data.hpr_link_lvl_error
Specifies whether link-level error recovery is being used for
HPR traffic on the link.

ls_detail.det_data.ls_role
Specifies the link station role that this link station has
assumed after negotiation with the partner link station.

ls_detail.det_data.node_id
Node ID received from adjacent node during XID exchange.
This a 4-byte hexadecimal string.

ls_detail.def_data.description
Resource description (as specified on DEFINE_LS). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

ls_detail.def_data.port_name
Name of port associated with this link station. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. If the link is to a VRN, this field

 Chapter 6. Query Verbs 257

 QUERY_LS

specifies the name of the actual port used to connect to the
VRN (as specified in the DEFINE_CN verb).

ls_detail.def_data.adj_cp_name
Fully qualified 17-byte adjacent control point name, which is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This is defined if
back_lvl_len_end_node is not set to AP_NO, or if the port
associated with the link station is defined to be switched.

ls_detail.def_data.adj_cp_type
Adjacent node type.

AP_NETWORK_NODE
Specifies that the node is an APPN network node.

AP_END_NODE
Specifies that the node is an APPN end node or an up-level
LEN node.

AP_APPN_NODE
Specifies that the node is an APPN network node, an APPN
end node, or an up-level LEN node. The node type will be
learned during XID exchange.

AP_BACK_LEVEL_LEN_NODE
Specifies that the node is a back-level LEN node.

AP_HOST_XID3
Specifies that the node is a host and that the Node Operator
Facility responds to a polling XID from the node with a format
3 XID.

AP_HOST_XID0
Specifies that the node is a host and that the Node Operator
Facility responds to a polling XID from the node with a format
0 XID.

AP_DSPU_XID
Specifies that the node is a downstream PU and that the
Node Operator Facility includes XID exchange in link
activation.

AP_DSPU_NOXID
Specifies that the node is a downstream PU and that the
Node Operator Facility does not include XID exchange in link
activation.

Note: A link station to a VRN is always dynamic and is
therefore not defined.

ls_detail.def_data.dest_address.length
Length of destination link station's address on adjacent node.

ls_detail.def_data.dest_address.address
Link station's destination address on adjacent node.

258 System Management Programming

 QUERY_LS

ls_detail.def_data.auto_act_supp
Specifies whether the link will be activated automatically after
it has been started by a START_LS verb, and stopped by a
STOP_LS. (AP_YES or AP_NO).

ls_detail.def_data.tg_number
Pre-assigned TG number (in the range one to 20). This
number is used to represent the link when the link is
activated. Zero indicates that the TG number is not
pre-assigned but is negotiated when the link is activated.

ls_detail.def_data.limited_resource
Specifies whether this link station is to be deactivated when
there are no sessions using the link. This is set to one of the
following values:

AP_NO
The link is not a limited resource and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
The link is a limited resource and will be deactivated
automatically when no active sessions are using it.

AP_INACTIVITY
The link is a limited resource and will be deactivated
automatically when no active sessions are using it, or when
no data has flowed on the link for the time period specified
by the link_deact_timer field.

ls_detail.def_data.solicit_sscp_sessions
AP_YES requests the host to initiate sessions between the
SSCP and the local control point and dependent LUs.
AP_NO requests no sessions with the SSCP on this link.

ls_detail.def_data.pu_name
Name of the local PU that is going to use this link if
solicit_sscp_sessions is set to AP_YES. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If
solicit_sscp_sessions is set to AP_NO, this field is
reserved.

ls_detail.def_data.disable_remote.act
Specifies whether remote activation of this link is supported
(AP_YES or AP_NO).

ls_detail.def_data.dspu_services
Specifies the services that the local node provides to the
downstream PU across this link if solicit_sscp_sessions is
set to AP_NO. This is set to one of the following:

AP_PU_CONCENTRATION
Local node will provide PU concentration for the downstream
PU.

AP_DLUR
Local node will provide DLUR services for the downstream
PU.

 Chapter 6. Query Verbs 259

 QUERY_LS

AP_NONE
Local node will provide no services for this downstream PU.

If solicit_sscp_sessions is set to AP_YES, this field is
reserved.

ls_detail.def_data.dspu_name
Name of the downstream PU. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This is only valid if
solicit_sscp_sessions is set to AP_NO.

ls_detail.def_data.dlus_name
Name of DLUS node which DLUR solicits SSCP services
from when the link to the downstream node is activated.
This is either set to all zeros or a 17-byte string composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot, which is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.) If the field is set to all zeros, then the
global default DLUS (if defined by the
DEFINE_DLUR_DEFAULTS verb) is solicited when the link is
activated. If the dlus_name is set to zeros and there is no
global default DLUS, then DLUR will not initiate SSCP
contact when the link is activated. This field is reserved if
dspu_services is not set to AP_DLUR.

ls_detail.def_data.bkup_dlus_name
Name of DLUS node which serves as the backup for the
downstream PU. This is either set to all zeros or to a
17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) If
the field is set to all zeros, then the global backup default
DLUS (if defined by the DEFINE_DLUR_DEFAULTS verb) is
used as the backup for this PU. This field is reserved if
dspu_services is not set to AP_DLUR.

ls_detail.def_data.hpr_supported
Specifies whether HPR is supported on this link (AP_YES or
AP_NO).

ls_detail.def_data.hpr_link_lvl_error
Specifies whether the HPR link-level error recovery tower is
supported on this link (AP_YES or AP_NO). Note that the
parameter is reserved if hpr_supported is set to AP_NO.

ls_detail.def_data.link_deact_timer
Limited resource link deactivation timer (in seconds).

If limited_resource is set to AP_INACTIVITY then a link is
automatically deactivated if no data traverses the link for the
duration of this timer.

ls_detail.def_data.default_nn_server
Specifies whether a link can be automatically activated by an
end node to support CP-CP sessions to a network node

260 System Management Programming

 QUERY_LS

server. (AP_YES or AP_NO). The link must be defined to
support CP-CP sessions for this field to take effect.

ls_detail.def_data.ls_attributes
Specifies further information about the adjacent node.

ls_detail.def_data.ls_attributes[0]
Host type.

AP_SNA
Standard SNA host.

AP_FNA
FNA (VTAM-F) host.

AP_HNA
HNA host.

ls_detail.def_data.ls_attributes[1]
Network Name CV suppression option for a link to a
back-level LEN node. (This field is ignored unless
adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE or
AP_HOST_XID3).

AP_NO
Include Network Name CV in XID3.

AP_SUPPRESS_CP_NAME
Do not include Network Name CV in XID3.

ls_detail.def_data.adj_node_id
Defined node ID of adjacent node.

ls_detail.def_data.local_node_id
Node ID sent in XIDs on this link station. This is a 4-byte
hexadecimal string. If this field is set to zero, the node_id is
used in XID exchanges. If this field is nonzero, it replaces
the value for XID exchanges on this LS.

ls_detail.def_data.cp_cp_sess_support
Specifies whether CP-CP sessions are supported (AP_YES
or AP_NO).

ls_detail_def_data.use_default_tg_chars
Specifies whether the TG characteristics supplied on the
DEFINE_LS were discarded in favor of the default
characteristics supplied on the DEFINE_PORT (AP_YES or
AP_NO). This field does not apply to implicit links.

ls_detail.def_data.tg_chars
TG characteristics (See “DEFINE_CN” on page 31).

ls_detail.def_data.target_pacing_count
Numeric value between 1 and 32 767 inclusive indicating the
desired pacing window size for BINDs on this TG. The
number is only significant when fixed bind pacing is being
performed. Note that Communications Server does not
currently use this value.

ls_detail.def_data.max_send_btu_size
Maximum BTU size that can be sent.

 Chapter 6. Query Verbs 261

 QUERY_LS

ls_detail.def_data.ls_role
The link station role that this link station should assume.
This can be any one of AP_LS_NEG, AP_LS_PRI or
AP_LS_SEC to select a role of negotiable, primary or
secondary. The field can also be set to
AP_USE_PORT_DEFAULTS to select the value configured
on the DEFINE_PORT verb.

ls_detail.def_data.max_ifrm_rcvd
The maximum number of I-Frames that can be received by
the XID sender before acknowledgment. Set to zero if the
default value from DEFINE_PORT should be used.

ls_detail.def_data.link_spec_data_len
Unpadded length, in bytes, of data passed unchanged to link
station component during initialization. The data is
concatenated to the LS_DETAIL structure. This data will be
padded to end on a 4-byte boundary.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LINK_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

262 System Management Programming

 QUERY_LU_0_TO_3

 QUERY_LU_0_TO_3
QUERY_LU_0_TO_3 returns information about local LUs of type 0, 1, 2, or 3. This
information is structured as “determined data” (data gathered dynamically during
execution) and “defined data” (the data supplied by the application on
DEFINE_LU_0_TO_3).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU, or to obtain
the list information in several “chunks,” the lu_name field should be set. Otherwise
(if the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored.

Only certain parameters are supported on SNA API clients. See the ringing

telephone () for specific details.

 VCB Structure
typedef struct query_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char pu_name[8]; /* PU name filter */
unsigned char lu_name[8]; /* LU name */
unsigned char host_attachment; /* Host attachment filter */

} QUERY_LU_0_TO_3;

typedef struct lu_0_to_3_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_name[8]; /* LU name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char nau_address; /* NAU address */
 unsigned char lu_sscp_sess_active;

/* Is LU-SSCP session active */
unsigned char appl_conn_active; /* Is connection to appl active? */
unsigned char plu_sess_active; /* Is PLU-SLU session active */
unsigned char host_attachment; /* LU's host attachment */

} LU_0_TO_3_SUMMARY;

typedef struct lu_0_to_3_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* LU name */

 unsigned char reserv1[2]; /* reserved */

 Chapter 6. Query Verbs 263

 QUERY_LU_0_TO_3

LU_0_TO_3_DET_DATA det_data; /* Determined data */
LU_0_TO_3_DEF_DATA def_data; /* Defined data */

} LU_0_TO_3_DETAIL;

typedef struct lu_0_to_3_det_data
{
 unsigned char lu_sscp_sess_active;

/* Is LU-SSCP session active */
unsigned char appl_conn_active; /* Application is using LU */
unsigned char plu_sess_active; /* Is PLU-SLU session active */
unsigned char host_attachment; /* Host attachment */
SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
SESSION_STATS plu_stats; /* PLU-SLU session statistics */
unsigned char plu_name[8]; /* PLU name */
unsigned char session_id[8]; /* Internal ID of PLU-SLU sess */

 unsigned char app_spec_det_data[256];
/* Application Specified Data */

unsigned char app_type; /* Application type */
 unsigned char reserva[19]; /* reserved */
} LU_0_TO_3_DET_DATA;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing win size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* current receive pacing */

/* window size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num of FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */

 unsigned long rcv_fmd_data_frames;
/* num of FMD data frames recvd */

unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

typedef struct lu_0_to_3_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char nau_address; /* LU NAU address */
unsigned char pool_name[8]; /* LU Pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char lu_model; /* LU model */

 unsigned char reserv2[8]; /* reserved */
 unsigned char app_spec_def_data[16];

264 System Management Programming

 QUERY_LU_0_TO_3

/* Application Specified Data */
} LU_0_TO_3_DEF_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_LU_0_TO_3

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_SUMMARY value is also supported for SNA
API clients.

AP_DETAIL
Returns detailed information.

The lu_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_FIRST_IN_LIST value is also supported for
SNA API clients.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

lu_name Name of the local LU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

The list_options value is ignored for SNA API
clients.

 Chapter 6. Query Verbs 265

 QUERY_LU_0_TO_3

pu_name PU name. Only LUs that use this PU will be returned. If a
list of all LUs is required then this field should be set to all
binary zeros.

The pu_name value is ignored for SNA API
clients.

host_attachment Filter for host attachment.

AP_NONE
Return information about all LUs.

AP_NONE is the only value supported for SNA
API clients.

AP_DLUR_ATTACHED
Return information about all LUs that are supported by
DLUR.

AP_DIRECT_ATTACHED
Return information about only those LUs that are directly
attached to the host system.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

lu_0_to_3_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

lu_0_to_3_summary.pu_name
Name of local PU that this LU is using. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

The lu_0_to_3_summary.pu_name value is not
returned on SNA API clients.

lu_0_to_3_summary.lu_name
Name of the local LU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

266 System Management Programming

 QUERY_LU_0_TO_3

lu_0_to_3_summary.description
Resource description (as specified on DEFINE_LU_0_TO_3).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

The lu_0_to_3_summary.description value is not
returned on SNA API clients.

lu_0_to_3_summary.nau_address
Network addressable unit address of the LU, which is in the
range 1—255.

The lu_0_to_3_summary.nau_address value is
not returned on SNA API clients.

lu_0_to_3_summary.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES
or AP_NO).

 The lu_0_to_3_summary.lu_sscp_sess_active
value is not returned on SNA API clients.

lu_0_to_3_summary.appl_conn_active
Specifies whether an application is using the LU (AP_YES or
AP_NO).

The lu_0_to_3_summary.appl_conn_active value
is not returned on SNA API clients.

lu_0_to_3_summary.plu_sess_active
Specifies whether the PLU-SLU session is active (AP_YES
or AP_NO).

The lu_0_to_3_summary.plu_sess_active value
is not returned on SNA API clients.

lu_0_to_3_summary.host_attachment
LU host attachment type:

AP_DLUR_ATTACHED
LU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
LU is directly attached to host system.

lu_0_to_3_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

lu_0_to_3_detail.lu_name
Name of the local LU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

 Chapter 6. Query Verbs 267

 QUERY_LU_0_TO_3

lu_0_to_3_detail.det_data.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES
or AP_NO).

lu_0_to_3_detail.det_data.appl_conn_active
Specifies whether this LU is currently being used by an
application (AP_YES or AP_NO).

lu_0_to_3_detail.det_data.plu_sess_active
Specifies whether the PLU-SLU session is active (AP_YES
or AP_NO).

lu_0_to_3_detail.det_data.host_attachment
LU host attachment type:

AP_DLUR_ATTACHED
LU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
LU is directly attached to host system.

lu_0_to_3_detail.det_data.lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_0_to_3_detail.det_data.lu_sscp_stats.send_ru_size
This field is always reserved.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_0_to_3_detail.det_data.lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_0_to_3_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_0_to_3_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

lu_0_to_3_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_0_to_3_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_0_to_3_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu _0_to_3_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_0_to_3_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_0_to_3_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

268 System Management Programming

 QUERY_LU_0_TO_3

lu_0_to_3_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

lu_0_to_3_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

lu_0_to_3_detail.det_data.lu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a
session, the sender of the ACTLU sets this field to zero if the
local node contains the primary link station, and sets it to one
if the ACTLU sender is the node containing the secondary
link station.

lu_0_to_3_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. This field can be used to correlate this
session with the link over which the session flows.

lu_0_to_3_detail.det_data.plu_stats.rcv_ru_size
Maximum receive RU size.

lu_0_to_3_detail.det_data.plu_stats.send_ru_size
Maximum send RU size.

lu_0_to_3_detail.det_data.plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_0_to_3_detail.det_data.plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_0_to_3_detail.det_data.plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

lu_0_to_3_detail.det_data.plu_stats.send_data_frames
Number of normal flow data frames sent.

lu_0_to_3_detail.det_data.plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_0_to_3_detail.det_data.plu_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_0_to_3_detail.det_data.plu_stats.rcv_data_frames
Number of normal flow data frames received.

lu_0_to_3_detail.det_data.plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_0_to_3_detail.det_data.plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_0_to_3_detail.det_data.plu_stats.sidh
Session ID high byte.

 Chapter 6. Query Verbs 269

 QUERY_LU_0_TO_3

lu_0_to_3_detail.det_data.plu_stats.sidl
Session ID low byte.

lu_0_to_3_detail.det_data.plu_stats.odai
Origin Destination Address Indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station, and sets it to one
if the BIND sender is the node containing the secondary link
station.

lu_0_to_3_detail.det_data.plu_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

lu_0_to_3_detail.det_data.plu_name
Primary LU name. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. (If the PLU-SLU session is inactive this
field is reserved).

lu_0_to_3_detail.det_data.session_id
Eight byte internal identifier of the PLU-SLU session.

lu_0_to_3_detail.det_data.app_spec_det_data
Reserved.

lu_0_to_3_detail.det_data.app_type
Reserved.

lu_0_to_3_detail.def_data.description
Resource description (as specified on DEFINE_LU_0_TO_3).
This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

lu_0_to_3_detail.def_data.nau_address
Network addressable unit address of the LU, which is in the
range 1—255.

lu_0_to_3_detail.def_data.pool_name
Name of pool to which this LU belongs. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If the LU does not
belong to a pool, this field is set to all binary zeros.

lu_0_to_3_detail.def_data.pu_name
Name of the PU (as specified on the DEFINE_LS verb) that
this LU will use. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

lu_0_to_3_detail.def_data.priority
LU priority when sending to the host. This is set to one of
the following values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

270 System Management Programming

 QUERY_LU_0_TO_3

lu_0_to_3_detail.def_data.lu_model
Model type and number of the LU. This is set to one of the
following values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_UNKNOWN

lu_0_to_3_detail.def_data.app_spec_def_data
Application-specified data from DEFINE_LU_0_TO_3.
Communications Server does not interpret this field, it is
simply stored and returned on the QUERY_LU_0_TO_3 verb.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 271

 QUERY_LU_POOL

 QUERY_LU_POOL
QUERY_LU_POOL returns a list of pools and the LUs that belong to them.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LU pool or to obtain the
list information in several “chunks,” the pool_name and lu_name fields should be
set. If the lu_name field is set to all zeros, then the information returned starts
from the first LU in the specified pool. If the list_options field is set to
AP_FIRST_IN_LIST, then both of these fields are ignored.

 VCB Structure
typedef struct query_lu_pool
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char pool_name[8]; /* pool name */
unsigned char lu_name[8]; /* LU name */

} QUERY_LU_POOL;

typedef struct lu_pool_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char pool_name[8]; /* pool name */
unsigned char description[RD_LEN]; /* resource description */
unsigned short num_active_lus; /* num of currently active LUs */

} LU_POOL_SUMMARY;

typedef struct lu_pool_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char pool_name[8]; /* pool name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
unsigned char appl_conn_active; /* Is SSCP connection open */
unsigned char plu_sess_active; /* Is PLU-SLU session active */

} LU_POOL_DETAIL;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_LU_POOL

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

272 System Management Programming

 QUERY_LU_POOL

buf_ptr Pointer to a buffer into which list information can be written.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the pool_name and lu_name specified
(see the following parameter) represents an index value that
is used to specify the starting point of the actual information
to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

pool_name Name of LU pool. This name is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

lu_name LU name. This name is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this is set to all binary zeros, the LUs
belonging to the specified pool are listed from the beginning
of the pool. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of directory entries returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

 Chapter 6. Query Verbs 273

 QUERY_LU_POOL

lu_pool_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

lu_pool_summary.pool_name
Name of LU pool to which the specified LU belongs. This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces. (Note that if
this field is specified on the request and the lu_name field is
set to all binary zeros, then only LUs in the pool are
returned.)

lu_pool_summary.description
LU pool description (as specified on DEFINE_LU_POOL).

lu_pool_detail.num_active_lus
The number of LUs in the specified pool that have active
LU-SSCP sessions.

lu_pool_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

lu_pool_detail.pool_name
Name of LU pool to which the specified LU belongs. This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces. (Note that if
this field is specified on the request and the lu_name field is
set to all binary zeros, then only LUs in the pool are
returned.)

lu_pool_detail.description
LU description (as specified on DEFINE_LU_0_TO_3).

lu_pool_detail.lu_name
LU name of LU belonging to the pool. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. If this name is set
to all zeros then, this indicates that the specified pool is
empty.

lu_pool_detail.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES
or AP_NO).

lu_pool_detail.appl_conn_active
Specifies whether the LU session is currently being used by
an application (AP_YES or AP_NO).

lu_pool_detail.plu_sess_active
Specifies whether the PLU-SLU session is active (AP_YES
or AP_NO).

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

274 System Management Programming

 QUERY_LU_POOL

secondary_rc AP_INVALID_LIST_OPTION

AP_INVALID_POOL_NAME
AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 275

 QUERY_MDS_APPLICATION

 QUERY_MDS_APPLICATION
QUERY_MDS_APPLICATION returns a list of applications that have registered for
MDS level messages.

Applications register by issuing the REGISTER_MS_APPLICATION verb described
in Chapter 14, “Management Services Verbs” on page 477.

To obtain information about a specific application, or to obtain the list information in
several “chunks,” the application field should be set. Otherwise (if the
list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 11, for background on how the list formats are used.

 VCB Structure
typedef struct query_mds_application
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
 unsigned char application[8]; /* application */
} QUERY_MDS_APPLICATION;

typedef struct mds_application_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char application[8]; /* application name */
unsigned short max_rcv_size; /* max data size application */

/* can receive */
 unsigned char reserva[20]; /* reserved */
} MDS_APPLICATION_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_MDS_APPLICATION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

276 System Management Programming

 QUERY_MDS_APPLICATION

list_options This indicates what should be returned in the list information:
The application specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

application Application name. The name is an 8-byte alphanumeric
type-A EBCDIC character string. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries The number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

mds_application_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

mds_application_data.application
Name of registered application. The name is an 8-byte
alphanumeric type-A EBCDIC character string.

mds_application_data.max_rcv_size
The maximum number of bytes that the application can
receive in one chunk (this is specified when an application
registers with MDS). For more information about MDS-level
application registration refer to Chapter 14, “Management
Services Verbs.”

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_APPLICATION_NAME

AP_INVALID_LIST_OPTION

 Chapter 6. Query Verbs 277

 QUERY_MDS_APPLICATION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

278 System Management Programming

 QUERY_MDS_STATISTICS

 QUERY_MDS_STATISTICS
QUERY_MDS_STATISTICS returns management services statistics. This verb can
be used to gauge the level of MDS routing traffic.

 VCB Structure
typedef struct query_mds_statistics
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned long alerts_sent; /* number of alert sends */
unsigned long alert_errors_rcvd; /* error messages received */

/* for alert sends */
 unsigned long uncorrelated_alert_errors;

/* uncorrelated alert */
/* errors received */

unsigned long mds_mus_rcvd_local; /* number of MDS_MUs received */
/* from local applications */

 unsigned long mds_mus_rcvd_remote;
/* number of MDS_MUs received */
/* from remote applications */

 unsigned long mds_mus_delivered_local;
/* num of MDS_MUs delivered */
/* to local applications */

 unsigned long mds_mus_delivered_remote;
/* num of MDS_MUs */
/* delivered to remote appls */

unsigned long parse_errors; /* number of MDS_MUs received */
/* with parse errors */

unsigned long failed_deliveries; /* number of MDS_MUs where */
/* delivery failed */

 unsigned long ds_searches_performed;
/* number of DS searches done */

unsigned long unverified_errors; /* number of unverified errors */
 unsigned char reserva[20]; /* reserved */
} QUERY_MDS_STATISTICS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_MDS_STATISTICS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

alerts_sent Number of locally originated alerts sent using the MDS
transport system.

 Chapter 6. Query Verbs 279

 QUERY_MDS_STATISTICS

alert_errors_rcvd Number of error messages received by MDS indicating a
delivery failure for a message containing an alert.

uncorrelated_errors_rcvd
Number of error messages received by MDS indicating a
delivery failure for a message containing an alert. Delivery
failure occurs when the error message could not be
correlated to an alert on the MDS send alert queue. MDS
maintains a fixed-size queue where it caches alerts sent to
the problem determination focal point. Once the queue
reaches maximum size, the oldest alert will be discarded and
replaced by the new alert. If a delivery error message is
received, MDS attempts to correlate the error message to a
cached alert so that the alert can be held until the problem
determination focal point is restored.

Note: The two counts, alert_errors_rcvd and
uncorrelated_errors_rcvd are maintained such that
the size of the send alert queue can be tuned. An
increasing uncorrelated_errors_rcvd over time
indicates that the send alert queue size is too small.

mds_mus_rcvd_local
Number of MDS_MUs received from local applications.

mds_mus_rcvd_remote
Number of MDS_MUs received from remote nodes using the
MDS_RECEIVE and MSU_HANDLER transaction programs.

mds_mus_delivered_local
Number of MDS_MUs successfully delivered to local
applications.

mds_mus_delivered_remote
Number of MDS_MUs successfully delivered to a remote
node using the MDS_SEND transaction program.

parse_errors Number of MDS_MUs received that contained header format
errors.

failed_deliveries Number of MDS_MUs this node failed to deliver.

ds_searches_performed
Reserved.

unverified_errors Reserved.

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

280 System Management Programming

 QUERY_MODE

 QUERY_MODE
QUERY_MODE returns information about modes that have been used by a local
LU with a particular partner LU. The information is returned as a list in one of two
formats, either summary or detailed information. To obtain information about a
specific mode, or to obtain the list information in several “chunks,” the mode_name
field should be set. Otherwise (if the list_options field is set to
AP_FIRST_IN_LIST), this field will be ignored. Note that the lu_name (or lu_alias)
and plu_alias (or fqplu_name) fields must always be set. The lu_name , if
nonzero, will be used in preference to the lu_alias . See “Querying the Node” on
page 11, for background on how the list formats are used.

The list only includes information for the local LU specified by the lu_name (or
lu_alias). This list is ordered by the fqplu_name followed by the mode_name .
Ordering is by name length first, and then by ASCII lexicographical ordering for
names of the same length (in accordance with normal MIB ordering).

If plu_alias is set to all zeros, the fqplu_name value will be used, otherwise the
plu_alias is always used and the fqplu_name is ignored.

The list of modes returned can be filtered according to whether they currently have
any active sessions. If filtering is desired, the active_sessions field should be set
to AP_YES (otherwise this field should be set to AP_NO). This verb returns
information that is determined once the mode begins to be used by a local LU with
a partner LU. The QUERY_MODE_DEFINITION verb returns definition information
only.

 VCB Structure
typedef struct query_mode
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char active_sessions; /* active sessions only filter */

} QUERY_MODE;

typedef struct mode_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */

 Chapter 6. Query Verbs 281

 QUERY_MODE

 unsigned char description[RD_LEN];
/* resource description */

unsigned short sess_limit; /* current session limit */
unsigned short act_sess_count; /* curr active sessions count */
unsigned char fqplu_name[17]; /* partner LU name */

 unsigned char reserv1[3]; /* reserved */
} MODE_SUMMARY;

typedef struct mode_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned short sess_limit; /* session limit */
unsigned short act_sess_count; /* currently active sess count */
unsigned char fqplu_name[17]; /* partner LU name */

 unsigned char reserv1[3]; /* reserved */
 unsigned short min_conwinners_source;

/* min conwinner sess limit */
 unsigned short min_conwinners_target;

/* min conloser limit */
unsigned char drain_source; /* drain source? */
unsigned char drain_partner; /* drain partner? */
unsigned short auto_act; /* auto activated conwinner */

/* session limit */
unsigned short act_cw_count; /* active conwinner sess count */
unsigned short act_cl_count; /* active conloser sess count */
unsigned char sync_level; /* synchronization level */
unsigned char default_ru_size; /* default RU size to maximize */

 /* performance */
unsigned short max_neg_sess_limit; /* max negotiated session limit */
unsigned short max_rcv_ru_size; /* max receive RU size */

 unsigned short pending_session_count;
/* pending sess count for mode */

unsigned short termination_count; /* termination count for mode */
unsigned char implicit; /* implicit or explicit entry */

 unsigned char reserva[15]; /* reserved */
} MODE_DETAIL;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_MODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

282 System Management Programming

 QUERY_MODE

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of lu_name (or lu_alias if the lu_name is
set to all zeros), plu_alias (or fqplu_name if the plu_alias is
set to all zeros) and mode_name specified (see the following
parameter) represents an index value that is used to specify
the starting point of the actual information to be returned.
When a partner LU index is specified, information about other
partner LUs is included in the list, if possible.

AP_FIRST_IN_LIST
If plu_alias and fqplu_name are set to all zeros, the
returned list starts from the first partner LU in the list, and the
mode_name index is ignored. If either plu_alias or
fqplu_name is specified, the list starts at this index, but the
mode_name index value is ignored, and the returned list
starts from the first mode entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

lu_name LU name. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be
used for determining the index.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. This field is only significant if the
lu_name field is set to all zeros, in which case all 8 bytes are
significant and must be set. If both the lu_name and the
lu_alias are set to all zeros then the LU associated with the
control point (the default LU) is used.

plu_alias Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field will be used for determining the index.

fqplu_name 17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

mode_name Mode name, which designates the network properties for a
group of sessions. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

 Chapter 6. Query Verbs 283

 QUERY_MODE

active_sessions Active session filter. Specifies whether the returned modes
should be filtered according to whether they currently have
any active sessions (AP_YES or AP_NO).

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

mode_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

mode_summary.mode_name
Mode name, which designates the network properties for a
group of sessions. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

mode_summary.description
Resource description (as specified on DEFINE_MODE). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

mode_summary.sess_limit
Current session limit.

mode_summary.act_sess_count
Total number of active sessions using the mode. If the
active_sessions filter has been set to AP_YES, then this
field will always be greater than zero.

mode_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

mode_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

mode_detail.mode_name
Mode name, which designates the network properties for a
group of sessions. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

284 System Management Programming

 QUERY_MODE

mode_detail.description
Resource description (as specified on DEFINE_MODE).

mode_detail.sess_limit
Current session limit.

mode_detail.act_sess_count
Total number of active sessions using the mode. If the
active_sessions filter has been set to AP_YES, then this
field will always be greater than zero.

mode_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

mode_detail.min_conwinners_source
Specifies the minimum number of sessions on which the
local LU is the contention winner (or “first speaker”).

mode_detail.min_conwinners_target
Specifies the minimum number of sessions on which the
local LU is the contention loser (or “bidder”).

mode_detail.drain_source
Specifies whether the local LU satisfies waiting session
requests before deactivating a session when session limits
are changed or reset (AP_NO or AP_YES).

mode_detail.drain_partner
Specifies whether the partner LU satisfies waiting session
requests before deactivating a session when session limits
are changed or reset (AP_NO or AP_YES).

mode_detail.auto_act
Number of contention winner sessions that are automatically
activated following the Change Number of Sessions
exchange with the partner LU.

mode_detail.act_cw_count
Number of active, contention winner (or “first speaker”)
sessions using this mode. (The local LU does not need to
bid before using one of these sessions.)

mode_detail.act_cl_count
Number of active, contention loser (or “bidder”) sessions
using this mode. (The local LU must bid before using one of
these sessions.)

mode_detail.sync_level
Specifies the synchronization levels supported by the mode
(AP_NONE, AP_CONFIRM, or AP_SYNCPT).

mode_detail.default_ru_size
Specifies whether a default upper bound for the maximum
RU size will be used. If this parameter has a value of
AP_YES, the mode_chars.max_ru_size_upp field specified
on define_mode is ignored, and the upper bound for the

 Chapter 6. Query Verbs 285

 QUERY_MODE

maximum RU size is set to the link BTU size minus the size
of the TH and the RH.

AP_YES
AP_NO

mode_detail.max_neg_sess_limit
Maximum negotiable session limit. Specifies the maximum
session limit for the mode name that a local LU can use
during its CNOS processing as the target LU.

mode_detail.max_rcv_ru_size
Maximum received RU size.

mode_detail.pending_session_count
Specifies the number of sessions pending (waiting for
session activation to complete).

mode_detail.termination_count
If a previous CNOS verb has caused the mode session limit
to be reset to zero, there might have been conversations
using, or waiting to use these sessions. This field is a count
of how many of these sessions have not yet been
deactivated.

mode_detail.implicit
Specifies whether the entry was put in place because of an
implicit (AP_YES) or explicit (AP_NO) definition.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_MODE_NAME

AP_INVALID_PLU_NAME
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

286 System Management Programming

 QUERY_MODE_DEFINITION

 QUERY_MODE_DEFINITION
QUERY_MODE_DEFINITION returns both information previously passed in on a
DEFINE_MODE verb and information about SNA-defined default modes.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific mode, or to obtain the
list information in several “chunks,” the mode_name field should be set. Otherwise
(if the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored.
See “Querying the Node” on page 11, for background on how the list formats are
used.

This list is ordered by the mode_name . Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

This verb returns definition information only. The QUERY_MODE verb returns
information that is determined once the mode starts to be used by a local LU with a
partner LU.

 VCB Structure
typedef struct query_mode_definition
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char mode_name[8]; /* mode name */

} QUERY_MODE_DEFINITION;

typedef struct mode_def_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */

 unsigned char description[RD_LEN];
/* resource description */

} MODE_DEF_SUMMARY;

typedef struct mode_def_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */
MODE_CHARS mode_chars; /* mode characteristics */

} MODE_DEF_DETAIL;

 Chapter 6. Query Verbs 287

 QUERY_MODE_DEFINITION

typedef struct mode_chars
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned short max_ru_size_upp; /* max RU size upper bound */
unsigned char receive_pacing_win; /* receive pacing window */
unsigned char default_ru_size; /* default RU size to maximize */

 /* performance */
unsigned short max_neg_sess_lim; /* max negotiable session limit */

 unsigned short plu_mode_session_limit;
/* LU-mode session limit */

unsigned short min_conwin_src; /* min source contention winner */
 /* sessions */

unsigned char cos_name[8]; /* class-of-service name */
 unsigned char cryptography; /* cryptography */
 unsigned char reserv1; /* reserved */

unsigned short auto_act; /* initial auto-activation count*/
 unsigned char reserv2[6]; /* reserved */
} MODE_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_MODE_DEFINITION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The mode_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

288 System Management Programming

 QUERY_MODE_DEFINITION

mode_name Mode name, which designates the network properties for a
group of sessions. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

mode_def_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

mode_def_summary.mode_name
8-byte mode name, which designates the network properties
for a group of sessions.

mode_def_summary.description
Resource description (as specified on DEFINE_MODE). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

mode_def_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

mode_def_detail.mode_name
Mode name, which designates the network properties for a
group of sessions. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

mode_def_detail.mode_chars.description
Resource description (as specified on DEFINE_MODE). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

mode_def_detail.mode_chars.max_ru_size_upp
Upper boundary for the maximum RU size to be used on
sessions with this mode name.

mode_def_detail.mode_chars.receive_pacing_win
Specifies the session pacing window for the sessions when
fixed pacing is used.

 Chapter 6. Query Verbs 289

 QUERY_MODE_DEFINITION

mode_def_detail.mode_chars.default_ru_size
Specifies whether a default upper bound for the maximum
RU size will be used. If this parameter specifies AP_YES,
max_ru_size_upp is ignored.

AP_YES
AP_NO

mode_def_detail.mode_chars.max_neg_sess_lim
Maximum negotiable session limit. Value used to negotiate
the maximum number of sessions permissible between the
local LU and the partner LU for the designated mode name.

mode_def_detail.mode_chars.plu_mode_session_limit
Session limit to negotiate initially on this mode. This value
indicates a preferred session limit and is used for implicit
CNOS.

Range: 0—32 767

mode_def_detail.mode_chars.min_conwin_src
Minimum number of contention winner sessions activatable
by local LU using this mode.

Range: 0—32 767

mode_def_detail.mode_chars.cos_name
Class-of-service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

mode_def_detail.mode_chars.cryptography
Reserved.

mode_def_detail.mode_chars.auto_act
Specifies the number of session to be auto-activated for this
mode. The value is used for implicit CNOS. The range is
0–32767.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_MODE_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

290 System Management Programming

 QUERY_MODE_TO_COS_MAPPING

 QUERY_MODE_TO_COS_MAPPING
QUERY_MODE_TO_COS_MAPPING returns information about the mode to COS
mapping.

The information is returned as a formatted list. To obtain information about a
specific mode, or to obtain the list information in several “chunks,” the mode_name
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered by the mode_name . Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance with
IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

If the default COS (which unknown modes are mapped to) has been overridden
using DEFINE_MODE, QUERY_MODE_TO_COS_MAPPING also returns an entry
with null mode_name (all zeros) and the default COS. This entry is first in the
ordering.

 VCB Structure
typedef struct query_mode_to_cos_mapping
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char mode_name[8]; /* mode name */

} QUERY_MODE_TO_COS_MAPPING;

typedef struct mode_to_cos_mapping_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char mode_name[8]; /* mode name */
unsigned char cos_name[8]; /* COS name */

 unsigned char reserva[20]; /* reserved */
} MODE_TO_COS_MAPPING_DATA;

 Chapter 6. Query Verbs 291

 QUERY_MODE_TO_COS_MAPPING

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_MODE_TO_COS_MAPPING

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:
The mode_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

mode_name Mode name, which designates the network properties for a
group of sessions. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST. This can be set to all zeros to indicate
the entry for the default COS.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

292 System Management Programming

 QUERY_MODE_TO_COS_MAPPING

mode_to_cos_mapping_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

mode_to_cos_mapping_data.mode_name
8-byte mode name, which designates the network properties
for a group of sessions. If this is set to all zeros, it indicates
the entry for the default COS.

mode_to_cos_mapping_data.cos_name
Class-of-service name associated with the mode name. This
is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_MODE_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 293

 QUERY_NMVT_APPLICATION

 QUERY_NMVT_APPLICATION
QUERY_NMVT_APPLICATION returns a list of applications that have registered for
network management vector transport (NMVT) level messages by previously
issuing the REGISTER_NMVT_APPLICATION verb (see Chapter 14, “Management
Services Verbs” for more details).

The information is returned as a list. To obtain information about a specific
application, or to obtain the list information in several “chunks,” the application
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

 VCB Structure
typedef struct query_nmvt_application
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
 unsigned char application[8]; /* application */
} QUERY_NMVT_APPLICATION;

typedef struct nmvt_application_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char application[8]; /* application name */
unsigned short ms_vector_key_type; /* MS vector key accepted */

/* by appl */
 unsigned char conversion_required;

/* conversion to MDS_MU required */
 unsigned char reserv[5]; /* reserved */
 unsigned char reserva[20]; /* reserved */
} NMVT_APPLICATION_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_NMVT_APPLICATION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

294 System Management Programming

 QUERY_NMVT_APPLICATION

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:
The application specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

application Application name. The name is an 8-byte alphanumeric
type-A EBCDIC character string or all EBCDIC zeros. This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries The number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

nmvt_application_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

nmvt_application_data.application
Name of registered application. The name is an 8-byte
alphanumeric type-A EBCDIC character string.

nmvt_application_data.ms_vector_key_type
Management services vector key accepted by the application.
When the application registers for NMVT messages, it
specifies which management services vector keys it will
accept. For more information on NMVT application
registration see Chapter 14, “Management Services Verbs.”

 Chapter 6. Query Verbs 295

 QUERY_NMVT_APPLICATION

nmvt_application_data.conversion_required
Specifies whether the registered application requires
messages to be converted from NMVT to MDS_MU format
(AP_YES or AP_NO). When the application registers for
NMVT messages, it will specify whether this conversion is
required. For more information on NMVT application
registration, see Chapter 14, “Management Services Verbs.”

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_APPLICATION_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

296 System Management Programming

 QUERY_NN_TOPOLOGY_NODE

 QUERY_NN_TOPOLOGY_NODE
Each network node maintains a network topology database that holds information
about the network nodes, VRNs and network-node-to-network-node TGs in the
network.

QUERY_NN_TOPOLOGY_NODE returns information about the network node and
VRN entries in this database.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific node or to obtain the
list information in several “chunks,” the node_name , node_type and frsn fields
should be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST),
these fields are ignored. See “Querying the Node” on page 11, for background on
how the list formats are used.

This list is by node_name , node_type , and frsn . The node_name is ordered by
name length first, and then by ASCII lexicographical ordering for names of the
same length (in accordance with IBM's 6611 APPN MIB ordering). The node_type
field follows the order: AP_NETWORK_NODE, AP_VRN. The frsn is ordered
numerically.

If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid
record of that name.

If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid record
with a name following the one specified.

If the frsn field (flow reduction sequence number) is set to a nonzero value, then
only database entries with FRSNs higher than this are returned. This allows a
consistent topology database to be returned in a number of “chunks” by first getting
the node's current FRSN. This would work as follows:

1. Issue QUERY_NODE, which returns node's current FRSN.

2. Issue as many QUERY_NN_TOPOLOGY_NODE (with FRSN set to zero) as
necessary to get all the database entries in “chunks.”

3. Issue QUERY_NODE again and compare the new FRSN with the one returned
in step 1.

4. If the two FRSNs are different, then the database has changed, so issue a
QUERY_NN_TOPOLOGY_NODE with the FRSN set to 1 greater than the
FRSN supplied in step 1.

 VCB Structure
typedef struct query_nn_topology_node
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */

 Chapter 6. Query Verbs 297

 QUERY_NN_TOPOLOGY_NODE

unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char node_name[17]; /* network qualified node name */
unsigned char node_type; /* node type */
unsigned long frsn; /* flow reduction sequence num */

} QUERY_NN_TOPOLOGY_NODE;

Note: If the frsn field is set to a nonzero value, then
only node entries with FRSNs greater than the one specified are
returned. If it is set to zero, then all node entries are returned.

typedef struct nn_topology_node_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char node_name[17]; /* network qualified node name */
unsigned char node_type; /* node type */

} NN_TOPOLOGY_NODE_SUMMARY;

typedef struct nn_topology_node_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char node_name[17]; /* network qualified node name */
unsigned char node_type; /* node type */
unsigned short days_left; /* days left until entry purged */

 unsigned char reserv1[2]; /* reserved */
unsigned long frsn; /* flow reduction sequence num */
unsigned long rsn; /* resource sequence number */
unsigned char rar; /* route additional resistance */
unsigned char status; /* node status */
unsigned char function_support; /* function support */

 unsigned char reserv2; /* reserved */
 unsigned char reserva[20]; /* reserved */
} NN_TOPOLOGY_NODE_DETAIL;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_NN_TOPOLOGY_NODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the node_name , node_type , and frsn

298 System Management Programming

 QUERY_NN_TOPOLOGY_NODE

specified (see the following parameter) represents an index
value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

node_name Network qualified node name from network topology
database. This name is 17 bytes long and is composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.)

node_type Type of the node. This can be one of the following values:

AP_NETWORK_NODE
AP_VRN

If the node_type is unknown, AP_LEARN_NODE must be
specified.

frsn Flow Reduction Sequence Number. If this is nonzero, then
only nodes with a FRSN greater than or equal to this value
are returned.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

nn_topology_node_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

nn_topology_node_summary.node_name
Network qualified node name from network topology
database. This name is 17 bytes long and is composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot and is right padded with EBCDIC spaces.

 Chapter 6. Query Verbs 299

 QUERY_NN_TOPOLOGY_NODE

(Each name can have a maximum length of 8 bytes with no
embedded spaces.)

nn_topology_node_summary.node_type
Type of the node. This is set to one of the following values:

AP_NETWORK_NODE
AP_VRN

nn_topology_node_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

nn_topology_node_detail.node_name
Network qualified node name from network topology
database. This name is 17 bytes long and is composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot and is right padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no
embedded spaces.)

nn_topology_node_detail.node_type
Type of the node. This is set to one of the following values:

AP_NETWORK_NODE
AP_VRN

nn_topology_node_detail.days_left
Number of days before deletion of this node entry from the
topology database. This will be set to zero for the local node
entry (this entry is never deleted).

nn_topology_node_detail.frsn
Flow Reduction Sequence Number. It indicates the last time
that this resource was updated at the local node.

nn_topology_node_detail.rsn
Resource Sequence Number. This is assigned by the
network node that owns this resource.

nn_topology_node_detail.rar
The node's route additional resistance.

nn_topology_node_detail.status
Specifies the status of the node. This can be
AP_UNCONGESTED or one or more of the following values
ORed together:

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold .

AP_ERR_DEPLETED
The number of end-point sessions has reached the maximum
specified.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum.

AP_QUIESCING
A STOP_NODE or type AP_QUIESCE or AP_QUIESCE_ISR
has been issued

300 System Management Programming

 QUERY_NN_TOPOLOGY_NODE

nn_topology_node_detail.function_support
Specifies which functions are supported. This can be one or
more of the following values:

AP_BORDER_NODE
Border node function is supported.

AP_CDS
Node supports central directory server function.

AP_GATEWAY
Node is a gateway Node. (This function is not yet
architecturally defined.)

AP_ISR
Node supports intermediate session routing.

AP_HPR
Node supports the base functions of High-Performance
Routing.

AP_RTP_TOWER
Node supports the RTP tower of HPR.

AP_CONTROL_OVER_RTP_TOWER
Node supports the control flows over the RTP tower.

Note: The AP_CONTROL_OVER_RTP_TOWER
corresponds to the setting of both AP_HPR and
AP_RTP_TOWER.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_NODE

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 301

 QUERY_NN_TOPOLOGY_STATS

 QUERY_NN_TOPOLOGY_STATS
QUERY_NN_TOPOLOGY_STATS returns statistical information about the topology
database and is only issued at a network node.

 VCB Structure
typedef struct query_nn_topology_stats
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned long max_nodes; /* max num of nodes in database */
unsigned long cur_num_nodes; /* current number of nodes in */

 /* database */
unsigned long node_in_tdus; /* number of TDUs received */
unsigned long node_out_tdus; /* number of TDUs sent */
unsigned long node_low_rsns; /* node updates received with */

/* low RSNs */
unsigned long node_equal_rsns; /* node updates in with */

/* equal RSNs */
 unsigned long node_good_high_rsns;

/* node updates in with */
/* high RSNs */

 unsigned long node_bad_high_rsns;
/* node updates in with */
/* high and odd RSNs */

unsigned long node_state_updates; /* number of node updates sent */
unsigned long node_errors; /* number of node entry */

/* errors found */
unsigned long node_timer_updates; /* number of node records built */

/* due to timer updates */
unsigned long node_purges; /* num node records purged */
unsigned long tg_low_rsns; /* TG updates received with */

/* low RSNs */
unsigned long tg_equal_rsns; /* TG updates in with equal RSNs */
unsigned long tg_good_high_rsns; /* TG updates in with high RSNs */
unsigned long tg_bad_high_rsns; /* TG updates in with high */

/* and odd RSNs */
unsigned long tg_state_updates; /* number of TG updates sent */
unsigned long tg_errors; /* number of TG entry errors */

 /* found */
unsigned long tg_timer_updates; /* number of node records */

/* built due to timer updates */
unsigned long tg_purges; /* num node records purged */
unsigned long total_route_calcs; /* num routes calculated for COS */
unsigned long total_route_rejs; /* num failed route calculations */

 unsigned long total_tree_cache_hits;
/* total num of tree cache hits */

 unsigned long total_tree_cache_misses;
/* total num of tree cache */

 /* misses */
 unsigned char reserva[20]; /* reserved */
} QUERY_NN_TOPOLOGY_STATS;

302 System Management Programming

 QUERY_NN_TOPOLOGY_STATS

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_NN_TOPOLOGY_STATS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

max_nodes Maximum number of node records in the topology database
(zero means unlimited).

cur_num_nodes Current number of nodes in this node's topology database. If
this value exceeds the maximum number of nodes allowed,
an Alert is issued.

node_in_tdus Total number of topology database updates (TDUs) received
by this node.

node_out_tdus Total number of topology database updates (TDUs) built by
this node to be sent to all adjacent network nodes since the
last initialization.

node_low_rsns Total number of topology node updates received by this node
with an RSN less than the current RSN. Both even and odd
RSNs are included in this count. (These TDUs are not
errors, but result when TDUs are broadcast to all adjacent
network nodes. No update to this node's topology database
occurs, but this node sends a TDU with its higher RSN to the
adjacent node that sent this low RSN.)

node_equal_rsns Total number of topology node updates received by this node
with an RSN equal to the current RSN. Both even and odd
RSNS are included in this count. (These TDUs are not
errors, but result when TDUs are broadcast to all adjacent
network nodes. No update to this node's topology database
occurs.)

node_good_high_rsns
Total number of topology node updates received by this node
with an RSN greater than the current RSN. The node
updates its topology and broadcasts a TDU to all adjacent
network nodes. It is not required to send a TDU to the
sender of this update, because that node already has the
update.

node_bad_high_rsns
Total number of topology node updates received by this node
with an odd RSN greater than the current RSN. These
updates represent a topology inconsistency detected by one
of the APPN network nodes. The node updates its topology
and broadcasts a TDU to all adjacent network nodes.

 Chapter 6. Query Verbs 303

 QUERY_NN_TOPOLOGY_STATS

node_state_updates
Total number of topology node updates built as a result of
internally detected node state changes that affect APPN
topology and routing. Updates are sent by TDUs to all
adjacent network nodes.

node_errors Total number of topology node update inconsistencies
detected by this node. This occurs when this node attempts
to update its topology database and detects a data
inconsistency. This node creates a TDU with the current
RSN incremented to the next odd number and broadcasts it
to all adjacent network nodes.

node_timer_updates
Total number of topology node updates built for this node's
resource due to timer updates. Updates are sent by TDUs to
all adjacent network nodes. These updates ensure that other
network nodes do not delete this node's resource from their
topology database.

node_purges Total number of topology node records purged from this
node's topology database. This occurs when a node record
has not been updated in a specified amount of time. The
owning node is responsible for broadcasting updates for its
resource that it wants kept in the network topology.

tg_low_rsns Total number of topology TG updates received by this node
with an RSN less than the current RSN. Both even and odd
RSNs are included in this count. (These TDUs are not
errors, but result when TDUs are broadcast to all adjacent
network nodes. No update to this node's topology database
occurs, but this node sends a TDU with its higher RSN to the
adjacent node that sent this low RSN.)

tg_equal_rsns Total number of topology TG updates received by this node
with an RSN equal to the current RSN. Both even and odd
RSNs are included in this count. (These TDUs are not
errors, but result when TDUs are broadcast to all adjacent
network nodes. No update to this node's topology database
occurs.)

tg_good_high_rsns Total number of topology TG updates received by this node
with an RSN greater than the current RSN. The node
updates its topology and broadcasts a TDU to all adjacent
network nodes.

tg_bad_high_rsns Total number of topology TG updates received by this node
with an odd RSN greater than the current RSN. These
updates represent a topology inconsistency detected by one
of the APPN Network Nodes. The node updates its topology
and broadcasts a TDU to all adjacent network nodes.

tg_state_updates Total number of topology TG updates built as a result of
internally detected node state changes that affect APPN
topology and routing. Updates are sent by TDUs to all
adjacent network nodes.

304 System Management Programming

 QUERY_NN_TOPOLOGY_STATS

tg_errors Total number of topology TG update inconsistencies detected
by this node. This occurs when this node attempts to update
its topology database and detects a data inconsistency. This
node creates a TDU with the current RSN incremented to the
next odd number and broadcasts it to all adjacent network
nodes.

tg_timer_updates Total number of topology TG updates built for this node's
resource due to timer updates. Updates are sent by TDUs to
all adjacent network nodes. These updates ensure that other
network nodes do not delete this node's resource from their
topology database.

tg_purges Total number of topology TG records purged from this node's
topology database. This occurs when a node record has not
been updated in a specified amount of time. The owning
node is responsible for broadcasting updates for its resource
that it wants kept in the network topology.

total_route_calcs Number of routes calculated for all classes of service since
the last.

total_route_rejs Number of route requests for all classes of service that could
not be calculated since the last initialization.

total_tree_cache_hits
Number of route computations that were satisfied by a
cached routing tree. Note that this number may be greater
than the total number of computed routes, because each
route may require inspection of several trees.

total_tree_cache_misses
Number of route computations that were not satisfied by a
cached routing tree, so that a new routing tree had to be
built.

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 305

 QUERY_NN_TOPOLOGY_TG

 QUERY_NN_TOPOLOGY_TG
Each network node maintains a network topology database which holds information
about the network nodes, VRNs and network-node-to-network-node TGs in the
network. QUERY_NN_TOPOLOGY_TG returns information about the TG entries in
this database.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific node or to obtain the
list information in several “chunks,” the owner , owner_type , dest , dest_type ,
tg_num , and frsn fields should be set. Otherwise (if the list_options field is set to
AP_FIRST_IN_LIST), these fields are ignored. See “Querying the Node” on
page 11, for background on how the list formats are used.

This list is by owner , owner_type , dest , dest_type , tg_num , and frsn . The
owner name and dest name are ordered by name length first, and then by ASCII
lexicographical ordering for names of the same length (in accordance with IBM's
6611 APPN MIB ordering). The owner_type and dest_type follow the order:
AP_NETWORK_NODE, AP_VRN. The tg_num and frsn are ordered numerically.

If AP_LIST_INCLUSIVE is selected, the returned list starts from the first valid
record of that name.

If AP_LIST_FROM_NEXT is selected, the list will begin from the first valid record
with a name following the one specified.

If the frsn field (flow reduction sequence number) is set to a nonzero value, then
only database entries with FRSNs higher than this are returned. This allows a
consistent topology database to be returned in a number of “chunks” by first getting
the node's current FRSN. This works as follows:

1. Issue QUERY_NODE, which returns the node's current FRSN.

2. Issue as many QUERY_NN_TOPOLOGY_TG (with FRSN set to zero) as
necessary to get all the database entries in “chunks.”

3. Issue QUERY_NODE again and compare the new FRSN with the one returned
in step 1.

4. If the two FRSNs are different, then the database has changed, so issue a
QUERY_NN_TOPOLOGY_TG with the FRSN set to 1 greater than the FRSN
supplied in step 1.

 VCB Structure
typedef struct query_nn_topology_tg
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

306 System Management Programming

 QUERY_NN_TOPOLOGY_TG

 unsigned char reserv3; /* reserved */
unsigned char owner[17]; /* node that owns the TG */
unsigned char owner_type; /* type of node that owns the TG*/
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

 unsigned char reserv1; /* reserved */
unsigned long frsn; /* flow reduction sequence num */

} QUERY_NN_TOPOLOGY_TG;

typedef struct topology_tg_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char owner[17]; /* node that owns the TG */
unsigned char owner_type; /* type of node that owns the TG*/
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

 unsigned char reserv3[1]; /* reserved */
unsigned long frsn; /* flow reduction sequence num */

} TOPOLOGY_TG_SUMMARY;

typedef struct topology_tg_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char owner[17]; /* node that owns the TG */
unsigned char owner_type; /* type of node that owns the TG*/
unsigned char dest[17]; /* TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

 unsigned char reserv3[1]; /* reserved */
unsigned long frsn; /* flow reduction sequence num */
unsigned short days_left; /* days left until entry purged */
LINK_ADDRESS dlc_data /* DLC signalling data */
unsigned long rsn; /* resource sequence number */
unsigned char status; /* node status */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

 unsigned char reserva[20]; /* reserved */
} TOPOLOGY_TG_DETAIL;

typedef struct link_address
{
 unsigned short length; /* length */

unsigned short reserve1; /* reserved */
 unsigned char address[MAX_LINK_ADDR_LEN];
 /* address */
} LINK_ADDRESS;

Note: If the frsn field is set to a nonzero value, then only
node entries with that FRSN are returned. If it is set to zero,
then all node entries are returned.

 Chapter 6. Query Verbs 307

 QUERY_NN_TOPOLOGY_TG

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_NN_TOPOLOGY_TG

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of the owner , owner_type , dest ,
dest_type , tg_num , and frsn specified (see the following
parameter) represents an index value that is used to specify
the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

owner Name of the TG's originating node. This name is 17 bytes
long and is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot and is right padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

owner_type Type of the node that owns the TG. This can be one of the
following values:

AP_NETWORK_NODE
AP_VRN

If the owner_type is unknown, AP_LEARN_NODE must be
specified. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

308 System Management Programming

 QUERY_NN_TOPOLOGY_TG

dest Fully qualified destination node name for the TG. This name
is 17 bytes long and is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot and is
right padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is ignored if list_options is set to AP_FIRST_IN_LIST.

dest_type Type of the destination node for this TG. This can be one of
the following values:

AP_NETWORK_NODE
AP_VRN

If the dest_type is unknown, AP_LEARN_NODE must be
specified. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

tg_num Number associated with the TG. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

frsn Flow Reduction Sequence Number. If this is nonzero, then
only nodes with a FRSN greater than or equal to this value
are returned.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

topology_tg_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

topology_tg_summary.owner
Name of the TG's originating node. This name is 17 bytes
long and is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot and is right padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

topology_tg_summary.owner_type
Type of the node that owns the TG. This is set to one of the
following values:

AP_NETWORK_NODE
AP_VRN

 Chapter 6. Query Verbs 309

 QUERY_NN_TOPOLOGY_TG

topology_tg_summary.dest
Fully qualified destination node name for the TG. This name
is 17 bytes long and is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot and is
right padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

topology_tg_summary.dest_type
Type of the destination node for this TG. This is set to one
of the following values:

AP_NETWORK_NODE
AP_VRN

topology_tg_summary.tg_num
Number associated with the TG.

topology_tg_summary.frsn
Flow Reduction Sequence Number. It indicates the last time
that this resource was updated at the local node.

topology_tg_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

topology_tg_detail.owner
Name of the TG's originating node. This name is 17 bytes
long and is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot and is right padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

topology_tg_detail.owner_type
Type of the node that owns the TG. This is set to one of the
following values:

AP_NETWORK_NODE
AP_VRN

topology_tg_detail.dest
Fully qualified destination node name for the TG. This name
is 17 bytes long and is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot and is
right padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

topology_tg_detail.dest_type
Type of the destination node for this TG. This is set to one
of the following values:

AP_NETWORK_NODE
AP_VRN

topology_tg_detail.tg_num
Number associated with the TG.

topology_tg_detail.frsn
Flow Reduction Sequence Number. It indicates the last time
that this resource was updated at the local node.

310 System Management Programming

 QUERY_NN_TOPOLOGY_TG

topology_node_detail.days_left
Number of days before deletion of this node entry from the
topology database.

topology_tg_detail.dlc_data.length
Length of DLC address of connection to a VRN (set to zero if
dest_type is not AP_VRN). .

topology_tg_detail.dlc_data.address
DLC address of connection to VRN. This is set to zero if
dest_type is not AP_VRN. .

topology_tg_detail.rsn
Resource Sequence Number. This is assigned by the
network node that owns this resource.

topology_tg_detail.status
Specifies the status of the TG. This can be one or more of
the following values ORed together:

AP_TG_OPERATIVE
AP_TG_QUIESCING
AP_TG_CP_CP_SESSIONS
AP_TG_HPR
AP_TG_RTP
AP_TG_NONE

topology_tg_detail.tg_chars
TG characteristics.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TG

AP_INVALID_ORIGIN_NODE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 311

 QUERY_NODE

 QUERY_NODE
QUERY_NODE returns node specific information and statistics. In addition to
returning information determined dynamically during execution, QUERY_NODE also
returns parameters which are set during node initialization.

 VCB Structure
typedef struct query_node
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
CP_CREATE_PARMS cp_create_parms; /* create parameters */
unsigned long up_time; /* time since node started */
unsigned long mem_size; /* size of memory available */
unsigned long mem_used; /* size of memory used */

 unsigned long mem_warning_threshold;
/* memory constrained */

 /* threshold */
 unsigned long mem_critical_threshold;

/* memory critical threshold */
 unsigned char nn_functions_supported;

/* NN functions supported */
 unsigned char functions_supported;

/* functions supported */
 unsigned char en_functions_supported;

/* EN functions supported */
unsigned char nn_status; /* node status. One or more of */
unsigned long nn_frsn; /* NN flow reduction */

/* sequence number */
unsigned long nn_rsn; /* Resource sequence number */
unsigned short def_ls_good_xids; /* Good XIDs for defined */

/* link stations */
unsigned short def_ls_bad_xids; /* Bad XIDs for defined */

/* link stations */
unsigned short dyn_ls_good_xids; /* Good XIDs for dynamic */

/* link stations */
unsigned short dyn_ls_bad_xids; /* Bad XIDs for dynamic */

/* link stations */
unsigned char dlur_release_level; /* Current DLUR release level */

 unsigned char reserva[19]; /* reserved */
} QUERY_NODE;

typedef struct cp_create_parms
{

unsigned short crt_parms_len; /* length of CP_CREATE_PARMS */
 unsigned char description[RD_LEN];

/* resource description */
unsigned char node_type; /* node type */
unsigned char fqcp_name[17]; /* fully qualified CP name */
unsigned char cp_alias[8]; /* CP alias */

 unsigned char mode_to_cos_map_supp;
/* mode to COS mapping support */

312 System Management Programming

 QUERY_NODE

unsigned char mds_supported; /* MDS and MS capabilities */
unsigned char node_id[4]; /* node ID */
unsigned short max_locates; /* max locates node can process */
unsigned short dir_cache_size; /* directory cache size */

/* (reserved) if not NN) */
unsigned short max_dir_entries; /* max directory entries */
unsigned short locate_timeout; /* locate timeout in seconds */
unsigned char reg_with_nn; /* register resources with NNS */
unsigned char reg_with_cds; /* resource registration with */

 /* CDS */
 unsigned short mds_send_alert_q_size;

/* size of MDS send alert queue */
unsigned short cos_cache_size; /* number of COS definitions */
unsigned short tree_cache_size; /* Topology Database routing */

/* tree cache size */
 unsigned short tree_cache_use_limit;

/* num times tree can be used */
unsigned short max_tdm_nodes; /* max num nodes that can be */

/* stored in Topology Database */
unsigned short max_tdm_tgs; /* max num TGs that can be */

/* stored in Topology Database */
unsigned long max_isr_sessions; /* max ISR sessions */

 unsigned long isr_sessions_upper_threshold;
/* upper threshold for ISR sess */

 unsigned long isr_sessions_lower_threshold;
/* lower threshold for ISR sess */

unsigned short isr_max_ru_size; /* max RU size for ISR */
unsigned short isr_rcv_pac_window; /* ISR rcv pacing window size */
unsigned char store_endpt_rscvs; /* endpoint RSCV storage */
unsigned char store_isr_rscvs; /* ISR RSCV storage */
unsigned char store_dlur_rscvs; /* DLUR RSCV storage */
unsigned char dlur_support; /* is DLUR supported? */
unsigned char pu_conc_support; /* is PU conc supported? */
unsigned char nn_rar; /* Route additional resistance */
unsigned char hpr_support; /* level of HPR support */
unsigned char mobile; /* HPR path-switch controller? */
unsigned char discovery_support; /* Discovery function utilized */

 unsigned char discovery_group_name[8];
/* Group name for Discovery */

 unsigned char implicit_lu_0_to_3;
/* Implicit LU 0 to 3 support */

 unsigned char default_preference;
/* Default routing preference */

 unsigned char anynet_supported;
/* Support for non-native */
/* (AnyNet) routing */

 unsigned char reserv2[4]; /* reserved */
unsigned char node_spec_data_len; /* length of node specific data */
unsigned char ptf[64]; /* program temporary fix array */

} CP_CREATE_PARMS;

 Chapter 6. Query Verbs 313

 QUERY_NODE

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_NODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

cp_create_parms.crt_parms_len
Length of create parameters structure.

cp_create_parms.description
Resource description. This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

cp_create_parms.node_type
It is always

AP_END_NODE

cp_create_parms.fqcp_name
Node's 17-byte fully qualified control point name. This name
is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name has a maximum length of 8
bytes with no embedded spaces.)

cp_create_parms.cp_alias
Locally used control point alias. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

cp_create_parms.mode_to_cos_map_supp
Specifies whether mode to COS mapping is supported by the
node (AP_YES or AP_NO). If this is set to AP_YES then the
COS specified on a DEFINE_MODE verb must either be an
SNA defined COS or have been defined by issuing a
DEFINE_COS verb.

cp_create_parms.mds_supported
Specifies whether management services supports Multiple
Domain Support and Management Services Capabilities
(AP_YES or AP_NO).

cp_create_parms.node_id
Node identifier used in XID exchange. This a 4-byte
hexadecimal string.

cp_create_parms.max_locates
Maximum number of locates that the node can process.

cp_create_parms.dir_cache_size
Network node only: Size of the directory cache.

314 System Management Programming

 QUERY_NODE

cp_create_parms.max_dir_entries
Maximum number of directory entries. This is unlimited if this
field is set to zero.

cp_create_parms.locate_timeout
Specifies the time in seconds before a network search will
timeout. A value of zero indicates that the search has no
timeout.

cp_create_parms.reg_with_nn
Specifies whether resources will be registered with the
network node server (AP_YES or AP_NO). If this field is set
to AP_YES then the end node's network node server will
only forward directed locates to it. If it is not set, the network
node server will forward all broadcast searches to the end
node. Registration failure does not affect successful
completion of node initialization. See
“REGISTRATION_FAILURE” on page 424 for details.

cp_create_parms.reg_with_cds
Specifies whether the Network node server is allowed to
register end node resources with a central directory server
(AP_YES or AP_NO). (This field is ignored if reg_with_nn is
set to AP_NO.) Network node: Specifies whether local or
domain resources can be optionally registered with Central
Directory Server (AP_YES or AP_NO). Registration failure
does not affect successful completion of node initialization.

cp_create_parms.mds_send_alert_q_size
Size of the MDS send alert queue. When this limit is
reached, the MDS component deletes the oldest entry on the
queue.

cp_create_parms.cos_cache_size
Size of the COS Database weights cache.

cp_create_parms.tree_cache_size
Size of the topology database routing tree cache size.

cp_create_parms.tree_cache_use_limit
Maximum number of uses of a cached tree. Once this
number is exceeded, the tree is discarded and recomputed.
This allows the node to balance sessions among equal
weight routes. A low value provides better load balancing at
the expense of increased activation latency.

cp_create_parms.max_tdm_nodes
Maximum number of nodes that can be stored in topology
database (zero means unlimited).

cp_create_parms.max_tdm_tgs
Maximum number of TGs that can be stored in topology
database (zero means unlimited).

cp_create_parms.max_isr_sessions
Maximum number of ISR sessions the node can participate
in at once.

 Chapter 6. Query Verbs 315

 QUERY_NODE

cp_create_parms.isr_sessions_upper_threshold
See cp_create_parms.isr_sessions_lower_threshold

cp_create_parms.isr_sessions_lower_threshold
The upper and lower thresholds control the node's
congestion status. The node state changes from
uncongested to congested if the number of ISR sessions
exceeds the upper threshold. The node state changes back
to uncongested once the number of ISR sessions dips below
the lower threshold.

cp_create_parms.isr_max_ru_size
Maximum RU size supported for intermediate sessions.

cp_create_parms.isr_rcv_pac_window
Suggested receive pacing window size for intermediate
sessions. This value is only used on the secondary hop of
intermediate sessions if the adjacent node does not support
adaptive pacing.

cp_create_parms.store_endpt_rscvs
Specifies whether RSCVs are stored for diagnostic purposes
(AP_YES or AP_NO).

cp_create_parms.store_isr_rscvs
Specifies whether RSCVs are stored for diagnostic purposes
(AP_YES or AP_NO).

cp_create_parms.store_dlur_rscvs
Specifies whether the node stores RSCVs for diagnostic
purposes (AP_YES or AP_NO). If this field is set to
AP_YES, then an RSCV is returned on the
QUERY_DLUR_LU verb.

cp_create_parms.dlur_support
Specifies whether DLUR is supported (AP_YES or AP_NO).

cp_create_parms.pu_conc_support
Specifies whether PU concentration is supported (always
AP_NO).

cp_create_parms.nn_rar
The network node's route additional resistance.

cp_create_parms.hpr_support
Specifies the level of support for HPR that is provided by the
node (AP_NONE, AP_BASE, or AP_RTP).

cp_create_parms.mobile
Specifies whether the node is an HPR path-switch controller
(AP_YES or AP_NO). If the cp_create_parms.hpr_support
field is not set to AP_RTP this field is reserved.

cp_create_parms.discovery_support
Specifies whether Discovery functions are utilized by this
node.

AP_DISCOVERY_CLIENT
Discovery client functions are used by this node

316 System Management Programming

 QUERY_NODE

AP_DISCOVERY_SERVER
Discovery server functions are used by this node.

cp_create_parms.discovery_group_name
Specifies the group name used on Discovery functions
utilized by the node. If this field is set to all zeros, the default
group name is used.

cp_create_parms.implicit_lu_0_to_3
Specifies whether the node supports implicit definition of LUs
of type 0 to 3 by ACTLU (AP_YES or AP_NO).

cp_create_parms.default_preference
Specifies the preferred method of routing when initiating
sessions from this node.

Note: This can be overridden on a per LU basis using the
DEFINE_PARTNER_LU verb.

This field can take the following values:

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use non-native (AnyNet) routing protocols only.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located, then retry session activation using non-native
(AnyNet) protocols.

AP_NONNATIVE_THEN_NATIVE
Try non-native (AnyNet) protocols, and if the partner LU
cannot be located, then retry session activation using native
(APPN) protocols.

Note: The latter three values are only meaningful when an
AnyNet DLC is available to the Node Operator
Facility, and there is an AnyNet Link Station defined.

cp_create_parms.anynet_supported
Specifies support for AnyNet (TCP/IP) routing.

cp_create_parms.node_spec_data_len
This field should always be set to zero.

cp_create_parms.ptf
Array for configuring and controlling future program
temporary fix (PTF) operation.

cp_create_parms.ptf[0]
REQDISCONT support. Communications Server normally
uses REQDISCONT to deactivate limited resource host links
that are no longer required by session traffic. This byte can
be used to suppress Communications Server ' use of
REQDISCONT, or to modify the settings used on
REQDISCONT requests sent by Communications Server.

AP_SUPPRESS_REQDISCONT
If this bit is set, Communications Server does not use
REQDISCONT (all other bits in this byte are ignored).

 Chapter 6. Query Verbs 317

 QUERY_NODE

AP_OVERRIDE_REQDISCONT
If this bit is set, Communications Server overrides the normal
settings on REQDISCONT, based on the following two bits:

AP_REQDISCONT_TYPE
If this bit is set, Communications Server specifies a type of
“immediate” on REQDISCONT. Otherwise, Communications
Server specifies a type of “normal”. (This bit is ignored if
AP_OVERRIDE_REQDISCONT is not set.)

AP_REQDISCONT_RECONTACT
If this bit is set, Communications Server specifies “immediate
recontact” in REQDISCONT. Otherwise, Communications
Server specifies “no immediate recontact”. (This bit is
ignored if AP_OVERRIDE_REQDISCONT is not set.)

cp_create_parms.ptf[1]
ERP support.

Communications Server normally processes an ACTPU(ERP)
as an ERP (ACTPU(ERP) requests the PU-SSCP session be
reset, but, unlike ACTPU(cold), does not request implicit
deactivation of the subservient LU-SSCP and PLU-SLU
sessions). SNA implementations can legally process
ACTPU(ERP) as if it were ACTPU(cold).

AP_OVERRIDE_ERP
If this bit is set, Communications Server processes all
ACTPU requests as ACTPU(cold).

cp_create_parms.ptf[2]
BIS support.

Communications Server normally uses the BIS protocol prior
to deactivating a limited resource LU 6.2 session. This byte
allows the use of BIS to be overridden.

AP_SUPPRESS_BIS
If this bit is set, Communications Server does not use the
BIS protocol. Limited resource LU 6.2 session are
deactivated immediately using UNBIND(cleanup).

up_time Time (in hundredths of a second) since the node was started
(or restarted).

mem_size Size of the available storage, as obtained by storage
management from the underlying operating system.

mem_used Number of bytes of storage that are currently allocated to a
process.

mem_warning_threshold
Allocation threshold beyond which storage management
considers the storage resources to be constrained.

mem_critical_threshold
Allocation threshold beyond which storage management
considers the storage resources to be critically constrained.

nn_functions_supported
Reserved.

318 System Management Programming

 QUERY_NODE

functions_supported
Specifies which functions are supported. This can be one or
more of the following values:

AP_NEGOTIABLE_LS
AP_SEGMENT_REASSEMBLY
AP_BIND_REASSEMBLY
AP_PARALLEL_TGS
AP_CALL_IN
AP_ADAPTIVE_PACING

en_functions_supported
Specifies the end-node functions supported.

AP_SEGMENT_GENERATION
Node supports segment generation.

AP_MODE_TO_COS_MAP
Node supports mode name to COS name mapping.

AP_LOCATE_CDINIT
Node supports generation of locates and cross-domain
initiate GDS variables for locating remote LUs.

AP_REG_WITH_NN
Node will register its LUs with the adjacent serving network
node.

AP_REG_CHARS_WITH_NN
Node supports send register characteristics (can only be
supported when send registered names is also supported).

nn_status Reserved.

nn_frsn Reserved.

nn_rsn Reserved.

def_ls_good_xids Total number of successful XID exchanges that have
occurred on all defined link stations since the node was last
started.

def_ls_bad_xids Total number of unsuccessful XID exchanges that have
occurred on all defined link stations since the node was last
started.

dyn_ls_good_xids Total number of successful XID exchanges that have
occurred on all dynamic link stations since the node was last
started.

dyn_ls_bad_xids Total number of unsuccessful XID exchanges that have
occurred on all dynamic link stations since the node was last
started.

dlur_release_level Specifies the current DLUR release level.

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

 Chapter 6. Query Verbs 319

 QUERY_NODE

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

320 System Management Programming

 QUERY_PARTNER_LU

 QUERY_PARTNER_LU
QUERY_PARTNER_LU returns information about partner LUs that have been used
by a local LU.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific partner LU, or to obtain
the list information in several “chunks,” the plu_alias field should be set (or the
fqplu_name if the plu_alias is set to all zeros). If the list_options field is set to
AP_FIRST_IN_LIST, both of these fields will be ignored. The lu_name or lu_alias
field must always be set. The lu_name , if nonzero, will be used in preference to
the lu_alias . See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered by the fqplu_name . Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering). If AP_LIST_FROM_NEXT is selected, the returned list starts
from the next entry according to the defined ordering (whether the specified entry
exists or not).

If plu_alias is set to all zeros, the fqplu_name value will be used; otherwise, the
plu_alias is always used and the fqplu_name is ignored.

The list of partner LUs returned can be filtered according to whether they currently
have any active sessions. If filtering is desired, the active_sessions field should
be set to AP_YES (otherwise this field should be set to AP_NO).

This verb returns information that is determined when at least one session is
established with the partner LU.

The QUERY_PARTNER_LU_DEFINITION verb returns definition information only.

 VCB Structure
typedef struct query_partner_lu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char active_sessions; /* active sessions only filter */

} QUERY_PARTNER_LU;

 Chapter 6. Query Verbs 321

 QUERY_PARTNER_LU

typedef struct plu_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv1; /* reserved */
 unsigned char description[RD_LEN];

/* resource description */
unsigned short act_sess_count; /* curr active sessions count */
unsigned char partner_cp_name[17]; /* partner LU CP name */
unsigned char partner_lu_located; /* CP name resolved? */

} PLU_SUMMARY;

typedef struct plu_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv1; /* reserved */
 unsigned char description[RD_LEN];

/* resource description */
unsigned short act_sess_count; /* curr active sessions count */
unsigned char partner_cp_name[17]; /* partner LU CP name */
unsigned char partner_lu_located; /* CP name resolved? */
unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
unsigned char parallel_sess_supp; /* parallel sessions supported? */
unsigned char conv_security; /* conversation security */
unsigned short max_mc_ll_send_size; /* max send LL size for mapped */

 /* conversations */
unsigned char implicit; /* implicit or explicit entry */
unsigned char security_details; /* conversation security detail */
unsigned char duplex_support; /* full-duplex support */
unsigned char preference; /* routing preference */

 unsigned char reserva[16]; /* reserved */
} PLU_DETAIL;

The application supplies the following parameters:

opcode AP_QUERY_PARTNER_LU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

322 System Management Programming

 QUERY_PARTNER_LU

AP_DETAIL
Returns detailed information.

The combination of the lu_name (or lu_alias if the lu_name
is set to all zeros) and plu_alias (or fqplu_name if the
plu_alias is set to all zeros) specified (see the following
parameter) represents an index value that is used to specify
the starting point of the actual information to be returned:

AP_FIRST_IN_LIST
The plu_alias and fqplu_name fields are ignored and the
returned list starts from the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

lu_name LU name. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be
used for determining the index.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. This field is only significant if the
lu_name field is set to all zeros, in which case all 8 bytes are
significant and must be set. If both the lu_name and the
lu_alias are set to all zeros then the LU associated with the
control point (the default LU) is used.

plu_alias Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field will be used as the index value.

fqplu_name 17-byte fully qualified network name for the partner LU. This
name is 17 bytes long and is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

active_sessions Active session filter. Specifies whether the returned partner
LUs should be filtered according to whether they currently
have any active sessions (AP_YES or AP_NO).

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

 Chapter 6. Query Verbs 323

 QUERY_PARTNER_LU

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

plu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

plu_summary.plu_alias
Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

plu_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is 17 bytes long and is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

plu_summary.description
Resource description (as specified on
DEFINE_PARTNER_LU). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

plu_summary.act_sess_count
Total number of active sessions between the local LU and
the partner LU. If the active_sessions filter has been set to
AP_YES, then this field will always be greater than zero.

plu_summary.partner_cp_name
17-byte fully qualified network name for the control point of
the partner LU. This name is composed of two type A
EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

plu_summary.partner_lu_located
Specifies whether the control point name for the partner LU
has been resolved (AP_YES or AP_NO).

plu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

plu_detail.plu_alias Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

plu_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

324 System Management Programming

 QUERY_PARTNER_LU

plu_detail.description
Resource description (as specified on
DEFINE_PARTNER_LU). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

plu_detail.act_sess_count
Total number of active sessions between the local LU and
the partner LU. If the active_sessions filter has been set to
AP_YES, then this field will always be greater than zero.

plu_detail.partner_cp_name
17-byte fully qualified network name for the control point of
the partner LU. This name is composed of two type A
EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

plu_detail.partner_lu_located
Specifies whether the control point name for the partner LU
has been resolved (AP_YES or AP_NO).

plu_detail.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte
type-A EBCDIC character string.

plu_detail.parallel_sess_supp
Specifies whether parallel sessions are supported (AP_YES
or AP_NO).

plu_detail.conv_security
Specifies whether conversation security information can be
sent to this partner LU (AP_YES or AP_NO). If it is set to
AP_NO, then any security information supplied by a
transaction program is not sent to the partner LU.

plu_detail.max_mc_ll_send_size
Maximum size of logical length (LL) record that can be sent
to the partner LU. Data records that are larger than this are
broken down into several LL records before being sent to the
partner LU. The maximum value max_mc_ll_send_size can
take is 32 767.

plu_detail.implict Specifies whether the entry is the result of an implicit
(AP_YES) or explicit (AP_NO) definition.

plu_detail.security_details
Returns the conversation security support as negotiated on
the BIND. This can be one or more of the following values:

AP_CONVERSATION_LEVEL_SECURITY
Conversation security information will be accepted on
requests to or from the partner LU to allocate a conversation.
The specific types of conversation security support are
described by the following values.

AP_ALREADY_VERIFIED
Both local and partner LU agree to accept already verified
requests to allocate a conversation. An already verified
request need carry only a user ID, and not a password.

 Chapter 6. Query Verbs 325

 QUERY_PARTNER_LU

AP_PERSISTENT_VERIFICATION
Persistent verification is supported on the session between
the local and partner LUs. This means that, once the initial
request (carrying a user ID and, typically, a password) for a
conversation has been verified, subsequent requests for a
conversation need only carry the user ID.

AP_PASSWORD_SUBSTITUTION
The local and partner LU support password substitution
conversation security. When a request to allocate a
conversation is issued, the request carries an encrypted form
of the password. If password substitution is not supported,
the password is carried in clear text (nonencrypted) format.

Note: If the session does not support password substitution,
then an ALLOCATE or SEND_CONVERSATION with
security type of AP_PGM_STRONG will fail.

plu_detail.duplex_support
Returns the conversation duplex support as negotiated on
the BIND. This is one of the following values:

AP_HALF_DUPLEX
Only half-duplex conversations are supported.

AP_FULL_DUPLEX
Full-duplex as well as half-duplex conversations are
supported.

AP_UNKNOWN
The conversation duplex support is not known because there
are no active sessions to the partner LU.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PLU_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

326 System Management Programming

 QUERY_PARTNER_LU_DEFINITION

 QUERY_PARTNER_LU_DEFINITION
QUERY_PARTNER_LU_DEFINITION returns information that had previously been
passed in on a DEFINE_PARTNER_LU verb.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific partner LU, or to obtain
the list information in several “chunks,” the plu_alias field (or the fqplu_name if the
plu_alias is set to all zeros) should be set. If the plu_alias field is nonzero it will
be used to determine the index and the fqplu_name is ignored. If the plu_alias
field is set to all zeros, the fqplu_name will be used to determine the index. If the
list_options field is set to AP_FIRST_IN_LIST then both of these fields will be
ignored. (In this case the returned list will be ordered by plu_alias if the
AP_LIST_BY_ALIAS list_options is set, otherwise it will be ordered by
fqplu_name). See “Querying the Node” on page 11, for background on how the
list formats are used.

This list is ordered on either plu_alias or fqplu_name according to the options
specified. Ordering is by name length first, and then by ASCII lexicographical
ordering for names of the same length (in accordance with normal MIB ordering). If
AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

Note this verb returns definition information only. The QUERY_PARTNER_LU verb
returns information that is determined when at least one session is established with
the partner LU.

 VCB Structure
typedef struct query_partner_lu_definition
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
} QUERY_PARTNER_LU_DEFINITION;

typedef struct partner_lu_def_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char description[RD_LEN];

 Chapter 6. Query Verbs 327

 QUERY_PARTNER_LU_DEFINITION

/* resource description */
} PARTNER_LU_DEF_SUMMARY;

typedef struct partner_lu_def_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv1; /* reserved */

PLU_CHARS plu_chars; /* partner LU characteristics */
} PARTNER_LU_DEF_DETAIL;

typedef struct plu_chars
{

unsigned char fqplu_name[17]; /* fully qualified partner */
/* LU name */

unsigned char plu_alias[8]; /* partner LU alias */
unsigned char description[RD_LEN]; /* resource description */
unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
unsigned char preference; /* routing preference */

 unsigned short max_mc_ll_send_size;
/* max MC send LL size */

 unsigned char conv_security_ver; /* already_verified accepted */
unsigned char parallel_sess_supp; /* parallel sessions supported? */

 unsigned char reserv2[8]; /* reserved */
} PLU_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_PARTNER_LU_DEFINITION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The plu_alias (or the fqplu_name if the plu_alias is set to
all zeros) specified (see the following parameter) represents
an index value that is used to specify the starting point of the
actual information to be returned.

328 System Management Programming

 QUERY_PARTNER_LU_DEFINITION

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

AP_LIST_BY_ALIAS
The returned list is ordered by plu_alias . This option is only
valid when AP_FIRST_IN_LIST is specified. If
AP_LIST_FROM_NEXT or AP_LIST_INCLUSIVE is
specified, the list ordering will depend on whether the
plu_alias or fqplu_name has been supplied as a starting
point.

plu_alias Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

fqplu_name 17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field is only
significant if the plu_alias field is set to all zeros. This field
is ignored if list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries

partner_lu_def_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

partner_lu_def_summary.plu_alias
Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

 Chapter 6. Query Verbs 329

 QUERY_PARTNER_LU_DEFINITION

partner_lu_def_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

partner_lu_def_summary.description
Resource description (as specified on
DEFINE_PARTNER_LU). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

partner_lu_def_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

partner_lu_def_detail.plu_alias
Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

partner_lu_def_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

partner_lu_def_detail.plu_chars.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

partner_lu_def_detail.plu_chars.plu_alias
Partner LU alias.

partner_lu_def_detail.plu_chars.description
Resource description (as specified on
DEFINE_PARTNER_LU). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

partner_lu_def_detail.plu_chars.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte
type-A EBCDIC character string.

plu_chars.preference
The set of routing protocols to be preferred for session
activation to this partner LU. This field can take the following
values:

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use non-native (AnyNet) routing protocols only.

330 System Management Programming

 QUERY_PARTNER_LU_DEFINITION

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located then retry session activation using non-native
(AnyNet) protocols.

AP_NONNATIVE_THEN_NATIVE
Try non-native (AnyNet) protocols, and if the partner LU
cannot be located then retry session activation using native
(APPN) protocols.

AP_USE_DEFAULT_PREFERENCE
Use the default preference defined when the node was
started.

Note: Non-native routing is only meaningful when an
AnyNet DLC is available to the Node Operator
Facility, and there is an AnyNet link station defined.

partner_lu_def_detail.plu_chars.max_mc_ll_send_size
Maximum size of logical length (LL) record that can be sent
to the partner LU. Data records that are larger than this are
broken down into several LL records before being sent to the
partner LU. The maximum value max_mc_ll_send_size can
take is 32 767.

partner_lu_def_detail.plu_chars.conv_security_ver
Specifies whether the partner LU is authorized to validate
user_ids on behalf of local LUs, that is whether the partner
LU can set the already verified indicator in an Attach request.

AP_YES
AP_NO

partner_lu_def_detail.plu_chars.parallel_sess_supp
Specifies whether parallel sessions are supported (AP_YES
or AP_NO).

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PLU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 331

 QUERY_PORT

 QUERY_PORT
QUERY_PORT returns a list of information about a node's ports. This information
is structured as “determined data” (data gathered dynamically during execution) and
“defined data” (the data supplied by the application on DEFINE_PORT).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific port, or to obtain the list
information in several “chunks,” the port_name field should be set. Otherwise (if
the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
“Querying the Node” on page 11, for background on how the list formats are used.

This list is ordered by the port_name . Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance with
IBM's 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

The list of ports returned can be filtered by the name of the DLC that they belong
to. In this case the dlc_name field should be set (otherwise this field should be set
to all zeros).

 VCB Structure
typedef struct query_port
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char port_name[8]; /* port name */
unsigned char dlc_name[8]; /* DLC name filter */

} QUERY_PORT;

typedef struct port_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char port_name[8]; /* port name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char port_state; /* port state */
 unsigned char reserv1[1]; /* reserved */

unsigned char dlc_name[8]; /* name of DLC */
} PORT_SUMMARY;

typedef struct port_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char port_name[8]; /* port name */

332 System Management Programming

 QUERY_PORT

 unsigned char reserv1[2]; /* reserved */
 PORT_DET_DATA det_data; /* determined data */
 PORT_DEF_DATA def_data; /* defined data */
} PORT_DETAIL;

typedef struct port_det_data
{

unsigned char port_state; /* port state */
unsigned char dlc_type; /* DLC type */
unsigned char port_sim_rim; /* port initialization options */

 unsigned char reserv1; /* reserved */
unsigned short def_ls_good_xids; /* number of successful XIDs */
unsigned short def_ls_bad_xids; /* number of unsuccessful XIDs */
unsigned short dyn_ls_good_xids; /* successful XIDs on dynamic */

/* LS count */
unsigned short dyn_ls_bad_xids; /* failed XIDs on dynamic */

/* LS count */
 unsigned char reserva[20]; /* reserved */
} PORT_DET_DATA;

typedef struct port_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char dlc_name[8]; /* DLC name associated with port */
unsigned char port_type; /* port type */
unsigned char reserv3[7]; /* unsigned char */
unsigned long port_number; /* port number */
unsigned short max_rcv_btu_size; /* max receive BTU size */
unsigned short tot_link_act_lim; /* total link activation limit */
unsigned short inb_link_act_lim; /* inbound link activation limit */
unsigned short out_link_act_lim; /* outbound link activation limit */
unsigned char ls_role; /* initial link station role */

 unsigned char reserv1[15]; /* reserved */
 unsigned char implicit_dspu_template[8];

/* implicit DSPU template */
 unsigned char reserv2[3]; /* reserved */
 unsigned char implicit_dspu_services;

/* implicit links support DSPUs */
 unsigned short implicit_deact_timer;

/* Implicit link HPR link */
/* deactivation timer */

 unsigned short act_xid_exchange_limit;
/* activation XID exchange limit */

 unsigned short nonact_xid_exchange_limit;
/* non-act. XID exchange limit */

unsigned char ls_xmit_rcv_cap; /* LS transmit-rcv capability */
unsigned char max_ifrm_rcvd; /* max number of I-frames that */

/* can be received */
 unsigned short target_pacing_count;

/* target pacing count */
unsigned short max_send_btu_size; /* max send BTU size */
LINK_ADDRESS dlc_data; /* DLC data */
LINK_ADDRESS hpr_dlc_data; /* HPR DLC data */

 unsigned char implicit_cp_cp_sess_support;
/* Implicit links allow CP-CP */

 /* sessions */
 unsigned char implicit_limited_resource;

 Chapter 6. Query Verbs 333

 QUERY_PORT

/* Implicit links are */
/* limited resource */

 unsigned char implicit_hpr_support;
/* Implicit links support HPR */

 unsigned char implicit_link_lvl_error;
/* Implicit links support */
/* HPR link-level error recovery */

 unsigned char retired1; /* reserved */
TG_DEFINED_CHARS default_tg_chars; /* Default TG chars */

 unsigned char discovery_supported;
/* Discovery function supported? */

unsigned short port_spec_data_len; /* length of port spec data */
unsigned short link_spec_data_len; /* length of link spec data */

} PORT_DEF_DATA;

typedef struct link_address
{
 unsigned short length; /* length */
 unsigned short reserve1; /* reserved */
 unsigned char address[MAX_LINK_ADDR_LEN];
 /* address */
} LINK_ADDRESS;

typedef struct tg_defined_chars
{

unsigned char effect_cap; /* effective capacity */
unsigned char reserve1[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */

 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */

unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */

 unsigned char user_def_parm_1;
/* user_defined parameter 1 */

 unsigned char user_def_parm_2;
/* user_defined parameter 2 */

 unsigned char user_def_parm_3;
/* user_defined parameter 3 */

} TG_DEFINED_CHARS;

typedef struct port_spec_data
{
 unsigned char port_data[SIZEOF_PORT_SPEC_DATA];

} PORT_SPEC_DATA;

typedef struct link_spec_data
{
 unsigned char link_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

334 System Management Programming

 QUERY_PORT

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_PORT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The port_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

port_name Name of port being queried. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant
and must be set. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

dlc_name DLC name filter. This should be set to all zeros or an 8-byte
string in a locally displayable character set. If this field is set
then only ports belonging to this DLC are returned. This field
is ignored if it is set to all zeros.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

 Chapter 6. Query Verbs 335

 QUERY_PORT

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

port_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

port_summary.port_name
Name of port associated with this link station. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

port_summary.description
Resource description (as specified on DEFINE_PORT). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

port_summary.port_state
Specifies the current state of the port.

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

port_summary.dlc_name
Name of the DLC. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

port_detail.overlay_size
The number of bytes in this entry (including any
link_spec_data), and hence the offset to the next entry
returned (if any).

port_detail.port_name
Name of port associated with this link station. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

port_detail.det_data.port_state
Specifies the current state of the port.

AP_NOT_ACTIVE
AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE

port_detail.det_data.dlc_type
Type of DLC. Communications Server supports the following
types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC

336 System Management Programming

 QUERY_PORT

AP_TWINAX
AP_X25

port_detail.det_data.port_sim_rim
Specifies whether Set Initialization Mode (SIM) and Receive
Initialization Mode (RIM) are supported (AP_YES or AP_NO).

port_detail.det_data.def_ls_good_xids
Total number of successful XID exchanges that have
occurred on all defined link stations on this port since the last
time this port was started.

port_detail.det_data.def_ls_bad_xids
Total number of unsuccessful XID exchanges that have
occurred on all defined link stations on this port since the last
time this port was started.

port_detail.det_data.dyn_ls_good_xids
Total number of successful XID exchanges that have
occurred on all dynamic link stations on this port since the
last time this port was started.

port_detail.det_data.dyn_ls_bad_xids
Total number of unsuccessful XID exchanges that have
occurred on all dynamic link stations on this port since the
last time this port was started.

port_detail.def_data.description
Resource description (as specified on DEFINE_PORT). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

port_detail.def_data.dlc_name
Name of associated DLC. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

port_detail.def_data.port_type
Specifies the type of line used by the port. The value
corresponds to one of the following values:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

port_detail.def_data.port_number
Port number.

port_detail.def_data.max_rcv_btu_size
Maximum BTU size that can be received.

port_detail.def_data.tot_link_act_lim
Total link activation limit.

port_detail.def_data.inb_link_act_lim
Inbound link activation limit.

port_detail.def_data.out_link_act_lim
Outbound link activation limit.

 Chapter 6. Query Verbs 337

 QUERY_PORT

port_detail.def_data.ls_role
Link station role. This can be negotiable (AP_LS_NEG),
primary (AP_LS_PRI), or secondary (AP_LS_SEC).
Reserved if implicit_hpr_support is set to AP_NO.

def_data.implicit_dspu_template
Specifies the DSPU template, defined with the
DEFINE_DSPU_TEMPLATE verb, that is used for definitions
if the local node is to provide PU Concentration for an implicit
link activated on this port. If the template specified does not
exist (or is already at its instance limit) when the link is
activated, activation fails. This is an 8-byte string in a
locally-displayable character set. All 8 bytes are significant
and must be set.

If the def_data.implicit_dspu_services field is not set to
AP_PU_CONCENTRATION, then this field is reserved.

def_data.implicit.dspu_services
Specifies the services that the local node will provide to the
downstream PU across implicit links activated on this port.
This is set to one of the following values:

AP_DLUR
Local node will provide DLUR services for the downstream
PU (using the default DLUS configured through the
DEFINE_DLUR_DEFAULTS verb).

AP_PU_CONCENTRATION
Local node will provide PU Concentration for the downstream
PU (and will put in place definitions as specified by the
DSPU template specified in the field
def_data.implicit_dspu_template).

AP_NONE
Local node will provide no services for this downstream PU.

def_data.implicit_deact_timer
Limited resource link deactivation timer (in seconds). If
implicit_limited_resource is set to AP_YES or
AP_NO_SESSIONS, then an HPR-capable implicit link is
automatically deactivated if no data traverses the link for the
duration of this timer, and no sessions are using the link.

If implicit_limited_resource is set to AP_INACTIVITY then
an implicit link is automatically deactivated if no data
traverses the link for the duration of this timer.

If zero is specified the default value of 30 is used. Otherwise
the minimum value is 5. (If it is set any lower, the specified
value will be ignored and 5 will be used.) Note that this
parameter is reserved unless implicit_limited_resource is
set to AP_NO.

port_detail.def_data.act_xid_exchange_limit
Activation XID exchange limit.

port_detail.def_data.nonact_xid_exchange_limit
Nonactivation XID exchange limit.

338 System Management Programming

 QUERY_PORT

port_detail.def_data.ls_xmit_rcv_cap
Specifies the link station transmit/receive capability. This is
either two-way simultaneous (AP_LS_TWS) or two way
alternating (AP_LS_TWA).

port_detail.def_data.max_ifrm_rcvd
Maximum number of I-frames that can be received by local
link stations before an acknowledgment is sent. Range:
1—127

port_detail.def_data.target_pacing_count
Numeric value between 1 and 32 767 inclusive indicating the
desired pacing window size for BINDs on this TG. The
number is only significant when fixed bind pacing is being
performed. Communications Server does not currently use
this value.

port_detail.def_data.max_send_btu_size
Maximum BTU size that can be sent.

port_detail.def_data.dlc_data.length
Port address length.

port_detail.def_data.dlc_data.address
Port address.

port_detail.def_data.hpr_dlc_data.length
HPR Port address length.

port_detail.def_data.hpr_dlc_data.address
HPR Port address. This is currently used when supporting
HPR links. The field specifies the information sent by
Communications Server in the X'80' subfield of the X'61'
control vector on XID3 exchanged on link stations using this
port.

port_detail.def_data.implicit_cp_cp_sess_support
Specifies whether CP-CP sessions are permitted for implicit
link stations off this port (AP_YES or AP_NO).

port_detail.def_data.implicit_limited_resource
Specifies whether implicit link stations off this port should be
deactivated when there are no sessions using the link. This
is set to one of the following values:

AP_NO
Implicit links are not limited resources and will not be
deactivated automatically.

AP_YES or AP_NO_SESSIONS
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them.

AP_INACTIVITY
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them, or
when no data has followed on the link for the time period
specified by the implicit_deact_timer field.

 Chapter 6. Query Verbs 339

 QUERY_PORT

port_detail.def_data.implicit_hpr_support
Specifies whether HPR is supported on implicit links
(AP_YES or AP_NO).

port_detail.def_data.implicit_link_lvl_error
Specifies whether HPR traffic is sent on implicit links using
link-level error recovery (AP_YES or AP_NO).

port_detail.def_data.default_tg_chars
TG characteristics (See “DEFINE_COS” on page 35). These
are used for implicit link stations off this port and also for
defined link stations which specify use_default_tg_chars .

port_detail.def_data.discovery_supported
Specifies whether Discovery search functions are performed
on this port (AP_YES or AP_NO).

port_detail.def_data.port_spec_data_len
Unpadded length, in bytes, of data passed unchanged to the
port on the ACTIVATE_PORT signal. The data is
concatenated to the PORT_DETAIL structure.

port_detail.def_data.link_spec_data_len
Data passed unchanged to the link station component during
initialization. The data is concatenated to the PORT_DETAIL
structure immediately following the port-specific data. The
port-specific data and the link-specific data together will be
padded to end on a 4-byte boundary. There will be no
explicit padding between the port-specific data and the
link-specific data.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PORT_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

340 System Management Programming

 QUERY_PU

 QUERY_PU
QUERY_PU returns a list of local PUs and the links associated with them.

The information is returned as a list. To obtain information about a specific PU, or
to obtain the list information in several “chunks,” the pu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

The verb specifies whether local PUs are attached directly to the host system or
attached via DLUR. The host_attachment field can be used as a filter so that only
information about the specified attachment type is returned.

 VCB Structure
typedef struct query_pu
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char pu_name[8]; /* PU name */

 unsigned char host_attachment; /* Host Attachment */
} QUERY_PU;

typedef struct pu_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char pu_name[8]; /* PU name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char ls_name[8]; /* LS name */
 unsigned char pu_sscp_sess_active;

/* Is PU-SSCP session active */
 unsigned char host_attachment; /* Host attachment */
 SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
 unsigned char reserva[20]; /* reserved */
} PU_DATA;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max recv pacing window size */

 Chapter 6. Query Verbs 341

 QUERY_PU

unsigned short cur_rcv_pac_win; /* current receive pacing */
/* window size */

unsigned long send_data_frames; /* number of data frames sent */
 unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
 unsigned long send_data_bytes; /* number of data bytes sent */
 unsigned long rcv_data_frames; /* num data frames received */
 unsigned long rcv_fmd_data_frames;

/* num of FMD data frames rcvd */
unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */

/* (from LFSID) */
unsigned char sidl; /* session ID low byte */

/* (from LFSID) */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_PU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information.

The pu_name specified (see the following parameter)
represents an index value that is used to specify the starting
point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

pu_name Name of the first PU to be listed. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

host_attachment Filter for host attachment:

342 System Management Programming

 QUERY_PU

AP_NONE
Return information about all local PUs.

AP_DLUR_ATTACHED
Return information about all local PUs that are supported by
DLUR.

AP_DIRECT_ATTACHED
Return information about only those PUs that are directly
attached to the host system.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

pu_data.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

pu_data.pu_name PU name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

pu_data.description
Resource description (as specified on DEFINE_LS or
DEFINE_INTERNAL_PU). This is a 16-byte string in a
locally displayable character set. All 16 bytes are significant.

pu_data.ls_name Name of the link station associated with this PU. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

pu_data.pu_sscp_sess_active
Specifies whether the PU-SSCP session is active (AP_YES
or AP_NO).

pu_data.host_attachment
Local PU host attachment type:

AP_DLUR_ATTACHED
PU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
PU is directly attached to host system.

pu_data.pu_sscp_stats.rcv_ru_size
This field is always reserved.

 Chapter 6. Query Verbs 343

 QUERY_PU

pu_data.pu_sscp_stats.send_ru_size
This field is always reserved.

pu_data.pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_data.pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_data.pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

pu_data.pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_data.pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_data.pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_data.pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_data.pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_data.pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_data.pu_sscp_stats.sidh
Session ID high byte.

pu_data.pu_sscp_stats.sidl
Session ID low byte.

pu_data.pu_sscp_stats.odai
Origin destination address indicator. When bringing up a
session, the sender of the ACTPU sets this field to zero if the
local node contains the primary link station, and sets it to one
if the ACTPU sender is the node containing the secondary
link station.

pu_data.pu_sscp_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

344 System Management Programming

 QUERY_PU

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 345

 QUERY_RTP_CONNECTION

 QUERY_RTP_CONNECTION
QUERY_RTP_CONNECTION is used at a network node or an end node and
returns list information about Rapid Transport Protocol (RTP) connections for which
the node is an endpoint.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific RTP connection, or to
obtain the list information in several “chunks,” the rtp_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered by the rtp_name . Ordering is according to name length first,
and then by ASCII lexicographical ordering for names of the same length (in
accordance with normal MIB ordering). If AP_LIST_FROM_NEXT is selected the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

 VCB Structure
typedef struct query_rtp_connection
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char rtp_name[8]; /* name of RTP connection */

} QUERY_RTP_CONNECTION;

typedef struct rtp_connection_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char rtp_name[8]; /* RTP connection name */

 unsigned char first_hop_ls_name[8];
/* LS name of first hop */

unsigned char dest_node_name[17]; /* fully qualified name of */
/* destination node */

 unsigned char reserv1; /* reserved */
unsigned char cos_name[8]; /* class-of-service name */
unsigned short num_sess_active; /* number of active sessions */

} RTP_CONNECTION_SUMMARY;

typedef struct rtp_connection_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char rtp_name[8]; /* RTP connection name */

 unsigned char first_hop_ls_name[8];
/* LS name of first hop */

346 System Management Programming

 QUERY_RTP_CONNECTION

unsigned char dest_node_name[17]; /* fully qualified name of */
/* destination node */

 unsigned char reserv1[3]; /* reserved */
unsigned char cos_name[8]; /* class-of-service name */
unsigned short max_btu_size; /* max BTU size */
unsigned long liveness_timer; /* liveness timer */
unsigned char local_tcid[8]; /* local TCID */
unsigned char remote_tcid[8]; /* remote TCID */
RTP_STATISTICS rtp_stats; /* RTP statistics */
unsigned short num_sess_active; /* number of active sessions */

 unsigned char reserv2[16]; /* reserved */
unsigned short rscv_len; /* length of appended RSCV */

} RTP_CONNECTION_DETAIL;

typedef struct rtp_statistics
{

unsigned long bytes_sent; /* total number of bytes sent */
unsigned long bytes_received; /* total number of bytes received */
unsigned long bytes_resent; /* total number of bytes resent */
unsigned long bytes_discarded; /* total number bytes discarded */
unsigned long packets_sent; /* total number of packets sent */

 unsigned long packets_received; /* total number packets received */
unsigned long packets_resent; /* total number of packets resent */
unsigned long packets_discarded; /* total number packets discarded */
unsigned long gaps_detected; /* gaps detected */
unsigned long send_rate; /* current send rate */
unsigned long max_send_rate; /* maximum send rate */
unsigned long min_send_rate; /* minimum send rate */
unsigned long receive_rate; /* current receive rate */

 unsigned long max_receive_rate; /* maximum receive rate */
 unsigned long min_receive_rate; /* minimum receive rate */

unsigned long burst_size; /* current burst size */
unsigned long up_time; /* total uptime of connection */
unsigned long smooth_rtt; /* smoothed round-trip time */
unsigned long last_rtt; /* last round-trip time */
unsigned long short_req_timer; /* SHORT_REQ timer duration */
unsigned long short_req_timeouts; /* number of SHORT_REQ timeouts */
unsigned long liveness_timeouts; /* number of liveness timeouts */

 unsigned long in_invalid_sna_frames;
/* number of invalid SNA frames */

 /* received */
unsigned long in_sc_frames; /* number of SC frames received */
unsigned long out_sc_frames; /* number of SC frames sent */

 unsigned char reserve[40]; /* reserved */
} RTP_STATISTICS;

Note: The rtp_connection_detail overlay will be followed by a Route Selection
Control Vector (RSCV) as defined by SNA. After RTP connection setup
and before any path switch, the RSCV for an RTP connection will be stored
and displayed at each node as follows:

¹ The RSCV will contain all the hops from the local node to the partner
RTP node.

¹ If the partner RTP node is not an endpoint of the session causing the
RTP connection to be activated, the RSCV will also store one “boundary
function hop” leading away from the partner RTP node.

 Chapter 6. Query Verbs 347

 QUERY_RTP_CONNECTION

¹ The RSCV will never contain a boundary function hop leading into the
local node, even if the local node does not contain a session endpoint.

After path switch has occurred, the RSCVs stored and displayed will only
include the hops from the local node to the partner RTP node. (Never a
boundary function hop).

 Supplied parameters
The application supplies the following parameters:

opcode AP_QUERY_RTP_CONNECTION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The rtp_name represents an index value that is used to
specify the starting point of the actual information to be
returned.

AP_FIRST_IN_LIST
The rtp_name is ignored and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

rtp_name RTP connection name. This name is an 8-byte string in a
locally displayable character set. All 8 bytes are significant
and must be set.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

348 System Management Programming

 QUERY_RTP_CONNECTION

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

rtp_connection_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

rtp_connection_summary.rtp_name
RTP connection name. This name is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

rtp_connection_summary.first_hop_ls_name
Link station name of the first hop of the RTP connection.
This name is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

rtp_connection_summary.dest_node_name
Fully qualified, 17-byte name of the destination node of the
RTP connection composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

rtp_connection_summary.cos_name
Class-of-service name for the RTP connection. This is an
8-byte alphanumeric type-A EBCDIC character string, padded
to the right with EBCDIC spaces.

rtp_connection_summary.num_sess_active
Number of sessions currently active on the RTP connection.

rtp_connection_detail.overlay_size
The number of bytes in this entry (including any appended
RSCV), and hence the offset to the next entry returned (if
any).

rtp_connection_detail.rtp_name
RTP connection name. This name is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

rtp_connection_detail.first_hop_ls_name
Link station name of the first hop of the RTP connection.
This name is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

rtp_connection_detail.dest_node_name
Fully qualified, 17-byte name of the destination node of the
RTP connection composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is
right-padded-with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

 Chapter 6. Query Verbs 349

 QUERY_RTP_CONNECTION

rtp_connection_detail.cos_name
Class-of-service name for the RTP connection. This is an
8-byte alphanumeric type-A EBCDIC character string, padded
to the right with EBCDIC spaces.

rtp_connection_detail.max_btu_size
Maximum btu size for the RTP connection measured in
bytes.

rtp_connection_detail.liveness_timer
Liveness timer for the RTP connection, measured in
seconds.

rtp_connection_detail.local_tcid
Local TCID for the RTP connection.

rtp_connection_detail.remote_tcid
Remote TCID for the RTP connection.

rtp_connection_detail.rtp_stats.bytes_sent
Total number of bytes that the local node has sent on this
RTP connection.

rtp_connection_detail.rtp_stats.bytes_received
Total number of bytes that the local node has received on
this RTP connection.

rtp_connection_detail.rtp_stats.bytes_resent
Total number of bytes resent by the local node owing to loss
in transit.

rtp_connection_detail.rtp_stats.bytes_discarded
Total number of bytes sent by the other end of the RTP
connection and were discarded as duplicates of data already
received.

rtp_connection_detail.rtp_stats.packets_sent
Total number of packets that the local node has sent on this
RTP connection.

rtp_connection_detail.rtp_stats.packets_received
Total number of packets that the local node has received on
this RTP connection.

rtp_connection_detail.rtp_stats.packets_resent
Total number of packets resent by the local node owing to
loss in transit.

rtp_connection_detail.rtp_stats.packets_discarded
Total number of packets sent by the other end of the RTP
connection that were discarded as duplicates of data already
received.

rtp_connection_detail.rtp_stats.gaps_detected
Total number of gaps detected by the local node. Each gap
corresponds to one or more lost frames.

rtp_connection_detail.rtp_stats.send_rate
Current send rate on this RTP connection (measured in
kilobits per second). This is the maximum allowed send rate
as calculated by the ARB algorithm.

350 System Management Programming

 QUERY_RTP_CONNECTION

rtp_connection_detail.rtp_stats.max_send_rate
Maximum send rate on this RTP connection (measured in
kilobits per second).

rtp_connection_detail.rtp_stats.min_send_rate
Minimum send rate on this RTP connection (measured in
kilobits per second).

rtp_connection_detail.rtp_stats.receive_rate
Current receive rate on this RTP connection (measured in
kilobits per second). This is the actual receive rate
calculated over the last measurement interval.

rtp_connection_detail.rtp_stats.max_receive_rate
Maximum receive rate on this RTP connection (measured in
kilobits per second).

rtp_connection_detail.rtp_stats.min_receive_rate
Minimum receive rate on this RTP connection (measured in
kilobits per second).

rtp_connection_detail.rtp_stats.burst_size
Current burst size on the RTP Connection measured in
bytes.

rtp_connection_detail.rtp_stats.up_time
Total number of seconds the RTP connection has been
active.

rtp_connection_detail.rtp_stats.smooth_rtt
Smoothed measure of round-trip time between the local node
and the partner RTP node (measured in milliseconds).

rtp_connection_detail.rtp_stats.last_rtt
The last measured round-trip time between the local node
and the partner RTP node (measured in milliseconds).

rtp_connection_detail.rtp_stats.short_req_timer
The current duration used for the SHORT_REQ timer
(measured in milliseconds).

rtp_connection_detail.rtp_stats.short_req_timeouts
Total number of times the SHORT_REQ timer has expired
for this RTP connection.

rtp_connection_detail.rtp_stats.liveness_timeouts
Total number of times the liveness timer has expired for this
RTP connection. The liveness timer expires when the
connection has been idle for the period specified in
rtp_connection_detail.liveness_timer .

rtp_connection_detail.rtp_stats.in_invalid_sna_frames
Total number of SNA frames received and discarded as not
valid on this RTP connection.

rtp_connection_detail.rtp_stats.in_sc_frames
Total number of session control frames received on this RTP
connection.

 Chapter 6. Query Verbs 351

 QUERY_RTP_CONNECTION

rtp_connection_detail.rtp_stats.out_sc_frames
Total number of session control frames sent on this RTP
connection.

rtp_connection_detail.num_sess_active
Number of sessions currently active on the RTP connection.

rtp_connection_detail.rscv_len
Length of the appended Route Selection Control Vector for
the RTP connection. (If none is appended, then the length is
zero.) The RSCV will be padded to end on a 4-byte
boundary to ensure correct alignment of the next detail entry,
but the rscv_len does not include this padding.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_RTP_CONNECTION

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

352 System Management Programming

 QUERY_SESSION

 QUERY_SESSION
QUERY_SESSION returns list information about sessions for which the node is an
endpoint.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific session, or to obtain
the list information in several “chunks,” the session_id field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. Note that the lu_name (or lu_alias) and plu_alias (or fqplu_name) fields
must always be set. The lu_name , if nonzero, will be used in preference to the
lu_alias . See “Querying the Node” on page 11, for background on how the list
formats are used.

If plu_alias is set to all zeros, the fqplu_name value will be used, otherwise the
plu_alias is always used and the fqplu_name is ignored.

The list of sessions returned can be filtered by the name of the mode that they are
associated with. In this case the mode_name field should be set (otherwise this
field should be set to all zeros).

 VCB Structure
typedef struct query_session
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */

} QUERY_SESSION;

typedef struct session_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv3[1]; /* reserved */

unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */
FQPCID fqpcid; /* fully qualified procedure */

 Chapter 6. Query Verbs 353

 QUERY_SESSION

/* correlator ID */
} SESSION_SUMMARY;

typedef struct session_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv3[1]; /* reserved */

unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
unsigned char cos_name[8]; /* Class-of-service name */
unsigned char trans_pri; /* Transmission priority: */
unsigned char ltd_res; /* Session spans a limited */

 /* resource */
unsigned char polarity; /* Session polarity */
unsigned char contention; /* Session contention */

 SESSION_STATS sess_stats; /* Session statistics */
unsigned char duplex_support; /* full-duplex support */

 unsigned char reserv3a[2]; /* reserved */
 unsigned char reserva[20]; /* reserved */

unsigned char rscv_len; /* Length of following RSCV */
} SESSION_DETAIL;

typedef struct fqpcid
{

unsigned char pcid[8]; /* pro correlator identifier */
unsigned char fqcp_name[17]; /* orig's network qualified */

/* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* Maximum send BTU size */
unsigned short max_rcv_btu_size; /* Maximum rcv BTU size */
unsigned short max_send_pac_win; /* Max send pacing window size */
unsigned short cur_send_pac_win; /* Curr send pacing window size */
unsigned short max_rcv_pac_win; /* Max receive pacing win size */
unsigned short cur_rcv_pac_win; /* Curr rec pacing window size */
unsigned long send_data_frames; /* Number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num of FMD data frames sent */

 unsigned long send_data_bytes; /* Number of data bytes sent */
 unsigned long rcv_data_frames; /* Num data frames received */
 unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* Num data bytes received */
unsigned char sidh; /* Session ID high byte */
unsigned char sidl; /* Session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

354 System Management Programming

 QUERY_SESSION

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Supplied parameters
The application supplies the following parameters:

opcode AP_QUERY_SESSION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The combination of lu_name (or lu_alias if the lu_name is
set to all zeros), pu_alias (or fqplu_name if the plu_alias is
set to all zeros), mode_name and session_id specified (see
the following parameter) represent an index value that is
used to specify the starting point of the actual information to
be returned.

AP_FIRST_IN_LIST
The session_id is ignored and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

lu_name LU name. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be
used for determining the index.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. This field is only significant if the
lu_name field is set to all zeros, in which case all 8 bytes are
significant and must be set. If both the lu_name and the
lu_alias fields are set to all zeros, the LU associated with the
control point (the default LU) is used.

 Chapter 6. Query Verbs 355

 QUERY_SESSION

plu_alias Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field will be used for determining the index.

fqplu_name 17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

mode_name Mode name filter. This should be set to all zeros or an
8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces. If this field
is set then only sessions associated with this mode are
returned. This field is ignored if it is set to all zeros.

session_id 8-byte identifier of the session. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

session_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

session_summary.plu_alias
Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

session_summary.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces.

session_summary.mode_name
Mode name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

session_summary.session_id
8-byte identifier of the session.

356 System Management Programming

 QUERY_SESSION

session_summary.fqpcid.pcid
Procedure correlator ID. This is an 8-byte hexadecimal
string.

session_summary.fqpcid.fqcp_name
Fully qualified control point name. This 17-byte name is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

session_detail.overlay_size
The number of bytes in this entry (including any appended
RSCV), and hence the offset to the next entry returned (if
any).

session_detail.plu_alias
Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

session_detail.fqplu_name
17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces.

session_detail.mode_name
Mode name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

session_detail.session_id
8-byte identifier of the session.

session_detail.fqpcid.pcid
Procedure correlator ID. This is an 8-byte hexadecimal
string.

session_detail.fqpcid.fqcp_name
Fully qualified control point name. This 17-byte name is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

session_detail.cos_name
Class-of-service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

session_detail.trans_pri
Transmission priority. This is set to one of the following
values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

 Chapter 6. Query Verbs 357

 QUERY_SESSION

session_detail.ltd_res
Specifies whether the session uses a limited resource link
(AP_YES or AP_NO).

session_detail.polarity
Specifies the polarity of the session (AP_PRIMARY or
AP_SECONDARY).

session_detail.contention
Specifies the session contention polarity. This indicates
whether the local LU has 'first refusal' for the use of this
session (AP_CONWINNER) or whether it must bid before
using the session (AP_CONLOSER).

session_detail.sess_stats.rcv_ru_size
Maximum receive RU size.

session_detail.sess_stats.send_ru_size
Maximum send RU size.

session_detail.sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

session_detail.sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

session_detail.sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

session_detail.sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

session_detail.sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

session_detail.sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

session_detail.sess_stats.send_data_frames
Number of normal flow data frames sent.

session_detail.sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

session_detail.sess_stats.send_data_bytes
Number of normal flow data bytes sent.

session_detail.sess_stats.rcv_data_frames
Number of normal flow data frames received.

session_detail.sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

session_detail.sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

session_detail.sess_stats.sidh
Session ID high byte.

session_detail.sess_stats.sidl
Session ID low byte.

358 System Management Programming

 QUERY_SESSION

session_detail.sess_stats.odai
Origin destination address indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station. It sets it to one if
the BIND sender is the node containing the secondary link
station.

session_detail.sess_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. This field can be used to correlate the
session statistics with the link over which session data flows.

session_detail.duplex_support
Returns the conversation duplex support as negotiated on
the BIND. This is one of the following values:

AP_HALF_DUPLEX
Only half-duplex conversations are supported.

AP_FULL_DUPLEX
Full-duplex as well as half-duplex conversations are
supported. Expedited data is also supported.

session_detail.rscv_len
Length of the RSCV that is appended to the session_detail
structure. (If none is appended, then the length is zero.)
The RSCV will be padded to end on a 4-byte boundary.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_SESSION_ID

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 359

 QUERY_STATISTICS

 QUERY_STATISTICS
QUERY_STATISTICS queries link station and port statistics. Communications
Server passes this query directly to the DLC. The format of the statistics depends
on the DLC implementation.

 VCB Structure
typedef struct query_statistics
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char name[8]; /* LS or port name */
unsigned char stats_type; /* LS or port statistics? */
unsigned char table_type; /* statistics table requested */
unsigned char reset_stats; /* reset the statistics? */
unsigned char dlc_type; /* type of DLC */
unsigned char statistics[256]; /* current statistics */

 unsigned char reserva[20]; /* reserved */
} QUERY_STATISTICS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_STATISTICS

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

name Name defined for the link station or port (depending on
setting of stats_type parameter). This is an 8-byte string in
a locally displayable character set. All 8 bytes are significant
and must be set. Communications Server uses this to
correlate the response to the correct link station or port.

stats_type The type of resource for which statistics are requested. This
must be set to one of the following values:

AP_LS
AP_PORT

table_type The type of statistics table requested. This must be set to
one of the following categories of information:

AP_STATS_TBL
Specifies that statistical information will be returned.

AP_ADMIN_TBL
Specifies that administrative information will be returned.

AP_OPER_TBL
Specifies that operational information will be returned. The
format of the information returned for each category is DLC
implementation specific.

reset_stats Specifies whether the statistics should be reset (AP_YES or
AP_NO).

360 System Management Programming

 QUERY_STATISTICS

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

dlc_type Type of the DLC. The value of this field is DLC
implementation specific. The values are as follows:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

statistics Current statistics of link station or port.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LINK_NAME

AP_INVALID_PORT_NAME
AP_INVALID_STATS_TYPE
AP_INVALID_TABLE_TYPE

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_LINK_DEACTIVATED

AP_PORT_DEACTIVATED

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 361

 QUERY_TP

 QUERY_TP
QUERY_TP returns information about transaction programs currently being used by
a local LU.

The information is returned as a list. To obtain information about a specific
transaction program, or to obtain the list information in several “chunks,” the
tp_name field should be set. If the list_options field is set to AP_FIRST_IN_LIST
then this field will be ignored. Note that the lu_name or lu_alias field must always
be set. The lu_name field, if nonzero, will be used in preference to the lu_alias
field. See “Querying the Node” on page 11, for background on how the list formats
are used.

This list is ordered by the tp_name using EBCDIC lexicographical ordering for
names of the same length. This verb returns information that is determined once
the TP starts to be used by a local LU. The QUERY_TP_DEFINITION verb returns
definition information only.

 VCB Structure
typedef struct query_tp
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char tp_name[64]; /* TP name */

} QUERY_TP;

typedef struct tp_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char tp_name[64]; /* TP name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned short instance_limit; /* max instance count */
unsigned short instance_count; /* current instance count */

 unsigned short locally_started_count;
/* locally started instance */

 /* count */
 unsigned short remotely_started_count;

/* remotely started instance */
 /* count */
 unsigned char reserva[20]; /* reserved */
} TP_DATA;

362 System Management Programming

 QUERY_TP

typedef struct tp_spec_data
{

unsigned char pathname[256]; /* path and TP name */
unsigned char parameters[64]; /* parameters for TP */
unsigned char queued; /* queued TP (AP_YES) */
unsigned char load_type; /* type of load-DETACHED/CONSOLE */
unsigned char dynamic_load; /* dynamic loading of TP enabled */
unsigned char reserved[5]; /* max size is 120 bytes */

} TP_SPEC_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_TP

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:
The combination of lu_name (or lu_alias if the lu_name is
set to all zeros) and tp_name specified (see the following
parameter) represents an index value that is used to specify
the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

lu_name LU name. This name is an 8-byte type-A EBCDIC character
string. If this field is set to all zeros, the lu_alias field will be
used for determining the index.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. This field is only significant if the
lu_name field is set to all zeros, in which case all 8 bytes are
significant and must be set. If both the lu_name and the
lu_alias are set to all zeros, the LU that is associated with
the control point (the default LU) is used.

tp_name Transaction program name. This is a 64-byte string, padded
to the right with spaces. This field is ignored if list_options
is set to AP_FIRST_IN_LIST.

 Chapter 6. Query Verbs 363

 QUERY_TP

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that
would have been required to return all the list
information requested. This can be higher than
buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been
returned. This can be higher than num_entries .

tp_data.overlay_size The number of bytes in this entry, and hence the
offset to the next entry returned (if any).

tp_data.tp_name Transaction program name. This is a 64-byte
string, padded to the right with spaces.

tp_data.instance.description Resource description (as specified on
DEFINE_TP). This is a 16-byte string in a locally
displayable character set. All 16 bytes are
significant.

tp_data.instance_limit Maximum number of concurrently active instances
of the specified transaction program.

tp_data.instance_count Number of instances of the specified transaction
program that are currently active.

tp_data.locally_started_count Number of instances of the specified transaction
program which have been started locally (by the
transaction program issuing a TP_STARTED
verb).

tp_data.remotely_started_count
Number of instances of the specified transaction
program that have been started remotely (by a
received Attach request).

tp_chars.tp_data.pathname Specifies the path and transaction program name.

tp_chars.tp_data.parameters Specifies the parameters for the transaction
program.

tp_chars.tp_data.queued Specifies whether the transaction program will be
queued.

tp_chars.tp_data.load_type Specifies how the transaction program will be
loaded.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

364 System Management Programming

 QUERY_TP

secondary_rc AP_INVALID_TP_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 6. Query Verbs 365

 QUERY_TP_DEFINITION

 QUERY_TP_DEFINITION
QUERY_TP_DEFINITION returns both information previously passed in on a
DEFINE_TP verb and information about Communications Server defined
transaction programs.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific transaction program, or
to obtain the list information in several “chunks,” the tp_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See “Querying the Node” on page 11, for background on how the list
formats are used.

This list is ordered by the tp_name , using EBCDIC lexicographical ordering. If
AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

This verb returns definition information only. The QUERY_TP verb returns
information that is determined once the transaction program starts to be used by a
local LU.

 VCB Structure
typedef struct query_tp_definition
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char tp_name[64]; /* TP name */

} QUERY_TP_DEFINITION;

typedef struct tp_def_summary
{

unsigned short overlay_size; /* size of this entry */
unsigned char tp_name[64]; /* TP name */

 unsigned char description[RD_LEN];
/* resource description */

} TP_DEF_SUMMARY;

typedef struct tp_def_detail
{

unsigned short overlay_size; /* size of this entry */
unsigned char tp_name[64]; /* TP name */
TP_CHARS tp_chars; /* TP characteristics */

} TP_DEF_DETAIL;

366 System Management Programming

 QUERY_TP_DEFINITION

typedef struct tp_chars
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned char conv_type; /* conversation type */
unsigned char security_rqd; /* security support */
unsigned char sync_level; /* synchronization level support */
unsigned char dynamic_load; /* dynamic load */
unsigned char enabled; /* is the TP enabled? */
unsigned char pip_allowed; /* program initialization */

/* parameters supported */
unsigned char duplex_support; /* duplex supported */

 unsigned char reserv3[9]; /* reserved */
unsigned short tp__instance_limit; /* limit on currently active TP */

 /* instances */
 unsigned short incoming_alloc_timeout;

/* incoming allocation timeout */
unsigned short rcv_alloc_timeout; /* receive allocation timeout */
unsigned short tp_data_len; /* TP data length */
TP_SPEC_DATA tp_data; /* TP data */

} TP_CHARS;

typedef struct tp_spec_data
{
unsigned char pathname[256]; /* path and TP name */
unsigned char parameters[64]; /* parameters for TP */
unsigned char queued; /* queued TP (AP_YES) */
unsigned char load_type; /* type of load-DETACHED/CONSOLE */
unsigned char dynamic_load; /* dynamic loading of TP enabled */
unsigned char reserved[5]; /* max size is 120 bytes */

} TP_SPEC_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_TP_DEFINITION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.
The application can append data to the end of the VCB, in
which case buf_ptr must be set to NULL.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The tp_name specified (see the following parameter)

 Chapter 6. Query Verbs 367

 QUERY_TP_DEFINITION

represents an index value that is used to specify the starting
point of the actual information to be returned:

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

tp_name Name of the defined transaction program. This is a 64-byte
string, padded to the right with spaces. This field is ignored
if list_options is set to AP_FIRST_IN_LIST.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size Returned value indicating the size of buffer that would have
been required to return all the list information requested.
This can be higher than buf_size .

num_entries Number of entries actually returned.

total_num_entries Total number of entries that could have been returned. This
can be higher than num_entries .

tp_def_summary.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

tp_def_summary.tp_name
Defined transaction program name. This is a 64-byte string,
padded to the right with spaces.

tp_def_summary.description
Resource description (as specified on DEFINE_TP). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

tp_def_detail.overlay_size
The number of bytes in this entry, and hence the offset to the
next entry returned (if any).

tp_def_detail.tp_name
Defined transaction program name. This is a 64-byte string,
padded to the right with spaces.

tp_def_detail.tp_chars.description
Resource description (as specified on DEFINE_TP). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

368 System Management Programming

 QUERY_TP_DEFINITION

tp_def_detail.tp_chars.conv_type
Specifies the types of conversation supported by the
transaction program:

AP_BASIC
AP_MAPPED
AP_EITHER

tp_def_detail.tp_chars.security_rqd
Specifies whether conversation security information is
required to start the transaction program (AP_NONE,
AP_SAME or AP_PGM).

tp_def_detail.tp_chars.sync_level
Specifies the synchronization levels supported by the
transaction program:

AP_NONE
The transaction program supports a synchronization level of
None.

AP_CONFIRM_SYNC_LEVEL
The transaction program supports a synchronization level of
Confirm.

AP_EITHER
The transaction program supports a synchronization level of
None or Confirm.

AP_SYNCPT_REQUIRED
The transaction program supports a synchronization level of
Sync-point.

AP_SYNCPT_NEGOTIABLE
The transaction program supports a synchronization level of
None, Confirm, or Sync-point.

tp_def_detail.tp_chars.dynamic_load
Specifies whether the transaction program can be
dynamically loaded (AP_YES or AP_NO).

tp_def_detail.tp_chars.enabled
Specifies whether the transaction program can be attached
successfully (AP_YES or AP_NO). The default is AP_NO.

tp_def_detail.tp_chars.pip_allowed
Specifies whether the transaction program can receive
program initialization (PIP) parameters (AP_YES or AP_NO).

tp_def_detail.tp_chars.duplex_support
Indicates whether the transaction program is full or half
duplex.

AP_FULL_DUPLEX
Specifies the transaction program is full duplex.

AP_HALF_DUPLEX
Specifies the transaction program is half duplex.

AP_EITHER_DUPLEX
Specifies the transaction program can be either half or full
duplex

 Chapter 6. Query Verbs 369

 QUERY_TP_DEFINITION

tp_def_detail.tp_chars.tp_instance_limit
Limit on the number of concurrently active transaction
program instances.

tp_def_detail.tp_chars.incoming_alloc_timeout
Specifies the number of seconds that an incoming Attach will
be queued waiting for a RECEIVE_ALLOCATE. Zero implies
no timeout, and so it will be held indefinitely.

tp_def_detail.tp_chars.rcv_alloc_timeout
Specifies the number of seconds that a
RECEIVE_ALLOCATE verb will be queued while waiting for
an Attach. Zero implies no timeout, and so it will be held
indefinitely.

tp_def_detail.tp_chars.tp_data_len
Length of the implementation-dependent transaction program
data.

tp_def_detail.tp_chars.tp_data
Implementation-dependent transaction program data that is
passed unchanged on the DYNAMIC_LOAD_INDICATION.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_TP_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameters:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

370 System Management Programming

Chapter 7. Session Limit Verbs

This chapter describes verbs used to initialize, change, or reset session limits.

 Copyright IBM Corp. 1989, 1997 371

 CHANGE_SESSION_LIMIT

 CHANGE_SESSION_LIMIT
The CHANGE_SESSION_LIMIT verb requests that the session limits of a particular
mode (or session group) be changed. Sessions can be activated or deactivated as
a result of processing this verb.

 VCB Structure
typedef struct change_session_limit
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv3; /* reserved */

unsigned char mode_name[8]; /* mode name */
 unsigned char reserv3a; /* reserved */

unsigned char set_negotiable; /* set max negotiable limit? */
 unsigned short plu_mode_session_limit;

/* session limit */
 unsigned short min_conwinners_source;

/* min source contention */
/* winner sessions */

 unsigned short min_conwinners_target;
/* min target contention */
/* winner sessions */

unsigned short auto_act; /* auto activation limit */
unsigned char responsible; /* responsible indicator */

 unsigned char reserv4[3]; /* reserved */
unsigned long sense_data; /* sense data */

} CHANGE_SESSION_LIMIT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_CHANGE_SESSION_LIMIT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU requested to change session limits.
This name is an 8-byte type-A EBCDIC character string. If
this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias Alias of the local LU requested to change session limits.
This is an 8-byte string in a locally displayable character set.
This field is only significant if the lu_name field is set to all
zeros, in which case all 8 bytes are significant and must be
set. If both the lu_name and the lu_alias fields are set to all
zeros then the verb is forwarded to the LU associated with
the control point (the default LU).

372 System Management Programming

 CHANGE_SESSION_LIMIT

plu_alias Alias by which the partner LU is known to the local LU. This
name must match the name of a partner LU established
during configuration. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

fqplu_name Fully qualified LU name for the partner LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is only significant if the plu_alias field is set to all zeros.

mode_name Name of a set of networking characteristics defined during
configuration. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

set_negotiable Specifies whether the maximum negotiable session limit for
this mode should be modified to become the
plu_mode_session_limit .

AP_YES
AP_NO

plu_mode_session_limit
Requested total session limit for this mode. The actual
session limit (which can be negotiated with the partner LU),
is the agreed maximum number of sessions supported
between the local LU and the partner LU on this mode.

min_conwinners_source
Minimum number of sessions in this mode for which the local
LU is the contention winner.

min_conwinners_target
Minimum number of sessions in this mode for which the
partner LU is the contention winner.

auto_act Number of sessions to automatically activate after the
session limit is changed. The actual number of automatically
activated sessions is the minimum of this value and the
negotiated minimum number of contention winner sessions
for the local LU. When sessions are deactivated normally
(specifying AP_DEACT_NORMAL) below this limit, new
sessions are activated up to this limit.

responsible Indicates whether the source (local) or target (partner) LU is
responsible for deactivating sessions after the session limit is
changed (AP_SOURCE or AP_TARGET).

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

 Chapter 7. Session Limit Verbs 373

 CHANGE_SESSION_LIMIT

secondary_rc AP_AS_SPECIFIED

AP_AS_NEGOTIATED

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_EXCEEDS_MAX_ALLOWED

AP_INVALID_MODE_NAME
AP_INVALID_PLU_NAME
AP_INVALID_RESPONSIBLE
AP_INVALID_SET_NEGOTIABLE
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_MODE_RESET

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of an allocation error, Communications Server
returns the following parameters:

primary_rc AP_ALLOCATION_ERROR

secondary_rc AP_ALLOCATION_FAILURE_NO_RETRY

sense_data Sense data associated with allocation error.

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of an error, Communications Server returns
the following parameters:

primary_rc AP_CONV_FAILURE_NO_RETRY

AP_CNOS_PARTNER_LU_REJECT

secondary_rc AP_CNOS_COMMAND_RACE_REJECT

AP_CNOS_MODE_NAME_REJECT

374 System Management Programming

 INITIALIZE_SESSION_LIMIT

 INITIALIZE_SESSION_LIMIT
The INITIALIZE_SESSION_LIMIT verb initializes the mode session limits.

 VCB Structure
typedef struct initialize_session_limit
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */

 unsigned char plu_alias[8]; /* partner */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
 unsigned char reserv3; /* reserved */

unsigned char mode_name[8]; /* mode name */
 unsigned char reserv3a; /* reserved */

unsigned char set_negotiable; /* set max negotiable limit? */
 unsigned short plu_mode_session_limit;

/* session limit */
 unsigned short min_conwinners_source;

/* min source contention */
/* winner sessions */

 unsigned short min_conwinners_target;
/* min target contention */
/* winner sessions */

unsigned short auto_act; /* auto activation limit */
 unsigned char reserv4[4]; /* reserved */

unsigned long sense_data; /* sense data */
} INITIALIZE_SESSION_LIMIT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_INITIALIZE_SESSION_LIMIT

format Identifies the format of the VCB. Set this field to zero to specify the
version of the VCB listed above.

lu_name LU name of the local LU requested to initialize session limits. This
name is an 8-byte type-A EBCDIC character string. If this field is set to
all zeros, the lu_alias field will be used for determining the local LU.

lu_alias Alias of the local LU requested to initialize session limits. This is an
8-byte string in a locally displayable character set. This field is only
significant if the lu_name field is set to all zeros, in which case all 8
bytes are significant and must be set. If both the lu_name and lu_alias
are set to all zeros, the verb is forwarded to the LU associated with the
control point (the default LU).

plu_alias Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This
is an 8-byte string in a locally displayable character set. All 8 bytes are

 Chapter 7. Session Limit Verbs 375

 INITIALIZE_SESSION_LIMIT

significant and must be set. If this field is set to all zeros, the
fqplu_name field is used to specify the required partner LU.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded
spaces.) This field is only significant if the plu_alias field is set to all
zeros.

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

set_negotiable
Specifies whether the maximum negotiable session limit for this mode
should be modified to become the plu_mode_session_limit .

AP_YES
AP_NO

plu_mode_session_limit
Requested total session limit for this mode. The actual session limit
(which can be negotiated with the partner LU), is the agreed maximum
number of sessions supported between the local LU and the partner LU
on this mode. This must be set to a value in the range one to 32 767.

min_conwinners_source
Minimum number of sessions in this mode for which the local LU is the
contention winner. This must be set to a value in the range zero to
32 767.

min_conwinners_target
Minimum number of sessions in this mode for which the partner LU is
the contention winner. This must be set to a value in the range zero to
32 767.

auto_act Number of sessions to automatically activate after the session limit is
changed. The actual number of automatically activated sessions is the
minimum of this value and the negotiated minimum number of
contention winner sessions for the local LU. When sessions are
deactivated normally (specifying AP_DEACT_NORMAL) below this limit,
new sessions are activated up to this limit. This must be set to a value
in the range zero to 32 767.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

secondary_rc AP_AS_SPECIFIED

AP_AS_NEGOTIATED

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

376 System Management Programming

 INITIALIZE_SESSION_LIMIT

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_EXCEEDS_MAX_ALLOWED

AP_INVALID_SET_NEGOTIABLE
AP_INVALID_PLU_NAME
AP_INVALID_MODE_NAME
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_MODE_NOT_RESET

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameters:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of an allocation error, Communications Server
returns the following parameters:

primary_rc AP_ALLOCATION_ERROR

secondary_rc AP_ALLOCATION_FAILURE_NO_RETRY

sense_data Sense data associated with allocation error.

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of an error, Communications Server returns
the following parameters:

primary_rc AP_CONV_FAILURE_NO_RETRY

AP_CNOS_PARTNER_LU_REJECT

secondary_rc AP_CNOS_COMMAND_RACE_REJECT

AP_CNOS_MODE_NAME_REJECT

 Chapter 7. Session Limit Verbs 377

 RESET_SESSION_LIMIT

 RESET_SESSION_LIMIT
The RESET_SESSION_LIMIT verb requests that the mode session limits be reset.

 VCB Structure
typedef struct reset_session_limit
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned char plu_alias[8]; /* partner LU alias */

 unsigned char fqplu_name[17]; /* fully qual partner LU name */
 unsigned char reserv3; /* reserved */

unsigned char mode_name[8]; /* mode name */
unsigned char mode_name_select; /* select mode name */

 unsigned char set_negotiable; /* set max negotiable limit? */
 unsigned char reserv4[8]; /* reserved */
 unsigned char responsible; /* responsible */

unsigned char drain_source; /* drain source */
unsigned char drain_target; /* drain target */

 unsigned char force; /* force */
unsigned long sense_data; /* sense data */

} RESET_SESSION_LIMIT;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_RESET_SESSION_LIMIT

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU requested to reset session limits.
This name is an 8-byte type-A EBCDIC character string. If
this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias Alias of the local LU requested to reset session limits. This
is an 8-byte string in a locally displayable character set. This
field is only significant if the lu_name field is set to all zeros,
in which case all 8 bytes are significant and must be set. If
this is set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

plu_alias Alias by which the partner LU is known to the local LU. This
name must match the name of a partner LU established
during configuration. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

378 System Management Programming

 RESET_SESSION_LIMIT

fqplu_name Fully qualified LU name for the partner LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This
field is only significant if the plu_alias field is set to all zeros.

mode_name Name of a set of networking characteristics defined during
configuration. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

mode_name_select Selects whether session limits should be reset on a single
specified mode, or on all modes between the local and
partner LUs.

AP_ONE
AP_ALL

set_negotiable Specifies whether the maximum negotiable session limit for
this mode should be modified.

AP_YES
AP_NO

responsible Indicates whether the source (local) or target (partner) LU is
responsible for deactivating sessions after the session limit is
reset (AP_SOURCE or AP_TARGET).

drain_source Specifies whether the source LU satisfies waiting session
requests before deactivating a session when session limits
are changed or reset (AP_NO or AP_YES).

drain_target Specifies whether the target LU satisfies waiting session
requests before deactivating a session when session limits
are changed or reset (AP_NO or AP_YES).

force Specifies whether session limits will be set to zero even if
CNOS negotiation fails (AP_YES or AP_NO).

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc AP_OK

secondary_rc AP_FORCED

AP_AS_SPECIFIED
AP_AS_NEGOTIATED

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_EXCEEDS_MAX_ALLOWED

AP_INVALID_PLU_NAME
AP_INVALID_MODE_NAME
AP_INVALID_MODE_NAME_SELECT

 Chapter 7. Session Limit Verbs 379

 RESET_SESSION_LIMIT

AP_INVALID_RESPONSIBLE
AP_INVALID_DRAIN_SOURCE
AP_INVALID_DRAIN_TARGET
AP_INVALID_FORCE
AP_INVALID_SET_NEGOTIABLE
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_MODE_RESET

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of an allocation error, Communications Server
returns the following parameter:

primary_rc AP_ALLOCATION_ERROR

secondary_rc AP_ALLOCATION_FAILURE_NO_RETRY

sense_data Sense data associated with allocation error.

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

If the verb does not execute because of an error, Communications Server returns
the following parameters:

primary_rc AP_CONV_FAILURE_NO_RETRY

AP_CNOS_PARTNER_LU_REJECT

secondary_rc AP_CNOS_COMMAND_RACE_REJECT

AP_CNOS_MODE_NAME_REJECT

380 System Management Programming

Chapter 8. Node Operator Facility API Indications

The Node Operator Facility API generates indication verbs to notify a node operator
about changes in the node. Indication verbs use the following general structure:

typedef struct indication_hdr
 {

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */

 } INDICATION_HDR;

 Copyright IBM Corp. 1989, 1997 381

 DLC_INDICATION

 DLC_INDICATION
This indication is generated when the DLC goes from active to inactive, or from
inactive to active.

 VCB Structure
typedef struct dlc_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char dlc_name[8]; /* link station name */
unsigned char description[RD_LEN]; /* resource description */

 unsigned char reserva[20]; /* reserved */
} DLC_INDICATION;

 Parameters
opcode AP_DLC_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

deactivated Set to AP_YES when the DLC becomes inactive. Set to
AP_NO when the DLC becomes active.

dlc_name Name of DLC. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

description Resource description (as specified on DEFINE_DLC). This is
a 16-byte string in a locally displayable character set. All 16
bytes are significant.

382 System Management Programming

 DLUR_LU_INDICATION

 DLUR_LU_INDICATION
This indication is generated whenever a DLUR LU is activated or deactivated. This
allows a registered application to maintain a list of currently active DLUR LUs.

 VCB Structure
typedef struct dlur_lu_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char reason; /* reason for this indication */
unsigned char lu_name[8]; /* LU name */
unsigned char pu_name[8]; /* PU name */
unsigned char nau_address; /* NAU address */

 unsigned char reserv5[7]; /* reserved */
} DLUR_LU_INDICATION;

 Parameters
opcode AP_DLUR_LU_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

reason Set to AP_ADDED if the DLUR LU has just been activated
by the DLUS. Set to AP_REMOVED if the DLUR LU has
been deactivated, either explicitly by the DLUS or implicitly
by a link failure or the deactivation of the PU.

lu_name Name of the LU. This is an 8-byte alphanumeric type A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

pu_name Name of the PU that this LU uses. This is an 8-byte
alphanumeric type A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

nau_address Network addressable unit address of the LU, which must be
in the range 1–255.

 Chapter 8. Node Operator Facility API Indications 383

 DLUS_INDICATION

 DLUS_INDICATION
This indication is generated when a pipe to a DLUS node goes from inactive to
active (or vice versa). Pipe statistics are supplied when the pipe becomes inactive.

 VCB Structure
typedef struct dlus_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char dlus_name[17]; /* DLUS name */

 unsigned char reserv1; /* reserved */
PIPE_STATS pipe_stats; /* pipe statistics */

 unsigned char reserva[20]; /* reserved */
} DLUS_INDICATION;

typedef struct pipe_stats
{

unsigned long reqactpu_sent; /* REQACTPUs sent to DLUS */
 unsigned long reqactpu_rsp_received;

/* RSP(REQACTPU)s received */
/* from DLUS */

unsigned long actpu_received; /* ACTPUs received from DLUS */
unsigned long actpu_rsp_sent; /* RSP(ACTPU)s sent to DLUS */
unsigned long reqdactpu_sent; /* REQDACTPUs sent to DLUS */

 unsigned long reqdactpu_rsp_received;
/* RSP(REQDACTPU)s received */
/* from DLUS */

unsigned long dactpu_received; /* DACTPUs received from DLUS */
unsigned long dactpu_rsp_sent; /* RSP(DACTPU)s sent to DLUS */
unsigned long actlu_received; /* ACTLUs received from DLUS */
unsigned long actlu_rsp_sent; /* RSP(ACTLU)s sent to DLUS */
unsigned long dactlu_received; /* DACTLUs received from DLUS */
unsigned long dactlu_rsp_sent; /* RSP(DACTLU)s sent to DLUS */
unsigned long sscp_pu_mus_rcvd; /* MUs for SSCP-PU sess received */
unsigned long sscp_pu_mus_sent; /* MUs for SSCP-PU sessions sent */
unsigned long sscp_lu_mus_rcvd; /* MUs for SSCP-LU sess received */
unsigned long sscp_lu_mus_sent; /* MUs for SSCP-LU sessions sent */

} PIPE_STATS;

 Parameters
opcode AP_DLUS_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

384 System Management Programming

 DLUS_INDICATION

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then subsequent data fields can be set to null. The application should
issue a QUERY verb to update the information that has been lost.

deactivated
Set to AP_YES when the pipe becomes inactive. Set to AP_NO when
the pipe becomes active.

dlus_name
Name of the DLUS. This is a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

pipe_stats.reqactpu_sent
Number of REQACTPUs sent to DLUS over the pipe.

pipe_stats.reqactpu_rsp_received
Number of RSP(REQACTPU)s received from DLUS over the pipe.

pipe_stats.actpu_received
Number of ACTPUs received from DLUS over the pipe.

pipe_stats.actpu_rsp_sent
Number of RSP(ACTPU)s sent to DLUS over the pipe.

pipe_stats.reqdactpu_sent
Number of REQDACTPUs sent to DLUS over the pipe.

pipe_stats.reqdactpu_rsp_received
Number of RSP(REQDACTPU)s received from DLUS over the pipe.

pipe_stats.dactpu_received
Number of DACTPUs received from DLUS over the pipe.

pipe_stats.dactpu_rsp_sent
Number of RSP(DACTPU)s sent to DLUS over the pipe.

pipe_stats.actlu_received
Number of ACTLUs received from DLUS over the pipe.

pipe_stats.actlu_rsp_sent
Number of RSP(ACTLU)s sent to DLUS over the pipe.

pipe_stats.dactlu_received
Number of DACTLUs received from DLUS over the pipe.

pipe_stats.dactlu_rsp_sent
Number of RSP(DACTLU)s sent to DLUS over the pipe.

pipe_stats.sscp_pu_mus_rcvd
Number of SSCP-PU MUs received from DLUS over the pipe.

pipe_stats.sscp_pu_mus_sent
Number of SSCP-PU MUs sent to DLUS over the pipe.

pipe_stats.sscp_lu_mus_rcvd
Number of SSCP-LU MUs received from DLUS over the pipe.

pipe_stats.sscp_lu_mus_sent
Number of SSCP-LU MUs sent to DLUS over the pipe.

 Chapter 8. Node Operator Facility API Indications 385

 DOWNSTREAM_LU_INDICATION

 DOWNSTREAM_LU_INDICATION
This indication is generated when the LU-SSCP session between the downstream
LU and the host goes from inactive to active (or vice-versa) or when the PLU-SLU
session goes from inactive to active (or vice-versa). LU-SSCP statistics are
supplied when the LU-SSCP session deactivates and PLU-SLU statistics are
supplied when the PLU-SLU session deactivates.

 VCB Structure
typedef struct downstream_lu_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char dspu_name[8]; /* PU Name */
unsigned char ls_name[8]; /* Link station name */
unsigned char dslu_name[8]; /* LU Name */

 unsigned char description[RD_LEN]; /* resource description */
unsigned char nau_address; /* NAU address */

 unsigned char lu_sscp_sess_active;
/* Is SSCP session active? */

unsigned char plu_sess_active; /* Is PLU-SLU session active? */
unsigned char dspu_services; /* DSPU services */

 unsigned char reserv1; /* reserved */
 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
 SESSION_STATS ds_plu_stats; /* Downstream PLU-SLU sess stats */
 SESSION_STATS us_plu_stats; /* Upstream PLU-SLU sess stats */
} DOWNSTREAM_LU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max rcv pacing window size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */

 unsigned long rcv_fmd_data_frames;
/* num FMD data frames received */

unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

386 System Management Programming

 DOWNSTREAM_LU_INDICATION

 Parameters
opcode AP_DOWNSTREAM_LU_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then subsequent data fields can be set to null. The application should
issue a QUERY verb to update the information that has been lost.

dspu_name
Name of the downstream PU associated with the downstream LU. This
is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

ls_name Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

dslu_name
Name of the downstream LU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

description
Resource description (as specified on DEFINE_DOWNSTREAM_LU).

nau_address
Network addressable unit address of the LU which must be in the range
1–255.

lu_sscp_sess_active
Indicates whether the LU-SSCP session to the downstream LU is active.
Set to either AP_YES or AP_NO.

plu_sess_active
Indicates whether the PLU-SLU session to the downstream LU is active.
Set to either AP_YES or AP_NO.

dspu_services
Specifies the services which the local node provides to the downstream
LU across the link. This is set to one of the following.

AP_PU_CONCENTRATION
Local node provides PU concentration for the downstream PU.

AP_DLUR
Local node provides DLUR support for the downstream PU.

lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_sscp_stats.send_ru_size
This field is always reserved.

 Chapter 8. Node Operator Facility API Indications 387

 DOWNSTREAM_LU_INDICATION

lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_sscp_stats.sidh
Session ID high byte.

lu_sscp_stats.sidl
Session ID low byte.

lu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

ds_plu_stats.rcv_ru_size
Maximum receive RU size.

ds_plu_stats.send_ru_size
Maximum send RU size.

ds_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

ds_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

388 System Management Programming

 DOWNSTREAM_LU_INDICATION

ds_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

ds_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session

ds_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

ds_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

ds_plu_stats.send_data_frames
Number of normal flow data frames sent.

ds_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

ds_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

ds_plu_stats.rcv_data_frames
Number of normal flow data frames received.

ds_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

ds_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

ds_plu_stats.sidh
Session ID high byte.

ds_plu_stats.sidl
Session ID low byte.

ds_plu_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

ds_plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

us_plu_stats.rcv_ru_size
Maximum receive RU size.

us_plu_stats.send_ru_size
Maximum send RU size.

us_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

us_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

us_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

us_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session

 Chapter 8. Node Operator Facility API Indications 389

 DOWNSTREAM_LU_INDICATION

us_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

us_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

us_plu_stats.send_data_frames
Number of normal flow data frames sent.

us_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

us_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

us_plu_stats.rcv_data_frames
Number of normal flow data frames received.

us_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

us_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

us_plu_stats.sidh
Session ID high byte. This field is reserved if dspu_services is set to
AP_PU_CONCENTRATION.

us_plu_stats.sidl
Session ID low byte. This field is reserved if dspu_services is set to
AP_PU_CONCENTRATION.

us_plu_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station. This field is reserved if
dspu_services is set to AP_PU_CONCENTRATION.

us_plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field is
reserved if dspu_services is set to AP_PU_CONCENTRATION.

390 System Management Programming

 DOWNSTREAM_PU_INDICATION

 DOWNSTREAM_PU_INDICATION
This indication is generated when the PU-SSCP session between the downstream
PU and the host goes from inactive to active (or vice-versa). PU-SSCP statistics
are supplied when the PU-SSCP session deactivates.

 VCB Structure
typedef struct downstream_pu_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char dspu_name[8]; /* PU Name */

 unsigned char description[RD_LEN]; /* resource description */
unsigned char ls_name[8]; /* Link Station name */

 unsigned char pu_sscp_sess_active;
/* Is PU-SSCP session active? */

unsigned char dspu_services; /* DSPU services */
 unsigned char reserv1[2]; /* reserved */
 SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
} DOWNSTREAM_PU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max rcv pacing window size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */

 unsigned long rcv_fmd_data_frames;
/* num FMD data frames received */

unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Chapter 8. Node Operator Facility API Indications 391

 DOWNSTREAM_PU_INDICATION

 Parameters
opcode AP_DOWNSTREAM_PU_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then subsequent data fields can be set to null. The application should
issue a QUERY verb to update the information that has been lost.

dspu_name
Name of the downstream PU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

description
Resource description (as specified on DEFINE_LS.

ls_name Name of link station. This is a 8-byte string in a locally displayable
character set. All 8 bytes are significant.

pu_sscp_sess_active
Indicates whether the PU-SSCP session to the downstream PU is
active. Set to either AP_YES or AP_NO.

dspu_services
Specifies the services which the local node provides to the downstream
PU across the link. This is set to one of the following.

AP_PU_CONCENTRATION
Local node provides PU concentration for the downstream PU.

AP_DLUR
Local node provides DLUR support for the downstream PU.

pu_sscp_stats.rcv_ru_size
This field is always reserved.

pu_sscp_stats.send_ru_size
This field is always reserved.

pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

392 System Management Programming

 DOWNSTREAM_PU_INDICATION

pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_sscp_stats.sidh
Session ID high byte.

pu_sscp_stats.sidl
Session ID low byte.

pu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

 Chapter 8. Node Operator Facility API Indications 393

 FOCAL_POINT_INDICATION

 FOCAL_POINT_INDICATION
This indication is generated whenever a focal point is acquired, changed or
revoked.

 VCB Structure
typedef struct focal_point_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char ms_category[8]; /* Focal point category */

 unsigned char fp_fqcp_name[17]; /* Fully qualified focal */
/* point CP name */

unsigned char ms_appl_name[8]; /* Focal point application name */
unsigned char fp_type; /* type of current focal point */
unsigned char fp_status; /* status of focal point */
unsigned char fp_routing; /* type of MDS routing to */

/* reach FP */
 unsigned char reserva[20]; /* reserved */
} FOCAL_POINT_INDICATION;

 Parameters
opcode AP_FOCAL_POINT_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

ms_category Category of focal point where the focal point has been
acquired, changed or revoked. This can either be one of the
4-byte architecturally defined values (right-padded with
EBCDIC spaces) for management services categories as
described in SNA Management Services, or an 8-byte type
1134 EBCDIC installation defined name.

fp_fqcp_name The fully qualified control point name of the current focal
point. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no
embedded spaces.) This name will be all zeros if the focal
point has been revoked and not replaced (so that there is no
currently active focal point).

394 System Management Programming

 FOCAL_POINT_INDICATION

ms_appl_name Name of the current focal point application. This can either
be one of the 4-byte architecturally defined values
(right-padded with EBCDIC spaces) for management services
applications as described in SNA Management Services, or
an 8-byte type-1134 EBCDIC installation defined name. This
will be all zeros if the focal point has been revoked and not
replaced (so that there is no currently active focal point).

fp_type Type of focal point. Refer to SNA Management Services for
further details.

AP_EXPLICIT_PRIMARY_FP
AP_BACKUP_FP
AP_DEFAULT_PRIMARY_FP
AP_DOMAIN_FP
AP_HOST_FP
AP_NO_FP

fp_status Status of the focal point:

AP_NOT_ACTIVE
The focal point has gone from active to inactive.

AP_ACTIVE
The focal point has gone from inactive or pending active to
active.

fp_routing Type of routing that applications should specify when using
MDS transport to send data to the focal point (only significant
if the focal point status is AP_ACTIVE):

AP_DEFAULT
Default routing is used to deliver the MDS_MU to the focal
point.

AP_DIRECT
The MDS_MU will be routed on a session directly to the focal
point.

 Chapter 8. Node Operator Facility API Indications 395

 ISR_INDICATION

 ISR_INDICATION
This indication is generated when an ISR session is activated or deactivated.
When the session is deactivated, final session statistics are returned. When the
session is activated the pri_sess_stats and sec_sess_stats fields are reserved.

 VCB Structure
typedef struct isr_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has ISR session been */

 /* deactivated? */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */
unsigned char fqplu_name[17]; /* fully qualified primary */

/* LU name */
unsigned char fqslu_name[17]; /* fully qualified secondary */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char cos_name[8]; /* COS name */

 unsigned char transmission_priority;
/* transmission priority */

unsigned long sense_data; /* sense data */
 unsigned char reserv2a[2]; /* reserved */
 SESSION_STATS pri_sess_stats; /* primary hop session stats */
 SESSION_STATS sec_sess_stats; /* secondary hop session */
 /* statistics */
 unsigned char reserva[20]; /* reserved */
} ISR_INDICATION;

typedef struct fqpcid
{

unsigned char pcid[8]; /* pro correlator identifier */
unsigned char fqcp_name[17]; /* orig's network qualified */

/* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* Maximum send BTU size */
unsigned short max_rcv_btu_size; /* Maximum rcv BTU size */
unsigned short max_send_pac_win; /* Max send pacing window size */
unsigned short cur_send_pac_win; /* Curr send pacing window size */
unsigned short max_rcv_pac_win; /* Max receive pacing win size */
unsigned short cur_rcv_pac_win; /* Curr rec pacing window size */
unsigned long send_data_frames; /* Number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num of FMD data frames sent */

 unsigned long send_data_bytes; /* Number of data bytes sent */

396 System Management Programming

 ISR_INDICATION

 unsigned long rcv_data_frames; /* Num data frames received */
 unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd */
unsigned long rcv_data_bytes; /* Num data bytes received */
unsigned char sidh; /* Session ID high byte */
unsigned char sidl; /* Session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Parameters
The application supplies the following parameters:

opcode AP_ISR_INDICATION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure which
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields may be
set to null. The application should issue a QUERY verb to
update the information which has been lost.

deactivate Set to AP_YES when the ISR session is deactivated. Set to
AP_NO when the session is activated.

fqpcid.pcid Procedure Correlator ID. This is an 8-byte hexadecimal
string.

fqpcid.pcid_name Fully qualified Control Point name. This name is 17-bytes
long and is right-padded with EBCDIC spaces. It is
composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

fqplu_name Fully qualified primary LU name (as specified on the BIND
request). This name is 17-bytes long and is right-padded
with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no
embedded spaces.) This name will be all zeros if
deactivated is AP_YES.

fqslu_name Fully qualified secondary LU name (as specified on the BIND
request). This name is 17-bytes long and is right-padded
with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no
embedded spaces.) This name will be all zeros if
deactivated is AP_YES.

 Chapter 8. Node Operator Facility API Indications 397

 ISR_INDICATION

cos_name Class of Service name. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. This name will be all zeros if
deactivated is AP_YES.

transmission_priority
The transmission priority associated with the session. This
field is reserved if deactivated is AP_YES.

sense_data The sense data sent or received on the UNBIND request.
This field is reserved if deactivated is AP_YES.

pri_sess_stats.rcv_ru_size
Maximum receive RU size.

pri_sess_stats.send_ru_size
Maximum send RU size.

pri_sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

pri_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pri_sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

pri_sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

pri_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

pri_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

pri_sess_stats.send_data_frames
Number of normal flow data frames sent.

pri_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pri_sess_stats.send_data_bytes
Number of normal flow data bytes sent.

pri_sess_stats.rcv_data_frames
Number of normal flow data frames received.

pri_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pri_sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

pri_sess_stats.sidh Session ID high byte.

pri_sess_stats.sidl Session ID low byte.

pri_sess_stats.odai Origin destination address indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station. It sets it to one if
the BIND sender is the node containing the secondary link
station.

398 System Management Programming

 ISR_INDICATION

pri_sess_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. This field can be used to correlate the
session statistics with the link over which session traffic
flows.

sec_sess_stats.rcv_ru_size
Maximum receive RU size.

sec_sess_stats.send_ru_size
Maximum send RU size.

sec_sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

sec_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

sec_sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

sec_sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

sec_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

sec_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

sec_sess_stats.send_data_frames
Number of normal flow data frames sent.

sec_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

sec_sess_stats.send_data_bytes
Number of normal flow data bytes sent.

sec_sess_stats.rcv_data_frames
Number of normal flow data frames received.

sec_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

sec_sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

sec_sess_stats.sidh
Session ID high byte.

sec_sess_stats.sidl Session ID low byte.

sec_sess_stats.odai
Origin destination address indicator. When bringing up a
session, the sender of the BIND sets this field to zero if the
local node contains the primary link station. It sets it to one if
the BIND sender is the node containing the secondary link
station.

sec_sess_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8

 Chapter 8. Node Operator Facility API Indications 399

 ISR_INDICATION

bytes are significant. This field can be used to correlate the
session statistics with the link over which session traffic
flows.

400 System Management Programming

 LOCAL_LU_INDICATION

 LOCAL_LU_INDICATION
This indication is generated whenever a LOCAL LU is defined or deleted. This
allows a registered application to maintain a list of all local LUs currently defined.

 VCB Structure
typedef struct local_lu_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char reason; /* reason for this indication */
unsigned char lu_name[8]; /* LU name */

 unsigned char description[RD_LEN];
/* resource description */

unsigned char lu_alias[8]; /* LU alias */
unsigned char nau_address; /* NAU address */

 unsigned char reserv4; /* reserved */
unsigned char pu_name[8]; /* PU name */
unsigned char lu_sscp_active; /* Is LU-SSCP session active */

 unsigned char reserv5; /* reserved */
 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
} LOCAL_LU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* curr receive pacing winsize */

 unsigned long send_data_frames; /* number of data frames sent */
 unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */

 unsigned long rcv_fmd_data_frames;
/* num FMD data frames received */

unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

Note: The LU-SSCP statistics are only valid when both
nau_address is nonzero and the LU-SSCP session goes
from active to inactive. In all other cases the fields are reserved.

 Chapter 8. Node Operator Facility API Indications 401

 LOCAL_LU_INDICATION

 Parameters
opcode AP_LOCAL_LU_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES, then subsequent data fields can be
set to null. The application should issue a QUERY verb to
update the information that has been lost.

reason Reason for indication being issued:

AP_ADDED
The LU has been defined.

AP_REMOVED
The LU has been deleted, either explicitly using
DELETE_LOCAL_LU or implicitly using DELETE_LS,
DELETE_PORT or DELETE_DLC.

AP_SSCP_ACTIVE
The LU-SSCP session has become active after the node has
successfully processed an ACTLU.

AP_SSCP_INACTIVE
The LU-SSCP session has become inactive after a normal
DACTLU or a link failure.

lu_name Name of the LU. Name of the local LU whose state has
changed. This is an 8-byte alphanumeric type A EBCDIC
string (starting with a letter), padded to the right with EBCDIC
spaces.

description Resource description (as specified on DEFINE_LOCAL_LU).

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

nau_address Network addressable unit address of the LU, which must be
in the range 0–255. A non-zero value implies the LU is a
dependent LU. Zero implies the LU is an independent LU.

pu_name Name of the PU that this LU uses. This is an 8-byte
alphanumeric type A EBCDIC string. This field is only
significant if the LU is a dependent LU (that is, nau_address
is nonzero), and will be set to all binary zeros for
independent LUs.

lu_sscp_sess_active
Specifies whether the LU-SSCP session is active (AP_YES
or AP_NO). If nau_address is zero then this field is
reserved.

402 System Management Programming

 LOCAL_LU_INDICATION

lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_sscp_stats.send_ru_size
This field is always reserved.

lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_sscp_stats.sidh Session ID high byte.

lu_sscp_stats.sidl Session ID low byte.

lu_sscp_stats.odai Origin destination address indicator. When bringing up a
session, the sender of the ACTLU sets this field to zero if the
local node contains the primary link station, and sets it to 1 if
the ACTLU sender is the node containing the secondary link
station.

lu_sscp_stats.ls_name
Link station name associated with statistics. This is an
8-byte string in a locally displayable character set. All 8
bytes are significant. This field can be used to correlate this
session with the link over which the session flows.

 Chapter 8. Node Operator Facility API Indications 403

 LOCAL_TOPOLOGY_INDICATION

 LOCAL_TOPOLOGY_INDICATION
This indication is generated when a TG entry in a node's local topology database
changes from active to inactive, or from inactive to active.

 VCB Structure
typedef struct local_topology_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
 unsigned long secondary_rc; /* secondary return code */

unsigned char data_lost; /* previous indication lost */
unsigned char status; /* TG status */
unsigned char dest[17]; /* name of TG destination node */
unsigned char dest_type; /* TG destination node type */
unsigned char tg_num; /* TG number */

 unsigned char reserva[20]; /* reserved */
} LOCAL_TOPOLOGY_INDICATION;

 Parameters
opcode AP_LOCAL_TOPOLOGY_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

status Specifies the status of the TG. This can be one or more of
the following values ORed together:

AP_TG_OPERATIVE
AP_TG_CP_CP_SESSIONS
AP_TG_QUIESCING
AP_NONE

dest Fully qualified destination node name for the TG. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

dest_type Type of the node. It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_VRN

tg_num Number associated with the TG.

404 System Management Programming

 LS_INDICATION

 LS_INDICATION
This indication is generated when the number of active sessions using the link
changes, or the external state of the link station changes. Link station statistics are
supplied when the link station becomes inactive.

 VCB Structure
typedef struct ls_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char ls_name[8]; /* link station name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char adj_cp_name[17]; /* network qualified Adj CP name */
unsigned char adj_node_type; /* adjacent node type */
unsigned short act_sess_count; /* active session count on link */
unsigned char indication_cause; /* cause of indication */
LS_STATS ls_stats; /* link station statistics */
unsigned char tg_num; /* TG number */
unsigned long sense_data; /* sense data */

 unsigned char reserva[19]; /* reserved */
} LS_INDICATION;

typedef struct ls_stats
{

unsigned long in_xid_bytes; /* num of XID bytes received */
unsigned long in_msg_bytes; /* num message bytes received */
unsigned long in_xid_frames; /* num XID frames received */
unsigned long in_msg_frames; /* num message frames received */
unsigned long out_xid_bytes; /* num XID bytes sent */
unsigned long out_msg_bytes; /* num message bytes sent */
unsigned long out_xid_frames; /* number of XID frames sent */
unsigned long out_msg_frames; /* num message frames sent */

 unsigned long in_invalid_sna_frames;
/* num invalid frames recvd */

 unsigned long in_session_control_frames;
/* number of control */
/* frames recvd */

 unsigned long out_session_control_frames;
/* number of control */
/* frames sent */

unsigned long echo_rsps; /* response from adj LS count */
unsigned long current_delay; /* time taken for last */

/* test signal */
unsigned long max_delay; /* max delay by test signal */
unsigned long min_delay; /* min delay by test signal */
unsigned long max_delay_time; /* time since longest delay */
unsigned long good_xids; /* successful XID on LS count */
unsigned long bad_xids; /* unsuccessful XID on LS count */

} LS_STATS;

 Chapter 8. Node Operator Facility API Indications 405

 LS_INDICATION

 Parameters
opcode AP_LS_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then subsequent data fields can be set to null. The application should
issue a QUERY verb to update the information that has been lost.

deactivated
Set to AP_YES when the LS becomes inactive. Set to AP_NO when
the LS becomes active.

ls_name Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

description
Resource description (as specified on DEFINE_LS). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

adj_cp_name
Fully-qualified, 17-byte long, adjacent control point name. It is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name
can have a maximum length of 8 bytes with no embedded spaces.)

adj_node_type
Type of the node. It is one of the following values:

AP_END_NODE
AP_NETWORK_NODE
AP_LEN_NODE
AP_VRN

act_sess_count
Total number of active sessions (both endpoint and intermediate) using
the link.

indication_cause
Cause of the indication. It is one of the following values:

AP_ACTIVATION_STARTED
The link is activating.

AP_ACTIVATING
The link has become active.

AP_DEACTIVATION_STARTED
The link is being deactivated.

AP_DEACTIVATING
The link has become inactive.

406 System Management Programming

 LS_INDICATION

AP_SESS_COUNT_CHANGING
The number of active sessions using the link has changed.

AP_CP_NAME_CHANGING
An adjacent node has changed its control point name.

AP_FAILED
The link has failed.

AP_ACTIVATION_FAILED
The link failed to activate.

AP_DATA_LOST
A previous indication has been lost. Note that link station statistics are
only supplied when the link station goes from active to inactive (that is,
deactivating is set to AP_YES and indication_cause is set to
AP_DEACTIVATING). In all other cases the fields are reserved.

ls_stats.in_xid_bytes
Total number of XID (Exchange Identification) bytes received on this link
station.

ls_stats.in_msg_bytes
Total number of data bytes received on this link station.

ls_stats.in_xid_frames
Total number of XID (Exchange Identification) frames received on this
link station.

ls_stats.in_msg_frames
Total number of data frames received on this link station.

ls_stats.out_xid_bytes
Total number of XID (Exchange Identification) bytes sent on this link
station.

ls_stats.out_msg_bytes
Total number of data bytes sent on this link station.

ls_stats.out_xid_frames
Total number of XID (Exchange Identification) frames sent on this link
station.

ls_stats.out_msg_frames
Total number of data frames sent on this link station.

ls_stats.in_invalid_sna_frames
Total number of SNA incorrect frames received on this link station.

ls_stats.in_session_control_frames
Total number of session control frames received on this link station.

ls_stats.out_session_control_frames
Total number of session control frames sent on this link station.

ls_stats.echo_rsps
Number of echo responses received from the adjacent node. Echo
requests are sent periodically to gauge the propagation delay to the
adjacent node.

ls_stats.current_delay
Time (in milliseconds) that it took for the last test signal to be sent and
returned from this link station to the adjacent link station.

 Chapter 8. Node Operator Facility API Indications 407

 LS_INDICATION

ls_stats.max_delay
Longest time taken (in milliseconds) for a test signal to be sent and
returned from this link station to the adjacent link station.

ls_stats.min_delay
Shortest time taken (in milliseconds) for a test signal to be sent and
returned from this link station to the adjacent link station.

ls_stats.max_delay_time
Time since system startup (in hundredths of a second) when the longest
delay occurred.

ls_stats.good_xids
Total number of successful XID exchanges that have occurred on this
link station since it was started.

ls_stats.bad_xids
Total number of unsuccessful XID exchanges that have occurred on this
link station since it was started.

tg_num Number associated with the TG.

sense_data
This sense data is set if Communications Server detects an XID protocol
error. This field is reserved unless indication_cause is AP_FAILED.

408 System Management Programming

 LU_0_TO_3_INDICATION

 LU_0_TO_3_INDICATION
This indication is generated when the state of a local LU (Type 0-3) changes.

 VCB Structure
typedef struct lu_0_to_3_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char pu_name[8]; /* PU Name */
unsigned char lu_name[8]; /* LU Name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char nau_address; /* NAU address */

 unsigned char lu_sscp_sess_active;
/* Is SSCP session active? */

unsigned char appl_conn_active; /* Is application using LU? */
unsigned char plu_sess_active; /* Is PLU-SLU session active? */
unsigned char host_attachment; /* Host attachment */

 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
 SESSION_STATS plu_stats; /* PLU-SLU session statistics */
} LU_0_TO_3_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* current send pacing win size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* curr receive pacing winsize */

 unsigned long send_data_frames; /* number of data frames sent */
 unsigned long send_fmd_data_frames;

/* num of FMD data frames sent */
unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */

 unsigned long rcv_fmd_data_frames;
/* num FMD data frames received */

unsigned long rcv_data_bytes; /* number of data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Chapter 8. Node Operator Facility API Indications 409

 LU_0_TO_3_INDICATION

 Parameters
opcode AP_LU_0_TO_3_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then subsequent data fields can be set to null. The application should
issue a QUERY verb to update the information that has been lost.

pu_name Name of local PU. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

lu_name Name of the local LU whose state has changed. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to
the right with EBCDIC spaces.

description
Resource description (as specified on DEFINE_LU_0_TO_3). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

nau_address
Network addressable unit address of the LU (which will be in the range
10—2554).

lu_sscp_sess_active
Specifies whether the ACTLU has been successfully processed
(AP_YES or AP_NO).

appl_conn_active
Set if the application is using this LU (AP_YES or AP_NO).

plu_sess_active
Specifies whether the PLU-SLU session has been activated (AP_YES or
AP_NO).

host_attachment
Specifies the LU host attachment type:

AP_DLUR_ATTACHED
LU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
LU is directly attached to host system. Note the LU-SSCP and
PLU-SLU statistics are only valid when the sessions go from active to
inactive. In all other cases the fields are reserved.

lu_sscp_stats.rcv_ru_size
This field is always reserved.

lu_sscp_stats.send_ru_size
This field is always reserved.

410 System Management Programming

 LU_0_TO_3_INDICATION

lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

lu_sscp_stats.sidh
Session ID high byte.

lu_sscp_stats.sidl
Session ID low byte.

lu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTLU sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the ACTLU sender is the node
containing the secondary link station.

lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field
can be used to correlate this session with the link over which the
session flows.

plu_stats.rcv_ru_size
Maximum receive RU size.

plu_stats.send_ru_size
Maximum send RU size.

plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

 Chapter 8. Node Operator Facility API Indications 411

 LU_0_TO_3_INDICATION

plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

plu_stats.send_data_frames
Number of normal flow data frames sent.

plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

plu_stats.send_data_bytes
Number of normal flow data bytes sent.

plu_stats.rcv_data_frames
Number of normal flow data frames received.

plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

plu_stats.sidh
Session ID high byte.

plu_stats.sidl
Session ID low byte.

plu_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTLU sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the ACTLU sender is the node
containing the secondary link station.

plu_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field
can be used to correlate this session with the link over which the
session flows.

412 System Management Programming

 MODE_INDICATION

 MODE_INDICATION
This indication is sent when a local LU and partner LU combination start to use a
particular mode, and when the current session count for the local LU, partner LU,
and mode combination changes.

 VCB Structure
typedef struct mode_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char removed; /* is entry being removed? */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */

 unsigned char description[RD_LEN]; /* resource description */
unsigned short curr_sess_count; /* current session count */

 unsigned char reserva[20]; /* reserved */
} MODE_INDICATION;

 Parameters
opcode AP_MODE_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

removed Specifies whether an entry is being removed (AP_YES or
AP_NO). It is set when entry is being removed rather than
added.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

plu_alias Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

fqplu_name 17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with
EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

 Chapter 8. Node Operator Facility API Indications 413

 MODE_INDICATION

mode_name Mode name, which designates the network properties for a
group of sessions. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

description Resource description (as specified on DEFINE_MODE). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

curr_sess_count Current count of sessions for this local LU, partner LU, and
mode combination.

414 System Management Programming

 NN_TOPOLOGY_NODE_INDICATION

 NN_TOPOLOGY_NODE_INDICATION
This indication is generated when a node entry in a network node's topology
database changes from active to inactive, or from inactive to active.

 VCB Structure
typedef struct nn_topology_node_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
 unsigned long secondary_rc; /* secondary return code */

unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has the node become inactive? */
unsigned char node_name[17]; /* node name */
unsigned char node_type; /* node type */

 unsigned char reserva[20]; /* reserved */
} NN_TOPOLOGY_NODE_INDICATION;

 Parameters
opcode AP_NN_TOPOLOGY_TG_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

deactivated Set to AP_YES when the node becomes inactive. Set to
AP_NO when the node becomes active.

node_name Network qualified node name from network topology
database. This name is 17 bytes long and is right-padded
with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no
embedded spaces.)

node_type Type of the node. It is one of the following.

AP_NETWORK_NODE
AP_VRN

 Chapter 8. Node Operator Facility API Indications 415

 NN_TOPOLOGY_TG_INDICATION

 NN_TOPOLOGY_TG_INDICATION
This indication is generated when a TG entry in a network node's topology
database changes from active to inactive, or from inactive to active.

 VCB Structure
typedef struct nn_topology_tg_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
 unsigned long secondary_rc; /* secondary return code */

unsigned char data_lost; /* previous indication lost */
unsigned char status; /* TG status */
unsigned char owner[17]; /* name of TG owner node */
unsigned char dest[17]; /* name of TG destination node */
unsigned char tg_num; /* TG number */
unsigned char owner_type; /* Type of node that owns the TG */
unsigned char dest_type; /* TG destination node type */

 unsigned char reserva[18]; /* reserved */
} NN_TOPOLOGY_TG_INDICATION;

 Parameters
opcode AP_NN_TOPOLOGY_TG_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

status Specifies the status of the TG. This can be one or more of
the following values ORed together:

AP_TG_OPERATIVE
AP_TG_QUIESCING
AP_TG_CP_CP_SESSIONS
AP_NONE

owner Name of the TG's originating node (always set to the local
node name). This name is 17 bytes long and is right-padded
with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no
embedded spaces.)

dest Fully qualified destination node name for the TG. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It
is composed of two type-A EBCDIC character strings

416 System Management Programming

 NN_TOPOLOGY_TG_INDICATION

concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

tg_num Number associated with the TG.

owner_type Type of the node that owns the TG.

AP_NETWORK_NODE
AP_VRN

dest_type Type of the node.

AP_NETWORK_NODE
AP_VRN

 Chapter 8. Node Operator Facility API Indications 417

 PLU_INDICATION

 PLU_INDICATION
This indication is generated when a local LU first connects to a partner LU. This
will happen when the first ALLOCATE to this PLU is processed or when the first
BIND is received from this PLU. This indication is also generated if the partner
control point name changes.

 VCB Structure
typedef struct plu_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* has previous indication */

/* been lost? */
unsigned char removed; /* is entry being removed? */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char partner_cp_name[17]; /* partner CP name */

 unsigned char partner_lu_located; /* partner CP name resolved? */
 unsigned char reserva[20]; /* reserved */
} PLU_INDICATION;

 Parameters
opcode AP_PLU_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether one or more indications have been lost
(AP_YES or AP_NO). It is set when an internal component
was unable to send a previous indication. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

removed Specifies whether an entry is being removed (AP_YES or
AP_NO). It is set when entry is being removed rather than
added.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

plu_alias Partner LU alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

fqplu_name 17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with

418 System Management Programming

 PLU_INDICATION

EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

description Resource description (as specified on
DEFINE_PARTNER_LU). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

partner_cp_name 17-byte fully qualified network name for the control point of
the partner LU. This name is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded
spaces.)

partner_lu_located Specifies whether the partner control point name has been
resolved (AP_YES or AP_NO), and thus whether the
partner_cp_name field contains the control point name.

 Chapter 8. Node Operator Facility API Indications 419

 PORT_INDICATION

 PORT_INDICATION
This indication is generated when the port goes from active to inactive (or vice
versa).

 VCB Structure
typedef struct port_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char port_name[8]; /* link station name */

 unsigned char description[RD_LEN]; /* resource description */
 unsigned char reserva[20]; /* reserved */
} PORT_INDICATION;

 Parameters
opcode AP_PORT_INDICATION

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

secondary_rc Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES then subsequent data fields can be set
to null. The application should issue a QUERY verb to
update the information that has been lost.

deactivated Set to AP_YES when the port becomes inactive. Set to
AP_NO when the port becomes active.

port_name Name of port. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

description Resource description (as specified on DEFINE_PORT). This
is a 16-byte string in a locally displayable character set. All
16 bytes are significant.

420 System Management Programming

 PU_INDICATION

 PU_INDICATION
This indication is generated when the state of a local PU changes.

 VCB Structure
typedef struct pu_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char pu_name[8]; /* PU Name */

 unsigned char description[RD_LEN]; /* resource description */
 unsigned char pu_sscp_sess_active;

/* Is SSCP session active? */
unsigned char host_attachment; /* Host attachment */

 unsigned char reserv1[2]; /* reserved */
 SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
} PU_INDICATION;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max rcv pacing window size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num of data frames received */

 unsigned long rcv_fmd_data_frames;
/* num FMD data frames received */

unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Parameters
opcode AP_PU_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

 Chapter 8. Node Operator Facility API Indications 421

 PU_INDICATION

secondary_rc
Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then subsequent data fields can be set to null. The application should
issue a QUERY verb to update the information that has been lost.

pu_name Name of the PU (configured on the DEFINE_LS verb). This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to
the right with EBCDIC spaces.

description
Resource description (as specified on DEFINE_LS or
DEFINE_INTERNAL_PU). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

pu_sscp_sess_active
Specifies whether the ACTPU has been successfully processed
(AP_YES or AP_NO).

host_attachment
PU host attachment type:

AP_DLUR_ATTACHED
PU is attached to host system using DLUR.

AP_DIRECT_ATTACHED
PU is directly attached to host system.

Note: PU-SSCP statistics are valid only when the session state has
moved from active to inactive.

In all other cases the following fields are reserved:

pu_sscp_stats.rcv_ru_size
This field is always reserved.

pu_sscp_stats.send_ru_size
This field is always reserved.

pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

422 System Management Programming

 PU_INDICATION

pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_sscp_stats.sidh
Session ID high byte.

pu_sscp_stats.sidl
Session ID low byte.

pu_sscp_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the ACTPU sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the ACTPU sender is the node
containing the secondary link station.

pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field
can be used to correlate this session with the link over which the
session flows.

 Chapter 8. Node Operator Facility API Indications 423

 REGISTRATION_FAILURE

 REGISTRATION_FAILURE
REGISTRATION_FAILURE indicates that an attempt to register resources with the
network node server failed.

 VCB Structure
typedef struct registration_failure
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char resource_name[17]; /* network qualified */

/* resource name */
unsigned short resource_type; /* resource type */

 unsigned char description[RD_LEN]; /* resource description */
 unsigned char reserv2b[2]; /* reserved */

unsigned long sense_data; /* sense data */
 unsigned char reserva[20]; /* reserved */
} REGISTRATION_FAILURE;

 Parameters
opcode AP_REGISTRATION_FAILURE

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

primary_rc AP_OK

data_lost Specifies whether data has been lost (AP_YES or AP_NO).
It is set when an internal component detects a failure that
has caused a previous indication to be lost. If the data_lost
flag is set to AP_YES, then subsequent data fields may be
set to null. The application should issue a QUERY verb to
update the information that has been lost.

resource_name Name of resource that failed to register. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is
composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

resource_type Resource type. One of the following values:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

description Resource description (as specified on DEFINE_LOCAL_LU,
or DEFINE_ADJACENT_NODE).

sense_data Sense data (specified in SNA Formats).

424 System Management Programming

 RTP_INDICATION

 RTP_INDICATION
This indication is generated when:

¹ an RTP connection is connected or disconnected

¹ the active session count changes

¹ the connection performs a path-switch.

When the connection is disconnected, final RTP statistics will be returned. At other
times the rtp_stats field is reserved.

 VCB Structure
typedef struct rtp_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication(s) lost */
unsigned char connection_state; /* the current state of the RTP */

 /* connection */
unsigned char rtp_name[8]; /* name of the RTP connection */
unsigned short num_sess_active; /* number of active sessions */
unsigned char indication_cause; /* reason for this indication */

 unsigned char reserv3[3]; /* reserved */
RTP_STATISTICS rtp_stats; /* RTP statistics */

} RTP_INDICATION;

 typedef struct rtp_statistics
{

unsigned long bytes_sent; /* total num of bytes sent */
unsigned long bytes_received; /* total num bytes received */
unsigned long bytes_resent; /* total num of bytes resent */
unsigned long bytes_discarded; /* total num bytes discarded */
unsigned long packets_sent; /* total num of packets sent */
unsigned long packets_received; /* total num packets received */
unsigned long packets_resent; /* total num of packets resent */

 unsigned long packets_discarded; /* total num packets discarded */
unsigned long gaps_detected; /* gaps detected */
unsigned long send_rate; /* current send rate */
unsigned long max_send_rate; /* maximum send rate */
unsigned long min_send_rate; /* minimum send rate */
unsigned long receive_rate; /* current receive rate */
unsigned long max_receive_rate; /* maximum receive rate */
unsigned long min_receive_rate; /* minimum receive rate */
unsigned long burst_size; /* current burst size */
unsigned long up_time; /* total uptime of connection */
unsigned long smooth_rtt; /* smoothed round-trip time */
unsigned long last_rtt; /* last round-trip time */
unsigned long short_req_timer; /* SHORT_REQ timer duration */
unsigned long short_req_timeouts; /* number of SHORT_REQ timeouts */

 unsigned long liveness_timeouts; /* number of liveness timeouts */
 unsigned long in_invalid_sna_frames;

/* number of invalid SNA frames */
 /* received */

 Chapter 8. Node Operator Facility API Indications 425

 RTP_INDICATION

unsigned long in_sc_frames; /* number of SC frames received */
unsigned long out_sc_frames; /* number of SC frames sent */

 unsigned char reserve[40]; /* reserved */
} RTP_STATISTICS;

 Parameters
opcode AP_RTP_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then the data contained might have changed more than once since the
previous indication received.

connection_state
The current state of the RTP connection. It is one of the following
values:

AP_CONNECTING
Connection setup has started, but is not yet complete.

AP_CONNECTED
The connection is fully active.

AP_DISCONNECTED
The connection is no longer active.

rtp_name
RTP connection name. This name is an 8-byte string in a locally
displayable character set. All 8 bytes are significant.

num_sess_active
Number of sessions currently active on the connection.

indication_cause
Cause of the indication. It is one of the following values:

AP_ACTIVATED
The connection has become active.

AP_DEACTIVATED
The connection has become inactive.

AP_PATH_SWITCHED
The connection has successfully completed a path switch.

AP_SESS_COUNT_CHANGING
The number of active sessions using the connection has changed.

AP_SETUP_FAILED
The connection has failed before becoming fully active. Note that RTP
connection statistics are only supplied when the connection becomes

426 System Management Programming

 RTP_INDICATION

inactive, that is when indication_cause is AP_DEACTIVATED or
AP_SETUP_FAILED. In all other cases the fields are reserved.

rtp_stats.bytes_sent
Total number of bytes that the local node has sent on this RTP
connection.

rtp_stats.bytes_received
Total number of bytes that the local node has received on this RTP
connection.

rtp_stats.bytes_resent
Total number of bytes resent by the local node owing to loss in transit.

rtp_stats.bytes_discarded
Total number of bytes sent by the other end of the RTP connection that
were discarded as duplicates of data already received.

rtp_stats.packets_sent
Total number of packets that the local node has sent on this RTP
connection.

rtp_stats.packets_received
Total number of packets that the local node has received on this RTP
connection.

rtp_stats.packets_resent
Total number of packets resent by the local node owing to loss in
transit.

rtp_stats.packets_discarded
Total number of packets sent by the other end of the RTP connection
that were discarded as duplicates of data already received.

rtp_stats.gaps_detected
Total number of gaps detected by the local node. Each gap
corresponds to one or more lost frames.

rtp_stats.send_rate
Current send rate on this RTP connection (measured in kilobits per
second). This is the maximum allowed send rate as calculated by the
ARB algorithm.

rtp_stats.max_send_rate
Maximum send rate on this RTP connection (measured in kilobits per
second).

rtp_stats.min_send_rate
Minimum send rate on this RTP connection (measured in kilobits per
second).

rtp_stats.receive_rate
Current receive rate on this RTP connection (measured in kilobits per
second). This is the actual receive rate calculated over the last
measurement interval.

rtp_stats.max_receive_rate
Maximum receive rate on this RTP connection (measured in kilobits per
second).

 Chapter 8. Node Operator Facility API Indications 427

 RTP_INDICATION

rtp_stats.min_receive_rate
Minimum receive rate on this RTP connection (measured in kilobits per
second).

rtp_stats.burst_size
Current burst-size on the RTP Connection measured in bytes.

rtp_stats.up_time
Total number of seconds the RTP connection has been active.

rtp_stats.smooth_rtt
Smoothed measure of round-trip time between the local node and the
partner RTP node (measured in milliseconds).

rtp_stats.last_rtt
The last measured round-trip time between the local node and the
partner RTP node (measured in milliseconds).

rtp_stats.short_req_timer
The current duration used for the SHORT_REQ timer (measured in
milliseconds).

rtp_stats.short_req_timeouts
Total number of times the SHORT_REQ timer has expired for this RTP
connection.

rtp_stats.liveness_timeouts
Total number of times the liveness timer has expired for this RTP
connection. The liveness timer expires when the connection has been
idle for the period specified in rtp_connection_detail.liveness_timer .

rtp_stats.in_invalid_sna_frames
Total number of SNA frames received and discarded as not valid on this
RTP connection.

rtp_stats.in_sc_frames
Total number of session control frames received on this RTP
connection.

rtp_stats.out_sc_frames
Total number of session control frames sent on this RTP connection.

428 System Management Programming

 SESSION_INDICATION

 SESSION_INDICATION
This indication is generated when a session is activated or deactivated. When a
session is deactivated, final session statistics will be returned. When a session is
activated, the sess_stats field is reserved.

 VCB Structure
typedef struct session_indication
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char data_lost; /* previous indication lost */
unsigned char deactivated; /* has session been deactivated? */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* LU alias */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char mode_name[8]; /* mode name */
unsigned char session_id[8]; /* session ID */
FQPCID fqpcid; /* fully qualified procedure */

 unsigned long sense_data; /* sense_data */
unsigned char duplex_support; /* full-duplex support */

 SESSION_STATS sess_stats; /* session statistics */
/* correlator ID */

 unsigned char reserva[20]; /* reserved */
} SESSION_INDICATION;

typedef struct fqpcid
{

unsigned char pcid[8]; /* procedure correlator */
 /* identifier */

unsigned char fqcp_name[17]; /* originator's network */
/* qualified CP name */

 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send_pac_win; /* max send pacing window size */
unsigned short cur_send_pac_win; /* curr send pacing window size */
unsigned short max_rcv_pac_win; /* max receive pacing win size */
unsigned short cur_rcv_pac_win; /* curr receive pacing win size */
unsigned long send_data_frames; /* number of data frames sent */

 unsigned long send_fmd_data_frames;
/* num FMD data frames sent */

unsigned long send_data_bytes; /* number of data bytes sent */
unsigned long rcv_data_frames; /* num data frames received */

 unsigned long rcv_fmd_data_frames;
/* num FMD data frames received */

 Chapter 8. Node Operator Facility API Indications 429

 SESSION_INDICATION

unsigned long rcv_data_bytes; /* num data bytes received */
unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID low byte */
unsigned char odai; /* ODAI bit set */
unsigned char ls_name[8]; /* Link station name */

 unsigned char reserve; /* reserved */
} SESSION_STATS;

 Parameters
opcode AP_SESSION_INDICATION

format Identifies the format of the VCB. This field is set to zero to specify the
version of the VCB listed above.

primary_rc
AP_OK

secondary_rc
Equals zero.

data_lost Specifies whether data has been lost (AP_YES or AP_NO). It is set
when an internal component detects a failure that has caused a
previous indication to be lost. If the data_lost flag is set to AP_YES
then subsequent data fields can be set to null. The application should
issue a QUERY verb to update the information that has been lost.

deactivated
Set to AP_NO when a session is activated. Set to AP_YES when a
session is deactivated.

lu_name LU name. This name is an 8-byte type-A EBCDIC character string.

lu_alias Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

plu_alias Partner LU alias. This is an 8-byte string in a locally displayable
character set.

fqplu_name
17-byte fully qualified network name for the partner LU. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name
can have a maximum length of 8 bytes with no embedded spaces.)

mode_name
Mode name, which designates the network properties for a group of
sessions. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

session_id
8-byte identifier of the session.

fqpcid.pcid
Procedure correlator ID. This is an 8-byte hexadecimal string.

fqpcid.fqcp_name
Fully qualified control point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded
spaces.)

430 System Management Programming

 SESSION_INDICATION

sense_data
The sense data sent or received on the UNBIND request. This field is
reserved if deactivated is AP_NO.

duplex_support
Returns the conversation duplex support as negotiated on the BIND.
This is one of the following values:

AP_HALF_DUPLEX
Only half-duplex conversations are supported.

AP_FULL_DUPLEX
Full-duplex as well as half-duplex conversations are supported.

AP_UNKNOWN
The conversation duplex support is not known because there are no
active sessions to the partner LU.

sess_stats.rcv_ru_size
Maximum receive RU size.

sess_stats.send_ru_size
Maximum send RU size.

sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

sess_stats.send_data_frames
Number of normal flow data frames sent.

sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

sess_stats.send_data_bytes
Number of normal flow data bytes sent.

sess_stats.rcv_data_frames
Number of normal flow data frames received.

sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

sess_stats.sidh
Session ID high byte.

 Chapter 8. Node Operator Facility API Indications 431

 SESSION_INDICATION

sess_stats.sidl
Session ID low byte.

sess_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

sess_stats_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field
can be used to correlate the session statistics with the link over which
session traffic flows.

432 System Management Programming

 Chapter 9. Security Verbs

This chapter describes verbs used to define and delete security passwords.

 Copyright IBM Corp. 1989, 1997 433

 DEFINE_LU_LU_PASSWORD

 DEFINE_LU_LU_PASSWORD
DEFINE_LU_LU_PASSWORD provides a password that is used for session-level
verification between a local LU and a partner LU.

 VCB Structure
typedef struct define_lu_lu_password
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */

 unsigned char fqplu_name[17]; /* fully qualified partner */
/* LU name */

 unsigned char verification_protocol
/* LULU verification protocol */

 unsigned char description[RD_LEN];
/* resource description */

 unsigned char reserv3[8]; /* reserved */
 unsigned char password[8]; /* password */
} DEFINE_LU_LU_PASSWORD;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_LU_LU_PASSWORD

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU. This name is an 8-byte type-A
EBCDIC character string. If this field is set to all zeros, the
lu_alias field will be used for determining the local LU.

lu_alias Local LU alias. This is an 8-byte string in a locally
displayable character set. This field is only significant if the
lu_name field is set to all zeros, in which case all 8 bytes are
significant and must be set. If both the lu_alias and the
lu_name are set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

fqplu_name Fully qualified partner LU name. This name is 17-byte s long
and is right-padded with EBCDIC spaces. It is composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8
bytes with no embedded spaces.)

verification_protocol LU-LU verification protocol for use with this partner LU:

AP_BASIC_PROTOCOL
Only the basic protocol will be used with this partner LU.

AP_ENHANCED_PROTOCOL
Only the enhanced protocol will be used with this partner LU.

434 System Management Programming

 DEFINE_LU_LU_PASSWORD

AP_EITHER_PROTOCOL
Either the basic or the enhanced protocol can be used with
this partner LU, subject to the following details:

¹ The default setting of this field is
AP_EITHER_PROTOCOL.

¹ The value AP_EITHER_PROTOCOL is provided to ease
migration to the use of the enhanced protocol. The local
LU accepts the basic protocol until the partner LU once
agrees to run the enhanced protocol. From then on, the
basic protocol is not accepted unless a subsequent
DEFINE_LU_LU_PASSWORD is issued to allow it.

description Resource description.

password Password. This is an 8-byte hexadecimal string. Note that
the least significant bit of each byte in the password is not
used in session-level verification.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_PLU_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 9. Security Verbs 435

 DEFINE_USERID_PASSWORD

 DEFINE_USERID_PASSWORD
DEFINE_USERID_PASSWORD defines a password associated with a user ID.

 VCB Structure
define_userid_password
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned short define_type; /* what the define type is */
unsigned char user_id[10]; /* user id */

 unsigned char reserv3[8]; /* reserved */
 USERID_PASSWORD_CHARS password_chars;

/* password characteristics */
} DEFINE_USERID_PASSWORD;

typedef struct userid_password_chars
{
 unsigned char description[RD_LEN];

/* resource description */
unsigned short profile_count; /* number of profiles */

 unsigned short reserv1; /* reserved */
 unsigned char password[10]; /* password */
 unsigned char profiles[10][10]; /* profiles */
} USERID_PASSWORD_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_USERID_PASSWORD

format Identifies the format of the VCB. This field is set
to zero to specify the version of the VCB listed
above.

define_type Specifies the type of user password being
defined:

AP_ADD_USER
Specifies a new user, or change of password for
an existing user.

AP_ADD_PROFILES
Specifies an addition to the profiles for an existing
user.

user_id User identifier. This is a 10-byte type-AE EBCDIC
character string, padded to the right with EBCDIC
spaces.

password_chars.description Resource description. This is a 16-byte string in a
locally displayable character set. All 16 bytes are
significant.

password_chars.profile_count Number of profiles.

436 System Management Programming

 DEFINE_USERID_PASSWORD

password_chars.password User's password. This is a 10-byte type-AE
EBCDIC character string, padded to the right with
EBCDIC spaces.

password_chars.profiles Profiles associated with user. Each of these is a
10-byte type-AE EBCDIC character string, padded
to the right with EBCDIC spaces.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_NO_PROFILES

AP_UNKNOWN_USER
AP_INVALID_UPDATE_TYPE
AP_TOO_MANY_PROFILES
AP_INVALID_USERID
AP_INVALID_PROFILE
AP_INVALID_PASSWORD

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 9. Security Verbs 437

 DELETE_LU_LU_PASSWORD

 DELETE_LU_LU_PASSWORD
DELETE_LU_LU_PASSWORD deletes an LU-LU password.

 VCB Structure
typedef struct delete_lu_lu_password
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* LU name */
unsigned char lu_alias[8]; /* local LU alias */

 unsigned char fqplu_name[17]; /* fully qualified partner */
/* LU name */

 unsigned char reserv3; /* reserved */
} DELETE_LU_LU_PASSWORD;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_LU_LU_PASSWORD

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU. This name is an 8-byte type-A
EBCDIC character string. If this field is set to all zeros, the
lu_alias field will be used for determining the local LU.

lu_alias Local LU alias. This is an 8-byte string in a locally
displayable character set. This field is only significant if the
lu_name field is set to all zeros, in which case all 8 bytes are
significant and must be set. If both the lu_alias and the
lu_name are set to all zeros, the verb is forwarded to the LU
associated with the control point (the default LU).

fqplu_name Fully qualified partner LU name. This name is 17-bytes long
and is right-padded with EBCDIC spaces. It is composed of
two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8
bytes with no embedded spaces.)

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

438 System Management Programming

 DELETE_LU_LU_PASSWORD

secondary_rc AP_INVALID_PLU_NAME

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 9. Security Verbs 439

 DELETE_USERID_PASSWORD

 DELETE_USERID_PASSWORD
DELETE_USERID_PASSWORD deletes a password associated with a user ID.

 VCB Structure
typedef struct delete_userid_password
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned short delete_type; /* type of delete */
unsigned char user_id[10]; /* user id */

 USERID_PASSWORD_CHARS password_chars;
/* password characteristics */

} DELETE_USERID_PASSWORD;

typedef struct userid_password_chars
{

unsigned char description[RD_LEN]; /* resource description */
unsigned short profile_count; /* number of profiles */

 unsigned short reserv1; /* reserved */
 unsigned char password[10]; /* password */
 unsigned char profiles[10][10]; /* profiles */
} USERID_PASSWORD_CHARS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_USERID_PASSWORD

format Identifies the format of the VCB. Set this field to zero to specify the
version of the VCB listed above.

delete_type
Specifies the type of delete:

AP_REMOVE_USER
Deletes the user password, and all associated profiles.

AP_REMOVE_PROFILES
Deletes the specified profiles.

user_id User identifier. This is a 10-byte type-AE EBCDIC character string,
padded to the right with EBCDIC spaces.

password_chars.description
This field is ignored when processing this verb.

password_chars.profile_count
Number of profiles.

password_chars.password
This field is ignored when processing this verb.

password_chars.profiles
Profiles associated with user. Each of these is a 10-byte type-AE
EBCDIC character string, padded to the right with EBCDIC spaces.

440 System Management Programming

 DELETE_USERID_PASSWORD

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_NO_PROFILES

AP_UNKNOWN_USER
AP_INVALID_UPDATE_TYPE

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 9. Security Verbs 441

 DELETE_USERID_PASSWORD

442 System Management Programming

Chapter 10. APING and CPI-C Verbs

This chapter describes verbs used to “ping” another node and verbs used to define,
delete, and query CPI-C side information.

 Copyright IBM Corp. 1989, 1997 443

 APING

 APING
APING allows a management application to “ping” a remote LU in the network. A
verification data string (of specified length) can be appended to the end of the VCB
and returned when the partner_ver_len field is set to a value greater than zero.

Communications Server APING is implemented as an internal “service transaction
program,” which uses the Communications Server APPC API (described in the
Communications Server Client/Server Communications Programming).

 VCB Structure
typedef struct aping
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu_alias[8]; /* local LU alias */
unsigned long sense_data; /* sense data */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode_name[8]; /* mode name */
unsigned char tp_name[64]; /* destination TP name */
unsigned char security; /* security level */

 unsigned char reserv3a[3]; /* reserved */
 unsigned char pwd[10]; /* password */

unsigned char user_id[10]; /* user ID */
unsigned short dlen; /* length of data to send */
unsigned short consec; /* number of consecutive sends */
unsigned char fqplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char echo; /* data echo flag */
unsigned short iterations; /* number of iterations */
unsigned long alloc_time; /* time taken for ALLOCATE */
unsigned long min_time; /* min send/receive time */
unsigned long avg_time; /* average send/receive time */
unsigned long max_time; /* max send/receive time */
unsigned short partner_ver_len; /* size of string to receive */

} APING;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_APING

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

lu_name LU name of the local LU from which the APING verb is sent.
This name is an 8-byte type-A EBCDIC character string. If
this field is set to all zeros, the lu_alias field will be used for
determining the local LU.

lu_alias Alias for the local LU from which the APING verb is sent.
This is an 8-byte string in a locally displayable character set.
This field is only significant if the lu_name field is set to all

444 System Management Programming

 APING

zeros, in which case all 8 bytes are significant and must be
set. If both the lu_name and the lu_alias are set to binary
zeros then the default (control point) LU is used.

plu_alias Alias by which the partner LU is known to the local
transaction program. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set. This name must match the name of a partner
LU established during configuration. If this parameter is set
to binary zeros, the fqplu_name parameter is used instead.

mode_name Name of the mode to be used. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

tp_name Name of the invoked transaction program. This is a 64-byte
string. The Node Operator Facility does not check the
character set of this string. The value of tp_name must
match that configured on the remote LU. The string is
usually set to “APINGD” in EBCDIC padded to the right with
EBCDIC spaces.

security Specifies the information the partner LU requires in order to
validate access to the invoked transaction program:

AP_NONE
AP_PGM
AP_SAME
AP_PGM_STRONG

pwd Password associated with user_id . This is a 10-byte
type-AE EBCDIC character string, padded to the right with
EBCDIC spaces. Only needed if security is set to AP_PGM
or AP_PGM_STRONG.

user_id User ID required to access the partner transaction program.
This is a 10-byte type-AE EBCDIC character string, padded
to the right with EBCDIC spaces. Needed if security is set
to AP_PGM, AP_PGM_STRONG or AP_SAME.

dlen Length of data to be sent by APING transaction program.
APING sends a string of zeros, of length dlen .

consec Number of consecutive sends performed during each
iteration. APING issues this number of MC_SEND_DATA
verbs, each consisting of dlen bytes of data. If the echo
parameter is set to AP_YES, APING marks the last
MC_SEND_DATA as AP_SEND_DATA_P_TO_R_FLUSH
(Prepare to Receive Flush) and awaits a response containing
data from the partner APINGD transaction program (by
issuing a MC_RECEIVE_AND_WAIT). If the echo parameter
is set to AP_NO, APING flushes the data and awaits a
confirm (by marking the last MC_SEND_DATA as
AP_SEND_DATA_CONFIRM). In either case, the sequence
described here corresponds to an SNA chain.

fqplu_name 17-byte fully qualified network name for the partner LU. This
name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with

 Chapter 10. APING and CPI-C Verbs 445

 APING

EBCDIC spaces. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) This field is only
significant if the plu_alias field is set to all zeros.

echo Specifies whether the APING transaction program expects a
response when it has completed sending the required
amount of data:

AP_YES
AP_NO

iterations Number of iterations of consecutive sequences (defined by
the consec parameter) issued by APING. In SNA terms, this
parameter defines the number of chains that will be sent.

partner_ver_len Maximum length of the partner transaction program
verification data string that can be received by the
management application.

 Returned Parameters
If the verb executes successfully, APING returns the following parameters:

primary_rc AP_OK

sense_data This will be zero if the verb has returned successfully.

alloc_time Time required (in milliseconds) for the MC_ALLOCATE to the
remote transaction program to complete.

min_time Minimum time (in milliseconds) required for a data-sending
iteration. This parameter includes the time required for the
partner to respond (either by sending data or issuing a
confirm, depending on the setting of the echo parameter).

avg_time Average time (in milliseconds) required for a data-sending
iteration. This parameter includes the time required for the
partner to respond (either by sending data or issuing a
confirm, depending on the setting of the echo parameter).

max_time Maximum time (in milliseconds) required for a data-sending
iteration. This parameter includes the time required for the
partner to respond (either by sending data or issuing a
confirm, depending on the setting of the echo parameter).

partner_ver_len Length of verification string returned by the partner
transaction program. The string itself is appended to the end
of the VCB.

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_LU_NAME

AP_INVALID_LU_ALIAS

APING uses the MC_ALLOCATE, MC_SEND_DATA, MC_RECEIVE_AND_WAIT,
MC_CONFIRM, and MC_DEALLOCATE verbs provided by the Communications
Server APPC API. The parameters returned by these verbs in the case of

446 System Management Programming

 APING

unsuccessful execution are documented in the Communications Server
Client/Server Communications Programming.

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 10. APING and CPI-C Verbs 447

 CPI-C Verbs

448 System Management Programming

 DEFINE_CPIC_SIDE_INFO

 DEFINE_CPIC_SIDE_INFO
This verb adds or replaces a side information entry in memory. A CPI-C side
information entry associates a set of conversation characteristics with a symbolic
destination name. If there is already a side information entry in memory with the
same symbolic destination name as the one supplied with this verb, it is overwritten
with the data supplied to this call. See CPI-C Reference for more information about
the CPI-C support provided by Communications Server.

 VCB Structure
typedef struct define_cpic_side_info
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

 unsigned char reserv2a[8]; /* reserved */
 unsigned char sym_dest_name[8]; /* Symbolic destination name */

CPIC_SIDE_INFO_DEF_DATA def_data; /* defined data */
} DEFINE_CPIC_SIDE_INFO;

typedef struct cpic_side_info_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
CPIC_SIDE_INFO side_info; /* CPIC side info */
unsigned char user_data[32]; /* User defined data */

} CPIC_SIDE_INFO_DEF_DATA;

typedef struct cpic_side_info
{
 unsigned char partner_lu_name[17];

/* Fully qualified partner */
/* LU name */

 unsigned char reserved[3]; /* Reserved */
unsigned long tp_name_type; /* TP name type */
unsigned char tp_name[64]; /* TP name */
unsigned char mode_name[8]; /* Mode name */

 unsigned long conversation_security_type;
/* Conversation security type */

 unsigned char security_user_id[CPIC_SECURITY_INFO_LEN];
/* User ID */

 unsigned char security_password[CPIC_SECURITY_INFO_LEN];
 /* Password */
} CPIC_SIDE_INFO;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DEFINE_CPIC_SIDE_INFO

format Identifies the format of the VCB. Set this field to zero to specify the
version of the VCB listed above.

 Chapter 10. APING and CPI-C Verbs 449

 DEFINE_CPIC_SIDE_INFO

sym_dest_name
Symbolic destination name that identifies the side information entry.
This is up to 8 bytes long, padded with spaces, in the locally displayable
character set. The allowed characters are the uppercase letters (A to Z)
and the digits 0–9.

def_data.description
Resource description (returned on QUERY_CPIC_SIDE_INFO). This is
a 16-byte string in a locally displayable character set. All 16 bytes are
significant.

def_data.side_info.partner_lu_name
Fully qualified name of the partner LU. This name is 17 bytes long and
is right-padded with spaces, in the locally displayable character set. It is
composed of two character strings concatenated by a dot. (Each name
can have a maximum length of 8 bytes with no embedded spaces.)

def_data.side_info.tp_name_type
Transaction program name type. This field is set to one of the following
values:

XC_APPLICATION_TP
Specifies that the transaction program name supplied is not a service
transaction program. All characters specified in the transaction program
name must be valid characters in the locally displayable character set.

XC_SNA_SERVICE_TP
Specifies that the transaction program name supplied is that of a service
transaction program. All characters, except the first, specified in the
transaction program must be valid characters in the locally displayable
character set. The first character must be a hexadecimal digit in the
range X'01' to X'3F', excluding X'0E' and X'0F'.

def_data.side_info.tp_name
Transaction program name, a 64-byte character string in the locally
displayable character set, right-padded with spaces.

def_data.side_info.mode_name
Mode name, an 8-byte character string in the locally displayable
character set, padded to the right with spaces.

def_data.side_info.conversation_security_type
Conversation security type. This field is set to one of the following
values:

XC_SECURITY_NONE
XC_SECURITY_SAME
XC_SECURITY_PROGRAM
XC_SECURITY_PROGRAM_STRONG.

def_data.side_info.security_user_id
User ID. Communications Server will use this field for enforcing
conversation-level security.

def_data.side_info.security_password
Password. Communications Server will use this field for enforcing
conversation-level security.

450 System Management Programming

 DEFINE_CPIC_SIDE_INFO

def_data.user_data
User data. This data is returned on QUERY_CPIC_SIDE_INFO but not
used or interpreted by Communications Server.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_SYM_DEST_NAME

AP_INVALID_LENGTH

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 10. APING and CPI-C Verbs 451

 DELETE_CPIC_SIDE_INFO

 DELETE_CPIC_SIDE_INFO
This verb deletes a CPI-C side information entry. See the CPI-C Reference for
more information about the CPI-C support provided by Communications Server.

 VCB Structure
typedef struct delete_cpic_side_info
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

 unsigned char reserv2a[8]; /* reserved */
 unsigned char sym_dest_name[8]; /* Symbolic destination name */
} DELETE_CPIC_SIDE_INFO;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DELETE_CPIC_SIDE_INFO

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

sym_dest_name Symbolic destination name that identifies the side information
entry. This is up to 8 bytes long, padded with spaces, in the
locally displayable character set. The allowed characters are
the uppercase letters (A to Z) and the digits 0–9.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_SYM_DEST_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

452 System Management Programming

 QUERY_CPIC_SIDE_INFO

 QUERY_CPIC_SIDE_INFO
This verb returns the side information entry for a given symbolic destination name.
The information is returned as a list. To obtain a specific side information entry, or
a specific chunk of entries, the sym_dest_name field should be set. Otherwise
this field should be set to all zeros.

 VCB Structure
typedef struct query_cpic_side_info
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char list_options; /* listing options */

 unsigned char reserv3; /* reserved */
unsigned char sym_dest_name[8]; /* Symbolic destination name */

} QUERY_CPIC_SIDE_INFO;

typedef struct cpic_side_info_data
{

unsigned short overlay_size; /* size of this entry */
unsigned char sym_dest_name[8]; /* Symbolic destination name */

 unsigned char reserv1[2]; /* reserved */
 CPIC_SIDE_INFO_DEF_DATA def_data;
} CPIC_SIDE_INFO_DATA;

typedef struct cpic_side_info
{
 unsigned char partner_lu_name[17];

/* Fully qualified partner */
/* LU name */

 unsigned char reserved[3]; /* Reserved */
unsigned long tp_name_type; /* TP name type */
unsigned char tp_name[64]; /* TP name */
unsigned char mode_name[8]; /* Mode name */

 unsigned long conversation_security_type;
/* Conversation security type */

 unsigned char security_user_id[CPIC_SECURITY_INFO_LEN];
/* User ID */

 unsigned char security_password[CPIC_SECURITY_INFO_LEN];
 /* Password */
} CPIC_SIDE_INFO;

typedef struct cpic_side_info_def_data
{
 unsigned char description[RD_LEN];

/* resource description */
CPIC_SIDE_INFO side_info; /* CPIC side info */
unsigned char user_data[32]; /* User defined data */

} CPIC_SIDE_INFO_DEF_DATA;

 Chapter 10. APING and CPI-C Verbs 453

 QUERY_CPIC_SIDE_INFO

 Supplied Parameters
The application supplies the following parameters:

opcode AP_QUERY_CPIC_SIDE_INFO

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

buf_ptr Pointer to a buffer into which list information can be written.

buf_size Size of buffer supplied. The data returned will not exceed
this size.

num_entries Maximum number of entries to return. The number of entries
will not exceed this value. A value of zero means no limit.

list_options This indicates what should be returned in the list information.
The sym_dest_name specified (see below) represents an
index value that is used to specify the starting point of the
actual information to be returned:

AP_FIRST_IN_LIST
The index value is ignored and the returned list starts from
the first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the
one specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index
value.

sym_dest_name Symbolic destination name that identifies the side information
entry. This is up to 8 bytes long, padded with spaces, in the
locally displayable character set. The allowed characters are
the uppercase letters (A to Z) and the digits 0-9.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc
AP_OK

buf_size Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been
required to return all the list information requested. This may be higher
than buf_size .

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This may be
higher than num_entries .

454 System Management Programming

 QUERY_CPIC_SIDE_INFO

cpic_side_info_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cpic_side_info_data.sym_dest_name
Symbolic destination name for the returned side information entry.

cpic_side_info_data.def_data
Defined CPI-C side information as supplied on
DEFINE_CPIC_SIDE_INFO verb.

Note: CPIC calls may change the side information returned on this
verb after the DEFINE_CPIC_SIDE_INFO has been processed
by Communications Server

.

If the verb does not execute because of a state error, Communications Server
returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_INVALID_SYM_DEST_NAME

If the verb does not execute because the node has not yet been started,
Communications Server returns the following parameter:

primary_rc AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 10. APING and CPI-C Verbs 455

 QUERY_CPIC_SIDE_INFO

456 System Management Programming

Chapter 11. Attach Manager Verbs

The Communications Server Attach Manager is used to manage the launching of
APPC or CPI-C programs. A description of the Attach Manager function is
provided in Communications Server Client/Server Communications Programming.

Communications Server Node Operator Facility supports three verbs to control the
Attach Manager. These verbs are available to any application program that uses
Communications Server Node Operator Facility.

 Copyright IBM Corp. 1989, 1997 457

 DISABLE_ATTACH_MANAGER

 DISABLE_ATTACH_MANAGER
The Communications Server Attach Manager is enabled by default when the node
is started. The user can issue this verb to disable all dynamic loading, This verb
resets a global flag that the Attach Manager checks before launching a transaction
program.

 VCB Structure
typedef struct disable_am
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */

} DISABLE_AM;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_DISABLE_ATTACH_MGR

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, the Attach Manager returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because the node has not yet been started, the Attach
Manager returns the following parameter:

primary_rc AP_NODE_NOT STARTED

If the verb does not execute because of a system error, the Attach Manager returns
the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

458 System Management Programming

 ENABLE_ATTACH_MANAGER

 ENABLE_ATTACH_MANAGER
If the Attach Manager has been disabled, it can be re-enabled by issuing the
Communications Server Node Operator Facility verb, ENABLE_AM. This sets a
global flag that the Attach Manager checks before launching a Transaction
Program.

 VCB Structure
typedef struct enable_am
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */

} ENABLE_AM

 Supplied Parameters
The application supplies the following parameters:

opcode AP_ENABLE_ATTACH_MGR

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, the Attach Manager returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because the node has not yet been started, the Attach
Manager returns the following parameter:

primary_rc AP_NODE_NOT STARTED

If the verb does not execute because of a system error, the Attach Manager returns
the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 11. Attach Manager Verbs 459

 QUERY_ATTACH_MANAGER
The QUERY_ATTACH_MANAGER verb can be used to discover the status of the
Attach Manager component, which can be started and stopped using the
ENABLE_ATTACH_MANAGER and DISABLE_ATTACH_MANAGER commands.

 VCB Structure
typedef struct query_am
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned short active; /* status of the Attach Manager */

} QUERY_AM;

 Supplied Parameters
opcode AP_QUERY_ATTACH_MGR

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

 Returned Parameters
If the verb executes successfully, the following parameters are returned:

primary_rc AP_OK

active This field reports the status of the Attach Manager
component:

AP_YES
The Attach Manager is active.

AP_NO
The Attach Manager is not active.

If the verb does not execute because of a parameter error, the following parameter
is returned:

primary_rc AP_PARAMETER_CHECK

If the verb does not execute because the node has not yet been started, the Attach
Manager returns the following parameter:

primary_rc AP_NODE_NOT STARTED

If the verb does not execute because of a system error, the Attach Manager returns
the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

460 System Management Programming

Part 2. Communications Server Management Services API

Chapter 12. Introduction to Management Services API 463
Management Services Verbs . 463
Entry Points . 463
Verb Control Blocks (VCB) . 463
Writing Management Services (MS) Programs 464
SNA API Client Support . 465

Chapter 13. Management Services Entry Points 467
WinMS() . 468
WinMSCleanup() . 469
WinMSStartup() . 470
WinMSRegisterApplication() . 471
WinMSUnregisterApplication() . 474
WinMSGetIndication() . 476

Chapter 14. Management Services Verbs 477
TRANSFER_MS_DATA . 478
MDS_MU_RECEIVED . 481
SEND_MDS_MU . 483
ALERT_INDICATION . 486
FP_NOTIFICATION . 487
NMVT_RECEIVED . 488

 Copyright IBM Corp. 1989, 1997 461

462 System Management Programming

Chapter 12. Introduction to Management Services API

This part describes the management services API provided by Communications
Server.

Management Services Verbs
Communications Server supports the following management services (MS) verbs,
providing an application program with a method for reporting potential problems to
management services focal points available in an SNA network.

 ¹ ALERT_INDICATION
 ¹ FP_INDICATION
 ¹ MDS_MU_RECEIVED
 ¹ NMVT_RECEIVED
 ¹ SEND_MDS_MU
 ¹ TRANSFER_MS_DATA

 Entry Points
Communications Server provides a library file that handles management services
verbs.

Management services verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block Then your
program calls the entry point and passes a pointer to the verb control block. When
its operation is complete, management services (MS) API returns, having used and
then modified the fields in the verb control block. Your program can then read the
returned parameters from the verb control block. Following is a list of entry points
for management services verbs:

 ¹ WinMS()
 ¹ WinAsyncMS()
 ¹ WinAsyncMSEx()
 ¹ WinMSCancelAsyncRequest()
 ¹ WinMSCleanup()
 ¹ WinMSStartup()

See Chapter 13, “Management Services Entry Points” for detailed descriptions of
the entry points.

Verb Control Blocks (VCB)
Programming Note: The base operating system optimizes performance by
executing some subsystems in the calling application's address space. This means
that incorrect use of local descriptor table (LDT) selectors by application programs
that have not been fully or correctly debugged can cause improper operation, or
perhaps system failures. Accordingly, application programs should not perform
pointer arithmetic operations that involve changing the LDT selector field of a
pointer.

 Copyright IBM Corp. 1989, 1997 463

The segment used for the verb control block (VCB) must be a read/write data
segment. Your program can either declare the VCB as a variable in your program,
allocate it or suballocate it from a larger segment. It must be sufficiently large to
contain all the fields for the verb your program is issuing.

An application program should not change any part of the verb control block after it
has been issued until the verb completes. When management services finishes the
execution of a verb, it copies a complete, modified VCB back onto the original
block. Therefore, if your program declares a verb control block as a variable,
consider declaring it in static storage rather than on the stack of an internal
procedure.

Fill all reserved and unused fields in each VCB with zeros (X'00'). In fact, it might
be more time-efficient to set the entire verb control block to zeros before your
program assigns the values to the parameters. Setting reserved fields to zeros is
particularly important.

Note: If the VCB is not read/write, or if it is not at least 10 bytes (that is, large
enough to hold the management services primary and secondary return
codes), management services cannot access it, and the base operating
system abnormally ends the process. This termination is recognized as a
general protection fault, processor exception trap D.

Management services returns the INVALID_VERB_SEGMENT primary return code
when the VCB is too short or the incorrect type of segment is used.

Writing Management Services (MS) Programs
Communications Server provides a dynamic link library (DLL) file, that handles
Management Services verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

Management Services verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block (VCB). Then
it calls the WINMS DLL and passes a pointer to the verb control block. When its
operation is complete, Management Services returns, having used and then
modified the fields in the VCB. Your program can then read the returned
parameters from the verb control block.

Table 3 shows source module usage of supplied header files and libraries needed
to compile and link Management Services programs. Some of the header files may
include other required header files.

Table 3. Header Files and Libraries for Management Services

Operating System Header File Library DLL Name

WINNT & WIN95 WINMS.H WINMS32.LIB WINMS32.DLL

WIN3.1 WINCSV.H WINCSV.LIB WINCSV.DLL

OS/2 ACSSVCC.H ACSSVC.LIB ACSSVC.DLL

464 System Management Programming

SNA API Client Support
SNA API client only supports a subset of the full management services verbs.
Specifically WINMS is the only API supported on the Windows clients (95, NT, 3.1).
The following is a list of the management services verbs supported:

 ¹ TRANSFER_MS_DATA
 ¹ SEND_MDS_MU

 Chapter 12. Introduction to Management Services API 465

466 System Management Programming

Chapter 13. Management Services Entry Points

This chapter describes the entry points for management services verbs.

 Copyright IBM Corp. 1989, 1997 467

 WinMS()

 WinMS()
This provides a synchronous entry point for issuing the following management
services API verbs:

 ¹ SEND_MDS_MU
 ¹ TRANSFER_MS_DATA

 Syntax
void WINAPI WinMS(long vcb, unsigned short vcb_size);

Parameter Description

vcb Pointer to verb control block

vcb_size Number of bytes in the verb control block

 Returns
No return value. The primary_rc and secondary_rc fields in the verb control
block indicate any error.

 Remarks
This is the main synchronous entry point for the management services API. This
call blocks until the verb completes.

468 System Management Programming

 WinMSCleanup()

 WinMSCleanup()
This function terminates and deregisters an application from the management
services API.

 Syntax
BOOL WINAPI WinMSCleanup(void);

 Returns
The return value specifies whether the deregistration was successful. If the value
is not zero, the application was successfully deregistered. The application was not
deregistered if a value of zero is returned.

 Remarks
Use WinMSCleanup() to indicate deregistration of a management services
application from the management services API.

WinMSCleanup unblocks any thread waiting in WinMSGetIndication . These
return with WMSNOTREG (the application is not registered to receive indication).
WinMSCleanup unregisters the application for all indications. WinMSCleanup
returns any outstanding verb (synchronous or asynchronous) with the error
AP_CANCELLED. However, the verb completes inside the node.

It is not a requirement to use WinMSStartup and WinMSCleanup . However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinMSStartup() .

 Chapter 13. Management Services Entry Points 469

 WinMSStartup()

 WinMSStartup()
This function allows an application to specify the version of management services
API required and to retrieve the version of the API supported by the product. This
function can be called by an application before issuing any further management
services API calls to register itself.

 Syntax
int WINAPI WinMSStartup(WORD wVersionRequired,
 LPWMSDATA msdata);

Parameter Description

wVersionRequired Specifies the version of management services API support
required. The high-order byte specifies the minor version
(revision) number; the low-order byte specifies the major
version number.

msdata Returns the version of management services API and a
description of management services implementation.

 Returns
The return value specifies whether the application was registered successfully and
whether the management services API implementation can support the specified
version number. If the value is zero, it was registered successfully and the
specified version can be supported. Otherwise, the return value is one of the
following values:

WMSSYSERROR
The underlying network subsystem is not ready for network communication.

WMSVERNOTSUPPORTED
The version of management services API support requested is not provided by
this particular management services API implementation.

WMSBADPOINTER
Incorrect msdata parameter.

 Remarks
WinMSStartup is intended to help with compatibility with future versions of the API.
The current version supported is 1.0.

It is not a requirement to use WinMSStartup and WinMSCleanup . However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also WinMSCleanup() .

470 System Management Programming

 WinMSRegisterApplication()

 WinMSRegisterApplication()
This function registers the application as an NMVT-level application, an MDS-level
application, or an alert handler. Such registrations determine which unsolicited
indications the application receives.

¹ An NMVT-level application receives NMVT_RECEIVED indications.

¹ An MDS-level application receives MDS_MU_RECEIVED indications and also
FP_NOTIFICATION indications when focal-point status changes.

¹ An alert handler receives ALERT_INDICATION indications.

Note: It is also possible to register to receive NMVTs with conversion to MDS
MUs.

Applications that do not process these indications should not call
WinMSRegisterApplication .

 Syntax
BOOL WINAPI WinMSRegisterApplication(unsigned short reg_type,

 unsigned char *ms_appl_name,
unsigned short vector_key,

 unsigned char mds_conv_reqd,
 unsigned char *ms_category,

unsigned short max_rcv_size,
 unsigned char alert_dest,

unsigned short *primary_rc,
 unsigned long *secondary_rc);

Parameter Description

reg_type Registration type

WMSNMVTAPP NMVT-level application
(or MDS-level application
registering to receive NMVTs)

WMSMDSAPP MDS-level application
WMSALERTHANDLER Alert handler

ms_appl_name Management services application name. Valid names can be
either an 8-byte alphanumeric type-1134 EBCDIC string,
padded with trailing space (X'40') characters if necessary, or
one of the management services discipline-specific application
programs specified in Appendix D of SNA Management
Services Reference, padded with trailing space (X'40')
characters.

This name is used when reg_type is WMSNMVTAPP or WMSMDSAPP.
The name is not applicable when reg_type is
WMSALERTHANDLER.

vector_key Management services major vector keys accepted by the
application Permitted values are:

X'YYYY' specific major vector key
AP_SPCF_KEYS major vector keys X'8061'
 through X'8064'
AP_ALL_KEYS all major vector keys

 Chapter 13. Management Services Entry Points 471

 WinMSRegisterApplication()

This key is used when reg_type is WMSNMVTAPP. The key is not
applicable when reg_type is WMSMDSAPP or WMSALERTHANDLER.

mds_conv_reqd Specifies whether the registering application is MDS-level and
requires NMVTs sent to it to be converted to MDS MUs

(AP_YES or AP_NO)

This parameter is used when reg_type is WMSNMVTAPP. The
parameter is not applicable when reg_type is WMSMDSAPP or
WMSALERTHANDLER.

ms_category Specifies a management services category when the
application desires information pertaining to the focal point for
that category. The management services category can be
either one of the category codes specified in the management
services discipline-specific application programs table of
Appendix D of SNA Management Services Reference padded
with trailing space (X'40') characters or a user-defined
category. User-defined category names should be an 8-byte
alphanumeric type-1134 EBCDIC string, padded with trailing
space (X'40') characters if necessary.

This parameter is used when reg_type is WMSMDSAPP. The
parameter is not applicable when reg_type is WMSNMVTAPP or
WMSALERTHANDLER.

max_rcv_size Maximum number of bytes the application is capable of
receiving in one chunk. MDS MUs bigger that this size will be
segmented, and each segment delivered in a separate
MDS_MU_RECEIVED indication.

This parameter is used when reg_type is WMSMDSAPP. The
parameter is not applicable when reg_type is WMSNMVTAPP or
WMSALERTHANDLER.

alert_dest Specifies whether the application wishes to be the only
destination of all alerts. If this is set to AP_YES then all alerts
will be routed to the application, and will not be routed
anywhere else. If set to AP_NO, alerts will be routed to the
application and over the SNA network in the usual way.

This parameter is used when reg_type is WMSALERTHANDLER.
The parameter is not applicable when reg_type is WMSNMVTAPP
or WMSMDSAPP.

primary_rc Returned: primary return code

secondary_rc Returned: secondary return code

 Returns
The function returns a value indicating whether the registration was successful. If
the value is not zero, the registration was successful. If the value is zero, the
registration was not successful.

472 System Management Programming

 WinMSRegisterApplication()

 Remarks
Applications can make multiple calls to register more than one class of indications.

Applications that call WinMSRegisterApplication must call WinMSGetIndication
to receive indications that are queued for them.

Note: See also WinMSUnregisterApplication and WinMSGetIndication .

 Chapter 13. Management Services Entry Points 473

 WinMSUnregisterApplication()

 WinMSUnregisterApplication()
This function deregisters the application, reversing the effect of an earlier
WinMSRegisterApplication call, and stopping further indications from being
queued for the application.

 Syntax
BOOL WINAPI WinMSUnregisterApplication(unsigned short reg_type,
 unsigned char *ms_appl_name,

unsigned short *primary_rc,
 unsigned long *secondary_rc);

Parameter Description

reg_type Registration type. It can have one of the following values:

WMSNMVTAPP NMVT-level application

WMSMDSAPP MDS-level application

WMSALERTHANDLER Alert handler

ms_appl_name MS application name. Valid names can be either an 8-byte
alphanumeric type-1134 EBCDIC string, padded with trailing
space (X'40') characters if necessary, or one of the
management services discipline-specific application programs
specified in Appendix D of SNA Management Services
Reference, padded with trailing space (X'40') characters.

This parameter is used when reg_type is WMSNMVTAPP or
WMSMDSAPP. The parameter is not applicable when reg_type is
WMSALERTHANDLER.

primary_rc Returned: primary return code

secondary_rc Returned: secondary return code

 Returns
The function returns a value indicating whether the unregistration was successful.
If the value is not zero, the unregistration was successful. If the value is zero, the
unregistration was not successful.

 Remarks
Each call to WinMSUnregisterApplication terminates a registration made by an
earlier call to WinMSRegisterApplication . An application that has made multiple
calls to WinMSRegisterApplication needs to make multiple calls to
WinMSUnregisterApplication in order to terminate all its registrations.

WinMSUnregisterApplication and WinMSCleanup differ as follows:

¹ WinMSUnregisterApplication terminates an earlier registration to receive
indications, but does not prevent the application from making other
management services API calls (for example, WinMS).

¹ WinMSCleanup terminates use of the management services API.

Indications might already be queued for an application when the application calls
WinMSUnregisterApplication . Any such indications remain queued, and the

474 System Management Programming

 WinMSUnregisterApplication()

application should call WinMSGetIndication to receive and process them. Once
they have been unregistered, no new indications will be queued for the application.

Note: See also WinMSRegisterApplication and WinMSGetIndication .

 Chapter 13. Management Services Entry Points 475

 WinMSGetIndication()

 WinMSGetIndication()
This allows the application to received unsolicited indications.

 Syntax
int WINAPI WinMSGetIndication(long buffer,

unsigned short *buffer_size,
 unsigned long timeout);

Parameter Description

buffer Pointer to a buffer into which to receive the indication.

buffer_size Size of buffer. Returned: the size of the indication.

timeout Time to wait for indication in milliseconds.

 Returns
The function returns a value indicating whether an indication was received.

0 Indication returned.

WMSTIMEOUT
Timeout waiting for indication.

WMSSYSNOTREADY
The underlying network subsystem is not ready for network communication.

WMSNOTREG
The application is not registered to receive indications.

WMSBADSIZE
The buffer is too small to receive the indication. Reissue the
WinMSGetIndication call with a large enough buffer. The size of the indication
is returned in the buffer_size parameter.

WMSBADPOINTER
Either the buffer or buffer_size parameter is not valid.

WMSSYSERROR
An unexpected system error has occurred.

 Remarks
This is a blocking call, it returns in one of the following circumstances:

¹ An indication is returned
¹ The timeout expires
¹ The application issues a WinMSCleanup call
¹ The product is stopped
¹ A system error occurs

Note: See also WinMSRegisterApplication and WinMSUnregisterApplication .

476 System Management Programming

Chapter 14. Management Services Verbs

The management services API verbs provided by Communications Server enable
an application to send alerts and MDS MU, and to receive indications when the
node receives MDS or NMVT data or issues an alert.

 Copyright IBM Corp. 1989, 1997 477

 TRANSFER_MS_DATA
This verb is used by NMVT-level applications to send unsolicited alerts and to
respond to previously-received NMVT requests.

TRANSFER_MS_DATA is also used by MDS-level applications to send unsolicited
alerts. This verb can be used by the application using the WinMS call.

 VCB Structure
typedef struct ms_transfer_ms_data
{

unsigned short opcode; /* Verb operation code */
unsigned char data_type; /* Data type supplied by app */

 unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char options; /* Verb options */

 unsigned char reserv3; /* reserved */
unsigned char originator_id[8]; /* Originator ID */
unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv4[4]; /* reserved */
unsigned short dlen; /* Length of data */

 unsigned char *dptr; /* Data */
} MS_TRANSFER_MS_DATA;

 Supplied Parameters
The application supplies the following parameters:

opcode SV_TRANSFER_MS_DATA

data_type Specifies the type of data enclosed. management services
processes the data as described below. Allowed values:

SV_NMVT
The data contains a complete NMVT request unit.
Management services converts the data to MDS_MU or
CP_MSU format if the data contains an alert, and the alert is
to be sent to an MDS-level or migration-level focal point.
This is the type required when an application is responding to
an NMVT_RECEIVED signal.

SV_ALERT_SUBVECTORS
The data contains management services subvectors in the
SNA-defined format for an Alert major vector. Management
services adds an NMVT header and an alert major vector
header. Subsequently, management services converts the
data to MDS_MU or CP_MSU format if the alert is to be sent
to an MDS-level or migration-level focal point.

SV_USER_DEFINED
The data contains a complete NMVT request unit.
Management services always logs the data, but does not
send it.

SV_PDSTATS_SUBVECTORS
The data contains problem determination statistics.
Management services always logs the data, and if an alert

478 System Management Programming

handler has been registered, then management services
sends it the data within an ALERT_INDICATION.

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

options Specifies optional processing on the data supplied on this
verb. Note that management services processes the data
primarily according to the type specified if there is any
conflict between the data_type and the option specified.
This parameter is a one-byte value, with individual bit
settings indicating the options selected. If all options are
specified, set this byte to zero.

Bit 0 is the most significant, and bit 7 is the least
significant bit.

(Bits 1–3 are ignored if data_type is set to
SV_USER_DEFINED.)

Bit 0: Adds Date/Time (X'01') subvector to the data if
set to zero.

Bit 1: Adds Product Set ID (X'10') subvector to the data
if set to zero. If the application supplies data that already
contains a Product Set ID subvector, management
services adds Communications Server' Product Set ID
subvector immediately before the existing one.

Bit 2: Sends the data on an SNA session if set to zero.
Management services sends the data on the default
SSCP-PU session if the data does not contain an alert.
If the data contains an alert, management services sends
the data on either an SSCP-PU session, a CP-CP
session or an LU-LU session, depending on which type
of session Communications Server uses to transmit alerts
to the alert focal point.

Bit 3: Logs the data via the Communications Server
problem determination facility if set to zero.

Note: The following constants are provided in the
management services header file and they refer
to the individual bits specified above.

 ¹ SV_TIME_STAMP_SUBVECTOR
 ¹ SV_PRODUCT_SET_ID_SUBVECTOR
 ¹ SV_SEND_ON_SESSION
 ¹ SV_LOCAL_LOGGING

Bits 4–7: reserved.

originator_id Name of the component that issued the verb. This is an
8-byte string in a locally displayable character set. This field
is only used by management services when logging the
TRANSFER_MS_DATA.

pu_name Name of the physical unit to send the data to. This should
be set to either an 8-byte alphanumeric type-A EBCDIC
string, padded to the right with EBCDIC spaces, or set to all
binary zeros if no pu_name is specified. Applications using

 Chapter 14. Management Services Verbs 479

TRANSFER_MS_DATA to respond to NMVT_RECEIVED
signals should specify the pu_name received in the
NMVT_RECEIVED signal. The data contained in
TRANSFER_MS_DATA signals of type SV_NMVT that do
not specify a pu_name will be sent over the default PU
session if available. TRANSFER_MS_DATA signals
containing alerts should not specify a pu_name unless the
application expressly wishes the alert data to be sent to a
specific PU. This will bypass the normal management
services alert routing algorithm.

dlen Length of data.

dptr Pointer to data. If this is set to NULL, then management
services assumes that the data is contiguous with (and
begins immediately following) the VCB.

 Returned Parameters
If the verb executes successfully, management services returns the following
parameter:

primary_rc AP_OK

If the verb fails to execute because of a parameter error, management services
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc SV_INVALID_DATA_TYPE

SV_DATA_EXCEEDS_RU_SIZE
AP_INVALID_PU_NAME

If the verb fails to execute because of a state error, management services returns
the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc SV_SSCP_PU_SESSION_NOT_ACTIVE

If the verb does not execute because of a system error, Communications Server
APPN returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

480 System Management Programming

 MDS_MU_RECEIVED
This verb indication is sent by management services to a registered MDS-level
application when:

¹ An MDS_MU has been received from a peer MDS-level application

¹ An NMVT has been received, and

– an appropriate NMVT-level application has not registered

– The MDS-level application registered with a name that corresponds to the
name carried within the management services major vector key in the
incoming NMVT (management services performs the conversion from
NMVT to MDS_MU).

 VCB Structure
typedef struct ms_mds_mu_received
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char first_message; /* First message for curr MDS_MU */
unsigned char last_message; /* Last message for curr MDS_MU */
unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv3[8]; /* reserved */
unsigned short mds_mu_length; /* Length of incoming MDS_MU */
unsigned char *mds_mu; /* MDS_MU data */

} MS_MDS_MU_RECEIVED;

 Supplied Parameters
opcode AP_MDS_MU_RECEIVED

format Identifies the format of the VCB. This field is set to zero to
specify the version of the VCB listed above.

first_message Flag indicating whether this is the first message for the
MDS_MU (AP_YES or AP_NO). If the max_rcv_size
specified in the WinMSRegisterApplication call is smaller
than the length of the MDS_MU being delivered, the
MDS_MU will be sent to the application in chunks.

last_message Flag indicating whether this is the last message for the
MDS_MU (AP_YES or AP_NO).

pu_name Name of the physical unit from which the NMVT (which has
been converted to an MDS_MU) originated. It is the
responsibility of the application to respond to the incoming
NMVT. The application uses SEND_MDS_MU to send the
response. When sending responses the application must set
the pu_name field of the SEND_MDS_MU to the pu_name
supplied in the MDS_MU_RECEIVED signal. If the
MDS_MU was received from the MDS level transport
mechanism, the pu_name will be set to all binary zeros.

mds_mu_length Length of MDS_MU portion included with the signal.

 Chapter 14. Management Services Verbs 481

mds_mu MDS_MU data. The data pointer is set to NULL, and the
data is contiguous with (and begins immediately following)
the VCB.

482 System Management Programming

 SEND_MDS_MU
This verb is used by a MDS-level application to send network management data
other than alerts using the WinMS entry point. If an error occurs during the
sending of the MDS_MU to the destination application, the error is reported back to
the origin application in one of two ways. If the error is detected at the local node,
the application will be notified via the return codes of the SEND_MDS_MU
response. If the error is detected at a remote node, the error is reported by means
of an error MDS_MU transported in an MDS_MU_RECEIVED VCB. Management
services can convert the outgoing MDS_MU to an NMVT if the destination node is
to be reached via an SSCP-PU session. The application does not need to know
the identity of its local node. If the application supplies 8 EBCDIC blanks in the
netid or nau or both subfields of the origin location name subvector of the MDS
Routing Information GDS variable, Communications Server will supply the
appropriate values. If an application does not fill in either the netid or nau but
supplies fewer than 8 blanks, Communications Server will return a secondary return
code of AP_INVALID_MDS_MU_FORMAT.

 VCB Structure
typedef struct ms_send_mds_mu
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char options; /* Verb options */

 unsigned char reserv3; /* reserved */
unsigned char originator_id[8]; /* Originator ID */
unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv4[4]; /* reserved */
unsigned short dlen; /* Length of data */

 unsigned char *dptr; /* Data */
} MS_SEND_MDS_MU;

 Supplied Parameters
opcode AP_SEND_MDS_MU

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

options Specifies optional processing on the data supplied on this
verb. This parameter is a one-byte value, with individual bit
settings indicating the options selected. If all options are
specified, set this byte to zero.

Bit 0 is the most significant, and bit 7 is the least
significant bit.

Bit 0: Adds Date/Time (X'01') subvector to the data if
set to zero.

Bit 1: Adds Product Set ID (X'10') subvector to the data
if set to zero. If the application supplies data that already
contains a Product Set ID subvector, then management

 Chapter 14. Management Services Verbs 483

services adds Communications Server' Product Set ID
subvector immediately before the existing one.

Bit 2: reserved.

Bit 3: Logs the data via the Communications Server
problem determination facility if set to zero.

Note: The following constants are provided in the
management services header file that refer to bits
0, 1, and 3 specified above.

 ¹ SV_TIME_STAMP_SUBVECTOR
 ¹ SV_PRODUCT_SET_ID_SUBVECTOR
 ¹ SV_LOCAL_LOGGING

Bit 4: Specifies whether management services is to use
default or direct routing to send the management
services data to the destination application
(AP_DEFAULT or AP_DIRECT).

Note: To set bit 4, use AP_DEFAULT or AP_DIRECT
shifted appropriately (for example,
AP_DIRECT<<3).

Bits 5–7: reserved.

originator_id Name of component that issued the verb. This field is only
used by management services when logging the
SEND_MDS_MU.

pu_name Name of the physical unit to send the data to. This should
be set to either an 8-byte alphanumeric type-A EBCDIC
string, padded to the right with EBCDIC spaces, or set to all
binary zeros if no pu_name is specified. Applications using
SEND_MDS_MU to respond to MDS_MU_RECEIVED
indications that were converted from incoming NMVTs should
specify the pu_name received in the MDS_MU_RECEIVED
signal. MDS_MUs that are to be transported using the MDS
transport facility should set the pu_name to all binary zeros.

dlen Length of data.

dptr Pointer to data. If this is set to NULL, management services
assumes that the data is contiguous with (and begins
immediately following) the VCB.

 Returned Parameters
If the verb executes successfully, Communications Server management services
returns the following parameter:

primary_rc AP_OK

If the verb fails to execute because of a parameter error, Communications Server
management services returns the following parameters:

primary_rc AP_PARAMETER_CHECK

484 System Management Programming

secondary_rc AP_INVALID_PU_NAME

AP_INVALID_MDS_MU_FORMAT
SV_INVALID_DATA_SIZE

If the verb fails to execute because of a state error, Communications Server
management services returns the following parameters:

primary_rc AP_STATE_CHECK

secondary_rc AP_SSCP_PU_SESSION_NOT_ACTIVE

If the verb does not execute because of a system error, Communications Server
APPN returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

 Chapter 14. Management Services Verbs 485

 ALERT_INDICATION
This verb indication is used by management services to send alert major vectors to
a registered alert handler or registered held alert handler that will process them.

 VCB Structure
typedef struct ms_alert_indication
{
 unsigned short opcode; /* AP_AlERT_INDICATION */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned short alert_length; /* Length of alert */

 unsigned char reserv3[6]; /* reserved */
unsigned char *alert; /* Alert data */

} MS_ALERT_INDICATION;

 Supplied Parameters
opcode AP_ALERT_INDICATION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

alert_length Length of the alert data.

alert Pointer to the alert data. The data pointer is set to NULL,
and the data is contiguous with (and begins immediately
following) the VCB.

486 System Management Programming

 FP_NOTIFICATION
If an MDS-level application has been registered for a particular management
services category and the status of a focal point for that category changes, then
management services sends this verb signal to the application.

 VCB Structure
typedef struct ms_fp_notification
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char fp_routing; /* Type of routing to focal pt */

 unsigned char reserv1; /* reserved */
unsigned short fp_data_length; /* Length of incoming focal */

/* point data */
unsigned char *fp_data; /* focal point data */

} MS_FP_NOTIFICATION;

 Supplied Parameters
opcode AP_FP_NOTIFICATION

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

fp_routing Type of routing that should be specified on the
SEND_MDS_MU when sending a message to the focal point
(AP_DEFAULT or AP_DIRECT).

fp_data_length Length of focal point data.

fp_data Focal point data containing a Focal Point Notification (X'E1')
subvector and a Focal Point Identification (X'21') subvector.
This data pointer is set to NULL, and the data is contiguous
with (and begins immediately following) the VCB.

 Chapter 14. Management Services Verbs 487

 NMVT_RECEIVED
This verb signal is sent by management services to a registered NMVT-level
application when an NMVT Is received from a remote node.

In routing incoming NMVTs, management services applies the following rules:

1. Try to route to an NMVT-level application registered with the major vector key
carried on the incoming NMVT, else...

2. If the major vector key is one of X'8061' through X'8064', try to route to a
registered NMVT-level AP_SPCF_KEYS application, else...

3. Try to route to an NMVT-level registered AP_ALL_KEYS application, else...

4. Try to route the NMVT (after conversion to an MDS_MU) to an MDS-level
application, registered with the major vector key carried on the incoming NMVT,
else...

5. If the major vector key is one of X'8061' through X'8064', try to route the
NMVT (after conversion to an MDS_MU) to a registered MDS-level application,
else...

6. Try to route (after conversion to an MDS_MU) to a registered AP_ALL_KEYS
MDS-level application, else...

7. Negatively respond to the NMVT.

 VCB Structure
typedef struct ms_nmvt_received
{

unsigned short opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv3[6]; /* reserved */
unsigned short nmvt_length; /* Length of incoming NMVT */
unsigned char *nmvt; /* NMVT data */

} MS_NMVT_RECEIVED;

 Supplied Parameters
opcode AP_NMVT_RECEIVED

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

pu_name Name of the physical unit from which the NMVT originated.
It is the responsibility of the application to respond to the
incoming NMVT. The application uses
TRANSFER_MS_DATA to send the response. When
sending responses, the application must set the pu_name
field of the TRANSFER_MS_DATA to the pu_name supplied
in the NMVT_RECEIVED signal.

nmvt_length Length of NMVT data.

488 System Management Programming

nmvt Full NMVT, containing management services major vector of
the types specified on the
REGISTER_NMVT_APPLICATION. This data pointer is set
to NULL, and the data is contiguous with (and begins
immediately following) the VCB.

 Chapter 14. Management Services Verbs 489

490 System Management Programming

Part 3. Communications Server ASCII Configuration

Chapter 15. Introduction to ASCII Configuration 493
Keywords . 493
ASCII Configuration Verify Utility . 493

Verifying a Configuration File . 494
Editing a Configuration File . 494

Chapter 16. ASCII Configuration Keywords 497
Kinds and Types of Keywords . 497

Kinds of keywords . 497
Types of Keywords . 497
Other Keyword Fields and What They Mean 498

Keyword Formats . 498
NODE . 499

NODE Sample . 500
PORT . 501

PORT Sample . 510
LINK_STATION . 511

LINK_STATION Sample . 517
INTERNAL_PU . 519

INTERNAL_PU Sample . 519
DLUR_DEFAULTS . 520

DLUR_DEFAULTS Sample . 520
SPLIT_STACK . 521

SPLIT_STACK Sample . 521
TN3270E_DEF . 522

TN3270E_DEF Sample . 523
ADJACENT_NODE . 524

ADJACENT_NODE Sample . 524
CONNECTION_NETWORK . 525

CONNECTION_NETWORK Sample . 525
DSPU_TEMPLATE . 526

DSPU_TEMPLATE Sample . 526
DOWNSTREAM_LU . 527

DOWNSTREAM_LU Sample . 527
FOCAL_POINT . 528

FOCAL_POINT Sample . 528
LOCAL_LU . 529

LOCAL_LU Sample . 529
LU_0_TO_3 . 530

LU_0_TO_3 Sample . 531
MODE . 532

MODE Sample . 533
PARTNER_LU . 534

PARTNER_LU Sample . 534
TP . 536

TP Sample . 537
CPIC_SIDE_INFO . 539

CPIC_SIDE_INFO Sample . 540
LU_LU_PASSWORD . 541

LU_LU_PASSWORD Sample . 541

 Copyright IBM Corp. 1989, 1997 491

USERID_PASSWORD . 542
USERID_PASSWORD Sample . 542

ANYNET_COMMON_PARAMETERS . 543
ANYNET_COMMON_PARAMETERS Sample 543

ANYNET_SOCKETS_OVER_SNA . 545
ANYNET_SOCKETS_OVER_SNA Sample 546

VERIFY . 548
VERIFY Sample . 548

Other Verb Structures for Supported Keywords 548
START_NODE . 549

492 System Management Programming

Chapter 15. Introduction to ASCII Configuration

This part describes the ASCII configuration provided by Communications Server.
The ASCII configuration provides a method of creating, storing, and accessing
configuration information. This method uses ASCII files instead of binary files to
store configuration records. This lets users create and modify a configuration file
without using the SNA Node Configuration user interface.

 Keywords
Communications Server provides an ASCII (ACG) file that contains all the
configuration data to configure a particular node. The configuration data is
presented as complex and simple keywords. A simple keyword is a configuration
parameter in the format of keyword=value. A complex keyword is a grouping of
simple keywords. The following is a list of keywords supported by Communications
Server

 ¹ ADJACENT_NODE
 ¹ ANYNET_COMMON_PARAMETERS
 ¹ ANYNET_SOCKETS_OVER_SNA
 ¹ CONNECTION_NETWORK
 ¹ CPIC_SIDE_INFO
 ¹ DLUR_DEFAULTS
 ¹ DOWNSTREAM_LU
 ¹ DOWNSTREAM_PU_TEMPLATE
 ¹ FOCAL_POINT
 ¹ INTERNAL_PU
 ¹ LINK_STATION
 ¹ LOCAL_LU
 ¹ LU_0_TO_3
 ¹ LU_LU_PASSWORD
 ¹ MODE
 ¹ NODE
 ¹ PARTNER_LU
 ¹ PORT
 ¹ SPLIT_STACK
 ¹ TN3270E_DEF
 ¹ TP
 ¹ USERID_PASSWORD
 ¹ VERIFY

See Chapter 4, “Node Configuration Verbs” on page 27 for detailed descriptions of
each verb.

ASCII Configuration Verify Utility
The ASCII configuration verify utility checks your configuration file to ensure that
there are no errors. If there are errors, you must edit the file without going through
the Communications Server Configuration GUI.

 Copyright IBM Corp. 1989, 1997 493

Verifying a Configuration File
Communications Server provides two utilities for verifying a configuration file.

¹ Console verification (Command line) utility
¹ Windows SDI verification utility

 Console Verification
The Console verification method runs as a Windows DOS console application. You
can start this by issuing the following command line syntax:

vacgcon <filename>

where <filename> is the .ACG file.

The verification is performed and a message is generated indicating if the
verification was successful. Messages and errors are written to the DOS console
screen. You can not scroll through any error messages written to the console. The
output from the command line utility can be redirected to a file.

Windows SDI Verification
The Windows SDI verification utility runs as a Windows SDI application. You can
start this by either selecting the Communications Server Verification icon located
within the Communications Server folder, or by issuing the following command line
syntax:

vacgwin <filename>

where <filename> is the .ACG file.

If you use the command option, the file is automatically opened and verified. If you
select the icon, use the window menu or toolbar functions to verify the file. Do the
following:

1. Select and open a configuration file
2. Verify the file
3. View any errors and messages.

Editing a Configuration File
If either verification utility (console or Windows SDI) generated errors, edit the
.ACG configuration file using any ASCII text editor. To edit a configuration file:

¹ From the windows menu:

 1. Select File

2. Select Edit a file

3. Launch an ASCII editor with the configuration filename selected

4. Edit the file as needed

5. Save the file

6. Re-verify the file.

¹ From the toolbar

1. Select the Edit icon (pencil)

2. Launch an ASCII editor with the configuration filename selected

494 System Management Programming

3. Edit the file as needed

4. Save the file

5. Re-verify the file.

See the online help for specific details on how to use the selections on the menu or
toolbar for the Windows SDI application.

 Chapter 15. Introduction to ASCII Configuration 495

496 System Management Programming

 ASCII Configuration Keywords

Chapter 16. ASCII Configuration Keywords

This chapter:

¹ Describes kinds and types of keywords
¹ Shows the format of the keywords
¹ Gives examples of the keywords.

Kinds and Types of Keywords
To help understand how to read and interpret the data in the ASCII configuration
file, a description follows of the kinds and types of keywords.

Kinds of keywords
There are two kinds of keywords.

Simple keyword A keyword that does not contain other keywords; that is, it
has no embedded keywords. It is of the form keywordname
= value; where value is not a left parenthesis. In the
following example, FQ_CP_NAME and NODE_TYPE are
simple keywords, but NODE is not.

NODE=(
 FQ_CP_NAME=USIBMNM.NT265
 NODE_TYPE=END_NODE
)

Complex keyword Contains embedded simple or complex keywords. In the
following example, PORT and PORT_LAN_SPECIFIC_DATA
are complex keywords.

PORT=(
 PORT_NAME=LAN1_04
 DLC_NAME=LAN
 PORT_LAN_SPECIFIC_DATA=(
 ADAPTER_ID=LAN1
 ADAPTER_NAME=0001
)
)

Types of Keywords
There are six types of simple keywords and they tell what value the simple
keywords can have.

BOOLEANKEYWORD
A keyword that can only have a Boolean (0 or 1) value.

ENUMKEYWORD A keyword that has enumerated values. Valid values are
listed in the ENUM_LIST.

HEXNUMBERKEYWORD
A keyword that has a hex number value. The valid range for
the hex number is given by the RANGE.

 Copyright IBM Corp. 1989, 1997 497

 ASCII Configuration Keywords

HEXSTRINGKEYWORD
A keyword that has a string of hex numbers as its value.
The valid length of the hex string is given by the
FIELD_LENGTH.

STRINGKEYWORD A keyword that has a string value. The valid length for the
string is given by the FIELD_LENGTH.

UNSIGNEDNUMBERKEYWORD
A keyword that has an unsigned number value. The valid
range for the number is given by the RANGE.

Other Keyword Fields and What They Mean
Many of the keywords support the following specifications:

@REQUIRED Determines whether a given keyword is required to be valid.
1—means it is required. 0—means it is not required.
However, if a default value is specified, then it is
automatically added.

@DEFAULT Specifies the default value for a given keyword. If the
keyword is not present in the ASCII file, this default value is
filled in and added to the ASCII file.

@COMPLETE_SYNTAX
Specifies the valid character values for a
STRINGKEYWORD. For example, SNA_TYPE_A.

 Keyword Formats
This section describes the keywords. A template is given that contains the
definition of the keyword followed by a sample keyword with values filled in.

498 System Management Programming

 NODE

 NODE
The NODE keyword relates to the START_NODE verb. See “START_NODE” on
page 549 for a description of each field.

NODE = (
ANYNET_SUPPORT = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (

ANYNET_SUPPORTED = 0
ACCESS_NODE = 1
GATEWAY = 2

)
@REQUIRED = 1
@DEFAULT = ANYNET_SUPPORTED

)
CP_ALIAS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
DEFAULT_PREFERENCE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NATIVE = 0
NONNATIVE = 1
NATIVE_THEN_NONNATIVE = 2
NONNATIVE_THEN_NATIVE = 3
USE_DEFAULT_PREFERENCE = 255

)
@REQUIRED = 1
@DEFAULT = NATIVE

)
DISCOVERY_GROUP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
DISCOVERY_SUPPORT = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NO = 0
DISCOVERY_CLIENT = 1
DISCOVERY_SERVER = 2

)
@REQUIRED = 1
@DEFAULT = DISCOVERY_CLIENT

)
FQ_CP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
HPR_SUPPORT = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONE = 0
BASE = 1
RTP = 2

)

 Chapter 16. ASCII Configuration Keywords 499

 NODE

NODE_ID = (
@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1
@DEFAULT = 05D00000

)
NODE_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NETWORK_NODE = 2
END_NODE = 3

)
@REQUIRED = 1
@DEFAULT = END_NODE

)
REGISTER_WITH_CDS = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
REGISTER_WITH_NN = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
)

*The end of Complex Keyword NODE

 NODE Sample
The following is a sample of the NODE keyword.

NODE=(
 ANYNET_SUPPORT=ACCESS_NODE
 CP_ALIAS=NT265
 DEFAULT_PREFERENCE=NATIVE
 DISCOVERY_GROUP_NAME=<NONE>
 DISCOVERY_SUPPORT=DISCOVERY_CLIENT
 FQ_CP_NAME=USIBMNM.NT265
 NODE_ID=05D00000
 NODE_TYPE=END_NODE
 REGISTER_WITH_CDS=1
 REGISTER_WITH_NN=1
)

500 System Management Programming

 PORT

 PORT
The PORT keyword relates to the DEFINE_PORT verb. See “DEFINE_PORT” on
page 94 for a description of each field.

The PORT keyword should contain one of the Port_*_Specific_Data_ keywords.
Which Port_*_Specific_Data keyword to use is dependent on the value of
DLC_NAME. For example, a PORT keyword with DLC_NAME=LAN should include
a PORT_LAN_SPECIFIC_DATA keyword.

OEM port specific data is not configurable through the ASCII configuration.

PORT = (
DLC_DATA = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,32

)
DLC_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
IMPLICIT_DEACT_TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
)

IMPLICIT_DSPU_SERVICES = (
@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONE = 0
PU_CONCENTRATION = 1
DLUR = 2

)
@REQUIRED = 1
@DEFAULT = NONE

)
IMPLICIT_DSPU_TEMPLATE = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
IMPLICIT_LIMITED_RESOURCE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NO = 0
YES = 1
INACTIVITY = 2

)
IMPLICIT_HPR_SUPPORT = (

@TYPE = BOOLEANKEYWORD
)

LINK_STATION_ROLE = (
@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NEGOTIABLE = 0
PRIMARY = 1
SECONDARY = 2
MSEC = 4
USE_PORT_DEFAULTS = 255

)

 Chapter 16. ASCII Configuration Keywords 501

 PORT

LS_XMIT_RCV_CAP = (
@TYPE = ENUMKEYWORD
@ENUM_LIST = (
TWS = 1
TWA = 2

)
MAX_IFRM_RCVD = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,127

)
MAX_RCV_BTU_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
)

MAX_SEND_BTU_SIZE = (
@TYPE = UNSIGNEDNUMBERKEYWORD

)
PORT_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
PORT_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONSWITCHED = 1
SWITCHED = 2
SATF = 4

)

PORT_LAN_SPECIFIC_DATA = (
ACK_DELAY = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 30,1000
@REQUIRED = 1
@DEFAULT = 100

)

ACK_TIMEOUT = (
@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 500,10000
@REQUIRED = 1
@DEFAULT = 3000

)
ADAPTER_NUMBER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,7
@DEFAULT = 0

)
BUSY_STATE_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 10,60
@REQUIRED = 1
@DEFAULT = 15

)
IDLE_STATE_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 10,120

502 System Management Programming

 PORT

@REQUIRED = 1
@DEFAULT = 30

)
LOCAL_SAP = (

@TYPE = HEXNUMBERKEYWORD
@RANGE = 04,FC
@DEFAULT = 04

)
OUTSTANDING_TRANSMITS = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 2,64
@REQUIRED = 1
@DEFAULT = 16

)
POLL_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 500,10000
@REQUIRED = 1
@DEFAULT = 3000

)
POOL_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 2,64
@REQUIRED = 1
@DEFAULT = 32

)
REJECT_RESPONSE_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 5,30
@REQUIRED = 1
@DEFAULT = 10

)
TEST_RETRY_INTERVAL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 5,30
@REQUIRED = 1
@DEFAULT = 8

)
TEST_RETRY_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 3,30
@REQUIRED = 1
@DEFAULT = 5

)
XID_RETRY_INTERVAL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 5,60
@REQUIRED = 1
@DEFAULT = 8

)
XID_RETRY_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 3,30
@REQUIRED = 1
@DEFAULT = 5

)
)

 Chapter 16. ASCII Configuration Keywords 503

 PORT

*The end of Complex Keyword PORT_LAN_SPECIFIC_DATA

PORT_SDLC_SPECIFIC_DATA = (
ACCEPT_INCOMING_CALLS = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
CONNECT_RETRY_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,127
@REQUIRED = 1
@DEFAULT = 10

)
CONNECT_TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,30
@REQUIRED = 1
@DEFAULT = 2

)
FRAMING_STANDARD = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
SNA_OVER_ASYNC = 0
ADVANTIS = 1
HAYES_AUTOSYNC = 2

)
@REQUIRED = 1
@DEFAULT = SNA_OVER_ASYNC

)
FULL_DUPLEX_SUPPORT = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
INACTIVITY_TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 40,160
@REQUIRED = 1
@DEFAULT = 80

)
IRQ_LEVEL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,15
@REQUIRED = 1
@DEFAULT = 3

)
MODEM_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,256

)
MULTIDROP_PRIMARY_SERVER = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
PORT_SPEED = (

@TYPE = UNSIGNEDNUMBERKEYWORD

504 System Management Programming

 PORT

@RANGE = 2400,115200
@REQUIRED = 1
@DEFAULT = 57600

)
RESPONSE_RETRY_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,127
@REQUIRED = 1
@DEFAULT = 10

)
RESPONSE_TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 2,20
@REQUIRED = 1
@DEFAULT = 4

)
SHARED_RAM_ADDRESS = (

@TYPE = HEXNUMBERKEYWORD
@RANGE = C0000,FC000

)
STATION_POLL_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,10
@REQUIRED = 1
@DEFAULT = 0

)
TRANSMISSION_FLAGS = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,10
@REQUIRED = 1
@DEFAULT = 1

)
USE_CONSTANT_RTS = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
USE_NRZI_ENCODING = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
)
*The end of Complex Keyword PORT_SDLC_SPECIFIC_DATA

PORT_TWINAX_SPECIFIC_DATA = (
ADAPTER_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
OTHER_TWINAX_ADAPTER = 0
5250E_DISPLAY_STATION_EMULATION_ADAPTER = 1
5250_AT_COMMUNICATION_ADAPTER = 2
5250_EMULATION_PCMCIA_ADAPTER = 3
5250_PCMCIA_ADAPTER_CARD = 4
SYSTEM_36_WORKSTATION_EMULATION_ADAPTER_A = 5
5250_EMULATION_ADAPTER_A = 6
5205_EMULATION_PCI_ADAPTER = 7
NONE = -1

 Chapter 16. ASCII Configuration Keywords 505

 PORT

)
@DEFAULT = NONE

)
IO_ADDRESS = (

@TYPE = HEXNUMBERKEYWORD
@RANGE = 240A,27FA
@REQUIRED = 1
@DEFAULT = 271A

)
IRQ_LEVEL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 3,7
@REQUIRED = 1
@DEFAULT = 5

)

MEMORY_ADDRESS = (
@TYPE = HEXNUMBERKEYWORD
@RANGE = C0000,DC000
@REQUIRED = 1
@DEFAULT = DC000

)
)

*The end of Complex Keyword PORT_TWINAX_SPECIFIC_DATA

PORT_X25_SPECIFIC_DATA = (
ACCEPT_INCOMING_CALLS = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = NO

)
ALTERNATE_REMOTE_PHONE_NUMBER = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,64

)
COMPLIANCE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
1980_COMPLIANCE = 1980
1984_COMPLIANCE = 1984
1988_COMPLIANCE = 1988

)
@DEFAULT = 1984_COMPLIANCE

)
DEFAULT_WINDOW_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,7
@DEFAULT = 2

)
DIAL_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
PULSE = 80
TONE = 84

)
@DEFAULT = TONE

)
FRAME_INACTIVITY_TIMEOUT = (

506 System Management Programming

 PORT

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,255
@DEFAULT = 30

)
FRAME_RETRANSMISSION_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,60
@DEFAULT = 3

)
FRAME_SEQUENCE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
MODULO_8 = 8
MODULO_128 = 128

)
@DEFAULT = MODULO_8

)
FRAME_TRANSMISSION_RETRY_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,255
@DEFAULT = 20

)
FRAME_WINDOW_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,7
@DEFAULT = 7

)
INSERT_CALLING_ADDRESS = (

@TYPE = BOOLEANKEYWORD
)

IN_ONLY_SVC_COUNT = (
@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

)
IN_ONLY_SVC_START = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

)
LOCAL_DTE_ADDRESS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,16

)
MAX_PIU_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 265,4115
@DEFAULT = 2048

)
MODEM_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,256

)
NETWORK_CONNECTION_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
LEASED = 0
SWITCHED = 1

 Chapter 16. ASCII Configuration Keywords 507

 PORT

)
@DEFAULT = SWITCHED

)
OUT_ONLY_SVC_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

)
OUT_ONLY_SVC_START = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

)
PACKET_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 16,4096
@DEFAULT = 128

)
PORT_SPEED = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 2400,115200
@DEFAULT = 57600

)
PVC_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

)
PVC_START = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

)
REMOTE_PHONE_NUMBER = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,64

)
SEQUENCING = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
MODULO_8 = 8
MODULO_128 = 128

)
@DEFAULT = MODULO_8

)
SHARED_RAM_ADDRESS = (

@TYPE = HEXNUMBERKEYWORD
@RANGE = C0000,FC000

)
TRANSMISSION_FLAGS = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,10
@DEFAULT = 1

)
TWO_WAY_SVC_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

508 System Management Programming

 PORT

)
TWO_WAY_SVC_START = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,60000
@DEFAULT = 0

)
USE_CONSTANT_RTS = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 1

)
USE_NRZI_ENCODING = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
USE_X32_PROTOCOL = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
X32_IDENTITY = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,34

)
X32_SIGNATURE = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,34

)
INCOMING_CALL_FILTER = (
 @MERGE_SIMPLE_KEYWORDS = 0

ACCEPT_CHARGES = (
@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
DTE_ADDRESS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 0,16

)
DTE_ADDRESS_EXTENSION = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 0,8

)

)
*The end of Complex Keyword INCOMING_CALL_FILTER
)

*The end of Complex Keyword PORT_X25_SPECIFIC_DATA

)

*The end of Complex Keyword PORT

 Chapter 16. ASCII Configuration Keywords 509

 PORT

 PORT Sample
The following are samples of the PORT Keyword.

PORT=(
 PORT_NAME=ANYNET
 DLC_NAME=ANYNET
 IMPLICIT_DEACT_TIMER=0
 IMPLICIT_DSPU_SERVICES=NONE
 IMPLICIT_HPR_SUPPORT=0
 IMPLICIT_LIMITED_RESOURCE=NO
 MAX_IFRM_RCVD=127
 MAX_RCV_BTU_SIZE=9216
 MAX_SEND_BTU_SIZE=9216
 PORT_TYPE=SATF
)
PORT=(
 PORT_NAME=LAN0_04
 DLC_DATA=00000000000004
 DLC_NAME=LAN
 IMPLICIT_DEACT_TIMER=0
 IMPLICIT_DSPU_SERVICES=NONE
 IMPLICIT_HPR_SUPPORT=1
 IMPLICIT_LIMITED_RESOURCE=NO
 MAX_IFRM_RCVD=8
 MAX_RCV_BTU_SIZE=65535
 MAX_SEND_BTU_SIZE=65535
 PORT_TYPE=SATF
 PORT_LAN_SPECIFIC_DATA=(
 ACK_DELAY=100
 ACK_TIMEOUT=1000
 ADAPTER_ID=LAN0
 ADAPTER_NAME=0000
 BUSY_STATE_TIMEOUT=15
 IDLE_STATE_TIMEOUT=30
 OUTSTANDING_TRANSMITS=16
 POLL_TIMEOUT=3000
 REJECT_RESPONSE_TIMEOUT=10
 TEST_RETRY_INTERVAL=8
 TEST_RETRY_LIMIT=5
 XID_RETRY_INTERVAL=8
 XID_RETRY_LIMIT=5
)
)

510 System Management Programming

 LINK_STATION

 LINK_STATION
The LINK_STATION keyword relates to the DEFINE_LS verb. See “DEFINE_LS”
on page 67 for a description of each field.

The LINK_STATION keyword should contain one of the
Link_Station_*_Specific_Data keywords. Which Link_Station_*_Specific_Data
keyword to use is dependent on the value of PORT_NAME. For example, if the
value of PORT_NAME refers to a LAN port, then a
LINK_STATION_LAN_SPECIFIC_DATA keyword should be included.

LINK_STATION = (
ACTIVATE_AT_STARTUP = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
ADJACENT_NODE_ID = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,8

)
ADJACENT_NODE_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
APPN_NODE = 0
NETWORK_NODE = 2
END_NODE = 3
BACK_LEVEL_LEN_NODE = 5
HOST_XID3 = 6
HOST_XID0 = 7
DSPU_XID = 8
DSPU_NO_XID = 9

)
@REQUIRED = 1
@DEFAULT = APPN_NODE

)
AUTO_ACTIVATE_SUPPORT = (

@TYPE = BOOLEANKEYWORD
)

BKUP_DLUS_NAME = (
@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED%

)
CP_CP_SESS_SUPPORT = (

@TYPE = BOOLEANKEYWORD
)

DEFAULT_NN_SERVER = (
@TYPE = BOOLEANKEYWORD

)
DEST_ADDRESS = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 0,32
@REQUIRED = 1

)
DISABLE_REMOTE_ACT = (

@TYPE = BOOLEANKEYWORD

 Chapter 16. ASCII Configuration Keywords 511

 LINK_STATION

@REQUIRED = 1
@DEFAULT = 0

)
DLUS_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED%

)
DSPU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
DSPU_SERVICES = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONE = 0
PU_CONCENTRATION = 1
DLUR = 2

)
@REQUIRED = 1
@DEFAULT = NONE

)
FQ_ADJACENT_CP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
HOST_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
SNA = 0
HNA = 64
FNA = 128

)
HPR_LINK_LVL_ERROR = (

@TYPE = BOOLEANKEYWORD
)

HPR_SUPPORT = (
@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
LIMITED_RESOURCE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NO = 0
YES = 1
INACTIVITY = 2

)
@REQUIRED = 1

)
LINK_DEACT_TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
)

LINK_SPEC_DATA_LEN = (
@TYPE = UNSIGNEDNUMBERKEYWORD
@DEFAULT = 0

)
LINK_STATION_ROLE = (

512 System Management Programming

 LINK_STATION

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NEGOTIABLE = 0
PRIMARY = 1
SECONDARY = 2
USE_ADAPTER_DEFAULTS = 255

)
LS_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
MAX_IFRM_RCVD = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,127

)
MAX_SEND_BTU_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
)

NODE_ID = (
@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,8

)
PORT_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
PU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
SOLICIT_SSCP_SESSION = (

@TYPE = BOOLEANKEYWORD
)

SUPPRESS_CP_NAME = (
@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NO = 0
YES = 128

)
TARGET_PACING_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,32767

)
TG_NUMBER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,20
@DEFAULT = 0

)
USE_DEFAULT_TG_CHARS = (

@TYPE = BOOLEANKEYWORD
)

LINK_STATION_ANYNET_SPECIFIC_DATA = (
PARTNER_ADDRESS_TYPE = (

@TYPE = ENUMKEYWORD

 Chapter 16. ASCII Configuration Keywords 513

 LINK_STATION

@ENUM_LIST = (
USE_CP_NAME = 0
USE_BLOCK_AND_PU_ID = 1

)
@DEFAULT = USE_CP_NAME

)

*The end of Complex Keyword LINK_STATION_ANYNET_SPECIFIC_DATA

LINK_STATION_LAN_SPECIFIC_DATA = (
TEST_RETRY_INTERVAL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 5,30
@DEFAULT = 8

)
TEST_RETRY_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 3,30
@DEFAULT = 5

)
XID_RETRY_INTERVAL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 2,20
@REQUIRED = 1
@DEFAULT = 4

)
XID_RETRY_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 3,30
@DEFAULT = 5

)

*The end of Complex Keyword LINK_STATION_LAN_SPECIFIC_DATA

LINK_STATION_SDLC_SPECIFIC_DATA = (
AUTO_REACTIVATE_SUPPORT = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
BACKUP_PHONE_NUMBER = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,62

)
CONNECT_RETRY_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,127
@DEFAULT = 10

)
CONNECT_TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,30
@DEFAULT = 2

)
FRAMING_STANDARD = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
SNA_OVER_ASYNC = 0
ADVANTIS = 1

514 System Management Programming

 LINK_STATION

HAYES_AUTOSYNC = 2
)

@DEFAULT = SNA_OVER_ASYNC
)

INACTIVITY_TIMER = (
@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 40,160
@DEFAULT = 80

)
PORT_SPEED = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 2400,115200
@DEFAULT = 57600

)
PRIMARY_PHONE_NUMBER = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,62

)
RESPONSE_RETRY_COUNT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,127
@DEFAULT = 10

)
RESPONSE_TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 2,20
@DEFAULT = 4

)

USE_NRZI_ENCODING = (
@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
)

*The end of Complex Keyword LINK_STATION_SDLC_SPECIFIC_DATA

LINK_STATION_X25_SPECIFIC_DATA = (
ADDITIONAL_FACILITIES = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,110

)
CALL_USER_GROUP_FORMAT = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONE = 0
BASIC = 1
EXTENDED = 2

)
CALL_USER_GROUP_INDEX = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,6

)
CONNECTION_ID = (

@TYPE = HEXSTRINGKEYWORD
@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,16

)

 Chapter 16. ASCII Configuration Keywords 515

 LINK_STATION

CONNECTION_TYPE = (
@TYPE = ENUMKEYWORD
@ENUM_LIST = (
PVC = 0
SVC = 1

)
@DEFAULT = PVC

)
LOGICAL_CHANNEL_NUMBER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 5,9

)
NETWORK_USER_ID = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,42

)
PACKET_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 16,4096
@DEFAULT = 128

)
REMOTE_CONFORMANCE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
1980_COMPLIANCE = 1980
1984_COMPLIANCE = 1984
1988_COMPLIANCE = 1988

)
@DEFAULT = 1984_COMPLIANCE

)
REQUEST_REVERSE_CHARGING = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
WINDOW_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,7
@DEFAULT = 2

)

X25_DESTINATION_ADDRESS = (
DTE_ADDRESS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,16

)
DTE_ADDRESS_EXTENSION = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,42

)
)

*The end of Complex Keyword X25_DESTINATION_ADDRESS

)

*The end of Complex Keyword LINK_STATION_X25_SPECIFIC_DATA

516 System Management Programming

 LINK_STATION

*The end of Complex Keyword LINK_STATION

 LINK_STATION Sample
The following are samples of the LINK_STATION keyword.

LINK_STATION=(
 LS_NAME=LINK0000
 ACTIVATE_AT_STARTUP=0
 ADJACENT_NODE_TYPE=APPN_NODE
 AUTO_ACTIVATE_SUPPORT=1
 CP_CP_SESS_SUPPORT=1
 DEFAULT_NN_SERVER=0
 DEST_ADDRESS=40000000000004
 DISABLE_REMOTE_ACT=0
 DSPU_SERVICES=NONE
 HPR_LINK_LVL_ERROR=0
 HPR_SUPPORT=0
 LIMITED_RESOURCE=NO
 LINK_DEACT_TIMER=0
 LINK_STATION_ROLE=USE_ADAPTER_DEFAULTS
 MAX_IFRM_RCVD=0
 MAX_SEND_BTU_SIZE=65535
 NODE_ID=05D00000
 PORT_NAME=LAN0_04
 SOLICIT_SSCP_SESSION=0
 SUPPRESS_CP_NAME=NO
 TARGET_PACING_COUNT=1
 TG_NUMBER=0
 USE_DEFAULT_TG_CHARS=1
 LINK_STATION_LAN_SPECIFIC_DATA=(
 TEST_RETRY_INTERVAL=8
 TEST_RETRY_LIMIT=5
 XID_RETRY_INTERVAL=8
 XID_RETRY_LIMIT=5
)
)
LINK_STATION=(
 LS_NAME=LINK0001
 ACTIVATE_AT_STARTUP=0
 ADJACENT_NODE_TYPE=DSPU_XID
 AUTO_ACTIVATE_SUPPORT=0
 CP_CP_SESS_SUPPORT=1
 DEFAULT_NN_SERVER=0
 DEST_ADDRESS=40000000000104
 DISABLE_REMOTE_ACT=0
 DSPU_NAME=LINK0001
 DSPU_SERVICES=PU_CONCENTRATION
 HPR_LINK_LVL_ERROR=0
 HPR_SUPPORT=0
 LIMITED_RESOURCE=NO
 LINK_DEACT_TIMER=0
 LINK_STATION_ROLE=USE_ADAPTER_DEFAULTS
 MAX_IFRM_RCVD=0
 MAX_SEND_BTU_SIZE=65535
 NODE_ID=05D00000
 PORT_NAME=LAN0_04
 SOLICIT_SSCP_SESSION=0

 Chapter 16. ASCII Configuration Keywords 517

 LINK_STATION

 STARTUP=1
 SUPPRESS_CP_NAME=NO
 TARGET_PACING_COUNT=1
 TG_NUMBER=0
 USE_DEFAULT_TG_CHARS=1
 LINK_STATION_LAN_SPECIFIC_DATA=(
 TEST_RETRY_INTERVAL=8
 TEST_RETRY_LIMIT=5
 XID_RETRY_INTERVAL=8
 XID_RETRY_LIMIT=5
)
)

518 System Management Programming

 INTERNAL_PU

 INTERNAL_PU
The INTERNAL_PU keyword relates to the DEFINE_INTERNAL_PU verb. See
“DEFINE_INTERNAL_PU” on page 62 for a description of each field.

INTERNAL_PU = (
BKUP_DLUS_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
FQ_DLUS_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
NODE_ID = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
PU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
STARTUP = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
)

*The end of Complex Keyword INTERNAL_PU

 INTERNAL_PU Sample
The following is a sample of the INTERNAL_PU keyword.

INTERNAL_PU=(
 PU_NAME=NT265
 NODE_ID=05D00000
 STARTUP=1
)

 Chapter 16. ASCII Configuration Keywords 519

 DLUR_DEFAULTS

 DLUR_DEFAULTS
The DLUR_DEFAULTS keyword relates to the DEFINE_DLUR_DEFAULTS verb.
See “DEFINE_DLUR_DEFAULTS” on page 49 for a description of each field.

DLUR_DEFAULTS = (
BKUP_DLUS_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
DEFAULT_PU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
DLUS_RETRY_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,65535

)
DLUS_RETRY_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,65535

)
FQ_DLUS_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
)

*The end of Complex Keyword DLUR_DEFAULTS

 DLUR_DEFAULTS Sample
The following is a sample of the DLUR_DEFAULTS keyword.

DLUR_DEFAULTS=(
 BKUP_DLUS_NAME=USIBMNR.DLURBACK
 DEFAULT_PU_NAME=NT265
 DLUS_RETRY_LIMIT=3
 DLUS_RETRY_TIMEOUT=5
 FQ_DLUS_NAME=USIBMNM.DLURSRV
)

520 System Management Programming

 SPLIT_STACK

 SPLIT_STACK
See Communications Server Online Help for field descriptions of the SPLIT_STACK
keyword.

SPLIT_STACK = (
POOL_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
STARTUP = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
)

*The end of Complex Keyword SPLIT_STACK

 SPLIT_STACK Sample
The following is a sample of the SPLIT_STACK keyword.

SPLIT_STACK=(
 STARTUP=1
)

 Chapter 16. ASCII Configuration Keywords 521

 TN3270E_DEF

 TN3270E_DEF
See Communications Server Online Help for field descriptions of the
TN3270E_DEF keyword.

TN3270E_DEF = (
AUTO_LOGOFF = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
DEFAULT_POOL_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
FREQUENCY = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,65535
@REQUIRED = 1
@DEFAULT = 60

)
KEEPALIVE_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
TN_NONE = 0
TN_NOP = 1
TN_TIMING_MARK = 2

)
@REQUIRED = 1
@DEFAULT = TN_NONE

)
LOGOFF = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,65535
@REQUIRED = 1
@DEFAULT = 30

)
PORT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,65535
@REQUIRED = 1
@DEFAULT = 23

)
TIMER = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,65535
@REQUIRED = 1
@DEFAULT = 10

)
)

*The end of Complex Keyword TN3270E_DEF

522 System Management Programming

 TN3270E_DEF

 TN3270E_DEF Sample
The following is a sample of the TN3270E_DEF keyword.

TN3270E_DEF=(
 AUTO_LOGOFF=1
 DEFAULT_POOL_NAME=POOL1
 FREQUENCY=60
 KEEPALIVE_TYPE=TN_NOP
 LOGOFF=30
 PORT=23
 TIMER=10
)

 Chapter 16. ASCII Configuration Keywords 523

 ADJACENT_NODE

 ADJACENT_NODE
The ADJACENT_NODE keyword relates to the DEFINE_ADJACENT_NODE verb.
See “DEFINE_ADJACENT_NODE” on page 28 for a description of each field.

ADJACENT_NODE = (
FQ_CP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@REQUIRED = 1
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
FQ_LU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@MERGE_SIMPLE_KEYWORDS = 0
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
)

*The end of Complex Keyword ADJACENT_NODE

 ADJACENT_NODE Sample
The following is a sample of the ADJACENT_NODE keyword.

ADJACENT_NODE=(
 FQ_CP_NAME=USIBMNM.PARTNER
 FQ_LU_NAME=USIBMNM.PARTLU
 FQ_LU_NAME=USIBMNM.PARTLU1
 FQ_LU_NAME=USIBMNM.PARTLU2
)

524 System Management Programming

 CONNECTION_NETWORK

 CONNECTION_NETWORK
The CONNECTION_NETWORK keyword follows:

CONNECTION_NETWORK = (
FQCN_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@REQUIRED = 1
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
PORT_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@MERGE_SIMPLE_KEYWORDS = 0

)
)

*The end of Complex Keyword CONNECTION_NETWORK

 CONNECTION_NETWORK Sample
The following is a sample of the CONNECTION_NETWORK keyword.

CONNECTION_NETWORK=(
 FQCN_NAME=USIBMNR.CONNET
 PORT_NAME=LAN0_04
)

 Chapter 16. ASCII Configuration Keywords 525

 DSPU_TEMPLATE

 DSPU_TEMPLATE
The DSPU_TEMPLATE keyword relates to the DEFINE_DSPU_TEMPLATE verb.
See “DEFINE_DSPU_TEMPLATE” on page 56 for a description of each field.

DSPU_TEMPLATE = (
MAX_INSTANCE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
)

NUMBER_OF_DSLU_TEMPLATES = (
@TYPE = UNSIGNEDNUMBERKEYWORD

)
TEMPLATE_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)

DSLU_TEMPLATE = (
HOST_LU = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
MAX_NAU = (

@TYPE = UNSIGNEDNUMBERKEYWORD
)

MIN_NAU = (
@TYPE = UNSIGNEDNUMBERKEYWORD

)
)

*The end of Complex Keyword DSLU_TEMPLATE

*The end of Complex Keyword DSPU_TEMPLATE

 DSPU_TEMPLATE Sample
The following is a sample of the DSPU_TEMPLATE keyword.

DSPU_TEMPLATE=(
 TEMPLATE_NAME=DOWN
 MAX_INSTANCE=0
 NUMBER_OF_DSLU_TEMPLATES=1
 DSLU_TEMPLATE=(
 HOST_LU=PUBLIC
 MAX_NAU=5
 MIN_NAU=1
)

526 System Management Programming

 DOWNSTREAM_LU

 DOWNSTREAM_LU
The DOWNSTREAM_LU keyword relates to the DEFINE_DOWNSTREAM_LU
verb. See “DEFINE_DOWNSTREAM_LU” on page 51 for a description of each
field.

DOWNSTREAM_LU = (
DSLU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
DSPU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
HOST_LU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
NAU_ADDRESS = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,255

)
)

*The end of Complex Keyword DOWNSTREAM_LU

 DOWNSTREAM_LU Sample
The following is a sample of the DOWNSTREAM_LU keyword.

DOWNSTREAM_LU=(
 DSLU_NAME=GR08005
 DSPU_NAME=GR08
 HOST_LU_NAME=PUBLIC
 NAU_ADDRESS=5
)

 Chapter 16. ASCII Configuration Keywords 527

 FOCAL_POINT

 FOCAL_POINT
The FOCAL_POINT keyword relates to the DEFINE_FOCAL_POINT verb. See
“DEFINE_FOCAL_POINT” on page 59 for a description of each field.

FOCAL_POINT = (
BKUP_FP_FQCP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
BKUP_MS_APPL_NAME = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED%

)
FP_FQCP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%
@REQUIRED = 1

)
MS_APPL_NAME = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
MS_CATEGORY = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
)

*The end of Complex Keyword FOCAL_POINT

 FOCAL_POINT Sample
The following is a sample of the FOCAL_POINT keyword.

FOCAL_POINT=(
 MS_CATEGORY=23F0F1F7
 BKUP_FP_FQCP_NAME=USIBMNR.BACKUP
 BKUP_MS_APPL_NAME=23F0F1F6
 FP_FQCP_NAME=USIBMNR.FOCAL
 MS_APPL_NAME=23F0F1F6
)

528 System Management Programming

 LOCAL_LU

 LOCAL_LU
The LOCAL_LU keyword relates to the DEFINE_LOCAL_LU verb. See
“DEFINE_LOCAL_LU” on page 64 for a description of each field.

LOCAL_LU = (
LU_ALIAS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
LU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
LU_SESSION_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,65535
@DEFAULT = 0

)
NAU_ADDRESS = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,255

)
PU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
ROUTE_TO_CLIENT = (

@TYPE = BOOLEANKEYWORD
)
)

*The end of Complex Keyword LOCAL_LU

 LOCAL_LU Sample
The following is a sample of the LOCAL_LU keyword.

LOCAL_LU=(
 LU_NAME=LOCLU62
 LU_ALIAS=LOCALIAS
 LU_SESSION_LIMIT=0
 NAU_ADDRESS=0
 ROUTE_TO_CLIENT=0
)

 Chapter 16. ASCII Configuration Keywords 529

 LU_0_TO_3

 LU_0_TO_3
The LU_0_TO_3 keyword relates to the DEFINE_LU_0_TO_3 verb. See
“DEFINE_LU_0_TO_3” on page 79 for a description of each field.

LU_0_TO_3 = (
APPLICATION_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
UNASSIGNED = 0
TN3270E = 257

)
ASSOC_PRINTER = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
CLASS_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
TN_UNASSIGNED = 0
TN_IMPLICIT_WORKSTATION = 1
TN_EXPLICIT_WORKSTATION = 2
TN_IMPLICIT_PRINTER = 3
TN_EXPLICIT_PRINTER = 4
TN_ASSOC_PRINTER = 5

)
LU_MODEL = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
3270_DISPLAY_MODEL_2 = 2
3270_DISPLAY_MODEL_3 = 3
3270_DISPLAY_MODEL_4 = 4
3270_DISPLAY_MODEL_5 = 5
RJE_WKSTN = 32
PRINTER = 128
UNKNOWN = 0

)
@REQUIRED = 1
@DEFAULT = 3270_DISPLAY_MODEL_2

)
LU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
NAU_ADDRESS = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,255
@REQUIRED = 1

)
POOL_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
PRIORITY = (

@TYPE = ENUMKEYWORD

530 System Management Programming

 LU_0_TO_3

@ENUM_LIST = (
NETWORK = 3
HIGH = 2
MEDIUM = 1
LOW = 0

)
@REQUIRED = 1
@DEFAULT = MEDIUM

)
PU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
)

*The end of Complex Keyword LU_0_TO_3

 LU_0_TO_3 Sample
The following is a sample of the LU_0_TO_3 keyword.

LU_0_TO_3=(
 LU_NAME=LUA2
 LU_MODEL=3270_DISPLAY_MODEL_2
 NAU_ADDRESS=2
 PRIORITY=MEDIUM
 PU_NAME=NT265
)

 Chapter 16. ASCII Configuration Keywords 531

 MODE

 MODE
The MODE keyword relates to the DEFINE_MODE verb. See “DEFINE_MODE” on
page 87 for a description of each field.

MODE = (
AUTO_ACT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,1
@REQUIRED = 1
@DEFAULT = 0

)
COS_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
CRYPTOGRAPHY = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONE = 0
MANDATORY = 1

)
@REQUIRED = 1
@DEFAULT = NONE

)
DEFAULT_RU_SIZE = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
MAX_NEGOTIABLE_SESSION_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,32767
@REQUIRED = 1
@DEFAULT = 128

)
MAX_RU_SIZE_UPPER_BOUND = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 256,16384
@REQUIRED = 1

)
MIN_CONWINNERS_SOURCE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,32767
@REQUIRED = 1
@DEFAULT = 16

)
MODE_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
PLU_MODE_SESSION_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,32767

532 System Management Programming

 MODE

@REQUIRED = 1
@DEFAULT = 32

)
RECEIVE_PACING_WINDOW = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,63
@REQUIRED = 1
@DEFAULT = 1

)
)

*The end of Complex Keyword MODE

 MODE Sample
The following are samples of the MODE keyword.

MODE=(
 MODE_NAME=BLANK
 AUTO_ACT=0
 COS_NAME=#CONNECT
 CRYPTOGRAPHY=NONE
 DEFAULT_RU_SIZE=1
 MAX_NEGOTIABLE_SESSION_LIMIT=8
 MAX_RU_SIZE_UPPER_BOUND=1024
 MIN_CONWINNERS_SOURCE=4
 PLU_MODE_SESSION_LIMIT=8
 RECEIVE_PACING_WINDOW=3
)
MODE=(
 MODE_NAME=#INTER
 AUTO_ACT=0
 COS_NAME=#INTER
 CRYPTOGRAPHY=NONE
 DEFAULT_RU_SIZE=1
 MAX_NEGOTIABLE_SESSION_LIMIT=8
 MAX_RU_SIZE_UPPER_BOUND=4096
 MIN_CONWINNERS_SOURCE=4
 PLU_MODE_SESSION_LIMIT=8
 RECEIVE_PACING_WINDOW=20
)

 Chapter 16. ASCII Configuration Keywords 533

 PARTNER_LU

 PARTNER_LU
The PARTNER_LU keyword relates to the DEFINE_PARTNER_LU verb. See
“DEFINE_PARTNER_LU” on page 91 for a description of each field.

PARTNER_LU = (
ADJACENT_CP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
CONV_SECURITY_VERIFICATION = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 1

)
FQ_PLU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@REQUIRED = 1
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
MAX_MC_LL_SEND_SIZE = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 1,32767
@DEFAULT = 32767

)
PARALLEL_SESSION_SUPPORT = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 1

)
PARTNER_LU_ALIAS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
PREFERENCE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NATIVE = 0
NONNATIVE = 1
NATIVE_THEN_NONNATIVE = 2
NONNATIVE_THEN_NATIVE = 3
USE_DEFAULT_PREFERENCE = 255

)
@REQUIRED = 1
@DEFAULT = USE_DEFAULT_PREFERENCE

)
)

*The end of Complex Keyword PARTNER_LU

 PARTNER_LU Sample
The following is a sample of the PARTNER_LU keyword.

PARTNER_LU=(
 FQ_PLU_NAME=USIBMNM.DLURSRV
 CONV_SECURITY_VERIFICATION=1
 MAX_MC_LL_SEND_SIZE=32767
 PARALLEL_SESSION_SUPPORT=1

534 System Management Programming

 PARTNER_LU

 PARTNER_LU_ALIAS=DLURSRV
 PREFERENCE=USE_DEFAULT_PREFERENCE
)

 Chapter 16. ASCII Configuration Keywords 535

 TP

 TP
The TP keyword relates to the DEFINE_TP verb. See “DEFINE_TP” on page 101
for a description of each field.

TP = (
 API_CLIENT_USE (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
CONVERSATION_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
BASIC = 0
MAPPED = 1
EITHER = 2

)
@REQUIRED = 1
@DEFAULT = EITHER

)
DUPLEX_SUPPORT = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
HALF_DUPLEX = 0
FULL_DUPLEX = 1
EITHER_DUPLEX = 2

)
@REQUIRED = 1
@DEFAULT = EITHER_DUPLEX

)
DYNAMIC_LOAD = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
INCOMING_ALLOCATE_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,65535
@REQUIRED = 1
@DEFAULT = 30

)
LOAD_TYPE = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
PARAMETERS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,32

)
PATHNAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,80

)
PIP_ALLOWED = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1

536 System Management Programming

 TP

@DEFAULT = 1
)

QUEUED = (
@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
RECEIVE_ALLOCATE_TIMEOUT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,65535
@REQUIRED = 1
@DEFAULT = 3600

)
SECURITY_RQD = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 1

)
SYNC_LEVEL = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONE = 0
CONFIRM_SYNC_LEVEL = 1
EITHER = 2
SYNCPT_REQUIRED = 3
SYNCPT_NEGOTIABLE = 4

)
@REQUIRED = 1
@DEFAULT = EITHER

)
TP_INSTANCE_LIMIT = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,65535
@REQUIRED = 1
@DEFAULT = 0

)
TP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,64
@REQUIRED = 1

)
TP_NAME_FORMAT = (

@TYPE = BOOLEANKEYWORD
@REQUIRED = 1
@DEFAULT = 0

)
)

*The end of Complex Keyword TP

 TP Sample
The following is a sample of the TP keyword.

 Chapter 16. ASCII Configuration Keywords 537

 TP

TP=(
 TP_NAME=MYTP
 CONVERSATION_TYPE=EITHER
 DUPLEX_SUPPORT=EITHER_DUPLEX
 DYNAMIC_LOAD=1
 INCOMING_ALLOCATE_TIMEOUT=30
 LOAD_TYPE=0
 PATHNAME=d:\tps\mytp.exe
 PIP_ALLOWED=1
 QUEUED=0
 RECEIVE_ALLOCATE_TIMEOUT=3600
 SECURITY_RQD=1
 SYNC_LEVEL=EITHER
 TP_INSTANCE_LIMIT=0
)

538 System Management Programming

 CPIC_SIDE_INFO

 CPIC_SIDE_INFO
The CPIC_SIDE_INFO keyword relates to the DEFINE_CPIC_SIDE_INFO verb.
See “DEFINE_CPIC_SIDE_INFO” on page 449 for a description of each field.

CPIC_SIDE_INFO = (
CONVERSATION_SECURITY_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
NONE = 0
SAME = 1
PROGRAM = 2
STRONG = 5

)
@DEFAULT = NONE

)
MODE_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8

)
PARTNER_LU_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,17
@REQUIRED = 1
@COMPLETE_SYNTAX = %FULLY_QUALIFIED_SNA_TYPE_A%

)
SECURITY_PASSWORD = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,10

)
SECURITY_USER_ID = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,10

)
SYM_DEST_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
TP_NAME = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,64

)
TP_NAME_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
APPLICATION_TP = 0
SNA_SERVICE = 1

)
@REQUIRED = 1
@DEFAULT = APPLICATION_TP

)
USER_DATA = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,32

)
)

 Chapter 16. ASCII Configuration Keywords 539

 CPIC_SIDE_INFO

*The end of Complex Keyword CPIC_SIDE_INFO

 CPIC_SIDE_INFO Sample
The following is a sample of the CPIC_SIDE_INFO keyword.

CPIC_SIDE_INFO=(
 SYM_DEST_NAME=APINGD
 CONVERSATION_SECURITY_TYPE=NONE
 MODE_NAME=#INTER
 PARTNER_LU_NAME=USIBMNM.PARTNER1
 TP_NAME=APINGD
 TP_NAME_TYPE=APPLICATION_TP
)

540 System Management Programming

 LU_LU_PASSWORD

 LU_LU_PASSWORD
The LU_LU_PASSWORD keyword relates to the DEFINE_LU_LU_PASSWORD
verb. See “DEFINE_LU_LU_PASSWORD” on page 434 for a description of each
field.

The LU_PAIR keyword value is composed of the local LU name and fully qualified
partner LU name separated by a comma.

LU_LU_PASSWORD = (
LU_PAIR = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,24
@REQUIRED = 1
@COMPLETE_SYNTAX = @SEG(1, (,), %SNA_TYPE_A% && @LENGTH<=8)
&& @SEG(2,(,), %FULLY_QUALIFIED_SNA_TYPE_A%)

)
PASSWORD = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,8
@REQUIRED = 1

)
)

*The end of Complex Keyword LU_LU_PASSWORD

 LU_LU_PASSWORD Sample
The following is a sample of the LU_LU_PASSWORD keyword.

LU_LU_PASSWORD=(
 LU_PAIR=NT265,USIBMNM.PARTLU
 PASSWORD=460C7761C854E0E6
)

 Chapter 16. ASCII Configuration Keywords 541

 USERID_PASSWORD

 USERID_PASSWORD
The USERID_PASSWORD keyword relates to the DEFINE_USERID_PASSWORD
verb. See “DEFINE_USERID_PASSWORD” on page 436 for a description of each
field.

USERID_PASSWORD = (
PASSWORD = (

@TYPE = HEXSTRINGKEYWORD
@FIELD_LENGTH = 1,10
@REQUIRED = 1

)
USER_ID = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,10
@REQUIRED = 1
@COMPLETE_SYNTAX = %SNA_TYPE_A%

)
)

*The end of Complex Keyword USERID_PASSWORD

 USERID_PASSWORD Sample
The following is a sample of the USERID_PASSWORD keyword.

USERID_PASSWORD=(
 USER_ID=MYUSER
 PASSWORD=A098C824DC22B856748B
)

542 System Management Programming

 ANYNET_COMMON_PARAMETERS

 ANYNET_COMMON_PARAMETERS
See Communications Server Online Help for field descriptions of the
ANYNET_COMMON_PARAMETERS keyword.

ANYNET_COMMON_PARAMETERS = (
CONNWAIT_SECS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = 30

)
CONN_RETRY_SECS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = 300

)
DG_IDLE_TIMEOUT = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = 90

)
INACTIVITY_TIMER_SECS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = 30

)
SNASUFFIX = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = SNA.IBM.COM

)
SNA_IP_NODE_TYPE = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = 1

)
UNACKED_DG_RETRY_SECS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = 10

)
UNSENT_DG_RETRY_SECS = (

@TYPE = STRINGKEYWORD
@FIELD_LENGTH = 1,257
@DEFAULT = 3

)
)

*The end of Complex Keyword ANYNET_COMMON_PARAMETERS

 ANYNET_COMMON_PARAMETERS Sample
The following is a sample of the ANYNET_COMMON_PARAMETERS keyword.

ANYNET_COMMON_PARAMETERS=(
 CONNWAIT_SECS=30
 CONN_RETRY_SECS=300
 DG_IDLE_TIMEOUT=90
 INACTIVITY_TIMER_SECS=30

 Chapter 16. ASCII Configuration Keywords 543

 ANYNET_COMMON_PARAMETERS

 SNASUFFIX=SNA.IBM.COM
 SNA_IP_NODE_TYPE=1
 UNACKED_DG_RETRY_SECS=10
 UNSENT_DG_RETRY_SECS=3
)

544 System Management Programming

 ANYNET_SOCKETS_OVER_SNA

 ANYNET_SOCKETS_OVER_SNA
See Communications Server Online Help for field descriptions of the
ANYNET_SOCKETS_OVER_SNA keyword.

ANYNET_SOCKETS_OVER_SNA = (
CLASSA_ADDRESS = (

@TYPE = STRINGKEYWORD
)

DEFAULT_MODE = (
@TYPE = STRINGKEYWORD

)
DOMAIN_NAME = (

@TYPE = STRINGKEYWORD
)

DOMAIN_NAME_SERVER_ADDRESS = (
@TYPE = STRINGKEYWORD
@MERGE_SIMPLE_KEYWORDS = 0

)
GW_ADAPTER_CONFIG_REQUIRED = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = NO

)
HOST_NAME = (

@TYPE = STRINGKEYWORD
)

INTERFACE = (
INTERFACE_NAME = (

@TYPE = STRINGKEYWORD
)

IP_ADDRESS = (
@TYPE = STRINGKEYWORD

)
SUBNET_MASK = (

@TYPE = STRINGKEYWORD
)
)

*The end of Complex Keyword INTERFACE

IP_TO_LU_MAPPING = (
IP_ADDRESS = (

@TYPE = STRINGKEYWORD
)

LU_NAME = (
@TYPE = STRINGKEYWORD

)
MAPPING_TYPE = (

@TYPE = ENUMKEYWORD
@ENUM_LIST = (
GENERATED = 0
EXPLICITE = 1

)
@DEFAULT = GENERATED

)

NETID = (

 Chapter 16. ASCII Configuration Keywords 545

 ANYNET_SOCKETS_OVER_SNA

@TYPE = STRINGKEYWORD
)

SUBNET_MASK = (
@TYPE = STRINGKEYWORD

)
)

*The end of Complex Keyword IP_TO_LU_MAPPING

PORT_TO_MODE_MAPPING = (
MODE_NAME = (

@TYPE = STRINGKEYWORD
)

PORT_NUMBER = (
@TYPE = UNSIGNEDNUMBERKEYWORD

)
)
*The end of Complex Keyword PORT_TO_MODE_MAPPING

ROUTE_ENTRY = (
DESTINATION_ADDRESS = (

@TYPE = STRINGKEYWORD
)

DESTINATION_MASK = (
@TYPE = STRINGKEYWORD

)
DIRECT_CONNECTION = (

@TYPE = BOOLEANKEYWORD
@DEFAULT = 0

)
ROUTER_ADDRESS = (

@TYPE = STRINGKEYWORD
)

ROUTE_TYPE = (
@TYPE = ENUMKEYWORD
@ENUM_LIST = (
DEFAULT = 0
HOST = 1
NETWORK = 2

)
)
)

*The end of Complex Keyword ROUTE_ENTRY

)

*The end of Complex Keyword ANYNET_SOCKETS_OVER_SNA

 ANYNET_SOCKETS_OVER_SNA Sample
The following are samples of the ANYNET_SOCKETS_OVER_SNA keyword.

ANYNET_SOCKETS_OVER_SNA=(
 CLASSA_ADDRESS=125.0.0.0
 DEFAULT_MODE=BLANK
 GW_ADAPTER_CONFIG_REQUIRED=0
 INTERFACE=(

546 System Management Programming

 ANYNET_SOCKETS_OVER_SNA

 INTERFACE_NAME=sna0
 IP_ADDRESS=9.37.54.3
 SUBNET_MASK=255.0.0.0
)
 IP_TO_LU_MAPPING=(
 IP_ADDRESS=9.37.54.3
 LU_NAME=ANY
 MAPPING_TYPE=GENERATED
 NETID=USIBMNM
 SUBNET_MASK=255.0.0.0
)
 PORT_TO_MODE_MAPPING=(
 MODE_NAME=#BATCH
 PORT_NUMBER=5
)
 ROUTE_ENTRY=(
 DESTINATION_ADDRESS=0.0.0.0
 DESTINATION_MASK=0.0.0.0
 DIRECT_CONNECTION=0
 ROUTER_ADDRESS=9.67.10.3
 ROUTE_TYPE=DEFAULT
)
)

 Chapter 16. ASCII Configuration Keywords 547

 VERIFY

 VERIFY
The VERIFY keyword is required for product configuration. This keyword should
not be modified or deleted by the user.

VERIFY = (
CFG_MODIFICATION_LEVEL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,100

)
CFG_VERSION_LEVEL = (

@TYPE = UNSIGNEDNUMBERKEYWORD
@RANGE = 0,10

)
)

*The end of Complex Keyword VERIFY

 VERIFY Sample
The following is a sample of the VERIFY keyword.

VERIFY=(
 CFG_MODIFICATION_LEVEL=12
 CFG_VERSION_LEVEL=1
)

Other Verb Structures for Supported Keywords
The following verbs have not been previously documented in this book, but are
referenced in this chapter.

548 System Management Programming

 START_NODE

 START_NODE
The START_NODE verb starts the node using the CP create parameters specified.

Note: There are other reserved fields not included in this description.

 VCB Structure
typedef struct start_node
{

unsigned short opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* format */

unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
CP_CREATE_PARMS cp_create_parms; /* mode name */

} START_NODE;

typedef struct cp_create_parms
{

unsigned char node_type; /* node type */
unsigned char fqcp_name[17]; /* fully qualified CP name */
unsigned char cp_alias[8]; /* CP alias */
unsigned char node_id[4]; /* node ID */
unsigned char reg_with_nn; /* register resources with NNS */
unsigned char reg_with_cds; /* resource registration with CDS */
unsigned char hpr_support; /* level of HPR support */
unsigned char discovery_support; /* is Discovery supported? */

 unsigned char discovery_group_name[8];
/* Group name for Discovery */

unsigned char default_preference /* default routing preference */
unsigned char anynet_supported; /* level of AnyNet support */

} CP_CREATE_PARMS;

 Supplied Parameters
The application supplies the following parameters:

opcode AP_START_NODE

format Identifies the format of the VCB. Set this field to zero to
specify the version of the VCB listed above.

cp_create_parms.node_type
One of the following node types.

AP_END_NODE
AP_NETWORK_NODE
AP_LEN_NODE

cp_create_parms.fqcp_name
Node's fully qualified (17 bytes long) control point name.
This name is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded
with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

 Chapter 16. ASCII Configuration Keywords 549

 START_NODE

cp_create_parms.cp_alias
Locally used CP alias. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and
must be set.

cp_create_parms.reg_with_nn
End Node only. Specifies whether resources will be
registered with the Network Node Server (AP_YES or
AP_NO). If this field is set to AP_YES, then the end node's
network node server only forwards directed locates to it. If it
is not set, the network node server forwards all broadcast
searches to the end node. Registration failure does not
affect successful completion of the START_NODE verb.

cp_create_parms.reg_with_cds
End Node. Specifies whether the Network Node Server is
allowed to register End Node resources with a Central
Directory Server (AP_YES or AP_NO). (This field is ignored
if reg_with_nn is set to AP_NO.)

Network Node. Specifies whether local or domain resources
can be optionally registered with Central Directory Server
(AP_YES or AP_NO). Registration failure does not affect
successful completion of the START_NODE verb.

cp_create_parms.hpr_support
Specifies the level of support for HPR that should be
provided by the node (AP_NODE, AP_BASE or AP_RTP).

cp_create_parms.discovery_support
Specifies whether Discovery functions are to be utilized by
this node.

AP_NO
No Discovery functions are to be used by this node.

AP_YES
Discovery functions are to be used by this node. Only ports
which support Discovery are used in sending and receiving
searches. (see DEFINE_PORT).

If node_type is AP_END_NODE, then Discovery client
function is used to try to dynamically configure and activate a
link to a Network node server when necessary.

If node_type is AP_NETWORK_NODE, then Discovery
server function is used to respond to searches from clients.

cp_create_parms.discovery_group_name
Specifies the group name to be used on Discovery functions
utilized by the node. If this field is set to all zeroes, then the
default group name is used.

cp_create_parms.default_preference
Specifies the preferred method of routing when initiating
sessions to partner LUs for which
AP_USE_DEFAULT_PREFERENCE is specified. (See
DEFINE_PARTNER_LU). This field can take the following
values:

550 System Management Programming

 START_NODE

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use non-native (AnyNet) protocols only.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located then retry session activation using non-native
(AnyNet) protocols.

AP_NONNATIVE_THEN_NATIVE
Try non-native (AnyNet) protocols, and if the partner LU
cannot be located then retry session activation using native
(APPN) protocols.

Note: The latter three values are only meaningful when an
AnyNet DLC is available to the Node Operator
Facility, and there is an AnyNet link station defined.
(See Defined_LS).

cp_create_parms.anynet_supported
Specifies the level of support for the Anynet DLC. This field
can take the following values:

AP_NONE
No ANYNET function is supported. The field
default_preference must take the value AP_NATIVE.

AP_ACCESS_NODE
This node supports ANYNET access node functions.

AP_GATEWAY
This node supports ANYNET gateway functions. This value
is only valid if node_type is AP_NETWORK_NODE.

 Returned Parameters
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc AP_OK

If the verb does not execute because of a parameter error, Communications Server
returns the following parameters:

primary_rc AP_PARAMETER_CHECK

secondary_rc AP_INVALID_ISR_THRESHOLDS

AP_INVALID_CP_NAME
AP_INVALID_NODE_TYPE
AP_INVALID_PU_CONC_NOT_SUPPORTED
AP_INVALID_DLUR_NOT_SUPPORTED
AP_INVALID_HPR_NOT_SUPPORTED
AP_INVALID_ANYNET_NOT_SUPPORTED

If the verb does not execute because the node is stopping, Communications Server
returns the following parameter:

primary_rc AP_NODE_STOPPING

 Chapter 16. ASCII Configuration Keywords 551

 START_NODE

If the verb does not execute because of a system error, Communications Server
returns the following parameter:

primary_rc AP_UNEXPECTED_SYSTEM_ERROR

552 System Management Programming

Appendix A. IBM APPN MIB Tables

The following table gives details on implementing the tables from the IBM APPN
management information block (MIB), as defined by RFC1593. The table defines:

¹ Node Operator Facility QUERY verb used to implement each MIB table
¹ Input parameter settings
¹ Any filtering operations required

(The mapping between the returned parameters and the MIB tables variables can
be derived from the definition of the Node Operator Facility QUERY verbs).
Communications Server does not currently support the
ibmappnNodePortDlcTraceTable and the ibmappnLsStatusTable MIB tables.

IBM MIB Table
Node Operator Facility Verb and MIB
Table Variables Input Parameter Settings

ibmappnNodePortTable QUERY_PORT port_name ibmappnNodePortName

ibmappnNodePortIpTable (Note 1)

ibmappnNodePortDlsTable

QUERY_PORT

(select entries with
dlc_type of AP_SDLC)

port_name

 ibmappnNodePortDlsName

ibmappnNodePortTrTable QUERY_PORT port_name ibmappnNodePortTrName

ibmappnNodeLsTable QUERY_LS ls_name ibmappnNodeLsName

ibmappnNodeLsIpTable (Note 1)

ibmappnNodeLsDlsTable

QUERY_LS

(select entries with
dlc_type of AP_SDLC) ls_name ibmappnNodeLsDlsName

ibmappnNodeLsTrTable QUERY_LS ls_name ibmappnNodeLsTrName

ibmappnNnTopoRouteTable QUERY_COS cos_name ibmappnNnTopoRouteCos

ibmappnNnAdjNodeTable QUERY_ADJACENT_NN

adj_nncp_name

 ibmappnNnAdjNodeAdjName

ibmappnNnTopologyTable QUERY_NN_TOPOLOGY_NODE

node_name ibmappnNnNodeName
node_type AP_LEARN_NODE
frsn 0

ibmappnNnTgTopologyTable QUERY_NN_TOPOLOGY_TG

owner ibmappnNnTgOwner
owner_type AP_LEARN_NODE
dest ibmappnNnTgDest
dest_type AP_LEARN_NODE
tg_num ibmappnNnTgNum
frsn 0

ibmappnNnTopologyFRTable QUERY_NN_TOPOLOGY_NODE

node_name ibmappnNnFRNode
node_type AP_LEARN_NODE
frsn ibmappnNnFRFrsn

ibmappnNnTgTopologyFRTable QUERY_NN_TOPOLOGY_TG

owner ibmappnNnTgFROwner
owner_type AP_LEARN_NODE
dest ibmappnNnTgFRDest
dest_type AP_LEARN_NODE
tg_num ibmappnNnTgFRNum
frsn ibmappnNnTgFRFrsn

ibmappnLocalTgTable QUERY_LOCAL_TOPOLOGY

dest ibmappnLocalTGDest
dest_type AP_LEARN_NODE
tg_num ibmappnLocalTgNum

 Copyright IBM Corp. 1989, 1997 553

IBM MIB Table
Node Operator Facility Verb and MIB
Table Variables Input Parameter Settings

ibmappnLocalEnTable

QUERY_LOCAL_TOPOLOGY

(select entries with
unique dest) (Note 2)

dest ibmappnLocalEnName
dest_type AP_END_NODE
dest_type AP_LEARN_NODE

ibmappnLocalEnTgTable QUERY_LOCAL_TOPOLOGY (Note 3)

dest ibmappnLocalEnTgOrigin
dest_type AP_LEARN_NODE
tg_num ibmappnLocalEnTgNum

ibmappnDirTable QUERY_DIRECTORY_LU lu_name ibmappnDirLuName

ibmappnCosModeTable QUERY_MODE_TO_COS_MAPPING mode_name ibmappnCosModeName

ibmappnCosNameTable QUERY_COS cos_name ibmappnCosName

Notes:

1. Communications Server does not support IP as a DLC type.

2. Entries with the same dest are ordered consecutively by
QUERY_LOCAL_TOPOLOGY.

3. The ibmappnLocalEnTgTable views TGs from the attached end node's
perspective (that is, as a TG from the end node). However, a network node
compliant with the current level of the APPN architecture only stores end node
TG information for TGs between itself and directly attached end nodes.
Therefore all the entries in this table have ibmappnLocalEnTgDest set to the
name of the local node (ibmappnNodeCpName).

554 System Management Programming

 Glossary

This glossary includes terms and definitions from:

¹ The American National Standard Dictionary for
Information Systems , ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by the symbol (A) after the
definition.

¹ The ANSI/EIA Standard—440-A, Fiber Optic
Terminology Copies may be purchased from the
Electronic Industries Association, 2001
Pennsylvania Avenue, N.W., Washington, DC
20006. Definitions are identified by the symbol (E)
after the definition.

¹ The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

¹ The IBM Dictionary of Computing , New York:
McGraw-Hill, 1994.

¹ Internet Request for Comments: 1208, Glossary of
Networking Terms

¹ Internet Request for Comments: 1392, Internet
Users' Glossary

¹ The Object-Oriented Interface Design: IBM
Common User Access Guidelines , Carmel, Indiana:
Que, 1992.

The following cross-references are used in this
glossary:

Contrast with: This refers to a term that has an
opposed or substantively different meaning.
Synonym for: This indicates that the term has the
same meaning as a preferred term, which is defined in
its proper place in the glossary.
Synonymous with: This is a backward reference from
a defined term to all other terms that have the same
meaning.
See: This refers the reader to multiple-word terms that
have the same last word.
See also: This refers the reader to terms that have a
related, but not synonymous, meaning.
Deprecated term for: This indicates that the term
should not be used. It refers to a preferred term, which
is defined in its proper place in the glossary.

A
accept . (1) In a VTAM application program, to
establish a session with a logical unit (LU) in response
to a CINIT request from a system services control point
(SSCP). The session-initiation request may begin when
a terminal user logs on, a VTAM application program
issues a macroinstruction, or a VTAM operator issues a
command. See also acquire. (2) An SMP process that
moves distributed code and MVS-type programs to the
distribution libraries.

ACCESS. In the Simple Network Management
Protocol (SNMP), the clause in a Management
Information Base (MIB) module that defines the
minimum level of support that a managed node
provides for an object.

ACF. Advanced Communications Function.

ACF/VTAM . Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VTAM.

acknowledgment . (1) The transmission, by a
receiver, of acknowledge characters as an affirmative
response to a sender. (T) (2) An indication that an
item sent was received.

acquire . (1) In VTAM, to take over resources that
were formerly controlled by an access method in
another domain or to resume control of resources that
were controlled by that domain but released. Contrast
with release. See also resource takeover. (2) In a
VTAM application program, to initiate and establish a
session with another logical unit (LU). The acquire
process begins when the application program issues a
macroinstruction. See also accept.

activate . To make a resource ready to perform its
function. Contrast with deactivate.

active . (1) Operational. (2) Pertaining to a node or
device that is connected or is available for connection to
another node or device. (3) The state of a resource
when it has been activated and is operational.

active application . The application subsystem
currently in an extended recovery facility (XRF) session
with a terminal user. See alternate application.

ACTLU . Activate logical unit. In SNA, a command
used to start a session on a logical unit.

 Copyright IBM Corp. 1989, 1997 555

ACTPU. Activate physical unit. In SNA, a command
used to start a session on a physical unit.

adapter . (1) A hardware component that must be
installed in the personal computer to connect to the
SDLC, LAN, asynchronous, DFT, or other
communication attachment (possibly connecting through
a modem). (2) A part that electrically or physically
connects a device to a computer or to another device.

adaptive pacing . Synonym for adaptive session-level
pacing.

adaptive session-level pacing . A form of
session-level pacing in which session components
exchange pacing windows that may vary in size during
the course of a session. This allows transmission within
a network to adapt dynamically to variations in
availability and demand of buffers on a
session-by-session basis. Session-level pacing occurs
within independent stages along the session path
according to local congestion at the intermediate and
endpoint nodes. Synonymous with adaptive pacing and
adaptive session pacing. Contrast with fixed
session-level pacing.

adaptive session pacing . Synonym for adaptive
session-level pacing.

address . In data communication, the unique code
assigned to each device, workstation, or user connected
to a network.

address space . (1) A set of addresses used to
uniquely identify network accessible units, sessions,
adjacent link stations, and links in a node for each
network in which the node participates. An APPN node
has one address space for intranode routing and one
for each transmission group on which it can send
message units. (2) In MPTN architecture, the set of all
legal transport addresses that may be formed according
to the rules of a given address type. These rules
include the maximum number of characters that can be
in the address and the permissible characters. Each
transport protocol has its own set of rules. Since
addresses in one protocol may also be legitimate in
another protocol, MTPN qualifies all transport addresses
with an address type.

adjacent link station (ALS) . (1) In SNA, a link station
directly connected to a given node by a link connection
over which network traffic can be carried.

Note: Several secondary link stations that share a link
connection do not exchange data with each
other and therefore are not adjacent to each
other.

(2) With respect to a specific node, a link station
partner in an adjacent node.

adjacent nodes . Two nodes connected together by at
least one path that connects no other node. (T)

Administrative Domain . A collection of hosts and
routers, and the interconnecting networks, managed by
a single administrative authority.

Advanced Communications Function (ACF) . A
group of IBM licensed programs, principally VTAM,
TCAM, NCP, and SSP, that use the concepts of
Systems Network Architecture (SNA), including
distribution of function and resource sharing.

Advanced Peer-to-Peer Networking (APPN) . An
extension to SNA featuring (a) greater distributed
network control that avoids critical hierarchical
dependencies, thereby isolating the effects of single
points of failure; (b) dynamic exchange of network
topology information to foster ease of connection,
reconfiguration, and adaptive route selection; (c)
dynamic definition of network resources; and (d)
automated resource registration and directory lookup.
APPN extends the LU 6.2 peer orientation for end-user
services to network control and supports multiple LU
types, including LU 2, LU 3, and LU 6.2.

Advanced Peer-to-Peer Networking (APPN) end
node . A node that provides a broad range of end-user
services and supports sessions between its local control
point (CP) and the CP in an adjacent network node. It
uses these sessions to dynamically register its
resources with the adjacent CP (its network node
server), to send and receive directory search requests,
and to obtain management services. An APPN end
node can also attach to other end nodes.

Advanced Peer-to-Peer Networking (APPN)
network . A collection of interconnected network
nodes and their client end nodes.

Advanced Peer-to-Peer Networking (APPN) network
node . A node that offers a broad range of end-user
services and that can provide the following:

¹ Distributed directory services, including registration
of its domain resources to a central directory server

¹ Topology database exchanges with other APPN
network nodes, enabling network nodes throughout
the network to select optimal routes for LU-LU
sessions based on requested classes of service

¹ Session services for its local LUs and client end
nodes

¹ Intermediate routing services within an APPN
network

Advanced Peer-to-Peer Networking (APPN) node .
An APPN network node or an APPN end node.

advanced program-to-program communication
(APPC). (1) (2) An LU 6.2 logical unit protocol
implementation of SNA that lets interconnected systems

556 System Management Programming

share programming tasks. The general facility
characterizing the LU 6.2 architecture and its various
implementations in products. (3) Sometimes used to
refer to the LU 6.2 architecture and its product
implementations as a whole, or to an LU 6.2 product
feature in particular, such as an APPC application
programming interface.

AIX. Advanced Interactive Executive.

alert . (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. (2) In SNA management services
(SNA/MS), a high priority event that warrants immediate
attention.

alert focal point . The system in a network that
receives and processes (logs, displays, and optionally
forwards) alerts. An alert focal point is a subset of a
problem management focal point.

allocate . (1) An LU 6.2 application programming
interface (API) verb used to assign a session to a
conversation for the conversation's use. (2) Contrast
with deallocate.

all points addressable (APA) . In computer graphics,
pertaining to the ability to address and display or not
display each picture element (pel) on a display surface.

Already-Verified indicator . An indication in the Attach
function management header that a conversation
request on a session between two logical units is being
sent with a user ID, but without a password, because
the ID-password confirmation has already been verified.

ALS . Adjacent link station.

alternate application . The subsystem that is prepared
to take over a particular active application’s extended
recovery facility (XRF) sessions with terminal users in
case the application fails. See active application.

AND operation . Synonym for conjunction.

ANR. Automatic network routing.

any-mode . In VTAM, the following:

¹ The form of a RECEIVE request that obtains input
from any one (unspecified) session

¹ The form of an ACCEPT request that completes the
establishment of a session by accepting any one
(unspecified) queued CINIT request.

Contrast with specific-mode. See continue-any mode.

AP. Alternate printer.

APA . All points addressable.

API. Application programming interface.

APPC. Advanced program-to-program communication.

APPL . Application program.

application . A collection of software components used
to perform specific types of user-oriented work on a
computer.

application program . (1) A program written for or by
a user that applies to the user's work, such as a
program that does inventory control or payroll. (2) A
program used to connect and communicate with
stations in a network, enabling users to perform
application-oriented activities.

application programming interface (API) . (1) (2) A
defined programming language interface between an
IBM system control program or an IBM-licensed
program and the program user. The set of
programming language constructs or statements that
can be coded in an application program to obtain the
specific functions and services provided by an
underlying operating system or service program. (3) In
VTAM, the language structure used in control blocks so
that application programs can reference them and be
identified to VTAM.

application transaction program . A program written
for or by a user to process the user's application; in an
SNA network, a user of a type 6.2 logical unit. Contrast
with service transaction program.

Apply . A push button that carries out the selected
choices in a window without closing the window.

APPN. Advanced Peer-to-Peer Networking.

APPN end node . See Advanced Peer-to-Peer
Networking (APPN) end node.

APPN network . See Advanced Peer-to-Peer
Networking (APPN) network.

APPN network node . See Advanced Peer-to-Peer
Networking (APPN) network node.

APPN node . See Advanced Peer-to-Peer Networking
(APPN) node.

argument . A parameter passed between a calling
program and a called program.

ASCII (American National Standard Code for
Information Interchange) . The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters. (A)

 Glossary 557

asynchronous (ASYNC) . (1) Pertaining to two or
more processes that do not depend upon the
occurrence of specific events such as common timing
signals. (T) (2) Without regular time relationship;
unexpected or unpredictable with respect to the
execution of program instructions.

asynchronous operation . Simultaneous operations of
software or hardware. In software, an operation, such
as a request for session establishment or data transfer,
in which the application program is allowed to continue
execution while the operation is performed. The access
method informs the application program after the
operation is completed. Contrast with synchronous
operation.

asynchronous request . In VTAM, a request for an
asynchronous operation. Contrast with synchronous
request.

asynchronous transfer mode (ATM) . A transfer
mode in which the information is organized into cells; it
is asynchronous in the sense that the recurrence of
cells containing information from an individual user is
not necessarily periodic.

ATM. Asynchronous transfer mode.

attach . (1) In programming, to create a task that can
be executed asynchronously with the execution of the
mainline code. (2) To connect a device logically to a
ring network.

attachment . A communication link used by
Communications Server to connect a personal computer
to a host system, consisting of an adapter and
controlling software.

automatic network routing (ANR) . In
High-Performance Routing (HPR), a highly efficient
routing protocol that minimizes cycles and storage
requirements for routing network layer packets through
intermediate nodes on the route.

autotask . (1) An unattended NetView operator station
task that does not require a terminal or a logged-on
user. Autotasks can run independently of VTAM and
are typically used for automated console operations.
(2) Contrast with logged-on operator.

available . In VTAM, pertaining to a logical unit that is
active, connected, enabled, and not at its session limit.

available time . From the point of view of a user, the
time during which a functional unit can be
used. (I) (A)

B
back-level . Pertaining to an earlier release of an IBM
product, which may not support a particular, current
function.

backup focal point . A focal point that provides
management services support for a particular category
for a node in the event of a communications failure with
the primary focal point. Both assigned focal points
(explicit and implicit) and default focal points can have
backup counterparts. Contrast with primary focal point.

basic conversation . An LU 6.2 conversation type
specified by the allocating transaction program.
Transaction programs using basic conversation have
available to them a wider variety of LU 6.2 functions,
but they are responsible for more of their own error
recovery and must manage details of the data stream
used on the conversation. Contrast with mapped
conversation.

basic transmission unit (BTU) . (1) In SNA, the unit
of data and control information passed between path
control components. A BTU can consist of one or more
path information units (PIUs). (2) See also blocking of
PIUs.

bid . In the contention form of invitation or selection, an
attempt by the computer or by a station to gain control
of a line in order to transmit data.

bidder . See bidder session.

bidder session . The half-session defined at session
activation as having to request and receive permission
from the other half-session to begin a bracket. Contrast
with first-speaker session. Synonym for
contention-loser session.

binary . Pertaining to the base two system of numbers.
The binary digits are 0 and 1. Executable files are
generally in binary format rather than the character
string format that text files are composed of.

BIND. In SNA, a request to activate a session between
two logical units (LUs). See also session activation
request. Contrast with UNBIND.

BIND pacing . A technique by which the address
space manager (ASM) at one node controls the rate of
transmission of BIND requests of a sending ASM at
another node. BIND pacing can be used to prevent
BIND standoff, in which each of two nodes has
reserved most of its resources for sessions it is
attempting to initiate through the other and thus rejects
any BINDs received from the other.

bis . German (Federal Republic) preliminary standard.

558 System Management Programming

bit . Either of the digits 0 or 1 when used in the binary
numeration system. (T)

BIU segment . In SNA, the portion of a basic
information unit (BIU) that is contained within a path
information unit (PIU). It consists of either (a) a
request/response header (RH) followed by all or a part
of a request/response unit (RU) or (b) a part of an RU.
Synonymous with segment.

block . A string of data elements recorded or
transmitted as a unit. The elements may be characters,
words, or physical records. (T)

blocking of PIUs . In SNA, an optional function of path
control that combines multiple path information units
(PIUs) in a single basic transmission unit (BTU).

Note: When blocking is not done, a BTU consists of
one PIU.

boundary function (BF) . (1) In SNA, a capability of a
subarea node to provide protocol support for attached
peripheral nodes, such as: (a) interconnecting subarea
path control and peripheral path control elements, (b)
performing session sequence numbering for
low-function peripheral nodes, and (c) providing
session-level pacing support. (2) In SNA, the
component that provides these capabilities.

bracket protocol . In SNA, a data flow control
protocol in which exchanges between two session
partners are achieved through the use of brackets, with
one partner designated at session activation as the first
speaker and the other as the bidder. The bracket
protocol involves bracket initiation and termination rules.

broadcast . (1) Transmission of the same data to all
destinations. (T) (2) Simultaneous transmission of data
to more than one destination. (3) Contrast with
multicast.

broadcast Locate search . Synonym for broadcast
search.

broadcast search . The simultaneous propagation of
a search request to all network nodes in an APPN
network. This type of search may be used when the
location of a resource is unknown to the requester.
Contrast with directed search. Synonymous with
broadcast Locate search.

BTU. Basic transmission unit.

buffer . (1) A routine or storage used to compensate
for a difference in rate of flow of data, or time of
occurrence of events, when transferring data from one
device to another. (A) (2) A portion of storage used
to hold input or output data temporarily.

bus . (1) A facility for transferring data between several
devices located between two end points, only one
device being able to transmit at a given moment. (T)
(2) A computer configuration in which processors are
interconnected in series.

bypass . To eliminate a station or an access unit from
a ring network by allowing the data to flow in a path
around it.

byte . (1) A string that consists of a number of bits,
treated as a unit, and representing a character. (T)
(2) A binary character operated upon as a unit and
usually shorter than a computer word. (A) (3) A
group of 8 adjacent binary digits that represent one
EBCDIC character.

C
cache . (1) A special-purpose buffer storage, smaller
and faster than main storage, used to hold a copy of
instructions and data obtained from main storage and
likely to be needed next by the processor. (T) (2) A
buffer storage that contains frequently accessed
instructions and data; it is used to reduce access time.
(3) An optional part of the directory database in network
nodes where frequently used directory information may
be stored to speed directory searches. (4) To place,
hide, or store in a cache.

call . (1) The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry
point. (I) (A) (2) In data communication, the actions
necessary to make a connection between two stations
on a switched line. (3) In communications, a
conversation between two users. (4) To transfer
control to a procedure, program, routine, or subroutine.
(5) To attempt to contact a user, regardless of whether
the attempt is successful.

calling . (1) The process of transmitting selection
signals in order to establish a connection between data
stations. (I) (A) (2) In X.25 communications,
pertaining to the location or user that makes a call.

Cancel . A push button that removes a window without
applying any changes made in that window.

card . (1) An electronic circuit board that is plugged
into a slot in a system unit. (2) A plug-in circuit
assembly. (3) See also adapter. (4) In NetView for
AIX, see event card.

case-sensitive . Pertaining to the ability to distinguish
between uppercase and lowercase letters.

CDS. (1) Control data set. (2) Configuration data set.
(3) Central directory server.

 Glossary 559

central directory . A repository for storing resource
location information centrally registered by network
nodes or cached as the result of network searches.

central directory server (CDS) . A network node that
provides a repository for information on network
resource locations; it also reduces the number of
network searches by providing a focal point for queries
and broadcast searches and by caching the results of
network searches to avoid later broadcasts for the same
information.

chain . (1) A group of logically linked user data records
processed by LU 6.2. (2) A group of request units
delimited by begin-chain and end-chain. Responses are
always single-unit chains. See RU chain.

channel . (1) A path along which signals can be sent,
for example, data channel, output channel. (A) (2) In
data communication, a means of one-way transmission.
(3) A functional unit, controlled by the processor, that
handles the transfer of data between processor storage
and local peripheral equipment.

channel-attached . (1) Pertaining to the attachment of
devices directly by input/output channels to a host
processor. (2) Pertaining to devices attached to a
controlling unit by cables, rather than by
telecommunication lines. (3) Contrast with
link-attached. (4) Synonymous with local.

character set . A finite group of characters defined for
a keyboard or output device.

child . Pertaining to a secured resource, either a file or
library, that uses the user list of a parent resource. A
child resource can have only one parent resource. A
child is a process, started by a parent process, that
shares the resources of the parent process. Contrast
with parent.

CICS. Customer Information Control System.

circuit . (1) One or more conductors through which an
electric current can flow. See physical circuit and virtual
circuit. (2) A logic device.

C language . A language used to develop software
applications in compact, efficient code that can be run
on different types of computers with minimal change.

class . (1) In object-oriented design or programming, a
group of objects that share a common definition and
that therefore share common properties, operations,
and behavior. Members of the group are called
instances of the class. (2) In the AIX operating system,
pertaining to the I/O characteristics of a device. System
devices are classified as block or character devices.

class of service (COS) . A set of characteristics (such
as route security, transmission priority, and bandwidth)

used to construct a route between session partners.
The class of service is derived from a mode name
specified by the initiator of a session.

cleanup . In SNA products, a network services request,
sent by a system services control point (SSCP) to a
logical unit (LU), that causes a particular LU-LU session
with that LU to be ended immediately without requiring
the participation of either the other LU or its SSCP.

client . (1) A functional unit that receives shared
services from a server. (T) (2) A user. (3) In an AIX
distributed file system environment, a system that is
dependent on a server to provide it with programs or
access to programs. (4) Synonymous with requester.

client/server . In communications, the model of
interaction in distributed data processing in which a
program at one site sends a request to a program at
another site and awaits a response. The requesting
program is called a client; the answering program is
called a server.

CNOS. Change number of sessions.

command . (1) A request from a terminal for the
performance of an operation or the execution of a
particular program. (2) In SNA, any field set in the
transmission header (TH), request header (RH), and
sometimes portions of a request unit (RU), that initiates
an action or that begins a protocol; for example: (a)
Bind Session (session-control request unit), a command
that activates an LU-LU session, (b) the
change-direction indicator in the RH of the last RU of a
chain, (c) the virtual route reset window indicator in an
FID4 transmission header.

command prompt . A displayed character or string of
characters that indicates that a user may enter a
command to be processed.

common operations services (COS) . The portion of
SNA management services that pertains to the major
vectors for limited remote operations control.

Common Programming Interface for
Communications (CPI-C) . An evolving application
programming interface (API), embracing functions to
meet the growing demands from different application
environments and to achieve openness as an industry
standard for communications programming. CPI-C
provides access to interprogram services such as (a)
sending and receiving data, (b) synchronizing
processing between programs, and (c) notifying a
partner of errors in the communication.

Common User Access (CUA) architecture .
Guidelines for the dialog between a human and a
workstation or terminal.

560 System Management Programming

communication management configuration host
node . The type 5 host processor in a communication
management configuration that does all network-control
functions in the network except for the control of
devices channel-attached to data hosts. Synonymous
with communication management host. Contrast with
data host node.

communication management host . Synonym for
communication management configuration host node.
Contrast with data host.

Communications Manager/2 . See Communications
Server and Communications Server product family. The
function of th e Communications Manager/2 product has
been incorporated into the Communications Server
product and the Communications Server product family.

Communications Server . An IBM licensed program
that supports the development and use of application
programs involving two or more connected systems or
workstations. The Communications Server provides
multiple concurrent connectivities using different
protocols to connect the application programs to other
systems and workstations. It supports several
application programming interfaces (APIs) that may be
called concurrently and are designed for client/server
and distributed application programs. The
Communications Server includes the necessary
interfaces for network management.

compile . (1) To translate all or part of a program
expressed in a high-level language into a computer
program expressed in an intermediate language, an
assembly language, or a machine language. (T)
(2) To prepare a machine language program from a
computer program written in another programming
language by making use of the overall logic structure of
the program, or generating more than one computer
instruction for each symbolic statement, or both, as well
as performing the function of an assembler. (A)
(3) To translate a source program into an executable
program (an object program). (4) To translate a
program written in a high-level programming language
into a machine language program.

component . Hardware or software that is part of a
functional unit.

computer . A functional unit that can perform
substantial computations, including numerous arithmetic
operations and logic operations without human
intervention during a run. In information processing, the
term computer usually describes a digital computer. A
computer may consist of a stand-alone unit or may
consist of several interconnected units. (T)

configuration . (1) The manner in which the hardware
and software of an information processing system are

organized and interconnected. (T) (2) The devices
and programs that make up a system, subsystem, or
network. (3) In Communications Server, the
arrangement of personal computers connected to one
or more host systems by one or more attachment types.
Examples are: SDLC, LAN, ASYNCH, X.25, or DFT.

configure . To describe to a system the devices,
optional features, and programs installed on the system.

congestion . See network congestion.

conjunction . The Boolean operation whose result has
the Boolean value 1 if and only if each operand has the
Boolean value 1. (I) (A) Synonymous with AND
operation.

connected . In VTAM, the state of a physical unit (PU)
or a logical unit (LU) that has an active physical path to
the host processor containing the system services
control point (SSCP) that controls the respective PU or
LU.

connection . (1) In data communication, an
association established between functional units for
conveying information. (I) (A) (2) In SNA, the
network path that links together two logical units (LUs)
in different nodes to enable them to establish
communications. (3) In TCP/IP, the path between two
protocol applications that provides reliable data stream
delivery service. In the Internet, a connection extends
from a TCP application on one system to a TCP
application on another system.

connection network . (1) A representation within an
APPN network of a shared-access transport facility
(SATF), such as a token ring, that allows nodes
identifying their connectivity to the SATF by a common
virtual routing node to communicate without having
individually defined connections to one another.
(2) Synonymous with link connection network.

connectivity . (1) The capability of a system or device
to be attached to other systems or devices without
modification. (T) (2) The capability to attach a variety of
functional units without modifying them.

contention . In a session, a situation in which both
NAUs attempt to initiate the same action at the same
time, such as when both attempt to send data in a
half-duplex protocol (half-duplex contention), or both
attempt to start a bracket (bracket contention). At
session initiation, one NAU is defined to be the
contention winner; its action will take precedence when
contention occurs. The contention loser must get explicit
or implicit permission from the contention winner to
begin its action.

contention-loser session . (1) To an NAU, a session
for which it was defined during session initiation to be

 Glossary 561

the contention loser. (2) Synonymous with bidder
session.

contention polarity . The role of each LU when
contention occurs for use of a session. One LU is the
contention winner and the other LU is the contention
loser.

contention-winner session . (1) To an NAU, a
session for which it was defined during session initiation
to be the contention winner. (2) Synonymous with
first-speaker session.

continue-any mode . In VTAM, the state of a session
or conversation that allows its input to satisfy a
RECEIVE request issued in any-mode. While this state
exists, input on the session or conversation can also
satisfy RECEIVE requests issued in specific-mode. For
conversations, continue-any mode is further qualified as
either buffer continue-any or logical record
continue-any. This specifies whether VTAM is to
receive the data in terms of logical records or buffers.
Contrast with continue-specific mode.

continue-specific mode . In VTAM, the state of a
session or conversation that allows its input to satisfy
only RECEIVE requests issued in specific-mode.
Contrast with continue-any mode.

control block . (1) A storage area used by a computer
program to hold control information. (I) (2) In the IBM
Token-Ring Network, a specifically formatted block of
information provided from the application program to the
Adapter Support Interface to request an operation.

control data set (CDS) . In NPM, an SMP data set
used in the NPM installation process.

controller . A device that coordinates and controls the
operation of one or more input/output devices, such as
workstations, and synchronizes the operation of such
devices with the operation of the system as a whole.

control point (CP) . (1) A component of an APPN or
LEN node that manages the resources of that node. In
an APPN node, the CP is capable of engaging in
CP-CP sessions with other APPN nodes. In an APPN
network node, the CP also provides services to
adjacent end nodes in the APPN network. (2) A
component of a node that manages resources of that
node and optionally provides services to other nodes in
the network. Examples are a system services control
point (SSCP) in a type 5 subarea node, a network node
control point (NNCP) in an APPN network node, and an
end node control point (ENCP) in an APPN or LEN end
node. An SSCP and an NNCP can provide services to
other nodes.

control point management services unit (CP-MSU) .
The message unit that contains management services

data and flows between management services function
sets. This message unit is in general data stream
(GDS) format. See also management services unit
(MSU) and network management vector transport
(NMVT).

Control Program (CP) . In VM/ESA, a component that
manages the resources of a single computer so multiple
computing systems appear to exist. Each of these
apparent systems, or virtual machines, is the functional
equivalent of an IBM System/370, 370-XA, or ESA
computer.

control vector . One of a general class of RU
substructures that has variable length, is carried within
some enclosing structure, and has a one-byte key used
as an identifier.

conversation . A logical connection between two
transaction programs using an LU 6.2 session.
Conversations are delimited by brackets to gain
exclusive use of a session.

conversation-level security . See session-level
security. See also end-user verification.

coordinated universal time (UTC) . The time scale,
based on the Système International (SI) second, as
defined and recommended by the Comité Consultatif
International de la Radio (CCIR) and maintained (using
an atomic clock) by the Bureau International des Poids
et Mesures (BIPM).

Note: The Système International is based on three
fundamental units of measure—the meter, the
kilogram, and the second—and is sometimes
called the “MKS system” because of these units.

For most practical purposes, coordinated universal time
(UTC) is equivalent to the mean solar time at the prime
meridian (0 degrees longitude) of Greenwich, England,
known as Greenwich mean time (GMT). Synonymous
with Z time and Zulu time.

Copy . A choice that places a copy of a selected object
onto the clipboard.

correlator . Information that identifies a relation among
things. An example is a variable field of a response that
identifies the corresponding request.

COS. Class of service.

CP. (1) Control point. (2) In VM, Control Program.

CP-CP sessions . The parallel sessions between two
control points, using LU 6.2 protocols and a mode name
of CPSVCMG, on which network services requests and
replies are exchanged. Each CP of a given pair has
one contention-winner session and one contention-loser
session with the other.

562 System Management Programming

CPI-C. Common Programming Interface for
Communications.

CP-MSU. Control point management services unit.

CP name . A network-qualified name of a control point
(CP), consisting of a network ID qualifier identifying the
network (or name space) to which the CP's node
belongs, and a unique name within the scope of that
network ID identifying the CP. Each APPN or LEN node
has one CP name, assigned to it at system-definition
time.

cross-domain . In SNA, pertaining to control or
resources involving more than one domain.

CUA. Common User Access.

Customer Information Control System (CICS) . An
IBM licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user-written application programs. It includes facilities
for building, using, and maintaining databases.

D
DACTLU . Deactivate logical unit.

DACTPU. Deactivate physical unit.

data . (1) A re-interpretable representation of
information in a formalized manner suitable for
communication, interpretation, or processing.
Operations can be performed upon data by humans or
by automatic means. (T) (2) Any representations
such as characters or analog quantities to which
meaning is or might be assigned. (A) (3) A
representation of facts or instructions in a form suitable
for communication, interpretation, or processing by
human or automatic means. Data include constants,
variables, arrays, and character strings.

Note: Programmers make a distinction between
instructions and the data they operate on;
however, in the usual sense of the word, data
includes programs and program instructions.

database . (1) A collection of data with a given
structure for accepting, storing, and providing, on
demand, data for multiple users. (T) (2) A collection of
interrelated data organized according to a database
schema to serve one or more applications. (T) (3) A
collection of data fundamental to a system. (A) (4) A
collection of data fundamental to an enterprise. (A)

data circuit . (1) A pair of associated transmit and
receive channels that provide a means of two-way data
communication. (I) (2) In SNA, synonym for link
connection. (3) See also physical circuit and virtual
circuit.

Notes:

1. Between data switching exchanges, the data circuit
may include data circuit-terminating equipment
(DCE), depending on the type of interface used at
the data switching exchange.

2. Between a data station and a data switching
exchange or data concentrator, the data circuit
includes the data circuit-terminating equipment at
the data station end, and may include equipment
similar to a DCE at the data switching exchange or
data concentrator location.

data flow control (DFC) . In SNA, a request/response
unit (RU) category used for requests and responses
exchanged between the data flow control layer in one
half-session and the data flow control layer in the
session partner.

data host . Synonym for data host node. Contrast with
communication management configuration host.

data host node . In a communication management
configuration, a type 5 host node that is dedicated to
processing applications and does not control network
resources, except for its channel-attached or
communication adapter-attached devices. Synonymous
with data host. Contrast with communication
management configuration host node.

data link . In SNA, synonym for link.

data link control (DLC) . A set of rules used by nodes
on a data link (such as an SDLC link or a token ring) to
accomplish an orderly exchange of information.

data link control (DLC) layer . In SNA, the layer that
consists of the link stations that schedule data transfer
over a link between two nodes and perform error control
for the link. Examples of data link control are SDLC for
serial-by-bit link connection and data link control for the
System/370 channel.

Note: The DLC layer is usually independent of the
physical transport mechanism and ensures the
integrity of data that reaches the higher layers.

data link level . (1) In the hierarchical structure of a
data station, the conceptual level of control or
processing logic between high level logic and the data
link that maintains control of the data link. The data link
level performs such functions as inserting transmit bits
and deleting receive bits; interpreting address and
control fields; generating, transmitting, and interpreting
commands and responses; and computing and
interpreting frame check sequences. See also packet
level and physical level. (2) In X.25 communications,
synonym for frame level.

data set . (1) Synonym for file. (2) Deprecated term
for modem.

 Glossary 563

data types . In the NetView program, a description of
the organization of panels. Data types are alerts,
events, and statistics. Data types are combined with
resource types and display types to describe the
NetView program's display organization. See also
display types and resource types.

DBCS. Double-byte character set.

deactivate . To take a resource of a node out of
service, rendering it inoperable, or to place it in a state
in which it cannot perform the functions for which it was
designed. Contrast with activate.

deallocate . An LU 6.2 application programming
interface (API) verb that terminates a conversation,
thereby freeing the session for a future conversation.
Contrast with allocate.

default . Pertaining to an attribute, condition, value, or
option that is assumed when none is explicitly
specified. (I)

definite response (DR) . In SNA, a protocol requested
in the form-of-response-requested field of the request
header that directs the receiver of the request to return
a response unconditionally, whether positive or
negative, to that request chain. Contrast with exception
response and no response.

definition statement . (1) In VTAM, the statement that
describes an element of the network. (2) In NCP, a
type of instruction that defines a resource to the NCP.
(3) See also macroinstruction. (4) See Figure 1,
Figure 2, and Figure 3.

 operands
 ┌____________________┴_____________________┐
 suboperands suboperands
 ┌_┴_┐ ┌_┴_┐
 START A,(B,C), KEYWORD1=D, KEYWORD2=(E,F)
 └__┬__┘ └___┬____┘ └_____________┬_____________┘
 statement positional keyword
 identifier operands operands
└____________________________┬____________________________┘
 statement

Figure 1. Example of a Language Statement

definition keyword operand
statement ┌_______┴______┐
identifier suboperands
 ┌_┴__┐ ┌___┴__┐
 LINE AUTO=(YES,32)
 └____________┬___________┘
 definition statement

Figure 2. Example of an NCP Definition Statement

definition keyword operand
statement ┌_______┴______┐
identifier suboperands
 ┌_┴_┐ ┌___┴__┐
 PU DISCNT=(YES,NF)
 └____________┬___________┘
 definition statement

Figure 3. Example of a VTAM Definition Statement

DEL. The delete character. (A)

Delete . A choice that removes a selected object. The
space it occupied is usually filled by the remaining
object or objects in the window.

dependent LU . See SSCP-dependent LU.

dependent LU requester (DLUR) . An APPN end
node or an APPN network node that owns dependent
LUs, but requests that a dependent LU server provide
the SSCP services for those dependent LUs.

dependent LU server (DLUS) . An APPN network
node that provides SSCP services for a dependent LU
in its own or another APPN network. Contrast with
dependent LU requester.

destination . (1) Any point or location, such as a node,
station, or a particular terminal, to which information is
to be sent. (2) An external logical unit (LU) or
application program to which messages or other data
are directed.

destination address . A code that identifies the
location to which information is to be sent.

destination node . The node to which a request or
data is sent.

DET. Device entry table.

directed Locate search . Synonym for directed search.

directed search . A search request sent to a specific
destination node known to contain a resource, such as
a logical unit, to verify the continued presence of the
resource at the destination node and to obtain the
node's connectivity information for route calculation.
Contrast with broadcast search. Synonymous with
directed Locate search.

directory . (1) A table of identifiers and references to
the corresponding items of data. (I) (A) (2) A
named hierarchical grouping of files in a file system.
(3) A database in an APPN node that lists names of
resources (in particular, logical units) and records the
CP name of the node where each resource is located.
See distributed directory database and local directory
database.

directory services (DS) . A control point component
of an APPN node that maintains knowledge of the
location of network resources.

direct routing . In Internet communications, the
transmission of an Internet Protocol (IP) datagram when
the destination and the source reside on the same IP
network or IP subnet.

564 System Management Programming

disable . To make nonfunctional.

disabled . Pertaining to a state of a processing unit
that prevents the occurrence of certain types of
interruptions.

discovery . In data communication, the automatic
detection of network topology changes (for example,
new and deleted nodes or new and deleted interfaces).

display . A visual presentation of data. (I) (A)

display levels . Synonym for display types.

display types . In the NetView program, a concept to
describe the organization of panels. Display types are
defined as total, most recent, user action, and detail.
Display types are combined with resource types and
data types to describe NetView's panel organization.
See also data types and resource types. Synonymous
with display levels.

distributed directory database . The complete listing
of all the resources in the network as maintained in the
individual directories scattered throughout an APPN
network. Each node has a piece of the complete
directory, but it is not necessary for any one node to
have the entire list. Entries are created, modified, and
deleted through system definition, operator action,
automatic registration, and ongoing network search
procedures. Synonymous with distributed network
directory and network directory database.

distributed network directory . Synonym for
distributed directory database.

DLC. Data link control.

DLL . Dynamic link library.

DLUR. Dependent LU requester.

DLUS. Dependent LU server.

domain . (1) That part of a computer network in which
the data processing resources are under common
control. (T) (2) A set of servers that allocate shared
network resources within a single logical system. (3) In
SNA, see end node domain, network node domain, and
system services control point (SSCP) domain. (4) In
Open Systems Interconnection (OSI), a part of a
distributed system or a set of managed objects to which
a common policy applies. (5) See Administrative
Domain and domain name.

domain name . In the Internet suite of protocols, a
name of a host system. A domain name consists of a
sequence of subnames separated by a delimiter
character. For example, if the fully qualified domain
name (FQDN) of a host system is ralvm7.vnet.ibm.com,
each of the following is a domain name:

 ¹ ralvm7.vnet.ibm.com
 ¹ vnet.ibm.com
 ¹ ibm.com

domain operator . In a multiple-domain network, the
person or program that controls operation of resources
controlled by one system services control point (SSCP).
See also network operator.

DOS session . A session in which a personal computer
operates as a stand-alone computer, running under
Disk Operating System (DOS). See host session.

double-byte character set (DBCS) . A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets. Because each character requires 2
bytes, the typing, display, and printing of DBCS
characters requires hardware and programs that
support DBCS. Contrast with single-byte character set
(SBCS).

downstream . In the direction of data flow from the
host to the user. Contrast with upstream.

drain . To honor pending allocation requests before
deactivating sessions with a partner logical unit. This
applies to LU 6.2 only.

DS. Directory services.

duplex . Pertaining to communication in which data can
be sent and received at the same time. Synonymous
with full-duplex. Contrast with half-duplex.

dynamic . (1) In programming languages, pertaining to
properties that can only be established during the
execution of a program; for example, the length of a
variable-length data object is dynamic. (I) (2) Pertaining
to an operation that occurs at the time it is needed
rather than at a predetermined or fixed time.
(3) Contrast with static.

dynamic link library (DLL) . A file containing
executable code and data bound to a program at load
time or run time, rather than during linking. The code
and data in a dynamic link library can be shared by
several applications simultaneously.

E
EBCDIC. Extended binary-coded decimal interchange
code. A coded character set of 256 8-bit characters.

echo . (1) In computer graphics, the immediate
notification of the current values provided by an input
device to the operator at the display console. (I) (A)

 Glossary 565

(2) In word processing, to print or display each
character or line as it is keyed in. (3) In data
communication, a reflected signal on a communications
channel. For example, on a communications terminal,
each signal is displayed twice, once when entered at
the local terminal and again when returned over the
communications link. This allows the signals to be
checked for accuracy.

Emulation Program (EP) . (1) An IBM control program
that allows a channel-attached IBM communication
controller to emulate the functions of an IBM 2701 Data
Adapter Unit, an IBM 2702 Transmission Control, or an
IBM 2703 Transmission Control. (2) See also network
control program.

emulator . A program that allows a device to operate
as if it were a different type of device. Communications
Server, for example, allows supported personal
computers and printers to operate as if they were
3270-series workstations.

EN. End node.

enabled . (1) Pertaining to a state of the processing
unit that allows the occurrence of certain types of
interruptions. (2) Pertaining to the state in which a
transmission control unit or an audio response unit can
accept incoming calls on a line.

ENCP. End-node control point.

encryption . In computer security, the process of
transforming data into an unintelligible form in such a
way that the original data either cannot be obtained or
can be obtained only by using a decryption process.

end node (EN) . (1) See Advanced Peer-to-Peer
Networking (APPN) end node and low-entry networking
(LEN) end node. (2) In communications, a node that
is frequently attached to a single data link and cannot
perform intermediate routing functions.

end node domain . An end node control point, its
attached links, and its local LUs.

end-user verification . For logical unit (LU) 6.2,
checking the identification of users by means of
identifiers and passwords on attach
function-management headers (FMHs). See partner-LU
verification. See also conversation-level security.

entry point (EP) . (1) The address or label of the first
instruction executed on entering a computer program,
routine, or subroutine. A computer program, routine, or
subroutine may have a number of different entry points,
each perhaps corresponding to a different function or
purpose. (I) (A) (2) In SNA, a type 2.0, type 2.1,
type 4, or type 5 node that provides distributed network
management support. It sends network management

data about itself and the resources it controls to a focal
point for centralized processing, and it receives and
executes focal-point initiated commands to manage and
control its resources.

EP. Entry point.

ER. Explicit route.

ERP. Error recovery procedures.

error . A discrepancy between a computed, observed,
or measured value or condition and the true, specified,
or theoretically correct value or condition. (I) (A)

error recovery procedures (ERP) . (1) Procedures
designed to help isolate and, where possible, to recover
from errors in equipment. The procedures are often
used in conjunction with programs that record
information on machine malfunctions. (2) A set of
routines that attempt to recover from transmission
errors.

Ethernet . A 10-Mbps baseband local area network
that allows multiple stations to access the transmission
medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by using collision detection and
delayed retransmission. Ethernet uses carrier sense
multiple access with collision detection (CSMA/CD).

event . An occurrence of significance to a task; for
example, an SNMP trap, the opening of a window or a
submap, or the completion of an asynchronous
operation.

event card . In NetView for AIX, a graphical
representation, resembling a card, of the information
contained in an event sent by an agent to a manager
reflecting a change in the status of one of the agent's
managed nodes.

exception . An abnormal condition such as an I/O error
encountered in processing a data set or a file.

exception response (ER) . In SNA, a protocol
requested in the form-of-response-requested field of a
request header that directs the receiver to return a
response only if the request is unacceptable as
received or cannot be processed; that is, a negative
response, but not a positive response, can be returned.
Contrast with definite response and no response.

exchange identification (XID) . A specific type of
basic link unit that is used to convey node and link
characteristics between adjacent nodes. XIDs are
exchanged between link stations before and during link
activation to establish and negotiate link and node
characteristics, and after link activation to communicate
changes in these characteristics.

566 System Management Programming

execute . To perform the actions specified by a
program or a portion of a program. (T)

expedited flow . In SNA, a data flow designated in the
transmission header (TH) that is used to carry network
control, session control, and various data flow control
request/response units (RUs); the expedited flow is
separate from the normal flow (which carries primarily
end-user data) and can be used for commands that
affect the normal flow. Contrast with normal flow.

Note: The normal and expedited flows move in both
the primary-to-secondary and
secondary-to-primary directions. Requests and
responses on a given flow, whether normal or
expedited, usually are processed sequentially
within the path, but the expedited flow traffic
may be moved ahead of the normal-flow traffic
within the path at queuing points in the
half-sessions and for half-session support in
boundary functions.

explicit focal point . An assigned focal point for which
the set of nodes to be included in its sphere of control
is defined locally. An explicit focal point initiates the
management services capabilities exchange that brings
a node into its sphere of control. Contrast with implicit
focal point.

explicit route (ER) . In SNA, a series of one or more
transmission groups that connect two subarea nodes.
An explicit route is identified by an origin subarea
address, a destination subarea address, an explicit
route number, and a reverse explicit route number.
Contrast with virtual route (VR).

extended binary-coded decimal interchange code
(EBCDIC). The standard code, using a character set
consisting of 8-bit coded characters, used by
Communications Server for information interchange
between personal computers and a host system. See
also American National Standard Code for Information
Interchange.

E1. See T1.

F
fault . An accidental condition that causes a functional
unit to fail to perform its required function. (I) (A)

field . (1) An area in a record or panel used to contain
data. (2) In the IBM 3270 data stream, a group of
consecutive positions on a presentation space having
similar characteristics that are defined by a field
attribute byte at the beginning of the field. (3) An
identifiable area in a window. Examples of fields are: an
entry field, into which a user can type or place text, and
a field of radio button choices, from which a user can
select one choice.

file . A named set of records stored or processed as a
unit. (T) Synonymous with data set.

filter . A device or program that separates data,
signals, or material in accordance with specified
criteria. (A)

first speaker . See first-speaker session.

first-speaker session . The half-session defined at
session activation as (a) able to begin a bracket without
requesting permission from the other half-session to do
so and (b) winning contention if both half-sessions
attempt to begin a bracket simultaneously. Synonym
for contention-winner session. Contrast with bidder
session.

fixed pacing . Synonym for fixed session-level pacing.

fixed session-level pacing . A form of session-level
pacing in which the data transfer rate is controlled using
fixed pacing-window sizes, which are initialized at
session-activation time. Synonymous with fixed pacing.
Contrast with adaptive session-level pacing.

flag . (1) To mark an information item for selection for
further processing. (T) (2) A character that signals
the occurrence of some condition, such as the end of a
word. (A) (3) A character or bit sequence that marks
an occurrence or boundary, such as the end of a word
or the beginning or end of a data transmission block.

flow . In NetDA/2, the amount of traffic that can pass
through a node, connection, or route in both directions
during a given period of time.

flow control . (1) In SNA, the process of managing the
rate at which data traffic passes between components
of the network. The purpose of flow control is to
optimize the rate of flow of message units with minimum
congestion in the network; that is, to neither overflow
the buffers at the receiver or at intermediate routing
nodes, nor leave the receiver waiting for more message
units. (2) See also pacing.

FMD. Function management data.

FNA. Free network address.

focal point (FP) . See management services focal
point (MSFP).

foreign host . Synonym for remote host.

FP. Focal point.

FQDN. Fully qualified domain name.

FQPCID. Fully qualified procedure correlator identifier.

 Glossary 567

frame . (1) In Open Systems Interconnection
architecture, a data structure pertaining to a particular
area of knowledge and consisting of slots that can
accept the values of specific attributes and from which
inferences can be drawn by appropriate procedural
attachments. (T) (2) The unit of transmission in some
local area networks, including the IBM Token-Ring
Network. It includes delimiters, control characters,
information, and checking characters. (3) In SDLC, the
vehicle for every command, every response, and all
information that is transmitted using SDLC procedures.
(4) A data structure (data frame) composed of fields
meeting the field specifications of a type of
communication protocol. Frames are used to control
data transfer across a data link. (5) In SDLC, a
sequence of bits delimited by an opening and closing
flag. In X.25 packet switching data networks, frames
are composed of 8-bit byte sequences delimited by
beginning and ending flags; the frames in X.25 control
various functions, data transfer, and transmission
checking.

frame level . Synonymous with data link level.

full-duplex (FDX) . Synonym for duplex.

fully qualified domain name (FQDN) . In the Internet
suite of protocols, the name of a host system that
includes all of the subnames of the domain name. An
example of a fully qualified domain name is
ralvm7.vnet.ibm.com. See also host name.

fully qualified name . (1) In SNA, synonym for
network-qualified name. (2) In the Internet suite of
protocols, see fully qualified domain name (FQDN)..

fully qualified procedure correlator identifier
(FQPCID). A network-unique identifier that is used for
the following:

¹ Correlating messages sent between nodes, such as
correlating a Locate search request with its replies

¹ Identifying a session for problem determination and
resolution

¹ Identifying a session for accounting, auditing, and
performance monitoring purposes

This identifier is normally assigned at the node that
contains the LU for which a procedure or session is
initiated, except when that node is an end node, in
which case its network node server may assign it. The
FQPCID consists of a fixed-length correlator
concatenated with the network-qualified name of the
control point that generated the correlator.

function call . An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of values.

function management data (FMD) . An RU category
used for end-user data exchanged between logical units
(LUs) and for requests and responses exchanged
between network services components of LUs, PUs,
and control points.

G
GDS. General data stream.

general data stream (GDS) . The data stream used for
conversations in LU 6.2 sessions.

general data stream (GDS) variable . A type of RU
substructure that is preceded by an identifier and a
length field and includes either application data, user
control data, or SNA-defined control data.

generation . The process of assembling and link
editing definition statements so that resources can be
identified to all the necessary programs in a network.

generic unbind . Synonym for session deactivation
request.

GMT. Greenwich mean time.

Greenwich mean time (GMT) . The mean solar time at
the prime meridian (0 degrees longitude) of Greenwich,
England. Greenwich mean time is sometimes called Z
time or Zulu time.

Note: Although Greenwich mean time (GMT) and
coordinated universal time (UTC) are sometimes
used interchangeably, they are not synonyms.
Greenwich mean time is an approximate time.
Because the second is no longer defined in
terms of astronomical phenomena, the preferred
name for this time scale is coordinated universal
time (UTC).

group ID (GID) . (1) In RACF, a string of one to eight
characters that identifies a group. The first character
must be A through Z, #, $, or @. The rest can be A
through Z, #, $, @, or 0 through 9. (2) In the AIX
operating system, a number that corresponds to a
specific group name. The group ID can often be
substituted in commands that take a group name as a
value.

568 System Management Programming

H
half-duplex (HD, HDX) . In data communication,
pertaining to transmission in only one direction at a
time. Contrast with duplex.

handle . In the Advanced DOS and OS/2 operating
systems, a binary value created by the system that
identifies a drive, directory, and file so that the file can
be found and opened.

header . (1) System-defined control information that
precedes user data. (2) The portion of a message that
contains control information for the message such as
one or more destination fields, name of the originating
station, input sequence number, character string
indicating the type of message, and priority level for the
message.

header file . Synonym for include file.

Help . A choice that gives a user access to helpful
information about objects, choices, tasks, and products.
A Help choice can appear on a menu bar or as a push
button.

hexadecimal . (1) Pertaining to a selection, choice, or
condition that has 16 possible different values or
states. (I) (2) Pertaining to a fixed-radix numeration
system, with radix of 16. (I) (3) Pertaining to a system
of numbers to the base 16; hexadecimal digits range
from 0 through 9 and A through F, where A represents
10 and F represents 15.

high-level language (HLL) . A programming language
that does not reflect the structure of any particular
computer or operating system.

highlighting . Emphasizing a display element or
segment by modifying its visual attributes. (I) (A)

High-Performance Routing (HPR) . An addition to
APPN that enhances data-routing performance and
session reliability.

High-Performance Routing (HPR) node . An APPN
end node or network node that includes
High-Performance Routing support.

hop . (1) In APPN, a portion of a route that has no
intermediate nodes. It consists of only a single
transmission group connecting adjacent nodes. (2) To
the routing layer, the logical distance between two
nodes in a network.

host . (1) In the Internet suite of protocols, an end
system. The end system can be any workstation; it
does not have to be a mainframe. (2) See host
processor.

host ID . In the Internet suite of protocols, that part of
the IP address that defines the host system on the
network. The length of the host ID depends on the type
of network or network class (A, B, or C).

host name . In the Internet suite of protocols, the
name given to a machine. Sometimes, “host name” is
used to mean fully qualified domain name (FQDN);
other times, it is used to mean the most specific
subname of a fully qualified domain name. For example,
if ralvm7.vnet.ibm.com is the fully qualified domain
name, either o f the following may be considered the
host name:

 ¹ ralvm7.vnet.ibm.com
 ¹ ralvm7

host processor . (1) A processor that controls all or
part of a user application network. (T) (2) In a network,
the processing unit in which the data communication
access method resides.

host session . A logical connection that enables a
personal computer to communicate with a host system.
A session can be identified by LU address, LT number,
or session ID. See DOS session. See also logical
terminal.

host system . In Communications Server, the
computer linked to one or more personal computers by
the SDLC, LAN, ASYNCH, X.25, or DFT attachment.

HPR. High-Performance Routing.

I
ICP. Internet Control Protocol.

ID. (1) Identifier. (2) Identification.

implicit focal point . An assigned focal point for which
the nodes to be included in its sphere of control (SOC)
are defined at the SOC nodes. The management
services capabilities exchange that brings a node into
the sphere of control of an implicit focal point is initiated
by the SOC node. Contrast with explicit focal point.

inactive . (1) Not operational. (2) Pertaining to a node
or device not connected or not available for connection
to another node or device. (3) Contrast with active.

inbound . In communications, data that is received
from the network.

include file . A text file that contains declarations used
by a group of functions, programs, or users.
Synonymous with header file.

information (I) format . A format used for information
transfer.

 Glossary 569

information (I) frame . A frame in I format used for
numbered information transfer.

initial program load (IPL) . (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a work day or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

INITIATE. A network services request sent from a
logical unit (LU) to a system services control point
(SSCP) requesting that an LU-LU session be
established.

installation . (1) In Communications Server, the
process of loading microcode from the Communications
Server diskettes. (2) In system development, preparing
and placing a functional unit in position for use. (T)
(3) A particular computing system, including the work it
does and the people who manage it, operate it, apply it
to problems, service it, and use the results it produces.

instance . In the AIX operating system, a concrete
realization of an abstract object class. An instance of a
widget or a gadget is a specific data structure that
contains detailed appearance and behavioral
information that is used to generate a specific graphical
object on-screen at run time.

INT. Internal trace table.

interactive . Pertaining to the exchange of information
between a user and a computer.

interface . (1) A shared boundary between two
functional units, defined by functional characteristics,
signal characteristics, or other characteristics, as
appropriate. The concept includes the specification of
the connection of two devices having different
functions. (T) (2) Hardware, software, or both, that
links systems, programs, or devices.

intermediate session routing (ISR) . A type of
routing function within an APPN network node that
provides session-level flow control and outage reporting
for all sessions that pass through the node but whose
end points are elsewhere.

Internet Control Protocol (ICP) . The VIrtual
NEtworking System (VINES**) protocol that provides
exception notifications, metric notifications, and PING
support. See also RouTing update Protocol (RTP).

Internet Protocol (IP) . A connectionless protocol that
routes data through a network or interconnected
networks. IP acts as an intermediary between the
higher protocol layers and the physical network.
However, this protocol does not provide error recovery

and flow control and does not guarantee the reliability of
the physical network.

IP. Internet Protocol.

IPL. Initial program load.

ISR. Intermediate session routing.

L
LAN . Local area network.

latency . The time interval between the instant at which
an instruction control unit initiates a call for data and the
instant at which the actual transfer of the data
starts. (T)

LDT. Local descriptor table.

LEN. Low-entry networking.

LEN end node . See low-entry networking (LEN) end
node.

LEN node . A node that supports independent LU
protocols but does not support CP-CP sessions. It may
be a peripheral node attached to a boundary node in a
subarea network, an end node attached to an APPN
network node in an APPN network, or a peer-connected
node directly attached to another LEN node or APPN
end node. See also low-entry networking (LEN) end
node.

LFSID. Local-form session identifier.

limited resource . A connection facility that causes a
session traversing it to be terminated if no session
activity is detected for a specified period of time. See
also limited-resource session.

limited-resource link . A link defined by the node
operator to be a limited resource, that is, a resource to
remain active only when being used. Limited-resource
links are deactivated if no session activity has been
detected for a specified period of time. See also
limited-resource session.

limited-resource session . A session that traverses a
limited-resource link. This session is terminated if no
session activity is detected for a specified period of
time.

line . (1) The portion of a data circuit external to data
circuit-terminating equipment (DCE), that connects the
DCE to a data switching exchange (DSE), that connects
a DCE to one or more other DCEs, or that connects a
DSE to another DSE. (I) (2) Synonymous with channel
and circuit.

570 System Management Programming

line control discipline . Synonym for link protocol and
protocol.

line discipline . Synonym for link protocol and
protocol.

link . (1) The combination of the link connection (the
transmission medium) and two link stations, one at each
end of the link connection. A link connection can be
shared among multiple links in a multipoint or token-ring
configuration. (2) To interconnect items of data or
portions of one or more computer programs: for
example, the linking of object programs by a linkage
editor, linking of data items by pointers. (T) (3) In
SNA, synonymous with data link.

link-attached . (1) Pertaining to devices that are
connected to a controlling unit by a data link.
(2) Contrast with channel-attached. (3) Synonymous
with remote.

link connection . (1) The physical equipment providing
two-way communication between one link station and
one or more other link stations; for example, a
telecommunication line and data circuit-terminating
equipment (DCE). (2) In SNA, synonymous with data
circuit.

link connection network . Synonym for connection
network.

link connection segment . A portion of the
configuration that is located between two resources
listed consecutively in the service point command
service (SPCS) query link configuration request list.

link level . (1) A part of Recommendation X.25 that
defines the link protocol used to get data into and out of
the network across the full-duplex link connecting the
subscriber's machine to the network node. LAP and
LAPB are the link access protocols recommended by
the CCITT. (2) See data link level.

link protocol . (1) The rules for sending and receiving
data at the link level. (2) Synonymous with line control
discipline and line discipline.

link station . (1) The hardware and software
components within a node representing a connection to
an adjacent node over a specific link. For example, if
node A is the primary end of a multipoint line that
connects to three adjacent nodes, node A will have
three link stations representing the connections to the
adjacent nodes. (2) In VTAM, a named resource
within an APPN or a subarea node that represents the
connection to another APPN or subarea node that is
attached by an APPN or a subarea link. In the resource
hierarchy in a subarea network, the link station is
subordinate to the subarea link. (3) See also adjacent
link station (ALS).

link station role . In SNA, the role that a local node
assumes for a given link. Possible roles are primary (or
controlling), secondary, or negotiable.

link status (LS) . Information maintained by local and
remote modems.

load . (1) To bring all or part of a computer program
into memory from auxiliary storage so that the computer
can run the program. (2) To place a diskette into a
diskette drive.

local . (1) Pertaining to a device accessed directly
without use of a telecommunication line. (2) Contrast
with remote. (3) Synonym for channel-attached.

local area network (LAN) . (1) A computer network
located on a user's premises within a limited
geographical area. Communication within a local area
network is not subject to external regulations; however,
communication across the LAN boundary may be
subject to some form of regulation. (T) (2) A network
in which a set of devices are connected to one another
for communication and that can be connected to a
larger network. (3) See also Ethernet and token ring.
(4) Contrast with metropolitan area network (MAN) and
wide area network (WAN).

local descriptor table (LDT) . In the OS/2 operating
system, a table that contains access information about
the code and data segments for which a process has
addressability.

local directory database . That set of resources
(LUs) in the network known at a particular node. The
resources included are all those in the node's domain
as well as any cache entries.

local-form session identifier (LFSID) . A dynamically
assigned value used at a type 2.1 node to identify traffic
for a particular session using a given transmission
group (TG). The LFSID is encoded in the ODAI, OAF′,
and DAF′ fields of the transmission headers that
accompany session messages exchanged over the TG.

local LU . A logical unit not distributed over the LAN,
but controlled by a gateway personal computer. This is
normally a physical device such as a workstation,
printer, or terminal.

local topology database . A database in an APPN or
LEN node containing an entry for each transmission
group (TG) having at least one end node for an
endpoint. In an end node, the database has one entry
for each TG connecting to the node. In a network node,
the database has an entry for each TG connecting the
network node to an end node. Each entry describes the
current characteristics of the TG that it represents. A
network node has both a local and a network topology

 Glossary 571

database while an end node has only a local topology
database.

Locate . Synonym for Locate/CD-Initiate.

Locate/CD-Initiate . (1) An abbreviated term for a
message exchanged between APPN nodes that
contains one of the following sets of general data
stream (GDS) variables:

¹ A Locate, a Find Resource, and a Cross-Domain
Initiate GDS variable used for a network search
request

¹ A Locate, a Found Resource, and a Cross-Domain
Initiate GDS variable used for a search reply when
a network resource has been located

These message structures correspond to the CP
components that perform the search of the distributed
network directory and establish the session. The
Locate GDS variable contains information used to
control the delivery of the search messages in the
network. The Find and Found GDS variables contain
information used in the directories: origin cache data
(control point information) and search arguments
(destination LU name), and located resource
information, respectively. The Cross-Domain Initiate
GDS variable contains endpoint TG vector information
to be used in selecting the route for the session. The
length of the Locate/CD-Initiate message is limited to
1024 bytes. (2) Synonymous with Locate and Locate
search message.

Locate search message . Synonym for
Locate/CD-Initiate.

logged-on operator . (1) A NetView operator station
task that requires a terminal and a logged-on user.
(2) Contrast with autotask.

logical terminal . (1) A destination with a name that is
related to one or more physical terminals. (2) The
definition of a specific 3270 or 5250 emulation session.

logical unit (LU) . A type of network accessible unit
that enables users to gain access to network resources
and communicate with each other.

low-entry networking (LEN) . A capability of nodes to
attach directly to one another using basic peer-to-peer
protocols to support multiple and parallel sessions
between logical units.

low-entry networking (LEN) end node . A LEN node
receiving network services from an adjacent APPN
network node.

low-entry networking (LEN) node . A node that
provides a range of end-user services, attaches directly
to other nodes using peer protocols, and derives

network services implicitly from an adjacent APPN
network node, that is, without the direct use of CP-CP
sessions.

LS. Link status.

LU. Logical unit.

LU-LU session . A logical connection between two
logical units (LUs) in an SNA network that typically
provides communication between two users.

LUS. Logical unit services.

LU type . The classification of an LU in terms of the
specific subset of SNA protocols and options it supports
for a given session, namely:

¹ The mandatory and optional values allowed in the
session activation request

¹ The usage of data stream controls, function
management headers (FMHs), request unit
parameters, and sense data values

¹ Presentation services protocols such as those
associated with FMH usage

 LU types 0, 1, 2, 3, 4, 6.1, 6.2, and 7 are defined.

LU 6.2. (1) A type of logical unit that supports general
communication between programs in a distributed
processing environment. LU 6.2 is characterized by (a)
a peer relationship between session partners, (b)
efficient utilization of a session for multiple transactions,
(c) comprehensive end-to-end error processing, and (d)
a generic application programming interface (API)
consisting of structured verbs that are mapped into a
product implementation. (2) A type of LU that supports
sessions between two applications in a distributed data
processing environment using the SNA general data
stream, which is a structured-field data stream, or a
user-defined data stream.

LU 6.2 verb . A syntactical unit in the LU 6.2
application programming interface representing an
operation.

M
MAC. Medium access control.

macroinstruction . (1) An instruction in a source
language that is to be replaced by a defined sequence
of instructions in the same source language and that
may also specify values for parameters in the replaced
instructions. (T) (2) In assembler programming, an
assembler language statement that causes the
assembler to process a predefined set of statements
called a macro definition. The statements normally
produced from the macro definition replace the
macroinstruction in the program. (3) See also definition
statement.

572 System Management Programming

maintenance analysis procedure (MAP) . A
maintenance document that gives an IBM service
representative a step-by-step procedure for tracing a
symptom to the cause of a failure.

MAN. Metropolitan area network.

Management Information Base (MIB) . (1) A
collection of objects that can be accessed by means of
a network management protocol. (2) A definition for
management information that specifies the information
available from a host or gateway and the operations
allowed. (3) In OSI, the conceptual repository of
management information within an open system.

management services (MS) . (1) One of the types of
network services in control points (CPs) and physical
units (PUs). Management services are the services
provided to assist in the management of SNA networks,
such as problem management, performance and
accounting management, configuration management,
and change management. (2) Services that assist in
the management of systems and networks in areas
such as problem management, performance
management, business management, operations
management, configuration management, and change
management.

management services focal point (MSFP) . For any
given management services discipline (for example,
problem determination or response time monitoring), the
control point that is responsible for that type of network
management data for a sphere of control. This
responsibility may include collecting, storing, or
displaying the data, or all of these. (For example, a
problem determination focal point is a control point that
collects, and that may store or display, problem
determination data.)

management services unit (MSU) . A generic term for
major-vector encoded management services data,
regardless of the method used to transport the data.
Thus, the management services unit includes major
vectors transported within the network management
vector transport (NMVT), the control point management
services unit (CP-MSU), or the multiple-domain support
message unit (MDS-MU).

manager . (1) In systems management, a user that, for
a particular interaction, has assumed a manager role.
(2) An entity that monitors or controls one or more
managed objects by (a) receiving notifications regarding
the objects and (b) requesting management operations
to modify or query the objects. (3) A system that
assumes a manager role.

map . In NetView for AIX, a database represented by a
set of related submaps that provide a graphical and
hierarchical presentation of a network and its systems.

MAP. Maintenance analysis procedure.

mapped conversation . An LU 6.2 conversation type
specified by the allocating transaction program.
Transaction programs using a mapped conversation can
exchange messages of arbitrary format regardless of
the underlying data stream. System-defined or
user-defined mappers can perform data transformation
for the transaction programs. See also conversation.
Contrast with basic conversation.

mapping . The process of converting data that is
transmitted in one format by the sender into the data
format that can be accepted by the receiver.

Maximize . A choice that enlarges a window to its
largest possible size.

MB. Megabyte.

MDS. Multiple-domain support.

MDS-MU. Multiple-domain support message unit.

medium . (1) A physical carrier of electrical energy.
(2) A physical material in or on which data may be
represented.

medium access control (MAC) . In LANs, the
sublayer of the data link control layer that supports
medium-dependent functions and uses the services of
the physical layer to provide services to the logical link
control (LLC) sublayer. The MAC sublayer includes the
method of determining when a device has access to the
transmission medium.

medium access control (MAC) protocol . In a local
area network, the protocol that governs access to the
transmission medium, taking into account the
topological aspects of the network, in order to enable
the exchange of data between data stations. (T)

medium access control (MAC) sublayer . In a local
area network, the part of the data link layer that applies
a medium access method. The MAC sublayer supports
topology-dependent functions and uses the services of
the physical layer to provide services to the logical link
control sublayer. (T)

megabyte (MB) . (1) For processor storage, real and
virtual storage, and channel volume, 220 or 1 048 576
bytes. (2) For disk storage capacity and
communications volume, 1 000 000 bytes.

memory . All of the addressable storage space in a
processing unit and other internal storages that is used
to execute instructions. (T)

menu . (1) A list of options displayed to the user by a
data processing system, from which the user can select
an action to be initiated. (T) (2) In text processing, a

 Glossary 573

list of choices displayed to the user by a text processor
from which the user can select an action to be
initiated. (T) (3) A list of choices that can be applied
to an object. A menu can contain choices that are not
available for selection in certain contexts. Those
choices are indicated by reduced contrast.

message . (1) An assembly of characters and
sometimes control codes that is transferred as an entity
from an originator to one or more recipients. A message
consists of two parts: envelope and content. (T) (2) A
communication sent from a person or program to
another person or program.

message unit (MU) . In SNA, the unit of data
processed by any layer; for example, a basic
information unit (BIU), a path information unit (PIU), or a
request/response unit (RU).

metric . In Internet communications, a value,
associated with a route, which is used to discriminate
between multiple exit or entry points to the same
autonomous system. The route with the lowest metric
is preferred.

metropolitan area network (MAN) . A network formed
by the interconnection of two or more networks which
may operate at higher speed than those networks, may
cross administrative boundaries, and may use multiple
access methods. (T) Contrast with local area network
(LAN) and wide area network (WAN).

MIB. (1) MIB module. (2) Management Information
Base.

migration . The installation of a new version or release
of a program to replace an earlier version or release.

mixed-media multilink transmission group
(MMMLTG). See transmission group (TG).

MLTG. Multilink transmission group.

MMMLTG. Mixed-media multilink transmission group.

mode . See mode name.

modem (modulator/demodulator) . (1) A functional
unit that modulates and demodulates signals. One of
the functions of a modem is to enable digital data to be
transmitted over analog transmission facilities. (T) (A)
(2) A device that converts digital data from a computer
to an analog signal that can be transmitted on a
telecommunication line, and converts the analog signal
received to data for the computer.

mode name . The name used by the initiator of a
session to designate the characteristics desired for the
session, such as traffic pacing values, message-length
limits, sync point and cryptography options, and the
class of service within the transport network.

module . A program unit that is discrete and
identifiable with respect to compiling, combining with
other units, and loading; for example, the input to or
output from an assembler, compiler, linkage editor, or
executive routine. (A)

MS. Management services.

MSFP. Management services focal point.

MSG. Console messages.

MSU. Management services unit.

MU. Message unit.

multicast . (1) Transmission of the same data to a
selected group of destinations. (T) (2) A special form
of broadcast in which copies of a packet are delivered
to only a subset of all possible destinations.
(3) Contrast with broadcast.

multilink transmission group (MLTG) . See
transmission group (TG).

multiple-domain support (MDS) . A technique for
transporting management services data between
management services function sets over LU-LU and
CP-CP sessions. See also multiple-domain support
message unit (MDS-MU).

multiple-domain support message unit (MDS-MU) .
The message unit that contains management services
data and flows between management services function
sets over the LU-LU and CP-CP sessions used by
multiple-domain support. This message unit, as well as
the actual management services data that it contains, is
in general data stream (GDS) format. See also control
point management services unit (CP-MSU),
management services unit (MSU), and network
management vector transport (NMVT).

Multiple Virtual Storage (MVS) . See MVS.

MVS. Multiple Virtual Storage. Implies MVS/390,
MVS/XA, and MVS/ESA.

N
native . In MPTN architecture, pertaining to the
relationship between a transport user and a transport
provider that are both based on the same transport
protocol.

NAU. (1) Network accessible unit. (2) Network
addressable unit.

NC. Network control.

574 System Management Programming

negative response (NR) . In SNA, a response
indicating that a request did not arrive successfully or
was not processed successfully by the receiver.
Contrast with positive response.

negotiation . The process of deciding what packet size
to transmit between a network and a 3710 Network
Controller.

NETID. See network identifier.

NetView-NetView task (NNT) . The task under which a
cross-domain NetView operator session runs. See
operator station task.

network . (1) An arrangement of nodes and connecting
branches. (T) (2) A configuration of data processing
devices and software connected for information
interchange. (3) A group of nodes and the links
interconnecting them.

network accessible unit (NAU) . A logical unit (LU),
physical unit (PU), control point (CP), or system
services control point (SSCP). It is the origin or the
destination of information transmitted by the path control
network. Synonymous with network addressable unit.

network address . (1) According to ISO 7498-3, a
name, unambiguous within the OSI environment, that
identifies a set of network service access points.
(2) An address, consisting of subarea and element
fields, that identifies a link, a link station, or a network
addressable unit. Subarea nodes use network
addresses; peripheral nodes use local addresses.
(3) In SNA, an address consisting of subarea and
element fields that identifies a link, gateway, or network
addressable unit (NAU). (4) In a subarea network, an
address, consisting of subarea and element fields, that
identifies a link, link station, physical unit, logical unit, or
system services control point. Subarea nodes use
network addresses; peripheral nodes use local
addresses or local-form session identifiers (LFSIDs).
The boundary function in the subarea node to which a
peripheral node is attached transforms local addresses
or LFSIDs to network addresses and vice versa.
Contrast with network name.

network addressable unit (NAU) . Synonym for
network accessible unit.

network architecture . The logical structure and
operating principles of a computer network. (T)

Note: The operating principles of a network include
those of services, functions, and protocols.

network congestion . An undesirable overload
condition caused by traffic in excess of what a network
can handle.

network control (NC) . In SNA, a request/response
unit (RU) category used for requests and responses
exchanged between physical units (PUs) for such
purposes as activating and deactivating explicit and
virtual routes and sending load modules to adjust
peripheral nodes. See also data flow control, function
management data, and session control.

network control block (NCB) . A part of the network
control program that controls the resources used by the
communication network in a LAN attachment.

network control program . A program, generated by
the user from a library of IBM-supplied modules, that
controls the operation of a communication controller.

Network Control Program (NCP) . An IBM licensed
program that provides communication controller support
for single-domain, multiple-domain, and interconnected
network capability.

network directory database . Synonym for distributed
directory database.

network identifier . (1) In TCP/IP, that part of the IP
address that defines a network. The length of the
network ID depends on the type of network class (A, B,
or C). (2) A 1- to 8-byte customer-selected name or
an 8-byte IBM-registered name that uniquely identifies a
specific subnetwork. (3) In MPTN architecture, the
address qualifier of a transport provider address that
identifies a group of nodes according to the network in
which they reside.

network management . The process of planning,
organizing, and controlling a communication-oriented
data processing or information system.

network management vector transport (NMVT) . A
management services request/response unit (RU) that
flows over an active session between physical unit
management services and control point management
services (SSCP-PU session).

network name . The symbolic identifier by which
users refer to a network accessible unit, a link, or a link
station within a given subnetwork. In APPN networks,
network names are also used for routing purposes.
Contrast with network address.

network node (NN) . See Advanced Peer-to-Peer
Networking (APPN) network node.

network node domain . An APPN network-node
control point, its attached links, the network resources
for which it answers directory search requests (namely,
its local LUs and adjacent LEN end nodes), the
adjacent APPN end nodes with which it exchanges
directory search requests and replies, and other
resources (such as a local storage device) associated

 Glossary 575

with its own node or an adjacent end node for which it
provides management services.

network node server . An APPN network node that
provides network services for its local LUs and client
end nodes.

network operator . (1) A person who controls the
operation of all or part of a network. (2) In a
multiple-domain network, a person or program
responsible for controlling all domains. (3) See also
domain operator.

network-qualified name . In SNA, a name that
uniquely identifies a specific resource (such as an LU or
a CP) within a specific network. It consists of a network
identifier and a resource name, each of which is a 1- to
8-byte symbol string. Synonymous with fully qualified
name.

network topology database . The representation of
the current connectivity between the network nodes
within an APPN network. It includes (a) entries for all
network nodes and the transmission groups
interconnecting them and (b) entries for all virtual
routing nodes to which network nodes are attached.

NMVT. Network management vector transport.

NN. Network node.

NNCP. Network node control point.

node . (1) In a network, a point at which one or more
functional units connect channels or data circuits. (I)
(2) Any device, attached to a network, that transmits
and receives data. (3) An endpoint of a link or a
junction common to two or more links in a network.
Nodes can be processors, communication controllers,
cluster controllers, or terminals. Nodes can vary in
routing and other functional capabilities.

node name . In VTAM, the symbolic name assigned to
a specific major or minor node during network definition.

node type . A designation of a node according to the
protocols it supports or the role it plays in a network.
Node type was originally denoted numerically (as 1, 2.0,
2.1, 4, and 5) but is now characterized more specifically
by protocol type (APPN network node, LEN node,
subarea node, and interchange node, for example)
because type 2.1 nodes and type 5 nodes support
multiple protocol types and roles.

nonnative . In MPTN architecture, pertaining to the
relationship between a transport user and a transport
provider that are based on different transport protocols.

no response . In SNA, a protocol requested in the
form-of-response-requested field of the request header

that directs the receiver of the request not to return any
response, regardless of whether or not the request is
received and processed successfully. Contrast with
definite response and exception response.

normal flow . In SNA, a data flow designated in the
transmission header (TH) that is used primarily to carry
end-user data. The rate at which requests flow on the
normal flow can be regulated by session-level pacing.
Normal and expedited flows move in both the
primary-to-secondary and secondary-to-primary
directions. Contrast with expedited flow.

notification . An unscheduled, spontaneously
generated report of an event that has occurred.

NOTIFY. A network services request that is sent by a
system services control point (SSCP) to a logical unit
(LU) to inform the LU of the status of a procedure
requested by the LU.

O
ODAI. Origin-Destination Assignor indicator, a bit in a
FID2 transmission header used to divide the address
space so that an address space manager (ASM) in one
node may use all possible combinations of OAF′, DAF′
with the ODAI having one setting and the ASM in the
adjacent node may use all possible combinations of
OAF′, DAF′ with the ODAI having the complementary
setting.

Off . A choice that appears in the cascaded menu from
the Refresh choice. It sets the refresh function to off.

offset . The number of measuring units from an
arbitrary starting point in a record, area, or control
block, to some other point.

OIA. Operator information area.

OK. A push button that accepts the information in a
window and closes it. If the window contains changed
information, those changes are applied before the
window is closed.

On. A choice that appears in a cascaded menu from
the Refresh choice. It immediately refreshes the view in
a window.

open . (1) A break in an electrical circuit. (2) To make
an adapter ready for use.

Open . A choice that leads to a window in which users
can select the object they want to open.

operable time . The time during which a functional unit
would yield correct results if it were operated. (I) (A)
Synonymous with uptime.

576 System Management Programming

operating system (OS) . Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible. (T)

operating time . That part of operable time during
which a functional unit is operated. (A)

operation . In object-oriented design or programming,
a service that can be requested at the boundary of an
object. Operations include modifying an object or
disclosing information about an object.

operator . (1) In a language statement, the lexical
entity that indicates the action to be performed on
operands. See also definition statement. (2) A person
or program responsible for managing activities
controlled by a given piece of software such as MVS,
the NetView program, or IMS. (3) A person who
operates a device. (4) A person who keeps a system
running. (5) See also autotask, logged-on operator,
network operator, and operator station task.

operator information area (OIA) . The area near the
bottom of the display area where terminal or system
status information is displayed.

operator station task (OST) . The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task for
each network operator who logs on to the NetView
program. See NetView-NetView task.

origin . An external logical unit (LU) or application
program from which a message or other data originates.
See also destination.

OS. Operating system.

outbound . In communications, data that is transmitted
to the network.

overlay . A collection of predefined data, such as lines,
shading, text, boxes, or logos, that can be merged with
variable data on a page while printing.

P
PAC. Privilege Attribute Certificate.

pacing . (1) A technique by which a receiving
component controls the rate of transmission of a
sending component to prevent overrun or congestion.
(2) See receive pacing, send pacing, session-level
pacing, and virtual route (VR) pacing. (3) See also
flow control.

pacing group . Synonym for pacing window.

pacing response . In SNA, an indicator that signifies
the readiness of a receiving component to accept
another pacing group. The indicator is carried in a
response header (RH) for session-level pacing and in a
transmission header (TH) for virtual route pacing.

pacing window . (1) The path information units (PIUs)
that can be transmitted on a virtual route before a
virtual-route pacing response is received, indicating that
the virtual route receiver is ready to receive more PIUs
on the route. (2) The requests that can be transmitted
on the normal flow in one direction on a session before
a session-level pacing response is received, indicating
that the receiver is ready to accept the next group of
requests. (3) Synonymous with pacing group.

packet internet groper (PING) . (1) In Internet
communications, a program used in TCP/IP networks to
test the ability to reach destinations by sending the
destinations an Internet Control Message Protocol
(ICMP) echo request and waiting for a reply. (2) In
communications, a test of reachability.

packet level . (1) The packet format and control
procedures for exchange of packets containing control
information and user data between data terminal
equipment (DTE) and data circuit-terminating equipment
(DCE). See also data link level and physical level.
(2) A part of Recommendation X.25 that defines the
protocol for establishing logical connections between
two DTEs and for transferring data on these
connections.

page . (1) In a virtual storage system, a fixed-length
block that has a virtual address and is transferred as a
unit between real storage and auxiliary
storage. (I) (A) (2) The information displayed at the
same time on the screen of a display device. (3) To
replace the information displayed on the screen with
prior or subsequent information from the same file.

parallel . (1) Pertaining to a process in which all
events occur within the same interval of time, each
handled by a separate but similar functional unit; for
example, the parallel transmission of the bits of a
computer word along the lines of an internal bus. (T)
(2) Pertaining to concurrent or simultaneous operation
of two or more devices or to concurrent performance of
two or more activities in a single device. (A)
(3) Pertaining to concurrent or simultaneous occurrence
of two or more related activities in multiple devices or
channels. (A) (4) Pertaining to the simultaneity of two
or more processes. (A) (5) Pertaining to the
simultaneous processing of the individual parts of a
whole, such as the bits of a character and the
characters of a word, using separate facilities for the
various parts. (A) (6) Contrast with serial.

 Glossary 577

parallel sessions . Two or more concurrently active
sessions between the same two network accessible
units (NAUs) using different pairs of network addresses
or local-form session identifiers. Each session can have
independent session parameters.

parallel transmission groups . Multiple transmission
groups between adjacent nodes, with each group
having a distinct transmission group number.

parameter . (1) A variable that is given a constant
value for a specified application and that may denote
the application. (I) (A) (2) In Basic CUA
architecture, a variable used in conjunction with a
command to affect its result. (3) An item in a menu for
which the user specifies a value or for which the system
provides a value when the menu is interpreted.
(4) Data passed to a program or procedure by a user
or another program, namely as an operand in a
language statement, as an item in a menu, or as a
shared data structure.

parent . A process that has spawned a child process
using the fork primitive. Contrast with child.

parse . To analyze the operands entered with a
command and create a parameter list for the command
processor from the information.

partner-LU verification . For logical unit (LU) 6.2, a
three-flow exchange between two LUs with each LU
using an LU-LU password and the Data Encryption
Standard (DES) algorithm. The three-flow exchange is
the LU-LU verification. See end-user verification.

password . (1) A value used in authentication or a
value used to establish membership in a set of people
having specific privileges. (2) A unique string of
characters known to a computer system and to a user,
who must specify the character string to gain access to
a system and to the information stored within it. (3) In
computer security, a string of characters known to the
computer system and a user, who must specify it to
gain full or limited access to a system and to the data
stored within it.

path . (1) In a network, any route between any two
nodes. A path may include more than one
branch. (T) (2) The series of transport network
components (path control and data link control) that are
traversed by the information exchanged between two
network accessible units. See also explicit route (ER),
route extension (REX), and virtual route (VR).
9 1'.

path control (PC) . The function that routes message
units between network accessible units in the network
and provides the paths between them. It converts the
basic information units (BIUs) from transmission control
(possibly segmenting them) into path information units

(PIUs) and exchanges basic transmission units
containing one or more PIUs with data link control. Path
control differs by node type: some nodes (APPN nodes,
for example) use locally generated session identifiers
for routing, and others (subarea nodes) use network
addresses for routing.

path information unit (PIU) . A message unit
consisting of a transmission header (TH) alone, or a TH
followed by a basic information unit (BIU) or a BIU
segment.

PC. (1) Personal computer. (2) Path control.
(3) Communications Server.

PCID. Procedure-correlation identifier.

peer . In network architecture, any functional unit that is
in the same layer as another entity. (T)

peripheral PU . In SNA, a physical unit in a peripheral
node. Contrast with subarea PU.

persistent verification . In VTAM, a security function
that enables two logical units to verify the identity of
each other for the initial conversation on a session and
to assume that future conversations are verified for the
duration of the session.

Communications Server product family . A group of
IBM licensed programs that emulate 3270 and 5250
terminals and that run on several operating systems
such as OS/2, DOS, and Windows.

personal computer (PC) . (1) A microcomputer
primarily intended for stand-alone use by an
individual. (T) (2) A desktop, floor-standing, or portable
microcomputer that usually consists of a system unit, a
display monitor, a keyboard, one or more diskette
drives, internal fixed-disk storage, and an optional
printer. PCs are designed primarily for stand-alone
operation but may be connected to mainframes or
networks.

physical circuit . A circuit established without
multiplexing. See also data circuit. Contrast with virtual
circuit.

physical level . In X.25, the mechanical, electrical,
functional, and procedural media used to activate,
maintain, and deactivate the physical link between the
data terminal equipment (DTE) and the data
circuit-terminating equipment (DCE). See data link level
and packet level.

physical unit (PU) . (1) The component that manages
and monitors the resources (such as attached links and
adjacent link stations) associated with a node, as
requested by an SSCP via an SSCP-PU session. An
SSCP activates a session with the physical unit in order
to indirectly manage, through the PU, resources of the

578 System Management Programming

node such as attached links. This term applies to type
2.0, type 4, and type 5 nodes only. (2) See also
peripheral PU and subarea PU.

physical unit (PU) services . In SNA, the components
within a physical unit (PU) that provide configuration
services and maintenance services for SSCP-PU
sessions.

PING. Packet internet groper.

PIP. Program initialization parameters.

pipe . To direct data so that the output from one
process becomes the input to another process.

PLU. Primary logical unit.

pointer . (1) A data element that indicates the location
of another data element. (T) (2) An identifier that
indicates the location of an item of data. (A)

point-to-point . Pertaining to data transmission
between two locations without the use of any
intermediate display station or computer.

polling . (1) On a multipoint connection or a
point-to-point connection, the process whereby data
stations are invited, one at a time, to transmit. (I)
(2) Interrogation of devices for such purposes as to
avoid contention, to determine operational status, or to
determine readiness to send or receive data. (A)

pop . To remove an item from the top of a pushdown
list. Contrast with push.

POP. Post Office Protocol.

port . (1) An access point for data entry or exit. (2) A
connector on a device to which cables for other devices
such as display stations and printers are attached. (3)
The representation of a physical connection to the link
hardware. A port is sometimes referred to as an
adapter; however, there can be more than one port on
an adapter. There may be one or more ports controlled
by a single DLC process. (4) In the Internet suite of
protocols, a 16-bit number used to communicate
between TCP or the User Datagram Protocol (UDP)
and a higher-level protocol or application. Some
protocols, such as File Transfer Protocol (FTP) and
Simple Mail Transfer Protocol (SMTP), use the same
well-known port number in all TCP/IP implementations.
(5) An abstraction used by transport protocols to
distinguish among multiple destinations within a host
machine. (6) Synonymous with socket.

port number . In Internet communications, the
identification of an application entity to the transport
service.

positive response . In SNA, a response indicating that
a request was received and processed. Contrast with
negative response.

Post Office Protocol (POP) . A protocol used for
exchanging network mail and accessing mailboxes.

Prepare . A presentation services header that flows as
part of commit processing, indicating the partner has
begun the first phase of the two-phase commit process.

presentation space ID (PSID) . In Communications
Manager/2, synonym for short name.

primary focal point . A focal point understood to be
the preferred source of management services support
for a particular category. Contrast with backup focal
point.

primary logical unit (PLU) . In SNA, the logical unit
(LU) that sends the BIND to activate a session with its
partner LU. Contrast with secondary logical unit (SLU).

Privilege Attribute Certificate (PAC) . In a Distributed
Computing Environment (DCE), a certified set of access
privileges that can be presented by a user or an
administrator to establish access rights to objects.

problem determination . The process of determining
the source of a problem; for example, a program
component, machine failure, telecommunication
facilities, user or contractor-installed programs or
equipment, environmental failure such as a power loss,
or user error.

procedure . (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (I) (2) The
description of the course of action taken for the solution
of a problem. (A)

procedure-correlation identifier (PCID) . In SNA, a
value used to correlate all requests and replies
associated with a given procedure.

process . (1) To perform operations on data in a
process. (I) (A) (2) In data processing, the course
of events that occurs during the execution of all or part
of a program. (T) (3) A course of the events defined
by its purpose or by its effect, achieved under given
conditions. (4) Any operation or combination of
operations on data. (5) A function being performed or
waiting to be performed.

processor . In a computer, a functional unit that
interprets and executes instructions. A processor
consists of at least an instruction control unit and an
arithmetic and logic unit. (T)

product-set identification (PSID) . (1) In SNA, a
technique for identifying the hardware and software

 Glossary 579

products that implement a network component. (2) A
management services common subvector that
transports the information described in definition (1).

profile . Data that describes the significant
characteristics of a user, a group of users, or one or
more computer resources.

program . (1) A sequence of instructions suitable for
processing by a computer. Processing may include the
use of an assembler, a compiler, an interpreter, or a
translator to prepare the program for execution, as well
as to execute it. (I) (2) In programming languages, a
logical assembly of one or more interrelated
modules. (I) (3) To design, write, and test computer
programs. (I) (A)

program initialization parameters (PIP) . The initial
parameter values passed to a target program as input
or used to set up the process environment.

programmable operator facility (PROP) . A VM
facility that allows remote control of a virtual machine by
intercepting messages directed for that machine and
taking preprogrammed action.

program temporary fix (PTF) . A temporary solution or
bypass of a problem diagnosed by IBM in a current
unaltered release of the program.

PROP. Programmable operator facility.

protocol . (1) A set of semantic and syntactic rules
that determine the behavior of functional units in
achieving communication. (I) (2) In Open Systems
Interconnection architecture, a set of semantic and
syntactic rules that determine the behavior of entities in
the same layer in performing communication
functions. (T) (3) In SNA, the meanings of, and the
sequencing rules for, requests and responses used for
managing the network, transferring data, and
synchronizing the states of network components.
Synonymous with line control discipline and line
discipline. See bracket protocol and link prot ocol.

PSID. Presentation space ID.

PTF. Program temporary fix.

PU. Physical unit.

push . To add an item to the top of a pushdown list.
Contrast with pop.

pushdown list . (1) A list constructed and maintained
so that the next data element to be retrieved is the most
recently stored. (T) (2) Synonymous with stack.

PUT. Program update tape.

PU type . (1) Deprecated term for node type. (2)
The type of physical unit in a node.

Q
queue . (1) A list constructed and maintained so that
the next data element to be retrieved is the one stored
first. (T) (2) A line or list of items waiting to be
processed; for example, work to be performed or
messages to be displayed. (3) To arrange in or form a
queue.

R
Rapid Transport Protocol (RTP) . A
connection-oriented, full-duplex transport protocol for
carrying session traffic over High-Performance Routing
(HPR) routes. See also automatic network routing
(ANR) and Rapid Transport Protocol (RTP) connection.

Rapid Transport Protocol (RTP) connection . A
connection between two High-Performance Routing
(HPR) nodes that may traverse one or more
intermediate HPR nodes and links. The connection
endpoints provide error recovery and adaptive
rate-based flow control for the connection traffic, and
nondisruptive switching of the underlying physical path
in the case of route outage. The intermediate HPR
nodes minimize their routing overhead using automatic
network routing (ANR) protocols, which rely on header
information to permit efficient source routing and
prioritized transmission along the RTP connection.

RAR. Route addition resistance.

reassembly . In communications, the process of
putting segmented packets back together after they
have been received.

receive pacing . In SNA, the pacing of message units
that a component is receiving. Contrast with send
pacing.

record . A set of data treated as a unit. (T)

release . (1) A distribution of a new product or new
function and APAR fixes for an existing product.
Normally, programming support for the prior release is
discontinued after some specified period of time
following availability of a new release. The first version
of a product is announced as Release 1, Modification
Level 0. (2) In VTAM, to relinquish control of resources
(communication controllers or physical units). See also
resource takeover. Contrast with acquire.

remote . (1) Pertaining to a system, program, or device
that is accessed through a telecommunication line.
(2) Synonym for link-attached. (3) Contrast with local.

580 System Management Programming

remote host . Any host on a network except the host
at which a particular operator is working. Synonymous
with foreign host.

request . A message unit that signals initiation of a
particular action or protocol. For example, Initiate-Self
is a request for activation of an LU-LU session.

requester . A computer that accesses shared network
resources through a server. Synonym for client.

request header (RH) . The control information that
precedes a request unit (RU). See also
request/response header (RH).

request/response header (RH) . Control information
associated with a particular RU. The RH precedes the
request/response unit (RU) and specifies the type of RU
(request unit or response unit).

request/response unit (RU) . A generic term for a
request unit or a response unit. See request unit (RU)
and response unit
 (RU).

request unit (RU) . A message unit that contains
control information, end-user data, or both.

reset . On a virtual circuit, reinitialization of data flow
control. At reset, all data in transit are eliminated.

resource . Any facility of a computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs.

resource registration . The process of identifying
names of resources, such as LUs, to a network node
server or a central directory server.

resource sequence number (RSN) . A value that
identifies an update of a resource in a network topology
database.

resource takeover . In VTAM, an action initiated by a
network operator to transfer control of resources from
one domain to another without breaking the connections
or disrupting existing LU-LU sessions on the
connection. See also acquire and release.

resource types . In the NetView program, a concept to
describe the organization of panels. Resource types
are defined as central processing unit, channel, control
unit, and I/O device for one category; and
communication controller, adapter, link, cluster
controller, and terminal for another category. Resource
types are combined with data types and display types to
describe display organization. See also data types and
display types.

response . (1) In data communication, a reply
represented in the control field of a response frame. It
advises the primary or combined station of the action
taken by the secondary or other combined station to
one or more commands. (2) See also command.

response header (RH) . (1) A header, optionally
followed by a response unit (RU), that indicates whether
the response is positive or negative and that may
contain a pacing response. (2) See also negative
response, pacing response, and positive response.

response unit (RU) . A message unit that
acknowledges a request unit. It may contain prefix
information received in a request unit. If positive, the
response unit may contain additional information (such
as session parameters in response to BIND SESSION).
If negative, the response unit contains sense data
defining the exception condition.

return code . (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program.

REX. Route extension.

RH. Request/response header.

ring . See ring network.

ring network . A network configuration in which
devices are connected by unidirectional transmission
links to form a closed path.

route . (1) An ordered sequence of nodes and
transmission groups (TGs) that represent a path from
an origin node to a destination node traversed by the
traffic exchanged between them. (2) The path that
network traffic uses to get from source to destination.

route addition resistance (RAR) . A value that
indicates a network node's capacity to perform
intermediate session routing.

routed . Pronounced “route-d.” See route daemon.

route daemon . A program that runs under 4BSD
UNIX** to propagate route information among machines
on a local area network. Also referred to as routed
(pronounced “route-d”).

route extension (REX) . In SNA, the path control
network components, including a peripheral link, that
make up the portion of a path between a subarea node
and a network addressable unit (NAU) in an adjacent
peripheral node. See also explicit route (ER), path, and
virtual route (VR).

Route Selection control vector (RSCV) . A control
vector that describes a route within an APPN network.

 Glossary 581

The RSCV consists of an ordered sequence of control
vectors that identify the TGs and nodes that make up
the path from an origin node to a destination node.

routine . A program, or part of a program, that may
have some general or frequent use. (T)

routing . (1) The process of determining the path to be
used for transmission of a message over a
network. (T) (2) The assignment of the path by
which a message is to reach its destination. (3) In
SNA, the forwarding of a message unit along a
particular path through a network, as determined by
parameters carried in the message unit, such as the
destination network address in a transmission header.

RouTing update Protocol (RTP) . The VIrtual
NEtworking System (VINES) protocol that maintains the
routing database and allows the exchange of routing
information between VINES nodes. See also Internet
Control Protocol (ICP).

RQD. Request discontact.

RSCV. Route Selection control vector.

RSN. Resource sequence number.

RTP. Rapid Transport Protocol.

RTP connection . See Rapid Transport Protocol
(RTP) connection.

RU. Request/response unit.

RU chain . In SNA, a set of related request/response
units (RUs) that are consecutively transmitted on a
particular normal or expedited data flow. The request
RU chain is the unit of recovery: if one of the RUs in
the chain cannot be processed, the entire chain is
discarded. Each RU belongs to only one chain, which
has a beginning and an end indicated by means of
control bits in request/response headers within the RU
chain. Each RU can be designated as first-in-chain
(FIC), last-in-chain (LIC), middle-in-chain (MIC), or
only-in-chain (OIC). Response units and expedited-flow
request units are always sent as only-in-chain.

S
SAP. (1) Service access point. (2) Service
Advertising Protocol.

SBCS. Single-byte character set.

SC. Session control.

SDLC. Synchronous Data Link Control.

secondary logical unit (SLU) . In SNA, the logical unit
(LU) that contains the secondary half-session for a
particular LU-LU session. An LU may contain secondary
and primary half-sessions for different active LU-LU
sessions. Contrast with primary logical unit (PLU).

secondary logical unit (SLU) key . A key-encrypting
key used to protect a session cryptography key during
its transmission to the secondary half-session.

segment . (1) A section of cable between components
or devices. A segment may consist of a single patch
cable, several patch cables that are connected, or a
combination of building cable and patch cables that are
connected. (2) In Internet communications, the unit of
transfer between TCP functions in different machines.
Each segment contains control and data fields; the
current byte-stream position and actual data bytes are
identified along with a checksum to validate received
data. (3) Synonym for BIU segment. (4) See also link
connection segment.

select . To explicitly identify one or more objects to
which a subsequent choice will apply.

selection . The process of explicitly identifying one or
more objects to which a subsequent choice will apply.

send pacing . In SNA, the pacing of message units
that a component is sending. Contrast with receive
pacing.

sequence number . (1) In communications, a number
assigned to a particular frame or packet to control the
transmission flow and receipt of data. (2) A numerical
value assigned by VTAM to each message exchanged
between two nodes. The value (one for messages sent
from the application program to the logical unit and
another for messages sent from the logical unit to the
application program) increases by one for each
successive message transmitted unless it is reset by
the application program with a set and test sequence
numbers (STSN) indicator.

serial . (1) Pertaining to a process in which all events
occur one after the other; for example, serial
transmission of the bits of a character according to V24
CCITT protocol. (T) (2) Pertaining to the sequential
or consecutive occurrence of two or more related
activities in a single device or channel. (A)
(3) Pertaining to the sequential processing of the
individual parts of a whole, such as the bits of a
character or the characters of a word, using the same
facilities for successive parts. (A) (4) Contrast with
parallel.

server . (1) A functional unit that provides shared
services to workstations over a network; for example, a
file server, a print server, a mail server. (T) (2) In a
network, a data station that provides facilities to other

582 System Management Programming

stations; for example, a file server, a print server, a mail
server. (A) (3) In the AIX operating system, an
application program that usually runs in the background
and is controlled by the system program controller.
(4) In the Enhanced X-Windows** Toolkit, a program
that provides the basic windowing mechanism. It
handles interprocess communication (IPC) connections
from clients, demultiplexes graphics requests onto
screens, and multiplexes input back to clients.

service access point (SAP) . (1) In Open Systems
Interconnection (OSI) architecture, the point at which
the services of a layer are provided by an entity of that
layer to an entity of the next higher layer. (T) (2) A
logical point made available by an adapter where
information can be received and transmitted. A single
service access point can have many links terminating in
it. (3) The gateway address of the controller. A SAP
provides a point to link the controller to the host system.

Service Advertising Protocol (SAP) . In Internetwork
Packet Exchange** (IPX**), a protocol that provides the
following:

¹ A mechanism that allows IPX servers on an internet
to advertise their services by name and type.
Servers using this protocol have their name, service
type, and IP address recorded in all file servers
running NetWare**.

¹ A mechanism that allows a workstation to broadcast
a query to discover the identities of all servers of all
types, all servers of a specific type, or the nearest
server of a specific type.

¹ A mechanism that allows a workstation to query any
file server running NetWare to discover the names
and addresses of all servers of a specific type.

service point command facility (SPCF) . A program
or function that exchanges data and control between
the network operator, the link connection component
manager (LCCM), and the link connection subsystem
manager (LCSM).

service transaction program . Any IBM-supplied
transaction program running in a network accessible
unit. Contrast with application transaction program.

session . (1) In network architecture, for the purpose
of data communication between functional units, all the
activities which take place during the establishment,
maintenance, and release of the connection. (T) (2)
A logical connection between two network accessible
units (NAUs) that can be activated, tailored to provide
various protocols, and deactivated, as requested. Each
session is uniquely identified in a transmission header
(TH) accompanying any transmissions exchanged
during the session. (3) A logical connection between a
server and a requester that was initiated by a
successful request for a shared resource. See also
host session and DOS session.

session activation request . In SNA, a request that
activates a session between two network accessible
units (NAUs) and specifies session parameters that
control various protocols during session activity; for
example, BIND and ACTPU. Contrast with session
deactivation request.

session control (SC) . In SNA, either of the following:

¹ One of the components of transmission control.
Session control is used to purge data flowing in a
session after an unrecoverable error occurs, to
resynchronize the data flow after such an error, and
to perform cryptographic verification.

¹ A request unit (RU) category used for requests and
responses exchanged between the session control
components of a session and for session activation
and deactivation requests and responses.

session data . Data about a session, collected by the
NetView program, that consists of session awareness
data, session trace data, and session response time
data.

session deactivation request . In SNA, a request that
deactivates a session between two network accessible
units (NAUs); for example, UNBIND and DACTPU.
Synonymous with generic unbind. Contrast with session
activation reques t.

session ID . An alphabetic ID (a through h) assigned
by Communications Server to each session or screen.
This applies to all types of host sessions and is used in
file transfers. See also short name.

session-level pacing . (1) A flow control technique
that permits a receiving half-session or session
connector to control the data transfer rate (the rate at
which it receives request units) on the normal flow. It is
used to prevent overloading a receiver with
unprocessed requests when the sender can generate
requests faster than the receiver can process them.
(2) See also adaptive session-level pacing, fixed
session-level pacing, and virtual route (VR) pacing.

session-level security . For logical unit (LU) 6.2,
partner LU verification and session cryptography. See
conversation-level security.

session limit . The maximum number of concurrently
active LU-LU sessions that a particular logical unit (LU)
can support.

shared . Pertaining to the availability of a resource for
more than one use at the same time.

shift-out character (SO) . A code extension character
that substitutes for the graphic characters of the
standard character set an alternative set of graphic
characters upon which an agreement has been arrived

 Glossary 583

at or that has been designated using code extension
procedures. (I) (A)

short name . (1) In Communications Server, a
character displayed in column 7 of the operator
information area that shows the session ID. See also
session ID and operator information area. (2) In
Communications Manager/2, the one-letter name (A
through Z) of the presentation space or emulation
session. Synonymous with presentation space ID
(PSID) and short-session ID.

short-session ID . In Communications Manager/2,
synonym for short name.

shutdown . The process of ending operation of a
system or a subsystem, following a defined procedure.

single-byte character set (SBCS) . A character set in
which each character is represented by a one-byte
code. Contrast with double-byte character set (DBCS).

SLU. Secondary logical unit.

SNA. Systems Network Architecture.

SNA management services (SNA/MS) . The services
provided to assist in management of SNA networks.

SNA network . The part of a user-application network
that conforms to the formats and protocols of Systems
Network Architecture. It enables reliable transfer of data
among users and provides protocols for controlling the
resources of various network configurations. The SNA
network consists of network accessible units (NAUs),
boundary function, gateway function, and intermediate
session routing function components; and the transport
network.

SO. The shift-out character. (I) (A)

socket . An endpoint for communication between
processes or application programs.

SPCF. Service point command facility.

specific-mode . In VTAM, the following:

¹ The form of a RECEIVE request that obtains input
from one specific session

¹ The form of an ACCEPT request that completes the
establishment of a session by accepting a specific
queued CINIT request.

Contrast with any-mode. See continue-specific mode.

sphere of control (SOC) . The set of control point
domains served by a single management services focal
point.

SSCP. System services control point.

SSCP-dependent LU . An LU that requires assistance
from a system services control point (SSCP) in order to
initiate an LU-LU session. It requires an SSCP-LU
session.

SSCP-LU session . In SNA, a session between a
system services control point (SSCP) and a logical unit
(LU). The session enables the LU to request the SSCP
to help initiate LU-LU sessions.

SSCP-PU session . In SNA, a session between a
system services control point (SSCP) and a physical
unit (PU); SSCP-PU sessions allow SSCPs to send
requests to and receive status information from
individual nodes in order to control the network
configuration.

stack . Synonym for pushdown list.

static . (1) In programming languages, pertaining to
properties that can be established before execution of a
program; for example, the length of a fixed length
variable is static. (I) (2) Pertaining to an operation
that occurs at a predetermined or fixed time.
(3) Contrast with dynamic.

station . An input or output point of a system that uses
telecommunication facilities; for example, one or more
systems, computers, terminals, devices, and associated
programs at a particular location that can send or
receive data over a telecommunication line.

status . The condition or state of hardware or software,
usually represented by a status code.

storage . (1) A functional unit into which data can be
placed, in which they can be retained and from which
they can be retrieved. (T) (2) The action of placing
data into a storage device. (I) (A) (3) A storage
device. (A)

subarea . A portion of the SNA network consisting of a
subarea node, attached peripheral nodes, and
associated resources. Within a subarea node, all
network accessible units (NAUs), links, and adjacent
link stations (in attached peripheral or subarea nodes)
that are addressable within the subarea share a
common subarea address and have distinct element
addresses.

subarea node (SN) . A node that uses network
addresses for routing and maintains routing tables that
reflect the configuration of the network. Subarea nodes
can provide gateway function to connect multiple
subarea networks, intermediate routing function, and
boundary function support for peripheral nodes. Type 4
and type 5 nodes can be subarea nodes.

subarea PU . In SNA, a physical unit in a subarea
node. Contrast with peripheral PU.

584 System Management Programming

subdirectory . A directory contained within another
directory in a file system hierarchy.

subsystem . A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system. (T)

subvector . A subcomponent of the network
management vector transport (NMVT) major vector.

switched network . Any network in which connections
are established by closing switches, for example, by
dialing.

synchronization point . Synonym for sync point.

synchronous . (1) Pertaining to two or more
processes that depend upon the occurrence of specific
events such as common timing signals. (T)
(2) Occurring with a regular or predictable time
relationship.

Synchronous Data Link Control (SDLC) . A discipline
conforming to subsets of the Advanced Data
Communication Control Procedures (ADCCP) of the
American National Standards Institute (ANSI) and
High-level Data Link Control (HDLC) of the International
Organization for Standardization, for managing
synchronous, code-transparent, serial-by-bit information
transfer over a link connection. Transmission exchanges
may be duplex or half-duplex over switched or
nonswitched links. The configuration of the link
connection may be point-to-point, multipoint, or loop. (I)

synchronous operation . In VTAM, a communication,
or other operation in which VTAM, after receiving the
request for the operation, does not return control to the
program until the operation is completed. Contrast with
asynchronous operation.

synchronous request . In VTAM, a request for a
synchronous operation. Contrast with asynchronous
request.

sync point . An intermediate or end point during
processing of a transaction at which an update or
modification to one or more of the transaction's
protected resources is logically complete and error free.
Synonymous with synchronization point.

system . In data processing, a collection of people,
machines, and methods organized to accomplish a set
of specific functions. (I) (A)

system services control point (SSCP) . A
component within a subarea network for managing the
configuration, coordinating network operator and
problem determination requests, and providing directory
services and other session services for users of the
network. Multiple SSCPs, cooperating as peers with one
another, can divide the network into domains of control,

with each SSCP having a hierarchical control
relationship to the physical units and logical units within
its own domain.

system services control point (SSCP) domain . The
system services control point, the physical units (PUs),
the logical units (LUs), the links, the link stations, and
all the resources that the SSCP has the ability to control
by means of activation and deactivation requests.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks. The layered structure of SNA
allows the ultimate origins and destinations of
information, that is, the users, to be independent of and
unaffected by the specific SNA network services and
facilities used for information exchange.

system startup . Synonym for initial program load
(IPL).

T
table . A repository for data that NetDA/2 uses to
design a network. Each table contains information
related to the network.

task . In a multiprogramming or multiprocessing
environment, one or more sequences of instructions
treated by a control program as an element of work to
be accomplished by a computer. (I) (A)

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

TERMINATE. In SNA, a request unit that is sent by a
logical unit (LU) to its system services control point
(SSCP) to cause the SSCP to start a procedure to end
one or more designated LU-LU sessions.

TG. Transmission group.

TH. Transmission header.

thread . In the OS/2 operating system, the smallest unit
of operation to be performed within a process.

threshold . (1) In the NetView program, a percentage
value, set for a resource and compared to a calculated
error-to-traffic ratio. (2) In NetView for AIX, a setting
that specifies the maximum value a statistic can reach
before notification that the limit was exceeded. For
example, when a monitored MIB value has exceeded
the threshold, the data collector generates a threshold
event. (3) In NPM, high or low values supplied by the
user to monitor data and statistics being collected.

 Glossary 585

(4) In IBM bridge programs, a value set for the
maximum number of frames that are not forwarded
across a bridge due to errors, before a “threshold
exceeded” occurrence is counted and indicated to
network management programs. (5) An initial value
from which a counter is decremented to 0, or a value to
which a counter is incremented or decremented from an
initial value.

timeout . (1) An event that occurs at the end of a
predetermined period of time that began at the
occurrence of another specified event. (I) (2) A time
interval allotted for certain operations to occur; for
example, response to polling or addressing before
system operation is interrupted and must be restarted.

time stamp . (1) To apply the current system time.
(2) The value on an object that is an indication of the
system time at some critical point in the history of the
object. (3) In query, the identification of the day and
time when a query report was created that query
automatically provides on each report.

token . (1) In a local area network, the symbol of
authority passed successively from one data station to
another to indicate the station temporarily in control of
the transmission medium. Each data station has an
opportunity to acquire and use the token to control the
medium. A token is a particular message or bit pattern
that signifies permission to transmit. (T) (2) In LANs,
a sequence of bits passed from one device to another
along the transmission medium. When the token has
data appended to it, it becomes a frame.

token ring . (1) According to IEEE 802.5, network
technology that controls media access by passing a
token (special packet or frame) between media-attached
stations. (2) A FDDI or IEEE 802.5 network with a ring
topology that passes tokens from one attaching ring
station (node) to another. (3) See also local area
network (LAN).

topology . In communications, the physical or logical
arrangement of nodes in a network, especially the
relationships among nodes and the links between them.

topology database . See local topology database and
network topology database.

TP. Transaction program.

transaction program (TP) . A program that processes
transactions in an SNA network. There are two kinds of
transaction programs: application transaction programs
and service transaction programs. See also
conversation.

Transmission Control Protocol (TCP) . A
communications protocol used in the Internet and in any
network that follows the U.S. Department of Defense

standards for internetwork protocol. TCP provides a
reliable host-to-host protocol between hosts in
packet-switched communications networks and in
interconnected systems of such networks. It uses the
Internet Protocol (IP) as the underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

transmission group (TG) . (1) A connection between
adjacent nodes that is identified by a transmission
group number. (2) In a subarea network, a single link
or a group of links between adjacent nodes. When a
transmission group consists of a group of links, the links
are viewed as a single logical link, and the transmission
group is called a multilink transmission group (MLTG).
A mixed-media multilink transmission group (MMMLTG)
is one that contains links of different medium types (for
example, token-ring, switched SDLC, nonswitched
SDLC, and frame-relay links). (3) In an APPN network,
a single link between adjacent nodes. (4) See also
parallel transmission groups.

transmission group (TG) profile . In VTAM, a named
set of characteristics (such as cost per byte, cost per
unit of time, and capacity) that is used for APPN links.

transmission group (TG) vector . A representation of
an endpoint TG in a T2.1 network, consisting of two
control vectors: the TG Descriptor (X'46') control
vector and the TG Characteristics (X'47') control
vector.

transmission header (TH) . Control information,
optionally followed by a basic information unit (BIU) or a
BIU segment, that is created and used by path control
to route message units and to control their flow within
the network. See also path information unit.

transmission priority . A rank assigned to a message
unit that determines its precedence for being selected
by the path control component in each node along a
route for forwarding to the next node in the route.

transport protocol . A specification of the rules
governing the exchange of information between
components of a transport network.

trap . In the Simple Network Management Protocol
(SNMP), a message sent by a managed node (agent
function) to a management station to report an
exception condition.

tutorial . Information presented in a teaching format.

T1. In the United States, a 1.544-Mbps public access
line. It is available in twenty-four 64-Kbps channels.
The European version (E1) transmits 2.048 Mbps. The
Japanese version (J1) transmits 1.544 Mbps.

586 System Management Programming

U
UNBIND. In SNA, a request to deactivate a session
between two logical units (LUs). See also session
deactivation request. Contrast with BIND.

uninterpreted name . In SNA, a character string that a
system services control point (SSCP) can convert into
the network name of a logical unit (LU). Typically, an
uninterpreted name is used in a logon or Initiate request
from a secondary logical unit (SLU) to identify the
primary logical unit (PLU) with which the session is
requested.

upstream . In the direction of data flow from the user
to the host. Contrast with downstream.

uptime . (1) Synonym for operable time. (T)
(2) Deprecated term for available time. (3) Synonym
for operating time.

user . (1) Any person or any thing that may issue or
receive commands and messages to or from the
information processing system. (T) (2) Anyone who
requires the services of a computing system.

user identifier (UID) . A name that uniquely identifies a
user on a network or system.

UTC. Coordinated universal time.

V
value . (1) A specific occurrence of an attribute; for
example, “blue” for the attribute “color.” (T) (2) A
quantity assigned to a constant, a variable, a
parameter, or a symbol.

variable . (1) In programming languages, a language
object that may take different values, one at a time.
The values of a variable are usually restricted to a
certain data type. (I) (2) A quantity that can assume
any of a given set of values. (A) (3) A name used to
represent a data item whose value can be changed
while the program is running.

vector . The MAC frame information field.

verb . See LU 6.2 verb.

version . A separately licensed program that usually
has significant new code or new functions.

virtual circuit . (1) In packet switching, the facilities
provided by a network that give the appearance to the
user of an actual connection. (T) See also data
circuit. Contrast with physical circuit. (2) A logical
connection established between two DTEs.

virtual machine (VM) . (1) A virtual data processing
system that appears to be at the exclusive disposal of a
particular user, but whose functions are accomplished
by sharing the resources of a real data processing
system. (T) (2) In VM/ESA, the virtual processors,
virtual storage, virtual devices, and virtual channel
subsystem allocated to a single user. A virtual machine
also includes any expanded storage dedicated to it.

Virtual Machine/Enterprise Systems Architecture
(VM/ESA). An IBM licensed program that manages the
resources of a single computer so that multiple
computing systems appear to exist. Each virtual
machine is the functional equivalent of a real machine.

virtual node . Synonym for virtual routing node.

virtual route (VR) . (1) In SNA, either (a) a logical
connection between two subarea nodes that is
physically realized as a particular explicit route or (b) a
logical connection that is contained wholly within a
subarea node for intranode sessions. A virtual route
between distinct subarea nodes imposes a transmission
priority on the underlying explicit route, provides flow
control through virtual route pacing, and provides data
integrity through sequence numbering of path
information xnits (PIUs). (2) Contrast with explicit route
(ER). See also path and route extension (REX).

virtual route (VR) pacing . In SNA, a flow control
technique used by the virtual route control component
of path control at each end of a virtual route to control
the rate at which path information units (PIUs) flow over
the virtual route. VR pacing can be adjusted according
to traffic congestion in any of the nodes along the route.
See also session-level pacing.

virtual routing node . A representation of a node's
connectivity to a connection network defined on a
shared-access transport facility, such as a token ring.
Synonymous with virtual node.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.
It provides single-domain, multiple-domain, and
interconnected network capability.

VM. Virtual machine.

VM/ESA. Virtual Machine/Enterprise Systems
Architecture.

VR. Virtual route.

VTAM. (1) Virtual Telecommunications Access
Method. (2) Synonymous with ACF/VTAM.

 Glossary 587

W
WAN. Wide area network.

weight . For route selection purposes, the degree to
which resources (such as nodes and transmission
groups) meet the criteria specified by a particular class
of service. In APPN route selection, routes of minimum
weight are chosen.

wide area network (WAN) . (1) A network that
provides communication services to a geographic area
larger than that served by a local area network or a
metropolitan area network, and that may use or provide
public communication facilities. (T) (2) A data
communication network designed to serve an area of
hundreds or thousands of miles; for example, public and
private packet-switching networks, and national
telephone networks. (3) Contrast with local area
network (LAN) and metropolitan area network (MAN).

window . (1) A portion of a display surface in which
display images pertaining to a particular application can
be presented. Different applications can be displayed
simultaneously in different windows. (A) (2) An area
with visible boundaries that presents a view of an object
or with which a user conducts a dialog with a computer
system. (3) In data communication, the number of data
packets a data terminal equipment (DTE) or data
circuit-terminating equipment (DCE) can send across a
logical channel before waiting for authorization to send
another data packet. The window is the main

mechanism of pacing, or flow control, of packets. (4)
See pacing window.

window size . The specified number of frames of
information that can be sent before receiving an
acknowledgment response.

WinSock application programming interface (API) .
A socket-style transport interface developed for the
Windows family of operating systems.

workstation . (1) A functional unit at which a user
works. A workstation often has some processing
capability. (T) (2) One or more programmable or
nonprogrammable devices that allow a user to do work.
(3) A terminal or microcomputer, usually one that is
connected to a mainframe or to a network, at which a
user can perform applications.

X
XID. Exchange identification.

XMIT. Transmit.

Z
Z time . Abbreviation for Zulu time. Synonym for
coordinated universal time (UTC).

Zulu time (Z) . Synonym for coordinated universal time
(UTC).

588 System Management Programming

 Index

A
ACTIVATE_SESSION 154
activation and deactivation verbs 11

ACTIVATE_SESSION 154
DEACTIVATE_CONV_GROUP 156
DEACTIVATE_SESSION 158
PATH_SWITCH 161
START_DLC 138
START_INTERNAL_PU 140
START_LS 142
START_PORT 144
STOP_DLC 146
STOP_INTERNAL_PU 148
STOP_LS 150
STOP_PORT 152

ALERT_INDICATION 486
 alerts, unsolicited 478
APING 444
ASCII configuration 493
ASCII keywords 497
Attach Manager verbs

DISABLE_ATTACH_MANAGER 458
ENABLE_ATTACH_MANAGER 459
QUERY_ATTACH_MANAGER 460

B
buffer space required 12

C
CHANGE_SESSION_LIMIT 372
children 28
common VCB fields 9
Communications Server management services

API 463
Communications Server Node Operator Facility API 5
connection network 15, 167
CPI-C verbs

DEFINE_CPIC_ SIDE_INFO 449
DELETE_CPIC_SIDE_INFO 452
QUERY_CPIC_SIDE_INFO 453

D
data_lost indicator 13
DEACTIVATE_CONV_GROUP 156
DEACTIVATE_SESSION 158
DEFINE_ADJACENT_NODE 28, 105
DEFINE_CN 31
DEFINE_COS 35

DEFINE_CPIC_SIDE_INFO 449
DEFINE_DEFAULT_PU 42, 44
DEFINE_DLC 46
DEFINE_DLUR_DEFAULTS 49
DEFINE_DOWNSTREAM_LU 51
DEFINE_DOWNSTREAM_LU_RANGE 53
DEFINE_DSPU_TEMPLATE 56
DEFINE_FOCAL_POINT 59
DEFINE_INTERNAL_PU 62
DEFINE_LOCAL_LU 64
DEFINE_LS 67
DEFINE_LU_0_TO_3 79
DEFINE_LU_0_TO_3_RANGE 82
DEFINE_LU_LU_PASSWORD 434
DEFINE_LU_POOL 85
DEFINE_MODE 87
DEFINE_PARTNER_LU 91
DEFINE_PORT 94
DEFINE_TP 101
DEFINE_USERID_PASSWORD 436
DELETE_CN 107
DELETE_COS 109
DELETE_CPIC_SIDE_INFO 452
DELETE_DLC 110
DELETE_DOWNSTREAM_LU 112
DELETE_DOWNSTREAM_LU_RANGE 114
DELETE_DSPU_TEMPLATE 116
DELETE_FOCAL_POINT 117
DELETE_INTERNAL_PU 119
DELETE_LOCAL_LU 121
DELETE_LS 122
DELETE_LU_0_TO_3 124
DELETE_LU_0_TO_3_RANGE 126
DELETE_LU_LU_PASSWORD 438
DELETE_LU_POOL 128
DELETE_MODE 130
DELETE_PARTNER_LU 132
DELETE_PORT 133
DELETE_TP 135
DELETE_USERID_PASSWORD 440
detailed information 12
DISABLE_ATTACH_MANAGER 458
DLC processes 14
DLC_INDICATION 382
DLL (dynamic link library) 470
DLUR_LU_INDICATION 383
DLUS_INDICATION 384
DOWNSTREAM_LU_INDICATION 386
DOWNSTREAM_PU_INDICATION 391
dynamic link library (DLL)

See DLL (dynamic link library)

 Copyright IBM Corp. 1989, 1997 589

E
ENABLE_ATTACH_MANAGER 459
entry points

for management services verbs
WinMS() 468
WinMSCleanup() 469
WinMSRegisterApplication() 471
WinMSStartup() 470
WinMSUnregisterApplication() 474

for Node Operator Facility verbs
WinAsyncNOF() 19
WinAsyncNOFEx() 20
WinNOF() 18
WinNOFCancelAsyncRequest() 21
WinNOFCleanup() 22
WinNOFGetIndication() 13, 26, 476
WinNOFRegisterIndicationSink() 13, 24
WinNOFStartup() 23
WinNOFUnregisterIndicationSink() 13, 25

introduction 5, 463

F
focal point

domain 59
explicit 59
host 59
implicit backup 59
implicit primary 59

FOCAL_POINT_INDICATION 394
FP_NOTIFICATION 487

G
general protection fault 6, 464

H
highlighting, how used in this book xiv
HPR (high-performance routing) 161

I
indication verbs

DLC_INDICATION 382
DLUR_LU_INDICATION 383
DLUS_INDICATION 384
FOCAL_POINT_INDICATION 394
LOCAL_LU_INDICATION 401
LOCAL_TOPOLOGY_INDICATION 404
LS_INDICATION 405
LU_0_TO_3_INDICATION 409
MODE_INDICATION 413
PLU_INDICATION 418
PORT_INDICATION 420
PU_INDICATION 421

indication verbs (continued)
REGISTRATION_FAILURE 424
RTP_INDICATION 425
SESSION_INDICATION 429

INITIALIZE_SESSION_LIMIT 375
ISR_INDICATION 396

K
keyword samples

ADJACENT_NODE 524
ANYNET_COMMON_PARAMETERS 543
ANYNET_SOCKETS_OVER_SNA 546
CONNECTION_NETWORK 525
CPIC_SIDE_INFO 540
DLUR_DEFAULTS 520
DOWNSTREAM_LU 527
DSPU_TEMPLATE 526
FOCAL_POINT 528
INTERNAL_PU 519
LINK_STATION 517
LOCAL_LU 529
LU_0_TO_3 531
LU_LU_PASSWORD 541
MODE 533
NODE 500
PARTNER_LU 534
PORT 510
SPLIT_STACK 521
TN3270E_DEF 523
TP 537
USERID_PASSWORD 542
VERIFY 548

keywords
ADJACENT_NODE 524
ANYNET_COMMON_PARAMETERS 543
ANYNET_SOCKETS_OVER_SNA 545
CONNECTION_NETWORK 525
CPIC_SIDE_INFO 539
DLUR_DEFAULTS 520
DOWNSTREAM_LU 527
DSPU_TEMPLATE 526
FOCAL_POINT 528
INTERNAL_PU 519
LINK_STATION 511
LOCAL_LU 529
LU_0_TO_3 530
LU_LU_PASSWORD 541
MODE 532
NODE 499
PARTNER_LU 534
PORT 501
SPLIT_STACK 521
TN3270E_DEF 522
TP 536
USERID_PASSWORD 542

590 System Management Programming

keywords (continued)
VERIFY 548

L
limited resource 73
link stations

defined link stations 15
dynamic link stations 15
implicit link stations 15
temporary link stations 15

list_options field 12
AP_FIRST_IN_LIST 12
AP_LIST_FROM_NEXT 12
AP_LIST_INCLUSIVE 12
filtering options 12
index value 12

local descriptor table 6, 463
LOCAL_LU_INDICATION 401
LOCAL_TOPOLOGY_INDICATION 404
LS_INDICATION 405
LU pool 80
LU_0_TO_3_INDICATION 409

M
management services verbs

ALERT_INDICATION 486
FP_NOTIFICATION 487
MDS_MU_RECEIVED 481
NMVT_RECEIVED 488
SEND_MSD_MU 483
TRANSFER_MS_DATA 478

MDS_MU_RECEIVED 481
MODE_INDICATION 413

N
NMVT_RECEIVED 488
NN_TOPOLOGY_NODE_INDICATION 415
NN_TOPOLOGY_TG_INDICATION 416
node 5
node configuration verbs

DEFINE_ADJACENT_NODE 28
DEFINE_CN 31
DEFINE_COS 35
DEFINE_DEFAULT_PU 44
DEFINE_DEFAULTS 42
DEFINE_DLC 46
DEFINE_DLUR_DEFAULTS 49
DEFINE_FOCAL_POINT 59
DEFINE_INTERNAL_PU 62
DEFINE_LOCAL_LU 64
DEFINE_LS 67
DEFINE_LU_0_TO_3 79
DEFINE_MODE 87

node configuration verbs (continued)
DEFINE_PARTNER_LU 91
DEFINE_PORT 94
DEFINE_TP 101
DELETE_ADJACENT_NODE 105
DELETE_CN 107
DELETE_COS 109
DELETE_DLC 110
DELETE_FOCAL_POINT 117
DELETE_INTERNAL_PU 119
DELETE_LOCAL_LU 121
DELETE_LS 122
DELETE_LU_0_TO_3 124
DELETE_MODE 130
DELETE_PARTNER_LU 132
DELETE_PORT 133
DELETE_TP 135

node row (in a class-of-service definition) 35

P
PATH_SWITCH 161
PLU_INDICATION 418
PORT_INDICATION 420
ports 14

nonswitched ports 15
SATF ports 15
switched ports 14

PU_INDICATION 421

Q
query verbs 11

QUERY_CN 167
QUERY_CN_PORT 172
QUERY_COS 175
QUERY_DEFAULT_PU 178
QUERY_DEFAULTS 180
QUERY_DIRECTORY_LU 182
QUERY_DIRECTORY_STATS 186
QUERY_DLC 188
QUERY_DLUR_LU 193
QUERY_DLUR_PU 197
QUERY_DLUS 203
QUERY_FOCAL_POINT 225
QUERY_LOCAL_LU 237
QUERY_LOCAL_TOPOLOGY 243
QUERY_LS 248
QUERY_LU_0_TO_3 263
QUERY_MDS_APPLICATION 276
QUERY_MDS_STATISTICS 279
QUERY_MODE 281
QUERY_MODE_DEFINITION 287
QUERY_MODE_TO_COS_MAPPING 291
QUERY_NMVT_APPLICATION 294
QUERY_NODE 312

 Index 591

query verbs (continued)
QUERY_PARTNER_LU 321
QUERY_PARTNER_LU_DEFINITION 327
QUERY_PORT 332
QUERY_PU 341
QUERY_RTP_CONNECTION 346
QUERY_SESSION 353
QUERY_STATISTICS 360
QUERY_TP 362
QUERY_TP_DEFINITION 366

QUERY_ADJACENT_NN 164
QUERY_ATTACH_MANAGER 460
QUERY_CN 167
QUERY_CN_PORT 172
QUERY_COS 175
QUERY_CPIC_SIDE_INFO 453
QUERY_DEFAULT_PU 178
QUERY_DEFAULTS 180
QUERY_DIRECTORY_LU 182
QUERY_DIRECTORY_STATS 186
QUERY_DLC 188
QUERY_DLUR_LU 193
QUERY_DLUR_PU 197
QUERY_DLUS 203
QUERY_DOWNSTREAM_LU 208
QUERY_DOWNSTREAM_PU 217
QUERY_DSPU_TEMPLATE 222
QUERY_FOCAL_POINT 225
QUERY_ISR_SESSION 230
QUERY_LOCAL_LU 237
QUERY_LOCAL_TOPOLOGY 243
QUERY_LS 248
QUERY_LU_0_TO_3 263
QUERY_LU_POOL 272
QUERY_MDS_APPLICATION 276
QUERY_MDS_STATISTICS 279
QUERY_MODE 281
QUERY_MODE_DEFINITION 287
QUERY_MODE_TO_COS_MAPPING 291
QUERY_NMVT_APPLICATION 294
QUERY_NN_TOPOLOGY_NODE 297
QUERY_NN_TOPOLOGY_STATS 302
QUERY_NN_TOPOLOGY_TG 306
QUERY_NODE 312
QUERY_PARTNER_LU 321
QUERY_PARTNER_LU_DEFINITION 327
QUERY_PORT 332
QUERY_PU 341
QUERY_RTP_CONNECTION 346
QUERY_SESSION 353
QUERY_STATISTICS 360
QUERY_TP 362
QUERY_TP_DEFINITION 366

R
REGISTRATION_FAILURE 424
RESET_SESSION_LIMIT 378
RTP_INDICATION 425

S
SATF (shared-access transport facility) 15
security verbs

DEFINE_LU_LU_PASSWORD 434
DEFINE_USERID_PASSWORD 436
DELETE_LU_LU_PASSWORD 438
DELETE_USERID_PASSWORD 440

SEND_MDS_MU 483
session limit verbs

CHANGE_SESSION_LIMIT 372
INITIALIZE_SESSION_LIMIT 375
RESET_SESSION_LIMIT 378

SESSION_INDICATION 429
START_DLC 138
START_INTERNAL_PU 140, 148
START_LS 142
START_NODE 549
START_PORT 144
STOP_DLC 146
STOP_INTERNAL_PU 148
STOP_LS 150
STOP_PORT 152
summary information 12

T
TG row (in a class-of-service definition) 35
TRANSFER_MS_DATA 478

U
unsolicited alerts 478

V
verb control block

common fields 9
introduction 5, 6, 463

verbs
activating and deactivating at link level 11

START_DLC 138
START_INTERNAL_PU 140
START_LS 142
START_PORT 144
STOP_DLC 146
STOP_INTERNAL_PU 148
STOP_LS 150
STOP_PORT 152

activating and deactivating at session level 11
ACTIVATE_SESSION 154
DEACTIVATE_CONV_GROUP 156

592 System Management Programming

verbs (continued)
activating and deactivating at session level

(continued)
DEACTIVATE_SESSION 158

allowing a management application to "ping" a
remote LU 14

APING 444
allowing CPI-C side information to be managed 14

DEFINE_CPIC_SIDE_INFO 449
DELETE_CPIC_SIDE_INFO 452
QUERY_CPIC_SIDE_INFO 453

changing the number of sessions 13
CHANGE_SESSION_LIMIT 372
INITIALIZE_SESSION_LIMIT 375
RESET_SESSION_LIMIT 378

controlling the Attach Manager 14
DISABLE_ATTACH_MANAGER 458
ENABLE_ATTACH_MANAGER 459
QUERY_ATTACH_MANAGER 460

defining resources 10
DEFINE_ADJACENT_NODE 28
DEFINE_CN 31
DEFINE_COS 35
DEFINE_DEFAULT_PU 44
DEFINE_DEFAULTS 42
DEFINE_DLC 46
DEFINE_DLUR_DEFAULTS 49
DEFINE_FOCAL_POINT 59
DEFINE_INTERNAL_PU 62
DEFINE_LOCAL_LU 64
DEFINE_LS 67
DEFINE_LU_0_TO_3 79
DEFINE_MODE 87
DEFINE_PARTNER_LU 91
DEFINE_PORT 94
DEFINE_TP 101

deleting resources 10
DELETE_ADJACENT_NODE 105
DELETE_CN 107
DELETE_COS 109
DELETE_DLC 110
DELETE_FOCAL_POINT 117
DELETE_INTERNAL_PU 119
DELETE_LOCAL_LU 121
DELETE_LS 122
DELETE_LU_0_TO_3 124
DELETE_MODE 130
DELETE_PARTNER_LU 132
DELETE_PORT 133
DELETE_TP 135

description of, how to read 9
common VCB fields 9
returned parameters 9
supplied parameters 9

forcing an RTP connection to switch paths 11
PATH_SWITCH 161

verbs (continued)
overview 9
providing security 14

DEFINE_LU_LU_PASSWORD 434
DEFINE_USERID_PASSWORD 436
DELETE_LU_LU_PASSWORD 438
DELETE_USERID_PASSWORD 440

reporting potential problems to management services
focal points 463

ALERT_INDICATION 486
FP_NOTIFICATION 487
MDS_MU_RECEIVED 481
NMVT_RECEIVED 488
SEND_MDS_MU 483
TRANSFER_MS_DATA 478

returning different levels of information 163
QUERY_DIRECTORY_LU 182
QUERY_DLC 188
QUERY_DLUR_LU 193
QUERY_DLUR_PU 197
QUERY_LOCAL_LU 237
QUERY_LOCAL_TOPOLOGY 243
QUERY_LS 248
QUERY_LU_0_TO_3 263
QUERY_MODE 281
QUERY_MODE_DEFINITION 287
QUERY_PARTNER_LU 321
QUERY_PARTNER_LU_DEFINITION 327
QUERY_PORT 332
QUERY_RTP_CONNECTION 346
QUERY_SESSION 353
QUERY_TP_DEFINITION 366

returning node information in named fields 11
QUERY_DEFAULT_PU 178
QUERY_DIRECTORY_STATS 186
QUERY_MDS_STATISTICS 279
QUERY_NODE 312
QUERY_STATISTICS 360

returning one of more units of information 11
QUERY_CN 167
QUERY_CN_PORT 172
QUERY_COS 175
QUERY_DEFAULTS 180
QUERY_DLUS 203
QUERY_FOCAL_POINT 225
QUERY_MDS_APPLICATION 276
QUERY_MODE_TO_COS_MAPPING 291
QUERY_NMVT_APPLICATION 294
QUERY_PU 341
QUERY_TP 362

summary 10
unsolicited indications of named events 13

DLC_INDICATION 382
DLUR_LU_INDICATION 383
DLUS_INDICATION 384
FOCAL_POINT_INDICATION 394
LOCAL-LU_INDICATION 401

 Index 593

verbs (continued)
unsolicited indications of named events (continued)

LOCAL_TOPOLOGY_INDICATION 404
LS_INDICATION 405
LU_0_TO_3_INDICATION 409
MODE_INDICATION 413
PLU_INDICATION 418
PORT_INDICATION 420
PU_INDICATION 421
registering an application to receive

information 13
REGISTRATION_FAILURE 424
RTP_INDICATION 425
SESSION_INDICATION 429
unregistering an application when it no longer

requires information 13

W
WinAsyncNOF() 19
WinAsyncNOFEx() 20
WinMS() 468
WinMSCleanup() 469
WinMSRegisterApplication() 471
WinMSStartup() 470
WinMSUnregisterApplication() 474
WinNOF() 18
WinNOFCancelAsyncRequest() 21
WinNOFCleanup() 22
WinNOFGetIndication() 13, 26, 476
WinNOFRegisterIndicationSink() 13, 24
WinNOFStartup() 23
WinNOFUnregisterIndicationSink() 13, 25
writing management services programs 464
writing NOF programs 6

X
XID 71
XID0 67
XID3 67

594 System Management Programming

Communicating Your Comments to IBM

Communications Server
for Windows** NT
System Management Programming
Version 5.0

Publication No. SC31-8426-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088

¹ If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

 – Internet: USIB2HPD@VNET.IBM.COM

Make sure to include the following in your note:

¹ Title and publication number of this book
¹ Page number or topic to which your comment applies.

Help us help you!

Communications Server
for Windows** NT
System Management Programming
Version 5.0

Publication No. SC31-8426-00

If your concern is service related, you can reach Service at 1-800-992-4777 in the United States. Outside
the United States, please check your phone listing for the IBM Service Center nearest you.

We hope you find this publication useful, readable and technically accurate, but only you can tell us!
Please take a few minutes to let us know what you think by completing this form.

Specific Comments or Problems:

Please tell us how we can improve this book:

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to use the
information in any way you choose.

Your Internet Address:

Name Address

Company or Organization

Phone No.

Overall, how satisfied are you with the information in this book? Satisfied Dissatisfied

 Ø Ø

How satisfied are you that the information in this book is: Satisfied Dissatisfied

Accurate Ø Ø
Complete Ø Ø
Easy to find Ø Ø
Easy to understand Ø Ø
Well organized Ø Ø
Applicable to your task Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Help us help you!
SC31-8426-00 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Information Development
Department CGMD
International Business Machines Corporation
PO BOX 12195
RESEARCH TRIANGLE PARK NC 27709-9990

Fold and Tape Please do not staple Fold and Tape

SC31-8426-00

ÉÂÔÙ

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8426-00

